Before using this information and the product it supports, read the information in "Notices" on page 321.

This edition applies to Version 1 Release 1 of the IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility, Program Number 5655-V86, and to all subsequent releases until otherwise indicated in new editions.

This edition replaces SC19-2903-02.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

About this information vii
Service updates and support information vii
How to read syntax diagrams vii
How to look up message explanations ix
Searching an information center ix
Using a Web search ix
Using LookAt ix
How to send your comments x
Conventions used in this book x

Part 1. IMS Database Recovery
Facility overview 1

Chapter 1. IMS Database Recovery
Facility overview 3
What does IMS Database Recovery Facility do? 3
Backup and recovery solutions 5
Basic product architecture 6
Product architecture when using the integrated
auxiliary utilities 8
IMS Database Recovery Facility documentation and
updates 8
Accessibility features 9
Summary of changes 10

Chapter 2. Requirements and
restrictions 13
Product requirements 13
Hardware and software requirements 13
Operational requirements 13
Product restrictions 14
Seasonal time change timestamp restriction 14
Database and area restrictions 14
Esoteric name tape drive restriction 15
Migration considerations 15
Coexistence 15
Fallback recommendations 16
Region size considerations 16

Part 2. Configuring IMS Database
Recovery Facility 17

Chapter 3. Configuring the basic
product environment 19
Creating the environmental control member:
FRXDRFxx 19
Environmental control statements 20

Chapter 4. Configuring the integrated
auxiliary utility environment 45
Specifying utility control statements 45
Utility control statements 45

Chapter 5. Configuring JCL statements
and procedures 75
Master address space JCL 75
Recovery sort subordinate address space JCL 81
IMS Index Builder, DFSPREC0, and Build Index
function of FPA address space JCL 83
IMS High Performance Pointer Checker JCL 85

Part 3. Using IMS Database
Recovery Facility 87

Chapter 6. Using the IMS Database
Recovery Facility basic product 89
Using control statements 89
Using batch recovery control statements 89
ADD command reference 90
Examples of using the ADD command 93
REMOVE command reference 95
START command reference 96

Chapter 7. Using the IMS Database
Recovery Facility with the integrated
auxiliary utilities 107
Utility control statement specification 107
ADD IB() syntax for invoking IMS Index Builder,
DFSPREC0, or Build Index function of FPA 108
ADD IC() syntax for invoking IMS High
Performance Image Copy 115
ADD PC() syntax for invoking IMS High
Performance Pointer Checker and IMS High
Performance Fast Path Utilities 124

Chapter 8. DBRC commands for
database recovery 131
Using the INIT.DBDSGRP command 131
Using the CHANGE.DBDSGRP command 131
Using the LIST.DBDSGRP command 132
Using the NOTIFY.RECOV command 132

Chapter 9. Performing a database
recovery 133
1. Defining recovery scope 133
2. Taking databases offline 135
3. Building a recovery list 136
4. Defining physical data sets 136
5. Starting recovery 137
6. Using integrated auxiliary utility processing 137
 IMS Database Recovery Facility calling IMS
 High Performance Image Copy 138
Part 4. Administering IMS
Database Recovery Facility 141

Chapter 10. Administering IMS
Database Recovery Facility 143

Administering databases 143
Managing sources of input 143
Input data sets from earlier IMS Database
Recovery Facility releases 144
DBRC controls 144
Image copy input types 144
Nonstandard image copy recovery 145
Change accumulation input data sets 145
Log data sets usage for recovery 145
Image copy frequency 146
Recovery from secondary sources 146
Managing output 146
Stacked Image Copy Output 147
Managing the environment 147
Data integrity 147
How security is assigned 148
Database availability during recovery 148
Starting databases and areas 148
DEDBs with MADS 148
Restart considerations 148
Auditability considerations 149
Spill data space management 149

Chapter 11. Managing performance 151
Performance improvement 151
Control of input parallelism 152
Virtual tape system management 152
Tape device availability management 153

Chapter 12. Managing time stamp recovery 155
Time stamp recovery without PITR 155
Time stamp recovery with PITR 155
RECOVGRP 156
Time stamp recovery with PITR and UOR 156
Time stamp recovery with PITR and database updates on multiple UOR 157

Chapter 13. Sample reports 161
Output report content 161
Sample reports processing 162
Example report: Image copy or incremental image copy output 162

Example report: Point-in-time recovery 168
Example report: Full point-in-time recovery 174
Example report: Verify of the point-in-time recovery 178
Example report: VERIFY(ALLOC) recovery 182
Example report: VERIFY(OPEN) recovery for a point-in-time 186
Example report: Full recovery using environment control statements 189
Example report: Full recovery with IC() and PC() utilities 193

Chapter 14. Usage scenarios for optimizing your IMS Recovery Solution Pack: IMS Database Recovery Facility experience 199
Setting up a basic IMS Recovery Solution Pack: IMS Database Recovery Facility environment 200
Setting up the IMS Recovery Solution Pack 200
Installing IMS Recovery Solution Pack libraries 200
Installing required maintenance 201
Reviewing the IMS Recovery Solution Pack installation checklist 201
Customizing the procedures and JCL members 201
Tips and best practices 202
Recover the database to the current time 203
Creating and running a IMS Database Recovery Facility job 203
Reviewing the output 204
Validating recovery by using IMS HP Pointer Checker 205
Creating and running a IMS Database Recovery Facility job 206
Reviewing the output 207
Taking an incremental image copy of offline databases 208
Identifying the databases to perform incremental image copy 209
Creating and running a IMS Database Recovery Facility job 210
Reviewing the output 211
Common errors and problems 213
Optional: Verifying the ICR in DBRC 213
Next steps 214
Taking an incremental image copy of an online database to the current time or point-in-time 214
Identify the databases to perform incremental image copy 214
Creating and running your IMS Database Recovery Facility job 216
Reviewing the output 217
Common errors and problems 218
Optional: Verifying the ICR in DBRC 218
Next steps 220
Using IMS Index Builder to rebuild indexes during recovery 220
Creating and running a IMS Database Recovery Facility job 220
Contents

Reviewing the output ... 221
Common errors and problems 222

Chapter 15. Troubleshooting 223

Chapter 16. IMS Database Recovery Facility messages 225

Chapter 17. IMS Database Recovery Facility abend codes 265
Reason codes for service error abend ABENDU0384 265
Reason codes for logic error abend ABENDU0385 269

Chapter 18. Batch condition codes 273

Chapter 19. IMS Database Recovery Facility and the integrated auxiliary utilities 275
IMS Database Recovery Facility terminology for integrated auxiliary processing 275
Integrated auxiliary utilities invoked by IMS Database Recovery Facility 275
Integrated auxiliary utility processing address space architecture and configuration 277

Chapter 20. BPE commands 289
Specifying BPE command parameters 289
BPE TRACETABLE commands 289
DISPLAY TRACETABLE command 289
DISPLAY TRACETABLE command output 291
UPDATE TRACETABLE command 292
UPDATE TRACETABLE command output 293

Chapter 21. BPE messages and codes 295
BPE messages .. 295
BPE service return codes 308
BPE user abend codes .. 317

Notices .. 321
Trademarks ... 322

Index .. 323
IBM IMS Recovery Solution Pack for z/OS: Database Recovery Facility (also referred to as IMS Database Recovery Facility) is an IMS tool that allows you to simultaneously recover multiple database data sets, HALDB partitions, and Fast Path areas.

This user’s guide provides instructions for using IMS Database Recovery Facility.

To use the procedures in this user’s guide, you must have already installed IBM IMS Recovery Solution Pack for z/OS by completing the SMP/E installation process that is documented in the Program Directory for IMS Recovery Solution Pack for z/OS, GI10-8824-00, which is included with the product. You must also perform the post-installation steps as outlined in the IMS Recovery Solution Pack: Overview and Installation User’s Guide, SC19-2903-00.

This user’s guide is designed to help database administrators, system programmers, application programmers, and system operators perform the following tasks:

• Plan for the installation of IMS Database Recovery Facility
• Configure your IMS Database Recovery Facility environment
• Operate IMS Database Recovery Facility in your environment
• Diagnose and recover from system problems

Before using this book, you should understand basic IMS concepts.

Always check the IBM® DB2® and IMS™ Tools library page for the most current version of this publication:

http://www.ibm.com/software/data/db2imstools/imstools-library.html

Service updates and support information

To find service updates and support information, including software fix packs, PTFs, Frequently Asked Question (FAQs), technical notes, troubleshooting information, and downloads, refer to the following Web page:

How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The following conventions are used:
 – The >>>--- symbol indicates the beginning of a syntax diagram.
 – The ---> symbol indicates that the syntax diagram is continued on the next line.
 – The >--- symbol indicates that a syntax diagram is continued from the previous line.

© Copyright IBM Corp. 2000, 2012
- The -->< symbol indicates the end of a syntax diagram.
- Required items appear on the horizontal line (the main path).

```
+---+---+
<p>| | |
|   |   |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
```

- Optional items appear below the main path.

```
+---+---+
<p>| | |
|   |   |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
```

If an optional item appears above the main path, that item has no effect on the execution of the syntax element and is used only for readability.

```
+---+---+
<p>| | |
|   |   |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
```

- If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of the items, one item of the stack appears on the main path.

```
+---+---+
<p>| | |
|   |   |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
```

If one of the items is the default, it appears above the main path, and the remaining choices are shown below.

```
+---+---+
<p>| | |
|   |   |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
```

- An arrow returning to the left, above the main line, indicates an item that can be repeated.

```
+---+---+
<p>| | |
|   |   |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
```

If the repeat arrow contains a comma, you must separate repeated items with a comma.

```
+---+---+
<p>| | |
|   |   |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
```

A repeat arrow above a stack indicates that you can repeat the items in the stack.
Keywords, and their minimum abbreviations if applicable, appear in uppercase. They must be spelled exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They represent user-supplied names or values.

- Separate keywords and parameters by at least one space if no intervening punctuation is shown in the diagram.
- Enter punctuation marks, parentheses, arithmetic operators, and other symbols, exactly as shown in the diagram.
- Footnotes are shown by a number in parentheses, for example (1).

How to look up message explanations

You can use any of the following methods to search for messages and codes:

Searching an information center

In the search box that is located in the top left toolbar of any Eclipse help system, such as the [IBM Information Management Software for z/OS® Solutions](http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/), enter the number of the message that you want to locate. For example, you can enter DFS1065A in the search field.

Use the following tips to help you improve your message searches:

- You can search for information on codes by entering the code; for example, enter -327.
- Enter the complete or partial message number. You can use wild cards (* or ?) in the message number to broaden your search; for example, DFS20??I.

The information center contains the latest message information for all of the information management products that are included in the information center.

Using a Web search

You can use any of the popular search engines that are available on the Web to search for message explanations. When you type the specific message number or code into the search engine, you will be presented with links to the message information in IBM information centers.

Using LookAt

LookAt is an online facility that you can use to look up explanations for most of the IBM messages you encounter, as well as for some system abends and codes. Using LookAt to find information is faster than a conventional search because in most cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message explanations for z/OS elements and features, z/VM®, VSE/ESA, and Clusters for AIX® and Linux:

- Your z/OS TSO/E host system. You can install code on your z/OS or z/OSe systems to access IBM message explanations, using LookAt from a TSO/E command line (for example, TSO/E prompt, ISPF, or z/OS UNIX System Services running OMVS).
• Your Microsoft Windows workstation. You can install code to access IBM message explanations on the z/OS Collection (SK3T-4271) using LookAt from a Microsoft Windows command prompt (also known as the DOS command line).

• Your wireless handheld device. You can use the LookAt Mobile Edition with a handheld device that has wireless access and an Internet browser (for example, Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt Web site.

You can obtain code to install LookAt on your host system or Microsoft Windows workstation from a disk on your z/OS Collection (SK3T-4271) or from the LookAt Web site (click Download, and select the platform, release, collection, and location that suit your needs). More information is available in the LOOKAT.ME files available during the download process.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you have any comments about this book or any other IMS Database Recovery Facility documentation:

• Use the online reader comment form located at: www.ibm.com/software/data/rcf/

• Send your comments by e-mail to comments@us.ibm.com. Be sure to include the name of the book, the part number of the book, the version of IMS Database Recovery Facility, and, if applicable, the specific location of the text you are commenting on (for example, a page number or table number).

Conventions used in this book

This book uses the following highlighting conventions:

• **Boldface type** indicates commands or user interface controls such as names of fields, folders, icons, or menu choices.

• *Monospace type* indicates examples of text that you enter exactly as shown.

• *Italic type* indicates variables that you should replace with a value. It is also used to indicate book titles and to emphasize significant words.
Part 1. IMS Database Recovery Facility overview

IBM IMS Recovery Solution Pack for z/OS: Database Recovery Facility (also referred to as IMS Database Recovery Facility) is an IMS tool that allows you to simultaneously recover multiple database data sets, HALDB partitions, and Fast Path areas.

The topics in this section provide you with an overview of the IMS Database Recovery Facility product.

- IMS Database Recovery Facility overview
- Requirements and restrictions
Chapter 1. IMS Database Recovery Facility overview

IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility (also referred to as IMS Database Recovery Facility) is an IMS tool that allows you to simultaneously recover multiple database data sets, HALDB partitions, and Fast Path areas. IMS Database Recovery Facility is one of several IBM tools that can help you manage backup and recovery operations for your IMS databases in the event of a system outage or application failure.

Topics:
- “What does IMS Database Recovery Facility do?”
- “Backup and recovery solutions” on page 5
- “Basic product architecture” on page 6
- “IMS Database Recovery Facility documentation and updates” on page 8
- “Accessibility features” on page 9

What does IMS Database Recovery Facility do?

The IMS Database Recovery Facility allows you to simultaneously recover multiple database data sets, HALDB partitions, and fast path areas in a single job step. IMS Database Recovery Facility also integrates with several other IMS Tools products as integrated auxiliary utilities to allow you to create new image copies, rebuild indexes, and validate recovered databases.

Running IMS Database Recovery Facility does not require the presence of an active IMS DB/TM or DBCTL subsystem.

The phrases "database data set" or "database data sets" refer to full function database data sets, HALDB partitions, and fast path area data sets, unless otherwise noted.

By using the IMS Database Recovery Facility you can reduce operational complexity and the impact of database recovery on system resources. It simplifies your database recovery process by eliminating the need to run a separate recovery job for each database data set that requires recovery.

Recovery using the IMS Database Recovery Facility reduces the time that broken databases are unavailable by processing input data in parallel and recovering multiple database data sets simultaneously. Further time saving is possible because running change accumulation before recovery of a shared database is optional when you use this product.

In addition, IMS Database Recovery Facility provides the capability to automatically invoke the following utilities during the recovery process:
- IMS High Performance Image Copy to create image copies
- IMS Index Builder to build the primary and all secondary indexes for a database.
- IMS HALDB DFSPREC0 utility to rebuild the HALDB Primary Index data set and Index List data set
• IMS High Performance Pointer Checker and the IMS High Performance Fast Path Utilities to hash check database pointers
• IMS Library Integrity Utility to verify the consistency of DBD Library used in a recovery
• IMS Tools Knowledge Base to enable IMS High Performance Pointer Checker, IMS Index Builder, and IMS Fast Path Advanced Tool to store reports in the IMS Tools KB Repository.
• The Build Index function of IMS Fast Path Advanced Tool (also referred to as FPA), a tool within the IMS Fast Path Solution Pack for z/OS. You can invoke this utility to build Fast Path secondary indexes.

IMS Database Recovery Facility is invoked by creating JCL statements and product control statements and submitting the job for execution. It can also be invoked using JCL statements and product control statements specified in a started task.

IMS Database Recovery Facility provides you with the ability to create and store recovery scenarios before they are needed. By doing so, you can audit recovery processes and jobs to ensure that as many database failure scenarios as possible are covered. This saves valuable time during a database outage by having the necessary recovery jobs already defined before they are required.

Supported database types

You can use the IMS Database Recovery Facility to recover these database types:
• Full Function: HDAM, HIDAM, HISAM, SHISAM, and INDEX
• HALDB: PHIDAM, PHDAM, and PSINDEX
• Fast Path: DEDB: ADS and MADS

The phrases database data set or database data sets refer to full function database data sets, HALDB partitions, and fast path area data sets, unless otherwise noted.

For a list of database types that you cannot recover with IMS Database Recovery Facility, see "Product restrictions" on page 14.

Recovery features

You can perform the following recovery tasks with the IMS Database Recovery Facility:
• Simultaneously recover multiple full-function databases, HALDB partitions, and DEDB areas in a single pass of the change accumulation and log data sets.
• Perform time stamp recovery by using time stamps that are not restricted to allocation boundaries. The ability to recover to any point in time allows you to recover IMS databases to the same point in time as other databases in your environment.
• Recover database data sets and areas without needing to preprocess IMS log data with a change accumulation utility.
• Maintain efficient control of input to the IMS Database Recovery Facility by specifying how many log, change accumulation, and image copy data sets can be read in parallel.
• Specify whether or not recovery is to continue for the set of database data sets being processed when recovery for one of them fails.
• Integrate recovery tasks into a single job step, which can include:
 – creating image copies
Database management features

You can also perform the following database management tasks by using the IMS Database Recovery Facility:

- Automatic /DBR of databases in the recovery list prior to performing recovery.
- Automatic startup of databases in the recovery list on all applicable IMS systems or on the IMS that performs recovery after recovery completes successfully.
- Create image copy data sets during the recovery process to eliminate the need to follow recovery with a separate image copy process.
- Create index data sets as part of the recovery process, including primary, secondary, and HALDB index list data sets, in order to eliminate the need to follow recovery with a separate index build process.
- Create offline, duplicate copies of a database that can be used for tasks such as application program testing, audit, and database recovery.
- Validate data during the recovery process, by running a pointer checker against the database, which eliminates the need to follow a recovery with a separate validation process invocation.
- Verify that the DBD being used for recovery and for the integrated auxiliary utilities is the one that was used to create the database.
- Automatically delete and define database data sets as part of the recovery process, which eliminates the need to perform these tasks before recovery.
- Generate new incremental image copy data sets by applying database updates from a log data set or change accumulation data set to existing image copy data. This allows a new image copy to be created without needing to access the database.
- Verify the existence and availability of recovery input data sets by attempting to dynamically allocate and open the input data sets without needing to run an actual recovery.

Backup and recovery solutions

IBM solutions help IT organizations maximize their investment in IMS and DB2 databases while staying on top of some of today’s toughest IT challenges. Backup and recovery solutions protect your data and lessen the negative impact that data loss can have on your business.

Backup and recovery is one of the most complicated areas of database management. Having the right resources to perform a recovery is critical, and unfortunately in many cases, it is not addressed until after data is already lost.

Database backup and recovery solutions include recovering from an application program error to bouncing back from a major disaster, and everything in between. Recoveries done manually can be error prone, time consuming, and resource intensive.

Some of the challenges you might face as a Database Administrator responsible for backup and recovery tasks include:

- Can a transaction be reversed or does the entire database have to be recovered?
• How can you determine which databases have been impacted?
• Do you have the necessary resources to recover to a point in time?
• Are you prepared for a disaster? Can you recover your IMS subsystem? How much data are you willing to lose?

Many IMS Tools products provide database management features not available in IMS itself or provide enhancements to capabilities built into IMS.

IMS Database Recovery Facility is only one of several IMS Tools products that provide enhancements to the process of managing backup and recovery operations for your databases in the event of a system outage or application failure.

IMS Database Recovery Facility simplifies your database recovery process by eliminating the need to run a separate recovery job for each database data set that requires recovery.

Other IMS Tools products that can assist with database backup and recovery include:
• IMS Recovery Solution Pack: IMS High Performance Change Accumulation Utility
• IMS Application Recovery Tool for IMS and DB2 Databases
• IMS DEDB Fast Recovery for z/OS
• IMS High Performance Image Copy for z/OS
• IMS Recovery Solution Pack: IMS Database Recovery Facility: Extended Functions
• IMS Index Builder
• IMS Fast Path Solution Pack for z/OS

--

Basic product architecture

The IMS Database Recovery Facility product consists of several components that operate together to provide the product functionality.

This section describes the architecture of the basic product only. For the architectural description that includes the integrated auxiliary utilities, see “Product architecture when using the integrated auxiliary utilities” on page 8.

The components related to the IMS Database Recovery Facility are:
• BPE (base primitive environment)
 A set of system services that are needed by the IMS Database Recovery Facility. BPE provides the infrastructure upon which the IMS Database Recovery Facility, is built.
• DBRC
 A facility that maintains records of recovery-related resources in the RECON data sets.
• IMS Database Recovery Facility master address space (MAS)
 An MVS address space in which the controlling components of IMS Database Recovery Facility reside. It might also be referred to as the master address space. The log and change accumulation data sets are read in this address space.
• IMS Database Recovery Facility sort subordinate address space or spaces (RSS)
One or more MVS address spaces which are started by the master address space. These address spaces sort log and change accumulation data and restore image copy data.

This diagram shows the components and the processes of the IMS Database Recovery Facility for the basic product. It does not include information related to the integrated auxiliary utilities.

Figure 1. Components and processes of the IMS Database Recovery Facility for the basic product

Component descriptions:

JCL
The Job Control Language stream that initiates the IMS Database Recovery Facility.

Logs
IMS RLDS (recovery log data set) or SLDS (system log data set) that are used as input to IMS Database Recovery Facility

CAs
Change accumulation data sets that are used as input to IMS Database Recovery Facility

RECON
DBRC recovery control data sets that are used as input to and output from IMS Database Recovery Facility

MAS
The IMS Database Recovery Facility master address space in which the control function and log and CA reader processes are performed

Report
Output recovery summary and statistical reports from IMS Database Recovery Facility
RSS One or more recovery sort subordinate address spaces in which log records are sorted and recovery processes are performed.

ICs Image copy data sets that are used as input to the recovery process

FP Area Fast Path area that is the output from the recovery process

DBDS Full function or HALDB database data set that is the output from the recovery process

Product architecture when using the integrated auxiliary utilities

IMS Database Recovery Facility provides the functionality to perform a recovery and execute the integrated auxiliary utilities in a single-step batch job. By using a single-step batch job, CPU, and I/O Service Unit are reduced, JCL and control statements are simplified, and the Integrated Auxiliary Utility reports, messages, and return codes are integrated into a single output.

The integrated auxiliary utilities include:

- IMS High Performance Image Copy to create image copies
- IMS Index Builder to build the primary and all secondary indexes for a database
- IMS High Performance Pointer Checker and the IMS High Performance Fast Path Utilities to hash check recovered databases
- IMS HALDB DFSPREC0 utility to rebuild the HALDB Primary Index data set and Index List data set
- IMS Library Integrity Utility to verify that the DBD used for the recovery is the same as the one that was used to create the database
- The Build Index function of FPA to build Fast Path secondary indexes

When any of the integrated auxiliary utilities are invoked additional address spaces can also be started. Here is a list of the address spaces that can be started by the IMS Database Recovery Facility to process the integrated auxiliary utilities:

- Utility address space for IMS Index Builder
- Utility address space for DFSPREC0
- Utility address space for the Build Index function of FPA.
- Utility address space for IMS High Performance Pointer Checker

These address spaces guide the processing of the various integrated auxiliary utilities. The integrated auxiliary utilities can also initiate other utility-specific address spaces. For more information about the address spaces, see the *IMS Recovery Solution Pack: Overview and Customization*.

For more detailed information about the architecture and flow for the integrated auxiliary utilities, refer to Chapter 19, “IMS Database Recovery Facility and the integrated auxiliary utilities,” on page 275.

IMS Database Recovery Facility documentation and updates

This topic explains where to find DB2 and IMS Tools information on the Web, and explains how to receive information updates automatically.
IMS Database Recovery Facility information on the Web

The IMS Tools Library Web page provides current product documentation that you can view, print, and download. To locate publications with the most up-to-date information, refer to the following Web page:

http://www.ibm.com/software/data/db2imstools/imstools-library.html

You can also access documentation for many DB2 for z/OS and IMS Tools from the Information Management Software for z/OS Solutions Information Center:

http://publib.boulder.ibm.com/infocenter/imzic

IBM Redbooks® publications that cover DB2 and IMS Tools are available from the following Web page:

http://www.ibm.com/software/data/db2imstools/support.html

The Data Management Tools Solutions Web site shows how IBM solutions can help IT organizations maximize their investment in DB2 and IMS databases while staying ahead of today's top data management challenges:

Receiving documentation updates automatically

To automatically receive a weekly email that notifies you when new technote documents are released, when existing product documentation is updated, and when new product documentation is available, you can register with the IBM My Support service. You can customize the service so that you receive information about only those IBM products that you specify.

To register with the My Support service:
1. Go to http://www.ibm.com/support/mysupport
2. Enter your IBM ID and password, or create one by clicking register now.
3. When the My Support page is displayed, click add products to select those products that you want to receive information updates about. The DB2 and IMS Tools category is located under Software > Data and Information Management > Database Tools & Utilities.
4. Click Subscribe to email to specify the types of updates that you would like to receive.
5. Click Update to save your profile.

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use a software product successfully.

The major accessibility features in IMS Database Recovery Facility enable users to:

- Use assistive technologies such as screen readers and screen magnifier software. Consult the assistive technology documentation for specific information when using it to access z/OS interfaces.
- Customize display attributes such as color, contrast, and font size.
Operate specific or equivalent features by using only the keyboard. Refer to the following publications for information about accessing ISPF interfaces:

- z/OS ISPF User’s Guide, Volume 1, SC34-4822
- z/OS TSO/E Primer, SA22-7787
- z/OS TSO/E User’s Guide, SA22-7794

These guides describe how to use ISPF, including the use of keyboard shortcuts or function keys (PF keys), include the default settings for the PF keys, and explain how to modify their functions.

Summary of changes

This topic summarizes the technical changes for this edition.

New and changed information is indicated by a vertical bar (|) to the left of a change. Editorial changes that have no technical significance are not noted.

SC19-2903-03

- Added a usage tip to the description of the READNUM environmental control statement. For details, see “Environmental control statements” on page 20.
- Added information on how to suppress specific report types. For details, see “Master address space JCL” on page 75 and “Message and report output handling” on page 139.
- Corrected the syntax of the SORTPARM sub parameter FILSZ. For details, see “Environmental control statements” on page 20.

SC19-2903-02

- Added information supporting the feature to invoke the Build Index function of FPA to build Fast Path secondary indexes.
 - Added description for the FSNUM parameter to “Environmental control statements” on page 20.
 - Added table entry for FSPREF parameter to “Utility control statements” on page 45.
 - Added syntax diagram and parameter descriptions for parameters that support the Build Index function of FPA to “Utility control statement syntax” on page 51.
 - Added syntax diagram and parameter descriptions for ADD IB() command parameters that support the Build Index function of FPA to “ADD IB() syntax for invoking IMS Index Builder, DFSPREC0, or Build Index function of FPA” on page 108.
 - Added New DDNames that support the Build Index function of FPA to “Master address space JCL” on page 75.
- Added usage scenarios supporting environment set up in “Setting up a basic IMS Recovery Solution Pack: IMS Database Recovery Facility environment” on page 200.
- Added description for the MAXTASKS parameter to “Utility control statement syntax” on page 51 and “ADD IB() syntax for invoking IMS Index Builder, DFSPREC0, or Build Index function of FPA” on page 108.
- Updated the figure Figure 4 on page 278.
- Added two new sub parameters to the START command DBRCMD() keyword: NOFEOV and SWIOLDS. For more information, see “START command reference” on page 96.
Updated the BLD_SECONDARY utility option for the integrated auxiliary utilities. For more information, see "Utility control statement syntax" on page 51.

Added new image copy / incremental image copy output report in response to APAR PM17639 and PTF UK64949. For information, see "Example report: Image copy or incremental image copy output" on page 162.

Added information about z/OS restriction against using hard-coded database data sets in the IMS Database Recovery Facility JCL. For more information, see "Master address space JCL" on page 75.

Added new RPTITKB sub parameter to the REPORT parameter and added messages FRD9012I, FRD9013E, and FRD9014E to support the IMS Tools KB integration with IMS Database Recovery Facility. For more information, see "Environmental control statements" on page 20.

Updated the references from IEBPREF0 to DFSPREC0 in the descriptions for DATABASE RECOVERY FACILITY UTILITY REPORT. For more information, see "Example report: Full recovery with IC() and PC() utilities" on page 193.

Added new messages FRD0000I, FRD9012I, FRD9013E, and FRD9014E.

Change messages FRD1000I and FRD1002I.

SC19-2903-01

- Added new messages: FRD1009I, FRD4227I, FRD9004I, FRD9010I, FRD9011E, FRD9020I, and FRD9021I.
- Changed messages: FRD4302I, FRD6124A, and FRD9003A.
- The IMS Database Recovery Facility security information has been moved to the security topics in the IMS Recovery Solution Pack: Overview and Customization.
- Added explanations to the VERIFY(OPEN) example. For details, see "Example report: VERIFY(OPEN) recovery for a point-in-time" on page 186.
- Added explanations to the VERIFY(ALLOC) example, including updated explanation for Volume Serial. For details, see "Example report: VERIFY(ALLOC) recovery" on page 182.
- The records read and read count descriptions have been updated for the sample reports. For details, see Chapter 13, “Sample reports,” on page 161.
- The DISP(PDS) portion of the DBDSLnnn keyword is modified for the environmental control statements. For details, see "Environmental control statements" on page 20.
- The descriptions for the HALDB() ILEF and BOTHF keywords in the ADD IB() syntax for invoking IMS Index Builder or DFSPREC0 are modified to state they are only valid for IMS version 10 and later. For details, see "ADD IB0 syntax for invoking IMS Index Builder, DFSPREC0, or Build Index function of FPA" on page 108.
- Added new subparameter USERPROP to the OPTION parameter in the environmental control statements. For details, see "Environmental control statements" on page 20.
- Modified the VICDSN description in the utility control statements table to show that it is not supported on the IC() keyword of the ADD command. Added the parameters WAITALOC, WAITMSG, and WAITTIME. For details, see "Utility control statements" on page 45.
• Added 3 additional parameters for the integrated auxiliary utility: WAITALOC, WAITMSG, and WAITTIME. For details, see “Utility control statement syntax” on page 51.

• Clarified whether IMS Index Builder or DFSPREC0 integrated auxiliary utility is used with the HALDB utility control statement parameter. For details, see “Utility control statements” on page 45.

• The majority of the DD statements that are required for running in the subordinate address spaces are now dynamically allocated and passed from the master address space to the recovery sort subordinate address space and the IMS Index Builder/DFSPREC0 address space (PM14116). For details, see Chapter 5, “Configuring JCL statements and procedures,” on page 75.
Chapter 2. Requirements and restrictions

The following topics discuss the product requirements and restrictions for IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility.

Topics:
- “Product requirements”
- “Product restrictions” on page 14
- “Migration considerations” on page 15
- “Coexistence” on page 15
- “Fallback recommendations” on page 16

Product requirements

The topics in this section discuss the specific software, hardware, operational, and storage area requirements for an IMS Database Recovery Facility installation.

Topics:
- “Hardware and software requirements”
- “Operational requirements”

Hardware and software requirements

Verify that your hardware and software meet or exceed the minimum requirements. If your hardware and software do not meet the minimum requirements, you might be unable to install or run the product.

Refer to the Program Directory for IMS Recovery Solution Pack for z/OS, GI10-8824-00 for a list of required and optional software that can run with IMS Database Recovery Facility.

The IMS Database Recovery Facility can run on any S/390® hardware environment that supports the required software.

Operational requirements

The topics in this section discuss operational requirements for IMS Database Recovery Facility.

Before you use the IMS Database Recovery Facility, you must satisfy the following operational requirements:
- The following IMS Database Recovery Facility data set components must be registered with DBRC:
 - All database data sets to be recovered
 - Log data sets
 - Change accumulation data sets
 - Image copy data sets
- If you use a security management system to protect database data sets, the user ID that is associated with the IMS Database Recovery Facility job or started task must have the appropriate authorization to these data sets.
Product restrictions

IMS Database Recovery Facility has certain restrictions regarding databases, areas, XRF, RSR, and the use of esoteric name tape drives.

Topics:
- “Seasonal time change timestamp restriction”
- “Database and area restrictions”
- “Esoteric name tape drive restriction” on page 15

Seasonal time change timestamp restriction

Recovery times MUST be specified in UTC format when databases have to be recovered to a recovery point timestamp prior to a seasonal time change and recovery is being performed after a seasonal time change.

This is because the UTC offset value when the recovery job is run is different from the UTC offset value of the recovery point timestamp.

Database and area restrictions

Ensure that the databases with elements that are being recovered by the IMS Database Recovery Facility are unavailable to IMS processing.

You must ensure database and area unavailability by issuing the /DBRECOVERY command to any online IMS with active allocations of the databases being recovered. You must also ensure that there are no active batch jobs that are accessing the databases that are being recovered.

You cannot use the IMS Database Recovery Facility to recover the following database types:
- GSAM, SHSAM, HSAM, and MSDB
- HALDB PHIDAM primary indexes*
- ILDSs (Indirect List Data Sets)*

* HALDB PHIDAM primary indexes and ILDSs must be recovered with the IMS HALDB Index and ILDS Rebuild Utility, DFSPREC0, or an equivalent tool.

However, you can have the IMS Database Recovery Facility invoke DFSPREC0 after recovery has completed in order to rebuild the PHIDAM primary index and ILDS. Also, IMS Index Builder V3.1 has the ability to rebuild these indexes when IMS Index Builder V3.1 is invoked by IMS Database Recovery Facility.

If any database data sets that are being recovered have DFSMSDSS SAMEDS format image copies, the image copy is first restored and then log and change accumulation data are read and applied.

The database data sets in the same SAMEDS are not necessarily recovered in the same RSS.
Esoteric name tape drive restriction

When IMS log archive JCL specifies an esoteric name in the UNIT= parameter, the
tape addresses to be used are defined by the definition of that name in the HCD
(hardware configuration definition).

The specified esoteric name is used to search for eligible devices and the device
type is recorded to the RECON for each LOG data set. Device type is an
IBM-supplied name that identifies a device by its machine type and model. For
example: 3480 or 3400-5.

When IMS Database Recovery Facility dynamically allocates a cataloged data set,
the device type is used for allocation. The set of devices defined for this device
type name can be fewer or more devices than the set described by the original
esoteric name.

For example, if the esoteric name LOGTAPES includes just the five 3490 device
addresses 3B0-3B4, LOGTAPES will be searched and the resulting device type 3490
is recorded in the RECON. Device type 3490 can include many more devices than
just 3B0-3B4.

When these archived logs are specified to IMS Database Recovery Facility for use
in the recovery process, other similar tape device addresses might be called for in
the mount requests. Allocation with UNIT=3490 will select available 3490 units that
might or might not be within the LOGTAPES esoteric group.

Migration considerations

The topics in this section discuss conditions for migrating IMS Database Recovery
Facility.

In order to call the index building, image copy creation, pointer checking, and
DBD library integrity checking functions of IMS Database Recovery Facility, you
must install the appropriate product specified in the following table.

For information on how to install the products, refer to the product's installation
documentation.

<table>
<thead>
<tr>
<th>Function</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index building - IB() keyword</td>
<td>Index Builder, IMS DFSPREC0 Utility, and the Build Index function of FPA</td>
</tr>
<tr>
<td>Image copy creation - IC() keyword</td>
<td>High Performance Image Copy</td>
</tr>
<tr>
<td>Pointer checking - PC() keyword</td>
<td>High Performance Pointer Checker (full function and HALDB) High Performance DE DB Pointer Checker from the Basic Fast Path Tools (fast path)</td>
</tr>
<tr>
<td>DBD library integrity checking - LIU@GOPT() keyword</td>
<td>IMS Library Integrity Utility</td>
</tr>
</tbody>
</table>

Coexistence

The IMS Database Recovery Facility provides coexistence by handling back-level
log, change accumulation, and image copy records according to the following list.
• IMS Database Recovery Facility processes IMS log data sets in the format as they are created by any currently supported IMS version.
• IMS Database Recovery Facility processes IMS change accumulation data sets in the format as they are created by any currently supported IMS version.
• IMS Database Recovery Facility processes IMS image copy data sets in the format as they are created by any currently supported IMS version.

Fallback recommendations

If IMS Database Recovery Facility does not operate satisfactorily, fallback by uninstalling it and reverting to your previous recovery tool or utility.

Region size considerations

The region size used in production environments will typically be larger than the size shown in the examples. For recoveries that process large amounts of data, you might need to increase the region size to avoid abnormal or early termination that might result from storage shortages.

When setting the region size parameter in the startup JCL for both MAS and RSS, use the following procedures. These procedures will determine the probable number of log records to be processed during recovery and will set a region size for the master and subordinate address spaces:

1. Check the summary report for a prior recovery of the database data sets currently being recovered. If a summary report is not available, you can use reports from recoveries of other databases. If you use such alternate reports, they should reflect recoveries with similar update patterns as the databases currently being recovered. You should also use reports from recoveries of other HIDAM, PHDAM, or Fast Path areas, for example, rather than using databases with organizations that are very different from the ones being recovered.
2. Add records processed for log data sets listed in the summary report.
3. Determine the average number of the processed records.
4. Run a recovery with the VERIFY function to determine the number of log data sets to be processed.
5. Multiply the average number of records found in Step 3 by the number of log data sets found in Step 4.
6. Use the following table to determine the value for the region size:

<table>
<thead>
<tr>
<th>Number of records processed</th>
<th>Region size</th>
</tr>
</thead>
<tbody>
<tr>
<td><35 million log records</td>
<td>32M - 256M</td>
</tr>
<tr>
<td>Between 35 million and 50 million log records</td>
<td>At least 256M</td>
</tr>
<tr>
<td>>50 million log records</td>
<td>At least 512M</td>
</tr>
</tbody>
</table>
Part 2. Configuring IMS Database Recovery Facility

You must install and configure IMS Database Recovery Facility before it can be used. The topics in this section provide you with information on configuring IMS Database Recovery Facility. Before continuing with configuration, you must first have completed the SMP/E installation as outlined in the *Program Directory for IMS Recovery Solution Pack for z/OS*, GI10-8824-00 and the post-installation steps as outlined in the *IMS Recovery Solution Pack: Overview and Installation User’s Guide*.

The topics in this section cover the steps needed to configure IMS Database Recovery Facility in your environment:

- Specifying environmental control statement parameters
- Specifying integrated auxiliary utility control statement parameters
- Configuring JCL statements and procedures
Chapter 3. Configuring the basic product environment

These topics describe the procedures for configuring the basic IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility environment.

For information on configuring the product for use with the integrated auxiliary utilities, see Chapter 4, “Configuring the integrated auxiliary utility environment,” on page 45.

Topics:
- “Creating the environmental control member: FRXDRFxx”
- “Environmental control statements” on page 20

Creating the environmental control member: FRXDRFxx

You can use the FRXDRFxx PROCLIB member to provide the IMS Database Recovery Facility with the parameters to establish its environment. It is specified using the DRFMBR=xx EXEC parameter on the execution JCL where xx is a 1 or 2-character suffix appended to FRXDRFxx. This optional member can be used to set up default processing parameters for multiple jobs.

To create a shared environmental control member, create the FRXDRFxx PROCLIB member and place it in a data set included in the PROCLIB DD concatenation of the IMS Database Recovery Facility master address space JCL.

The FRXDRFxx member must have a record length of 80. Of this 80 character length, you can only use columns 1 through 72 for specifying control statements. Columns 73 through 80 are ignored.

You can enter the environment control statement parameters in a free format. Keywords can start in any valid column, as long as parameters are not split in an invalid manner.

You can code continuation statements by typing a dash after the last parameter on one line and resuming the listing of parameters on the following line.

The following example shows a continuation statement coded incorrectly because the keyword parameter MAINSIZE has been split between two lines.

```
SORTPARM(NUM(5),HIPRMAX(OPTIMAL),MAIN-
SIZE(30),ASPREF(FRXI),AVGRLEN(256),FILSZ(210000))
```

The following example shows a continuation statement coded correctly.

```
SORTPARM(NUM(5),HIPRMAX(OPTIMAL),MAIN-
SIZE(30),
-ASPREF(FRXI),AVGRLEN(256),FILSZ(210000))
```

You can also specify comments. Comments can be included on lines which contain valid statements, or they can inhabit their own lines. You must enclose comments between /* (starting) and */ (ending) delimiters. The two delimiters must be on the same physical line; comments cannot be continued across multiple lines.

The following example shows 3 lines of comments coded incorrectly because the starting /* and the ending */ are not on the same line.

```
/* This is a comment */
/* Another comment */
/* and the last one */
```
Environmental control statements can be specified to control the processing of the IMS Database Recovery Facility. Each control statement consists of parameters that contain information related to the statement.

The parameters associated with the control statements are listed in alphabetic order in the table, but you can specify them in any order. You can specify control statements in either the FRXDRFxx PROCLIB member or in the //SYSIN DD statement in the IMS Database Recovery Facility master address space JCL. Any parameters specified in //SYSIN DD override parameters specified in FRXDRFxx. The syntax is described in "Syntax of environmental control statements" on page 21.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACHE</td>
<td>Specifies that the image copy data sets are managed on a VTS (virtual tape server) device and they are to be preallocated to initiate staging to the cache before they are read.</td>
</tr>
<tr>
<td>CATDS</td>
<td>Specifies the allocation option of image copies, logs, and change accumulation data sets from MVS catalog or RECON data set information.</td>
</tr>
<tr>
<td>COMPRTNA</td>
<td>Specifies the aliases that you created for IMS High Performance Image Copy compression routines.</td>
</tr>
<tr>
<td>DBDSLnnn</td>
<td>Specifies a template for naming new database data sets when duplicate databases are created.</td>
</tr>
<tr>
<td>DBDSNnnn</td>
<td>Specifies the data set characteristics for new data sets created by recovery.</td>
</tr>
<tr>
<td>DRFIAX</td>
<td>Specifies the name of the procedure that is used to initiate the utility address spaces for IMS Index Builder, DFSPREC0, and the Build Index function of FPA.</td>
</tr>
<tr>
<td>DRFPROC</td>
<td>Specifies the name of the procedure that is used to initiate the recovery sort subordinate address space.</td>
</tr>
<tr>
<td>ICNUM</td>
<td>Specifies the maximum number of tape drives used for reading image copy data sets and the maximum number of read instances that can be initiated in parallel.</td>
</tr>
<tr>
<td>LBI</td>
<td>Specifies the large block interface is in use.</td>
</tr>
<tr>
<td>LCLTIME</td>
<td>Specifies whether local or global time stamps are used in messages and reports.</td>
</tr>
<tr>
<td>LIU@GOPT</td>
<td>Specifies the LIU global option module LIU@xxxx, which is loaded from the STEPLIB by the Library Integrity Utility.</td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Specifies the maximum number of tape drives used for reading change accumulation data sets and the maximum number of read instances that can be initiated in parallel.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>OPTION</td>
<td>Specifies the optional parameters and overriding default values for your recovery environment.</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>Specifies the type of output processing to be performed by the IMS Database Recovery Facility.</td>
</tr>
<tr>
<td>READNUM</td>
<td>Specifies the maximum number of log read tasks that are started in parallel for the tape only and the total number of concurrent read tasks.</td>
</tr>
<tr>
<td>REPORT</td>
<td>Specifies the options for producing reports when using the integrated auxiliary utilities.</td>
</tr>
<tr>
<td>SORTPARM</td>
<td>Specifies the parameters that are passed to SORT as each task is started.</td>
</tr>
<tr>
<td>SOURCE</td>
<td>Specifies the source of image copies and log data sets for the recovery process.</td>
</tr>
<tr>
<td>SPSIZE</td>
<td>Specifies the size of each data space used by the IMS Database Recovery Facility.</td>
</tr>
<tr>
<td>TAPECHK</td>
<td>Specifies that the IMS Database Recovery Facility checks the availability status of tape devices before DBDS allocation.</td>
</tr>
<tr>
<td>UTILGBL</td>
<td>Specifies the parameters used to control the execution of the integrated auxiliary utilities.</td>
</tr>
<tr>
<td>XCFGROUP</td>
<td>Specifies the XCF group name used by the IMS Tools Online System Interface to communicate with the IMS systems associated with this recovery environment.</td>
</tr>
</tbody>
</table>

Syntax of environmental control statements

CACHE(Y | N)

Use this parameter specified as Y to indicate that the image copy data sets are managed on a VTS (virtual tape server) device and the data sets are to be preallocated to initiate staging to the cache before they are read.

CACHE parameter syntax

```
    CACHE(Y | N)
```

The default value is N, signifying that no image copy data sets are located on a VTS device.

CATDS(Y | D | R)

Use this parameter to control allocation of image copies, logs, and change accumulation data sets from either the MVS catalog or the RECON data sets.

CATDS parameter syntax

```
    CATDS(Y | D | R)
```

- **D**: If a data set is cataloged, the catalog is used for allocation. If a data set is not cataloged, RECON data set information is used for allocation. This is the default value.
Y Data sets must be cataloged, if not cataloged, abend U0384-00000029 is issued in the master address space, and allocation failed RSN: 1708 is issued in the subordinate address space.

R The RECON data set information is used for allocation.

COMPRTNA(<subparameters>)

Use this parameter to specify the aliases that you created for IMS High Performance Image Copy compression routines. The options that you specify on this parameter become effective only when you use image copies that are compressed by IMS High Performance Image Copy.

COMPRTNA subparameters syntax

```
COMPRTNA(FABJCMP1(alias name),
         FABJCMP2(alias name),
         FABJCMP3(alias name),
         FABJCMP4(alias name))
```

FABJCMP1(alias name)

Use this parameter to specify an alias name that overrides the IMS High Performance Image Copy compression 1 routine. The default value is FABJCMP1.

FABJCMP2(alias name)

Use this parameter to specify an alias name that overrides the IMS High Performance Image Copy compression 2 routine. The default value is FABJCMP2.

FABJCMP3(alias name)

Use this parameter to specify an alias name that overrides the IMS High Performance Image Copy compression 3 routine. The default value is FABJCMP3.

FABJCMP4(alias name)

Use this parameter to specify an alias name that overrides the IMS High Performance Image Copy compression 4 routine. The default value is FABJCMP4.

The following example shows how you might use the COMPRTNA parameter to specify aliases.

```
COMPRTNA(FABJCMP1(COMPRES1), FABJCMP3(COMPRES3))
```

DBDSLnnn

Use this parameter to supply the data set characteristics for any data sets which are created by recovery. The DBDSLnnn parameter is used to specify allocation characteristics which are used to create new data sets. This parameter is used if you specify DUP or BOTH on the OUTPUT parameter. The DBDSLnnn parameters can also be specified on the ADD command using the DBATRB parameter for creating duplicate database data sets. Refer to the ADD command syntax for further details. You can specify multiple DBDSLnnn control statements where nnn is a unique 1-to 3-digit alphanumeric value.

If you want the different data sets that are created to have unique data set characteristics, you can use multiple data set name (DBDSNnnn) and data set characteristic (DBDSLnnn) definitions. The data set characteristics you specify on the DBDSLnnn environmental control statement override the data set characteristics obtained from the original data set.
The following section shows the syntax for specifying data set characteristics.

DBDSL data set allocation specification syntax

```plaintext
/SM590000/SM590000

DBDSLnnn( DISP( NEW | OLD | PDS ),

  DBN(dbn)[DDN(ddn)],
  DATAC(data class),
  STGC(storage class),
  MGTC(management class),
  PRIA(primary space),
  SECA(secondary space),
  VOL(name1,...,nameR)

/SM590000/SM630000

DISP(OLD | NEW | PDS)
```

If DISP(OLD) is supplied, an existing data set is used during recovery. If DISP(NEW) is supplied, a new data set is created during recovery. The DISP parameter is required if DBDSLnnn is supplied. If DBDSLnnn is not supplied, then the default disposition used is DISP(OLD).

Note: Database data sets that need to be automatically deleted and redefined must be included on the same ADD statement. The DBATRB() keyword must be specified on the ADD statement and must reference a DBDSLnnn that indicates DISP(NEW).

OLD IMS Database Recovery Facility uses the characteristics of an existing data set. If you specify OLD, data set characteristics specified in DBDSLnnn are rejected and error message FRD6124A is issued. This value is the default.

If you specify OLD with the OUTPUT(PRO) option, IMS Database Recovery Facility uses existing characteristics from the production database data set in the recovery list.

If you specify OLD with the OUTPUT(DUP) option, IMS Database Recovery Facility uses existing characteristics from the predefined duplicate database data set.

Note: For OUTPUT(PRO), DBDSNnnn is ignored. For OUTPUT(DUP), DBDSNnnn(dsn) is required to identify the name of the predefined duplicate database data set.

Restriction: When specifying DISP(OLD), you must ensure that your data sets are predefined and cataloged. Specifying DISP(OLD) when you are using data sets that are not predefined or cataloged results in allocation errors during recovery. FRD4302I messages are issued during recovery for this failure.

NEW IMS Database Recovery Facility creates a data set using
data set characteristics identified in the DBDSLnnn
environmental control statement, if you provided it.

If you specified NEW with the OUTPUT(PRO) option, any
data set with a matching name is deleted and redefined.
IMS Database Recovery Facility deletes and redefines the
production database data set using additional
characteristics identified in the DBDSLnnn control
statement, if you provided it. DBDSNnnn is ignored for
OUTPUT(PRO).

If you specified NEW with the OUTPUT(DUP) option, IMS
Database Recovery Facility uses DBDSNnnn to generate the
duplicate data set name. If a data set exists with that name,
the process ends with condition code 8. You can optionally
provide characteristics with DBDSLnnn to define the new
duplicate database data set. If you do not specify
DBDSLnnn, characteristics are obtained from
the production data set.

If you specified NEW with the OUTPUT(BOTH) option,
IMS Database Recovery Facility deletes and redefines the
production database data set and generates the duplicate
data set. DBDSNnnn is ignored for the production database
data set, but used to generate the name for the duplicate.
The production database data set is deleted at the same
time the duplicate data set is being generated. If a failure
occurs during the generation of the duplicate data set,
recovery processing is stopped. You must then manually
submit a job to redefine the production database data set
before resuming the IMS Database Recovery Facility
process.

Storage and management class information from the
existing data set is collected and used in allocating the new
data set. For SMS-managed data sets, ACS routines based
on STORCLAS and MGMTCLAS can be used for VOLUME
definition; otherwise, a threshold for 20 VOLSERs is set. If
ACS routines do not manage VOLUME information, the
VOL() parameter can be used to override the threshold
limit for VSAM data sets.

Note: The following are the attributes and field names that
are retrieved from an existing data set if not
specified by DBDSLnnn:
- DEVTYPE
- VOLUME
- STORCLAS
- DATACLAS
- MGMTCLAS
- NVSTATTR
- VSAMTYPE
- VSAMREUS
- ATTR2
- PRIMSPAC
- SCONSPAC
- SPACOPTN
- LRECL
PDS Allows the use of a PDS library which contains the
IDCAMS delete and define statements for the database
data sets. The members within this PDS library must match
the DD name of each individual database data set.

If DISP(PDS) is specified, IMS Database Recovery Facility
searches through the DDEFPDS library by using the DD
name, invokes IDCAMS to perform the redefinition of the
database data set by using the definitions from the
member, and returns control back to IMS Database
Recovery Facility for recovery.

A new DD name DDEFPDS must be added as part of the
IMS Database Recovery Facility RSS JCL. DDEFPDS
identifies the PDS which contains the IDCAMS commands
and definitions.

The PDS must be defined with LRECL=80 and fixed-block
format.

The following example shows sample JCL that would
accomplish this process:

```
//DDEFPDS DD DSN=IMSTESTL.IDCAMS,DISP=SHR
//SYSIN DD *
DBDSL101 (DISP(PDS))
ADD DB(DEDB001, DIVNZ02) -
DBATRB(DBDSL101))
START ERROR(CONT)
```

Note: The DDEFPDS method is not supported for
automatic delete and define of non-VSAM databases.
If non-VSAM databases need to be deleted and
redefined, you can use the standard DBDSLnnn
method.

DBN(dbn)

The database name (DBN) of the entry to be added to the recovery
list with the accompanying attributes until the next DBN is
detected or the end of the DBDSLnnn statement is reached. If you
did not specify DBN for a list of attributes, the attributes you
specified in the list apply to all the recovery list entries being
added with this DBDSLnnn that do not have a DBN or DDN. `dbn`
is the database name to which the DBDSLnnn applies.

DDN(ddn)

The DD name of the entry to be added to the recovery list with the
accompanying attributes. If you did not supply `ddn`, the
accompanying attributes apply to all data sets in the database. `ddn`
is the DD name of the database data set to which the DBDSL
applies.
DATAC *(data class)*
The SMS data class for the output data set. *data class* must be a valid SMS data class. *data class* is 1- to 8-character alphanumeric string.

STGC *(storage class)*
The SMS storage class for the output data set. *storage class* must be a valid SMS storage class. *storage class* is 1- to 8-character alphanumeric string.

MGTC *(management class)*
The SMS management class for the output data set. *management class* must be a valid SMS management class. *management class* is 1- to 8-character alphanumeric string.

PRIA *(primary space)*
The primary space allocation to be used for the new data set. The values specified for primary space can be one of the following values:

- **B**(xxx) number of bytes
- **R**(xxx) number of records (VSAM) or blocks (OSAM)
- **K**(xxx) number of kilobytes
- **M**(xxx) number of megabytes

SECA *(secondary space)*
The secondary space allocation to be used for the new data set. The values can be one of the following values:

- **B**(xxx) number of bytes
- **R**(xxx) number of records (VSAM) or blocks (OSAM)
- **K**(xxx) number of kilobytes
- **M**(xxx) number of megabytes

VOL(name1,...,nameR)
The volume serial numbers (VOLSER) for location of the new data set. The VOLSER is a 1-6 character valid VOSER name.

DBDSN *nnn*
Use this parameter to specify a template which can be used for naming new database data sets when duplicate databases are created. You can specify multiple DBDSN**nnn** control statements where *nnn* is a unique 1-3 digit alphanumeric value.

The DBDSN**nnn** parameter is used to form a template from which the new data set name is created. This parameter is required if you specify OUTPUT(DUP) or OUTPUT(BOTH) parameter. The DBDSN**nnn** parameters can also be specified on the ADD command using the DBATRB parameter for creating duplicate database data sets. Refer to the ADD command syntax for further details.

For OUTPUT(PRO), DBDSN**nnn** is ignored. For OUTPUT(DUP) or OUTPUT(BOTH), DBDSN**nnn** is required in order to identify the name of the duplicate database data set.

The following example is the syntax of the DBDSN parameter:
DBDSN\(\text{nnn}(\text{qualifier1, qualifier2, ...qualifiern})\) where \((n \leq 22)\)

Syntax Elements:

\[\text{qualifier} = \text{element} \text{ OR null}\]

DBDSN name template symbolic qualifiers syntax

\[
\text{DBDSN}\text{nnn} \text{(\(\%P\text{literal},\) , \(\%\text{DATE},\) , \(\%\text{JOBN},\) , \(\%\text{STEP},\) , \(\%\text{SDSN}(q),\) , \(\%\text{MDBD},\) , \(\%\text{DBD},\) , \(\%\text{DDN},\) , \(\%\text{S}\text{(literal)},\) , \(\%\text{END}\))}
\]

This is the syntax for specifying data set name qualifiers.

Notes:

- \(q = 1\) through 22; no default
- literal = a string that you define of up to 8 characters

You can define up to 22 qualifiers to a data set name length limit of 44 characters according to the standard data set name syntax defined for z/OS. Any of the 22 qualifiers can consist of one of the forms of an element defined below or they can be null or omitted. The new name can be based on the data set name of the original source data set or it can be totally independent.

Each qualifier in the DBDSN\(\text{nnn}\) parameter equates to the corresponding qualifier in the new data set that is created. If you specified a null qualifier then the value used for that qualifier is the corresponding qualifier from the original source data set name. Only the qualifier levels that you want to change from the original source data set name need be included in the DBDSN parameter. You can use periods or commas to separate the qualifier values. Qualifiers that you do not want to change can be omitted using a comma. For example, if you want to change only the first and third qualifiers, specify the following syntax: DBDSN001('HIGHQUAL,, \%TIME). More examples of the use of this parameter follow the descriptions.

If the new data set name is greater than 44 characters or otherwise invalid, an error message is issued and generation of the copy is skipped or the process is stopped, depending on the error handling option, ERROR(STOP | CONT | ABORT) that you chose.

There are two types of values allowed in the data set name qualifiers; literals and predefined keywords. A literal is a static and unchangeable value that you specify and is used directly in the data set name. An example of a literal is \(\%P\text{\(\text{TEST}\)}\) which would result in a prefix of \(\text{TEST}\) being added to the new data set name. For a predefined keyword, the value is set by the system according to the current system attributes. An example of a predefined keyword is \(\%\text{TIME}\) which would result in the current timestamp being inserted in the new data set name.
Keyword Definitions: The following list shows the qualifiers which allow a literal to be specified.

%P(literal)
Generates a prefix to your data set name. The literal is a string of up to eight alphanumeric characters, where the first character must be an alphabetic character. If used, %P(literal) must be the first qualifier specified.

%S(literal)
Generates a suffix to your data set name. The literal is a string of up to eight characters of your choice that is allowable in a data set name. If used, %S(literal) must be the last qualifier keyword you specify, except for %END.

literal
Generates a static character string in your data set name. The literal is a string of up to eight alphanumeric characters that are allowable in a data set name. The literal must be contained within single quotation marks. If not, error message FRD6124A INVALID DATA ENCOUNTERED is issued, and the subsequent command or control statement report is blank. The SYSIN DD statements are not displayed.

< predefined keyword >
The following qualifiers allow predefined keywords to be defined.

%TIME
Generates a qualifier consisting of a system timestamp in the format of T_hhmmssms. Where T is a literal character, hh is hour in 24 hour format, mm is minutes, ss is seconds, and m is milliseconds.

%DATE
Generates a qualifier that consists of a system date stamp in the format of D_yyyyddd. Where D is a literal character, yyyy is year and ddd is the number of days.

%JOBN
Generates a qualifier that consists of the IMS Database Recovery Facility job name.

%STEP
Generates a qualifier that consists of the IMS Database Recovery Facility step name.

%MDBD
Generates a qualifier that consists of the HALDB master database name for a HALDB or the database name for a non-HALDB.

%DBD
Generates a qualifier that consists of the HALDB partition name for a HALDB or the database name for a non-HALDB.

%DDN
Generates a qualifier that consists of the DD name for the database data set.

%SDSN(q)
Generates a qualifier from the source data set name. This element requires a value (q) that specifies the number of
the qualifier referenced from the source data set name. The valid values of q are 1 - 22. This qualifier is only needed if you want to use a qualifier from the source data set name but want it to appear in a different position in the new data set name.

If %SDSN(q) refers to a qualifier in the source data set name that is greater than the number of qualifiers in the data set, then the last encountered qualifier is used. For example, if DBDSN101(’TESTDB’,%SDSN(4)) is used as the data set name template and the original data set name is ’PRODDB.PARTS.INV’, then the generated data set name is ’TESTDB.INV’.

%END =
No further qualifiers are to be included. Use this qualifier to truncate the new name.

Rules for specifying qualifiers:

Each DBDSNn parameter can specify any number of qualifiers to a maximum of 22. If the source data set name consists of fewer qualifiers than are specified in the parameter, then the extra qualifiers correspond to the later qualifiers in the source. For example, if the source data set name is PRODDB.PARTS.IMSA.INV and DBDSN001(,,,,%DATE,%TIME) is specified, the resulting new data set name would be PRODDB.PARTS.Dyyyyddd.Thhmmss. As you can see, the source data set name consisted of only four qualifiers but the new data set name consisted of six possible qualifiers. The last two qualifiers of the source data set name were replaced by a date stamp and a time stamp.

If you specifying %P(literal), it must be the first qualifier in the list.

If you specifying %S(literal), it must be the last qualifier in the list, just before the %END.

If the source data set name consists of more qualifiers than are specified in the DBDSNn parameter, then the additional qualifiers from the source data set name are included in the new data set name in their corresponding positions.

Examples of specifying DBDSNn:

The following are examples of specifying DBDSNn with positional notation:

DBDSN001()
Use the source data set name for the new data set name.

DBDSN001(%P(BKU))
Prefix the first database data set name with BKU. For example, if the source data set name is:
IMS1.REGTST.SAMPLIB.V345
Your new data set name would be:
BKU.IMS1.REGTST.SAMPLIB.V345

DBDSN002(,,,,%TIME)
Use the system time as the fifth qualifier in the new data set name. The first four qualifiers are copied from the source data set name and the time stamp is used as the fifth qualifier. If the source data
set name has fewer than five qualifiers, the time stamp is
substituted for the last qualifier. For example, if the source
database data set name is:

IMS1.REGTST.SAMPLIB.V345

Your new data set name would be:

IMS1.REGTST.SAMPLIB.T

Even though the DBDSNnnn indicated that %TIME is be used as
the fifth qualifier, because the input data set has only four
qualifiers, %TIME was substituted as the last qualifier in the new
data set name.

DBDSN001(,,%DATE,%TIME)
Use the system date as the fourth qualifier and the system time as
the fifth qualifier in the new data set name. The first three
qualifiers are copied from the source data set name. For example, if
the source database data set name is:

IMS1.REGTST.SAMPLIB.V345.TEST

Your new data set name would be:

IMS1.REGTST.SAMPLIB.Dyyyyddd.T

If there are 5 or fewer qualifiers in the source data set name, date
and time are substituted for the last two qualifiers.

DBDSN001('HIGHQUAL',%TIME)
Use the literal 'HIGHQUAL' in place of the high-level qualifier and use
the remaining qualifiers from the source data set name to
create the new data set name. The commas for null values are not
necessary in this case.

DBDSN001('HIGHQUAL',%SDSN(1),%TIME,%END)
Use the literal 'HIGHQUAL' as the high-level qualifier and time as
the fifth qualifier for the new data set name. If there were four or
fewer qualifiers in the source data set name, time is substituted for
the last qualifier. The shortest possible generated name in this case
would consist of two qualifiers.

DBDSN002(%S(UPDT))
Suffix the new data set name with UPDT. For example, if your
source data set name is:

IMS2.REGTST.SAMPLIB.V346

Your new data set name would be:

IMS2.REGTST.SAMPLIB.V346.UPDT

Specifying DBDSN002(%S(UPDT),%END) gives you the same
result.

DRFIAX(procname)
Use this parameter to specify the name of the procedure used to initiate
the IMS Database Recovery Facility Utility Address Space (UAS) for IMS Index Builder, DFSPREC0, and the Build Index function of FPA. The default for the DRFIAX parameter is FRXJCLIP. The procedure must reside in a valid z/OS PROCLIB. A sample of this procedure can be found in SFRXSAMP(FRXJCLIP).

DRFIAX parameter syntax

```
DRFIAX(procname)
```

Use this parameter to specify the name of the procedure used to initiate the IMS Database Recovery Facility recovery sort subordinate address space (RSS).

The procedure must reside in a valid z/OS PROCLIB data set. If you omit this parameter, the default name, FRXJCLSB, is used. You can override the procedure name by specifying the DRFPROC= parameter on your IMS Database Recovery Facility JCL EXEC statement. A sample of this procedure can be found in SFRXSAMP(FRXJCLSB).

DRFPROC parameter syntax

```
DRFPROC(procname)
```

ICNUM(mn,tn)

Use this parameter to specify the maximum number of tape drives used for reading image copy data sets (mn) and the maximum number of read instances which can be initiated in parallel (tn). ICNUM operates in the same way that READNUM does but is associated with reading image copy data sets. Refer to the description of READNUM for more details.

ICNUM parameter syntax

```
ICNUM(mn,tn)
```

If you do not specify ICNUM, then the default values are those values that are used by READNUM. If ICNUM or READNUM are not specified, the default values for ICNUM are the same default values used by READNUM. Refer to the description of READNUM for more details.

LBI(Y | N)

Use this parameter to indicate whether the large block interface is in use at your location (Y), or not (N).

LBI parameter syntax

```
LBI(Y | N)
```

The default value of N is assumed if you do not make a specification.
LCLTIME(Y | N)
Specifies whether local time stamps (Y) are to be used in messages and reports, or if GMT time stamps (N) are to be used.

LCLTIME parameter syntax

\[
\text{LCLTIME(} \begin{cases} Y \\ N \end{cases} \text{)}
\]

The default is LCLTIME(Y).

LIU@GOPT(xxxx)
Use this parameter to identify the LIU global option module LIU@xxxx, which is loaded from the STEPLIB by Library Integrity Utility. This allows the Library Integrity Utility to load global option member LIU@xxxx to accept user defined run time options that have been assembled therein.

LIU@GOPT(xxxx) parameter syntax

\[
\text{LIU@GOPT(} xxxx \text{)}
\]

LOGNUM(nn,tn)
Use this parameter to specify the maximum number of tape drives used for reading change accumulation data sets (nn) and the maximum number of read instances which can be initiated in parallel (tn). LOGNUM operates in the same way that READNUM does, but is associated with reading change accumulation data sets. Refer to the description of READNUM for more details.

LOGNUM parameter syntax

\[
\text{LOGNUM(} \begin{cases} nn \\ tn \end{cases} \text{)}
\]

If you do not specify LOGNUM then the default values are those that are used by READNUM. If LOGNUM or READNUM are not specified, the default values for LOGNUM are the same default values used by READNUM. Refer to the description of READNUM for more details.

OPTION(<subparameters>)
Use this parameter to specify optional parameters and overriding default values for your recovery environment.

OPTION subparameters syntax

\[
\text{OPTION(} \begin{cases} \text{DISPSHR Y} \\ \text{FCTOPPRCP Y} \\ \text{USERPROP N} \end{cases} \text{)}
\]

You can specify DISPSHR, FCTOPPRCP, USERPROP, or a combination of these sub parameters.
DISPSHR(Y | N)
Specifies whether the default dynamic allocation for image copy, log and change accumulation data sets will be allocated with a disposition of share (Y) or not (N). The default is N which means that these data sets will be allocated using DISP=OLD.

Allocating these data sets with a DISP=OLD helps ensure that no other jobs will attempt to update the contents of your input data sets while a recovery is in process. The DISP=SHR setting gives users the flexibility of running multiple jobs in parallel if all that is expected by these jobs is READ access.

FCTOPPRCP(Y | N)
Specifies whether the DFSMSdss FCTOPPRCPPrimary option is to be used (Y) or not (N) when restoring from a FlashCopy® image copy. The default is N. For details, see the description about FCTOPPRCPPrimary, in the z/OS DFSMSdss Storage Administration Reference.

Note: FCTOPPRCP is ignored when IMS Database Recovery Facility is not restoring from a FlashCopy or if the release level of DFSMSdss is lower than Version 1 Release 6. FCTOPPRCP is supported by DFSMSdss Version 1 Release 6, or higher.

USERPROP(Y | N)
Specifies whether the userid that is associated with the IMS Database Recovery Facility master job is propagated to the subordinate address spaces that are directly started by IMS Database Recovery Facility. These address spaces include the recovery sort subordinate address space, the IMS Index Builder address space, the DFSPREC0 utility address space, and the address space for the Build Index function of FPA. Userid propagation allows the subordinate address space to run with the same level of security as the IMS Database Recovery Facility master job, eliminating the need for special entries in the RACF® STARTED class.

The default is Y, indicating that the userid propagation is performed.

This parameter is useful in cases where the TEMPDSN class is active and you need to manually code the SORTWORK DD statements in the DRFPROC() procedure.

OUTPUT(DUP | ICR | ICRCA | PRO | BOTH)
Use this parameter to specify the type of output processing to be performed by the IMS Database Recovery Facility. The default is OUTPUT(PRO) which recovers all the production database data sets associated with the recovery list.

OUTPUT parameter syntax

```
OUTPUT(DUP | ICR | ICRCA | PRO | BOTH)
```
The term **production DBDS** can be interpreted as the DBDS listed in the RECON data sets for the supplied DB name DD name pair. The term **non-production DBDS** can be interpreted as a copy of the DBDS listed in the RECON data sets for the supplied DB name DD name pair.

DUP
Specifies Database Copy Generation, where a non-production duplicate of every DBDS in the recovery list is created using the recovery process. This results in creating a duplicate of each production DBDS with a new data set name. This DBDS duplicate can be processed in a test environment on a separate IMS system using the same DBD name, or it can be processed in the production environment if you provided a different DBD.

The DBDSN\textit{nnn} statement is used to create the data set name for the duplicate data sets and is required. The DBDSL\textit{nnn} statement can be used to specify the allocation attributes for creating the duplicate data sets. DBDSL\textit{nnn} is optional and if it is not specified, the allocation attributes are taken from the original data sets. The DBATRB parameter must be specified on the ADD statement to specify the DBDSN\textit{nnn} and the DBDSL\textit{nnn} (if specified).

Restriction: Use of user-ICs or SAMEDS ICs are not supported with this function.

Sample JCL using OUTPUT(DUP):

```cl
DBDSN002('MYDATB')
DBDSL004(DISP(NEW),DBNMYDB1))
OUTPUT(DUP)
ADD DB(DBOVLFPC) DBATRB(DBDSN(002) DBDSL(004))
START
```

In this sample, duplicate database data sets are created for all database data sets associated with the DBOVLFPV database. The first level qualifier on the new data sets are 'MYDATB'. The allocation characteristics for the new data sets are taken from the original data sets.

ICR
Specifies Image Copy, where a new image copy is created from an image copy and log, or change accumulation input data sets, for every DBDS in the recovery list by using the recovery process. The RCVTIME parameter can be specified to create the image copy to a specific point in time. Actual database recovery is not performed and the databases are not accessed.

If you specify OUTPUT(ICR) while the databases are offline, or specify RCVTIME to a time when the databases are offline, the image copy is registered to the RECON as BATCH.

If you specify OUTPUT(ICR) while the databases are online, or specify RCVTIME to a time when the databases are online, the image copy is registered to the RECON as CONCUR.

You cannot specify ICR with any other output option.

Sample OUTPUT(ICR) control statements:

```cl
REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=DRFIC1)
UTILGBL(COMP(N),DSN(&ICHLQ..&DBD..&DDN.),UNIT(3390),-
VOLSER(222222))
```
OUTPUT(ICR)
ADD DB(DIVNTZ02,DHVNTZ02,DXVNTZ02) IC(ICHLO=(DRFIC1),-
SPACE=(CYL,10,10))
START ERROR(CONT)

Note: Use the DSN() and DSN2() parameters of the UTILGBL() control statement to specify the name of the output image copy data set. You cannot use the DSN() or DSN2() parameters on the IC() control statement.

Restriction: The use of user-image copies, IC2, SAMEDS ICs, or FlashCopies are not supported with the ICR option. Use of a PITCA created by the IMS High Performance Change Accumulation is not allowed as input to the ICR process.

ICRCA
This option is like ICR, but it specifies that only a BATCH image copy is to be generated using only a prior image copy and a change accumulation as input. Log input is ignored.

IMS Database Recovery Facility locates and uses a timestamp where a clean recovery point or batch window exists. A clean recovery point or batch window, is defined as a period of time where the database was previously taken offline or where an OLDS switch occurred with logs archived.

IMS Database Recovery Facility uses this timestamp if a complete change accumulation also exists within this time frame. All databases that are included in the recovery list must belong to the same CAGRP. The resulting Image Copy is registered as a batch image copy and contains all updates up to this change accumulation.

If a complete change accumulation is not found within a usable batch window then a copy of the prior image copy is generated.

Restriction: The use of user-image copies, IC2, SAMEDS ICs, or FlashCopies are not supported with the ICRCA option. Use of a PITCA created by the IMS High Performance Change Accumulation product is not allowed as input to the ICRCA process.

PRO
Specifies recovery of one or more production databases, where every DBDS in the recovery list is recovered. This results in creating a recovered DBDS in place of the previous instance.

This is the default option for the OUTPUT keyword.

Note: If you specified OUTPUT(PRO), the DBATRB parameter is optional on the ADD statement.

BOTH
Specifies that recovery performs the functions of PRO and DUP at the same time. Recovery creates a recovered DBDS in place of the previous instance and generate a non-production duplicate with a new data set name.

Restriction: If you specified OUTPUT(BOTH), you must also include the DBATRB parameter on the ADD statement. The DBATRB parameter identifies which
DBDSNnnn to reference for naming convention rules. It can also specify a DBDSLnnn statement to identify allocation attributes for the new database data sets.

READNUM(nn,tn)
Specify the maximum number of log read tasks that are started in parallel for tape only (nn) and the total number of concurrent read tasks (tn).

Tip: If possible, use the same system for recovery that was used to create the logs. If you are using a system with less capacity than the original system, consider reducing the READNUM (nn) value.

READNUM parameter syntax

```
READNUM( nn , tn )
```

For tape input, specify this number as the maximum number of tape read devices (nn) to allocate to the recovery process. The allowable range is 1 - 99. The default value for nn is 3.

The total number of concurrent read threads allowed is specified by tn. The actual number might be larger than tn if some input data sets exist that can be read from devices other than tape drives. The default maximum number of total concurrent read threads is tn or 10, whichever is greater.

If you omit or set the values of either tn or nn to 0, the default values are imposed.

The values specified in the FRXDRFxx member can be overridden using the READNUM parameter on the START control statement. If you do not specify READNUM, the system default of (3,10) are used.

Note: If ICNUM or LOGNUM are not specified, the values used for READNUM are used.

REPORT(<subparameters>)
IMS Database Recovery Facility and the integrated auxiliary utilities write messages to various report DD statements. The IMS Database Recovery Facility master address space collects all messages and reports from all IMS Database Recovery Facility subordinate address spaces and organizes them in either the master address space REPORT DD or in separate utility report DD statements, such as the STATIPRT for IMS High Performance Pointer Checker. The REPORT parameter is used to control how and where these reports are created.
REPORT parameter syntax

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTTYPE=</td>
<td>Specifies where the messages generated by the integrated auxiliary utilities are written.</td>
</tr>
<tr>
<td>SEP</td>
<td>Indicates that the utilities reports and messages are to be written to the standard utility report DD statements, separate from the IMS Database Recovery Facility REPORT DD. RPTTYPE=SEP is the default.</td>
</tr>
<tr>
<td>APP</td>
<td>Indicates that the utilities reports and messages are appended to the IMS Database Recovery Facility REPORT DD.</td>
</tr>
<tr>
<td>DRFUNIT=</td>
<td>Specifies a 1- to 7-character generic unit name passed to the subordinate address spaces in order to provide a unit type on which to dynamically allocate and catalog any report data sets. The default is SYSDA.</td>
</tr>
<tr>
<td></td>
<td>If genericunit is coded with a value that is not a valid generic unit in your system, messages FRD9003A and FRD4100I are issued and followed by abend U384-02C.</td>
</tr>
<tr>
<td>DRFHLQ=</td>
<td>Specifies a 1- to 8-character high-level qualifier that is passed to the subordinate address spaces in order to provide a high-level qualifier used to allocate and catalog any report data sets.</td>
</tr>
<tr>
<td>DRFVOLSER=</td>
<td>Specifies a 1- to 6-character volume serial number that is passed to the subspaces in order to provide a specific volume on which to allocate any report data sets. Use DRFVOLSER to specify a particular volume serial number on which to dynamically allocate and catalog any required data sets.</td>
</tr>
<tr>
<td></td>
<td>Specifying DRFVOLSER is optional. If you do not specify DRFVOLSER, the temporary data sets are written to local volumes. DRFVOLSER is required when you have insufficient local volumes or if the volumes are not SMS-managed.</td>
</tr>
<tr>
<td>RPTRET=</td>
<td>Specifies the disposition of report data sets when the recovery job abends.</td>
</tr>
<tr>
<td>N</td>
<td>Indicates that the REPORT work data sets are to be deleted in the event of an abend. It also indicates that IMS Database Recovery Facility deletes any REPORT work data sets.</td>
</tr>
</tbody>
</table>
sets left from prior executions that would otherwise cause allocation errors due to duplicate names.

Y Indicates that the REPORT work data sets are to be retained in the event of an abend. Retaining these data sets might be helpful for diagnostic purposes, however, if they are retained then it is up to you to manually delete them.

The default setting for RPTRET is N.

RPTITKB=

Specifies whether or not IMS Tools KB integration is active for the IMS Database Recovery Facility report.

Important: To use IMS Tools KB integration, the ITKBSRVR keyword must be specified in the UTILGBL() environmental statement.

N Indicates that IMS Tools KB integration is not active.

Y Indicates that IMS Tools KB integration is active.

There are three reports types:

- DRF report
- WTO
- SYSPRINT

The default setting for RPTITKB is N.

After a batch recovery completes, examine, first, the REPORT DD output file in the master address space to determine the results of the auxiliary utilities.

The return codes and reason codes from each utility for each DBD and DD/AreaName are written under a new heading in the REPORT DD at the bottom of the file. If you invoked integrated auxiliary utilities and RPTTYPE=APP is specified, then reports and messages from the utilities appear in the REPORT DD after the IMS Database Recovery Facility report.

If RPTTYPE=SEP is specified, then reports and messages from the utilities are written separately to the standard utility report DD statements.

If REPORT=APP is specified indicating the messages are appended to the REPORT DD, IMS Database Recovery Facility lists Image Copy messages followed by Pointer Checker messages under a separate heading by DBD and DD/AreaName, followed by messages for Index Builder, DFSPREC0, and the Build Index function of FPA. The JOBNAME of the subordinate address space which created the utilities' reports and messages is also included in the heading. For a list of the utility report DD statements, refer to Chapter 5, “Configuring JCL statements and procedures,” on page 75.

SORTPARM(<subparameters>)

The subparameters listed here are values that you define that are passed to SORT as each task is started. Separate the subparameters with commas.

SORTPARM subparameters syntax
ASGNAME(Y | N)
Use this parameter to set a generic Started Task Control (STC) name for the sort subordinate address spaces created by the IMS Database Recovery Facility. This is an optional parameter.

Y Specifies that IMS Database Recovery Facility overrides the job name for all sort subordinate address spaces in order to use DRFSORT as the started task name.

N Specifies that the name used for all sort subordinate address spaces is generated using the information specified by the ASPREF parameter. This is the default. See ASPREF for the method of naming subordinate address spaces.

ASPREF(cc | cccc | IDRF)
Use this parameter to set the prefix of the standard task name for the recovery sort subordinate address spaces (RSS) created by the IMS Database Recovery Facility. This is an optional parameter.

If ASGNAME(N) is specified and ASPREF() is not specified, the default prefix of IDRF is used.

cc A 2-character prefix used to construct the STC name of the RSS.

When a 2-character prefix is specified, the job name is constructed by using the format ccjjjj##, where:

cc The specified prefix.
jjjj The JES job number associated with the master address space.
A number from 01-99, incremented with each new RSS.

cccc A 4-character prefix used to construct the STC name of the RSS.

When a 4-character prefix is specified, the jobname is constructed by using the format cccc####, where:

cccc The specified prefix.
A number from 0001-0099, incremented with each new RSS.

AVGRLEN(nnnnn)

Use this parameter to specify the average record length of the records to be sorted.

nnnnn A 1-to 5-digit integer value of 4- through 32766 bytes that you use to specify the average record length of the records to be sorted. The default value of AVGRLEN(nnnnn) is half of the maximum record length. The range includes the 4-byte record descriptor word (RDW).

DYNALLOC(device_name | SYSDA, nr_wrk_sets)

Use this parameter to specify the attributes for allocating the sort work data sets dynamically. The parameters that you specify is used in place of the SORT defaults.

device_name | **SYSDA**

A valid device name on which the work data sets are dynamically allocated. The default value of *device_name* is SYSDA.

nr_wrk_sets

A 1-to 3-digit integer value from 1 to 255 that you use to specify the number of dynamically allocated work data sets that are used during the SORT. The default for *nr_wrk_sets* is none, that defaults to either the IBM-supplied default (4 for block set technique), or as you specified in the installation ICEMAC DYNALLOC option.

FILSZ(nnnnnnnn | 20000 | > 20000)

Use this parameter to specify the estimated number of records to be sorted.

nnnnnnnn

A 1- to 9-digit integer value you use to specify the estimated number of records to be sorted. This parameter is optional, and if you do not include it, the IMS Database Recovery Facility makes an estimate based on the RLDS record sequence number range provided by DBRC. The minimum estimate that IMS Database Recovery Facility applies is 20000.

FSNUM(nn | 99)

A 1- to 2-digit integer value that you use to specify the maximum number of address spaces for the Build Index function of FPA that are started in parallel. The actual number of FS-UAS address spaces depends on the work required, so the number of utility address spaces might be less than the value you specified. If *nn* is sufficient, then one FS-UAS is started per DEDB for which index rebuild was requested.

HIPRMAX(OPTIMAL | nnnnn)

Use this parameter to specify the maximum size of hiperspace to be used in the sort process.

OPTIMAL

If you specify the OPTIMAL option, SORT is allowed to calculate and use as much hiperspace as possible. The HIPRMAX default is OPTIMAL.
A 1- to 5-digit integer value from 0 MB to 32766 MB that you use to specify the maximum amount of hiperspace to be used.

Note: Specifying a value of 0 tells SORT to inhibit the use of hiperspace sorting.

MAINSIZE(nnnn | 32)
The main storage size you set for the RSS SORT region.

Note: If the value you specify is less than the SORT product’s MINLIM installation value, then the MINLIM value overrides MAINSIZE.

NUM(nn | 99)
A 1- to 2-digit integer value that you use to specify the maximum number of RSS spaces that are started in parallel. The actual number of RSS spaces depends on the work required, so the number of subordinate address spaces might be less than the value you specified. The number that is used is the smallest of the following values:

- The value **nn** you specified in the NUM parameter.
- The number of unique collections of image copy data sets. These collections can be one or more of the following options:
 - An individual image copy data set on a DASD volume
 - Stacked image copy data sets on the same tape volume that do not span tape volumes
 - An image copy data set that spans volumes plus the image copy data sets stacked on the last volume of the spanning image copy
- The number 99.

If multiple image copy data sets that are required for recovery are stacked in the same volume or are part of the same data set (when they are created using the SAMEDS option for DFSMSdss - Concurrent Copy), they are processed by the same address space.

SOURCE(PRI | SEC | SECIC | SECLOG)
Use this parameter to specify the source of image copies and log data sets for the recovery process.

SOURCE parameter syntax

PRI

The primary image copy and log data sets are used as the sources for the recovery process. If any of the primary sources are marked as invalid or are unreadable, the secondary sources are used, if available. PRI is the default option for SOURCE.
SEC The secondary image copy and log data sets, either SECLOG or SECSLD, are used as the sources for the recovery process. If a required data set is marked as invalid or it is unavailable, recovery fails for that database data set.

SECIC The secondary image copy data sets are used for the recovery process. Primary log data sets are used as the default data sets.

SECLOG The secondary log data sets, either SECLOG or SECSLD, are used for the recovery process. Primary image copy data sets are used as the default data sets.

SPSIZE(yyyy | 1024)
Use this parameter to specify the integer value in megabytes, for the size of each data space used by the IMS Database Recovery Facility.

SPSIZE parameter syntax

When data space usage reaches your specified value, another data space is obtained. The range of valid values is: 1 to 2047.

The default value for SPSIZE is 1024 MB.

yyyy The integer value in megabytes, for the size of each data space used by the spill manager.

TAPECHK(Y | N)
Use this parameter (Y) to allow IMS Database Recovery Facility to check the availability status of tape devices before DBDS allocation.

TAPECHK parameter syntax

If the number of image copies restore tasks on tape exceeds the number of available tape devices, then IMS Database Recovery Facility might stop scheduling parallel image copy restores when the number of tape devices that are required exceeds the number tape device that are available.

TAPECHK(Y) works in tandem with READNUM (or ICNUM, LOGNUM) to specify to IMS Database Recovery Facility the number of tape devices that are available.

TAPECHK(N) is the default.

UTILGBL(<subparameters>)
Use this parameter is used to specify the control statements that are used to control the execution of the integrated auxiliary utilities.

This parameter, and all the associated subparameters are described in Chapter 4, “Configuring the integrated auxiliary utility environment,” on page 45.
XCFGROUP(name)

Use this parameter to specify the XCF group name used by the IMS Tools Online System Interface to communicate with the IMS systems associated with this recovery environment.

XCFGROUP parameter syntax

```
XCFGROUP ( name )
```

`name` is the 1-to 8-character alphanumeric name specified in the IMS Tools Online System Interface installation. To find the IMS Tools Online System Interface XCF group name, look in the IMS PROCLIB member FOIxxxxP (where `xxxx` is the IMSID). In that member, the XCFGROUP= parameter specifies the last five characters of the XCF group name. To construct the complete name, prefix this value with TOI. Or you can look in your IMS online job log for the FOI100I message; the value that is specified after XCF GROUP= indicates the complete IMS Tools Online System Interface XCF group name.

If this parameter is not specified, then automatic /DBR and /STA of databases will not be possible. There is no default for this parameter.
Chapter 4. Configuring the integrated auxiliary utility environment

Control statements are used by IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility to control the execution of the integrated auxiliary utilities.

Topics:
- “Specifying utility control statements”
- “Utility control statements”

Specifying utility control statements

Utility control statements are used to control the execution of the integrated auxiliary utilities.

The integrated auxiliary utilities include IMS Index Builder, IMS High Performance Image Copy, IMS High Performance Pointer Checker, IMS High Performance Fast Path Utilities, the IMS DFSPREC0 utility, and the Build Index function of FPA.

- To set the default processing options for the utilities, use the UTILGBL() environmental statement.
- To override any options that are specified on UTILGBL() or to specify any additional options, use the appropriate ADD command:

 ADD IB()
 Use this ADD command to specify FPA and IMS Index Builder utility control statements.

 ADD IC()
 Use this ADD command to specify IMS High Performance Image Copy utility control statements.

 ADD PC()
 Use this ADD command to specify IMS High Performance Pointer Checker and IMS High Performance Fast Path Utilities utility control statements.

Any values that you specify on the ADD() command override the values that were specified on the UTILGBL() environmental statement.

Utility control statements

All of the utility control statements that are used to control the execution of the integrated auxiliary utilities are listed here. Utility control statements are grouped by the associated integrated auxiliary utility.

The parameters that are associated with these control statements are listed in alphabetic order in the following table. Each row in the table indicates whether the parameter is valid on the UTILGBL() environmental statement and on the ADD IB(), ADD IC(), or ADD PC() commands. The table also indicates which utility the parameter is associated with.
<table>
<thead>
<tr>
<th>Utility control statement parameter</th>
<th>Integrated auxiliary utility</th>
<th>Valid on UTILGBL()</th>
<th>Valid on ADD(IB())</th>
<th>Valid on ADD(IC())</th>
<th>Valid on ADD(PC())</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BITMAP</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies whether to generate the Bit Map Display report for the HDAM, HIDAM, PHDAM, or PHIDAM database.</td>
</tr>
<tr>
<td>BLD_PRIMARY</td>
<td>IMS Index Builder</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Specifies the options for rebuilding the primary index of the full function database.</td>
</tr>
<tr>
<td>BLD_SECONDARY</td>
<td>Build Index function of FPA and IMS Index Builder</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Specifies the options for rebuilding the secondary index.</td>
</tr>
<tr>
<td>COMP</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies whether the image copy is to be compressed.</td>
</tr>
<tr>
<td>COMPRTN</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the name of the image copy compression routine.</td>
</tr>
<tr>
<td>DATACLAS</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the SMS-managed data class that is used to allocate the image copy.</td>
</tr>
<tr>
<td>DIAG</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies the option for printing of internal control blocks.</td>
</tr>
<tr>
<td>DSN</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Specifies the template that is used to name the primary image copy data set.</td>
</tr>
<tr>
<td>DSN2</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Specifies the template that is used to name the secondary image copy data set.</td>
</tr>
<tr>
<td>DSNTYPE</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies whether the image copy can be allocated as Large Format data sets or as Basic Format data sets.</td>
</tr>
<tr>
<td>DUMPFORM</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies the format of the internal control blocks that are printed.</td>
</tr>
<tr>
<td>FABASNAP</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies whether to generate the FABASNAP report when using DEDB Pointer Checker.</td>
</tr>
<tr>
<td>Utility control statement parameter</td>
<td>Integrated auxiliary utility</td>
<td>Valid on UTILGBL()</td>
<td>Valid on ADD(IBM())</td>
<td>Valid on ADD(IBM())</td>
<td>Valid on ADD(PC())</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FSEMAP</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Specifies whether to generate the Free Space Map report for the HDAM, HIDAM, PHDAM, or PHIDAM database.</td>
</tr>
<tr>
<td>FSPREF</td>
<td>Build Index function of FPA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the prefix for creating the job name for the Build Index function of FPA.</td>
</tr>
<tr>
<td>HALDB</td>
<td>IMS Index Builder or DFSPREC01</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Specifies the options for rebuilding HALDB ILDS and primary index.</td>
</tr>
<tr>
<td>IBPREF</td>
<td>IMS Index Builder</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the prefix that is used for creating the IMS Index Builder job name.</td>
</tr>
<tr>
<td>ICHLQ</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the high-level qualifier for naming the primary image copy data set.</td>
</tr>
<tr>
<td>ICHLQ2</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the high-level qualifier for naming the secondary image copy data set.</td>
</tr>
<tr>
<td>ICNDX</td>
<td>The Build Index function of FPA and IMS Index Builder</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Specifies whether the secondary indexes are image copied.</td>
</tr>
<tr>
<td>ICNMRULE</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the naming convention that is used for the output image copy data set.</td>
</tr>
<tr>
<td>INPUT</td>
<td>IMS Index Builder</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Specifies the type of input that is used to build indexes.</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Specifies the interval at which the Interval Statistics report and the Interval Free Space Summary report are produced.</td>
</tr>
</tbody>
</table>

Chapter 4. Configuring the integrated auxiliary utility environment 47
<table>
<thead>
<tr>
<th>Utility control statement parameter</th>
<th>Integrated auxiliary utility</th>
<th>Valid on UTILGBL()</th>
<th>Valid on ADD(IB0)</th>
<th>Valid on ADD(IC0)</th>
<th>Valid on ADD(PC0)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTFS</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies whether to generate the Interval Free Space Summary report for the HDAM, HIDAM, PHDAM, or PHIDAM database.</td>
</tr>
<tr>
<td>INTST</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies whether to generate the Interval Statistics report for the HDAM, HIDAM, PHDAM, or PHIDAM database.</td>
</tr>
<tr>
<td>ITKBSRVR</td>
<td>base</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Specifies the IMS Tools Knowledge Base server name.</td>
</tr>
<tr>
<td>MAXFSD</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies whether to generate the Maximum Free Space Distribution report for the HDAM, HIDAM, PHDAM, or PHIDAM database.</td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td>IMS Index Builder</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Specifies the SMS-managed management class that is used to allocate the image copy.</td>
</tr>
<tr>
<td>NDXIOBUF</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the number of buffers that VSAM uses when IMS Index Builder loads index data sets.</td>
</tr>
<tr>
<td>NOTIFY</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies if the image copy data set is registered to DBRC or not.</td>
</tr>
<tr>
<td>OVERFLOW</td>
<td>IMS High Performance Pointer Checker</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies the DDname of the ESDS or OSAM part of the HISAM data set group, or the index database to be processed.</td>
</tr>
<tr>
<td>PCJOBNM</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Specifies the job name that is used for generating the IMS High Performance Pointer Checker job.</td>
</tr>
<tr>
<td>PCPREF</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Specifies the prefix that is used for generating the IMS High Performance Pointer Checker job name.</td>
</tr>
<tr>
<td>PCPROCNM</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Specifies the procedure name that is used to start the IMS High Performance Pointer Checker DMB Analyzer subordinate address space.</td>
</tr>
<tr>
<td>Utility control statement parameter</td>
<td>Integrated auxiliary utility</td>
<td>Valid on UTILGBL()</td>
<td>Valid on ADD(IBM)()</td>
<td>Valid on ADD(IC)()</td>
<td>Valid on ADD(PC)()</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| PRIMEDB | IMS High Performance Pointer Checker | No | No | No | Yes | Specifies either:
• The DBDname of the primary database that is indexed by the HIDAM index
• The secondary index database to be processed |
<p>| PRINTDATA | IMS High Performance Pointer Checker | Yes | No | No | Yes | Specifies the option for printing IMS High Performance Pointer Checker data. |
| PRPREF | DFSPREC0 | Yes | No | No | No | Specifies the prefix that is used for creating the DFSPREC0 job name. |
| RETPD | IMS High Performance Image Copy | Yes | No | Yes | No | Specifies the retention period for the output image copy data set. |
| SORTE35 | IMS Index Builder | Yes | Yes | No | No | Specifies whether IMS Index Builder can use the sort E35 exit to load sorted index records into the index data set. |
| SORTFSZ | IMS Index Builder | Yes | Yes | No | No | Specifies the estimated number of records to be sorted. |
| SORTID | IMS Index Builder | Yes | Yes | No | No | Specifies the ID of the SORT command that is used to start the address space for the sort program. |
| SORTOPT | IMS Index Builder | Yes | Yes | No | No | Specifies the sort parameters to be appended to the SORT OPTION command. |
| SORTOUT | IMS High Performance Image Copy | Yes | No | Yes | No | Specifies whether IMS Index Builder can copy sort messages to the data set that is defined in the IIUSOUT DD statement or leave them in the data set that is defined in the SORT DD command. |
| SPACE | IMS High Performance Image Copy | Yes | No | Yes | No | Specifies the space parameters for allocating the image copy data set. |</p>
<table>
<thead>
<tr>
<th>Utility control statement parameter</th>
<th>Integrated auxiliary utility</th>
<th>Valid on UTILGBL()</th>
<th>Valid on ADD(IB())</th>
<th>Valid on ADD(IC())</th>
<th>Valid on ADD(PC())</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPCHECK</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies whether to perform subset pointer checking during the hash check process.</td>
</tr>
<tr>
<td>STACK</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Specifies the option that is used for stacking image copies.</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the SMS-managed storage class that is used to allocate the image copy.</td>
</tr>
<tr>
<td>T2CHK</td>
<td>IMS High Performance Pointer Checker</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Specifies the T2 error processing option.</td>
</tr>
<tr>
<td>UNIT</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the unit that is used for allocating the primary image copy data set.</td>
</tr>
<tr>
<td>UNIT2</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the unit that is used for allocating the secondary image copy data set.</td>
</tr>
<tr>
<td>VIC</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the virtual image copy processing option.</td>
</tr>
<tr>
<td>VICDSN</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Specifies the data set name that is used for registering virtual image copies.</td>
</tr>
<tr>
<td>VOLCNT</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the maximum number of volumes for allocating the output image copy data set.</td>
</tr>
<tr>
<td>VOLSER2</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Specifies the volume serial numbers that are used for allocating the secondary image copy data set.</td>
</tr>
<tr>
<td>WAITALOC</td>
<td>IMS High Performance Image Copy</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Specifies whether to display the WAIT option in message IEF238D when dynamic allocation on the tape unit fails.</td>
</tr>
</tbody>
</table>
Utility control
statement parameter | Integrated auxiliary utility | Valid on UTILGBL() | Valid on ADD(IB()) | Valid on ADD(IC()) | Valid on ADD(PC()) | Description
---|---|---|---|---|---|---
WAITMSG | IMS High Performance Image Copy | Yes | No | No | No | Specifies whether to display the FABJ3929A WTO message on the operator console, when dynamic allocation is being done on the tape unit. This keyword is effective for the dynamic allocation (SVC99) reason codes 214, 220, 228, or 484.
WAITTIME | IMS High Performance Image Copy | Yes | No | No | No | Specifies the wait time for repeating the dynamic allocation on the tape unit when the dynamic allocation reason code (SVC99) is 214, 220, 228, or 484.

Notes:
1. If using Index Builder V3.1 or later and HALDB without the free space option, the utility is IMS Index Builder, otherwise the utility is DFSPREC0.

Utility control statement syntax

The utility control statements control the execution of the integrated auxiliary utilities. This topic lists the utility control statements grouped by their usage.

Global utility parameters

```
UTILGBL(servername)
```

This syntax diagram shows the syntax for parameters which can be used by one or more of the auxiliary utilities.

`servername` specifies the IMS Tools Knowledge Base server name where the reports generated under IMS Database Recovery Facility in the IMS Tools Knowledge Base repository are stored. The IMS Tools Knowledge Base server must be running. The IMS Tools KB client load library must be provided by concatenating in STEPLIB in both the IMS Database Recovery Facility master address space and subtask JCL procedures.

This parameter is an optional parameter but if not specified, no reports are written to the IMS Tools KB.
Important: IMS Database Recovery Facility does not write any reports to the IMS Tools KB. However, some of the integrated auxiliary utilities write reports and use the ITKBSRVR values.

Integrated auxiliary utility parameters for IMS Index Builder

This syntax diagram shows the parameters which are associated with the IMS Index Builder auxiliary utility.

Here is a description of the parameters and their values:

BLD_PRIMARY

Use this parameter to specify that IMS Database Recovery Facility should rebuild the primary index of the *dbname* specified on the ADD DB() command.

HALDB primary indexes are rebuilt using the DFSPREC0 utility. In IMS Database Recovery Facility, specifying the BLD_PRIMARY command does not rebuild HALDB primary indexes. Use the parameters in the HALDB() statement to build HALDB primary indexes.

When the DFSPREC0 routine is needed for HALDB Primary Index and ILE processing, you must modify module DFSDAPL0.

BLD_SECONDARY(ALL | secixdbname1,secixdbname2,secixdbname3...)

Use this parameter to rebuild the secondary index databases of the *dbname/areaname* specified on the ADD DB() command.

Important: When BLD_SECONDARY(ALL) is specified, all secondary indexes are rebuilt, meaning it is not necessary to specify BLD_SECONDARY(secixdbname1,secixdbname2,secixdbname3).
HALDB(ILE | ILEF | INDEX | BOTH | BOTHF)
When the database is HALDB, use this parameter to specify whether to
rebuild only the ILE data set, the Primary Index, or both. Specify this
parameter only on the ADD statements for PHIDAM database types.

ILE
The indirect list entry (ILE) is to be rebuilt.

ILEF
This parameter, which is available with IMS Version 10 and later,
rebuilds only the ILDS of the specified partition by using the free
space option. DFSPREC0 must have five z/OS data spaces
available for processing if you select the free space option.

INDEX
The HALDB primary index is to be rebuilt.

BOTH
Specifies that both the specified ILE and the primary index are to
be rebuilt.

BOTHF
This parameter, which is available with IMS Version 10 and later,
rebuilds both the primary index and the ILDS of the specified
partition. Rebuilds the ILDS by using the free space option. The
utility must have five z/OS data spaces available for processing if
you select the free space option.

IBPREF(cc | cccc | BDRF)
Use this subparameter to set the prefix of the utility address space for the
IMS Index Builder job name.

cc
A 2-character alphanumeric prefix used to construct the IB started
task name.

When a 2-character prefix is specified, the job name is constructed
by using the format ccjjjj## where:

cc
The specified prefix.

jjjj
The JES job number associated with the master address
space.

##
A number from 01 - 99, incremented with each new
address space.

cccc
A 4-character alphanumeric prefix used to construct the IB started
task name.

When a 4-character prefix is specified, the job name is constructed
by using the format cccc####, where:

cccc
The specified prefix.

####
A number from 0001 - 0099, incremented with each new
address space.

BDRF
If IBPREF() is not specified, the job name is constructed by using
the format BDRF####, where #### is a number from 0001 - 0099,
incremented with each new address space.

ICNDX(NO | YES)
This subparameter specifies that indexes are to be image copied. This
parameter does not apply to HALDB primary index and ILE data sets
because they are not recoverable. This parameter also does not apply to
secondary indexes that are not recoverable. However, if you specify
ICNDX(YES), secondary indexes for Full Function, Fast Path and HALDB
databases are image copied. For Full Function databases, recoverable
primary indexes are image copied.

NO is the default.

Note: If ICNDX(YES) is coded, it does not take effect unless the IC
keyword is present on the ADD command.

INPUT(IBSCAN, DBRC(Y | N))

The INPUT statement specifies the type of input used by IMS Index
Builder to build indexes and specifies whether or not DBRC is used for
both Index Builder and the Index Build function of FPA. IBSCAN is the
only option allowed in the first position. IBSCAN does not apply to FPA
and is ignored if specified. It is retained for consistency with IB control
statements, but is also the default.

IBSCAN specifies that a scan of the physical data base is used as input. In
IMS Database Recovery Facility, this option applies to secondary indexes
for both HALDB and Full Function databases and to primary indexes for
Full Function databases.

DBRC specifies whether DBRC is (DBRC(Y)) or is not (DBRC(N)) used.
DBRC(Y) is the default.

MAXTASKS(nn)

Use this parameter to specify that this is a MAXTASKS statement.

\[nn \]

Valid values are from 0 to 36, with leading zeros.

Important: MAXTASKS(2) has special meaning in that it instructs IMS
Index Builder V3.1 to use the hierarchical HPU scan method
for building indexes, such as in IMS Index Builder V2.3,
instead of the sequential scan method. For more information,
see *IMS Index Builder for z/OS User’s Guide*.

NDXIOBUF(DATA(n), INDEX(n))

Use this parameter to specify the number of buffers that VSAM uses when
IMS Index Builder loads index data sets. Use this parameter when:

- IMS Index Builder loads index data sets without needing a sort.
- You specify the SORTE35 statement to use the E35 exit interface to sort.

PRPREF(cc | cccc | **PDRF**)

Use this parameter to set the prefix of the utility address space for the
DFSPREC0 job name.

\[cc \]

A 2-character alphanumeric prefix used to construct the DFSPREC0
started task name.

When a 2-character prefix is specified, the job name is constructed
by using the format ccjjjj## where:

\[cc \]

The specified prefix.

\[jjjj \]

The JES job number associated with the master address
space.

\[## \]

A number from 01 - 99, incremented with each new
address space.

\[cccc \]

A 4-character alphanumeric prefix used to construct the IB started
task name.
When a 4-character prefix is specified, the job name is constructed by using the format cccc####, where:

- **ccc**: The specified prefix.
- **###**: A number from 0001 - 0099, incremented with each new address space.

PDRF If IBPREF() is not specified, the job name is constructed by using the format PDRF####, where #### is a number from 0001 - 0099, incremented with each new address space.

Note: ALL is the only BLD_SECONDARY() option that is allowed within the UTILGBL() statement.

SORT35

- **NO**
- **YES**

This parameter applies to IMS Index Builder subordinate address spaces that are involved in sorting, not IMS Database Recovery Facility subordinate address spaces. Use this parameter to specify whether IMS Index Builder can use the sort E35 exit to load sorted index records into the index data set. When NO is specified, the sort program loads the sorted records directly into the index data set. The default is NO unless you have coded IC() and ICNDX(YES) is intended. Then, the default is YES.

SORTFSZ

- **nnnnnnnnn**

This parameter applies to IMS Index Builder subordinate address spaces that are involved in sorting, not IMS Database Recovery Facility subordinate address spaces. Use this parameter to specify the estimated number of records to be sorted. nnnnnnnnn is an integer from 1 to 999999999 that specifies the estimated number of records to be sorted. The value is appended to the SORT option and is overridden if a non-zero index size is specified in the INDEX option for the DBD, or by the reused file size of the index. If not specified, and not overridden, no FILSZ parameter is appended to the generated SORT option.

SORTID

- **sort_id,**
- **{sort_parm,...}**

This parameter applies to IMS Index Builder subordinate address spaces that are involved in sorting, not IMS Database Recovery Facility subordinate address spaces. Use this parameter to specify the ID of the SORT command used to start the address space for the sort program. Only one sort_id keyword is allowed. It must be a single alphanumeric character appended to the sort procedure name IIUBSRT. For example, if you specify the character A, IMS Index Builder uses the procedure IIUBSRTA to start address spaces used by the sort program. The specified procedure must exist in one of the libraries in the SYS1.PROCLIB concatenation of the MVS primary subsystem. If a sort_id is not specified, IMS Database Recovery Facility uses IIUBSRTT. sort_parms is a string of sort option parameters, separated by commas or blanks. The string is appended, unchanged, to the SORT OPTION command generated by IMS Index Builder. The maximum length of the string is 34 characters, and the entire string must be on one line. You can use this string to specify performance options or to override installation settings. For example:

```
MAINSIZE(100) FILSZ(E3000000)
```

Do not specify any parameter related to record type, sort fields, or sort order.

Chapter 4. Configuring the integrated auxiliary utility environment
SORTOPT(sortopt...)
This parameter applies to IMS Index Builder subordinate address spaces that are involved in sorting, not IMS Database Recovery Facility subordinate address spaces. Use this parameter to specify sort parameters to be appended to the SORT OPTION command.

Only one SORTOPT parameter is allowed. Important: The FILSZ specified in the SORTOPT parameter takes precedence.

sortopt... is a string of sort option parameters, separated by commas or blanks. The string is appended, unchanged, to the SORT OPTION command generated by IMS Index Builder. The maximum length of the string is 34 characters, and the entire string must be on one line. You can use this string to specify performance options or to override installation settings. For example:

MAINSIZE(100) FILSZ(E3000000)

Do not specify any parameter related to record type, sort fields, or sort order.

SORTOUT(COPY | NOCOPY)
This parameter applies to IMS Index Builder subordinate address spaces that are involved in sorting, not IMS Database Recovery Facility subordinate sort address spaces. Use this parameter to specify whether IMS Index Builder can copy sort messages to the data set defined in the IIUSOUT DD statement or leave them in the data set defined in the SORT DD command, which is in the sort address space. If you do not specify the SORTOUT parameter, COPY is assumed.

SORTSTAT(NO | YES)
This parameter applies to IMS Index Builder subordinate address spaces that are involved in sorting, not IMS Database Recovery Facility subordinate sort address spaces. Use this parameter to tell IMS Index Builder to produce sort count statistics in the SYSPRINT data set for each index sorted. If you specify this statement, the following counts are produced:

SORT RECORD COUNT — E15
The number of records passed to sort

SORT BUFFER COUNT — E15
The number of buffers processed

SORT WAIT COUNT — E15
The number of WAITs issued while waiting for a buffer

SORT OUTPUT COUNT — E35
The number of records sorted and loaded into the index data set
Integrated auxiliary utility parameters for the Build Index function of FPA

This syntax diagram shows the parameters which are associated with the Build Index function of FPA.

Here is a description of the parameters and their values:

BLD_SECONDARY(ALL | secixdbname1, secixdbname2, secixdbname3...)

Use this parameter to rebuild the secondary index databases of the `dbname/areaname` specified on the ADD DB() command.

Important: When BLD_SECONDARY(ALL) is specified, all secondary indexes are rebuilt, meaning it is not necessary to specify BLD_SECONDARY(secixdbname1, secixdbname2, secixdbname3).

FSPREF(cc | cccc | FDRF)

Use this subparameter to set the prefix of the utility address space for the job name for the Build Index function of FPA.

- **cc** A 2-character alphanumeric prefix used to construct the FS started task name.

 When a 2-character prefix is specified, the job name is constructed by using the format `ccjjjj##` where:
 - `cc` The specified prefix.
 - `jjjj` The JES job number associated with the master address space.
 - `##` A number from 01 - 99, incremented with each new address space.

- **cccc** A 4-character alphanumeric prefix used to construct the FS started task name.

 When a 4-character prefix is specified, the job name is constructed by using the format `cccc####`, where:
 - `cccc` The specified prefix.
 - `####` A number from 0001 - 0099, incremented with each new address space.

- **FDRF** If FSPREF() is not specified, the job name is constructed by using the format FDRF####, where #### is a number from 0001 - 0099, incremented with each new address space.

ICINCOMP (No | Yes)
Use the ICINCOMP keyword to specify, when an image copy is used as an input data set, whether the image copy records are to be compressed by using the CSRCESRV MVS macro when they are stored into a data space storage.

IMS Fast Path Advanced Tool stores all image copy records into a data space storage when an image copy is used as an input data set. Because the maximum size of one data space is 2 GB, if the total size of the records exceeds the limit, IMS Fast Path Advanced Tool ends with an error. Try to reduce the total size of the records to under 2 GB by specifying ICINCOMP=YES. FPA compresses the image copy records by using the CSRCESRV macro before storing them into a data space and expands them when they are processed. The data compression and expansion process increases the amount of CPU time.

No The image copy records are stored into a data space storage without compression.

Yes The image copy records are stored into a data space storage after compression.

ITASKCTL *(AREA | nnnn)*

Use the ITASKCTL keyword to specify the maximum number of input areas to be processed concurrently.

AREA The number of input areas.

nnnn Specify a value from 1 to 2048. Specify a value less than or equal to the number of input areas. If you specify a value that is greater than the number of input areas, it will be replaced by the number of input areas. In case of the CHANGE command in the REORG mode, the following value is set: (ITASKCTL + OTASKCTL)/2 (the value is rounded off)

OTASKCTL(nnnn)

Use the OTASKCTL keyword to specify the maximum number of output areas to be processed concurrently.

nnnn Specify a value from 1 to 2048. Specify a value less than or equal to the number of output areas. If you specify a value that is greater than the number of output areas, it will be replaced by the number of output areas. In case of the CHANGE command in the REORG mode, the following value is set: (ITASKCTL + OTASKCTL)/2 (the value is rounded off)

SITE_DSNAME *(dsname)*

Use the SITE_DSNAME keyword to specify the name of the data set that has the members of the site default tables.

'dsname'

Specify a data set name that is 1- to 44-characters and enclosed in single quotation marks. The data set name identifies the data set containing the HFPCSITE global site default member.

SITE_MEMBER *(member)*

Use the SITE_DSNAME keyword to specify the name of the data set that has the members of the site default tables.

'dsname'
Use the SITE_MEMBER keyword to specify the member name of
the site default table.

Integrated auxiliary utility parameters for IMS High Performance Image Copy
COMP	Y
COMPRTN	Routine
DATACLAS	Data-class-name
DSN	Variables*
DSN2	Variables*
BASIC	DSNTYPE(LARGE)
EXPDT	yyyyddd
ICBUF	Ynnn
ICCAT	N
ICHLQ	hlq1, hlq2
ICHLQ2	hlq2
ICNMRULE	Y
MGMTCLAS	Mgmt-class-name
NOTIFY	N
RETPD	nnnn
SPACE	CYL, TRK, blk, primary, secondary, RLSE(CONTIG), MXIG, ALX, ROUND
STACK	*,
STORCLAS	Stor-class-name
TAPE	Unitname, unitcount
UNIT2	Unitname, unitcount
VIC	Y
VICDSN	Dummy-data-set-name*
VOLCNT	nnn
VOLSER	Volsern
VOLSER2	Volsern
WAITALOC	N
WAITMSG	Y
WAITTIME	nnnn, CANCEL
	(nnnn, CANCEL
This syntax diagram shows the parameters which are associated with the IMS High Performance Image Copy auxiliary utility.

Here is a description of the parameters and their values:

COMP(Y | N)

The COMP keyword specifies whether the Image Copy function is to compress the output image copy data.

- **Y** specifies that the output image copy data is to be compressed by the Image Copy function.
- **N** specifies that the output image copy data is not to be compressed by the Image Copy function.

The value **N** is the default.

COMPRTN(routine)

The COMPRTN keyword specifies the name of the compression routine that the Image Copy function invokes to compress the output image copy data.

Note: When the IDRC feature is installed and is active on the native tape drive, software compression is suppressed for the IC1 and IC2 output data sets when the compression is not FABJCMP2.

The setting for **routine** can have the following meanings:

- **routine** The name of the compression routine. IMS High Performance Image Copy provides four compression exit routines: FABJCMP1, FABJCMP2, FABJCMP3, and FABJCMP4. Specify one of these compression routines to be called by the Image Copy function. If the COMP=Y keyword is specified without the COMPRTN= keyword, FABJCMP1 is used as the default. The same compression routine is automatically called by the Database Recovery function to extract the compressed data.

Attention: If you want to create a compressed image copy data set for a DEDB that has an SDEP segment, you must use FABJCMP4. FABJCMP1, FABJCMP2, and FABJCMP3 cannot be used for a DEDB that has an SDEP segment.

IMS High Performance Image Copy provides the following compression routines:

FABJCMP1

Does repeated character compression. Free space can also be compressed.

FABJCMP2

Does only free space compression. Segmented data is not compressed.

FABJCMP3

Does repeating-characters compression of the z/OS program compression method. Free space might also be compressed.

FABJCMP4

Does repeating-characters compression of the z/OS program compression method.
This routine runs the block compression, which does not
distinguish between the data portion, free space, and
unused space in the database.

DATACLAS(data-class-name)

The DATACLAS keyword specifies the name of the data class for the new
SMS managed image copy output data sets that are dynamically allocated.

data-class-name

The name of the data class to be used for allocating the data set.

The name that you define is one-to eight-characters.

This keyword does not have a default.

DSN(variables*)

Use the DSN subparameter to specify the template for the primary image
copy data set that is dynamically allocated by IMS High Performance
Image Copy where the following is true:

variables

Template for the data set name. The data set name that is
generated by this specification must comprise no more than 44
characters in total.

For information on how to specify the values, see the *IMS High Performance
Image Copy for z/OS User's Guide*.

DSN2(variables*)

Use the DSN2 subparameter to specify the template for the secondary
image copy data set that is dynamically allocated by IMS High
Performance Image Copy where the following is true:

variables

Template for the data set name. The data set name that is
generated by this specification must comprise no more than 44
characters in total.

For information on how to specify the values, see the *IMS High Performance
Image Copy for z/OS User's Guide*.

DSNTYPE(BASIC | LARGE)

The DSNTYPE keyword specifies whether the Image Copy can be allocated
as Large Format data sets or Basic Format data sets. More detail
information for Large Format data sets is shown in the z/OS V1R7.0
DFSMS Using Data Sets.

BASIC

Specifies that the Image Copy function allocates Image Copy data
sets as Basic Format data sets. BASIC is the default.

LARGE

Specifies that the Image Copy function allocates Image Copy data
sets as Large Format data sets.

EXPDT(yyyyddd | yyddd)

The EXPDT keyword specifies the expiration date of the output image
copy data set.

yyyyddd or *yyddd*

The expiration date of the output image copy. The date format
must comply with the DFSMS format (the Julian calendar format).
This keyword does not have a default.

ICBUF\((nnnn) \)

The ICBUF keyword specifies the number of buffers to be used to access the output image copy data set.

\(nnnn \) The left-aligned number of buffers that are used to access the output image copy data set.

The default value is 15.

ICCAT(15 | Y | N)

The ICCAT keyword specifies whether the Image Copy function is to catalog the output image copy data set.

Y Catalogs the output image copy data set.

This is the default.

N Does not catalog the output image copy data set.

ICHLQ(hlq \(\), hlq1, hlq2)

The ICHLQ keyword specifies the data set name prefix of the image copy data set.

hlq The data set name prefix of the output image copy data set for the Image Copy function or it symbolizes a value in &ICHLQ.

hlq1 The data set name prefix of the primary output image copy data set for the Image Copy function or it symbolizes a value in &ICHLQ.

hlq2 The data set name prefix of the secondary output image copy data set for the Image Copy function or it symbolizes a value in &ICHLQ2.

Note: The hlq2 parameter and ICHLQ2= cannot be specified together.

When you use the default ICOUT naming (ICNMRULE=N), specify a data set name prefix containing 33 or fewer characters. This prefix is used as the high-level qualifier of the data set name.

If you use the default STACK naming, specify a data set name prefix containing 7 or fewer characters. MVS naming convention requires that a generated data set name contain 44 or fewer characters.

This prefix must conform to the normal data set naming standards; it can include periods but must not end with a period.

If this keyword is left blank, a data set name prefix is not assigned.

ICHLQ2(hlq2)

The ICHLQ2 keyword specifies the data set name prefix of the image copy data set. You can use a data set name prefix when you allocate an output image copy data set dynamically.

hlq2 The data set name prefix of the secondary output image copy data set for the Image Copy function or sets a symbolic value for &ICHLQ2.

ICHLQ2= parameter cannot be specified with ICHLQ2=(hlq1, hlq2).
When you use the default ICOUT naming (ICNMRULE=N), specify a data set name prefix containing 33 or fewer characters.

This prefix is used as the high-level qualifier of the data set name.

If you use the default STACK naming, specify a data set name prefix containing 7 or fewer characters. MVS naming convention requires that a generated data set name contain 44 or fewer characters.

This prefix must conform to the normal data set naming standards; it can include periods but must not end with a period.

If this keyword is left blank, a data set name prefix is not assigned.

ICNMRULE(Y | N)

The ICNMRULE keyword is used to select a naming convention for the output image copy data set.

Y Selects the naming convention of the output image copy data set as follows:

```
ichlq.1cn.dbdname.ddname.yyddd.hhmmss
```

N Selects the naming convention of the image copy data set as follows:

```
ichlq.1cn.dbdname.ddname
```

Within these naming conventions, the following meanings apply:

- *ichlq* is specified with the ICHLQ= keyword.
- *n* is 1 or 2, indicating the primary or secondary copy.
- *dbdname* is the DBD name of the database to be copied.
- *ddname* is the DD name of the target data set group or area to be copied.
- *yyddd* is the date.
- *hhmmss* is the time stamp.

N is the default value.

MGMTCLAS(mgmt-class-name)

The MGMTCLAS keyword specifies the name of the management class for the new SMS managed image copy output data sets that are dynamically allocated.

- *mgmt-class-name* is the name of the management class to be used for allocating the data set. The name that you define is one-to eight-characters long.

This keyword does not have a default.

NOTIFY(Y | N)

This parameter specifies whether the Image Copy function will register the image copy with DBRC.

- **N** does not register the image copy with DBRC.
- **Y** registers the image copy with DBRC. Y is the default value.
RETPD(mmm)

This parameter specifies the retention period, in days, for the output image copy data set.

mmm

The retention period for the output image copy. You can specify a value from 0 - 9999. This parameter does not have a default value.

SPACE((CYL | TRK | blk)

The SPACE keyword specifies the space parameter of the output image copy data set for dynamic allocation.

CYL | TRK | blk

Specifies how the Image Copy function is to allocate the output image copy data set.

CYL The allocation in cylinders.

TRK The allocation in tracks.

blk The allocation in blocks. For example: SPACE(1024,10,10).

primary

The number of tracks, cylinders, or blocks to be allocated.

secondary

The additional number of tracks or cylinders to be allocated, if more are needed. If this subparameter is specified, it must locate in the third position.

RLSE

Requests that space allocated to an output data set but not used, is to be released when the data set is closed.

CONTIG

Requests that space allocated to the data set must be contiguous.

MXIG

Requests that space allocated to the data set must be the largest area of available contiguous space on the volume and equal to, or greater than, the primary quantity.

ALX

Requests that space allocated to the data set is the largest 5 areas of available contiguous space on the volume.

ROUND

When the first subparameter specifies the average block length, this parameter requests that space allocated to the data set must be equal to an integral number of cylinders.

More detail information for each of these values is shown in the z/OS JCL reference manual.

This keyword does not have a default.

• Output Device under SMS:

The SPACE parameter in the SMS definition is used as the default.

If you specify the SPACE keyword in the ICEIN control statement or the site default table, the SMS definition is overwritten by the specified SPACE parameters.

• Non-SMS Output Device:

The SPACE keyword is a required parameter.
If you omit this keyword, dynamic allocation fails. If you defined SPACE in the site default table, IMS High Performance Image Copy uses the SPACE parameter in the site default.

STACK(* | *,*)

This parameter places two or more output image copy data sets on the same tape volume or set of tape volumes. If you specify STACK(*), IMS High Performance Image Copy dynamically allocates the output image copy data set and requests a single copy of the stacked image copy output. Specify STACK(*,*) when you need dual copies. For more information about stacking, see the *IMS High Performance Image Copy for z/OS User's Guide*.

Restriction: STACK is supported only on the UTILGBL() statement. It is not a recognized option on the ADD command with the IC() parameter. Invoking STACK causes IMS Database Recovery Facility to process each DBDS in the recovery list serially within one RSS.

If the tape volser is required, you can specify the VOLSER option on the UTILGBL() statement to indicate which tape volumes to use. VOLSER is not allowed on the ADD command with the IC() parameter in this situation.

The following example includes a UTILGBL() statement:

```sql
REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=DRFIC1)
UTILGBL(COMP=N,DSN(&ICHLQ..&DBD..&DDN.),STACK(*),UNIT(3390),-
ICBUF(15),VOLSER(222222,333333))
ADD DB(DIVNTZ02) -
   IC(ICHLQ(DRFIC1),SPACE(CYL,1,1),COMPRTN(FABJCMP1)) -
   IC(ICHLQ(DRFIC3),SPACE(CYL,1,1),COMPRTN(FABJCMP3)) -
START ERROR(CONT)
```

STORCLAS(stor-class-name)

The STORCLAS keyword specifies the name of the storage class for the new SMS managed image copy output data sets that are dynamically allocated.

`stor-class-name`

The name of a storage class to be used for allocating the data set. The name that you define, is one-to eight-characters long.

An ACS routine can override the storage class that you specify in the STORCLAS keyword.

This keyword does not have a default.

UNIT(TAPE | unitname | unitname,unitcount)

The UNIT keyword specifies the UNIT of the output image copy data set for allocation.

Note: When an image copy is requested, the UNIT parameter must be present either on the IC keyword or on the UTILGBL control statement; otherwise, an error results and no IC is created.

TAPE | unitname | unitname,unitcount

The UNIT parameter for allocating the output image copy. For example, UNIT(TAPE) or UNIT(TAPE,2).

The default is TAPE.
UNIT2(unitname | unitname,unitcount)
The UNIT2 keyword specifies the UNIT of the secondary output image
copy data set, which is used for allocation.

unitname or unitname,unitcount
The UNIT parameter for allocating the secondary output image
copy. For example, UNIT2(TAPE) or UNIT2(TAPE,2).

This keyword does not have a default.
If both UNIT2 and STORCLAS are specified, the value specified in the
STORCLAS keyword is not applied to the secondary output image copy
data set.

VIC(Y | N)
This parameter specifies whether the Image Copy function will register the
dummy data set name that is specified on the VICDSN parameter with
DBRC as a virtual image copy.

Y Registers the image copy with DBRC.
N Does not register the image copy with DBRC. N is the default.

VICDSN(dummy-data-set-name*)
The dummy-data-set-name* specifies a dummy data set name that is
registered with DBRC as the data set name for NOTIRY.UIC command of
virtual image copy process. The dummy data set name must be not exceed
44 characters.

VOLCNT(1 | nnn)
The VOLCNT keyword specifies the number of volumes used for the
output image copy data set.

nnn The maximum number of volumes that an output image copy data
set requires. The volume count is a decimal number from 1
through 255 for a tape data set and from 1 through 59 for a DASD
data set.

If you omit VOLCNT, 1 is used as the default.

VOLSER(volser 1 volser, volser...)
The VOLSER keyword specifies the volume serial number of the volume
used for the primary data set of the output image copy.

volser or (volser1, volser2,...)
The volume serial number of the volume allocated to the primary
data set of the output image copy.

This keyword does not have a default.

VOLSER2(volser 1 volser, volser...)
The VOLSER2 keyword specifies the volume serial number of the volume
used for the secondary data set of the output image copy.

volser or (volser1,volser2,...)
The volume serial number of the volume allocated to the
secondary data set of the output image copy.

This keyword does not have a default.

WAITALOC(N | Y)
The WAITALOC keyword specifies whether to display the WAIT option in
message IEF238D when dynamic allocation on the tape unit fails.
N Does not display the WAIT option in the message IEF238D.
Y Displays the WAIT option in message IEF238D. If WAIT is replied to the message IEF238D, IMS HP Image Copy waits to do dynamic allocation until the required units are released.

Important: IMS Recovery Solution Pack does not set any defaults for any of the IMS HP Image Copy WAIT* keywords. This behavior ensures that any values contained in the IMS HP Image Copy global site default table are not changed.

WAITMSG(N | Y)
The WAITMSG keyword specifies whether to display the FABJ3929A WTO message on the operator console, when dynamic allocation is being done on the tape unit. This keyword is effective for the dynamic allocation (SVC99) reason codes 214, 220, 228, or 484.

N Does not display the FABJ3929A WTO message on the operator console.
Y Displays the FABJ3929A WTO message on the operator console until the dynamic allocation on the tape unit is successful.

Important: IMS Recovery Solution Pack does not set any defaults for any of the IMS HP Image Copy WAIT* keywords. This behavior ensures that any values contained in the IMS HP Image Copy global site default table are not changed.

WAITTIME(nnnn) | (nnnn, CANCEL | CANGO) | (,CANCEL | CANGO)
The WAITTIME keyword specifies the wait time for repeating the dynamic allocation on the tape unit when the dynamic allocation reason code (SVC99) is 214, 220, 228, or 484.

nnnn The amount of time allotted, in minutes, for repeating the dynamic allocation for the tape unit when the reason code is 214, 220, or 228. The minimum value is 0 and the maximum value is 9999. When 0 is specified, IMS HP Image Copy does not retry dynamic allocation and terminates with message U3916.

CANCEL
Specifies that IMS HP Image Copy does not retry dynamic allocation when the reason code is 484.

CANGO
Specifies that IMS HP Image Copy retries dynamic allocation when the reason code is 484.

Important: IMS Recovery Solution Pack does not set any defaults for any of the IMS HP Image Copy WAIT* keywords. This behavior ensures that any values contained in the IMS HP Image Copy global site default table are not changed.
This syntax diagram shows the parameters which are associated with the IMS High Performance Pointer Checker auxiliary utility.

Here is a description of the parameters and their values:

BITMAP(YES | NO)

Specifies whether you want to generate the Bit Map Display report for the HDAM, HIDAM, PHDAM, or PHIDAM database.

- **YES** The report is generated. This is the default value.
- **NO** The report is not generated.

DIAG(NO | YES)

Specifies whether you want to print dumps of some internal control blocks.

- **NO** NO dump of the internal control blocks is printed. This is the default.
- **YES** The dumps of some internal control blocks are printed.

DUMPFORM(UNFORMAT | FORMAT)

Specifies the dump format that you want to print block dumps with.
This option can be specified when DIAGDUMP=FIRST100 in the OPTION is also specified. This option can be specified with any TYPE=
specification.

FORMAT

Specifies that the formatted dumps are to be printed.

This is the default value.

UNFORMAT

Specifies that the unformatted dumps are to be printed.

FABASNAP(YES | NO)

Indicates whether you request the FABASNAP report when using DEDB Pointer Checker.

YES The report is generated. This is the default value.

NO The report is not generated.

FSEMAP(YES | NO)

Specifies whether you want to generate the Free Space Map report for the HDAM, HIDAM, PHDAM, or PHIDAM database.

This option can be specified when TYPE=ALL or SCAN is also specified.

YES The report is generated.

This is the default value.

NO The report is not generated.

INTERVAL(DATASET | BITMAP | BLOCK(n))

Specifies whether you want to define the interval at which the Interval Statistics report and the Interval Free Space Summary report are produced.

This option can be specified when TYPE=ALL or SCAN is specified on the PROC statement, and when INTFS=YES or INTST=YES is specified on the REPORT statement. It is effective only for HDAM, HIDAM, PHDAM, or PHIDAM databases.

DATASET

The reports are produced for the entire database data set only once.

This is the default value.

BITMAP

The reports are produced each time a bitmap block is processed.

BLOCK(n)

The number represented by \(n \) times 100, is the number of blocks that is processed between statistics intervals. To code this field, you must include two integer digits. Use leading zeros, if necessary.

INTFS(YES | NO)

Specifies whether you want to generate the Interval Free Space Summary report for the HDAM, HIDAM, PHDAM, or PHIDAM database. The report is produced each time an interval is processed and the information in the report is added to the next report. That is, the \(N \)th report provides the total information of the 1st-\(N \)th reports.

This option can be specified when TYPE=ALL or SCAN is also specified.

YES The report is generated.
This is the default value.

NO The report is not generated.

INTST(YES | NO)
Specifies whether you want to generate the Interval Statistics report for the HDAM, HIDAM, PHDAM, or PHIDAM database. The report is produced each time an interval is processed; the information in the report is added to the next report. That is, the \(n \)th report provides the total information of the 1st-\(n \)-th reports.

This option can be specified when TYPE=ALL or SCAN is specified.

YES The report is generated.
This is the default value.

NO The report is not generated.

MAXFSD(YES | NO)
Specifies whether you want to generate the Maximum Free Space Distribution report for the HDAM, HIDAM, PHDAM, or PHIDAM database.

This option can be specified when TYPE=ALL or SCAN is also specified.

YES The report is generated.
This is the default value.

NO The report is not generated.

OVERFLOW(ddname)
Specifies the DDname (as coded in your DBD) of the ESDS or OSAM part of the HISAM data set group, or the index database to be processed.

The OVERFLOW keyword has the following restrictions on the RECOVER ADD command:
1. It can be specified with only a single database entry inside the DB keyword
2. It can be specified with multiple database data set entries inside the DBDS keyword
3. It cannot be specified with any of the group keywords, CAGRP, DBDSGRP, or RECOVGRP.

PCJOBNM(cccccc)
Use this optional parameter to specify a job name for the IMS High Performance Pointer Checker DMB Analyzer subordinate address space. PCJOBNM() is mutually exclusive with PCPREF(). When specified, IMS HP Pointer Checker starts the address space with either the FABPATHZ procedure or, if specified, the PCPROCNM(cccccc) procedure, and assign this to the job. If not specified, IMS HP Pointer Checker starts the address space with the standard FABPATH0 procedure and FABPATH0 is the name of the job.

PCPREF(cccc)
Use this optional parameter to specify the prefix of the pointer checker started task name. PCPREF() is mutually exclusive with PCJOBNM().

cccc A 4-character alphanumeric prefix used to specify the pointer checker job name.

When a 4-character prefix is specified, the job name is constructed by using the format \(ccccjjjj \), where:
cccc The specified prefix.
jjjj The JES job number associated with the IMS Database Recovery Facility master address space.

PCPROCNM(ccccccc)
Use this optional parameter to specify the procedure name to be used by IMS HP Pointer Checker to start the IMS HP Pointer Checker DMB Analyzer subordinate address space. When specified, the procedure cccccc is used. If PCJOBNM is specified in conjunctions with PCPROCNM, then PCJOBNM(cccccccc) is used as the JOBNAME for the address space. If this parameter is not specified, then the procedure used depends upon the PCJOBNM specification and either FABPATH0 or FABPATHZ is used.

PRIMEDB(dbdname)
Specifies the DBDname of the primary database indexed by the HIDAM index or the non-Fast-Path secondary index database to be processed.
The PRIMEDB keyword has the following restrictions on the RECOVER ADD command:
1. It can be specified with only a single database entry inside the DB keyword
2. It can be specified with multiple database data set entries inside the DBDS keyword
3. For full-function databases, it can be specified with any of the group keywords (CAGRP, DBDSGRP, RECOVGRP), but you must ensure that PRIMEDB is applicable to every database in the group, otherwise IMS High Performance Pointer Checker fails. For Fast Path databases, PRIMEDB is ignored for the group.

PRINTDATA(NO | YES)
Specifies whether you want to print the pointer data that is extracted by the program. If you specify YES, you might get a large report that is of little use. This option can be specified when TYPE=ALL or SCAN is also specified.
This option must be used for debugging purpose only.
NO Any extracted pointer data is not printed.
 This is the default.
YES The extracted pointer data is printed.

RUNTM(YES | NO)
Specifies whether you want to generate the separator page for DB/DSG reports with Run Time Option.
This option can be specified when TYPE=ALL or SCAN is also specified.
YES The report is generated.
 This is the default value.
NO The report is not generated.

SSPCHECK(YES | NO)
Specifies whether you want to perform subset pointer checking during the hash check process.
YES Subset pointer checking is performed.
NO Subset pointer checking is not performed. This is the default value.
By using the T2CHK option, you can easily ignore the short and known T2 errors that are not really errors in HISAM, HDAM, HIDAM, PHDAM, and PHIDAM databases. For this option, the following specifications are needed:

- **t2len** The minimum value of T2 record length to be reported (for HDAM, HIDAM, PHDAM, and PHIDAM).

 This causes the T2 record whose length is shorter than the specified minimum value not to be reported. It allows the user to ignore short T2s that might not be really errors.

- **t2num** The maximum number of T2 records not to be reported (for HISAM, HDAM, HIDAM, PHDAM, and PHIDAM).

 By specifying T2 record threshold value for this specification, the known T2 is not reported. It allows the user to ignore known T2s that might not be really errors and continues to be present until the database reorganization.
Chapter 5. Configuring JCL statements and procedures

JCL and z/OS PROCLIB members are used to operate IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility.

With APAR PM14116, IMS Database Recovery Facility is enhanced so that the majority of the DD statements that are required for running in the subordinate address spaces are dynamically allocated and passed from the master address space to the recovery sort subordinate address space, the IMS Index Builder and DFSPREC0 address space, and the address space for the Build Index function of FPA. With this enhancement, many of the required DD statements can be eliminated from the individual procedures and specified in the master address space JCL only. The SFRXSAMP sample library members are updated to eliminate the unnecessary DD statements as well.

The following four address spaces are associated with IMS Database Recovery Facility:

• “Master address space JCL”
• “Recovery sort subordinate address space JCL” on page 81
• “IMS Index Builder, DFSPREC0, and Build Index function of FPA address space JCL” on page 83
• “IMS High Performance Pointer Checker JCL” on page 85

Master address space JCL

The master address space is the main address space that drives IMS Database Recovery Facility and related processes.

Sample JCL is located in SFRXSAMP(FRXDRF) sample member. This member uses the JCL procedure that is located in the SFRXSAMP(FRXMAS) sample member. The name of the master address space job is determined by the user and is specified on the JOB card.

Important: The IMS Database Recovery Facility master address space JCL cannot contain any hard-coded database data sets. Because IMS Database Recovery Facility dynamically allocates the database data sets for recovery in the subordinate address space, dynamic allocation will fail if any of the subsequent steps have these same data sets allocated by DD statements in the MAS. This is a z/OS restriction.

The following master address space DDNAME statements are located in SFRXSAMP(FRXMAS). With the exception of the PSBLIB and SYSUDUMP DD statements, these DD statements are passed to the recovery sort subordinate address space, the address space for the Build Index function of FPA, as well as the address spaces for IMS Index Builder and DFSPREC0. The DD statements are dynamically allocated if they do not already exist.

STEPLIB

This statement identifies the set of IMS Recovery Solution Pack load libraries that are used with IMS Database Recovery Facility. The STEPLIB DD statement must include load libraries that contain the executable code...
for IMS Recovery Solution Pack (IMS Database Recovery Facility) and the
integrated auxiliary utilities. It must also include the IMS RESLIB.

Important: If the IMSDALIB DD statement is not coded and you are using
dynamic allocation for the RECON and database data sets, you
must also include your IMSDALIB data set.

IMS
This statement is used by IMS Database Recovery Facility and the
integrated auxiliary utilities to specify the IMS DBD library. The IMS Index
Builder load library, SIIULMOD, must also be included in the IMS DD
statement concatenation to provide the IMS Index Builder with reusable
program specification blocks (PSB) for processing.

IMSACB
This DDNAME is used by the Build Index function of FPA to identify the
ACB library. Dynamic allocation of IMSACB is not supported.

Important: If IMSACB is not coded, minimally IMSACBA and MODSTAT
must be coded.

IMSACBA
If IMSACB is not coded, this DDNAME can be used in combination with
MODSTAT and MODSTAT2 by the Build Index function of FPA to identify
the ACB library. However, if IMSACB is coded, it is used to identify the
ACB library.

Important: If IMSACB is not coded, minimally IMSACBA and MODSTAT
must be coded.

IMSACBB
If IMSACB is not coded, this DDNAME can be used in combination with
MODSTAT and MODSTAT2 by the Build Index function of FPA to identify
the ACB library. However, if IMSACB is coded, it is used to identify the
ACB library.

Important: If IMSACB is not coded, minimally IMSACBA and MODSTAT
must be coded.

MODSTAT
If IMSACB is not coded, this DDNAME can be used in combination with
IMSACBA and IMSACBB by the Build Index function of FPA to identify
the ACB library. However, if IMSACB is coded, it is used to identify the
ACB library.

Important: If IMSACB is not coded, minimally IMSACBA and MODSTAT
must be coded.

MODSTAT2
If IMSACB is not coded, this DDNAME can be used in combination with
IMSACBA and IMSACBB by the Build Index function of FPA to identify
the ACB library. However, if IMSACB is coded, it is used to identify the
ACB library.

Important: If IMSACB is not coded, minimally IMSACBA and MODSTAT
must be coded.

PSBLIB
This statement identifies the library that contains the PSB members that are
associated with the databases being processed. This DD statement is
required when performing a PITR recovery so that IMS Database Recovery Facility can report on any units of work that are active. If this DD statement is not specified, message FRD6137W may be issued.

PROCLIB
This statement identifies the set of libraries that IMS Database Recovery Facility uses to get the BPE configuration member (BPECFG=xxxxxxxx) and the IMS Database Recovery Facility startup parameter member FRXDRFxx, (DRFMBR=xx).

Important: The PROCLIB statement is used only for configuration members. The procedures for the recovery sort subordinate, Build Index function of FPA, IMS Index Builder/DFSPREC0, and IMS High Performance Pointer Checker address spaces must be located in a z/OS system procedure library.

DFSRESLB
This statement identifies the IMS RESLIB load library. Because the STEPLIB must be APF-authorized, having a DFSRESLB DD statement is optional if the IMS RESLIB is in the STEPLIB.

IMSRESLB
This DDNAME is for the Build Index function of FPA and contains, in part, the IMS load library. IMSRESLB differs from DFSRESLIB in the fact that IMSRESLB is used to indicate that the IMS RESLIB also contains routines such as randomizer routines, segment compression/edit routines, index maintenance exits and user partition selection exits.

IMSDALIB
This statement identifies the libraries that contain dynamic allocation information for the database data sets and the RECON data sets.

Important: This statement is optional if the dynamic allocation data set is included in the STEPLIB DD concatenation.

SORTLIB
This statement identifies the location of the sort utility executable modules. This DD statement is optional if your SORTLIB is located in the LINKLIST.

DFSVSAMP
This statement is used by IMS Index Builder and DFSPREC0 to allocate the buffers that are needed to process VSAM and OSAM database data sets. If this statement is not specified, one will be dynamically created for processing.

RECONx
These statements identify the RECON data sets. The RECONx DDNAME statements are optional if they can be dynamically allocated by using the dynamic allocation members that are found in the STEPLIB or IMSDALIB DD statements.

HFPCSITE
This DDNAME identifies the global site default table data set for the Build Index function of FPA. You can set the site default name by following any one of these three methods:
- Both keywords SITE_DSNAME and SITE_MEMBER are specified on the UTILGBL control statement.
SITE_MEMBER is specified in on the UTILGBL control statement and the HFPCSITE DD PDS is allocated and contains module HFPCSITE. HFPCSITE is mutually exclusive with SITE_DSNAME.

Neither SITE_DSNAME nor SITE_MEMBER is specified, but the HFPCSITE module exists in the load library for the Build Index function of FPA (HFPMAIN0).

DDEFPDS
This DDNAME is used by the Build Index function of FPA for dynamic delete or define of the secondary indexes that are being rebuilt.

SYSUDUMP
This statement identifies the data set definition where dump output is sent after an abnormal termination.

Recommendation: For debugging and diagnostic purposes, IBM support prefers an unformatted dump.
- If SYSUDUMP is coded, then a formatted dump is created if an abend occurs.
- If SYSUDUMP is not coded and an abend occurs, then a system, unformatted dump is generated.

The following report DDNAMES are dynamically allocated by IMS Database Recovery Facility to SYSOUT unless you explicitly override them in the procedure or JCL:

FRXWTO
This statement contains the write-to-operator messages that the control task captures when RPTTYPE=SEP is specified. If REP=APP is specified, it will be written to the REPORT data set. It is dynamically allocated if not provided in the JCL.

FRXPRINT
This statement is used to distinguish between the IMS Database Recovery Facility and integrated auxiliary utility messages that are written to the SYSPRINT DD statement.

REPORT
This statement identifies the location for the following items:
- Commands, control statements and parameters that are specified for the IMS Database Recovery Facility execution
- Final status reports for all address spaces
- Utility status reports per database data set
- Input and output (for example, image copies, change accumulations, and logs)

If the RPTTYPE=APP option is specified in the master address space, the REPORT DD statement contains the messages for the following DDNAME statements. If the RPTTYPE=SEP option is specified, the reports for the following DDNAME statements are written to each individual DDNAME statement instead:
- FRXWTO
- IIUSNAP
- IIUSOUT
- IIUSTAT
- IIUPRINT
• PRPRINT
• STATPRT
• VALIDPRT
• SNAPPIT
• FABAMSG
• FABASNAP
• FABARPRT

SYSPRINT

This statement contains control card usage information and progress messages from the master and subordinate address spaces.

IMS Index Builder report DDNAME statements

The following DDNAME statements are associated with the IMS Index Builder auxiliary utility. If IMS Index Builder is invoked and RPTTYPE=SEP is specified, these DDNAME statements contain the specified information. Otherwise, if RPTTYPE=APP is specified, messages are written to the REPORT DD.

IIUSNAP

This statement identifies where Index Builder writes control flow event messages.

IIUSOUT

This statement identifies where Index Builder writes SORT messages.

IIUSTAT

This statement identifies where Index Builder writes DBRC notification messages for indexes that are rebuilt.

IIUPRINT

This statement identifies where the main output from Index Builder is written.

Build Index function of FPA report DDNAME statements

The following DDNAME statements are associated with the Build Index function of FPA.

HFPRPTS

This statement identifies where the main output from FPA is written, which is the Audit Report.

HFPPRINT

This statement identifies where processing messages are written.

IMS High Performance Image Copy report DDNAME statements

The following DDNAME statements are associated with the IMS High Performance Image Copy auxiliary utility. If IMS HP Image Copy is invoked and RPTTYPE=SEP is specified, these DDNAME statements contain the specified information. Otherwise, if RPTTYPE=APP is specified, messages are written to the REPORT DD.

ICEPRINT

This statement identifies where IMS HP Image Copy writes the ICEIN statements report and the active global option report.
ICERPRT
This statement identifies where IMS HP Image Copy writes the image copy
dump process report.

DFSPRINT
This statement identifies where the IMS HP Image Copy writes control
card usage and image copy statistics and return codes for each image copy.

ICE#DOUT
This statement identifies where IMS HP Image Copy writes DBRC
notification messages for each image copy.

DFSPREC0 report DDNAME statements

The following DDNAME statements are associated with the DFSPREC0 auxiliary
utility. If DFSPREC0 is invoked and RPTTYPE=SEP is specified, these DDNAME
statements contain the specified information. Otherwise, if RPTTYPE=APP is
specified, messages are written to the REPORT DD.

PRPRINT
This statement identifies where DFSPREC0 writes the number of records
that are inserted for each HALDB INDEX or ILE that is rebuilt.

IMS High Performance Pointer Checker report DDNAME
statements

The following DDNAME statements are associated with the IMS High Performance
Pointer Checker auxiliary utility. If IMS High Performance Pointer Checker is
invoked and RPTTYPE=SEP is specified, these DD statements contain the specified
information. Otherwise, if RPTTYPE=APP is specified, messages are written to the
REPORT DD.

PRIMAPRT
This statement identifies where HP Pointer Checker writes the DMB
directory report and the PROCCTL statements report.

Tip: You can specify DD DUMMY to suppress this report and get only a
PC return code.

EVALUPRT
This statement identifies where HP Pointer Checker writes the evaluation
reports.

SUMMARY
This statement identifies where HP Pointer Checker writes the summary
report.

STATIPRT
This statement identifies where HP Pointer Checker writes statistical
reports.

VALIDPRT
This statement identifies where HP Pointer Checker writes validation
reports.

SNAPPIT
This statement identifies where HP Pointer Checker writes snap reports.
IMS DEDB Pointer Checker report DDNAME statements

The following DDNAME statements are associated with the DEDB Pointer Checker auxiliary utility. If DEDB Pointer Checker is started and RPTTYPE=SEP is specified, these DDNAME statements contain the specified information. Otherwise, if RPTTYPE=APP is specified, messages are written to the REPORT DD.

FABARPRT
This statement identifies where DEDB Pointer Checker writes evaluation reports.

FABAMSG
This statement identifies where DEDB Pointer Checker writes processing and summary messages.

FABASNAP
This statement identifies where DEDB Pointer Checker writes snap reports.

Tip: You can specify DD DUMMY to suppress this report and get only a PC return code.

Recovery sort subordinate address space JCL

The recovery sort subordinate address space is used to sort log records and perform recovery processes.

The recovery sort subordinate address space is started by the master address space and performs the following tasks:

• Sorts log and change accumulation records
• Reads the input image copy
• Recovers the database
• Creates the new image copy
• Invokes the DEDB Pointer Checker

The procedure that is used to create this address space is specified by using the DRFPROC= environmental control statement. The default procedure name is FRXJCLSB. A sample is located in the SFRXSAMP(FRXJCLSB) member. The procedure used to start the recovery sort subordinate address space must be placed in a valid z/OS system procedure library.

Multiple recovery sort subordinate address spaces can be started. The names assigned to these address spaces are specified by using the ASPREF() keyword. The maximum number allowed is specified by using the SORTPARM(NUM(x)) keyword. For more information, see "Environmental control statements" on page 20.

With APAR PM14116, IMS Database Recovery Facility is enhanced so that all of the DD statements required for running, except STEPLIB DD and the SYSUDUMP DD, are passed from the master address space to this address space and dynamically allocated. The DD statements are dynamically allocated based on what is specified in the master address space JCL. The only required DD statement in this procedure is the STEPLIB DD and it must contain a single data set which points to the IMS Recovery Solution Pack executable load library, SFRXLOAD. All other required load libraries are passed from the master address space and dynamically allocated.

The following DD statements can be coded in this procedure:
STEPLIB
This required DD statement identifies the IMS Database Recovery Facility load library. The STEPLIB DD statement must include a single load library that names the executable IMS Recovery Solution Pack load library (SFRXLOAD). All of the other libraries that are required for execution are passed from the master address space and dynamically allocated for execution.

SYSUDUMP
This statement identifies the data set definition where dump output is sent after an abnormal termination.

Recommendation: For debugging and diagnostic purposes, IBM support prefers an unformatted dump.
- If SYSUDUMP is coded, then a formatted dump is created if an abend occurs.
- If SYSUDUMP is not coded and an abend occurs, then a system, unformatted dump is generated.

FRXDEBUG
This optional DD statement identifies the data set definition where certain debugging and diagnostic messages are written.

The following DD statements can be either coded in the procedure or specified in the master address space and dynamically allocated in the recovery sort subordinate address space.

Recommendation: Code these DD statements in the master address space JCL and allow them to be dynamically allocated. Doing so eliminates the need to modify these procedures when the environment changes.

IMS
This statement is used by IMS Database Recovery Facility and the integrated auxiliary utilities to specify the IMS DBD library. The IMS Index Builder load library, SIIULMOD, must also be included in the IMS DD statement concatenation to provide the IMS Index Builder with reusable program specification blocks (PSB) for processing.

Important: The PROCLIB statement is used only for configuration members. The procedures for the recovery sort subordinate, Build Index function of FPA, IMS Index Builder/DFSPREC0, and IMS High Performance Pointer Checker address spaces must be located in a z/OS system procedure library.

PROCLIB
This statement identifies the set of libraries that IMS Database Recovery Facility uses to get the BPE configuration member (BPECFG=xxxxxxxx) and the IMS Database Recovery Facility startup parameter member FRXDRFxx, (DRFMBR=xx).

DFSRESLB
This statement identifies the IMS RESLIB load library. Because the STEPLIB must be APF-authorized, having a DFSRESLB DD statement is optional if the IMS RESLIB is in the STEPLIB.

IMSDALIB
This statement identifies the libraries that contain dynamic allocation information for the database data sets and the RECON data sets.
Important: This statement is optional if the dynamic allocation data set is included in the STEPLIB DD concatenation.

SORTLIB
This statement identifies the location of the sort utility executable modules. This DD statement is optional if your SORTLIB is located in the LINKLIST.

RECON:
These statements identify the RECON data sets. The RECONx DDNAME statements are optional if they can be dynamically allocated by using the dynamic allocation members that are found in the STEPLIB or IMSDALIB DD statements.

IMS Index Builder, DFSPREC0, and Build Index function of FPA address space JCL

The IMS Index Builder address space is started when IMS Index Builder is requested to rebuild indexes. The DFSPREC0 address space is started when DFSPREC0 is requested to rebuild HALDB primary indexes and ILDS by using either HALDB(BOTHF) or HALDB(ILEF). The Build Index function of FPA address space (FS-UAS) is started when the Build Index function of FPA is requested to rebuild secondary indexes for a Fast Path database.

With APAR PM14116, IMS Database Recovery Facility is enhanced so that all of the DD statements required for running, except STEPLIB DD and the SYSUDUMP DD, are passed from the master address space to this address space and dynamically allocated. The DD statements are dynamically allocated based on what is specified in the master address space JCL. The only required DD statement in this procedure is the STEPLIB DD and it must contain a single data set which points to the IMS Recovery Solution Pack executable load library, SFRXLOAD. All other required load libraries are passed from the master address space and dynamically allocated.

The address spaces for IMS Index Builder, DFSPREC0, and the Build Index function of FPA are started by the master address space. The procedure that is used to create these address spaces is specified by using the DRFIAX= environmental control statement. The default procedure name is FRXJCLIP. A sample is located in the SFRXSAMP(FRXJCLIP) member.

The name of the address space for the Build Index function of FPA is specified by using the FSPREF() keyword. The name of the IMS Index Builder address space is specified by using the IBPREF() keyword. The name of the DFSPREC0 address space is specified by using the PRPREF() keyword. For more information, see “Environmental control statements” on page 20.

Multiple address spaces for IMS Index Builder, DFSPREC0, and the Build Index function of FPA can be started. One address space is started for each index that is being rebuilt.

The following DD statements can be coded in this procedure:

STEPLIB
This required DD statement identifies the IMS Database Recovery Facility load library. The STEPLIB DD statement must include a single load library that names the executable IMS Recovery Solution Pack load library.
All of the other libraries that are required for execution are passed from the master address space and dynamically allocated for execution.

SYSUDUMP
This statement identifies the data set definition where dump output is sent after an abnormal termination.

Recommendation: For debugging and diagnostic purposes, IBM support prefers an unformatted dump.
- If SYSUDUMP is coded, then a formatted dump is created if an abend occurs.
- If SYSUDUMP is not coded and an abend occurs, then a system, unformatted dump is generated.

FRXDEBUG
This optional DD statement identifies the data set definition where certain debugging and diagnostic messages are written.

The following DD statements can be either coded in the procedure or specified in the master address space and dynamically allocated in the recovery sort subordinate address space.

Recommendation: Code these DD statements in the master address space JCL and allow them to be dynamically allocated. Doing so eliminates the need to modify these procedures when the environment changes.

IMS
This statement is used by IMS Database Recovery Facility and the integrated auxiliary utilities to specify the IMS DBD library. The IMS Index Builder load library, SIIULMOD, must also be included in the IMS DD statement concatenation to provide the IMS Index Builder with reusable program specification blocks (PSB) for processing.

Important: The PROCLIB statement is used only for configuration members. The procedures for the recovery sort subordinate, Build Index function of FPA, IMS Index Builder/DFSPREC0, and IMS High Performance Pointer Checker address spaces must be located in a z/OS system procedure library.

DFSRESLB
This statement identifies the IMS RESLIB load library. Because the STEPLIB must be APF-authorized, having a DFSRESLB DD statement is optional if the IMS RESLIB is in the STEPLIB.

IMSDALIB
This statement identifies the libraries that contain dynamic allocation information for the database data sets and the RECON data sets.

Important: This statement is optional if the dynamic allocation data set is included in the STEPLIB DD concatenation.
SORTLIB
This statement identifies the location of the sort utility executable modules.
This DD statement is optional if your SORTLIB is located in the LINKLIST.

DFSVSAMP
This statement is used by IMS Index Builder and DFSPREC0 to allocate the
buffers that are needed to process VSAM and OSAM database data sets. If
this statement is not specified, one will be dynamically created for
processing.

RECONx
These statements identify the RECON data sets. The RECONx DDNAME
statements are optional if they can be dynamically allocated by using the
dynamic allocation members that are found in the STEPLIB or IMSDALIB
DD statements.

IMS High Performance Pointer Checker JCL

The IMS High Performance Pointer Checker address space is started by the master
address space when IMS HP Pointer Checker is requested for a full-function
database.

The procedure that is used to create this address space is specified by using the
PCPROCNM() parameter. The default procedure name is FABPATH0. A sample is
located in the SFRXSAMP(FRXPATH0) member.

The name of this address space is specified by using either the PCPREF() or the
PCJOBNM() keyword. If either PCPREF() or PCJOBNM() is specified, then the
procedure name that is used to build this address space is FABPATHZ. A sample is
located in the SFRXSAMP(FRXPATHZ) member.

A maximum of one IMS HP Pointer Checker address space is started.

The following IMS Database Recovery Facility pointer checker address space
DDNAME statements are located in the SFRXSAMP(FABPATH0/FABPATHZ)
member:

STEPLIB
This statement contains the executable libraries that are required by the
IMS HP Performance Pointer Checker utility. When this address space is
started, the IMS HP Pointer Checker and IMS RESLIB load libraries are
passed to the procedure. In addition to these load libraries, if you process a
HALDB and it uses a partition selection exit, the exit must be either in
your IMS RESLIB or specified in the library in STEPLIB.

SYSUDUMP
This statement identifies the data set definition where dump output is sent
after an abnormal termination.

Recommendation: For debugging and diagnostic purposes, IBM support
prefers an unformatted dump.

- If SYSUDUMP is coded, then a formatted dump is
 created if an abend occurs.
- If SYSUDUMP is not coded and an abend occurs,
 then a system, unformatted dump is generated.
Part 3. Using IMS Database Recovery Facility

The topics in this section explain how to use the IMS Database Recovery Facility and how to perform a database recovery.

- Invoking IMS Database Recovery Facility
- Using IMS Database Recovery Facility with the integrated auxiliary utilities
- Using DBRC commands for database recovery
- Performing a database recovery
Chapter 6. Using the IMS Database Recovery Facility basic product

These topics describe how to invoke the basic IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility product.

Topics:
- “Using control statements” on page 20
- “ADD command reference” on page 90
- “REMOVE command reference” on page 95
- “START command reference” on page 96

Note: Information on using the auxiliary utilities can be found in Chapter 7, “Using the IMS Database Recovery Facility with the integrated auxiliary utilities,” on page 107

Using control statements

Control statements are used to direct the execution of IMS Database Recovery Facility.

There are three types of control statements:
- Environmental control statements. For more information, see “Environmental control statements” on page 20.
- Batch recovery control statements.
- “Utility control statements” on page 45

This section describes the use of the batch recovery control statements.

Important: Comments that you enter within the //SYSIN DD input must be enclosed within pairs of /* and */, indicating the start and end of comments respectively.

Using batch recovery control statements

You can control the recovery performed by IMS Database Recovery Facility by supplying batch recovery control statements. IMS Database Recovery Facility operates on a list of database data sets and areas that you define with a series of batch recovery control statements. By comparison, the standard IMS recovery utility, DFSURDB0, can recover only one database data set per invocation.

The following three keywords are used to specify batch recovery control statements.

ADD Use this keyword to add one or more database data sets to the recovery list. You can specify an unlimited number of ADD statements that can be specified in a single job step.

REMOVE Use this keyword to remove one or more database data sets from the recovery list. This keyword is useful when a database data set was added
as part of a group but does not need to be recovered. You can specify an
unlimited number of REMOVE statements in a single job step.

START
Use this keyword to specify recovery options and to initiate the recovery of
all database data sets in the recovery list. Only a single START command
can be entered for a single job step.

The batch recovery control statements must be entered in the //SYSIN DD input.
They are not allowed in the FRXDRFxx PROCLIB member.

ADD command reference

The ADD command is used to add one or more database data sets to the recovery list. The syntax and use of the ADD command for invoking the basic product is described here.

Syntax for ADD command

For details on invoking the integrated auxiliary utilities, see Chapter 7, “Using the IMS Database Recovery Facility with the integrated auxiliary utilities,” on page 107.

```
ADD
  DB (dbname)
  DBDS (dbname ddname)
  AREA (dbname areaname)
  DBDSGRP (groupname)
  CAGRP (groupname)
  RECOVGRP (groupname)
  SMSOPTS (DELCAT)

USEDBDS
USEAREA

DBATRB (DBDSL(mmm), DBDSN(nnn))
```

Parameters for ADD command

There is no practical limit to the number of **ADD** commands that you can specify except for that which is limited by your environment.

The following parameters are available for your use with the **ADD** command:

DB(dbname)

Specifies that all areas or full-function database data sets or database data sets from a full-function HALDB partition or HALDB master database are to be added to a recovery list.
dbname

Specifies the database and the associated database data sets or areas that are to be added to a recovery list.

DBDSD (dbname ddname)

Specifies that one or more full-function database data sets or Fast Path areas are to be added to a recovery list.

Specify full-function database data sets with the `ADD DBDS` command as an ordered pair. If you specify more than one full-function database data set, you must specify the complete ordered pair for each database data set. If you specified DBDS on the `ADD` command, you must specify `dbname` and `ddname` together, separated by a blank space.

dbname

Specifies the database name of the database data set to be added to a recovery list.

ddname

Specifies the DD name of the database data set.

AREA (dbname areaname)

Specifies that one or more Fast Path database areas are to be added to a recovery list. If you specified AREA on the `ADD` command, you must specify `dbname` and `areaname` together (separated by a blank space).

dbname

Specifies the database name of the area to be added to a recovery list.

areaname

Specifies the area to be added to a recovery list.

DBDSGRP (groupname)

Specifies that one or more DBDS groups as defined in the RECON data sets will have their database data sets and areas added to a recovery list.

groupname

Specifies that the database data sets and areas belonging to the named DBDS group are to be added to the recovery list.

CAGRP (groupname)

Specifies that one or more change accumulation groups as defined in the RECON data sets are to have their database data sets and areas added to a recovery list.

groupname

Specifies that the database data sets and areas belonging to the named CA group are to be added to the recovery list.

RECOVGRP (groupname)

Specifies that the listed groups are recovery groups. A recovery group is a group of full-function databases, DEDB areas, or both that you define to IMS as related. All DBDSs that make up the full-function databases and all the DEDB areas that make up the recovery groups that you specified in the command are added to a recovery list.

groupname

Specifies the name of the group.

SMSOPTS (optionname)

Specifies the DFSMSdss options that are to be associated with the entries.
being added to the recovery list. The options are only used when restoring image copies created by the Image Copy 2 utility.

optionname

Specifies a unique SMS option.

DELCAT

Specifies that the data set is to be restored using the DFSMSdss optional keyword, DELETECATALOGENTRY.

Important: Use this option with extreme care. DELCAT is required if SMSOPTS is supplied. This option provides you the ability to recover from a scenario in which an entire volume or volumes are lost but the catalog entries remain. When you specify this option, SMS deletes the prior catalog entries for the database data sets and areas being restored as part of recovery. See the DFSMSdss Storage Administration Reference manual before using this option. Read the caution under the DELETECATALOGENTRY option of the RESTORE command.

USEDBDS or USEAREA

Specify USEDBDS or USEAREA to indicated that the image copy for this database has already been recovered and the IMS Database Recovery Facility only needs to apply log updates.

Note: You must restore nonstandard image copies before recovery. For information about recovery with the USEDBDS parameter, see “Nonstandard image copy recovery” on page 145.

DBATRB

The DATRB parameter allows you to specify the the DBDSLmmm and DBDSNnnn data set characteristics to be used for allocating new database data sets. The parameters that follow DBATRB; DBDSL and DBDSN identify the DBDSLmmm and DBDSNnnn parameters in the environmental control statement parameters to use for the ADD command for recover to copy.

DBDSL(mmm)

mmm identifies a specific DBDSLmmm parameter in the environmental control statement parameters. The DBDSLmmm parameter it identifies will have a matching value for the mmm. For example, DBDSL234 is referred to by DBDSL(234) on the ADD command.

mmm You can specify the value of mmm as any alphanumeric three digit value that corresponds with the value specified on a DBDSLmmm environmental control statement parameter.

Note: If a database data set needs to be automatically deleted and redefined, the ADD command must include the keyword DBATRB(DBDSL(mmm)). The DBDSL(mmm) specification will reference the environmental control statement DBDSLmmm that should have DISP(NEW) as an option.
DBDSN(*nnn*)

n.nn identifies a specific DBDS*N.nn* parameter in the environmental control statement parameters. The environmental control statement keyword it identifies will have a matching value for the *nnn*. For example, DBDSN234 is referred to by DBDSN(234) on the ADD command.

n.nn You can specify the value of *nnn* as any alphanumeric three digit value that corresponds with the value specified on a DBDS*N.nn* environmental control statement parameter.

Note: If you specify OUTPUT(PRO), the DBATRB(DBDSN(*nnn*)) parameter is ignored. The name of the existing production database data set cannot be changed.

If you specify OUTPUT(DUP), you are required to specify the DBATRB(DBDSN(*nnn*)) option to identify the name of the duplicated database data set. Failure to specify this option will result in a parsing error.

If you specify OUTPUT(BOTH), the DBATRB(DBDSN(*nnn*)) parameter is ignored for the recovery to production but required for use with the duplicate database data set. Failure to specify this option will result in a parsing error.

Examples of using the ADD command

Here are some of examples of using the ADD command with IMS Database Recovery Facility.

Delete and redefine example: two production databases prior to recovery

The following example will delete and redefine two production databases prior to recovery:

```
DBDSL004(DISP(NEW))
ADD DB(DBOVLFPC DIVNTZ02) DBATRB(DBDSL(004))
START
```

Delete and redefine example: two fast path areas to a different volume

The following example will delete and redefine two fast path areas to a different volume:

```
DBDSL004(DISP(NEW),VOL(SCR003))
OUTPUT(PRO)
ADD AREA(DEDBJN22 DB22AR0 DEDBJN22 DB22AR2) DBATRB(DBDSL(004))
START
```

Single data set example: recover to copy

The following is an example of naming and locations of a single data set.

Original data set name: **PROD.MYDATA.INV.NEW**

Duplicate output data set that you want: **HIQUAL.MYDATA.INV.NEW**
The SYSIN DD specification you need:

SYSEX DD *
OUTPUT(DUP)
DBDSN001('HIQUAL')
...
DBDSL001(DIS(R(NEW),DATA(mc),VOL(myvol))
...
ADD DBDS(MYDATA INV) DBATR(DBDSL(001),DBDSN(001))

The output report will look like this:

Database Recovery Facility Duplicate Data Set Report
DB DD Dsname
MYDATA INV HIQUAL.MYDATA.INV.NEW

Multiple data set example: recover to copy

The following is an example of naming and locations of multiple data sets.

Original data sets names: PROD.MYDATA.INV.NEW PROD.MYDATA.SHIPMENT.NEW

Duplicate output data set that you want with both data sets having the same attributes: HIQUAL.MYDATA.INV.NEW HIQUAL.Mydata.Shipment.new

SYSIN DD specification:

SYSEX DD *
OUTPUT(DUP)
DBDSN003('HIQUAL')
...
DBDSL004(DIS(NEW),DATA(mc),VOL(myvol))
...
ADD DBDS(MYDATA INV MYDATA SHIPMENT MYDATA ORDERS)
DBATR(DBDSL(004),DBDSN(003))

Change accumulation group example: recover to copy

The following is an example of naming and locations of multiple data sets within a change accumulation group.

Original data set names in change accumulation group mycagrp:

PROD.MYDATA.INV.NEW
PROD.MYDATA.SHIPMENT.NEW
PROD.MYDATA.ORDERS.NEW
PROD.MYDATA.ACCTRECV.NEW

Copy output data sets that you want:

HIQUAL.MYDATA.INV.NEW
HIQUAL.MYDATA.SHIPMENT.NEW
HIQUAL.MYDATA.ORDERS.NEW
HIQUAL.MYDATA.ACCTRECV.NEW

You want the data set HIQUAL.MYDATA.INV.NEW to reside on myvol1, the data set HIQUAL.MYDATA.SHIPMENT.NEW to reside on myvol2, and for HIQUAL.MYDATA.ORDERS.NEW and HIQUAL.MYDATA.ACCTRECV.NEW to reside on the default volume, myvol3.

The SYSIN DD specification you need is:

SYSEX DD *
OUTPUT(DUP)
DBDSN005('HIQUAL')
... DBDSL006(DISp(NEW), DATAC(myclass) VOL(myvol3) -
DBN(MYDATA) DDN(INV) DATAC(myclass),VOL(myvol1), -
DBN(MYDATA) DDN(SHIPMENT) DATAC(myclass),VOL(myvol2))
... ADD CAGRP(MYGROUP) DBATRB(DBDSL(006),DBSN(005))

The output report will look like this:

Database Recovery Facility Duplicate Data Set Report
DB DD Dsname
MYDATA INV HIQUAL.MYDATA.INV.NEW
MYDATA SHIPMENT HIQUAL.MYDATA.SSHIPMENT.NEW
MYDATA ORDERS HIQUAL.MYDATA.ORDERS.NEW
MYDATA ACCTRECV HIQUAL.MYDATA.ACCTRECV.NEW

All data sets are created using the SMS data class myclass and they reside on different volumes.

REMOVE command reference

The **REMOVE** command is used to remove one or more selected database data sets from the recovery list that might have been added as a result of using a group name in a preceding **ADD** command. The syntax and use of the **REMOVE** command is described here.

Syntax for REMOVE command

```
REMOVE
  DB - dbname
  DBDS - dbname ddname
  AREA - dbname areaname
  DBDSGRP - groupname
  CAGRP - groupname
  RECOVGRP - groupname
```

Parameters for REMOVE command

The **REMOVE** command removes one or more selected database data sets from a recovery list. It can remove an individual DBDS entry, database, or a DBRC group. It reverses **ADD** command actions. The list must have been built by one or more **ADD** commands and the **REMOVE** command must come before the **START** command.

DBDSs and areas are specified the same way as in the **ADD** command.

Use the following parameters with the **REMOVE** command.
DB Specifies that the full-function database data sets or Fast Path areas making up one or more databases are to be removed from the recovery list.

`dbname`

Specifies the database and the associated database data sets or areas that are to be removed from a recovery list.

DBDS Specifies that one or more full-function database data sets are to be removed from the recovery list.

`dbname`

Specifies the database name of the database data set to be removed from a recovery list.

`dbname`

Specifies the DD name of the database data set. If you specified DBDS on the `REMOVE` command, you must specify `dbname` and `ddname` together.

AREA Specifies that one or more Fast Path database areas are to be removed from a recovery list. If you specified AREA on the `REMOVE` command, you must specify `dbname` and `areaname` together (separated by a blank space).

`dbname`

Specifies the database name of the area to be removed from a recovery list.

`areaname`

Specifies the area to be removed from a recovery list.

DBDSGRP

Follow this keyword with the name of the group of database data sets defined to DBRC.

`groupname`

Specifies the name of the group.

CAGRP

Follow this keyword with the name of the group of database data sets in a change accumulation group as defined to DBRC.

`groupname`

Specifies the name of the group.

RECOVGRP

Specifies that this group is a recovery group. All DBDSs that make up the full-function databases and all the DEDB areas are removed from the recovery list.

`groupname`

Specifies the name of the group.

START command reference

The START command initiates the IMS Database Recovery Facility processing. The syntax and use of the START command is described here.

Syntax for START command

```
START VERIFY( ) ALLOC OPEN STOP ERROR( CONT ) READNUM( nn , tn )
```
Parameters for START command

You can specify only one START command for a single execution, and it is the last command processed in the list. If you have specified any commands following the START command, they will result in errors and the process will end.

Use the following parameters with the START command.

VERIFY(LIST,ALLOC,OPEN)

This parameter specifies the VERIFY level that you want IMS Database Recovery Facility to perform. When VERIFY is specified, no recovery or output processing is performed. VERIFY is used to verify the recovery assets that are needed to perform the requested action.

If you specify VERIFY without any options, it defaults to VERIFY(LIST). Three VERIFY levels can be specified.

LIST

If you specify VERIFY(LIST), IMS Database Recovery Facility provides a list of all log, image copy, and change accumulation data sets that is required for recovery. The list contains information that is extracted from DBRC about each data set. LIST is the default value.

If an error is encountered in the allocation process, the data set entry on the report is flagged as an error with the ALLOC RC = nn message next to the name. nn This parameter specifies the return code from the DYNALLOC macro.

Tip: Search for FRD4302I or FRD4210I messages in your job log for additional reason codes regarding the cause of image copy, log, or change accumulation processing errors.
OPEN If you specify VERIFY(OPEN), each data set is opened to verify its availability and usability. The LIST and ALLOC functions are also performed.

If an error is encountered during the OPEN process, the data set entry on the report is flagged as an error and an OPEN RC=nn message is displayed next to the name. nn This parameter specifies the return code from the OPEN macro.

ERROR(CONT,STOP) Tells IMS Database Recovery Facility whether to stop or continue when an error authorizing or recovering a DBDS named in the recovery list is encountered.

CONT Indicates that recovery of DBDS entries in the recovery list is to continue, other than the one for which an error was encountered.

STOP Indicates that the IMS Database Recovery Facility is to shutdown all recovery tasks and end processing. This is the default.

READNUM(nn [,tn]) You can use this parameter to override the values set in the FRXDRFxx member for the execution of this START command.

Note: If the values of either nn or tn are omitted or set to zero, the default values are imposed. The values entered here have precedence; they override the system defaults and any override values set in the FRXDRFxx member.

Note: For a more detailed description of this parameter, see “Environmental control statements” on page 20.

RCVTIME(time stamp,TSR,PITCA,PITR(CHECK,NOCHECK)) You must specify the RCVTIME parameter whenever you want to:
- Perform a timestamp recovery - RCVTIME(time stamp,TSR)
- Perform a point in time recovery - RCVTIME(time stamp,PITR)
- Perform a point in time recovery using a point in time change accumulation data set - RCVTIME(time stamp,PITCA)

The RCVTIME parameter is optional when you want to create an incremental image copy. If OUTPUT(ICR) is specified without RCVTIME, the image copy is created to the current time. If RCVTIME(time stamp) is specified, the image copy is created to the specified time stamp. The state of the database at the specified (or implied) time determines the type of image copy that is created:
- If the database is allocated, a concurrent image copy is created.
- If the database is not allocated, a batch image copy is created.

For more information about the incremental image copy function, see “Environmental control statements” on page 20, OUTPUT parameter.

time stamp You can specify timestamps in any format that is recognizable to Database Recovery Control (DBRC). Additionally, timestamps must always be enclosed within single quotation marks. For detailed information about the formats that are recognizable to DBRC, see the topics about DBRC Time Stamps in the IMS Database Recovery Control (DBRC) Guide and Reference.
The precision specified on the time stamp controls the precision used to locate information in the RECON by DBRC. The precision may be from a tenth of a second to a microsecond, or 1 to 6 digits to the right of the decimal point. This is sometimes called precision 1 to 6. Precision 6 is known as full precision. Usually, DBRC uses precision 1 (tenth of a second). Full precision is available in IMS version 10 and later releases if the RECON no longer coexists with earlier IMS releases (MINVERS 10.1 or later).

IMS Database Recovery Facility uses a different set of rules. The precision specified on timestamp controls the precision used by DBRC. This is true for all supported releases of IMS. Optional precision fields in the timestamp are not padded with zeroes. They are ignored by DBRC. This can result in multiple records satisfying the criteria used. Desired timestamps can usually be found by listing a RECON. If the precision needed cannot be obtained from a listing of the RECON, it may be necessary to print the RECON, using a utility such as the Access Method Services IDCAMS program.

The timestamp you specify is converted into Coordinated Universal Time (UTC), which is used internally by IMS and DBRC to store all timestamps. The format of the external timestamp that you specify allows you to specify the timestamp in a more user-readable format.

The format of the timestamp is either compressed or punctuated. For all timestamp formats that are shown in the next examples, the use of brackets [] indicates that the value that is contained in the brackets is optional.

Compressed timestamps follow this format:

'\([yy]yydddhhmmsssthmiju [offset]\)'

Punctuated timestamps follow this format:

'\([yy]yy|ddd|hh|mm|ss|thmiju [offset]\)'

The meaning of each portion of the timestamp is described in this list:

- \([yy]yy\) is the year specification (0000 – 9999). You can abbreviate the year to \(yy\), specifying only the last two digits of the year. 2007 and 07 are equivalent values.
- \(ddd\) is the day specification (001 – 365).
- \(hh\) is the hour specification (0-23).
- \(mm\) is the minute specification (0-59).
- \(ss\) is the second specification (0-59).
- \(thmiju\) allows for specification down to the millionth of a second (is the 000000 – 999999)
- \(offset\) is optional. You can use offset to specify the offset for computing local time. The offset represents a value that when added to UTC, gives local time. Offset may be specified as a numeric value in the form \(h[h:mm]\) or \(h[mm]\). \(h[h]\) is a numeric value from 0 to 14. For the compressed format if specify \(mm\), then also specify \(hh\). \(mm\) is a value from the set {00, 15, 30, 45}. Offset may also be specified as a literal which represents the...
offset. Any literal specified for offset must have been previously defined to the RECON data sets using the CHANGE.RECON
TIMEZONE() command.

- In the punctuated timestamp, the delimiter character (|) can be
 any non-numeric character delimiter including blank except the
 single quotation mark (').

Here are 3 examples of compressed timestamps:
'06252082445712345'
'06252082445712-0800'
'062520824457123 PST'

Here are 5 examples of punctuated time stamps:
'06.252/08:24:45.712345'
'06.252 08:24:45.712 -8'
'06/252-08.24.45.71 -8:00'
'2006 252 16.24.45.7 +0'
'2006 252 16.24.45.7 CST'

Note: If a timestamp does not contain an offset, it is assumed to be
local time and the offset of the local MVS (the one on which
the job executes) is used to calculate the UTC timestamps
that are used internally.

Note: If you need to recover to a time prior to a seasonal time
change, take care in specifying the timestamp to ensure the
desired results are obtained. In these cases, you must specify
the offset which is associated with the time period being
recovered to. For example, if daylight savings time went into
effect yesterday and you are in the Pacific Time zone, the
offset for calculating UTC time yesterday would have been
-8 hours. Today, since daylight savings time is in effect, the
offset is -7 hours. In order to allow IMS Database Recovery
Facility to correctly recover to the correct point in time, the
timestamp that you specify for RCVTIME must use -8 hours
as the offset in the RCVTIME timestamp.

TSR

Use time stamp recovery (TSR) to perform a time stamp recovery.
When a TSR is performed, the IMS Database Recovery Facility
checks the status of the databases being recovered to make sure
that they are not allocated or in use at the specified timestamp.
You must have issued /DBRecovery commands from all online
IMS systems which had them in use, and there must not be any
batch jobs updating the databases at the time specified by the
RCVTIME parameter. A listing of the RECON can help you
determine valid timestamps for performing a TSR. There must be
no ALLOC record for any database data set or area being
recovered that spans the recovery time.

When performing a TSR recovery, IMS Database Recovery Facility
verifies that all related DBDSs are also being recovered to the same
time. For each related DBDSs which are not being recovered,
message FRD6024A is issued to warn you of this condition.
Recovery fails if any related DBDSs are not also being recovered.

Input which is available for use by TSR is:
- A prior image copy, concurrent or batch
• A complete change accumulation which has a stop time earlier than the recovery timestamp specified
• Archived logs (SLDS or RLDS) which have a stop time later than the stop time from the input image copy and earlier than the recovery timestamp specified
• If the input image copy is a concurrent image copy, then log data prior to the image copy stop time might be needed in order to resolve any in-flight work at the time the image copy was taken

PITR Use point-in-time recovery (PITR) to perform a point-in-time recovery. When a PITR is performed, the databases being recovered can be in any state; they may be allocated or unallocated. There is no restriction on database allocation status if point-in-time recovery is selected. All committed updates, up to and including the specified recovery time, are applied to the database data sets and areas in the recovery list. If you specify the PITR parameter, the recovery time can be specified to any time before the current time.

When performing a PITR recovery, IMS Database Recovery Facility verifies that all related DBDSs are also being recovered to the same time. For each related DBDSs which are not being recovered, message FRD6024A is issued to warn you of this condition.

Input which is available for use by PITR is:
• A prior image copy, concurrent or batch
• A change accumulation which has a stop time earlier than the recovery timestamp specified, but only if there is a deallocation point (DBRECOVERY command) between the CA stop time and the PITR recovery time. This is the only way for the IMS Database Recovery Facility to ensure that all database updates on the CA data set are committed
• Archived logs (SLDS or RLDS) which have a stop time later than the stop time from the input image copy and earlier than the recovery timestamp specified.
• If the input image copy is a concurrent image copy, then log data prior to the image copy stop time may be needed in order to resolve any in-flight work at the time the image copy was taken

When you specify PITR, you can also specify the following options.

CHECK
Use CHECK to indicate that recovery fails when IMS Database Recovery Facility discovers that there are related DBDSs which are not being recovered to the same time. This processing ensures that DBDSs are not recovered to inconsistent times, causing integrity issues. This is the default value.

NOCHECK
Use NOCHECK to allow recovery to continue when IMS Database Recovery Facility discovers that there are related DBDSs which are not being recovered to the same time. Specifying NOCHECK means that you are responsible for ensuring related DBDSs are recovered consistently.
PITCA

Use point in time change accumulation (PITCA) to perform a point in time recovery, using a point in time change accumulation data set as input. IMS High Performance Change Accumulation (HPCA) is able to generate a point in time change accumulation file to a point in time where databases are still online. This CA file is called a PIT HPCA and contains only committed updates. This type of CA is marked invalid in the RECON to prevent usage by other utilities. Use PITCA to perform a point in time recovery using only a prior image copy and a PIT HPCA as input. No additional data sets containing log updates are used as input to this recovery.

When HPCA marks the PIT HPCA file invalid in the RECON data sets, DBRC switches the contents of the RUN and START time fields in the record. Therefore, the timestamp you specify on the RCVTIME parameter must be the RUN time of the CA record as recorded by DBRC. In order for the IMS Database Recovery Facility to select the PIT HPCA file, the CA record must be marked ERR and the CA data set name must have the suffix ".HPCAP".

Input which is available for use by PITCA is:

- A prior image copy, concurrent or batch
- A PIT IMS HP Change Accumulation Utility point in time change accumulation data set which has a RUN time matching the recovery time specified, is marked in ERR, and has a suffix of ".HPCAP"

RCVTYPE(LASTIC,LASTPITCA)

The RCVTYPE parameter is used whenever you want to recover using only:

- A prior image copy, it may be concurrent or batch
- A IMS HP Change Accumulation Utility point in time change accumulation data set which has a RUN time matching the recovery time specified, is marked in ERR, and has a suffix of ".HPCAP"

LASTIC

Use last image copy (LASTIC) to perform a recovery using only the latest usable batch image copy. No logs or change accumulation data sets are used.

The latest image copy where the database data set (DBDS) area was not allocated for the time the image copy was taken are used for the recovery. There are several types of image copies. Batch is one where the DBDS area has been stopped. A concurrent image copy (CIC) can be taken while the DBDS area has not been stopped. However, a CIC can also be taken while the DBDS area has been stopped. It is still recorded as a CIC. Any type of image copy taken while the DBDS area has been stopped are used for a LASTIC recovery.

LASTIC is another way of specifying a time stamp and performing either a full recovery or a time stamp recovery (TSR). A new parameter, RCVTYPE, allows for either LASTIC or LASTPITCA. A LASTIC recovery uses only the image copy. If there were changes made after the IC was taken, then this is a TSR. Otherwise, it is a full recovery.
Unlike RCVTIME, recoveries with LASTIC can be to different times and can be full recoveries or time stamp recoveries. The RECOV record that is recorded to DBRC reflects this. For time stamp recoveries (including PITR), the CHECK option causes IMS Database Recovery Facility to fail the recovery when there is a DBDS area that should also be recovered to the same time but is not. When NOCHECK is specified, IMS Database Recovery Facility does not make this check. Because LASTIC does not have a constant RCVTIME and the resulting recoveries can be a mixture of full and time stamp recoveries, CHECK is not possible for LASTIC. Although NOCHECK is implied, CHECK and NOCHECK are not allowed with LASTIC. An error message is issued if either is specified.

The use of RCVTYPE(LASTIC) is:
- Mutually exclusive with RCVTIME
- Allowed for OUTPUT(PRO | DUP | BOTH)
- Not allowed for OUTPUT(ICR | ICRCA)

LASTPITCA
Use LASTPITCA to perform a point in time recovery using an image copy and the last point in time change accumulation (PIT HPCA) as input. No log data sets are used.

Using LASTPITCA is another way of specifying a timestamp and the recovery is always a point in time recovery (PITR). A new parameter, RCVTYPE, allows for either LASTIC or LASTPITCA.

The RECOV record that is recorded to DBRC reflects the type of recovery. For time stamp recoveries (including PITR), the CHECK option causes IMS Database Recovery Facility to fail the recovery when there is a database data set (DBDS) area that should also be recovered to the same time but is not. When NOCHECK is specified, IMS Database Recovery Facility does not make this check. Because LASTPITCA does not have a constant RCVTIME and the resulting recoveries can be a mixture of full and time stamp recoveries, CHECK is not possible for LASTPITCA. Although NOCHECK is implied, CHECK and NOCHECK are not allowed with LASTPITCA. An error message is issued if either is specified.

The use of RCVTYPE(LASTPITCA) is:
- Mutually exclusive with RCVTIME
- Allowed for OUTPUT(PRO | DUP | BOTH)
- Not allowed for OUTPUT(ICR | ICRCA)

ICNUM(nn [,tn])
The system defaults and any override values you set in the FRXDRFxx member for nn and tn are overridden by the values supplied in this START command.

Note: If you omit or set the values of either nn or tn to zero, the default values in FRXDRFxx are imposed. The values you enter here take precedence; they override the system defaults and any override values set in the FRXDRFxx member.
Note: For a more detailed description of this parameter, refer to "Environmental control statements" on page 20.

LOGNUM(nn [,tn])

The system defaults and any override values you set in the FRXDRFxx member for nn and tn are overridden by the values you supply in this START command.

Note: If you omit or set the values of either nn or tn to zero, the default values are imposed. The values entered here have precedence; they override the system defaults and any override values set in the FRXDRFxx member.

For a more detailed description of this parameter, refer to "Environmental control statements" on page 20.

STACMD(OFFLINE,LOCAL((imsid)),GLOBAL)

Use STACMD to tell IMS Database Recovery Facility what the disposition of the DBDS should be after it has been recovered. STACMD is not issued when VERIFY is also specified. The following are the subparameters of STACMD:

OFFLINE

Indicates that after recovery of DBDS entries in the recovery list, the resource is to be kept offline. This is the default.

LOCAL((imsid))

Indicates that after recovery of DBDS entries in the recovery list, the START command is issued against the specified IMS subsystem, imsid.

GLOBAL

Indicates that after recovery of DBDS entries in the recovery list, the START command is issued with the GLOBAL keyword and applies to all sharing subsystems.

DBRCMD(NONE,LOCAL((imsid)),GLOBAL)

Use DBRCMD to tell IMS Database Recovery Facility to issue the DBRECOVERY command before attempting to recover the DBDSs in the recovery list. DBRCMD is not issued when VERIFY is also specified.

NONE

Indicates that the DBRECOVERY command should not be issued for any entry in the recovery list. This is the default.

LOCAL((imsid))

Indicates the DBRECOVERY command is issued on the specified IMS subsystem, imsid.

NOFEOV

Indicates that the NOFEOV parameter is specified on all /DBR commands that are issued, including the last one. This means that a log switch is not done.

Important: Typically the NOFEOV parameter is specified on all /DBR commands except for the last one. This means that an OLDS switch occurs only once, after the last database is recovered by using the /DBR command.

SWIOLDS

Indicates that after all databases have been taken offline by
using the /DBR command, a /SWI OLDS command is
issued on the specified IMS system.

If SWIOLDS is specified, NOFEOV is assumed to prevent
multiple OLDS switches.

GLOBAL
Indicates that the DBRECOVERY command is issued with the
GLOBAL keyword and applies to all sharing subsystems which
have resources registered to DBRC.

NOFEOV
Indicates that the NOFEOV parameter is specified on all
/DBR commands that are issued, including the last one.
This means that a log switch is not done.

Important: Typically the NOFEOV parameter is specified
on all /DBR commands except for the last one.
This means that an OLDS switch occurs only
once, after the last database is recovered by
using the /DBR command.

SWIOLDS
Indicates that after all databases have been taken offline by
using the /DBR command, a /SWI OLDS command is
issued on all active IMS systems.

If SWIOLDS is specified, NOFEOV is assumed to prevent
multiple OLDS switches.
Chapter 7. Using the IMS Database Recovery Facility with the integrated auxiliary utilities

These topics describe how to use the IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility and invoke the integrated auxiliary utilities.

This section will build on the topics discussed in Chapter 6, “Using the IMS Database Recovery Facility basic product,” on page 89 which you should read and understand before reading this section. Also read the descriptions for the control statement parameters DRFIAX, LIU@GOPT, and REPORT, described in “Environmental control statements” on page 20.

Topics:

- “Utility control statement specification”
- “ADD IB() syntax for invoking IMS Index Builder, DFSPREC0, or Build Index function of FPA” on page 108
- “ADD IC() syntax for invoking IMS High Performance Image Copy” on page 115
- “ADD PC() syntax for invoking IMS High Performance Pointer Checker and IMS High Performance Fast Path Utilities” on page 124

Utility control statement specification

The utility control statements are used to direct the execution of the integrated auxiliary utilities.

The utility control statements can be specified by using either of these methods:

- On the global UTILGBL() environmental control statement, either in the FRXDRF:xx PROCLIB member or the //SYSIN DD input.
- On the ADD command, by using the appropriate utility keyword, IB(), IC(), or PC().

Specifying the utility control statements on the UTILGBL() statement sets the default values that are used for any invocation of the utility. The values specified on the UTILGBL() statement are used by IMS Database Recovery Facility anytime any of the utilities are executed.

You can also specify most of the utility control statements on the ADD command by using the appropriate IB(), IC(), or PC() keyword. If multiple ADD commands are used, you must specify utility control statements that are specific to each ADD command. All databases that are specified on the ADD command use the same utility options that are specified on that command.

To invoke any of the integrated auxiliary utilities, the IB(), IC(), and PC() keyword must be specified on the ADD command. The utilities cannot be executed by only specifying utility control statements on the UTILGBL() statement, except the IMS Library Integrity Utility which is invoked by using the LIU@GOPT keyword on the UTILGBL command.

If all the necessary parameters are already specified on the UTILGBL() statement, you can simply code the IB(), IC(), or PC() keyword without parameters. However,
If you want to specify additional parameters or override a parameter that was
specified on the UTILGBL() statement, you must use the appropriate utility
keyword and specify the necessary parameters.

For example, to invoke all the utilities by using the default values, code the
following ADD command:

```
ADD DB(HIDAM1) IC() IB() PC()
```

However, if you want to specify additional parameters for executing High
Performance Image Copy, code the following ADD command:

```
ADD DB(HIDAM1) DBATRB(DBDSL(101),DBDSN(101)), -
   IC (ICHLQ(ichlq),SPACE(CYL,3,1),ICNMRULE(Y),ICCAT(Y),-
   DSNTYPE(BASIC),COMP(N),-
   STORCLAS(storcl),MGMTCLAS(mgmtcl),DATACLAS(datacl),UNIT(unit))
```

The syntax and usage of the ADD IB(), ADD IC(), and ADD PC() commands is
explained in the sections that follow.

Related reference:
Chapter 4, “Configuring the integrated auxiliary utility environment,” on page 45

ADD IB() syntax for invoking IMS Index Builder, DFSPREC0, or Build Index function of FPA

The syntax and use of the ADD command for invoking IMS Index Builder, the
DFSPREC0 utility, and the Build Index function of FPA for building indexes is
described here.

ADD IB() command parameters

The parameters for IMS Index Builder, the DFSPREC0 utility, and the Build Index
function of FPA that can be specified on the ADD command are described here.
Any parameters specified on the ADD command override those parameters that
were specified on the UTILGBL() control statement. There are also parameters for
this auxiliary utility that can only be specified on the UTILGBL() control statement.
For a list and description of those parameters, refer to "Utility control statement
syntax" on page 51.

Syntax for ADD IB() command for IMS Index Builder

The basic format of the ADD command is described in "Parameters for ADD
command” on page 90. Shown here is the syntax for those parameters that are
associated with the IMS Index Builder usage.
The use of the IB() keyword on the ADD command indicates that indexes associated with recovered database data sets are to be rebuilt after the DBDS is recovered.

IB Any combination of the IB statements that are used for rebuilding primary, secondary, or HALDB ILDS data sets can be specified regardless of what type of databases are being recovered. IMS Database Recovery Facility determines the type of database and the indexes present and only invokes IMS Index Builder or DFSPREC0 for those that are present.

The following list shows the IMS Index Builder and DFSPREC0 utility options that can be specified on the IB() keyword within the ADD command.

BLD_PRIMARY

Use this parameter to specify that IMS Database Recovery Facility should rebuild the primary index of the dbname specified on the ADD DB() command.

HALDB primary indexes are rebuilt using the DFSPREC0 utility. In IMS Database Recovery Facility, specifying the BLD_PRIMARY command does not rebuild HALDB primary indexes. Use the parameters in the HALDB() statement to build HALDB primary indexes.

When the DFSPREC0 routine is needed for HALDB Primary Index and ILE processing, you must modify module DFSDAPL0.

BLD_SECONDARY(ALL | secixdbname1,secixdbname2,secixdbname3...)

Use this parameter to rebuild the secondary index databases of the dbname/areaname specified on the ADD DB() command.

Important: When BLD_SECONDARY(ALL) is specified, all secondary indexes are rebuilt, meaning it is not necessary to specify BLD_SECONDARY(secixdbname1,secixdbname2,secixdbname3).

HALDB(ILE | ILEF | INDEX | BOTH | BOTHF)

This parameter applies only to HALDB databases. Use this parameter
to specify whether to rebuild only the ILE data set, the Primary Index, or both. Specify this parameter only on the ADD statements for PHIDAM database types.

ILE The indirect list entry (ILE) is to be rebuilt.
ILEF The ILDS of the specified partition is rebuilt by using the free space option. DFSPREC0 must have five z/OS data spaces available for processing if you select the free space option.

INDEX The HALDB primary index is to be rebuilt.
BOTH The specified ILE and the primary index are to be rebuilt.
BOTHF The primary index and the ILDS of the specified partition are to be rebuilt. The ILDS is rebuilt by using the free space option. The utility must have five z/OS data spaces available for processing if you select the free space option.

Important: If IMS Index Builder Version 3.1 or higher is used, and the free space option is not specified, the ILDS and PRIMARY index are rebuilt by IMS Index Builder.

ICNDX(NO | YES)
This subparameter specifies that indexes are to be image copied. This parameter does not apply to HALDB primary index and ILE data sets because they are not recoverable. This parameter also does not apply to secondary indexes that are not recoverable. However, if you specify ICNDX(YES), secondary indexes for Full Function, Fast Path and HALDB databases are image copied. For Full Function databases, recoverable primary indexes are image copied.

NO is the default.

Note: If ICNDX(YES) is coded, it does not take effect unless the IC keyword is present on the ADD command.

INPUT(IBSCAN, DBRC(Y | N))
The INPUT statement specifies the type of input used by IMS Index Builder to build indexes and specifies whether or not DBRC is used for both Index Builder and the Index Build function of FPA. IBSCAN is the only option allowed in the first position. IBSCAN does not apply to FPA and is ignored if specified. It is retained for consistency with IB control statements, but is also the default.

IBSCAN specifies that a scan of the physical data base is used as input. In IMS Database Recovery Facility, this option applies to secondary indexes for both HALDB and Full Function databases and to primary indexes for Full Function databases.

DBRC specifies whether DBRC is (DBRC(Y)) or is not (DBRC(N)) used.
DBRC(Y) is the default.

MAXTASKS(nn)
Use this parameter to specify that this is a MAXTASKS statement.

nn Valid values are from 0 to 36, with leading zeros.

Important: MAXTASKS(2) has special meaning in that it instructs IMS Index Builder V3.1 to use the hierarchical HPU scan
method for building indexes, such as in IMS Index Builder V2.3, instead of the sequential scan method. For more information, see IMS Index Builder for z/OS User’s Guide.

NDXIOBUF(DATA(n),INDEX(n))
Use this parameter to specify the number of buffers that VSAM uses when IMS Index Builder loads index data sets. Use this parameter when:
- IMS Index Builder loads index data sets without needing a sort.
- You specify the SORTE35 statement to use the E35 exit interface to sort.

SORTE35(NO | YES)
This parameter applies to IMS Index Builder subordinate address spaces that are involved in sorting, not IMS Database Recovery Facility subordinate address spaces. Use this parameter to specify whether IMS Index Builder can use the sort E35 exit to load sorted index records into the index data set. When NO is specified, the sort program loads the sorted records directly into the index data set. The default is NO unless you have coded IC() and ICNDX(YES) is intended. Then, the default is YES.

SORTFSZ(nnnnnnnnn)
This parameter applies to IMS Index Builder subordinate address spaces that are involved in sorting, not IMS Database Recovery Facility subordinate address spaces. Use this parameter to specify the estimated number of records to be sorted. $nnnnnnnn$ is an integer from 1 to 999999999 that specifies the estimated number of records to be sorted. The value is appended to the SORT option and is overridden if a non-zero index size is specified in the INDEX option for the DBD, or by the reused file size of the index. If not specified, and not overridden, no FILSZ parameter is appended to the generated SORT option.

SORTID(sort_id,{sort_parm,...})
This parameter applies to IMS Index Builder subordinate address spaces that are involved in sorting, not IMS Database Recovery Facility subordinate address spaces. Use this parameter to specify the ID of the SORT command used to start the address space for the sort program. Only one sort_id keyword is allowed. It must be a single alphanumeric character appended to the sort procedure name IIUBSRT. For example, if you specify the character A, IMS Index Builder uses the procedure IIUBSRTA to start address spaces used by the sort program. The specified procedure must exist in one of the libraries in the SYS1.PROCLIB concatenation of the MVS primary subsystem. If a sort_id is not specified, IMS Database Recovery Facility uses IIUBSRTT.

sort_parms is a string of sort option parameters, separated by commas or blanks. The string is appended, unchanged, to the SORT OPTION command generated by IMS Index Builder. The maximum length of the string is 34 characters, and the entire string must be on one line. You can use this string to specify performance options or to override installation settings. For example:

MAINSIZE(100) FILSZ(E3000000)

Do not specify any parameter related to record type, sort fields, or sort order.
SORTOPT(sortopt...)

This parameter applies to IMS Index Builder subordinate address
spaces that are involved in sorting, not IMS Database Recovery Facility
subordinate address spaces. Use this parameter to specify sort
parameters to be appended to the SORT OPTION command.

Only one SORTOPT parameter is allowed. **Important:** The FILSZ
specified in the SORTOPT parameter takes precedence.

`sortopt...` is a string of sort option parameters, separated by commas or
blanks. The string is appended, unchanged, to the SORT OPTION
command generated by IMS Index Builder. The maximum length of the
string is 34 characters, and the entire string must be on one line. You
can use this string to specify performance options or to override
installation settings. For example:

```
MAINSIZE(100) FILSZ(E3000000)
```

Do not specify any parameter related to record type, sort fields, or sort
order.

SORTOUT(COPY | NOCOPY)

This parameter applies to IMS Index Builder subordinate address
spaces that are involved in sorting, not IMS Database Recovery Facility
subordinate sort address spaces. Use this parameter to specify whether
IMS Index Builder can copy sort messages to the data set defined in
the IIUSOUT DD statement or leave them in the data set defined in the
SORT DD command, which is in the sort address space. If you do not
specify the SORTOUT parameter, COPY is assumed.

SORTSTAT(NO | YES)

This parameter applies to IMS Index Builder subordinate address
spaces that are involved in sorting, not IMS Database Recovery Facility
subordinate sort address spaces. Use this parameter to tell IMS Index
Builder to produce sort count statistics in the SYSPRINT data set for
each index sorted. If you specify this statement, the following counts
are produced:

- **SORT RECORD COUNT — E15**
 The number of records passed to sort

- **SORT BUFFER COUNT — E15**
 The number of buffers processed

- **SORT WAIT COUNT — E15**
 The number of WAITs issued while waiting for a buffer

- **SORT OUTPUT COUNT — E35**
 The number of records sorted and loaded into the index data
 set

Note: If an index `dbname1` is included in the ADD DB() command and that
index is marked as recoverable in DBRC, then IMS Database Recovery
Facility recovers the index data set. Also, if an image copy is requested
as part of the ADD command, then IMS Database Recovery Facility will
image copy the recovered index. Additionally, if as part of the IB
parameter, there is a request to rebuild index `dbname1`, either through
the BLD_PRIMARY or BLD_SECONDARY parameter, and if IB
parameter, ICNDX(YES) is specified, then IMS Index Builder rebuilds
the index and makes an image copy of the index data set.
Example of the ADD command IB keyword:

The following example instructs IMS Database Recovery Facility to invoke the IMS Index Builder or the DFSPREC0 utility to rebuild indexes:

```plaintext
SORT Parm(ASPR3(DR33))
UTILGBL(IBPREF(DR3I),PRPREF(DR3P),PCPROMN(FRXPATHD),PCJOBDMN(DR3C))
REPORT(RPTTYPE=APP,DRFUNIT=SYSDA,DRFHLQ=hlq)
DRFJAX(FRXJCLIP)
START ERROR(CONT) DBRCMD(GLOBAL) STACMD(GLOBAL) READNUM(5)
ADD DB(PRIMDEB)
  IB(BLD_PRIMARY(YES),BLD_SECONDARY(ALL), INPUT(IBSCAN, DBRC(Y)),
    NDX10BUF(DATA(10), INDEX(5)), ICNDX(YES))
```

The following occurs:

- The primary index database is rebuilt for the Full Function primary database (PRIMEDB)
- All secondary indexes are rebuilt for the PRIMEDB database
- The PRIMEDB database is scanned for input when rebuilding the indexes and DBRC is used
- VSAM uses 10 buffers for the data portion and 5 buffers when loading the index portion of the data sets. IMS Index Builder loads the indexes without needing a sort.
- All indexes that are rebuilt, and their image copies, are marked as RECOV in DBRC.

Syntax for ADD IB() command for the Build Index function of FPA

The basic format of the ADD command is described in "Parameters for ADD command " on page 90. Shown here is the syntax for those parameters that are associated with the Build Index function of FPA.

```
ADD

IB( BLD_FP_PGROUP( secidxdbname )
    BLD_SECONDARY(ALL | secixdbname1, secixdbname2, secixdbname3...),
    NO DBRC(YES), NODEFER ICHECK(DEFER),
    NO ICINCOMP(YES), ICNDX(YES),
    AREA ITASKCTL( nnm ),
    OTASKCTL( mnn ))
```

The use of the IB() keyword on the ADD command indicates that indexes associated with recovered database data sets are to be rebuilt after the DBDS is recovered.

IB

The following list shows the options for the Build Index function of FPA that can be specified on the IB() keyword within the ADD command.

```
BLD_FP_PGROUP(secidxdbname)
```
secidxdbname

Use this parameter to identify the first index in a logical partition group of indexes, and to indicate that all indexes in the partition group are to be built.

BLD_SECONDARY(ALL | secidxdbname1,secidxdbname2,secidxdbname3,...)

Use this parameter to rebuild the secondary index databases of the dbname/areaname specified on the ADD DB() command.

Important: When BLD_SECONDARY(ALL) is specified, all secondary indexes are rebuilt, meaning it is not necessary to specify BLD_SECONDARY(secidxdbname1,secidxdbname2,secidxdbname3).

DBRC(NO | YES)

Use the DBRC keyword to request or bypass the processing of database recovery control (DBRC) facility for the database that is specified by the DBD.

Processing includes DBRC signon and signoff, area authorization, and event notification. To process multiple area data sets (MADS), DBRC=YES must be specified.

NO Bypass the DBRC process of the database. If DBRC=FORCE is set for IMS, specifying DBRC=NO does not bypass DBRC.

YES Request the DBRC process of the database.

DBRC runs under IMS control and is specified for IMS in the member DFSVC000 or DFSIDEF0 of the SDFSRESL library. The default value for the DBRC keyword is the parameter specified for IMS.

ICHECK(NODEFER | DEFER)

Use the ICHECK keyword to control the input devices.

parameter can be one of the following values:

NODEFER

Gets access to all devices that are associated with the input data sets at a time.

DEFER

Access to devices for obtaining input data sets are limited to the number that is specified by the ITASKCTL keyword.

ICINCOMP (No | Yes)

Use the ICINCOMP keyword to specify, when an image copy is used as an input data set, whether the image copy records are to be compressed by using the CSRCESRV MVS macro when they are stored into a data space storage.

IMS Fast Path Advanced Tool stores all image copy records into a data space storage when an image copy is used as an input data set.

Because the maximum size of one data space is 2 GB, if the total size of the records exceeds the limit, IMS Fast Path Advanced Tool ends with an error. Try to reduce the total size of the records to under 2 GB by specifying ICINCOMP=YES. FPA compresses the image copy records by using the CSRCESRV macro before storing them into a data space.
space and expands them when they are processed. The data
compression and expansion process increases the amount of CPU time.

No The image copy records are stored into a data space storage
without compression.

Yes The image copy records are stored into a data space storage
after compression.

ICNDX(NO | YES)
This subparameter specifies that indexes are to be image copied. This
parameter does not apply to HALDB primary index and ILE data sets
because they are not recoverable. This parameter also does not apply
to secondary indexes that are not recoverable. However, if you specify
ICNDX(YES), secondary indexes for Full Function, Fast Path and
HALDB databases are image copied. For Full Function databases,
recoverable primary indexes are image copied.

NO is the default.

Note: If ICNDX(YES) is coded, it does not take effect unless the IC
keyword is present on the ADD command.

ITASKCTL(AREA | nnnn)
Use the ITASKCTL keyword to specify the maximum number of input
areas to be processed concurrently.

AREA The number of input areas.

nnnn Specify a value from 1 to 2048. Specify a value less than or
equal to the number of input areas. If you specify a value that
is greater than the number of input areas, it will be replaced by
the number of input areas. In case of the CHANGE command
in the REORG mode, the following value is set: (ITASKCTL +
OTASKCTL)/2 (the value is rounded off)

OTASKCTL(nnnn)
Use the OTASKCTL keyword to specify the maximum number of
output areas to be processed concurrently.

nnnn Specify a value from 1 to 2048. Specify a value less than or
equal to the number of output areas. If you specify a value that
is greater than the number of output areas, it will be replaced
by the number of output areas. In case of the CHANGE
command in the REORG mode, the following value is set:
(ITASKCTL + OTASKCTL)/2 (the value is rounded off)

ADD IC() syntax for invoking IMS High Performance Image Copy
The parameters for the IMS High Performance Image Copy that can be specified
on the ADD command are described here.

ADD IC() command parameters
Any parameters specified on the ADD command override those parameters that
were specified on the UTILGBL() control statement. There are also parameters for
this auxiliary utility that can only be specified on the UTILGBL() control statement.
For a list and description of those parameters, refer to "Utility control statement
syntax" on page 51.
Syntax for ADD IC() command

The basic format of the ADD command is described in "Parameters for ADD command" on page 90. This section shows the syntax for those keywords that are associated with the IMS High Performance Image Copy usage.

```
ADD

IC(COMP(Y),)

COMPRTN(routine),
DATACLAS(data-class-name),
EXPDT(yyyydd),

ICBUF(|nnnn),

ICCAT(N),
ICHQ(hlq1,hlq2),

ICNILQ(hlq1,hlq2),

MCNMRULE(Y),
MGMTCLAS(mgmt-class-name),

NOTIFY(N),

RETPD(nnnn),

SPACE(CYL, TRK, blk, primary, secondary, RLSE(CONTIG), MXIG, ALX, ROUND

STORCLAS(stor-class-name),

UNIT(unitname,unitcount),

UNIT2(unitname,unitcount),

VIC(Y),

VOLCNT(nnn),

VOLSER(volsern),

VOLSER2(volsern)
```

The use of the IC() keyword on the ADD command indicates that an image copy is to be created for each recovered database.
Attention: No image copy of any database or index is created unless the IC() keyword is specified on the ADD command. Specifying only IB(INDX(YES)) on the ADD command does not create an image copy.

If you specify OUTPUT(ICR) then an incremental image copy is produced using the prior image copy and archived logs or change accumulation data sets as input. The production database is not accessed and no database data sets are recovered.

IC Use this keyword with the ADD DB(dbname) command to indicate that an image copy is to be run for the recovered database. No other functions of IMS High Performance Image Copy (such as CIC, CRC) are allowed, nor are parallel processes, such as AIC.

When you specify the OUTPUT(ICR) option, the incremental image copy that is created might be batch or concurrent. A concurrent image copy is created when only a subset of the required logs are available. The time stamp that is used to register the image copy to DBRC is the latest stop time of all the log data sets that were used as input. It is not necessary to stop the database for an incremental image copy.

The following list shows the IMS High Performance Image Copy options that can be specified on the IC keyword and used by the IMS Database Recovery Facility interface to IMS High Performance Image Copy.

COMP(Y | N)
The COMP keyword specifies whether the Image Copy function is to compress the output image copy data.
Y Specifies that the output image copy data is to be compressed by the Image Copy function.
N Specifies that the output image copy data is not to be compressed by the Image Copy function.
The value N is the default.

COMPRTN(routine)
The COMPRTN keyword specifies the name of the compression routine that the Image Copy function invokes to compress the output image copy data.

Note: When the IDRC feature is installed and is active on the native tape drive, software compression is suppressed for the IC1 and IC2 output data sets when the compression is not FABJCMP2.

The setting for routine can have the following meanings:

routine The name of the compression routine. IMS High Performance Image Copy provides four compression exit routines: FABJCMP1, FABJCMP2, FABJCMP3, and FABJCMP4. Specify one of these compression routines to be called by the Image Copy function. If the COMP=Y keyword is specified without the COMPRTN= keyword, FABJCMP1 is used as the default. The same compression routine is automatically called by the Database Recovery function to extract the compressed data.

Attention: If you want to create a compressed image copy data set for a DEDB that has an SDEP segment, you must use FABJCMP4. FABJCMP1, FABJCMP2, and FABJCMP3 cannot be used for a DEDB that has an SDEP segment.
IMS High Performance Image Copy provides the following compression routines:

FABJCMP1
Does repeated character compression. Free space can also be compressed.

FABJCMP2
Does only free space compression. Segmented data is not compressed.

FABJCMP3
Does repeating-characters compression of the z/OS program compression method. Free space might also be compressed.

FABJCMP4
Does repeating-characters compression of the z/OS program compression method.
This routine runs the block compression, which does not distinguish between the data portion, free space, and unused space in the database.

DATACLAS(data-class-name)
The DATACLAS keyword specifies the name of the data class for the new SMS managed image copy output data sets that are dynamically allocated.

data-class-name
The name of the data class to be used for allocating the data set. The name that you define is one-to eight-characters.

This keyword does not have a default.

DSNTYPE(BASIC | LARGE)
The DSNTYPE keyword specifies whether the Image Copy can be allocated as Large Format data sets or Basic Format data sets. More detail information for Large Format data sets is shown in the z/OS V1R7.0 DFSMS Using Data Sets.

BASIC
Specifies that the Image Copy function allocates Image Copy data sets as Basic Format data sets. BASIC is the default.

LARGE
Specifies that the Image Copy function allocates Image Copy data sets as Large Format data sets.

EXPDT(yyyyddd | yyddd)
The EXPDT keyword specifies the expiration date of the output image copy data set.

yyyyddd or *yyddd*
The expiration date of the output image copy. The date format must comply with the DFSMS format (the Julian calendar format).

This keyword does not have a default.

ICBUF(nnnn)
The ICBUF keyword specifies the number of buffers to be used to access the output image copy data set.
The left-aligned number of buffers that are used to access the output image copy data set.

The default value is 15.

ICCAT(15 | Y | N)

The ICCAT keyword specifies whether the Image Copy function is to catalog the output image copy data set.

Y

Catalogs the output image copy data set.

This is the default.

N

Does not catalog the output image copy data set.

ICHLQ

The ICHLQ keyword specifies the data set name prefix of the image copy data set.

hlq

The data set name prefix of the output image copy data set for the Image Copy function or it symbolizes a value in &ICHLQ.

hlq1

The data set name prefix of the primary output image copy data set for the Image Copy function or it symbolizes a value in &ICHLQ.

hlq2

The data set name prefix of the secondary output image copy data set for the Image Copy function or it symbolizes a value in &ICHLQ.

Note: The hlq2 parameter and ICHLQ2= cannot be specified together.

When you use the default ICOUT naming (ICNMRULE=N), specify a data set name prefix containing 33 or fewer characters. This prefix is used as the high-level qualifier of the data set name.

If you use the default STACK naming, specify a data set name prefix containing 7 or fewer characters. MVS naming convention requires that a generated data set name contain 44 or fewer characters.

This prefix must conform to the normal data set naming standards; it can include periods but must not end with a period.

If this keyword is left blank, a data set name prefix is not assigned.

ICHLQ2(hlq2)

The ICHLQ2 keyword specifies the data set name prefix of the secondary output image copy data set for the Image Copy function or sets a symbolic value for &ICHLQ2.

hlq2

The data set name prefix of the secondary output image copy data set for the Image Copy function or sets a symbolic value for &ICHLQ2.

ICHLQ2= parameter cannot be specified with ICHLQ=(hlq1, hlq2).

When you use the default ICOUT naming (ICNMRULE=N), specify a data set name prefix containing 33 or fewer characters.

This prefix is used as the high-level qualifier of the data set name.
If you use the default STACK naming, specify a data set name prefix containing 7 or fewer characters. MVS naming convention requires that a generated data set name contain 44 or fewer characters.

This prefix must conform to the normal data set naming standards; it can include periods but must not end with a period.

If this keyword is left blank, a data set name prefix is not assigned.

ICNMRULE(Y | N)

The ICNMRULE keyword is used to select a naming convention for the output image copy data set.

Y Selects the naming convention of the output image copy data set as follows:

\[\text{ichlq} \cdot \text{n} \cdot \text{bdname} \cdot \text{ddname} \cdot \text{yyddd} \cdot \text{hhmmss} \]

N Selects the naming convention of the image copy data set as follows:

\[\text{ichlq} \cdot \text{n} \cdot \text{bdname} \cdot \text{ddname} \]

Within these naming conventions, the following meanings apply:

\(\text{ichlq} \)
Is specified with the ICHLQ= keyword.

\(n \)
Is 1 or 2, indicating the primary or secondary copy.

\(\text{bdname} \)
Is the DBD name of the database to be copied.

\(\text{ddname} \)
Is the DD name of the target data set group or area to be copied.

\(\text{yyddd} \)
Is the date.

\(\text{hhmmss} \)
Is the time stamp.

N is the default value.

NOTIFY(Y | N)

This parameter specifies whether the Image Copy function will register the image copy with DBRC.

N
Does not register the image copy with DBRC.

Y
Registers the image copy with DBRC. Y is the default value.

MGMTCLAS(mgmt-class-name)

The MGMTCLAS keyword specifies the name of the management class for the new SMS managed image copy output data sets that are dynamically allocated.

mgmt-class-name
The name of the management class to be used for allocating the data set. The name that you define, is one-to eight-characters long.

This keyword does not have a default.

RETPD(nnnn)

This parameter specifies the retention period, in days, for the output image copy data set.
The retention period for the output image copy. You can specify a value from 0 - 9999. This parameter does not have a default value.

```
SPACE((CYL | TRK | blk),primary,secondary)[,RLSE][,CONTIG | ,MXIG | ,ALX],[ROUND])
```

The SPACE keyword specifies the space parameter of the output image copy data set for dynamic allocation.

CYL

The allocation in cylinders.

TRK

The allocation in tracks.

blk

The allocation in blocks. For example: SPACE(1024,10,10).

primary

The number of tracks, cylinders, or blocks to be allocated.

secondary

The additional number of tracks or cylinders to be allocated, if more are needed. If this subparameter is specified, it must locate in the third position.

RLSE

Requests that space allocated to an output data set but not used, is to be released when the data set is closed.

CONTIG

Requests that space allocated to the data set must be contiguous.

MXIG

Requests that space allocated to the data set must be the largest area of available contiguous space on the volume and equal to, or greater than, the primary quantity.

ALX

Requests that space allocated to the data set is the largest 5 areas of available contiguous space on the volume.

ROUND

When the first subparameter specifies the average block length, this parameter requests that space allocated to the data set must be equal to an integral number of cylinders.

More detail information for each of these values is shown in the z/OS JCL reference manual.

This keyword does not have a default.

- **Output Device under SMS:**

 The SPACE parameter in the SMS definition is used as the default.

 If you specify the SPACE keyword in the ICEIN control statement or the site default table, the SMS definition is overwritten by the specified SPACE parameters.

- **Non-SMS Output Device:**

 The SPACE keyword is a required parameter.

 If you omit this keyword, dynamic allocation fails. If you defined SPACE in the site default table, IMS High Performance Image Copy uses the SPACE parameter in the site default.
STORCLAS(stor-class-name)
The STORCLAS keyword specifies the name of the storage class for the new SMS managed image copy output data sets that are dynamically allocated.

stor-class-name
The name of a storage class to be used for allocating the data set. The name that you define, is one-to eight-characters long.

An ACS routine can override the storage class that you specify in the STORCLAS keyword.

This keyword does not have a default.

UNIT(TAPE | unitname | unitname,unitcount)
The UNIT keyword specifies the UNIT of the output image copy data set for allocation.

Note: When an image copy is requested, the UNIT parameter must be present either on the IC keyword or on the UTILGBL control statement; otherwise, an error results and no IC is created.

TAPE | unitname | unitname,unitcount
The UNIT parameter for allocating the output image copy. For example, UNIT(TAPE) or UNIT(TAPE,2).

The default is TAPE.

UNIT2(unitname | unitname,unitcount)
The UNIT2 keyword specifies the UNIT of the secondary output image copy data set, which is used for allocation.

unitname or unitname,unitcount
The UNIT parameter for allocating the secondary output image copy. For example, UNIT2(TAPE) or UNIT2(TAPE,2).

This keyword does not have a default.

If both UNIT2 and STORCLAS are specified, the value specified in the STORCLAS keyword is not applied to the secondary output image copy data set.

VIC(Y | N)
This parameter specifies whether the Image Copy function will register the dummy data set name that is specified on the VICDSN parameter with DBRC as a virtual image copy.

Y Registers the image copy with DBRC.
N Does not register the image copy with DBRC. N is the default.

VOLCNT(1 | nnn)
The VOLCNT keyword specifies the number of volumes used for the output image copy data set.

nnn The maximum number of volumes that an output image copy data set requires. The volume count is a decimal number from 1 through 255 for a tape data set and from 1 through 59 for a DASD data set.

If you omit VOLCNT, 1 is used as the default.
VOLSER(volser | volser1, volser2,...)

The VOLSER keyword specifies the volume serial number of the volume used for the primary data set of the output image copy.

volser or (volser1, volser2,...)

The volume serial number of the volume allocated to the primary data set of the output image copy.

This keyword does not have a default.

VOLSER2(volser | volser1, volser2,...)

The VOLSER2 keyword specifies the volume serial number of the volume used for the secondary data set of the output image copy.

volser or (volser1, volser2,...)

The volume serial number of the volume allocated to the secondary data set of the output image copy.

This keyword does not have a default.

The following IMS High Performance Image Copy keywords are not supported by IMS Database Recovery Facility:

- AREA | DBD=
- CAGRP=
- DBBUF=
- DBDSGRP=
- DSN3-7=
- CRCTYPE=
- DBD=
- DBDALLOC=
- DDN=
- DEDBPC=
- DEDBFCTR=
- FUNC=
- HDPC=
- ICHLQ3-7=
- ICOUT=
- PART=

Important: ICOUT=* is implied if you are requesting one image copy. If you are requesting two image copies, then ICOUT=*.1 is implied.

Example of the ADD command IC keyword:

XCFGROUP(TOIREORG)
SORTPARM(ASPREF(DR3S))
UTILGBL(IBPREF(DR31),PRPREF(DR3P),PCPROCNM(FRXPATH0),PCJOBNM(DR3C))
REPORT(RPTTYPE=APP,DRFUNIT=SYSDA,DRFHLQ=hlq)
DRFIAX(FRXJCLIP)
LIU@GOPT(1xxx)
DBDSN101(%P(duphlq))
DBDSL101(DISP(NEW),STGC(storclas),VOL(volser))
ADD DB(HIDAM1) DBATRB(DBDSL(101),DBDSN(101)),-
 IC (ICHLQ(ichlq),SPACE(CYL,3,1),ICNMRULE(Y),ICCAT(Y),-
 DSN1TYPE(BASIC),COMP(N),-
 STORCLAS(storcl),MGMTCLAS(mgmtcl),DATACLAS(datacl),UNIT(unit)) -
START ERROR(CONT) DBRCMD(GLOBAL) STACMD(GLOBAL) READNUM(5)
ADD PC() syntax for invoking IMS High Performance Pointer Checker
and IMS High Performance Fast Path Utilities

The pointer checker parameters for the IMS High Performance Pointer Checker
and IMS High Performance Fast Path Utilities that can be specified on the ADD
command are described here.

ADD PC() command parameters

Any parameters specified on the ADD command override those parameters that
were specified on the UTILGBL() control statement. There are also parameters for
this auxiliary utility that can only be specified on the UTILGBL() control statement.
For a list and description of those parameters, refer to the Utility control statement
syntax on page 51.

Syntax for ADD PC() command

The basic format of the ADD command is described in "Parameters for ADD
command" on page 90. This section shows the syntax for those parameters that
are associated with the IMS High Performance Pointer Checker and IMS High
Performance Fast Path Utilities usage.

```
ADD PC( T2CHK( t2len, t2num ), )
      YES BITMAP( NO ),
      NO BYPASSCIC( YES ),
      YES DIAG( YES ),
      fmt DUMPFORM( UNFORMAT ),
      YES FABASNAP( NO ),
      YES FSEMAP( NO ),
      DATASET INTERVAL( BITMAP ),
      BLOCK( nn )
      YES INTFS( NO ),
      YES INTST( NO ),
      NO MAXFSD( NO ),
      PRIMEDB( dbdname ),
      NO PRINTDATA( YES ),
      YES RUNTM( NO ),
      NO SSPCHECK( NO )
```

The use of the PC() keyword on the ADD command indicates that the pointer
checker function of either IMS High Performance Pointer Checker or IMS High
Performance Fast Path Utilities can be run for your recovered database data sets.
This processing is limited to the single-step hash-pointer checking feature. Therefore, many of the keyword values for these products are assigned by IMS Database Recovery Facility, as implied by this limited function, and passed to the products. Note also that because the databases to be pointer checked are identified on the ADD DB control statement, the pointer checker products always use dynamic allocation for their data sets, and thus no DD Names are required in the JCL.

The following parameters are available for your use with the **ADD** command:

- **PC**

The following options are from the pointer checker PROC command in the PROCCTL SYSIN control statements and are fixed from the IMS Database Recovery Facility perspective. They are passed with the following default values:

- **TYPE=ALL**
- **DBORG=ALL**
- **HASH=FORCE**
- **EPSCHK=NO**
- **IXKEYCHK=NO**
- **SEP=NO**
- **VLSSUMM=NO**
- **CHECK=(CHK,111111)**
- **CHECKREC=NO**

The following options are from the pointer checker OPTIONS command in the PROCCTL SYSIN control statements. Some of the options are fixed values and others modifiable.

- **T2CHK=** specification allowed, see the following list for options.
- **DIAG=** specification allowed, see the following list for options.
- **DUMPFORM=** specification allowed, see the following list for options.
- **PRINTDATA=** specification allowed, see the following list for options.
- **INTERVAL=** specification allowed, see the following list for options.
- **ERRLIMIT=NO**
- **KEYSIN=NO**
- **HISTORY=NO**
- **HOMECHK=NO**
- **INCORE=NO**
- **ZEROCTR=NO**
- **SPXCHK=NO**
- **PRTCHK=YES**
- **DIAGDUMP=FIRST100**

Note:

The PC options that are listed in this keyword description and listed in the syntax diagram are described in more detail in the *IMS High Performance Pointer Checker for z/OS User’s Guide*.

Note: For HALDB databases, neither the primary index nor the secondary index is checked by the pointer checker through IMS Index Builder.
Here are the modifiable options from the pointer checker OPTIONS command in the PROCCTL SYSIN control statements:

T2CHK(t2len,t2num)

Use the T2CHK parameter to ignore the short and known T2 errors that are not actual errors in HISAM, HDAM, HIDAM, PHDAM, and PHIDAM databases. This parameter requires the following values:

- **t2len**
 - The minimum T2 record length to be reported (for HDAM, HIDAM, PHDAM, and PHIDAM).
 - The T2 records whose lengths are shorter than the specified minimum value are not to be reported. This setting allows you to ignore short T2s that might not be actual errors.

- **t2num**
 - The maximum number of T2 records not to be reported (for HISAM, HDAM, HIDAM, PHDAM, and PHIDAM).
 - By specifying a T2 record threshold value for this specification, the known T2 records are not reported. This setting allows you to ignore known T2s that might not be actual errors, but are reported until the database is reorganized.

BITMAP(YES | NO)

This parameter specifies whether you want to generate the Bit Map Display report for the HDAM, HIDAM, PHDAM, or PHIDAM database.

- **YES**
 - The report is generated. This is the default value.

- **NO**
 - The report is not generated.

BYPASSCIC(YES | NO)

This parameter specifies whether you want to bypass IMS High Performance Pointer Checker hash checking, when OUTPUT(ICR) is specified and the image copy that is created is concurrent. This parameter is ignored if OUTPUT(ICR) is not specified or if IMS High Performance Pointer Checker is not requested.

- **YES**
 - The IMS High Performance Pointer Checker processing is bypassed.

- **NO**
 - The IMS High Performance Pointer Checker is not bypassed. This is the default value.

DIAG(NO | YES)

This parameter specifies whether you want to print dumps of some internal control blocks.

- **NO**
 - No dump of the internal control blocks is printed. This is the default value.

- **YES**
 - The dumps of some internal control blocks are printed.

DUMPFORM(UNFORMAT | FORMAT)

This parameter specifies the dump format that you want to print block dumps with.

This parameter can be specified when DIAGDUMP=FIRST100 in the OPTION is also specified. This parameter can be specified with any TYPE= specification.
FORMAT
This parameter specifies that the formatted dumps are to be printed. FORMAT is the default value.

UNFORMAT
This parameter specifies that the unformatted dumps are to be printed.

PRINTDATA(NO | YES)
This parameter specifies whether you want to print the pointer data that is extracted by the program. If you specify YES, you might get a large report that is of little use.

Attention: Use this parameter for debugging purposes only.

NO Any extracted pointer data is not printed. NO is the default value.

YES The extracted pointer data is printed.

INTERVAL(DATASET | BITMAP | BLOCK(nn))
This parameter specifies whether you want to define the interval at which the Interval Statistics report and the Interval Free Space Summary report are produced.

This parameter can be specified when INTFS=YES or INTST=YES is specified on the REPORT statement. This parameter is effective only for HDAM, HIDAM, PHDAM, or PHIDAM databases.

DATASET
The reports are produced for the entire database data set only once. DATASET is the default value.

BITMAP
The reports are produced each time a bitmap block is processed.

BLOCK(nn)
The number that is represented by nn multiplied by 100 is the number of blocks that is processed between statistics intervals. To code this field, you must include two integer digits. Use leading zeros, if necessary.

The following options are from the pointer checker REPORT command in the PROCCTL SYSIN control statements. Some of the options are fixed values and others modifiable.

- RUNTM= specification allowed, see the following list for options.
- INTST= specification allowed, see the following list for options.
- BITMAP= specification allowed, see the following list for options.
- FSEMAP= specification allowed, see the following list for options.
- MAXFSD= specification allowed, see the following list for options.
- INTFS= specification allowed, see the following list for options.
- DBDIST=NO
- CHAINDIST=NO
- DECODEDBD=NO
- MAPDBD=NO
- COMPFACT=NO
- SEGIO=NO

Here are the modifiable options from the pointer checker REPORT command in the PROCCTL SYSIN control statements:
RUNTM(YES | NO)
This parameter specifies whether you want to generate the separator page for DB/DSG reports with Run Time Option.

YES The report is generated. YES is the default value.
NO The report is not generated.

INTST(YES | NO)
This parameter specifies whether you want to generate the Interval Statistics report for the HDAM, HIDAM, PHDAM, or PHIDAM database. The report is produced each time an interval is processed; the information in the report is added to the next report. For example, the fourth report includes all of the information that is in the first, second, third, and fourth reports.

YES The report is generated. YES is the default value.
NO The report is not generated.

BITMAP(YES | NO)
This parameter specifies whether you want to generate the Bit Map Display report for the HDAM, HIDAM, PHDAM, or PHIDAM database.

YES The report is generated. This is the default value.
NO The report is not generated.

FSEMAP(YES | NO)
This parameter specifies whether you want to generate the Free Space Map report for the HDAM, HIDAM, PHDAM, or PHIDAM database.

YES The report is generated. YES is the default value.
NO The report is not generated.

INTFS(YES | NO)
This parameter specifies whether you want to generate the Interval Free Space Summary report for the HDAM, HIDAM, PHDAM, or PHIDAM database. The report is produced each time an interval is processed, and the information in the report is added to the next report. For example, the fourth report includes all of the information that is in the first, second, third, and fourth reports.

YES The report is generated. YES is the default value.
NO The report is not generated.

Note: Occasionally, the allocation size of the report data set created by the utility is too small to contain the complete report. This might cause a B37 (data set space) abend in one of the IMS Database Recovery Facility subordinate address spaces.
You can change the report options on the PC keyword so that smaller reports are written and you avert B37 abends. To reduce the size of the VALIDPRT report, specify PRINTDATA(NO). To reduce the size of the STATIPRT report, specify NO for all the following options:

- RUNTM=
- INTST=
- BITMAP=
- FSEMAP=
- MAXFSD=
- INTFS

The following options are from the pointer checker DATABASE command on the PROCCTL SYSIN control statements. Some of the options are fixed values and others modifiable.

- DATABASE=REAL
- OVERFLOW= specification allowed, see the following list for options.
- PRIMEDB= specification allowed, see the following list for options.

Here are the modifiable options from the pointer checker DATABASE command on the PROCCTL SYSIN control statements:

OVERFLOW(*ddname*)

Specifies the DDname (as coded in your DBD) of the ESDS or OSAM part of the HISAM data set group, or the index database to be processed.

The OVERFLOW keyword has the following restrictions on the RECOVER ADD command:

1. It can be specified with only a single database entry inside the DB keyword
2. It can be specified with multiple database data set entries inside the DBDS keyword
3. It cannot be specified with any of the group keywords, CAGRP, DBDSGRP, or RECOVGRP.

PRIMEDB(*dbdname*)

Specifies the DBDname of the primary database indexed by the HIDAM index or the secondary index database to be processed.

The PRIMEDB keyword has the following restrictions on the RECOVER ADD command:

1. It can be specified with only a single database entry inside the DB keyword
2. It can be specified with multiple database data set entries inside the DBDS keyword
3. For full-function databases, it can be specified with any of the group keywords (CAGRP, DBDSGRP, RECOVGRP), but you must ensure that PRIMEDB is applicable to every database in the group, otherwise IMS High Performance Pointer Checker fails. For Fast Path databases, PRIMEDB is ignored for the group.

FABASNAP(YES | NO)

This parameter specifies whether the FABASNAP report is generated when DEDB Pointer Checker is used.

YES The report is generated. YES is the default value.
The report is not generated.

The following options are not allowed:

- DB=
- PART=
- DD=

The following options are passed to the IMS High Performance Fast Path Utilities when invoking the IMS High Performance Pointer Checker.

- SSPCHECK=

These are the options for which you can specify different values from the preceding list:

SSPCHECK(YES | NO)

This parameter specifies whether you want to perform subset pointer checking during the hash check process.

- YES Subset pointer checking is performed.
- NO Subset pointer checking is not performed. NO is the default value.

Example of the ADD command PC keyword:

The following example instructs IMS Database Recovery Facility to perform pointer checking by using IMS High Performance Pointer Checker with diagnosis and dump formatting.

```
ADD DB(PAYROLL)
  PC(INTERVAL(DATASET),RUNTM(NO),INTST(YES),BITMAP(YES),
  FSEMAP(YES),MAXFSD(NO),INTFS(NO),FABASNAP(NO))
```

The following reports are generated:

- Interval Statistics Report
- Bit Map Display Report
- Free Space Element Map Report
Chapter 8. DBRC commands for database recovery

These topics discuss some of the IMS DBRC commands that can be useful when using the IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility.

Topics:
- “Using the INIT.DBDSGRP command”
- “Using the CHANGE.DBDSGRP command”
- “Using the LIST.DBDSGRP command” on page 132
- “Using the NOTIFY.RECOV command” on page 132

Using the INIT.DBDSGRP command

IMS provides the keyword, RECOVGRP for the INIT.DBDSGRP DBRC command. The RECOVGRP indicates that a database group is a recovery group.

A recovery group is a group of full-function databases, HALDB partitions, or DEDB areas that you consider to be related for recovery purposes. If you use the IMS Database Recovery Facility to perform a time stamp recovery (TSR) on any member of a group, you must recover all the members of the group to an equivalent time.

In the following example, a group of DBDSs is defined:

```
//INITDBGRP JOB
//S01 EXEC PGM=DSPURX00,...
.
.
.
//SYSIN DD *
INIT.DBDSGRP GRPNAME(DBDSG1) - RECOVGRP(DB1, DB2, DB3)
/*
```

Using the CHANGE.DBDSGRP command

IMS provides the parameters, ADDRECOV and DELRECOV for the CHANGE.DBDSGRP DBRC command.

Use ADDRECOV to identify one or more full-function databases, HALDB partitions, and DEDB areas to add to a recovery group.

Use DELRECOV to identify one or more full-function databases, HALDB partitions, and DEDB areas to delete from a recovery group.

In the following example, the first CHANGE.DBDSGRP command adds members to the recovery group and the second command deletes members from the recovery group:

```
//CHANGEG1 JOB
//S01 EXEC PGM=DSPURX00,...
.
.
```
Using the LIST.DBDSGRP command

Use the DBRC LIST.DBDSGRP command to display the recovery group for a database.

In the following example, the members of a specified DBDS group are displayed:

```
//LISTDBGP JOB
//S01 EXEC PGM=DSPURX00,...
.
.
.
//SYSIN DD *
LIST.DBDSGRP GRPNAME(DBDSG1)
/*
```

Using the NOTIFY.RECOV command

Use the DBRC NOTIFY.RECOV command to add information about recovery of a specified DBDS or DEDB area to the RECON data set.

NOTIFY.RECOV provides an optional parameter called point-in-time recovery (PITR) on the NOTIFY.RECOV DBRC command. If you use the PITR parameter, you must also use the RCVTIME parameter.

In the following example, information about recovery of a specified DBDS will be added to the RECON data set.

- The RUNTIME parameter specifies the time stamp of the recovery of the DBDS.
- The RCVTIME parameter specifies the time stamp to which the specified DBDS was recovered. The PITR parameter specifies a point-in-time recovery.

```
//NFYRECOV JOB
//S01 EXEC PGM=DSPURX00,...
.
.
.
//SYSIN DD *
NOTIFY.RECOV DBD(DB1) DDN(DDN1)-
  RUNTIME(032671015366)-
  RCVTIME(032670905297)-
PITR
/*
```

Note: The NOTIFY.RECOV command does not need to be used when performing database recoveries using IMS Database Recovery Facility. Recovery information will be updated after successful recovery.
Chapter 9. Performing a database recovery

These topics describe the steps required to perform a database recovery using the IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility.

These topics do not describe all features, but are meant to provide a basic understanding of the IMS Database Recovery Facility recovery process.

Topics:
- “1. Defining recovery scope” on page 135
- “2. Taking databases offline” on page 136
- “3. Building a recovery list” on page 136
- “4. Defining physical data sets” on page 136
- “5. Starting recovery” on page 137
- “6. Using integrated auxiliary utility processing” on page 137
- “7. Performing post-recovery activities” on page 139

1. Defining recovery scope

The first step in the recovery process is to define the scope of recovery.

This step is important because it allows you to clearly define which database data sets are recovered and under what conditions.

The IMS Database Recovery Facility obtains the definition of the following data sets from DBRC and the system catalog. Access to these data sets is obtained through dynamic allocation. These data sets are not specified in the IMS Database Recovery Facility JCL:

- Log data sets
- Change accumulation data sets
- Image copy data sets
- Database data sets
- Area data sets

Your use of IMS Database Recovery Facility to recover full-function databases, HALDB partitions, and DEDB areas depends upon recovery information that is recorded in the RECON data sets. Specify the database data sets you need to recover by using the ADD command and its keyword parameters. On the ADD command, you can specify:

- Database data sets or areas
- Databases (you can specify both full-function or DEDB on the same command)
- One of the following groups as defined in RECON:
 - CAGRP (change accumulation groups)
 - DBDSGRP (database data set groups)
 - RECOVGRP (recovery groups)
Full function databases

For full function databases, most recoveries include all of the related databases. These could be IMS logically-related databases, primary indexes, and secondary indexes.

If the IMS Database Recovery Facility has dependencies between updates to different databases, you can also include these in the recovery process. Many installations use DBDS groups to predefine sets of related databases.

Fast Path areas

You can recover a Fast Path area independently of the other areas. Multiple areas can be recovered concurrently.

You can recover a single area while the rest of the areas remain available for online processing.

HALDB

A HALDB (high availability large database) is a partitioned database. You can recover each partition independent of the others. You can recover the entire database with individual database data sets being recovered concurrently for all partitions.

If you only need to recover one partition, the other partitions can remain available for application processing.

Individual database or database data set

You can use the IMS Database Recovery Facility to recover any database data set, group, or area that can be recovered by the IMS Database Recovery utility.

RECON groups

The IMS Database Recovery Facility can use any of these database groups that are defined in the RECON data set:

- DBDSGRP (database data set group)
- CAGRP (change accumulation group)
- RECOVGRP (recovery group)

If you issue the `RECOVER` command with a group name, every database data set included in the group is recovered. If you include multiple groups in the recovery list, a DBDS is included only once.

DBD names

Using the primary DBD name causes all database data sets within all partitions of the primary database to be included in the recovery. Using the partition name causes only those database data sets in that partition to be included in the recovery.

Neither of these usage scenarios will include a primary index or ILE data set in the recovery, nor will primary indexes or ILE data sets need to be rebuilt until either a media failure has occurred or time stamp recovery is performed.

If a media failure occurs or you perform a time stamp recovery, you must rebuild the primary indexes or ILE data sets from the primary data sets. Use the Index/ILDS Rebuild utility (DFSPREC0) to do so.

Secondary indexes

Using the secondary index DBD name causes the recovery of the entire secondary index database if it is recoverable. If the secondary index database is partitioned, you can use the partition name to recover only that partition.

Unless a secondary index is partitioned to match the partitioning of the target database, the secondary index will have target segments in more than one partition of the main database.
Use time stamp recovery on the target database and the secondary index database with care to ensure the integrity of the indirect pointers.

Recovery group

You can use recovery groups to define a complete set of databases to be recovered together.

The IMS Database Recovery Facility indicates when a recovery is completed for one of the DBDSs within the group, if all of the other DBDSs within the group were also recovered within the same the IMS Database Recovery Facility recovery list.

Nonrecoverable databases

You cannot recover databases that are marked as nonrecoverable in the RECON with the IMS Database Recovery Facility unless an image copy for the DBDs in the database is registered in the RECON data set.

Then you can use the IMS Database Recovery Facility to recover the image copy, including the secondary indexes.

You can use the IMS Database Recovery Facility to ensure that the databases comprising the predefined group of databases, called a recovery group, have been consistently recovered.

2. Taking databases offline

In order to recover databases with the IMS Database Recovery Facility, you must first take the databases offline.

Ensure that the following conditions are met:

- Ensure that the databases are not authorized to any subsystem.
- Ensure that the databases, area, or partition are in a stopped state because of a **DBR** command or the normal stop of an IMS subsystem.
- Ensure that all of the OLDSs containing data for the recovery are archived. If the database was online to more than one IMS system, all archive jobs must complete before can recover the database.

By using the DBRCMD keyword on the START command, you indicate that the IMS Database Recovery Facility will issue the /DBR commands necessary to being all databases in the recovery list offline.

You can specify the DBRCMD parameter on the START command in order to allow the IMS Database Recovery Facility to take all databases in the recovery list offline. You can also do this manually by using these commands.

You can take the database offline by issuing the IMS **DBR DB** command, as shown in the following example:

```
/DBR DB xxx
```

You can take a DEDB area offline by issuing the IMS **DBR AREA** command, as shown in the following example:

```
/DBR AREA xxxx
```

If you use the primary name in the **DBR** command for the database, it must be started. You must issue a separate **DBR** command for each partition that is to be recovered, as shown in the following example:

```
/DBR DB partition name
```
You can specify a database group name in the `DBR DATAGROUP` command to identify the list of databases that must be taken offline before recovery.

If a HALDB needs recovery, you can create a database group containing all the HALDB partitions to allow a single operand on the `DBR` command as in the following example:

```
/DBR DATAGROUP groupname
```

3. Building a recovery list

Use the `ADD` and `REMOVE` commands to build and manipulate your list of data sets to be recovered.

Although multiple `ADD` and `REMOVE` control statements can be used with `SYSIN`, only a single recovery list is created.

Defining the scope of the recovery means determining:

- Which databases, areas, partitions, and database groups need to be recovered
- Which kind of recovery is to be run:
 - Full recovery
 - Time stamp recovery
 - Point-in-time recovery
- The type of checking to be done:
 - Ensure that an entire recovery group is recovered
 - No checking is done

4. Defining physical data sets

You can automatically delete and redefine database data sets as part of the recovery process by using data set definitions from either the original data set characteristics or the environmental control statement data set characteristics specification. You should first try to use the original data set characteristics to do so.

Use `DISP(OLD | NEW)` on the `DBDSLnnn` keyword to identify whether your database data sets will be deleted and redefined. Use the `DATRB()` keyword on the `ADD` command to specify the attributes for deleting and redefining database data sets.

If you do not want to use automatic `DELETE` and `DEFINE`, but you do not want to reallocate data sets, you must delete and define physical data sets outside of IMS Database Recovery Facility.

When you do not need to change the data set attributes or location for OSAM data sets, those data sets can simply be overwritten without your having to be delete and reallocate them.

The IMS Database Recovery Facility uses the VSAM REUSE parameter when you specify the `DEFINE CLUSTER` command. If the database has been allocated with the VSAM REUSE parameter on the `DEFINE CLUSTER` command, the physical data sets need not be empty in order for the recovery to work.

For VSAM data sets, if you want recovery to run without deleting and redefining the VSAM clusters, you must specify the REUSE parameter.
There are many reasons that you might want to reallocate data sets. For example:

- Changing SPACE parameters
- Changing VOLUME parameters
- Changing FREESPACE parameters

You also need to delete and reallocate if you want to change any of the physical characteristics of the data sets.

5. Starting recovery

References to information on starting the recovery process by using IMS Database Recovery Facility are described here.

Staring recovery with the IMS Database Recovery Facility is described in detail in:

- [Chapter 6, “Using the IMS Database Recovery Facility basic product,” on page 89](#)

6. Using integrated auxiliary utility processing

IMS Database Recovery Facility has a one-button recovery solution that allows you to define recovery and post-recovery tasks and to submit one job to perform these tasks.

Integrated auxiliary utility processing allows you to use the DB Control Suite interface or batch JCL and control statements to tell IMS Database Recovery Facility that the following four processes (or a combination of them) are to be performed as part of the database recovery, rather than being performing in separate job steps after the recovery is complete:

- Image Copy generation by using IMS High Performance Image Copy
- Hash Pointer Checking for a Full Function DBDS using IMS High Performance Pointer Checker or for a Fast Path DEDB by using IMS Fast Path Basic Tools - DEDB Pointer Checker
- For HALDB, after recovery completes, prime index (PHIDAM) is rebuilt for each partition recovered by IMS Database Recovery Facility using DFSPREC0 (which is a part of the IMS base product)
- Full Function primary index rebuild, and HALDB or Full Function secondary index rebuild using IMS Index Builder
- Fast Path secondary index rebuild using the Build Index function of FPA

For example, an IC\((\text{options})\) keyword is added to the IMS Database Recovery Facility ADD control statement indicating that an image copy of the database is to be performed as the database is being recovered. IMS Database Recovery Facility is responsible for communicating to IMS HP Image Copy all the data sets and options necessary to create image copies.

Invoke integrated auxiliary processing by supplying control cards in the SYSIN DD statement and by supplying the appropriate DDNAMEs in the IMS Database Recovery Facility primary and subordinate address space procedures.
IMS Database Recovery Facility calling IMS High Performance Image Copy

Use the IMS Database Recovery Facility **ADD** control statement IC keyword to indicate that the image copy function is required which will result in an IC of the recovered DBDS or of each of the DBDSs in a group (CAGROUP or RECOVGRP).

Only IMS HP Image Copy output is generated.

The following output is not generated:
- IMS Standard Image Copy Utility output
- IMS Online Image Copy Utility output
- IMS Image Copy 2 Utility output
- IMS HPIC Flash Copy output

IMS Database Recovery Facility calling IMS High Performance Pointer Checker

Use the IMS Database Recovery Facility **ADD** control statement PC keyword to indicate that you require the single step hash pointer checking function.

HALDB primary indexes and ILDS’ are not hash checked by IMS Database Recovery Facility because IMS HP Change Accumulation Utility does not allow for hash pointer checking on HALDB primary indexes and ILDSs. Therefore, IMS HP Change Accumulation Utility is not called for primary indexes and ILDSs after DFSPREC0 rebuilds them.

If you want pointer checking by IMS HP Change Accumulation Utility done, ensure that all logically-related data sets are available to IMS Database Recovery Facility by specifying the PC() keyword on the corresponding **ADD** commands.

If the logically-related data sets are not available, then IMS HP Change Accumulation Utility returns multiple pointer errors to the IMS Database Recovery Facility primary address space. This can be acceptable if, for example, you only want the Free Space Report from IMS HP Change Accumulation Utility.

IMS Database Recovery Facility calling IB or DFSPREC0

Use the IMS Database Recovery Facility **ADD** control statement IB keyword to indicate that the Build Index function is required.

For primary and secondary indexes, index build processing is run after the database has been recovered because the entire database is required in order to build the indexes. Index build (IB) processing cannot occur while each individual data set in the database is being recovered.

For HALDB databases, IB processing consists of first calling DFSPREC0 to rebuild the prime index and/or the ILDS. For Full Function databases, IB is called to rebuild both the prime and the secondary indexes. For Fast Path DEDB databases, the Build Index function of FPA is called to build secondary indexes.

You need only rebuild indexes if the media containing the index fails or if a database is recovered to a particular time stamp (either PITR or non-PITR). This means that index data sets do not need to be rebuilt for all recoveries.
Index data sets are available to be image copied only if the index data sets are marked recoverable in the RECON. Image copies are not taken of index data sets that are marked non-recoverable.

Message and report output handling

Write to Operator (WTO) messages generated by IMS Index Builder, DFSPREC0, IMS High Performance Image Copy, IMS High Performance Pointer Checker, DEDB Pointer Checker, and the Build Index function of FPA in the subordinate address spaces are collected from the IMS Database Recovery Facility master address space.

If `REPORT(SEP)` is specified, then all messages from utilities run in IMS Database Recovery Facility subordinate address spaces are written to `FRXWTO` in the IMS Database Recovery Facility master address space.

Both the `REPORT` and `FRXWTO` files in the IMS Database Recovery Facility master address space separate the messages by `DBDname` and `DD areaname` and also indicate the job name of the IMS Database Recovery Facility subordinate address space that created them.

IMS Database Recovery Facility gathers all utilities' reports from the IMS Database Recovery Facility subordinate address spaces in the IMS Database Recovery Facility master address space and distributes them as you request.

The reports are written to various output DDs in the master address space so that you can distinguish between IMS Database Recovery Facility and auxiliary utility report output.

The standard utility report DD names are added to the master address space JCL to contain any separate report data.

The IMS Database Recovery Facility `REPORT` file indicates which auxiliary processes were requested and driven.

Tip: You can specify DD `DUMMY` to suppress the IMS High Performance Pointer Checker reports and get only a return code only if there are pointer errors.

For example:

```bash
//* HPPC reports
//PRIMAPRT DD DUMMY
//EVALUPRT DD DUMMY
//SUMMARY DD DUMMY
//STATIPRT DD DUMMY
//VALIDPRT DD DUMMY
//SNAPPIT DD DUMMY
//*
//* DEDBPC reports
//FABARPRT DD DUMMY
//FABAMSG DD DUMMY
//FABASNAP DD DUMMY
```

7. Performing post-recovery activities

You might not want IMS Database Recovery Facility to call the tools and utilities required for post-recovery.

After you run recovery with the IMS Database Recovery Facility, you might need to perform the activities described in the following list.
• Rebuild HALDB data sets.
 After a time stamp recovery, you must rebuild the ILDS data sets and a PHIDAM primary index data set. Use the HALDB Index/ILDS Rebuild Utility (DFSPREC0) to do so.
 If you have already run a full recovery on the ILDS and index data sets, you need not perform the rebuild. This can be done as part of recovery by using the IB keyword on the ADD statement.

• Rebuild index data sets.
 Index data sets can be either recoverable or nonrecoverable. You can recover the recoverable index data sets as part of the IMS Database Recovery Facility recovery process by adding them to the recovery list. Alternatively, you can rebuild them after recovery is complete with an index rebuild utility.
 You might need to rebuild nonrecoverable index data sets. If you have performed a time stamp recovery, you must rebuild the index data sets.
 If you have not performed a time stamp recovery and if the media that the index data sets are on did not experience a failure, then you might not need to rebuild the index data sets. Rebuilding index data set can be done by using the IB keyword on the ADD statement.

• Run pointer checker.
 Optionally, you can ensure that the recovery has completed its specific task by running a pointer checker to validate the internal IMS pointers.
 If you normally run a pointer checker in the image copy process, then you might be able to omit this step.
 You can run the pointer checker function by specifying the PC keyword on the ADD statement.

• Run image copies.
 Running an image copy for those databases which have just been recovered resets the recovery point and averts the need for a more complicated recovery, if one is needed in the near future.
 If you used PITR on a time stamp recovery, the IMAGE COPY NEEDED flag has been set on. The databases will not be available to authorize for update processing until the image copy is done.

Note: Resetting the IMAGE COPY NEEDED flag after a PITR recovery is not recommended because the PITR recovery processed only some records on a log file and subsequent recoveries will not manage those log files correctly. You can run the image copy function by using IMS High Performance Image Copy by specifying the IC keyword on the ADD statement.
Part 4. Administering IMS Database Recovery Facility

These topics provide information you need in order to administer the IMS Database Recovery Facility, and to manage performance and time stamp recovery.

- Administering IMS Database Recovery Facility
- Managing performance
- Time stamp recovery management
Chapter 10. Administering IMS Database Recovery Facility

These topics provide information you need in order to administer the IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility.

Administration tasks include managing inputs, outputs, environment, performance, and recovery points.

Topics:
- “Administering databases”
- “Managing sources of input”
- “Managing output” on page 146
- “Managing the environment” on page 147

Administering databases

These topics describe the tasks that are required to administer IMS Database Recovery Facility databases.

As the person responsible for administering databases, you must regulate the following tasks:

Managing inputs:
Ensure that log, change accumulation, and image copy data sets are available.

Managing outputs:
Ensure that database recovery tools are capable of:
- Performing an image copy of a database while it is being recovered.
- Performing an ICR (incremental image copy), in which an updated image copy data set is generated from a previous image copy data set.

Managing the environment:
- Provide new JCL and PROCLIB members to run the IMS Database Recovery Facility.
 - Optional: Delete and redefine data sets before you run the IMS Database Recovery Facility.
 Specifying `DBDSLmmm (DISP(NEW))` causes database data sets and area data sets to be deleted and redefined as part of the recovery process.
 The person that administers databases typically establishes procedures to control deleting and redefining data sets.

Managing performance:
Performance of each recovery depends on your execution environment at the time of the recovery.

Managing sources of input

The topics in this section discuss how you can manage the IMS Database Recovery Facility input data and control data.

Topics:
Input data sets from earlier IMS Database Recovery Facility releases

IMS Database Recovery Facility processes image copies, logs, and change accumulation input that is generated under any currently-supported IMS release.

It is also possible to have IMS Database Recovery Facility restore from image copies that are generated under prior IMS releases. This might be useful in cases where you maintain an archive of old image copies that have not yet been updated to the latest IMS release type.

In order to be able to restore from these image copies, the following conditions must be met:

- The database must be registered with DBRC.
- The image copy must be registered with DBRC.
- No logs or change accumulations can be supplied to recovery.
- No ALLOC entries can be registered under the same database that is being restored from the earlier IMS release image copy.

DBRC controls

The IMS Database Recovery Facility uses recovery information that is recorded in the RECON. Therefore, only resources that are registered to DBRC can be used for database recovery by the IMS Database Recovery Facility.

For resources that were migrated to different volumes than those registered in the RECON, DBRC determines the correct locations of the resources by doing a search of the system catalog.

DBRC restricts access to database data sets and areas that are undergoing recovery by granting exclusive authorization to IMS Database Recovery Facility.

DBRC performs the following functions for the IMS Database Recovery Facility:

- Determines the resources that are required for recovery
- Maintains the status of database data sets and areas that are being processed by the IMS Database Recovery Facility

Image copy input types

You can use standard image copy types as input to the IMS Database Recovery Facility.

These types include:

- Standard IMS image copy (both batch and concurrent image copy)
• Image copy 2 generated image copies
• Image copies that are generated by the IMS High Performance Image Copy tool
• OLIC (online image copy) data sets
• Image copies that you supply (User Image Copy)
• Restored image copies

You can stack image copies by using the SAMEDS (same data set) option of image copy 2.

Nonstandard image copy recovery

You can automatically restore any image copy type (standard or nonstandard) that is registered to DBRC as an IMS image copy.

You can recover database data sets and areas even if a nonstandard image copy, such as a UIC (user image copy), is restored. However, the nonstandard image copies are not allowed as input to the IMS Database Recovery Facility.

Recover nonstandard image copies by using the following procedure:
1. Restore the database data set or area from the nonstandard image copy.
2. Record this restore by entering a DBRC NOTIFY.RECOV command, specifying the image copy run time with the RCVTIME parameter.
3. Add the database data set or area to the recovery list by issuing the ADD statement. Specify the database data set or area by using the USEDBDS parameter.
4. Proceed with recovery by issuing a RECOVER START command or the ADD command in batch.
5. When using FASTIC=DUMP in your IMS High Performance Image Copy job, you must also specify RECFM=V in order for IMS Database Recovery Facility to restore the image copy.

Change accumulation input data sets

You can use change accumulation data sets as input to IMS Database Recovery Facility.

However, there are cases where change accumulation data sets cannot be used for recovery. For example, if there is no deallocation point between the change accumulation stop time and the recovery time, IMS Database Recovery Facility cannot use the change accumulation data set.

However, it is not necessary to first run the IMS High Performance Change Accumulation Utility before database recovery. If no acceptable change accumulation data set is found, IMS Database Recovery Facility will read and process all of the logs needed to ensure updates from all systems are included in the recovery.

Log data sets usage for recovery

IMS Database Recovery Facility uses RLDS (recovery log data sets) as input when they are available.

IMS Database Recovery Facility uses SLDS (system log data sets) as input in the following situations:
• When no RLDS is available
• In case of an error reading RLDSs
• If the log data sets are generated by an IMS release earlier than IMS Version 7

This log usage scheme minimizes the impact of recovery on other IMS activity.

Ensure that every OLDS (online log data set) that contains log records that are required for recovery is archived before you start the recovery process. If an OLDS is required for recovery but it has not been archived, recovery is not started and an error message is issued.

If an error occurs while reading the primary copy of a log data set (either RLDS or SLDS), the IMS Database Recovery Facility automatically starts reading from the secondary copy.

If errors occur reading from the copies of an RLDS, the IMS Database Recovery Facility automatically starts reading from the SLDS for the interval covering the RLDS.

Image copy frequency

The frequency with which you take database image copies affects the time needed for database recovery.

Periodically you should consider whether to increase this frequency.

Your actual time savings depends upon the amount of log data to be read.

Recovery from secondary sources

For some situations, you might want to recover a database by using only secondary image copies and log data sets.

This situation might be one where copies of your input data sets are shipped to a remote site where the databases can be reconstructed in the event of a disaster at the production site. You might also use this option if an unrecoverable I/O error occurs on the primary data set.

You can use secondary sources for the default processing mode at a location by using the SOURCE keyword with the SEC parameter in the FRXDRFxx member or in the SYSIN DD statements. If you choose the secondary source option, none of the primary image copy or log data sets are used.

In the event that you issue this form of recovery without the availability of secondary copies of the primary data sets, an FRD6022A message is issued to describe the error.

Managing output

These topics show how you can manage your IMS Database Recovery Facility output data sets.

Topics:

- "Stacked Image Copy Output" on page 147
Stacked Image Copy Output

Stacking can place two or more output image copy data sets on the same tape volume or set of tape volumes.

You can indicate to IMS Database Recovery Facility that stacking of output image copies is to be done by specifying the STACK option on the UTILGBL statement. IMS Database Recovery Facility then passes this indication on to IMS High Performance Image Copy during image copy generation.

Stacking can increase the efficiency of tape media use and decrease the number of tape volumes that are needed by allocation. However, use of the STACK option with IMS Database Recovery Facility will serialize the recovery process and might decrease the overall recovery performance.

When STACK is specified, IMS Database Recovery Facility processes all DBDSs on the stacked image copy under the same task.

Managing the environment

Requirements for managing your recovery environment include ensuring that data sets and areas that are to be recovered are defined to DBRC and are available on the system running the IMS Database Recovery Facility.

All required resources must be in the RECON, and DBDLIBs and PSBLIBs must be available.

Topics:
- “Data integrity” on page 148
- “How security is assigned” on page 148
- “Database availability during recovery” on page 148
- “Starting databases and areas” on page 148
- “DEDBs with MADS” on page 148
- “Restart considerations” on page 148
- “Auditability considerations” on page 149
- “Spill data space management” on page 149

Data integrity

Before a recovery can be performed, all database data sets in the recovery list must be brought offline. This can be done by either issuing the DBRECOVERY command, or specifying DBRCMD option on the START command.

The database data sets that are being recovered are not made available for processing by other IMS subsystems or batch jobs until the successful completion of recovery is recorded in the RECON by DBRC. It is essential that all jobs accessing database data sets and areas that are being recovered use DBRC to control access to the data sets during recovery.

If you run a time stamp recovery to any prior point in time (PITR option), the database data sets and areas are not made available for processing by other IMS subsystems or batch jobs until they are successfully image copied and the image copies are registered with DBRC.
Note: If you use time stamp forward recovery, it is strongly recommended that all related database data sets and areas be recovered to the same point in time. This recommendation includes database data sets and areas, secondary indexes, and logically related databases. Failure to comply with this recommendation can result in databases that contain inconsistent data.

How security is assigned
The IMS Database Recovery Facility requires specific RACF and security settings. For more information, see the topics on security in the IMS Recovery Solution Pack: Overview and Customization.

Database availability during recovery
The databases and areas that are being recovered are authorized exclusively to the IMS Database Recovery Facility during the recovery process, and are unavailable for any non-recovery-related IMS or batch processing until the successful completion of the recovery process.

If recovery is unsuccessful, the database data sets (and their associated databases) and areas that fail recovery are left in a recovery needed state.

Starting databases and areas
The full-function databases, HALDB partitions, and DEDB areas that have data sets on the recovery list can be started automatically on all IMS systems to which they are defined by using the STACMD parameter on the START command.

After recovery completes and if you did not select time stamp recovery with PITR, a START DB command is issued automatically if you specified STACMD(GLOBAL) parameter. However, if a point in time recovery (PITR) was performed, database data sets must first be image copied before they can be started.

DEDBs with MADS
The IMS Database Recovery Facility attempts to recover the first unavailable area data set in the area data set list.

If the area is restored from an SMS image copy that was generated by the image copy 2 utility, the area data set that is restored is the one that was dumped to create the image copy.

Note: IMS Database Recovery Facility’s recovery of MADS (multiple area data sets) differs from IMS Database Recovery Utility (DFSURDB0) processing.

The IMS Database Recovery Facility requires at least one area data set in the area data set list to be unavailable. When using DFSURDB0, the RECON recovery-needed flag must be set for recovery of MADS. When using the IMS Database Recovery Facility, this flag does not need to be set.

Restart considerations
If recovery by the IMS Database Recovery Facility is in progress when IMS abnormally ends, the IMS Database Recovery Facility is not automatically started during IMS emergency restart.

You can start recovery by using one of the following methods:
- You can initiate the IMS Database Recovery Facility in batch mode.
• You can initiate the IMS Database Recovery Facility on a different IMS.
 You must enter the DBDSs and areas again. The old recovery list cannot be
 transferred from one IMS to another.
• You can initiate the IMS Database Recovery Facility on the same IMS after
 restart completes.
 You must enter the DBDSs and areas. The old recovery list is not retained across
 restarts.
• You can use database recovery utilities other than the IMS Database Recovery
 Facility to perform recovery.

Auditability considerations
Log records are written as part of the IMS Database Recovery Facility processing in
online mode and are ignored during IMS restart because they are intended as
diagnostic aids only.

Trace entries are made to the internal trace tables of the address spaces that are
participating in the IMS Database Recovery Facility.

The trace tables are dumped in the event of IMS Database Recovery Facility
abnormal end.

Database data set and area recovery status is maintained in the RECON by DBRC.

This RECON status determines the availability of database data sets and areas to
IMS subsystems.

Spill data space management
The IMS Database Recovery Facility reads change accumulation records and holds
them in the RSS until the data is needed for the data set restore process.

If there is more data to be held than can fit in the address space, it is spilled into
one or more data spaces.

You can control the size of the data spaces that are allocated by setting SPSIZE in
the FRXDRF.xx member.

Choosing a smaller size can result in additional data spaces being allocated if the
data will not fit into the initial data space.

Smaller data space sizes can result in more efficient paging device utilization if the
amount of spill-data fits into the initial data space because data space storage
requires backing up data on paging devices.
The IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility provides improved performance over other IMS database recovery solutions.

Database recovery performance improvements result both from the design of IMS Database Recovery Facility and from your management of the database recovery operational environment.

Topics:
- “Performance improvement”
- “Control of input parallelism” on page 152
- “Virtual tape system management” on page 152
- “Tape device availability management” on page 153

Performance improvement

IMS Database Recovery Facility should provide an improvement over IMS database recovery procedures for the time that is required to recover database data sets.

This improvement is due to the following reasons:
- Log data sets that must be read to recover the set of database data sets are read in parallel.
- Multiple database data sets and areas are recovered simultaneously.
- Shared database data sets and areas do not require a change accumulation step before running the IMS Database Recovery Facility.
- Not running change accumulation before recovering shared databases can be beneficial to database recovery performance.
- Multiple processing steps are not required when using auxiliary utilities. Each database is read only once for processing by IMS Database Recovery Facility, along with IMS High Performance Pointer Checker and IMS High Performance Image Copy (if IMS HP Pointer Checker or IMS HP Image Copy was requested in batch). Processing by IMS Index Builder, the DFSPREC0 utility, or Build Index function of FPA is not included.

After the database is processed by IMS Database Recovery Facility, it is passed to two separate tasks, one for IMS HP Image Copy and one for IMS HP Pointer Checker, which run in parallel. IMS Database Recovery Facility continues processing as a third task.

Before IMS Database Recovery Facility reads the next database, it waits for completion of the other two tasks. Using this method improves performance because databases need to be read only once, not three times, and parallel processing occurs.

Performance of each recovery depends on your processing environment at the time of the recovery.

The improvement in performance depends on the following:
- The number of log data sets that are required for recovery
The number of tape drives and physical data paths that are available to the IMS Database Recovery Facility for reading data sets

The number of database data sets and areas that are being recovered

Control of input parallelism

The ability for IMS Database Recovery Facility to read multiple input devices simultaneously is called input parallelism.

You control the amount of parallelism by providing an appropriate number of input devices. You can control the number of both mountable (tape) and non-mountable (DASD) devices separately through the values specified with the READNUM parameter, or LOGNUM and ICNUM parameters, in the FRXDRFxx PROCLIB member or in the START command.

The number of input devices has a direct impact on the performance of IMS Database Recovery Facility. Use the READNUM parameter to specify the number of image copy, change accumulation, and log data sets that can be read in parallel. The time that is required for recovery of databases and areas is directly proportional to this value.

If you set the value too low for the READNUM parameter, or LOGNUM and ICNUM parameters, reading image copies and log data sets will impede recovery.

If the image copies and log data sets reside on tape, specifying a value that is too high for the READNUM parameter, or LOGNUM and ICNUM parameters, impacts the availability of tape drives for other operations during the recovery process.

You can specify the READNUM parameter as a startup parameter or as a parameter on the START command. If you do not specify the READNUM maximum number of log read tasks that are started in parallel for tape only (nnn) subparameter by one of the following methods, the system default value of 3 is used:

- As a startup parameter
- As a START statement for batch invocation

SORTPARM(NUM(xx)) also aids input parallelism by controlling the number of recovery sort subordinate address spaces that are generated. Each address space processes one IC at a time.

Note: If multiple image copies are stacked on tape, they are separated into separate groups by tape volume. Each tape volume is processed by a separate address space.

Virtual tape system management

If you manage your image copy data sets through a VTS (virtual tape server), the system automatically moves the contents of the tape data set to a temporary cache data set when the data set is allocated.

As part of its initialization IMS Database Recovery Facility can help you take advantage of the VTS by pre-allocating the image copy data sets that are required for recovery.
IMS Database Recovery Facility facilitates efficient use of the VTS by overlapping the time that is required to stage image copy data from tape to cache with the operation of reading the log data sets.

Specifying CACHE in the FRXDRFxx member initiates the preallocation of image copy data sets. You must have VTS available to take advantage of this option.

Tape device availability management

Determine how many tape devices you have available before you run your recovery job. If you are restoring from image copies that reside on separate tapes, ideally you would have enough tape devices to handle each parallel recovery task.

For example, if you have five image copies and you set up your recovery environment to start five recovery RSSs to run in parallel, you would want to have at least five tape devices available for recovery.

If you have fewer tape devices than are necessary, MVS displays an IEF238D message prompting you to reply with either the device name when it becomes available, or a cancel command for the recovery job.

If you cannot increase the number of available tape devices to match your parallel recoveries, here are two other methods to help manage your recoveries:

- You can decrease the number of RSSs that run in parallel.

 For example, if you have five image copies and only one available tape device, you might consider overriding your recovery SORT parameters with SORTPARM(NUM(1)). This forces IMS Database Recovery Facility to serialize your recovery, but because you only have one available tape device it is already serialized.

 With this method you will not have to reply with the tape device name for the IEF238D message each time.

- You can specify TAPECHK(Y).

 With a TAPECHK(Y) control statement setting, IMS Database Recovery Facility uses the value specified in READNUM or ICNUM as a way to control tape device allocations in each RSS.

 If you have five image copies, five RSSs, and only one tape device, you would specify TAPECHK(Y) and ICNUM(1,13). The number 1 in the ICNUM specification informs IMS Database Recovery Facility that only one tape device is available. That tape device is allocated to only one address space and places the other address spaces in a wait state until the device becomes available.

 However, if you specify ICNUM(2,13) erroneously when there is only one tape device available, IMS Database Recovery Facility attempts to allocate two tape devices but MVS issues message IEF238D on the second allocation attempt.

Also consider that when you restore from image copies residing on tape and expect IMS Database Recovery Facility to generate IMS High Performance Image Copy output on tape, you are using twice as many tape devices.

In this situation, IMS Database Recovery Facility requires one tape device to read the input image copy from and another tape device to generate the output image copy.
Chapter 12. Managing time stamp recovery

Time stamp recovery is the recovery of full-function databases, HALDB partitions, and DEDB areas to a specified time stamp or recovery time. The IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility supports time stamp recovery to database allocation boundaries or to any prior PITR (point-in-time recovery).

Topics:
- “Time stamp recovery without PITR”
- “Time stamp recovery with PITR”
- “RECOVGRP” on page 156
- “Time stamp recovery with PITR and UOR” on page 156
- “Time stamp recovery with PITR and database updates on multiple UOR” on page 157

Time stamp recovery without PITR

Time stamp recovery without PITR (point-in-time recovery) is described here.

At your specified recovery time, all database data sets and areas that are being recovered cannot be in use for update by any IMS job. You must issue a DBRECOVERY command from all of the online IMS systems that are using the data sets and areas, and there must have been no batch jobs updating the databases and areas. A listing of the RECON can help you to determine valid time stamps.

There must be no ALLOC record for any database data set or area that is being recovered that spans the recovery time. That is, all ALLOC records with an ALLOC time that is earlier than the recovery time must have either:
- A DEALLOC time that is also earlier than the recovery time.
- The associated PRILOG record must have a STOP time earlier than the recovery time. The associated PRILOG record is the one with a START time that is equal to the START time specified in the ALLOC record.

Time stamp recovery with PITR

This topic describes time stamp recovery with PITR (point-in-time recovery).

When you specified PITR, the database data sets and areas can have been at any allocation status in the RECON. Recovery resources must still be available only for the time stamp you specified. There is no restriction on database allocation status if you specified time stamp recovery with PITR.

In the recovery process only committed updates, up to and including the specified recovery time, are applied to the database data sets and areas in the recovery list. Change accumulation input is used under these two conditions:
1. The change accumulation data set must have a stop time before the PITR recovery time.
2. You must also ensure that the stop time does not fall within the same ALLOC / DEALLOC range that spans the recovery time.
If the IMS Database Recovery Facility cannot guarantee that the updates on a change accumulation data set are committed, it will not be used and log data sets will be used instead.

Restriction: If you selected time stamp recovery or time stamp recovery with PITR, and there is a REORG record for any database data set or area being recovered that is after the time specified on the RCVTIME parameter on the DBRC NOTIFY.RECOV command, warning message FRD6022A is issued and recovery is not performed for this data set. If you did not specify the ERRORCONT parameter on the START command, recovery is not started. This prevents recovery from using the wrong database structure.

If you selected time stamp recovery, you can also specify that you want to be notified of database data sets and areas that might be inconsistent with recovery of database data sets and areas on the recovery list.

RECOVGRP

A RECOVGRP (recovery group) is a group type in the RECON. It is a kind of database group that can be used with the IMS Database Recovery Facility and DBRC commands anywhere that a database group can be used.

RECOVGRP (recovery group) differs from a regular database group in the following ways:

- All members must be registered with DBRC.
- A member can belong to only one recovery group. If a member belongs to a recovery group, the group name is stored in the DB record for full-function or in the AAUTH record for an area.
- A member's presence in a recovery group can affect the IMS Database Recovery Facility process. When the IMS Database Recovery Facility is about to perform a time stamp recovery, either to an allocation boundary or to any point in time for a recovery group member, it ensures that all members of the recovery group are recovered in the same recovery operation unless you specified otherwise with the NOCHECK parameter.

Time stamp recovery with PITR and UOR

Time stamp recovery with PITR (point-in-time recovery) and UOR (units of recovery) is described here.

The following diagram shows time stamp recovery with PITR (point-in-time recovery) and UOR (units of recovery).
The vertical lines in this diagram represent the scope of a UOR. The top of each line is the beginning of a UOR. The bottom of each line is the end of the sync point for a UOR. For purposes of this figure, it is assumed that no other UORs have updated any of the database data set or areas on the recovery list. Updates from UORs shown are applied based on the recovery time:

- If time stamp recovery with PITR is performed with recovery time A, no updates apply to any database data set or area on the recovery list. Recovery consists of image copies being restored to the database data sets and areas on the recovery list.
- If time stamp recovery with PITR is performed with recovery time B, only updates from UOR2 apply to the database data sets and areas on the recovery list. It is the only UOR that has committed data.
- If time stamp recovery with PITR is performed with recovery time C, updates apply to the database data sets and areas on the recovery list for UOR1 and UOR2 only.
- If time stamp recovery with PITR is performed with recovery time D, updates apply to the database data sets and areas on the recovery list for UOR1, UOR2 and UOR4.

Time stamp recovery with PITR and database updates on multiple UOR

Time stamp recovery with PITR (point-in-time recovery) and database updates on multiple UOR (units of recovery) is described here.

The following diagram shows time stamp recovery with PITR (point-in-time recovery) and database updates on multiple UOR (units of recovery).
The vertical lines in this diagram represent UOR scopes for three UORs that update database data sets in common. The first entry of each line is the beginning of a UOR. The last entry of each line is the end of the sync point for that UOR. For purposes of this figure, it is assumed that no other UORs have updated any of the database data sets or areas on the recovery list. A time stamp recovery with PITR is run for databases DBa and DBb. If you did not specify the NOCHECK parameter, a message is issued that indicates that databases DBc and DBd might need to be recovered by using time stamp recovery with PITR with the original recovery time.

After a time stamp recovery with PITR completes, the databases that are marked as recoverable in the RECON and areas cannot be started (the **START** command fails) nor can they be used by IMS batch jobs until an image copy is taken for each database data set and area (the IC NEEDED flag is set ON in the RECON).

If you take a nonstandard image copy, you must set the IC NEEDED flag to OFF in the RECON by issuing the DBRC **CHANGE.DBDS** command with the ICOFF parameter. Therefore, the **STAGLOBAL** and **STALOCAL** parameters that you specified are ignored for time stamp recovery with PITR.
Part 5. Reference: IMS Database Recovery Facility

IMDb Database Recovery Facility provides resources that can be used to help you troubleshoot and diagnose IMS Database Recovery Facility problems.

The topics in this section provide you with technical references for the IMS Database Recovery Facility product:

- Sample reports
- Usage Scenarios
- Sample library
- Troubleshooting
- IMS Database Recovery Facility messages
- IMS Database Recovery Facility abend codes
- Batch condition codes
Chapter 13. Sample reports

The following topics contain examples of the types of reports which are generated by the IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility.

Topics:

- “Output report content” on page 162
- “Sample reports processing” on page 168
- “Example report: Point-in-time recovery” on page 174
- “Example report: Full point-in-time recovery” on page 178
- “Example report: Verify of the point-in-time recovery” on page 182
- “Example report: VERIFY(ALLOC) recovery” on page 186
- “Example report: VERIFY(OPEN) recovery for a point-in-time” on page 189
- “Example report: Full recovery using environment control statements” on page 189
- “Example report: Full recovery with IC() and PC() utilities” on page 193

Output report content

For the IMS Database Recovery Facility, an appropriate output report displays the results of the processing performed. This report is written to the REPORT DD data set.

The contents of the report include the following items:

- Images of each input control statement.
- List of the input commands with an indication of any syntactically incorrect statements or statements that are incorrectly placed and were, therefore, ignored.
- Summary of processing performed for each database data set, which includes:
 - Identification, type, and status of database data sets recovered or copied.
 - Number of records written to each DBDS.
 - Number of IC, CA, and log records read.

 Note: The image copy record read count is a number followed by a “T” if the image copy is restored by DFSMSdss. The count represents the number of tracks restored by DFSMSdss. Otherwise, the count represents the number of records read from a non-DFSMSdss image copy data set.

- The messages are written to the SYSPRINT DD statement of the IMS Database Recovery Facility MAS or RSS, or both, but not to the REPORT.
- Status of recovery completion provided for each item in the recovery list.
- Other report items include:
 - Number and attributes of image copy and log data sets read.
 - Destination of output: DBDS.
 - Recovery processing options in effect.
 - Number and IDs of unit of recovery (UOR) or unit of work (UOW) instances at PITR time (optional).

 Note: Inflight UOR has the same meaning as UOW
Messages related to SORT are written to the SYSOUT DD statement of the corresponding the IMS Database Recovery Facility RSSs.

The report might contain one or more sub-reports. The sub-reports correspond to the processing output created by the IMS Database Recovery Facility process. The list of sub-reports includes the following:

- Log data set activity report:
 - Number and attributes of image copy and log data sets read.
- The open UOW report for PITR processing: When you invoke a PITR, there is a possibility that there are open UOWs. The changes associated with the open UOW are not applied to the database because the changes were not committed at the recovery time. A list of the open UOW instances at the recovery time is shown in the output report generated by the IMS Database Recovery Facility as-is information after a point-in-time recovery (PITR) on inflight UORs that update data sets that are physically or logically related to the data sets being recovered.

Sample reports processing

The example reports are a result of the combined effects of several components.

- FRXDRF:xx member statements.
- The SYSIN control statements.
- Recovery processing activity.

Although the following reports have many similarities in format, note the following differences:

- PITR recoveries include a trailing “PITR Open UOW/UOR Report” following the other sections; non-PITR recoveries do not include this section.
- Recoveries specifying VERIFY contain the value “N/A” for statistics in the “Facility Summary Report,” zeros for statistics in the “Data Set I/O Report,” “No open UOWs...” in the “PITR Open UOW/UOR Report”; actual recoveries contain valid statistics in these reports.

The following is an example of the SYSPRINT output, which displays the FRXDRF:xx statements in effect when the report examples were created:

```plaintext
FRD6133I DRF STARTUP PARAMETER MEMBER FRXDRF01 SELECTED
FRD7201I READNUM(6,20)
FRD7201I SORTPARM(NUM(9),HIPRMAX(OPTIMAL),MAINSIZE(5),
  FRD7201I ASPREF(IDRF),AVGRLEN(10000),FILSZ(30000))
FRD7201I SPSIZE(1000)
```

Example report: Image copy or incremental image copy output

This report example shows the image copy or incremental image copy output.

DATABASE RECOVERY FACILITY COMMANDS/CONTROL STATEMENTS

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRD7201I</td>
<td>DBDSL101(DISP(NEW))</td>
</tr>
<tr>
<td>FRD7201I</td>
<td>OUTPUT(ICR)</td>
</tr>
<tr>
<td>FRD7201I</td>
<td>REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=DRBXAG1)</td>
</tr>
<tr>
<td>FRD7201I</td>
<td>UTILGBL(COMP=Y,DSN(&ICHLQ..&DBD..&DDN.),UNIT(3390),-)</td>
</tr>
<tr>
<td>FRD7201I</td>
<td>ICBUF(15),VOLSER(222222),COMPRTN(FABJCMP3))</td>
</tr>
<tr>
<td>FRD7201I</td>
<td>ADD DB(DEDBJN23) -</td>
</tr>
<tr>
<td>FRD7201I</td>
<td>IC(1ICHLQ(TEMP),SPACE(CYL,1,1)) -</td>
</tr>
<tr>
<td>FRD7201I</td>
<td>DBATRB(DBDSL(101))</td>
</tr>
<tr>
<td>FRD7201I</td>
<td>START ERROR(CONT)</td>
</tr>
</tbody>
</table>

DATABASE RECOVERY FACILITY RECOVERY PARAMETERS
DATABASE RECOVERY FACILITY SUMMARY REPORT

<table>
<thead>
<tr>
<th>Database</th>
<th>DD/Area</th>
<th>DSID</th>
<th>Records Read</th>
<th>Records Subord.</th>
<th>STC</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJN23</td>
<td>DB23AR0</td>
<td>1</td>
<td>180</td>
<td>0</td>
<td>1227</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR1</td>
<td>2</td>
<td>21</td>
<td>0</td>
<td>1226</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR2</td>
<td>3</td>
<td>147</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR3</td>
<td>4</td>
<td>147</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR4</td>
<td>5</td>
<td>231</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR5</td>
<td>6</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR6</td>
<td>7</td>
<td>165</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR7</td>
<td>8</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

DATABASE RECOVERY FACILITY UTILITY REPORT

<table>
<thead>
<tr>
<th>Database</th>
<th>DDN</th>
<th>Database Data Set Name</th>
<th>IC</th>
<th>PC/DP</th>
<th>IB</th>
<th>PR</th>
<th>Utility</th>
<th>Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJN23</td>
<td>DB23AR0</td>
<td>IMSTESTL.DB23AR0</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR1</td>
<td>IMSTESTL.DB23AR1</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR2</td>
<td>IMSTESTL.DB23AR2</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR3</td>
<td>IMSTESTL.DB23AR3</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR4</td>
<td>IMSTESTL.DB23AR4</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR5</td>
<td>IMSTESTL.DB23AR5</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR6</td>
<td>IMSTESTL.DB23AR6</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR7</td>
<td>IMSTESTL.DB23AR7</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

DATABASE RECOVERY FACILITY IC/ICR OUTPUT REPORT

<table>
<thead>
<tr>
<th>Database</th>
<th>DD/Area</th>
<th>IC / ICR Data Set Name</th>
<th>Compr</th>
<th>Volume</th>
<th>File</th>
<th>IC</th>
<th>IC Compr</th>
<th>Compr Compr</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJN23</td>
<td>DB23AR0</td>
<td>TEMP.DEDBJN23.DB23AR0</td>
<td>178</td>
<td>222222</td>
<td>00001</td>
<td>Con. 11.013</td>
<td>11:16:53.8 -0800 2.5 FABJCMP3</td>
<td></td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR1</td>
<td>TEMP.DEDBJN23.DB23AR1</td>
<td>19</td>
<td>222222</td>
<td>00001</td>
<td>Con. 11.013</td>
<td>11:16:53.8 -0800 13.1 FABJCMP3</td>
<td></td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR2</td>
<td>TEMP.DEDBJN23.DB23AR2</td>
<td>145</td>
<td>222222</td>
<td>00001</td>
<td>Con. 11.013</td>
<td>11:16:53.8 -0800 4.6 FABJCMP3</td>
<td></td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR3</td>
<td>TEMP.DEDBJN23.DB23AR3</td>
<td>145</td>
<td>222222</td>
<td>00001</td>
<td>Con. 11.013</td>
<td>11:16:53.8 -0800 4.6 FABJCMP3</td>
<td></td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR4</td>
<td>TEMP.DEDBJN23.DB23AR4</td>
<td>229</td>
<td>222222</td>
<td>00001</td>
<td>Con. 11.013</td>
<td>11:16:53.8 -0800 5.9 FABJCMP3</td>
<td></td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR5</td>
<td>TEMP.DEDBJN23.DB23AR5</td>
<td>97</td>
<td>222222</td>
<td>00001</td>
<td>Con. 11.013</td>
<td>11:16:53.8 -0800 8.9 FABJCMP3</td>
<td></td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR6</td>
<td>TEMP.DEDBJN23.DB23AR6</td>
<td>163</td>
<td>222222</td>
<td>00001</td>
<td>Con. 11.013</td>
<td>11:16:53.8 -0800 6.9 FABJCMP3</td>
<td></td>
</tr>
<tr>
<td>DEDBJN23</td>
<td>DB23AR7</td>
<td>TEMP.DEDBJN23.DB23AR7</td>
<td>19</td>
<td>222222</td>
<td>00001</td>
<td>Con. 11.013</td>
<td>11:16:53.8 -0800 12.6 FABJCMP3</td>
<td></td>
</tr>
</tbody>
</table>
Change Accum Data Set Name | Volume | CA DS | Read Count | STD | Time Stamp Range | Last Record
|-----------------------------|--------|-------|------------|-----|------------------|-------
| IMSYS.DEDBJN23.DB23AR5.IC.1C111250 | 222222 | 99 | STD | | |
| IMSYS.DEDBJN23.DB23AR3.IC.1C111249 | 222222 | 147 | STD | | |
| IMSYS.DEDBJN23.DB23AR4.IC.1C111249 | 222222 | 231 | STD | | |
| IMSYS.DEDBJN23.DB23AR6.IC.1C111250 | 222222 | 165 | STD | | |
| IMSYS.DEDBJN23.DB23AR7.IC.1C111250 | 222222 | 21 | STD | | |

No data available for this type data set

Log Data Set Name	Volume	Log DS	IMS	SYSD	Serial Read Count	1st Record	Last Record	Time Stamp Range	Last Record
IMSYS.RLDSP.IMSA.D11013.T1116576.V03	000000	0	IMSA					2011.013 11:17:00:048405 -02011.013 11:17:01.514320	
IMSYS.RLDSP.IMSA.D11013.T1116576.V02	000000	0	IMSA					2011.013 11:17:00:048405 -02011.013 11:17:01.514320	

Below is an explanation of the image copy or incremental image copy output example. There are 6 sections to the report:

- **COMMANDS / CONTROL STATEMENTS**

 This section displays the images of the control statements read from the SYSIN file. Six control statements were read from the SYSIN file.

- **RECOVERY PARAMETERS**

 This section lists the parameters used to direct the recovery. The recovery parameters were supplied via one of the following three mechanisms, in ascending order of selection priority:

 1. Explicitly coded in the SYSIN control statements.
 - These values can be seen in the “Control Statements” part of the report:

 PROCESS: RCVTOIC

 A TOIC-type recovery was selected.

 - This parameter was not specified. The recovery facility default parameter was used.

 SOURCE: PRI

 The primary log and image copy data sets are to be used as the source of input.

 - This parameter was not specified. The recovery facility default parameter was used.

 READNUM: 06,20

 The maximum number of devices to be used is 06. Of these, up to 20 can be tape devices.

 - The maximum number of total devices was specified in the FRXDRFxx member. The number of allowable tape devices was specified in the SYSIN control statements.

 ERROR: CONT

 Should an error be encountered on one database during recovery, processing should continue for other databases.
RCVTOKEN: DRF03
The recovery token used during recovery is “DRF03.”

DRFPROC: DRFV3
The procedure for the RSS is contained in member DRFV3 in the PROCLIB PDS.

RCVTIME: Not Specified
A recovery time was not specified.

TYPE: Full
A full recovery was requested.

CHECK: YES
A check will be performed to ensure that, should a DBDS be in a recovery group, all of the DBDSs within that recovery group need to be included in the list.

TIME FMT: LCL
Time format is local.

LBI: No
Large Block Interface processing was not requested.

LOGNUM: 06,20
The maximum number of tape drives used for reading change accumulation data sets is 6. Of these, up to 20 can be read instances which can be initiated in parallel.

OUTPUT: ICR
The output type is incremental image copy.

SPSIZE: 1024
The SPSIZE specified is 1024.

ICNUM: 06,20
The maximum number of tape drives used for reading image copy data sets is 6. Of these, the maximum number of read instances that can be initiated in parallel is 20.

TAPECHK: No
The availability status of tape devices before DBDS allocation is not checked.

CACHE: No
No image copy data sets are located on a VTS device.

SUMMARY REPORT
This section presents statistics and summarizes the results of the recovery for each of the data sets associated with each database.
The three databases included in the recovery consisted of 5 database data sets. For each of these data sets, the following information is listed:

Database Name
- The database name is listed.

DD/AREA Name
- The DD name or Area name associated with each image copy data set is listed.

DSID
- The data set ID number is listed.

Records Read
- The number of records read from the image copy, change accumulation and log data sets for application in the recovery are listed. If Flash Copy, the read count will be ‘N/A’.

Records Written
- The number of records written to the database data set is listed.

Subord. Reg Name
- The name of the started task which was responsible for sorting the records being written for the indicated data set is listed.

STC
- The started task control number.

Final Status
- The status of the conclusion of the recovery is listed.

UTILITY REPORT

Database Name
- The database name is listed.

DDN
- The DDNAME is listed.

Database Data Set Name
- The database data set name is listed.

IC
- The IMS HP Image Copy auxiliary utility return code is listed.

PC/DP
- The IMS HP Pointer Checker/IMS High Performance Change Accumulation Utility DEDB Pointer Checker auxiliary utility return code is listed.

IB
- The IMS Index Builder auxiliary utility return code is listed.

PR
- The DFSREC0 auxiliary utility return code is listed.

IC / ICR OUTPUT REPORT

Database Name
- The database name is listed.

DD/Area Name
- The DD name or Area name associated with each image copy data set is listed.

IC / ICR Data Set Name
- The output image copy or incremental image copy data set name is listed.

Compr Count
- The number of records written to the data set. If a compression routine is in use, it reflects the number of records resulting from compression.
| Volume Serial | The volume serial number upon which the data set was written. If there are multiple volumes, then there is one report line for each volume. If this is the case, the same data set name is listed on each succeeding report line. |
| File Seq. | The file sequence number for each data set. |
| IC Type | The image copy type is listed, where Bat. is for batch, Con. is for concurrent, and UIC for user image copy. |
| IC Time | The image copy time recorded in the image copy record in the RECONs. If the image copy is not registered because NOTIFY(N) was specified, then this field is left blank. |
| Compr Ratio | If an image copy compression routine is used, the compression ratio is listed. |
| Compr Routine | If an image copy compression routine is used, the name of the routine is listed. |

• **DATA SET I/O REPORT**

As was seen in earlier sections of the report, no recovery time was specified. This fact is reflected in the “Recover to Point” in this section.

The data set I/O report is divided into three sections:

1. **Image Copy Data Set Name**
 For each image copy data set used during the recovery, the following information is listed:
 - **Image Copy Data Set Name**
 The data set name is listed.
 - **Volume Serial**
 The volume or volumes upon which the data sets were found.
 - **DS Count**
 The number of records read from the data set is listed. If Flash Copy, the read count will be 'N/A'.
 - **IC Type**
 The image copy type is listed. Allowable values for this field include:
 - **STD** Standard Image Copy
 - **IC2** Image Copy 2
 - **IC EXT** Extended Image Copy
 - **HISAM UNL** HISAM Unload
 - **Time Stamp Range**
 Although this heading appears, this field has no significance for image copy data sets.

2. **Change Accum Data Set Name**
For each change Accum data set used during the recovery, the following information is listed:

Change Accum Data Set Name
The data set name is listed.

Volume Serial
The volume or volumes upon which the data sets were found.

DS Count
The number of records read from the data set is listed.

Time Stamp Range
Although this heading appears, this field has no significance for image copy data sets.

3. **Log Data Set Name**
For each log data set used during the recovery, the following information is listed:

Log Data Set Name
The data set name is listed.

Volume Serial
The volume or volumes upon which the data sets were found.

DS Count
The number of records read from the data set is listed.

IMS SYSID
The SYSID associated with the IMS which created the log is listed.

Time Stamp Range
The range of times which are covered by the log is listed. The time stamp on the first and last records in the log is listed.

PRILOG:
The PRILOG time listed in RECON for the log is listed.

The difference between the log records read and the log records applied values in the recovery report are due to the update records read that generate multiple output records. The IMS Database Recovery Facility creates multiple update records for expedited processing when certain internal conditions are recognized.

Example report: Point-in-time recovery

This report example shows the batch invocation of a PITR (point-in-time recovery).

```
FRD0000I DATABASE RECOVERY FACILITY 05/08/2005 10:19 Page 1
DATABASE RECOVERY FACILITY COMMANDS/CONTROL STATEMENTS
FRD7201I ADD DB(DIVNTZ02 DHVNTZ02 DXVNTZ02)
FRD7201I START ERROR(CONT) READNUM(20) RCVTIME('03128101651' PITR)
```

DATABASE RECOVERY FACILITY RECOVERY PARAMETERS

<table>
<thead>
<tr>
<th>PROCESS : RCVDBDS</th>
<th>RECOVERY OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE : PRI</td>
<td>RCVTIME : 2004.128 17:16:51.000000 -07:00</td>
</tr>
<tr>
<td>READNUM : 20,20</td>
<td>TYPE : PITR</td>
</tr>
<tr>
<td>ERRORD : CONT</td>
<td>LOGNUM : 20,20</td>
</tr>
<tr>
<td>RCVTOKEN : DRF</td>
<td>ICNUM : 20,20</td>
</tr>
<tr>
<td>TIME FMT: LCL</td>
<td></td>
</tr>
<tr>
<td>DRFPROC : TESTDRF</td>
<td>LBI : No</td>
</tr>
<tr>
<td></td>
<td>SPSIZE : 1000</td>
</tr>
</tbody>
</table>
Below is an explanation of the Batch Invocation of a PITR example. There are 5 sections to the report:

COMMANDS / CONTROL STATEMENTS
This section displays the images of the control statements read from the SYSIN file:
- Two control statements were read from the SYSIN file.
- Recovery was requested for three databases.
- The ERROR(CONT), READNUM(20), RCVTIME('03128101651' PITR) parameters were specified.

Note: No time zone was included in the RCVTIME; in this case, the RECTIME is assumed to be local time.

RECOVERY PARAMETERS
This section lists the parameters used to direct the recovery. The recovery parameters were supplied via one of the following three mechanisms, in ascending order of selection priority:

1. The IMS Database Recovery Facility defaults.
2. Explicitly coded in the FRXDRFxx member.
 - Although the values explicitly coded in the FRXDRFxx member do not appear in the report, these values are associated with the FRD720II messages available in the SYSPRINT output from the recovery.
3. Explicitly coded in the SYSIN control statements.
 - These values can be seen in the “Control Statements” part of the report:

 PROCESS: RCVDBDS
 A DBDS-type recovery was selected.
 - This parameter was not specified. The recovery facility default parameter was used.

 SOURCE: PRI
 The primary log and image copy data sets are to be used as the source of input for the recovery.
 - This parameter was not specified. The recovery facility default parameter was used.

 READNUM: 20, 20
 The maximum number of total devices to be used during recovery is 20. Of these, up to 20 can be tape devices.
 - The maximum number of total devices was specified in the FRXDRFxx member. The number of allowable tape devices was specified in the SYSIN control statements.

 ERROR: CONT
 Should an error be encountered on one database during recovery, processing should continue for other databases.
 - This parameter was not specified. The recovery facility default parameter was used.

 RCVTOKEN: DRF
 The recovery token used during recovery is “DRF.”
 - This parameter was not specified. The recovery token used during a batch recovery is the job name.

 RCVTIME: 2003.128 17:16:51.000000 -07:00
 A recovery time of 2003.128 17:16:51.000000 -07:00 is indicated.
 - It has been converted to UTC from the initial specification of 03128101651.

 TYPE: PITR
 A point-in-time recovery was requested.

 CHECK: YES
 A check will be performed to ensure that, should a DBDS be in a recovery group, all of the DBDSs within that recovery group need to be included in the list.
 - This parameter was not specified. The recovery facility default parameter was used.

- SUMMARY REPORT
This section presents statistics and summarizes the results of the recovery for each of the data sets associated with each database. The three databases included in the recovery consisted of 5 database data sets. For each of these data sets, the following information is listed:

Database Name
The database name is listed.

DD/AREA Name
The DD name associated with each data set is listed. In this case, all of the databases were full-function. Had any fast path databases been included, the associated Area name or names would have been listed.

DSID
The data set id number is listed.

Records Read
The number of records read from the image copy, change accumulation and log data sets for application in the recovery are listed. If Flash Copy, the read count will be 'N/A'.

Records Written
The number of records written to the database data set is listed.

Subord. Reg Name
The name of the started task which was responsible for sorting the records being written for the indicated data set is listed.

Final Status
The status of the conclusion of the recovery is listed.

DATA SET I/O REPORT
As was seen in earlier sections of the report, no recovery time was specified. This fact is reflected in the “Recover to Point” in this section.

The data set I/O report is divided into three sections:

1. **Image Copy**
 For each image copy data set used during the recovery, the following information is listed:
 - **Image Copy Data Set Name**
 The data set name is listed.
 - **Volume Serial**
 The volume or volumes upon which the data sets were found.
 - **Read Count**
 The number of records read from the data set is listed. If Flash Copy, the read count will be 'N/A'.
 - **IC Type**
 The image copy type is listed. Allowable values for this field include:
 - **STD** Standard Image Copy
 - **IC2** Image Copy 2
 - **IC EXT** Extended Image Copy
 - **HISAM UNL** HISAM Unload
2. Change Accum
For each change accum data set used during the recovery, the following information is listed:

- **Change Accum Data Set Name**
 The data set name is listed.

- **Volume Serial**
 The volume or volumes upon which the data sets were found.

- **Read Count**
 The number of records read from the data set is listed.

- **Time Stamp Range**
 Although this heading appears, this field has no significance for image copy data sets.

3. Log
For each log data set used during the recovery, the following information is listed:

- **Log Data Set Name**
 The data set name is listed.

- **Volume Serial**
 The volume or volumes upon which the data sets were found.

- **Read Count**
 The number of records read from the data set is listed.

- **IMS SYSID**
 The SYSID associated with the IMS which created the log is listed.

- **Time Stamp Range**
 The range of times which are covered by the log is listed. The time stamp on the first and last records in the log is listed.

- **PRILOG:**
 The PRILOG time listed in RECON for the log is listed.

The difference between the log records read and the log records applied values in the recovery report are due to the update records read that generate multiple output records. The IMS Database Recovery Facility creates multiple update records for expedited processing when certain internal conditions are recognized.

PITR OPEN UOW / UOR REPORT
This report includes information about PSBs for which units of work were active at the time selected for the point-in-time recovery. The PSBs might be divided into the following two categories:

- PSBs for long records were encountered signifying that a unit of work was active at the recovery time that included updates to the databases being recovered. Furthermore, because the unit of work had not reached a sync point at the recovery point in time, the log records are not applied to the database, nor are they included in the report statistics. In these cases, the report will include information identifying the databases and the active unit of recovery for this category of PSB.

- PSBs which were active scheduled at the recovery time, but for which no log records were found indicating activity related to the recovered databases in
the active unit of recovery. These PSBs are included because the IMS Database Recovery Facility cannot determine that any database activity has occurred after the point of recovery in the subject unit of recovery, or in subsequent units of recovery. In these cases, the report will include information identifying the active unit of recovery, but will not have any information for any associated databases. All columns in the report pertaining to database information will contain the value N/A.

The following information is included:

RCVTIME:

As was seen in earlier sections of the report, a point-in-time recovery was specified. The Recover to Point is listed in this section.

PSB
The PSBs are listed which contain activity related to the databases being recovered. For each PSB, there might be multiple columns, one column per database in the recovery list.

For each PSB, the following are listed:
- The 16 character Recovery Token for the PSB is listed. The recovery token consists of three subparts:
 - **Subsys**
 - The Subsystem ID.
 - **#Sched**
 - The Schedule Number for this particular PSB.
 - **#Commits**
 - The number of commits represented by this recovery token.
 - In this example, the number of commits is zero, which indicates that this recovery token represents the beginning of the program execution. Had the program taken syncpoints, the #Commits value would reflect the number of syncpoints taken.

- **Prior Chkpid**
 - The checkpoint id which is associated with the recovery token.
 - Since the recovery token represents the beginning of execution and not a syncpoint, there is no Chkpid present.

- **Time Opened**
 - This value represents the time at which this unit of recovery began.
 - In this example, Time opened represents the beginning of program execution. Had checkpoints been taken, the Time opened would indicate the time that the Prior Chkpid had been taken.

- **Duration of Open UOW**
 - This value represents the elapsed time between the Time Opened and the Recover to point time.

For each database within the PSB, the following is listed:

Database Name
- The database name is listed.

DDname
- The DDname (or Area name) associated with the database is listed.
Log Record Count

The number of log records for this database which were read, but not used as input to the recovery is listed.

Example report: Full point-in-time recovery

This report example shows the batch invocation of full PITR (point-in-time recovery) of both the production and duplicate database.
Below is an explanation of the batch invocation of full recovery example. There are 4 sections to the report:

- **COMMANDS / CONTROL STATEMENTS**
 This section displays the images of the control statements read from the SYSIN file:
 - Two control statements were read from the SYSIN file.
 - Recovery was requested for three databases.
 - The ERROR(CONT) and READNUM(20) parameters were specified.

- **RECOVERY PARAMETERS**
 This section lists the parameters used to direct the recovery. The recovery parameters were supplied through one of the following three mechanisms, in ascending order of selection priority:
 1. The IMS Database Recovery Facility defaults.
 2. Explicitly coded in the FRXDRF\textit{xx} member.
 - Although the values explicitly coded in the FRXDRF\textit{xx} member do not appear in the report, these values are associated with the FRD7201I messages available in the SYSPRINT output from the recovery.
 3. Explicitly coded in the SYSIN control statements.
 - These values can be seen in the “Control Statements” part of the report:

 PROCESS: RCVBOTH
 A DBDS-type recovery was selected.
 - This parameter was not specified. The recovery facility default parameter was used.

 SOURCE: PRI
 The primary log and image copy data sets are to be used as the source of input for the recovery.
 - This parameter was not specified. The recovery facility default parameter was used.

 READNUM: 20,20
 The maximum number of total devices to be used during recovery is 20. Of these, up to 20 can be tape devices.
 - The maximum number of total devices was specified in the FRXDRF\textit{xx} member. The number of allowable tape devices was specified in the SYSIN control statements.

 ERROR: CONT
 Should an error be encountered on one database during recovery, processing should continue for other databases.
 - This parameter was not specified. The recovery facility default parameter was used.

 RCVTOKEN: DRFI
 The recovery token used during recovery is “DRF.”
- This parameter was not specified. The recovery token used during a batch recovery is the job name.

RCVTIME: Not Specified
- A recovery time was not specified.
- There is no default for the recovery time.

TYPE: Full
- A full recovery was requested.
- This parameter was not specified. The recovery facility default parameter was used.

CHECK: Yes
- A check will be performed to ensure that, should a DBDS be in a recovery group, all of the DBDSs within that recovery group need to be included in the list.
- This parameter was not specified. The recovery facility default parameter was used.

LCLTIME: Yes
- Local time stamps will be used in messages and reports.

• **SUMMARY REPORT**

 This section presents statistics and summarizes the results of the recovery for each of the data sets associated with each database.

 The three databases included in the recovery consisted of 5 database data sets. For each of these data sets, the following information is listed:

 Database Name
 - The database name is listed.

 DD/Area Name
 - The DD name associated with each data set is listed. In this case, all of the databases were full-function. Had any fast path databases been included, the associated Area name or names would have been listed.

 DSID
 - The data set id number is listed.

 Records Read
 - The number of records read from the image copy, change accumulation, and log data sets for application in the recovery are listed. If Flash Copy, the read count will be 'N/A'.

 Records Written
 - The number of records written to the database data set is listed.

 Subord. Reg name
 - The name of the started task which was responsible for sorting the records being written for the indicated data set is listed.

 Final Status
 - The status of the conclusion of the recovery is listed.

• **DATA SET I/O REPORT**

 As was seen in earlier sections of the report, no recovery time was specified. This fact is reflected in the “Recover to Point” in this section.

 The data set I/O report is divided into three sections:

 1. **Image Copy**
 - For each image copy data set used during the recovery, the following information is listed:
Image Copy Data Set Name
The data set name is listed.

Volume Serial
The volume or volumes upon which the data sets were found.

Read Count
The number of records read from the data set is listed.

IC Type
The image copy type is listed. Allowable values for this field include:

STD Standard Image Copy
IC2 Image Copy 2
IC EXT Extended Image Copy

HISAM UNL
HISAM Unload

Time Stamp Range
Although this heading appears, this field has no significance for image copy data sets.

2. Change Accum
For each change accum data set used during the recovery, the following information is listed:

Change Accum Data Set Name
The data set name is listed.

Volume Serial
The volume or volumes upon which the data sets were found.

Read Count
The number of records read from the data set is listed. If Flash Copy, the read count will be 'N/A'.

Time Stamp Range
Although this heading appears, this field has no significance for change accumulation data sets.

3. Log
For each log data set used during the recovery, the following information is listed:

Log Data Set Name
The data set name is listed.

Volume Serial
The volume or volumes upon which the data sets were found.

Read Count
The number of records read from the data set is listed.

IMS SYSID
The SYSID associated with the IMS which created the log is listed.

Time Stamp Range
The range of times which are covered by the log is listed. The time stamp on the first and last records in the log is listed.

PRILOG:
The PRILOG time listed in RECON for the log is listed.
The difference between the log records read and the log records applied values in the recovery report are due to the update records read that generate multiple output records. The IMS Database Recovery Facility creates multiple update records for expedited processing when certain internal conditions are recognized.

Example report: Verify of the point-in-time recovery

This report example below shows batch invocation of a verify of the PITR (point-in-time recovery).

```
FRD0000I ADD DB(DHVNTZ02 DHVNTZ02 DXVNTZ02)
FRD0720I START ERROR(CONT) READNUM(20) RCVTIME('03128101651' PITR) VERIFY
```

DATABASE RECOVERY FACILITY RECOVERY PARAMETERS

```
PROCESS : VERIFY
RECOVERY OPTIONS
SOURCE : PRI
RCVTIME : 2003.128 17:16:51.000000 -07:00
READNUM : 20,20
ERROR : CONT
CHECK : Yes
RCVTOKEN : DRF
DFRFPROC : TESTDRF
LBI : No
SPSIZE : 1000
```

```
------------- Sort-Related Parameters -------------
NUM : 9
MAINSIZE: 5
AVGLEN : 10000
FILSZ : 30000
HIPMAX : OPTIMAL
ASPREF : IDRF
DYNALLOC: 3, N/A
```

DATABASE RECOVERY FACILITY SUMMARY REPORT

```
<table>
<thead>
<tr>
<th>Database</th>
<th>DD/Area</th>
<th>DSID</th>
<th>Records Read</th>
<th>Records Written</th>
<th>Subord. Reg Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHVNTZ02</td>
<td>HIDAM</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Verify list complete</td>
</tr>
<tr>
<td>DHVNTZ02</td>
<td>HIDAM2</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Verify list complete</td>
</tr>
<tr>
<td>DIVNTZ02</td>
<td>DBHVSAM1</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Verify list complete</td>
</tr>
<tr>
<td>DIVNTZ02</td>
<td>DBHVSAM2</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Verify list complete</td>
</tr>
<tr>
<td>DXVNTZ02</td>
<td>XDLBT041</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Verify list complete</td>
</tr>
</tbody>
</table>
```

DATABASE RECOVERY FACILITY DATA SET I/O REPORT

Recover to point: 2003.128 17:16:51.000000

```
Image Copy Data Set Name | Volume | IC DS | IC | Time Stamp Range |
-------------------------|--------|------|----|-----------------|
|                        |        |      |    |                 |
| IMSVS.DHVNTZ02.HIDAM.1 | 222222 | 0    | STD |                 |
| IMSVS.DHVNTZ02.HIDAM2.1| 222222 | 0    | STD |                 |
| IMSVS.DHVNTZ02.DBHVSAM1.1| 222222 | 0 | STD |                 |
| IMSVS.DHVNTZ02.DBHVSAM2.1| 222222 | 0 | STD |                 |
| IMSVS.DXVNTZ02.XDLBT041.1| 222222 | 0 | STD |                 |

Change Accum Data Set Name | Volume | CA DS | Time Stamp Range |
-------------------------|--------|------|-----------------|
|                        |        |      |                 |

No data available for this type data set

```
Log Data Set Name	Volume	Log DS	IMS	Time Stamp Range
```

178 User's Guide and Reference
Below is an explanation of the Batch Invocation of a Verify of the PITR example. There are 5 sections to the report:

- **COMMANDS / CONTROL STATEMENTS**
  This section displays the images of the control statements read from the SYSIN file.
  Two control statements were read from the SYSIN file. Recovery was requested for three databases. The ERROR(CONT), READNUM(20), RCVTIME('03128101651' PITR), VERIFY parameters were specified.

  Note: No time zone was included in the RCVTIME; in this case, the RECTIME is assumed to be local time.

- **RECOVERY PARAMETERS**
  This section lists the parameters used to direct the recovery. The recovery parameters were supplied via one of the following three mechanisms, in ascending order of selection priority:
  1. The IMS Database Recovery Facility defaults
  2. Explicitly coded in the FRXDRF member.
      - Although the values explicitly coded in the FRXDRF member do not appear in the report, these values are associated with the FRD7201I messages available in the SYSPRINT output from the recovery.
  3. Explicitly coded in the SYSIN control statements.
      - These values can be seen in the “Control Statements” part of the report:

**PROCESS: VERIFY**
A VERIFY was selected.
- This parameter was not specified. The recovery facility default parameter was used.

**SOURCE:** PRI
The primary log and image copy data sets are to be used as the source of input for the recovery.
- This parameter was not specified. The recovery facility default parameter was used.

**READNUM:** 20, 20
The maximum number of total devices to be used during recovery is 20. Of these, up to 20 can be tape devices.
- The maximum number of total devices was specified in the FRXDRF member. The number of allowable tape devices was specified in the SYSIN control statements.

**ERROR:** CONT
Should an error be encountered on one database during recovery, processing should continue for other databases.
- This parameter was not specified. The IMS Database Recovery Facility default parameter was used.
RCVTOKEN: DRF
The recovery token used during recovery is “DRF.”
- This parameter was not specified. The recovery token used
during a batch recovery is the job name.

RCVTIME: 2003.128 17:16:51.000000 -07:00
A recovery time of 2003.128 17:16:51.000000 -07:00 is indicated.
- It has been converted to UTC from the initial specification of
  03128101651.

TYPE: PITR
A PITR was requested.

CHECK: Yes
A check will be performed to ensure that, should a DBDS be in a
recovery group, all of the DBDSs within that recovery group need
to be included in the list.
- This parameter was not specified. The recovery facility default
  parameter was used.

• SUMMARY REPORT
  This section presents statistics and summarizes the results of the recovery for
each of the data sets associated with each database.
The three databases included in the recovery consisted of 5 database data sets.
For each of these data sets, the following information is listed:

  Database Name
  The database name is listed.

  DD/Area
  The DD name associated with each data set is listed. In this case, all of
  the databases were full-function. If any fast path databases had been
  included, the associated Area name or names would have been listed.

  DSID
  The data set id number is listed.

Because this invocation of the recovery is a “verify,” the image copy, change
accumulation and log data sets were never actually opened or processed.
Consequently, a value of N/A is listed for those entries which are based upon
actual data processing, such as:

Records Read
The number of records read. If Flash Copy, the read count will be ‘N/A’.

Records Written
The number of records written to the database data set is listed.

Subord. Reg Name
The name of the started task responsible sorting the records.

Final Status
The status of the conclusion of the recovery.

• DATA SET I/O REPORT
  As was seen in earlier sections of the report, no recovery time was specified.
  This fact is reflected in the “Recover to point” in this section.
The data set I/O report is divided into three sections:

1. Image Copy
   For each image copy data set used during the recovery, the following
   information is listed:
1. **Image Copy Data Set Name**
   The data set name is listed.

   **Volume Serial**
   The volume or volumes upon which the data sets were found.

   **Read Count**
   The number of records read from the data set is zero. If Flash Copy, the read count will be 'N/A'.

   **IC Type**
   The image copy type is listed. Allowable values for this field include:
   - STD Standard Image Copy
   - IC2 Image Copy 2
   - IC EXT Extended Image Copy
   - HISAM UNL HISAM Unload

   **Time Stamp Range**
   Although this heading appears, this field has no significance for image copy data sets.

2. **Change Accum**
   For each change accumulation data set used during the recovery, the following information is listed:

   **Change Accum Data Set Name**
   No change accum data sets were used.

   **Volume Serial**
   This field is intentionally blank.

   **Read Count**
   This field is intentionally blank.

   **Time Stamp Range**
   Although this heading appears, this field has no significance for image copy data sets.

3. **Log**
   For each log data set used during the recovery, the following information is listed:

   **Log Data Set Name**
   The data set name is listed.

   **Volume Serial**
   The volume or volumes upon which the data sets were found.

   **Read Count**
   The number of records read from the data set is zero.

   **IMS SYSID**
   The SYSID associated with the IMS which created the log is listed.

   **Time Stamp**
   The range of times which are covered by the log is listed. The time stamp on the first and last records in the log is listed.

   **Prilog**
   The PRILOG time listed in RECON for the log is listed.
Because no processing has occurred, the recovery has not determined whether the RLDS or the SLDS is available for use. Both are listed in the report.

The difference between the log records read and the log records applied values in the recovery report are due to the update records read that generate multiple output records. The IMS Database Recovery Facility creates multiple update records for expedited processing when certain internal conditions are recognized.

- **PITR OPEN UOW / UOR REPORT**

  Because no log records have been read, there is no data available for this report.

---

**Example report: VERIFY(ALLOC) recovery**

This report example shows the batch invocation of a VERIFY(ALLOC) recovery.

---

**DATABASE RECOVERY FACILITY COMMANDS/CONTROL STATEMENTS**

```
FRD72011 OUTPUT(PRO)
FRD72011 LCLTIME(Y)
FRD72011 ADD DB(DHVNTZ02 DIVNVT202)
FRK72011 ADD DBDS(DXVNTZ02 XDLBTO41)
FRX72011 START VERIFY(ALLOC) ERROR(STOP)
```

**DATABASE RECOVERY FACILITY RECOVERY PARAMETERS**

```
PROCESS : VERIFY(ALLOC) RECOVERY OPTIONS
SOURCE : PRI RCVTIME : Not Specified
REXNUM : 06, 20 TYPE : Full
ERROR : STOP OUTPUT : Pro
RCVTOKEN: DRFI LCLTIME : Yes
DRFPROC : DRFS SPSIZE : 1024
 CACHE : No
 -------- Sort-Related Parameters --------
NUM : 1 MAINSIZE: 30
FILSZ : 21000 AVGRLEN : 256
 ASPREF : DRFI
 ---------- Sort-Related Parameters ----------
 NUM : 1 MAINSIZE: 30 AVGRLEN : 256
 FILSZ : 21000 ASPREF : DRFI
DYNALLOC: SYSDALL , N/A
```

**DATABASE RECOVERY FACILITY SUMMARY REPORT**

```
<table>
<thead>
<tr>
<th>Database Name</th>
<th>DD/Area</th>
<th>DSID</th>
<th>Records Read</th>
<th>CA</th>
<th>Log</th>
<th>Subord.</th>
<th>Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHVNTZ02</td>
<td>HIDAM</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Verify alloc failure</td>
</tr>
<tr>
<td>DIVNVT202</td>
<td>HIDAM2</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Verify alloc complete</td>
</tr>
<tr>
<td>DIVNVT202</td>
<td>DBHVSAM2</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Verify alloc complete</td>
</tr>
<tr>
<td>DXVNTZ02</td>
<td>XDLBTO41</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Verify alloc complete</td>
</tr>
</tbody>
</table>

FR00000I DATABASE RECOVERY FACILITY 11/22/2005 18:59 Page 2
```

**DATABASE RECOVERY FACILITY DATA SET I/O REPORT**

```
Recover to point: Not Specified

<table>
<thead>
<tr>
<th>Image Copy Data Set Name</th>
<th>Volume</th>
<th>IC DS</th>
<th>Read Count</th>
<th>IC Type</th>
<th>Time Stamp Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSYS.DHVNTZ02.HIDAM.IC.IC105637</td>
<td>333333</td>
<td>0 STD</td>
<td>ALLOC RC = 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSYS.DHVNTZ02.HIDAM2.IC.IC105637</td>
<td>333333</td>
<td>0 STD</td>
<td>ALLOC RC = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSYS.DIVNVT202.DBHVSAM1.IC.IC105627</td>
<td>333333</td>
<td>0 STD</td>
<td>ALLOC RC = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSYS.DIVNVT202.DBHVSAM2.IC.IC105627</td>
<td>333333</td>
<td>0 STD</td>
<td>ALLOC RC = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSYS.DXVNTZ02.XDLBTO41.IC.IC105647</td>
<td>333333</td>
<td>0 STD</td>
<td>ALLOC RC = 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

---

182  User's Guide and Reference
Below is an explanation of the Batch Invocation of a VERIFY(ALLOC) recovery.

There are 4 sections to the report:

- **COMMANDS / CONTROL STATEMENTS**

  This section displays the images of the control statements read from the SYSIN file.

  Five control statements were read from the SYSIN file. Recovery was requested for four databases. The VERIFY(ALLOC) and ERROR(STOP) parameters were specified.

- **RECOVERY PARAMETERS**

  This section lists the parameters used to direct the recovery. The recovery parameters were supplied via one of the following three mechanisms, in ascending order of selection priority:

  1. The IMS Database Recovery Facility defaults
  2. Explicitly coded in the FRXDRFxx member.
     - Although the values explicitly coded in the FRXDRFxx member do not appear in the report, these values are associated with the FRD720I messages available in the SYSPRINT output from the recovery.
  3. Explicitly coded in the SYSIN control statements.
     - These values can be seen in the “Control Statements” part of the report:

     **PROCESS: VERIFY(ALLOC)**
     
     A VERIFY(ALLOC) was selected.
     - This parameter was not specified. The recovery facility default parameter was used.

     **SOURCE: PRI**
     
     The primary log and image copy data sets are to be used as the source of input for the recovery.
     - This parameter was not specified. The recovery facility default parameter was used.

     **READNUM: 06, 20**
     
     The maximum number of total devices to be used during recovery is 06. Of these, up to 20 can be tape devices.
     - The maximum number of total devices was specified in the FRXDRFxx member. The number of allowable tape devices was specified in the SYSIN control statements.

     **ERROR: STOP**
     
     Should an error be encountered during recovery, processing should terminate.

     **RCVTOKEN: DRF1**
     
     The recovery token used during recovery is “DRF1.”
     - This parameter was not specified. The recovery token used during a batch recovery is the job name.
RCVTIME: Not specified
A recovery time was not specified.

TYPE: Full
A full recovery was requested.

CHECK: Yes
A check will be performed to ensure that, should a DBDS be in a recovery group, all of the DBDSs within that recovery group need to be included in the list.
- This parameter was not specified. The recovery facility default parameter was used.

• SUMMARY REPORT
This section presents statistics and summarizes the results of the recovery for each of the data sets associated with each database.
The three databases included in the recovery consisted of 5 database data sets.
For each of these data sets, the following information is listed:

Database Name
The database name is listed.

DD/Area
The DD name associated with each data set is listed. In this case, all of the databases were full-function. If any fast path databases had been included, the associated Area name or names would have been listed.

DSID
The data set id number is listed.

Because this invocation of the recovery is a “verify,” the image copy, change accumulation and log data sets were never actually opened or processed. Consequently, a value of N/A is listed for those entries which are based upon actual data processing, such as:

Records Read
The number of records read. If Flash Copy, the read count will be ‘N/A’.

Records Written
The number of records written to the database data set is listed.

Subord. Reg Name
The name of the started task responsible sorting the records.

Final Status
The status of the conclusion of the recovery.

• DATA SET I/O REPORT
As was seen in earlier sections of the report, no recovery time was specified. This fact is reflected in the “Recover to point” in this section.
The data set I/O report is divided into three sections:

1. Image Copy
For each image copy data set used during the recovery, the following information is listed:

Image Copy Data Set Name
The data set name is listed.

Volume Serial
The volume or volumes upon which the data sets were found.
A value of N/A is issued in the field if CATDS(Y) and VERIFY(ALLOC) or VERIFY(OPEN) are specified.
Read Count
The number of records read from the data set is zero.

IC Type
The image copy type is listed. Allowable values for this field include:

- **STD**  Standard Image Copy
- **IC2**  Image Copy 2
- **IC EXT**  Extended Image Copy
- **HISAM UNL**  HISAMUnload

Time Stamp Range
Although this heading appears, this field has no significance for image copy data sets.

2. **Change Accum**
For each change accumulation data set used during the recovery, the following information is listed:

- **Change Accum Data Set Name**
  No change accum data sets were used.

- **Volume Serial**
  This field is intentionally blank.

- **Read Count**
  This field is intentionally blank.

- **Time Stamp Range**
  Although this heading appears, this field has no significance for image copy data sets.

3. **Log**
For each log data set used during the recovery, the following information is listed:

- **Log Data Set Name**
  The data set name is listed.

- **Volume Serial**
  The volume or volumes upon which the data sets were found.
  A value of N/A is issued in the field if CATDS(Y) and VERIFY(ALLOC) or VERIFY(OPEN) are specified.

- **Read Count**
  The number of records read from the data set is zero. If Flash Copy, the read count will be 'N/A'.

- **IMS SYSID**
  The SYSID associated with the IMS which created the log is listed.

- **Time Stamp**
  The range of times which are covered by the log is listed. The time stamp on the first and last records in the log is listed.

- **Prilog**
  The PRILOG time listed in RECON for the log is listed.
Because no processing has occurred, the recovery has not determined whether the RLDS or the SLDS is available for use. Both are listed in the report.

The difference between the log records read and the log records applied values in the recovery report are due to the update records read that generate multiple output records. The IMS Database Recovery Facility creates multiple update records for expedited processing when certain internal conditions are recognized.

Example report: VERIFY(OPEN) recovery for a point-in-time

This output report example shows a VERIFY(OPEN) recovery for PITR.

One of the image copies was successfully allocated and opened. The other allocate and open attempt experienced an OPEN failure with the return code of 8.

DATABASE RECOVERY FACILITY COMMANDS/CONTROL STATEMENTS
FRD7201I ADD DBDS(PDHDOKA PDHDOKAM PDHDOKA PDHDOKAN)
FRD7201I START ERROR(CONT) VERIFY(OPEN) READNUM(20) RCVTIME('04203203957' PITR)

DATABASE RECOVERY FACILITY RECOVERY PARAMETERS
PROCESS : VERIFY(OPEN) RECOVERY OPTIONS
READNUM : 20,20 TYPE : PITR
ERROR : CONT CHECK : Yes
RCVTOKEN: DRF
DRFPROC : DRFS LBI : No SPSIZE : 1024 CACHE : No

------------ Sort-Related Parameters ------------
NUM : 3 MAINSIZE: 30 AVGRLEN : 256
FILSZ : 21000 HPRMAX : OPTIMAL ASPREF : DRF
DYNALLOC: N/A , N/A

DATABASE RECOVERY FACILITY SUMMARY REPORT
<table>
<thead>
<tr>
<th>Database Name</th>
<th>DD/Area Name</th>
<th>DSID</th>
<th>Records Read</th>
<th>IC</th>
<th>CA</th>
<th>LOG</th>
<th>Written</th>
<th>Subord. Reg Name</th>
<th>Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDHDOKA</td>
<td>PDHDOKAM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>61468</td>
<td>1355</td>
<td>DRFI0001</td>
<td>Verify open complete</td>
</tr>
<tr>
<td>PDHDOKA</td>
<td>PDHDOKAN</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36391</td>
<td>1483</td>
<td>DRFI0002</td>
<td>Verify open failure</td>
</tr>
</tbody>
</table>

Image Copy Data Set Name
-----------------------------
IMSVS.PDHDOKA.PDHDOKAM.IC.IC2027002 222222 OPEN RC = 0
IMSVS.PDHDOKA.PDHDOKAN.IC.IC2027002 222222 OPEN RC = 8

Change Accum Data Set Name
-------------------------------
IMSYS.CADS.IMS1.D04203.T20250002.V01 SCR04 OPEN RC = 0

Log Data Set Name
-------------------
IMSYS.RLDSP.IMS1.D04203.T2027127.V01 SCR03 OPEN RC = D
This next report example below shows the same VERIFY(OPEN) recovery for PITR. This time the log data set receives an ALLOC failure with a return code of 12. Notice how that forces each database data set Final Status to be marked, Verify alloc failure.

**DATABASE RECOVERY FACILITY COMMANDS/CONTROL STATEMENTS**

FRD7201I ADD DBDS(PDHDOKA PDHDOKAM PDHDOKA PDHDOKAN)
FRD7201I START ERROR(CONT) VERIFY(OPEN) READNUM(20) RCVTIME('04203203957' PITR)

**DATABASE RECOVERY FACILITY RECOVERY PARAMETERS**

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>VERIFY(OPEN)</th>
<th>RECOVERY OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE</td>
<td>PRI</td>
<td>RCVTIME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>: 2004.203 20:39:57.000000 -07:00</td>
</tr>
<tr>
<td>READNUM</td>
<td>20,20</td>
<td>TYPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>: PITR</td>
</tr>
<tr>
<td>ERROR</td>
<td>CONT</td>
<td>CHECK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>: Yes</td>
</tr>
<tr>
<td>RCVTOKEN:</td>
<td>DRF</td>
<td></td>
</tr>
<tr>
<td>DFRPROC :</td>
<td>DRFS</td>
<td></td>
</tr>
<tr>
<td>LBI</td>
<td>No</td>
<td>SPSIZE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>: 1024</td>
</tr>
<tr>
<td>CACHE</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

**DATABASE RECOVERY FACILITY SUMMARY REPORT**

<table>
<thead>
<tr>
<th>Database Name</th>
<th>DD/Area Name</th>
<th>DSID</th>
<th>IC</th>
<th>CA</th>
<th>LOG</th>
<th>Records Read</th>
<th>Records Written</th>
<th>Subord. Reg Name</th>
<th>Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDHDOKA</td>
<td>PDHDOKAM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>61468</td>
<td>1355</td>
<td>DRFI0001</td>
<td>Verify alloc failure</td>
<td></td>
</tr>
<tr>
<td>PDHDOKA</td>
<td>PDHDOKAN</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>36391</td>
<td>1483</td>
<td>DRFI0002</td>
<td>Verify alloc failure</td>
<td></td>
</tr>
</tbody>
</table>

**Image Copy Data Set Name**

<table>
<thead>
<tr>
<th>Volume</th>
<th>IC DS</th>
<th>IC</th>
<th>Serial</th>
<th>Read Count</th>
<th>Type</th>
<th>Time Stamp Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMSVS.PDHDOKA.PHDDOKAM.IC.IC2027002</td>
<td>222222</td>
<td>222222</td>
<td>OPEN RC = 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSVS.PDHDOKA.PHDDOKAN.IC.IC2027002</td>
<td>222222</td>
<td>222222</td>
<td>OPEN RC = 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Change Accum Data Set Name**

<table>
<thead>
<tr>
<th>Volume</th>
<th>Log DS</th>
<th>IMS</th>
<th>Serial</th>
<th>Read Count</th>
<th>SYSID</th>
<th>Time Stamp Range</th>
</tr>
</thead>
</table>

**Log Data Set Name**

<table>
<thead>
<tr>
<th>Volume</th>
<th>Log DS</th>
<th>IMS</th>
<th>Serial</th>
<th>Read Count</th>
<th>SYSID</th>
<th>Time Stamp Range</th>
</tr>
</thead>
</table>

Below is an explanation of the Batch Invocation of a VERIFY(OPEN) recovery. There are 3 sections to the report:

- **COMMANDS / CONTROL STATEMENTS**
  This section displays the images of the control statements read from the SYSIN file.
  Two control statements were read from the SYSIN file. Recovery was requested for four databases. The ERROR(CONT), VERIFY(OPEN), READNUM(20), and RCVTIME('04203203957' PITR) parameters were specified.

- **RECOVERY PARAMETERS**
  This section lists the parameters used to direct the recovery. The recovery parameters were supplied via one of the following three mechanisms, in ascending order of selection priority:
  1. The IMS Database Recovery Facility defaults
  2. Explicitly coded in the FRXDRF:xx member.
- Although the values explicitly coded in the FRXDRFx member do not appear in the report, these values are associated with the FRD720II messages available in the SYSPRINT output from the recovery.

3. Explicitly coded in the SYSIN control statements.
   - These values can be seen in the “Control Statements” part of the report:

   **PROCESS: VERIFY(OPEN)**
   - A VERIFY(OPEN) was selected.
   - This parameter was not specified. The recovery facility default parameter was used.

   **SOURCE: PRI**
   - The primary log and image copy data sets are to be used as the source of input for the recovery.
   - This parameter was not specified. The recovery facility default parameter was used.

   **READNUM: 20, 20**
   - The maximum number of total devices to be used during recovery is 20. Of these, up to 20 can be tape devices.
   - The maximum number of total devices was specified in the FRXDRFx member. The number of allowable tape devices was specified in the SYSIN control statements.

   **ERROR: CONT**
   - Should an error be encountered on one database during recovery, processing should continue for other databases.
   - This parameter was not specified. The IMS Database Recovery Facility default parameter was used.

   - A recovery time of 2004.203 20:39:57.000000 is indicated.
   - It has been converted to UTC from the initial specification of 04203203957.

   **TYPE: PITR**
   - A PITR was requested.

   **CHECK: Yes**
   - A check will be performed to ensure that, should a DBDS be in a recovery group, all of the DBDSs within that recovery group need to be included in the list.
   - This parameter was not specified. The recovery facility default parameter was used.

   **RCVTOKEN: DRF**
   - The recovery token used during recovery is “DRF.”
   - This parameter was not specified. The recovery token used during a batch recovery is the job name.

**SUMMARY REPORT**

This section presents statistics and summarizes the results of the recovery for each of the data sets associated with each database.

The four databases included in the recovery consisted of two database data sets. For each of these data sets, the following information is listed:

**Database Name**
- The database name is listed.
DD/Area

The DD name associated with each data set is listed. In this case, all of the databases were full-function. If any fast path databases had been included, the associated Area name or names would have been listed.

DSID

The data set id number is listed.

Because this invocation of the recovery is a “verify,” the image copy, change accumulation and log data sets were never actually opened or processed. Consequently, a value of N/A is listed for those entries which are based upon actual data processing, such as:

Records Read

The number of records read. If Flash Copy, the read count will be ‘N/A’.

Records Written

The number of records written to the database data set is listed.

Subord. Reg Name

The name of the started task responsible sorting the records.

Final Status

The status of the conclusion of the recovery.

Example report: Full recovery using environment control statements

This report example below shows the batch invocation of full recovery using SYSIN-supplied environment control statements.

```
FRD7201I SORTPARM(NUM(9) HIPRMAX(OPTIMAL) MAINSIZE(5) ASPREF(IDRF) -
FRD7201I AVGRLEN(10000) FILSZ(30000) DYNALLOC(3))
FRD7201I READNUM(4,5) DRFPROC(TESTDRF)
FRD7201I SPSIZE(1000)
FRD7201I ADD DBDS(POHIDKAA POHIDKCA -
FRD7201I POHIDKD POHIDKDA)
FRD7201I START ERROR(STOP) READNUM(2) VERIFY
```

DATABASE RECOVERY FACILITY SUMMARY REPORT

<table>
<thead>
<tr>
<th>Database</th>
<th>Name</th>
<th>Records Read</th>
<th>Records Subord.</th>
<th>Records IC</th>
<th>Records CA</th>
<th>Records LOG</th>
<th>Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>POHIDKA</td>
<td>POHIDKAA</td>
<td>1 N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No errors encountered</td>
</tr>
<tr>
<td>POHIDKC</td>
<td>POHIDKCA</td>
<td>1 N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No errors encountered</td>
</tr>
<tr>
<td>POHIDKD</td>
<td>POHIDKDA</td>
<td>1 N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No errors encountered</td>
</tr>
</tbody>
</table>

Chapter 13. Sample reports 189
Below is an explanation of the Batch Invocation of Full Recovery Using SYSIN-Supplied Environment Control Statements example:

- **COMMANDS / CONTROL STATEMENTS**
  - This section displays the images of the control statements read from the SYSIN file:
    - The first four statements are Environment Control Statements and override comparable parameters included in the FRXDRF<xx> member.
    - The last three statements are Recovery Control Statements.

- **RECOVERY PARAMETERS**
  - This section lists the parameters used to direct the recovery. The recovery parameters were supplied via one of the following three mechanisms, in ascending order of selection priority:
    - **PROCESS: VERIFY**
      - A VERIFY recovery process was selected.
    - **SOURCE: PRI**
      - The Primary log and image copy data sets are to be used.
    - **READNUM: 02,05**
      - The maximum number of total devices to be used during recovery is 5. Of these, up to 2 can be tape devices. These numbers were specified as (6,20) in the FRXDRF<xx> member, but were overridden to (4,5) by the environment control statements in SYSIN. The number of tapes was further overridden by the START recovery control statement.
    - **ERROR: STOP**
      - Should an error be encountered during recovery, processing should terminate.
    - **RCVTOKEN: DRF**
      - The recovery token used during recovery is “DRF.”
    - **RCVTIME: Not Specified**
      - A recovery time was not specified.
    - **TYPE: Full**
      - A full recovery was requested.
CHECK: Yes
A check will be performed to ensure that, should a DBDS be in a
recovery group, all of the DBDs within that recovery group need to be
included in the list.

DRFPROC: TESTDRF
The procedure for the RSS is contained in member TESTDRF in the
proclib PDS.

LBI: No
Large Block Interface processing was not requested.

SPSIZE: 1000
The SPSIZE specified is 1000. This number was specified as 1024 in the
FRXDRFxx member, but was overridden by SYSIN.

NUM: 9
Num was specified as 9. This number was specified as 3 in the
FRXDRFxx member, but was overridden by SYSIN.

MAINSIZE: 5
Mainsize was specified as 5. This number was specified as 30 in the
FRXDRFxx member, but was overridden by SYSIN.

AVGRLEN: 10000
Avgrlen was specified as 10000. This number was specified as 256 in the
FRXDRFxx member, but was overridden by SYSIN.

FILSZ: 30000
Filsz was specified as 30000. This number was specified as 21000 in the
FRXDRFxx member, but was overridden by SYSIN.

HIPRMAX: OPTIMAL
Hiprmax was specified as Optimal. Both the FRXDRFxx member and
SYSIN specified the save value.

ASPREF: IDRF
Aspref was specified as IDRF. This value was specified as DRFI in the
FRXDRFxx member, but was overridden by SYSIN.

DYNALLOC: 3, N/A
The number of dynamically allocated SORTWORK data sets is 3, as
specified in SYSIN. The unit associated with the dynamic allocation was
not specified, and is not available for the report. The Sort installation
value for unit will be used by the SORT utility.

• SUMMARY REPORT
This section presents statistics and summarizes the results of the recovery for
each of the data sets associated with each database:

Database Name
The database name is listed.

DD/Area Name
The DD name associated with each data set is listed. In this case, all of
the databases were full-function. Had any fast path databases been
included, the associated Area name or names would have been listed.

DSID The data set id number is listed.
Records Read
The number of records read from the image copy, change accumulation and log data sets for application in the recovery are listed. If Flash Copy, the read count will be 'N/A'.

Records Written
The number of records written to the database data set is listed.

Subord. Reg Name
The name of the started task which was responsible for sorting the records being written for the indicated data set is listed.

Final Status
The status of the conclusion of the recovery is listed.

• DATA SET I/O REPORT
As was seen in earlier sections of the report, no recovery time was specified. This fact is reflected in the “Recover to point” in this section. The data set I/O report is divided into three sections:

1. Image Copy
   For each image copy data set used during the recovery, the following information is listed:
   
   Image Copy Data Set Name
   The data set name is listed.
   
   Volume Serial
   The volume or volumes upon which the data sets were found.
   
   Read Count
   The number of records read from the data set with intent to be used as input is listed. If Flash Copy, the read count will be 'N/A'.
   
   IC Type
   The image copy type is listed. Allowable values for this field include:
   
   STD Standard Image Copy
   IC2 Image Copy 2
   IC EXT Extended Image Copy
   HISAM UNL HISAM Unload
   
   Time Stamp Range
   Although this heading appears, this field has no significance for image copy data sets.

2. Change Accum
   For each change accum data set used during the recovery, the following information is listed:
   
   Change Accum Data Set Name
   No change accum data sets were used.
   
   Volume Serial
   This field is intentionally blank.
   
   Read Count
   This field is intentionally blank.
3. Log

For each log data set used during the recovery, the following information is listed:

**Log Data Set Name**

The data set name is listed.

**Volume Serial**

The volume or volumes upon which the data sets were found.

**Read Count**

The number of records read from the data set with intent to be used as input is listed.

**IMS SYSID**

The SYSID associated with the IMS which created the log is listed.

**Time Stamp Range**

The range of times which are covered by the log is listed. The time stamp on the first and last records in the log is listed.

**Prilog:** The PRILOG time listed in RECON for the log is listed.

The difference between the log records read and the log records applied values in the recovery report are due to the update records read that generate multiple output records. The IMS Database Recovery Facility creates multiple update records for expedited processing when certain internal conditions are recognized.

---

### Example report: Full recovery with IC() and PC() utilities

This report example shows the output from a batch invocation of full recovery with integrated auxiliary processing utilities (IC() and PC() utilities).

```
FRD7201 IBCFGGROUP(TOIV11)
FRD7201 SORTPARM(ASPREF(AS))
FRD7201 UTILGBL(1B,PRPREF(PR),PCJOBNM(PC),ICNDX(Y),HALDB(BOO))
FRD7201 REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLLQ=TEMP.QA)
FRD7201 DRFIAX(DRFIB)
FRD7201 ADD DB(F1V4P1,H1V4P1)
FRD7201 IC(COMP(Y),-
FRD7201 ICAT(Y),-
FRD7201 ICCAT(Y),-
FRD7201 ICHLQ(TEMP.QA),-
FRD7201 DATACLAS(SMS),-
FRD7201 UNIT(3390),-
FRD7201 SPACE(CYL,10,1,RLSE))
FRD7201 PC(DUMPFORM=FORMAT,PRINTDATA=YES)
FRD7201 START READNUM(5)
```

---

### DATABASE RECOVERY FACILITY RECOVERY PARAMETERS

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>RCVDBDS</th>
<th>RECOVERY OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE</td>
<td>PRI</td>
<td>RCVTIME : Not Specified</td>
</tr>
<tr>
<td>READNUM</td>
<td>05,30</td>
<td>LOGNUM : 05,30</td>
</tr>
<tr>
<td>ERROR</td>
<td>CHECK</td>
<td>ICNUM : 05,30</td>
</tr>
<tr>
<td>RCVTOKEN</td>
<td>DRFIBJOB</td>
<td>TAPECHK : No</td>
</tr>
<tr>
<td>DRFPROC</td>
<td>DRFRSS</td>
<td>CATDS : Default</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>SPSIZE : 1024</td>
</tr>
</tbody>
</table>

**---------- Sort-Related Parameters ----------**

<table>
<thead>
<tr>
<th>NUM</th>
<th>5</th>
<th>MAINSIZE: 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AVGRLEN : 256</td>
</tr>
</tbody>
</table>
## Database Recovery Facility Summary Report

<table>
<thead>
<tr>
<th>Database Name</th>
<th>DD/Area</th>
<th>DSID</th>
<th>IC</th>
<th>CA</th>
<th>LOG</th>
<th>Written</th>
<th>Reg Name</th>
<th># Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1V4P1</td>
<td>F1V4P11</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>AS912501</td>
<td>9127 No errors encountered</td>
</tr>
<tr>
<td>F1V4P1</td>
<td>F1V4P12</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>AS912502</td>
<td>9128 No errors encountered</td>
</tr>
<tr>
<td>H1V4P11</td>
<td>H1V4P11A</td>
<td>1</td>
<td>315</td>
<td>0</td>
<td>0</td>
<td>315</td>
<td>AS912503</td>
<td>9129 No errors encountered</td>
</tr>
<tr>
<td>H1V4P11</td>
<td>H1V4P11B</td>
<td>6</td>
<td>315</td>
<td>0</td>
<td>0</td>
<td>315</td>
<td>AS912504</td>
<td>9130 No errors encountered</td>
</tr>
<tr>
<td>H1V4P12</td>
<td>H1V4P12A</td>
<td>1</td>
<td>315</td>
<td>0</td>
<td>0</td>
<td>315</td>
<td>AS912505</td>
<td>9131 No errors encountered</td>
</tr>
<tr>
<td>H1V4P12</td>
<td>H1V4P12B</td>
<td>6</td>
<td>315</td>
<td>0</td>
<td>0</td>
<td>315</td>
<td>AS912502</td>
<td>9128 No errors encountered</td>
</tr>
<tr>
<td>H1V4P13</td>
<td>H1V4P13A</td>
<td>1</td>
<td>315</td>
<td>0</td>
<td>0</td>
<td>315</td>
<td>AS912501</td>
<td>9127 No errors encountered</td>
</tr>
<tr>
<td>H1V4P13</td>
<td>H1V4P13B</td>
<td>6</td>
<td>315</td>
<td>0</td>
<td>0</td>
<td>315</td>
<td>AS912503</td>
<td>9129 No errors encountered</td>
</tr>
</tbody>
</table>

## Database Recovery Facility Utility Report

<table>
<thead>
<tr>
<th>Database Name</th>
<th>DSN</th>
<th>Database Data Set Name</th>
<th>IC</th>
<th>PC/DP</th>
<th>IB</th>
<th>PR</th>
<th>Utility Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1V4P1</td>
<td>F1V4P11</td>
<td>DBGTOOL.QA.Q11A.F1V4P1.F1V4P11</td>
<td>00</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>F1V4P1</td>
<td>F1V4P12</td>
<td>DBGTOOL.QA.Q11A.F1V4P1.F1V4P12</td>
<td>00</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P11</td>
<td>H1V4P11A</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.A00001</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P11</td>
<td>H1V4P11B</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.B00001</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P12</td>
<td>H1V4P12A</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.B00002</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P12</td>
<td>H1V4P12B</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.B00002</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P13</td>
<td>H1V4P13A</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.A00003</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P13</td>
<td>H1V4P13B</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.B00003</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>F1V4X1</td>
<td>F1V4X11</td>
<td>(Index Database)</td>
<td>00</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>F1V4S1</td>
<td>F1V4S11</td>
<td>(Index Database)</td>
<td>00</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>F1V4S2</td>
<td>F1V4S21</td>
<td>(Index Database)</td>
<td>00</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P11</td>
<td>PRIMINDX</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.X00001</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P12</td>
<td>PRIMINDX</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.X00002</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P13</td>
<td>PRIMINDX</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.X00003</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P11</td>
<td>ILDS/ILE</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.L00001</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P12</td>
<td>ILDS/ILE</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.L00002</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4P13</td>
<td>ILDS/ILE</td>
<td>DBGTOOL.QA.Q11A.H1V4P1.L00003</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4S21</td>
<td>H1V4S21A</td>
<td>(Partition Index Database)</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4S11</td>
<td>H1V4S11A</td>
<td>(Partition Index Database)</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4S12</td>
<td>H1V4S12A</td>
<td>(Partition Index Database)</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>H1V4S13</td>
<td>H1V4S13A</td>
<td>(Partition Index Database)</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

---IC--- ---PC--- ---DP--- ---IB--- ---PR--- ---LIU--
RC RSN RC RSN RC RSN RC RSN RC RSN
00 00 00 00 N/A N/A 00 N/A N/A N/A N/A N/A

## Database Recovery Facility Data Set I/O Report

Recover to point: Not Specified

<table>
<thead>
<tr>
<th>Image Copy Data Set Name</th>
<th>Volume</th>
<th>IC DS</th>
<th>IC</th>
<th>Time Stamp Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGTOOL.QA.Q11A.F1V4P1.F1V4P11.IC1</td>
<td>DRF004</td>
<td>3</td>
<td>STD</td>
<td></td>
</tr>
<tr>
<td>DBGTOOL.QA.Q11A.F1V4P1.F1V4P12.IC1</td>
<td>DRF004</td>
<td>3</td>
<td>STD</td>
<td></td>
</tr>
<tr>
<td>DBGTOOL.QA.Q11A.H1V4P1.A00001.IC1</td>
<td>DRF004</td>
<td>315</td>
<td>STD</td>
<td></td>
</tr>
<tr>
<td>DBGTOOL.QA.Q11A.H1V4P1.B00001.IC1</td>
<td>DRF004</td>
<td>315</td>
<td>STD</td>
<td></td>
</tr>
<tr>
<td>DBGTOOL.QA.Q11A.H1V4P1.A00002.IC1</td>
<td>DRF004</td>
<td>315</td>
<td>STD</td>
<td></td>
</tr>
<tr>
<td>DBGTOOL.QA.Q11A.H1V4P1.B00002.IC1</td>
<td>DRF004</td>
<td>315</td>
<td>STD</td>
<td></td>
</tr>
</tbody>
</table>

---Volume | CA DS | Time Stamp Range |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Accum Data Set Name</td>
<td>Serial</td>
<td>Read Count</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>DBGTOOL.QA.Q11A.H1V4P1.A00003.IC1</td>
<td>DRF004</td>
<td>315</td>
</tr>
<tr>
<td>DBGTOOL.QA.Q11A.H1V4P1.B00003.IC1</td>
<td>DRF004</td>
<td>315</td>
</tr>
</tbody>
</table>

No data available for this type data set
Below is an explanation of the Batch Invocation of Full Recovery with Integrated Auxiliary Processing Utilities example:

- **COMMANDS / CONTROL STATEMENTS**
  
  This section displays the images of the control statements read from the SYSIN file:
  
  - The first statements is the Environment Control Statements and override comparable parameters included in the FRXDRFxx member.
  - The last rest of the statements are Recovery Control Statements.

- **RECOVERY PARAMETERS**

  This section lists the parameters used to direct the recovery. The recovery parameters were supplied via one of the following three mechanisms, in ascending order of selection priority:

  **PROCESS:** RCVDBDS
  
  A RCVDBDS recovery process was selected.

  **SOURCE:** PRI
  
  The Primary log and image copy data sets are to be used.

  **READNUM:** 10,10
  
  The maximum number of total devices to be used during recovery is 10. Of these, up to 10 can be tape devices.

  **ERROR:** CONT
  
  Should an error be encountered during recovery, processing should continue for other databases.

  **RCVTOKEN:** DRF3111
  
  The recovery token used during recovery is “DRF3111.”

  **DRFPROC:** DRFV32
  
  The procedure for the RSS is contained in member DRFV32 in the PROCLIB PDS.

  **RCVTIME:** Not Specified
  
  A recovery time was not specified.

  **TYPE:** Full
  
  A full recovery was requested.

  **CHECK:** Yes
  
  A check will be performed to ensure that, should a DBDS be in a recovery group, all of the DBDs within that recovery group need to be included in the list.

  **TIME FMT:** LCL
  
  Time format is local.

  **LBI:** No
  
  Large Block Interface processing was not requested.

  **SPSIZE:** 1000
  
  The SPSIZE specified is 1000. This number was specified as 1024 in the FRXDRFxx member, but was overridden by SYSIN.
NUM: 3
Num was specified as 3. This number was specified as 3 in the FRXDRFxx member, but was overridden by SYSIN.

MAINSIZE: 100
Mainsize was specified as 100. This number was specified as 100 in the FRXDRFxx member.

AVGRLEN: 1024
Avgrlen was specified as 1024. This number was specified as 1024 in the FRXDRFxx member.

FILSZ: 400000
Filsz was specified as 400000. This number was specified as 400000 in the FRXDRFxx member.

HIPRMAX: OPTIMAL
Hiprmax was specified as Optimal. Both the FRXDRFxx member and SYSIN specified the save value.

ASPREF: FRXI
Aspref was specified as FRXI. This value was specified as FRXI in the FRXDRFxx member, but was overridden by SYSIN.

DYNALLOC: N/A , N/A
The number of dynamically allocated SORTWORK data sets is N/A, as specified in SYSIN. The unit associated with the dynamic allocation was not specified, and is not available for the report. The Sort installation value for unit will be used by the SORT utility.

**SUMMARY REPORT**
This section presents statistics and summarizes the results of the recovery for each of the data sets associated with each database:

**Database Name**
The database name is listed.

**DD/Area Name**
The DD name associated with each data set is listed. In this case, all of the databases were full-function. Had any fast path databases been included, the associated Area name or names would have been listed.

**DSID**
The data set id number is listed.

**Records Read**
The number of records read from the image copy, change accumulation and log data sets for application in the recovery are listed. If Flash Copy, the read count will be 'N/A'.

**Records Written**
The number of records written to the database data set is listed.

**Subord. Reg Name**
The name of the started task which was responsible for sorting the records being written for the indicated data set is listed.

**Final Status**
The status of the conclusion of the recovery is listed.

**DATABASE RECOVERY FACILITY UTILITY REPORT**
This section summarizes the results of the integrated auxiliary utilities:

**Database**
The database name is listed.
The DD name associated with each data set is listed. In this case, all of
the databases were full-function. Had any fast path databases been
included, the associated Area name or names would have been listed.

Database Data Set Name
The database data set name associated with each DD or area are listed.

IC Return code from the Image copy utility.

PC/DP Return code from the pointer checker or DEDB pointer checker utility.

IB Return code from the Build Index function of FPA and the Index builder
utility.

PR Return code from the DFSPREC0 utility.

Utility Final Status
The utility final status is listed.

Final Return (RC) and Reason (RSN) Codes
Final Return and Reason Codes from the Image copy, pointer checker,
DEDB pointer checker, the Build Index function of FPA, Index builder, or
DFSPREC0 utilities.

• DATA SET I/O REPORT
As was seen in earlier sections of the report, no recovery time was specified.
This fact is reflected in the “Recover to point” in this section. The data set I/O
report is divided into three sections:

1. Image Copy
For each image copy data set used during the recovery, the following
information is listed:

Image Copy Data Set Name
The data set name is listed.

Volume Serial
The volume or volumes upon which the data sets were found.

Read Count
The number of records read from the data set with intent to be used
as input is listed. If Flash Copy, the read count will be ‘N/A’.

IC Type
The image copy type is listed. Allowable values for this field include:

STD Standard Image Copy
IC2 Image Copy 2
IC EXT Extended Image Copy
HISAM UNL HISAM Unload

Time Stamp Range
Although this heading appears, this field has no significance
for image copy data sets.

2. Change Accum
For each change accum data set used during the recovery, the following
information is listed:
Change Accum Data Set Name
   No change accum data sets were used.

Volume Serial
   This field is intentionally blank.

Read Count
   This field is intentionally blank.

Time Stamp Range
   Although this heading appears, this field has no significance for
   image copy data sets.

3. Log
   For each log data set used during the recovery, the following information is
   listed:

Log Data Set Name
   The data set name is listed.

Volume Serial
   The volume or volumes upon which the data sets were found.

Read Count
   The number of records read from the data set with intent to be used
   as input is listed.

IMS SYSID
   The SYSID associated with the IMS which created the log is listed.

Time Stamp Range
   The range of times which are covered by the log is listed. The time
   stamp on the first and last records in the log is listed.

Prilog:
   The PRILOG time listed in RECON for the log is listed.

The difference between the log records read and the log records applied
values in the recovery report are due to the update records read that
generate multiple output records. The IMS Database Recovery Facility creates
multiple update records for expedited processing when certain internal
conditions are recognized.
Chapter 14. Usage scenarios for optimizing your IMS Recovery Solution Pack: IMS Database Recovery Facility experience

This document addresses some of the more common and useful ways to recover IMS databases by using IMS Recovery Solution Pack: IMS Database Recovery Facility.

IMS Database Recovery Facility supports many different types of recoveries. Instructions for using IMS Database Recovery Facility to perform the following types of recoveries are described in this document:

Recovering a database to the current time
You can recover a database to the current time by restoring the database to the last valid image copy and processing any available change accumulations (CAs) and logs up to the point that IMS Database Recovery Facility is run.

Validating recovery by using IMS HP Pointer Checker
You can use IMS HP Pointer Checker to validate the recovery for any pointer errors.

Performing an incremental image copy of offline databases
You can perform an incremental image copy (ICR) of an offline database. Taking an offline ICR is recommended for first-time IMS Database Recovery Facility users.

Performing an incremental image copy of online databases to the current time or point-in-time
You can perform an incremental image copy (ICR) of an online or allocated database. An ICR can be generated to the current or a point-in-time where the updates are being applied.

Using IMS Index Builder to rebuild indexes during recovery
You can use IMS Database Recovery Facility to run IMS Index Builder (IB) against HALDBs to rebuild the indexes.

In this section:
- “Setting up a basic IMS Recovery Solution Pack: IMS Database Recovery Facility environment” on page 200
- “Recover the database to the current time” on page 203
- “Validating recovery by using IMS HP Pointer Checker” on page 205
- “Taking an incremental image copy of offline databases” on page 208
- “Taking an incremental image copy of an online database to the current time or point-in-time” on page 214
- “Using IMS Index Builder to rebuild indexes during recovery” on page 220
Complete these step-by-step instructions to set up and run basic IMS Recovery Solution Pack: IMS Database Recovery Facility for the usage scenarios.

In this topic:
- “Setting up the IMS Recovery Solution Pack”
- “Installing IMS Recovery Solution Pack libraries”
- “Installing required maintenance” on page 201
- “Reviewing the IMS Recovery Solution Pack installation checklist” on page 201
- “Customizing the procedures and JCL members” on page 201
- “Tips and best practices” on page 202

Setting up the IMS Recovery Solution Pack

This section outlines the steps to install and customize the IMS Recovery Solution Pack according to your environment and then, begin running the tools and products that are included in this solution pack.

The IMS Recovery Solution Pack includes these products:
- IMS Database Recovery Facility (DRF)
- IMS Database Recovery Facility: Extended Functions (DRF-XF)
- IMS High Performance Change Accumulation Utility (HPCA)
- IMS High Performance Image Copy (HPIC)
- IMS Index Builder (IB)

You must also install Tools Base so that you can save output reports from IMS Database Recovery Facility, DRF-XF, HPIC, and IB in the DOMIMS Tools Knowledge Base (ITKB) repository.

Recommendation: Install and configure IMS High Performance Pointer Checker (HPPC) and High Performance DEDB Pointer Checker (DEDB PC) (a component of the IMS Fast Path Solution Pack for z/OS) on your system to take advantage of the additional integrated auxiliary utilities that are supported by IMS Database Recovery Facility during and after recovery. For more information, see the topic “IMS Database Recovery Facility and the integrated auxiliary utilities” in the IMS Recovery Solution Pack: IMS Database Recovery Facility User’s Guide.

Installing IMS Recovery Solution Pack libraries

You must install the following IMS Recovery Solution Pack load libraries:

<table>
<thead>
<tr>
<th>Load library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>your.hlq.SFRXLOAD</td>
<td>DRF and DRF-XF load library</td>
</tr>
<tr>
<td>your.hlq.SHPSLMD0</td>
<td>HPIC load library</td>
</tr>
<tr>
<td>your.hlq.SHPCLMD0</td>
<td>HPCA load library</td>
</tr>
<tr>
<td>your.hlq.SIIULMOD</td>
<td>IB load library</td>
</tr>
</tbody>
</table>
The SMP/E installation process for the IMS Recovery Solution Pack is documented in the Program Directory for IMS(*) Recovery Solution Pack for z/OS(r).

### Installing required maintenance

Verify that the following APARs have been applied. This document is based on recent enhancements that were made to IMS Recovery Solution Pack.

**APAR PM14116**

This APAR includes enhancements to simplify the set up of the DRFPROC (recovery sort subordinate address space) and DRFIAX (IB/PR subordinate address space) procedures.

**APAR PM08258 (UK60119), APAR PM12553 (UK60120), APAR PM16081 (UK60121)**

This APAR includes various enhancements to IMS Database Recovery Facility/IB processing including the ability for IB to rebuild indexes for HALDBs.

**APAR PM26171 (UK63154)**

This APAR includes updates to IMS Database Recovery Facility sample JCL members.

**APAR PM23052 (UK64046) & PM31377 (UK64652)**

This APAR provides IMS V12 support.

**APAR PM17639 (UK64949) & PM28396 (UK63739)**

This APAR includes a new IC/ICR Report in IMS Database Recovery Facility MAS output.

**APAR PM32523**

This APAR includes fixes for processing HALDBs during time stamp and point-in-time recoveries introduced by PM12553.

**APAR PM34613**

This APAR includes fixes for the FRXMAS procedure found in the IMS Recovery Solution Pack sample library.

### Reviewing the IMS Recovery Solution Pack installation checklist

Review the IMS Recovery Solution Pack installation checklist member, which is located in `your.hlq.SFRXSAMP(FRXCHECK)`, to verify that your environment is configured correctly for IMS Recovery Solution Pack.

### Customizing the procedures and JCL members

Depending on which IMS Database Recovery Facility tasks you are performing, you will need to customize the applicable procedures and JCLs.

Review the IMS Recovery Solution Pack sample library, which is named `your.hlq.SFRXSAMP`. This sample library contains all of the relevant procedures and JCL that is required to set up and run IMS Database Recovery Facility with utilities on your system, including DEDB PC, HPPC, IB, and HPIC. To customize the members, follow the instructions that are provided in each sample member.

The following lists the sample members that are used in this scenarios document.
FRXDRFZZ
This configuration file is required for IMS Database Recovery Facility.
Make a copy of your.hlq.SFRXSAMP(FRXDRFZZ) and customize it for your environment.

FRXBPECF
This configuration file is required for BPE. Make a copy of
your.hlq.SFRXSAMP(FRXBPECF) and customize it for your environment.

FRXFOI
This configuration file is required for TOSI. Make a copy of
your.hlq.SFRXSAMP(FRXFOI) and customize it for your environment.

FRXITKB
This configuration file is required for copying compatible IMS Database
Recovery Facility and utility reports to ITKB. Make a copy of
your.hlq.SFRXSAMP(FRXITKB) and customize it for your environment.

DRFMAS procedure
This procedure is used to allocate the IMS Database Recovery Facility
MAS. Make a copy of your.hlq.SFRXSAMP(FRXMAS) and customize it for your environment.

DRFPROC procedure
This procedure is used to allocate the IMS Database Recovery Facility
subordinate address spaces. Make a copy of
your.hlq.SFRXSAMP(FRXJCLSB) and customize it by adding the name of
your IMS Database Recovery Facility load library. For example:

```java
//FRXJCLSB PROC
//*
//STEP1 EXEC PGM=FRXSDR00,
// PARM='DRF,BPECFG=FRXBPECF',REGION=0M,TIME=1440
//STEPLIB DD DISP=SHR,DSN=your.hlq.SFRXLOAD
//SYSUDUMP DD SYSOUT=*
```

DRFIAX procedure
This IMS Database Recovery Facility UAS procedure is used to allocate the
IB and DFSREC0 address spaces. Make a copy of
your.hlq.SFRXSAMP(FRXJCLIP) and customize it by adding the name of
your IMS Database Recovery Facility load library. For example:

```java
//FRXJCLIP PROC
//*
//STEP1 EXEC PGM=FRXSDR10,
// PARM='DRF,BPECFG=FRXBPECF',REGION=0M,TIME=1440
//STEPLIB DD DISP=SHR,DSN=your.hlq.SFRXLOAD
//SYSUDUMP DD SYSOUT=*
```

FRXPATH0 and FRXPATHZ procedures
These procedures are required to run HPPC for a full function database or
DEDB PC for a fast path database. Make a copy of
your.hlq.SFRXSAMP(FRXPATH0) and your.hlq.SFRXSAMP(FRXPATHZ) in a
system PROCLIB that is concatenated in the JES system PROCLIB, and
customize them for your environment.

IMS Database Recovery Facility batch job
This sample batch job runs IMS Database Recovery Facility. Make a copy of
your.hlq.SFRXSAMP(FRXDRF) and customize it for your environment.

Tips and best practices
This section provides tips to run the IMS Recovery Solution Pack smoothly.
Dynamic allocation of RECONs

To ensure that IMS Database Recovery Facility recovers the correct set of data, use dynamic allocation of RECONs as opposed to explicitly specifying the RECON data sets in the IMS Database Recovery Facility JCL and procedures.

RACF authority

If insufficient authority was granted to the user ID that submits the IMS Database Recovery Facility job, RACF permission failures can occur when data sets are created and accessed. These data sets are required by IMS Database Recovery Facility to perform recovery in the master address space and all subordinate address spaces, including the utility address space for IMS Index Builder (IB UAS). The IB UAS can initiate one or more sort subordinate address spaces (IBSS). For more information about the rules for assigning security to the IBSS, see the IMS Index Builder for z/OS User’s Guide.

In addition, when specifying the DRFHLQ= option in the REPORT() parameter, confirm with your system administrator that the 1- to 8-character high-level qualifier has the proper authority to allocate and catalog IMS Database Recovery Facility report data sets on your system.

Hard coding JCL statements for databases that are being recovered

The IMS Database Recovery Facility master address space JCL cannot contain any hard-coded database data sets. This restriction applies to any step in the JCL, regardless of the usage. Because IMS Database Recovery Facility dynamically allocates the database data sets for recovery in the subordinate address space, dynamic allocation will fail if any of the subsequent steps have these same data sets allocated by DD statements in the MAS. This restriction is a z/OS restriction.

Recover the database to the current time

This scenario documents how to recover a database to the current time by restoring the database to the last valid image copy and processing any available change accumulations (CAs) and logs up to the point that IMS Database Recovery Facility is run. To recover a database to the current time, the database is deleted and then reallocated with the image copy and any updates from the CAs and logs.

In this topic:
- "Creating and running a IMS Database Recovery Facility job"
- “Reviewing the output” on page 204

Creating and running a IMS Database Recovery Facility job

Perform the following steps to set up and create a IMS Database Recovery Facility job to recover a database to the current time.

- To perform a IMS Database Recovery Facility recovery, you must have IMS Database Recovery Facility installed. For more information, see IMS Recovery Solution Pack: IMS Database Recovery Facility User’s Guide.
- You must take your databases offline by issuing the /DBR command for IMS Database Recovery Facility to delete the production databases and redefine them.
- Complete the tasks in sample member FRXITKB
1. Install and configure the required IMS Database Recovery Facility load libraries and utilities. For more information, see "Installing IMS Recovery Solution Pack libraries" on page 200.

2. Customize the procedures and JCL found in the sample library (SFRXSAMP(FRXDRF)). Modify or update the following sets of procedures and JCL:
   - **FRXBPECF**: Sample configuration file for BPE.
   - **FRXDREZZ**: Sample configuration file for IMS Database Recovery Facility.
   - **FRXJCLSB**: Sample IMS Database Recovery Facility subordinate address space procedure.
   - **FRXMAS**: Sample IMS Database Recovery Facility master address space procedure.
   - **FRXDRE**: Sample batch job to run IMS Database Recovery Facility.

3. Customize the FRXDRE JCL to run IMS Database Recovery Facility recovery. Make a copy of the `your.hlq.SFRXSAMP(FRXDRF)` JCL.

   The following example shows modified IMS Database Recovery Facility JCL to run a recovery:
   ```
 /DRF EXEC FRXMAS,DRFMBR=ZZ
 //SYSIN DD *
 REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=MYDRF1)
 SORTPARM(ASPREF(AS))
 DBDSL101(DISP(NEW))
 OUTPUT(PRO)
 DD DB(DHVNTZ02) DBATRB(DBDSL(101))
 START ERROR(CONT)
 //
   ```

   **Notes:**
   
   a. When you run IMS Database Recovery Facility, the FRXMAS procedure is invoked. DRFMBR=ZZ references the FRXDREZZ configuration file for IMS Database Recovery Facility.
   
   b. A combination of OUTPUT(PRO) and DISP(NEW) causes IMS Database Recovery Facility to delete and redefine the production database data sets during recovery to the current time.
   
   c. The database name is DHVNTZ02 (HIDAM/VSAM). You can specify one or more databases to recover.

4. Submit the IMS Database Recovery Facility job.

After you submit your IMS Database Recovery Facility batch job, wait until the job finishes and review the output.

**Reviewing the output**

This section shows an example of the output from a standard IMS Database Recovery Facility recovery to the current time recovery job. Review the output to help you understand the results of running IMS Database Recovery Facility.
Validating recovery by using IMS HP Pointer Checker

The IMS Database Recovery Facility recovery of the database to the current time job is validated for any pointer errors by using IMS HP Pointer Checker (HPPC).

In this topic:

- “Creating and running a IMS Database Recovery Facility job” on page 206
- “Reviewing the output” on page 207
Creating and running a IMS Database Recovery Facility job

Perform the following steps to create and run a IMS Database Recovery Facility job to validate the recovery by using HPPC.

- To validate the recovery, you must have IMS Database Recovery Facility and IMS High Performance Pointer Checker for z/OS (HPPC) installed. For more information, see IMS Recovery Solution Pack: IMS Database Recovery Facility User’s Guide and IMS High Performance Pointer Checker for z/OS User’s Guide.

- Complete the tasks in sample member FRXITKB

1. Install and configure the required IMS Database Recovery Facility load libraries and utilities. For more information, see “Installing IMS Recovery Solution Pack libraries” on page 200

2. Customize the procedures and JCL found in the sample library (SFRXSAMP(FRXDRF)).

   Modify or update the following sets of procedures and JCL:

   **FRXBPECF**
   
   Sample configuration file for BPE.

   **FRXDRFZZ**
   
   Sample configuration file for IMS Database Recovery Facility.

   **FRXPATH0 and FRXPATHZ**
   
   Required procedures to run HPPC or DEDB PC.

   **Important:** Specify a REGION= value with sufficient storage on the EXEC statement.

   **FRXJCLSB**
   
   Sample IMS Database Recovery Facility subordinate address space procedure.

   **FRXMAS**
   
   Sample IMS Database Recovery Facility master address space procedure. You must include the name of your HPPC LOADLIB in the STEPLIB.

   **FRXDRF**
   
   Sample batch job to run IMS Database Recovery Facility.

3. Add the PC() keyword to the IMS Database Recovery Facility ADD statement.

   To call and run HPPC from a IMS Database Recovery Facility job, you must include a new IMS Database Recovery Facility keyword called PC() in your IMS Database Recovery Facility ADD statement. When you include the PC() keyword in the IMS Database Recovery Facility ADD statement, you are telling IMS Database Recovery Facility to run HPPC (for full-function databases) and DEDB PC (for Fast Path databases). You can include other optional keywords in the PC() statement. However, for this scenario, we will keep the standard defaults.

4. Customize the FRXDRF JCL to run IMS Database Recovery Facility/PC recovery.

   Make a copy of the your.hlq.SFRXSAMP(FRXDRF) JCL.

   The following example shows modified IMS Database Recovery Facility JCL to run a IMS Database Recovery Facility/PC recovery:

   ```plaintext
 01/DRF EXEC FRXMAS,DRFMBR=ZZ
 //SYSIN DD *
 REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHOLQ=MYDRF1)
 SORTPARM(ASPREF(AS))
   ```
When you run IMS Database Recovery Facility, the FRXMAS procedure is invoked. DRFMBR=ZZ references the FRXDRFZZ configuration file for IMS Database Recovery Facility.

A combination of OUTPUT(PRO) and DISP(NEW) causes IMS Database Recovery Facility to delete and redefine the production database data sets during recovery to the current time.

DHVNTZ02 (HIDAM/VSAM) is a full-function database and DEDBJN23 is a Fast Path database with eight areas. You can specify one or more databases to recover.

5. Submit the IMS Database Recovery Facility job.

### Reviewing the output

This section describes the important parts of the completed IMS Database Recovery Facility output job to help you understand what exactly happened.

The IMS Database Recovery Facility Utility Report is generated when any auxiliary utility is started by using IMS Database Recovery Facility, for example PC(). It lists the final return code from the operation performed on any of the databases recovered by IMS Database Recovery Facility including the final reason codes from each auxiliary utility.

The following example shows the output from a IMS Database Recovery Facility/PC recovery job.

```
FRD7201I REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=MYDRF1)
FRD7201I SORTPARM(ASPREF(AS))
FRD7201I DBDSL101(DISP(NEW))
FRD7201I OUTPUT(PRO)
FRD7201I ADD DB(DHVNTZ02,DEDBJN23) PC() -
FRD7201I DBATRB(DBDSL(101))
FRD7201I START ERROR(CONT)
```

<table>
<thead>
<tr>
<th>DATABASE RECOVERY FACILITY COMMANDS/CONTROL STATEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRD7201I REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=MYDRF1)</td>
</tr>
<tr>
<td>FRD7201I SORTPARM(ASPREF(AS))</td>
</tr>
<tr>
<td>FRD7201I DBDSL101(DISP(NEW))</td>
</tr>
<tr>
<td>FRD7201I OUTPUT(PRO)</td>
</tr>
<tr>
<td>FRD7201I ADD DB(DHVNTZ02,DEDBJN23) PC() -</td>
</tr>
<tr>
<td>FRD7201I DBATRB(DBDSL(101))</td>
</tr>
<tr>
<td>FRD7201I START ERROR(CONT)</td>
</tr>
</tbody>
</table>

### DATABASE RECOVERY FACILITY SUMMARY REPORT

<table>
<thead>
<tr>
<th>Database DD/Area</th>
<th>Database Data Set Name</th>
<th>Records Read</th>
<th>Records Subord.</th>
<th>IC</th>
<th>CA</th>
<th>LOG</th>
<th>Written Reg Name</th>
<th>#</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDBJN23 DB23AR0</td>
<td>1</td>
<td>180</td>
<td>0</td>
<td>104</td>
<td>0</td>
<td>104</td>
<td>AS069201</td>
<td>694</td>
<td>Delete/define complete</td>
</tr>
<tr>
<td>DEDBJN23 DB23AR1</td>
<td>2</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>104</td>
<td>21</td>
<td>AS069202</td>
<td>695</td>
<td>Delete/define complete</td>
</tr>
<tr>
<td>DEDBJN23 DB23AR2</td>
<td>3</td>
<td>147</td>
<td>0</td>
<td>0</td>
<td>147</td>
<td>0</td>
<td>AS069203</td>
<td>696</td>
<td>Delete/define complete</td>
</tr>
<tr>
<td>DEDBJN23 DB23AR3</td>
<td>4</td>
<td>147</td>
<td>0</td>
<td>0</td>
<td>147</td>
<td>0</td>
<td>AS069201</td>
<td>694</td>
<td>Delete/define complete</td>
</tr>
<tr>
<td>DEDBJN23 DB23AR4</td>
<td>5</td>
<td>231</td>
<td>0</td>
<td>0</td>
<td>231</td>
<td>0</td>
<td>AS069202</td>
<td>695</td>
<td>Delete/define complete</td>
</tr>
<tr>
<td>DEDBJN23 DB23AR5</td>
<td>6</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>0</td>
<td>AS069203</td>
<td>696</td>
<td>Delete/define complete</td>
</tr>
<tr>
<td>DEDBJN23 DB23AR6</td>
<td>7</td>
<td>165</td>
<td>0</td>
<td>0</td>
<td>165</td>
<td>0</td>
<td>AS069201</td>
<td>694</td>
<td>Delete/define complete</td>
</tr>
<tr>
<td>DEDBJN23 DB23AR7</td>
<td>8</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>AS069202</td>
<td>695</td>
<td>Delete/define complete</td>
</tr>
<tr>
<td>DHVNTZ02 HIDAM</td>
<td>1</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>49</td>
<td>AS069203</td>
<td>696</td>
<td>Delete/define complete</td>
</tr>
<tr>
<td>DHVNTZ02 HIDAM2</td>
<td>2</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>49</td>
<td>0</td>
<td>AS069201</td>
<td>694</td>
<td>Delete/define complete</td>
</tr>
</tbody>
</table>

Chapter 14. Usage scenarios for optimizing your IMS Recovery Solution Pack: IMS Database Recovery Facility experience 207
Taking an incremental image copy of offline databases

This scenario describes how to recover offline databases by taking an incremental image copy (ICR). Taking an offline ICR is useful in situations when your databases are offline and you want to produce a new image copy that contains only the information that was updated since the last image copy was taken without performing a full recovery.

In this topic:

- "Identifying the databases to perform incremental image copy” on page 209
- "Creating and running a IMS Database Recovery Facility job” on page 210
- "Reviewing the output” on page 211
- "Common errors and problems” on page 213
- "Optional: Verifying the ICR in DBRC” on page 213
- "Next steps” on page 214
Identifying the databases to perform incremental image copy

Before taking an incremental image copy (ICR), you must first identify which databases to perform an ICR.

If this is your first time running IMS Database Recovery Facility, take your databases offline by issuing a /DBR command to ensure that all updates are committed and all logs are archived before running ICR.

If you have attempted ICR with IMS Database Recovery Facility and would like to perform a point-in-time ICR where your databases are online, see "Taking an incremental image copy of an online database to the current time or point-in-time" on page 214.

To list and identify which databases to take an ICR of, run either a LIST.RECON or LIST.HISTORY job.

A LIST.RECON job displays the RECON’s current status and a formatted display of all records it contains. A LIST.HISTORY job provides a history-of-activity listing for DBDSs or DEDB areas. For more information, see the IMS Database Recovery Control (DBRC) Guide and Reference.

In the following examples, an ICR is being performed on a HIDAM/VSAM database named DHVNTZ02 with two database data sets: DHVNTZ02.FKXXI01E and DHVNTZ02.FKXXI02E.

Example: LIST.RECON job
In this example, a LIST.RECON job is being run to get a detailed DBRC report of DHVNTZ02.

```
//LISTRCON EXEC PGM=DSPURX00,COND=EVEN
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMSTESTL.IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSTESTL.IMS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSTESTL.IMS.RECON3,DISP=SHR
//SYSIN DD *
LIST.RECON
/*
```

Example: LIST.HISTORY job
In this example, a LIST.HISTORY job is being run to get a detailed DBRC report of DHVNTZ02.

```
//LISTRCON EXEC PGM=DSPURX00,COND=EVEN
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMSTESTL.IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSTESTL.IMS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSTESTL.IMS.RECON3,DISP=SHR
//SYSIN DD *
LIST.HISTORY DBD(DHVNTZ02)
/*
```

Example: Output
The following is an example of the output from the LIST.HISTORY or LIST.RECON job:

```
+---+-------------------+----------------+------------------------+
| DB | DBD= DHVNTZ02 | IRLMID= **NULL** | DMB#= 2 TYPE= IMS |
+---+-------------------+----------------+------------------------+
```

```
```

Chapter 14. Usage scenarios for optimizing your IMS Recovery Solution Pack: IMS Database Recovery Facility experience
Creating and running a IMS Database Recovery Facility job

Perform the following steps to create and run a IMS Database Recovery Facility job that produces an incremental image copy (ICR).

- To perform an IMS Database Recovery Facility ICR, you must have IMS Database Recovery Facility (IMS Database Recovery Facility) and IMS High Performance Image Copy (HPIC) installed. For more information, see IMS Recovery Solution Pack: IMS Database Recovery Facility User’s Guide and IMS High Performance Pointer Checker for z/OS User’s Guide.

- Complete the tasks in sample member **FRXITKB**.

1. Install and configure the required IMS Database Recovery Facility load libraries and utilities. For more information, see “Installing IMS Recovery Solution Pack libraries” on page 200.

2. Customize the procedures and JCL found in the sample library (SFRXSAMP(FRXDRF)).

Modify or update the following procedures and JCL:

**FRXBPECF**
Sample configuration file for BPE.

**FRXDRFZZ**
Sample configuration file for IMS Database Recovery Facility.

**FRXJCLSB**
Sample IMS Database Recovery Facility subordinate address space procedure.
FRXMAS
Sample IMS Database Recovery Facility master address space
procedure. You must include the name of your HPIC LOADLIB in the
STEPLIB.

FRXDRF
Sample batch job to run IMS Database Recovery Facility.

3. Customize the FRXDRF JCL to run IMS Database Recovery Facility ICR.
Make a copy of the your.hlq.SFRXSAMP(FRXDRF) JCL.
The following example shows modified JCL to run a IMS Database Recovery
Facility ICR:

```jcl
* /DRF EXEC FRXMAS,DRFMBR=ZZ
//SYSIN DD *
REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=MYDRF1)
SORTPARM(ASPREF(AS))
DBDSL101(DISPLNEW))
OUTPUT(ICR)
ADD DB(DHVNTZ02) DBATRB(DBDSL101) -
IC (COMP(Y),
COMPRTN(FABJCMP3),-
DSNTYPE(BASIC),-
ICHQ(TEMP.IC),-
ICNMRULE(Y),-
UNIT(SYSDA),-
SPACE(CYL,1,1,RLSE))
START ERROR(CONT)
```

Notes:

a. When you run IMS Database Recovery Facility, the FRXMAS
   procedure is invoked. DRFMBR=ZZ references the FRXDRFZZ
   configuration file for IMS Database Recovery Facility.

b. For more information about how to explicitly instruct IMS Database
   Recovery Facility to generate an ICR, see the “Environmental control
   statements” topic in IMS Recovery Solution Pack: IMS Database
   Recovery Facility User’s Guide.

c. The database name DHVNTZ02 (HIDAM/VSAM) is used by the
   ICR process in the ADD DB() parameter. You can specify one or
   more databases to take an ICR.

d. You can customize the IC keywords to your specifications. For more
   information, see the “Integrated auxiliary utility parameters for IMS
   High Performance Image Copy” topic in IMS Recovery Solution Pack:
   IMS Database Recovery Facility User’s Guide. In this case, the output
   ICR is compressed by using the FABJCMP3 routine, and the output
   IC data set name follows the ICNMRULE naming convention

4. Submit the IMS Database Recovery Facility job.

Reviewing the output
This section describes the important parts of the IMS Database Recovery Facility
ICR output. Review the output to help you understand the results of running this
job.

The IMS Database Recovery Facility IC/ICR output report lists the output copies
that were that were generated by HPIC through IMS Database Recovery Facility.
Notice that the ICRs generated by IMS Database Recovery Facility are registered to DBRC as batch image copies because the specified database was not allocated and offline.

The following example shows the output from a sample IMS Database Recovery Facility ICR job.

**DATABASE RECOVERY FACILITY COMMANDS/CONTROL STATEMENTS**

```
FRD7201I REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=MYDRF1)
FRD7201I SORTPARM(ASPREF(AS))
FRD7201I DBDSL101(DISP(NEW))
FRD7201I OUTPUT(ICR)
FRD7201I ADD DB(DHVNTZ02) DBATRB(DBDSL(101)) -
FRD7201I IC (COMP(Y),-
FRD7201I COMPRTN(FABJCMP3),-
FRD7201I DSNTYPE(BASIC),-
FRD7201I ICHLQ(TEMP.IC),-
FRD7201I ICHLQ(TEMP.IC),-
FRD7201I UNIT(SYSDA),-
FRD7201I SPACE(CYL,1,1,RLSE))
FRD7201I START ERROR(CONT)
```

**DATABASE RECOVERY FACILITY SUMMARY REPORT**

```
Database DD/Area Records Read Records Subord. STC Final
Name Name IC CA LOG Written Reg Name # Status
DHVNTZ02 HIDAM 1 49 0 1501 49 AS069901 700 Delete / define complete
DHVNTZ02 HIDAM2 2 49 0 0 49 AS069902 701 Delete / define complete
```

**DATABASE RECOVERY FACILITY UTILITY REPORT**

```
Database DDN Database Data Set Name IC PC/DP IB PR Utility Final Status
--
DHVNTZ02 HIDAM IMSTESTL.DHVNTZ02.FKXXI01E 00 N/A N/A N/A N/A
DHVNTZ02 HIDAM2 IMSTESTL.DHVNTZ02.FKXXI02E 00 N/A N/A N/A N/A
```

**DATABASE RECOVERY FACILITY IC/ICR OUTPUT REPORT**

```
Database DD/Area IC / ICR Data Set Name Compr Volume File IC IC Compr Compr
Name Name --------.--------.--------.--------.-------- Count Serial Seq. Type Time Ratio Routine
DHVNTZ02 HIDAM TEMP.IC.IC1.DHVNTZ02.HIDAM.D11044.T005017 48 333333 00001 Bat. 11.044 00:50:21.6 -0800 10.1 FABJCMP3
DHVNTZ02 HIDAM2 TEMP.IC.IC1.DHVNTZ02.HIDAM2.D11044.T005017 48 000000 00001 Bat. 11.044 00:50:21.6 -0800 7.6 FABJCMP3
```

**NOTIFY.IC DBD(DHVNTZ02) DDN(HIDAM )**
```
RUNTIME('2011.044 00:50:21.6 -08:00')
BATCH
ICOSN(TEMP.IC.IC1.DHVNTZ02.HIDAM.D11044.T005017)
FILESEQ(0001) UNIT(3390)
VOLLIST (333333)
RECDCT(00000000)
```

**NOTIFY.IC DBD(DHVNTZ02) DDN(HIDAM2 )**
```
RUNTIME('2011.044 00:50:21.6 -08:00')
BATCH
ICOSN(TEMP.IC.IC1.DHVNTZ02.HIDAM2.D11044.T005017)
FILESEQ(0001) UNIT(3390)
VOLLIST (000000)
RECDCT(00000000)
```

**DSPO203I COMMAND COMPLETED WITH CONDITION CODE 00**
Common errors and problems

You might encounter error messages B37 or E37 due to the output IC running out of space. To resolve this problem, increase the space allocation size for the output IC by using the SPACE= keyword.

Optional: Verifying the ICR in DBRC

You can verify that the ICR created by IMS Database Recovery Facility was registered in DRBC as a batch image copy.

To verify the ICR in DBRC:

1. Run the same LIST.RECON or LIST.HISTORY job setup that you ran in “Identifying the databases to perform incremental image copy” on page 209.
2. Locate the database you chose to ICR in your RECON output job: DHVNTZ02.

For example:

<table>
<thead>
<tr>
<th>DB</th>
<th>DBD=DHVNTZ02 IRLMID=*NULL DMB#=2 TYPE=IMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBOS</td>
<td></td>
</tr>
<tr>
<td>DSN=DHVNTZ02.FKXXXI01E TYPE=IMS</td>
<td></td>
</tr>
<tr>
<td>DDB=DHVNTZ02 DDN=HIDAM DSID=001 DBORG=HIDAM DSORG=VSAM</td>
<td></td>
</tr>
<tr>
<td>CAGRP=<strong>NULL</strong> GENMAX=2 IC AVAIL=0 IC USED=1 DSN=00000001</td>
<td></td>
</tr>
<tr>
<td>NOREUSE RECOVPD=0</td>
<td></td>
</tr>
<tr>
<td>DEFJCL=<strong>NULL</strong> ICJCL=ICJCL OICJCL=OICJCL RECOVJCL=RECOVJCL</td>
<td></td>
</tr>
<tr>
<td>RECVJCL=ICRCVJCL</td>
<td></td>
</tr>
<tr>
<td>FLAGS: COUNTERS:</td>
<td></td>
</tr>
<tr>
<td>IC NEEDED =OFF</td>
<td></td>
</tr>
<tr>
<td>RECOV NEEDED =OFF</td>
<td></td>
</tr>
<tr>
<td>RECEIVE NEEDED =OFF EEQE COUNT =0</td>
<td></td>
</tr>
<tr>
<td>IMAGE</td>
<td></td>
</tr>
<tr>
<td>RUN = 11.043 22:57:46.7 * RECORD COUNT =49</td>
<td></td>
</tr>
<tr>
<td>STOP = 00.000 00:00:00.0 BATCH USID=0000000001</td>
<td></td>
</tr>
<tr>
<td>IC1</td>
<td></td>
</tr>
<tr>
<td>DSN=IMSVS.DHVNTZ02.HIDAM.IC.IC225745 FILE SEQ=0001</td>
<td></td>
</tr>
<tr>
<td>UNIT=SYSDA VOLDEF=0001 VOLUSE=0001 VOLSER=222222</td>
<td></td>
</tr>
<tr>
<td>IMAGE</td>
<td></td>
</tr>
<tr>
<td>RUN = 11.044 00:50:21.6 * RECORD COUNT =49</td>
<td></td>
</tr>
<tr>
<td>STOP = 00.000 00:00:00.0 BATCH USID=0000000001</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td></td>
</tr>
<tr>
<td>DSN=TEMP.IC.IC1.DHVNTZ02.HIDAM.D11044.T005017 FILE SEQ=0001</td>
<td></td>
</tr>
<tr>
<td>UNIT=3390 VOLDEF=0001 VOLUSE=0001 VOLSER=333333</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 14. Usage scenarios for optimizing your IMS Recovery Solution Pack: IMS Database Recovery Facility experience
Next steps

If the ICR was successfully created by IMS Database Recovery Facility, it is now registered to DBRC as a BATCH image copy, and you are now able to bring your databases online and continue running updates. All future updates (logs and CAs) start from the newly created ICR. If you perform another ICR or standard recovery, IMS Database Recovery Facility uses the previous image copy (in this scenario, it is the ICR) and uses any archived logs or change accumulation data sets as input.

Taking an incremental image copy of an online database to the current time or point-in-time

This scenario describes how to recover an online database to the current time or to a point in time by taking an incremental image copy (ICR). Taking an online ICR is useful in situations when you do not want to bring your databases offline, but still want to create an ICR.

The ICR process is flexible, providing the ability to generate ICRs to the current time or the point-in-time where updates are being applied.

In this topic:
- “Identify the databases to perform incremental image copy” on page 216
- “Creating and running your IMS Database Recovery Facility job” on page 216
- “Reviewing the output” on page 217
- “Common errors and problems” on page 218
- “Optional: Verifying the ICR in DBRC” on page 218
- “Next steps” on page 220

Identify the databases to perform incremental image copy

Before taking an incremental image copy (ICR), you must first identify which databases to perform an ICR.

- If you would like to perform an ICR where your databases are offline, see “Taking an incremental image copy of offline databases” on page 208.
- IMS V10 or later provides greater time precision for the ICR output than earlier versions.

To list and identify which databases to take an ICR of, run either a LIST.RECON or LIST.HISTORY job. Running these jobs is helpful when you want to select and define a specific time to perform ICR in your IMS Database Recovery Facility job. A LIST.RECON job displays the RECON’s current status and a formatted display of all records it contains. A LIST.HISTORY job provides a history-of-activity listing for DBDSs or DEDB areas. For more information, see the IMS Database Recovery Control...
In the following examples, an ICR is being performed on a HIDAM/VSAM database named DHVNTZ02.

Example: LIST.RECON job
In this example, a LIST.RECON job is being run to get a detailed DBRC report of DHVNTZ02.
```plaintext
//LISTRECON EXEC PGM=DSPURX00,COND=EVEN
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMSTESTL.IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSTESTL.IMS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSTESTL.IMS.RECON3,DISP=SHR
//SYSIN DD *
LIST.RECON
/*
```

Example: LIST.HISTORY job
In this example, a LIST.HISTORY job is being run to get a detailed DBRC report of DHVNTZ02.
```plaintext
//LISTHISTORY EXEC PGM=DSPURX00,COND=EVEN
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMSTESTL.IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMSTESTL.IMS.RECON2,DISP=SHR
//RECON3 DD DSN=IMSTESTL.IMS.RECON3,DISP=SHR
//SYSIN DD *
LIST.HISTORY DBD(DHVNTZ02)
/*
```

Example: Output
The following is an example of the output from the LIST.HISTORY or LIST.RECON job:
```
+--
|Timeline for DBDS: DHVNTZ02 HIDAM |
| USID=00000003 AUTHORIZED=00000003 |
| RECEIVE=00000000 HARD=00000003 |
+--
|+-Time------------+Events----+---+--+----------------------|
| |IC | | | | |
| |REORG | |US|Subsystem |
| |RECOV |CA |ID|Logs and Allocs |
+-----------------+----------+---+--+----------------------|
 11.044 14:03:25.0 B 1 |
 11.044 14:09:14.4 IMS1 |
 11.044 14:10:00.4 2 A |
 11.044 14:10:01.5 s |
 11.044 14:10:59.5 s |
 11.044 14:12:15.0 s |
 11.044 14:12:56.2 2 D |
 11.044 14:12:56.7 s |
 11.044 18:24:41.8 3 A |
 11.044 18:24:42.8 s |
 11.044 18:25:37.5 s |
 11.044 18:27:19.3 s |
+-----------------+----------+---+--+----------------------|
+--
|Timeline for DBDS: DHVNTZ02 HIDAM2 |
| USID=00000003 AUTHORIZED=00000003 |
| RECEIVE=00000000 HARD=00000003 |
+--
|+-Time------------+Events----+---+--+----------------------|
| |IC | | | | |
| |REORG | |US|Subsystem |
| |RECOV |CA |ID|Logs and Allocs |
+-----------------+----------+---+--+----------------------|
 11.044 14:03:26.8 B 1 |
```

Creating and running your IMS Database Recovery Facility job

Perform the following steps to create and run a IMS Database Recovery Facility job that produces an incremental image copy (ICR) of an online database.

**Important:** Because the database is allocated, the result of the ICR might be a concurrent image copy or fuzzy image copy that can contain committed and uncommitted log updates. For more information, see IMS Recovery Solution Pack: IMS Database Recovery Facility User’s Guide.

- To perform a IMS Database Recovery Facility ICR, you must have IMS Database Recovery Facility and IMS High Performance Image Copy (HPIC) installed. For more information, see IMS Recovery Solution Pack: IMS Database Recovery Facility User’s Guide and IMS High Performance Pointer Checker for z/OS User’s Guide.
- Complete the tasks in sample member FRXITKB.

This scenario uses the time “11.044 18:25:37.5,” which was extracted from the RECON that has updates being processed.

1. Install and configure the required IMS Database Recovery Facility load libraries and utilities. For more information, see “Installing IMS Recovery Solution Pack libraries” on page 200.

2. Customize the procedures and JCL found in the sample library (SFRXSAMP(FRXDRF)).
   Modify or update the following sets of procedures and JCL:

   - **FRXBPECF**
     Sample configuration file for BPE.
   - **FRXDRFZZ**
     Sample configuration file for IMS Database Recovery Facility.
   - **FRXJCLSB**
     Sample IMS Database Recovery Facility subordinate address space procedure.
   - **FRXMAS**
     Sample IMS Database Recovery Facility master address space procedure. You must include the name of your HPIC LOADLIB in the STEPLIB.
   - **FRXDRF**
     Sample batch job to run IMS Database Recovery Facility.

3. Customize the FRXDRF JCL to run IMS Database Recovery Facility ICR.
   Make a copy of the IMSTOOL.IRSP11.SFRXSAMP(FRXDRF) JCL.
   The following example shows modified IMS Database Recovery Facility ICR JCL in which an ICR is being taken with the database allocated:

   ```
 //DRF EXEC FRXMAS,DRFMBR=ZZ
 //SYSIN DD *
 REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=MYDRF1)
 SORTPARM(ASPREF(AS))
 DBDSL101(DISP(NEW))
 OUTPUT(ICR)
 ADD DB(DHVNTZ02) DBATRB(DBDSL(101)) -
 COMP(Y),-
 COMPRTN(FABJCMP3),-
 DSNTYPE(BASIC),-
 ICHLQ(TEMP.IC),-
 ICNMRULE(Y),-
   ```
UNIT(SYSDA),-
SPACE(CYL,1,1,RLSE))
START ERROR(CONT) RCVTIME('11.044 18:25:37.5')

Notes:

a. When you run IMS Database Recovery Facility, the FRXMAS
procedure is invoked. DRFMBR=ZZ references the FRXDRFZZ
configuration file for IMS Database Recovery Facility.

b. To explicitly instruct IMS Database Recovery Facility to take an ICR,
see the “Environmental control statements” section in the IMS

c. The database name DHVNTZ02 (HIDAM/VSAM), which is
identified in step[1 on page 216] is used to take an ICR by using the
ADD DB() parameter. You can specify one or more databases take an
ICR of.

  d. You can customize the IC keywords to your specifications. For more
information, see the “Environmental control statements” section in
the IMS Recovery Solution Pack: IMS Database Recovery Facility User’s
Guide. In this case, the output ICR is compressed by using the
FABJCMP3 routine, and the output IC data set name follows the
ICNMRULE naming convention

e. Specifying RCVTIME() is optional. If you want to run ICR to current
time, you do not need to include this parameter because IMS
Database Recovery Facility automatically calls HPIC to generate
concurrent and fuzzy ICs for the allocated databases that are
specified in the ADD DB() statement. However, if you want to
generate a point-in-time ICR that is not the current time, you must
input the specific time by using RCVTIME(). In this scenario, the
chosen time was inserted.

4. Submit the IMS Database Recovery Facility job.

Reviewing the output

This section describes the important parts of the IMS Database Recovery
Facility ICR output. Review the output to help you understand the results of running this
job.

The following example shows the output from a sample IMS Database Recovery
Facility ICR job. One of the ICRs that was generated was a CIC or concurrent
image copy and was successfully registered to DBRC as a CIC image copy because
the database was allocated and had updates.
<table>
<thead>
<tr>
<th>Database DD/Area</th>
<th>IC/ICR Name</th>
<th>Compr</th>
<th>Volume</th>
<th>IC</th>
<th>DS</th>
<th>IC</th>
<th>Compr</th>
<th>Count</th>
<th>Serial Seq.</th>
<th>Type</th>
<th>Time</th>
<th>Ratio</th>
<th>Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHVNTZ02 HIDAM</td>
<td>TEMP.IC.IC1.DHVNTZ02.I1383934</td>
<td>222222</td>
<td>49</td>
<td>STD</td>
<td>18:25:37.5 -0800</td>
<td>10.1</td>
<td>FABJCMP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHVNTZ02 HIDAM2</td>
<td>TEMP.IC.IC1.DHVNTZ02.I1383934</td>
<td>333333</td>
<td>49</td>
<td>STD</td>
<td>18:25:37.5 -0800</td>
<td>7.6</td>
<td>FABJCMP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Optional: Verifying the ICR in DBRC

You can verify that the ICR created by IMS Database Recovery Facility was registered in DRBC as a concurrent image copy.

To verify the ICR in DBRC:

1. Run the same LIST.RECON or LIST.HISTORY job setup that you ran in "Identify the databases to perform incremental image copy" on page 214.

---

Common errors and problems

You might encounter error messages B37 or E37 due to the output IC running out of space. To resolve this problem, increase the space allocation size for the output IC by using the SPACE= keyword.
2. Locate the database you chose to ICR in your RECON output job: DHVNTZ02.

For example:

```
DB
DB=DB=HVTZ02 IRLMID=**NULL** DMB#=2 TYPE=IMS
```

```
DBDS
DSN=HVTZ02.FXX101E TYPE=IMS
DBD=HVTZ02 DDN=HIDAM DSID=001 DBORG=HIDAM DSORG=VSAM
CAGRP=**NULL** GENMAX=2 IC AVAIL=0 IC USED=1 DSSN=00000001
NOREUSE RECOVPD=0
DEFLTJCL=**NULL** ICJCL=ICJCL OICJCL=OICJCL RECOVJCL=RECOVJCL
RECVJCL=ICRCVJCL
FLAGS: COUNTERS:
 IC NEEDED =OFF
 RECOV NEEDED =OFF
 RECEIVE NEEDED =OFF EEQE COUNT =0
```

```
IMAGE
RUN = 11.044 14:03:25.0 * RECORD COUNT =49
STOP = 00.000 00:00:00.0 BATCH USID=0000000001
```

```
IC1
DSN=IMSVS.HVTZ02.HIDAM.IC.IC140323 FILE SEQ=0001
UNIT=SYSDA VOLS DEF=0001 VOLS USED=0001
VOLSER=222222
```

```
IC1
DSN=TEMP.IC.IC1.HVTZ02.HIDAM.D11044.T183934 FILE SEQ=0001
UNIT=3390 VOLS DEF=0001 VOLS USED=0001
VOLSER=222222
```

```
DBDS
DSN=HVTZ02.FXX102E TYPE=IMS
DBD=HVTZ02 DDN=HIDAM2 DSID=002 DBORG=HIDAM DSORG=VSAM
CAGRP=**NULL** GENMAX=2 IC AVAIL=0 IC USED=1 DSSN=00000000
NOREUSE RECOVPD=0
DEFLTJCL=**NULL** ICJCL=ICJCL OICJCL=OICJCL RECOVJCL=RECOVJCL
RECVJCL=ICRCVJCL
FLAGS: COUNTERS:
 IC NEEDED =OFF
 RECOV NEEDED =OFF
 RECEIVE NEEDED =OFF EEQE COUNT =0
```

```
IMAGE
RUN = 11.044 14:03:26.8 * RECORD COUNT =49
STOP = 00.000 00:00:00.0 BATCH USID=0000000001
```

```
IC1
DSN=IMSVS.HVTZ02.HIDAM2.IC.IC140323 FILE SEQ=0001
UNIT=SYSDA VOLS DEF=0001 VOLS USED=0001
VOLSER=222222
```

```
IC1
DSN=TEMP.IC.IC1.HVTZ02.HIDAM2.D11044.T183934 FILE SEQ=0001
UNIT=3390 VOLS DEF=0001 VOLS USED=0001
VOLSER=333333
```
Next steps

If the ICR was successfully created by IMS Database Recovery Facility, it is now registered to DBRC as a CONCUR image copy, and you are now able to continue running updates on your online or allocated databases. All future updates (logs and CAs) start from the newly created ICR. If you perform another ICR or standard recovery, IMS Database Recovery Facility uses the previous image copy (in this scenario, it is the ICR) and uses any archived logs or change accumulation data sets as input.

Using IMS Index Builder to rebuild indexes during recovery

In this scenario, IMS Database Recovery Facility is used to run IMS Index Builder against HALDBs to rebuild the indexes.

The database that is used in this scenario is a PHIDAM or OSAM database with four partitions and one secondary index with four partitions.

When you include the IB() keyword in the IMS Database Recovery Facility ADD statement, you are instructing IMS Database Recovery Facility to run IMS Index Builder for HALDBs to rebuild your indexes. You can include many optional keywords in the IB() statement, however, for the purposes of this scenario the standard defaults are used.

In this topic:

- "Creating and running a IMS Database Recovery Facility job"
- "Reviewing the output" on page 221
- "Common errors and problems" on page 222

Creating and running a IMS Database Recovery Facility job

Perform the following steps to create and run a IMS Database Recovery Facility job that runs IMS Index Builder (IB) against HALDBs to rebuild the indexes.

- To rebuild the indexes, you must have IMS Database Recovery Facility (IMS Database Recovery Facility) and IMS Index Builder (IB) installed. For more information, see IMS Recovery Solution Pack: IMS Database Recovery Facility User’s Guide and IMS Index Builder for z/OS User’s Guide.
- Complete the tasks in sample member FRXITKB.

1. Install and configure the required IMS Database Recovery Facility load libraries and utilities. For more information, see Installing IMS Recovery Solution Pack libraries” on page 200.
2. Customize the procedures and JCL found in the sample library (SFRXSAMP(FRXDRF)).
   Modify or update the following sets of procedures and JCL:

   FRXBPECF
   Sample configuration file for BPE.

   FRXDRFZZ
   Sample configuration file for IMS Database Recovery Facility.

   FRXJCLIP
   Sample utility address space JCL for IB and DFSPREC0.

   FRXJCLSB
   Sample IMS Database Recovery Facility subordinate address space procedure.
FRXMAS

Sample IMS Database Recovery Facility master address space procedure. You must include the name of your IB LOADLIB in the STEPLIB.

FRXDRF

Sample batch job to run IMS Database Recovery Facility.

3. Customize the FRXDRF JCL to run IMS Database Recovery Facility ICR.

Make a copy of your.hlq.SFRXSAMP(FRXDRF) JCL.

The following example shows modified IMS Database Recovery Facility JCL to run a recovery and use IB to rebuild the indexes:

```
//IMS Database Recovery Facility EXEC FRXMAS,DRFMBR=ZZ
//SYSIN DD *
DRFIAX(FRXJCLIP)
REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=MYDRF1)
SORTPARAM(ASPREF(AS))
DBDSL101(DISPLACE(NEW))
OUTPUT(PRO)
ADD DB(DBOHIDK5) IB(HALDB=BOTH,BLD_SECONDARY(ALL)) -
DBATRB(DBDSL(101))
START ERROR(CONT)
```

Notes:

- a. DRFIAX specifies the name of the procedure that is used to initiate the utility address space for IB.

- b. IMS Database Recovery Facility recovers the DBOHIDK5 (PHIDAM/OSAM) database and rebuilds the primary index and ILE, including rebuilding all of the secondary indexes by using the IB() keyword. You can customize the IB keywords to your specifications. For more information, see *IMS Recovery Solution Pack: IMS Database Recovery Facility User’s Guide*.

4. Submit the IMS Database Recovery Facility job.

**Reviewing the output**

This section describes the important parts of the IMS Database Recovery Facility output. Review the output to help you understand the results of running this job.

The IMS Database Recovery Facility utility report lists the return codes for the primary indexes and ILEs that were rebuilt by IMS Index Builder, including the rebuilt secondary indexes.

The following example shows the output from a sample IMS Database Recovery Facility/IMS Index Builder job.

```
FRD7201 DRFIAX(FRXJCLIP)
FRD7201 REPORT(RPTTYPE=SEP,DRFUNIT=SYSDA,DRFHLQ=MYDRF1)
FRD7201 SORTPARAM(ASPREF(AS))
FRD7201 DBDSL101(DISPLACE(NEW))
FRD7201 OUTPUT(PRO)
FRD7201 ADD DB(DBOHIDK5) IB(HALDB=BOTH,BLD_SECONDARY(ALL)) -
FRD7201 DBATRB(DBDSL(101))
FRD7201 START ERROR(CONT)
```

```
D A T A B A S E R E C O V E R Y F A C I L I T Y S U M M A R Y R E P O R T
<table>
<thead>
<tr>
<th>Database</th>
<th>DD/Area</th>
<th>DSID</th>
<th>IC</th>
<th>CA</th>
<th>LOG</th>
<th>Written Reg Name</th>
<th># Status</th>
</tr>
</thead>
</table>
```

Chapter 14. Usage scenarios for optimizing your IMS Recovery Solution Pack: IMS Database Recovery Facility experience
### DATABASE RECOVERY FACILITY UTILITY REPORT

<table>
<thead>
<tr>
<th>Database</th>
<th>DDN</th>
<th>Database Data Set Name</th>
<th>IC</th>
<th>PC/DP</th>
<th>IB</th>
<th>PR</th>
<th>Utility</th>
<th>Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>POHIDKA</td>
<td>POHIDKAA</td>
<td>IMSTESTS.DBOHIDK5.A00001</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKB</td>
<td>POHIDKBA</td>
<td>IMSTESTS.DBOHIDK5.A00002</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKC</td>
<td>POHIDKCA</td>
<td>IMSTESTS.DBOHIDK5.A00003</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKD</td>
<td>POHIDKDA</td>
<td>IMSTESTS.DBOHIDK5.A00004</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKA</td>
<td>PRIMINDX</td>
<td>IMSTESTS.DBOHIDK5.X00001</td>
<td>N/A</td>
<td>N/A</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKB</td>
<td>PRIMINDX</td>
<td>IMSTESTS.DBOHIDK5.X00002</td>
<td>N/A</td>
<td>N/A</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKC</td>
<td>PRIMINDX</td>
<td>IMSTESTS.DBOHIDK5.X00003</td>
<td>N/A</td>
<td>N/A</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKD</td>
<td>PRIMINDX</td>
<td>IMSTESTS.DBOHIDK5.X00004</td>
<td>N/A</td>
<td>N/A</td>
<td>00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKA</td>
<td>ILDS/ILE</td>
<td>IMSTESTS.DBOHIDK5.L00001</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKB</td>
<td>ILDS/ILE</td>
<td>IMSTESTS.DBOHIDK5.L00002</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKC</td>
<td>ILDS/ILE</td>
<td>IMSTESTS.DBOHIDK5.L00003</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>POHIDKD</td>
<td>ILDS/ILE</td>
<td>IMSTESTS.DBOHIDK5.L00004</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>P2XIDKD</td>
<td>P2XIDKDA</td>
<td>(Partition Index Database)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

#### Common errors and problems

To avoid possible IMS Index Builder errors when you attempt to rebuild your indexes, you should define your indexes as REUSE.
Chapter 15. Troubleshooting

Use these topics to diagnose and correct problems that you experience with IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility.

For current guidelines for gathering the proper IMS Database Recovery Facility diagnostic documentation when reporting a problem to support, go to the IBM DB2 and IMS Tools Support Overview page [http://www-01.ibm.com/software/data/db2imstools/support.html](http://www-01.ibm.com/software/data/db2imstools/support.html) and search for "IMS Database Recovery Facility Technote". The title of the Technote is MustGather: Guidelines for IMS Database Recovery Facility customers in gathering the proper diagnostic documentation when reporting a problem to support.
Chapter 16. IMS Database Recovery Facility messages

This reference section provides detailed information about messages issued by IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility.

The explanations and user responses provided in this reference can help you diagnose, troubleshoot, and solve IMS Database Recovery Facility problems.

IMS Database Recovery Facility message numbers use the following format:

```
FRDnnnx
```

Where:

**FRD**
Indicates that the message was issued by IMS Database Recovery Facility.

**nmmm**
Indicates the message identification number.

**x**
Indicates the severity of the message:
- A indicates that operator intervention is required before processing can continue.
- E indicates that the job step is about to terminate abnormally.
- I indicates that the message is for information only.
- W indicates that the message is a warning to alert you to a possible error condition.

**Message Variables**
In the message text, there can be lowercase variables (for example, xxx...). The variables represent values when the message appears such as:
- Data in a data set
- A return code
- An error code

**Message Documentation**
In addition to message number and message text, information for each message includes the following:

**Explanation:**
The Explanation section explains what the message text means, why it occurred, and what its variable entry fields are (if any).

**System Action:**
The System Action section explains what the system will do next.

**User Response:**
The User Response section describes whether a response is necessary, what the appropriate response is, and how the response will effect the system or program.

**Module:**
The affected module in the code.
Explanation: This message displays the product, version, date, time, and page number on the first line of each new page of the IMS Database Recovery Facility reports.

User response: None.

Module: FRXGRPT0

---

Explanation: An IMS Database Recovery Facility subordinate address space, indicated by asname, issued a message indicated by msgnum. The message is sent to the destination identified by the IMS Database Recovery Facility master address space SYSPRINT DD statement.

asname  The IMS Database Recovery Facility subordinate address space jobname.

msgnum  The message number issued by the IMS Database Recovery Facility subordinate address space.

msgtext  The message text of the message issued by the IMS Database Recovery Facility subordinate address space.

System action: Processing continues.

Module: FRXFDSR0

---

FRD1000I  IRP/DRF VxRy: IMS DATABASE RECOVERY FACILITY INITIALIZATION COMPLETE

Explanation: The message indicates the version of IMS Recovery Solution Pack: IMS Database Recovery Facility in use and that initialization is complete.

The message destination is the z/OS system console.

System action: Processing continues.

Module: FRXMSTR0

---

FRD1002I  IRP/DRF VxRy: IMS DATABASE RECOVERY FACILITY SAS INITIALIZATION COMPLETE

Explanation: The message indicates the version of IMS Recovery Solution Pack: IMS Database Recovery Facility in use and that initialization is complete for the IMS Database Recovery Facility subordinate address space. The message is sent to the z/OS system console.

The message destination is the z/OS system console.

---

FRD1004E  DBRC INITIALIZATION FAILED reason, RC=return code

Explanation: Initialization of the DBRC interface detected an error.

reason  Identifies the problem and is one of the following occurrences:
  - UNABLE TO OBTAIN STORAGE
  - INVALID FEEDBACK FROM DBRC

return code  Represents internal diagnostic information.

System action: The address space shuts down and recovery processing is halted.

User response: Determine if the IMS Database Recovery Facility address space REGION is too small; if so, increase the size.

Module: FRXDTIN0

---

FRD1005E  DRF SAS STARTUP FAILED reason, RC=return code

Explanation: Startup processing for the IMS Database Recovery Facility subordinate address space failed while attempting to initialize the environment.

reason  Identifies the problem and is one of the following occurrences:
  - ATTACH PIPE RECEIVE TCB
  - ATTACH PIPE SEND TCB
  - CREATE PIPE RECEIVE THREAD
  - CREATE PIPE SEND THREAD
  - CREATE DATA SPACE MANAGER THREAD
  - CREATE IMAGE COPY THREAD
  - CREATE DATA MANAGER THREAD
  - CREATE SORT MANAGER THREAD

return code  Represents internal diagnostic information.

System action: The address space shuts down and the recovery attempt stops.

User response: Determine if the IMS Database Recovery Facility subordinate address space REGION is too small; if so, increase the size.

Module: FRXMSTR1
FRD1006A  LOAD FAILED FOR modulename

Explanation: Startup processing for the IMS Database Recovery Facility failed while attempting to load the initialization or termination modules during initial startup processing.

modulename  Identifies the module that could not be loaded.

System action: The address space shuts down and the recovery attempt stops.

User response: Determine if the load module named in the message is included in a partitioned data set which is part of the STEPLIB concatenation.

Module:  FRXSDR00

FRD1007I  UNABLE TO OPEN dd DATA SET

Explanation: Unable to open data set of sysprint|report|frxdebug.

dd  may be one of the following:

• SYSPRINT
• REPORT
• FRXDEBUG

System action: Processing continues.

User response: Ensure that the dd is specified in the JCL procedure.

Module:  FRXSDR00

FRD1008A  PROGRAM IS NOT AUTHORIZED

Explanation: The IMS Database Recovery Facility program is not authorized to z/OS.

System action: The IMS Database Recovery Facility ends with a return code of 12.

User response: First, determine that each data set in the STEPLIB and JOBLIB concatenation is APF authorized. Then, ensure that the IMS Database Recovery Facility is an authorized program. After performing these two tasks you might submit the recovery job.

Module:  FRXSDR00

FRD1009I  USERID userid PROPAGATED FROM DRF MASTER JOB

Explanation: The userid propagation processing is in effect and this message indicates that the userid that was used to submit the IMS Database Recovery Facility master job was propagated to this subordinate address space. This means that this address space will execute with the same level of authority as the IMS Database Recovery Facility master job. This process is controlled by the OPTION(USERPROP()) keyword.

userid  Identifies the userid that was associated with the IMS Database Recovery Facility master job and has been propagated to this subordinate address space.

System action: Processing continues.

User response: None.

Module:  FRXSDR20, FRXICTL0

FRD1011I  DATABASE RECOVERY TERMINATING, reason

Explanation: The IMS Database Recovery Facility is starting the ending process. The reason that is displayed indicates the reason that the process is ending and is one of the following:

• INITIALIZATION FAILURE
• NORMAL END OF RECOVERY
• EARLY END OF RECOVERY
• END OF RECOVERY WITH ERRORS
• REQUESTED BY IMS

System action: The IMS Database Recovery Facility address space ends. END OF RECOVERY WITH ERRORS means that one or more database data sets failed recovery; however, other database data sets in the recovery list were allowed to complete successfully.

User response: If the reason is INITIALIZATION FAILURE, or EARLY END OF RECOVERY, or END OF RECOVERY WITH ERRORS, examine accompanying messages and take the action indicated by those messages.

Module:  FRXMTRM0

FRD1012E  IMS AND DBDLIB SPECIFIED

Explanation: If Integrated Auxiliary Processing is called, this message is issued when both IMS and DBDLIB DDs are specified for an IMS Database Recovery Facility subordinate address space.

System action: The address shuts down, and recovery processing is halted.

User response: Ensure that you specify either IMS DDs or DBDLIB DDs, but not both.

Module:  FRXSDR00

FRD1013E  vartxt  ERROR RC=rc

Explanation: IMS Database Recovery Facility has failed in an attempt to process a load library data set. vartxt identifies one of the following reasons for the failure:

• OPEN - Load library data set failed on open.
• LOAD - Load library data set failed on load.
FRD1014I • FRD2892I

**System action:** IMS Database Recovery Facility might continue processing.

**User response:** Identify the load library data set that failed and determine its availability.

**Module:** FRXMDDL0

---

**FRD1014I UNABLE TO OPEN FRXPRINT DATA SET**

**Explanation:** If Integrated Auxiliary Processing is called and FRXPRINT cannot be opened, this message is issued for an IMS Database Recovery Facility subordinate address space.

**User response:** Processing continues.

**Module:** FRXSDDR00

---

**FRD2807E LOG READ PHASE action**

**Explanation:** The log data set read phase of recovery has completed either normally or encountered an error and ends early. In the message text the following values apply:

- **action**: Indicates the success or failure of the log read phase.
  - **COMPLETED**: The log read phase completed normally.
  - **EARLY END**: The log read phase encountered an error and ended early.

**System action:** If action is COMPLETE, processing continues. If action is EARLY END, recovery ends early.

**User response:** If action is EARLY END, examine accompanying messages to determine the type of error. Correct the problem and re-initiate recovery.

**Module:** FRXRCTL0

---

**FRD2885I WRITE TERMINATION COMPLETE**

**Explanation:** Ending of the connection sending data from the IMS Database Recovery Facility address space and the IMS control region is complete.

This message is only issued when the IMS Database Recovery Facility is started by the IMS control region. The message destination is the z/OS system console.

**System action:** None.

**Module:** FRXPDIS0

---

**FRD2890I DATA SET READ ERROR FOR dsname**

**Explanation:** A read error is detected for the change accumulation or log data set with the name dsname during database data set or fast path area recovery by the IMS Database Recovery Facility. If the IMS Database Recovery Facility is unable to read from a copy of the data set or switch to the SLDS if the error was on an RLDS, the recovery attempt stops.

**User response:** See the accompanying FRD4208I message to determine what caused the error. Correct the error and start the recovery again.

**Module:** FRXRBUF0

---

**FRD2891 READ ERROR SYNAD STRING dbname, sequence number**

**Explanation:** A read error is detected for the change accumulation or log data set.

- **dbname**: Identifies the database data set or area that had read error.
- **sequence number**: Log record sequence number.

**System action:** FRD2890I has already been issued regarding the read error. This message is then issued to provide the error string returned from the SYNAD ERROR routine. Processing continues.

**User response:** If the problem cannot be solved on inspection, provide this message to IBM support.

**Module:** FRXRBUF0

---

**FRD2892I reason IN LOG RECORD seqnum DETECTED IN dsname**

**Explanation:** An invalid record content is detected for the log data set of dsname during database data set recovery by the IMS Database Recovery Facility. This message is followed by an ABEND 385-00A.

The meanings of the message variables are as follow:

- **reason**: Identifies the problem as invalid time stamp or an invalid rec length.
- **seqnum**: Is the sequence number that identifies the log record in the log data set. The sequence number can be used to determine which record is invalid.
- **dsname**: The data set from which the log record was read.

**System action:** The IMS Database Recovery Facility address space terminates.

**User response:** Invalid time stamp: Examine the log record that is identified in the message within the log data set that is listed in the message. Use the IMS DFSLOG06 macro mapping of the log record to determine the offset to the ACPRILOG field. If this time stamp is zero, determine if anything in your environment interacts with the IMS Logger component initialization or termination processing. If not, report this problem to IBM. In any case, use the appropriate tool or procedure to place the Prilog time for the subsystem or batch job that created the log in the FRD1014I  FRD2892I User's Guide and Reference
ACPRILOG field of the log record. Refer to the appropriate IMS documentation for the format of the Prilog time stamp for the 06 log record. Ensure that the 06 log records at the beginning and end of the log data set have time stamps provided.

**Invalid record length:** An invalid record length is detected when processing a record while reading from a log data set. The record length is zero. This can occur when the log data set is created with unformatted data set characteristic. IMS Database Recovery Facility terminates early without completing the recovery.

Examine the log data set identified in the message and repair it to the log data set characteristics which the IMS product supports.

**Module:** FRXRBUF0

<table>
<thead>
<tr>
<th>FRD3001I</th>
<th>UNEXPECTED RETURN CODE FROM SORT, RC=return code</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Explanation:</strong></td>
<td>The SORT program ended with an unexpected RC. See the prior SORT messages for more information. In the message text the following value applies:</td>
</tr>
<tr>
<td></td>
<td>return code</td>
</tr>
<tr>
<td></td>
<td>Represents the return code received from the SORT program. See the appropriate SORT program documentation for an explanation of the return code.</td>
</tr>
<tr>
<td><strong>System action:</strong></td>
<td>Recovery processing by this subordinate address space is stopped. If ERRORCONT was specified, recovery processing continues for the recovery list entries not being processed by this subordinate address space.</td>
</tr>
<tr>
<td><strong>User response:</strong></td>
<td>Determine the cause of the failure and rerun recovery for the entries that did not complete recovery.</td>
</tr>
<tr>
<td><strong>Module:</strong></td>
<td>FRXLSRT1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRD4100I</th>
<th>DSNAME=data set name</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Explanation:</strong></td>
<td>Generic message that displays either an image copy data set or a database data set. This message is usually a follow on to another message. In the message text the following value applies:</td>
</tr>
<tr>
<td></td>
<td>data set name</td>
</tr>
<tr>
<td></td>
<td>The full data set name.</td>
</tr>
<tr>
<td><strong>System action:</strong></td>
<td>Processing continues.</td>
</tr>
<tr>
<td><strong>User response:</strong></td>
<td>None.</td>
</tr>
<tr>
<td><strong>Module:</strong></td>
<td>FRXIDYN0, FRXIIOM0, FRXIOCN0, FRXIOSM0, FRXISMS0, FRXIVCN0, FRXIVSM0</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>FRD4101W</th>
<th>PREVIOUS DSNAME WAS NOT DELETED. DELETE IF RPTRET=Y IS USED.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Explanation:</strong></td>
<td>IMS Database Recovery Facility was attempting to dynamically allocate DSNAME with DISP=(OLD, DELETE, DELETE) so that it could be deleted. However, the attempt failed for the reason that is indicated in message FRD9003A. For example, if the data set is in use by another JOB, RC=0004 and RSN=0210 are issued on FRD9003A. DSNAME is a temporary data set that contains messages that are related to the recovery. It does not contain recovery assets such as a DBDS, a log, an image copy, or a change accumulation file.</td>
</tr>
<tr>
<td></td>
<td>This message always follows messages FRD9003A, which indicates a dynamic allocation error and FRD4100I, which identifies the DSNAME that failed dynamic allocation.</td>
</tr>
<tr>
<td><strong>System action:</strong></td>
<td>Processing continues and the IMS Database Recovery Facility MAS return code is set to 4.</td>
</tr>
<tr>
<td><strong>User response:</strong></td>
<td>If the RPTRET=Y parameter on the REPORT control card is used, manually delete the DSNAME because it is possible that IMS Database Recovery Facility attempts to use the DSNAME again on a subsequent recovery.</td>
</tr>
<tr>
<td></td>
<td>If the RPTRET=N parameter on the REPORT control card is used, IMS Database Recovery Facility automatically deletes this DSNAME and then allocates DSNAME as a new data set. No user response is required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRD4202I</th>
<th>DATABASE RECOVERY DATA MANAGER TERMINATION COMPLETE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Explanation:</strong></td>
<td>The IMS Database Recovery Facility address space completed normally.</td>
</tr>
<tr>
<td><strong>System action:</strong></td>
<td>The IMS Database Recovery Facility address space ends.</td>
</tr>
<tr>
<td><strong>Module:</strong></td>
<td>FRXMTRM0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRD4203I</th>
<th>STARTUP FAILED reason ERROR, RC=return code</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Explanation:</strong></td>
<td>Startup processing for the IMS Database Recovery Facility address space failed while attempting to create a persistent thread. In the message text the following values apply:</td>
</tr>
<tr>
<td></td>
<td>reason</td>
</tr>
<tr>
<td></td>
<td>Identifies the problem and is one of the following:</td>
</tr>
<tr>
<td></td>
<td>CREATE CHANGE ACCUMULATION THREAD</td>
</tr>
<tr>
<td></td>
<td>CREATE DATA SPACE MANAGER THREAD</td>
</tr>
<tr>
<td></td>
<td>CREATE PIPE RECEIVE THREAD</td>
</tr>
</tbody>
</table>

Chapter 16. IMS Database Recovery Facility messages 229
CREATE PIPE SEND THREAD
CREATE COMMAND SERVICES THREAD
CREATE SORT MANAGER THREAD
CREATE READ SERVICES THREAD
ATTACH SORT TASK
ATTACH PIPE RECEIVE TASK
ATTACH PIPE SEND TASK
ATTACH CHANGE ACCUMULATION TASK
ATTACH SORT MANAGER TASK
ATTACH DBRC TASK

return code
Represents internal diagnostic information.

System action: The address space shuts down and recovery is aborted.

User response: Determine if the IMS Database Recovery Facility address space REGION is too small; if so, increase the size.

Module: FRXMSTR0

FRD4204I READER INITIALIZATION COMPLETE

Explanation: The log-data set-read subcomponent of the IMS Database Recovery Facility address space in the IMS Database Recovery Facility completed initialization successfully. The message destination is the z/OS system console.

System action: Processing continues.

Module: FRXRTH0

FRD4205I READER INITIALIZATION FAILED,  
reason, RC=return code

Explanation: Initialization for the log-data set-read subcomponent of the IMS Database Recovery Facility failed. In the message text the following values apply:

reason Indicates the reason for the error, and is one of the following:
- ENQUEUE AWE
- GET AWE
- GET STORAGE
- GET THREAD
- TCB ATTACH

return code
Represents internal diagnostic information.

The message destination is in the z/OS system console.

User response: If reason is GET STORAGE or GET AWE, increase the region size in the startup JCL.

All other reasons indicate an internal IMS error. Record the error information and call IBM Software Support for assistance.

Module: FRXCAMGI, FRXRCTL0

FRD4206I UNABLE TO START READING, reason,  
RC=return code

Explanation: An individual log-data set-read thread of the IMS Database Recovery Facility address space in the IMS Database Recovery Facility was unable to read a log data set. This problem results from an internal IMS error. The message destination is the MVS system console.

In the message text the following values apply:

reason If reason is OBTAIN DATA SET, the IMS Database Recovery Facility experienced a failure when allocating either a log or change accumulation data set during data set read processing. All of the other reasons that follow indicate an internal IMS error:
- ENQUEUE ALLOCATE AWE
- ENQUEUE AWE FOR READER TERMINATION
- ENQUEUE DEALLOCATE AWE
- GET AWE FOR DEALLOCATE
- GET AWE FOR READER TERMINATION
- POST ECB
- WAIT FOR ALLOCATE

return code
If reason is OBTAIN DATA SET, return code is DYNALLOC (SVC 99). For additional information on this return code, see the appropriate z/OS manuals. The message destination is the z/OS system console.

All other values represent internal diagnostic information.

System action: The recovery instance and the IMS Database Recovery Facility address space ended early.

User response: If reason is GET AWE FOR DEALLOCATE or GET AWE FOR READER TERMINATION, increase the region size of your the IMS Database Recovery Facility startup JCL.

All other reasons indicate an internal IMS errors. Record the error information and call the IBM Software Support for assistance.

Module: FRXRTH0

FRD4207I number RECORDS READ, DSN=dsname

Explanation: The log data set read subcomponent of the IMS Database Recovery Facility completed reading the log data. In the message text the following values apply:
**number**  The total number of records read from the data set `dsname`.

**dsname**  The data set from which records are read.

**System action:**  Processing continues.

**Module:**  FRXRTH0

---

**FRD4208I  UNABLE TO CONTINUE READING,**

*reason*, **RC=return code**

**Explanation:**  An individual log data set read thread of the IMS Database Recovery Facility is unable to continue reading a log data set. This problem is as a result of an internal IMS error. In the message text the following values apply:

- **reason**  Indicates the reason for the error, and is one of the following:
  - POSTING, DONE WITH BUFFER
  - POSTING NEXT READ
  - READ ERROR DETECTED
  - WAITING FOR BUFFER
  - WAITING TO READ

- **return code**  Represents internal diagnostic information.

**System action:**  The IMS Database Recovery Facility ends.

**User response:**  This message indicates an internal IMS error. Record the error information and call IBM Software Support for assistance.

**Module:**  FRXRBUF0

---

**FRD4209I  DATA SET ALLOCATED, DSN=`dsname`**

**Explanation:**  The log or change accumulation data set indicated by `dsname`, is successfully allocated for input to the IMS Database Recovery Facility address.

**System action:**  Processing continues.

**Module:**  FRXYALL0

---

**FRD4210I  ALLOCATE FAILED, reason, RC=return code FOR `dsname`**

**Explanation:**  The IMS Database Recovery Facility failed to allocate a log or change accumulation data set indicated in the message text by `dsname`. In the message text the following values apply:

- **reason**  Indicates the reason for the error, and is one of the following:
  - GET STORAGE
    - The IMS Database Recovery Facility component of IMS Database Recovery Facility experienced an error while attempting to obtain storage related to data set allocation.
  - DYNALLOC
    - An invalid return code was detected from z/OS.
  - OPEN
    - An invalid return code was detected from the BSAM OPEN macro.

- **return code**  If reason is DYNALLOC or OPEN, a return code is issued. The return code consists of two parts. The first four characters are the contents of register 15 returned from the DYNALLOC or OPEN macro. The last four characters represent the DYNALLOC or OPEN error reason code from the S99ERROR field. For example: RC=04841156. For additional information on the return code and reason code, see the z/OS MVS Programming: Authorized Assembler Services Guide.

**System action:**  The IMS Database Recovery Facility ends early.

**User response:**  If reason is GET STORAGE, increase the region size for the IMS Database Recovery Facility address space in the startup JCL and start recovery processing again. If reason is DYNALLOC or OPEN, see the z/OS MVS Programming: Authorized Assembler Services Guide for the appropriate action.

**Module:**  FRXYALL0

---

**FRD4211I  DATA SET UNALLOCATED, DSN=`dsname`**

**Explanation:**  The log data set or change accumulation data set indicated by `dsname`, was successfully deallocated by the IMS Database Recovery Facility address space in the IMS Database Recovery Facility.

**System action:**  Processing continues.

**Module:**  FRXYUNA0

---

**FRD4212I  DATA SET DOES NOT EXIST,**

*RC=xxxxxxxx DSN=DS`name`**

**Explanation:**  Before a data set is allocated, a verification call is performed. This message is issued if the data set does not exist.

- **xxxxxxxx:**  The return code returned by verification call.
- **DS name:**  Data set to be allocated.

**System action:**  Open will fail for this data set. Recover continues for the rest of the data sets.

**Module:**  FRXYALL0, FRXIDYN0

---
**FRD4214I** RECORD PIPE FAILURE DETECTED:  
\textit{reason, RC= return code}

\textbf{Explanation:} Internal processing detected a failure while processing the communication pipe between the master address space and one of the sort address spaces. In the message text the following values apply:

- **reason** Indicates the reason for the error, and is one of the following:
  - GET ANCHOR BLOCK
  - GET OPEN PARMS
  - OPEN
  - WRITE

- **return code** Represents internal diagnostic information.

\textbf{System action:} The IMS Database Recovery Facility system shuts down.

\textbf{User response:} Record the error information and call IBM Software Support for assistance.

\textbf{Module:} FRXPDIS0, FRXPDSS0, FRXPSDS0

**FRD4215I** LEAP SECONDS: CVTLSO \textit{iso leap}, LOG \textit{log leap}, USER \textit{drf leap}

\textbf{Explanation:} Informational message displaying Leap seconds offset values.

- **\textit{iso leap}** CVTLSO value defined in MVS.
- **\textit{log leap}** Leap second offset calculated from first applicable log record.
- **\textit{drf leap}** Leap second offset specified by user via LEAPSECS= keyword.

\textbf{System action:} None.

\textbf{Module:} FRXRBUF0

**FRD4216W** LEAP SECONDS APPLIED \textit{drf leap} DIFFER FROM LOG \textit{log leap}

\textbf{Explanation:} The leap second offset specified by the user differs from the expected value calculated using the first applicable log record.

- **\textit{drf leap}** Leap second offset specified by user through the LEAPSECS= keyword.
- **\textit{log leap}** Leap second offset calculated from first applicable log record.

\textbf{System action:} Job ends with RC=4.

\textbf{User response:} Correct the LEAPSECS=keyword value to correspond with the LOG value that is displayed in the message, and rerun the job.

\textbf{Module:} FRXRBUF0

**FRD4219I** \textit{xxxxxxxx RECORDS PROCESSED type}

\textbf{Explanation:} Indicates how many records were sent across the pipe. In message FRD4219I the following message variables have these meanings:

- **\textit{xxxxxxxx}** The number of records processed for the type of record indicated by \textit{type}. If \textit{type} is present in the message, it indicates one of the following types:
  - FOR CHANGE ACCUMULATION  
    The number indicated in the message of change accumulation records related to the current recovery has been processed.
  - FOR LOG DATA SETS  
    The number indicated in the message of log records related to the current recovery has been processed.

\textbf{System action:} Processing continues.

\textbf{User response:} None. This is an informational message only.

\textbf{Module:} FRXPDIS0, FRXPDSS0

**FRD4220I** GENERATING type COPY: DBD=\textit{dbd}, DDN/AREA=\textit{ddn}

\textbf{Explanation:} The IMS Database Recovery Facility is starting to generate a copy of a database data set or area using an image copy, change accumulation, and/or logs of the production database. This message is accompanied by FRD4100I to identify the generated data set name.

- **\textit{type}** Identifies the type of copy being produced. The value supplied in the message can be one of the following types:
  - DATA SET  
    A duplicate of the production database data set is being produced
  - IMAGE  
    An incremental image copy is being produced

- **\textit{dbd}** Identifies the production database name.
- **\textit{ddn}** Identifies the production ddname.

\textbf{System action:} Processing continues.

\textbf{User response:} None. This is an informational message only.

\textbf{Module:} FRXICTL0
FRD4221I  DATABASE COPY GENERATION
COMPLETE | FAILED: DBD=dbd,
DDN/AREA= ddn

Explanation:  The database copy generation for the
identified production database data set has completed
either successfully (COMPLETE) or unsuccessfully
(FAILED). The recovery process might fail due to errors
or end early by operator command. This message is
followed by FRD4100I specifying the data set name.

    dbd  Identifies the production database name.
    ddn  Identifies the production ddname.
    dsn  Identifies the data set name used for the data
         set copy.

System action:  Processing continues.

User response:  This is an informational message to
indicate the progress of the recovery operation. If a
failure was indicated, look for additional error
messages.

Module:  FRXIRTH0

FRD4226I  CATALOG SEARCH INTERFACE
ERROR, ID=aa RC=xx, RSN=yy

Explanation:  During the data set restore process for
the IMS Database Recovery Facility, an error occurred
while using the Catalog Search Interface to obtain
information from the catalog for the database data set
being restored.

In the message text the following values apply:

    aa  The two-character module identification used
         by IBM service personnel.
    xx  The return code.
    yy  The reason code.

System action:  Recovery for this DBD and DDN stops. If the ERRORCONT parameter was not specified
on the START command, the entire recovery process stops.

User response:  This is an internal logic error. Contact
IBM Software Support.

Module:  FRXIVCN0

FRD4227I  Data set catalog information is not verified

Explanation:  This message is issued if CATDS(Y) is
specified, but neither VERIFY(ALLOC) nor
VERIFY(OPEN) is requested during the VERIFY
process.

System action:  This is an informational message. Processing continues.

User response:  None.

Module:  FRXEPSS0

FRD4230I  VSAM SHOWCB GENCB MODCB
MACRO ERROR, BLOCK=block, RC=xx,
RSN=yy

Explanation:  During an data set restore process, a
VSAM macro error occurred for either a SHOWCB,
GENCB, or MODCB. In the message text the following
values apply:

    block  Identifies the VSAM control block being
            generated or modified.
    xx  The return code returned by VSAM.
    yy  The reason code returned by VSAM.

System action:  Recovery for this DBD/DDN (as
identified by message FRD4301I that follows this
message) stops. If ERRORCONT was not specified on the
START command, the entire recovery process stops.

User response:  For an explanation of the return and
reason code, see the interpreting DYNALLOC return
codes information in the z/OS MVS Programming:
Authorized Assembler Services Reference, Volume 1
(ATESERV-DYNALLOC). Take the appropriate action
indicated by the return and reason codes.

Module:  FRXIVCN0, FRXIVSM0

FRD4231I  UNABLE TO OBTAIN STORAGE FOR
xxx

Explanation:  During an data set restore process, a request to obtain
storage could not be satisfied. In the message, xxx identifies what the storage request was for and can be
one of the following values:

- VSAM PLIST
- VSAM ACB AND RPL
- IC RESTORE DYNALLOC
- CSI BLOCK
- FIRST CI

System action:  Recovery for this DBD/DDN (as
identified by message FRD4301I that follows this
message) stops. If the ERRORCONT parameter was not
specified on the START command, the entire recovery
process stops.

User response:  Increase the region size in the IMS
Database Recovery Facility procedure. For additional
information, see the FRXJCLDF Procedure.

Module:  FRXIVCN0, FRXIVSM0

FRD4236I  HEADER RECORD IN IC DATA SET
DOES NOT MATCH REQUEST
DBD=dbd, DDN/AREA=ddn

Explanation:  The IMS Database Recovery Facility has
detected a problem with the image copy data set

Module:  FRXIVCN0, FRXIVSM0

Chapter 16. IMS Database Recovery Facility messages 233
selected to restore the DBDS or AREA. The information in the image copy data set indicates that it is for a different DBDS or AREA. In the message the following values apply:

\[ \text{dbd} \]  
The database name being restored.

\[ \text{ddn} \]  
The ddname or area name that is being restored.

**System action:** The data set restore process fails.

**User response:** Since the image copy is selected by DBRC, this message indicates that the image copy has been incorrectly registered in RECON. Use either a DELETE.IC DBRC command, or a CHANGE.IC DBRC command to correct the information in the RECON. Then, rerun the recovery.

**Module:** FRXIIOM0

**FRD4284E**  
**DATA SET RESTORE I/O ERROR, dbd**

**Explanation:** A data set restore process failed during I/O processing for the DBD and DDN identified by \[ \text{dbd} \] and \[ \text{ddn} \] respectively. In the message text the following values apply:

\[ \text{dbd} \]  
Identifies the database name in error.

\[ \text{ddn} \]  
Identifies the ddname in error.

\[ \text{reason} \]  
Indicates the cause of the data set restore I/O error and can be one of the following:

**AUTOMATIC DELETE REDEFINE FAILED**
An attempt to automatically delete and redefine a database data resulted in error. Verify the parameters provided to the DBDSN and DBDSL keywords.

**DATABASE COPY DEFINE FAILED**
A failure occurred while trying to allocate an alternate data set name. Check the data set naming convention rules that you specified in your JCL. If you specified DISP(NEW) to have IMS Database Recovery Facility generate the name for you, ensure that all of the following conditions exist:

- the rules used in your DBDSN() option are valid
- the name being generated does not conflict with an existing data set name
- that you have enough free space on your volume

**IC DECOMPRESS ROUTINE UNKNOWN**
The image copy used for recovery was compressed by a compression tool that is not supported in this release of IMS Database Recovery Facility.

**IC DECOMPRESS OPERATION FAILED**
Data set restored failed to decompress an image copy. Verify if the image copy used was generated by a compression tool supported by this release of IMS Database Recovery Facility.

**INPUT IC I/O ERROR**
An I/O error occurred during an attempt to read an input image copy data set on a tape volume. The IMS Database Recovery Facility job output includes an IEC* or IOS* series system message that identifies the cause of the I/O error. These messages are documented in z/OS MVS System Messages Vols 1-10.

**INVALID IC TYPE FOR OUTPUT TO COPY**
The recover-to-copy function OUTPUT(DUP) does not support user-ICs or other SMS-type ICs as input.

**INVALID IC TYPE FOR OUTPUT TO IC**
The Incremental image copy function does not support user-ICs or other SMS-type ICs as input.

**INVALID VOLUME FOR OUTPUT IC**
One or more of the tape volumes that you provided with either the VOLSER or VOLSER2 parameters, cannot be used. This condition can occur because your input image copy already resides on that tape volume.

**OLR DEF REC RETRIEVE**
Data set restore is performing recovery on an OLR capable data set to a point where OLR definition log records (X'2930') are required to provide the block image attributes. These records were not found. Verify in the RECON listing and IMS Database Recovery Facility reports that all required log or change accumulation data sets are available.

**OLR DATA SET CREATE**
Data set restore failed during data set create and allocation of an OLR target data set. Check for additional messages describing the cause of this error.

**TIME CONVERSION ROUTINE LOAD ERROR**
The IMS Database Recovery Facility subordinate address space failure
occurred while attempting to load an IMS time conversion routine. Check your IMS Database Recovery Facility subordinate address space JCL and include the IMS Load library the IMS Database Recovery Facility STEPLIB concatenation.

DELETE/DEFINE FROM PDS FAILED
The recover-to-copy function as specified with OUTPUT(DUP) or OUTPUT(BOTH) does not support the allocation of duplicate database data sets that are based on definitions supplied in a PDS member through D1SP(PDS).

DELETE/DEFINE OSAM FROM PDS FAILED
The delete an define function as specified with D1SP(PDS) does not support the allocation of OSAM database data sets that are based on definitions supplied in a PDS member.

System action: Recovery for this DBD and DDN stops. If ERRORABORT was specified, none of the entries in the recovery list were recovered.

User response: Verify the conditions described above and contact IBM Software Support for further assistance.

Module: FRXIRTH0

FRD4285I  ERROR ENCOUNTERED DOING process, RC=ccrrzz, RBN=nnnnnnnn

Explanation: During an image copy restore process, a service request failure was detected. This message might be followed by the U0385-0D abend. In this message, the following values apply:

process has one of the following meanings:

CA GETMAIN
Requested storage was not obtained. In the message the following values apply:
cc Location code.
rr Return code from BPEDETM macro.

APPLY CA UPDATES
The version of the CA record is not supported. In the message text, the variable values have the following meanings:
cc Location code.
rr CA record version.

EXPAND CA SERVICE
The call to expand the CA record was unsuccessful. In the message text, the variable values have the following meanings:
cc Location code.
rr Return code from CSRCESRV.

GET CA RECORD
The call to obtain the next CA record failed. In the message text, the variable values have the following meanings:
cc Location code.
rr Zero (0).

CA RECORD TYPE MATCH
The type of the CA record is invalid. In the message text, the variable values have the following meanings:
cc Location code.
rr Type code of the CA record.

INPUT/CA RECORD SYNC
CA record ID is less than the IC record ID. This is an unrecoverable error. In the message text, the variable values have the following meanings:
cc Location code.
nnnnnnn First four bytes of the record ID.

CA DBDNAME MATCH
CA header record DBDname does not match the DBDname of the Image Copy. In the message text, the variable values have the following meanings:
cc Location code.
rr CA record type.

LOG GETMAIN
Requested storage was not obtained. In the message text, the variable values have the following meanings:
cc Location code.
rr Return code from BPEDETM macro.

EXPAND LOG SERVICE
The call to expand the log record was unsuccessful. In the message text, the variable values have the following meanings:
cc Location code.
rr Return code from CSRCESRV.

QUERY CSRCESRV FOR LOG
The call to query the expand service
was unsuccessful. In the message text, the variable values have the following meanings:

- **cc**: Location code.
- **rr**: Return code from CSRCESRV.

**GET LOG RECORD**

The call to obtain the next log record failed. This message is informational only if issued as a result of a job cancellation or other early ending of the recovery process. In the message text, the variable values have the following meanings:

- **cc**: Location code.
- **rr**: Return code from CSRCESRV.

**INPUT/LOG RECORD SYNC**

Log record ID is less than the IC record ID. This is an unrecoverable error. In the message text, the variable values have the following meanings:

- **cc**: Location code.
- **rr**: Not used.
- **nnnnnnnn**: Log record RBN.

**ccrrzz** means that:
- The return code from the service request. In every case the value for **zz** corresponds to the process.

**nnnnnnnn** means that:
- If the value of **nnnnnnnn** is significant it is cited in the process entry. In some cases this is the RBN of the database record in process; otherwise it is zero.

**System action:** Recovery for this DBD/DDN (as identified by message FRD4301I that follows this message) stops. If the Error Continue option was not specified on the START command or the START statement, the entire recovery process stops. If this message is followed by the U0385-0D abend, then save the job documentation and call IBM Software Support for assistance.

**Module:** FRXIOCN0, FRXIVCN0, FRXIVSM0, FRXIOSM0

---

**FRD4301I**

**DATA SET RESTORE COMPLETE | FAILED dbname ddname**

**Explanation:** The data set restore for the identified dbname ddname has completed either successfully (COMPLETE) or unsuccessfull (FAILED). The data set restore might fail due to errors or end early by operator command.

**System action:** Processing continues.

**User response:** None. This is an informational message only to indicate the progress of the recovery operation. If the data set restore fails due to errors, address those errors, which are indicated by other messages.

---

**Module:** FRXIRTH0

| FRD4302I | IC | DBDS ALLOC ERROR: DBD=dbname DDN=ddn RC=xxxxxxxx RSN=yyyyzzzz WITH |
|-----------------|-----------------|-----------------|-----------------|-----------------|

**Explanation:** During the data set restore process for the IMS Database Recovery Facility, an error occurred while allocating either the image copy (IC) data set or the database data set (DBDS). Possible causes might include, but are not limited to the following list:

- Data sets need to be defined
- Data sets are not available
- Data sets are allocated with I/O errors
- Data sets are allocated to another task

This message is accompanied with FRD4100I to identify the data set being allocated.

The message variable meanings are described as follows:

- **dbname** Identifies the DBD being restored
- **ddn** Identifies the DDN being restored

**xxxxxxxx**

The return code set by Dynamic Allocation (SVC 99)

- **yyyy** The error reason code (S99ERROR)
- **zzzz** The information reason code set (S99INFO)

**System action:** Recovery for this DBD and DDN stops. If the ERRORCONT parameter was not specified on the START command, the entire recovery process stops.

**User response:** For an explanation of the return and reason code, see the interpreting DYNALLOC return codes information in the z/OS MVS Programming: Authorized Assembler Services Reference Vol 1. Take the appropriate action indicated by the return and reason codes.

**Module:** FRXIDYN0

---

| FRD4303I | IC | DBDS UNALLOC ERROR: DBD=dbname DDN=ddn RC=xxxxxxxx RSN=yyyyzzzz DDNAME=nnnnnnnn WITH |
|-----------------|-----------------|-----------------|-----------------|-----------------|

**Explanation:** During the data set restore process for the IMS Database Recovery Facility, an error occurred while unallocating either the image copy (IC) data set (IC) or the database data set (DBDS). This message is accompanied with FRD4100I to identify the data set being unallocated.

**dbname** Identifies the DBD being restored

**ddn** Identifies the DDN being restored

**xxxxxxxx**

The return code set by Dynamic Allocation (SVC 99)

- **yyyy** The error reason code (S99ERROR)
- **zzzz** The information reason code set (S99INFO)

**System action:** Recovery for this DBD and DDN stops. If the ERRORCONT parameter was not specified on the START command, the entire recovery process stops.

**User response:** For an explanation of the return and reason code, see the interpreting DYNALLOC return codes information in the z/OS MVS Programming: Authorized Assembler Services Reference Vol 1. Take the appropriate action indicated by the return and reason codes.

**Module:** FRXIDYN0
being unallocated. In the message text the following values apply:

dbd Identifies the DBD being restored
ddn Identifies the DDN being restored

xxxxxxxx
The return code set by Dynamic Allocation (SVC 99)

yyyyyyyy
The reason code returned

nnnnnnnn
The DDNAME that the data set was allocated under

System action: Recovery for this DBD and DDN stops. If the ERRORCONT parameter was not specified on the START command, the entire recovery process stops.

User response: For an explanation of the return and reason code, see the interpreting DYNALLOC return codes information in the z/OS MVS Programming: Authorized Assembler Services Reference, Vol 1. Take the appropriate action indicated by the return and reason codes.

Module: FRXIDYN0

FRD4304I IC DATA SET DOES NOT MATCH MADS REGISTERED TO DBRC: DBD=dbd DDN=ddn WITH

Explanation: During a database recovery, the image copy selected was created by the Database Image Copy 2 Utility, but it no longer matches any area data set defined to DBRC for the area being restored. This message is accompanied with FRD4100I to identify the data set that was being restored. In the message text the following values apply:

dbd The DBD being restored
ddn The DDN being restored

System action: Recovery of the specified area stops. If the ERRORABORT parameter was specified on the recovery operation, recovery of all members in the recovery list stops.

User response: Add the area data set back to the area data set list by issuing the DBRC INIT.ADS command; or mark the image copy as INVALID by issuing the DBRC CHANGE.IC command, which causes recovery to select a different image copy if one exists. Then, restart the recovery.

Module: FRXISMS0

FRD4305I DATA SET NOT FOUND IN CATALOG: DDNAME=ddname WITH

Explanation: During the data set restore process for the IMS Database Recovery Facility, the VSAM database data set being recovered could not be found in the catalog. This probably happened because a necessary catalog is not available to the IMS Database Recovery Facility job. For additional information, see the FRXJCLDF Procedure. This message is accompanied with FRD4100I to identify the data set name of the VSAM database data set. In the message text the following values apply:

ddname Identifies the DDNAME of the VSAM database data set.
dsnname Identifies the DSNAME of the VSAM database data set.

System action: Recovery for this DBD and DDN stops. If the ERRORCONT parameter was not specified on the START command, the entire recovery process stops.

User response: Ensure that all necessary catalogs are available to the IMS Database Recovery Facility job.

Module: FRXIVCN0

FRD4306I VSAM READ | WRITE LOGICAL | PHYSICAL ERROR: RC=xx RSN=yy DDNAME=nnnnnn

Explanation: During an data set restore process, an I/O error was encountered. This message is accompanied with FRD4100I to identify the data set that experienced the error. In the message text the following values apply:

xx The return code returned by VSAM
yy The reason code returned by VSAM
nnnn The DDN the data set was allocated under

System action: Recovery for this DBD and DDN stops. If the ERRORCONT parameter was not specified on the START command, the entire recovery process stops.

User response: For an explanation of the return and reason code, see the z/OS DFSMS Macro Instructions for Data Sets manual. Take the appropriate action indicated by the return and reason codes.

Module: FRXIVCN0, FRXIVSM0

FRD4307I vartxt ERROR: RC=return code RSN=rsn DDNAME=ddddddddd

Explanation: While restoring an image copy, an OPEN or CLOSE error occurred on either the image copy data set or the data set being restored. The operating system and the access method, or both, might have issued messages prior to this message that pertain to the error.
Sequential access method services are used to process the image copy data set.

The data set being restored might be either VSAM or Non-VSAM (sequential). The data set name has been determined by DBRC from information in the RECON.

An OPEN error most likely occurs because the data set to be processed does not exist or has been defined incorrectly for the type of database data set organization. This message is accompanied with FRD4100I to identify the data set that experienced the error.

In the message text the following values apply:

- \textit{vartext} can be one of the following errors:
  - DYNALLOC STORAGE
  - IC OPEN
  - IC CLOSE
  - NON-VSAM OPEN
  - NON-VSAM CLOSE
  - VSAM OPEN
  - VSAM CLOSE

1. \textit{return code}
   The VSAM return code. For additional information, see the documentation on VSAM Macro Return and Reason Codes in the \textit{z/OS DFSMS Macro Instructions for Data Sets} manual. For NON-VSAM data sets, the return code has no meaning and is always set to 0.

2. \textit{rsn}
   The VSAM reason code. For additional information, see the documentation on VSAM Macro Return and Reason Codes in the \textit{z/OS DFSMS Macro Instructions for Data Sets} manual. For NON-VSAM data sets, the reason code has no meaning and is always set to 0.

- \textit{ddn}
  The DDN the data set was allocated under.

**System action:** If ERRORABORT was specified, recovery stops for all entries in the recovery list.

**User response:** Correct the error indicated by the return code, the reason codes, and other possible messages, then rerun the recovery.

**Module:** FRXIDYN0, FRXIIOM0, FRXIOSM0, FRXIVSM0, FRXIOCN0, FRXIVCN0, FRXISMS0

```
FRD4308I IC RESTORE STOPPED, vartxt: DBD=ddb DDN=ddn WITH
```

**Explanation:** An image copy restore process was stopped for the DBD and DDN identified by \textit{ddb} and \textit{ddn}, respectively. This message is accompanied with FRD4100I to identify the data set that was restored.

In the message text the following values apply:

- \textit{ddb}
  identifies the DBD for which the data set restore was stopped

- \textit{ddn}
  identifies the DDN for which the data set restore was stopped

- \textit{vartxt}
  indicates the reason that the process could not continue, and is one of the following:

  1. **KSDS KEYLENGTH ERROR**
     The key length defined for the KSDS is not the same as the key length when the IC was taken.

  2. **OUTPUT DATA SET MUST BE EMPTY**
     The data set being restored contained data. It should be deleted and redefined prior to recovery.

  3. **VSAM CLUSTER MUST BE AN ESDS**
     The data set being restored is defined to DBRC as non-indexed, yet it has been defined as a KSDS.

  4. **VSAM CLUSTER MUST BE A KSDS**
     The data set being restored is defined to DBRC as indexed, yet it has been defined as an ESDS.

**System action:** If ERRORABORT was specified, none of the entries in the recovery list were recovered.

**User response:** Correct the problem as identified by \textit{vartxt} and rerun the recovery.

**Module:** FRXIVCN0, FRXIVSM0

```
FRD4309I ERROR ON vartxt: DBD=bbbbbbbb, DDN=ddddddd I/O ERROR=aaa, tt, ddname, op, error, block, accessmethod WITH
```

**Explanation:** An I/O error occurred while restoring an image copy for the DBD and DDN specified by \textit{bbbbbbbb} and \textit{ddddddd}, respectively, in the data set identified by message FRD4100I.

In the message text the following values apply:

- \textit{vartxt}
  Represents is either INPUT (the error occurred while reading the IC data set) or OUTPUT (the error occurred while writing to the output data set).

- \textit{bbbbbbbb}
  The DBD which experienced the I/O error.

- \textit{ddddddd}
  The DDN which experienced the I/O error.

- \textit{aaa}
  The device number that the error occurred on.

- \textit{tt}
  The type of device.

- \textit{ddname}
  The name of the DD statement that the data set was allocated to.
The I/O operation that resulted in the error.

error The type of error as determined by the device. For example, if it is device dependent.

block The block number in error.

accessmethod The access method being used.

System action: Recovery stops for the identified DBD and DDN. If ERRORABORT was specified, recovery stops for all members in the recovery list.

User response: Correct the indicated problem and rerun the recovery.

Module: FRXIOM0, FRXIOCN0, FRXIVCN0, FRXIOSM0

---

FRD4310I RESTORING DBD=dbd, DDN/AREA=ddn WITH

Explanation: The IMS Database Recovery Facility is starting to recover a database data set or area using an image copy. This message is accompanied with FRD4H001 to identify the image copy data set name.

In the message the following values apply:

dbd Defines the DBD name that is being recovered.

ddn Define the DDNAME or AREA name that is being recovered.

System action: Processing continues.

User response: None. This is an informational message only.

Module: FRXIOM0, FRXISMS0

---

FRD4410E macro MACRO, RETURN=X'returncode', I, REASON=X'reasoncode', L, PART=partname DSN=dsnname

Explanation: IMS Database Recovery Facility internally invoked a macro instruction to gather information about the data set dsnname for the HALDB partition partname as part of either of these following tasks:

- Starting a HALDB OLR for the HALDB partition partname.
- Tracking these changes at the RSR tracking site.

This macro instruction completed with a register 15 return code value of returncode and a register 0 value of reasoncode. These values were not expected by IMS Database Recovery Facility.

System action: If this error occurred while starting the HALDB OLR, then the HALDB OLR is not started, but the partition remains accessible with the original active set of data sets--either the A-through-J and X or the M-through-V and Y data sets. If this error occurred at the RSR tracking site, then the shadow partition is taken offline.

In either of these cases, one or more of the output data sets might have already been created automatically.

User response: Based on the macro indicated in the message, see the appropriate publication in the following table to determine the cause of the error, and follow any recommended actions therein:

Table 3. Publications That Contain Macro Information

<table>
<thead>
<tr>
<th>Macro</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVTYPE</td>
<td>DFSMS/MVS DFSMSdfp Advanced Services</td>
</tr>
<tr>
<td>GETDSAB</td>
<td>z/OS MVS Programming: Authorized Assembler Services Reference, Vol. 2</td>
</tr>
<tr>
<td>LOCATE</td>
<td>DFSMS/MVS DFSMSdfp Advanced Services</td>
</tr>
<tr>
<td>OBTAIN</td>
<td>DFSMS/MVS DFSMSdfp Advanced Services</td>
</tr>
<tr>
<td>SWAREQ</td>
<td>z/OS MVS Programming: Authorized Assembler Services Reference, Vol 4</td>
</tr>
<tr>
<td>TRKCALC</td>
<td>DFSMS/MVS DFSMSdfp Advanced Services</td>
</tr>
</tbody>
</table>

If the error was detected while processing the INITIATE 0LREORG command, reissue the command for partition partname.

If the error was detected at the RSR tracking site, issue a START DB command for the partition in order for Online Forward Recovery (OFR) to continue updating the partition.

Module: FRXIOCR0, FRXIOCO0, FRXDDCR0, FRXDDCC0

FRD4411E UNACCEPTABLE DATA SET, REASON CODE reasoncode. PART=partname DSN=dsnname

Explanation: In determining whether to create the data set dsnname for the HALDB partition partname, IMS Database Recovery Facility found one of the following situations:

- A data set of that same name exists; however, because of certain characteristics of this pre-existing data set, that data set could not be used for your intended purpose.
- No data set by that name was found when one should have existed previously.

Situation 1:

In starting a HALDB online reorganization for the HALDB partition partname, IMS Database Recovery Facility found that the data set that was to be used as the output of the reorganization had one of the following limitations:

- It was not of a type that could used for this purpose.
Situation 2:

On the RSR tracking site, IMS Database Recovery Facility found that in tracking database changes for a HALDB online reorganization for the HALDB partition `partname`, the data set that was to be used as the shadow of an output data set had one of the following limitations:

- It was not of a type that could be used for this purpose.
- It had certain characteristics that did not match those of the corresponding input data set.
- It did not exist.

In any case, `reasoncode` is a reason code the specific problem. These reason codes, environments, and explanations are shown in the table below. The Environment column indicates whether the error is detected at the beginning of the reorganization itself, the tracking of the reorganization at the RSR tracking site, or both.

### Table 4. Reason Codes, Environments, and Errors Detected for Message FRD4411I

<table>
<thead>
<tr>
<th>Rsn Code</th>
<th>Environments</th>
<th>Errors Detected for Pre-Existing Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Both</td>
<td>The data set is not a DASD data set.</td>
</tr>
<tr>
<td>2</td>
<td>Both</td>
<td>The data set is a VSAM data set, but the database is defined to use OSAM.</td>
</tr>
<tr>
<td>3</td>
<td>Both</td>
<td>The data set is a PDS, PDSE, or a member of a PDS or PDSE.</td>
</tr>
<tr>
<td>4</td>
<td>Both</td>
<td>The data set is not a VSAM ESDS, but the database is defined to use VSAM.</td>
</tr>
<tr>
<td>5</td>
<td>Both</td>
<td>The VSAM data set does not have the REUSE attribute.</td>
</tr>
<tr>
<td>6</td>
<td>Reorg.</td>
<td>The VSAM data set has a different record length than that of the corresponding input data set.</td>
</tr>
<tr>
<td>7</td>
<td>Reorg.</td>
<td>The VSAM data set has a different control interval size than that of the corresponding input data set.</td>
</tr>
<tr>
<td>8</td>
<td>Reorg.</td>
<td>The primary index data set of a PHIDAM database (the KSDS), is defined with a different key offset or key length than that of the corresponding input data set.</td>
</tr>
<tr>
<td>9</td>
<td>Reorg.</td>
<td>The primary index data set of a PHIDAM database (the KSDS), is defined with a different key offset or key length than that of the corresponding input data set.</td>
</tr>
<tr>
<td>10</td>
<td>Reorg.</td>
<td>The primary index data set of a PHIDAM database (the KSDS), is defined with a different key offset or key length than that of the corresponding input data set.</td>
</tr>
<tr>
<td>11</td>
<td>Tracking</td>
<td>The VSAM data set has a different record length than that of the tracked output data set at the active site.</td>
</tr>
<tr>
<td>12</td>
<td>Tracking</td>
<td>The VSAM data set has a different control interval size than that of the tracked output data set at the active site.</td>
</tr>
<tr>
<td>13</td>
<td>Tracking</td>
<td>The primary index data set of a PHIDAM database (the KSDS), is defined with a different key offset or key length than that of the tracked output data set at the active site.</td>
</tr>
<tr>
<td>14</td>
<td>Both</td>
<td>The data set has a different record length than that of the tracked output data set at the active site.</td>
</tr>
<tr>
<td>15</td>
<td>Both</td>
<td>The data set has a different control interval size than that of the tracked output data set at the active site.</td>
</tr>
<tr>
<td>16</td>
<td>Both</td>
<td>The VSAM ESDS has a different control interval size than that of the corresponding input data set.</td>
</tr>
<tr>
<td>17</td>
<td>Both</td>
<td>The data set has a different record length than that of the tracked output data set at the active site.</td>
</tr>
<tr>
<td>18</td>
<td>Both</td>
<td>The primary index data set of a PHIDAM database (the KSDS), is defined with a different key offset or key length than that of the tracked output data set at the active site.</td>
</tr>
<tr>
<td>19</td>
<td>Both</td>
<td>The data set was allocated with a DD statement that had a VOLUME parameter, but the data set was not on the referenced volume.</td>
</tr>
<tr>
<td>20</td>
<td>Both</td>
<td>The VSAM data set has a different record length than that of the tracked output data set at the active site.</td>
</tr>
</tbody>
</table>

**System action:** If this error occurred while starting the reorganization, then the reorganization is not started, but the partition remains accessible with the original active set of data sets—either the A-through-J and X or the M-through-V and Y data sets. If this error occurred at the RSR tracking site, then the shadow partition is taken offline.

In both cases, one or more of the output data sets might have already been created automatically.

**User response:**

**Situation 1:**

Before restarting the partition at the RSR tracking site, perform one of the following tasks:

- Delete the pre-existing output data set to allow IMS Database Recovery Facility to create it automatically. When IMS Database Recovery Facility creates the data set, the size and placement of the data set is determined automatically by IMS Database...
Recovery Facility, MVS, DFSMS/MVS, and also by parameters defined by the storage administrator. Therefore, do not let IMS Database Recovery Facility create the data set if you need precise control over the size and placement of the data set.

- Create a data set that is acceptable for tracking the output of the reorganization. Ensure that for an OSAM-defined database the output data set for the database segments (one of the A-through-J or the M-through-V data sets) meets the following criteria:
  - A DASD data set.
  - Not a VSAM data set.
  - Neither a PDS, PDSE, or a member of a PDS or PDSE.

Ensure that for a VSAM-defined database the output data set for the database segments (one of the A-through-J or the M-through-V data sets) has the following characteristics:
- A VSAM entry-sequenced data set (ESDS).
- The REUSE attribute.
- The same fixed-length record length as the tracked output data set at the active site (as shown in the X'2930' log record).
- The same control interval size as the tracked output data set at the active site (as shown in the X'2930' log record) or that for a PHIDAM database the output data set for the primary index (the X or Y data set) at the RSR tracking site has the following characteristics:
  - A VSAM key-sequenced data set (KSDS).
  - The REUSE attribute.
  - The same fixed-length record length as the tracked output data set at the active site (as shown in the X'2930' log record).
  - The same key offset and key length as the tracked output data set at the active site (as shown in the X'2930' log record).

Then issue a `INITIATE OLREORG` command to start the HALDB online reorganization for partition `partname`.

**Situation 2:**

Before restarting the partition at the RSR tracking site, perform one of the following tasks:
- Delete the pre-existing output data set at the tracking site to allow IMS Database Recovery Facility to create it automatically. When IMS Database Recovery Facility creates the data set, the size and placement of the data set is determined automatically by IMS Database Recovery Facility, MVS, DFSMS/MVS, and also by parameters defined by the storage administrator. Therefore, do not let IMS Database Recovery Facility create the data set if you need precise control over the size and placement of the data set.
- Create a data set that is acceptable for tracking the output of the reorganization. Ensure that for an OSAM-defined database, the output data set for the database segments (one of the A-through-J or the M-through-V data sets) at the RSR tracking site meets the following criteria:
  - It is a DASD data set.
  - It is not a VSAM data set.
  - It is neither a PDS, PDSE, nor a member of a PDS or PDSE.

Ensure that for a VSAM-defined database the output data set for the database segments (one of the A-through-J or the M-through-V data sets) at the RSR tracking site has the following characteristics:
- A VSAM entry-sequenced data set (ESDS).
- The REUSE attribute.
- The same fixed-length record length as the tracked output data set at the active site (as shown in the X'2930' log record).
- The same control interval size as the tracked output data set at the active site (as shown in the X'2930' log record) or that for a PHIDAM database the output data set for the primary index (the X or Y data set) at the RSR tracking site has the following characteristics:
  - A VSAM key-sequenced data set (KSDS).
  - The REUSE attribute.
  - The same fixed-length record length as the tracked output data set at the active site (as shown in the X'2930' log record).
  - The same key offset and key length as the tracked output data set at the active site (as shown in the X'2930' log record).

Then issue a `/START DB` command for partition `partname` in order for Online Forward Recovery to continue updating the partition.

**Module:** FRXIOCR0, FRXDDCR0

**FRD4413E**

**NON-DASD DATA SET. DEVICE**

**CLASS=X'**

**devclass**

**PART=**

**partname**

**DSN=**

**dsname**

**Explanation:** The data set `dsname`, which is an input data set for a HALDB online reorganization of the HALDB partition `partname`, is not a DASD data set.
device class reported by the internally executed
DEVTYPE macro instruction is devclass (hexadecimal)
rather than X’20’. This is inconsistent with its use as
part of a database.

**System action:** If this error occurred while starting the
reorganization, then the reorganization is not started.
The partition remains accessible, but successful use of it
is unlikely.

If this error occurred at the RSR tracking site, then the
shadow partition is taken offline.

**Module:** FRXIOCR0, FRXDDCR0

---

**FRD4414E**

**IDCAMS RETURN CODE returncode**
**CREATING AN ONLINE REORG**
**OUTPUT DATA SET. PART=partname**
**DSN=dsname**

**Explanation:** IMS Database Recovery Facility tried to
create the VSAM output data set dsname for the
HALDB partition partname as part of either of the following tasks:
- Starting a HALDB online reorganization for the
  partition.
- Tracking these changes at the RSR tracking site.

Access Method Services (IDCAMS) provided a return
code of returncode.

**System action:** The message, if one was produced by
IDCAMS was displayed just before this message.

For return code 4, the data set is assumed to have been
created. In this case, none of the following actions
apply and processing continues.

If this error occurred while starting the reorganization,
then the reorganization is not started, but the partition
remains accessible with the original active set of data
sets--either the A-through-J and X or the M-through-V
and Y data sets. If this error occurred at the RSR
tracking site, then the shadow partition is taken offline.

In either case, one or more of the output data sets
might have already been created automatically.

**User response:** See the z/OS MVS System Messages to
determine the cause of the error and follow any
recommended actions.

If the error was detected at the RSR tracking site, issue
a /START DB command for the partition in order for
Online Forward Recovery to continue updating the
partition.

**Module:** FRXIOCD0, FRXDDCD0

---

**FRD4415E**

**IDCAMS RETURN CODE returncode**
**DELETING AN ONLINE REORG**
**INPUT DATA SET. PART=partname**
**DSN=dsname**

**Explanation:** IMS Database Recovery Facility tried to
delete the VSAM input data set dsname for the HALDB
partition partname as part of one of these tasks:
- Completing a HALDB online reorganization for the
  partition.
- Completing the tracking of these changes at the RSR
  tracking site.

Access Method Services (IDCAMS) provided a return
code of returncode.

**System action:** The message, if one was produced by
IDCAMS was displayed just before this message.

The reorganization or the tracking of the reorganization
at the RSR tracking site is still considered to have
completed successfully, and there is now a single new
active set of data sets for partition partname--either the
A-through-J and X or the M-through-V and Y data sets.

**User response:** See z/OS MVS System Messages to
determine the cause of the error and follow any
recommended actions, then delete the data set if it has
not already been deleted.

**Module:** FRXIOCD0, FRXDDCD0

---

**FRD4416E**

**NOT ENOUGH DASD SPACE. ERROR**
**REASON=X's99errorcode' [ SMS**
**REASON=s99reason ] BLOCKS=blocks**
**BLKSIZE=blksize**
**VOLUMES=volcount**
**UNIT=SYSALLDA STORAGE**
**CLASS=storageclassname \ PART=partname**
**DSN=dsname**

**Explanation:** IMS Database Recovery Facility tried to
create the OSAM output data set dsname for the
HALDB partition partname as part of either of the following tasks:
- Starting a HALDB OLR for the partition.
- Tracking these changes at the RSR tracking site.

The internally executed DYNALLOC macro instruction
(SVC 99) that was used for this purpose reported that
the data set could not be created because of DASD
space or DASD volume constraints. The requested
space was blocks blocks, each with a block size of
blksize. There were volcount volumes requested.

If the text showing the group name (SYSALLDA)
appears in the message text, IMS Database Recovery
Facility attempted to create a non-SMS-managed data
set because the corresponding input data set was not
SMS-managed. If the text showing the storage class
appears, then an attempt was made to create an
SMS-managed data set using storage class
storageclassname because the corresponding input data
set was SMS-managed and was created using that
storage class.
If the reorganization was being started, these space allocation values were derived from those of the corresponding input data set. On the RSR tracking site, these space allocation values were derived from those of the tracked output data set at the active site where the reorganization occurred.

For further information of this error, see the z/OS MVS Programming: Authorized Assembler Services Guide. The value s99errorcode is the hexadecimal value of the error reason code (field S99ERROR in the SVC 99 request block) that is provided when the DYNALLOC macro instruction (SVC 99) fails with return code 4. In the SMS case, s99ersn is the SMS reason code (field S99ERSN in the SVC 99 request block extension). The SMS reason code corresponds to the message number of an IGD message describing the error. For further information on the IGD message, see the z/OS MVS System Messages, Vol 8.

System action: If this error occurred while starting the reorganization, then the reorganization is not started, but the partition remains accessible with the original active set of data sets—either the A-through-J and X or the M-through-V and Y data sets. If this error occurred at the RSR tracking site, then the shadow partition is taken offline.

In either case, one or more of the output data sets might have already been created automatically.

User response: Determine whether the requested space (blocks blocks of size blksize) is really required for the output data set. In some cases, this space allocation request could include space acquired in a secondary allocation for the input data set and might not be required for the reorganized database. Then perform one of the following tasks:

- Ensure that there is sufficient DASD space on the volumes referenced by the group name SYSALLDA (for non-SMS-managed) or referenced by the storage class storageclassname (for SMS-managed), possibly by scratching unneeded data sets. Note that the primary allocation amount (blocks blocks of size blksize) must be available in a total of no more than five extents on a single volume. For SMS-managed data sets, if the storage class definition includes the GUARANTEED SPACE attribute, then the primary allocation amount must be available and will be allocated on each of the volumes (rather than on just the first volume).
- Create and catalog this output data set yourself. In this case, you can reserve whatever amount of space you choose, and you can control the number of volumes. See the IMS Administration Guide: Database Manager for information on allocating OSAM data sets and for a technique for pre-allocating multi-volume data sets.

Then if the error was detected in processing the INITIATE OLR command, reissue the command for partition partname.

If the error was detected at the RSR tracking site, issue a START DB command for the partition in order for Online Forward Recovery to continue updating the partition.

Module: FRXIOCD0, FRXDDCD0

FRD4417E  DATA SET ALLOCATED TO ANOTHER JOB AND CANNOT BE CREATED.  PART=partname  DSN=dsname

Explanation: IMS Database Recovery Facility tried to create the OSAM output data set dsname for the HALDB partition partname as part of one of the following tasks:

- Starting a HALDB OLR for the partition.
- Tracking these changes at the RSR tracking site.

Creating the data set required that the data set be allocated as though DISP=NEW had been specified on a JCL DD statement. However, a data set of the same name was already in use by another job, causing the allocation to fail.

System action: If this error occurred while starting the reorganization, then the reorganization is not started, but the partition remains accessible with the original active set of data sets—either the A-through-J and X or the M-through-V and Y data sets. If this error occurred at the RSR tracking site, then the shadow partition is taken offline.

In either case, one or more of the output data sets might have already been created automatically.

User response: Ensure that no other job is using a data set of the name dsname even if that data set is not cataloged and even if that data set is not intended to be the same data set as the output of the reorganization. Then if the error was detected while processing the INITIATE OLR command, reissue the command for partition partname.

If the error was detected at the RSR tracking site, issue a START DB command for the partition in order for Online Forward Recovery to continue updating the partition.

Module: FRXIOCD0, FRXDDCD0

FRD4418E  [ DATA SET CREATION ERROR.  UNALLOCATION FAILURE.  ]
RETURN=returncode  [ { INFO.  REASON='X's99infocode'  ERROR  REASON='X's99errorcode'  } ]  [ SMS  REASON=s99ersn ]  BLOCKS=blocks  BLKSIZE=blksize  VOLUMES=vcount  
UNIT=SYSALLDA STORAGE  CLASS=storageclassname  PART=partname  DSN=dsname

Explanation: IMS Database Recovery Facility tried to create the OSAM output data set dsname for the
HALDB partition *partname* as part of one of the following tasks:
- Starting a HALDB OLR for the partition.
- Tracking these changes at the RSR tracking site.

As indicated by the message text, the internally executed DYNALLOC macro instruction (SVC 99) reported one of these following problems:
- The data set could not be created.
- The data set that was just created successfully could not be unallocated from the IMS Database Recovery Facility job.

The requested space was *blocks* blocks, each with a block size of *blksize*. There were *volcount* volumes requested.

When the text showing the group name (SYSALLDA) appears in the message text, the attempt was to create a non-SMS-managed data set because the corresponding input data set was not SMS-managed. If the text showing the storage class appears, then the attempt was to create an SMS-managed data set using storage class *storageclassname* because the corresponding input data set was SMS-managed and was created using that storage class.

If the reorganization was being started, these space allocation values were derived from those of the corresponding input data set. On the RSR tracking site, these space allocation values were derived from those of the tracked output data set at the active site where the reorganization occurred.

For the meaning of the various error codes shown in this message, see the *z/OS MVS Programming: Authorized Assembler Services Guide*.

**returncode**
The decimal value of the register 15 return code provided by the DYNALLOC macro instruction (SVC 99).

**s99info**
The hexadecimal value of the information reason code (field S99INFO in the SVC 99 request block).

**s99errorcode**
The hexadecimal value of the error reason code (field S99ERROR in the SVC 99 request block).

**s99ersn**
For SMS, the SMS reason code (field S99ERSN in the SVC 99 request block extension). The SMS reason code corresponds to the message number of an IGD message describing the error. For more information on the IGD message, see the *z/OS MVS System Messages, Vol 8*.

**System action:** If this error occurred while starting the reorganization, then the reorganization is not started, but the partition remains accessible with the original active set of data sets—either the A-through-J and X or the M-through-V and Y data sets. If this error occurred at the RSR tracking site, then the shadow partition is taken offline.

In either case, one or more of the output data sets might have already been created automatically.

**User response:** Using the information you can find in the *z/OS MVS Programming: Authorized Assembler Services Guide*, determine the meaning of *returncode*, *s99info*, *s99errorcode*, and *s99ersn* as applicable. Follow any recommended actions to correct the error.

Then if the error was detected while processing the INITIATE 0LRE0RG command, reissue the command for partition *partname*.

If the error was detected at the RSR tracking site, issue a START DB command for the partition in order for Online Forward Recovery to continue updating the partition.

**Module:** FRXIOCD0, FRXDDCD0

---

**FRD4419E**

**Explanation:** The message indicates internal error with these fields:
- RVGB_PTR
- Module ID || module subcode
- ORA Data Set Communication Area
- Reason code indicating which internal error

**System action:** System terminates.

**System programmer response:** Provide information to IBM Support.

**Module:** FRXDDDF0, FRXIOCR0, FRXIODF0, FRXIOMG0.

---

**FRD4420E**

**Explanation:** When the CSI return code is 4, a catalog management error was detected. In this case, *cmreturncode*, *cmreasoncode*, and *cmmoduleid* are the catalog management reason code, return code, and two-character module identification, in that order. For more information about catalog management errors, see the *z/OS MVS System Messages*.

**System action:** See FRD4421I.

**User response:** See FRD4421I.

**Module:** See FRD4421I.
FRD4421I  CSI RETURN CODE=csireturncode [ REASON CODE=csireasoncode ]
      PART=partname  DSN=dsname

Explanation: IMS Database Recovery Facility internally invoked the Catalog Search Interface (CSI) to
      gather information about the data set dsname for the
      HALDB partition partname as part of either:
      • Starting a HALDB online reorganization for the
        partition.
      • Tracking these changes at the RSR tracking site.

The CSI completed with a CSI return code value as shown in the message text. For more information on
      CSI return codes, see the z/OS DFSMS: Managing Catalogs.

A CSI error was detected. For CSI return code 8,
      csireasoncode is the CSI reason code. Information on this
      CSI error information, see z/OS DFSMS: Managing Catalogs. These values were not expected by IMS
      Database Recovery Facility.

System action: If this error occurred while starting the
      reorganization, then the reorganization is not started,
      but the partition remains accessible with the original
      active set of data sets- either the A-through-J and X or
      the M-through-V and Y data sets. If this error occurred
      at the RSR tracking site, then the shadow partition is
      taken offline In either case, one or more of the output
      data sets might have already been created
      automatically.

User response: Based on value of the CSI return code,
      see the z/OS DFSMS: Managing Catalogs to determine
      the cause of the error and follow the recommended
      actions. If the error was detected in processing the
      INITIATE OLREORG command, reissue the command for
      partition partname.

If the error was detected at the RSR tracking site, issue
      a START DB command for the partition in order for
      Online Forward Recovery to continue updating the
      partition.

Module: FRXIOMG0

FRD6002E  DBRC request-type REQUEST FAILURE,
      RC= return code

Explanation: A request of type request-type was made
to DBRC that did not successfully complete. The return
      code from DBRC is returned in the message. See the
      applicable table under the heading "DBRC Request
      Return Codes" in the topic titled "DSP Messages" in
      the IMS Messages and Codes, Volume 1 for a description
      of the DBRC request return codes. In the message text:

request-type
      The type of DBRC request that failed.
      request-type is one of the following:
      • SIGNON
      • SIGNOFF

• INIT
• RECOV START
• RECOV COMPLETE
• RECOV UPDATE
• BUILD RWCR
• AUTHORIZATION
• UNAUTHORIZATION

System action: The action taken will depend on the
      request being made:

SIGNON
      Recovery processing will not be started. If this
      is a batch type recovery, the IMS Database
      Recovery Facility address space ends.

SIGNOFF
      If no other failure has occurred, then recovery
      processing has completed. The subsystem
      record for this recovery job will remain
      recorded in RECON.

INIT
      The IMS Database Recovery Facility was
      unable to initialize DBRC. The IMS Database
      Recovery Facility address space ends.

RECOV START
      The request to obtain recovery information to
      start recovery processing failed. NO recovery
      processing will be done.

RECOV COMPLETE
      The request to notify DBRC of the completion
      of recovery failed. No information regarding
      the recovery will be recorded in RECON.

RECOV UPDATE
      The request to obtain new recovery
      information after a REC STOP command failed.
      The RECOVER STOP request will be ignored.

BUILD RWCR
      The request to resolve the entry name on a
      RECOVER command to a list of data entries
      failed. The command processing fails. For a
      batch recovery, the recovery process stops.

AUTHORIZATION
      The request to authorize full-function
      databases or Fast Path Areas failed. No
      recovery processing will be done.

UNAUTHORIZATION
      The request to unauthorize full-function
      databases or Fast Path Areas failed. Processing
      continues.

User response: See the topic titled "DSP Messages" in
      the IMS Messages and Codes, Volume 1 for an
      explanation of the DBRC return and reason codes and
      take appropriate action before attempting the recovery
      process again. If the explanation indicates an internal
      error, call IBM Software Support for assistance.

Module: FRXVADD0, FRXVSTA0, FRXVREM0,
FRD6003I  •  FRD6010W

FRVSTO0, FRXMSTR0, DFSMSTE0, FRXVAUT0

FRD6003I  name <AUTHORIZED BY ssid>

Explanation:  This message lists the database data set
or area for which a command was processed by the
IMS Database Recovery Facility. Either FRD6011I,
FRD6016I, FRD6021I or FRD6032I precedes this
message. This message is sent to the issuer of the
command.

In the message text:

- **name**: Indicates the database data set name (dbname
ddname) or area name for recovery.

- **ssid**: In response to a RECOVER ADD or ADD command,
  if the database data set or area is authorized
  by an IMS, ssid identifies the authorizing ssid.
  This message is issued for each IMS that
  authorized a the database data set or area in
  the recovery list.

This message is issued for each IMS that authorized a
database data set or area in the recovery list.

System action:  RECOVER command processing
continues.

User response:  None.

Module:  FRXVSTA0, FRXVSTO0, FRXVADD0,
FRXVREM0

FRD6010W  UNABLE TO ADD TO rcvlist, entrytype,
entryname: reason

Explanation:  The entry name specified in the ADD
command could not be added to the specified recovery
list. If a duplicate entry was detected, the duplicate is
ignored. In the message text the following information
is shown:

- **rcvlist**: The specified recovery list.

- **entrytype**: One of the following:
  - DBDS
  - AREA
  - DATABASE
  - GROUP (if DBDSGRP, CAGRP, or
    RECOVGRP was specified in the RECOVER
    command)

- **entryname**: A keyword specified on the RECOVER ADD or
  ADD command and is one of the following:
  - DB
  - DBDS
  - DBDSGRP
  - CAGRP

- **reason**: The reason can be one of the following:

  **ALREADY STARTED**  The recovery list specified by rcvlist
  already started recovery processing.

  **DATABASE HAS NO DATA SETS**  The database does not have any
  database data sets defined to it in
  RECON.

  **DATABASE IS DEFINED AS GSAM**  The IMS Database Recovery Facility
  cannot recover GSAM database types.

  **DATABASE IS OLR CAPABLE**  The object specified by entryname is
  OLR capable and the ADD or A00 command was issued to a release of
  IMS Database Recovery Facility that
does not support recoveries with OLR
capable databases. Rerun the recovery
on an IMS Database Recovery Facility
that includes the IMS Version 9
SDFSRESL library in the STEPLIB DD
statement concatenation or equivalent.

  **FAST PATH NOT INSTALLED**  The RECOVER ADD command attempted
to add a Fast Path AREA to the
recovery list on a system that does
not have FP installed.

  **INDEX OR ILE DATA SET**  The DBDS has not been added to the
recovery list because it is either a
Prime Index or ILDS data set and
cannot be recovered. These data sets
are recovered by the Index/ILDS
Rebuild utility.

  **NOT DEFINED IN RECON**  The object specified by entryname is
not defined for RECON.

  **NOT FOUND IN ACBGEN**  The AREA specified on the RECOVER
ADD AREA command was not defined
to the IMS receiving the command.

  **NOT IN CAGRP FOR ICRCA**  One or more entries in the recovery
list do not belong to a CAGRP. The
OUTPUT(ICRCA) option requires that
all entries belong to a CAGRP.

  **UNKNOWN REASON FROM DBRC**  DBRC returned an unknown reason
code to the IMS Database Recovery
Facility.

  **DATAGROUP NOT SUPPORTED**  A RECOVER ADD DATAGROUP groupname
command was entered. The IMS Database Recovery Facility does not support the DATAGROUP option.

**INVALID SMSOPT PARAMETER**
The only SMSOPT parameter currently supported is DELCAT.

**IT IS A DATAGROUP**
The group that is specified for an ADD DBDSGRP or ADD RECOVGRP named a DATAGROUP.

**IT IS A RECOVGRP**
The group that is specified for an ADD DBDSGRP named a RECOVGRP.

**IT IS A DBDSGRP**
The group that is specified for an ADD RECOVGRP named a DBDSGRP.

**System action:** The database data sets that make up the entry name are not added to the recovery list. The databases, areas, or both are not recovered by the IMS Database Recovery Facility.

**User response:** Examine the RECOVER ADD or ADD command and compare it with the corresponding ACBGEN or RECON entries. Reissue the command with the correct entry names. If reason is UNKNOWN REASON FROM DBRC, call the IBM Support Center for assistance.

**Module:** FRXVADD0

---

**FRD6011I** THE FOLLOWING ENTRIES ARE ADDED TO THE RECOVERY LIST

Explanation: This message is followed by a series of FRD6003I messages. It indicates that one or more entries were added to the recovery list as a result of the RECOVER ADD command. token is supplied by the user on the RECOVER ADD command or generated by IMS.

This message is sent to the issuer of the command.

User response: None.

Module: FRXVADD0

---

**FRD6012I** RECOVER OPTIONS IGNORED:

**SMSOPT**

Explanation: When recovery list is overflowed, any SMS option will be ignored except DELCAT. The only SMSOPT parameter currently supported is DELCAT.

System action: Processing continues, ignoring listed options.

---

**FRD6013I** NOTHING ADDED TO RECOVERY LIST: reason

Explanation: The processing of the ADD command did not add anything to a recovery list. Either no entry information was found by DBRC for any item listed in the command or all the entries returned by DBRC based on the items in the command were already in the recovery list. In the message text:

reason The reason can be one of the following:

**ALREADY ON RECOVERY LIST**

All entries to be added by this command are already in the recovery list.

**NO ENTRIES TO ADD**

No entry information was found by DBRC for any item listed in the command.

Note: See prior FRD6010I message for more details.

System action: The recovery list remains unchanged. If this is a batch recovery attempt, recovery processing will not occur.

User response: Examine the RECOVER ADD or ADD command and compare it with the corresponding ACBGEN or RECON entries and previous ADD commands to determine if the correct names were being specified. If reason is NOENTRIES TO ADD and this is a batch recovery, the command can be removed from the command stream if the correct names were being specified.

Module: FRXVADD0

---

**FRD6014E** DUPLICATE DSN TOO LONG FOR 
dbname, ddname, reason

Explanation: IMS Database Recovery Facility constructed a DSN that was too long.

dbname Identifies the database.

ddname Identifies the DD.

reason Identifies the reason, for example date, prefix, suffix, or time.

System action: Processing continues.

User response: Attempt to adjust the variables used in duplicate DSN construction.

Module: FRXVADD0
FRD6016I  THE FOLLOWING ENTRIES WERE REMOVED FROM THE RECOVERY LIST:

Explanation: This message is followed by a series of FRD6003I messages. It indicates that one or more entries were removed from the recovery list as a result of RECOVER REMOVE command.

System action: Then names listed in the subsequent DFS4265I messages are removed from the recovery list.

User response: None.

Module: FRXVREM0

FRD6017I  RECOVERY LIST IS NOW EMPTY

Explanation: One of the following instances occurred:

- The RECOVER REMOVE command processed and removed the last database data set or area from the recovery list.
- The RECOVER REMOVE ALLENT command processed.
- The RECOVER STOP command processed and stopped the last database data set or area in the recovery list.
- The RECOVER STOP ALLENT command processed.

This message is sent to the issuer of the command.

System action: The recovery instance is deleted.

User response: None.

Module: FRXVREM0

FRD6018W  UNABLE TO REMOVE resource_type:resource_name: reason

Explanation: An IMS RECOVER REMOVE command was issued but could not process. This message is sent to the issuer of the command.

In the message text:

resource_type
Identifies the type of resource the RECOVER REMOVE command was issued against, and is one of the following: LIST, DBDS, AREA, DB.

resource_name
Identifies the name of the resource specified in the RECOVER REMOVE command.

reason
Indicates one of the following causes for the failures:

RECOVERY IN PROGRESS
A RECOVER REMOVE command was issued when recovery was in progress for the recovery list.

NOT IN RECOVERY LIST
The database data set or area specified in the command was not part of the recovery list.

NOT DEFINED IN RECON
The DB, CAGRP, or DBDSGRP, resource types could not be found in RECON.

NOTHING REMOVED
No database data set or area was removed as a result of the RECOVER REMOVE command.

RECOVERY LIST DOES NOT EXIST
A RECOVER REMOVE command was issued, but the identified recovery list does not exist.

THIS IS A FAST PATH AREA
A RECOVER REMOVE DBDS was specified in the command, but the entry was a Fast Path area.

THIS IS NOT A FAST PATH AREA
A RECOVER REMOVE AREA:areaname command was entered and the areaname identified an FF DBDS in the recovery list. Determine the appropriate areaname, or enter RECOVER REMOVE DBDS:dbd dbds.

DATAGROUP NOT SUPPORTED
A RECOVER ADD DATAGROUP:groupname command was entered. The IMS Database Recovery Facility does not support the DATAGROUP option.

System action: If the resource_type is LIST, the RECOVER REMOVE command is aborted. Otherwise, processing continues for those resources not identified by the error.

User response: Determine why the command failed and if necessary, reissue the command.

Module: FRXVREM0

FRD6021I  RECOVERY STARTED FOR (options):

Explanation: The RECOVER START command was issued and no errors were detected. The IMS Database Recovery Facility processing started for the database data set and areas listed in the subsequent FRD6003I messages. In the message text:

options
Specifies parameters on the RECOVER START command. If no parameters were specified, the following default values for the options are listed:

- ERRORCONT
- ERRORSTOP
- STAGLOBAL
- STALOCAL
This message is sent to the issuer of the command.

**System action:** RECOVER START command continues.

**User response:** None.

**Module:** FRXVSTA0

--

**FRD6022A** UNABLE TO RECOVER: *dbname*, reason

**Explanation:** A RECOVER START command was issued, but the database data set or area cannot be recovered. This message is sent to the issuer of the command.

In the message text:

- *dbname* Identifies the database data set or area that could not be recovered.
- *reason* Indicates the cause of the error and is one of the following:

  **AUTHORIZATION FAILED, RSN = XX**
  Authorization processing failed to properly authorize one or more of the database data sets or areas in the recovery list. XX identifies the DBRC reason code. The DBRC reason codes are documented in the *IMS Messages and Codes* manual, under message DFS047A.

  **IMAGE COPY ALREADY TAKEN**
  The OUTPUT(ICR) option was specified, however there were no changes since the last incremental image copy was taken.

  **IMAGE COPY NOT AVAILABLE**
  DBRC was unable to locate a usable image copy for the database data set.

  **INCOMPLETE CA NOT ALLOWED**
  An incomplete change accumulation was detected during an attempt to generate a batch Incremental Image Copy using the ICRCA option. A complete change accumulation is required.

  **INVALID RCVTIME**
  DBRC determined that the RCVTIME specified falls in the middle of an ALLOC for this entry, and the PITR option was not specified.

  **LOG NOT ARCHIVED**
  Logs that are selected for recovery are not archived. Verify that the logs are in the RECON, then run an archive job for the unarchived OLDS.

  **LOGS MARKED IN ERROR**
  DBRC determined that none of the log data sets are usable. They might be marked in error. Or DBRC was unable to locate log data sets for recovery from only secondary sources.

  **NEEDS HIGHER RELEASE LOG**
  The IMS Database Recovery Facility detected logs generated by a higher release IMS. The database cannot be selected if it was updated by an IMS operating at a higher release.

  **NO BATCH ICR POINT FOUND**
  IMS Database Recovery Facility attempted to generate a batch Incremental Image Copy and was unable to. A usable batch window does not exist.

  **NO CA FOUND FOR LASTIC**
  RCVTYPE(LASTIC) was specified, however no IC exists where the DSDS/Area has been stopped.

  **NO CA FOUND FOR PITCA or LASTPITCA**
  A recovery was attempted using a PITCA, but no PIT CA was found. A PITCA must have a RUN time which matches the RCVTIME timestamp for a PITCA recovery. A PITCA must be marked ERR, and the CA data set name must have the suffix .HPCAP.

  **NO IC TAKEN AFTER A PITR**
  The IMS Database Recovery Facility requires input for recovery (in the form of an image copy, logs, and change accumulation). The input that was received is not allowed. Because the later PITR recovery might have removed Backout information from the RECON, the integrity of the database might be compromised by this recovery. After a PITR recovery, an image copy must be taken.

  Recovery of the identified DBDS failed.

  **NO PRILOG FOUND**
  DBRC was unable to locate a PRILOG record. This condition should not occur. Call IBM Software Support for assistance.

  **NO RECOV RECORD FOUND**
  The USEDBDS option was specified on the RECOVER ADD command, but the latest recovery recorded in RECON was not for a time stamp recovery, or the DBDS or AREA is marked in RECON as needing recovery.

  **NOT FOUND**
  One or more of the database data sets
or areas in the recovery list is not listed in the RECON data set.

**NOT OFFLINE**

One or more of the database data sets or areas in the recovery list was not taken offline with an IMS DBR command. When the database is in this state, proper operation of the IMS Database Recovery Facility cannot be guaranteed.

**RECOV RECORD UNUSABLE**

The USEDBDS option was specified on the RECOVER ADD command, but the DBDS or AREA has been updated or reorganized since the latest recovery recorded in the RECON.

**REORG LATER THAN IMAGE COPY**

A recovery to a time that includes an ALLOC range after a REORG, cannot be allowed unless an image copy was taken after the REORG job. If this situation is allowed, recovery applies data produced under one version of the database (before REORG) and the data from the reorganized version of the database; this will undoubtedly produce a broken database. Take an image copy after your REORG job.

**System action:** If ERRORCONT was specified for the database data set or area, processing continues for the remaining members in the IMS Database Recovery Facility recovery list. If ERRORCONT was not specified, recovery stops.

**User response:** Take the appropriate action based on the specified reason:

**AUTHORIZATION FAILED**

The DBRC reason codes are documented in the IMS Messages and Codes manual under message DFS047A. If the reason indicates that a database or area is in use, determine which IMS did not stop the appropriate database or area, then stop the database or area with the IMS DBR command. Otherwise, take the action indicated in the DFS047A message.

**IMAGE COPY ALREADY TAKEN**

This is an informational message. No action is required.

**IMAGE COPY NOT AVAILABLE**

If this failure occurred while recovering from only secondary sources (SOURCE(SEC) was specified), verify that secondary image copies were created prior to running recovery.

**INCOMPLETE CA NOT ALLOWED**

In order to be able to successfully run with the ICRCA option, modify your process to ensure that complete change accumulations are generated. Ensure that the complete change accumulations are generated to a time where no transactions occur against the database.

**INVALID RCVTIME**

Ensure that the RCVTIME specified falls in the middle of an ALLOC for this entry or specify the PITR option is a point-in-time recovery is desired.

**LOGS MARKED IN ERROR**

If this failure occurred while recovering from only secondary sources (SOURCE(SEC) was specified), verify that SECLOGs and/or SECSLDs were generated for this database data set prior to running recovery.

**NEEDS HIGHER RELEASE LOGS**

Logs generated on a higher release IMS cannot be used for recovery on a lower release IMS. This situation can occur when running multiple IMS systems in coexistence mode. Rerun the recovery on the level of IMS in which the logs were created.

**NO BATCH ICR POINT FOUND**

A batch image copy cannot be generated. Ensure that a batch window exists.

**NO CA FOUND FOR LASTIC**

A RCVTYPE(LASTIC) recovery is not possible.

**NO CA FOUND FOR PITCA or LASTPITCA**

For a PITCA recovery, verify that the RCVTIME timestamp matches the RUN time listed for the CA record in the RECON created by the HPCA PIT. Also, the CA must be marked ERR and the CA data set name must have the suffix .HPCAP.

**NO IC TAKEN AFTER A PITR**

After a point-in-time recovery, take an image copy so that subsequent recoveries have a valid starting point. If you know the integrity of the database will not be compromised, delete the RECOV record by using the DBRC DELETE.RECOV command, then rerun the recovery.

**NO PRILOG FOUND**

Call IBM Software Support for assistance.

**NOT FOUND**

The database data set or area was deleted from the RECON data set after the RECOVER ADD command was issued. If the database data set or area is legitimate and needs to be recovered, define it in RECON.

**NOT OFFLINE**

The database data set or area was not stopped on the IMS performing recovery. Stop the database or area with the IMS DBR command.

**NO RECOV RECORD FOUND**

Recover the DBDS or AREA using a
nonstandard image copy. Then inform DBRC of the recovery with a NOTIFY.RECOV command specifying the time that the recovery was run (current), and the time to which the DBDS or AREA was recovered. Then the IMS Database Recovery Facility can be used to recover the DBDS or AREA with the USEDBDS parameter.

**RECOV RECORD UNUSABLE**
Changes have been made to the DBDS or AREA since the last recovery; as a result, you must run the recovery again. Recover the DBDS or AREA using a nonstandard image copy. Then, inform DBRC of the recovery with a NOTIFY.RECOV command specifying the time that the recovery was run (current) and the time to which the DBDS or AREA was recovered. The IMS Database Recovery Facility can then be used to recover the DBDS or AREA with the USEDBDS parameter.

**REORG LATER THAN IMAGE COPY**
Inspect the database and ensure that it is in the same workable state as it was before the REORG ran. To issue a IMS Database Recovery Facility time stamp recovery to before the REORG runtime you must first delete the REORG by issuing the DELETE.REORG command.

**Module:** FRXVSTA0

---

**FRD6023A**

**START COMMAND FOR** process **FAILED, reason**

**Explanation:** The RECOVER START command was issued but the recovery or verify process cannot continue, as indicated by reason:

**ERRORABORT SPECIFIED**
An error was detected with one database data set or area while the IMS Database Recovery Facility attempted to start recovery, and ERRORCONT was specified on the RECOVER START command.

**INCOMPLETE RECOVERY GROUP**
Recovery failed because one or more members of a recovery group were not included in the recovery list. This message is followed by one or more FRD6024I messages listing the members of the recovery group that are not in the recovery list.

**NO RECOVERABLE ENTRIES**
None of the entries in the recovery list can be recovered due to one or more errors.

**RECOVERY LIST NOT FOUND**
No recovery list was found with a token matching the one provided with the command.

---

**ALREADY IN PROGRESS**
The recovery was not started because it is already processing.

**OTHER RECOVERY IN PROGRESS**
The recovery was not started because another recovery is currently in progress.

**RECOVERY TIME GREATER THAN RUN TIME**
The input recovery time on a RECOVER START command is greater than the current time.

**DBRC RECOVER START FAILURE**
The log data sets returned by DBRC for recovery are not ordered correctly. This condition should not occur.

**INVALID RECOVERY TIME**
The RCVTIME specified is not in a valid time stamp format.

This message is sent to the issuer of the command.

**System action:** The current the IMS Database Recovery Facility recovery instance is aborted.

**User response:** Take the appropriate action based on the reason received:

**ERRORABORT SPECIFIED**
Correct the error and restart recovery. See message DFS4266I in IMS Messages and Codes, Volume 2 for the proper action.

**INCOMPLETE RECOVERY GROUP**
Specify the whole group, redefine the group, don’t specify PITR, or specify NOCHECK. See FRD6024I for additional information.

**NO RECOVERABLE ENTRIES**
Prior messages should have been issued regarding failures for each entry. See the previous messages for the appropriate action.

**RECOVERY LIST NOT FOUND**
Create a recovery list with the name you specified or enter the name of an existing list.

**ALREADY IN PROGRESS**
The recovery is running. No action is necessary.

**OTHER RECOVERY IN PROGRESS**
Stop the other recovery or wait until it finishes.

**RECOVERY TIME GREATER THAN RUN TIME**
Enter the command RECOVER START with the correct time to start recovery.

**DBRC RECOVER START FAILURE**
Call IBM Software Support for assistance.

**INVALID RECOVERY TIME**
Ensure the RCVTIME specified is in an acceptable time stamp format.
**FRD6024A**  •  **FRD6101E**

**Module:** FRXVSTA0

**FRD6024A** RECOVERY GROUP grpname MEMBER member NOT IN RECOVERY LIST

**Explanation:** The RECOVER START command was issued with members of the recovery group indicated in the message by grpname. However, not all members of the recovery groups are in the recovery list. FRD6024I is issued for each member of the recovery list. This message follows message FRD6023I.

In the message text:

- **grpname**
  The name of the recovery groups

- **member**
  The database or area name in the recovery group.

**System action:** The command is not executed.

**User response:** Add all the members of the recovery groups to the recovery list using the ADD command, then issue START, or issue RECOVER START with the NOCHECK parameter specified.

**Module:** FRXVSTA0

**FRD6031E** UNABLE TO STOP resource_type resource_name: reason

**Explanation:** An IMS RECOVER STOP command was issued but could not process. This message is sent to the issuer of the command.

In the message text:

- **resource_type**
  Identifies the type of resource the RECOVER STOP command was issued against, and is one of the following:
  - LIST
  - DBDS
  - AREA
  - DB

- **resource_name**
  Identifies the name of the resource specified in the RECOVER STOP command.

- **reason**
  Indicates the cause of the error, and is one of the following:
  - **RECOVERY NOT IN PROGRESS**
    A RECOVER STOP command was issued when recovery was not in progress.
  - **ALLENT REQUIRED**
    A RECOVER STOP command was issued but ALLENT was not specified. Only RECOVERY STOP ALLENT<save> is supported by the IMS Database Recovery Facility.

**System action:** If the resource_type is LIST, then the RECOVER STOP command aborts. Otherwise, processing continues for other resources.

**User response:** Determine why the command failed and if necessary, reissue the command.

**Module:** FRXVST00

**FRD6032I** THE FOLLOWING ENTRIES WILL HAVE RECOVERY STOPPED:

**Explanation:** This message is followed by a series of FRD6003I messages. It indicates that one or more entries will have recovery stopped as a result of the RECOVER STOP command. This message is sent to the issuer of the command.

**System action:** The name listed in the subsequent FRD6003I messages will have their recovery stopped.

**User response:** None.

**Module:** FRXVST00

**FRD6033I** ALL ENTRIES IN RECOVERY LIST token, ARE BEING STOPPED

**Explanation:** As the result of a REC STOP ALLENTIES command, this message is issued indicated nothing is left to recover, and the recovery for list token stops.

This message destination is the z/OS system console.

**System action:** Processing continues.

**Module:** FRXVST00

**FRD6034**

**Explanation:** Message is used in tracing buffers used for various processes and is issued only when tracing is active.

**System action:** Processing continues.

**Module:** FRXMSTR0, FRXMSTR1, FRXUORM0

**FRD6101E** UNABLE TO GET | FREE STORAGE FOR component

**Explanation:** During a parse operation, a request to get or free storage could not be satisfied. In the message, xxx identifies what the storage request was for, and can be one of the following:

- **component**
  Indicates the target of the storage request.

**System action:** Recovery stops.
User response:  Increase the region size in the IMS Database Recovery Facility procedure. For additional information, see the FRXJCLDF Procedure.

Module:  FRXEPSS0, FRXEDRF0, FRXEPCC0

FRD6102A  UNABLE TO OPEN FILE fileid.
REASON:  vartxt

Explanation:  During a parse operation, an error occurred while attempting the open of the indicated component.

In the message text:

fileid  Identifies the DDNAME for which the open failed.

vartxt  Identifies the reason for the open failure.

System action:  Recovery stops.

User response:  Correct the reason for the open failure and start the recovery again.

Module:  FRXEPSS0, FRXEDRF0, FRXEPCC0

FRD6103A  UNABLE TO ACCESS MEMBER mbrname FROM PROCLIB FILE.
KEYWORD:  keyword

Explanation:  During a parse operation, an error occurred while attempting to read the indicated member from the data set identified by the PROCLIB DD statement. In the message text:

mbrname  Identifies the member for which the read failed.

keyword  Identifies the keyword which specified the member to be read. keyword is the following:

    DRFMBR=
        Indicates that the error occurred while attempting to read the
        FRXDRFxx proclib member.

System action:  Recovery stops.

User response:  Determine the reason for the read failure and start the recovery again.

Module:  FRXEDRF0

FRD6105A  ERROR ON FILE filename I/O
ERROR=aaa, tt, ddname, op, error, block, accessmethod

Explanation:  An I/O error occurred while reading the indicated file. In the message text:

filename  Identifies the DD statement that the data set was allocated to.

aaa   The device number that the error occurred on.
tt   The type of device.

dname  The name of the DD statement that the data set was allocated to.
op   The I/O operation that resulted in the error.
error  The type of error as determined by the device. For example, if it is device dependent.
block   The block number in error.
accessmethod   The access method being used.

System action:  Recovery stops.

User response:  Correct the indicated problem and rerun the recovery.

Module:  FRXEPSS0

FRD6110A  action HAS TOO MANY TARGET KEYWORDS.

Explanation:  During a parse operation, two or more target keywords were supplied for the indicated action. Only one target keyword is allowed. In the message text:

action  Identifies the operation to be performed, and is one of the following:
    •

    ADD/REMOVE
        The target keywords associated with ADD/REMOVE are the following:
        – DB
        – DBDS
        – AREA
        – DBDSGRP
        – CAGRP
        – RECOVGRP
    •

    START
        The target keywords associated with START are the following:
        – RCVDBDS
        – VERIFY

System action:  Recovery stops.

User response:  Correct the problem with the target keyword and start the recovery again.

Module:  FRXEPSS0

FRD6111A  action MISSING TARGET KEYWORDS.

Explanation:  During a SYSIN parse operation, no target keywords were supplied for the indicated action. A target keyword is required. In the message text:

action  Identifies the operation to be performed, and is one of the following:
**ADD/REMOVE**

The target keywords associated with ADD/REMOVE are the following:
- DB
- DBDS
- AREA
- DBDSGRP
- CAGRP
- RECOVGRP

**START**
The target keywords associated with START are the following:
- RCVDBDS
- VERIFY

**System action:** Recovery stops.

**User response:** Correct the problem with the target keyword and start the recovery again.

**Module:** FRXEPSS0

---

**FRD6112A**  
**DBDNAME ENTRIES MUST BE PAIRED WITH nametype ENTRIES ON THE action entity STATEMENT**

**Explanation:** One of the following error situations was encountered during SYSIN parsing:
- On an ADD or REMOVE DBDS command, an occurrence of a dbdname parameter was not associated with a corresponding ddname.
- On an ADD or REMOVE AREA command, an occurrence of a dbdname parameter was not associated with a corresponding areaname.

In the message text:

- **nametype**
  - DDNAME or AREANAME depending on full-function or fast path dbd type.

- **action**
  - Identifies the operation to be performed, and is one of the following:
    - ADD
    - REMOVE

- **entity**
  - One of the following:
    - DBDS
    - AREA

**System action:** Recovery stops.

**User response:** Correct the problem with the parameter association and start the recovery again.

**Module:** FRXEPSS0

---

**FRD6113A**  
**ONLY ONE SET OF DATASET NAME DESCRIPTIONS IS ALLOWED IN PROCLIB MEMBER**

**Explanation:** More than one set of dataset names are found in the proclib member.

**System action:** Processing continues.

**Module:** FRXEPCC0

---

**FRD6114A**  
**EXCESSIVE NUMBER OF CONCATENATED STATEMENTS ENCOUNTERED IN filename**

**Explanation:** The indicated file contained control statements which were concatenated. The number of concatenated statements was in excess of what is generally expected for this type of control statement. In the message text:

- **filename** The indicated file.

**System action:** Recovery stops with Condition Code 8.

**User response:** Statements are probably erroneously concatenated. Remove the concatenation character from those statements which do not require it, and start the recovery again.

**Module:** FRXEPSS0

---

**FRD6122A**  
**THE FOLLOWING MUTUALLY EXCLUSIVE KEYWORDS WERE ENCOUNTERED IN FILE fileid**

**keyw0rd1**  
**KEYWORD:** keyword1 KEYWORD: keyword2

**Explanation:** During a parsing operation, mutually exclusive keywords were encountered. In the message text:

- **keyword1**
  - Identifies one of the keywords in conflict.

- **keyword2**
  - Identifies the other keyword or types of keywords in conflict.

The EXPDT and RETPD parameters might have been specified in the control statement, but they are mutually exclusive.

**System action:** Recovery stops.

**User response:** Correct the problem with the keywords, and start the recovery again.

**Module:** FRXEPSS0, FRXEDRF0, FRXEPCC0

---

**FRD6123E**  
**LASTIC/LASTPITCA NOT ALLOWED WITH OUTPUT(ICR) OR OUTPUT(ICRCA)**

**Explanation:** RCVTYPE(LASTIC) or RCVTYPE(LASTPITCA) was specified along with...
System action: Recovery stops.

User response: Correct the problem with the keywords, and start the recovery again.

Module: FRXEPSS0

FRD6124A INVALID DATA ENCOUNTERED.
KEYWORD: keyword RSN=rsn

In the message text:

**keyword** Identifies the keyword associated with the invalid data.

**rsn** Indicates the reason for which the data is invalid and can be one of the following:

- **ALPHANUMERIC DATA REQUIRED** The data contained a non-alphanumeric character.
- **DATA IS INCORRECT LENGTH** The data did not match the length specifications.
- **EXCESSIVE NUMERIC VALUE** The supplied value exceeded the acceptable limit for the keyword.
- **FIRST PARAMETER IS INVALID** The keyword required two parameters; the first of which was invalid.
- **IC KEYWORD MISSING WHILE OUTPUT=ICR SPECIFIED** If Incremental Image Copy is specified as the OUTPUT option, then an IC keyword must be included on every ADD statement.
- **INVALID FIRST CHARACTER FOR PDS MEMBER NAME** The first character in the character string must be alphabetic.
- **INVALID POSITIONAL KEYWORD DETECTED** An invalid keyword is detected in an invalid position.
- **INVALID TARGET VALUE** The target name associated with the DB, DBDS, AREA, DBDSGRP, CAGRP or RECOVGRP is invalid. These target names must contain only alphanumeric or special characters allowable for PDS member names.

**INVALID USE OF KEYWORD** The indicated keyword is a valid keyword, but was not used in the proper context, or it was expected to be specified along with another keyword and that other keyword was not present. For example, WAITTIME and WAITMSG must be specified together.

**IS ONLY SUPPORTED WITH OUTPUT OPTION PRO | DUP | BOTH** The PITCA keyword was specified with an OUTPUT option other than PRO, DUP or BOTH. Only PRO, DUP or BOTH are allowed.

**LAST PARAMETER IS INVALID** The keyword required two parameters; the second of which was invalid.

**NUMERIC VALUE TOO SMALL** The supplied value was below the acceptable limit for the keyword.

**OVERFLOW OR PRIMEDB MUST BE SPECIFIED ONLY WITH A SINGLE DB** OVERFLOW or PRIMEDB can only be specified when a single database is specified on an ADD statement.

**REPORT STATEMENT MISSING WHILE IC, IB, OR PC SPECIFIED** A report statement is required for auxiliary utilities invocation support.

**NOT SUPPORTED WITH INCREMENTAL IC TYPE** The OUTPUT(ICR) option will terminate if specified with PITR on the RECOVER START input control statement. This combination is not supported. An incremental image copy cannot be taken to any point-in-time. An incremental image copy can, however, be taken to a specified timestamp if a database was previously brought offline or if an archive of OLDS occurred.

The OUTPUT(ICRCA) process will terminate if specified with RCVTIME. This combination is not supported. The ICRCA process determines the latest available timestamp that can be used to ensure that a batch image copy is generated.

**TWO CHARACTER VALUE IS REQUIRED** The data supplied for the keyword must be a two character value.
UNIQUE VOLUMES REQUIRED ON VOLSER AND VOLSER2

If you are generating dual IC output on tape, you can optionally specify VOLSER and VOLSER2 to provide a list of tape volumes for each set. You cannot provide the same volumes in both lists, otherwise the image copies that are generated might overlay one another.

UNIT IS NEEDED IF IC KEYWORD IS SPECIFIED

If you specified the IC keyword to generate an output image copy with IMS Database Recovery Facility, UNIT is a required parameter.

UNIT2 IS NEEDED IF VOLSER2 IS SPECIFIED

If you specified VOLSER2 to create a secondary output image copy data set, UNIT2 is a required parameter.

VOLSER IS REJECTED FROM IC KEYWORD

If you are generating STACK image copies and you specified VOLSER or VOLSER2 on the individual ADD statements with the IC() keyword, you must move them to the UTILGBL statement. Specifying VOLSER and VOLSER2 on the UTILGBL statement ensures that the image copy stack is generated with a consistent tape volume list.

VOLSER2 IS REJECTED IF VOLSER IS NOT SPECIFIED

In UTILGBL or ADD statements, if VOLSER is not specified, VOLSER2 is rejected.

XCFGROUP MISSING WHILE DBRCMD/STACMD SPECIFIED

XCFGROUP name must be provided if you specified DBRCMD or STACMD.

System action: Recovery stops.

User response: Correct the format of the data and resubmit the recovery.

Module: FRXEPSS0, FRXEDRF0, FRXEPCC0

LAST RECORD FROM FILE fileid WAS INCOMPLETE

Explanation: During a parsing operation, the last record in the file did not contain sufficient information such that it could be processed. In the message text:

fileid Identifies the DDNAME or member of a PDS which was being parsed.

System action: Recovery stops.

User response: Correct the problem with the last record and start the recovery again.

Module: FRXEPSS0, FRXEDRF0, FRXEPCC0

NO ADDITIONAL STATEMENTS ARE ALLOWED AFTER THE START STATEMENT

Explanation: A control statement was encountered after the START command. The START command must be the last control statement contained in the SYSIN file.

System action: Recovery stops with Condition Code 8.

User response: Ensure that the START command is the last control statement in the SYSIN file, and start the recovery again.

Module: FRXEPSS0

INVALID RCVTIME TIMESTAMP ENCOUNTERED. RC= return code RSN= reason

Explanation: The time stamp associated with the RCVTIME keyword was invalid. In the message text:

reason Indicates the cause of the error:

• Reasons associated with RC = 8:
  
  UNKNOWN FORMAT
  The time stamp was unrecognizable.

  NO END QUOTE
  The time stamp was not completely bracketed by quote marks.

  • Reasons associated with RC = 12:
  
  CLEN The compressed input was too long.

  LENTZ
  The length of the time stamp was zero or negative.

  YLY
  The length of (YY)YY was not 2 or 4.

  DDL
  The length of DDD was not 3.

  DDD
  The value for ddd was not between X'001' and X'366' inclusive.

  HHL
  The length of HH was not 2.

  HH
  The value for hh was greater than X'23'.

  MML
  The length of MM was not 2.

  MM
  The value for mm was greater than X'59'.

  SSL
  The length of SS was not 2.
SS  The value for ss was greater than X’59’.

MSEPS  There were multiple consecutive separators between values.

PREL  The length of THMJU was greater than 6.

XTRA  There was excess input after the THMJU value.

OFFSET  The time zone offset value was invalid.

System action:  Recovery stops with Condition Code 8.

User response:  Correct the problem with the time stamp and start the recovery again.

Module:  FRXEPSS0

---

FRD6128A  DUPLICATE KEYWORDS ENCOUNTERED

Explanation:  During a SYSIN parse operation, duplicate action keywords were specified on a single control statement. Only one action keyword is allowed on a single control statement. Action keywords include the following:

  •  ADD
  •  START
  •  REMOVE

System action:  Recovery stops.

User response:  Ensure that valid control statements are supplied for the indicated action and start the recovery again.

Module:  FRXEPSS0

---

FRD6129W  INVALID VALUE FOR KEYWORD:

  keyword  VALUE USED:  value

Explanation:  During a parse operation, a value was specified which was outside of the range of allowable values for the indicated keyword. A default value was substituted for the specified value. In the message text:

  keyword  Identifies the keyword associated with the invalid data.

  value  Indicate the value which was substituted for the invalid data.

System action:  Processing continues.

User response:  None required, however, it is suggested that the value be changed to one which is within the allowable range.

Module:  FRXEDRF0

---

FRD6130A  NO RECORDS WERE INCLUDED IN FILE fileid FOR action

Explanation:  During a parse operation, no syntactically valid control statements were supplied for the indicated action. Such control statements are required.

In the message text:

  fileid  Identifies the FILE which contains the records being parsed.

  action  Identifies the operation to be performed, and is one of the following:

  •  ADD
  •  START

System action:  Recovery stops.

User response:  Ensure that valid control statements are supplied for the indicated action and start the recovery again.

Module:  FRXEPSS0

---

FRD6131I  DEFAULT RCVDBDS PROCESSING INVOKED.

Explanation:  A control keyword indicating the type of recovery was not included in the SYSIN file. When no such keyword is included, the recovery type defaults to RCVDBDS (recover database data set).

System action:  This message is informational. Recovery continues.

User response:  None.

Module:  FRXEPSS0

---

FRD6133I  DRF STARTUP PARAMETER MEMBER parmmbr SELECTED

Explanation:  The indicated parameter member was selected from the file identified by the PROCLIB DD statement. The suffix contained in the parameter member name was specified in the DRFMBR parameter in the execution JCL for the IMS Database Recovery Facility.

System action:  This message is informational. Recovery continues.

User response:  None.

Module:  FRXEDRF0

---

FRD6134I  NO DRF STARTUP PARAMETER MEMBER WAS REQUESTED

Explanation:  The DRFMBR parameter was not specified in the execution JCL for the IMS Database Recovery Facility. Consequently, no the IMS Database
Recovery Facility Startup Parameter Member was identified nor evaluated. The IMS Database Recovery Facility continues using default values for the startup parameters.

**System action:** This message is informational. Recovery continues.

**User response:** None.

**Module:** FRXEDRF0

---

**FRD6135E**  ERROR PROCESSING DBDLIB.  
**RSN=reason**

**Explanation:** An error occurred while attempting to read a dbd member from the data set identified by the DBDLIB DD statement. In the message text:

- OPEN ERROR ON DBDLIB  
The IMS Database Recovery Facility was unable to open the data set associated with the DBDLIB DD statement.

- UNABLE TO OBTAIN DBD  
  The IMS Database Recovery Facility was unable to get the named dbd from the DBDLIB.

- CLOSE ERROR ON DBDLIB  
The IMS Database Recovery Facility was unable to close the data set associated with the DBDLIB DD statement

**System action:** This message is informational. Recovery continues.

**User response:** None required, however, for performance reasons, it is recommended that the problem with the DBDLIB resolved.

**Module:** FRXMDBD0

---

**FRD6135I**  DEFAULT KEYLENGTH OF 255 WILL BE USED FOR DBD  
dbdname

**Explanation:** The default value of 255 will be used for the key length of the root segment for the indicated database. This message is associated with message FRD6135I.

**System action:** This message is informational. Recovery continues.

**User response:** None required, however, the use of the default key length value might have performance implications. It is suggested that the reason for the inability to obtain the DBD be resolved so that an optimal key length value might be used during subsequent executions of the IMS Database Recovery Facility.

**Module:** FRXMDBD0

---

**FRD6137E**  ERROR PROCESSING PSBLIB.  
**RSN=reason**

**Explanation:** An error occurred while attempting to read a psb member from the data set identified by the PSBLIB DD statement. In the message text, *reason* indicates the cause of the error, which can be one of the following:

- OPEN ERROR ON PSBLIB  
The IMS Database Recovery Facility was unable to open the data set associated with the PSBLIB DD statement.

- UNABLE TO OBTAIN PSB  
  The IMS Database Recovery Facility was unable to get the named psb from the PSBLIB.

- CLOSE ERROR ON PSBLIB  
The IMS Database Recovery Facility was unable to close the data set associated with the PSBLIB DD statement.

**System action:** This message is informational. Recovery continues.

**User response:** None required, however, for performance reasons, it is recommended that the problem be resolved regarding the PSBLIB.

**Module:** FRXMPSB0

---

**FRD6138E**  ERROR PROCESSING DDEFPDS.  
**RSN=reason**

**Explanation:** In the message text, the reason for the failure can be one of the following:

- OPEN ERROR  
The IMS Database Recovery Facility was unable to open the data set associated with the DDEFPDS DD statement.

- UNABLE TO OBTAIN MEMBER  
  The IMS Database Recovery Facility was unable to get the named member for DELETE/DEFINE.

- MEMBER name OVER 16K LIMIT  
The member exceeded the 16K file size limit which is enforced by IMS Database Recovery Facility.

- INVALID FORMAT  
The data set was not defined with LRECL=80 and fixed/blocked format.

- CLOSE ERROR  
The IMS Database Recovery Facility was unable to close the data set successfully.

**System action:** Recovery stops for the database.

**User response:** Correct the problem, and rerun the recovery.

**Module:** FRXMPSB0

---

**FRD6140A**  PARSING OF RECORDS FROM  
fileid  ENDED IN ERROR.

**Explanation:** One or more control statements in the indicated file were found in error. This message is accompanied by additional messages which describe the error condition.

**System action:** Recovery stops with Condition Code 8.
User response: Correct the problem which is described by the additional messages, and start the recovery again.

Module: FRXEPSS0, FRXEDRF0, FRXEPCC0

FRD6141I  PARSING OF RECORDS FROM fileid WAS SUCCESSFUL

Explanation: All of the control statements in the indicated file were syntactically correct and successfully parsed.

System action: This message is informational. Recovery continues.

User response: None required.

Module: FRXEPSS0, FRXEDRF0

FRD6142E  PARSE INTERNAL ERROR. vartxt
GRAMMAR: blockname RC=return code

Explanation: During a parsing operation, an error occurred processing the indicated internal grammar control block. In the message text:

vartxt  Indicates the type of parse internal error:

GRAMMAR: blockname RC=return code

blockname  Indicates an internal component.

RC  Indicates the return code associated with the failure.

FAILED TIME CONERSION ROUTINE. RC=return code

An internal time conversion routine failed with the indicated return code.

INVALID ADD OR REPLACE TARGET KEYWORD

An invalid keyword associated with DB, DBDS, AREA, DBDSGRP, CAGRP or RECOVGRP was returned after parsing of the ADD or REPLACE commands.

System action: Recovery stops.

User response: These errors are all internal. If the vartxt associated with the message is GRAMMAR, see the BPEPARSE topic for the meaning of the return code. Contact IBM Software Support and provide the block name and return code information, if applicable.

Module: FRXEPSS0, FRXEDRF0

FRD6143E  NAME CONSTRUCT NOT FOUND, DBDSN(nn)/DBDSL(mm) SPECIFIED BUT NO MATCHING DBDSN/DBDSL FOUND

Explanation: The data set name keyword, DBDSN/DBDSL, is specified on an ADD command but the corresponding DBDSN environmental control statement is not supplied. nnn is the string that associates the ADD command to the DBDSN environmental control statement.

System action: The ADD command is rejected.

User response: Provide a matching DBDSN environmental control statement.

Module: FRXEPSS0

FRD6144E  ERROR PROCESSING IMS reason = reasons

Explanation: An error is found during IMS process.

reasons  The reason can be one of the following:

- OPEN ERROR ON IMS
- UNABLE TO OBTAIN DBD
- CLOSE ERROR ON IMS

System programmer response: Check that the IMS DD is correct in your JCL PROC.

Module: FRXMPSB0

FRD6145E  SYMBOLIC OFFSET symbolic IS INVALID FOR RCVTIME, reason

Explanation: Symbolic time zone is not valid in the RCVTIME statement.

symbolic  The symbolic offset value.

reason  The reason can be one of the following:

- The symbolic time zone is not defined to DBRC
- The DBRC symbolic time zone table is not available

System action: Recovery stops

Module: FRXEPSS0

FRD6146E  DD DOES NOT MATCH ALLOC. IN MASTER AS, DD=ddname

Explanation: Integrated Auxiliary Utility processing was requested, but the datasets allocated to the same DDs in the master and subordinate address spaces do not match.

ddname  may be one of the following:

- IMS
- STEPLIB
- JOBLIB
FRD7103A  REPORT PROCESSING FAILED: \textit{vartxt}

\textbf{Explanation:} Generation of the IMS Database Recovery Facility reports failed for the indicated internal reason. In the message text:

\textit{vartxt} identifies the reason for the report generation failure:

- INVALID REPORT INPUT CONTROL BLOCK
- REPORT INVOKED FOR UNKNOWN REASON
- NULL DATA SET INPUT CONTROL BLOCK
- NULL UOW INPUT CONTROL BLOCK
- NULL SUMMARY REPORT INPUT CONTROL BLOCK
- FAILED TIME CONVERSION ROUTINE RC=xx
- FAILED LOAD OF DATE CONVERSION MODULE
- FAILURE CREATING SUMMARY REPORT
- FAILURE CREATING DATA SET USAGE REPORT
- FAILURE CREATING UOW REPORT

\textbf{System action:} Processing continues, however, the generated report might be incomplete.

\textbf{User response:} All of the above error situations are not user correctable. Contact the IBM Service Center and provide the return code information, if applicable.

\textbf{Module:} FRXGRPT0, FRXGRDS0, FRXGRDM0, FRXGUOW0

FRD7201I  \textit{<control statement text>}

\textbf{Explanation:} This message displays the image of a statement processed from the file associated with the SYSIN statement.

\textbf{System action:} This message is informational. Recovery continues.

\textbf{User response:} None required.

\textbf{Module:} FRXGRPT0

FRD7202A  PARING ERRORS FOUND IN PRIOR STATEMENT

\textbf{Explanation:} The immediately preceding FRD7201E message shows a SYSIN statement in which some invalid syntax was detected. This message is accompanied by additional messages which are contained in the file identified by the SYSPRINT DD statement.

\textbf{System action:} Recovery has already stopped.

\textbf{User response:} See the SYSPRINT DD statement for additional messages describing the problem.

\textbf{Module:} FRXGRPT0

FRD9000I  \textit{utiltype IS NOW PROCESSING name1 name2}

\textbf{Explanation:} IMS Database Recovery Facility has invoked the utility \textit{utiltype}. The value for \textit{utiltype} can be one of the following utilities:

- IB - Index Builder
- PR - DFSPREC0
- IC - High Performance Image Copy
- PC - High Performance Pointer Checker
- DP - DEDB Pointer Checker
- ITKB - IMS Tools Knowledge Base

If the utility is IB, IC, PC, or DP, then \textit{name1} identifies the database name and \textit{name2} identifies the database DD name. If the utility is ITKB, then \textit{name1} will identify ITKBSRVR and \textit{name2} will be the ITKB server name.

\textbf{System action:} Processing continues.

\textbf{Module:} FRXIOCN0, FRXIVCN0, FRXIOSM0, FRXIVSM0, FRXVSTA0

FRD9001I  \textit{utiltype SUCCESSFULLY PROCESSED dbdname ddname}

\textbf{Explanation:} IMS Database Recovery Facility invoked the utility \textit{utiltype} and the utility has successfully completed processing the database \textit{dbdname}. The value for \textit{utiltype} values can be one of the following utilities:

- IB - Index Builder
- PR - DFSPREC0
- IC - High Performance Image Copy
- PC - High Performance Pointer Checker
- DP - DEDB Pointer Checker

If the utility processes individual database data sets, \textit{ddname} identifies the database data set that was successfully processed.

\textbf{System action:} Processing continues.

\textbf{Module:} FRXIOCN0, FRXIVCN0, FRXIOSM0, FRXIVSM0

FRD9002A  \textit{utiltype ENCOUNTERED RC=rtn RSN=rtn PROCESSING}

\textbf{Explanation:} A utility \textit{utiltype} invoked by IMS Database Recovery Facility produced a return code \textit{rtn} and reason code \textit{rsn} while processing the database. The value for \textit{utiltype} values can be one of the following utilities:

- IB - Index Builder
- PR - DFSPREC0
If the utility processes individual database data sets, ddbname identifies the database data set that is being processed.

System action: Processing stops if you have selected ERROR(STOP). Processing continues if you selected ERROR(CONT). If you specified ERROR(CONT) and the error is for a database data set and subsequent processing requires access to that database data set, the subsequent processing is skipped.

User response: Determine the cause of the error. See the documentation related to the utility identified by utiltype for an explanation of the return and reason codes. When you have corrected the error, rerun the recovery job.

Module: FRXIOCN0, FRXIVCN0, FRXIOSM0, FRXIVSM0

FRD9003A  utiltype DYNAMIC ALLOCATION rtn REASON CODE rsn FOR dname

Explanation: IMS Database Recovery Facility attempted to dynamically allocate a data set identified by dname and detected a non-zero return code rtn and reason code rsn. The data set was invoked on behalf of utiltype. The value for utiltype values can be one of the following utilities:
- IB - Index Builder
- PR - DFSPREC0
- DP - DEDB Pointer Checker
- IC - High Performance Image Copy
- PC - High Performance Pointer Checker
- WT - WTO capture services
- FS - Build Index function of FPA

System action: Processing stops if you have selected ERROR(STOP). Processing continues if you selected ERROR(CONT). If the DRFUNIT=genericunit keyword of the REPORT control statement was set to an invalid generic unit, then messages FRD9003A and FRD4100I will be written and followed by abend U384-02C. The return/reason code fields in message FRD9003A will be 4/021Cx.

If IMS Database Recovery Facility attempted to allocate a duplicate DSN on behalf of Integrated Auxiliary Utility processing, then messages FRD9003A and FRD4100I will be written and followed by ABENDU0384-02C. The return/reason code fields in message FRD9003A will be will be /970Cx if the duplicate DSN is not allocated to another IMS Database Recovery Facility job or 4/210x if the duplicate DSN is allocated to another IMS Database Recovery Facility job. It is possible to avoid this error by setting RPTRET=N on the REPORT control card.

User response: Determine the cause of the error. For an explanation of the dynamic allocation return and reason codes, see the z/OS MVS Programming Authorized Assembler Services Guide (SA22-7608). When you have corrected the error, rerun the recovery job.

Module: FRXIOCN0, FRXIVCN0, FRXIOSM0, FRXIVSM0, FRXVSTA0

FRD9004I  SECONDARY INDEX NAME IS INVALID, indexname

Explanation: The BLD_SECONDARY(selected indexes) parameter contains an invalid index name. The name specified as the selected index does not belong to the database.

indexname The name of the invalid index.

User response: None. This is an informational message and the invalid index is ignored.

Module: FRXVSTA2

FRD9005E  utiltype NOT FOUND

Explanation: The utility utiltype was not found when trying to load the utility.

System action: The recovery job stops.

User response: Determine the cause of the error. Once you have corrected the error, rerun the recovery job.

Module: FRXMINI0, FRXMINI1, FRXMINI2

FRD9006W  INDEX DATA SETS WILL NOT BE IMAGE COPIED AFTER A REBUILD IF STACK SPECIFIED

Explanation: IMS Database Recovery Facility is invoked to generate image copies of the recovered database that is stacked on tape. It is also invoked to perform an index rebuild. Following the index rebuild, no image copy will be generated for the index data set if stacking is being performed.

User response: To generate an image copy of your index data sets, run a separate image copy utility after recovery. Alternately, IMS Database Recovery Facility allows Index Builder to have image copies generated if STACK is not specified.

Module: FRXVASD0

FRD9007E  vartxt ERROR RC=rc RSN=rsn

Explanation: A failure was encountered while processing ITKB.

vartxt can be any of the following:
FRD9009E  •  FRD9014E

• PROGRAM LOAD - The ITKB client code failed to load.
• PROGRAM UNLOAD - The ITKB client code failed to unload.
• INIT - ITKB failed on initialization.
• TERM - ITKB failed on termination.

System action: If ITKB failed to load or to be initialized, then processing stops. During termination, IMS Database Recovery Facility processing is allowed to continue.

User response: Determine the cause of the error. Check to ensure that the correct ITKB load library is accessible to your job. After you correct the error, rerun the recovery job.

Module: FRXMSTR0, FRXUAPI0, FRXVSTA0

FRD9009E  Library Integrity Utility Module Found In STEPLIB Version Too Low.

Explanation: LIU@GOPT(xxxx) was coded and the Library Integrity Utility module was loaded, but its version was lower than the minimum version required.

System action:

User response: Change the Library Integrity Utility load library the STEPLIB DD of all JCL and procedures to refer to the correct version.

Module:

FRD9010I  HPIC ERROR ON THE PRIMARY OR SECONDARY IMAGE COPY: SEE THE FABJ MESSAGES AND THE ICEPRINT REPORT.

Explanation: IMS HP Image Copy has issued the final RC=04 RSN=00. IMS HP Image Copy was able to create one of either the primary or secondary image copy, but not both.

System action: Processing continues.

User response: Search for the messages prefixed by FABJ in the SYSOUT data set, examine the ICEPRINT REPORT, and correct the problem as indicated.

Module: FRXVRCV0

FRD9011E  HPIC ERROR ON THE DBRC NOTIFY.IC COMMAND. SEE THE FABJ MESSAGES.

Explanation: IMS HP Image Copy has issued the final RC=08 RSN=03. IMS HP Image Copy was unable to register the image copy that it created to DBRC.

System action: Processing continues.

User response: Search for the messages prefixed by FABJ in the SYSOUT data set and correct the problem as indicated.

Module: FRXVRCV0

Module: FRXVRCV0

FRD9020I  HALDB(BOTH) RECOMMENDED TO ENSURE DATABASE INTEGRITY AFTER TIMESTAMP RECOVERY

Explanation: HALDB(BOTH) is suggested to ensure the ILE and primary index are both rebuilt so that all sets being recovered are rebuilt to a consistent point for PITR.TSR.LASTIC or LASTPITCHCA recovery.

System action: Processing continues.

User response: None. This is an informational message only.

Module: FRXITKB0

FRD9012I  DRF ITKB REPORT INTERFACE INITIALIZATION COMPLETE

Explanation: The initialization of IMS Tools KB is complete for the entire recovery process, including all of the reports that are being created.

System action: Processing continues.

User response: None.

Module: FRXITKB0

FRD9013E  ITKB REPORT PROCESSING ERROR OCCURRED, REASON= reason

Explanation: IMS Tools KB failed due to one of the following reasons:

\begin{itemize}
  \item INIT NOT COMPLETED
  \item REPORT ALREADY OPEN
  \item RECONID NOT DEFINED
  \item REPORT NOT DEFINED
  \item REPORT NOT OPEN
\end{itemize}

System action: The IMS Tools KB report is not generated.

User response: Correct the error listed in the reason code and continue.

Module: FRXITKB0

FRD9014E  ITKB REPORT PROCESSING ERROR OCCURRED, TYPE= type

Explanation: The IMS Tools KB process cannot be continued because of an error, indicated by type.

\begin{itemize}
  \item DRF report
  \item WTO
  \item SYSPRINT
\end{itemize}

System action: The IMS Tools KB is not generated.

User response: Review the reason code listed in
message FRD9013E, correct the error, and continue.

Module: FRXITKB0

FRD9021I PRIMARY | SECONDARY INDEXES WERE NOT REQUESTED TO BE REBUILT FOR A TIME STAMP RECOVERY. DBD = dbname

Explanation: For the HIDAM database in a time stamp recovery the IB(BLD_PRIMARY) keyword is required.

For HALDB or full function databases in a time stamp recovery, the IB(BLD_SECONDARY) keyword is required.

System action: None.

User response: Specify BLD_PRIMARY or BLD_SECONDARY and rebuild the indexes.

Module: FRXVSTA0

FRD9400I DATABASE dbname START COMMAND ISSUED [ON imsid]

Explanation: A START DB command has been issued for dbname after recovery completes. If the LOCAL(imsid) was specified on the STACMD command, the imsid indicates the name of the IMS which is processing the START DB command.

System action: None.

User response: See the IMS console for the status of the database.

Module: FRXVRCV0

FRD9401I AREA areaname START COMMAND ISSUED [ON imsid]

Explanation: A START AREA command has been issued for areaname after recovery completes. If the LOCAL(imsid) was specified on the STACMD command, the imsid indicates the name of the IMS which is processing the START AREA command.

System action: None.

User response: See the IMS console for the status of the area.

Module: FRXVRCV0

FRD9402I DATABASE dbname DBR COMMAND ISSUED [ON imsid]

Explanation: A DBR DB command has been issued for dbname at the beginning of recovery. If the LOCAL(imsid) was specified on the DBRCMD statement, the imsid indicates the name of the IMS which is processing the DBR DB command.

System action: None.

User response: See the IMS console for the status of the database.

Module: FRXVSTA0

FRD9403I AREA areaname DBR COMMAND ISSUED [ON imsid]

Explanation: A DBR AREA command has been issued for areaname at the beginning of recovery. If the LOCAL(imsid) was specified on the DBRCMD statement, the imsid indicates the name of the IMS that is processing the DBR AREA command.

System action: None.

User response: See the IMS console for the status of the area.

Module: FRXVSTA0

FRD9404E IMS COMMAND ISSUED BUT NO CONNECTION EXISTS: command[, imsid]

Explanation: A DBR AREA | DB or START AREA | DB command command has been issued but no TOI/XCF connection exists. If the LOCAL(imsid) was specified on the DBRCMD | STACMD statement, the imsid indicates the name of the IMS which was to process the IMS command.

System action: The IMS command is ignored.

User response: Determine why no TOI/XCF connection exists, and correct the condition. If recovery failed because the command was not processed by IMS, start recovery after correcting the problem.

Module: FRXVSTA0, FRXVRCV0

FRD9405I DFSOLcnn ARCHIVE STATUS IS status FOR imsid ON sysid

Explanation: Status for an online log data set (OLDS) to be used in recovery processing is displayed for informational purposes. The DFSOLcnn represents the OLDS used by the IMS online system. The cnn represents the suffix of the OLDS where c=P (primary) or S (secondary) and nn=00-99. For the subject OLDS, status indicates the current archive status, imsid indicates the name of the IMS and sysid indicates the system id.

System action: None.

User response: Confirm that archive processing is scheduled to run as quickly as possible for the OLDS data set.

Module: FRXVSTA0
**FRD9406E**  
**ARCHIVE IS NOT COMPLETE FOR imsid ON sysid**

**Explanation:** Archive processing has not been completed for an online log data set (OLDS) that has been selected for use in recovery processing. The DFSOLcnt represents the OLDS used by the IMS online system. The cnt represents the suffix of the OLDS where c=P (primary) or S (secondary) and nn=00-99. For the subject OLDS, imsid indicates the name of the IMS, and sysid indicates the system id.

**System action:** If an OLDS is required for recovery but has not yet been archived, recovery is not started and an error is issued.

**User response:** If an OLDS contains log records that are required for recovery, ensure that the OLDS has been archived.

**Module:** FRXVSTA0

---

**FRD9407E**  
**NO ACTIVE MEMBER FOUND IN xcfgroup FOR imsid**

**Explanation:** A LOCAL keyword specified an IMS on the DBRCMD or STACMD command, but no active member entry was found in the specified XCF group. The xcfgroup indicates the XCF group name passed in the DRF XCFGROUP() statement. The imsid indicates the IMS passed in the DRF LOCAL() keyword for the DBRCMD or STACMD command.

**System action:** The IMS command is not processed.

**User response:** Determine whether the Tools Online System Interface server program is running on the IMS system and whether the XCF group is correctly specified.

**Module:** FRXVSTA0, FRXVRCV0

---

**FRD9408I**  
**COMMAND NOT PROCESSED FOR LOCAL IMS SPECIFIED: DRBCMD | STACMD**

**Explanation:** This is an informational message indicating that a DBRCMD AREA | DB or STACMD AREA | DB command was not processed.

**System action:** The IMS command is not processed.

**User response:** The identification of DBRCMD or STACMD reveals which LOCAL IMS keyword received the error. Determine the cause of the failure, and resubmit the command.

**Module:** FRXVSTA0, FRXVRCV0

---

**FRD9409I**  
**ERROR DETECTING OLDS ARCHIVE STATUS FOR imsid ON sysid**

**Explanation:** An error was encountered detecting OLDS archive status for subject IMS on subject system.

**System action:** Archive status is not collected, and processing continues.

**User response:** Determine the status of OLDS for the subject IMS system, and ensure that archive processing is able to proceed.

**Module:** FRXVSTA0

---

**FRD9410I**  
**ERROR VALIDATING ARCHIVE COMPLETE FOR imsid ON sysid**

**Explanation:** An error was encountered validating that the OLDS archive was completed for the subject IMS on the subject system. The imsid indicates the name of the IMS and sysid indicates the system id.

**System action:** Archive processing is not validated, and processing continues.

**User response:** Ensure that every OLDS has been archived for the subject IMS on the subject system.

**Module:** FRXVSTA0

---

**FRD9411I**  
**COMMAND SERVICES COMPONENT MISSING: cmd NOT PROCESSED**

**Explanation:** The DBRCMD | STACMD statement has been specified but not processed due to missing components for command services. The variable cmd indicates the DBR or START command was not processed.

**System action:** Command processing is bypassed.

**User response:** Ensure that the FMID: H2B7110 has been SMP/E installed into the CSI and the proper load library is specified in the concatenation for STEPLIB DD. If the FMID is installed into a separate CSI, then ensure that the load library is included in the concatenation for STEPLIB DD.

**Module:** FRXVSTA0, FRCVRCV0

---

**FRD9412I**  
**IMS COMMAND PROCESSING FAILED command, resource**

**Explanation:** An error was encountered while processing a command for resource specified. Where command is the failed command, and resource is the database or area requested for command processing.

**System action:** Command processing continues.

**User response:** Review the job log for IMS Database Recovery Facility and IMS to determine the cause of the error. Correct the error, and resubmit the recovery job.

**Module:** FRXVSTA0, FRCVRCV0
This reference section provides detailed information about abend codes issued by IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility. The explanations provided in this reference can help you diagnose, troubleshoot, and solve IMS Database Recovery Facility problems.

The IMS Database Recovery Facility abnormally ends when it encounters conditions in which it cannot continue normal operations. There are two types of abends in the IMS Database Recovery Facility:

- **ABENDU0384** - a service invoked by the IMS Database Recovery Facility returned an unexpected result
- **ABENDU0385** - the IMS Database Recovery Facility detected a logic error

Topics:

- “Reason codes for service error abend ABENDU0384”
- “Reason codes for logic error abend ABENDU0385” on page 269

### Reason codes for service error abend ABENDU0384

IMS Database Recovery Facility detected a logic error. Reason codes further identify the type of error:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td><strong>Startup failure</strong>&lt;br&gt;<strong>Explanation:</strong> The IMS Database Recovery Facility is unable to start the service layer environment.&lt;br&gt;<strong>Module:</strong> FRXSDR00</td>
</tr>
<tr>
<td>002</td>
<td><strong>Obtain variable length storage error</strong>&lt;br&gt;<strong>Explanation:</strong> The IMS Database Recovery Facility is unable to obtain storage required for recovery. Register 14 contains the return code from the obtain storage service.&lt;br&gt;<strong>Module:</strong> FRXCAMG0, FRXCBDM0, FRXICAJ0, FRXICLI0, FRXICTL0, FRXLBLO0, FRXPDIP0, FRXPDST0, FRXIDYN0, FRX.IOJ0, FRXOCN0, FRXIOSM0, FRXISMS0, FRXIVCN0, FRXIVSM0, FRXLMRC0, FRXPPIB0, FRXPPIB0, FRXPPSB0, FRXPSDR0, FRXQBUF0, FRXRCTL0, FRXSDR00, FRXTAU00, FRXUORM0, FRXVADD0, FRXVAUT0, FRXVDIS0, FRXVRCV0, FRXVSTAO, FRXVVER0, FRXWSPL0</td>
</tr>
<tr>
<td>003</td>
<td><strong>Load error</strong>&lt;br&gt;<strong>Explanation:</strong> The IMS Database Recovery Facility is unable to load modules required for recovery. Register 14 contains the return code from the load service.&lt;br&gt;<strong>Module:</strong> FRXIVCN0, FRXMINI0, FRXMINI1, FRXPPPIB0, FRXPPPRB0, FRXPPSB0, FRXSIMN0, FRXSIMN1</td>
</tr>
<tr>
<td>004</td>
<td><strong>Obtain fixed length storage</strong>&lt;br&gt;<strong>Explanation:</strong> IMS Database Recovery Facility is unable to obtain fixed length storage. Register 14 contains the return code from the load service. For information about how to set a new region size in the JCL for this address space, refer to the section &quot;Region size considerations&quot;. After a new region size is set, run the recovery job again.&lt;br&gt;<strong>Module:</strong> FRXICTL0, FRXUORM0</td>
</tr>
<tr>
<td>005</td>
<td><strong>Create thread error</strong>&lt;br&gt;<strong>Explanation:</strong> IMS Database Recovery Facility is unable to create a data set restore dispatchable thread if the module is FRXICTL0. IMS Database Recovery Facility is unable to gain access to data set restore dispatchable thread blocks if the module is FRXIRTH0. Register 14 contains the return code from the thread service.&lt;br&gt;<strong>Module:</strong> FRXICTL0, FRXIRTH0</td>
</tr>
<tr>
<td>006</td>
<td><strong>Address space create error</strong>&lt;br&gt;<strong>Explanation:</strong> IMS Database Recovery Facility experienced an error during address space create. Register 14 contains the return code from the address space create service.&lt;br&gt;<strong>Module:</strong> FRXMINI0, FRXMINI1</td>
</tr>
<tr>
<td>Code</td>
<td>Error Description</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>007</td>
<td>Enqueue AWE error</td>
</tr>
<tr>
<td>008</td>
<td>Attach TCB error</td>
</tr>
<tr>
<td>009</td>
<td>Message error</td>
</tr>
<tr>
<td>00A</td>
<td>Buffer error</td>
</tr>
<tr>
<td>00B</td>
<td>Set storage length</td>
</tr>
<tr>
<td>00C</td>
<td>Post error</td>
</tr>
<tr>
<td>00D</td>
<td>AWE wait error</td>
</tr>
<tr>
<td>00F</td>
<td>Write to IMS pipe error</td>
</tr>
<tr>
<td>011</td>
<td>Release storage error</td>
</tr>
<tr>
<td>012</td>
<td>Terminate thread</td>
</tr>
<tr>
<td>013</td>
<td>Create IMS pipe error</td>
</tr>
<tr>
<td>014</td>
<td>Address space parameter error</td>
</tr>
</tbody>
</table>
015 IMS pipe create error - DSPSERV
Explanation: The IMS pipe create service detected an error from the DSPSERV macro. Register 14 contains the return code from the DSPSERV macro.
Module: FRXPPIB0, FRXWSPL0

016 IMS pipe create error - ALESERV
Explanation: The IMS pipe create service detected an error from the ALESERV macro. Register 14 contains the return code from the ALESERV macro.
Module: FRXPPIB0, FRXRUA0A0, FRXWSPL0

017 Establish ESTAE error - ESTAEEX
Explanation: The IMS pipe service detected an error using the ESTAEEX macro.
Module: FRXPPIB0, FRXPPRB0, FRXPPSB0

018 Buffer pool create error
Explanation: IMS Database Recovery Facility is unable to create a buffer pool storage for use during recovery. The IMS Database Recovery Facility address space abnormally ends with Register 14 containing the return code from the buffer pool create service.
Module: FRXMINI0, FRXMINI1, FRXMSTR0

019 Obtain buffer pool storage error
Explanation: The IMS Database Recovery Facility subordinate address space abnormally ends because it is unable to obtain buffer storage.
Module: FRXMSTR1

01A Startup parameter length error
Explanation: The IMS Database Recovery Facility address space ends abnormally because an invalid length is detected for the startup parameters provided by IMS. Register 14 containing the invalid parameter length.
Module: FRXSDR00

01B Internal error indicating a problem in initializing the IMS Database Recovery Facility RAUX service
Explanation: The IMS Database Recovery Facility address space ends abnormally. Acquire an SVC dump of the IMS Database Recovery Facility master address space, and contact the IBM Support Center for assistance.
Module: FRXLBLD0, FRXMSTR1, FRXUPRE0

01C Internal error indicating a problem in ending the IMS Database Recovery Facility RAUX service
Explanation: IMS Database Recovery Facility ends abnormally.
Module: FRXMTRM0, FRXUPRE0, FRXVRCV0

01D Internal error indicating a problem in processing an IMS Database Recovery Facility WTO capture service
Explanation: IMS Database Recovery Facility ends abnormally. Acquire an SVC dump of the IMS Database Recovery Facility master address space, and contact the IBM Support Center for assistance.
Module: FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0, FRXRUA0X0, FRXUPRE0

01E Internal error indicating a problem in initializing the IMS Database Recovery Facility WTO capture service
Explanation: IMS Database Recovery Facility ends abnormally. Acquire an SVC dump of the IMS Database Recovery Facility master address space, and contact the IBM Support Center for assistance.
Module: FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0, FRXMSTR1, FRXUPRE0

01F Internal error indicating a problem in processing an IMS Database Recovery Facility WTO capture service
Explanation: IMS Database Recovery Facility ends abnormally. Acquire an SVC dump of the IMS Database Recovery Facility master address space, and contact IBM Software Support for assistance.
Module: FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0, FRXMSTR1, FRXUPRE0

020 Internal error indicating a problem in initializing the IMS Database Recovery Facility HPIC API
Explanation: IMS Database Recovery Facility ends abnormally. If you are recovering databases or areas with the IC() keyword, refer to the data set identified in

Chapter 17. IMS Database Recovery Facility abend codes 267
the ICEPRINT DD statement of the address space procedure for IMS High Performance Image Copy error messages. Take the action indicated by the messages.

**Module:** FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0, FRXVSTA0, FRXVSTA1

022  **Internal error indicating a problem in initializing the IMS Database Recovery Facility to HPPC or DEDB Pointer Checker API**

**Explanation:** IMS Database Recovery Facility ends abnormally. If you are recovering full function database data sets with the PC() keyword, refer to the data set identified in the PROCCTLT DD statement of the address space procedure for IMS High Performance Pointer Checker error messages. Take the action indicated by the messages.

**Module:** FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0, FRXVSTA0

023  **Internal error indicating a problem in ending the IMS Database Recovery Facility to HPIC API**

**Explanation:** IMS Database Recovery Facility ends abnormally. If you are recovering databases or areas with the IC() keyword, refer to the data set identified in the ICEPRINT DD statement of the address space procedure for IMS High Performance Image Copy error messages. Take the action indicated by the messages.

**Module:** FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0, FRXVRCV0

024  **Internal error indicating a problem in ending the IMS Database Recovery Facility to HPPC or DEDB Pointer Checker API**

**Explanation:** IMS Database Recovery Facility ends abnormally. If you are recovering full function database data sets with the PC() keyword, refer to the data set identified in the PROCCTLT DD statement of the address space procedure for IMS High Performance Pointer Checker error messages. Take the action indicated by the messages.

**Module:** FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0, FRXVRCV0

025  **Internal error indicating a problem in processing an IMS Database Recovery Facility to HPIC API call**

**Explanation:** IMS Database Recovery Facility ends abnormally. If you are recovering databases or areas with the IC() keyword, refer to the data set identified in the ICEPRINT DD statement of the address space procedure for IMS High Performance Image Copy error messages. Take the action indicated by the messages.

**Module:** FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0

026  **Internal error indicating a problem in processing an IMS Database Recovery Facility to HPPC or DEDB Pointer Checker API call**

**Explanation:** IMS Database Recovery Facility ends abnormally. If the JCL is correct and there are no missing or incorrect DD statements, take one of the following actions.

- If you are recovering full function database data sets with the PC() keyword, refer to the data set identified in the PROCCTLT DD statement of the address space procedure for IMS High Performance Pointer Checker error messages.
- If you are recovering fast path area data sets with the PC() keyword, refer to the data set identified in the MSGOUT DD statement of the address space procedure for HP DEDB Pointer Checker error messages. Take the action indicated by the messages.

**Module:** FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0

027  **IMS and DBDLIB error**

**Explanation:** IAU=yes and both IMS and DBDLIB cannot be specified for a subordinate address space.

**Module:** FRXSDR00

029  **IMS and DBDLIB error**

**Explanation:** A Log or Change Accumulation data set that is registered in the RECON could not be allocated. Depending on the reason, either message FRD4212I or FRD4210I is issued with this abend and contains the data set name that could not be allocated. IMS Database Recovery Facility requires the data set to be allocated in order to complete the database recovery.

**Module:** FRXYALL0

02A  **IMS DD Missing Error**

**Explanation:** Integrated Auxiliary Utility processing was requested, but the IMS DD the utilities require is missing. This abend is preceded by message FRD6144E.
**02B DD Mismatch Error**

**Explanation:** Integrated Auxiliary Utility processing was requested but the datasets allocated to the same DDs in the master and subordinate address spaces do not match. This abend is preceded by FRD6146E and indicates the specific DD in error.

**Module:** FRXMPSB0, FRXMDBD0

**02C Allocation error**

**Explanation:** IMS Database Recovery Facility attempted to dynamically allocate a dataset on behalf of IAU processing, but the request to the DYNALLOC service failed. This abend will have been preceded by messages FRD9003A and FRD4100I.

**Module:** FRXIVCN0, FRXIOCN0, FRXIOSM0, FRXIVSM0, FRXTSIB0, FRXTSPI0

**02D LIU Initialization Error**

**Explanation:** LIU@GOPT(xxxx) was coded in SYSIN or the in FRXDRFnn PROCLIB startup member, but Library Integrity Utility initialization failed with RC=16.

**System programmer response:** Look at the FABLnnnnE message that Library Integrity Utility has written to the SYSLOG to determine the reason for the failed initialization.

**Module:** FRXVSTA0

**02E LIU Initialization Error**

**Explanation:** LIU@GOPT (xxxx) was coded in SYSIN or in FRXDRFnn the PROCLIB startup member, but the Library Integrity Utility load module was not found in the STEPLIB DD concatenation. This abend is accompanied by message FRD9008E.

**System programmer response:** Add the correct Library Integrity Utility load library to the STEPLIB concatenation in all JCL procedures, including the MAS batch job JCL, the RSS JCL procedure DRFPROC and the UAS for IMS Index Builder or DFSPREC0 procedure set in the DRFIAX parameter. Note that all STEPLIB DDs in all procedures must have identical concatenations. See the descriptions for the STEPLIB and JOBLIB DDs for further details.

**Module:** FRXCAMG0, FRXCBDM0, FRXICLI0, FRXIRTH0, FRXLMRG0, FRXLPD00, FRXLSRT0, FRXLSRT1, FRXLSRT2, FRXLSSTS0, FRXMSTR0, FRXMSTR1, FRXPDIS0, FRXPDS0, FRXPSDS0, FRXQBUF0, FRXRCTL0, FRXRDTTH0, FRXTAS00, FRXTAU00, FRXUORM0, FRXVCMD0, FRXWSPL0

---

**Reason codes for logic error abend ABENDU0385**

IMS Database Recovery Facility detected a logic error. Reason codes further identify the type of error:

**001 Invalid AWE function code**

**Explanation:** An IMS Database Recovery Facility thread attempted to process an unknown AWE function request. Register 14 contains the AWE function code.

**Module:** FRXCAMG0, FRXCBDM0, FRXICLI0

02F **LIU Initialization Error**

**Explanation:** LIU@GOPT (xxxx) has been coded in SYSIN or in FRXDRFnn the PROCLIB startup member, but the version of the load module in the Library Integrity Utility library concatenated to the STEPLIB DD is lower than the supported version. This abend is accompanied by FRD9009E.

**System programmer response:** Change the Library Integrity Utility library to a supported version such as V2R1.

**Module:** FRXVSTA0

**030 LIU Termination Error**

**Explanation:** Library Integrity Utility encountered error during termination with RC=16.

**System programmer response:** Examine the FABLnnnnE message written by the Library Integrity Utility to the job log.

**Module:** FRXVSTA0

**031 LIU Recovery Error**

**Explanation:** Library Integrity Utility encountered an error during the recovery phase with RC=16.

**System programmer response:** Examine the FABLnnnnE message that was written by the Library Integrity Utility to the job log.

**Module:** FRXVSTA0

**032 LIU commit processing error**

**Explanation:** Library Integrity Utility encountered error during commit phase with RC=16.

**System programmer response:** Examine the FABLnnnnE message written by the Library Integrity Utility to the job log.

**Module:** FRXVSTA0
**002**  Data set allocation parameter error

**Explanation:** IMS Database Recovery Facility detected a data set allocation parameter error. Register 14 contains the address of the FRXRVRA control block.

**Module:** FRXYALL0

---

**003**  Control function error

**Explanation:** IMS Database Recovery Facility control pipe routine detected an unknown function request from the IMS Control Region.

**Module:** FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0, FRXRRAUX0, FRXVRVC0, FRXVSTA0, FRXPDIR0, FRXPDSR0, FRXPSSDR0

---

**006**  Invalid storage size

**Explanation:** IMS Database Recovery Facility detected an unusable storage size for an obtain storage request.

**Module:** FRXPPIB0, FRXYALL0

---

**009**  Invalid SSID detected

**Explanation:** IMS Database Recovery Facility identified an invalid SSID during log buffering. Register 14 contains the address of the AWE function code.

**Module:** FRXQBUF10

---

**00A**  Invalid record detected

**Explanation:** IMS Database Recovery Facility detected an invalid record.

**Module:** FRXPDIR0, FRXPDSR0, FRXPSSDR0, FRXRBUF0, FRXUORM0

---

**00B**  Invalid data buffer detected

**Explanation:** IMS Database Recovery Facility detected a buffer with invalid data.

**Module:** FRXICA10, FRXCBDM0, FRXPSSDR0, FRXQBUF0, FRXRBUF0, FRXUORM0

---

**00D**  Data set restore internal logic error

**Explanation:** IMS Database Recovery Facility data set restore process detected an internal logic error while applying updates from change accumulation and/or logs.

**Module:** FRXIDYN0, FRXIOCN0, FRXIOSM0, FRXIVCN0, FRXIVSM0

---

**00F**  Log merge initialization error

**Explanation:** IMS Database Recovery Facility encountered an error during log merge initialization. Register 14 contains the AWE function code.

**Module:** FRXLMRG0

---

**010**  Log merge invalid input

**Explanation:** IMS Database Recovery Facility detected invalid data passed in as input for log merge. Register 14 contains the AWE function code.

**Module:** FRXLMRG0

---

**011**  Early end of data

**Explanation:** IMS Database Recovery Facility detected an unexpected early end-of-data condition. Register 14 contains the AWE function code.

**Module:** FRXLMRG0

---

**012**  Log merge invalid buffer chain

**Explanation:** IMS Database Recovery Facility detected a sequence error in the log buffer input chain. Register 14 contains the AWE function code.

**Module:** FRXLMRG0

---

**013**  Log merge invalid mergeid

**Explanation:** IMS Database Recovery Facility detected an invalid mergeid during end of log merge processing. Register 14 contains the AWE function code.

**Module:** FRXLMRG0

---

**015**  Invalid ECB address

**Explanation:** IMS Database Recovery Facility is unable to get the task ECB address.

**Module:** FRXWSPL0

---

**017**  Subordinate address space sort error

**Explanation:** IMS Database Recovery Facility encountered an error during processing in the subordinate address spaces.

**Module:** FRXLNOT0, FRXLPD000, FRXLSRT1, FRXLSRT2, FRXLSRT3, FRXTAU00
018  Invalid end of recovery information
Explanation: Invalid end of recovery information is detected by the IMS Database Recovery Facility master address space.
Module:  FRXPDSR0

019  Error processing IC entry information
Explanation: IMS Database Recovery Facility detected an error processing IC entry information.
Module:  FRXLBLD0

01A  Invalid parameter detected
Explanation: IMS Database Recovery Facility encountered an invalid parameter during SYSIN parsing. Register 14 contains the address of the parameter table.
Module:  FRXVADD0

01B  DBRC Authorization Call Error
Explanation: Database Recovery Facility encountered an unexpected error when calling DBRC for database authorization.
System action: System terminates.
Module:  FRXTAU00
Chapter 18. Batch condition codes

This reference section provides detailed information about condition codes set by the IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility batch processing step. The explanations provided in this reference can help you diagnose, troubleshoot, and solve IMS Database Recovery Facility problems.

0  All recovery is successful or VERIFY was successful.

4  At least one recovery list entry was successfully recovered, but at least one was not. This code is also set if VERIFY processing encountered errors in finding the recovery information for some items in the recovery list.

8  None of the items on the recovery list were successfully recovered or processed with the VERIFY option. This condition code is also set if there were syntax errors in the SYSIN statements preventing the job from running.
Chapter 19. IMS Database Recovery Facility and the integrated auxiliary utilities

The integrated auxiliary utilities (IAUs) work in combination with IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility. Provided here are diagrams, processing descriptions, and configuration recommendations.

IMS Database Recovery Facility has a ‘single-step’ solution that allows you to perform a recovery and include in the recovery the activation of the integrated auxiliary utilities (IAUs). Traditionally, the activities of the IAUs have been done post-recovery, in separate batch jobs or multiple job steps subsequent to the recovery. IMS Database Recovery Facility is now able to include these activities in a single-step batch job. There are several advantages to the single-step solution, including CPU and I/O Service Unit reduction, JCL and control statement simplification, and integration of Integrated Auxiliary Utility reports, messages and return codes.

### IMS Database Recovery Facility terminology for integrated auxiliary processing

IMS Database Recovery Facility includes several unique terms used in describing Integrated Auxiliary Utility processing.

- **IBSS**: IMS Index Builder sort subordinate address space
- **ILDS**: Indirect list data set. In a HALDB, an IMS system index data set.
- **MAS**: IMS Database Recovery Facility master address space
- **RAUX**: Recovery auxiliary utility control task
- **RSS**: IMS Database Recovery Facility recovery sort subordinate address space
- **SAS**: Subordinate address space, a generic term that refers to any address space that might have been started by IMS Database Recovery Facility
- **IB-UAS**: IMS Database Recovery Facility utility address space for Index Builder
- **PR-UAS**: IMS Database Recovery Facility utility address space for DFSPRECO
- **PC-UAS**: Address space for IMS High Performance Pointer Checker DMB Analyzer (FABPATHx)
- **FS-UAS**: Utility address space for the Build Index function of FPA

### Integrated auxiliary utilities invoked by IMS Database Recovery Facility

IMS Database Recovery Facility operates with the Integrated Auxiliary Utilities under the listed constraints.
IMS High Performance Image Copy
Used for database image copy generation, including incremental image copy (ICR). Taking image copies is a usual part of backup and recovery procedures. Use the IC keyword of the ADD command to take an IC of a recovered database data set, including those in a CAGROUP or RECOVGRP. Only IMS HP Image Copy image copies are generated. The following types of image copies are not generated:
- IMS Standard Image Copy Utility image copies
- IMS Online Image Copy Utility image copies
- IMS Image Copy 2 Utility image copies
- IMS HPIC Flash Copy image copies

IMS utility DFSPREC0
Used for rebuilding HALDB partitions PHIDAM primary indexes and ILDS data sets. These entities are not recoverable and DFSPREC0 must be used to rebuild them. Use the HALDB keyword of the UTILGBL control statement to activate DFSPREC0. See the next topic, Rebuilding indexes and ILDSs.

Build Index function of FPA
Used for rebuilding Fast Path secondary indexes. Use the IB keyword of the ADD command or the BLD_SECONDARY keyword on the UTILGBL control statement to activate the Build Index function of FPA. This is useful in cases where the indexes are not recoverable or not marked as recoverable in the RECONS.

IMS Index Builder
Used for rebuilding Full Function primary indexes and all secondary indexes, including those of HALDB partitions. Use the IB keyword of the ADD command or the BLD_PRIMARY and BLD_SECONDARY keywords on the UTILGBL control statement to activate IMS Index Builder. This is useful in cases where the indexes are not recoverable or not marked as recoverable in the RECONS. For more information, see "Rebuilding indexes and ILDSs" on page 277.

IMS High Performance Pointer Checker and IMS Fast Path Basic Tools DEDB Pointer Checker
Used for hash pointer checking of full function databases and fast path databases, respectively. These ensure the integrity of the recovered database data sets. Use the PC keyword of the ADD command to activate hash pointer checking. Ensure that all logically-related data sets are available to Pointer Checker by including the PC keyword on the corresponding ADD commands; otherwise, Pointer Checker returns multiple pointer errors to the MAS. However, this might be acceptable for your purposes; for example, if you only want the Free Space Report from Pointer Checker. Note that Pointer Checker does not allow for hash pointer checking of HALDB primary indexes or ILDS data sets and therefore is not called, even if they are rebuilt by DFSPREC0 as part of the recovery.

IMS Library Integrity Utility
Used for verifying the database descriptor (DBD) in the DBDLIB used for recovery and any invoked Integrated Auxiliary Utilities. The DBD in the DBDLIB is the same as the DBD used for building the database. This prevents database corruption due to recovering a database using the wrong DBD, such as a DBD that is used for application testing or one that is outdated.
Rebuilding indexes and ILDSs

IMS Index Builder processing, DFSPREC0 processing, or processing for the Build Index function of FPA is invoked only after database recovery is complete because the entirely recovered database is required in order to rebuild the indexes or ILDSs.

You need only rebuild indexes or ILDSs if the media containing them fails or if a database is recovered to a particular time stamp (either PITR or TSR). This means that all indexes do not need to be rebuilt for all recoveries.

Image copies of indexes are taken only when the indexes are marked recoverable in the RECONs. If your installation chooses to rebuild indexes after database recovery, then taking an image copy of an index is not necessary.

For Integrated Auxiliary Utility processing, additional JCL procedures must be defined in the procedure library. Please see the installed SFRXSAMP library for sample JCL procedures and instructions for their definition.

When the MAS job JCL is submitted, it reads the PROCLIB member FRXDRFxx (where ‘xx’ is given by the DRFMBR=xx parameter) and the SYSIN control statements to determine the scope of the recovery, including any integrated auxiliary utility processing requested. Integrated auxiliary utility processing is activated when any of the following is encountered in the input stream:

- ADD command keywords IB, PC or IC. The parameters in these keywords are passed by IMS Database Recovery Facility to the corresponding integrated auxiliary utility. The parameters are shown in the syntax diagrams for the ADD command, but the individual Integrated Auxiliary Utilities User's Guides should be consulted for their meaning and usage.
- UTILGBL statement keywords HALDB, BLD_PRIMARY or BLD_SECONDARY.
- LIU@GOPT control statement, to activate Library Integrity Utility.

Note: The REPORT and DRFIAX control statements influence integrated auxiliary utility processing, but their existence alone does not cause integrated auxiliary utility invocation.

Integrated auxiliary utility processing address space architecture and configuration

The address space architecture when IMS Database Recovery Facility is running with all the integrated auxiliary utilities active is described here.

Shown here is a comprehensive view of integrated auxiliary utility processing with address spaces shown.
Diagram Color Key:
- Purple = separate address space
- Grey = control function within an Address Space
- Lime Green Lines = Recovery auxiliary utility control task (RAUX) in MAS, reaching throughout all the address spaces participating in the recovery
- Black Lines = data flow
- Green = recovery asset data, either external or internally staged
- Bright Blue = recovery or utility output
- Pale Blue = SYSOUT reports

Below is a list of the address spaces shown in the diagram. The associated configuration parameters are also described. The arrows leading from the RAUX box in the master address space illustrate this task as the central point of control of integrated auxiliary utility processing throughout all the address spaces participating in the recovery.

**Master Address Space (MAS)**
- Created when the JCL for the job is submitted.

**Recovery Sort Subordinate (RSS) Address Space (and multiples)**
- Created by the MAS for restoring image copies and recovering database data sets.
- The procedure for this address space is given by the DRFPROC parameter. The name of the started task is prefixed with the contents of the ASPREF keyword.

**Figure 4. Integrated auxiliary utility processing with address spaces shown**
Subtasks related to IMS High Performance Image Copy, IMS High Performance Pointer Checker and DEDB Pointer Checker are active in the RSS when the IC or PC keywords are present on the ADD command.

**FS-UAS**
- Created by the MAS when the IMS Index Builder integrated auxiliary utility is requested by using the IB() keyword on the ADD command or in UTILGBL control statement parameter BLD_SECONDARY.
- The procedure for this address space is given by the DRFIAX control statement. The name of the started task is prefixed with the contents of the FSPREF keyword.
- The FS-UAS is created after all RSS address spaces have completed.

**PR-UAS**
- The PR-UAS is created by the MAS when the DFSPREC0 integrated auxiliary utility is requested via the HALDB keyword on the UTILGBL control statement or in the IB() keyword of the ADD command.
- The procedure for this address space is given by the DRFIAX control statement. The name of the started task is prefixed with the contents of the PRPREF keyword.
- This address space is created after all RSS address spaces have completed, but before recovery is ended.
- A new PR-UAS is started for each HALDB partition for which a PHIDAM primary index or ILDS data set rebuild is required, but only one is active at any given time.

**IB-UAS**
- Created by the MAS when the IMS Index Builder integrated auxiliary utility is requested by using the IB() keyword on the ADD command or in UTILGBL control statement parameters BLD_PRIMARY or BLD_SECONDARY.
- This is also known as the IMS Index Builder master address space because IMS Index Builder is started as a subtask in this address space.
- The procedure for this address space is given by the DRFIAX control statement. The name of the started task is prefixed with the contents of the IBPREF keyword.
- The IB-UAS is created after all RSS address spaces have completed.
- If the version of IMS Index Builder is V2R3, then all the indexes are built in the IMS Index Builder sort subordinate address space (IBSS). If the version of IMS Index Builder is V3R1 all the indexes are built here in the IB-UAS; however, one or more IBSS address spaces may be started for the purpose of running Image Copy and Pointer Checker for the rebuilt indexes.
- The first time you run either IMS Index Builder V3R1 or V2R3, the client should first do this as a native batch job to ensure its procedures and parameters are installed correctly. It should be able to build indexes for IMS Database Recovery Facility restored databases. This test ensures that IMS Index Builder successfully runs as an Integrated Auxiliary Utility.
- IMS Database Recovery Facility will not prevent you from both recovering and rebuilding an index in the same one-step recovery job; however, this results in redundant processing and should be avoided.
- IMS Database Recovery Facility passes internally to IMS Index Builder V2R3 some parameters that cannot be changed because they are required...
in this environment. This restriction applies only in this environment and stand-alone IMS Index Builder continues to operate as usual. These include:

- SORTE35(YES) and SORTE15(YES): Though externally available, these options are ignored if specified on either the UTILGBL control statement or the IMS Index Builder keyword of the ADD command.

- ALTER(NO)

- STEPLIB(TRANS): This parameter causes the transfer of the STEPLIB DD concatenation from the IB-UAS to the IBSS.

- Some of the IMS Index Builder parameter IMS Database Recovery Facility ADD command keywords that are supported in IMS Index Builder V2R3 are not supported in IMS Index Builder V3R1. If used in IMS Index Builder V3R1, it will result in a warning message that they keyword is no longer supported, but IMS Index Builder V3R1 will continue processing:
  - ALTER
  - NDXIOUBF
  - SORTE15
  - SORTE35
  - SORTID
  - SORTOPT
  - SORTOUT
  - SORTSTAT

Note: IMS Index Builder 3.1 has more functions than IMS Index Builder 2.3, yet the number of keyword parameters has been reduced in order to reduce complexity. The first APAR to support IMS Index Builder V3R1 as an integrated auxiliary utility was designed to simulate V2R3 functions. If you run IMS Index Builder V3R1 as an integrated auxiliary utility using the JCL procedures from IMS Index Builder V2R3, you will get the same results, yet with a few warning messages about parameters that are no longer supported in IMS Index Builder V3R1. The new features of IMS Index Builder V3R1, such as the ability to recover HALDB PHIDAM primary indexes, are yet to be exploited by IMS Database Recovery Facility.

IMS Index Builder Sort Subordinate (IBSS) Address Space (and multiples):

- The IBSS is created by the IB-UAS.

- The JCL procedure used to start the IBSS depends on the installed version of IMS Index Builder. In IMS Index Builder V3R1, the procedure used is always IIUBSRT and the started task names are IIUAPIFC and IIUSORTS. With V3R1, the procedure name and started task name can be overridden by using IIURPRMS module SIIULMOD. In IMS Index Builder V2R3, the procedure used defaults to IIUBSRTT. With V2R3 IMS Database Recovery Facility is able to override IIUBSRTT as the procedure name and started task name by passing the SORTID(x) parameter to IMS Index Builder. In that case, the procedure and started task names are IIUBSRTx.
• Subtasks for IMS High Performance Image Copy and IMS High Performance Pointer Checker may be active in the IBSS when image copy and pointer checker processing has been requested for the rebuilt indexes.

• If IMS Index Builder V2R3 is installed, all indexes are built here in the IBSS. If IMS Index Builder V3R1 is installed, then these subordinate address spaces are built for the purpose of running IMS High Performance Image Copy and IMS High Performance Pointer Checker when requested by IMS Database Recovery Facility; the indexes are built in the IB-UAS (IMS Index Builder Master Address Space).

**PC-UAS**

- The PC-UAS, which runs the IMS High Performance Pointer Checker DMB Analyzer, is created by the MAS when the IMS HP Change Accumulation Utility integrated auxiliary utility is requested for full-function databases via the PC keyword on the ADD command.
- The procedure for this address space is given by the PCPROCNM keyword and the stared task name is given by the PCJOBNM keyword. The PCPREFIX() control statement sets the prefix for the name of the PC-UAS started task.

**Library Integrity Utility (LIU)**

Although it is depicted separately in the diagram, Library Integrity Utility does not run in a separate address space. It is run in the MAS when the LIU@GOPT(abcdef) control statement is coded.

As a technique for correlating all the address spaces for a recovery, code the same three characters as the first part of the four character prefix for ASPREF, FSPREF, IBPREF, PCPREF, PRPREF and PCJOBNM; for example, ASPREF(DR3S), FSPREF(DR3F), IBPREF(DR3I), PCPREF(DR3D), PRPREF(DR3P) and PCJOBNM(DR3C). Also the job name for the MAS JCL should begin with these same three characters. This will make it easier to find the job output for the related address spaces.

---

**Control flow and the RAUX control task**

During initialization, the MAS calls upon DBRC to identify from the RECONs the assets required for database data set recovery, including the ICs, CAs and logs. If Integrated Auxiliary Utility processing has been requested, the RAUX control task is started. The MAS then starts the number of RSS address spaces corresponding to the SORTPARM(NUM(\texttt{xx})) parameter.

The RSS restores the ICs, sorts the log and CA records sent to it by the MAS, and applies the database updates to create a restored database data set or, alternatively, an ICR. As the database blocks are updated and written to the recovered database they can also be processed in parallel by the IC and PC tasks. Blocks need only be read once but can be processed by both IC and PC in parallel. This is more efficient than running IC and PC as separate job steps after the recovery job step.

The MAS attaches the number of log and CA Read Tasks that corresponds to the LOGNUM parameter. These tasks determine the correct RSS to send the database update records to, buffer them, and send them to the RSS where they are sorted, then applied as updates to the database blocks restored from the ICs. Recovered databases can be written to the production database, to an Incremental Image Copy (ICR), or to a duplicate copy database for offsite storage, remote site.
recovery, or testing purposes. If ICs of the restored database are requested, the blocks for them are written in parallel. Any ICs created are registered in the RECONs during MAS termination.

Instead of ICs, ICRs can be created by restoring the most recent IC and applying all log and CA database update records, the difference being that the output of the recovery is an IC rather than a restored database. The resulting IC may be a Batch-IC or Concurrent-IC, depending on whether the database was online at the time of the ICR. The IC created by the ICR process is registered in the RECONs and is usable in subsequent database recovery.

The RAUX control task in the MAS serves to initialize, monitor, drive processing for, and collect results from the integrated auxiliary utilities running throughout the address spaces participating in the recovery. Results include SYSOUT reports, return codes and any Write To Operator messages issued to consoles or job logs. RAUX services are provided via z/OS cross-memory services to all address spaces that require them. The RAUX allocates its major control block to store the results of the integrated auxiliary utilities. Updates to that control block may be done from any address space involved in the recovery. When the MAS arrives at its termination logic, the RAUX organizes all of the Integrated Auxiliary Utility results and stores them as directed by the MAS JCL and its parameters.

If pointer checking was selected for a full function database data set, then the RAUX starts the PC-UAS (PC DMB Analyzer) procedure FABPATHX. If image copy or pointer processing was requested for any database data set, then the RAUX control task starts IMS High Performance Image Copy or IMS High Performance Pointer Checker in the RSS. In the RSS, IMS HP Image Copy, IMS HP Pointer Checker and DEDB Pointer Checker run under separate tasks so that their services can be multi-threaded for the purpose of efficiency. For example, IMS HP Pointer Checker can be in the process of collecting information on the database pointers in a block at the same time that the database block is being written by IMS HP Image Copy to the IC data set.

IMS Database Recovery Facility also has the capability of rebuilding the PHIDAM primary index and ILDS dataset for a HALDB partition. This is accomplished by starting the procedure identified by the DRFIAUX control statement. This PR-UAS is started just before MAS termination and after all recovery processing for the HALDB partitions has completed. A new PR-UAS is started for each HALDB partition database dataset. This is because DFSPREC0 is not able to operate on more than one of these HALDB partition database datasets in a given execution. Once again, the services of the RAUX are used to capture the reports and return codes from DFSPREC0, and they are communicated back to the master address space for inclusion on the reports.

IMS Database Recovery Facility can also invoke IMS Index Builder to build the primary and secondary indexes for Full Function databases and secondary indexes for HALDB partitioned databases. Both IMS Index Builder V2.3 and V3.1 can build HALDB primary indexes, and V3.1 can build ILDSs, but IMS Database Recovery Facility uses DFSPREC0 for rebuilding these. You can use the Build Index function of FPA to rebuild Fast Path DEDB databases’ secondary indexes.

When index rebuilding has been requested, the MAS starts either the IB-UAS or FS-UAS just before its own ending. The function of the IB-UAS depends on the version of IMS Index Builder. In IMS Index Builder V2R3, the IB-UAS starts the IBSS to rebuild the full function indexes. In IMS Index Builder V3R1, the IB-UAS starts the IBSS for running IMS HP Image Copy and IMS HP Pointer Checker/
The IMS Library Integrity Utility verifies that the DBD library being used in the recovery (the one allocated to the IMS DD in the MAS JCL) is correctly matched to the database data sets being recovered and processed by the other integrated auxiliary utilities. This prevents database corruption that can happen by allocating the wrong DBD library, such as one being used for new application testing. The IMS Library Integrity Utility runs in the MAS and dynamically allocates its Library Control (LICON) data set based on information in the IMS Library Integrity Utility load library concatenated to the STEPLIB DD. All IMS Library Integrity Utility messages are written to the MAS Job log. There is no specific IMS Library Integrity Utility SYSOUT report dataset written or appended to the MAS REPORT DD. However, there is an IMS Library Integrity Utility Final Return / Reason Code in the Utility section of that report. If you see a non-zero return code, you should examine the Master Job log for FABLxxxxE messages. If IMS Library Integrity Utility determines that an incorrect DBD library has been allocated, the recovery is halted to prevent database corruption.

**SYSOUT reports, write to operator messages, and return codes**

Write to operator messages and reports are generated by IMS Index Builder, DFSPREC0, the Build Index function of FPA, IMS High Performance Image Copy, Library Integrity Utility (LIU), IMS High Performance Pointer Checker, and DEDB Pointer Checker.

Write to operator messages (WTO) and reports generated by IMS Index Builder, DFSPREC0, IMS HP Image Copy, Library Integrity Utility, IMS HP Pointer Checker, and DEDB Pointer Checker in the various address spaces are collected by the RAUX control task in the MAS. If the RPTTYPE=SEP option is specified, then all messages from the integrated auxiliary utilities are written to the FRXWTO DD in the MAS. If RPTTYPE=APP is specified, they are written to the REPORT DD in the MAS. In either case, the WTO messages are separated by DD Name and DD/Area Name plus the address space in which they originated is listed.

The same DBD Name and DD/Area Name separation applies to the various integrated auxiliary utilities SYSOUT reports. The RAUX control task in the MAS gathers all integrated auxiliary utilities reports from all address spaces and distributes them depending on the RPTTYPE option. If RPTTYPE=SEP is specified, the reports are written to the integrated auxiliary utilities standard report DDs in the MAS. The standard integrated auxiliary utility SYSOUT report DD names are added to the MAS JCL to contain any separate report data. If the RPTTYPE=APP option is specified, the integrated auxiliary utility SYSOUT reports are instead appended to the MAS REPORT DD file.

The most convenient way to view the integrated auxiliary utility reports is to choose the RPTTYPE=SEP option, then use spool display and search facility to
select the MAS job log so that the SYSOUT data sets can be viewed separately by DD Name. The RPTTYPE=APP is provided as a convenience to those clients that do not have spool display and search facility or who prefer to store all IMS Database Recovery Facility and integrated auxiliary utility reports in the single file defined by the MAS REPORT DD.

The MAS REPORT DD has a separate section that provides a summary of integrated auxiliary utility processing. The summary shows whether an integrated auxiliary utility has been involved in the recovery of a given database data set and the results of that involvement in terms of the return and reason code. The end of the utility report shows a final return and reason code for each integrated auxiliary utility that was invoked. If the final return code from an integrated auxiliary utility is greater than 4, the MAS return code is set to 8. If an integrated auxiliary utility final return code is 4, then the MAS return code is set to 4.

When the integrated auxiliary utilities run in one of the address spaces, there are times when z/OS or the integrated auxiliary utilities themselves issue an SVC 35 (WTO) to write a message to the console or the job log. The RAUX is aware of and manages the collection of WTO messages and SYSOUT reports on behalf of the integrated auxiliary utilities. WTO messages are managed as if they were a separate integrated auxiliary utility SYSOUT report, even though the integrated auxiliary utilities do not themselves create a separate WTO messages report.

In order to capture the WTO messages, the RAUX has a facility known as WTO capture services. This routine receives control when an SVC 35 is issued by any task in the address space. If the message applies to one of the integrated auxiliary utility tasks, it is quickly copied to a RAUX memory structure, and separated by DBD Name and DD/Area Name. Then the RAUX allows the normal SVC 35 process to continue. During address space termination of the subordinate address spaces, the captured SVC 35 messages are written from the memory structures to data sets allocated specifically for this purpose. In this way, WTO messages are associated with a specific DBD Name and DD/Area Name. These names of these data sets are stored in the RAUX main control block and left to be managed by the RAUX control task in the MAS during its termination.

SYSOUT reports written by the integrated auxiliary utilities in the various address spaces are retained in cataloged data sets for the duration of the recovery job. The MAS RAUX controller copies these data sets, as directed by the REPORT control statement options, to various DD of the MAS JCL. These data sets are then, under normal conditions, deleted and uncataloged by the RAUX control task. You can see evidence of this activity in the MAS job log by searching for the string “SAS Copy->:”. The integrated auxiliary utility SYSOUT report data set names are included in these messages. Here is an example of what can be searched for in the MAS job log to see evidence of this data set management:

```
SAS COPY->: DD=FRXWTO DSN=DRFHILEV.FRXWTOIB.ICUST1A.ICUST1AA.T0048339
```

In this case the RAUX has captured WTO messages associated with building the index for the ICUST1A partition's ICUST1AA database data set in the PR-UAS, under the started task name of DR3P0001. The name of the WTO data set is DRFHILEV.FRXWTOIB.ICUST1A.ICUST1AA.T0048339. The captured messages that were contained in the file were written along with the identifying address space name to either the MAS FRXWTO DD or the REPORT DD, depending on the RPTTYPE option. The file was then deleted and uncataloged.
Notice that the heading contains the ‘dbdname.ddname’ string. This string can be used to find all SYSOUT data gathered by the RAUX for that particular recovered database data set. This is especially useful when RPTTYPE=APP is coded on the REPORT control statement and you are viewing the entire REPORT DD of appended integrated auxiliary utility reports and messages.

These integrated auxiliary utility report data set names are patterned as follows:
&DRFHILEV.FRXXXXXX.dbdname.ddname.Thhmmssm, where
- &DRFHILEV is taken from the REPORT control statement,
- xxxx corresponds to the particular type of integrated auxiliary utility report,
- &dbdname and &ddname correspond to the database data set being processed (including indexes),
- hhmmssm is the hour, minute, second, and millisecond of the time the recovery was started

The time stamp portion can be used to correlate all integrated auxiliary utility report data sets associated with a given recovery job.

Because of the 44-character DSN length constraint, the possibility exists that the RAUX attempts to allocate as new a DSN that already exists. If the RAUX attempts and fails to dynamically allocate an integrated auxiliary utility report data set, message FRD9003A is written and ABENDU0384-02C is issued. This can occur when an earlier recovery job was stopped (by /P command) or canceled (by /CANCEL command) by a z/OS operator, or when the RPTRET=Y option is set on the REPORT control card. To minimize this possibility, set RPTRET=N so that RAUX termination logic deletes the integrated auxiliary utility report data sets. RAUX termination logic is not driven when the job is stopped or canceled. In this event, it is advisable to delete all integrated auxiliary utility report data sets named with the pattern &DRFHILEV.FRXXXX*.T* before running the next recovery job. Furthermore, if RPTRET=N is set, IMS Database Recovery Facility deletes during initialization any utility report data sets left from prior executions that would otherwise cause allocation errors due to duplicate DSNs.
Part 6. Reference: Base Primitive Environment (BPE)

The topics in this section provide you with technical references for the Base Primitive Environment (BPE):

- BPE commands
- BPE messages
- BPE service return codes
- BPE user abend codes
Chapter 20. BPE commands

IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility Base
Primitive Environment (BPE) provides a set of commands that you can use to
manage resources in the IMS Database Recovery Facility environment.

Topics:
• “Specifying BPE command parameters”
• “BPE TRACETABLE commands”

Specifying BPE command parameters

IMS Database Recovery Facility BPE commands enable you to display and update
trace table resources that IMS Database Recovery Facility BPE manages.

Some resource types are defined and owned by the IMS Database Recovery Facility
BPE itself, and are known as system resource types. Other resource types that are
defined and owned by the IMS Database Recovery Facility are known as
component resource types or user-product resource types.

The IMS Database Recovery Facility BPE commands allow you to restrict the
resource types upon which a command operates to either those owned by the IMS
Database Recovery Facility BPE, or to those owned by the IMS Database Recovery
Facility itself. This is done through the OWNER keyword on commands that
support OWNER.

• Use OWNER(BPE) to restrict the command operation to resource types that the
IMS Database Recovery Facility BPE owns and defines (system resource types).
• Use OWNER(DRF) to restrict the command operation to resource types that the
IMS Database Recovery Facility address defines and owns (component resource
types).

BPE TRACETABLE commands

The TRACETABLE resource type refers to the internal IMS Database Recovery
Facility BPE-managed trace tables that are defined either by IMS Database
Recovery Facility BPE (for example: DISP, CBS, STG, LATC), or by IMS Database
Recovery Facility.

Two command verbs operate on the TRACETABLE resource type:

DISPLAY
Display trace level and number of trace table pages of specified trace
tables.

UPDATE
Update trace level attributes of specified trace tables.

DISPLAY TRACETABLE command

You can use the DISPLAY TRACETABLE command to display the current attribute
settings for the requested trace tables.
The following diagram shows the syntax for the DISPLAY TRACETABLE
command:

```
DISPLAY | DIS
 | TRACETABLE | TRTAB
 | NAME(
 | trace_table_name
 | trace_table_name+)
 | OWNER(BPE | DRF)
```

The following list describes the parameters of DISPLAY TRACETABLE:

**DISPLAY | DIS**
A required parameter that specifies that the action against the specified
resource is to display attributes of the resource.

**TRACETABLE | TRTAB**
A required parameter that specifies that the resource type being acted upon is
a BPE-managed trace table.

**NAME(trace_table_name)**
A required parameter that specifies the name of the trace table type or types
about which you want attributes displayed. You can specify a single trace table
name or a list of trace table names separated by commas. Trace table names
can contain the wildcard characters * and ?. For example, `NAME(c*)` is
equivalent to `NAME(CMD,CBS)`. Trace table names can be IMS Database Recovery
Facility BPE-defined trace tables or IMS Database Recovery Facility-defined
trace tables.

The following IMS Database Recovery Facility BPE-defined trace table types
are available:

- **AWE** Asynchronous work element (AWE) trace table
- **CBS** Control block services trace table
- **CMD** Command trace table
- **DISP** Dispatcher trace table
- **ERR** IMS Database Recovery Facility BPE Error trace table
- **LATC** Latch trace table
- **MISC** Miscellaneous trace table that is used only by IMS Service for trap
  traces
- **SSRV** System services trace table
- **STG** Storage service trace table
- **USRX** User exit routine trace table

The following IMS Database Recovery Facility-defined trace table types are
available:

- **INIT** IMS Database Recovery Facility initialization
- **DRF** IMS Database Recovery Facility

**OWNER(BPE | DRF)**
An optional parameter that specifies the owner of the trace table type or types
about which you want attributes displayed. You can specify one of the
following values:

- **BPE** For all IMS Database Recovery Facility BPE-defined trace table types
DRF  For IMS Database Recovery Facility-defined trace table types

The OWNER parameter acts as a filter to help you select which trace tables you want to display. For example, you could specify NAME(*) OWNER(DRF) to display all of the IMS Database Recovery Facility-defined trace table types (INIT, DRF).

You could specify NAME(*) OWNER(BPE) to display all of the IMS Database Recovery Facility BPE-defined trace table types.

If OWNER is omitted, then both the IMS Database Recovery Facility BPE and the IMS Database Recovery Facility component trace tables might be displayed (depending on the tables specified on NAME).

DISPLAY TRACETABLE command output

The DISPLAY TRACETABLE command output consists of a header line, one line per selected trace table, and one message BPE0032I line that indicates that the command has completed.

The following example shows the output from the DISPLAY TRACETABLE command.

```
BPE0030I TABLE OWNER LEVEL #PAGES
BPE00000I DISP BPE HIGH 12
BPE00000I STR SMDC MEDIUM 8
BPE0032I DISPLAY TRACETABLE COMMAND COMPLETED
```

These columns are in the DISPLAY TRACETABLE output:

**TABLE**

Specifies the name of the trace table type about which information is being displayed on the current row.

**OWNER**

Specifies the IMS Database Recovery Facility component that owns the trace table (BPE or the IMS Database Recovery Facility).

**LEVEL**

Specifies the current level setting of the trace table. A trace table's level determines the volume of trace data that is collected. These levels are possible:

- **NONE**
  
  No tracing is being done into the table.

- **ERROR**
  
  Only traces for error or exception conditions are being made into the table.

- **LOW**
  
  Only major event trace entries are made into the table.

- **MEDIUM**
  
  Major event trace entries and some minor event trace entries are made into the table.

- **HIGH**
  
  All trace entries are made into the table.

- **INACTV**

  The trace table is inactive and cannot be used. This status occurs only when BPE was unable to get any storage for the trace table. No tracing will be done for the indicated table type, and you
cannot change the level for the trace table with the UPDATE TRACETABLE command. You must restart the address space in order to use the trace table again.

#PAGES
Specifies the number of 4 KB (4096 byte) pages that are allocated for the trace table type.

**UPDATE TRACETABLE command**
You can use the UPDATE TRACETABLE command to change the trace level setting for the requested trace tables.

The following diagram shows the syntax for the UPDATE TRACETABLE command:

```
UPDATE TRACETABLE NAME(trace_table_name)
```

The following list describes the parameters of UPDATE TRACETABLE:

**UPDATE | UPD**
A required parameter that specifies that the action against the trace table is to update its attributes.

**TRACETABLE | TRTAB**
A required parameter that specifies that the resource type being acted upon is an IMS Database Recovery Facility BPE-managed trace table.

**NAME(trace_table_name)**
A required parameter that specifies the name of the trace table type or types that you want to update. You can specify a single trace table name or a list of trace table names separated by commas. Trace table names can contain wildcard characters. Trace table names can be IMS Database Recovery Facility BPE-defined trace tables or IMS Database Recovery Facility-defined trace tables.

The following IMS Database Recovery Facility BPE-defined trace table types are available:

- **AWE** Asynchronous work element (AWE) trace table
- **CBS** Control block services trace table
- **CMD** Command trace table
- **DISP** Dispatcher trace table
- **ERR** IMS Database Recovery Facility BPE Error trace table
LATC  Latch trace table
MISC  Miscellaneous trace table that is used only by IMS Service for trap traces
SSRV  System services trace table
STG   Storage service trace table
USRX  User exit routine trace table

You can update IMS Database Recovery Facility-defined trace tables only for IMS Database Recovery Facility address spaces.

**OWNER(BPE | DRF)**
An optional parameter that specifies the owner of the trace table type or types that you want to update. You can specify one of the following values:

- **BPE**  For IMS Database Recovery Facility BPE-defined trace table types
- **DRF**  For IMS Database Recovery Facility-defined trace table types

The OWNER parameter acts as a filter to help you select the trace tables that you want to update. For example, you could specify NAME(*) OWNER(DRF) to update all of the IMS Database Recovery Facility-defined trace table types.

You could specify NAME(*) OWNER(BPE) to update all of the IMS Database Recovery Facility-defined trace table types.

If OWNER is omitted, then both IMS Database Recovery Facility BPE and IMS Database Recovery Facility trace tables might be updated (depending on the tables specified on NAME).

**LEVEL(level)**
An optional parameter that sets the new tracing level for the specified trace tables. If LEVEL is omitted, the level of the specified trace tables is not changed. These levels are possible:

- **NONE**  No tracing is being done into the table.
- **ERROR**  Only traces for error or exception conditions are being made into the table.
- **LOW**  Only major event trace entries are made into the table.
- **MEDIUM**  Major event trace entries and some minor event trace entries are made into the table.
- **HIGH**  All trace entries are made into the table.

**Important:** You cannot change the level for the trace table type ERR. IMS Database Recovery Facility BPE forces the level to HIGH to ensure that error diagnostics are captured. Any level that you specify for the ERR trace table is ignored.

**UPDATE TRACETABLE command output**
The UPDATE TRACETABLE command output consists of message BPE0032I, which indicates that the command has completed.

An example of the UPDATE TRACETABLE command output message is:

BPE0032I UPDATE TRACETABLE COMMAND COMPLETED
Example: UPDATE TRACETABLE command LEVEL(HIGH)

Update the level of the IMS Database Recovery Facility BPE dispatcher trace table (DISP) to HIGH.

Example command:
F DRF1,UPDATE TRACETABLE NAME(DISP) LEVEL(HIGH)

Example output:
BPE0032I UPDATE TRACETABLE COMMAND COMPLETED

Example: UPDATE TRACETABLE command LEVEL(MEDIUM)

Update the level of all the IMS Database Recovery Facility trace tables to MEDIUM.

Important: You cannot change the level for the trace table type ERR - even when using a wildcard character to select all tables with a given owner, as in the following command example. The IMS Database Recovery Facility BPE forces the level to HIGH to ensure that error diagnostics are captured.

Example command:
F DRF1,UPD TRTAB NAME(*) OWNER(DRF) LEVEL(MEDIUM)

Example output:
BPE0032I UPDATE TRACETABLE COMMAND COMPLETED
Chapter 21. BPE messages and codes

This section describes the messages and user abend codes that are issued by Base Primitive Environment (BPE) in IMS Database Recovery Facility.

Topics:
- Chapter 21, “BPE messages and codes”
- “BPE service return codes” on page 308
- “BPE user abend codes” on page 317

BPE messages

This reference section provides detailed information about messages issued by the Base Primitive Environment (BPE).

The explanations and user responses provided in this reference can help you diagnose, troubleshoot, and solve IBM IMS Recovery Solution Pack for z/OS: IMS Database Recovery Facility problems.

Base Primitive Environment message numbers use the following format:

BPEnnnx

Where:

BPE  Indicates that the message was issued by Base Primitive Environment.

nnnn  Indicates the message identification number.

x  Indicates the severity of the message:
   - A indicates that operator intervention is required before processing can continue.
   - E indicates that the job step is about to terminate abnormally.
   - I indicates that the message is for information only.
   - W indicates that the message is a warning to alert you to a possible error condition.

Message Variables
In the message text, there can be lowercase variables (for example, xxx...). The variables represent values when the message appears such as:
- Data in a data set
- A return code
- An error code

Message Documentation
In addition to message number and message text, information for each message includes the following:

Explanation:  The Explanation section explains what the message text means, why it occurred, and what its variable entry fields are (if any).
**BPE0000I • BPE0001E**

**System Action:**
The System Action section explains what the system will do next.

**User Response:**
The User Response section describes whether a response is necessary, what the appropriate response is, and how the response will effect the system or program.

**Module:**
The affected module in the code.

---

**BPE0000I**  
displayoutput

**Explanation:** Message BPE0000I is the message number associated with output generated by the DISPLAY command verb for IMS Database Recovery Facility BPE resources.

In the message text, displayoutput is output text from the display verb. Typically, when a display command is issued against a resource, the output will consist of header lines, and then one or more data lines containing information about the resources being displayed.

**System action:** None.

**User response:** None

**Module:** FRXCTRA$, FRXCURFS$

---

**BPE0001E**  
BPE INITIALIZATION ERROR IN MODULE module
details

**Explanation:** An error occurred in early IMS Database Recovery Facility BPE initialization. This is a two-line message. Each line begins with the message number.

In the message text:

- **module** The module detecting the error
- **details** A one-line explanation of the type of error that was detected
- **version** The hexadecimal invalid version number from the definition module

The details line of the BPE0001E message further explains the error detected, and can be one of the following:

- **MODULE module HAS AN INVALID VERSION NUMBER version**
  An IMS Database Recovery Facility BPE definition module had an invalid version number. IMS Database Recovery Facility BPE uses version numbers as a consistency check to ensure that the definition modules being loaded match the version of IMS Database Recovery Facility BPE that is running.

  In the message text:

- **module** The IMS Database Recovery Facility BPE definition module in which the invalid version was detected
- **version** The hexadecimal invalid version number from the definition module

- **MODULE module IS LINKED REENTRANT - IT MUST BE NON-REENTRANT**
  An IMS Database Recovery Facility BPE definition module was loaded into key zero storage. IMS Database Recovery Facility BPE definition modules are modules that contain (data control blocks), and thus must be loaded into storage that is in the same storage key in which IMS Database Recovery Facility BPE is running. The most common cause for this error message is linking a definition module as reentrant, which loads it into key zero storage. IMS Database Recovery Facility BPE definition modules should be link-edited as non-reentrant.

  In the message text:

- **module** The IMS Database Recovery Facility BPE definition module that was loaded in key zero storage

- **UNKNOWN ERROR, MODULE RC=rc**
  An internal error occurred that IMS Database Recovery Facility BPE does not recognize.

  In the message text:

- **rc** The return code from the failing module

- **ERROR LOADING MODULE module BPELOAD RC=rc**
  Load failed for a module.

  In the message text:

- **module** The name of a module that could not be loaded
- **rc** The return code from the IMS Database Recovery Facility BPE load service, BPELOAD

- **ERROR LOADING MODULES module... BPELOAD RC=rc**
  Load failed for several modules.

  In the message text:

- **module** The name of the first of several modules that could not be loaded
The return code from the IMS Database Recovery Facility BPE load service, BPENLOAD

**UNABLE TO CREATE threadtype THREAD, BPETHDCR RC=rc**

A request to create an IMS Database Recovery Facility BPE thread (internal unit of work) failed.

In the message text:

- threadtype
  - A 4-character name of the thread type that could not be created
- rc
  - The return code from the thread create service, BPETHDCR

**MODULE module IS NOT A VALID type DEFINITION MODULE**

IMS Database Recovery Facility BPE encountered an error with an internal IMS Database Recovery Facility BPE definition module. IMS Database Recovery Facility BPE uses definition modules to construct its execution environment. If a definition module is not correct, IMS Database Recovery Facility BPE cannot build the appropriate environment.

In the message text:

- module
  - The name of an IMS Database Recovery Facility BPE definition module that is in error
- type
  - The type of definition module in error

**UNABLE TO GET NECESSARY STORAGE, BPEGETM RC=rc**

IMS Database Recovery Facility BPE could not obtain the required storage.

In the message text:

- rc
  - The return code from the BPE GETMAIN service, BPEGETM

**UNABLE TO GET STORAGE FOR blocktype BLOCK, BPECBGET RC=rc**

IMS Database Recovery Facility BPE could not obtain storage for a required control block.

In the message text:

- blocktype
  - A 4-character name of an internal BPE control block that could not be obtained
- rc
  - The return code from the BPE control block get service, BPECBGET

**ERROR READING PROCLIB DATA SET, BPERDPS RC=rc**

IMS Database Recovery Facility BPE could not read a PROCLIB DD data set. This message follows message BPE0002E, which provides further details on the specific data set and member that could not be read.

In the message text:

- rc
  - The return code from the IMS Database Recovery Facility BPE partitioned data set reading service, BPERDPS

**ERROR Parsing datasettype, BPEPARSE RC=rc**

An error was detected while trying to parse a configuration data set. This message follows message BPE0003E, which provides further details on the error.

In the message text:

- datasettype
  - A description of the type of data set that was being parsed. This can be one of the following:
    - **BPE CONFIG MEMBER**: The main IMS Database Recovery Facility BPE configuration PROCLIB member specified on the BPECFG parameter of the startup JCL or procedure.
    - **component USER EXIT LIST MEMBER**: The user exit list PROCLIB member for either IMS Database Recovery Facility BPE or IMS Database Recovery Facility. This is the user exit list member specified on the EXITMBR statement in the BPE configuration PROCLIB member.
- rc
  - The return code from the IMS Database Recovery Facility BPE parsing service, BPEPARSE.

**INITIALIZATION FAILED FOR service, RC=rc**

IMS Database Recovery Facility BPE was unable to initialize an IMS Database Recovery Facility BPE system service.

In the message text:

- service
  - The name of the IMS Database Recovery Facility BPE service that failed initialization. Values for this field include:
    - **BPE RESMGR**: An error occurred when IMS Database Recovery Facility BPE tried to establish a resource manager routine to clean up global resources used by IMS Database Recovery Facility BPE. The return code in this message is the return code from the MVS RESMGR macro call that failed.
    - **USER EXITS**: An error occurred while trying to load user exit modules. This message might be preceded by other error messages that indicate the problem. The return code from the module that loads the user exits (FRDUXRF$) is in the rc field in this message.
    - **BPE SVC**: An error occurred when IMS Database Recovery Facility BPE tried to initialize the BPE SVC routine. IMS Database Recovery Facility BPE provides an internal SVC routine for use by IMS Database Recovery Facility BPE.
Database Recovery Facility BPE and IMS Database Recovery Facility components. The SVC is installed dynamically when an IMS Database Recovery Facility BPE address space is started. This error message is issued when the IMS Database Recovery Facility BPE SVC could not be installed.

If the rc field in the message is X'00000020', you are probably trying to start the address space on an MVS system that is not at the required maintenance level. The MVS system must be at least at MVS SP 4.3.0 or higher. If the MVS system is at MVS SP 5.2.0 or below, you must have MVS APARs OW13312 and OW13315 applied.

rc The return code from the lower level initialization module that encountered the error.

**INVALID CALLABLE SERVICE CODE code IN MODULE module**

IMS Database Recovery Facility BPE detected an invalid user exit callable service code in the indicated module. Both IMS Database Recovery Facility BPE and IMS Database Recovery Facility can define callable services that user exits can use. Each callable service has a callable service code used to request the service. This error indicates that there is a definition error in the specified module.

In the message text:

*code* The callable service code in error, in hexadecimal.

*module* The name of the callable service module that had the invalid callable service code defined.

**System action:** Abend U3400 with subcode 05 follows this message. The address space ends.

**User response:** If the error described in this message is caused by environmental conditions (for example, insufficient storage or modules missing from your STEPLIB data set), correct the indicated problem and restart the address space. Otherwise, save any dump and SYSLOG information, and contact IBM Software Support.

**Module:** FRXAWI0$, FRXCBI0$, FRXCMDI$, FRXDSI0$, FRXHTI0$, FRXINITS$, FRXPFCFG$, FRXRDPD$, FRXSTI0$, FRXTXI0$, FRXUXI0$, FRXXMOD$, FRXXSYS$

---

**BPE0002E  ERROR READING ddname MEMBER member details**

**Explanation:** An error occurred trying to read a partitioned data set member. This is a two-line message. Each line begins with the message number.

In the message text:

*ddname* The DD name of the data set being read

*member* The member name of the data set being read

*details* A one-line explanation of the type of error detected

The *details* line of the BPE0002E message further explains the error detected, and can be one of the following:

- **OPEN FAILED FOR DATA SET**
  The IMS Database Recovery Facility BPE PDS read service could not open the data set for reading.

- **DATA SET RECORDS ARE NOT FIXED FORMAT**
  The data set specified records that were not in fixed format. The BPE PDS read service requires fixed-format data sets.

- **MEMBER NOT FOUND IN DATA SET**
  The indicated member was not in the partitioned data set.

- **BSAM READ FAILED READING MEMBER**
  An error occurred during the reading of the data set member.

- **UNABLE TO OBTAIN SUFFICIENT STORAGE FOR MEMBER TO BE READ**
  The PDS read service could not obtain the storage necessary to read the data set member.

**System action:** The BPE PDS read service does not take any further action after issuing this message. The caller of the service might provide additional diagnostic messages or end the address space.

**User response:** Correct the error as indicated in this message.

**Module:** FRXRDPD$

---

**BPE0003E  AN ERROR OCCURRED PARSING description AT LINE line, CHARACTER char FAILING TEXT: text details**

**Explanation:** An error occurred in the IMS Database Recovery Facility BPE parsing service. This is a four-line message. Each line begins with the message number.

In the message text:

*description* A text description of what was being parsed.

*line* The line number of the data where the error occurred. For data that is not line-oriented, the line number is omitted.

*char* The position of the character on the line where the error was detected. For data that is not
line-oriented, char identifies the position of the character within the input data.

text Up to 16 characters of the text where the error was detected.

details A one-line explanation of the type of error detected.

The details line of the BPE0003E message further explains the error detected, and can be one of the following:

- **INVALID KEYWORD DETECTED**
  The parser found an unknown keyword in the input data.

- **UNKNOWN POSITIONAL PARAMETER**
  The parser found a positional parameter in the input data when one was not expected.

- **"=" ENCOUNTERED WHEN "" EXPECTED**
  The parser found an equal sign in the input data when a left parenthesis was expected.

- **EARLY END OF INPUT DATA**
  The input data ended before the parser found all the required data.

- **KEYWORD ENCOUNTERED WHEN VALUE EXPECTED**
  The input data contained a keyword when the parser expected a value.

- **NUMERIC VALUE OUTSIDE OF LEGAL RANGE**
  A numeric value was outside the allowed range for the parameter.

- **DECIMAL NUMBER CONTAINED NONDECIMAL DIGITS**
  A decimal number contained a non-decimal character.

- **HEXADECIMAL NUMBER CONTAINED NONHEX DIGITS**
  A hexadecimal number contained a non-hexadecimal character.

- **UNKNOWN KEYWORD VALUE DETECTED**
  The parser found a parameter that could be one of a set of keyword values. The parameter was not one of the values in the set.

- **DUPLICATE KEYWORD PARAMETER DETECTED**
  The parser found a nonrepeatable keyword more than once in the input data.

- **A REQUIRED PARAMETER WAS OMITTED**
  A required parameter was not found in the input data.

- **CHARACTER VALUE WAS TOO LONG FOR PARAMETER**
  The character value specified was too long for the parameter field.

**System action:** The IMS Database Recovery Facility BPE parsing service does not take any further action after issuing this message. The caller of the service can provide additional diagnostic messages or end the address space.

**User response:** Correct the error as indicated in the BPE0003E message.

**Module:** FRXPARS$

---

**BPE0004I** BPECFG= NOT SPECIFIED ON STARTUP PARMS - DEFAULTS BEING USED

**Explanation:** IMS Database Recovery Facility BPE could not find the specification for the IMS Database Recovery Facility BPE configuration data set in the startup parameters.

**System action:** The address space continues initialization. BPE runs with defaults for all parameters in the IMS Database Recovery Facility BPE configuration data set.

**User response:** If the BPE configuration parameter defaults are acceptable, no action is required. Otherwise, create a BPE configuration member in the data set pointed to by the PROCLIB DD statement and specify BPECFG=member_name in the startup parameters of the job that starts the address space.

**Module:** FRXPCFG$

---

**BPE0005I** UNKNOWN component TRACE TYPE type IN PROCLIB MEMBER member-IGNORED

**Explanation:** A TRCLEV= statement was found in the IMS Database Recovery Facility BPE configuration PROCLIB data set member for an unknown trace table type.

In the message text:

- **component** The name of the component that was specified on the TRCLEV statement (BPE or FRX) being parsed
- **type** The type of the trace table that was unknown
- **member** The member name of the PROCLIB DD data set that was being processed

**System action:** The address space initialization continues. IMS Database Recovery Facility BPE ignores the invalid trace specification.

**User response:** Correct the TRCLEV statement.

**Module:** FRXPCFG$

---

Chapter 21. BPE messages and codes 299
**BPE0006I**

Explanation: This seven-line message is printed when an abend occurs. It documents the environment at the time of abend. Each line begins with the message number.

In the message text:

- `aaaa`: The owning component of the TCB that abended (BPE or FRX).
- `bbbb`: The 4-character TCB type of the TCB that abended.
- `c`: Whether the abend is a system abend or a user abend. S is for a system abend; U is for a user abend.
- `ddddd`: The abend code. For system abends, this is a 3-character hexadecimal code. For user abends, this is a 4-character decimal code.
- `eeeeeeee`: The value in register 15 at the time of abend. For some abends, this is the abend subcode.
- `ffff`: The 4-character IMS Database Recovery Facility BPE thread (internal unit of work) name of the thread that was running when the abend occurred. If the thread type cannot be determined, this field is set to question marks (????).
- `retrystatus`: Whether or not the abend is being retried that is, whether the system is attempting to recover from the abend). If the abend is being retried, `retrystatus` is the character string "(RETRYING)". If the abend is not being retried, `retrystatus` is blank.
- `gggggggggggggggggg`: The abending module’s name from its module ID, if it can be determined.
- `hhhhhh`: The entry point address of the abending module, if it can be determined.
- `iiiiiiii iiiiiiii`: The PSW contents at the time of abend.
- `jjjjjj`: The offset within the abending module in which the abend occurred, if it can be determined.
- `kkkkkkkk kkkkkkk`: The contents of the registers at the time of abend.

**System action:** If the abend is being retried (retrystatus is “(RETRYING)" in the first line of the message), the system attempts to recover from the abend and the address space continues to function.

If the abend is not being retried, the action taken after this message depends on whether the abending TCB is considered a critical TCB to the address space. If it is not critical, the TCB is ended, but the address space continues execution. If it is critical, the address space is ended abnormally.

**User response:** Save any dump and SYSLOG information, and contact IBM Software Support.

**Module:** FRXINIT$, FRXYES$

---

**BPE0007I** FRD BEGINNING PHASE 1 OF SHUTDOWN

Explanation: IMS Database Recovery Facility BPE is beginning the first phase of shutting down the address space.

**System action:** The address space enters the first phase of ending, in which all of the IMS Database Recovery Facility TCBs are ended.

**Module:** FRXSYTR$

---

**BPE0008I** FRD BEGINNING PHASE 2 OF SHUTDOWN

Explanation: IMS Database Recovery Facility BPE is beginning the second phase of shutting down the address space.

**System action:** The address space enters the second phase of ending, in which all of the IMS Database Recovery Facility BPE system TCBs are ended.

**Module:** FRXSYTR$

---

**BPE0009I** FRD SHUTDOWN COMPLETE

Explanation: Shutdown of the address space completed. IMS Database Recovery Facility BPE is returning to MVS.

**System action:** The address space ends normally.

**Module:** FRXSYTR$

---

**BPE0010I** PSW AND REGISTERS AT ABEND ARE NOT AVAILABLE

Explanation: An abend occurred and the IMS Database Recovery Facility BPE system ESTAE routine received control with no SDWA available. The ESTAE is unable to provide diagnostic information normally obtained from the SDWA, such as PSW and register contents at abend.

**System action:** BPE continues to process the abend
with limited capability because of the lack of the SDWA.

**Module:** FRXSYES$

---

**BPE0011E**  ABEND IN BPE SYSTEM ESTAE ROUTINE (FRDSYES$)

**Explanation:** An abend occurred in the IMS Database Recovery Facility BPE system ESTAE module itself while it was processing a prior abend.

**System action:** This message should be followed by an MVS symptom dump on the MVS console. Additionally, a SYS1.LOGREC entry is generated for the abend. The IMS Database Recovery Facility BPE ESTAE module attempts to recover from the abend and continues processing the original abend.

**Module:** FRXSYES$

---

**BPE0012E**  BPE ETXR UNABLE TO FIND block FOR TCB AT address

**Explanation:** The IMS Database Recovery Facility BPE end of task exit routine (ETXR) was called when a TCB in the address space ended. The routine tried to process ending of the task, but was not able to locate a required IMS Database Recovery Facility BPE control block. This is probably caused by internal control block errors or overlays within the address space.

In the message text:
- block  The name of the IMS Database Recovery Facility BPE control block that could not be found
- address  The address of the ending TCB

**System action:** IMS Database Recovery Facility BPE attempts to clean up the TCB. However, without the required control blocks, the cleanup might not be successful, and other TCBS in the address space might not end.

**User response:** If the address space appears hung (is not processing or does not end), cancel the address space with a dump, and contact IBM Software Support.

**Module:** FRXSYET$

---

**BPE0013E**  VERSION MISMATCH BETWEEN BPE AND FRD
BPE MODULE VERSION IS bver.brel.bptrel
FRD WAS ASSEMBLED AT BPE VERSION pver.prel.pptrel

**Explanation:** The IMS Database Recovery Facility BPE version on which IMS Database Recovery Facility was built does not match the version of the IMS Database Recovery Facility BPE modules that were loaded.

This can occur, for example, if IMS Database Recovery Facility was assembled at one IMS Database Recovery Facility BPE version and the your STEPLIB data set contained IMS Database Recovery Facility BPE modules at a different IMS Database Recovery Facility BPE level.

This is a three-line message. Each line begins with the message number.

In the message text:
- bver  The version number of IMS Database Recovery Facility BPE modules
- brel  The release number of IMS Database Recovery Facility BPE modules
- bptrel  The point-release number of IMS Database Recovery Facility BPE modules
- pver  The version number of IMS Database Recovery Facility BPE macros at which IMS Database Recovery Facility was assembled
- prel  The release number of IMS Database Recovery Facility BPE macros at which IMS Database Recovery Facility was assembled
- pptrel  The point-release number of IMS Database Recovery Facility BPE macros at which IMS Database Recovery Facility was assembled

**System action:** IMS Database Recovery Facility BPE abends during early initialization with abend U3400, subcode X'09'.

**User response:** This problem is probably caused by a mismatch with your STEPLIB data set. Ensure that IMS Database Recovery Facility is using the correct version of the your STEPLIB data set.

**Module:** FRXINIT$

---

**BPE0014E**  ABEND IN RECOVERY ROUTINE

**Explanation:** An IMS Database Recovery Facility BPE recovery routine (BRR) that was intended to provide recovery for abends in a section of code itself encountered an abend. (A BRR is an internal recovery routine established by either IMS Database Recovery Facility BPE or IMS Database Recovery Facility to protect a functional area. BRRs run in an MVS ESTAE environment and attempt to recover from abends that occur in mainline code.)

**System action:** The BPE ESTAE routine treats this abend as if the recovery routine indicated that it could not recover, and continues abend processing. Usually, this results in the abnormal end of the address space; however, if there were other BRRs established when the abend occurred, recovery of the original abend still might occur.

**User response:** Save any dump and SYSLOG information, and contact IBM Software Support.

**Module:** FRXSYES$
BPE0015I UNKNOWN component EXIT TYPE type IN EXIT LIST PROCLIB MEMBER - IGNORED

Explanation: While processing a user exit list PROCLIB member, IMS Database Recovery Facility BPE encountered an EXITDEF statement that specified a user exit type that was not defined to IMS Database Recovery Facility BPE. The exit definition for the indicated type is ignored.

In the message text:

**component**  
The name of the owning component of the user exit list member that was being processed (for example, BPE or FRX)

**type**  
The up-to-8 character exit type name that was undefined

**member**  
The user exit list PROCLIB member name

**System action:** The user exit definition is ignored. Processing of the user exit list PROCLIB member continues.

**User response:** Examine the indicated user exit list PROCLIB member and correct the EXITDEF statement for the indicated user exit type.

**Module:** FRXUXRF$  

BPE0016I ERROR LOADING component type module (service RC=rc)

Explanation: While processing a PROCLIB member for a user exit list, IMS Database Recovery Facility BPE was unable to load a user exit that was specified on an EXITDEF statement.

In the message text:

**component**  
The name of the owning component of the user exit list member that was being processed (for example, BPE or FRX).

**type**  
The up-to-8 character exit type name of the exit that could not be loaded.

**module**  
The load module name of the exit that could not be loaded.

**service**  
The name of the failing service that prevented the exit from being loaded. The most likely failing service is BLDL, which is the MVS service that IMS Database Recovery Facility BPE uses to locate the user exit module to load. This usually means that BLDL could not find the indicated exit module in the STEPLIB or JOBLIB data set for the job.

**rc**  
The 4-digit hexadecimal return code from the failing service.

**System action:** The user exit module is ignored.

Processing of the PROCLIB member continues. If this error occurs in the initial PROCLIB member processing during early address space initialization, IMS Database Recovery Facility BPE abends with abend U3400, subcode 5. If this error occurs during REFRESH USEREXIT command processing, the command is ignored, and no changes are made to the user exit environment.

**User response:** Examine the indicated PROCLIB member for the user exit list and correct the EXITDEF statement for the indicated user exit type and module. If the BPE0016I message was issued during address space initialization, restart the address space. If the message was issued in response to a REFRESH USEREXIT command, reissue the command.

**Module:** FRXUXRF$

BPE0017I MULTIPLE type STATEMENTS IN member PROCLIB MEMBER - LAST WILL BE USED

Explanation: While processing a PROCLIB member, BPE encountered multiple statements of a specific type when only one was expected. BPE uses the last statement of the duplicated type; the others are ignored.

In the message text:

**type**  
A short description of the type of statement that was duplicated

**member**  
The PROCLIB member name

**System action:**  
Processing continues.

**User response:**  
No response is required. However, you might want to examine the indicated PROCLIB member to ensure that the values specified on the final statement are correct.

**Module:**  
FRXTRI0$, FRXUXRF$

BPE0018I DUPLICATE EXIT module SPECIFIED FOR component type EXIT - IGNORED

Explanation: While processing a PROCLIB member for a user exit list, IMS Database Recovery Facility BPE found the same user exit module specified more than once in a single exit list (EXITS parameter) on an EXITDEF statement. Only the first instance of the module is in effect; all subsequent specifications of the module are ignored.

In the message text:

**module**  
The name of the user exit module that was specified more than once

**component**  
The name of the owning component of the user exit list member that was being processed (BPE or FRX)
**BPE0019E**  
**component type USER EXIT MODULE**  
**module ABEND code**

**Explanation:** An abend occurred while a user exit module was in control. “In control” means that IMS Database Recovery Facility BPE gave control to the exit. However, the abend does not have to be in the exit module itself. This message is also issued if the exit called another module, which then abended.

In the message text:

- **component** The name of the owning component of the user exit type being called (BPE or IMS Database Recovery Facility).
- **type** The up-to-8 character exit type name of the exit that abended.
- **module** The load module name of the exit that abended.
- **code** The abend code. For system abends, the format of code is Sxxx, where xxx is the 3-digit abend code in hexadecimal. For user abends, the format of code is Udddd, where dddd is the 4-digit abend code in decimal.

**System action:** IMS Database Recovery Facility BPE protects all user exits with a recovery routine. When a user exit abends, IMS Database Recovery Facility BPE attempts to recover from the abend and continue processing. Recovery actions include the following:

- The first time a specific user exit module abends after it is loaded, IMS Database Recovery Facility BPE issues an SDUMP to dump the address space for the abend. For abends after the first abend, BPE does not dump the address space again; however, it does generate a SYS1.LOGREC entry for each abend occurrence.
- If the number of abends for a specific user exit module reaches or exceeds the abend limit value for the exit’s user exit type, no further calls are made to the exit until it is refreshed. The abend limit for an exit type is specified by the ABLIM parameter on the EXITDEF statement.

**User response:** Examine the SDUMP, the SYS1.LOGREC entries, or both to determine the problem with the user exit. Correct the problem with the exit, relink the exit to the job’s libraries, and issue the REFRESH USEREXIT command. The REFRESH USEREXIT command loads a copy of the corrected exit and causes IMS Database Recovery Facility BPE to resume calling the exit module whenever exits of its type are invoked.

**Module:** FRXUXRF$  

**BPE0020I**  
**ABEND LIMIT REACHED FOR component type USER EXIT MODULE**  
**module**

**Explanation:** The indicated user exit module reached the abend limit for the exit type as specified in the ABLIM parameter on the EXITDEF statement.

In the message text:

- **component** The name of the owning component of the user exit type being called (BPE or FRX).
- **type** The up-to-8 character exit type name of the exit that abended.
- **module** The load module name of the exit that abended.

**System action:** No further calls are made to the indicated user exit module until the next refresh of the exit. Refreshing the user exit resets the abend count for the exit to zero, allowing it to be called again.

**User response:** Examine the SDUMP, the SYS1.LOGREC entries, or both to determine the problem with the user exit. Correct the problem with the exit, relink the exit to the job’s libraries, and issue the REFRESH USEREXIT command. The REFRESH USEREXIT command loads a copy of the corrected exit and causes BPE to resume calling the exit module whenever exits of its type are invoked.

**Module:** FRXUXCL$  

**BPE0021E**  
**ABEND code IN BPE SVC INIT MODULE FRXSVCI$, PSW=psw1 psw2**

**Explanation:** An abend occurred while module FRXSVCI$ was in control. Module FRXSVCI$ is the module that initializes the IMS Database Recovery Facility BPE SVC routine (an internal SVC used by BPE and IMS Database Recovery Facility). FRXSVCI$ processing is protected by an internal ESTAE, which attempts to retry from the abend and clean up any global resources (common storage, MVS Enqueues) that FRXSVCI$ obtained. Message BPE0021E is issued to alert the operator that an abend occurred.

**Module:** FRXUXCL$
In the message text:

**code**
The abend code. For system abends, the format of code is Sxxx, where xxx is the 3-digit abend code in hexadecimal. For user abends, the format of code is Udddd, where dddd is the 4-digit abend code in decimal.

**psw1**
The first word of the PSW at abend.

**psw2**
The second word of the PSW at abend.

**System action:** IMS Database Recovery Facility BPE collects diagnostic data about the abend, and then resumes execution in a cleanup routine within FRXSVC0$. This routine attempts to release any global resources that FRXSVC0$ obtained as a part of its processing. The routine returns to the FRXSVC0$’s caller, which can choose to continue processing or to end abnormally.

The first time that FRXSVC0$ abends, its ESTAE takes an SDUMP of the address space, and causes a record to be written to the SYS1.LOGREC data set to document the abend. If FRDVC0$ abends a second time or more, its ESTAE does not take another SDUMP. However, it writes a record to SYS1.LOGREC.

**User response:** Save any dump, SYSLOG, and SYS1.LOGREC information and contact the IBM Software Support.

**Module:** FRXSVC0$

---

**BPE0022E**

**ABEND code IN BPE SVC PROCESSING, PSw=psw1 psw2**

**Explanation:** An abend occurred during BPE SVC processing. The IMS Database Recovery Facility BPE SVC module (FRXSVC0$) establishes an ESTAE to protect its processing. This ESTAE attempts to retry from the abend and clean up any global resources (common storage, MVS ENQs) that FRXSVC0$ obtained. Message BPE0022E is issued to alert the operator that an abend occurred.

In the message text:

**code**
The abend code. For system abends, the format of code is Sxxx, where xxx is the 3-digit abend code in hexadecimal. For user abends, the format of code is Udddd, where dddd is the 4-digit abend code in decimal.

**psw1**
The first word of the PSW at abend.

**psw2**
The second word of the PSW at abend.

**System action:** IMS Database Recovery Facility BPE collects diagnostic data about the abend, and then resumes execution in a cleanup routine within FRXSVC0$. This routine attempts to release any global resources that FRXSVC0$ obtained as a part of its processing, and returns to the caller of FRXSVC0$, which can choose to continue processing or to end abnormally.

The first time that FRXSVC0$ abends, its ESTAE takes an SDUMP of the address space, and causes a record to be written to the SYS1.LOGREC data set to document the abend. If FRXSVC0$ abends a second time or more for the same SVC call, its ESTAE does not take another SDUMP. However, it writes a record to SYS1.LOGREC.

**User response:** Save any dump, SYSLOG, and SYS1.LOGREC information and contact the IBM Software Support.

**Module:** FRXSVC0$

---

**BPE0023I**

**command COMMAND REJECTED**

**Explanation:** A command was issued, but could not be processed. The command is rejected.

This message might not be issued when a command is rejected. IMS Database Recovery Facility might choose to issue its own message rejecting the command, and might request that IMS Database Recovery Facility BPE not issue the BPE0023I message.

In the message text:

**command**
The command that was rejected. If the command that was entered was the MVS stop command (P jobname), then MVS STOP displays as the command. For all other commands, the command verb and resource type are displayed (for example, UPDATE TRACETABLE or REFRESH USEREXIT).

**System action:** The command is not processed.

**Module:** FRXMOD0$, FRXCMD1$

---

**BPE0024E**

**command COMMAND FAILED**

**Explanation:** The processing for a command failed.

This message might not be issued when a command fails. IMS Database Recovery Facility might choose to issue its own message about a command failure, and might request that IMS Database Recovery Facility BPE not issue the BPE0024E message.

In the message text:

**command**
The command that failed. If the command that was entered was the MVS stop command (P jobname), then MVS STOP displays as the command. For all other commands, the command verb and resource type are displayed (for example, UPDATE TRACETABLE or REFRESH USEREXIT).

**System action:** The command failed.

**Module:** FRXMOD0$, FRXCMD1$
BPE0025I  STOP OF FRD IS IN PROGRESS

Explanation: An MVS STOP command was issued for IMS Database Recovery Facility. IMS Database Recovery Facility BPE is processing the stop request.

System action: IMS Database Recovery Facility BPE initiates a shutdown of the address space.

Module: FRXMOD0$  

BPE0026E CLEANUP FAILURE RC=rc RSN=rsn component

Explanation: An error occurred during IMS Database Recovery Facility BPE resource cleanup processing. Some resources might not be properly cleaned up.

IMS Database Recovery Facility BPE establishes a resource manager routine to clean up global resources when an address space using IMS Database Recovery Facility BPE services ends. If the resource manager cannot clean up a particular resource, it issues a BPE0026E message.

In the message text:

rc The return code, if applicable, from the failing service. This code might help to identify the cause of the failure.

rsn The reason code, if applicable, from the failing service.

component A short text string that identifies the component or resource that could not be cleaned up. Possible components are:

• BPESVC: Cleanup failed for the IMS Database Recovery Facility BPE SVC service. The return code and reason code in the message are from the IMS Database Recovery Facility BPE SVC EOMCLEANUP function. This error indicates that some of the SVC functions registered by the ending address space might not have been properly deregistered.

• ALESERV: A call to the MVS ALESERV service to obtain the current address space’s STOKEN failed. The return code in the message is the return code from the ALESERV macro; the reason code is always zero.

System action: IMS Database Recovery Facility BPE resource cleanup processing continues with the next resource, and the address space ends.

User response: Depending on the cause of the cleanup failure, IMS Database Recovery Facility BPE might have taken an SDUMP. If this is the case, save the dump, SYSLOG, and SYS1.LOGREC information and contact IBM Software Support. If IMS Database Recovery Facility BPE did not take an SDUMP, obtain the return code, reason code, and component from the BPE0026E message and contact IBM Software Support with this information.

Module: FRXRSMD$  

BPE0027E ABEND code IN BPE RESMGR PROCESSING, PSW=psw1 psw2

Explanation: An abend occurred during BPE resource manager processing while ending an address space running with IMS Database Recovery Facility BPE services. The IMS Database Recovery Facility BPE resource manager module (FRXRSMD$) establishes an ESTAE to protect its processing. This ESTAE attempts to retry from the abend and to continue cleaning up global resources. Message BPE0027E is issued to alert the operator that an abend occurred.

In the message text:

code The abend code. For system abends, the format of code is Sxxx, where xxx is the 3-digit abend code in hexadecimal. For user abends, the format of code is Udddd, where dddd is the 4-digit abend code in decimal.

psw1 The first word of the PSW at abend.

psw2 The second word of the PSW at abend.

System action: IMS Database Recovery Facility BPE collects diagnostic data about the abend, and then resumes execution in the main FRXRSMD$ routine, which attempts to continue cleanup with the next resource after the one that was being processed when the abend occurred.

The first time that FRXRSMD$ abends, its ESTAE takes an SDUMP of the address space, and causes a record to be written to the SYS1.LOGREC data set to document the abend. If FRXRSMD$ abends a second time or more, its ESTAE does not take another SDUMP. However, it writes a record to SYS1.LOGREC.

User response: Save any dump, SYSLOG, and SYS1.LOGREC information and contact IBM Software Support.

Module: FRXRSMD$  

BPE0028I  SDUMP FAILED FOR abend ABEND, RC=rc RSN=rsn

Explanation: IMS Database Recovery Facility BPE issued an SDUMP call to MVS to produce a dump of the address space after an abend, but the SDUMP was not successful.

In the message text:

abend The abend code for which the dump was taken. For system abends, the format of code is Sxxx, where xxx is the 3-digit abend code in hexadecimal. For user abends, the format of code is Udddd, where dddd is the 4-digit abend code in decimal.
The return code from the MVS SDUMP macro.

**rsn**  The reason code from the MVS SDUMP macro.

**System action:** The SDUMP is skipped.

**User response:** Use the return and reason codes from the MVS SDUMP macro to determine the cause of the SDUMP failure. These return and reason codes are documented in *z/OS MVS Programming: Authorized Assembler Services Reference, Volume 3 (LLACOPY-SDUMPX)*. If appropriate, correct the cause of the failure so that future dumps are not lost.

**Module:**
FRXINIT$, FRXRSM0$, FRXSVC1$, FRXSVC0$, FRXSYES$

---

**BPE0029I DAE SUPPRESSED DUMP FOR **

**abend ABEND**

**Explanation:** IMS Database Recovery Facility BPE issued an SDUMP call to MVS to produce a dump of the address space after an abend, but the SDUMP was suppressed by MVS dump analysis and elimination (DAE).

IMS Database Recovery Facility BPE recovery routines gather symptom string data related to an abend, and provide this data to MVS when an SDUMP is requested. If DAE is enabled, MVS will suppress duplicate dumps, for example, dumps that have symptom strings identical to previously captured dumps. DAE is controlled through the MVS ADYSETxx PARMLIB member and the MVS SET DAE command. For details on specifying DAE options, see *z/OS MVS Initialization and Tuning Reference*.

In the message text:

**abend**  The abend code for which the dump was taken. For system abends, the format of code is Sxxx, where xxx is the 3-digit abend code in hexadecimal. For user abends, the format of code is Udddd, where dddd is the 4-digit abend code in decimal.

**System action:** The SDUMP is skipped. Note that a BPE-generated dump will be suppressed if its symptom string matches a previous dump, and if the current DAE setting in ADYSETxx is either SUPPRESS OR SUPPRESSALL.

**User response:** None.

**Module:**
FRXINIT$, FRXRSM0$, FRXSVC1$, FRXSVC0$, FRXSYES$

---

**BPE0030I displayheader**

**Explanation:** Message BPE0030I is the message number associated with the header line or lines generated by the DISPLAY command verb for IMS Database Recovery Facility BPE resources.

In the message text, *displayheader* is one or more lines of header information associated with the output from a DISPLAY command.

**Module:** FRXCTRA$, FRXCURF$

---

**BPE0031E verb COMMAND IS INVALID**

**verb resourcetype COMMAND IS INVALID**

**Explanation:** A command was issued that BPE did not recognize. Even if you entered a valid command verb, this message might be generated if you omitted a required resource type or specified a resource type to which the verb does not apply. For example, if you entered:

```
DISPLAY NAME(DISP)
```

You would receive the error message:

```
BPE0031E DISPLAY COMMAND IS INVALID
```

This error occurs because the DISPLAY command requires a resource type on which it is to operate. Similarly, if you entered:

```
REFRESH TRACETABLE NAME(AWE)
```

You would receive the error message:

```
BPE0031E REFRESH TRACETABLE COMMAND IS INVALID
```

This error occurs because the REFRESH command applies to the USEREXIT resource type, not the TRACETABLE resource type.

In the message text:

**verb**  Is the command verb from the command that was issued.

**resourcetype**  Is the resource type from the command that was issued, if present.

**System action:** The command is ignored.

**User response:** Reenter the command with the correct verb, or verb and resource type.

**Module:** FRXCMD0$, FRXCMD1$

---

**BPE0032I verb COMMAND COMPLETED**

**verb resourcetype COMMAND COMPLETED**

**Explanation:** A command completed processing. This message is issued in two cases:

---
For commands that generate a variable number of lines of output, such as DISPLAY commands. Message BPE0032I is issued to indicate the end of the command output.

• For commands that generate no other messages. Message BPE0032I is issued to provide feedback that command processing is complete.

Message BPE0032I will not be issued when a command generates a fixed number of lines of output, such as a single response line or error message line.

In the message text:

verb Is the command verb from the command that was issued.

resourcetype Is the resource type from the command that was issued, if present.

System action: None.

User response: None.

Module: FRXCMD1$  

BPE0033E  MISSING COMMAND VERB

Explanation: A command was entered that is missing a command verb, which is the first word of the command string. You receive this message only if you enter a command that consists of only keyword(value) parameters. For example, if you enter NAME(DISp) OWNER(BPE), the BPE0033E message is issued. This command does not contain a non-keyword parameter to act as the command verb.

System action: The command is ignored.

User response: Reenter the command with the proper command verb.

Module: FRXCMD0$  

BPE0034E  NO MATCH FOUND FOR resource
type WITH NAME "name"

Explanation: A name or wild card pattern on the NAME parameter of a command did not match any instances of the requested resource type. For example, the command:

DISPLAY TRACETABLE NAME(zzzz,qq*)

generates a response similar to the following:

NO MATCH FOUND FOR TRACETABLE WITH NAME "zzzz"
NO MATCH FOUND FOR TRACETABLE WITH NAME "qq*"

In the message text:

resourcetype Is the resource type specified in the command.

name Is the name or wild card pattern specified on the NAME parameter that did not match any instance of the resource type.

System action: If some of the names listed on the NAME parameter of the command matched existing resource instances, the command processes against those instances. If none of the names listed on the NAME parameter matched existing resource instances, the command is ignored.

User response: Reenter the command with the proper resource type names.

Module: FRXCTRA$, FRXCURFS  

BPE0035E  INVALID VALUE "value" FOR KEYWORD keyword

Explanation: The value specified on the indicated keyword was not valid. For example, the command:

UPDATE TRACETABLE NAME(DISp) OWNER(ABCD) LEVEL(GROUND)

generates a response similar to the following:

INVALID VALUE "ABCD" FOR KEYWORD OWNER
INVALID VALUE "GROUND" FOR KEYWORD LEVEL

In the message text:

value The keyword parameter value that is in error.

keyword The keyword whose value is in error.

System action: The command is ignored.

User response: Reenter the command with the proper value on the indicated keyword.

Module: FRXCTRA$, FRXCURFS  

BPE0036E  INTERNAL COMMAND PROCESSING ERROR, service RC=rc

Explanation: An internal error in IMS Database Recovery Facility BPE occurred while processing the command. For details on the failure see the service return code, as indicated by service and rc, in IMS Database Recovery Facility Service Return Codes.

In the message text:

service Is the name of the failing service that prevented the command from processing.

rc Is the return code from the failing service call.

System action: The command is ignored.

User response: Some internal errors that result in message BPE0036E could be due to temporary conditions, such as a temporary lack of storage. Other errors indicate possible logic errors within product code. Reenter the command and see if the error reoccurs. If it does, issue a console dump of the address space immediately after entering the command and contact IBM Software Support. To ensure that trace
information necessary to the resolution of the problem is available, you can turn on the following IMS Database Recovery Facility BPE traces at LEVEL(HIGH): CMD, SSRV, STG, DISP.

**Module:** FRXCMD08, FRXCMD1$, FRXCTRAS$, FRXCURF$

---

**BPE0038E**  
**BPE STACK MANAGER INTERNAL ERROR**

**Explanation:** The IMS Database Recovery Facility BPE stack storage manager was unable to obtain storage for a new stack block.

**System action:** The IMS Database Recovery Facility BPE stack storage manager will issue an SDUMP the first time this condition arises to gather diagnostic data about the problem. The stack manager then waits the caller until a stack block is eventually freed by another thread.

**User response:** This message is issued when storage is not available to satisfy an internal request for stack storage within the IMS Database Recovery Facility address space. IMS Database Recovery Facility BPE will suspend the unit of work that is requesting additional stack storage until such storage becomes available. However, this suspension could lead to reduced function and performance in IMS Database Recovery Facility. You should increase the available region size for the IMS Database Recovery Facility address space and shut it down and restart it as soon as possible. If you continue to get this message, save the SDUMP produced by IMS Database Recovery Facility BPE and contact IBM Software Support.

**Module:** FRXSTKM$

---

**BPE0039E**  
**BPE STACK MANAGER MULTIPLE INTERNAL ERRORS**

**Explanation:** The IMS Database Recovery Facility BPE stack storage manager encountered multiple cases where it could not obtain storage for a new stack block.

**System action:** The IMS Database Recovery Facility BPE stack storage manager will issue BPE0038E the first time it is not able to get a new stack block when one is needed. Subsequent failures do not generate additional BPE0038E messages. However, if the stack manager repeatedly cannot get storage, it will eventually issue message BPE0039E, indicating that the storage problem is likely a chronic one, and that action should be taken quickly to resolve the storage shortage. In addition to issuing the BPE0039E message, IMS Database Recovery Facility BPE will also take a second SDUMP after the repeated failures to capture additional diagnostics.

**User response:** This message is issued by the IMS Database Recovery Facility BPE stack manager after repeated failures to obtain storage. It is unlikely that the address space will function well at this point. You should increase the available region size for the address space and immediately shut it down and restart it. If you continue to get this message, save the SDUMP produced by IMS Database Recovery Facility BPE and contact IBM Software Support.

**Module:** FRXSTKM$

---

**BPE0041E**  
**UNABLE TO ALLOCATE REQUESTED STORAGE**

**Explanation:** The IMS Database Recovery Facility BPE storage allocation service, BPEGETM, could not allocate storage requested by its caller. This message will only be issued the first time that BPEGETM could not obtain storage.

**System action:** BPEGETM will return an error return code to its caller.

**User response:** It is possible that the storage shortage which lead to the BPE0041E message is simply due to the region size for the address space being set too small. Increase the region size by changing the REGION= parameter on the address space JCL, and restart the address space.

If the problem persists, save any dumps and contact IBM Software Support. If no dumps were produced for this problem, you should take a console dump of the address space that is getting the BPE0041E message.

**Module:** FRXSTG0$

---

**BPE service return codes**

This reference section provides detailed information about service return codes issued by Base Primitive Environment (BPE). Use this information to help you with troubleshooting.

<table>
<thead>
<tr>
<th>BPEATTCH</th>
<th>Routing code: Attach a TCB (thread control block).</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Return Code</strong></td>
<td><strong>Explanation</strong></td>
</tr>
<tr>
<td>X'00000004'</td>
<td>The TCB index passed to the BPEATTCH program was not a valid index.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>There is no TCB type of the requested type defined to BPE.</td>
</tr>
</tbody>
</table>
X'0000000C'
A new TCB of the indicated type could not be attached because there were no available entries for it in the BPE TCB table. The maximum number of TCBs of this type is already attached.

X'00000010'
The MVS ATTACH for the new TCB failed.

X'00000014'
The caller is a non-thread running under the parent TCB of the TCB that was requested to be attached. This is not a valid environment for the BPEATTCH call.

X'00000020'
Internal processing error: The enqueue of an AWE (asynchronous work element) to the TCB attach processor for the requested TCB type failed.

X'00000024'
Internal processing error: The BPEWAIT for a response from the TCB attach processor for the requested TCB failed.

X'00000028'
Internal processing error: The routine called by BPEATTCH enqueued an AWE to the TCB attach processor for the requested TCB; however, the DDB address it saved in the AWE was invalid, and the attach processor rejected the attach request.

X'0000002C'
Internal processing error: BPEATTCH was unable to obtain a DQCB (dispatcher queue control block) for the new TCB -- the BPECBGET call for the DQCB failed.

X'00000030'
The requested function is not present in the BPE system at run time. This is likely due to a macro or module mismatch.

X'000000FC'
The parameter list version generated by the macro is not supported by the called service routine. This is probably due to a macro or module mismatch.

---

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000004'</td>
<td>The CREATE request for an AWE server was successful for at least one, but not all of the requested AWE servers.</td>
</tr>
<tr>
<td>X'00000008'</td>
<td>Unable to create a thread for an AWE server. The Thread CREATE service, BPETHDCR, failed.</td>
</tr>
<tr>
<td>X'00000010'</td>
<td>Unable to obtain an AQSB (asynchronous queue server block) for an AWE server being created.</td>
</tr>
<tr>
<td>X'00000014'</td>
<td>The BPE TCB token that was passed on the TCBTKN parameter for an AWE server CREATE request was not a valid token.</td>
</tr>
<tr>
<td>X'00000020'</td>
<td>The AQHE (asynchronous queue handler element) passed to create routine was not a valid AQHE. This is likely an internal processing error.</td>
</tr>
<tr>
<td>X'00000024'</td>
<td>BPEAWSRV could not determine the TCB under which it should create the server. The TCB is determined by the value of TCBTKN on this macro, or by the value of the TCBTYPE on the BPEAWDEF macro when the queue server is defined. If neither of these parameters are coded, then the server create function does not know under what TCB to create the server thread.</td>
</tr>
<tr>
<td>X'00000028'</td>
<td>If AWEIDX was specified, the value passed was not a valid AWE server index. If TYPE was specified, the type indicated was not a valid AWE server type according to the AWE server definition module. For BPE AWE servers, macro BPEAWIX and module FRXAQHTS are probably out of sync. For user-product AWE servers, the user-product type definition macro and module are probably out of sync.</td>
</tr>
<tr>
<td>X'0000002C'</td>
<td>The NUMTHDS parameter specified an invalid number of threads. It must specify a number from 1 to 255.</td>
</tr>
<tr>
<td>X'000000FC'</td>
<td>The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.</td>
</tr>
</tbody>
</table>
The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

**BPEBPCRE**

Routing code: Create a buffer pool.

**Return Code**

**Explanation**

X'00000004'

The value specified on the INCREMENT parameter was zero or negative.

X'00000008'

The value specified on the MINBUF parameter was zero or negative.

X'0000000C'

The value specified on the MAXBUF parameter was less than the MINBUF value.

X'00000010'

The value specified on the PRIMARY parameter was negative.

X'00000014'

The value specified on the UPPERLIMIT parameter was less than the PRIMARY or MAXIMUM values.

X'00000018'

The subpool specified on SP was invalid or unsupported.

X'0000001C'

The buffer format specified on the FORMAT parameter is an invalid format for the current version of the buffer create service.

X'00000020'

Either the pointer to the 4-character buffer pool type string was zero, or the string was all blanks or all nulls.

X'00000024'

A buffer pool of the type specified on the TYPE parameter has already been created. The token of the already-existing pool is returned in the location indicated by the TOKEN parameter.

X'00000040'

A BPEGETM call failed for control block storage for the new buffer pool.

X'00000044'

A BPEGETM call failed for the primary allocation of buffer storage.

X'00000048'

BPELOAD failed for one or more of the BPE buffer manager service modules for the requested pool format.

X'0000004C'

A BPELAGET call failed when trying to get the buffer pool create or destroy latch.

X'00000050'

An abend occurred in buffer pool create processing. The buffer pool was not created.

X'000000F8'

The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

X'000000FC'

The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

**BPEBPGET**

Routing code: Get a buffer from a buffer pool.

**Return Code**

**Explanation**

X'00000004'

No buffer could be obtained because the pool is at its upper limit.

X'00000008'

No buffer could be obtained because a BPEGETM call for buffer storage failed.

X'00000020'

The value specified on the SIZE parameter was zero or negative.

X'00000024'

A nonzero value was specified on the PREFIX parameter, but the buffer pool was not created with FORMAT=PREFIX.

X'00000028'

The address of the word to receive the returned buffer address (BUFFERPTR) was not valid (it was in the first 4K of storage).

X'00000030'

The token passed to BPEBPGET was not a valid token for any BPE-managed buffer pool.

X'000000F8'

The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

X'000000FC'

The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.
BPECBGET

Routing code: Get a control block.

Return Code Explanation
X'00000004' A bad CBTE address was passed to the CB get routine. The get routine validates that the CBTE address it is passed has the character string "CBTE" as the first word of the block. If it does not, this return code is passed back to the caller. This is likely an internal systems error of some kind.

X'00000008' Storage was unavailable to satisfy the request.

X'0000000C' The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

BPECMSRV

Routing code: Submit a command for processing.

Return Code Explanation
X'00000020' The command was rejected by the command action routine and was not processed.

X'00000024' The command failed.

X'00000028' Unknown command.

X'00000040' Missing command verb.

X'00000044' Bad command length. The length of the command passed to BPECMSRV was zero.

X'00000048' Bad BPEWPRNT exit parameter list length. The length of an exit parameter list passed to BPECMSRV was a zero or negative value.

X'0000004C' The BPECMSRV caller was not running as a BPE thread.

X'00000060' BPE was unable to obtain the necessary working storage to process the command.

X'00000064' BPE was unable to create a new thread to process the command.

X'00000068' BPE could not process the command because a BPEPOST call to start the command processing thread failed.

X'0000006C' BPE could not process the command because a BPELAGET call for a latch to serialize the command failed.

X'00000070' The command action module that processed the command returned an undefined return code to BPE. The result of the command processing is not known.

X'00000074' The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

X'00000078' The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

BPEGETM

Routing code: GETMAIN storage.

Return Code Explanation
X'00000004' An invalid or unsupported subpool was specified.

X'00000008' A zero or negative value length was requested.

X'00000010' Unable to obtain the requested 31-bit storage. The caller requested 31-bit storage, but only 24-bit storage was available.

X'00000028' Unable to obtain the requested storage (MVS GETMAIN failed).

X'0000002C' The parameter list version generated by the
BPELAGET • BPELOAD

macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

---

**BPELAGET**

**Routing code:** Get a latch.

**Return Code**

**Explanation**

X'00000004'

The latch was not obtained because it was owned in exclusive mode by another caller (WAIT=YES only).

X'00000008'

The latch was not obtained because it was owned in shared mode by one or more callers (WAIT=NO only).

X'0000000C'

A request for a latch in shared mode was not granted because there was a waiter for the latch in exclusive mode (WAIT=NO only).

X'00000010'

The latch was successfully obtained in exclusive mode, and was transferred from another thread to the current thread.

X'00000020'

The latch was not obtained because the caller already owns the latch in exclusive mode.

X'00000024'

The latch was not obtained because the latch services module was unable to WAIT the caller. This is usually due to an error in the caller's environment: either the caller is not in TCB mode, or the caller's ECB is already in a WAIT state.

X'00000028'

A request was not granted for a latch in shared mode because the latch had been transferred to the caller's ECB by another thread; for this reason the request must be in exclusive mode.

X'000000FC'

The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

---

**BPELAGREL**

**Routing code:** Release a latch.

**Return Code**

**Explanation**

X'00000004'

The latch was not released because it is owned in exclusive mode by the caller.

X'00000008'

The latch was not released because it is owned in exclusive mode by another caller.

X'0000000C'

The latch was not released because it is owned in shared mode by one or more other callers.

X'00000010'

The latch was not released because it is not owned.

X'00000014'

The latch was not transferred because the ECB, to which the latch was to be transferred, was waiting to get the latch in shared mode.

X'00000018'

The latch was released (MODE=EX), but a protocol error might have occurred. The latch had been transferred to the caller's ECB from a different ECB, but the caller had never accepted the latch.

X'000000F8'

The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

X'000000FC'

The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

---

**BPELOAD**

**Routing code:** Load a module.

**Return Code**

**Explanation**

X'00000004'

For a list-form load (MODLIST), at least one of the modules in the list had an error.

X'0000000C'

Specified module was not found.

X'00000010'

BLDL for module failed. This error is most likely due to an internal error with BLDL, such as an out-of-storage condition.
**BPELOADC**

*Routing code:*  Load/call/delete a module.

*Return Code*

**X'00000004'**  
The LOAD and call of the module were successful, but the subsequent DELETE of the module failed. The return code that the module passed back in register 15 is in the word or register specified by MODRC.

**X'00000008'**  
The module specified on EP or EPLOC could not be loaded. The contents of the word or register specified by MODRC is undefined.

**X'000000F8'**  
The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

**X'000000FC'**  
The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

---

**BPEPARSE**

*Routing code:*  Parse data.

*Return Code*

**X'00000004'**  
The parser definition grammar passed on PADEF was not a valid BPEPADEF grammar.

**X'00000008'**  
The control block storage passed on CBSTG was not big enough to contain the control blocks that needed to be built to contain the parsed input data. Issue BPEPARSE again with a larger amount of CBSTG storage. Note that the data in the CBSTG area is incomplete, and should not be used.

**X'0000000C'**  
The CBSTG address passed to the parsing service was zero.

**X'00000010'**  
The input data address passed to the parsing service was zero.

**X'00000014'**  
An internal error occurred in the parsing service.

**X'00000040'**  
A invalid keyword was detected in the input.

**X'00000044'**  
An unknown positional parameter was encountered in the input.

**X'00000048'**  
A keyword parameter was specified with only an equal sign (KEYWORD=value), but the keyword was defined as having a sublist of values. Sublists can only be specified in parenthesis. An equal sign can only be used by itself (i.e., with no parentheses) if a keyword has a single value.

**X'0000004C'**  
The input ended before all of a sublist or keyword had been parsed.

**X'00000050'**  
A keyword was encountered (KEYWORD or KEYWORD=) when a value was expected.

**X'00000054'**  
An input number being parsed was out of the range allowed for its output field length. For decimal numbers, the numbers must be less than or equal to 255, 65535, 16777215, and 2147483647 for 1, 2, 3, and 4 byte fields, respectively. For hexadecimal numbers, the number might not have digits more than 2 times the number of bytes in the output field.

**X'00000058'**  
A parameter value defined as decimal contained non-decimal digits.

**X'0000005C'**  
A parameter value defined as hex contained non-hex digits.

**X'00000060'**  
A parameter value defined as a key value parameter had an unknown key value.
A keyword parameter was seen multiple times and was not defined as being repeatable (REPEAT=YES on BPEPADEF).

A parameter defined with REQUIRED=YES on BPEPADEF was not found in the input data (omitted).

A character parameter value was longer than the defined output field length, and the parameter definition did not specify TRUNC=YES on BPEPADEF to allow truncation.

The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

The member name address passed to the read PDS routine was 0.

The output buffer pointer address passed to the read PDS routine was 0.

The output buffer length word address passed to the read PDS routine was 0.

The value specified on the RIGHTMAR parameter was either negative or not less than the actual LRECL of the data set.

OPEN failed for the PDS.

The PDS specified was not in fixed format.

The member specified on the MEMBER parameter was not in the PDS.

A BSAM READ for the specified member failed.

Unable to obtain storage for a buffer to hold the PDS data.

The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

Unable to obtain storage for a buffer to hold the PDS data.

The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

The BPE SVC routine was unable to GETMAIN storage for an internal work area. R0 = return code from GETMAIN.

The BPE SVC routine could not establish a recovery environment using the MVS ESTAE macro. R0 = return code from ESTAE.

The BPE SVC routine could not locate its main control block (the BPESVCA block). This is likely due to errors initializing the BPE SVC routine or other BPE system services.

An invalid SVC function code was passed to the BPE SVC routine in register 0. R0 contains the invalid function code.

An abend occurred in the BPE SVC routine or in the named function routine. R0 contains the abend code.

The address for the name of the named function was zero (REGISTER, DEREGISTER, CALL).

The BPE SVC module was unable to get a SYSTEM level ENQ on the resource SYSZBPE SVCNFHTB, which is required in order to serialize the named function hash table. R0 = the return code from the ENQ macro.
The named function indicated could not be found (QUERY, REGISTER, DEREGISTER, CALL).

The PSW key indicated for the named function being registered was not in the range 0-7. Named function routines must run in a system key (REGISTER).

The BPE SVC routine could not obtain storage for an SVC Function Block (SVCF) for the function being registered. R0 = return code from GETMAIN (REGISTER).

The named function being registered is already registered and the REPLACE parameter did not allow it to be replaced (REGISTER).

The BPE SVC routine could not obtain work area storage for the named function routine to be called. R0 = return code from GETMAIN (CALL).

The STOKEN address passed to the EOMCLEANUP function was zero (EOMCLEANUP).

The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

Create failed: Unable to get storage for a Thread Control Block (THCB) for the thread.

Create failed: Unable to get stack storage for the thread.

Create failed: The initial POST of the thread failed.

The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

Routing code: Issue a timer request.

Return Code

Explanation

FUNC=TIMER request was canceled.

The request was canceled because the timer service has been shutdown.

FUNC=CANCEL request failed because no outstanding timer request with a matching token could be found.

The timer AWE enqueued to the timer service contained an invalid function code.

The FUNC=TIMER request indicated that the expiration value was specified as TOD. The current version of timer services does not support TOD=.

The DINTVL parameter contained a non-decimal digit.

The minutes field in the DINTVL parameter was greater than 59. It must be between 0 and 59.
The seconds field in the DINTVL parameter was greater than 59. It must be between 0 and 59.

The FUNC=TIMER request could not be processed because the timer service could not get storage for a timer queue element (TQUE) for the request.

The BPETIMER request failed: MVS STIMERM service returned a nonzero return code.

Unable to obtain an AWE from control block services (BPECBGET) to initiate timer request. Register 0 contains the return code from BPECBGET. No timer request was issued.

Unable to enqueue initiate timer request. AWE enqueue to timer server failed. R0 contains the return code from BPEAWSRV FUNC=ENQ. Note that the state of the AWE is indeterminate. It is probably on an AWE queue, but it might not be processed.

The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

X'00000004'
The user data address passed on USERDATA was invalid (less than 00001000) (FUNC=GETUDATA and SETUDATA).

X'00000008'
The trace table specified does not support user data (UDATALEN was not specified or specified zero on the trace table's BPETRDEF definition). (FUNC=GETUDATA and SETUDATA)

X'00000010'
The trace table specified was not defined as a trace type that supports multiple trace tables. The CREATE and DELETE functions might be issued only for trace types that were defined as multiple types. See BPETRDEF and BPETRIX for further information (FUNC=CREATE and DELETE).

Unable to get the storage required for a trace table header entry for the new trace table (FUNC=CREATE)

Unable to get the storage required for the new trace table. (FUNC=CREATE)

The requested function is not present in the BPE system at execution time. This is likely due to a macro or module mismatch.

X'00000000FC'
The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

Routing code: Load user exits.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000001'</td>
<td>Couldn't read BPE PROCLIB (Rsn code = BPERDPDS RC)</td>
</tr>
<tr>
<td>X'00000002'</td>
<td>Couldn't read user-product PROCLIB (Rsn code = BPERDPDS RC)</td>
</tr>
<tr>
<td>X'00000003'</td>
<td>BPEGETM failed for user product parse data area (Rsn code = BPEGETM RC)</td>
</tr>
<tr>
<td>X'00000004'</td>
<td>BPEGETM failed for BPE parse data area (Rsn code = BPEGETM RC)</td>
</tr>
<tr>
<td>X'00000005'</td>
<td>BPEPARSE failed for BPE exit list PROCLIB member (Rsn code = BPEPARSE RC)</td>
</tr>
<tr>
<td>X'00000006'</td>
<td>BPEPARSE failed for user prod exit list PROCLIB member (Rsn code = BPEPARSE RC)</td>
</tr>
<tr>
<td>X'000000010'</td>
<td>BPECBGET failed for a UXIB block (Rsn code = BPECBGET RC)</td>
</tr>
</tbody>
</table>
The parameter list version generated by the macro is not supported by the called service routine. This is likely due to a macro or module mismatch.

Chapter 21. BPE messages and codes  317
During processing, you might encounter abend codes that are issued by IMS or DFS. For these abend codes, see the following IMS manuals:

- *Message and Codes, Volume 1, GC26-9433.*
- *Messages and Codes, Volume 2, GC27-1120.*

### 3400

**Explanation:** An error during early IMS Database Recovery Facility BPE initialization prevented IMS Database Recovery Facility BPE services from starting. Register 15 at the time of abend contains a subcode that can be used to determine the reason for the abend. The subcodes and their meanings are described in the following list:

- **X'01'** FRXINIT$ could not establish an ESTAE recovery routine.
- **X'02'** IMS Database Recovery Facility BPE stack storage services initialization failed.
- **X'03'** A request to obtain a stack block for early IMS Database Recovery Facility BPE initialization failed.
- **X'04'** A lower-level service initialization module could not be loaded.
- **X'05'** A lower-level service initialization module could not complete the initialization of its service.
- **X'06'** An error occurred while parsing the IMS Database Recovery Facility BPE configuration PROCLIB member specified on the BPECFG= parameter in the MVS startup parameters.
- **X'07'** IMS Database Recovery Facility detected a problem during its early initialization and indicated to IMS Database Recovery Facility BPE that it should abend.
- **X'08'** An error occurred creating an MVS name or token for the IMS component address space.
- **X'09'** A mismatch occurred between the BPE version used by IMS Database Recovery Facility and the version of the IMS Database Recovery Facility BPE modules.
- **X'0A'** The IMS Database Recovery Facility BPE SVC routine (FRXSVC0$) could not be installed.
- **X'0B'** The IMS Database Recovery Facility BPE resource manager (FRXRSM0$) could not be established.

**System action:** The address space is ended abnormally.

**User response:** Take the appropriate action based on the subcode you received.

**For subcodes X'01' through X'05' and X'07' through X'0B',** the problem is one of the following:

- An environmental error, such as missing modules in your STEPLIB data set or a storage shortage in the address space.
- An internal error within IMS Database Recovery Facility BPE or IMS Database Recovery Facility.

Messages that further explain the reason for the error might precede this abend. See the job log output from the failed job for explanatory messages.

If you cannot determine and correct an environmental cause for the problem, save any dump and SYSLOG information, and contact the IBM Support Center.

**For subcode X'06':** Although this abend can result from internal or environmental errors, its most probable cause is a problem with the IMS Database Recovery Facility BPE configuration PROCLIB member. If BPE cannot find or read the member, abend U3400 follows message BPE0002E, which indicates the problem. Correct the problem and restart the IMS Database Recovery Facility address space.

If there is an error parsing the member, this abend follows message BPE0003E, which indicates where in the member the error occurred. Correct the configuration member and restart the IMS Database Recovery Facility address space.

**For subcode X'09':** This abend occurs when the IMS Database Recovery Facility modules and the IMS Database Recovery Facility BPE modules in your STEPLIB data sets are at different versions. This abend follows message BPE0013E, which indicates the different levels of the BPE modules. Ensure that you are running the correct level of IMS Database Recovery Facility BPE modules.

**Module:** FRXINIT$
IMS Database Recovery Facility BPE could not initialize the BPE internal dispatcher for the new TCB.

A lower-level TCB initialization module could not complete initialization because of an error or unexpected condition.

IMS Database Recovery Facility BPE could not create an internal server that runs under the new TCB.

IMS Database Recovery Facility BPE could not load a lower-level TCB initialization module, and therefore could not complete the initialization of the new TCB’s environment.

**System action:** If the TCB being created is not a required TCB, the IMS Database Recovery Facility address space continues to function; otherwise, the IMS Database Recovery Facility address space is ended abnormally.

**User response:** The problem is one of the following:
- An internal error within IMS Database Recovery Facility BPE or IMS Database Recovery Facility.
- An environmental error, such as missing modules in your STEPLIB data set, or a storage shortage in the address space.

Messages that further explain the reason for the error might precede this abend. See the job log output from the failed job for explanatory messages.

If you cannot determine and correct an environmental cause for the problem, save any dump and SYSLOG information, and contact IBM Software Support.

**Module:** FRXSYIN$ 

---

**3402**

**Explanation:** An error occurred during the ending of a TCB in the IMS Database Recovery Facility address space. Register 15 at the time of the abend contains a subcode that can be used to determine the reason for the abend. Code 3402 subcodes are as follow:

X'01' A routine involved in the cleanup process for the ending TCB encountered an error that prevented the cleanup from completing.

X'02' A routine involved in the cleanup process for the IMS Database Recovery Facility address space encountered an error that prevented the cleanup from completing.

X'03' IMS Database Recovery Facility BPE could not start required processes to end subtask TCBs under the TCB that was ending.

**System action:** If the TCB being ended is not a required TCB, the IMS Database Recovery Facility address space continues to function. If the TCB is required, or if the IMS Database Recovery Facility address space is in the process of being shut down, the IMS Database Recovery Facility address space is ended abnormally.

**User response:** The problem is one of the following:
- An internal error within IMS Database Recovery Facility BPE or IMS Database Recovery Facility.
- An environmental error, such as missing modules in your STEPLIB data set or a storage shortage in the address space.

Messages that further explain the reason for the error might precede this abend. See the job log output from the failed job for explanatory messages.

If you cannot determine and correct an environmental cause for the problem, save any dump and SYSLOG information, and contact IBM Software Support.

**Module:** FRXSYIN$ 

---

**4095**

**Explanation:** IMS Database Recovery Facility BPE issues this abend once for each TCB in the address space when an unrecoverable abend occurs and it is necessary to abnormally end the address space.

**System action:** The IMS Database Recovery Facility address space is ended abnormally.

**User response:** BPE issues this abend after one of the address space’s TCBs has an unrecoverable abend. It is used to abnormally end the remaining TCBs; it is not itself part of the original problem. Examine the job log output for the first TCB to abend with a code other than 4095 in order to determine the cause of the subsequent 4095 abends.
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program or service may be used. Any functionally equivalent product, program or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information that has been exchanged, should contact:
Such information may be available subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify and distribute these sample programs in any form without payment to IBM, for purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

**Trademarks**

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A complete and current list of IBM trademarks is available on the Web at [http://www.ibm.com/legal/copytrade.shtml](http://www.ibm.com/legal/copytrade.shtml).

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
Index

A
abend codes 265
abend codes, BPE 317
accessibility 9
ADD 90
address space architecture and configuration 277
administering databases
  managing input 143
  managing output 143
  managing the environment 143
architecture 6
assigning security 148
auxiliary utilities 115
  IMS HP and DEDB Pointed Checker 124
  IMS Index Builder 108

B
batch condition codes 273
batch mode with auxiliary utilities 107
batch mode with integrated auxiliary utilities 275, 281
BPE
  abend codes 317
  messages 295
  messages and codes 295
  service return codes 308
BPE (Base Primitive Environment)
  commands
    parameters 289
BPE commands, overview 289

C
CHANGE.DBDSGRP 131
coaistence 16
commands
  BPE
    DISPLAY TRACETABLE 290
components 6
configuring
  FRXDRFxx 19
configuring product environment
  batch mode 19
control statement parameters
  UTILGBL 51

D
database recovery
  IMS tools integration 5
  required steps 133
database recovery steps
  (1) define recovery scope 133
  (2) take databases offline 135
  (3) build a recovery list 136
  (4) define physical data sets 136
  (6) start recovery 137
  (7) use integrated auxiliary processing 137
  (8) perform post-recovery 139
databases
  administering
    managing input 143
    managing output 143
    managing the environment 143
documentation
  accessing 9
  documentation changes 10
disable 9
DISPLAY TRACETABLE command output 291
documentation
  accessing 9
documentation changes 10

E
environment control statement
  example 189

F
fallback 16
FRXDRFxx 19

G
global utility control statement parameters 51

H
hardware and software requirements 13

I
IMS tools integration, database recovery 5
INIT.DBDSGRP 131
installation
  coaistence 16
  fallback 16
  hardware and software requirements 13
  migration 15
  operational requirements 13
  requirements 13
integrated auxiliary utilities 275, 281
integrated auxiliary utilities processing 277
integrated auxiliary utility
  parameters 45
invoking integrated auxiliary utilities 276

K
keyboard shortcuts 9

© Copyright IBM Corp. 2000, 2012
L
legal notices 322
trademarks 322
LEVEL trace table parameter 291
LIST, DBDSGRP 132

M
managing input 143
managing output 146
managing performance 151
managing the environment 147
MAS
  DDNAME statements 75
  SFRXSAMP(FRXMAS) 75
Master address space
  DDNAME statements 75
  SFRXSAMP(FRXMAS) 75
message retrieval tool, LookAt ix
  messages 225
  methods for accessing ix
  messages and codes BPE 295
migration 15
MySupport 9

N
NOTIFY.RECOV 132

O
overview 3

P
parameters
  global 51
  integrated auxiliary utility 45
  performance
    improvement 151
  input parallelism 152
  managing 151
  tape device availability 153
  virtual tape system 152
  process flow 6
RECOVGRP (recovery group) 156
reference
  abend codes 265
  batch condition codes 273
  messages 225
REMOVE 95
reports 161
  batch invocation
    full recovery report, of a 174
    PITR recovery report, of a 168
    verify of a PITR, of a 186
  verify of the PITR report, of a 178
  VERIFY(ALLOC) recovery report, of a 182
  image copy or incremental image copy 162
  output content 161
RECOVGRP (continued)
  reports processing 162
  requirements 13
  restrictions 14
  database and area 14
  esoteric name tape drive 15
  seasonal time change timestamp 14
  return codes 283
sample reports 161
  batch invocation
    (PITR) recovery, of a 168
    full recovery, of 174
    verify of the PITR, of a 178
    VERIFY(ALLOC) recovery, of a 182
    VERIFY(OPEN) of PITR, of a 186
  image copy or incremental image copy 162
  output content 161
  reports processing 162
  scenarios 199
  screen readers and magnifiers 9
  security 148
  service abend codes BPE 295
  service return codes, BPE 308
  START 96
  summary of changes 10
  syntax diagram
    how to read vii
  SYSIN control statement 89
  SYSIN control statement parameters
    UTILGBL 51
  SYSOUT reports 283
TECHNOTES 9
  terminology 275
time stamp recovery
  with PITR and database updates on multiple UOR 157
time stamp recovery with PITR and UOR 156
time stamp recovery without PITR 155
TRACETABLE (DISPLAY) command 290
TRACETABLE commands 289
  trademarks 322
troubleshooting 223
UPDATE TRACETABLE
  sample output 293
write to operator messages 283