CICS Transaction Server for z/OS

Version 4 Release 2

<|ll

Web Services Guide

SC34-7191-02

CICS Transaction Server for z/OS

Version 4 Release 2

<|ll

Web Services Guide

SC34-7191-02

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 379,

This edition applies to Version 4 Release 2 of CICS Transaction Server for z/OS (product number 5655-597) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2005, 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface T 1
What this book is about R 1
Who should read thisbook vii

Changes in CICS Transaction Server for
z/0S, Version 4 Release 2. ix

Chapter 1. CICS and web services 1
What is a web service? . B |
How web services can help your busmess .. 2
Web services terminology . 2

Chapter 2. Web services architecture . . 7
Web service description.8
Service publication.10

Chapter3.SOAP 1N

Structure of a SOAP message11
The SOAP header13
The SOAPbody.15
The SOAPfault15

SOAP nodes . . . B V4
The SOAP message path B

Chapter 4. How CICS supports web

services e e 21
Message handlers and prpehnes B |
Transport-related handlers22
Interrupting the flow23
A service provider pipeline24
A service requester pipeline.24
CICS pipelines and SOAP25
SOAP messages and the application data structure 26
WSDL and the application data structure28
WSDL and message exchange patterns 30
The web service binding file.32
External standards32
SOAP1land 12 . . . G ¥
SOAP 1.1 Binding for MTOM 1. 033
SOAP Message Transmission Optimization
Mechanism MTOM)33
Web Services Addressing 1.0.33
Web Services Atomic Transaction Version 1. 0 .. 34
Web Services Coordination Version 1.034
Web Services Description Language Version 1.1
and 20. 34
Web Services Securlty SOAP Message Securrty 35
Web Services Trust Language . . . 35
WSDL 1.1 Binding Extension for SOAP 1 2. . .36
WS-I Basic Profile Version 1.1 36

WS-I Simple SOAP Binding Profile Ver51on 1 0 . 36
XML (Extensible Markup Language) Version 1.0 37
XML-binary Optimized Packaging (XOP) . . .37
XML Encryption Syntax and Processing 37

© Copyright IBM Corp. 2005, 2012

XML-Signature Syntax and Processing

CICS compliance with Web services standards.

Chapter 5. Getting started with web

services .

Planning to use web services . .
Planning a service provider apphcatron .
Planning a service requester application .

Chapter 6. Creating the web services
infrastructure .

Configuring your CICS system for web services .

CICS resources for web services

Configuring CICS to use the WebSphere MQ

transport . .
The web services mfrastructure

CICS as a service provider

CICS as a service requester .

Java-based SOAP pipelines . .
Creating the CICS infrastructure for a service
provider .
Creating the CICS 1nfrastructure for a service
requester
Pipeline Confrguratlon flles

Transport-related handlers

The pipeline definition for a service provider .
The pipeline definition for a service requester .

Elements used only in service providers.
Elements used in service requesters

Elements used in service provider and service

requester pipelines .
Pipeline configuration for MTOM / XOP
Pipeline configuration for WS-Security .
Application handlers . .
Channel-attached apphcatlon handlers .
Message handlers . .
Message handler protocols . .
Supplying your own message handlers
Working with messages in a non-terminal
message handler .o
Working with messages in a termmal message
handler
Handling errors
The message handler mterface
The SOAP message handlers .
Header processing programs . .
The header processing program mterface .
Dynamic routing of inbound requests in a
terminal handler
Containers used in the plpelme
Control containers.
How containers control the plpehne protocols
Context containers.
Security containers
Containers generated by CICS

. 37
. 38

. 45
.45
.47
.48

. 51
. 51
. 51

. 54
. 61
. 61
. 63
. 64

. 66

. 67
. 68
.72
. 74
.75
. 76
. 80

.81
. 96
. 101
. 112
. 113
. 114
. 114
. 117

. 117

. 120
. 120
. 121
. 121
. 122
. 124

. 126
. 127
. 128

134

. 136
. 147
. 149

iii

User containers. . 150
Chapter 7. Creating a web service . 151
The CICS web services assistant . . 152

DFHLS2WS: high-level language to WSDL

conversion . . 152

DFHWS2LS: WSDL to hlgh level language

conversion . . . lo4

Syntax notation. . 178

Mapping levels for the CICS a551stants . 179

High-level language and XML schema mappmg 183
Creating a web service provider by using the web
services assistant . . . 227

Creating a service provider apphcatlon from a

web service description . . 228

Creating a service provider apphcatlon from a

data structure . . . 230

Creating a channel descrlptlon document . 232

Customizing generated web service description

documents . . 234

Sending a SOAP fault . . 236
Creating a web service requester using the web
services assistant . . . 237
Creating a web service using toolmg . 240
Creating your own XML-aware web service
applications . . 241

Creating an XML-aware service prov1der

application 241

Creating an XML-aware service requester

application . . . 242
Using Java with web services . . 244

Deploying a provider-mode Axis2 web service 244

Creating a Java web service that generates and

parses XML . . 247

Creating a Java web service that has a COBOL

interface . . 247

Deploying a requester mode Ax1sZ web service 247
Validating SOAP messages . . 248
Chapter 8. Runtime processing for
web services - e 261
How CICS invokes a service provider program
deployed with the web services assistant . . 251
Invoking a web service from an application
deployed with the web services assistant . . 251
Runtime limitations for code generated by the web
services assistant . . . 253
Customizing pipeline processing . . . 256
Options for controlling requester p1pehne
processing . oo o256
Controlling requester p1pelme processing using a
URI . 258
Chapter 9. Support for Web Services
transactions . . 261
Registration services . . 261
Configuring CICS for web service transactlons . 263
Configuring a service provider for web service
transactions . . 265

iV CICS TS for z/OS 4.2: Web Services Guide

Configuring a service requester for web service

transactions . .. 266
Determining if the SOAP message is part of an
atomic transaction. . 267
Checking the progress of an atomlc transactlon .. 268
Chapter 10. Support for MTOM/XOP
optimization of binary data . 271
MTOM/XOP and SOAP. . 271
MTOM messages and binary attachments in CICS 273
Inbound MTOM message processing for
pipelines that do not support Java . . 274
Outbound MTOM message processing for
pipelines that do not support Java . 275
Restrictions when using MTOM/XOP . . 276
Restrictions for Java-based pipelines. . 276
Restrictions for other SOAP pipelines . 277
Configuring CICS to support MTOM /XOP . 278
Configuring MTOM/XOP support for
Java-based pipelines . . . 278
Configuring MTOM /XOP for other SOAP
pipelines . e . 279
Chapter 11. Support for Web Services
Addressing . . 281
Web Services Addressing overview . . . 282
Configuring a requester pipeline for Web Serv1ces
Addressing . . 285
Configuring a prov1der plpelme for Web Serv1ces
Addressing . . 286
Creating a web service that uses WS Addressmg 288
Default end point references . 289
Explicit actions . . . 290
Default actions for WSDL 1. 1 . . 291
Default actions for WSDL 2.0 . . 292
Message exchanges . . 293
Mandatory message addressmg propertles for
WS-Addressing. . 295
Web Services Addressmg securlty . 297
Web Services Addressing example . 297
Web Services Addressing terminology . . 302
Chapter 12. Support for securing web
services. . . 303
Prerequisites for Web Serv1ces Securlty . 303
Planning to secure web services . . 304
Options for securing SOAP messages . 305
Authentication using a Security Token Service . 307
The Trust client interface . 308
Signing of SOAP messages . . 309
Signature algorithms . . 309
Example of a signed SOAP message . . 310
CICS support for encrypted SOAP messages . . 311
Encryption algorithms . . .31
Example of an encrypted SOAP message . . 312
Configuring RACF for Web Services Security . . 312
Configuring provider mode web services for
identity propagation . . 315
Configuring the pipeline for Web Serv1ces Securlty 317
Writing a custom security handler . 320

Invoking the Trust client from a message handler 321

Chapter 13. Interoperability between
the web services assistant and WSRR 325

Example of how to use SSL with the web services
assistantand WSRR325

Chapter 14. Diagnosing problems . . 327

Diagnosing deployment errors. 327
Diagnosing service provider runtime errors . . . 329
Diagnosing service requester runtime errors . . . 330
Diagnosing MTOM/XOP errors331
Diagnosing data conversion errors 334

Why data conversion errors occur 335

SOAP fault messages for conversion errors . . 335

Chapter 15. The CICS catalog
manager example application 337

The base application337
BMS presentation manager.339
Data handler339
Dispatch manager.339
Order dispatch program.339
Stock manager339
Application configuration 340

Installing and setting up the base apphcatlon .. 340
Creating and defining the VSAM data sets . . 340
Defining the 3270 interface 341
Completing the installation. L343
Configuring the example apphcatlon ... L343

Running the example apphcatlon with the BMS

interface Coe 345

Web service support for the example application

347

Configuring code page support .. 349
Defining the web service client and wrapper
programs. .o . 350
Installing web service support . 350
Configuring the web client . . . 356
Running the web service enabled apphcatlon . 359
Deploying the example application . . 363
Extracting the program interface . . . 363
Running the web services assistant program
DFHLS2WS . . . 364
An example of the generated WSDL document 366
Deploying the web services binding file . 367
Components of the base application . . 368
The catalog manager program . . 371
File structures and definitions . . 375
Catalog file . . 375
Configuration file . . 376
Notices . . 379
Trademarks . . 380
Bibliography. . . 381
CICS books for CICS Transactlon Server for z/ OS 381
CICSPlex SM books for CICS Transaction Server
for z/OS . . 382
Other CICS pubhcatlons . 382
Accessibility. . 383
Index . . 385

Contents

A\

Vi CICS TS for z/OS 4.2: Web Services Guide

Preface

What this book is about

This book describes how to use Web Services in CICS®.

Who should read this book

This book is for the following roles:

* Planners and architects considering deploying CICS applications in a web
services environment.

* Systems programmers who are responsible for configuring CICS to support web
services.

* Applications programmers who are responsible for applications that will be
deployed in a web services environment.

© Copyright IBM Corp. 2005, 2012 vii

viil CICS TS for z/OS 4.2: Web Services Guide

Changes in CICS Transaction Server for z/OS, Version 4
Release 2

For information about changes that have been made in this release, please refer to
What’s New in the information center, or the following publications:

* CICS Transaction Server for z/OS What's New

* CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1
¢ CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2
* CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 2005, 2012

ix

X CICS TS for z/OS 4.2: Web Services Guide

Chapter 1. CICS and web services

CICS Transaction Server for z/OS® provides comprehensive support for web
services.

* A CICS application can participate in a heterogeneous web services environment
as aservice requester} as a|service provider] or both.

* CICS supports the HTTP and WebSphere MQ transport protocols.

* CICS Transaction Server for z/OS includes the CICS web services assistant, a set
of utility programs that help you map WSDL service descriptions into high-level
programming language data structures and vice versa. The utility programs
support these programming languages:

COBOL
PL/I

C

C++

* CICS support for web services conforms to open standards, including these
standards:

SOAP 1.1 and 1.2
HTTP 1.1
WSDL 1.1 and 2.0

* CICS support for web services ensures maximum interoperability with other
web services implementations by conditionally or fully complying with many
web services specifications, including the [WS-I Basic Profile Version 1.1} The
profile is a set of nonproprietary web services specifications, with clarifications
and amendments to those specifications, which, taken together, promote
interoperability between different implementations of web services.

 CICS support for web services includes support for web services pipelines that
are Java-based and non-Java -based. Java-based pipelines are processed using the
T8 TCBs and non-Java-based pipelines are processed using the L8 TCBs. This
reduces the amount of QR TCB processing required to process the web service.

* CICS uses the IBM® z/OS XML System Services (XMLSS) parser to parse SOAP
envelopes. This parser improves performance because it uses 64-bit
(above-the-bar) storage in the CICS region, leaving more storage below the bar
for user programs. The XMLSS parser also allows XML parsing to be offloaded
to a IBM System z® Application Assist Processor (zAAP), reducing the cost of
transactions because the CPU time is free. For more information, see the IBM
Redbooks® publication [zSeries Application Assist Processor (zAAP)|
[Implementation|

* Web Services Atomic Transactions (WS-AT) use Web Services Addressing
(WS-Addressing) elements in their SOAP headers. The default namespace prefix
for these WS-Addressing elements has changed from wsa to cicswsa.

What is a web service?

A web service is a software system that supports interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable
format (specifically, web Service Definition Language, or WSDL).

© Copyright IBM Corp. 2005, 2012 1

http://www.redbooks.ibm.com/abstracts/sg246386.html
http://www.redbooks.ibm.com/abstracts/sg246386.html

web services fulfill a specific task or a set of tasks. A web service is described
using a standard, formal XML notion, called its service description, that provides
all of the details necessary to interact with the service, including message formats
(that detail the operations), transport protocols, and location.

The nature of the interface hides the implementation details of the service so that it
can be used independently of the hardware or software platform on which it is
implemented and independently of the programming language in which it is
written.

This independence allows and encourages web service based applications to be
loosely coupled, component oriented, cross-technology implementations. web
services can be used alone or with other web services to carry out a complex
aggregation or a business transaction.

How web services can help your business

Web services is a technology for deploying, and providing access to, business
functions over the World Wide Web. Use web services to integrate your
applications into the Web.

Web services can help your business in these ways:

* Reducing the cost of doing business

* Making it possible to deploy solutions more rapidly

* Opening up new opportunities

The key to achieving all these benefits is a common program-to-program

communication model, built on existing and emerging standards such as HTTP,
XML, SOAP, and WSDL.

With the support that CICS provides for web services, you can deploy your
existing applications in new ways, with the minimum amount of reprogramming.

Web services terminology

You must be familiar with these terms to understand the topics in the web services
section.

Extensible Markup Language (XML)
A standard for document markup, which uses a generic syntax to mark up
data with simple, human-readable tags. The standard is endorsed by the
[World Wide Web Consortium (W3C),

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of a
SOAP message path.

Service provider
The collection of software that provides a web service.

Service provider application
An application that is used in a service provider. Typically, a service
provider application provides the business logic component of a service
provider.

Service requester
The collection of software that is responsible for requesting a web service
from a service provider.

2 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org

Service requester application
An application that is used in a service requester. Typically, a service
requester application provides the business logic component of a service
requester.

Simple Object Access Protocol
See SOAP.

SOAP Formerly an acronym for Simple Object Access Protocol. A lightweight
protocol for exchange of information in a decentralized, distributed
environment. It is an XML-based protocol that consists of three parts:

* An envelope that defines a framework for describing what is in a
message and how to process it

* A set of encoding rules for expressing instances of application-defined

data types

* A convention for representing remote procedure calls and responses

SOAP can be used with other protocols, such as HTTP.

The specification for SOAP 1.1 is published at [Simple Object Access|
[Protocol (SOAP) 1.1}
The specification for SOAP 1.2 is published here:
BOAP Version 1.2 Part 0: Primer|
BOAP Version 1.2 Part 1: Messaging Framework|
BOAP Version 1.2 Part 2: Adjuncts|
SOAP intermediary
A SOAP node that is both a SOAP receiver and a SOAP sender and is
targetable from within a SOAP message. It processes the SOAP header

blocks targeted at it and forwards a SOAP message toward an ultimate
SOAP receiver.

SOAP message path
The set of SOAP nodes through which a single SOAP message passes.
These nodes include the initial SOAP sender, zero or more SOAP
intermediaries, and an ultimate SOAP receiver.

SOAP node
Processing logic that operates on a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

SOAP sender
A SOAP node that transmits a SOAP message.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It is
responsible for processing the contents of the SOAP body and any SOAP
header blocks targeted at it.

UDDI See Universal Description, Discovery and Integration.

Universal Description, Discovery and Integration

Universal Description, Discovery and Integration (UDDI) is a specification

for distributed web-based information registries of web services. UDDI is
also a publicly accessible set of implementations of the specification that
allow businesses to register information about the web services that they

offer, so that other businesses can find them. The specification is published

by [0AsIY

Chapter 1. CICS and web services

3

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
http://www.oasis-open.org

Web service
A software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a
machine-processable format (specifically, Web Service Description
Language, or WSDL).

Web Services Addressing
Web Services Addressing (WS-Addressing) provides a transport-neutral
mechanism to address web services and messages.
The specifications for WS-Addressing are published here:

* |Web Services Addressing 1.0 - Core]

* |Web Services Addressing 1.0 - SOAP Binding]

* |Web Services Addressing 1.0 - Metadatal

* |Web Services Addressing- Submission|

Web Services Atomic Transaction
A specification that provides the definition of an atomic transaction
coordination type used to coordinate activities having an "all or nothing"
property.

The specification is published at |http:/ /www.ibm.com /developerworks/|
library /specification / ws-tx /#atom|

Web service binding file
A file, associated with a WEBSERVICE resource, that contains information
that CICS uses to map data between input and output messages, and
application data structures.

Web service description
An XML document by which a service provider communicates the
specifications for invoking a web service to a service requester. Web service
descriptions are written in Web Service Description Language (WSDL).

Web Service Description Language
An XML application for describing web services. It is designed to separate
the descriptions of the abstract functions offered by a service and the
concrete details of a service, such as how and where that function is
offered.

The specification is published at jhttp://www.w3.org/TR/wsdl

Web Services Security
A set of enhancements to SOAP messaging that provides message integrity
and confidentiality. The specification is published by [DASI] atr\;ﬁ
Bervices Security: SOAP Message Security 1.0 (WS-Security 2004)f

WS-Atomic Transaction
See Web Services Atomic Transaction.

WS-I Basic Profile
A set of nonproprietary web services specifications, with clarifications and
amendments to those specifications, which, taken together, promote
interoperability between different implementations of web services. The
profile is defined by the Web Services Interoperability Organization (WS-I)
and version 1.0 is available at [Web Services Interoperability Organization|
[(WS-T) Basic Profile 1.0l

WSDL
See Web Service Description Language.

4 CICSTS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/Submission/ws-addressing/
http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://www.w3.org/TR/wsdl
http://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.ws-i.org/Profiles/BasicProfile-1.0.html

WSS See Web Services Security.
XML Extensible Markup Language.

The specifications for XML are published here:
SOAP Version 1.2 Part 0: Primer]|

SOAP Version 1.2 Part 1: Messaging Framework|
SOAP Version 1.2 Part 2: Adjuncts|

XML namespace
A collection of names, identified by a URI reference, that are used in XML
documents as element types and attribute names.

XML schema
An XML document that describes the structure and constrains the contents
of other XML documents.

XML schema definition language
An XML syntax for writing XML schemas, recommended by the
[Wide Web Consortium (W3C)|

Chapter 1. CICS and web services 5

http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
http://www.w3.org
http://www.w3.org

6 CICS TS for z/OS 4.2: Web Services Guide

Chapter 2. Web services architecture

The web services architecture is based on interactions between three components: a
service provider, a service requester, and an optional service registry.

The service provider
The collection of software that provides a web service.

* The application program
* The middleware

* The platform on which they run

The service requester
The collection of software that is responsible for requesting a web service
from a service provider.

* The application program
* The middleware

* The platform on which they run

The service registry
The service registry is a central location where service providers can
publish their service descriptions and where service requesters can find
those service descriptions.

The registry is an optional component of the web services architecture
because service requesters and providers can communicate without it in
many situations. For example, the organization that provides a service can
distribute the service description directly to the users of the service in a
number of ways, including offering the service as a download from an FTP
site.

Using a service registry offers a number of advantages to both the
requester and provider; for example, using the IBM WebSphere® Service
Registry and Repository (WSRR) can help the requester to find services
more quickly and can help the provider to enforce version control of the
services being offered.

CICS provides direct support for implementing service requester and service
provider components. However, you need additional software to deploy a service
registry in CICS. If you use the IBM WebSphere Service Registry and Repository
(WSRR), CICS provides support for WSRR through the web services assistant.
Alternatively, you can deploy a service registry on another platform.

Interactions between a service provider, a service requester, and,
a service registry

The interactions between the service provider, service requester, and service
registry involve the following operations:

Publish
When a service registry is used, a service provider publishes its service
description in a service registry for the service requester to find.

Find When a service registry is used, a service requester finds the service
description in the registry.

© Copyright IBM Corp. 2005, 2012 7

Bind The service requester uses the service description to bind with the service
provider and interact with the web service implementation.

Service
Requester

Service

Bi
ind Provider

Find Publish

Service
Registry

Figure 1. web services components and interactions

Web service description

A web service description is a document by which the service provider
communicates the specifications for starting the web service to the service requester.
Web service descriptions are expressed in the XML application known as Web
Service Description Language (WSDL).

The service description describes the web service in such a way as to minimize the
amount of shared knowledge and customized programming that is needed to
ensure communication between the service provider and the service requester. For
example, neither the requester nor the provider needs to be aware of the platform
on which the other runs, nor of the programming language in which the other is
written.

A service description can conform to either the WSDL 1.1 or WSDL 2.0
specification. Each has differences in both the terminology and major elements that
can be included in the service description. The following information uses WSDL
1.1 terminology and elements to explain the purpose of the service description.

The structure of WSDL allows a service description to be partitioned into two
definitions:

* An abstract service interface definition that describes the interfaces of the service
and makes it possible to write programs that implement and start the service.

* A concrete service implementation definition that describes the location on the
network (or endpoint) of the web service of the provider and other
implementation-specific details. It enables a service requester to connect to the
service provider.

See [Figure 2 on page 9

A WSDL 1.1 document uses the following major elements in the definition of
network services:

8 CICS TS for z/OS 4.2: Web Services Guide

<types>
A container for data type definitions using some type system (such as XML
Schema). Defines the data types used within the message. The <types>
element is not required when all messages consist of simple data types.

<message>
Specifies which XML data types are used to define the input and output
parameters of an operation.

<portType>
Defines the set of operations supported by one or more endpoints. Within
a <portType> element, each operation is described by an <operation>
element.

<operation>
Specifies which XML messages can appear in the input and output data
flows. An operation is comparable with a method signature in a
programming language.

<binding>
Describes the protocol, data format, security, and other attributes for a
particular <portType> element.

<port>
Specifies the network address of an endpoint and associates it with a
<binding> element.

<service>
Defines the web service as a collection of related endpoints. A <service>
element contains one or more <port> elements.

| <types> |
| <message> |
Service
interface <portType>
definition -
Web
service
description —
| <binding> |
Service <service>
implementation _
definition <port>

Figure 2. Structure of a web service description

Because you can partition the web service description, you can divide

responsibility for creating a complete service description. As an illustration,

consider a service that is defined by a standards body for use across an industry

and is implemented by individual companies in that industry:

¢ The standards body provides a service interface definition, containing the
following elements:

Chapter 2. Web services architecture 9

<types>
<message>
<portType>
<binding
* A service provider wanting to offer an implementation of the service provides a
service implementation definition, containing the following elements:
<port>
<service>

Service publication

You can publish a service description using a number of different mechanisms.
Each mechanism is suitable for use in different situations. CICS supports the use of
the IBM WebSphere Service Registry and Repository (WSRR) for publishing service
descriptions. Alternatively, you can use other methods to publish a service
description.

WSSR CICS supports the use of WSRR for publishing service descriptions. For
more information about the support that CICS provides for WSSR, see the
"Interoperability between the web services assistant and WSRR" topic in
the Information Center.

Any of the following mechanisms, none of which is directly supported by CICS,
can be used with CICS to publish service descriptions:

Direct publishing
This mechanism is the most straightforward for publishing service
descriptions; the service provider sends the service description directly to
the service requester, using an e-mail attachment, an FIP site, or a CD
ROM distribution.

DISCO
These proprietary protocols provide a dynamic publication mechanism.
The service requester uses a simple HTTP GET mechanism to retrieve a
web service description from a network location that is specified by the
service provider and identified with a URL.

Universal Description, Discovery and Integration (UDDI)
A specification for distributed web-based information registries of web
services. UDDI is also a publicly accessible set of implementations of the
specification that allow businesses to register information about the web
services that they offer so that other businesses can find them.

A service description can be published in more than one form if required.

10 CICS TS for z/OS 4.2: Web Services Guide

Chapter 3. SOAP

SOAP is a protocol for the exchange of information in a distributed environment.
SOAP messages are encoded as XML documents and can be exchanged using
various underlying protocols.

Formerly an acronym for Simple Object Access Protocol, SOAP is developed by the
[World Wide Web Consortium (W3C)} and is defined in the following documents
issued by W3C. Consult these documents for complete, and authoritative,
information about SOAP.

Simple Object Access Protocol (SOAP) 1.1/ (W3C note)

SOAP Version 1.2 Part 0: Primer| (W3C recommendation)

SOAP Version 1.2 Part 1: Messaging Framework (W3C recommendation)
SOAP Version 1.2 Part 2: Adjunﬂ (W3C recommendation)

The SOAP specifications describe a distributed processing model in which a SOAP
message is passed between SOAP nodes. The message originates at a SOAP sender
and is sent to a SOAP receiver. Between the sender and the receiver, the message
might be processed by one or more SOAP intermediaries.

A SOAP message is a one-way transmission between SOAP nodes, from a SOAP
sender to a SOAP receiver, but messages can be combined to construct more
complex interactions, such as request and response, and peer-to-peer conversations.

The specification also includes this information:

* A set of encoding rules for expressing instances of application-defined data

types.
* A convention for representing remote procedure calls and responses.

Structure of a SOAP message

A SOAP message is encoded as an XML document, consisting of an <Envelope>
element, which contains an optional <Header> element, and a mandatory <Body>
element. The <Fault> element, contained in the <Body>, is used for reporting
errors.

The SOAP envelope
The SOAP <Envelope> is the root element in every SOAP message. It
contains two child elements, an optional <Header>, and a mandatory
<Body>.

The SOAP header
The SOAP <Header> is an optional subelement of the SOAP envelope. It is
used to pass application-related information that is to be processed by
SOAP nodes along the message path.

The SOAP body
The SOAP <Body> is a mandatory subelement of the SOAP envelope. It
contains information intended for the ultimate recipient of the message.

The SOAP fault
The SOAP <Fault> is a subelement of the SOAP body, which is used for
reporting errors.

© Copyright IBM Corp. 2005, 2012 11

http://www.w3.org
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2

With the exception of the <Fault> element, which is contained in the <Body> of a
SOAP message, XML elements in the <Header> and the <Body> are defined by the
applications that make use of them. However, the SOAP specification imposes
some constraints on their structure.

Figure 3|shows the main elements of a SOAP message.
Figure 4 on page 13is an example of a SOAP message that contains header blocks

SOAP envelope

SOAP header
Header block

Header block

SOAP body
Body subelement

Body subelement

Figure 3. The structure of a SOAP message

(the <m:reservation> and <n:passenger> elements) and a body (containing the
<p:itinerary> and <q:1odging> elements).

12 CICS TS for z/OS 4.2: Web Services Guide

<?xml version='1.0"' ?>
<env:Envelope xmins:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Header>
<m:reservation xmins:m="http://travelcompany.example.org/reservation"
env:role="http://www.w3.0rg/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">
<m:reference>uuid:093a2dal-q345-739r-babd-pqff98fe8j7d</m: reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
</m:reservation>
<n:passenger xmins:n="http://mycompany.example.com/employees"
env:role="http://www.w3.0rg/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">
<n:name>Ake Jogvan @yvind</n:name>
</n:passenger>
</env:Header>
<env:Body>
<p:itinerary
xmins:p="http://travelcompany.example.org/reservation/travel">
<p:departure>
<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:departureDate>2001-12-14</p:departureDate>
<p:departureTime>late afternoon</p:departureTime>
<p:seatPreference>aisle</p:seatPreference>
</p:departure>
<p:return>
<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2001-12-20</p:departureDate>
<p:departureTime>mid-morning</p:departureTime>
<p:seatPreference/>
</p:return>
</p:itinerary>
<q:Todging
xmins:q="http://travelcompany.example.org/reservation/hotels">
<q:preference>none</q:preference>
</q:1odging>
</env:Body>
</env:Envelope>

Figure 4. An example of a SOAP 1.2 message

The SOAP header

The SOAP <Header> is an optional element in a SOAP message. It is used to pass
application-related information that is to be processed by SOAP nodes along the
message path.

The immediate child elements of the <Header> element are called header blocks. A
header block is an application-defined XML element It represents a logical
grouping of data that can be targeted at SOAP nodes that might be encountered in
the path of a message from a sender to an ultimate receiver.

SOAP header blocks can be processed by SOAP intermediary nodes and by the
ultimate SOAP receiver node. However, in a real application, not every node
processes every header block. Rather, each node is typically designed to process
particular header blocks, and, conversely, each header block is intended to be
processed by particular nodes.

The SOAP header allows features to be added to a SOAP message in a
decentralized manner without prior agreement between the communicating parties.

Chapter 3. SOAP 13

SOAP defines a few attributes that can be used to indicate what will deal with a
feature and whether it is optional or mandatory. Such "control" information
includes, for example, passing directives or contextual information related to the
processing of the message. In this way, a SOAP message can be extended in an
application-specific manner.

Although the header blocks are application-defined, SOAP-defined attributes on
the header blocks indicate how the header blocks are to be processed by the SOAP
nodes. Note these important attributes:

encodingStyle
Indicates the rules used to encode the parts of a SOAP message. SOAP defines
a narrower set of rules for encoding data than the very flexible encoding that
XML allows.

role (SOAP 1.2)
actor (SOAP 1.1)

In SOAP 1.2, the role attribute specifies whether a particular node operates on
a message. If the role specified for the node matches the role attribute of the
header block, the node processes the header. If the roles do not match, the
node does not process the header block. In SOAP 1.1, the actor attribute has
the same function.

Roles can be defined by the application, and are designated by a URI. For
example, http://example.com/Log might designate the role of a node that
performs logging. Header blocks that are to be processed by this node specify
env:role="http://example.com/Log", where the namespace prefix env is
associated with the SOAP namespace name of http://www.w3.0rg/2003/05/
soap-envelope.

The SOAP 1.2 specification defines three standard roles in addition to the ones
that are defined by the application:

http://www.w3.0rg/2003/05/soap-envelope/none
None of the SOAP nodes on the message path will process the header
block directly. Header blocks with this role can be used to carry data that
is required for processing of other SOAP header blocks.

http://www.w3.0rg/2003/05/soap-envelope/next
All SOAP nodes on the message path are expected to examine the header
block, provided that the header has not been removed by a node earlier in
the message path.

http://www.w3.0rg/2003/05/soap-envelope/ultimateReceiver
Only the ultimate receiver node is expected to examine the header block.

mustUnderstand
This attribute is used to ensure that SOAP nodes do not ignore header blocks
that are important to the overall purpose of the application. If a SOAP node
determines, using the role or actor attribute, that it will process a header block,
and the mustUnderstand attribute has a value of "true", the node must either
process the header block in a manner consistent with its specification or not at
all (and throw a fault). But if the attribute has a value of "false", the node is
not obliged to process the header block.

In effect, the mustUnderstand attribute indicates whether processing of the
header block is mandatory or optional.

The mustUnderstand attribute has these values:

true (SOAP 1.2)

14 CICS TS for z/OS 4.2: Web Services Guide

1 (SOAP 1.1)
The node must either process the header block in a manner consistent with
its specification, or not at all (and throw a fault).

false (SOAP 1.2)
0 (SOAP 1.1)
The node is not obliged to process the header block.

relay (SOAP 1.2 only)
When a SOAP intermediary node processes a header block, it removes it from
the SOAP message. By default, it also removes any header blocks that it
ignored, because the mustUnderstand attribute had a value of "false".
However, when the relay attribute is specified with a value of "true", the node
retains the unprocessed header block in the message.

The SOAP body

The <Body> is the mandatory element in the SOAP envelope, in which the main
end-to-end information conveyed in a SOAP message is carried.

The <Body> element and its associated child elements are used to exchange
information between the initial SOAP sender and the ultimate SOAP receiver.
SOAP defines one child element for the <Body>: the <Fault> element, which is
used for reporting errors. Other elements in the <Body> are defined by the web
service that uses them.

The SOAP fault

The SOAP <Fault> element carries error and status information in the SOAP
message.

If an error occurs in a web service, a fault message is returned to the client. The
basic structure of the fault message is defined in the SOAP specifications. Each
fault message can include XML that describes the specific error condition. For
example, if an application abend occurs in a CICS web service, a fault message is
returned to the client reporting the abend.

CICS can send different types of fault message:

 Standard SOAP fault messages are defined by the SOAP specifications or one of
the web service specifications that are supported in CICS. The faults report
common error conditions, such as malformed SOAP envelopes.

* Application SOAP fault messages are generated using the EXEC CICS SOAPFAULT
API commands in response to conditions that are detected or handled by the

application. The structure of these fault messages is known to the application,
but not to CICS.

* SOAP handler fault messages are generated by the SOAP handler programs in
response to general error handling in CICS. For example, the SOAP handler
programs send SOAP faults for abends, XML parsing failures, and other
common errors.

e Application handler fault messages are generated by CICS SOAP application
handlers in response to finding errors when processing the body of a SOAP
message. These faults occur during the process of transforming the XML into
binary application data or when generating the response.

If an error occurs, the SOAP <Fault> element must be a body entry and must not
be present more than once in a <Body> element. The XML elements inside the

SOAP <Fault> element are different in SOAP 1.1 and SOAP 1.2.

Chapter 3. SOAP 15

SOAP 1.1

In SOAP 1.1, the SOAP <Fault> element contains the following elements:

<faultcode>
The <faultcode> element is a mandatory element in the <Fault> element. It
provides information about the fault in a form that can be processed by
software. SOAP defines a small set of SOAP fault codes covering basic
SOAP faults, and this set can be extended by applications.

<faultstring>
The <faultstring> element is a mandatory element in the <Fault> element.
It provides information about the fault in a form intended for a human
reader.

<faultactor>
The <faultactor> element contains the URI of the SOAP node that
generated the fault. A SOAP node that is not the ultimate SOAP receiver
must include the <faultactor> element when it creates a fault. An ultimate
SOAP receiver is not obliged to include this element, but may do so.

<detail>
The <detail> element carries application-specific error information related
to the <Body> element. It must be present if the contents of the <Body>
element were not successfully processed. It must not be used to carry
information about error information belonging to header entries. Detailed
error information belonging to header entries must be carried in header
entries.

SOAP 1.2

In SOAP 1.2, the SOAP <Fault> element contains the following elements:

<Code>
The <Code> element is a mandatory element in the <Fault> element. It
provides information about the fault in a form that can be processed by
software. It contains a <Value> element and an optional <Subcode> element.

<Reason>
The <Reason> element is a mandatory element in the <Fault> element. The
<Reason> element contains one or more <Text> elements, each of which
contains information about the fault in a different native language.

<Node>
The <Node> element contains the URI of the SOAP node that generated the
fault. A SOAP node that is not the ultimate SOAP receiver must include
the <Node> element when it creates a fault. An ultimate SOAP receiver is
not obliged to include this element, but may do so.

<Role>
The <Role> element contains a URI that identifies the role in which the
node was operating at the point the fault occurred.

<Detail>
The <Detail> element is an optional element, which contains
application-specific error information related to the SOAP fault codes
describing the fault. The presence of the <Detail> element has no
significance regarding which parts of the faulty SOAP message were
processed.

16 CICS TS for z/OS 4.2: Web Services Guide

SOAP fault example and schemas

The following example shows a SOAP fault message that is generated by the
application handler, DFHPITP, when processing the body of a SOAP message.

<SOAP-ENV:Fault xmlns="">
<faultcode>SO0AP-ENV:Server</faultcode>
<faultstring>Conversion to SOAP failed</faultstring>
<detail>
<CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
DFHPI1008 25/01/2010 14:16:50 IYCWZCFU 00340 XML
generation failed because of incorrect input
(CONTAINER_NOT_FOUND container name) for WEBSERVICE
servicename.
</CICSFault>
</detail>
</SOAP-ENV:Fault>

Most of the content in this example is common to all fault messages. The <Detail>
element contains the unique information that describes the problem that was
encountered by the application handler. This specific fault message contains a copy
of an error message that is written to the CICS message logs. If you want to parse
application handler SOAP faults programmatically, use the following XML schema:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmins="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.ibm.com/software/htp/cics/WSFault"
xmlins:tns="http://www.ibm.com/software/htp/cics/WSFault"
elementFormDefault="qualified">
<element name="CICSFault" type="string">
<annotation>
<documentation>
The value of this element is a text string that describes a
problem encountered during the processing of the Body of a
SOAP message.
</documentation>
</annotation>
</element>
</schema>

The general purpose fault messages are more complicated because the <Detail>
section can be structured in several different ways. If you want to parse SOAP
handler faults programmatically, use the XML schema that is supplied in
usshome/schemas/soapfault/soapfault.xsd, where usshome is the value of the
USSHOME system initialization parameter.

SOAP nodes

A SOAP node is the processing logic that operates on a SOAP message.

A SOAP node can perform these operations:
e Transmit a SOAP message

* Receive a SOAP message

* Process a SOAP message

* Relay a SOAP message

A SOAP node can be one of these types:

SOAP sender
A SOAP node that transmits a SOAP message.

Chapter 3. SOAP 17

SOAP receiver
A SOAP node that accepts a SOAP message.

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of a
SOAP message path.

SOAP intermediary
A SOAP intermediary is both a SOAP receiver and a SOAP sender,
targetable from within a SOAP message. It processes the SOAP header
blocks targeted at it and acts to forward a SOAP message toward an
ultimate SOAP receiver.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It
processes the contents of the SOAP body and any SOAP header blocks
targeted at it. In some circumstances, a SOAP message might not reach an
ultimate SOAP receiver; for example, because of a problem at a SOAP
intermediary.

The SOAP message path

The SOAP message path is the set of SOAP nodes through which a single SOAP
message passes, including the initial SOAP sender, zero or more SOAP
intermediaries, and an ultimate SOAP receiver

In the simplest case, a SOAP message is transmitted between two nodes; that is,
from a SOAP sender to a SOAP receiver. However, in more complex cases, messages
can be processed by SOAP intermediary nodes, which receive a SOAP message and
then send it to the next node. shows an example of a SOAP message path,
in which a SOAP message is transmitted from the initial SOAP sender node to the
ultimate SOAP receiver node, passing through two SOAP intermediary nodes on
its route.

Ultimate
SOAP

SOAP

intermediary -
receiver

SOAP SOAP SOAP
message message message

Initial SOAP

SOAP
sender

intermediary

Figure 5. An example of a SOAP message path

A SOAP intermediary is both a SOAP receiver and a SOAP sender. It can, and in
some cases must, process the header blocks in the SOAP message, and it forwards
the SOAP message toward its ultimate receiver.

18 CICS TS for z/OS 4.2: Web Services Guide

The ultimate SOAP receiver is the final destination of a SOAP message. As well as
processing the header blocks, it processes the SOAP body. In some circumstances, a
SOAP message might not reach an ultimate SOAP receiver; for example, because of
a problem at a SOAP intermediary.

Chapter 3. SOAP 19

20 CICS TS for z/OS 4.2: Web Services Guide

Chapter 4. How CICS supports web services

CICS supports two different approaches to the deployment of your CICS
applications in a web services environment. One approach enables rapid
deployment, with the least amount of programming effort; the other approach
gives you complete flexibility and control over your web service applications,
using code that you write to suit your particular needs. Both approaches are
underpinned by an infrastructure consisting of one or more pipelines and message
handler programs that operate on web service requests and responses.

When you deploy your CICS applications in a web services environment you can
choose from the following options:

* Use the CICS web services assistant to help you deploy an application with the
least amount of programming effort.

For example, if you want to expose an existing application as a web service, you
can start with a high-level language data structure and generate the web services
description. Alternatively, if you want to communicate with an existing web
service, you can start with its web service description and generate a high-level
language structure that you can use in your program.

The CICS web services assistant also generates the CICS resources that you need
to deploy your application. And when your application runs, CICS transforms
your application data into a SOAP message on output and transforms the SOAP
message back to application data on input.

* Take complete control over the processing of your data by writing your own
code to map between your application data and the message that flows between
the service requester and provider.

For example, if you want to use non-SOAP messages within the web service
infrastructure, you can write your own code to transform between the message
format and the format used by your application.

Whichever approach you follow, you can use your own message handlers to
perform additional processing on your request and response messages, or use
CICS-supplied message handlers that are designed especially to help you process
SOAP messages.

Message handlers and pipelines

A message handler is a program in which you can perform your own processing of
web service requests and responses. A pipeline is a set of message handlers that are
executed in sequence.

There are two distinct phases in the operation of a pipeline:

1. The request phase, during which CICS invokes each handler in the pipeline in
turn. Each message handler can process the request before returning control to
CICS.

2. This is followed by the response phase, during which CICS again invokes each
handler in turn, but with the sequence reversed. That is, the message handler
that is invoked first in the request phase, is invoked last in the response phase.
Each message handler can process the response during this phase.

© Copyright IBM Corp. 2005, 2012 21

Not every request is succeeded by a response; some applications use a one-way
message flow from service requester to provider. In this case, although there is
no message to be processed, each handler is invoked in turn during the
response phase.

shows a pipeline of three message handlers:

Request Request
—> —> —> 5
Handler Handler Handler
<+— 1 —] 2 —] 3 ——
Response Response

Figure 6. A generic CICS pipeline

In this example, the handlers are executed in the following sequence:

In the request phase

1. Handler 1
2. Handler 2
3. Handler 3
In the response phase
1. Handler 3
2. Handler 2
3. Handler 1

In a service provider, the transition between the phases normally occurs in the last
handler in the pipeline (known as the terminal handler) which absorbs the request,
and generates a response; in a service requester, the transition occurs when the
request is processed in the service provider. However, a message handler in the
request phase can force an immediate transition to the response phase, and an
immediate transition can also occur if CICS detects an error.

A message handler can modify the message, or can leave it unchanged. For
example:

* A message handler that performs encryption and decryption will receive an
encrypted message on input, and pass the decrypted message to the next
handler. On output, it will do the opposite: receive a plain text message, and
pass an encrypted version to the following handler.

* A message handler that performs logging will examine a message, and copy the
relevant information from that message to the log. The message that is passed to
the next handler is unchanged.

Important: If you are familiar with the SOAP feature for CICS TS, you should be
aware that the structure of the pipeline in this release of CICS is not the same as
that used in the feature.

Transport-related handlers

CICS supports the use of two transport mechanisms between the web service
requester and the provider. In some cases, you might require different message
handlers to be invoked, depending upon which transport mechanism is in use. For
example, you might want to include message handlers that perform encryption of
parts of your messages when you are using the HTTP transport to communicate

22 CICS TS for z/OS 4.2: Web Services Guide

on an external network. But encryption might not be required when you are using
the MQ transport on a secure internal network.

To support this, you can configure your pipeline to specify handlers that are
invoked only when a particular transport (HTTP or MQ) is in use. For a service
provider, you can be even more specific, and specify handlers that are invoked
only when a particular named resource (a TCPIPSERVICE for the HTTP transport,
a QUEUE for the MQ transport) is in use.

This is illustrated in

Request
Handle
WebSphere MQ q '
R
esponse Handler | Handler
4 < 5
Request - M
HTTP Handler "| Handler
2 < 3
Response

Figure 7. Pipeline with transport-related handlers

In this example, which applies to a service provider:

* Handler 1 is invoked for messages that use the MQ transport.

* Handlers 2 and 3 are invoked for messages that use the HTTP transport.
* Handlers 4 and 5 are invoked for all messages.

* Handler 5 is the terminal handler.

Interrupting the flow

During processing of a request, a message handler can decide not to pass a
message to the next handler, but can, instead, generate a response. Normal
processing of the message is interrupted, and some handlers in the pipeline are not
invoked. For example, suppose that handler 2 in is responsible for
performing security checks.

Request
Handler [| Handler Handler
— 1 —]| 2 3
Response

Figure 8. Interrupting the pipeline flow

If the request does not bear the correct security credentials, then, instead of passing
the request to handler 3, handler 2 suppresses the request and constructs a suitable
response. The pipeline is now in the response phase, and when handler 2 returns
control to CICS, the next handler invoked is handler 1, and handler 3 is bypassed
altogether.

A handler that interrupts the normal message flow in this way must only do so if
the originator of the message expects a response; for example, a handler should
not generate a response when an application uses a one-way message flow from
service requester to provider.

Chapter 4. How CICS supports web services 23

A service provider pipeline

In a service provider pipeline, CICS receives a request, which is passed through a
pipeline to the target application program. The response from the application is
returned to the service requester through the same pipeline.

When CICS is in the role of service provider, it performs the following operations:

1.
2.

5.

Receive the request from the service requester.

Examine the request, and extract the contents that are relevant to the target
application program.

Invoke the application program, passing data extracted from the request.

When the application program returns control, construct a response, using data
returned by the application program.

Send a response to the service requester.

illustrates a pipeline of three message handlers in a service provider

setting:
CICS Transaction Server
CICS Web services
Request | N
Service Handler ”| Handler ”| Handler Cics
requester 1 2 3 Application
< < < rogram
Response - . prog
non-terminal terminal
handlers handler

Figure 9. A service provider pipeline

1.

CICS receives a request from the service requester. It passes the request to
message handler 1.

Message handler 1 performs some processing, and passes the request to
handler 2 (To be precise, it returns control to CICS, which manages the
pipeline. CICS then passes control to the next message handler).

Message handler 2 receives the request from handler 1, performs some
processing, and passes the request to handler 3.

Message handler 3 is the terminal handler of the pipeline. It uses the
information in the request to invoke the application program. It then uses the
output from the application program to generate a response, which it passes
back to handler 2.

Message handler 2 receives the response from handler 3, performs some
processing, and passes it to handler 1.

Message handler 1 receives the response from handler 2, performs some
processing, and returns the response to the service requester.

A service requester pipeline

In a service requester pipeline, an application program creates a request, which is
passed through a pipeline to the service provider. The response from the service
provider is returned to the application program through the same pipeline.

24 CICS TS for z/OS 4.2: Web Services Guide

When CICS is in the role of service requester, it performs the following operations:

1.
2.
3.
4

5.

Use data provided by the application program to construct a request.
Send the request to the service provider.
Receive a response from the service provider.

Examine the response, and extract the contents that are relevant to the original
application program.

Return control to the application program.

illustrates a pipeline of three message handlers in a service requester
setting:

CICS Transaction Server

CICS Web services
N Request
cles Handler Handler Handler Pl Service
Application [E* 1 2 3 provider
program [< <
- - Response
non-terminal terminal
handlers handler

Figure 10. A service requester pipeline

An application program creates a request.

Message handler 1 receives the request from the application program, performs
some processing, and passes the request to handler 2 (To be precise, it returns
control to CICS, which manages the pipeline. CICS then passes control to the
next message handler).

Message handler 2 receives the request from handler 1, performs some
processing, and passes the request to handler 3.

Message handler 3 receives the request from handler 2, performs some
processing, and passes the request to the service provider.

Message handler 3 receives the response from the service provider, performs
some processing, and passes it to handler 2.

Message handler 2 receives the response from handler 3, performs some
processing, and passes it to handler 1.

Message handler 1 receives the response from handler 2, performs some
processing, and returns the response to the application program.

CICS pipelines and SOAP

The pipeline which CICS uses to process web service requests and responses is
generic, in that there are few restrictions on what processing can be performed in
each message handler. However, many web service applications use SOAP
messages, and any processing of those messages should comply with the SOAP
specification. Therefore, CICS provides special SOAP message handler programs that
can help you to configure your pipeline as a SOAP node.

A pipeline can be configured for use in a service requester, or in a service
provider:

— A service requester pipeline is the initial SOAP sender for the request, and the
ultimate SOAP receiver for the response

— A service provider pipeline is the ultimate SOAP receiver for the request, and
the initial SOAP sender for the response

Chapter 4. How CICS supports web services 25

You cannot configure a CICS pipeline to function as a SOAP intermediary.

A service requester pipeline can be configured to support SOAP 1.1 or SOAP 1.2,
but not both. However, a service provider pipeline can be configured to support
both SOAP 1.1 and SOAP 1.2. Within your CICS system, you can have many
pipelines, some of which support SOAP 1.1 or SOAP 1.2 and some of which
support both.

You can configure a CICS pipeline to have more than one SOAP message
handler.

The CICS-provided SOAP message handlers can be configured to invoke one or
more user-written header-handling routines.

The CICS-provided SOAP message handlers can be configured to enforce some
aspects of compliance with the WS-1 Basic Profile Version 1.1, and to enforce the
presence of particular headers in the SOAP message.

The SOAP message handlers, and their header handling routines are specified in
the pipeline configuration file.

SOAP messages and the application data structure

In many cases, the CICS web services assistant can generate the code to transform
the data between a high-level data structure used in an application program, and
the contents of the <Body> element of a SOAP message. In these cases, when you
write your application program, you do not need to parse or construct the SOAP
body; CICS will do this for you.

In order to transform the data, CICS needs information, at run time, about the
application data structure, and about the format of the SOAP messages. This
information is held in two files:

The web service binding file

This file is generated by the CICS web services assistant from an application
language data structure, using utility program DFHLS2WS, or from a web
service description, using utility program DFHWS2LS. CICS uses the binding file
to generate the resources used by the web service application, and to perform
the mapping between the application's data structure and the SOAP messages.

The web service description

This may be an existing web service description, or it may be generated from an
application language data structure, using utility program DFHLS2WS. CICS
uses the web service description to perform full validation of SOAP messages.

[Figure 11 on page 27|shows where these files are used in a service provider.

26 CICS TS for z/OS 4.2: Web Services Guide

SOAP envelope HLL data structure interface

CICS Transaction Server

CICS Web services
Request N R /
Service d Piveline » Data > Cics
requester < p) mapper [€— Application
Response program
Web Web

service service

description| [binding

SOAP body interface

Figure 11. Mapping the SOAP body to the application data structure in a service provider

A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) removes the SOAP envelope from an inbound request, and passes the
SOAP body to the data mapper function. This uses the web service binding file to
map the contents of the SOAP body to the application's data structure. If full
validation of the SOAP message is active, then the SOAP body is validated against
the web service description. If there is an outbound response, the process is
reversed.

Figure 12[shows where these files are used in a service requester.

EXEC CICS INVOKE WEBSERVICE SOAP envelope
with HLL data structure interface

/

CICS Transaction Server /

CICS Web services

- Request
C!CS_ ,| Data [€ Pieline g Service
Application [q > mapper | P P provider
program < h Response
Web Web
service service

description binding

N\
<

SOAP body interface

Figure 12. Mapping the SOAP body to the application data structure in a service requester

For an outbound request, the data mapper function constructs a SOAP body from
the application's data structure, using information from the web service binding
file. A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) adds the SOAP envelope. If there is an inbound response, the process is
reversed. If full validation of the SOAP message is active, then the inbound SOAP
body is validated against the web service description.

Chapter 4. How CICS supports web services 27

In both cases, the execution environment that allows a particular CICS application
program to operate in a web services setting is defined by three objects. These are
the pipeline, the web service binding file, and the web service description. The
three objects are defined to CICS as attributes of the WEBSERVICE resource
definition.

There are some situations in which, even though you are using SOAP messages,
you cannot use the transformation that the CICS web services assistant generates:

* When the same data cannot be represented in the SOAP message and in the
high-level language.

All the high-level languages that CICS supports, and XML Schema, support a
variety of different data types. However, there is not a one-to-one
correspondence between the data types used in the high-level languages, and
those used in XML Schema, and there are cases where data can be represented
in one, but not in the other. In this situations, you should consider one of the
following;:

— Change your application data structure. This may not be feasible, as it might
entail changes to the application program itself.

— Construct a wrapper program, which transforms the application data into a
form that CICS can then transform into a SOAP message body. If you do this,
you can leave your application program unchanged. In this case CICS web
service support interacts directly with the wrapper program, and only
indirectly with the application program.

* When your application program is in a language which is not supported by the
CICS web services assistant.

In this situation, you should consider one of the following:

— Construct a wrapper program that is written in one of the languages that the
CICS web services assistant does support (COBOL, PL/I, C or C++).

— Instead of using the CICS web services assistant, write your own program to
perform the mapping between the SOAP messages and the application
program's data structure.

WSDL and the application data structure

A web service description contains abstract representations of the input and output
messages used by the service. CICS uses the web service description to construct
the data structures used by application programs. At run time, CICS performs the
mapping between the application data structures and the messages.

The description of a web service contains, among other things:
* One or more operations
* For each operation, an input message and an optional output message

* For each message, the message structure, defined in terms of XML data types.
Complex data types used in the messages are defined in an XML schema which
is contained in the <types> element within the web service description. Simple
messages can be described without using the <types> element.

WSDL contains an abstract definition of an operation, and the associated messages;
it cannot be used directly in an application program. To implement the operation, a
service provider must do the following;:

* It must parse the WSDL, in order to understand the structure of the messages
* It must parse each input message, and construct the output message

28 CICS TS for z/OS 4.2: Web Services Guide

* It must perform the mappings between the contents of the input and output
messages, and the data structures used in the application program

A service requester must do the same in order to invoke the operation.

When you use the the CICS web services assistant, much of this is done for you,
and you can write your application program without detailed understanding of
WSDL, or of the way the input and output messages are constructed.

The CICS web services assistant consists of two utility programs:

DFHWS2LS
This utility program takes a web service description as a starting point. It
uses the descriptions of the messages, and the data types used in those
messages, to construct high-level language data structures that you can use
in your application programs.

DFHLS2WS
This utility program takes a high-level language data structure as a starting
point. It uses the structure to construct a web services description that
contains descriptions of messages, and the data types used in those
messages derived from the language structure.

Both utility programs generate a web services binding file that CICS uses at run
time to perform the mapping between the application program's data structures
and the SOAP messages.

An example of COBOL to WSDL mapping

This example shows how the data structure used in a COBOL program is
represented in the web services description that is generated by the CICS web
services assistant.

shows a simple COBOL data structure:

* Catalogue COMMAREA structure

03 CA-REQUEST-ID PIC X(6).

03 CA-RETURN-CODE PIC 9(2).

03 CA-RESPONSE-MESSAGE PIC X(79).

* Fields used in Place Order

03 CA-ORDER-REQUEST.
05 CA-USERID PIC X(8).
05 CA-CHARGE-DEPT PIC X(8).
05 CA-ITEM-REF-NUMBER PIC 9(4).
05 CA-QUANTITY-REQ PIC 9(3).
05 FILLER PIC X(888).

Figure 13. COBOL record definition of an input message defined in WSDL

The key elements in the corresponding fragment of the web services description
are shown in |Figure 14 on page 30}

Chapter 4. How CICS supports web services 29

<xsd:sequence>
<xsd:element name="CA-REQUEST-ID" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="6"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="CA-RETURN-CODE" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:short">
<xsd:maxInclusive value="99"/>
<xsd:minInclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="CA-RESPONSE-MESSAGE" nillable="false">

</xsd:element>
<xsd:element name="CA-ORDER-REQUEST" nillable="false">
<xsd:complexType mixed="false">
<xsd:sequence>
<xsd:element name="CA-USERID" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="8"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="CA-CHARGE-DEPT" nillable="false">

</xsd:element>
<xsd:element name="CA-ITEM-REF-NUMBER" nillable="false">

</xsd:element>
<xsd:element name="CA-QUANTITY-REQ" nillable="false">

</xsd:element>
<xsd:element name="FILLER" nillable="false">

</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>

Figure 14. WSDL fragment derived from a COBOL data structure

WSDL and message exchange patterns

A WSDL 2.0 document contains a message exchange pattern (MEP) that defines the
way that SOAP 1.2 messages are exchanged between the web service requester and
web service provider.

CICS supports four out of the eight message exchange patterns that are defined in
the WSDL 2.0 Part 2: Adjuncts specification and the WSDL 2.0 Part 2: Additional
MEPs specification for both service provider and service requester applications.
The following MEPs are supported:

In-Only
A request message is sent to the web service provider, but the provider is
not allowed to send any type of response to the web service requester.

* In provider mode, when CICS receives a request message from a web
service that uses the In-Only MEP, it does not return a response
message. The DFHNORESPONSE container is put in the SOAP handler
channel to indicate that the pipeline must not send a response message.

30 CICS TS for z/OS 4.2: Web Services Guide

* In requester mode, CICS sends the request message to the web service
provider and does not wait for a response.

In-Out
A request message is sent to the web service provider, and a response
message is returned to the web service requester. The response message
could be a normal SOAP message or a SOAP fault.

* In provider mode, when CICS receives a request message from a web
service that uses the In-Out MEP, it returns a response message to the
requester.

* In requester mode, CICS sends a request message and waits for a
response. This response is either a normal response message or a SOAP
fault message. The length of time that CICS waits for a response is
configured in the pipeline and applies to all web services using that
pipeline. If the request times out before CICS receives a response, an
error is returned to the service requester application.

In-Optional-Out
A request message is sent to the web service provider, and a response
message is optionally returned to the web service requester. If there is a
response, it could be either a normal SOAP message or a SOAP fault.

¢ In provider mode, the decision about whether to return a SOAP
response message, a SOAP fault, or no response, happens at run time
and is dependant on the service provider application logic. If CICS does
not send a response to the web service requester, the DFHNORESPONSE
container is put in the SOAP handler channel to indicate that the
pipeline must not send a response message. If no message is sent, the
service provider application must delete the DFHWS-DATA container
from the channel.

* In requester mode, CICS sends a request message and waits for a
response from the web service requester. If the request times out before
a response is received, CICS assumes that the message was received
successfully and that the provider did not need to send a response. The
length of time that CICS waits for a response is configured in the
pipeline and applies to all web services using that pipeline.

Robust In-Only
A request message is sent to the web service provider, and a response
message is only returned to the web service requester if an error occurs. If
there is an error, a SOAP fault message is sent to the requester.

* In provider mode, if the pipeline successfully passes the request message
to the application, a DFHNORESPONSE container is put in the SOAP
handler channel to indicate that the pipeline must not send a response
message. If an error occurs in the pipeline, a SOAP fault message is
returned to the requester.

* In requester mode, CICS sends the request message to the web service
provider and waits for a specified period before timing out. The length
of time that CICS waits for a response is configured in the pipeline and
applies to all web services using that pipeline. If there is a timeout, CICS
assumes that the request message was received successfully.

For more information on message exchange patterns in WSDL 2.0, see the
following W3C specifications:

* WSDL 2.0 Part 2: Adjuncts: .
e WSDL 2.0 Part 2: Additional MEPs: .

Chapter 4. How CICS supports web services 31

Related concepts:

[‘Message exchanges” on page 293

Web Services Addressing (WS-Addressing) supports these message exchanges:
one-way, two-way request-response, synchronous request-response, and
asynchronous request-response.

The web service binding file

The web service binding file contains information that CICS uses to map data
between input and output messages, and application data structures.

A web service description contains abstract representations of the input and output
messages used by the service. When a service provider or service requester
application executes, CICS needs information about how the contents of the
messages maps to the data structures used by the application. This information is
held in a web service binding file.

web service binding files are created:

* By utility program DFHWS2LS when language structures are generated from
WSDL.

* By utility program DFHLS2WS when WSDL is generated from a language
structure.

At run time, CICS uses information in the web service binding file to perform the
mapping between application data structures and SOAP messages. web service

binding files are defined to CICS in the WSBIND attribute of the WEBSERVICE
resource.

Related information:
WEBSERVICE resource definitions|

External standards

CICS support for web services conforms to a number of industry standards and
specifications.

SOAP 1.1 and 1.2

SOAP is a lightweight, XML-based, protocol for exchange of information in a
decentralized, distributed environment.

The protocol consists of three parts:

* An envelope that defines a framework for describing what is in a message and
how to process it.

* A set of encoding rules for expressing instances of application-defined data

types.
* A convention for representing remote procedure calls and responses.

SOAP can be used with other protocols, such as HTTP.

The specifications for SOAP are published by the [World Wide Web Consortium|
W3C)L The specification for SOAP 1.1 is described as a note at
http:/ /www.w3.org/TR/SOAP|This specification has not been endorsed by the

W3C, but forms the basis for the SOAP 1.2 specification. It expands the SOAP
acronym to Simple Object Access Protocol.

32 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/SOAP

SOAP 1.2 is a W3C recommendation and is published in two parts:

 Part 1: Messaging Framework is published at |http:/ /www.w3.org/TR/soap12

fpart1/].

* Part 2: Adjuncts is published at fhttp://www.w3.org/TR/soap12-part2 /|

The specification also includes a primer that is intended to provide a tutorial on

the features of the SOAP Version 1.2 specification, including usage scenarios. The
primer is published at |ttp:/ /www.w3.org /TR /soap12-part0/} The specification

for SOAP 1.2 does not expand the acronym.

SOAP 1.1 Binding for MTOM 1.0
SOAP 1.1 Binding for MTOM 1.0 is a specification that describes how to use the
SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP) specifications with SOAP 1.1.

The aim of this specification is to define the minimum changes to MTOM and XOP
to enable these facilities to be used interoperably with SOAP 1.1 and to largely
reuse the SOAP 1.2 MTOM/XOP implementation.

The SOAP 1.1 Binding for MTOM 1.0 specification is published as a formal
submission by the [World Wide Web Consortium (W3C) at [http://www.w3.org /|
[Submission/soap1lmtom10/|

SOAP Message Transmission Optimization Mechanism
(MTOM)

SOAP Message Transmission Optimization Mechanism (MTOM) is one of a related pair
of specifications that defines conceptually how to optimize the transmission and
format of a SOAP message.

MTOM defines:
1. how to optimize the transmission of base64binary data in SOAP messages in
abstract terms

2. how to implement optimized MIME multipart serialization of SOAP messages
in a binding independent way using XOP

The implementation of MTOM relies on the related XML-binary Optimized
Packaging (XOP) specification. As these two specifications are so closely linked,
they are normally referred to as MTOM/XOP.

The specification is published by the [World Wide Web Consortium (W3C)|as a
W3C Recommendation at fhttp://www.w3.org /TR /soap12-mtom /|

Web Services Addressing 1.0

Web Services Addressing 1.0 (WS-Addressing) is a specification that defines a
transport-independent mechanism for passing messaging information between Web
services.

The WS-Addressing specification defines two constructs, message addressing
properties and endpoint references, that normalize the information that is typically
provided by transport protocols and messaging systems.

The specification is published by the [World Wide Web Consortium (W3C)|as a
W3C recommendation and is published in three parts:

+ [WS-Addressing 1.0 - Core]|

Chapter 4. How CICS supports web services 33

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org
http://www.w3.org/Submission/soap11mtom10/
http://www.w3.org/Submission/soap11mtom10/
http://www.w3.org
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/
http://www.w3.org/TR/ws-addr-core

* |WS-Addressing 1.0 - SOAP binding|
* |WS-Addressing 1.0 - Metadatal

You are recommended to follow these W3C specifications when using
WS-Addressing with CICS.

For interoperability, CICS tolerates the W3C WS-Addressing submission
specification only when the namespace is set to: http://schemas.xmlsoap.org/ws/
2004/08/addressing.

The CICS API commands support MAPs and EPRs that follow the WS-Addressing
recommendation specifications; however, the API commands do not support MAPs
and EPRs that follow the WS-Addressing submission specification.

The addressing context maintains all the MAPs at the level of the recommendation
specifications. If required, these MAPs can be converted to, or from, the submission
specification level when they are applied to, or extracted from, the SOAP message.

Web Services Atomic Transaction Version 1.0

Web Services Atomic Transaction Version 1.0 (or WS-AtomicTransaction) is a protocol
that defines the atomic transaction coordination type for transactions of a short
duration. It is used with the extensible coordination framework described in the
Web Services Coordination Version 1.0 (or WS-Coordination) specification.

The WS-AtomicTransaction specification and the WS-Coordination specification
define protocols for short term transactions that enable transaction processing
systems to interoperate in a Web services environment. Transactions that use
WS-AtomicTransaction have the ACID properties of atomicity, consistency,
isolation, and durability.

The specification for WS-AtomicTransaction is published at [http:/ /www.ibm.com /|
ideveloperworks /library /specification /ws-tx /|

Web Services Coordination Version 1.0

Web Services Coordination Version 1.0 (or WS-Coordination) is an extensible
framework for providing protocols that coordinate the actions of distributed
applications. These coordination protocols are used to support a number of
applications, including those that need to reach consistent agreement on the
outcome of distributed activities.

The framework enables an application service to create a context needed to
propagate an activity to other services and to register for coordination protocols.
The framework enables existing transaction processing, workflow, and other
systems for coordination to hide their proprietary protocols and to operate in a
heterogeneous environment.

The specification for WS-Coordination is published at Ihttp: / /www.ibm.com/ |
ldeveloperworks /library /specification / ws-tx /}

Web Services Description Language Version 1.1 and 2.0

Web Services Description Language (WSDL) is an XML format for describing network
services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.

34 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/ws-addr-soap
http://www.w3.org/TR/ws-addr-metadata
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/

The operations and messages are described abstractly, and then bound to a
concrete network protocol and message format to define an endpoint. Related
concrete end points are combined into abstract endpoints (services).

WSDL is extensible to allow the description of endpoints and their messages
regardless of what message formats or network protocols are used to communicate.
The WSDL 1.1 specification only defines bindings that describe how to use WSDL
in conjunction with SOAP 1.1, HTTP GET and POST, and MIME.

WSDL 2.0 provides a model as well as an XML format for describing Web services.
It enables you to separate the description of the abstract functionality offered by a
service from the concrete details of a service description, such as "how" and
"where" that functionality is offered. It also describes extensions for Message
Exchange Patterns, SOAP modules, and a language for describing such concrete
details for SOAP 1.2 and HTTP. The WSDL 2.0 specification also resolves many
technical issues and limitations that are present in WSDL 1.1.

The specification for WSDL 1.1 is published by the [World Wide Web Consortium|
as a W3C Note at|http:/ /www.w3.org/TR/wsdl|

The latest specification for WSDL 2.0 is published as a W3C candidate
recommendation at |http:/ /www.w3.org /TR /wsd120]

Web Services Security: SOAP Message Security

Web Services Security (WSS): SOAP Message Security is a set of enhancements to
SOAP messaging that provides message integrity and confidentiality. WSS: SOAP
Message Security is extensible, and can accommodate a variety of security models
and encryption technologies.

WSS: SOAP Message Security provides three main mechanisms that can be used
independently or together. They are:

* The ability to send security tokens as part of a message, and for associating the
security tokens with message content

* The ability to protect the contents of a message from unauthorized and
undetected modification (message integrity)

* The ability to protect the contents of a message from unauthorized disclosure
(message confidentiality).

WSS: SOAP Message Security can be used in conjunction with other Web service
extensions and application-specific protocols to satisfy a variety of security
requirements.

The specification is published by the [Organization for the Advancement of|
Structured Information Standards (OASIS)| at |http://docs.oasis-open.org /wss/ |
0004 /01 / 0asis-200401-wss-soap-message-security-1.0.pdf]

Web Services Trust Language

Web Services Trust Language (or WS-Trust) defines extensions that build on Web
Services Security to provide a framework for requesting and issuing security
tokens, and to broker trust relationships.

WS-Trust describes:
1. Methods for issuing, renewing, and validating security tokens.
2. Ways to establish, access the presence of, and broker trust relationships.

Chapter 4. How CICS supports web services 35

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20
http://www.oasis-open.org
http://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

CICS supports the February 2005 version of the specification which is published at
lhttp:/ /www-128.ibm.com /developerworks/library /specification / ws-trust /|

WSDL 1.1 Binding Extension for SOAP 1.2

WSDL 1.1 Binding Extension for SOAP 1.2 is a specification that defines the binding
extensions that are required to indicate that Web service messages are bound to the
SOAP 1.2 protocol.

The aim of this specification is to provide functionality that is comparable with the
binding for SOAP 1.1.

This specification is published as a formal submission request by the |World Widel
[Web Consortium (W3C)| at |ttp:/ /www.w3.org/Submission/wsdl11soap12 /|

WS-I Basic Profile Version 1.1

WS-I Basic Profile Version 1.1 (WS-1 BP 1.1) is a set of non-proprietary Web services
specifications, along with clarifications and amendments to those specifications,
which together promote interoperability between different implementations of Web
services.

The WS-1 BP 1.1 is derived from Basic Profile Version 1.0 by incorporating its
published errata and separating out the requirements that relate to the serialization
of envelopes and their representation in messages. These requirements are now
part of the Simple SOAP Binding Profile Version 1.0.

To summarize, the WS-I Basic Profile Version 1.0 has now been split into two
separately published profiles. These are:

e WS-I Basic Profile Version 1.1
* WS-I Simple SOAP Binding Profile Version 1.0

Together, these two Profiles supersede the WS-I Basic Profile Version 1.0.
The reason for this separation is to enable the Basic Profile 1.1 to be composed

with any profile that specifies envelope serialization, including the Simple SOAP
Binding Profile 1.0.

The specification for WS-I BP 1.1 is published by the [Web Services Interoperability|
Organization (WS-I)} and can be found at|http:/ /www.ws-i.org /Profiles/
BasicProfile-1.1.html|

WS-I Simple SOAP Binding Profile Version 1.0

WS-I Simple SOAP Binding Profile Version 1.0 (SSBP 1.0) is a set of non-proprietary
Web services specifications, along with clarifications and amendments to those
specifications which promote interoperability.

The SSBP 1.0 is derived from the WS-I Basic Profile 1.0 requirements that relate to
the serialization of the envelope and its representation in the message.

WS-I Basic Profile 1.0 has now been split into two separately published profiles.
These are:

e WS-I Basic Profile Version 1.1
* WS-I Simple SOAP Binding Profile Version 1.0

Together, these two Profiles supersede the WS-I Basic Profile Version 1.0.

36 CICS TS for z/OS 4.2: Web Services Guide

http://www-128.ibm.com/developerworks/library/specification/ws-trust/
http://www.w3.org
http://www.w3.org
http://www.w3.org/Submission/wsdl11soap12/
http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

The specification for SSBP 1.0 is published by the[Web Services Interoperability|
Organization (WS-I)} and can be found at|http:/ /www.ws-i.org /Profiles /|
SimpleSoapBindingProfile-1.0.htmll

XML (Extensible Markup Language) Version 1.0

Extensible Markup Language (XML) 1.0 is a subset of SGML. Its goal is to enable
generic SGML to be served, received, and processed on the World Wide Web in the
way that is now possible with HTML.

XML has been designed for ease of implementation and for interoperability with
both SGML and HTML.

CICS supports the fourth edition of the XML Version 1.0 specification. The
specification and its errata is published by the [World Wide Web Consortium (W3C)|
as a W3C Recommendation at [XML Version 1.0}

XML-binary Optimized Packaging (XOP)
XML-binary Optimized Packaging (XOP) is one of a related pair of specifications that
defines how to efficiently serialize XML Infosets that have certain types of content.

XOP does this by:

1. packaging the XML in some format. This is called the XOP package. The
specification mentions MIME Multipart/Related but does not limit it to this
format.

2. Re-encoding all or part of base64binary content to reduce its size.

3. Placing the base64binary content elsewhere in the package and replacing the
encoded content with XML that references it.

XOP is used as an implementation of the MTOM specification, which defines the
optimization of SOAP messages. As these two specifications are so closely linked,
they are normally referred to as MTOM /XOP.

The specification is published by the [World Wide Web Consortium (W3C)|as a
W3C Recommendation at fhttp://www.w3.org /TR /xop10/|

XML Encryption Syntax and Processing

XML Encryption Syntax and Processing specifies a process for encrypting data and
representing the result in XML. The data may be arbitrary data (including an XML
document), an XML element, or XML element content. The result of encrypting
data is an XML Encryption element which contains or references the cipher data.

XML Encryption Syntax and Processing is a recommendation of the [World Wide Web|
IConsortium (W3C)|and is published at Ihttp:/ /www.w3.org /TR /xmlenc-core|

XML-Signature Syntax and Processing

XML-Signature Syntax and Processing specifies processing rules and syntax for XML
digital signatures.

XML digital signatures provide integrity, message authentication, and signer

authentication services for data of any type, whether located within the XML that
includes the signature or elsewhere.

Chapter 4. How CICS supports web services 37

http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://www.w3.org
http://www.w3.org/TR/REC-xml
http://www.w3.org
 http://www.w3.org/TR/xop10/
http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/xmlenc-core

The specification for XML-Signature is published by [World Wide Web Consortium|
[(W3C)| at |http: / /www.w3.org /TR /xmldsig-core

CICS compliance with Web services standards

CICS is compliant with the supported Web services standards and specifications, in
that it allows you to generate and deploy Web services that are compliant.

It should be noted that CICS does not enforce this compliancy. For example, in the
case of support for the WS-I Basic Profile 1.1 specification, CICS allows you to
apply additional qualities of service to your Web service that could break the
interoperability outlined in this Profile.

How CICS complies with WS-Addressing

CICS complies with the Core and SOAP binding parts of the WS-Addressing
specification. CICS complies with the Metadata part of the specification with one
exception.

When CICS issues a WS-Addressing fault, it does not conform to the specification.
CICS follows the format described in the Metadata specification for the default
action when building a WS-Addressing fault, but it does not include the final
delimiter and Fault name.

For WSDL 1.1, the default action according to the specification is:
[target namespace] [delimiter] [port type name] [delimiter] [operation name] [delimiter]Fault[delimiter][fault name]

However, CICS omits the fault name and builds the default action as follows:
[target namespace] [delimiter] [port type name][delimiter] [operation name] [delimiter]Fault[delimiter]

For WSDL 2.0, the default action according to the specification is:

[target namespace] [delimiter] [interface name] [delimiter] [fault name]

However, CICS omits the fault name and builds the default action as follows:
[target namespace] [delimiter] [interface name] [delimiter]

How CICS complies with WSDL 2.0
CICS conditionally complies with WSDL 2.0, and support is subject to the

following restrictions.
Mandatory requirements

* Only the message exchange patterns in-only, in-out, robust in-only, and
in-optional-out may be used in the WSDL.

* Only one Endpoint is allowed for each Service.
* There must be at least one Operation.

* Endpoints may only be specified with a URL

¢ There must be a SOAP binding

¢ The XML schema type system must be used.

Aspects that are tolerated
* The following HTTP binding properties are ignored:
— whittp:location
— whttp:header
— whttp:transferCodingDefault
— whittp:transferCoding

38 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/xmldsig-core/

— whittp:cookies
— whttp:authenticationType
— whittp:authenticationRealm

¢ SOAP header information is ignored by DFHWS2LS. However, you can
add your own message handlers to the pipeline to create and process the
required SOAP header information for inbound and outbound messages.

Aspects that are not supported
¢ The #any and #other message content models.

* The out-only, robust-out-only, out-in and out-optional-in message
exchange patterns.

* WS-Addressing for Endpoints.

¢ HTTP GET is not supported. This is defined using the soap-response
message exchange pattern in the WSDL document. If your WSDL defines
this message exchange pattern, DFHWS2LS issues an error message.

How CICS complies with Web Services Security specifications
CICS conditionally complies with Web Services Security: SOAP Message Security
and related specifications by supporting the following aspects.

Compliance with Web Services Security: SOAP Message Security

Security header
The <wsse:Security> header provides a mechanism for attaching
security-related information targeted at a specific recipient in the form of a
SOAP actor or role. This could be the ultimate recipient of the message or
an intermediary. The following attributes are supported in CICS:

 Sll:actor (for an intermediary)
* Sll:mustUnderstand
* Sl2:role (for an intermediary)
* S12:mustUnderstand
Security tokens
The following security tokens are supported in the security header:
¢ User name and password
* Binary security token (X.509 certificate)
Token references
A security token conveys a set of claims. Sometimes these claims reside
elsewhere and need to be accessed by the receiving application. The

<wsse:SecurityTokenReference> element provides an extensible mechanism
for referencing security tokens. The following mechanisms are supported:

* Direct reference
* Key identifier
¢ Key name
* Embedded reference
Signature algorithms
This specification builds on XML Signature and therefore has the same

algorithm requirements as those specified in the XML Signature
specification. CICS supports:

Chapter 4. How CICS supports web services 39

40

Algorithm type Algorithm URI
Digest SHA1 http://www.w3.0rg/2000/09/
xmldsig#shal
Signature DSA with SHA1 (validation |http://www.w3.0rg/2000/09/
only) xmldsig#dsa-shal
Signature RSA with SHA1 http://www.w3.0rg/2000/09/
xmldsig#rsa-shal
Canonicalization Exclusive XML http://www.w3.0rg/2001/10/
canonicalization (without xml-exc-cl4n#
comments)

Signature signed parts
CICS allows the following SOAP elements to be signed:

¢ The SOAP message body
* The identity token (a type of security token), that is used as an asserted
identity

Encryption algorithms
The following data encryption algorithms are supported:

Algorithm URI

Triple Data Encryption http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc
Standard algorithm (Triple

DES)

Advanced Encryption http://www.w3.0rg/2001/04/xmlenc#aes128-chc
Standard (AES) algorithm

with a key length of 128 bits

Advanced Encryption http://www.w3.0rg/2001/04/xmlenc#aes192-cbhc
Standard (AES) algorithm

with a key length of 192 bits

Advanced Encryption http://www.w3.0rg/2001/04/xmlenc#aes256-chc
Standard (AES) algorithm

with a key length of 256 bits

The following key encryption algorithm is supported:

Algorithm URI

Key transport (public key cryptography) http://www.w3.0rg/2001/04/xmlenc#rsa-1_5
RSA Version 1.5:

Encryption message parts
CICS allow the following SOAP elements to be encrypted:

¢ The SOAP body

Timestamp
The <wsu:Timestamp> element provides a mechanism for expressing the
creation and expiration times of the security semantics in a message. CICS
tolerates the use of timestamps within the Web services security header on
inbound SOAP messages.

Error handling
CICS generates SOAP fault messages using the standard list of response
codes listed in the specification.

CICS TS for z/OS 4.2: Web Services Guide

Compliance with Web Services Security: UsernameToken Profile 1.0

The following aspects of this specification are supported:

Password types
Text

Token references
Direct reference

Compliance with Web Services Security: X.509 Certificate Token Profile
1.0

The following aspects of this specification are supported:

Token types

* X.509 Version 3: Single certificate. See |http://docs.oasis-open.org/wss/|
[2004 /01 / 0asis-200401-wss-x509-token-profile-1.0.pdfl

* X.509 Version 3: X509PKIPathv1l without certificate revocation lists
(CRL). See |http:/ /docs.oasis-open.org /wss /2004 /01 / oasis-200401-wss-]
[x509-token-profile-1.0.pdf]

* X.509 Version 3: PKCS7 with or without CRLs. The IBM Software
Development Kit (SDK) supports both.

Token references
* Key identifier - subject key identifier
e Direct reference

e Custom reference - issuer name and serial number
Aspects that are not supported

The following items are not supported in CICS:
* Validation of Timestamps for freshness

* Nonces

* Web services security for SOAP attachments

* References to X509 certificates from a <wsse:SecurityTokenReference> using a
<wsse:Keyldentifier>

* Security Assertion Markup Language (SAML) token profile,
WS-SecurityKerberos token profile, and XrML token profile

* Web Services Interoperability (WS-I) Basic Security Profile
¢ XML enveloping digital signature
* XML enveloping digital encryption

The following transport algorithms for digital signatures are not supported:
— XSLT: http://www.w3.0rg/TR/1999/REC-xs1t-19991116
— SOAP Message Normalization. For more information, see

[http: / / www.w3.org /TR /2003 /NOTE-soap12-n11n-20031008 /|

The Diffie-Hellman key agreement algorithm for encryption is not supported.
For more information, see |http://www.w3.org/TR /2002 /REC-xmlenc-core
[20021210/Overview.html#sec-DHKey Value]

* The following canonicalization algorithm for encryption, which is optional in the
XML encryption specification, is not supported:

— Canonical XML with or without comments

— Exclusive XML canonicalization with or without comments

Chapter 4. How CICS supports web services 41

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue

* In the Username Token Version 1.0 Profile specification, the digest password
type is not supported.

How CICS complies with WS-Trust
CICS conditionally complies with WS-Trust, and support is subject to the following

restrictions.

Aspects that are supported
* Validation binding
* Issuance binding where one token is returned
¢ AppliesTo in the Issuance binding

Aspects that are tolerated
* Requested references
¢ Keys and entropy

* Returning computed keys

Aspects that are not supported
* Returning multiple security tokens
* Returning security tokens in headers
* Renewal bindings
* Cancel bindings
* Negotiation and challenge extensions
* Key and Token parameter extensions
* Key exchange token binding

How CICS complies with WS-I Basic Profile 1.1

CICS conditionally complies with WS-I Basic Profile 1.1 in that it adheres to all the
MUST level requirements. However, CICS does not specifically implement support
for UDDI registries, and therefore the points relating to this in the specification are
ignored. Also the Web services assistant jobs and associated runtime environment
are not fully compliant with this Profile, as there are limitations in the support of
mapping certain schema elements.

See [High-level language and XML schema mapping|for a list of unsupported
schema elements.

Conformance targets identify what artifacts (e.g. SOAP message, WSDL
description) or parties (e.g. SOAP processor, end user) that the requirements apply
to. The conformance targets supported by CICS are:

MESSAGE
Protocol elements that transport the ENVELOPE (e.g. SOAP over HTTP
messages).

ENVELOPE
The serialization of the soap:Envelope element and its content.

DESCRIPTION
The description of types, messages, interfaces and their protocol and data
format bindings, and network access points associated with Web services
(e.g. WSDL descriptions).

INSTANCE
Software that implements a wsd1:port.

42 CICS TS for z/OS 4.2: Web Services Guide

CONSUMER
Software that invokes an INSTANCE.

SENDER
Software that generates a message according to the protocol associated
with it

RECEIVER

Software that consumes a message according to the protocol associated
with it.

Chapter 4. How CICS supports web services 43

44 CICS TS for z/OS 4.2: Web Services Guide

Chapter 5. Getting started with web services

There are several ways to get started with web services in CICS. The most
appropriate way for you depends on how much you already know and how
advanced your plans are for using web services.

About this task

Here are some starting points for web services in CICS:

Procedure

¢ Install the example application. CICS provides an example of a catalog
management application, which can be enabled as a web service provider. The
example includes all the code and resource definitions that you need to get the
application working in CICS with the minimum amount of work. It also
includes code to interact with the service that runs on a number of common web
service clients.
Use the example application if you want a rapid proof-of-concept demonstration

that you can deploy a web service in CICS or if you want a hands-on way to
learn about web services in CICS.

The example application is described in [Chapter 15, “The CICS catalog manager]|
[example application,” on page 337]

* Plan for the deployment of an application as a service provider or a requester.
You might already know enough about how you will use web services in CICS
to start planning your applications and the related infrastructure.

Planning to use web services
Before you begin

Before you can plan to use web services in CICS, you need to consider these
questions for each application:

Do you plan to deploy your CICS application in the role of a service provider or
a service requester?

You may have a pair of applications that you want to connect using CICS
support for web services. In this case, one application will be the service
provider; the other will be the service requester.

Do you plan to use your existing application programs, or write new ones?
If your existing applications are designed with a well defined interface to
the business logic, you will probably be able to use them in a web services
setting, either as a service provider or a service requester. However, in
most cases, you will need to write a wrapper program that connects your
business logic to the web services logic.

If you plan to write new applications, you should aim to keep your
business logic separated from your web services logic, and, once again,
you will need to write a wrapper program to provide this separation.
However, if your application is designed with web services in mind, the
wrapper might be simpler to write.

© Copyright IBM Corp. 2005, 2012 45

Do you intend to use SOAP messages?
SOAP is fundamental to the web services architecture, and much of the
support that is provided in CICS assumes that you will use SOAP.
However, there may be situations where you want to use other message
formats. For example, you might have developed your own message
formats that you want to deploy with the CICS web services infrastructure.
You can do this with CICS, but you will not be able to use some of the
functions that CICS provides, such as the web services assistant, and the
SOAP message handlers.

If you decide not to use SOAP, your application programs will be
responsible for parsing inbound messages, and constructing outbound
messages.

Do you intend to use the CICS web services assistant to generate the mappings
between your data structures and SOAP messages?
The assistant provides a rapid deployment of many applications into a web
services setting with little or no additional programming. And when
additional programming is required, it is usually straightforward, and can
be done without changing existing business logic.

However, there are cases which are better handled without using the web
services assistant. For example, if you have existing code that maps data
structures to SOAP messages, there is no advantage in reengineering your
application with the web services assistant.

Although the CICS web services assistant supports the most common data
types and structures, there are some that are not supported. In this
situation, you should check the list of unsupported data types and
structures for the language in question, and consider providing a program
layer that maps your application data to a format that the assistant can
support. If this is not possible, you will need to parse the message
yourself. For details on what the assistant can and cannot support, see
[High-level language and XML schema mapping]

If you decide not to use the CICS web services assistant, you can use a tool
such as Rational® Developer for System z to create the necessary artifacts,
and you can then provide your own code for parsing inbound messages,
and constructing outbound messages. You can also use the provided
vendor interface API.

Do you intend to use an existing service description, or create a new one?
In some situations, you will be obliged to use an existing service
description as a starting point. For example:

* Your application is a service requester, and it is designed to invoke an
existing web service.

* Your application is a service provider, and you want it to conform to an
existing industry-standard service description.

In other situations, you may need to create a new service description for
your application.

46 CICS TS for z/0S 4.2: Web Services Guide

What to do next

Related information:

[The CICS catalog manager example application|

The CICS catalog manager example application is a working COBOL application
that is designed to illustrate best practice when connecting CICS applications to
external clients and servers.

Planning a service provider application

In general, CICS applications should be structured to ensure separation of business
logic and communications logic. Following this practice will help you to deploy
new and existing applications in a web service provider in a straightforward way.
You will, in some situations, need to interpose a simple wrapper program between
your application program and CICS web service support.

shows a typical application which is partitioned to ensure a separation
between communication logic and business logic.

CICS Transaction Server

Client l¢ Communications | EXEC CICS Business
lent < logic LINK © logic

A 4

Figure 15. Application partitioned into communications and business logic

In many cases, you can deploy the business logic directly as a service provider
application. This is illustrated in

CICS Transaction Server

CICS :
Client le—»| Web service > Bulsm_ess
ogic
support

Figure 16. Simple deployment of CICS application as a web service provider

To use this simple model, the following conditions apply:

When you are using the CICS web services assistant to generate the mapping
between SOAP messages and application data structures:
The data types used in the interface to the business logic must be
supported by the CICS web services assistant. If this is not the case, you
must interpose a wrapper program between CICS web service support and
your business logic.

You will also need a wrapper program when you deploy an existing
program to provide a service that conforms to an existing web service
description: if you process the web service description using the assistant,
the resulting data structures are very unlikely to match the interface to
your business logic.

Chapter 5. Getting started with web services 47

When you are not using the CICS web services assistant:
Message handlers in your service provider pipeline must interact directly
with your business logic.

Using a wrapper program

Use a wrapper program when the CICS web services assistant cannot generate
code to interact directly with the business logic. For example, the interface to the
business logic might use a data structure which the CICS web services assistant
cannot map directly into a SOAP message. In this situation, you can use a wrapper
program to provide any additional data manipulation that is required:

CICS Transaction Server

CICS)
. . wrapper EXEC CICS Business
Client [« » Web service > > .
support program LINK logic

Figure 17. Deployment of CICS application as a web service provider using a wrapper
program

You will need to design a second data structure that the assistant can support, and
use this as the interface to your wrapper program. The wrapper program then has
two simple functions to perform:

* move data between the two data structures

* invoke the business logic using its existing interface
Error handling

If you are planning to use the CICS web services assistant, you should also
consider how to handle rolling back changes when errors occur. When a SOAP
request message is received from a service requester, the SOAP message is
transformed by CICS just before it is passed to your application program. If an
error occurs during this transformation, CICS does not automatically roll back any
work that has been performed on the message. For example, if you plan to add
some additional processing on the SOAP message using handlers in the pipeline,
you need to decide if they should roll back any recoverable changes that they have
already performed.

On outbound SOAP messages, for example when your service provider application
program is sending a response message to a service requester, if CICS encounters
an error when generating the response SOAP message, all of the recoverable
changes made by the application program are automatically backed out. You
should consider whether adding synchronization points is appropriate for your
application program.

If you are planning to use web service atomic transactions in your provider
application, and the web service requester also supports atomic transactions, any
error that causes CICS to roll back a transaction would also cause the remote
requester to roll back its changes.

Planning a service requester application

In general, CICS applications should be structured to ensure separation of business
logic and communications logic. Following this practice will help you to deploy

48 CICS TS for z/0S 4.2: Web Services Guide

new and existing applications in a web service requester in a straightforward way.
You will, in almost every situation, need to interpose a simple wrapper program
between your application program and CICS web service support.

shows a typical application which is partitioned to ensure a separation
between communication logic and business logic. The application is ideally
structured for reuse of the business logic in a web service requester.

CICS Transaction Server

Business EXEC CICS ,| Communications | »ls
logic LINK logic | oerver

Figure 18. Application partitioned into communications and business logic

You cannot use the existing EXEC CICS LINK command to invoke CICS web services
support in this situation:

* When you are using the CICS web services assistant to generate the mapping
between SOAP messages and application data structures, you must use an EXEC
CICS INVOKE SERVICE command, and pass the application's data structure to
CICS web services support. Also, the data types used in the interface to the
business logic must be supported by the CICS web services assistant.

However, if the target WEBSERVICE that your application program invokes is
provider mode, i.e. a value has been defined for the PROGRAM attribute, CICS
automatically optimizes the request using the EXEC CICS LINK command.

* When you are not using the CICS web services assistant, you must construct
your own messages, and link to program DFHPIRT.

Either way, it follows that your business logic cannot invoke a web service directly
unless you are prepared to change the program. For the web services assistant, this
option is shown in but it is not advisable in either case.

CICS Transaction Server

EXEC CICS
: CIcS
Business INVOKE ;
) > W >
logic WEBSERVICE ‘Z?J;gg‘r’fe Server

Figure 19. Simple deployment of CICS application as a web service requester
Using a wrapper program

A better solution, which keeps the business logic almost unchanged, is to use a
wrapper program. The wrapper, in this case, has two purposes:

e It issues an EXEC CICS INVOKE SERVICE command, or an EXEC CICS LINK
PROGRAM(DFHPIRT), on behalf of the business logic. The only change in the
business logic is the name of the program to which it links.

* It can, if necessary, provide any data manipulation that is required if your
application uses a data structure which the CICS web services assistant cannot
map directly into a SOAP message.

Chapter 5. Getting started with web services 49

For the case when the web services assistant is used, this structure is illustrated in

CICS Transaction Server

EXEC CICS

. cics
Business EXEC CICS | Wrapper INVOKE | \eb service o Server
logic LINK | Program ""WEBSERVICE | support | |

Figure 20. Deployment of CICS application as a web service requester using a wrapper
program

Error handling

If you are planning to use the CICS web services assistant, you should also
consider how to handle rolling back changes when errors occur. If your service
requester application receives a SOAP fault message from the service provider, you
need to decide how your application program should handle the fault message.
CICS does not automatically roll back any changes when a SOAP fault message is
received.

If you are planning to implement web service atomic transactions in your requester
application program, the error handling is different. If the remote service provider
encounters an error and rolls back its changes, a SOAP fault message is returned
and the local transaction in CICS also rolls back. If local optimization is in effect,
the service requester and provider use the same transaction. If the provider

encounters an error, any changes made by the transaction in the requester are also
rolled back.

50 CICS TS for z/OS 4.2: Web Services Guide

Chapter 6. Creating the web services infrastructure

To deploy a web service to CICS, you must create the necessary transport
infrastructure and define one or more pipelines that will process your web services
requests. Typically, one pipeline can process requests for many different web
services, and, when you deploy a new web service in your CICS system, you can
choose to use an existing pipeline.

Configuring your CICS system for web services

Before you can use web services, your CICS system must be correctly configured.

Procedure

1. Ensure that you have installed Language Environment® support for PL/I. For
more information, see the CICS Transaction Server for z/OS Installation Guide.

2. Activate z/OS Support for Unicode. You must enable the z/OS conversion
services and install a conversion image that specifies the data conversions that
you want CICS to perform between SOAP messages and an application
program. For more information, see z/OS Support for Unicode: Using Conversion
Services.

CICS resources for web services

PIPELINE, WEBSERVICE, URIMAP and TCPIPSERVICE resources support web
services in CICS.

PIPELINE

A PIPELINE resource definition is required for every web service. It
provides information about the message handler programs that act on a
service request and on the response. Typically, a single PIPELINE resource
definition defines an infrastructure that can be used by many applications.
The information about the message handlers is supplied indirectly: the
PIPELINE resource definition specifies the name of a z/OS UNIX file that
contains an XML description of the handlers and their configuration.

A PIPELINE resource that is created for a service requester cannot be used
for a service provider, and vice versa. The two sorts of PIPELINE
definitions are distinguished by the contents of the pipeline configuration
file that is specified in the CONFIGFILE attribute: for a service provider,
the top-level element is <provider_pipeline>; for a service requester, it is
<requester pipeline>.

WEBSERVICE

© Copyright IBM Corp. 2005, 2012

A WEBSERVICE resource definition is required only when the mapping
between application data structure and SOAP messages has been generated
using the CICS web services assistant. It defines aspects of the runtime
environment for a CICS application program deployed in a web services
setting.

Although CICS provides the usual resource definition mechanisms for
WEBSERVICE resources, they are typically created automatically from a
web service binding file when the pickup directory for the PIPELINE
resource definition is scanned. This can occur when the PIPELINE resource
is installed or as a result of a PERFORM PIPELINE SCAN command. The
attributes applied to the WEBSERVICE resource in this case come from a

51

web services binding file, which is created by the web services assistant;
information in the binding file comes from the web service description, or
is supplied as a parameter of the web services assistant.

A WEBSERVICE resource that is created for a service requester cannot be
used for a service provider, and vice versa. The two sorts of WEBSERVICE
resource are distinguished by the PROGRAM attribute in the resource
definition: for a service provider, the attribute must be specified; for a
service requester, it must be omitted.

URIMAP

A URIMAP definition is required in a service provider when it contains
information that maps the URI of an inbound web service request to the
other resources (such as the PIPELINE resource) that will service the
request. This URIMAP definition is also required if you are using HTTP
basic authentication, because the URIMAP resource definition specifies that
the service requester user ID information is passed in an HTTP
authorization header to the service provider.

A second optional URIMAP definition can exist in a service provider for
WSDL discovery. This URIMAP resource definition contains information
that maps the URI of an inbound request for the WSDL document or
documents associated with the web service.

For service providers deployed using the CICS web services assistant,
although CICS provides the usual resource definition mechanisms, the
URIMAP resources are typically created automatically when the pick
directory is scanned. This scan occurs when the PIPELINE resource is
installed or as a result of a PERFORM PIPELINE SCAN command. The
URIMAP resource that provides CICS with the information to associate the
WEBSERVICE resource with a specific URI is a required resource. The
attributes for this resource are specified by a web service binding file in the
pickup directory. The URIMAP resource that provides CICS with the
information to associate the WSDL archive file or WSDL document with a
specific URI is an optional resource and is created if either a WSDL file or
WSDL archive file are present in the pickup directory. For more
information about creating URIMAP resources for web service providers,
see [’Creating a web service provider by using the web services assistant”|

I(_m page 227.|

For service requesters, CICS does not create any URIMAP resources
automatically when the PIPELINE resource is installed or as a result of a
PERFORM PIPELINE SCAN command. Service requesters are not required
to use URIMAP resources when they make requests; they can specify the
URI of the outbound request directly in the application program. However,
if you create a URIMAP resource for the client request, and your service
requesters use the URIMAP resource to provide the URI, you gain these
advantages:

* System administrators can manage any changes to the endpoint of the
connection, so you do not need to recompile your applications if the URI
of a service provider changes.

* You can choose to make CICS keep the connections that were opened
with the URIMAP resource open after use, and place them in a pool for
reuse by the application for subsequent requests, or by another
application that calls the same service. Connection pooling is only
available when you specify a URIMAP resource that has the
SOCKETCLOSE attribute set. For more information about the

52 CICS TS for z/OS 4.2: Web Services Guide

performance benefits of connection pooling, see [Connection pooling for
[HTTP client performance in the Internet Guide}

TCPIPSERVICE
A TCPIPSERVICE definition is required in a service provider that uses the
HTTP transport. It contains information about the port on which inbound
requests are received.

The resources that are required to support a particular application program depend
on the following criteria:

* Whether the application program is a service provider or a service requester.
* Whether the application is deployed with the CICS web services assistant.

CICS web
Service services
requester | assistant PIPELINE WEBSERVICE URIMAP TCPIPSERVICE
or provider | used required required required required
Provider Yes Yes Yes (but see note | Yes (but see note | See note EI

1

No Yes No Yes See note EI
Requester | Yes Yes Yes See note El No

No Yes No El No

Notes:

1. When the CICS web service assistant is used to deploy an application program, the WEBSERVICE
and two URIMAP resources can be created automatically when the pickup directory of the
PIPELINE is scanned. The first URIMAP resource is required and provides CICS with the
information to associate the WEBSERVICE resource with a specific URL The second URIMAP
resource is optional and provides CICS with the information to associate the WSDL archive file or
WSDL document with a specific URI so that external requesters can use the URI to discover the
WSDL archive file or WSDL document. The pickup directory of the PIPELINE scan occurs when
the PIPELINE resource is installed or as a result of a PERFORM PIPELINE SCAN command.

2. A TCPIPSERVICE resource is required when the HTTP transport is used. When the webSphere MQ
transport is used, a TCPIPSERVICE resource is not required.

3. A URIMAP resource is optional for a service requester, and the CICS web service assistant does not
generate one automatically. When you define your own URIMAP resources for service requesters
to use, you can implement connection pooling, and manage changes to the URIs for service
providers.

Typically, when you deploy many web services applications in a CICS system, you
have more than one of each type of resource. In this case, you can share some
resources between applications. Each web services file or resource is associated
with one or more CICS resources of other types.

Table 1. Other CICS resources that are associated with each web services file and resource

web services file or resource Associated resources

Pipeline configuration file * More than one PIPELINE resource that
refers to the file.

PIPELINE * More than one URIMAP resource that
refers to the PIPELINE resource.

* More than one WEBSERVICE resource
that refers to the PIPELINE resource.

* More than one web service binding file in
the pickup directory of the PIPELINE
resource.

Chapter 6. Creating the web services infrastructure 53

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfht3_connpool.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfht3_connpool.html

Table 1. Other CICS resources that are associated with each web services file and
resource (continued)

web services file or resource Associated resources

web service binding file * One URIMAP resource that is
automatically generated from the binding
file. You can define further URIMAP
resources for a service provider, and you
can define URIMAP resources for a
service requester.

* One WEBSERVICE resource that is
automatically generated from the binding
file. You can define further WEBSERVICE
resources if you need to.

WEBSERVICE * More than one URIMAP resource. If the
WEBSERVICE resource is automatically
generated from the binding file for a
service provider, CICS generates one
corresponding URIMAP resource. You can
define further URIMAP resources for a
service provider, and you can define
URIMAP resources for a service requester.

URIMAP * Just one TCPIPSERVICE resource when it
is explicitly named in the URIMAP
resource.

TCPIPSERVICE * Many URIMAP resources.

Configuring CICS to use the WebSphere MQ transport

To use the WebSphere MQ transport with web services in CICS, you must
configure your CICS region accordingly.

Procedure

1. Include the WebSphere MQ library thlqual.SCSQAUTH in the STEPLIB
concatenation in your CICS procedure. Include the library after the CICS
libraries to ensure that the correct code is used. thlqual is the high-level qualifier
for the WebSphere MQ libraries.

2. Include the following WebSphere MQ libraries in the DFHRPL concatenation in
your CICS procedure. Include the libraries after the CICS libraries to ensure
that the correct code is used.

thlqual.SCSQCICS
thlqual.SCSQLOAD
thlqual.SCSQAUTH

thlqual is the high-level qualifier for the WebSphere MQ libraries. If you are
using the CICS-WebSphere MQ API-crossing exit (CSQCAPX), also add the
name of the library that contains the load module for the program. The
SCSQCICS library is required only if you want to run WebSphere MQ supplied
samples. Otherwise it can be removed from the CICS procedure.

3. Install an MQCONN resource for the CICS region. The MQCONN resource
specifies the attributes of the connection between CICS and WebSphere MQ,
including the name of the default WebSphere MQ queue manager or
queue-sharing group for the connection. For more information, see
[an MQCONN resource in the CICS-WebSphere MQ Adapter]

54 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.wmq.adapter.doc/topics/mqconn_setup.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.wmq.adapter.doc/topics/mqconn_setup.html

4. Specify the CICS system initialization parameter MQCONN=YES to start the
CICS-WebSphere MQ connection automatically at CICS initialization.

An MQCONN resource definition must be installed before CICS can start the
connection to WebSphere MQ. When you start the connection automatically at
CICS initialization, for an initial or cold start, the MQCONN resource definition
must be present in one of the groups named in the list or lists named by the
GRPLIST system initialization parameter. For a warm or emergency start of
CICS, the MQCONN resource definition must have been installed by the end of
the previous CICS run.

5. If you are using the CICS-WebSphere MQ adapter in a CICS system that has
interregion communication (IRC) to remote CICS systems, ensure that the IRC
facility is OPEN before you start the adapter, by specifying the CICS system
initialization parameter IRCSTRT=YES. The IRC facility must be OPEN if the
IRC access method is defined as cross-memory; that is, ACCESSMETHOD(XM).

6. Ensure that the coded character set identifiers (CCSIDs) used by your queue
manager and by CICS, and the UTF-8 and UTF-16 code pages are configured to
z/0OS conversion services. The CICS code page is specified in the LOCALCCSID
system initialization parameter.

7. Update your CICS CSD as follows:

a. If you do not share your CSD with earlier releases of CICS, remove the
groups CSQCAT1 and CSQCKB from your CSD. You must also delete the
CKQQ TDQUEUE from group CSQCATI. The definition for CKQQ is now
supplied in the CICS CSD group DFHDCTG.

b. If you do share your CSD with earlier CICS releases, ensure that CSQCAT1
and CSQCKB are not installed for CICS TS 4.1 or CICS TS 3.2. You must
also delete the CKQQ TDQUEUE from group CSQCATI. The definition for
CKQQ is now supplied in the CICS CSD group DFHDCTG. For CICS TS
releases earlier than CICS TS 3.2, install the CSQCAT1 and CSQCKB groups
as part of a group list, after installing DFHLIST, to override group DFHMQ
and correctly install the required definitions.

8. Update the WebSphere MQ definitions for the dead-letter queue, default
transmission queue, and CICS-WebSphere MQ adapter objects. You can use the
sample CSQ4INYG, but you might need to change the initiation queue name to
match the default initiation queue name in the MQINI resource definition for
your CICS region. You can use this member in the CSQINP2 DD concatenation
of the queue manager startup procedure, or you can use it as input to the
COMMAND function of the CSQUTIL utility to issue the required DEFINE
commands. Using the CSQUTIL utility is preferable because you do not then
have to redefine these objects each time that you restart WebSphere MQ.

The WebSphere MQ transport

CICS can receive and send SOAP messages to WebSphere MQ using the
WebSphere MQ transport, both in the role of service provider and service
requester.

As a service provider, CICS uses WebSphere MQ triggering to process SOAP
messages from an application queue. Triggering works by using an initiation queue
and local queues. A local (application) queue definition includes the following
information:

* The criteria for when a trigger message is generated. For example, when the first
message arrives on the local queue, or for every message that arrives on the
local queue. For CICS SOAP processing, specify that triggering occurs when the
first message arrives on the local queue.

Chapter 6. Creating the web services infrastructure 55

The local queue definition can also specify that trigger data is passed to the
target application, and in the case of CICS SOAP processing (transaction CPIL),
this specifies the default target URL to be used if this is not passed with the
inbound message.

* The process name that identifies the process definition. The process definition
describes how the message is processed. In the case of CICS SOAP processing,
specify the CPIL transaction.

¢ The name of the initiation queue that the trigger message should be sent to.

When a message arrives on the local queue, the Queue Manager generates and
sends a trigger message to the specified initiation queue. The trigger message
includes the information from the process definition. The trigger monitor retrieves
the trigger message from the initiation queue and schedules the CPIL transaction
to start processing the messages on the local queue. For more information about
triggering, see [Task initiator or trigger monitor (CKTI) in the CICS-WebSphere MQ)|
|édaBte£|

You can configure CICS, so that when a message arrives on a local queue, the
trigger monitor (provided by WebSphere MQ) schedules the CPIL transaction to
process the messages on the local queue and drive the CICS SOAP pipeline to
process the SOAP messages on the queue.

When CICS constructs a response to a SOAP message that is received from
WebSphere MQ, the correlation ID field is populated with the message ID of the
input message, unless the report option MQRO_PASS_CORREL_ID has been set. If
this report option has been set, the correlation ID is propagated from the input
message to the response.

As a service requester, on outbound requests you can specify that the responses
for the target web service is returned on a particular reply queue.

In both cases, CICS and WebSphere MQ require configuration to define the
required resources and queues.

Defining local queues in a service provider

To use the WebSphere MQ transport in a service provider, you must define one or
more local queues that store request messages until they are processed, and one
trigger process that specifies the CICS transaction that will process the request
messages.

Procedure

1. Define an initiation queue. Use the following command:

DEFINE
QLOCAL('initiation_queue')
DESCR('description')

where initiation_queue is the same as the value specified for the INITQNAME
attribute of the MQINI resource definition for the CICS region. MQINI is an
implicit resource that CICS creates when you install an MQCONN resource.

2. For each local request queue, define a QLOCAL object. Use the following
command:

DEFINE
QLOCAL('queuename")
DESCR('description")

56 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.wmq.adapter.doc/topics/zc12120_.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.wmq.adapter.doc/topics/zc12120_.html

PROCESS (processname)
INITQ('initiation_queue')

TRIGGER

TRIGTYPE(FIRST)
TRIGDATA('default_target_service')
BOTHRESH (nnn)
BOQNAME (' requeuename ')

where:
* queuename is the local queue name.

* processname is the name of the process instance that identifies the application
started by the queue manager when a trigger event occurs. Specify the same
name on each QLOCAL object.

e initiation_queue is the name of the initiation queue to be used; for example,
the initiation queue specified in the MQINI definition for the CICS region.

e default_target_service is the default target service to be used if a service is
not specified on the request. The target service is of the form '/string' and is
used to match the path of a URIMAP definition; for example,

'/SOAP /test/testl". The first character must be '/" .

* nnn is the number of retries that are attempted.
* requeuename is the name of the queue to which failed messages are sent.

. Define a PROCESS object that specifies the trigger process. Use the following
command:

DEFINE

PROCESS (processname)
APPLTYPE (CICS)
APPLICID(CPIL)

where:

processname is the name of the process, and must be the same as the name
that is used when defining the request queues.

Working with initiation queues
You can inquire on the name of the initiation queue with these interfaces:

CICS Explorer®

[[The CICS Explorer operations views|
Use the Name attribute in the Websphere MQ Initiation Queues view.

CICSPlex® SM
[[The MQINI operations view]|

CEMT
[[The INQUIRE MQINI command|

The CICS SPI
[[The INQUIRE MQINI command|

Chapter 6. Creating the web services infrastructure 57

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_operations.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/eyua3/topics/eyua3_mqini.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7_inquiremqini.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquiremqini.html

Defining local queues in a service requester

When you use the WebSphere MQ transport for outbound requests in a service
requester, you can specify in the URI for the target web service that your responses
should be returned on a predefined reply queue. If you do so, you must define
each reply queue with a QLOCAL object.

About this task

If the URI associated with a request does not specify a reply queue, CICS will use
a dynamic queue for the reply.

Procedure

Optional: To define each QLOCAL object that specifies a predefined reply queue,
use the following command.

DEFINE

QLOCAL('reply queue')
DESCR('description')
BOTHRESH (nnn)

where:
reply_queue is the local queue name.
nnn is the number of retries that will be attempted.

The URI for the WebSphere MQ transport

When communication between the service requester and service provider uses
WebSphere MQ), the URI of the target is in a form that identifies the target as a
queue and includes information to specify how the request and response should be
handled by WebSphere MQ.

Syntax

&

»>—jms:/queue?—

—destination=queuename

v
A

|—@queuemanage rname—|
—persistence=message_persistence
—priority=message priority
—replyDestination=reply_queue
—timeout=timeout
—timeToLive=expiry_time
—targetService=string

CICS uses the following options; other web service providers might use further
options that are not described here. The entire URI is passed to the service
provider, but CICS ignores any options that it does not support and that are coded
in the URIL CICS is not sensitive to the case of the option names. However, some
other implementations that support this style of URI are case-sensitive.
destination=queuename [@queuemanagername]

queuename is the name of the input queue in the target queue manager

queuemanagername is the name of the target queue manager

persistence=message _persistence
Specify one of the following:

58 CICS TS for z/OS 4.2: Web Services Guide

0 Persistence is defined by the default queue persistence.
1 Messages are not persistent.

2 Messages are persistent.

If the option is not specified or is specified incorrectly, the default queue
persistence is used.

priority=message_priority
Specifies the message priority as an integer in the range 0 to 99999999.

replyDestination=reply queue
Specifies the queue to be used for the response message. If this option is not
specified, CICS will use a dynamic queue for the response message. You must
define the reply queue in a QLOCAL object before using this option.

timeout=timeout
The timeout in milliseconds for which the service requester will wait for a
response. If a value of zero is specified, or if this option is omitted, the request
will not time out.

timeToLive=expiry-time
Specifies the expiry time for the request in milliseconds. If the option is not
specified or is specified incorrectly, the request will not expire.

targetService=string
Identifies the target service. If CICS is the service provider, then the target
service should be of the form '/string', as CICS will use this as the path when
attempting to match with URIMAP. If not specified, the value specified in
TRIGDATA on the input queue at the service provider is used.

This example shows a URI for the WebSphere MQ transport:

jms:/queue?destination=queue01@cics007&timeToLive=10&replyDestination=rqueued5&targetService=/myservice

Configuring CICS to support persistent messages

CICS provides support for sending persistent messages using the WebSphere MQ
transport protocol to a web service provider application that is deployed in a CICS
region.

About this task

CICS uses Business Transaction Services (BTS) to ensure that persistent messages
are recovered in the event of a CICS system failure. For this to work correctly,
follows these steps:

Procedure

1. Use IDCAMS to define the local request queue and repository file to MVS .
You must specify a suitable value for STRINGS for the file definition. The
default value of 1 is unlikely to be sufficient, and you are recommended to use
10 instead.

2. Define the local request queue and repository file to CICS. Details of how to
define the local request queue to CICS are described in [“Defining local queues
[in a service provider” on page 56 You must specify a suitable value for
STRINGS in the file definition. The default value of 1 is unlikely to be
sufficient, and it is recommended that you use 10 instead.

3. Define a PROCESSTYPE resource with the name DFHMQSOA, using the
repository file name as the value for the FILE option.

Chapter 6. Creating the web services infrastructure 59

4. Ensure that during the processing of a persistent message, a program issues an
EXEC CICS SYNCPOINT command before the first implicit syncpoint is requested;
for example, using an SPI command such as EXEC CICS CREATE TDQUEUE
implicitly takes a syncpoint. Issuing an EXEC CICS SYNCPOINT command
confirms that the persistent message has been processed successfully. If a
program does not explicitly request a syncpoint before trying to implicitly take
a syncpoint, an ASP7 abend is issued.

Results

What to do next

For one way request messages, if the web service abends or backs out, sufficient
information is retained to allow a transaction or program to retry the failing
request, or to report the failure appropriately. You need to provide this recovery
transaction or program. See [‘Persistent message processing’| for details.

Persistent message processing

When a web service request is received in a WebSphere MQ persistent message,
CICS creates a unique BTS process with the process type DFHMQSOA. Data
relating to the inbound request is captured in BTS data-containers that are
associated with the process.

The process is then scheduled to run asynchronously. If the web service completes
successfully and commits, CICS deletes the BTS process. This includes the case
when a SOAP fault is generated and returned to the web service requester.

Error processing

If an error occurs when creating the required BTS process, the web service
transaction abends, and the inbound web service request is not processed. If BTS is
not usable, message DFHPI0117 is issued, and CICS continues without BTS, using
the existing channel-based container mechanism.

If a CICS failure occurs before the web service starts or completes processing, BTS
recovery ensures that the process is rescheduled when CICS is restarted.

If the web service ends abnormally and backs out, the BTS process is marked
complete with an ABENDED status. For request messages that require a response,
a SOAP fault is returned to the web service requester. The BTS process is canceled,
and CICS retains no information about the failed request. CICS issues message
DFHBAOQ104 on transient data queue CSBA, and message DFHPI0117 on transient
data queue CPIO.

For one way messages, there is no way to return information about the failure to
the requester so the BTS process is retained in a COMPLETE ABENDED state.
CICS issues message DFHBA0104 on transient data queue CSBA, and DFHPI0116
on transient data queue CPIO.

You can use the CBAM transaction to display any COMPLETE ABENDED
processes, or you can supply a recovery transaction to check for COMPLETE
ABENDED processes of the DFHMQSOA and take appropriate action.

For example, your recovery transaction could:
1. Reset the BTS process using the RESET ACQPROCESS command.

60 CICS TS for z/OS 4.2: Web Services Guide

2. Issue the RUN ASYNC command to retry the failing web service. It could keep a
retry count in another data-container on the process, to avoid repeated failure.
3. Use information in the associated data-containers to report on the problem:
The DFHMQORIGINALMSG data-container contains the message received
from WebSphere MQ, which might contain RFH2 headers.
The DFHMQMSG data-container contains the WebSphere MQ message with
any RFH2 headers removed.
The DFHMQDLQ data-container contains the name of the dead letter queue
associated with the original message.

The DFHMQCONT data-container contains the WebSphere MQ MQMD
control block relating to the MQ GET for the original message.

The web services infrastructure

CICS applications in a CICS region can either provide a service to, or request a
service from, applications that are external to that region by using a web services
pipeline. When CICS is a service provider, the CICS application supplies a service
to the external application. When CICS is a service requester, the external
application supplies a service to the CICS application. Web services pipelines can
be configured to use IBM System z Application Assist Processors where available.

CICS as a service provider

For CICS to provide a service to an external service requester, it must receive the
service request and pass it through a pipeline to the target application program.
The response from the application is returned to the service requester through the
same pipeline.

[Figure 21 on page 62| shows an example configuration of the architecture and
resources that are required to process a request from an external service requester
when CICS is a service provider using a Java pipeline.

Chapter 6. Creating the web services infrastructure 61

o
0
»
o
(1]
Qe
o
=

CPIH
transaction

request =
message L T
Service —_—) | . P> Pipeline
Requester | «§ T |«
response O message
message handler

message
handler

RESOURCES

TCPIPSERVICE

URIMAP application
handler
PIPELINE cics
application
program
WEBSERVICE .

_ [isener |/

Figure 21. The architecture and resources for a service provider

To process a request, CICS must perform the following operations:
1. Receive the request from the service requester.

The TCPIPSERVICE resource specifies a port for incoming requests. This port is
monitored by the CICS-supplied sockets listener transaction (CSOL).

2. Examine the request, and extract the contents that are relevant to the target
application program.
When the request message is received on the appropriate port, the URIMAP
resource definitions are scanned for a URIMAP definition that has its USAGE
attribute set to PIPELINE and its PATH attribute set to the URI found in the
request. If an appropriate URIMAP definition is found, the PIPELINE and
WEBSERVICE definitions from the PIPELINE and WEBSERVICE attributes of
the URIMAP definition are used. The TRANSACTION attribute of the URIMAP
definition determines the name of the transaction that should be attached to
process the pipeline. By default the CPIH transaction is used. The URIMAP
definition also identifies the PIPELINE and WEBSERVICE resources to use.
These resources control the processing that CICS performs.

3. Invoke the application program, passing data extracted from the request.

The message handlers in the pipeline and the application handler convert the
request message into application language structure that the service provider
application program expects. The program processes this input and returns a
response to the application handler.

4. Construct a response using data returned by the application program, and send
a response to the service requester.
The application handler and message handlers convert the response message
received from the service provider application into a message in the format of
the original request. This message is sent back to the service requester.

62 CICS TS for z/OS 4.2: Web Services Guide

Some of the processing within the pipeline can be performed using z/Series
Application Assist Processors if the pipeline is configured appropriately. For more
information, see [“Java-based SOAP pipelines” on page 64.|

CICS as a service requester

For CICS to invoke an external service, an application program sends a request
that is passed through a pipeline to a target service. The response from the service
is returned to the application program through the same pipeline.

shows an example configuration of the architecture and resources that
are required to process a request from a CICS application program for data from a
service provider that is external to the CICS region, using a Java pipeline.

/ CICS Region \

User transaction RESOURCES
Pipeline
request
CICS application message WEBSERVICE
program
message | PIPELINE
response handler
%)I(gsc message T ¢
handler request
T ¢ message
message > Service
handler |< Provider
response
message

_)

Figure 22. The architecture and resources for a service requester

To process a request, CICS must perform the following operations:

1.

Build a request using data provided by the application program.

When the CICS application program initiates a request to a service provider
that is external to the CICS region, the requestor application calls the EXEC
CICS INVOKE SERVICE command. The EXEC CICS INVOKE SERVICE
command invokes the pipeline. The pipeline converts the application language
structure into a language that the service provider can process, for example a
SOAP message.

Send the request to the service provider.

CICS sends the request message to the remote service provider by using either
HTTP or WebSphere MQ.

Receive a response from the service provider.

When the service provider response message is received, CICS passes the
message back to the pipeline.

Examine the response, and extract the contents that are relevant to the original
application program.

The pipeline converts the service provider response message into the
application language structure, which is passed to the application program.
Control is then returned to the application program.

Chapter 6. Creating the web services infrastructure 63

Some of the processing within the pipeline can be performed using z/Series
Application Assist Processors if the pipeline is configured appropriately. For more
information, see [“Java-based SOAP pipelines.”|

Java-based SOAP pipelines

CICS supports using the Axis2 Java-based SOAP engine to process web service
requests in provider and requester pipelines. Because Axis2 uses Java, the SOAP
processing is eligible for offloading to the IBM System z Application Assist
Processor (zAAP).

is an open source web services engine from the Apache foundation and is
provided with CICS to process SOAP messages in a Java environment. You can opt
to use Axis2 by adding a Java SOAP handler to your pipeline configuration file
and creating a JVM server to handle the Axis2 processing.

Enabling Axis2 does not require regenerating the binding files for any existing web
services that use the pipeline. The response times might be slower when using
Axis2, but you can offload the SOAP processing to zZAAP. For more information
about offloading to zAAP, see [[VM servers and pooled JVMs in Java Applications|

When CICS is a service provider, the Java-based terminal handler uses Axis2 to
parse the SOAP envelope for a request message. You can use header processing
programs to process any SOAP headers associated with the SOAP message. Axis2
also constructs the SOAP response message. This process is shown in the following
diagram:

/ Header \
CICS pipeline processing

program
F y
Request | | Transport .| Service
"| handler "| handler \ v
\\
Java SOAP »| Service
handler |¢ provider
B application
/
_Response Transport | Service / Axis2
N handler | handler

\ JVM server /

When CICS is a service requester, the Java-based initial handler in the pipeline
uses Axis2 to generate the SOAP envelope for a request message. You can use
header processing programs to process any SOAP headers associated with the
SOAP message. Axis2 also parses the SOAP response message.

Web service applications and Java

For provider-mode SOAP pipelines, request and response messages are passed
between the terminal handler of the pipeline and the web service application by
using an application handler. The application handler processes the body of a

64 CICS TS for z/OS 4.2: Web Services Guide

http://ws.apache.org/axis2/
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html#JVMsupport
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html#JVMsupport

SOAP request so that the request can be used by the application. The application
handler also generates a response by using the returned data from the application.
If the terminal handler of your pipeline is a Java-based message handler, you can
specify the supplied Axis2 application handler in the pipeline configuration file, as
opposed to specifying the supplied DFHPITP application handler. The application
handler processing can then be offloaded to zAAP. For more information about
application handlers, see [“Application handlers” on page 112.|

For requester-mode SOAP pipelines, the web service application invokes the
pipeline by using the EXEC CICS INVOKE SERVICE command. The request and
response messages are then passed between the web service application and the
initial handler in the pipeline. If you specify a Java-based handler as the initial
handler in the pipeline, then the EXEC CICS INVOKE SERVICE command is processed
by Axis2, making it possible to offload this process to zAAP. If the first handler is
not a Java-based handler, then the EXEC CICS INVOKE SERVICE command is
processed by CICS.

Axis2 processing in a JVM server

Axis2 requires a JVM server, which is represented by a JVMSERVER resource in
CICS. The JVM server is a runtime environment that can handle multiple
concurrent requests from different Java programs in a single JVM. The class path
for the JVM server must include the Axis2 Java archive files. You can automatically
add all of the required JAR files to the class path by specifying the JAVA_PIPELINE
option in the JVM profile. The pipeline configuration file must also point to the
JVMSERVER resource that is configured to support Axis2.

For more information about JVM servers, see [VM servers and pooled JVMs in|
Java Applications in CICS

Axis2 header handlers

Although you can use existing header processing programs, it is more efficient to
write Axis2 handlers in Java to process the SOAP headers. These handlers can also
run in the JVM server and are therefore eligible for offloading. For more
information about creating Axis2 handlers, see [Writing Your Own Axis2 Module,

A header handler program can use Axis2 APIs to modify or interact with the Axis2
environment, SOAP messages, and individual web services. Do not use these APIs
to customize Axis2, as you might change Axis2 in a way that means CICS cannot
run the engine correctly. Axis2 handlers are supported only if they interact with
the Axis2 environment in a way that is compatible with how CICS uses Axis2.

AXxis2 repository

Axis2 uses a repository to store all of its configuration files, services, and modules.
CICS provides a default repository in the usshome/1ib/pipeline/repository
directory on z/OS UNIX, where usshome is the value of the USSHOME system
initialization parameter.

The default repository contains the configuration file, axis2.xml, which is required
by CICS to use Axis2. This file is in the /conf subdirectory in the repository. If you
create your own repository, you must copy this file to your repository for CICS to

work with Axis2.

Chapter 6. Creating the web services infrastructure 65

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html#JVMsupport
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html#JVMsupport
http://axis.apache.org/axis2/java/core/docs/modules.html

Do not edit the axis2.xml file, unless you are registering handler programs. This
file is managed as an internal part of CICS, so you must not make any other
changes to this file unless directed to do so by IBM support.

Creating the CICS infrastructure for a service provider

To create the CICS infrastructure for a service provider, you must create a pipeline
configuration file and create a number of CICS resources.

Procedure

1. Optional: If you want to use a Java pipeline, ensure that a [[VMSERVE
resource exists with the JAVA_PIPELINE=YES option specified in the JVM

Profile. A JVM server can handle SOAP processing for many Java pipelines.
2. Define the transport infrastructure.

* If you are using the WebSphere MQ transport, you must define one or more
local queues that store input messages until they are processed, and one
trigger process that specifies the CICS transaction that will process the input
messages. See [“Configuring CICS to use the WebSphere MQ transport” on|
[page 54 for details.

 If you are using the HTTP transport, you must define a TCPIPSERVICE
resource that defines the port on which inbound requests are received. See
[“CICS resources for web services” on page 51| for details.

Repeat this step for each different transport configuration you need.

3. Define the message handlers and header processing programs that you want to
include in the pipeline configuration file to process inbound web service
requests, and their responses. CICS provides the following handlers and header
processing programs:

* [SOAP message handlers, to process SOAP 1.1 or 1.2 messages. You can
support only one level of SOAP in a service provider pipeline.

* [MTOM handler] to process MIME Multipart/Related messages that conform
to the MTOM /XOP specifications.

* [Security handler] to process secure web service messages.

* |WS-AT header processing program} to process atomic transaction messages.

If you want to perform your own processing in the pipeline, you must create a
message handler or header processing program. See [“Message handlers” on|
for details. If you decide to create custom message handler programs,
to optimize performance you must make them threadsafe.

4. Create an XML pipeline configuration file containing your message handlers,
header processing programs, and application handler. CICS provides two basic
provider mode pipeline configuration file samples, basicsoapllprovider.xml
and basicsoaplljavaprovider.xml. You can edit these samples, or add
additional message handlers as appropriate. The samples are provided in the
library /usr/1pp/cicsts/cicsts42/samples/pipelines (where
/usr/1pp/cicsts/cicsts42 is the default install directory for CICS files on z/OS
UNIX). For more information about options available in the pipeline
configuration file, see|“Pipeline configuration files” on page 68|

5. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.

6. Change the pipeline configuration file permissions to allow the CICS region to
read the file.

7. Repeat steps 3 through 6 for each different pipeline configuration that you
require.

66 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/jvmserver/dfha4_overview.html

8. Create a resource. The PIPELINE resource defines the location of the
pipeline configuration file. It also specifies a pickup directory, which is the z/OS
UNIX directory that contains the web service binding files and optionally the
WSDL. Repeat this step for each different pipeline configuration. When you

create a PIPELINE resource, CICS reads any files in the specified pickup
URIMAD

directory, and creates the[WEBSERVICE|resource and IMAP|resource

dynamically.

9. Unless you use autoinstalled PROGRAM definitions, create a
resource for each program that runs in the pipeline. These include the target
application program, which normally runs under transaction CPIH. The
transaction is defined with the attribute TASKDATALOC (ANY). Therefore, when you
link-edit the program, you must specify the AMODE(31) option.

Results

Your CICS system now contains the infrastructure needed for each service
provider.

What to do next

You can extend the configuration when you need to do so, either to define
additional transport infrastructure, or to create additional pipelines.

Creating the CICS infrastructure for a service requester

To create the CICS infrastructure for a service requester, you must create a pipeline
configuration file and create a number of CICS resources.

Procedure

1. Optional: If you want to use a Java pipeline, ensure that a [[VMSERVE
resource exists with the JAVA_PIPELINE=YES option specified in the JVM

Profile. A JVM server can handle SOAP processing for many Java pipelines.

2. Define the message handlers and header processing programs that you want to
include in the pipeline configuration file to process inbound web service
requests, and their responses. CICS provides the following handlers and header
processing programs:

* [SOAP message handlerd, to process SOAP 1.1 or 1.2 messages. You can only
support one level of SOAP in a service requester pipeline.

* [MTOM handler] to process MIME Multipart/Related messages that conform
to the MTOM/XOP specifications.

* [Security handler] to process secure web service messages.

WS-AT header processing programl to process atomic transaction messages.

If you want to perform your own processing in the pipeline, you must create a
message handler or header processing program. See [“Message handlers” on|
for details. If you decide to create custom message handler programs,
to optimize performance you must make them threadsafe.

3. Create an XML pipeline configuration file containing your message handlers
and header processing programs. CICS provides two basic requester mode
pipeline configuration file samples, basicsoapllprovider.xml and
basicsoaplljavaprovider.xml, which you can copy and edit as appropriate.
These samples are provided in the library /usr/Tpp/cicsts/cicsts42/samples/
pipelines (where /usr/1pp/cicsts/cicsts4?2 is the default install directory for

Chapter 6. Creating the web services infrastructure 67

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/pipeline/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/webservice/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/urimap/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/program/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/jvmserver/dfha4_overview.html

CICS files on z/0OS UNIX). For more information about options available in the
pipeline configuration file, see [‘Pipeline configuration files”|

4. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.

5. Change the pipeline configuration file permissions to allow the CICS region to
read the file.

6. Repeat steps 2 to 5 for each different pipeline configuration that you require.

7. Create a resource. The PIPELINE resource defines the location of the
pipeline configuration file. It also specifies a pickup directory, which is the z/OS
UNIX directory that contains the web service binding files and optionally the
WSDL. You can also specify a timeout in seconds, which determines how long
CICS waits for a response from web service providers. Repeat this step for each
pipeline configuration file. When you create a PIPELINE resource, CICS reads
any files in the specified pickup directory and creates the
resources dynamically.

8. Unless you use autoinstall PROGRAM definitions, create a resource
for each program that runs in the pipeline. These programs include the service
requester application program, which normally runs under transaction CPIH.
The transaction is defined with the attribute TASKDATALOC (ANY). Therefore, when
you link edit the program, you must specify the AMODE(31) option.

9. Optional: Create a [URIMAP|resource for client requests to each URI that your
service requesters use to make requests, following the instructions in |Creating 5]

[URIMAP resource for CICS as an HTTP client in the Internet Guide} You can
specify the URI directly on the INVOKE SERVICE command in your programs,
instead of using a URIMAP resource. However, using a URIMAP resource
means that you do not need to recompile your applications if the URI of a
service provider changes. With a URIMAP resource you can also choose to
implement connection pooling, where CICS keeps the client connection open
after use, so that it can be reused by the application for subsequent requests, or
by another application that calls the same service.

Results

Your CICS system now contains the infrastructure needed for each service
requester.

What to do next

You can extend the configuration when you need to do so, to create additional
pipelines.

Pipeline configuration files

The configuration of a pipeline used to handle a web service request is specified in
an XML document, known as a pipeline configuration file.

The pipeline configuration file is stored in the z/OS UNIX System Services file
system and its name is specified in the CONFIGFILE attribute of a PIPELINE
resource definition. Use a suitable XML editor or text editor to work with your
pipeline configuration files. The XML schemas for the pipeline configuration files
are in the directory /usr/Tpp/cicsts/cicsts42/schemas/pipeline/ (where
/usr/1pp/cicsts/cicsts42 is the default install directory for CICS files on z/OS
UNIX). When you work with configuration files, ensure that the character set
encoding is US EBCDIC (Code page 037).

68 CICS TS for z/0S 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/pipeline/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/webservice/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/program/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/urimap/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_urioutbound.html#dfhtl_urioutbound
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_urioutbound.html#dfhtl_urioutbound

When CICS processes a web service request, it uses a pipeline of one or more
message handlers to handle the request. A pipeline is configured to provide aspects
of the execution environment that apply to different categories of applications,
such as support for web Service Security, and web service transactions. Typically, a
CICS region that has a large number of service provider or service requester
applications needs several different pipeline configurations. However, where
different applications have similar requirements, they can share the same pipeline
configuration.

There are two kinds of pipeline configurations: one describes the configuration of a
service provider pipeline; the other describes a service requester pipeline. Each is
defined by its own schema, and each has a different root element.

Pipeline Schema Root element
Service provider Provider.xsd <provider_pipeline>
Service requester Requester.xsd <requester_pipeline>

Although many of the XML elements used are common to both kinds of pipeline
configuration, others are used only in one or the other, so you cannot use the same
configuration file for both a provider and requester.

Restriction: Namespace-qualified element names are not supported in the pipeline
configuration file.

The <provider_pipeline> and <requester_pipeline> elements have the following
immediate sub-elements:

* A <service> element, which specifies the message handlers that are invoked for
every request. This element is mandatory when used within the
<provider_pipeline> element, and optional within the <requester_pipeline>
element.

* An optional <transport> element, which specifies message handlers that are
selected at run time, based upon the resources that are being used for the
message transport.

* For the <provider_pipeline> only, an optional <apphandler> element, which is
used to specify channel-attached application handlers.

* For the <provider_pipeline> only, an optional <apphandler_class> element,
which is used to specify an Axis2 application handler.

* An optional <service_parameter_list> element, which contains the parameters
that are available to the message handlers in the pipeline.

Certain elements can have attributes associated with them. Each attribute value
must have quotes around it to produce a valid XML document.

Associated with the pipeline configuration file is a PIPELINE resource. The
attributes include CONFIGFILE, which specifies the name of the pipeline
configuration file in z/OS UNIX. When you install a PIPELINE definition, CICS
reads the information that it needs in order to configure the pipeline from the file.

CICS supplies sample configuration files that you can use as a basis for developing
your own configuration files. They are provided in library /usr/1pp/cicts/
samples/pipelines.

basicsoapllprovider.xml
A service provider pipeline definition that uses the SOAP 1.1 protocol for a
pipeline that does not support Java. The pipeline uses the

Chapter 6. Creating the web services infrastructure 69

[cics_soap 1.1 handler> message handler and is used when the CICS
application has been deployed using the CICS web services assistant.

basicsoapllrequester.xml
A service requester pipeline definition that uses the SOAP 1.1 protocol for
a pipeline that does not support Java. The pipeline uses the
kcics soap 1.1 handler> message handler and is used when the CICS
application has been deployed using the CICS web services assistant.

basicsoaplljavaprovider.xml
A service provider pipeline definition that uses the SOAP 1.1 protocol for a
pipeline that supports Java. The pipeline uses the
kcics soap 1.1 handler java> message handler and is used when the
application has been deployed using the CICS web services assistant. This
configuration contains the element <jvmserver>. This message handler has
to be edited to specify the appropriate JVM server before the configuration
can be used.

basicsoaplljavarequester.xml
A service requester pipeline definition that uses the SOAP 1.1 protocol for
a pipeline that supports Java. The pipeline uses the
kcics soap 1.1 handler java>| message handler and is used when the
application has been deployed using the CICS web services assistant. This
configuration contains the element <jvmserver>. This message handler has
to be edited to specify the appropriate JVM server before the configuration
can be used.

wsatprovider.xml
A pipeline definition that adds configuration information for web services
transactions to basicsoapllprovider.xml.

wsatrequester.xml
A pipeline definition that adds configuration information for web services
transactions to basicsoapllrequester.xml.

Example provider pipeline configuration file (Channel-attached
application handler)

This is a simple example of a configuration file for a service provider pipeline that
uses the[<cics soap 1.1 handler>|element:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmins="http://www.ibm.com/software/htp/cics/pipeline"
<service>
<terminal_handler>
<cics_soap_1.1_handler/>
</terminal_handler>
</service>
<apphandler>DFHPITP</apphandler>
</provider_pipeline>

The pipeline contains just one message handler. The handler links to program

DFHPITP.

* The <provider_pipeline> element is the root element of the pipeline
configuration file for a service provider pipeline.

e The <service> element specifies the message handlers that are invoked for every
request. In the example, there is just one message handler.

e The <terminal_handler> element contains the definition of the terminal message
handler of the pipeline.

70 CICS TS for z/OS 4.2: Web Services Guide

e The <cics_soap_l.1_handler> element indicates that the pipeline is not a
Java-based pipeline and the terminal handler of the pipeline is a message
handler that supports SOAP 1.1 messages.

* The <apphandler> element specifies the name of the application handler that the
terminal handler of the pipeline links to by default. In this case, the program is
DFHPITP, which is the CICS-supplied program for applications deployed with
the CICS web services assistant.

Example provider pipeline configuration file (Axis2 application
handler)

This is a simple example of a configuration file for a service provider pipeline that
uses the |<c1' cs_soap 1.1 handl er'_java>| element:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"
<service>
<terminal_handler>
<cics_soap_l.1_handler_java>
<jvmserver>DFH$AXIS</jvmserver>
<cics_soap_l.1_handler_java>
</terminal_handler>
</service>
<apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>
</provider_pipeline>

The pipeline contains just one message handler. The handler links to program
DFHPITP.

* The <provider_pipeline> element is the root element of the pipeline
configuration file for a service provider pipeline.

e The <service> element specifies the message handlers that are invoked for every
request. In the example, there is just one message handler.

e The <terminal_handler> element contains the definition of the terminal message
handler of the pipeline.

* The <cics_soap_l.1_handler_java> element indicates that the pipeline is a
Java-based pipeline and the service handler of the pipeline is a message handler
that supports SOAP 1.1 messages.

* The <apphandler_class> element specifies the supplied Axis2 application
handler.

Example requester pipeline configuration file

This is a simple example of a configuration file for a service requester pipeline that
uses the|<cics_soap_1.2_handler_java>|element with Axis2 MTOM/XOP support:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<requester_pipeline
xmIns="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<service_handler_Tist>
<cics_soap_l.2_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<mtom>
</cics_soap_l.2_handler_java>
</service_handler_list>
</service>
</requester_pipeline>

The pipeline contains just one message handler.

* The <requester_pipeline> element is the root element of the pipeline
configuration file for a service requester pipeline.

Chapter 6. Creating the web services infrastructure 71

e The <service> element specifies the message handlers that are invoked for every
request. In the example, there is just one message handler.

* The <service_handler_list> specifies a list of message handlers that are
invoked for every request.

* The <cics_soap_1.2_handler_java> element indicates that the pipeline supports
Java and the service handler of the pipeline is a message handler that supports
SOAP 1.2 messages.

* The <jvmserver> element specifies the JVM server to be used.

* The <mtom/> element specifies that outbound XOP documents are packaged into
MTOM messages and sent. By default, inbound MTOM messages are accepted
and unpackaged for Java-based pipelines.

Transport-related handlers

In the configuration file for each pipeline, you can specify more than one set of
message handlers. At run time, CICS selects the message handlers that are called,
based upon the resources that are being used for the message transport.

In a service provider, and in a service requester, you can specify that some
message handlers should be called only when a particular transport (HTTP or
WebSphere MQ) is in use. For example, consider a web service that you make
available to your employees. Those who work at a company location access the
service using the WebSphere MQ transport on a secure internal network; however,
employees working at a business partner location access the service using the
HTTP transport over the internet. In this situation, you might want to use message
handlers to encrypt parts of the message when the HTTP transport is used,
because of the sensitive nature of the information.

In a service provider, inbound messages are associated with a named resource (a
TCPIPSERVICE for the HTTP transport, a QUEUE for the MQ transport). You can
specify that some message handlers should be called only when a particular
resource is used for an inbound request.

To make this possible, the message handlers are specified in two distinct parts of
the pipeline configuration file:

The service section
Specifies the message handlers that are called each time the pipeline
executes.

The transport section
Specifies the message handlers that might or might not be called,
depending upon the transport resources that are in use.

Remember: At run time, a message handler can choose to curtail the execution of
the pipeline. Therefore, even if CICS decides that a particular message handler
should be called based on what is in the pipeline configuration file, the decision
might be overruled by an earlier message handler.

The message handlers that are specified within the transport section (the
transport-related handlers) are organized into several lists. At run time, CICS selects
the handlers in just one of these lists for execution, based on which transport
resources are in use. If more than one list matches the transport resources that are
being used, CICS uses the list that is most selective. The lists that are used in both
service provider and service requester pipelines are:

72 CICS TS for z/OS 4.2: Web Services Guide

<default_transport_handler_list>
This is the least selective list of transport-related handlers; the handlers
specified in this list are called when none of the following lists matches the
transport resources that are being used.

<default_http_transport_handler_list>
In a service requester pipeline, the handlers in this list are called when the
HTTP transport is in use.

In a service provider pipeline, the handlers in this list are called when the
HTTP transport is in use, and no <named_transport_entry> names the
TCPIPSERVICE for the TCP/IP connection.

<default_mq_transport_handler_list>
In a service requester pipeline, the handlers in this list are called when the
WebSphere MQ transport is in use.

In a service provider pipeline, the handlers in this list are called when the
WebSphere MQ transport is in use, and no <named_transport_entry>
names the message queue on which inbound messages are received.

The following list of message handlers is used only in the configuration file for a
service provider pipeline:

<named_transport_entry>
As well as a list of handlers, the <named_transport_entry> specifies the
name of a resource, and the transport type.

* For the HTTP transport, the handlers in this list are called when the
resource name matches the name of the TCPIPSERVICE for the inbound
TCP/IP connection.

* For the WebSphere MQ transport, the handlers in this list are called
when the resource name matches the name of the message queue that
receives the inbound message.

Example

This is an example of a <transport> element from the pipeline configuration file
for a service provider pipeline:

<transport>

<!-- HANDLER1 and HANDLER2 are the default transport handlers -->
<default_transport handler Tist>
<handler><program>HANDLER1</program><handler_parameter_list/></handler>
<handler><program>HANDLER2</program><handler_parameter_list/></handler>
</default_transport_handler list>

<!-- HANDLER3 overrides defaults for MQ transport -->

<default_mq_transport_handler_Tist>
<handler><program>HANDLER3</program><handler_parameter list/></handler>

</default_mq_transport_handler_list>

<!-- HANDLER4 overrides defaults for http transport with TCPIPSERVICE(WS00) -->
<named_transport_entry type="http">
<name>WS00</name>
<transport_handler_list>
<handler><program>HANDLER4</program><handler_parameter_list/></handler>
</transport_handler_list>
</named_transport_entry>

</transport>

Chapter 6. Creating the web services infrastructure 73

The effect of this definition is this:

* The <default_mq_transport_handler_list> ensures that messages that use the
MQ transport are processed by handler HANDLERS3.

* The <named_transport_entry> ensures that messages that use the TCP/IP
connection associated with TCPIPSERVICE(WS00) are processed by handler
HANDLER4.

e The <default_transport_handler_list> ensures that all remaining messages,
that is, those that use the HTTP transport, but not TCPISERVICE(WS00), are
processed by handlers HANDLER1 and HANDLER?2.

Remember: Any handlers specified in the service section of the pipeline definition
will be called in addition to those specified in the transport section.

The pipeline definition for a service provider

The message handlers are defined in an XML document, which is stored in z/OS
UNIX. The name of the file that contains the document is specified in the CFGFILE
attribute of a PIPELINE definition.

The root element of the pipeline configuration document is the
<provider pipeline> element. The high-level structure of the document is shown
in [Figure 23 on page 75

74 CICS TS for z/OS 4.2: Web Services Guide

provider_

cics_mtom_
handler
dfhmtom_
configuration
transport
default_ default_http_ default_mq_ named_
transport_ transport_ transport_ transport_
handler_list handler_list handler_list entry
transport_
handler handler handler name handler_
list
service handler
[|
service_ terminal_
han_dler_ handler
list
I
cics_ cics_
handler soap_1.1_ soap_1.2_ r:’;sdﬁgr
handler handler

apphandler

h I cics_ cics_ cics_ cics_

andler soap_1.1_ soap_1.2_ soap_1.1_ soap_1.2_
service_ handler handler handler_java handler_java
parameter_
list

Figure 23. Structure of the pipeline definition for a service provider.

Note: In order to simplify the figure, child elements of the <handler>,
<cics_soap_l.1 handler>, <cics_soap_ 1.2 handler>, <cics_soap_l.1 handler_ java>, and
<cics_soap_l.2_handler_java> elements are not shown.

The pipeline definition for a service requester

The message handlers are defined in an XML document, which is stored in z/OS

UNIX. The name of the file that contains the document is specified in the CFGFILE

attribute of a PIPELINE definition.

Chapter 6. Creating the web services infrastructure

75

The root element of the pipeline configuration document is the
<requester pipeline> element. The high-level structure of the document is shown

in [Figure 24

requester_
pipeline
— service
service_
handler_
list
I I I I I I
cics_ cics_ cics_ cics_ wsse
handler soap_1.1_ soap_1.2_ soap_1.1_ soap_1.2_ handler
handler handler handler_java handler_java
I— transport
default_ default_http_ default_mq_ default_
target transport_ transport_ transport_
handler_list handler_list handler_list
handler handler handler
| | cics_mtom_
handler
dfhmtom_
configuration
service_
— | parameter_
list

Figure 24. Structure of the pipeline definition for a service requester.

Note: In order to simplify the figure, child elements of the <handler>,
<cics_soap_l.1 handler>, <cics_soap 1.2 handler>, <cics_soap_l.1 handler_ java>, and
<cics_soap_l.2_handler_java> elements are not shown.

Elements used only in service providers

Some of the XML elements used in a pipeline configuration file apply only to
service provider pipelines.

The <apphandler> element

Specifies the name of the application handler that the terminal handler of the
pipeline links to by default.

The <apphandler> element is used when the terminal handler is one of the
supplied SOAP message handlers. This situation occurs when the

76 CICS TS for z/OS 4.2: Web Services Guide

<terminal_handler> element contains a <cics_soap_1.1 handler>,
<cics_soap_l.2 handler>, <cics_soap_l.1 handler java>, or
<cics_soap_l.2_handler_java> element. However, if your <terminal_handler>
element contains a <cics_soap_l1.1_handler_java> or
<cics_soap_l.2_handler_java> element, you can use the supplied Axis2
application handler by specifying the <apphandler_class> element instead of the
<apphandler> element. For more information see the [<apphandler_class>| element.
However, you must not specify <apphandler_class> and <apphandler> elements in
the same pipeline configuration file.

If you deploy your web service applications using the CICS web services assistant,
you must specify one of the following application handlers in the <apphandler>
element.

* The supplied application handler DFHPITP if you do not want to process your
application handler using Java.

* Your own application handler that uses DFHPITP.
¢ The name of the PROGRAM resource that you create.

For more information about application handlers, see [“Application handlers” on

Used in:

* Service provider

Contained by:
* |<provider pipeline>| element

Example
<apphandler>DFHPITP</apphandler>

The <apphandler_class> element
Specifies that the terminal handler of the pipeline links to an Axis2 application
handler.

The <apphandler_class> element is used to specify an Axis2 application handler
when your <terminal_handler> element contains either a
<cics_soap_l.1_handler_java> or <cics_soap_l.2_handler_java> element. To use
the supplied Axis2 application handler, specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler_class>
element, however you can specify your own Axis2 application handler class.

Alternatively, you can specify the <apphandler> element in your pipeline
configuration file if you want to use a channel-attached application handler, for
more information see the element. However, you must not specify
<apphandler_class> and <apphandler> elements in the same pipeline configuration
file.

You must not use the <apphandler_class> element if your <terminal_handler>
element contains either a <cics_soap_l.1_handler> or <cics_soap_1.2_handler>
element.

For more information about application handlers, see [“Application handlers” on|

Chapter 6. Creating the web services infrastructure 77

Used in:

* Service provider

Contained by:
<provider pipeh’ne>| element

Example
<apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>

The <named_transport_entry> element
Contains a list of handlers that are to be invoked when a named transport resource
is being used by a service provider.

* For the WebSphere MQ transport, the named resource is the local input queue
on which the request is received.

* For the HTTP transport, the resource is the TCPIPSERVICE that defines the port
on which the request was received.

Used in:
* Service provider

Contained by:

Attributes:

Name Description
type The transport mechanism with which the named resource is
associated:

wmq The named resource is a queue

http The named resource is a TCPIPSERVICE

Contains:

1. A <name> element, containing the name of the resource

2. An optional|<transport_handler 1ist>|element. Each
<transport_handler_list> contains one or more <handler> elements.

If you do not code a <transport_handler_list> element, then the only message
handlers that are invoked when the named transport is used are those that are
specified in the <service> element.

Example

<named_transport_entry type="http">
<name>PORT80</name>
<transport_handler_list>
<handler><program>HANDLER1</program><handler_parameter_list/></handler>
<handler><program>HANDLER2</program><handler_parameter_list/></handler>
</transport_handler_list>
</named_transport_entry>

In this example, the message handlers specified (HANDLER1 and HANDLER?) are
invoked for messages received on the TCPIPSERVICE with the name PORTS0.

78 CICS TS for z/OS 4.2: Web Services Guide

The <provider_pipeline> element
Specifies the root element of the XML document that describes the configuration of
the CICS pipeline for a web service provider.

Used in:

* Service provider

Contains:

. Optional [<cics_mtom hand]er'>| element
. Optional <transpor‘t>| element

. |<service>| element

Optional [<apphandler class>|element

1
2
3
4. Optional [<apphand] er>| element
5
6

Optional [<service parameter 1ist>|element, containing XML elements that are
made available to all the message handlers in the pipeline in container
DFH-SERVICEPLIST.

Example

<provider_pipeline>
<service>

</service>
<apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <terminal_handler> element
Contains the definition of the terminal message handler of the service provider
pipeline.

Used in:

* Service provider

Contained by:
. element

Contains:

One of the following elements:

[gcics_soap_1.1 handler>
[gcics_soap_l.2 handler>

gcics_soap 1.1 handler java>|

kci cs_soap 1.2 handl er_java>‘

If you expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you
must use either the <cics_soap 1.2 handler> or <cics_soap_l.2_handler_java>
element.

Remember: In a service provider, you can specify the <cics_soap_1.1_handler>
and <cics_soap_1.2 handler> in the <service handler list> element, as well as
in the <terminal_handler> element. However, in a service provider, you can only
specify <cics_soap_l.1_handler_java> and <cics_soap_l.2_handler_java> in the
<terminal_handler> element.

Chapter 6. Creating the web services infrastructure 79

Example

<terminal_handler>
<cics_soap_l.1 handler>

</cics_soap_l.1 handler>
<service_handler_list>

The <transport_handler_list> element
Contains a list of message handlers that are invoked when a named resource is

used.

* For the MQ transport, the named resource is the name of the local input queue.

* For the HTTP transport, the resource is the TCPIPSERVICE that defines the port
on which the request was received.

Used in:

* Service provider

Contained

by:

+ |<named transport entry>element

Contains:

¢ One or more [<handler> elements.

Example

<transport_handler_Tist>

<handler>

</handler>
<handler>

</handler>

<transport_handler Tist>

Elements used

in service requesters

Some of the XML elements used in a pipeline configuration file apply only to
service requester pipelines.

The <requester_pipeline> element
The root element of the XML document that describes the configuration of a

pipeline in a

Used in:

service requester.

* Service requester

Contains:

1. Optional element

Optional |

<transport>| element

<cics mtom handler>|element

2.
3. Optional
4

Optional [<service parameter 1ist>|element, containing XML elements that are

made available to the message handlers in container DFH-SERVICEPLIST.

Example

<requester pi
<service>

peline>

<service_handler_list>

80 CICS TS for z/OS 4.2: Web Services Guide

<cics_soap_l.1 handler/>
</service_handler_list>
</service>
</requester_pipeline>

Elements used in service provider and service requester
pipelines

Some of the XML elements used in a pipeline configuration file apply to both
service provider and service requester pipelines.

The <addressing> element
Specifies the support for Web Services Addressing in Java-based SOAP processing.

Used in:
* Service provider

* Service requester

Contained by:
kcics soap 1.1 handler java>|element

kcics soap 1.2 handler java>|element

Contains:

A <namespace> element. In a service provider, this element is optional. The
element contains one of the two WS-Addressing schemas that are supported by
CICS. For inbound messages, Axis2 supports both specifications. For outbound
messages, the namespace specified in this element is used. If you do not specify
this element or you have two elements, CICS uses the same specification on the
outbound message as the inbound message. In a service requester, this element
is required and you can specify only one namespace for the outbound message.

This example shows the configuration for a service provider pipeline, where both
WS-Addressing specifications are supported. CICS uses the same specification on
the outbound message as the inbound message. You can get the same results by
specifying an empty <addressing> element.

<addressing>
<namespace>http://www.w3.0rg/2005/08/addressing</namespace>
<namespace>http://schemas.xmlsoap.org/ws/2004/08/addressing</namespace>
</addressing>

The <cics_soap_1.1_handler> element
Specifies the attributes of the handler program for SOAP 1.1 messages in non-Java
pipelines

Used in:
* Service requester
* Service provider

Contained by:

[gservice_handler 1i stj element
<terminal_hand] er;| element

Contains:

Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:

Chapter 6. Creating the web services infrastructure 81

1. A <program_name> element, containing the name of a header processing
program

2. A <namespace> element, which is used with the following <localname> element
to determine which header blocks in a SOAP message should be processed by
the header processing program. The <namespace> element contains the URI
(Uniform Resource Identifier) of the header block's namespace.

3. A <localname> element, which is used with the preceding <namespace> element
to determine which header blocks in a SOAP message should be processed by
the header processing program. The <localname> contains the element name of
the header block.

For example, consider this header block:

<t:myheaderblock xmIns:t="http://mynamespace" ...> </t:myheaderblock>
* The namespace name is http://mynamespace

* The element name is myheaderblock

To make a header program match this header block, code the <namespace> and
<localname> elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message
can match more than one <headerprogram> element. For example, this header
block

<t:myheaderblock xmIns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:

<headerprogram>
<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</1ocalname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</Tocalname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in the
<headerprogram> element in which the element name of the header block is
most precisely stated. In the example, that is HDRPROGS3.

When the SOAP message contains more than one header, the header processing
program is invoked once for each matching header, but the sequence in which
the headers are processed is undefined.

82 CICS TS for z/OS 4.2: Web Services Guide

If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname>, but that specify different header programs, only
one of the header programs will run, but which of the programs will run is not
defined.

4. A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and
service response processing in a service requester pipeline, the header
processing program is to be invoked at least once, even if none of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:

* If none of the headers matches, the header processing program is
invoked once.

* If any of the headers match, the header processing program is invoked
once for each matching header.

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the SOAP
message that CICS creates has no headers initially. If you want to add
headers to your message, you must ensure that at least one header
processing program is invoked, by specifying <mandatory>true</mandatory>
or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:
* If none of the headers matches, the header processing program is not
invoked.

 If any of the headers match, the header processing program is invoked
once for each matching header.

Example

<cics_soap_l.1 handler>
<headerprogram>
<program_name> ... </program_name>
<namespace>...</namespace>
<localname>...</localname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_1.1 handler>

The <cics_soap_l1.1_handler_java> element
Specifies the attributes of the handler program for SOAP 1.1 messages in
Java-based SOAP pipelines.

Used in:
* Service requester
* Service provider

Contained by:

[gservice_handler_Ti stj element
<terminal hand]er;| element

Chapter 6. Creating the web services infrastructure 83

Contains:

1.
2.
3.

A element.
An optional element.

An optional element. If you enable Web Services Addressing in
Axis2, do not use the DFHWSADH header processing program.

Zero, one, or more <headerprogram> elements. Each <headerprogram> element
contains:

a. A <program_name> element, containing the name of a header processing
program. You can write Axis2 handlers in Java to process the SOAP
headers.

b. A <namespace> element, which is used with the following <localname>
element to determine which header blocks in a SOAP message should be
processed by the header processing program. The <namespace> element
contains the URI (Uniform Resource Identifier) of the header block's
namespace.

C. A <localname> element, which is used with the preceding <namespace>
element to determine which header blocks in a SOAP message should be
processed by the header processing program. The <localname> contains the
element name of the header block.

For example, consider this header block:
<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

The namespace name is http://mynamespace and the element name is
myheaderblock.

To make a header program match this header block, code the <namespace>
and <lTocalname> elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</1ocalname>

When you use the asterisk in the <localname> element, a header in a
message can match more than one <headerprogram> element. For example,
this header block:

<t:myheaderblock xmins:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:

<headerprogram>
<program_name>HDRPROG1</program name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</Tocalname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG3</program_name>

84 CICS TS for z/OS 4.2: Web Services Guide

<namespace>http://mynamespace</namespace>

<localname>myheaderblock</Tocalname>

<mandatory>false</mandatory>
</headerprogram>

When this is the case, the header program that runs is the one specified in
the <headerprogram> element in which the element name of the header
block is most precisely stated. In the example, that is HDRPROG3.

When the SOAP message contains more than one header, the header
processing program is invoked once for each matching header, but the
sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname> elements, but that specify different header
programs, only one of the header programs will run, but which of the
programs will run is not defined.

d. A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and
service response processing in a service requester pipeline, the header
processing program is to be invoked at least once, even if none of the
headers in the SOAP messages matches the <namespace> and
<localname> elements:

* If none of the headers matches, the header processing program is
invoked once.

* If any of the headers match, the header processing program is
invoked once for each matching header.

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the
SOAP message that CICS creates has no headers initially. If you want to
add headers to your message, you must ensure that at least one header
processing program is invoked, by specifying <mandatory>true</
mandatory> or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of
the headers in the SOAP messages matches the <namespace> and
<localname> elements:

* If none of the headers matches, the header processing program is not
invoked.

* If any of the headers match, the header processing program is
invoked once for each matching header.

Example

The following example shows the XML for the Java-based SOAP handler and its
nested elements:

<cics_soap_l.1 handler_java>
<jvmserver>JVMSERV1</jvmserver>
<headerprogram>
<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>

Chapter 6. Creating the web services infrastructure 85

<localname>myheaderblock</1ocalname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_l.1 handler_java>

The <cics_soap_1.2_handler> element
Specifies the attributes of the handler program for SOAP 1.2 messages in non-Java
pipelines.

Used in:
* Service requester
* Service provider

Contained by:

[gservice_handler Ti stj element
kterminal hand] er;l element

Contains:

Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:

1. A <program_name> element, containing the name of a header processing
program

2. A <namespace> element, which is used with the following <localname> element
to determine which header blocks in a SOAP message should be processed by
the header processing program. The <namespace> element contains the URI
(Uniform Resource Identifier) of the header block's namespace.

3. A <localname> element, which is used with the preceding <namespace> element
to determine which header blocks in a SOAP message should be processed by
the header processing program. The <localname> contains the element name of
the header block.

For example, consider this header block:
<t:myheaderblock xmIns:t="http://mynamespace" ...> </t:myheaderblock>
* The namespace name is http://mynamespace

* The element name is myheaderblock
To make a header program match this header block, code the <namespace> and
<localname> elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</Tocalname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</1ocalname>

When you use the asterisk in the <localname> element, a header in a message
can match more than one <headerprogram> element. For example, this header
block

<t:myheaderblock xmIns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:

<headerprogram>
<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>

86 CICS TS for z/0S 4.2: Web Services Guide

<localname>*</Tocalname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</Tocalname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</1ocalname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in the
<headerprogram> element in which the element name of the header block is
most precisely stated. In the example, that is HDRPROGS3.

When the SOAP message contains more than one header, the header processing
program is invoked once for each matching header, but the sequence in which
the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname>, but that specify different header programs, only
one of the header programs will run, but which of the programs will run is not
defined.

A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and
service response processing in a service requester pipeline, the header
processing program is to be invoked at least once, even if none of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:

* If none of the headers matches, the header processing program is
invoked once.

* If any of the headers match, the header processing program is invoked
once for each matching header.

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the SOAP
message that CICS creates has no headers initially. If you want to add
headers to your message, you must ensure that at least one header
processing program is invoked, by specifying <mandatory>true</mandatory>
or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of the
headers in the SOAP messages matches the <namespace> and <localname>
elements:

¢ If none of the headers matches, the header processing program is not
invoked.

 If any of the headers match, the header processing program is invoked
once for each matching header.

Chapter 6. Creating the web services infrastructure 87

Example

<cics_soap_l.2_handler>
<headerprogram>
<program_name> ... </program_name>
<namespace>...</namespace>
<localname>...</localname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_1.2_handler>

The <cics_soap_1.2 _handler_java> element
Specifies the attributes of the handler program for SOAP 1.2 messages in
Java-based SOAP pipelines.

Used in:
* Service requester
* Service provider

Contained by:
kservice handler list>]element

kterminal handler>| element

Contains:
1. A element.
2. An optional element.

3. An optional element. If you enable support for Web Services
Addressing in Axis2, do not use header processing programs. You can write

Axis2 handlers in Java to process the SOAP headers.

4. Zero, one, or more <headerprogram> elements. Each <headerprogram> element
contains:

a. A <program_name> element, containing the name of a header processing
program

b. A <namespace> element, which is used with the following <localname>
element to determine which header blocks in a SOAP message should be
processed by the header processing program. The <namespace> element
contains the URI (Uniform Resource Identifier) of the header block's
namespace.

C. A <localname> element, which is used with the preceding <namespace>
element to determine which header blocks in a SOAP message should be
processed by the header processing program. The <localname> contains the
element name of the header block.

For example, consider this header block:

<t:myheaderblock xmIns:t="http://mynamespace" ...> </t:myheaderblock>

The namespace name is http://mynamespace and the element name is
myheaderblock

To make a header program match this header block, code the <namespace>
and <localname> elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all
header blocks in the namespace whose names begin with a given character
string should be processed. For example:

88 CICS TS for z/0S 4.2: Web Services Guide

<namespace>http://mynamespace</namespace>
<localname>myhead*</Tocalname>

When you use the asterisk in the <localname> element, a header in a
message can match more than one <headerprogram> element. For example,
this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:

<headerprogram>
<program_name>HDRPROG1</program_name>
<namespace>http://mynamespace</namespace>
<localname>*</localname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG2</program_name>
<namespace>http://mynamespace</namespace>
<localname>myhead*</Tocalname>
<mandatory>false</mandatory>

</headerprogram>

<headerprogram>
<program_name>HDRPROG3</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</1ocalname>
<mandatory>false</mandatory>

</headerprogram>

When this is the case, the header program that runs is the one specified in
the <headerprogram> element in which the element name of the header
block is most precisely stated. In the example, that is HDRPROGS.

When the SOAP message contains more than one header, the header
processing program is invoked once for each matching header, but the
sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same
<namespace> and <localname> elements, but that specify different header
programs, only one of the header programs will run, but which of the
programs will run is not defined.

A <mandatory> element, containing an XML boolean value (true or false).
Alternatively, you can code the values as 1 or 0 respectively.

true
During service request processing in a service provider pipeline, and
service response processing in a service requester pipeline, the header
processing program is to be invoked at least once, even if none of the
headers in the SOAP messages matches the <namespace> and
<localname> elements:

* If none of the headers matches, the header processing program is
invoked once.

* If any of the headers match, the header processing program is
invoked once for each matching header.

During service request processing in a service requester pipeline, and
service response processing in a service provider pipeline, the header
processing program is to be invoked at least once, even though the
SOAP message that CICS creates has no headers initially. If you want to
add headers to your message, you must ensure that at least one header

Chapter 6. Creating the web services infrastructure 89

processing program is invoked, by specifying <mandatory>true</
mandatory> or <mandatory>1</mandatory>.

false

The header processing program is to be invoked only if one or more of

the headers in the SOAP messages matches the <namespace> and

<localname> elements:

* If none of the headers matches, the header processing program is not
invoked.

 If any of the headers match, the header processing program is
invoked once for each matching header.

Example

The following example shows the XML for the Java-based SOAP handler and its
nested elements:

<cics_soap_l.2_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<headerprogram>
<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</Tocalname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_1.2_handler_java>

The <default_http_transport_handler_list> element
Specifies the message handlers that are invoked by default when the HTTP
transport is in use.

In a service provider, message handlers specified in this list are invoked only if the
list of handlers defined in a <named_transport_entry> element is less specific.

Used in:
* Service provider

* Service requester

Contained by:
. element

Contains:

¢ One or more [<handler> elements.

Example
<default_http_transport_handler Tist>

<handler>

</handler>

<handler>

</handler>
</default_http_transport_handler_list>

The <default_mq_transport_handler_list> element
Specifies the message handlers that are invoked by default when the WebSphere
MQ transport is in use.

90 CICS TS for z/OS 4.2: Web Services Guide

In a service provider, message handlers specified in this list are invoked only if the

list of handlers defined in a <named_transport_entry> element is less specific.

Used in:
* Service provider
* Service requester

Contained by:

. element

Contains:
* One or more elements.
Example

<default_mqg_transport_handler_Tist>
<handler>
</handler>
<handler>
</handler>
</default_mq_transport_handler_list>

The <default_transport_handler_list> element

Specifies the message handlers that are invoked by default when any transport is

in use.

In a service provider, message handlers specified in this list are invoked when the

list of handlers defined in any of the following elements is less specific:

<default_http_transport handler 1ist>
<default_mq_transport_handler_list>
<named_transport_entry>

Used in:
 Service provider
* Service requester

Contained by:
. element

Contains:

¢ One or more [<handler>|elements.

Example

<default_transport_handler_list>
<handler>
<program>HANDLER1</program>
<handler_parameter list/>
</handler>
<handler>
<program>HANDLER2</program>
<handler_parameter_list/>
</handler>
</default_transport_handler_list>

Chapter 6. Creating the web services infrastructure

91

The <handler> element
Specifies the attributes of a message handler program.

Some CICS-supplied handler programs do not use the <handler> element. For
example, the CICS-supplied SOAP message handler programs are defined using
the <cics_soap_1.1 handler>, <cics_soap_1.2 handler>,

<cics_soap_l.1 handler_java>, and <cics_soap_1.2 handler_ java> elements.

Used in:
 Service provider

* Service requester

Contained by:

gdefault_transport_handler_li stj

:<transport_hand1 er_li sta
kservice handler 1ist

kterminal handler>]
kdefault http transport handler Tist>|
kdefault mg transport handler 1ist>|

Contains:
1. <program> element, containing the name of the handler program

2. <handler_parameter_list> element, containing XML elements that are made
available to the message handlers in container DFH-HANDLERPLIST.

Example

<?xml version="1.0"7>
<provider pipeline>
xmins="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<service_handler_list>
<handler>
<program>MYPROG</program>
<handler_parameter_list><output print="yes"/></handler_parameter_list>
</handler>
</service_handler_list>
<terminal_handler>
<cics_soap_l.1 handler>

</cics_soap_1.1 handler>
</terminal_handler>
</service
<apphandler>DFHPITP</apphandler>
</provider_pipeline>

In this example, the handler program is MYPROG. The handler parameter list
consists of a single <output> element; the contents of the parameter list are known
to MYPROG.

The <jvmserver> element
Specifies the name of the JVMSERVER resource.

This element identifies the name of the JVMSERVER resource, which will process

the request. If a value is not supplied, an error message is generated and the
PIPELINE is installed in the DISABLED state.

92 CICS TS for z/OS 4.2: Web Services Guide

Used in:
* Service provider

* Service requester

Contained by:
* |scics_soap_l.1 handler_java>|element

e [<cics soap 1.2 handler java>|element

Example
<jvmserver>JVYMSERVER_NAME</jvmserver>

The <repository> element
Specifies the directory name of the Axis2 repository.

This optional element identifies the directory name of the Axis2 repository. If you

use this option, you must specify [‘The <jvmserver> element” on page 92|

beforehand in the handler XML. If it is not supplied then, the sample repository

will be used. When you install CICS Transaction Server the sample Axis2

repository is installed in the /usr/Tpp/cicsts/cicsts42/1ib/pipeline/repository
directory, where /usr/1pp/cicsts/cicsts42 is the default installation directory for

CICS files on z/OS UNIX.

Used in:
 Service provider
* Service requester

Contained by:
e |<cics soap 1.1 handler java>|element

s |<cics soap 1.2 handler java>|element

Example

<cics_soap_l.1 handler_java>
<jvmserver>JVMSERV1</jvmserver>
<repository>/1ib/pipeline/repository</repository>

</cics_soap_1.1_handler_java>

The <service> element
Specifies the message handlers that are invoked for every request.

Used in:
* Service provider

* Service requester

Contained by:

[gprovider pipel 1'ne3|
<requester pipeli ne;l

Contains:
1. [<service handler 1ist>]element

2. In a service provider only, a [<terminal_handler>|element

Chapter 6. Creating the web services infrastructure

93

Example

<service>
<service_handler_list>

</service_handler list>
<terminal_handler>

</terminal_handler>
</service>

The <service_handler_list> element
Specifies a list of message handlers that are invoked for every request.

Used in:
 Service provider

* Service requester

Contained by:
. element

Contains:

One or more of the following elements:

fccics soap 1.1 handler>]

fcics soap 1.2 handlers]
fcics soap 1.1 handler javas]
fcics soap 1.2 handler java]

You determine the order that each handler is called at run time by the order that
you specify the handler elements in the <service_handler_1ist> element. For
example, if your pipeline supports WS-Security, encrypted SOAP messages remain
encrypted until the <wsse_handler> element is called. Therefore, you must specify
the <wsse_handler> element before any other handler program that processes
unencrypted messages.

The <service_handler_list> element for a service provider cannot contain the
<cics_soap_l.1 handler_java> and <cics_soap_1.2 handler_java> elements,
because these elements must be specified in the <terminal_handler> element for
Java-based pipelines. A service requestor can contain the

<cics_soap_l.1 handler_java> and <cics_soap_l.2_handler_java>, however if
these elements are used, they must be the first element listed in the
<service_handler_list> element.

If you expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you
must use either the <cics_soap 1.2 handler> or <cics_soap_ 1.2 handler java>
element.

You can use either a SOAP 1.1 or a SOAP 1.2 handler in a service requester
pipeline, but in this case the SOAP 1.2 handler does not support SOAP 1.1
messages. Do not specify the SOAP 1.1 or SOAP 1.2 handler in the pipeline if your
service requester applications are sending complete SOAP envelopes in the
DFHREQUEST container. This avoids duplicating the SOAP message headers in
outbound messages.

94 CICS TS for z/OS 4.2: Web Services Guide

In a service provider, you can specify the generic handler and SOAP handlers in
the <terminal_handler> element as well as in the <service handler Tist> element.
For more information about processing SOAP header, see ["Header processing]
fprograms” on page 122]

Example
<service_handler_list>
<wsse_handler>

</wsse_handler>
<cics_soap_l.1 handler_java>

</cics_soap_l.1 handler_java>

<handler>

</handler>
</service_handler_list>

The <service_parameter_list> element
Specifies the XML elements that are made available to all the message handlers in
the pipeline in container DFH-SERVICEPLIST. This is an optional element.

Used in:
* Service requester
* Service provider

Contains:
* If you are using WS-AT: a <registration_service_endpoint> element

* In a service requester if you are using WS-AT: an optional
<new_tx_context_required/> element

* Optional user defined tags

Example

<requester_pipeline>
<service_parameter_Tist>
<registration_service_endpoint>
http://provider.example.com:7160/cicswsat/RegistrationService
</registration_service_endpoint>
<new_tx_context_required/>
<user_defined_tagl>

</user_defined_tagl>
</service_parameter list>
</requester_pipeline>

Related reference:

|”The <requester pipeline> element” on page 8d
The root element of the XML document that describes the configuration of a
pipeline in a service requester.

[“The <provider pipeline> element” on page 79
Specifies the root element of the XML document that describes the configuration of
the CICS pipeline for a web service provider.

The <transport> element
Specifies handlers that are to be invoked only when a particular transport is in use.

Chapter 6. Creating the web services infrastructure 95

Used in:
* Service provider

* Service requester

Contained by:

gprovider pipel 1nej
<requester pipel 1'ne;|

Contains:

In a service provider:

1. An optional <defau1t_transpor‘t_hand]er‘_]1’st>| element
2. An optional [<default_http_transport_handler_Ti st>| element

3. An optional |<defau1 t_mq_transport_handler 1i st>| element
4. Zero, one, or more Fnamed transport entr‘y;| elements

In a service requester:

1. An optional <default_target> element. The <default_target> contains a URI
that CICS uses to locate the target Web service when the service requester
application does not provide a URIL. In many cases, however, the URI of the
target will be provided by the service requester application, and whatever you
specify in the <default_target> will be ignored. For example, service provider
applications that are deployed using the CICS Web services assistant normally
get the URI from the Web service description.

2. An optional [<default http transport handler list>|element

3. An optional [<default mg_transport handler 1ist>element

4. An optional [<default_transport_handler 1ist>|element

Example
<transport>
<default_transport_handler_list>

</default_transport_handler_list>
</transport>

Pipeline configuration for MTOM/XOP

CICS SOAP pipelines can support the Message Transmission Optimization
Mechanism (MTOM) and XML-binary Optimized Packaging (XOP) specifications.
These specifications define a mechanism for sending and receiving binary data
using SOAP, without incurring the overhead of base64 encoding. To enable MTOM
support, you must configure your pipelines accordingly.

The <mtom> element

Enables MTOM/XOP support for Java-based pipelines. If this element is defined in
the pipeline configuration file, MTOM support is enabled for all inbound and
outbound messages. However, if this element is not specified in the pipeline
configuration file, then MTOM support is enabled for only inbound messages.

Used in:
* Service provider

* Service requester

96 CICS TS for z/OS 4.2: Web Services Guide

Contained by:
[ccics soap 1.1 handler java>

[ccics soap 1.2 handler java>]

For both provider and requester pipeline configuration files, the <mtom> element
should be defined after the optional <addressing> element and before the optional
<headerprogram> element.

Example

For a provider or requester mode pipeline, you could specify:

<cics_soap_l.2_handler_java>
<jvmserver>JVMSERV1</jvmserver>
<addressing></addressing>
<mtom></mtom>
<headerprogram>
<program_name>HDRPROG4</program_name>
<namespace>http://mynamespace</namespace>
<localname>myheaderblock</Tocalname>
<mandatory>true</mandatory>
</headerprogram>
</cics_soap_l1.2 handler_java>

The <cics_mtom_handler> element

Enables the supplied MTOM handler program for SOAP pipelines. This program
provides support for MTOM MIME multipart/related messages that contain XOP
documents and binary attachments. MTOM support is enabled for all inbound
messages that are received in the pipeline, but MTOM support for outbound
messages is conditionally enabled subject to further options.

Used in:
* Service provider
* Service requester

Contained by:
kprovider pipeline>|
krequester pipeline>|

In a provider pipeline configuration file, the <cics_mtom_handler> element should
be defined before the <transport> element. At run time, the MTOM handler
program needs to unpackage the inbound MTOM message before other handlers
including the transport handler process it. It is then invoked as the last handler for
the response message, to package an MTOM message to send to the web service
requester.

In a requester pipeline configuration file the <cics_mtom_handler> element should
be defined after the <transport> element. At run time, the outbound request
message is not converted into MTOM format until all other handlers have
processed it. It is then invoked as the first handler for the inbound response
message to unpackage the MTOM message before other handlers process it and
return to the requesting program.

Note: You must not use this handler program with Java-based pipelines. For
Java-based pipelines, specify the element.

Chapter 6. Creating the web services infrastructure 97

Contains:
gdfhmtom configuration> element

Default options can be changed using configuration options specified in the
<dfhmtom_configuration> element. If you do not want to change the default
options, you can use an empty element.

Example

For a provider mode pipeline, you could specify:
<provider_pipeline>
<cics_mtom_handler></cics_mtom_handler>
<transport>
</transport>
<service>
</service>
</provider_pipeline>

The <dfhmtom_configuration> element

Specifies configuration information for the supplied MTOM handler program for
pipelines that do not support Java. This program provides support for MIME
messages that contain XOP documents and binary attachments. If you do not
specify any configuration for MTOM, CICS assumes default values.

Used in:
* Service provider

* Service requester

Contained by:
fcics mtom handler>]

Attributes:

Name Description

version An integer denoting the version of the configuration
information. The only valid value is 1.

Contains:
* An optional [<mtom_options>| element

* An optiona1:<xop options>| element

* An optional‘<m1'me_opt1’ on s;l element

Example

<dfhmtom_configuration version="1">
<mtom_options send_mtom="same" send_when_no_xop="no"/>
<xop_options apphandler_supports_xop="yes"/>
<mime_options content_id_domain="example.org"/>
</dfhmtom_configuration>

The <mtom_options> element
Specifies when to use MTOM for outbound SOAP messages for pipelines that do
not support Java.

98 CICS TS for z/OS 4.2: Web Services Guide

Used in:
* Service provider

* Service requester

Contained by:
[dfhmtom configuration>|

Attributes:

Attribute Description

send_mtom Specifies if MTOM should be used to convert the outbound
SOAP message into a MIME message:

no MTOM is not used for outbound SOAP messages.

same In service provider mode, MTOM is used for
SOAP response messages whenever the requester
uses MTOM. This is the default value in a service
provider pipeline.
In service requester mode, specifying this value is

the same as when you specify send_mtom="yes".

yes MTOM is used for all outbound SOAP messages.
This is the default value in a service requester
pipeline.

send_when_no_xop Specifies if an MTOM message should be sent, even when
there are no binary attachments present in the message.

no MTOM is only used when binary attachments are
being sent with the message.

yes MTOM is used for all outbound SOAP messages,
even when there are no binary attachments to send
in the message. This is the default value, and is
primarily used as an indicator to the receiving
program that the sender supports MTOM/XOP.
This attribute can be combined with any of the send_mtom
attribute values, but has no effect if you specify
send_mtom="no".

Example

<provider_pipeline>
<cics_mtom_handler>
<dfhmtom_configuration version="1">
<mtom_options send_mtom="same" send_when_no_xop="no"/>
</dfhmtom_configuration>
</cics_mtom_handler>

</provider_pipeline>

In this provider pipeline example, SOAP messages are converted into MTOM
messages only when binary attachments need to be sent with the message, and the
service requester sent an MTOM message.

The <xop_options> element
Specifies whether XOP processing can take place in direct or compatibility mode
for pipelines that do not support Java.

Chapter 6. Creating the web services infrastructure 99

100

Used in:
* Service provider

* Service requester

Contained by:
[dfhmtom configuration>|

Attributes:

Attribute Description

no

yes

XOP doc

no

yes

apphandler_supports_xop In provider mode, specifies if the application handler is
capable of handling XOP documents in direct mode:

The application handler cannot handle XOP
documents directly. This is the default value if the
<apphandler> element does not specify DFHPITP.

Compatibility mode is used in the pipeline to
handle any inbound or outbound messages that
are received or sent in MTOM format.

The application handler can handle XOP
documents. This is the default value if the
<apphandler> element specifies DFHPITP.

Direct mode is used in the pipeline to handle any
inbound or outbound messages that are received
or sent in MTOM format. This is subject to
restrictions at run time. For example, if you have
specified WS-Security related elements in the
pipeline configuration file, the MTOM handler
determines that the pipeline should use
compatibility mode rather than direct mode for
processing XOP documents.

In requester mode, specifies if service requester applications
use the CICS web services support to create and handle

uments in direct mode.

Service requester applications do not use the CICS
web services support. Specify this value if your
requester application links to DFHPIRT to drive
the pipeline, and is therefore not capable of
creating and handling XOP documents in direct
mode.

Service requester applications do use the CICS
web services support. Specify this value if your
requester application uses the EXEC CICS INVOKE
WEBSERVICE command.

Example

<provider_pipeline>
<cics_mtom_handler>
<dfhmtom_configuration version="1">

<xop_options apphandler_supports xop="no"/>

</dfhmtom_configuration>
</cics_mtom_handler>

</provider_pipeline>

CICS TS for z/OS 4.2: Web Services Guide

In this provider pipeline example, inbound MTOM messages and outbound
response messages are processed in the pipeline using compatibility mode.

The <mime_options> element

Specifies the domain name that should be used when generating MIME content-ID
values for pipelines that do not support Java. The MIME content-ID values are
used to identify binary attachments.

Used in:
* Service provider

* Service requester

Contained by:
|<dfhmtom_conf1' gurati on>|

Attributes:

Attribute Description

content_id_domain The syntax to use is domain.name.

To conform to Internet standards, the name should be a
valid internet host name and should be unique to the CICS
system where the pipeline is installed. Note that this is not
checked by CICS.

If this element is omitted, CICS uses the value cicsts.

Example

<provider_pipeline>

<dfhmtom_configuration version="1">
<mime_options content_id_domain="example.org"/>

</dfhmtom_configuration>

</provider_pipeline>

In this example, references to binary attachments are created using
cid:unique_value@example.org.

Pipeline configuration for WS-Security

In order for web service requester and provider applications to participate in
WS-Security protocols, you must configure your pipelines accordingly, by
including message handler DFHWSSE, and by providing configuration information
for the handler.

Example

A provider pipeline configuration file that uses WS-Security might take the
following form:

<?xml version="1.0"?>
<provider_pipeline
xmins="http://www.ibm.com/software/htp/cics/pipeline">
<service>
<service_handler_list>
<wsse_handler>
<dfhwsse_configuration version="1">
<authentication trust="blind" mode="basic"/>
</dfhwsse_configuration>

Chapter 6. Creating the web services infrastructure 101

</wsse_handler>
<handler>

</handler>
</service_handler_list>
<terminal_handler>
<cics_soap_1.2_handler/>
</terminal_handler>
</service>
<apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <wsse_handler> element
Specifies parameters used by the CICS-supplied message handler that provides
support for WS-Security.

Used in:
* Service provider

* Service requester

Contained by:
kservice handler Tist>]

Contains:
+ Aldfhwsse configuration>|element.

The <dfhwsse_configuration> element
Specifies configuration information for the security handler DFHWSSE1, which
provides support for securing web services.

Used in:
* Service provider

* Service requester

Contained by:

Attributes:

Name Description

version An integer denoting the version of the configuration
information. The only valid value is 1.

Contains:

1. Either of the following elements:

* An optional [<authentication>| element.

— In a service requester pipeline, the <authentication> element specifies the
type of authentication that must be used in the security header of
outbound SOAP messages.

— In a service provider pipeline, the element specifies whether CICS uses the
security tokens in an inbound SOAP message to determine the user ID
under which work is processed.

* An 0ptiona1|<sts authentication>| element.

102 CICS TS for z/OS 4.2: Web Services Guide

n

The action attribute on this element specifies what type of request to send to
the Security Token Service. If the request is to issue an identity token, then
CICS uses the values in the nested elements to request an identity token of
the specified type.

If you specify an <sts_authentication> element, you must also specify an
[<sts endpoint>| element.

When this element is present, CICS uses the URI in the <endpoint> element to
send a request to the Security Token Service.

An optional, empty <expect_signed_body/> element.
The <expect_signed_body/> element indicates that the <body> of the inbound

message must be signed. If the body of an inbound message is not correctly
signed, CICS rejects the message with a security fault.

An optional, empty <expect_encrypted_body/> element.
The <expect_encrypted_body/> element indicates that the <body> of the

inbound message must be encrypted. If the body of an inbound message is not
correctly encrypted, CICS rejects the message with a security fault.

An optional element.

If this element is present, CICS will sign the <body> of the outbound message,
using the algorithm specified in the <algorithm> element contained in the
<sign_body> element.

An optional [<encrypt body>| element.

If this element is present, CICS will encrypt the <body> of the outbound
message, using the algorithm specified in the <algorithm> element contained in
the <encrypt_body> element.

In provider pipelines only, an optional <reject_signature/> element.

If this element is present, CICS rejects any message that includes a certificate in
its header that signs part or all of the message body. A SOAP fault is issued to
the web service requester.

In provider pipelines only, an optional <reject_encryption/> element.

If this element is present, CICS rejects any message that is partially or fully
encrypted. A SOAP fault is issued to the web service requester.

Example
<dfhwsse_configuration version="1">

<sts_authentication action="issue">

<auth_token_type>
<namespace>http://example.org.tokens</namespace>
<element>UsernameToken</element>

</auth_token_type>
<suppress/>

</sts_authentication>

<sts_endpoint>
<endpoint>https://example.com/SecurityTokenService</endpoint>

</sts_endpoint>

<expect_signed_body/>

<expect_encrypted_body/>

<sign_body>
<algorithm>http://www.w3.0rg/2000/09/xmldsig#rsa-shal</algorithm>
<certificate_label>SIGCERTOl</certificate_label>

</sign_body>

<encrypt_body>
<algorithm>http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc</algorithm>
<certificate_label>ENCCERTO2</certificate_label>

</encrypt_body>

</dfhwsse_configuration>

Chapter 6. Creating the web services infrastructure 103

The <authentication> element
Specifies the use of security tokens in the headers of inbound and outbound SOAP
messages.

Used in:
* Service provider

* Service requester

Contained by:
[dfhwsse configuration>]

Attributes:

Attribute Description
trust Taken together, the trust and mode attributes specify:
mode * whether asserted identity is used

* the combination of security tokens that are used in SOAP messages.

Asserted identity allows a trusted user to assert that work must run
under an different identity, the asserted identity, without the trusted user
having the credentials associated with that identity.

When asserted identity is used, messages contain a trust token and an
identity token. The trust token is used to check that the sender has the
correct permissions to assert identities, and the identity token holds the
asserted identity, that is, the user ID under which the request is
executed.

Use of asserted identity requires that a service provider trusts the
requester to make this assertion. In CICS, the trust relationship is
established with security manager surrogate definitions: the requesting
identity must have the correct authority to start work on behalf of the
asserted identity.

The allowable combinations of the these attributes, and their meanings,
are described in [Table 2|and [Table 3 on page 105|

Table 2. The mode and trust attributes in a service requester pipeline

trust mode Meaning
none none No credentials are added to the message
basic Invalid combination of attribute values
signature Asserted identity is not used. CICS uses a single

X.509 security token which is added to the message,
and used to sign the message body. The certificate is
identified with the <certificate_label> element,
and the algorithm is specified in the <algorithm>
element.

104 CICS TS for z/OS 4.2: Web Services Guide

Table 2. The mode and trust attributes in a service requester pipeline (continued)

trust mode Meaning
blind none Invalid combination of attribute values
basic Asserted identity is not used. CICS adds an identity
token to the message, but does not provide a trust
token. The identity token is a username with no
password. The user ID placed in the identity token
is the contents of the DFHWS-USERID container
(which, by default, contains the running task's user
D).
signature Invalid combination of attribute values
basic (any) Invalid combination of attribute values
signature none Invalid combination of attribute values
basic Asserted identity is used. CICS adds the following
tokens to the message:
* The trust token is an X.509 security token.
* The identity token is a username with no
password.
The certificate used to sign the identity token and
message body is specified by the
<certificate_label>. The user ID placed in the
identity token is the contents of the DFHWS-USERID
container (which, by default, contains the running
task's user ID).
signature Invalid combination of attribute values

Table 3. The mode and trust attributes in a service provider pipeline

trust mode Meaning
none none Inbound messages need not contain any credentials,
and CICS does not attempt to extract or verify any
credentials that are found in a message. However,
CICS will check that any signed elements have been
correctly signed.
basic Inbound messages must contain a username security
token with a password. CICS puts the username in
the DFHWS-USERID container.
basic-ICRX Invalid combination of attribute values
signature Inbound messages must contain an X.509 security

token that has been used to sign the message body.

Chapter 6. Creating the web services infrastructure 105

Table 3. The mode and trust attributes in a service provider pipeline (continued)

trust

mode

Meaning

blind

none

Invalid combination of attribute values

basic

Inbound messages must contain an identity token,
where the identity token contains a user ID and
optionally a password. CICS puts the user ID in the
DFHWS-USERID container. If no password is
included, CICS uses the user ID without verifying it.
If a password is included, the security handler
DFHWSSEL verifies it.

basic-ICRX

Inbound messages must contain an ICRX identity
token. CICS resolves the identity, puts the user ID in
the DFHWS-USERID container, and puts the ICRX in
container DFHWS-ICRX. Authentication, if required,
uses client-certified SSL or another security protocol.

signature

Inbound messages must contain an identity token,
where the identity token is the first X.509 certificate
in the SOAP message header. The certificate does not
need to have signed the message. The security
handler extracts the matching user ID and places it
in the DFHWS-USERID container.

basic

none

Invalid combination of attribute values

basic

Inbound messages must use asserted identity:

* The trust token is a username token with a
password

* The identity token is a second username token
without a password. CICS puts this username in
container DFHWS-USERID.

basic-ICRX

Inbound messages must use asserted identity:
* The trust token is a user name token with a
password.

CICS establishes whether the user ID and
password combination are valid, and, if they are
valid, CICS resolves the asserted ICRX-based
identity to a user ID. CICS then performs a
surrogate security check from the authenticated
identity to the asserted identity.

¢ The identity token is an ICRX, which identifies the
specific client user. CICS puts the user name in
container DFHWS-USERID and the ICRX in
container DFHWS-ICRX.

signature

Inbound messages must use asserted identity:

* The trust token is a username token with a
password

* The identity token is an X.509 certificate. CICS
puts the user ID associated with the certificate in
container DFHWS-USERID.

106 CICS TS for z/OS 4.2: Web Services Guide

Table 3. The mode and trust attributes in a service provider pipeline (continued)

trust mode Meaning
signature none Invalid combination of attribute values
basic Inbound messages must use asserted identity:

* The trust token is an X.509 certificate

* The identity token is a username token without a
password. CICS puts the username in container
DFHWS-USERID.

The identity token and the body must be signed
with the X.509 certificate.

basic-ICRX Inbound messages must use asserted identity.
* The trust token is an ICRX signed with an X.509
certificate.

CICS resolves the X.509 certificate to a user ID
and ensures that the XML signature is valid. CICS
resolves the asserted ICRX-based identity to a user
ID. CICS then performs a surrogate security check
from the authenticated X.509 identity to the
asserted ICRX identity.

* The identity token is a user name token without a
password. CICS puts the user name in container
DFHWS-USERID and the ICRX in container
DFHWS-ICRX.

signature Inbound messages must use asserted identity:

* The trust token is an X.509 certificate

* The identity token is a second X.509 certificate.
CICS puts the user ID associated with this
certificate in container DFHWS-USERID.

The identity token and the body must be signed
with the first X.509 certificate (the trust token).

Notes:

1.

The combinations of the trust and mode attribute values are checked when the
PIPELINE is installed. The installation will fail if the attributes are incorrectly
coded.

Contains:

1.

An optional, empty <suppress/> element.

If this element is specified in a service provider pipeline, the handler does not
attempt to use any security tokens in the message to determine under which
user ID the work will run.

If this element is specified in a service requester pipeline, the handler does not
attempt to add to the outbound SOAP message any of the security tokens that
are required for authentication.

In a requester pipeline, an optional <algorithm> element that specifies the URI

of the algorithm used to sign the body of the SOAP message. You must specify
this element if the combination of trust and mode attribute values indicate that
the messages are signed. You can specify only the RSA with SHA1 algorithm in
this element. The URI is http://www.w3.0rg/2000/09/xmldsig#rsa-shal.

An optional <certificate_label> element that specifies the label associated
with an X.509 digital certificate installed in RACF®. If you specify this element
in a service requester pipeline and the <suppress> element is not specified, the

Chapter 6. Creating the web services infrastructure 107

certificate is added to the security header in the SOAP message. If you do not
specify a <certificate_label> element, CICS uses the default certificate in the
RACEF key ring.

This element is ignored in a service provider pipeline.

Example

<authentication trust="signature" mode="basic">
<suppress/>
<algorithm>http://www.w3.0rg/2000/09/xmldsig#rsa-shal</algorithm>
<certificate_label>AUTHCERTO3</certificate_label>
</authentication>

The <sts_authentication> element
Specifies that a Security Token Service (STS) must be used for authentication and
determines what type of request is sent.

Used in:
* Service provider
* Service requester

Contained by:
[kdfhwsse configuration>|

Attributes:

Name Description

action Specifies what type of request CICS sends to the STS when
a message is received in the service provider pipeline. Valid
values are:

issue The STS issues an identity token for the SOAP
message.

validate
The STS validates the provided identity token and
returns whether the token is valid to the security
handler.

If you do not specify this attribute, CICS assumes that the

action is to request an identity token.

In a service requester pipeline, you cannot specify this
attribute because CICS always requests that the STS issues
a token.

Contains:

1. An <auth_token_type> element. This element is required when you specify a
<sts_authentication> element in a service requester pipeline and is optional in
a service provider pipeline. For more information, see|<auth_token_type>|

* In a service requester pipeline, the <auth_token_type> element indicates the
type of token that STS issues when CICS sends it the user ID contained in
the DFHWS-USERID container. The token that CICS receives from the STS is
placed in the header of the outbound message.

* In a service provider pipeline, the <auth_token_type> element is used to
determine the identity token that CICS takes from the message header and
sends to the STS to exchange or validate. CICS uses the first identity token of
the specified type in the message header. If you do not specify this element,

108 CICS TS for z/OS 4.2: Web Services Guide

CICS uses the first identity token that it finds in the message header. CICS
does not consider the following as identity tokens:

— wsu:Timestamp
- xenc:Referencelist
— xenc:EncryptedKey
— ds:Signature
2. In a service provider pipeline only, an optional, empty <suppress/> element. If
this element is specified, the handler does not attempt to use any security
tokens in the message to determine under which user ID the work will run.

The <suppress/> element includes the identity token that is returned by the
STS.

Example

The following example shows a service provider pipeline, where the security
handler requests a token from the STS.
<sts_authentication action="issue">
<auth_token_type>
<namespace>http://example.org.tokens</namespace>
<element>UsernameToken</element>
</auth_token_type>
<suppress/>
</sts_authentication>

The <auth_token_type> element
Specifies what type of identity token is required.

This element is mandatory when you specify the <sts_authentication> element in
a service requester pipeline, and optional in a service provider.

* In a service requester pipeline, the <auth_token_type> element indicates the type
of token that STS issues when CICS sends it the user ID contained in the
DFHWS-USERID container. The token that CICS receives from the STS is placed
in the header of the outbound message.

* In a service provider pipeline, the <auth_token_type> element is used to
determine the identity token that CICS takes from the message header and sends
to the STS to exchange or validate. CICS uses the first identity token of the
specified type in the message header. If you do not specify this element, CICS
uses the first identity token that it finds in the message header. CICS does not
consider the following as identity tokens:

— wsu:Timestamp
xenc:Referencelist

xenc:EncryptedKey
— ds:Signature

Used in:
* Service provider

* Service requester

Contained by:
|<sts_authent1' cati on>|

Chapter 6. Creating the web services infrastructure 109

Contains:

1. A <namespace> element. This element contains the namespace of the token type
that should be validated or exchanged.

2. An <element> element. This element contains the local name of the token type
that should be validated or exchanged.

The values of these elements form the Qname of the token.

Example

<auth_token_type>
<namespace>http://example.org.tokens</namespace>
<element>UsernameToken</element>
</auth_token_type>

The <sts_endpoint> element
Specifies the location of the Security Token Service (STS).

Used in:
* Service provider

* Service requester

Contained by:
kdfhwsse configuration>|

Contains:

* An <endpoint> element. This element contains a URI that points to the location
of the Security Token Service (STS) on the network. It is recommended that you
use SSL or TLS to keep the connection to the STS secure, rather than using
HTTP.

You can also specify a WebSphere MQ endpoint using the JMS format of URL
Example

In this example, the endpoint is configured to use a secure connection to the STS
that is located at the specified URI.

<sts_endpoint>
<endpoint>https://example.com/SecurityTokenService</endpoint>
</sts_endpoint>

The <sign_body> element
Directs DFHWSSE to sign the body of outbound SOAP messages, and provides
information about how the messages are to be signed.

Used in:
* Service provider

* Service requester

Contained by:
[dfhwsse configuration>]

Contains:

1. An <algorithm> element that contains the URI that identifies the algorithm
used to sign the body of the SOAP message.

You can specify the following algorithms:

110 CICS TS for z/OS 4.2: Web Services Guide

Algorithm URI

Digital Signature Algorithm | http://www.w3.0rg/2000/09/xmldsig#dsa-shal
with Secure Hash Algorithm
1 (DSA with SHA1)

Supported on inbound SOAP
messages only.

Rivest-Shamir-Adleman http://www.w3.0rg/2000/09/xmldsig#rsa-shal
algorithm with Secure Hash
Algorithm 1 (RSA with
SHA1)

2. A <certificate_label> element that specifies the label associated with a digital
certificate installed in RACEF. The digital certificate provides the key that is used
to sign the message.

Example

<sign_body>
<algorithm>http://www.w3.0rg/2000/09/xmldsig#rsa-shal</algorithm>
<certificate_label>SIGCERTO1</certificate_label>

</sign_body>

The <encrypt_body> element
Directs DFHWSSE to encrypt the body of outbound SOAP messages, and provides
information about how the messages are to be encrypted.

Used in:
* Service provider

* Service requester

Contained by:
[kdfhwsse configuration>|

Contains:

1. An <algorithm> element containing the URI that identifies the algorithm used
to encrypt the body of the SOAP message.

You can specify the following algorithms:

Algorithm URI

Triple Data Encryption http://www.w3.0rg/2001/04/xmlenc#tripledes-chc
Standard algorithm (Triple

DES)

Advanced Encryption http://www.w3.0rg/2001/04/xmlenc#aes128-chc

Standard (AES) algorithm
with a key length of 128 bits

Advanced Encryption http://www.w3.0rg/2001/04/xmlenc#aes192-chc
Standard (AES) algorithm
with a key length of 192 bits

Advanced Encryption http://www.w3.0rg/2001/04/xmlenc#aes256-chc
Standard (AES) algorithm
with a key length of 256 bits

Chapter 6. Creating the web services infrastructure 111

2. A <certificate_label> element that specifies the label that is associated with a
digital certificate in RACE. The digital certificate provides the key that is used
to encrypt the message.

Example

<encrypt_body>
<algorithm>http://www.w3.0rg/2001/04/xmlenc#aes256-chc</algorithm>
<certificate_label>ENCCERTO2</certificate_label>

</encrypt_body>

Application handlers

An application handler is a CICS program that the terminal handler of a SOAP
service provider pipeline links to at run time.

Application handlers are used in provider mode pipelines in which the terminal
handler is one of the supplied SOAP message handlers. This situation occurs when
the <terminal_handler> element contains a <cics_soap_l.1_handler>,
<cics_soap_l.2_handler>, <cics_soap_l.1_handler_java> or a
<cics_soap_l.2_handler_java> element.

The application handler is responsible for processing the body of a SOAP request,
and for generating a response using the returned data. The application handler can
call other programs to complete this processing. Typically the application handler
acts as a general-purpose presentation layer around one or more business
applications. It is responsible for mapping XML into a form that an application can
use, attaching that application, and then generating a response using the data
returned.

An application handler can be attached by CICS in two ways. The typical
mechanism involves a channel and control containers; the other method involves
Java bindings for Axis2.

Channel-attached application handlers are specified in the <apphandler> element of
the <provider_pipeline> element. At run time, the DFHWS-APPHANDLER container is
populated by the contents of <apphandler>. However, the DFHWS-APPHANDLER
container can be dynamically updated by any of the other message handlers.
Therefore, the program that is linked to at run time can be different to the program
specified in the <apphandler> element. The following application handlers can be
specified in the <apphandler> element or the DFHWS-APPHANDLER container:

* The supplied channel-attached SOAP application handler, DFHPITP. For more
information about channel-attached application handlers, see|“Channel-attached)
[application handlers” on page 113|

* Your own channel-attached application handler. This application handler can be
written in languages other than Java. For more information about the control
containers that can be used in your channel-attached application handler, see
[“Control containers” on page 128

* Your own Java application handler for Java-based pipelines, which implements
the ApplicationHandler Java interface and that is attached to the pipeline using
Axis2 MessageContext. For more information about the ApplicationHandler Java
interface, see [[nterface ApplicationHandler]

To use an application handler that uses Java bindings for Axis2, you must specify
the <apphandler_class> element of the <provider pipeline> element. Axis2
application handlers also require that a JVM server must exist for the web services

112 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.jcics.javadoc/com/ibm/cics/server/pipeline/ApplicationHandler.html

pipeline and application handler to run on and that the terminal handler of your
web services pipeline must be either the <cics_soap_1.1_handler_java> or the
<cics_soap_l.2_handler_java> message handler. To use the supplied Axis2
application handler, you must specify
com.ibm.cicsts.axis2.CICSAxis2AppTicationHandler in the <apphandler class>
element, however you can specify your own Axis2 application handler class. At
run time, the DFHWS-APPHANCLAS container is populated by the contents of
<apphandler_class>.

For web service applications that are deployed using the CICS web services
assistant, you must specify either DFHPITP or your own application handler that
uses DFHPITP in the <apphandler> element, or specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler class>
element. For more information about the CICS web services assistant, see
ICICS web services assistant” on page 152.]

It is also possible to deploy Axis2 applications as provider mode web services in
CICS using the Axis2 style of web service deployment. For more information, see
[“Deploying a provider-mode Axis2 web service” on page 244.|

Channel-attached application handlers

Channel-attached application handlers are application handlers that are attached to
CICS using a channel and control containers.

The channel that is used by the application handler is the DFHAHC-V1 channel.
This channel passes the following containers between the terminal handler and the
provider-mode web service application:

DFHWS-XMLNS
Contains a list of name-value pairs that map namespace prefixes to
namespaces.

* On input, the list contains the namespaces that are in scope from the
SOAP envelope.

* On output, the list contains the namespace data that is assumed to be in
the envelope tag.

DFHWS-BODY
Contains the body section of the SOAP envelope. Typically, the application
will modify the contents. If the application does not modify the contents,
the application handler program must update the contents of this
container, even if it is putting the same content back into the container
before returning to the terminal handler.

DFHNORESPONSE
In the request phase of a service requester pipeline, indicates that the
service provider is not expected to return a response. The contents of
container DFHNORESPONSE are undefined; message handlers that need
to know if the service provider is expected to return a response need only
determine if the container is present or not:

¢ If container DFHNORESPONSE is present, then no response is expected.
* If container DFHNORESPONSE is absent, then a response is expected.

The channel also passes all the context containers that were passed to the terminal
handler. For example, a header processing program can add containers to the
channel. These containers are passed as user containers. For more information
about application handlers, see [“Application handlers” on page 112

Chapter 6. Creating the web services infrastructure 113

Message handlers

A message handler is a CICS program that is used to process a web service request
during input and to process the response during output. Message handlers use
channels and containers to interact with one another and with the system.

The message handler interface lets you perform the following tasks in a message
handler program:

* Examine the contents of an XML request or response, without changing it
* Change the contents of an XML request or response

* In a non-terminal message handler, pass an XML request or response to the next
message handler in the pipeline

* In a terminal message handler, call an application program, and generate a
response

* In the request phase of the pipeline, force a transition to the response phase, by
absorbing the request, and generating a response

e Handle errors

Tip: It is advisable to use the SOAP handlers, <cics_soap_1.1_handler>,
<cics_soap_1.2_handler>, <cics_soap_1.1_handler_java> or
<cics_soap_1.2_handler_java>, to work with SOAP messages. These handlers let
you work directly with the major elements in a SOAP message (the SOAP headers
and the SOAP body).

All programs that are used as message handlers are invoked with the same
interface: they are invoked with a channel that holds a number of containers. The
containers can be categorized as the following types:

Control containers
These are essential to the operation of the pipeline. Message handlers can
use the control containers to modify the sequence in which subsequent
handlers are processed.

Context containers
In some situations, message handler programs need information about the
context in which they are invoked. CICS provides this information in a set
of context containers that are passed to the programs.

Some of the context containers hold information that you can change in
your message handler. For example, in a service provider pipeline, you can
change the user ID and transaction ID of the target application program by
modifying the contents of the appropriate context containers.

User containers
These contain information that one message handler needs to pass to
another. The use of user containers is entirely a matter for the message
handlers.

Restriction: Do not use names that start with DFH for user containers.

Message handler protocols
Message handlers in a pipeline process request and response messages. The
behavior of the handlers is governed by a set of protocols which describe what
actions the message handlers can take in a given situation.

Each non-terminal message handler in a pipeline is invoked twice:

114 CICS TS for z/OS 4.2: Web Services Guide

1. The first time, it is driven to process a request (an inbound request for a service
provider pipeline, an outbound request for a service requester)

2. The second time, it is driven for one of three reasons:

* to process a response (an outbound response for a service provider pipeline,
an inbound response for a service requester)

* to perform recovery following an error elsewhere in the pipeline
* to perform any further processing that is required when there is no response.

The terminal message handler in a service provider pipeline is invoked once, to
process a request.

Message handlers may be provided in a pipeline for a variety of reasons, and the
processing that each handler performs may be very different. In particular:

* Some message handlers do not change the message contents, nor do they change
the normal processing sequence of a pipeline

* Some message handlers change the message contents, but do not change the
normal processing sequence of a pipeline

* Some message handlers change the processing sequence of a pipeline.

Each handler has a choice of actions that it can perform. The choice depends upon:
* whether the handler is invoked in a service provider or a service requester

* in a service provider, whether the handler is a terminal handler or not

* whether the handler is invoked for a request or a response message.

Terminal handler protocols

Normal request and response
This is the normal protocol for a terminal handler. The handler is invoked
for a request message, and constructs a response.

Request

Terminal
< handler
Response

In order to construct the response, a typical terminal handler will link to
the target application program, but this is not mandatory.

Normal request, with no response
This is another common protocol for a terminal handler.

Request

Terminal
handler

This protocol is usually encountered when the target application
determines that there should be no response to the request (although the
decision may also be made in the terminal handler).

Chapter 6. Creating the web services infrastructure 115

Non-terminal handler protocols

Normal request and response
This is the usual protocol for a non-terminal handler. The handler is
invoked for a request message, and again for the response message. In
each case, the handler processes the message, and passes it to the next
handler in the pipeline.

Request Request
Non-terminal
| handler |
Response Response

Normal request, no response
This is another common protocol for a non-terminal handler. The handler
is invoked for a request message, and after processing it, passes to the next
handler in the pipeline. The target application (or another handler)
determines that there should be no response. When the handler is invoked
for the second time, there is no response message to process.

Request Request
—

Non-terminal
handler

Handler creates the response
This protocol is typically used in abnormal situations, because the
non-terminal handler does not pass the request to the next handler. Instead
it constructs a response, and returns it to the pipeline.

Request

Non-terminal
handler

Response

This protocol could be used when the handler determines that the request
is in some way invalid, and that no further processing of the request
should be attempted. In this situation, the handler is not invoked a second
time.

Handler suppresses the response
This is another protocol that is typically used in abnormal situations,
because the non-terminal handler does not pass the request to the next
handler. In this protocol, the handler determines that there should be no
response to the request.

116 CICS TS for z/OS 4.2: Web Services Guide

Request
Non-terminal
handler

This protocol could be used when no response is expected to the original
request, and, because the request is in some way invalid, no further
processing of the request should be attempted.

Supplying your own message handlers

When you want to perform specialized processing on the messages that flow
between a service requester and a service provider, and CICS does not supply a
message handler that meets your needs, you will need to supply your own.

About this task

In most situations, you can perform all the processing you need with the
CICS-supplied message handlers. For example, you can use the SOAP 1.1 and 1.2
message handlers which CICS supplies to process SOAP messages. But there are
occasions when you will want to perform your own, specialized, operations on
web service requests and responses. To do this, you must supply your own
message handlers.

Procedure

1. Write your message handler program. A message handler is a CICS program
with a channel interface. You can write your program in any of the languages
which CICS supports, and use any CICS command in the DPL subset within
your program.

2. Compile and link-edit your program. Message handler programs normally run
under transaction CPIH, which is defined with the attribute TASKDATALOC (ANY).
Therefore, when you link-edit the program, you must specify the AMODE (31)
option.

3. Install the program in your CICS system in the usual way.

4. Define the program in the pipeline configuration file. Use the <handler>
element to define your message handler. Within the <handler> element, code a
<program> element containing the name of the program.

Working with messages in a non-terminal message handler

A typical non-terminal message handler processes a message, then passes control
to another message handler in the pipeline.

About this task

In a non-terminal message handler, you can work with a request or response, with
or without changing it, and pass it on to the next message handler.

Note: Although web services typically use SOAP messages which contain XML,
your message handlers will work as well with other message formats

Chapter 6. Creating the web services infrastructure 117

Procedure

1. Using the contents of container DFHFUNCTION, determine if the message
passed to this message handler is a request or a response.

DFHFUNCTION Request or Type of message |Inbound or
response handler outbound
RECEIVE-REQUEST Request Non-terminal Inbound
SEND-RESPONSE response Non-terminal Outbound
SEND-REQUEST Request Non-terminal Outbound
RECEIVE-RESPONSE response Non-terminal Inbound

Tip:
+ If DFHFUNCTION contains PROCESS-REQUEST, the message handler is a
terminal message handler, and these steps do not apply.

 If DFHFUNCTION contains HANDLER-ERROR, the handler is being called
for error processing, and these steps do not apply.

2. Retrieve the request or the response from the appropriate container.

* If the message is a request, it is passed to the program in container
DFHREQUEST. Container DFHRESPONSE is also present, with a length of
zero.

¢ If the message is a response, it is passed to the program in container
DFHRESPONSE.

3. Perform any processing of the message which is required. Depending upon the
purpose of the message handler, you might:

¢ Examine the message without changing it, and pass it to the next message
handler in the pipeline.

¢ Change the request, and pass it to the next message handler in the pipeline.

* If the message is a request, you can bypass the following message handlers
in the pipeline, and, instead, construct a response message.

Note: It is the contents of the containers which a message handler returns that
determines which message handler is invoked next.

It is an error if a message handler makes no changes to any of the containers
passed to it.

It is an error for a message handler program to return any of the following:
* An empty DFHRESPONSE container.

* A non-empty DFHREQUEST container and a non-empty DFHRESPONSE
container.

* An empty DFHREQUEST container on the outbound request.

Passing a message to the next message handler in the pipeline
In a typical non-terminal message handler, you will process a request or response,
with or without changing it, and pass it on to the next message handler.

Procedure
1. Return the message to the pipeline - changed or unchanged - in the appropriate
container.

118 CICS TS for z/OS 4.2: Web Services Guide

¢ If the message is a request and you have changed it, return it in container
DFHREQUEST

* If the message is a response and you have changed it, put it in container
DFHRESPONSE

* If you have not changed the message, it is already in the appropriate
container

2. If the message is a request, delete container DFHRESPONSE. When a message
handler is invoked for a request, containers DFHREQUEST and
DFHRESPONSE are passed to the program; DFHRESPONSE has a length of
zero. However, it is an error to return both DFHREQUEST and
DFHRESPONSE.

Results

The message is passed to the next message handler on the pipeline.

Forcing a transition to the response phase of the pipeline

When you are processing a request, there are times when you will want to
generate an immediate response, instead of passing the request to the next message
handler in the pipeline.

Procedure
1. Delete container DFHREQUEST.
2. Construct your response, and put it in container DFHRESPONSE.

Results

The response is passed to the next message handler on the response phase of the
pipeline.

Suppressing the response
In some situations, you will want to absorb a request without sending a response.

Procedure
1. Delete container DFHREQUEST.
2. Delete container DFHRESPONSE.

Handling one way messages in a service requester pipeline

When a service requester pipeline sends a request to a service provider, there is
normally an expectation that there will be a response, and that, following the
sending of the request, the message handlers in the pipeline will be invoked again
when the response arrives. Some web services do not send a response, and so you
must take special action to indicate that CICS should not wait for a response before
invoking the message handlers for a second time.

About this task

To do this, ensure that container DFHNORESPONSE is present at the end of

pipeline processing in the request phase. Typically, this is done by application level

code, because the knowledge of whether a response is expected is lodged in the

application:

* For applications deployed with the CICS web services assistant, CICS code will
create the container.

Chapter 6. Creating the web services infrastructure 119

* Applications that are not deployed with the assistant will typically create the
container before invoking the application.

If you create or destroy container DFHNORESPONSE in a message handler, you
must be sure that doing so will not disturb the message protocol between the
service requester and the provider.

Working with messages in a terminal message handler

A typical terminal handler processes a request, invokes an application program,
and generates a response.

About this task

Note: Although web services typically use SOAP messages which contain XML,
your message handlers will work as well with other message formats

In a terminal message handler, you can work with a request, and - optionally -
generate a response and pass it back along the pipeline. A typical terminal handler
will use the request as input to an application program, and use the application
program's response to construct the response.

Procedure

1. Using the contents of container DFHFUNCTION, determine that the message
passed to this handler is a request, and that the handler is being called as a
terminal handler.

DFHFUNCTION Request or Type of handler Inbound or
response outbound
PROCESS-REQUEST Request Terminal Inbound
Tip:

* If DFHFUNCTION contains any other value, the handler is not a terminal
handler, and these steps do not apply.

2. Retrieve the request from container DFHREQUEST. Container DFHRESPONSE
is also present, with a length of zero.

3. Perform any processing of the message which is required. Typically, a terminal
handler will invoke an application program.

4. Construct your response, and put it in container DFHRESPONSE. If there is no
response, you must delete container DFHRESPONSE.

Results
The response is passed to the next handler in the response phase of the pipeline.

The handler is invoked for function SEND-RESPONSE. If there is no response, the
next handler is invoked for function NO-RESPONSE.

Handling errors

Message handlers should be designed to handle errors that might occur in the
pipeline.

120 CICS TS for z/OS 4.2: Web Services Guide

About this task

When an error occurs in a message handler program, the program is invoked again
for error processing. Error processing always takes place in the response phase of
the pipeline; if the error occurred in the request phase, subsequent handlers in the
request phase are bypassed.

In most cases, therefore, you must write your handler program to handle any
errors that might occur.

Procedure

1. Check that container DFHFUNCTION contains HANDLER-ERROR, indicating
that the message handler has been called for error processing.

Tip:
* If DFHFUNCTION contains any other value, the message handler has not
been invoked for error processing and these steps do not apply.

2. Analyze the error information, and determine if the message handler can
recover from the error by constructing a suitable response.

Container DFHERROR holds information about the error. For detailed
information about this container, see ['DFHERROR container” on page 128

Container DFHRESPONSE is also present, with a length of zero.
3. Perform any recovery processing.

e If the message handler can recover, construct a response, and return it in
container DFHRESPONSE.

¢ If the message handler can recover, but no response is required, delete
container DFHRESPONSE, and return container DFHNORESPONSE instead.

¢ If the message handler cannot recover, return container DFHRESPONSE
unchanged (that is, with a length of zero).

Results

If your message handler is able to recover from the error, pipeline processing
continues normally. If not, CICS generates a SOAP fault that contains information
about the error. In the case of a transaction abend, the abend code is included in
the fault.

The message handler interface

The CICS pipeline links to the message handlers using a channel containing a
number of containers. Some containers are optional, others are required by all
message handlers, and others are used by some message handlers, and not by
others.

Before a handler is invoked, some or all of the containers are populated with
information which the handler can use to perform its work. The containers
returned by the handler determine the subsequent processing, and are passed on to
later handlers in the pipeline.

The SOAP message handlers

The SOAP message handlers are CICS-provided message handlers that you can
include in your pipeline to process SOAP 1.1 and SOAP 1.2 messages. You can use
the SOAP message handlers in a service requester or in a service provider pipeline.

Chapter 6. Creating the web services infrastructure 121

On input, the SOAP message handlers parse inbound SOAP messages, and extract
the SOAP <Body> element for use by your application program. On output, the
handlers construct the complete SOAP message, using the <Body> element that
your application provides.

If you use SOAP headers in your messages, the SOAP handlers can invoke
user-written header processing programs that allow you to process the headers on
inbound messages, and to add them to outbound messages.

SOAP message handlers, and any header processing programs, are specified in the
pipeline configuration file. For pipelines that do not support Java, the
<cics_soap_l.1_handler> or <cics_soap_l.2_handler> message handlers must be
specified. For pipelines that support Java, the <cics_soap_l.1_handler_java>, or
<cics_soap_l.2_handler_java> message handlers must be specified.

Typically, you will need just one SOAP handler in a pipeline. However, there are
some situations where more than one is needed. For example, you can ensure that
SOAP headers are processed in a particular sequence by defining multiple SOAP
handlers.

You must not define <cics_soap_1.1_handler> and <cics_soap_l.2_handler>
message handlers, or <cics_soap_l1.1_handler_java> and
<cics_soap_l.2_handler_java> message handlers in the same pipeline. If you
expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you should
use either the <cics_soap_1.2_handler> or <cics_soap_l1.2_handler_java> message
handler.

Header processing programs

Header processing programs are user-written CICS programs that are linked to
from the CICS-provided SOAP 1.1 and SOAP 1.2 message handlers, in order to
process SOAP header blocks.

You can write your header processing program in any of the languages that CICS
supports, and use any CICS command in the DPL subset. Your header processing
program can link to other CICS programs.

The header processing programs have a channel interface; the containers hold
information that the header program can examine or modify, including the SOAP
header block for which the program is invoked, and the SOAP message body.

The channel and the containers that the header processing program can use are
described in [‘The header processing program interface” on page 124.|

Other containers hold information about the environment in which the header
program is invoked, for example:

* The transaction ID under which the header program was invoked
* Whether the program was invoked for a service provider or requester pipeline
* Whether the message being processed is a request or response

Header processing programs normally run under transaction CPIH, which is
defined with the attribute TASKDATALOC (ANY). Therefore, when you link-edit the
program, you must specify the AMODE (31) option.

122 CICS TS for z/OS 4.2: Web Services Guide

How header processing programs are invoked for a SOAP
request

The <cics_soap_1.1 handler>, <cics_soap_1.2 handler>,
<cics_soap_l.1 handler_java>, and <cics_soap_l1.2 handler_java> elements in a
pipeline configuration contain zero, one, or more <headerprogram> elements, each
of which contains the following children:

<program_name>

<namespace>

<localname>

<mandatory>

When a pipeline is processing an inbound SOAP message (a request in the case of
a service provider, a response in the case of a service requester), the header
program specified in the <program_name> element is invoked or not, depending
upon the following items:

* The contents of the <namespace>, <localname>, and <mandatory> elements

* The value of certain attributes of the root element of the SOAP header itself (the
actor attribute for SOAP 1.1; the role attribute for SOAP 1.2)

The following rules determine if the header program will be invoked in a given
case:

The <mandatory> element in the pipeline configuration file
If the element contains true (or 1), the header processing program is
invoked at least once, even if none of the headers in the SOAP message are
selected for processing by the remaining rules:

* If none of the header blocks are selected, the header processing program
is invoked once.

 If any of the header blocks are selected by the remaining rules, the
header processing program is invoked once for each selected header.

Attributes in the SOAP header block
For SOAP 1.1, a header block is eligible for processing only if the actor
attribute is absent, or has a value of http://schemas.xmlsoap.org/soap/
actor/next

For SOAP 1.2, a header block is eligible for processing only if the role

attribute is absent, or has one of the following values:
http://www.w3.0rg/2003/05/soap-envelope/role/next
http://www.w3.0rg/2003/05/soap-envelope/role/ultimateReceiver

A header block that is eligible for processing is not processed unless it is
selected by the next rule.

The <namespace> and <localname> elements in the pipeline configuration file
A header block that is eligible for processing according to the previous rule
is selected for processing only if the following conditions are satisfied:

* The name of the root element of the header block matches the
<localname> element in the pipeline configuration file

* The namespace of the root element matches the <namespace> element in
the pipeline configuration file

For example, consider this header block:
<t:myheaderblock xmiIns:t="http://mynamespace" ...> </t:myheaderblock>

Chapter 6. Creating the web services infrastructure 123

Subject to the other rules, the header block is selected for processing when
the following lines are coded in the pipeline configuration file:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</Tocalname>

The <localname> elements can contain an * to indicate that all header
blocks in the namespace should be processed. Therefore, the same header
block is selected by the following code:

<namespace>http://mynamespace</namespace>
<localname>*</Tocalname>

When the SOAP message contains more than one header, the header processing
program is invoked once for each matching header, but the sequence in which the
headers are processed is undefined.

The CICS-provided SOAP message handlers select the header processing programs
that are invoked based upon the header blocks that are present in the SOAP
message at the time when the message handler receives it. Therefore, a header
processing program is never invoked as a result of a header block that is added to
a message in the same SOAP message handler. If you want to process the new
header (or any modified headers) in your pipeline, you must define another SOAP
message handler in your pipeline.

For an outbound message (a request in a service requester, a response in a service
provider) the CICS-provided SOAP message handlers create a SOAP message that
does not contain any headers. In order to add one or more headers to the message,
you must write a header handler program to add the headers. To ensure that this
header handler is invoked, you must define it in your pipeline configuration file,
and specify <mandatory>true</mandatory>.

If a header handler is invoked in the request phase of a pipeline, it is invoked
again in the response phase, even if the message that flows in the response phase
does not contain a matching header.

The header processing program interface

The CICS-provided SOAP 1.1 and SOAP 1.2 message handlers link to the header
processing programs using channel DFHHHC-V1. The containers that are passed
on the channel include several that are specific to the header processing program
interface, and sets of context containers and user containers that are accessible to all
the header processing programs and message handler programs in the pipeline.

Container DFHHEADER is specific to the header processing program interface.
Other containers are available elsewhere in your pipeline, but have specific uses in
a header processing program. The containers in this category are DFHWS-XMLNS,
DFHWS-BODY, and DFHXMLSS-PARSE.

Note: Although web service that use Axis2 to process SOAP messages can use the
header processing program interface, it is more efficient to write your own Axis2
handlers in Java to process the SOAP headers. For more information on creating
Axis2 handlers, see[Writing Your Own Axis2 Module|

Container DFHHEADER

When the header processing program is called, DFHHEADER contains the single
header block that caused the header processing program to be driven. When the
header program is specified with <mandatory>true</mandatory> or

124 CICS TS for z/OS 4.2: Web Services Guide

http://axis.apache.org/axis2/java/core/docs/modules.html

<mandatory>1</mandatory> in the pipeline configuration file, it is called even when
there is no matching header block in the SOAP message. In this case, container
DFHHEADER has a length of zero. This is the case when a header processing
program is called to add a header block to a SOAP message that does not have
header blocks.

The SOAP message that CICS creates has no headers initially. If you want to add
headers to your message, you must ensure that at least one header processing
program is called, by specifying <mandatory>true</mandatory> or
<mandatory>1</mandatory>.

When the header program returns, container DFHHEADER must contain zero, one,
or more header blocks that CICS inserts in the SOAP message in place of the
original:

* You can return the original header block unchanged.

* You can modify the contents of the header block.

* You can append one or more new header blocks to the original block.

* You can replace the original header block with one or more different blocks.

* You can delete the header block completely.

Container DFHWS-XMLNS

When the header processing program is called, DFHWS-XMLNS contains
information about XML namespaces that are declared in the SOAP envelope. The
header program can use this information to perform the following tasks:

* Resolve qualified names that it encounters in the header block
* Construct qualified names in new or modified header blocks.

The namespace information consists of a list of namespace declarations, which use
the standard XML notation for declaring namespaces. The namespace declarations
in DFHWS-XMLNS are separated by spaces. For example:

xmins:na="http://abc.example.org/schema' xmins:nx="http://xyz.example.org/schema’

You can add further namespace declarations to the SOAP envelope by appending
them to the contents of DFHWS-XMLNS. However, namespaces whose scope is a
SOAP header block or a SOAP body are best declared in the header block or the
body respectively. You are advised not to delete namespace declarations from
container DFHWS-XMLNS in a header processing program, because XML elements
that are not visible in the program may rely on them.

Container DFHWS-BODY

This container contains the body section of the SOAP envelope. The header
processing program can modify the contents.

When the header processing program is called, DFHWS-BODY contains the SOAP
<Body> element.

When the header program returns, container DFHWS-BODY must again contain a
valid SOAP <Body>, which CICS inserts in the SOAP message in place of the
original:

* You can return the original body unchanged.

* You can modify the contents of the body.

Chapter 6. Creating the web services infrastructure 125

You must not delete the SOAP body completely, as every SOAP message must
contain a <Body> element.

Container DFHXMLSS-PARSE

When you use either the <cics_soap_1.1_handler> or <cics_soap_1.2_handler>
elements in your pipeline configuration, and header program is called,
DFHXMLSS-PARSE contains the XML System Services (XMLSS) records for that
header. This container is not created when <cics_soap_1.1 handler_ java> or
<cics_soap_l.2 handler_java> elements are used.

Control, context, and user containers

As well as the containers described, the interface passes the control containers,
context containers, and user containers on channel DFHHHC-V1.

For more information about these containers, see [“Containers used in the pipeline”]

Dynamic routing of inbound requests in a terminal handler

When the terminal handler of a service provider pipeline is one of the
CICS-supplied SOAP message handlers, the target application handler program
specified in container DFHWS-APPHANDLER is, in some cases, eligible for
dynamic routing. All pipeline processing before the application handler program is
always performed locally in the CICS region that received the SOAP message.

The transaction that runs the target application handler program is eligible for
routing when one of the following conditions is true:

* The transaction under which the pipeline is processing the message is defined as
DYNAMIC or REMOTE. This transaction is defined in the URIMAP that is used
to map the URI from the inbound SOAP message.

* A program in the pipeline has changed the contents of container
DFHWS-USERID from its initial value.

* A program in the pipeline has changed the contents of container
DFHWS-TRANID from its initial value.

* A WS-AT SOAP header exists in the inbound SOAP message.

In all the preceding scenarios, a task switch occurs during the pipeline processing.

The second task runs under the transaction specified in the DFEHWS-TRANID

container. This task switch provides an opportunity for dynamic routing to take

place, but only if MRO is used to connect the CICS regions together. In addition,
the CICS region that you are routing to must support channels and containers.

The routing only takes place if the TRANSACTION definition for the transaction
named in DFHWS-TRANID specifies one of the following sets of attributes:

DYNAMIC(YES)
The transaction is routed using the distributed routing model, in which the
routing program is specified in the DSRTPGM system initialization parameter.

DYNAMIC(NO) REMOTESYSTEM(sysid)
The transaction is routed to the system identified by sysid.

For more information about the routing of web service requests, see technote:
Routing of provider mode CICS web services.

126 CICS TS for z/OS 4.2: Web Services Guide

For applications deployed with the CICS web services assistant, there is a second
opportunity to dynamically route the request, at the point where CICS links to the
users program. The request is then routed using the dynamic routing model, in
which the routing program is specified in the DTRPGM system initialization
parameter. Eligibility for routing is determined, in this case, by the characteristics
of the program. If you are using a channel and containers when linking to the
program, you can only dynamically route the request to CICS regions that are at
V3.1 or higher. If you are using a COMMAREA, this restriction does not apply.

“Daisy-chaining” is not supported. That is, once a request has been dynamically
routed to a target region it cannot be dynamically routed from the target to a third
region, even though the transaction is defined as ROUTABLE(YES) and
DYNAMIC(YES). The transaction can, however, be statically routed from the target
region to a third region.

For more information, see the CICS Customization Guide.

Containers used in the pipeline

A pipeline typically consists of a number of message handler programs and, when
the CICS-supplied SOAP message handlers are used, a number of header
processing programs. CICS uses containers to pass information to and from these
programs. The programs also use containers to communicate with other programs
in the pipeline.

The CICS pipeline links to the message handlers and to the header processing
programs using a channel that has a number of containers. Some containers are
optional, others are required by all message handlers, and others are used by some
message handlers and not by others.

Before a handler is invoked, some or all of the containers are populated with
information that the handler can use to perform its work. The containers returned
by the handler determine the subsequent processing, and are passed on to later
handlers in the pipeline.

The containers can be categorized in these ways:

Control containers
These containers are essential to the operation of the pipeline. Handlers
can use the control containers to modify the sequence in which the
handlers are processed. The names of the control containers are defined by
CICS, and begin with the characters DFH.

Context containers

These containers contain information about the environment in which the
handlers are called. CICS puts information in these containers before it
invokes the first message handler, but, in some cases, the handlers are free
to change the contents, or to delete the containers. Changes to the context
containers do not directly affect the sequence in which the handlers are
invoked. The names of the context containers are defined by CICS, and
begin with the characters DFH.

Header processing program containers
These containers contain information that is used by header processing
programs that are called from the CICS-supplied SOAP message handlers.

Security containers
These containers contain information that is used by the Trust client

Chapter 6. Creating the web services infrastructure 127

interface and the security message handler to process security tokens using
a Security Token Service (STS). The names of the security containers are
defined by CICS, and begin with the characters DFH.

Generated containers
These containers contain the data from the SOAP message, such as variable
arrays and long strings, that is passed to and from the application program
for processing. CICS automatically creates these containers during pipeline
processing, and the names begin with the characters DFH.

User containers
These containers contain information that one message handler needs to
pass to another. The use of user containers is entirely a matter for the
message handlers. You can choose your own names for these containers,
but you must not use names that start with DFH.

Control containers

The control containers are essential to the operation of the pipeline. Handlers can
use the control containers to modify the sequence in which the handlers are
processed.

DFHERROR container
DFHERROR is a container of DATATYPE(BIT) that is used to convey information
about pipeline errors to other message handlers.

Table 4. Structure of the DFHERROR container.. All fields in the structure contain character

data.

Field name Length (bytes) Contents

PIISNEB-MAJOR-VERSION |1 “1”

PIISNEB-MINOR-VERSION |1 “1”

PIISNEB-ERROR-TYPE 1 A numeric value denoting
the type of error. The values
are described in

EB-ERROR-MODE
PIISNEB-ERROR-MO 1 P The error occurred

in a provider
pipeline

R The error occurred
in a requester
pipeline

T The error occurred
in a Trust client

PIISNEB-ABCODE 4 The abend code when the
error is associated with a
transaction abend.

PIISNEB-ERROR- 16 The name of the container

CONTAINER1 when the error is associated
with a container.

PIISNEB-ERROR- 16 The name of the second

CONTAINER2 container when the error is
associated with more than
one container.

128 CICS TS for z/OS 4.2: Web Services Guide

Table 4. Structure of the DFHERROR container. (continued). All fields in the structure

contain character data.

Field name Length (bytes)

Contents

PIISNEB-ERROR-NODE 8

The name of the handler
program in which the error
occurred.

Table 5. Values for the PIISNEB-ERROR-TYPE field

Value of PIISNEB-ERROR-TYPE

Meaning

1

The handler program failed. The abend code
is in field PIISNEB-ABCODE.

A container required by the handler was
empty. The name of the container is in field
PIISNEB-ERROR-CONTAINERI.

A container required by the handler was
missing. The name of the container is in
field PIISNEB-ERROR-CONTAINERI.

Two containers were passed to the handler
when only one was expected. The names of
the containers are in fields
PIISNEB-ERROR-CONTAINER1 and
PIISNEB-ERROR-CONTAINER?2.

An attempt to link to the target program
failed. If the target program failed, the
abend code is in container
PIISNEB-ABCODE.

The pipeline manager failed to communicate
with a remote server because of an error in
the underlying transport.

The DFHWS-STSACTION container has an
error. It is missing, corrupt, or contains an
incorrect value.

DFHPIRT failed to start the pipeline.

DFHPIRT failed to put a message in a
container.

10

DFHPIRT failed to get a message from a
container.

11

An unhandled error has occurred.

The COBOL declaration of the container's

01 PIISNEB.
02 PIISNEB-MAJOR-VERSION PIC X(1).
02 PIISNEB-MINOR-VERSION PIC X(1).
02 PIISNEB-ERROR-TYPE PIC X(1).
02 PIISNEB-ERROR-MODE PIC X(1).
02 PIISNEB-ABCODE PIC X(4).
02 PIISNEB-ERROR-CONTAINER1 PIC X(16).
02 PIISNEB-ERROR-CONTAINER2 PIC X(16).
02 PIISNEB-ERROR-NODE PIC X(8).

structure is this:

The language copybooks that map the container are:

Chapter 6. Creating the web services infrastructure 129

Table 6.

Language Copybook
COBOL DFHPIUCO
PL/1 DFHPIUCL
C and C++ dthpiuch.h
Assembler DFHPIUCD

DFHFUNCTION container
DFHFUNCTION is a container of DATATYPE(CHAR) that contains a 16-character
string that indicates where in a pipeline a program is being called.

The string has one of the following values. The rightmost character positions are
padded with blank characters.

RECEIVE-REQUEST
The handler is a nonterminal handler in a service provider pipeline, and is
being called to process an inbound request message. On entry to the handler,
the message is in control container DFHREQUEST.

SEND-RESPONSE
The handler is a nonterminal handler in a service provider pipeline, and is
being called to process an outbound response message. On entry to the
handler, the message is in control container DFHRESPONSE.

SEND-REQUEST
The handler is being called by a pipeline that is sending a request; that is, in a
service requester that is processing an outbound message

RECEIVE-RESPONSE
The handler is being called by a pipeline that is receiving a response; that is, in
a service requester that is processing an inbound message

PROCESS-REQUEST
The handler is being called as the terminal handler of a service provider

pipeline
NO-RESPONSE

The handler is being called after processing a request, when no response is to
be processed.

HANDLER-ERROR
The handler is being called because an error has been detected.

In a service provider pipeline that processes a request and returns a response, the
values of DFHFUNCTION that occur are RECEIVE-REQUEST, PROCESS-REQUEST, and
SEND-RESPONSE. [Figure 25 on page 131|shows the sequence in which the handlers
are called and the values of DFHFUNCTION that are passed to each handler.

130 CICS TS for z/OS 4.2: Web Services Guide

CICS Transaction Server

CICS Web services
Request
Service Handler ¥l Handler Handler C!CS_
requester 1) 3 P Application
< < < program
Response - -
non-terminal terminal
handlers handler
Figure 25. Sequence of handlers in a service provider pipeline
Sequence Handler DFHFUNCTION
1 Handler 1 RECEIVE-REQUEST
2 Handler 2 RECEIVE-REQUEST
3 Handler 3 PROCESS-REQUEST
4 Handler 2 SEND-RESPONSE
5 Handler 1 SEND-RESPONSE

In a service requester pipeline that sends a request and receives a response, the
values of DFHFUNCTION that occur are SEND-REQUEST and RECEIVE-RESPONSE.

DFHFUNCTION that are passed to each handler.

shows the sequence in which the handlers are called, and the values of

CICS Transaction Server
CICS Web services
Request |
C!CS, .| Handler » Handler | Handler > Service
Application [E—® 1 2 3)
— < provider
program <
- - Response
non-terminal terminal
handlers handler
Figure 26. Sequence of handlers in a service requester pipeline
Sequence Handler DFHFUNCTION
1 Handler 1 SEND-REQUEST
2 Handler 2 SEND-REQUEST
3 Handler 3 SEND-REQUEST
4 Handler 3 RECEIVE-RESPONSE
5 Handler 2 RECEIVE-RESPONSE
6 Handler 1 RECEIVE-RESPONSE

The values of DFHFUNCTION that can be encountered in a given message
handler depend on whether the pipeline is a provider or requester, whether the

Chapter 6. Creating the web services infrastructure 131

pipeline is in the request or response phase, and whether the handler is a terminal
handler or a nonterminal handler. The following table summarizes when each
value can occur:

Value of Provider or requester Pipeline phase Terminal or
DFHFUNCTION pipeline nonterminal handler
RECEIVE-REQUEST Provider Request phase Nonterminal
SEND-RESPONSE Provider Response phase Nonterminal
SEND-REQUEST Requester Request phase Nonterminal
RECEIVE-RESPONSE Requester Response phase Nonterminal
PROCESS-REQUEST Provider Request phase Terminal
NO-RESPONSE Both Response phase Nonterminal
HANDLER-ERROR Both Both Both

DFHHTTPSTATUS container

DFHHTTPSTATUS is a container of DATATYPE(CHAR) that is used to specify the
HTTP status code and status text for a message produced in the response phase of
a service provider pipeline.

The content of the DFHHTTPSTATUS container must be the same as the initial
status line of an HTTP response message, which has the following structure:

HTTP/1.1 nnn tttttttt

HTTP/1.1
The version and release of HTTP.

nnn The 3-digit decimal HTTP status code to return.

tttttttt
The human-readable status text associated with the status code nnn.

The following string is an example of the content:
HTTP/1.1 412 Precondition Failed

The DFHHTTPSTATUS container is ignored when the pipeline uses the WebSphere
MQ transport.

DFHMEDIATYPE container

DFHMEDIATYPE is a container of DATATYPE(CHAR) that is used to specify the
media type for a message produced in the response phase of a service provider
pipeline.

The content of the DFHMEDIATYPE container must consist of a type and a
subtype separated by a slash character. The following strings show two examples
of correct content for the DFHMEDIATYPE container:

text/plain
image/svg+xml

The DFHMEDIATYPE container is ignored when the pipeline uses the WebSphere
MQ transport.

132 CICS TS for z/OS 4.2: Web Services Guide

DFHNORESPONSE container

DFHNORESPONSE is a container of DATATYPE(CHAR) that, in the request phase
of a service requester pipeline, indicates that the service provider is not expected to
return a response.

The contents of the DFHNORESPONSE container are undefined; message handlers
that need to know if the service provider is expected to return a response need
only determine if the container is present or not:

¢ If container DFHNORESPONSE is present, no response is expected.
* If container DFHNORESPONSE is absent, a response is expected.

This information is provided, initially, by the service requester application, based
on the protocol used with the service provider. Therefore, you are advised not to
delete this container in a message handler (or to create it, if it does not exist),
because doing so might disturb the protocol between the endpoints.

Other than in the request phase of a service requester pipeline, the use of this
container is not defined.

DFHREQUEST container
DFHREQUEST is a container of DATATYPE(CHAR) that contains the request
message that is processed in the request phase of a pipeline.

If one of the CICS-supplied SOAP message handlers is configured in the pipeline,
the container DFHREQUEST is updated to include the SOAP message headers in
the SOAP envelope. If the message is constructed by a CICS-supplied SOAP
message handler, and has not been changed subsequently, DFHREQUEST contains
a complete SOAP envelope and all of its contents is in the UTF-8 code page.

The DFHREQUEST container is present in the request when a message handler is
called, and the DFHFUNCTION container contains RECEIVE-REQUEST or
SEND-REQUEST.

In this situation, the normal protocol is to return DFHREQUEST to the pipeline
with the same or modified contents. Processing of the pipeline request phase
continues normally, with the next message handler program in the pipeline, if
there is one.

As an alternative, your message handler can delete container DFHREQUEST, and

put a response in the DFHRESPONSE container. In this way, the normal sequence
of processing is reversed, and the processing continues with the response phase of
the pipeline.

DFHRESPONSE container

DFHRESPONSE is a container of DATATYPE(CHAR) that contains the response
message that is processed in the response phase of a pipeline. If the message was
constructed by a CICS-supplied SOAP message handler, and has not been changed
subsequently, DFHRESPONSE contains a complete SOAP envelope and all its
contents in UTF-8 code page.

The DFHRESPONSE container is present when a message handler is called, and
the DFHFUNCTION container contains SEND-RESPONSE or RECEIVE-RESPONSE.

Chapter 6. Creating the web services infrastructure 133

In this situation, the normal protocol is to return DFHRESPONSE to the pipeline
with the same or modified contents. Pipeline processing continues normally, with

the next message handler program in the pipeline, if there is one.

The DFHRESPONSE container is also present, with a length of zero, when
DFHFUNCTION contains RECEIVE-REQUEST, SEND-REQUEST, PROCESS-REQUEST, or

HANDLER-ERROR.

DFHWS-CCSID container
DFHWS-CCSID is a container of DATATYPE(BIT) that contains a fullword (4 bytes)
specifying the CCSID of the data in the response container.

The container is valid only for a provider mode pipeline that uses CICS code to
transform the language structure into XML.

The CCSID must be compatible with the CCSID used to generate the WSBIND file.
If it is not, the SOAP response that is produced might contain incorrect or invalid

characters.

The CCSID is not allowed to be changed to or from 930, 1390, 5026 and 1026. Also
CICS does not allow the CCSID to be changed to one that is usable as a client

CCSID.

If there are any problems processing the value in the DFHWS-CCSID container,
processing continues using the CCSID from the WSBIND file.

The DFHWS-CCSID container is checked only on return from a channel driven

application program.

How containers control the pipeline protocols

The contents of the DFHFUNCTION, DFHREQUEST, and DFHRESPONSE
containers together control the pipeline protocols.

During the two phases of the execution of a pipeline (the request phase and the
response phase) the value of DFHFUNCTION determines which control containers
are passed to each message handler:

DFHFUNCTION

Context

DFHREQUEST

DFHRESPONSE

RECEIVE-REQUEST

Service provider;
request phase

Present (length >
0)

Present (length =
0)

SEND-RESPONSE

Service provider;
response phase

Absent

Present (length >
0)

SEND-REQUEST

Service requester;
request phase

Present (length >
0)

Present (length =
0)

RECEIVE-RESPONSE

Service requester;
response phase

Absent

Present (length >
0)

PROCESS-REQUEST

Service provider;
terminal handler

Present (length >
0)

Present (length =
0)

or provider;
response phase

HANDLER-ERROR Service requester | Absent Present (length =
or provider; either 0)
phase

NO-RESPONSE Service requester | Absent Absent

134 CICS TS for z/OS 4.2: Web Services Guide

Subsequent processing is determined by the containers that your message handler
passes back to the pipeline:

During the request phase
* Your message handler can return the DFHREQUEST container.

Processing continues in the request phase with the next handler. The
length of the data in the container must not be zero.

* Your message handler can return the DFHRESPONSE container.
Processing switches to the response phase, and the same handler is
called with DFHFUNCTION set to SEND-RESPONSE in a service
provider and to RECEIVE-RESPONSE in a service requester. The length
of the data in the container must not be zero.

* Your message handler can return no containers. Processing switches to
the response phase, and the same handler is called with
DFHFUNCTION set to NO-RESPONSE.

In the terminal handler (service provider only)

* Your message handler can return the DFHRESPONSE container.
Processing switches to the response phase, and the previous handler is
called with a new value of DFHFUNCTION (SEND-RESPONSE). The
length of the data in the container must not be zero.

* Your message handler can return no containers. Processing switches to
the response phase, and the previous handler is called with a new value
of DFHFUNCTION (NO-RESPONSE).

During the response phase

* Your message handler can return the DFHRESPONSE container.
Processing continues in the response phase, and the next handler is
called. The length of the data in the container must not be zero.

* Your message handler can return no containers. Processing continues in
the response phase, and the next handler in sequence is called with a
new value of DFHFUNCTION (NO-RESPONSE).

Important: During the request phase, your message handler can return
DFHREQUEST or DFHRESPONSE, but not both. Because both containers are
present when your message handler is called, you must delete one of them.

This table shows the action taken by the pipeline for all values of DFHFUNCTION
and all combinations of DFHREQUEST and DFHRESPONSE returned by each

message handler.

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action
RECEIVE-REQUEST Service provider; Present (length > 0) | Present (error)
request phase Absent Call the next handler with the

RECEIVE-REQUEST function

Present (length = 0)

Not applicable

(error)

Absent

Present (length > 0)

Switch to response phase, and
invoke the same handler with
the SEND-RESPONSE function

Present (length = 0)

(error)

Absent

Call the same handler with the
NO-RESPONSE function

Chapter 6. Creating the web services infrastructure 135

DFHFUNCTION

Context

DFHREQUEST

DFHRESPONSE

Action

SEND-RESPONSE

Service provider;
response phase

Not applicable

Present (length > 0)

Call the previous handler with
the SEND-RESPONSE function

Present (length = 0)

(error)

Absent

Call the same handler with the
NO-RESPONSE function

SEND-REQUEST

Service requester;
request phase

Present (length > 0)

Present (length = 0)

(error)

Absent

Call the next handler with the
SEND-REQUEST function

Present (length = 0)

Not applicable

(error)

Absent

Present (length > 0)

Switch to response phase, and
call the previous handler with
the RECEIVE-RESPONSE
function

Present (length = 0)

(error)

Absent

Call the same handler with the
NO-RESPONSE function

RECEIVE-RESPONSE

Service requester;
response phase

Not applicable

Present (Iength > 0)

Call the previous handler with
the RECEIVE-RESPONSE
function

Present (length = 0)

(error)

Absent

Call the same handler with the
NO-RESPONSE function

PROCESS-REQUEST

Service provider;
terminal handler

Not applicable

Present (length > 0)

Call the previous handler with
the RECEIVE-RESPONSE
function

Present (length = 0)

(error)

Absent

Call the same handler with the
NO-RESPONSE function

HANDLER-ERROR

Service requester or
provider; either
phase

Not applicable

Present (length > 0)

Call the previous handler with
the SEND-RESPONSE function
or the RECEIVE-RESPONSE
function

Present (length = 0)

(error)

Absent

Call the same handler with the
NO-RESPONSE function

Context containers

In some situations, user-written message handler programs, and header processing
programs, need information about the context in which they are called. CICS
provides this information in a set of context containers, which are passed to the
programs.

CICS initializes the contents of each context container, but, in some cases, you can
change the contents in your message handler programs, and header processing
program. For example, in a service provider pipeline in which the terminal handler
is one of the CICS-provided SOAP handlers, you can change the user ID and
transaction ID of the target application program by modifying the contents of the
appropriate context containers.

Some of the information provided in the containers applies only to a service

provider, or only to a service requester, and therefore some of the context
containers are not available in both.

136 CICS TS for z/OS 4.2: Web Services Guide

DFH-EXIT-HEADERT1 container

DFH-EXIT-HEADERT1 is a container of DATATYPE(CHAR). It contains one or more
SOAP headers that are added to a response from a web service provider
application in CICS.

Programs running global user exit XWSPRRWO can add a header to a SOAP
response. The header must be valid SOAP and the name spaces must be
self-contained in the header XML. A program that puts data in this container must
check for its presence and add the new header to the end of the data. By following
this best practice, multiple programs can be driven at the same exit point if
required.

DFH-HANDLERPLIST container

DFH-HANDLERPLIST is a container of DATATYPE(CHAR) that is initialized with
the contents of the appropriate <handler_parameter_list> element of the pipeline
configuration file.

If you have not specified a handler parameter list in the pipeline configuration file,
the container is empty; that is, it has a length of zero.

You cannot change the contents of this container.

DFH-SERVICEPLIST container

DFH-SERVICEPLIST is a container of DATATYPE(CHAR) that contains the
contents of the <service_parameter_list> element of the pipeline configuration
file.

If you have not specified a service parameter list in the pipeline configuration file,
["“DFHWS-STSURI container” on page 144"DFHWS-URI container” on page 140the
container is empty; that is, it has a length of zero.

You cannot change the contents of this container.

DFHWS-APPHANDLER container

DFHWS-APPHANDLER is a container of DATATYPE(CHAR) that, in a service
provider pipeline, is initialized with the contents of the <apphandler> element of
the pipeline configuration file.

In the terminal handler of a pipeline that contains the <apphandler> element, the
supplied SOAP handlers get the name of the target application program from this

container.

You can change the contents of this container in your message handlers or
header-processing programs.

CICS does not provide this container in a service requester pipeline.

Chapter 6. Creating the web services infrastructure 137

Related concepts:

[“Application handlers” on page 112
An application handler is a CICS program that the terminal handler of a SOAP
service provider pipeline links to at run time.

Related reference:

[“The <apphandler> element” on page 76
Specifies the name of the application handler that the terminal handler of the
pipeline links to by default.

DFHWS-APPHANCLAS container

DFHWS-APPHANCLAS is a container of DATATYPE(CHAR) that, in a service
provider pipeline, is initialized with the contents of the <apphandler_class>
element of the pipeline configuration file.

In the terminal handler of a Java-based pipeline, the supplied SOAP handlers,
<cics_soap_l.1_handler_java> and <cics_soap_l1.2_handler_java>, get the name
of the target application program from this container.

CICS does not provide this container in a service requester pipeline.
Related concepts:

[“Application handlers” on page 112|
An application handler is a CICS program that the terminal handler of a SOAP
service provider pipeline links to at run time.

Related reference:

[“The <apphandler class> element” on page 77
Specifies that the terminal handler of the pipeline links to an Axis2 application
handler.

DFHWS-DATA container

DFHWS-DATA is a container of DATATYPE(BIT) that is used in service requester
applications and optionally in service provider applications that are deployed with
the CICS web services assistant. It holds the top-level data structure that is
mapped to and from a SOAP request.

In service requester applications, the DFHWS-DATA container must be present
when the service requester program issues an EXEC CICS INVOKE SERVICE
command. When the command is issued, CICS converts the data structure that is
in the container into a SOAP request. When the SOAP response is received, CICS
converts it into another data structure that is returned to the application in the
same container.

In service provider applications, the DFHWS-DATA container is used by default
when you do not specify the CONTID parameter on the DFHLS2WS or DFHWS2LS
batch jobs. CICS converts the SOAP request message into the data structure that is
passed to the application in the DFHWS-DATA container. The response is then
saved in the same container, and CICS converts the data structure into a SOAP
response message.

DFHWS-MEP container

DFHWS-MEP is a container of DATATYPE(BIT) that holds a representative value
for the message exchange pattern (MEP) of an inbound or outbound SOAP
message. This value is one byte in length.

138 CICS TS for z/OS 4.2: Web Services Guide

CICS supports four message exchange patterns for both service requesters and
service providers. The message exchange pattern is defined in the WSDL 2.0
document for the web service and determines whether CICS responds as the
provider, and if CICS expects a response from an external provider. In requester
mode, the time that CICS waits for a response is configured using the PIPELINE
resource.

If you used the CICS web services assistant to deploy your application, this
container is populated by CICS:

* In a service provider pipeline, this container is populated by the DFHPITP
application handler when it receives the inbound message from the terminal
handler.

* In a service requester pipeline, this container is populated when the application
uses the INVOKE SERVICE command.

If the application uses the DFHPIRT channel to start the pipeline, the application
populates this container. If the container is not present or has no value, CICS
assumes that the request is using either the In-Out or In-Only MEP, depending on
whether the DFHNORESPONSE| container is present in the channel.

This container is populated by the supplied application handler program,
DFHPITP. If you use a different application handler then this container is not
available for use.

Table 7. Values that can appear in container DFHWS-MEP

Value MEP URI

1 In-Only http:/ /www.w3.org/ns/wsdl/in-only

2 In-Out http:/ /www.w3.org/ns/wsdl/in-out

4 Robust-In-Only http:/ /www.w3.0rg/ns/wsdl/robust-in-only
8 In-Optional-Out http:/ /www.w3.org/ns/wsdl/in-opt-out

DFHWS-OPERATION container

DFHWS-OPERATION is a container of DATATYPE(CHAR) that is usually used in
a service provider application deployed with the CICS web services assistant. It
holds the name of the operation that is specified in a SOAP request.

In a service provider, the container supplies the name of the operation for which
the application is being called. It is populated when a supplied SOAP message
handler passes control to the target application program, and is visible only when
the target program is called with a channel interface.

In a service requester pipeline, the container holds the name specified in the
OPERATION option of the EXEC CICS INVOKE SERVICE command. The container is
not available to the application that issues the command.

This container is populated by the supplied application handler program,
DEHPITP. If you use a different application handler then this container is not
available for use.

DFHWS-PIPELINE container
DFHWS-PIPELINE is a container of DATATYPE(CHAR) that contains the name of
the PIPELINE in which the program is being run.

Chapter 6. Creating the web services infrastructure 139

You cannot change the contents of this container.

DFHWS-RESPWAIT container

DFHWS-RESPWALIT is a container of DATATYPE(BIT) that contains an unsigned
fullword binary number to represent the timeout in seconds that applies to
outbound web service request messages.

The value of this container is defined by the RESPWAIT attribute of the PIPELINE
definition. However, applications can overwrite the value of the
DFHWS-RESPWAIT container. The value used in the pipeline is determined by the
value of the DFHWS-RESPWAIT container when the INVOKE SERVICE command
is issued. Applications can update the value of the DFHWS-RESPWAIT container
after the INVOKE SERVICE command has been issued, however the value used in
the pipeline is not updated.

This container is used only in requester mode pipelines.

DFHWS-SOAPLEVEL container
DFHWS-SOAPLEVEL is a container of DATATYPE(BIT) that holds information
about the level of SOAP used in the message that you are processing.

The container holds a binary fullword that indicates the level of SOAP that is used
for a web service request or response:

1 The request or response is a SOAP 1.1 message.
2 The request or response is a SOAP 1.2 message.
10 The request or response is not a SOAP message.

You cannot change the contents of this container.

DFHWS-TRANID container
DFHWS-TRANID is a container of DATATYPE(CHAR) that is initialized with the
transaction ID of the task in which the pipeline is running.

If you change the contents of this container in a service provider pipeline in which
the terminal handler is one of the CICS-supplied SOAP handlers (and you do so
before control is passed to the target application program), the target application
runs in a new task with the new transaction ID.

New tasks cannot be started when both the terminal handler and the application
handler of a pipeline run in the same JVM server. For this reason, if you deploy
Axis2 applications into CICS, DFHWS-USERID cannot be used to change the user
ID.

DFHWS-URI container
DFHWS-URI is a container of DATATYPE(CHAR) that contains the URI of the
service.

In a service provider pipeline, CICS extracts the relative URI from the incoming
message and places it in the DFHWS-URI container.

For example, if the URI of the Web services is http://example.com/location/
address or jms://queue?destination=INPUT.QUEUE&targetService=/location/
address, the relative URI is /Tocation/address.

140 CICS TS for z/OS 4.2: Web Services Guide

If you are using Web services addressing in your requester pipeline, this container
will be created and updated in the following order:

1. When the INVOKE SERVICE command runs, it creates the DFHWS-URI container
and initiates it with the value of the WSDL service endpoint address. If the
WSACONTEXT BUILD API command was used to create an addressing context, you
must not specify the URI or URIMAP parameters on the INVOKE SERVICE
command.

2. When the web services addressing handler (DFHWSADH) runs, if a <wsa:To>
EPR exists in the addressing context with a non-anonymous URI, the URI in
the DFHWS-URI container is overwritten with the value of the <wsa:To> EPR.
The anonymous URI is ignored.

The SOAP message is sent to the service defined by the URI in DFHWS-URI.

In a service requester pipeline, CICS puts the URI that is specified on the INVOKE
SERVICE command, or, if missing, the URI from the Web service binding, in the
DFHWS-URI container. You can override this URI by using a message handler in
the pipeline.

A service can use an HTTP, HTTPS, JMS, or WebSphere MQ URI for external
services. A service can also use a CICS URI for a service that is provided by
another CICS application:

URI

Query string Description

cics://PROGRAM/program ?options The CICS transport handler uses an

EXEC CICS LINK PROGRAM command to
link to the specified program, passing
the current channel and containers.
No data transformation takes place
on the application data.

cics://SERVICE/service

?targetServiceUri=targetServiceUri | The CICS transport handler uses the
doptions path of the service, expressed as the
targetServicellri, to match a URIMAP
resource to run the request through a
provider pipeline.

You must specify a value for the
targetServiceUri parameter if you
use this URI type.

cics://PIPELINE/pipeline ?targetServiceUri=targetServicelri | The CICS transport handler starts

another service requester pipeline.

You can add parameters to each type of CICS URI using the format
parameter=value, where each parameter is separated by an ampersand. The
following rules apply to the CICS URL:

* The first parameter in the query string must be prefixed with a question mark.
You cannot use a question mark before this point in the URIL

¢ To include an ampersand in a parameter value, you must escape the character.
See the example section below for details.

* CICS changes any lowercase values for program and pipeline to uppercase.

The parameters on the query string determine how CICS processes the request at
the end of the requester pipeline:

Chapter 6. Creating the web services infrastructure 141

maxCommarealLength=value

Specify the maximum size of the COMMAREA in bytes, that is required for the
target application program. The value must not exceed 32 763. If this
parameter is present in the query string, CICS links to the specified program
using a COMMAREA. If this parameter is not present in the query string, CICS
links to the specified program using a channel.

This parameter not case-sensitive and is valid only for the cics://PROGRAM
URL

newTask=yes |no

Specify whether the transport handler will run the request as a new task.

This parameter is not case-sensitive. cics://PROGRAM/testapp?newTask=yes and
cics://PROGRAM/testapp?NEWTASK=Yes are the same.

targetServiceUri=uri

Specify the path of the service to be called. On a SERVICE destination type, the
transport handler uses the value with host=Tocalhost to locate the URIMAP
resource to start a service provider pipeline. On a PIPELINE destination type,
the transport handler uses the value to start another requester pipeline.

This parameter is case-sensitive.

transid=char(4)

Specify a transaction under which the request will run. The transport handler
starts a request stream using the specified transaction ID.

This parameter is case-sensitive.

userid=char(8)

Specify a user ID under which the request will run. The transport handler
starts a request stream using the specified user ID.

This parameter is not case-sensitive.

Destination type

Parameters on URI

PROGRAM userid Optional
transid Optional
maxCommareaLength Optional
newTask Optional. Must be yes or not
specified at all if you specify userid
or transid.
targetServicelri Not supported
SERVICE userid Optional
transid Optional
maxCommarealLength Not supported
newTask Optional. Must be yes or not
specified at all if you specify userid
or transid.
targetServicelri Required
PIPELINE userid Not supported
transid Not supported
maxCommareaLength Not supported
newTask Not supported
targetServicelri Required

142 CICS TS for z/OS 4.2: Web Services Guide

Examples of CICS URIs

In this first example, the DFHWS-URI container has the following URI by the time
it reaches the end of the pipeline:
cics://PROGRAM/testapp?newTask=yes&userid=userl

The transport handler links to the CICS program called testapp, passing the
channel and containers. No data transformation takes place, so the target program
must be able to process the contents of the containers on the current channel. CICS
links to the program under a new unit of work and a different user ID of userl.

In this second example, the DFEHWS-URI container has the following URI by the
time it reaches the end of the pipeline:

cics://SERVICE/getStockQuote?targetServiceUri=/stock/getQuote&newTask=yes&userid=user2

The transport handler replaces the URI in the DFHWS-URI container with the
value /stock/getQuote, finds the URIMAP using the path in the targetServiceUri
parameter to resolve the URI, and starts the provider pipeline under a new task
and different user ID.

In this third example, the DFHWS-URI container has the following URI by the
time it reaches the end of the pipeline:
cics://PIPELINE/reqpipeA?targetServiceUri=cics://PROGRAM/testapp?newTask=yes%26userid=userl

The transport handler replaces the URI in the DFHWS-URI container with the
value cics://PROGRAM/testapp?newTask=yes&userid=userl and starts the requester
pipeline called reqpipeA, passing the current channel and containers. The %26
characters escape the ampersand, so the transport handler puts the whole URI in
the DFHWS-URI container.

Related concepts:

[“Options for controlling requester pipeline processing” on page 256

In service requester pipelines, message handlers can determine where the web
service request is sent by changing the URI. CICS provides support for different
URI formats so that you have much more flexibility in the way that the pipeline
processes web service requests.

Related tasks:

[“Controlling requester pipeline processing using a URI” on page 25§

In service requester pipelines, a message handler can determine where to send the
web service request by changing the URI. By changing the URI format, you can
choose to perform certain optimizations, such as starting another requester pipeline
or starting a service provider pipeline without sending the request over the
network.

DFHWS-USERID container
DFHWS-USERID is a container of DATATYPE(CHAR) that is initialized with the
user ID of the task in which the pipeline is running.

If you change the contents of this container in a service provider pipeline in which
the terminal handler is one of the CICS-supplied SOAP handlers (and you do so
before control is passed to the target application program), the target application
runs in a new task that is associated with the new user ID. Unless you change the
contents of container DFHWS-TRANID, the new task has the same transaction ID
as the task in which the pipeline is running.

Chapter 6. Creating the web services infrastructure 143

New tasks cannot be started when both the terminal handler and the application
handler of a pipeline run in the same JVM server. For this reason, if you deploy
Axis2 applications into CICS, DFHWS-USERID cannot be used to change the user
ID.

DFHWS-WEBSERVICE container

DFHWS-WEBSERVICE is a container of DATATYPE(CHAR) that is used in a
service provider pipeline only. It holds the name of the web service that specifies
the execution environment when the target application has been deployed using
the web services assistant.

CICS does not provide this container in a service requester pipeline.

DFHWS-CID-DOMAIN container

DFHWS-CID-DOMAIN is a container of DATATYPE(CHAR). It contains the
domain name that is used to generate content-ID values for referencing binary
attachments.

The value of the domain name is cicsts by default. You can override the value by
specifying the <mime_options> element in the pipeline configuration file.

You cannot change the contents of this container.

DFHWS-MTOM-IN container

DFHWS-MTOM-IN is a container of DATATYPE(BIT) that holds information about
the specified options for the <cics_mtom_handler> element of the pipeline
configuration file and information about the message format that has been received
in the pipeline.

It contains the information to process an inbound MTOM message in the pipeline.
The inbound message can be a request message from a web service requester or a
response message from a web service provider.

If you do not specify a <cics_mtom_handler> element in the pipeline configuration
file, or if a SOAP message is received instead of an MTOM message, this container
is not created.

If web services security is configured in the pipeline, or if validation is switched on
for a web service, the contents of field XOP_MODE in DFHWS-MTOM-IN can be
overridden by CICS when the container is created. For example, if you configure
the pipeline to process the content of MTOM messages in direct mode, and you
then switch validation on for the web service, CICS overrides the defined value in
the pipeline configuration file and sets the XOP processing to run in compatibility
mode. CICS performs the override because of the restrictions in support for
processing XOP documents and binary attachments in the pipeline.

You cannot change the contents of this container.

Table 8. Structure of the DFHWS-MTOM-IN container

Length
Field name (bytes) Contents
MTOM_STATUS 4 Contains the value "1", indicating that the message
received by CICS is in MTOM format.

144 CICS TS for z/OS 4.2: Web Services Guide

Table 8. Structure of the DFHWS-MTOM-IN container (continued)

Length
Field name (bytes) Contents
MTOMNOXOP_STATUS |4 Contains one of the following values:
0 The MTOM message contains binary
attachments.
1 The MTOM message does not contain
binary attachments.
XOP_MODE 4 Contains one of the following values:
0 No XOP processing takes place.
1 XOP processing takes place in compatibility
mode.
2 XOP processing takes place in direct mode.

DFHWS-MTOM-OUT container

DFHWS-MTOM-OUT is a container of DATATYPE(BIT) that holds information
about the specified options for the <cics_mtom_handler> element of the pipeline
configuration file.

It contains the information to process an outbound MTOM message in the pipeline,
whether it is a response message for a web service requester or a request message
for a web service provider.

If you do not specify a <cics_mtom_handler> element in the pipeline configuration
file, or if the <mtom_options> element in the pipeline configuration file has the
attribute send_mtom="no", this container is not created.

In provider mode, this container is created at the same time as the
DFHWS-MTOM-IN container. If the <mtom_options> element in the pipeline
configuration file has the attribute send_mtom="same", the MTOM_STATUS field is
set to indicate whether the web service requester wants an MTOM or SOAP
response message.

If web services security is configured in the pipeline, or if validation is switched on
for a web service, the XOP_MODE field of DFHWS-MTOM-OUT can be changed
by CICS when the container is created. For example, if you configure the pipeline
to process the XOP document and any binary attachments using direct mode, and
you then switch validation on for a web service, CICS overrides the defined value
in the pipeline configuration file and sets the XOP processing to run in
compatibility mode when it creates the container. CICS performs the override
because of restrictions in support for processing XOP documents and binary
attachments in the pipeline.

You cannot change the contents of this container.

Chapter 6. Creating the web services infrastructure 145

Table 9. Structure of the DFHWS-MTOM-OUT container

Length
Field name (bytes) Contents
MTOM_STATUS 4 Indicates whether MTOM is enabled:
0 MTOM is not enabled. The outbound message is sent in
SOAP format.
1 MTOM is enabled. The outbound message is sent in MTOM
format.
MTOMNOXOP_STATUS 4 Indicates whether to use MTOM when there are no binary
attachments:
0 Do not send an MTOM message when there are no binary
attachments.
1 Send an MTOM message when there are no binary
attachments.
XOP_MODE 4 Indicates what XOP processing should take place:
0 No XOP processing takes place.
1 XOP processing takes place in compatibility mode.
2 XOP processing takes place in direct mode.

DFHWS-WSDL-CTX container

DFHWS-WSDL-CTX is a container of DATATYPE(CHAR) that is used in either a
service provider or a service requester application deployed with the CICS web
services assistant. It holds WSDL context information that can be used for
monitoring purposes.

DFHWS-WSDL-CTX holds the following context information for the WSDL
document:

¢ The name and namespace of the operation for which the application is being
invoked.

* If known, the name and namespace for the WSDL 1.1 port or WSDL 2.0
endpoint that is being used.

These values are separated by space characters. DFHWS-WSDL-CTX is populated
by CICS only at runtime level 2.1 and above.

If you used the CICS web services assistant to deploy your application, this
container is populated by CICS:
* In a service provider pipeline, this container is populated by the DFHPITP

application handler when it receives the inbound message from the terminal
handler.

* In a service requester pipeline, this container is populated when the application
uses the INVOKE SERVICE command.

If the application uses the DFHPIRT program to start the pipeline, the application
populates the DFHWS-WSDL-CTX container if required.

DFHWS-XOP-IN container

DFHWS-XOP-IN is a container of DATATYPE(BIT). It contains a list of references
to the binary attachments that have been unpackaged from an inbound MIME
message and placed in containers using XOP processing.

146 CICS TS for z/OS 4.2: Web Services Guide

Each attachment record in the DFHWS-XOP-IN container consists of these items:

* The 16-byte name of the container that holds the MIME headers for the binary
attachment

* The 16-byte name of the container that holds the binary attachment
¢ The 2-byte length of the content-ID, in signed halfword binary format

* The content-ID, including the < and > delimiters, stored as an ASCII character
string

You cannot change the contents of this container.

DFHWS-XOP-OUT container

DFHWS-XOP-OUT is a container of DATATYPE(BIT). It contains a list of references
to the containers that hold binary attachments. The binary attachments are
packaged into an outbound MIME message by the MTOM handler program.

Each attachment record in the DFHWS-XOP-OUT container consists of these items:

* The 16-byte name of the container that holds the MIME headers for the binary
attachment

* The 16-byte name of the container that holds the binary attachment
¢ The 2-byte length of the content-ID, in signed halfword binary format

* The content-ID, including the < and > delimiters, stored as an ASCII character
string

You cannot change the contents of this container.

Security containers

Security containers are used on the DFHWSTC-V1 channel to send and receive
identity tokens from a Security Token Service (STS) such as Tivoli Federated
Identity Manager. This interface is called the Trust client interface and can be used
in web service requester and provider pipelines.

DFHWS-IDTOKEN container

DFHWS-IDTOKEN is a container of DATATYPE(CHAR). It contains the token that
the Security Token Service (STS) either validates or uses to issue an identity token
for the message.

The token must be in XML format.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-RESTOKEN container
DFHWS-RESTOKEN is a container of DATATYPE(CHAR). It contains the response
from the Security Token Service (STS).

The response depends on the action that was requested from the STS in the
DFHWS-STSACTION container.

e If the action is issue, this container holds the token that the STS has exchanged
for the one that was sent in the DFHWS-IDTOKEN container.

e If the action is validate, this container holds a URI to indicate whether the
security token that was sent in the DFHWS-IDTOKEN container is valid or not
valid. The URIs that can be returned are as follows:

Chapter 6. Creating the web services infrastructure 147

URI Description

http://schemas.xmlsoap.org/ws/2005/02/ The security token is valid.
trust/status/valid

http://schemas.xmlsoap.org/ws/2005/02/ The security token is not valid.
trust/status/invalid

This container is returned on the channel DFHWSTC-V1 when using the Trust
client interface.

DFHWS-SERVICEURI container
DFHWS-SERVICEURI is a container of DATATYPE(CHAR). It contains the URI
that the Security Token Service (STS) uses as the AppliesTo scope.

The AppliesTo scope is used to determine the web service with which the security
token is associated.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-STSACTION container

DFHWS-STSACTION is a container of DATATYPE(CHAR). It contains the URI of
the action that the Security Token Service (STS) takes to either validate or issue a
security token.

The URI values that you can specify in this container are as follows:

URI Description

http://schemas.xmlsoap.org/ws/2005/02/ The STS issues a token in exchange for the

trust/Issue one that is sent in the DFHWS-IDTOKEN
container.

http://schemas.xmlsoap.org/ws/2005/02/ The STS validates the token that is sent in
trust/Validate the DFHWS-IDTOKEN container.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-STSFAULT container
DFHWS-STSFAULT is a container of DATATYPE(CHAR). It contains the error that
was returned by the Security Token Service (STS).

If an error occurs, the STS issues a SOAP fault. The contents of the SOAP fault are
returned in this container.

This container is returned on the channel DFHWSTC-V1 when using the Trust
client interface.

DFHWS-STSREASON container

DFHWS-STSREASON is a container of DATATYPE(CHAR). It contains the contents
of the <wst:Reason> element, if this element is present in the response message
from the Security Token Service (STS).

The <wst:Reason> element contains an optional string that provides information
relating to the status of the validation request that was sent to the STS by CICS. If
the security token is not valid, the information provided by the STS in this element
can help you to determine why the token is not valid.

148 CICS TS for z/OS 4.2: Web Services Guide

For more information, see the Web Services Trust Lanquage specification that is
published at |http:/ /www.ibm.com/developerworks/library /specification /ws-|

Igrust/ [

DFHWS-STSURI container

DFHWS-STSURI is a container of DATATYPE(CHAR). It contains the absolute URI
of the Security Token Service (STS) that is used to validate or issue an identity
token for the SOAP message.

The format of the URI is http://www.example.com:8080/TrustServer/
SecurityTokenService. You can use HTTP or HTTPS, depending on your security
requirements.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-TOKENTYPE container

DFHWS-TOKENTYPE is a container of DATATYPE(CHAR). It contains the URI of
the requested token type that the Security Token Service (STS) issues as an identity
token for the SOAP message.

You can specify any valid token type, but it must be supported by the STS.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

Containers generated by CICS

CICS generates containers to store data such as variable arrays and long strings.
These containers are created during pipeline processing and are used as input to,
or output from, the application program. These containers are prefixed with DFH.

The naming convention for these containers is to use the CICS module that created
them, combined with a numeric suffix to make the container name unique in the
request. These container names occur during pipeline processing:

DFHPIAXIS-nnnnnnnn
Containers that are used to store strings and variable arrays that are
passed to the application in Axis2 pipelines. This container can also
include binary data.

DFHPICC-nnnnnnnn
Containers that are used to store strings and variable arrays that are
passed to the application. This container can also include binary data.

DFHPIII-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with
the MTOM message handler and is running in direct mode. These
containers are created when binary data is provided in a field rather than
in a container by the application program.

DFHPIMM-nnnnnnnn
Inbound attachment containers created during the processing of MIME
messages. These containers are generated by CICS when the MTOM
message handler is enabled in the pipeline. When direct mode processing
is enabled, these containers can be passed through to the application
directly.

DFHPIXO-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with
the MTOM message handler and is running in compatibility mode.

Chapter 6. Creating the web services infrastructure 149

http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.ibm.com/developerworks/library/specification/ws-trust/

The numbered container names start from 1 for each web service request; for
example, DFHPICC-00000001. However, if an application program uses the INVOKE
SERVICE command to initiate more than one web service request in the same
channel, the containers that were returned to the application for one response
might still exist when a further request is made. In this situation, CICS checks to
see if the container already exists and increments the number of the generated
container to avoid a naming conflict.

User containers

These containers contain information that one message handler needs to pass to
another. The use of user containers is entirely a matter for the message handlers.
You can choose your own names for these containers, but you must not use names
that start with DFH.

150 CICS TS for z/OS 4.2: Web Services Guide

Chapter 7. Creating a web service

You can expose existing CICS applications as web services and create new CICS
applications to act as web service providers or requesters.

Before you begin

Before you begin to create a web service, perform these tasks:

1. Configure your CICS system to support web services; see [“Configuring your]
[CICS system for web services” on page 51.|

2. Create the necessary infrastructure to support the deployment of your web
services; see [Chapter 6, “Creating the web services infrastructure,” on page 51.|

3. Decide whether you want to use the web services assistant; see |”Plannin§ t0|
[use web services” on page 45.

About this task

The CICS web services assistant is a supplied utility that helps you to create the
necessary artifacts for a new web service provider or a service requester
application, or to enable an existing application as a web service provider.

The CICS web services assistant can create a WSDL document from a simple
language structure or a language structure from an existing WSDL document; it
supports COBOL, C/C++, and PL/IL It also generates information that is used to
enable automatic runtime conversion of the SOAP messages to containers and
COMMAREAS, and vice versa. This information is used by the CICS web services
support during pipeline processing.

Create your web service, as described below, and validate that it works correctly:

Procedure
1. Create a web service in one of four ways:

* Use the web services assistant to create the web service description or
language structures and deploy them into CICS. Use the PIPELINE SCAN
command to automatically create the required CICS resources.

* Use Rational Developer for System z or the Java API to create the web
service description or language structures and deploy them into CICS. Use
the PIPELINE SCAN command to automatically create the required CICS
resources.

* Create or change an application program to handle the XML in the inbound
and outbound messages, including the data conversion, and populate the
correct containers in the pipeline. You must create the required CICS
resources manually.

* Deploy an Axis2 application as a web service.

2. Start the web service to test that it works as you intended. If you are using the
web services assistant to deploy your web service, you can use the SET
WEBSERVICE command to turn on validation. This validation checks that the data
is converted correctly.

© Copyright IBM Corp. 2005, 2012 151

What to do next

These steps are explained in more detail in the following topics.

The CICS web services assistant

The CICS web services assistant is a set of batch utilities that can help you to
transform existing CICS applications into web services and to enable CICS
applications to use web services provided by external providers. The assistant
supports rapid deployment of CICS applications for use in service providers and
service requesters, with the minimum of programming effort.

When you use the web services assistant for CICS, you do not have to write your
own code for parsing inbound messages and for constructing outbound messages;
CICS maps data between the body of a SOAP message and the application
program's data structure.

The assistant can create a WSDL document from a simple language structure or a
language structure from an existing WSDL document, and supports COBOL,
C/C++, and PL/L It also generates information used to enable automatic runtime
conversion of the SOAP messages to containers and COMMAREAs, and vice versa.

The CICS web services assistant comprises two utility programs:

DFHLS2WS
Generates a web service binding file from a language structure. This utility
also generates a web service description.

DFHWS2LS
Generates a web service binding file from a web service description. This
utility also generates a language structure that you can use in your
application programs.

The JCL procedures to run both programs are in the hlq.XDFHINST library.

For more information on the web services assistant's utility programs and data
mappings, see the following topics.

DFHLS2WS: high-level language to WSDL conversion

The DFHLS2WS procedure generates a web service description and a web service
binding file from a high-level language data structure. You can use DFHLS2WS
when you expose a CICS application program as a service provider.

The job control statements for DFHLS2WS, its symbolic parameters, its input
parameters and their descriptions, and an example job help you to use this
procedure.

Job control statements for DFHLS2WS
JOB Starts the job.
EXEC Specifies the procedure name (DFHLS2WS).

INPUT.SYSUT1 DD
Specifies the input. The input parameters are typically specified in the
input stream. However, they can be defined in a data set or in a member
of a partitioned data set.

152 CICS TS for z/OS 4.2: Web Services Guide

Symbolic parameters

The following symbolic parameters are defined in DFHLS2WS:

JAVADIR=path
Specifies the name of the Java directory that is used by DFHLS2WS. The value
of this parameter is appended to /usr/1pp/ to produce a complete path name
of /usr/1pp/path.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR
parameter.

PATHPREF=prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used
on other parameters. The default is the empty string.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR
parameter.

SERVICE=value
Use this parameter only when directed to do so by IBM Support.

TMPDIR=tmpdir
Specifies the location of a directory in z/OS UNIX that DFHLS2WS uses as a
temporary work space. The user ID under which the job runs must have read
and write permission to this directory.

The default value is /tmp.

TMPFILE=tmpprefix
Specifies a prefix that DFHLS2WS uses to construct the names of the
temporary workspace files.

The default value is LS2WS.

USSDIR=path
Specifies the name of the CICS TS directory in the UNIX system services file
system. The value of this parameter is appended to /usr/1pp/cicsts/ to
produce a complete path name of /usr/Ipp/cicsts/path.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary work space

DFHLS2WS creates the following three temporary files at run time:
tmpdir/tmpprefix.in
tmpdir/tmpprefix.out
tmpdir/tmpprefix.err
where:
tmpdir is the value specified in the TMPDIR parameter.
tmpprefix is the value specified in the TMPFILE parameter.
The default names for the files, when TMPDIR and TMPFILE are not specified, are as
follows:
/tmp/LS2WS.1in
/tmp/LS2WS.out

Chapter 7. Creating a web service 153

»>—PDSLIB=valu

/tmp/LS2WS.err

Important: DFHLS2WS does not lock access to the generated z/OS UNIX file
names. Therefore, if two or more instances of DFHLS2WS run concurrently, and
use the same temporary workspace files, nothing prevents one job from
overwriting the workspace files while another job is using them, leading to
unpredictable failures.

Therefore, you are advised to devise a naming convention, and operating
procedures, that avoid this situation. For example, you can use the system
symbolic parameter SYSUID to generate workspace file names that are unique to an
individual user. These temporary files are deleted before the end of the job.

Input parameters for DFHLS2WS

LANG=COBOL:
LANG=PLI—ENTERPRISE:|
LANG=PLI-OTHER:

LANG=C

I—PDSCP=vaZueJ REQMEM=val
I—RESPMEM:valueJ

REQUEST-CHANNEL=valu

I—RESPONSE-CHANNEL=VL7ZueJ

LANG=CPP—

DFHREQUEST- DFHRESPONSE:

L P i N =

STRUCTURE= (R)
I—requestJ I—response

PGMINT=CHANNEL—L—_|—
|_ CONTID=value

»—PGMNAME=valu

I—TRANSACTION=nL‘lmeJ |—USERID=idJ I—URI=valueJ |—PGMINT=C0MMAREA

MAPPING-LEVEL=1.0
r

MAPPING-LEVEL=1.1

APPING-LEVEL=1.2

CHAR-VARYING=NO
[]

APPING-LEVEL=2.0 I |—CHAR—VARYING=NULLJ
APPING-LEVEL=2.1
APPING-LEVEL=2.2 I:CHAR-VARYING=COLLAPSE:|
DATETIME=UNUSED—| DATA-TRUNCATION=DISABLE CHAR-VARYING=BINARY
APPING-LEVEL=3.0 r r D—l

rMINIMUM-RUNTIME-LEVEL=MINIMU”‘

I—DATETIME=PACKED15J |—DATA-TRUNCATION=ENABLED—I

MINIMUM-RUNTIME-LEVEL=CURRENT:
MINIMUM-RUNTIME-LEVEL=1.0:
MINIMUM-RUNTIME-LEVEL=1.1
MINIMUM-RUNTIME-LEVEL=1.2

INIMUM-RUNTIME-LEVEL=2.0

INIMUM-RUNTIME-LEVEL=2.1

1.1
INIMUM-RUNTIME-LEVEL=2. Zj I—SOAPVER=—E1 .2

INIMUM-RUNTIME-LEVEL=3.0

ALL

I—HTTPPROXY=—|:d
I

omain name_—l—:port numberJ |—HTTPPROXY-USERNAME=vulueJ |—HTTPPROXY-PASSWORD=vuZueJ I—CCSID=valueJ
P address

SYNCONRETURN=NO WSDL=value
[] [

WSBIND=val

I—REQUEST—NAMESPACE:valueJ I—RESPONSE—NAMESPACE:valueJ LSYNCONRETURN:YES

»-LOGFILE=val

WSDLCP=LOCAL——
r

I—l«lSDL_l.lzvalueJ I—l«lSDL_Z.():valueJ

I:WSDLCP=UTF-8— I—WSDL-NAMESPACE=valueJ |—()PERATION-NAME=Vt7lueJ

WSDLCP=EBCDIC-CP-US—

154 CICS TS for z/OS 4.2: Web Services Guide

> ><

(1)

v

\\WSRR—SERVER%cheme:// omain name_—l—:port number-

IP address —WSRR-DESCRIPTION=val
HWSRR-ENCODING=val
WSRR-LOCATION=value

—WSRR-USERNAME=value—WSRR-PASSWORD=value

WSRR-VERSION=1
[]

I—WSRR-VERSION:valueJ
—SSL-KEYSTORE=valu

I—SSL-KEYPWD=VGZU€J
—SSL-TRUSTSTORE=val

v

I—SSL—TRUSTPWD=V¢7ZueJ

I—WSRR-CUSTOM-PmpertyName=vuZueJ

Notes:

1 Each of the WSRR parameters that can be specified when the WSRR-SERVER parameter is set can be
specified only once. The exception to this rule is the WSRR-CUSTOM parameter, which you can specify
a maximum of 255 times.

Parameter use
* You can specify the input parameters in any order.
* Each parameter must start on a new line.

* A parameter, and its continuation character, if you use one, must not extend
beyond column 72; columns 73 to 80 must contain blanks.

* If a parameter is too long to fit on a single line, use an asterisk (*) character at
the end of the line to indicate that the parameter continues on the next line.
Everything, including spaces, before the asterisk is considered part of the
parameter. For example:

WSBIND=wsbinddir=
/appl

is equivalent to
WSBIND=wshinddir/appl

* A # character in the first character position of the line is a comment character.
The line is ignored.

Parameter descriptions

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the
application data structure. The value of this parameter overrides the value of
the LOCALCCSID system initialization parameter. The value must be an EBCDIC
CCSID that is supported by Java and [z/OS conversion serviced If you do not
specify this parameter, the application data structure is encoded using the
CCSID specified in the system initialization parameter.

You can use this parameter with any mapping level. However, if you want to
deploy the generated files into a CICS TS 3.1 region, you must apply APAR
PK23547 to achieve the minimum runtime level of code to install the web
service binding file.

CHAR-VARYING=NO|NULL | COLLAPSE | BINARY
Specifies how character fields in the language structure are mapped when the

Chapter 7. Creating a web service 155

http://publib.boulder.ibm.com/infocenter/zos/v1r11/topic/com.ibm.zos.r11.cunu100/toc.htm

156

mapping level is 1.2 or higher. A character field in COBOL is a Picture clause
of type X, for example PIC(X) 10; a character field in C/C++ is a character
array. You can select these options:

NO Character fields are mapped to an <xsd:string> and are processed as
fixed-length fields. The maximum length of the data is equal to the
length of the field. NO is the default value for the CHAR-VARYING
parameter for COBOL and PL/I at mapping levels 2.0 and earlier.

This value does not apply to Enterprise and Other PL/I language
structures.

NULL Character fields are mapped to an <xsd:string> and are processed as
null-terminated strings. CICS adds a terminating null character when
transforming from a SOAP message. The maximum length of the
character string is calculated as one character less than the length
indicated in the language structure. NULL is the default value for the
CHAR-VARYING parameter for C/C++.

This value does not apply to Enterprise and Other PL/I language
structures.

COLLAPSE
Character fields are mapped to an <xsd:string>. Trailing white space in
the field is not included in the SOAP message. COLLAPSE is the
default value for the CHAR-VARYING parameter for COBOL and PL/I at
mapping level 2.1 onwards.

BINARY
Character fields are mapped to an <xsd:base64binary> and are
processed as fixed-length fields. The BINARY value on the
CHAR-VARYING parameter is available only at mapping levels 2.1 and
onwards.

CONTID=value
In a service provider, specifies the name of the container that holds the
top-level data structure used to represent a SOAP message.

DATA-TRUNCATION=DISABLED | ENABLED
Specifies if variable length data is tolerated in a fixed length field structure:

DISABLED
If the data is less than the fixed length that CICS is expecting, CICS
rejects the truncated data and issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS
tolerates the truncated data and processes the missing data as null
values.

DATETIME=UNUSED | PACKED15
Specifies if dateTime fields in the high-level language structure are mapped as
timestamps:

PACKED15
Any dateTime fields are mapped as timestamps.

UNUSED
Any dateTime fields are not mapped as timestamps.

You can set this parameter at a mapping level of 3.0.

CICS TS for z/OS 4.2: Web Services Guide

HTTPPROXY={domain name:port number}|{IP address:port number}
If your WSDL contains references to other WSDL files that are located on the
internet, and the system on which you are running DFHLS2WS uses a proxy
server to access the internet, specify the domain name or IP address and the
port number of the proxy server. For example:

HTTPPROXY=proxy.example.com:8080

In other cases, this parameter is not required.

HTTPPROXY-PASSWORD=value
Specifies the HTTP proxy password that must be used with
HTTPPROXY-USERNAME if the system on which you are running DFHLS2WS uses
a HTTP proxy server to access the Internet, and the HTTP proxy server uses
basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

HTTPPROXY-USERNAME=value
Specifies the HTTP proxy username that must be used with
HTTPPROXY-PASSWORD if the system on which you are running DFHLS2WS uses
a HTTP proxy server to access the Internet, and the HTTP proxy server uses
basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

LANG=COBOL
Specifies that the programming language of the high-level language structure
is COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure
is Enterprise PL/I.

LANG=PLI-OTHER
Specifies that the programming language of the high-level language structure
is a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high-level language structure
is C.

LANG=CPP
Specifies that the programming language of the high-level language structure
is C++.

LOGFILE=value
The fully qualified z/OS UNIX name of the file into which DFHLS2WS writes
its activity log and trace information. DFHLS2WS creates the file, but not the
directory structure, if it does not already exist.

Typically, you do not use this file, but it might be requested by the IBM service
organization if you encounter problems with DFHLS2WS.

MAPPING-LEVEL={1.01.1|1.2]2.0]2.1]|2.2|3.0}
Specifies the level of mapping that DFHLS2WS uses when generating the web
service binding file and web service description. You can select these options:

1.0 This mapping level is the default. It indicates that the web service
binding file is generated using CICS TS 3.1 mapping levels.

1.1 Use this mapping to regenerate a binding file at this specific level.

1.2 At this mapping level, you can use the CHAR-VARYING parameter to

Chapter 7. Creating a web service 157

2.0

2.1

2.2

3.0

control how character arrays are processed at run time. VARYING and
VARYINGZ arrays are also supported in PL/I

Use this mapping level in a CICS TS 3.2 region or above to take
advantage of the enhancements to the mapping between the language
structure and web services binding file.

Use this mapping level with a CICS TS 3.2 region that has APAR
PK59794 applied or with any region above CICS TS 3.2. At this
mapping level you can take advantage of the new values for the
CHAR-VARYING parameter, COLLAPSE and BINARY. FILLER fields in
COBOL and * fields in PL/I are systematically ignored at this mapping
level, the fields do not appear in the generated WSDL document, and
an appropriate gap is left in the data structures at run time.

Use this mapping level with a CICS TS 3.2 region that has APAR
PK69738 applied or with any region above CICS TS 3.2 to take
advantage of mapping enhancements when using DFHWS2LS.

Use this mapping level with a CICS TS 4.1 region. At this mapping
level you can create a web service from an application that uses many
containers in its interface by setting the REQUEST-CHANNEL and
RESPONSE-CHANNEL parameters. You can also map dateTime fields to
XML timestamps by setting the DATETIME parameter.

For more information about mapping levels, see [Mapping levels for the CICY

assistants

MINIMUM-RUNTIME-LEVEL={MINIMUM|1.0|1.1|1.2]|2.0|2.1]|2.2|3.0|CURRENT}
Specifies the minimum CICS runtime environment into which the web service
binding file can be deployed. If you select a level that does not match the other
parameters that you have specified, you receive an error message. You can
select these options:

MINIMUM

1.0

1.1

1.2

2.0

2.1

The lowest possible runtime level of CICS is allocated automatically
given the parameters that you have specified.

The generated web service binding file deploys successfully into a
CICS TS 3.1 region that does not have APARs PK15904 and PK23547
applied. Some parameters are not available at this runtime level.

The generated web service binding file deploys successfully into a
CICS TS 3.1 region that has at least APAR PK15904 applied. You can
use a mapping level of 1.1 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

The generated web service binding file deploys successfully into a
CICS TS 3.1 region that has both APAR PK15904 and PK23547 applied.
You can use a mapping level of 1.2 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

The generated web service binding file deploys successfully into a
CICS TS 3.2 region or above. You can use a mapping level of 2.0 or
below for the MAPPING-LEVEL parameter. Some parameters are not
available at this runtime level.

The generated web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK59794 applied or into any region

158 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_mappinglevels.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_mappinglevels.html

above CICS TS 3.2. You can use a mapping level of 2.1 or below for the
MAPPING-LEVEL parameter. You can use any optional parameter at this
level.

2.2 The generated web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK69738 applied or into any region
above CICS TS 3.2. With this runtime level, you can use a mapping
level of 2.2 or below for the MAPPING-LEVEL parameter. You can use any
optional parameter at this level.

3.0 The generated web service binding file deploys successfully into a
CICS TS 4.1 region or above. With this runtime level, you can use a
mapping level of 3.0 or below for the MAPPING-LEVEL parameter. You
can use any optional parameter at this level.

CURRENT
The generated web service binding file deploys successfully into a
CICS region at the same runtime level as the one you are using to
generate the web service binding file.

OPERATION-NAME=value
Specifies the operation name that is used in the generated WSDL document. If
no value is supplied, then a default name is generated using the value of the
PGMNAME parameter followed by value operation.

PDSLIB=value
Specifies the name of the partitioned data set that contains the high-level
language data structures to be processed. The data set members used for the
request and response are specified in the REQUEM and RESPMEM parameters
respectively.

Restriction: The records in the partitioned data set must have a fixed length of
80 bytes.

PDSCP=value
Specifies the code page used in the partitioned data set members specified in
the REQMEM and RESPMEM parameters, where value is a CCSID number or a Java
code page number. If this parameter is not specified, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PGMINT=CHANNEL | COMMAREA
For a service provider, specifies how CICS passes data to the target application
program:

CHANNEL
CICS uses a channel interface to pass data to the target application
program.

* In mapping levels below 3.0, the channel can contain only one
container, which is used for both input and output. Use the CONTID
parameter to specify the name of the container. The default name is
DFHWS-DATA.

* At mapping level 3.0, the channel can contain multiple containers.
Use the REQUEST-CHANNEL and RESPONSE-CHANNEL parameters. Do not
specify PDSLIB, REQMEM, or RESPMEM.

COMMAREA
CICS uses a communication area to pass data to the target application
program.

Chapter 7. Creating a web service 159

PGMNAME=value
Specifies the name of the CICS PROGRAM resource for the target application
program that will be exposed as a web service. The CICS web service support
will link to this program.

REQMEM=value
Specifies the name of the partitioned data set member that contains the
high-level language structure for the web service request. For a service
provider, the web service request is the input to the application program.

REQUEST-CHANNEL=value
Specifies the name and location of a channel description document. The
channel description describes the containers that the web service provider
application can use in its interface when receiving a SOAP message from a
web service requester. The channel description is an XML document that must
conform to the CICS-supplied channel schema.

You can use this parameter at mapping level 3.0 only.

REQUEST-NAMESPACE=value
Specifies the namespace of the XML schema for the request message in the
generated web service description. If you do not specify this parameter, CICS
generates a namespace automatically.

RESPMEM=value
Specifies the name of the partitioned data set member that contains the
high-level language structure for the web service response. For a service
provider, the web service response is the output from the application program.

Omit this parameter if no response is involved; that is, for one-way messages.

RESPONSE-CHANNEL=value
Specifies the name and location of a channel description document. The
channel description describes the containers that the web service provider
application can use in its interface when sending a SOAP response message to
a web service requester. The channel description is an XML document that
must conform to the CICS-supplied channel schema.

You can use this parameter at mapping level 3.0 only.

RESPONSE-NAMESPACE=value
Specifies the namespace of the XML schema for the response message in the
generated web service description. If you do not specify this parameter, CICS
generates a namespace automatically.

SOAPVER=1.1|1.2|ALL
Specifies the SOAP level to use in the generated web service description. This
parameter is available only when the MINIMUM-RUNTIME-LEVEL is set to 2.0 or
higher.

1.1 The SOAP 1.1 protocol is used as the binding for the web service
description.

1.2 The SOAP 1.2 protocol is used as the binding for the web service
description.

ALL Both the SOAP 1.1 or 1.2 protocol can be used as the binding for the
web service description.

If you do not specify a value for this parameter, the default value depends on
the version of WSDL that you want to create:

* If you require only WSDL 1.1, the SOAP 1.1 binding is used.

160 CICS TS for z/OS 4.2: Web Services Guide

* If you require only WSDL 2.0, the SOAP 1.2 binding is used.

* If you require both WSDL 1.1 and WSDL 2.0, both SOAP 1.1 and 1.2
bindings are used for each web service description.

SSL-KEYSTORE=value
This optional parameter specifies the fully qualified location of the key store
file.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-KEYPWD=value
This optional parameter specifies the password for the key store.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-TRUSTSTORE=value
This optional parameter specifies the fully qualified location of the trust store
file.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-TRUSTPWD=value
This optional parameter specifies the password for the trust store.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

STRUCTURE= (request ,response)
For C and C++ only, specifies the names of the high-level structures contained
in the partitioned data set members that are specified in the REQMEM and
RESPMEM parameters:

request
Specifies the name of the high-level structure that contains the request
when the REQMEM parameter is specified. The default value is
DFHREQUEST.

The partitioned data set member must contain a high-level structure with
the name that you specify or a structure named DFHREQUEST if you do
not specify a name.

response
Specifies the name of the high-level structure containing the response when
the RESPMEM parameter is specified. The default value is DFHRESPONSE.

If you specify a value, the partitioned data set member must contain a
high-level structure with the name that you specify or a structure named
DFHRESPONSE if you do not specify a name.

SYNCONRETURN=NO | YES
Specifies whether the remote web service can issue a sync point.

NO The remote web service cannot issue a sync point. This value is the
default. If the remote web service issues a sync point, it fails with an
ADPL abend.

YES The remote web service can issue a sync point. If you select YES, the

Chapter 7. Creating a web service 161

remote task is committed as a separate unit of work when control
returns from the remote web service. If the remote web service updates
a recoverable resource and a failure occurs after it returns, the update
to that resource cannot be backed out.

TRANSACTION=name
In a service provider, this parameter specifies the 1- to 4-character name of an
alias transaction that can start the pipeline. The value of this parameter is used
to define the TRANSACTION attribute of the URIMAP resource when it is created
automatically using the PIPELINE scan command.

Acceptable characters:

A-Z,a-2,0'9,$g@9#9_:<s>

URI=value
This parameter specifies the relative or absolute URI that a client will use to
access the web service. CICS uses the value specified when it generates a
URIMAP resource from the web service binding file created by DFHLS2WS.
The parameter specifies the path component of the URI to which the URIMAP
definition applies.

USERID=id
In a service provider, this parameter specifies a 1- to 8-character user ID, which
can be used by any web client. For an application-generated response or a web
service, the alias transaction is attached under this user ID. The value of this
parameter is used to define the USERID attribute of the URIMAP resource when
it is created automatically using the PIPELINE scan command.

Acceptable characters:

A-Z,a-2,0-9,9%,0, #

WSBIND=value
The fully qualified z/OS UNIX name of the web service binding file.
DFHLS2WS creates the file, but not the directory structure, if it does not
already exist. The file extension is .wsbind.

WSDL=value
The fully qualified z/OS UNIX name of the file into which the web service
description is written. The web service description conforms to the WSDL 1.1
specification. DFHLS2WS creates the file, but not the directory structure, if it
does not already exist. The file extension is .wsd1.

WSDL_1.1=value
The fully qualified z/OS UNIX name of the file into which the web service
description is written. The web service description conforms to the WSDL 1.1
specification. DFHLS2WS creates the file, but not the directory structure, if it
does not already exist. The file extension is .wsd1. This parameter produces the
same result as the WSDL parameter, so you can specify only one or the other.

WSDL_2.0=value
The fully qualified z/OS UNIX name of the file into which the web service
description is written. The web service description conforms to the WSDL 2.0
specification. DFHLS2WS creates the file, but not the directory structure, if it
does not already exist. The file extension is .wsd1. This parameter can be used
with the WSDL or WSDL_1.1 parameters. It is available only when the
MINIMUM-RUNTIME-LEVEL is set to 2.0 or higher.

162 CICS TS for z/OS 4.2: Web Services Guide

WSDLCP=LOCAL | UTF-8| EBCDIC-CP-US
Specifies the code page that is used to generate the WSDL document.

LOCAL
Specifies that the WSDL document is generated using the local code
page and no encoding tag is generated in the WSDL document.

UTF-8 Specifies that the WSDL document is generated using the UTF-8 code
page. An encoding tag is generated in the WSDL document. If you
specify this option, you must ensure that the encoding remains correct
when copying the WSDL document between different platforms.

EBCDIC-CP-US
This value specifies that the WSDL document is generated using the
US EBCDIC code page. An encoding tag is generated in the WSDL
document.

WSDL-NAMESPACE=value
Specifies the namespace for CICS to use in the generated WSDL document.

If you do not specify this parameter, CICS generates a namespace
automatically.

WSRR-CUSTOM-PropertyName=value
Use this optional parameter to add customized metadata to the WSDL
document in the WSRR. The WSRR-CUSTOM-PropertyName=value pairs are
added into the WSDL document and appear in WSRR without the
WSSR-CUSTOM prefix.

You can specify a maximum of 255 custom PropertyName=value pairs. Avoid
duplicate and blank PropertyName=value pairs.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-DESCRIPTION=value
Use this optional parameter to specify the metadata that describes the WSDL
document being published.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-ENCODING=value
Use this optional parameter to specify the character set encoding of the WSDL
document. If the WSRR-ENCODING parameter is not specified, WSRR uses the
value specified in the WSDL document.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-LOCATION=value
Use this optional parameter to specify the URI that identifies the location of
the WSDL document. If this parameter is not specified, the URI defaults to the
filename specified in the WSDL parameter. For example, if the value of the WSDL
parameter is wsrr/example.wsdl, the value of the WSRR-LOCATION parameter
defaults to example.wsdl.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-PASSWORD=value
Use this optional parameter if you must enter a password to access WSRR.

If the WSRR-USERNAME parameter is specified, you must also specify this
parameter.

Use this parameter only when the WSRR-SERVER parameter is specified.

Chapter 7. Creating a web service 163

WSRR-SERVER={domain name:port number}|{IP address:port number}
Use this parameter to specify the location of the IBM WebSphere Service
Registry and Repository (WSRR) server. If this parameter is specified, WSRR
parameter validation is used.

WSRR-USERNAME=value
Use this optional parameter if you are required to specify a user name to
access WSRR. This user name is used by WSRR to set the owner property.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-VERSION=1|value
Use this parameter to set the version property of the WSDL document in
WSRR.

Use this parameter only when the WSRR-SERVER parameter is specified.

Other information

e The user ID under which DFHLS2SC runs must be configured to use UNIX
System Services. The user ID must have read permission to the CICS z/0OS
UNIKX file structure and PDS libraries and write permission to the directories
specified on the LOGFILE, WSBIND, and WSDL parameters.

¢ The user ID must have a sufficiently large storage allocation to run Java.

* The JCL has a maximum parameter length of 100 characters. This can be
increased by using the STDPARM statement, for more information, see z/OS UNIX
System Services User Guide.

Example

//LS2WS JOB ‘'accounting information',name ,MSGCLASS=A
// SET QT=||||

//JAVAPROG EXEC DFHLS2WS,

// TMPFILE=8&QT.&SYSUID.&QT

//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP

REQMEM=DFHOXCP4

RESPMEM=DFHOXCP4

LANG=COBOL
LOGFILE=/u/exampleapp/wshind/example.log
MINIMUM-RUNTIME-LEVEL=2.1
MAPPING-LEVEL=2.1

CHAR-VARYING=COLLAPSE

PGMNAME=DFHOXCMN
URI=http://myserver.example.org:8080/exampleApp/example
PGMINT=COMMAREA

SOAPVER=ALL

SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbind/example.wsbind
WSDL=/u/exampleapp/wsd1/example.wsdl
WSDL_2.0=/u/exampleapp/wsd1/example_20.wsd1
WSDLCP=LOCAL
WSDL-NAMESPACE=http://mywsdTnamespace

/*

DFHWS2LS: WSDL to high-level language conversion

The DFHWS2LS procedure generates a high-level language data structure and a
web service binding file from a web service description. You can use DFHWS2LS
when you expose a CICS application program as a service provider or when you
construct a service requester.

164 CICS TS for z/OS 4.2: Web Services Guide

The job control statements for DFHWS2LS, its symbolic parameters, its input
parameters and their descriptions, and an example job help you to use this
procedure.

Job control statements for DFHWS2LS
JOB Starts the job.
EXEC Specifies the procedure name (DFHWS2LS).

INPUT.SYSUT1 DD
Specifies the input. The input parameters are usually specified in the input
stream. However, they can be defined in a data set or in a member of a
partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in DFHWS2LS:

JAVADIR=path
Specifies the name of the Java directory that is used by DFHWS2LS. The value
of this parameter is appended to /usr/1pp/ to produce a complete path name
of /usr/1pp/path.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR
parameter.

PATHPREF=prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used
on other parameters. The default is the empty string.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the JAVADIR
parameter.

TMPDIR=tmpdir
Specifies the location of a directory in z/OS UNIX that DFHWS2LS uses as a
temporary workspace. The user ID under which the job runs must have read
and write permission to this directory.

The default value is /tmp.

TMPFILE=tmpprefix
Specifies a prefix that DFHWS2LS uses to construct the names of the
temporary workspace files.

The default value is WS2LS.

USSDIR=path
Specifies the name of the CICS TS directory in the UNIX system services file
system. The value of this parameter is appended to /usr/1pp/cicsts/ to
produce a complete path name of /usr/1pp/cicsts/path.

Typically, you do not specify this parameter. The default value is the value that
was supplied to the CICS installation job (DFHISTAR) in the USSDIR parameter.

SERVICE=value
Use this parameter only when directed to do so by IBM Support.

Chapter 7. Creating a web service 165

The temporary work space

DFHWS2LS creates the following three temporary files at run time:
tmpdir/tmpprefix.in
tmpdir/tmpprefix.out
tmpdir/tmpprefix.err

where:

tmpdir is the value specified in the TMPDIR parameter.

tmpprefix is the value specified in the TMPFILE parameter.
The default names for the files, when TMPDIR and TMPFILE are not specified, are as
follows:

/tmp/WS2LS.in

/tmp/WS2LS.out

/tmp/WS2LS.err

Important: DFHWS2LS does not lock access to the generated z/OS UNIX file
names. Therefore, if two or more instances of DFHWS2LS run concurrently, and
use the same temporary workspace files, nothing prevents one job overwriting the
workspace files while another job is using them, leading to unpredictable failures.

Therefore, you are advised to devise a naming convention, and operating
procedures, that avoid this situation. For example, you can use the system
symbolic parameter SYSUID to generate workspace file names that are unique to an
individual user. These temporary files are deleted before the end of the job.

Input parameters for DFHWS2LS

»»—PDSLIB=value >
|—PDSCP=valueJ |—REQMEM=vaZueJ I—RESPMEM=vaZueJ

LANG=COBOL- >
LANG=PLI-ENTERPRISE~‘

LANG=PLI-OTHER

LANG=C
LANG=CI:'P—I |—STRUCTURE=(s)—l

I—reques t—l I—respanse—l

PGMINT=CHANNEL

I—CONTID=vuZue—I

L-PGMNAME=value

I—URI=VG l ueJ I—PGMINT=C0MMARE.". |—TRANSACTION=ncrmeJ |—USERI D=l'dJ

—MAPPING-LEVEL=1.0

—MAPPING-LEVEL=1.1
—MAPPING-LEVEL=1.24| Advanced data mapping (mapping level 1.2 and higher) -
—MAPPING-LEVEL=2.0

-MAPPING-LEVEL=2.1— Advanced data mapping (mapping level 2.1 and higher)
—MAPPING-LEVEL=2.2:l Advanced data mapping (mapping level 2.2 and higher) I:
l—DATETIME PACKED15—| l—DATA TRUNCATION DISABLED—l

—MAPPING-LEVEL=3.0

|—DATETIME=STRING—| |—DATA-TRUNCATION=ENABLED—|

| APPING-OVERRIDES=SAME-AS-MAPPING-LEVEL-
[7

I—MAPPING-OVERRIDES=LESS-DUP-NAME54|

166 CICS TS for z/OS 4.2: Web Services Guide

—MINIMUM-RUNTIME-LEVEL=MINIMUM

—MINIMUM-RUNTIME-LEVEL=1.0
—MINIMUM-RUNTIME-LEVEL=1.1
—MINIMUM-RUNTIME-LEVEL=1.2
—MINIMUM-RUNTIME-LEVEL=2.0
1
2
0

—MINIMUM-RUNTIME-LEVEL=2.
—MINIMUM-RUNTIME-LEVEL=2. Advanced data mapping (runtime level 2.2 and higher)
—MINIMUM-RUNTIME-LEVEL=3. Advanced data mapping (runtime level 3.0 and higher)
LMINIMUM-RUNTIME-LEVEL=CURRENT:

% Advanced data mapping (runtime Tevel 2.1 and higher) E

I—HTTPPROXY=—|:domain name——:port number‘J |—HTTPPROXY-USERNAME=valueJ |—HTTPPROXY-PASSWORD=VUZueJ
IP address

SYNCONRETURN=NO—|

> LOGFILE=value
I—BINDING=vaZue—I I—CCSID=value—I I—NAME—TRUNCATION=vcllue—I I—OPERATIONS=vaZue—I |—SYNCONRETURN=YESJ
»—WSBIND=value—WSDL=value >
I—WSDL—SERVICE=value—I

(1)

> >

|~I»JSRR-SERVER=scheme://—|:domain name——:port number—Y——WSRR-NAME=value
IP address WSRR-NAMESPACE=value
WSRR-USERNAME=value—WSRR-PASSWORD=value
WSRR-VERSION=value
SSL-KEYSTORE=value

I—SSL-KEYPWD=vaZue—|

SSL-TRUSTSTORE=value

LSSL-TRUSTPWD=VGZU€—|

WIDE-COMP3=N
s 1 o

I—WIDE-COMP3=)’ESJ

Advanced data mapping (mapping level 1.2 and higher):

CHAR-VARYING-LIMIT=32767—| |—CHAR-MULTIPLIER=1—

CHAR-VARYING=NO |—CHAR-VARYING-LIMIT=Value—| |—CHAR-MULTI PLIER=value—
CHAR-VARYING=NULL
CHAR-VARYING=YES

|—DEFAU LT-CHAR-MAXLENGTH=255—|

> |
l—DEFAU LT—CHAR—MAXLENGTH=value—|

Advanced data mapping (mapping level 2.1 and higher):

|—INLINE-MAXOCCURS-LIMIT=1—
|

I—INLINE-MAXOCCURS-LIMIT=vaZue—

Advanced data mapping (mapping level 2.2 and higher):

|—PDSMEM=vaZueJ

Chapter 7. Creating a web service 167

Advanced data mapping (runtime level 2.1 and higher):

XML-ONLY=FALSE
[]

I—XML—ONLY=TRUE—I

Advanced data mapping (runtime level 3.0 and higher):

WSADDR-EPR-ANY=FALSE
[]

I—WSADDR-EPR-ANY=TRUEJ

Notes:

1 Each of the WSRR parameters that can be specified when the WSRR-SERVER parameter is set can be

specified only once.

Parameter use

You can specify the input parameters in any order.
Each parameter must start on a new line.

A parameter, and its continuation character, if you use one, must not extend
beyond column 72; columns 73 to 80 must contain blanks.

If a parameter is too long to fit on a single line, use an asterisk (*) character at
the end of the line to indicate that the parameter continues on the next line.
Everything, including spaces, before the asterisk is considered part of the
parameter. For example:

WSBIND=wsbinddirx

/appl

is equivalent to
WSBIND=wshinddir/appl

A # character in the first character position of the line is a comment character.
The line is ignored.

Parameter descriptions
BINDING=value

If the web service description contains more than one <wsdl:Binding> element,
use this parameter to specify which one is to be used to generate the language
structure and web service binding file. Specify the value of the name attribute
that is used on the <wsdl:Binding> element in the web service description.

CCSID=value

Specifies the CCSID that is used at run time to encode character data in the
application data structure. The value of this parameter overrides the value of
the LOCALCCSID system initialization parameter. The value must be an EBCDIC
CCSID that is supported by Java and |z/OS conversion services. If you do not
specify this parameter, the application data structure is encoded using the
CCSID specified in the system initialization parameter.

You can use this parameter with any mapping level. However, if you want to
deploy the generated files into a CICS TS 3.1 region, you must apply APAR
PK23547 to achieve the minimum runtime level of code to install the web
service binding file.

168 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/zos/v1r11/topic/com.ibm.zos.r11.cunu100/toc.htm

CHAR-MULTIPLIER=1|value
Specifies the number of bytes to allow for each character when the mapping
level is 1.2 or higher. The value of this parameter can be a positive integer in
the range of 1 - 2,147,483,647. All nonnumeric character-based mappings, are
subject to this multiplier. Binary, numeric, zoned, and packed decimal fields are
not subject to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS
characters where you might opt for a multiplier of 3 to allow space for
potential shift-out and shift-in characters around every double-byte character at
run time.

CHAR-VARYING=NO | NULL | YES
Specifies how variable-length character data is mapped when the mapping
level is 1.2 or higher. Variable-length binary data types are always mapped to
either a container or a varying structure. If you do not specify this parameter,
the default mapping depends on the language specified. You can select these
options:

NO Variable-length character data is mapped as fixed-length strings.
NULL Variable-length character data is mapped to null-terminated strings.

YES Variable-length character data is mapped to a CHAR VARYING data
type in PL/L In the COBOL, C, and C++ languages, variable-length
character data is mapped to an equivalent representation that
comprises two related elements: data-length and the data.

CHAR-VARYING-LIMIT=32767 |value
Specifies the maximum size of binary data and variable-length character data
that is mapped to the language structure when the mapping level is 1.2 or
higher. If the character or binary data is larger than the value specified in this
parameter, it is mapped to a container and the container name is used in the
generated language structure. The value can range from 0 to the default 32,767
bytes.

CONTID=value
In a service provider, specifies the name of the container that holds the
top-level data structure used to represent a SOAP message.

DATA-TRUNCATION=DISABLED | ENABLED
Specifies if variable length data is tolerated in a fixed length field structure:

DISABLED
If the data is less than the fixed length that CICS is expecting, CICS
rejects the truncated data and issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS
tolerates the truncated data and processes the missing data as null
values.

DATETIME=PACKED15 | STRING
Specifies how <xsd:dateTime> elements are mapped to the language structure.

PACKED15
The default is that any <xsd:dateTime> element is processed as a
timestamp and is mapped to CICS ABSTIME format.

STRING
The <xsd:dateTime> element is processed as text.

Chapter 7. Creating a web service 169

DEFAULT-CHAR-MAXLENGTH=@| value
Specifies the default array length of character data in characters for mappings
where no length is implied in the web service description document, when the
mapping level is 1.2 or higher. The value of this parameter can be a positive
integer in the range of 1 - 2,147,483,647.

HTTPPROXY={domain name:port number}|{IP address:port number}
If your WSDL contains references to other WSDL files that are located on the
internet, and the system on which you are running DFHWS2LS uses a proxy
server to access the internet, specify the domain name or IP address and the
port number of the proxy server. For example:

HTTPPROXY=proxy.example.com:8080

In other cases, this parameter is not required.

HTTPPROXY-PASSWORD=value
Specifies the HTTP proxy password that must be used with
HTTPPROXY-USERNAME if the system on which you are running DFHWS2LS uses
an HTTP proxy server to access the Internet, and the HTTP proxy server uses
basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

HTTPPROXY-USERNAME=value
Specifies the HTTP proxy username that must be used with
HTTPPROXY-PASSWORD if the system on which you are running DFHWS2LS uses
an HTTP proxy server to access the Internet, and the HTTP proxy server uses

basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

INLINE-MAXOCCURS-LIMIT=E| value
Specifies whether or not inline variable repeating content is used based on the
max0Occurs attribute. Variably repeating content that is mapped inline is placed
in the current container with the rest of the generated language structure. The
variably repeating content is stored in two parts, as a counter that stores the
number of occurrences of the data and as an array that stores each occurrence
of the data. The alternative mapping for variably repeating content is
container-based mapping, which stores the number of occurrences of the data
and the name of the container where the data is placed. Storing the data in a
separate container has performance implications that might make inline
mapping preferable.

The INLINE-MAXOCCURS-LIMIT parameter is available only at mapping level 2.1
onwards. The value of INLINE-MAXOCCURS-LIMIT can be a positive integer in the
range of 0 - 32,767. A value of 0 indicates that inline mapping is not used. A
value of 1 ensures that optional elements are mapped inline. If the value of the
maxOccurs attribute is greater than the value of INLINE-MAXOCCURS-LIMIT,
container-based mapping is used; otherwise inline mapping is used.

When deciding if you want variably repeating lists to be mapped inline,
consider the length of a single item of recurring data. If few instances of long
length occur, container-based mapping is preferable; if many instances of short
length occur, inline mapping is preferable.

LANG=COBOL
Specifies that the programming language of the high-level language structure
is COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure
is Enterprise PL/L

170 CICS TS for z/OS 4.2: Web Services Guide

LANG=PLI-OTHER
Specifies that the programming language of the high-level language structure
is a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high-level language structure
is C.

LANG=CPP
Specifies that the programming language of the high-level language structure
is C++.

LOGFILE=value
The fully qualified z/OS UNIX name of the file into which DFEHWS2LS writes
its activity log and trace information. DFHWS2LS creates the file, but not the
directory structure, if it does not already exist.

Typically, you do not use this file, but it might be requested by the IBM service
organization if you encounter problems with DFHWS2LS.

MAPPING-LEVEL={1.0]1.1|1.2]2.0|2.1]2.2|3.0}
Specifies the level of mapping that DFHWS2LS uses when generating the web
service binding file and language structure. You can select these options:

1.0 The web service binding file and language structure are generated
using CICS TS 3.1 mapping levels.

1.1 XML attributes and <list> and <union> data types are mapped to the
language structure. Character and binary data that have a maximum
length of more than 32,767 bytes are mapped to a container. The
container name is created in the language structure.

1.2 Use the CHAR-VARYING and CHAR-VARYING-LIMIT parameters to control
how character data is mapped and processed at run time. If you do not
specify either of these parameters, binary and character data that have
a maximum length of less than 32,768 bytes are mapped to a
VARYING structure for all languages except C++, where character data
is mapped to a null-terminated string.

2.0 Use this mapping level in a CICS TS 3.2 region or above to take
advantage of the enhancements to the mapping between the language
structure and web services binding file.

21 Use this mapping level with a CICS TS 3.2 region that has APAR
PK59794 applied, or any region above CICS TS 3.2 for <xsd:any> and
xsd:anyType support, the option to map variably repeating content
inline with the INLINE-MAXOCCURS-LIMIT parameter, and support for
minOccurs="0" on <xsd:sequence>, <xsd:choice>, and <xsd:all>.

2.2 Use this mapping level with a CICS TS 3.2 region that has APAR
PK69738 applied or with any region above CICS TS 3.2. It provides the
following support:

* Elements with fixed values

* Enhanced support for <xsd:choice> elements
 Abstract data types

* Abstract elements

* Substitution groups

3.0 Use this mapping level with a CICS TS 4.1 region. At this mapping
level you can transform timestamps to CICS ABSTIME format.

Chapter 7. Creating a web service 171

For more information about mapping levels, see [Mapping levels for the CICY

assistants

MAPPING-OVERRIDES={SAME-AS-MAPPING-LEVEL | LESS-DUP-NAMES}
Provides the options to override mapping level defaults when generating
language structures.

SAME-AS-MAPPING-LEVEL

This is the default. This parameter generates language structures in the
same style as the mapping level.

LESS-DUP-NAMES

This parameter generates non-structural structure field names with
“_value” at the end of the name to enable direct referencing to the
field. For example, level 12 field streetName in the following PLI
language structure:

09 streetName,

12 streetName CHAR(255) VARYING
UNALIGNED,

12 filler BIT (7),

12 attr_nil_streetName value BIT (1),

is suffixed with '_value' at the end when specifying
MAPPING-OVERRIDES = LESS-DUP-NAMES, as shown in the
resulting structure:

09 streetName,

12 streetName_value CHAR(255) VARYING
UNALIGNED,

12 filler BIT (7),

12 attr_nil_streetName value BIT (1),

MINIMUM-RUNTIME-LEVEL={MINIMUM|1.0|1.1|1.2|2.0|2.1|2.2|3.0|CURRENT}
Specifies the minimum CICS runtime environment into which the web service
binding file can be deployed. If you select a level that does not match the other
parameters that you have specified, you receive an error message. You can
select these options:

MINIMUM

1.0

1.1

1.2

2.0

2.1

The lowest possible runtime level of CICS is allocated automatically
given the parameters that you have specified.

The generated web service binding file deploys successfully into a
CICS TS 3.1 region that does not have APARs PK15904 and PK23547
applied. Some parameters are not available at this runtime level.

The generated web service binding file deploys successfully into a
CICS TS 3.1 region that has at least APAR PK15904 applied. You can
use a mapping level of 1.1 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

The generated web service binding file deploys successfully into a
CICS TS 3.1 region that has both APAR PK15904 and PK23547 applied.
You can use a mapping level of 1.2 or below for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

The generated web service binding file deploys successfully into a
CICS TS 3.2 region or above. You can use a mapping level of 2.0 or
below for the MAPPING-LEVEL parameter. Some parameters are not
available at this runtime level.

The generated web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK59794 applied or into any region

172 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_mappinglevels.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_mappinglevels.html

above CICS TS 3.2. You can use a mapping level of 2.1 or below for the
MAPPING-LEVEL parameter. You can use any optional parameter at this
level.

2.2 The generated web service binding file deploys successfully into a
CICS TS 3.2 region that has APAR PK69738 applied or into any region
above CICS TS 3.2. With this runtime level, you can use a mapping
level of 2.2 or below for the MAPPING-LEVEL parameter. You can use any
optional parameter at this level.

3.0 The generated web service binding file deploys successfully into a
CICS TS 4.1 region or above. With this runtime level, you can use a
mapping level of 3.0 or below for the MAPPING-LEVEL parameter. You
can use any optional parameter at this level.

CURRENT
The generated web service binding file deploys successfully into a
CICS region at the same runtime level as the one you are using to
generate the web service binding file.

NAME-TRUNCATION={LEFT|RIGHT}
Specifies whether XML element names are truncated from the left or the right.
The CICS web services assistant truncates XML element names to the
appropriate length for the high-level language specified; by default names are
truncated from the right.

OPERATIONS=value
For web service requester applications, specifies a subset of valid
<wsdl:Operation> elements from the web service description that is used to
generate the web service binding file. Each <wsdl:Operation> element is
separated by a space; the list can span more than one line if necessary. You can
use this parameter for both WSDL 1.1 and WSDL 2.0 documents.

PDSCP=value
Specifies the code page used in the partitioned data set members specified in
the REQMEM and RESPMEM parameters, where value is a CCSID number or a Java
code page number. If this parameter is not specified, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PDSLIB=value
Specifies the name of the partitioned data set that contains the generated
high-level language. The data set members used for the request and response
are specified in the REQMEM and RESPMEM parameters respectively.

PDSMEM=value
Specifies a 1- to 6-character prefix that DFHWS2LS uses to generate the names
of the partitioned data set members that will contain the high-level language
structures for abstract data types. It generates the member name by appending
a 2-digit number to the prefix.

Use this parameter at a mapping level of 2.2 or higher for naming the
language structures associated with abstract data types. If the PDSMEM
parameter is omitted, language structures for abstract data types are named
using the value in the REQMEM parameter.

PGMINT=CHANNEL | COMMAREA
For a service provider, specifies how CICS passes data to the target application
program:

Chapter 7. Creating a web service 173

CHANNEL
CICS uses a channel interface to pass data to the target application
program.

COMMAREA
CICS uses a communication area to pass data to the target application
program.

This parameter is ignored when the output from DFHWS2LS is used in a
service requester.

PGMNAME=value
Specifies the name of a CICS PROGRAM resource.

When DFHWS2LS is used to generate a web service binding file that will be
used in a service provider, you must supply this parameter. It specifies the
resource name of the application program that is exposed as a web service.

When DFHWS2LS is used to generate a web service binding file that will be
used in a service requester, omit this parameter.

REQMEM=value

Specifies a 1- to 6-character prefix that DFHWS2LS uses to generate the names

of the partitioned data set members that will contain the high-level language

structures for the web service request:

* For a service provider, the web service request is the input to the application
program.

* For a service requester, the web service request is the output from the
application program.

DFHWS2LS generates a partitioned data set member for each operation. It
generates the member name by appending a 2-digit number to the prefix.

Although this parameter is optional, you must specify it if the web service
description contains a definition of a request.

RESPMEM=value

Specifies a 1- to 6-character prefix that DFHWS2LS uses to generate the names

of the partitioned data set members that will contain the high-level language

structures for the web service response:

* For a service provider, the web service response is the output from the
application program.

 For a service requester, the web service response is the input to the
application program.

DFHWS2LS generates a partitioned data set member for each operation. It
generates the member name by appending a 2-digit number to the prefix.

Omit this parameter if no response is involved; that is, for one-way messages.

SSL-KEYSTORE=value
This optional parameter specifies the fully qualified location of the key store
file.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-KEYPWD=value
This optional parameter specifies the password for the key store.

174 CICS TS for z/OS 4.2: Web Services Guide

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-TRUSTSTORE=value
This optional parameter specifies the fully qualified location of the trust store
file.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

SSL-TRUSTPWD=value
This optional parameter specifies the password for the trust store.

Use this parameter if you want the web services assistant to use secure sockets
layer (SSL) encryption to communicate across a network to an IBM WebSphere
Service Registry and Repository (WSRR).

STRUCTURE=(request ,response)
For C and C++ only, specifies how the names of the request and response
structures are generated.

The generated request and response structures are given names of requestnn
and responsenn where nn is a numeric suffix that is generated to distinguish
the structures for each operation.

If one or both names is omitted, the structures have the same name as the
partitioned data set member names generated from the REQMEM and RESPMEM
parameters that you specify.

SYNCONRETURN=NO | YES
Specifies whether the remote web service can issue a sync point.

NO The remote web service cannot issue a sync point. This value is the
default. If the remote web service issues a sync point, it fails with an
ADPL abend.

YES The remote web service can issue a sync point. If you select YES, the
remote task is committed as a separate unit of work when control
returns from the remote web service. If the remote web service updates
a recoverable resource and a failure occurs after it returns, the update
to that resource cannot be backed out.

TRANSACTION=name
In a service provider, this parameter specifies the 1- to 4-character name of an
alias transaction that can start the pipeline. The value of this parameter is used
to define the TRANSACTION attribute of the URIMAP resource when it is created
automatically using the PIPELINE scan command.

Acceptable characters:

A-Z,a'z,0'9,$,@,#9_,<’>

URI=value
In a service provider, this parameter specifies the relative URI that a client uses
to access the web service. CICS uses the value specified when it generates a
URIMAP resource from the web service binding file created by DFHWS2LS.
The parameter specifies the path component of the URI to which the URIMAP
definition applies.

In a service requester, the URI of the target web service is not specified with
this parameter. CICS does not generate a URIMAP resource for a service

Chapter 7. Creating a web service 175

requester. You can define your own URIMAP resource for service requesters to
use when they make client requests to the URI of the target web service. When
a service requester issues the INVOKE SERVICE command, CICS uses the
soap:address location from the wsd1:port specified in the web service
description if present. You can override that and specify a different URI using
the URIMAP or URI options on the INVOKE SERVICE command.

USERID=id
In a service provider, this parameter specifies a 1- to 8-character user ID, which
can be used by any web client. For an application-generated response or a web
service, the alias transaction is attached under this user ID. The value of this
parameter is used to define the USERID attribute of the URIMAP resource when
it is created automatically using the PIPELINE scan command.

Acceptable characters:

A-Z7Z,a-2z,0-9,8%,0,#

WIDE-COMP3=NO|YES
For COBOL only. Controls the maximum size of the packed decimal variable
length in the COBOL language structure.

NO DFHWS2LS limits the packed decimal variable length to 18 when
generating the COBOL language structure type COMP-3. If the packed
decimal size is greater than 18, message DFHPI9022W is issued to
indicate that the specified type is being restricted to a total of 18 digits.

YES DFHWS2LS supports the maximum size of 31 when generating the
COBOL language structure type COMP-3.

WSADDR-EPR-ANY=TRUE | FALSE
Specifies whether CICS transforms a WS-Addressing endpoint reference (EPR)
into its components parts in the language structures or treats the EPR as an
<xsd:any> type. Treating the EPR as an <xsd:any> type means that the
WSACONTEXT BUILD API can use the EPR XML directly.

FALSE
DFHWS2LS behaves typically, transforming the XML to a high-level
language structure.

TRUE Setting this option to TRUE means that at run time CICS treats the
whole EPR as an <xsd:any> type and places the EPR XML into a
container that can be referenced by the application. The application can
use the EPR XML with the WSACONTEXT BUILD API to construct an EPR
in the addressing context.

This parameter is available only at runtime level 3.0 onwards.

WSBIND=value
The fully qualified z/OS UNIX name of the web service binding file.
DFHWS2LS creates the file, but not the directory structure, if it does not
already exist. The file extension defaults to .wsbind.

WSDL=value
The fully qualified z/OS UNIX name of the file that contains the web service
description. If you are using WSRR to retrieve the WSDL document, this
parameter specifies the location on the file system to which a local copy of the
WSDL document will be written.

WSDL-SERVICE=value
Specifies the wsd1:Service element that is used when the web service

176 CICS TS for z/OS 4.2: Web Services Guide

description contains more than one Service element for a Binding element. If
you specify a value for the BINDING parameter, the Service element that you
specify for this parameter must be consistent with the specified Binding
element. You can use this parameter with either WSDL 1.1 or WSDL 2.0
documents.

WSRR-NAME=value
Specifies the name of the WSDL document to retrieve from WSRR. Use this
parameter only when the WSRR-SERVER parameter is specified.

WSRR-NAMESPACE=value
Specifies the namespace of the WSDL document to retrieve from WSRR. You
can optionally use this parameter when the WSRR-SERVER parameter is specified
to fully qualify the WSDL document name specified in the WSRR-NAME
parameter.

WSRR-PASSWORD=value
Use this optional parameter if you must enter a password to access WSRR.

If the WSRR-USERNAME parameter is specified, you must also specify this
parameter.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-SERVER={domain name:port number}|{IP address:port number}
Use this parameter to specify the location of the IBM WebSphere Service
Registry and Repository (WSRR) server. If this parameter is specified, WSRR
parameter validation is used.

WSRR-USERNAME=value
Use this optional parameter if you are required to specify a user name to
access WSRR. This user name is used by WSRR to set the owner property.

Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-VERSION=value
Specifies the version of the WSDL document to retrieve from WSRR. You can
use this parameter only when the WSRR-SERVER parameter is specified.

XML-ONLY=TRUE | FALSE
Specifies whether or not CICS transforms the XML in the SOAP message to
application data. Use the XML-ONLY parameter to write web service applications
that process the XML themselves.

TRUE CICS does not perform any transformations to the XML. The service
requester or provider application must work with the contents of the
DFHWS-BODY container directly to map data between XML and the
high-level language.

FALSE
CICS transforms the XML to a high-level language.

This parameter is available only at runtime level 2.1 onwards.

Other information

¢ The user ID under which DFHLS2SC runs must be configured to use UNIX
System Services. The user ID must have read permission to the CICS z/OS
UNIX file structure and PDS libraries and write permission to the directories
specified on the LOGFILE , WSBIND, and WSDL parameters.

* The user ID must have a sufficiently large storage allocation to run Java.

Chapter 7. Creating a web service 177

* The JCL has a maximum parameter length of 100 characters. This can be
increased by using the STDPARM statement, for more information, see z/OS UNIX
System Services User Guide.

Example

//WS2LS JOB ‘'accounting information',name ,MSGCLASS=A
/] SET QT='''"

//JAVAPROG EXEC DFHWS2LS,

// TMPFILE=8&QT.&SYSUID.&QT

//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP

REQMEM=CPYBK1

RESPMEM=CPYBK2

LANG=COBOL
LOGFILE=/u/exampleapp/wsbind/example.log
MAPPING-LEVEL=3.0

CHAR-VARYING=NULL

INLINE-MAXOCCURS-LIMIT=2

PGMNAME=DFHOXCMN

URI=exampleApp/example

PGMINT=COMMAREA

SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbhind/example.wsbind
WSDL=/u/exampleapp/wsd1/example.wsd]

/*

Syntax notation

Syntax notation specifies the permissible combinations of options or attributes that
you can specify on CICS commands, resource definitions, and many other things.

The conventions used in the syntax notation are:

Notation Explanation

Denotes a set of required alternatives. You
must specify one (and only one) of the

A
i:B:I values shown.
C

A4
\4

v
A

Denotes a set of required alternatives. You
must specify at least one of the values
shown. You can specify more than one of
them, in any sequence.

A4
\4

v
A

Denotes a set of optional alternatives. You

> »« | can specify none, or one, of the values
A shown.
B
L ¢

Denotes a set of optional alternatives. You
can specify none, one, or more than one of

the values shown, in any sequence.

178 CICS TS for z/OS 4.2: Web Services Guide

Notation Explanation

Denotes a set of optional alternatives. You
can specify none, or one, of the values
shown. A is the default value that is used if
- B— you do not specify anything.

=

vy
\
A\
A

A reference to a named section of syntax
> Name i »« | notation.

A= denote characters that should be entered
»—A=value »« | exactly as shown.

value denotes a variable, for which you
should specify an appropriate value.

Mapping levels for the CICS assistants

A mapping is the set of rules that specifies how information is converted between
language structures and XML schemas. To benefit from the most sophisticated
mappings available, you are recommended to set the MAPPING-LEVEL parameter in
the CICS assistants to the latest level.

Each level of mapping inherits the function of the previous mapping, with the
highest level of mapping offering the best capabilities available. The highest
mapping level provides more control over data conversion at run time and
removes restrictions on support for certain data types and XML elements.

You can set the MAPPING-LEVEL parameter to an earlier level if you want to
redeploy applications that were previously enabled at that level.

Mapping level 3.0
Mapping level 3.0 is compatible with a region.

This mapping level provides the following support:

* DFHSC2LS and DFHWS2LS map xsd:dateTime data types to CICS ASKTIME
format.

* DFHLS2WS can generate a WSDL document and web service binding from an
application that uses many containers rather than just one container.

* Tolerating truncated data that is described by a fixed length data structure. You
can set this behavior by using the DATA-TRUNCATION parameter on the CICS
assistants.

Mapping level 2.2 and higher

Mapping level 2.2 is compatible with a region, with APAR PK69738 applied, and
higher.

Chapter 7. Creating a web service 179

At mapping level 2.2 and higher, DFHSC2LS and DFHWS2LS support the
following XML mappings:

* Fixed values for elements

* Substitution groups

* Abstract data types

* XML schema <sequence> elements can nest inside <choice> elements
DFHSC2LS and DFHWS2LS provide enhanced support for the following XML
mappings:

* Abstract elements

* XML schema <choice> elements

Mapping level 2.1 and higher

Mapping level 2.1 is compatible with a region, with APAR PK59794 applied, and
higher.

This mapping level includes greater control over the way variable content is
handled with the new INLINE-MAXOCCURS-LIMIT parameter and new values on the
CHAR-VARYING parameter.

At mapping level 2.1 and higher, DFHSC2LS and DFHWS2LS offer the following
new and improved support for XML mappings:

e The XML schema <any> element

* The xsd:anyType type

» Toleration of abstract elements

e The INLINE-MAXOCCURS-LIMIT parameter
e The minOccurs attribute

The INLINE-MAXOCCURS-LIMIT parameter specifies whether variably repeating lists
are mapped inline. For more information on mapping variably repeating content
inline, see [Variable arrays of elements|

Support for the minOccurs attribute has been enhanced on the XML schema
<sequence>, <choice>, and <all> elements. If minOccurs="0", the CICS assistant
treats these element as though the minOccurs="0" attribute is also an attribute of all
its child elements.

At mapping level 2.1 and higher, DFHLS2SC and DFHLS2WS support the
following XML mappings:

* FILLER fields in COBOL and PL/I are ignored
* A value of COLLAPSE for the CHAR-VARYING parameter
* A value of BINARY for the CHAR-VARYING parameter

FILLER fields in COBOL and PL/I are ignored; they do not appear in the
generated XML schema and an appropriate gap is left in the data structures at run
time.

COLLAPSE causes CICS to ignore trailing spaces in text fields.

BINARY provides support for binary fields. This value is useful when converting

COBOL into an XML schema. This option is available only on SBCS character

180 CICS TS for z/OS 4.2: Web Services Guide

arrays and allows the array to be mapped to fixed-length xsd:base64Binary fields
rather than to xsd:string fields.

Mapping level 1.2 and higher
Mapping level 1.2 is compatible with a region and higher.

Greater control is available over the way character and binary data are transformed
at run time with these additional parameters on the batch tools:

* CHAR-VARYING

* CHAR-VARYING-LIMIT
CHAR-MULTIPLIER
DEFAULT-CHAR-MAXLENGTH

If you decide to use the CHAR-MULTIPLIER parameter in DFHSC2LS or DFHWS2LS,
note that the following rules apply after the value of this parameter is used to
calculate the amount of space required for character data.

* DFHSC2LS and DFHWS2LS provide these mappings:

— Variable-length character data types that have a maximum length of more
than 32 767 bytes map to a container. You can use the CHAR-VARYING-LIMIT
parameter to set a lower limit. A 16-byte field is created in the language
structure to store the name of the container. At run time, the character data is
stored in a container and the container name is put in the language structure.

— Variable-length character data types that have a maximum length of less than
32 768 bytes map to a VARYING structure for all languages except C/C++
and Enterprise PL/I. In C/C++, these data types are mapped to
null-terminated strings, and in Enterprise PL/I these data types are mapped
to VARYINGZ structures. You can use the CHAR-VARYING parameter to select
the way that variable-length character data is mapped.

— Variable-length binary data that has a maximum length of less than 32 768
bytes maps to a VARYING structure for all languages. If the maximum length
is equal to or greater than 32 768 bytes, the data is mapped to a container. A
16-byte field is created in the language structure to store the name of the
container. At run time, the binary data is stored in a container and the
container name is put in the language structure.

If you have character data types in the XML schema that do not have a length
associated with them, you can assign a default length using the
DEFAULT-CHAR-MAXLENGTH parameter in DFHWS2LS or DFHSC2LS.

DFHLS2SC and DFHLS2WS provide these mappings:

¢ Character fields map to an xsd:string data type and can be processed as
fixed-length fields or null-terminated strings at run time. You can use the
CHAR-VARYING parameter to select the way that variable-length character data is
handled at run time for all languages except PL/1.

* Base64Binary data types map to a container if the maximum length of the data
is greater than 32 767 bytes or when the length is not defined. If the length of
the data is 32 767 or less, the base64Binary data type is mapped to a VARYING
structure for all languages.

Mapping level 1.1 and higher

Mapping level 1.1 is compatible with a region and higher.

Chapter 7. Creating a web service 181

This mapping level provides improved mapping of XML character and binary data
types, in particular when mapping data of variable length that has maxLength and
minLength attributes defined with different values in the XML schema. Data is
handled in the following ways:

* Character and binary data types that have a fixed length that is greater than 16
MB map to a container for all languages except PL/I. In PL/I, fixed-length
character and binary data types that are greater than 32 767 bytes are mapped to
a container. A 16-byte field is created in the language structure to store the name
of the container. At run time, the fixed-length data is stored in a container and
the container name is put in the language structure.

Because containers are variable in length, fixed-length data that is mapped to a
container is not padded with spaces or nulls, or truncated, to match the fixed
length specified in the XML schema or web service description. If the length of
the data is significant, you can either write your application to check it or turn
validation on in the CICS region. Both SOAP and XML validation have a
significant performance impact.

* XML schema <list> and <union> data types map to character fields.

* Schema-defined XML attributes are mapped rather than ignored. A maximum of
255 attributes is allowed for each XML element. See [Support for XML attributed
for further information.

* The xsi:nil attribute is supported. See [Support for XML attributes| for further
information.

Mapping level 1.1 only
Mapping level 1.1 is compatible with a region and higher.

This mapping level provides improved mapping of XML character and binary data
types, in particular when mapping data of variable length that has maxLength and
minLength attributes defined with different values in the XML schema. Data is
handled in the following ways:

* Variable-length binary data types map to a container. A 16-byte field is created
in the language structure to store the name of the container. At run time, the
binary data is stored in a container and the container name is put in the
language structure.

* Variable-length character data types that have a maximum length greater than
32 767 bytes map to a container. A 16-byte field is created in the language
structure to store the name of the container. At run time, the character data is
stored in a container and the container name is put in the language structure.

* Character and binary data types that have a fixed length of less than 16 MB map
to fixed-length fields for all languages except PL/I. In PL/I, fixed-length
character and binary data types that are 32 767 bytes or less map to fixed-length
fields.

* CICS encodes and decodes data in the hexBinary format but not in base64Binary
format. Base64Binary data types in the XML schema map to a field in the
language structure. The size of the field is calculated using the formula:
4x(ceil(z/3)) where:

— z is the length of the data type in the XML schema.
— ceil(x) is the smallest integer greater than or equal to x.

If the length of z is greater than 24 566 bytes, the resulting language structure
fails to compile. If you have base64Binary data that is greater than 24 566 bytes,

182 CICS TS for z/OS 4.2: Web Services Guide

you are recommended to use a mapping level of 1.2. With mapping level 1.2,
you can map the base64Binary data to a container instead of using a field in the
language structure.

Mapping level 1.0 only
Mapping level 1.0 is compatible with a region and higher.

Note the following limitations, which have been modified in later mapping levels:

* DFHSC2LS and DFHWS2LS map character and binary data types in the XML
schema to fixed-length fields in the language structure. Look at this partial XML
schema:
<xsd:element name="example">

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="33000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

That partial XML schema appears in a COBOL language structure like this:
15 example PIC X(33000)

¢ CICS encodes and decodes data in the hexBinary format but not in base64Binary
format. DFHSC2LS and DFHWS2LS map Base64Binary data to a fixed-length
character field, the contents of which must be encoded or decoded by the
application program.

* DFHSC2LS and DFHWS2LS ignore XML attributes during processing.

* DFHLS2SC and DFHLS2WS interpret character and binary fields in the language
structure as fixed-length fields and map those fields to XML elements that have
a maxLength attribute. At run time, the fields in the language structure are filled
with spaces or nulls if insufficient data is available.

High-level language and XML schema mapping
Use the CICS assistants to generate mappings between high-level language
structures and XML schemas or WSDL documents. The CICS assistants also
generate XML schemas or WSDL documents from high-level language data
structures, or vice-versa.

Utility programs DFHSC2LS and DFHLS2SC are collectively known as the CICS

XML assistant. Utility programs DFHWS2LS and DFHLS2WS are collectively

known as the CICS Web services assistant.

* DFHLS2SC and DFHLS2WS map high-level language structures to XML
schemas and WSDL documents respectively.

¢ DFHSC2LS and DFHWS2LS map XML schemas and WSDL documents to
high-level language structures.

The two mappings are not symmetrical:

* If you process a language data structure with DFHLS2SC or DFHLS2WS and
then process the resulting XML schema or WSDL document with the
complementary utility program (DFHSC2LS or DFHWS2LS respectively), do not
expect the final data structure to be the same as the original. However, the final
data structure is logically equivalent to the original.

* If you process an XML schema or WSDL document with DFHSC2LS or
DFHWS2LS and then process the resulting language structure with the

Chapter 7. Creating a web service 183

complementary utility program (DFHLS2SC or DFHLS2WS respectively), do not
expect the XML schema in the final XML schema or WSDL document to be the
same as the original.

* In some cases, DFHSC2LS and DFHWS2LS generate language structures that are
not supported by DFHLS2SC and DFHLS2WS.

You must code language structures processed by DFHLS2SC and DFHLS2WS
according to the rules of the language, as implemented in the language compilers
that CICS supports.

Data mapping limitations when using the CICS assistants

CICS supports bidirectional data mappings between high-level language structures
and XML schemas or WSDL documents that conform to WSDL version 1.1 or 2.0,
with certain limitations. These limitations apply only to the DFHWS2LS and
DFHSC2LS tools and vary according to the mapping level.

Limitations at all mapping levels

* Only SOAP bindings that use literal encoding are supported. Therefore, you
must set the use attribute to a value of 1iteral; use="encoded" is not supported.

* Data type definitions must be encoded using the XML Schema Definition
language (XSD). In the schema, data types used in the SOAP message must be
explicitly declared.

* The length of some keywords in the Web services description is limited. For
example, operation, binding, and part names are limited to 255 characters. In
some cases, the maximum operation name length might be slightly shorter.

* Any SOAP faults defined in the Web service description are ignored. If you want
a service provider application to send a SOAP fault message, use the EXEC CICS
SOAPFAULT command.

* DFHWS2LS and DFHSC2LS support only a single <xsd:any> element in a
particular scope. For example, the following schema fragment is not supported:
<xsd:sequence>

<xsd:any/>
<xsd:any/>
</xsd:sequence>

Here, <xsd:any> can specify minOccurs and maxOccurs if required. For example,
the following schema fragment is supported:
<xsd:sequence>
<xsd:any minOccurs="2" maxOccurs="2"/>
</xsd:sequence>
* Cyclic references are not supported. For example, where type A contains type B
which, in turn, contains type A.

* Recurrence is not supported in group elements, such as <xsd:choice>,

<xsd:sequence>, <xsd:group>, or <xsd:all> elements. For example, the following
schema fragment is not supported:

<xsd:choice maxOccurs="2">
<xsd:element name="namel" type="string"/>
</xsd:choice>

The exception is at mapping level 2.1 and higher, where maxOccurs="1" and
minOccurs="0" are supported on these elements.

* DFHSC2LS and DFHWS2LS do not support data types and elements in the
SOAP message that are derived from the declared data types and elements in

184 CICS TS for z/OS 4.2: Web Services Guide

the XML schema either from the xsi:type attribute or from a substitution group,
except at mapping level 2.2 and higher if the parent element or type is defined
as abstract.

* Embedded <xsd:sequence> and <xsd:group> elements inside an <xsd:choice>
element are not supported prior to mapping level 2.2. Embedded <xsd:choice>
and <xsd:all> elements inside an <xsd:choice> element are never supported.

Improved support at mapping level 1.1 and higher

When the mapping level is 1.1 or higher, DFHWS2LS provides support for the
following XML elements and element type:

* The <xsd:list> element.

* The <xsd:union> element.

* The xsd:anySimpleType type.

* The <xsd:attribute> element. At mapping level 1.0 this element is ignored.

Improved support at mapping level 2.1 and higher

When the mapping level is 2.1 or higher, DFHWS2LS supports the following XML
elements and element attributes:

e The <xsd:any> element.
e The xsd:anyType type.

* Abstract elements. In earlier mapping levels, abstract elements are supported
only as nonterminal types in an inheritance hierarchy.

* The maxOccurs and minOccurs attributes on the <xsd:all>, <xsd:choice>, and
<xsd:sequence> elements, only when maxOccurs="1" and minOccurs="0".

* "FILLER" fields in COBOL and ™" fields in PL/I are suppressed. The fields do
not appear in the generated WSDL and an appropriate gap is left in the data
structures at run time.

Improved support at mapping level 2.2 and higher

When the mapping level is 2.2 or higher, DFHSC2LS and DFHWS2LS provide
improved support for the <xsd:choice> element, supporting a maximum of 255
options in the <xsd:choice> element. For more information on <xsd:choice>
support, see[“Support for <xsd:choice>" on page 219

At mapping level 2.2 and higher, the CICS assistants support the following XML
mappings:

* Substitution groups

¢ Fixed values for elements

* Abstract data types

Embedded <xsd:sequence> and <xsd:group> elements inside an <xsd:choice>
element are supported at mapping level 2.2 and higher. For example, the following
schema fragment is supported:
<xsd:choice>

<xsd:element name="namel" type="string"/>

<xsd:sequence/>
</xsd:choice>

If the parent element or type in the SOAP message is defined as abstract,
DFHSC2LS and DFHWS2LS support data types and elements that are derived

Chapter 7. Creating a web service 185

from the declared data types and elements in the XML schema.
Improved support at mapping level 3.0 and higher

When the mapping level is 3.0 or higher, the CICS assistants support the following
mapping improvements:

e DFHSC2LS and DFHWS2LS map xsd:dateTime data types to CICS ASKTIME
format.

* DFHLS2WS can generate a WSDL document and web service binding from an
application that uses many containers rather than just one container.

* Tolerating truncated data that is described by a fixed length data structure. You
can set this behavior by using the DATA-TRUNCATION parameter on the CICS
assistants.

COBOL to XML schema mapping
The DFHLS2SC and DFHLS2WS utility programs support mappings between
COBOL data structures and XML schema definitions.

COBOL names are converted to XML names according to the following rules:
1. Duplicate names are made unique by the addition of one or more numeric
digits.
For example, two instances of year become year and yearl.

2. Hyphens are replaced by underscore characters. Strings of contiguous hyphens
are replaced by contiguous underscores.

For example, current-user--id becomes current_user__id.

3. Segments of names that are delimited by hyphens and that contain only
uppercase characters are converted to lowercase.

For example, CA-REQUEST-ID becomes ca_request_id.

4. Aleading underscore character is added to names that start with a numeric
character.

For example, 9A-REQUEST-ID becomes _9a_request_id.

CICS maps COBOL data description elements to schema elements according to the
following table. COBOL data description elements that are not shown in the table
are not supported by DFHLS2SC or DFHLS2WS. The following restrictions also

apply:
* Data description items with level numbers of 66 and 77 are not supported. Data
description items with a level number of 88 are ignored.

* The following clauses on data description entries are not supported:
OCCURS DEPENDING ON
OCCURS INDEXED BY
REDEFINES
RENAMES; that is level 66
DATE FORMAT
* The following clauses on data description items are ignored:
BLANK WHEN ZERO
JUSTIFIED
VALUE

186 CICS TS for z/OS 4.2: Web Services Guide

The SIGN clause SIGN TRAILING is supported. The SIGN clause SIGN
LEADING is supported only when the mapping level specified in DFHLS2SC or
DFHLS2WS is 1.2 or higher.

SEPARATE CHARACTER is supported at a mapping level of 1.2 or higher for
both SIGN TRAILING and SIGN LEADING clauses.

The following phrases on the USAGE clause are not supported:
OBJECT REFERENCE
POINTER
FUNCTION-POINTER
PROCEDURE-POINTER

The following phrases on the USAGE clause are supported at a mapping level of
1.2 or higher:

COMPUTATIONAL-1

COMPUTATIONAL-2
The only PICTURE characters supported for DISPLAY and COMPUTATIONAL-5
data description items are 9, S, and Z.
The PICTURE characters supported for PACKED-DECIMAL data description
items are 9, S, V, and Z.
The only PICTURE characters supported for edited numeric data description
items are 9 and Z.

If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, character arrays are mapped to an xsd:string and are
processed as null-terminated strings.

If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to BINARY, character arrays are mapped to xsd:base64Binary
and are processed as binary data.

If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to COLLAPSE, trailing white space is ignored for strings.

COBOL data description

Schema simpleType

PIC
PIC
PIC
PIC

X(n)
A(n)
G(n) DISPLAY-1
N(n)

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxlength value="n"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>

where m =n

PIC
PIC
PIC
PIC

S9 DISPLAY
S99 DISPLAY
5999 DISPLAY
59999 DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:short">
<xsd:minInclusive value="-n"/>
<xsd:maxInclusive value="n"/>
</xsd:restriction>
</xsd:simpleType>

where 7 is the maximum value that can be represented by the pattern of '9'
characters.

Chapter 7. Creating a web service 187

COBOL data description Schema simpleType

PIC S9(z) DISPLAY <xsd:simpleType>
<xsd:restriction base="xsd:int">
where 5<2<9 <xsd:minInclusive value="-n"/>

<xsd:maxInclusive value="n"/>
</xsd:restriction>
</xsd:simpleType>

where 7 is the maximum value that can be represented by the pattern of '9'
characters.

PIC S9(z) DISPLAY <xsd:simpleType>
<xsd:restriction base="xsd:long">
<xsd:minInclusive value="-n"/>
<xsd:maxInclusive value="n"/>
</xsd:restriction>
</xsd:simpleType>

where 9 < z

where 7 is the maximum value that can be represented by the pattern of '9'

characters.
PIC 9 DISPLAY <xsd:simpleType>
PIC 99 DISPLAY <xsd:restriction base="xsd:unsignedShort">
PIC 999 DISPLAY <xsd:minInclusive value="0"/>
PIC 9999 DISPLAY <xsd:maxInclusive value="n"/>

</xsd:restriction>
</xsd:simpleType>

where 7 is the maximum value that can be represented by the pattern of '9'

characters.
PIC 9(z) DISPLAY <xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
where 5<z <9 <xsd:minInclusive value="0"/>

<xsd:maxInclusive value="n"/>
</xsd:restriction>
</xsd:simpleType>

where 7 is the maximum value that can be represented by the pattern of '9'
characters.

PIC 9(z) DISPLAY <xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="n"/>
</xsd:restriction>
</xsd:simpleType>

where 9 < z

where 7 is the maximum value that can be represented by the pattern of '9'

characters.
PIC S9(n) COMP <xsd:simpleType>
PIC S9(n) COMP-4 <xsd:restriction base="xsd:short">
PIC S9(n) COMP-5 </xsd:restriction>
PIC S9(n) BINARY </xsd:simpleType>
where n = 4.
PIC S9(n) COMP <xsd:simpleType>
PIC S9(n) COMP-4 <xsd:restriction base="xsd:int">
PIC S9(n) COMP-5 </xsd:restriction>
PIC S9(n) BINARY </xsd:simpleType>

where 5 =n =9.

188 CICS TS for z/OS 4.2: Web Services Guide

COBOL data description

Schema simpleType

PIC S9(n) COMP

PIC S9(n) COMP-4
PIC S9(n) COMP-5
PIC S9(n) BINARY

where 9 <n.

<xsd:simpleType>
<xsd:restriction base="xsd:Tong">
</xsd:restriction>
</xsd:simpleType>

PIC 9(n) COMP

PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

where n = 4.

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpleType>

PIC 9(n) COMP

PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

where 5 =n =9.

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpleType>

PIC 9(n) COMP

PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

where 9 <n.

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>

</xsd:simpleType>

PIC S9(m)V9(n) COMP-3

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="p"/>
<xsd:fractionDigits value="n"/>
</xsd:restriction>
</xsd:simpleType>

where p = m + n.

PIC 9(m)V9(n) COMP-3

PIC S9(m) COMP-3

Supported at mapping level 3.0 when
DATETIME=PACKED15

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="p"/>
<xsd:fractionDigits value="n"/>
<xsd:minInclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>

where p = m + n.

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime"
</xsd:restriction>

</xsd:simpleType>

The format of the timestamp is CICS ABSTIME.

PIC S9(m)V9(n) DISPLAY

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="p"/>
<xsd:fractionDigits value="n"/>
</xsd:restriction>
</xsd:simpleType>

where p = m + n.

Chapter 7. Creating a web service

189

COBOL data description

Schema simpleType

COMP-1

<xsd:simpleType>
<xsd:restriction base="xsd:float">

Supported at mapping level 1.2 and </xsd:restriction>
higher </xsd:simpletype>
COMP-2 <xsd:simpleType>
<xsd:restriction base="xsd:double">
Supported at mapping level 1.2 and </xsd:restriction>
higher </xsd:simpletype>

XML schema to COBOL mapping
The DFHSC2LS and DFHWS2LS utility programs support mappings between XML
schema definitions and COBOL data structures.

The CICS assistants generate unique and valid names for COBOL variables from
the schema element names using the following rules:

1.

COBOL reserved words are prefixed with 'X'.

For example, DISPLAY becomes XDISPLAY.

Characters other than A-Z, a-z, 0-9, or hyphen are replaced with 'X'.
For example, monthly_total becomes monthlyXtotal.

If the last character is a hyphen, it is replaced with 'X'.

For example, ca-request- becomes ca-requestX.

If the schema specifies that the variable has varying cardinality (that is,
minOccurs and maxOccurs are specified on an xsd:element with different
values), and the schema element name is longer than 23 characters, it is
truncated to that length.

If the schema specifies that the variable has fixed cardinality and the schema
element name is longer than 28 characters, it is truncated to that length.

Duplicate names in the same scope are made unique by the addition of one or
two numeric digits to the second and subsequent instances of the name.

For example, three instances of year become year, yearl, and year2.

Five characters are reserved for the strings -cont or -num, which are used when
the schema specifies that the variable has varying cardinality; that is, when
minOccurs and maxOccurs are specified with different values.

For more information, see|”Variable arrays of elements” on page 209)

For attributes, the previous rules are applied to the element name. The prefix
attr- is added to the element name, and is followed by -value or -exist. If the
total length is longer than 28 characters, the element name is truncated. For
more information, see [“Support for XML attributes” on page 215

The nillable attribute has special rules. The prefix attr- is added, but nil- is
also added to the beginning of the element name. The element name is
followed by -value. If the total length is longer than 28 characters, the element
name is truncated.

The total length of the resulting name is 30 characters or less.

DFHSC2LS and DFHWS2LS map schema types to COBOL data description
elements by using the specified mapping level according to the following table.
Note the following points:

If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, variable-length character data is mapped to
null-terminated strings and an extra character is allocated for the null-terminator.

190 CICS TS for z/OS 4.2: Web Services Guide

e If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING

parameter is set to YES, variable-length character data is mapped to two related
elements: a length field and a data field. For example:

<xsd:simpleType name="VariableStringType">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="10000"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name="textString" type="tns:VariableStringType"/>

maps to:

15 textString-Tength PIC S9999 COMP-5 SYNC
15 textString PIC X(10000)

Schema simple type

COBOL data description

<xsd:simpleType>

<xsd:restriction base="xsd:anyType">

</xsd:restriction>
</xsd:simpleType>

Mapping level 2.0 and below:
Not supported

Mapping level 2.1:

Supported

<xsd:simpleType>

<xsd:restriction base="xsd:anySimpletype">

</xsd:restriction>
</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

PIC X(255)

<xsd:simpleType>

<xsd:restriction base="xsd:type"
<xsd:Tength value="z"/>

</xsd:restriction>
</xsd:simpleType>

where type is one of:
string
normalizedString
token
Name
NMTOKEN
language
NCName
1D
IDREF
ENTITY
hexBinary

All mapping levels:
PIC X(z)

Chapter 7. Creating a web service 191

Schema simple type

COBOL data description

<xsd:simpleType>
<xsd:restriction base="xsd:type"
</xsd:restriction>
</xsd:simpleType>

where type is one of:
duration
date
time
gDay
gMonth
gYear
gMonthDay
gYearMonth

All mapping levels:
PIC X(32)

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime"
</xsd:restriction>
</xsd:simpleType>

Mapping level 1.2 and below:
PIC X(32)

Mapping level 2.0 and higher:
PIC X(40)

Mapping level 3.0 and higher:
PIC S9(15) COMP-3

The format is CICS ABSTIME.

<xsd:simpleType>
<xsd:restriction base="xsd:type">
</xsd:restriction>
</xsd:simpleType>

where type is one of:
byte
unsignedByte

All mapping levels:
PIC X DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:short">
</xsd:restriction>
</xsd:simpleType>

All mapping levels:
PIC S9999 COMP-5 SYNC
or

PIC S9999 DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC 9999 COMP-5 SYNC
or

PIC 9999 DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:integer">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC S9(18) COMP-3

<xsd:simpleType>
<xsd:restriction base="xsd:int">
</xsd:restriction>
</xsd:simpleType>

All mapping levels:
PIC S9(9) COMP-5 SYNC
or

PIC S9(9) DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC 9(9) COMP-5 SYNC
or

PIC 9(9) DISPLAY

192 CICS TS for z/OS 4.2: Web Services Guide

Schema simple type

COBOL data description

<xsd:simpleType>
<xsd:restriction base="xsd:long">
</xsd:restriction>
</xsd:simpleType>

All mapping levels:

PIC S9(18) COMP-5 SYNC
or

PIC S9(18) DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:
PIC 9(18) COMP-5 SYNC
or

PIC 9(18) DISPLAY

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="m"
<xsd:fractionDigits value="n"
</xsd:restriction>
</xsd:simpleType>

All mapping levels:
PIC 9(p)V9(n) COMP-3

where p = m - n.

<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
</xsd:restriction>
</xsd:simpleType>

All mapping levels:
PIC X DISPLAY

The value x'00" implies false, x'01' implies true.

<xsd:simpleType>
<xsd:1list>
<xsd:simpleType>
<xsd:restriction base="xsd:int"/>
</xsd:simpleType>
</xsd:Tist>
</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

PIC X(255)

<xsd:simpleType>
<xsd:union memberTypes="xsd:int xsd:string"/>
</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

PIC X(255)

<xsd:simpleType>

<xsd:restriction base="xsd:base64Binary">
<xsd:length value="z"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType>

<xsd:restriction base="xsd:base64Binary">
</xsd:restriction>

</xsd:simpleType>

where the length is not defined.

Mapping level 1.0:
Not supported

Mapping level 1.1:

PIC X(y)

where y =4x(ceil(z/3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher:
PIC X(z)

where the length is fixed.

PIC X(16)

where the length is not defined. The field holds the
16-byte name of the container that stores the binary data.

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>
</xsd:simpletype>

Mapping level 1.1 and below:
PIC X(32)

Mapping level 1.2 and higher:

COMP-1

Chapter 7. Creating a web service 193

Schema simple type

COBOL data description

<xsd:simpleType>

</xsd:restriction>
</xsd:simpletype>

Mapping level 1.1 and below:

<xsd:restriction base="xsd:double"> PIC X(32)

Mapping level 1.2 and higher:

COMP-2

Some of the schema types shown in the table map to a COBOL format of COMP-5
SYNC or of DISPLAY, depending on the values (if any) that are specified in the
minInclusive and maxInclusive facets:

* For signed types (short, int, and long), DISPLAY is used when the following
are specified:

<xsd:minInclusive value="-g"/>
<xsd:maxInclusive value="a"/>

where ¢ is a string of '9's.
* For unsigned types (unsignedShort, unsignedInt, and unsignedLong), DISPLAY is
used when the following are specified:

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="a"/>

where ¢ is a string of '9's.

When any other value is specified, or no value is specified, COMP-5 SYNC is used.

C and C++ to XML schema mapping
The DFHLS2SC and DFHLS2WS utility programs support mappings between C
and C++ data types and XML schema definitions.

C and C++ names are converted to XML names according to the following rules:

1. Characters that are not valid in XML element names are replaced with 'X'.
For example, monthly-total becomes monthlyXtotal.

2. Duplicate names are made unique by the addition of one or more numeric
digits.
For example, two instances of year become year and yearl.

DFHLS2SC and DFHLS2WS map C and C++ data types to schema elements
according to the following table. C and C++ types that are not shown in the table
are not supported by DFHLS2SC or DFHLS2WS. The _Packed qualifier is
supported for structures. These restrictions apply:

* Header files must contain a top level struct instance.
* You cannot declare a structure type that contains itself as a member.

* The following C and C++ data types are not supported:
decimal
long double
wchar_t (C++ only)

* The following are ignored if they are present in the header file.
Storage class specifiers:
auto
register
static
extern

194 CICS TS for z/OS 4.2: Web Services Guide

mutable
Qualifiers

const

volatile

_Export (C++ only)
Function specifiers

inline (C++ only)

virtual (C++ only)
Initial values

The header file must not contain these items:
Unions
Class declarations
Enumeration data types
Pointer type variables
Template declarations

Predefined macros; that is, macros with names that start and end with two
underscore characters ()

The line continuation sequence (a \ symbol that is immediately followed by
a newline character)

Prototype function declarators
Preprocessor directives
Bit fields
The _ cdecl (or _cdecl) keyword (C++ only)
The application programmer must use a 32-bit compiler to ensure that an int
maps to 4 bytes.
The following C++ reserved keywords are not supported:
explicit
using
namespace
typename
typeid
If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING

parameter is set to NULL, character arrays are mapped to an xsd:string and are
processed as null-terminated strings.

If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to BINARY, character arrays are mapped to xsd:base64Binary
and are processed as binary data.

If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to COLLAPSE, <xsd:whiteSpace value="collapse"/> is
generated for strings.

C and C++ data type

Schema simpleType

char[z]

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:Tength value="z"/>
</xsd:restriction>
</xsd:simpletype>

Chapter 7. Creating a web service 195

C and C++ data type Schema simpleType

char[8] <xsd:simpleType>
<xsd:restriction base="xsd:dateTime"
Supported at mapping level 3.0 and </xsd:restriction>

higher when DATETIME=PACKED15 |</xsd:simpleType>

The format of the time stamp is CICS ABSTIME.

char <xsd:simpleType>
<xsd:restriction base="xsd:byte">
</xsd:restriction>
</xsd:simpletype>

unsigned char <xsd:simpleType>
<xsd:restriction base="xsd:unsignedByte">
</xsd:restriction>

</xsd:simpletype>

short <xsd:simpleType>
<xsd:restriction base="xsd:short">
</xsd:restriction>
</xsd:simpletype>

unsigned short <xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpletype>

int <xsd:simpleType>

long <xsd:restriction base="xsd:int">
</xsd:restriction>

</xsd:simpletype>

unsigned int
unsigned long

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpletype>

long long <xsd:simpleType>
<xsd:restriction base="xsd:Tong">
</xsd:restriction>

</xsd:simpletype>

unsigned long long <xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>

</xsd:simpletype>

Supported at mapping level 1.2 and
higher

</xsd:restriction>
</xsd:simpletype>

bool <xsd:simpleType>

<xsd:restriction base="xsd:boolean">
(C++ only) </xsd:restriction>

</xsd:simpletype>

float <xsd:simpleType>

<xsd:restriction base="xsd:float">
Supported at mapping level 1.2 and </xsd:restriction>
higher </xsd:simpletype>
double <xsd:simpleType>

<xsd:restriction base="xsd:double">

XML schema to C and C++ mapping

The DFHSC2LS and DFHWS2LS utility programs support mappings between the
XML schema definitions that are included in each Web service description and C
and C++ data types.

196 CICS TS for z/OS 4.2: Web Services Guide

The CICS assistants generate unique and valid names for C and C++ variables
from the schema element names using the following rules:

1. Characters other than A-Z, a-z, 0-9, or _ are replaced with 'X'.
For example, monthly-total becomes monthlyXtotal.

2. If the first character is not an alphabetic character, it is replaced by a leading 'X".
For example, _monthlysummary becomes Xmonthlysummary.

3. If the schema element name is longer than 50 characters, it is truncated to that
length.

4. Duplicate names in the same scope are made unique by the addition of one or
more numeric digits.
For example, two instances of year become year and yearl.

5. Five characters are reserved for the strings _cont or _num, which are used when
the schema specifies that the variable has varying cardinality; that is, when
minOccurs and maxOccurs are specified on an xsd:element.

For more information, see|”Variable arrays of elements” on page 209)

6. For attributes, the previous rules are applied to the element name. The prefix
attr_is added to the element name, and it is followed by _value or _exist. If
the total length is longer than 28 characters, the element name is truncated.
The nillable attribute has special rules. The prefix attr_ is added, but nil_is
also added to the beginning of the element name. The element name is
followed by _value. If the total length is longer than 28 characters, the element
name is truncated.

The total length of the resulting name is 57 characters or less.

DFHSC2LS and DFHWS2LS map schema types to C and C++ data types according

to the following table. The following rules also apply:

e If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, variable-length character data is mapped to
null-terminated strings and an extra character is allocated for the null-terminator.

e If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to YES, variable-length character data is mapped to two related
elements: a length field and a data field.

Schema simpleType C and C++ data type
<xsd:simpleType> Mapping level 2.0 and below:
<xsd:restriction base="xsd:anyType"> Not supported
</xsd:restriction>
</xsd:simpleType> Mapping level 2.1 and higher:
Supported
<xsd:simpleType> Mapping level 1.0:
<xsd:restriction base="xsd:anySimpletype"> Not supported
</xsd:restriction>
</xsd:simpleType> Mapping level 1.1 and higher:
char[255]

Chapter 7. Creating a web service 197

Schema simpleType

C and C++ data type

<xsd:simpleType>
<xsd:restriction base="xsd:type">
<xsd:length value="z"/>
</xsd:restriction>
</xsd:simpleType>

where type is one of:
string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY
hexBinary

All mapping levels:
char[z]

<xsd:simpleType>

<xsd:restriction base="xsd:type">
</xsd:restriction>
</xsd:simpleType>

where type is one of:
duration
date
decimal
time
gDay
gMonth
gYear
gMonthDay
gYearMonth

All mapping levels:
char[32]

<xsd:simpleType>

<xsd:restriction base="xsd:dateTime">
</xsd:restriction>
</xsd:simpleType>

Mapping level 1.2 and below:
char[32]

Mapping level 2.0 and higher:

char[40]

Mapping level 3.0 and higher:
char[8]

The format of the time stamp is CICS ABSTIME.

<xsd:simpleType>
<xsd:restriction base="xsd:byte">
</xsd:restriction>
</xsd:simpletype>

All mapping levels:
signed char

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedByte">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
char

198 CICS TS for z/OS 4.2: Web Services Guide

Schema simpleType

C and C++ data type

<xsd:simpleType>
<xsd:restriction base="xsd:short">
</xsd:restriction>
</xsd:simpletype>

All mapping levels:
short

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
unsigned short

<xsd:simpleType>
<xsd:restriction base="xsd:integer">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
char[33]

<xsd:simpleType>
<xsd:restriction base="xsd:int">
</xsd:restriction>
</xsd:simpletype>

All mapping levels:
int

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
unsigned int

<xsd:simpleType>

All mapping levels:

<xsd:restriction base="xsd:long"> Tong long
</xsd:restriction>

</xsd:simpletype>

<xsd:simpleType> All mapping levels:

<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>
</xsd:simpletype>

unsigned Tong long

<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
</xsd:restriction>

</xsd:simpletype>

All mapping levels:
bool (C++ only)
short (C only)

<xsd:simpleType>
<xsd:1ist>
<xsd:simpleType>
<xsd:restriction base="xsd:int"/>
</xsd:simpleType>
</xsd:1ist>
</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

char[255]

<xsd:simpleType>
<xsd:union memberTypes="xsd:int xsd:string"/>
</xsd:simpleType>

Mapping level 1.0:
Not supported

Mapping level 1.1 and higher:

char[255]

Chapter 7. Creating a web service

199

Schema simpleType

C and C++ data type

<xsd:simpleType>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType>

</xsd:restriction>
</xsd:simpletype>

where the length is not defined

Mapping level 1.1 and below:

<xsd:restriction base="xsd:base64Binary"> char[y]
<xsd:length value="z

I|/>
where y =4x(ceil(z/3)). ceil(x) is the smallest integer
greater than or equal to x.

<xsd:restriction base="xsd:base64binary"> Mapping level 1.2 and higher:

char[z]
where the length is fixed.
char[16]

is the name of the container that stores the binary data
when the length is not defined.

<xsd:simpleType>

</xsd:restriction>
</xsd:simpletype>

<xsd:restriction base=

Mapping level 1.1 and below:
"xsd:float"> char[32]

Mapping level 1.2 and higher:

float (*)

<xsd:simpleType>

</xsd:restriction>
</xsd:simpletype>

<xsd:restriction base=

Mapping level 1.0 and below:
"xsd:double"> char[32]

Mapping level 1.2 and higher:

double(*)

PL/l to XML schema mapping

The DFHLS2SC and DFHLS2WS utility programs support mappings between PL/I
data structures and XML schema definitions. Because the Enterprise PL/I compiler
and older PL/I compilers differ, two language options are supported:
PLI-ENTERPRISE and PLI-OTHER.

PL/I names are converted to XML names according to the following rules:

1.

Characters that are not valid in XML element names are replaced with 'x".
For example, monthly$total becomes monthlyxtotal.

Duplicate names are made unique by the addition of one or more numeric
digits.

For example, two instances of year become year and yearl.

DFHLS2SC and DFHLS2WS map PL/I data types to schema elements according to
the following table. PL/I types that are not shown in the table are not supported
by DFHLS2SC or DFHLS2WS. The following restrictions also apply:

200 CICS TS for z/OS 4.2:

Data items with the COMPLEX attribute are not supported.

Data items with the FLOAT attribute are supported at a mapping level of 1.2 or
higher. Enterprise PL/I FLOAT IEEE is not supported.

VARYING and VARYINGZ pure DBCS strings are supported at a mapping level
of 1.2 or higher.

Data items specified as DECIMAL(p,q) are supported only when p = g
Data items specified as BINARY(p,q) are supported only when g = 0.

Web Services Guide

* If the PRECISION attribute is specified for a data item, it is ignored.
* PICTURE strings are not supported.
* ORDINAL data items are treated as FIXED BINARY(7) data types.

e If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, character arrays are mapped to an xsd:string and are

processed as null-terminated strings; this mapping does not apply for Enterprise
PL/L

e If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to BINARY, character arrays are mapped to xsd:base64Binary
and are processed as binary data.

* If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to COLLAPSE, <xsd:whiteSpace value="collapse"/> is
generated for strings.

DFHLS2SC and DFHLS2WS do not fully implement the padding algorithms of
PL/1; therefore, you must declare padding bytes explicitly in your data structure.
DFHLS2SC and DFHLS2WS issue a message if they detect that padding bytes are
missing. Each top-level structure must start on a double-word boundary and each
byte in the structure must be mapped to the correct boundary. Consider this code
fragment:

3 FIELD1 FIXED BINARY(7),

3 FIELD2 FIXED BINARY(31),
3 FIELD3 FIXED BINARY(63);

In this example:

* FIELD1 is 1 byte long and can be aligned on any boundary.

e FIELD2 is 4 bytes long and must be aligned on a full word boundary.

* FIELD3 is 8 bytes long and must be aligned on a double word boundary.

The Enterprise PL/I compiler aligns the fields in the following order:

1. FIELD3 is aligned first because it has the strongest boundary requirements.
2. FIELD?2 is aligned at the fullword boundary immediately before FIELD3.

3. FIELD1 is aligned at the byte boundary immediately before FIELD3.

Finally, so that the entire structure will be aligned at a fullword boundary, the
compiler inserts three padding bytes immediately before FIELD1.

Because DFHLS2WS does not insert equivalent padding bytes, you must declare
them explicitly before the structure is processed by DFHLS2WS. For example:

3 PAD1 FIXED BINARY(7),
PAD2 FIXED BINARY(7),
PAD3 FIXED BINARY(7),
FIELD1 FIXED BINARY(7),
FIELD2 FIXED BINARY(31),
FIELD3 FIXED BINARY(63);

w wwww

Alternatively, you can change the structure to declare all the fields as unaligned
and recompile the application that uses the structure. For further information on
PL/I structural memory alignment requirements, refer to Enterprise PL/I Language
Reference.

PL/I data description

Schema

FIXED BINARY (n)
where n =7

<xsd:simpleType>
<xsd:restriction base="xsd:byte"/>
</xsd:simpleType>

Chapter 7. Creating a web service 201

PL/T data description

Schema

FIXED BINARY (n)

<xsd:simpleType>

where n =8
Restriction: Enterprise PL/I only

<xsd:restriction base="xsd:short"/>
where 8 =1 =15 </xsd:simpleType>
FIXED BINARY (n) <xsd:simpleType>

<xsd:restriction base="xsd:int"/>
where 16 < 1 < 31 </xsd:simpleType>
FIXED BINARY (n) <xsd:simpleType>

<xsd:restriction base="xsd:1ong"/>
where 32 < 11 < 63 </xsd:simpleType>
Restriction: Enterprise PL/I only
UNSIGNED FIXED BINARY(n) <xsd:simpleType>

<xsd:restriction base="xsd:unsignedByte"/>

</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 9 =n =16
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction
</xsd:simpleType>

base="xsd:unsignedShort"/>

UNSIGNED FIXED BINARY(n)

where 17 = n = 32
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction
</xsd:simpleType>

base="xsd:unsignedInt"/>

UNSIGNED FIXED BINARY(n)

where 33 = n = 64
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction
</xsd:simpleType>

base="xsd:unsignedLong"/>

FIXED DECIMAL (n,m)

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="n"/>
<xsd:fractionDigits value="m"/>
</xsd:restriction>
</xsd:simpleType>

FIXED DECIMAL(15)

Supported at mapping level 3.0 and
higher when DATETIME=PACKED15

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime"
</xsd:restriction>

</xsd:simpleType>

The format of the time stamp is CICS ABSTIME.

BIT(n)

where 7 is a multiple of 8. Other
values are not supported.

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">
<xsd:Tength value="m"/>
</xsd:restriction>
</xsd:simpleType>

where m = n/8

CHARACTER (n)

VARYING and VARYINGZ are also
supported at mapping level 1.2 and
higher.

Restriction: VARYINGZ is supported
only by Enterprise PL/I

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="n"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>

202 CICS TS for z/OS 4.2: Web Services Guide

PL/T data description

Schema

GRAPHIC(n)

VARYING and VARYINGZ are also
supported at mapping level 1.2 and
higher.

Restriction: VARYINGZ is supported
only by Enterprise PL/I

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">
<xsd:1ength value="m"/>
</xsd:restriction>
</xsd:simpleType>

at a mapping level of 1.0 and 1.1, where m = 2#n

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:1ength value="n"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>

at a mapping level of 1.2 or higher

WIDECHAR (n)
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">
<xsd:length value="m"/>
</xsd:restriction>
</xsd:simpleType>

at a mapping level of 1.0 and 1.1, where m = 2#n

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">
<xsd:Tength value="n"/>
</xsd:restriction>
</xsd:simpleType>

at a mapping level of 1.2 or higher

ORDINAL
Restriction: Enterprise PL/I only

<xsd:simpleType>
<xsd:restriction base="xsd:byte"/>
</xsd:simpleType>

BINARY FLOAT(n) where n <= 21

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>
</xsd:simpletype>

BINARY FLOAT(n) where 21 < n <= 53

Values greater than 53 are not
supported.

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
<xsd:restriction base="xsd:double">
</xsd:restriction>
</xsd:simpletype>

DECIMAL FLOAT(n)where n <= 6

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
<xsd:restriction base="xsd:float">
</xsd:restriction>
</xsd:simpletype>

DECIMAL FLOAT(n)where 6 < n <= 16

Values greater than 16 are not
supported.

Supported at mapping level 1.2 and
higher.

<xsd:simpleType>
<xsd:restriction base="xsd:double">
</xsd:restriction>
</xsd:simpletype>

Chapter 7. Creating a web service

203

XML schema to PL/I mapping
The DFHSC2LS and DFHWS2LS utility programs support mappings between XML
schema definitions and PL/I data structures. Because the Enterprise PL/I compiler

and older PL/I compilers differ, two language options are supported:
PLI-ENTERPRISE and PLI-OTHER.

The CICS assistants generate unique and valid names for PL/I variables from the
schema element names using the following rules:

1. Characters other than A-Z, a-z, 0-9, @, #, or $ are replaced with 'X'.
For example, monthly-total becomes monthlyXtotal.

2. If the schema specifies that the variable has varying cardinality (that is,
minOccurs and maxOccurs attributes are specified with different values on the
xsd:element), and the schema element name is longer than 24 characters, it is
truncated to that length.

If the schema specifies that the variable has fixed cardinality and the schema
element name is longer than 29 characters, it is truncated to that length.

3. Duplicate names in the same scope are made unique by the addition of one or
more numeric digits to the second and subsequent instances of the name.

For example, three instances of year become year, yearl, and year2.

4. Five characters are reserved for the strings _cont or _num, which are used when
the schema specifies that the variable has varying cardinality; that is, when
minOccurs and maxOccurs attributes are specified with different values.

For more information, see[“Variable arrays of elements” on page 209)

5. For attributes, the previous rules are applied to the element name. The prefix
attr- is added to the element name and is followed by -value or -exist. If the
total length is longer than 28 characters, the element name is truncated. For
more information, see [“Support for XML attributes” on page 215

The nillable attribute has special rules. The prefix attr- is added, but nil- is
also added to the beginning of the element name. The element name is
followed by -value. If the total length is longer than 28 characters, the element
name is truncated.

The total length of the resulting name is 31 characters or less.

DFHSC2LS and DFHWS2LS map schema types to PL/I data types according to the

following table. Also note the following points:

e If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is set to NULL, variable-length character data is mapped to
null-terminated strings and an extra character is allocated for the null-terminator.

e If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING
parameter is not specified, by default variable-length character data is mapped
to a VARYINGZ data type for Enterprise PL/I and VARYING data type for
Other PL/I.

* Variable-length binary data is mapped to a VARYING data type if it less than 32
768 bytes and to a container if it is more than 32 768 bytes.

Schema PL/I data description
<xsd:simpleType> Mapping level 2.0 and below:
<xsd:restriction base="xsd:anyType"> Not supported
</xsd:restriction>
</xsd:simpleType> Mapping level 2.1 and higher:
Supported

204 CICS TS for z/OS 4.2: Web Services Guide

Schema

PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:anySimpletype">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and higher:CHAR(255)

<xsd:simpleType>
<xsd:restriction base="xsd:type">
<xsd:maxLength value="z"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>

where type is one of:
string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY

All mapping levels:CHARACTER(z)

<xsd:simpleType>
<xsd:restriction base="xsd:type">
</xsd:restriction>
</xsd:simpleType>

where type is one of:
duration
date
time
gDay
gMonth
gYear
gMonthDay
gYearMonth

All mapping levels:CHAR(32)

<xsd:simpleType>
<xsd:restriction base="xsd:dateTime">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.2 and below:
CHAR(32)

Mapping level 2.0 and higher:

CHAR(40)

Mapping level 3.0 and higher:
FIXED DECIMAL(15)

The format of the time stamp is CICS ABSTIME.

Chapter 7. Creating a web service

205

Schema

PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:hexBinary">
<xsd:length value="y"/>
</xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below:
BIT(z)

where z = 8 xy and z < 4095 bytes.
CHAR(z)

where z = 8 xy and z > 4095 bytes.

Mapping levels 1.2 and higher:

CHAR(y)

<xsd:simpleType>
<xsd:restriction base="xsd:byte">
</xsd:restriction>
</xsd:simpleType>

All mapping levels:

Enterprise PL/I
SIGNED FIXED BINARY (7)

Other PL/I
FIXED BINARY (7)

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedByte">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:

Enterprise PL/I
UNSIGNED FIXED BINARY (8)

Other PL/I
FIXED BINARY (8)

<xsd:simpleType>
<xsd:restriction base="xsd:short">
</xsd:restriction>
</xsd:simpleType>

All mapping levels:

Enterprise PL/I
SIGNED FIXED BINARY (15)

Other PL/I
FIXED BINARY (15)

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:

Enterprise PL/I
UNSIGNED FIXED BINARY (16)

Other PL/I
FIXED BINARY (16)

<xsd:simpleType>
<xsd:restriction base="xsd:integer">
</xsd:restriction>

</xsd:simpleType>

All mapping levels:

Enterprise PL/I
FIXED DECIMAL(31,0)

Other PL/I
FIXED DECIMAL(15,0)

<xsd:simpleType>
<xsd:restriction base="xsd:int">
</xsd:restriction>
</xsd:simpleType>

All mapping levels:

Enterprise PL/I
SIGNED FIXED BINARY (31)

Other PL/I
FIXED BINARY (31)

206 CICS TS for z/OS 4.2: Web Services Guide

Schema

PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedInt">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and below:

Enterprise PL/I
UNSIGNED FIXED BINARY(32)

Mapping level 1.2 and higher:

Enterprise PL/I
CHAR(y)

where y is a fixed length that is less than 16 MB.

All mapping levels:

Other PL/I
BIT(64)

<xsd:simpleType>
<xsd:restriction base="xsd:long">
</xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below:

Enterprise PL/I
SIGNED FIXED BINARY(63)

Mapping level 1.2 and higher:

Enterprise PL/I
CHAR(y)

where y is a fixed length that is less than 16 MB.

All mapping levels:

Other PL/I
BIT(64)

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedLong">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and below:

Enterprise PL/I
UNSIGNED FIXED BINARY(64)

Mapping level 1.2 and higher:

Enterprise PL/I
CHAR(y)

where y is a fixed length that is less than 16 MB.

All mapping levels:

Other PL/I
BIT(64)

Chapter 7. Creating a web service 207

Schema

PL/I data description

<xsd:simpleType>
<xsd:restriction base="xsd:boolean">
</xsd:restriction>

</xsd:simpleType>

Mapping level 1.1 and below:

Enterprise PL/I
SIGNED FIXED BINARY (7)

Other PL/I
FIXED BINARY (7)

Mapping level 1.2 and higher:

Enterprise PL/I
BIT(7)
BIT(1)

Other PL/I
BIT(7)

BIT(1)
where BIT(7) is provided for alignment and BIT(1)
contains the Boolean mapped value.

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="n"/>
<xsd:fractionDigits value="m"/>
</xsd:restriction>
</xsd:simpleType>

All mapping levels:FIXED DECIMAL (n,m)

<xsd:simpleType>
<xsd:1list>
<xsd:simpleType>
<xsd:restriction base="xsd:int"/>
</xsd:simpleType>
</xsd:Tist>
</xsd:simpleType>

All mapping levels:CHAR(255)

<xsd:simpleType>
<xsd:union memberTypes="xsd:int xsd:string"/>
</xsd:simpleType>

All mapping levels:CHAR(255)

<xsd:simpleType>

<xsd:restriction base="xsd:base64Binary">
<xsd:length value="y"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType>
<xsd:restriction base="xsd:base64Binary">
</xsd:restriction>

</xsd:simpleType>

where the length is not defined

Mapping level 1.0:
Not supported

Mapping level 1.1:
CHAR(z)

where z =4x(ceil(y/3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher:
CHAR(y)

where the length is fixed.
CHAR(16)

where the length is not defined. The field holds the
16-byte name of the container that stores the binary data.

208 CICS TS for z/OS 4.2: Web Services Guide

Schema

PL/I data description

<xsd:simpleType>

<xsd:restriction base="xsd:float">

</xsd:restriction>
</xsd:simpletype>

Mapping levels 1.0 and 1.1:
CHAR(32)

Mapping level 1.2 and higher:

Enterprise PL/I
DECIMAL FLOAT(6) HEXADEC

Other PL/I
DECIMAL FLOAT(6)

<xsd:simpleType>

<xsd:restriction base="xsd:double">

</xsd:restriction>
</xsd:simpletype>

Mapping levels 1.0 and 1.1:
CHAR(32)

Mapping level 1.2 and higher:

Enterprise PL/I
DECIMAL FLOAT(16) HEXADEC

Other PL/I
DECIMAL FLOAT(16)

Variable arrays of elements

XML can contain an array with varying numbers of elements. In general, WSDL

documents and XML schemas that contain varying numbers of elements do not

map efficiently into a single high-level language data structure. CICS uses
container-based mappings or inline mappings to handle varying numbers of
elements in XML.

An array with a varying number of elements is represented in the XML schema by

using the minOccurs and maxOccurs attributes on the element declaration:

* The minOccurs attribute specifies the minimum number of times that the element

can occur. It can have a value of 0 or any positive integer.
e The maxOccurs attribute specifies the maximum number of times that the

element can occur. It can have a value of any positive integer greater than or

equal to the value of the minOccurs attribute. It can also take a value of

unbounded, which indicates that no upper limit applies to the number of times

the element can occur.
e The default value for both attributes is 1.

This example denotes an 8-byte string that is optional; that is, it can occur never or

once in the application XML or SOAP message:

<xsd:eTement name="component" minOccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="8"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

The following example denotes an 8-byte string that must occur at least once:

<xsd:eTement name="component" minOccurs="1" maxOccurs="unbounded">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:Tength value="8"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

Chapter 7. Creating a web service

209

In general, WSDL documents that contain varying numbers of elements do not
map efficiently into a single high-level language data structure. Therefore, to
handle these cases, CICS uses a series of connected data structures that are passed
to the application program in a series of containers. These structures are used as
input and output from the application:

* When CICS transforms XML to application data, it populates these structures
with the application data and the application reads them.

* When CICS transforms the application data to XML, it reads the application data
in the structures that have been populated by the application.

The format of these data structures is best explained with a series of examples. The
XML can be from a SOAP message or from an application. These examples use an

array of simple 8-byte fields. However, the model supports arrays of complex data
types and arrays of data types that contain other arrays.

Fixed number of elements

The first example illustrates an element that occurs exactly three times:
<xsd:element name="component" minOccurs="3" maxOccurs="3">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:1ength value="8"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

In this example, because the number of times that the element occurs is known in
advance, it can be represented as a fixed-length array in a simple COBOL
declaration (or the equivalent in other languages):

05 component PIC X(8) OCCURS 3 TIMES
Varying nhumber of elements at mapping level 2 and below

This example illustrates a mandatory element that can occur from one to five
times:
<xsd:element name="component" minOccurs="1" maxOccurs="5">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:Tength value="8"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

The main data structure contains a declaration of two fields. When CICS
transforms the XML to binary data, the first field component-num contains the
number of times that the element appears in the XML, and the second field,
component-cont, contains the name of a container:

05 component-num PIC S9(9) COMP-5
05 component-cont PIC X(16)

A second data structure contains the declaration of the element itself:
01 DFHWS-component
02 component PIC X(8)
You must examine the value of component-num (which will contain a value in the

range 1 to 5) to find out how many times the element occurs. The element contents

210 CICS TS for z/OS 4.2: Web Services Guide

are in the container named in component-cont; the container holds an array of
elements, where each element is mapped by the DFHWS-component data structure.

If minOccurs="0" and maxOccurs="1", the element is optional. To process the data
structure in your application program, you must examine the value of
component-num:

* If it is zero, the message has no component element and the contents of
component-cont is undefined.

* If it is one, the component element is in the container named in component-cont.

The contents of the container are mapped by the DFHWS-component data structure.

Note: If the SOAP message consists of a single recurring element, DFHWS2LS
generates two language structures. The main language structure contains the
number of elements in the array and the name of a container which holds the
array of elements. The second language structure maps a single instance of the
recurring element.

Varying nhumber of elements at mapping level 2.1 and above

At mapping level 2.1 and above, you can use the INLINE-MAXOCCURS-LIMIT
parameter in the CICS assistants. The INLINE-MAXOCCURS-LIMIT parameter specifies
the way that varying numbers of elements are handled. The mapping options for
varying numbers of elements are container-based mapping, described in |“Varying|
number of elements at mapping level 2 and below” on page 210) or inline
mapping. The value of this parameter can be a positive integer in the range 0 -
32767:

* The default value of INLINE-MAXOCCURS-LIMIT is 1, which ensures that optional
elements are mapped inline.

* A value of 0 for the INLINE-MAXOCCURS-LIMIT parameter prevents inline mapping.

 If maxOccurs is less than or equal to the value of INLINE-MAXOCCURS-LIMIT, inline
mapping is used.

* If maxOccurs is greater than the value of INLINE-MAXOCCURS-LIMIT,
container-based mapping is used.

Mapping varying numbers of elements inline results in the generation of both an
array, as happens with the fixed occurrence example above, and a counter. The
component-num field indicates how many instances of the element are present, and
these are pointed to by the array. For the example shown in ['Varying number of]
flements at mapping level 2 and below” on page 210,/ when INLINE-MAXOCCURS-
LIMIT is less than or equal to 5, the generated data structure is like this:

05 component-num PIC S9(9) COMP-5 SYNC.
05 component OCCURS 5 PIC X(8).

The first field, component-num, is identical to the output for the container-based
mapping example in the previous section. The second field contains an array of
length 5 which is large enough to contain the maximum number of elements that
can be generated.

Inline mapping differs from container-based mapping, which stores the number of
occurrences of the element and the name of the container where the data is placed,
because it stores all the data in the current container. Storing the data in the
current container will generally improve performance and make inline mapping
preferable.

Chapter 7. Creating a web service 211

Nested variable arrays

Complex WSDL documents and XML schemas can contain variably recurring
elements, which in turn contain variably recurring elements. In this case, the
structure described extends beyond the two levels described in the examples.

This example illustrates an optional element called <component2> that is nested in a
mandatory element called <componentl>, where the mandatory element can occur
from one to five times:
<xsd:element name="componentl" minOccurs="1" maxOccurs="5">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="component2" minOccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="8"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

The top-level data structure is exactly the same as in the previous examples:

05 componentl-num PIC S9(9) COMP-5
05 componentl-cont PIC X(16)

However, the second data structure contains these elements:

01 DFHWS-componentl
02 component2-num PIC S9(9) COMP-5
02 component2-cont PIC X(16)

A third-level structure contains these elements:

01 DFHWS-component?2
02 component2 PIC X(8)

The number of occurrences of the outermost element <componentl> is in
componentl-num.

The container named in componentl-cont contains an array with that number of
instances of the second data structure DFHWS-component1.

Each instance of component2-cont names a different container, each of which
contains the data structure mapped by the third-level structure DFHWS-component2.

To illustrate this structure, consider the fragment of XML that matches the
example:

<component1><component2>stringl</component2></component1>
<component1><component2>string2</component2></componentl>
<component1></component1>

<component1l> occurs three times. The first two each contain an instance of
<component2>; the third instance does not.

In the top-level data structure, componentl-num contains a value of 3. The container
named in componentl-cont has three instances of DFHWS-component1:

1. In the first, component2-num has a value of 1, and the container named in
component2-cont holds stringl.

212 CICS TS for z/OS 4.2: Web Services Guide

2. In the second, component2-num has a value of 1, and the container named in
component2-cont holds string2.

3. In the third, component2-num has a value of 0, and the contents of
component2-cont are undefined.

In this instance, the complete data structure is represented by four containers in all:
* The root data structure in container DFHWS-DATA
* The container named in componentl-cont

* Two containers named in the first two instances of component2-cont
Optional structures and xsd:choice

DFHWS2LS and DFHSC2LS support the use of maxOccurs and minOccurs on
<xsd:sequence>, <xsd:choice>, and <xsd:all> elements only at mapping level 2.1
and above, where the minOccurs and maxOccurs attributes are set to minOccurs="0"
and maxOccurs="1".

The assistants generate mappings that treat these elements as though each child
element in them is optional. When you implement an application with these
elements, ensure that invalid combinations of options are not generated by the
application. Each of the elements has its own count field in the generated
languages structure, these fields must either all be set to "0" or all be set to"1".
Any other combination of values is invalid, except for with <xsd:choice> elements.

<xsd:choice> elements indicate that only one of the options in the element can be
used. It is supported at all mapping levels. The assistants handle each of the
options in an <xsd:choice> as though it is in an <xsd:sequence> element with
minOccurs="0" and maxOccurs="1". Take care when you implement an application
using the <xsd:choice> element to ensure that invalid combinations of options are
not generated by the application. Each of the elements has its own count field in
the generated languages structure, exactly one of which must be set to '1' and the
others must all be set to '0". Any other combination of values is invalid, except
when the <xsd:choice> element is itself optional, in which case it is valid for all the
fields to be set to '0'.

Support for variable-length values and white space
You can customize the way in which variable-length values and white space are

handled by using settings on the CICS assistants and by adding facets directly into
the XML schema.

Typically, the CICS XML assistant and the CICS Web services assistant map data
strings to fixed-length character arrays; these arrays require padding with spaces
or nulls. Mapping variable-length values to fixed-length data arrays can be
inefficient and waste storage. If the length of your data is variable, you are
recommended to customize the way these mappings are handled.

If you are converting from a language structure to an XML schema or WSDL
document, you are recommended to specify the whiteSpace and maxLength facets in
your XML schema and to set the CHAR-VARYING-LIMIT parameter on the assistants.

If you are converting from an XML schema or WSDL document to a language
structure, you are recommended to set an appropriate value for the CHAR-VARYING
parameter on the assistants.

Note: Null characters ('x00') are not valid in XML documents. Any null characters
from application data parsed by CICS are seen to signify the end of a string and

Chapter 7. Creating a web service 213

the value is truncated. When CICS generates application data it does so according
to the value of the CHAR-VARYING parameter. For example, if the CHAR-VARYING=NULL
option is specified, variable-length strings generated by CICS are ended with a null
character.

Mapping variable-length values from XML to language structures

Use facets in the XML schema or specify certain parameters on the CICS assistants
to customize the way in which mappings between your XML schema or WSDL
document and the language structure are handled.

XML data types can be restricted using facets. Use the length facets (Tength,
maxLength, and minLength) and the whiteSpace facet to customize how
variable-length data in your XML is handled.

Tength Used to specify that the data is of fixed length.

maxLength
Used to specify the maximum length for the data type. If this value is not
set for a string-based data type, the maximum length is unbounded.

minLength
Used to specify the minimum length for the data type. If this value is not
set for a string-based data type, the minimum length is 0.

whiteSpace
Used to specify how white space around a data value is handled. White
space includes spaces, tabs, and new lines. The whiteSpace facet can be set
to preserve, replace, or collapse:

* A value of preserve maintains any white space in the data value.

* A value of replace means that any tabs or new lines are replaced with
the appropriate number of spaces.

* A value of collapse means that leading, trailing, and embedded white
space is removed and that all tabs, new lines, and consecutive spaces are
replaced with single space characters.

If the whiteSpace facet is not set, white space is preserved.
For more information about XML schema facets, see the W3C recommendation

schema XML Schema Part 2: Datatypes Second Edition at Ihttp: //www.w3.org/TR/ |
tkmlschema-2 /#facets|

The following parameters on the CICS assistants, DFHSC2LS and DFHWS2LS, can
be used to alter the way that variable-length data is mapped from the XML schema
to the language structure. These parameters are available at mapping level 1.2 or
higher.

DEFAULT-CHAR-MAXLENGTH
Specifies the default array length of character data in characters for
mappings where no length is implied in the XML schema or WSDL
document. The value of this parameter can be a positive integer in the
range of 1 - 2 147 483 647.

However, you are recommended to specify the maximum character length
that you want DFHSC2LS or DFHWS2LS to use directly in your XML
schema or WSDL document with the maxLength facet. Specifying the
maximum length directly in the XML schema or WSDL document avoids
problems associated with having one global default applied to all
string-based data types.

214 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/xmlschema-2/#facets
http://www.w3.org/TR/xmlschema-2/#facets

CHAR-VARYING-LIMIT
Specifies the maximum size of variable-length character data that is
mapped to the language structure. If the character data is larger than the
value specified in this parameter, it is mapped to a container and the
container name is used in the generated language structure. The value can
range from 0 to the default 32 767 bytes.

CHAR-VARYING
Specifies how variable-length character data is mapped. If you do not
specify this parameter, the default mapping depends on the language
specified. You can select these options:

* CHAR-VARYING=NO specifies that variable-length character data is mapped
as fixed-length strings.

* CHAR-VARYING=NULL specifies that variable-length character data is
mapped to null-terminated strings.

* CHAR-VARYING=YES specifies that variable-length character data is mapped
to a CHAR VARYING data type in PL/I In the COBOL, C, and C++
languages, variable-length character data is mapped to an equivalent
representation that comprises two related elements: data-length and the
data.

Setting CHAR-VARYING=YES typically results in the best performance.
Mapping variable-length values from language structures to XML

You can customize the way in which mappings between your language structure
and the XML schema, or WSDL document are handled. Set the CHAR-VARYING
parameter on DFHLS2SC or DFHLS2WS,to COLLAPSE or NULL to change the way
that character arrays are generated.

Setting the CHAR-VARYING=NULL option tells CICS to add a null character at the end
of each character array when generating XML.

Setting the CHAR-VARYING=COLLAPSE option tells CICS to automatically remove any
trailing spaces from the end of character arrays when generating XML. This option
is available only at mapping level 2.1 or higher and CHAR-VARYING=COLLAPSE is the
default value at mapping level 2.1 or higher for all languages other than C and
C++. When the XML is parsed, all leading, trailing, and embedded white space is
removed.

For more information, see [Support for white space and variable length values in|
[CICS Web services (Technote)|

Support for XML attributes

XML schemas can specify attributes that are allowed or required in XML. The CICS
assistant utilities DFHWS2LS and DFHSC2LS ignore XML attributes by default. To
process XML attributes that are defined in the XML schema, the value of the
MAPPING-LEVEL parameter must be 1.1 or higher.

Optional attributes

Attributes can be optional or required and can be associated with any element in a
SOAP message or XML for an application. For every optional attribute defined in
the schema, two fields are generated in the appropriate language structure:

1. An existence flag; this field is treated as a Boolean data type and is typically 1
byte in length.

Chapter 7. Creating a web service 215

http://www-01.ibm.com/support/docview.wss?uid=swg21248612
http://www-01.ibm.com/support/docview.wss?uid=swg21248612

2. A value; this field is mapped in the same way as an equivalently typed XML
element. For example, an attribute of type NMTOKEN is mapped in the same way
as an XML element of type NMTOKEN.

The attribute existence and value fields appear in the generated language structure
before the field for the element with which they are associated. Unexpected
attributes that appear in the instance document are ignored.

For example, consider the following schema attribute definition:
<xsd:attribute name="age" type="xsd:short" use="optional" />

This optional attribute maps to the following COBOL structure:

05 attr-age-exist PIC X DISPLAY
05 attr-age-value PIC S9999 COMP-5 SYNC

Runtime processing of optional attributes

The following runtime processing takes place for optional attributes:

* If the attribute is present, the existence flag is set and the value is mapped.
* If the attribute is not present, the existence flag is not set.

* If the attribute has a default value and is present, the value is mapped.

* If the attribute has a default value and is not present, the default value is
mapped.

Optional attributes that have default values are treated as required attributes.

When CICS transforms the data to XML, the following runtime processing takes
place:

* If the existence flag is set, the attribute is transformed and included in the XML.
* If the existence flag is not set, the attribute is not included in the XML.

Required attributes and runtime processing

For every attribute that is required, only the value field is generated in the
appropriate language structure.

If the attribute is present in the XML, the value is mapped. If the attribute is not

present, the following processing occurs:

* If the application is a Web service provider, CICS generates a SOAP fault
message indicating an error in the client SOAP message.

* If the application is a Web service requester, CICS issues a message and returns
a conversion error response with a RESP2 code of 13 to the application.

e If the application is using the TRANSFORM XMLTODATA command, CICS issues a
message and returns an invalid request response with a RESP2 code of 3 to the
application.

When CICS produces a SOAP message based on the contents of a COMMAREA or
container, the attribute is transformed and included in the message. When an
application uses the TRANSFORM DATATOXML command, CICS also transforms the
attribute and includes it in the XML.

216 CICS TS for z/OS 4.2: Web Services Guide

The nillable attribute

The nillable attribute is a special attribute that can appear on an xsd:element in an
XML schema. It specifies that the xsi:nil attribute is valid for the element in XML.
If an element has the xsi:nil attribute specified, it indicates that the element is
present but has no value, and therefore no content is associated with it.

If an XML schema has defined the nillable attribute as true, it is mapped as a
required attribute that takes a Boolean value.

When CICS receives a SOAP message or has to transform XML for an application
that contains an xsi:nil attribute, the value of the attribute is true or false. If the
value is true, the application must ignore the values of the element or nested
elements in the scope of the xsi:nil attribute.

When CICS produces a SOAP message or XML based on the contents of a
COMMAREA or container for which the value for the xsi:nil attribute is true, the
following processing occurs:

* The xsi:nil attribute is generated into the XML or SOAP message.
¢ The value of the associated element is ignored.
* Any nested elements within the element are ignored.

SOAP message example

Consider the following example XML schema, which could be part of a WSDL
document:

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="root" nillable="true">
<xsd:complexType>
<xsd:sequence>
<xsd:element nillable="true" name="num" type="xsd:int" maxOccurs="3" minOccurs="3"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Here is an example of a partial SOAP message that conforms to this schema:

<root xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<num xsi:nil="true"/>

<num>15</num>

<num xsi:nil="true"/>

</root>

In COBOL, this SOAP message maps to these elements:

05 root

10 attr-nil-root-value PIC X DISPLAY

10 num OCCURS 3

15 numl PIC S9(9) COMP-5 SYNC
15 attr-nil-num-value PIC X DISPLAY

10 filler PIC X(3)

Support for <xsd:any> and xsd:anyType

DFHWS2LS and DFHSC2LS support the use of <xsd:any> and xsd:anyType in the
XML schema. You can use the <xsd:any> XML schema element to describe a
section of an XML document with undefined content. xsd:anyType is the base data
type from which all simple and complex data types are derived; it has no
restrictions or constraints on the data content.

Chapter 7. Creating a web service 217

Before you can use <xsd:any> and xsd:anyType with the CICS assistants, set the
following parameters:

* Set the MAPPING-LEVEL parameter to 2.1 or higher.
* For a Web service provider application, set the PGMINT parameter to CHANNEL.

<xsd:any> example

This example uses an <xsd:any> element to describe some optional unstructured
XML content following the "Surname" tag in the "Customer" tag:

<xsd:element name="Customer">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="FirstName" type="xsd:string"/>
<xsd:element name="Surname" type="xsd:string"/>
<xsd:any minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>

</xsd:element>

An example SOAP message that conforms to this XML schema is:

<xml version='1.0"' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<Customer xmins="http://www.example.org/anyExample">
<Title xmlns="">Mr</Title>
<FirstName xmlns="">John</FirstName>
<Surname xmlns="">Smith</Surname>
<ExtraInformation xmins="http://www.example.org/Extralnformation">
<!-- This 'ExtraInformation' tag is associated with the optional xsd:any from the XML schema.
It can contain any well formed XML. -->
<ExampleFieldl>one</ExampleFieldl>
<ExampleField2>two</ExampleField2>
</ExtraInformation>
</Customer>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If this SOAP message is sent to CICS, CICS populates the Customer-xml-cont
container with the following XML data:
<ExtraInformation xmins="http://www.example.org/Extralnformation">
<!-- This 'ExtraInformation' tag is associated with the optional xsd:any from the XML schema.
It can contain any well formed XML. -->
<ExampleFieldl>one</ExampleFieldl>
<ExampleField2>two</ExampleField2>
</Extralnformation>

CICS also populates the Customer-xmins-cont container with the following XML
namespace declarations that are in scope; these declarations are separated by a
space:

xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmins="http://www.example.org/anyExample"

xsd:anyType example

The xsd:anyType is the base data type from which all simple and complex data
types are derived. It does not restrict the data content. If you do not specify a data
type, it defaults to xsd:anyType; for example, these two XML fragments are
equivalent:

<xsd:element name="Name" type="xsd:anyType"/>

218 CICS TS for z/OS 4.2: Web Services Guide

<xsd:element name="Name"/>
Generated language structures

The language structures generated for <xsd:any> or xsd:anyType take the following
form in COBOL and an equivalent form for the other languages:

elementName-xml-cont PIC X(16)
The name of a container that holds the raw XML. When CICS processes an
incoming SOAP message, it places the subset of the SOAP message that the
<xsd:any> or xsd:anyType defines into this container. The application can
process the XML data only natively. The application must generate the
XML, populate this container, and supply the container name.

This container must be populated in text mode. If CICS populates this
container, it does so using the same variant of EBCDIC as the Web service
is defined to use. Characters that do not exist in the target EBCDIC code
page are replaced with substitute characters, even if the container is read
by the application in UTF-8.

elementName-xmlIns-cont PIC X(16)
The name of a container that holds any namespace prefix declarations that
are in scope. The contents of this container are similar to those of the
DFHWS-XMLNS container, except that it includes all the namespace
declarations that are in scope and that are relevant, rather than only the
subset from the SOAP Envelope tag.

This container must be populated in text mode. If CICS populates this
container, it does so using the same variant of EBCDIC as the Web service
is defined to use. Characters that do not exist in the target EBCDIC code
page are replaced with substitute characters, even if the container is read
by the application in UTF-8.

This container is used only when processing SOAP messages sent to CICS.
If the application tries to supply a container with namespace declarations
when an output SOAP message is generated, the container and its contents
are ignored by CICS. CICS requires that the XML supplied by the
application is entirely self-contained with respect to namespace
declarations.

The name of the XML element that contains the <xsd:any> element is included in
the variable names that are generated for the <xsd:any> element. In the <xsd:any>
example, the <xsd:any> element is nested inside the <xsd:element
name="Customer"> element and the variable names that are generated for the
<xsd:any> element are Customer-xml-cont PIC X(16) and Customer-xmlns-cont
PIC X(16).

For an xsd:anyType type, the direct XML element name is used; in the xsd:anyType
example above, the variable names are Name-xml-cont PIC X(16) and
Name-xmlns-cont PIC X(16).

Support for <xsd:choice>

An <xsd:choice> element indicates that only one of the options in the element can
be used. The CICS assistants provide varying degrees of support for <xsd:choice>
elements at the various mapping levels.

Chapter 7. Creating a web service 219

Support for <xsd:choice> at mapping level 2.2 and higher

At mapping level 2.2 and higher, DFHWS2LS and DFHSC2LS provide improved
support for <xsd:choice> elements. The assistants generate a new container that
stores the value associated with the <xsd:choice> element. The assistants generate
language structures containing the name of a new container and an extra field:

fieldname-enum
The discriminating field to indicate which of the options the <xsd:choice>
element will use.

fieldname-cont
The name of the container that stores the option to be used. A further
language structure is generated to map the value of the option.

The following XML schema fragment includes an <xsd:choice> element:

<xsd:element name="choiceExample">
<xsd:complexType>
<xsd:choice>
<xsd:element name="optionl" type="xsd:string" />
<xsd:element name="option2" type="xsd:int" />
<xsd:element name="option3" type="xsd:short" maxOccurs="2" minOccurs="2" />
</xsd:choice>
</xsd:complexType>
</xsd:element>

If this XML schema fragment is processed at mapping level 2.2 or higher, the
assistant generates the following COBOL language structures:

03 choiceExample.

06 choiceExample-enum PIC X DISPLAY.
88 empty VALUE X'00'.
88 optionl VALUE X'01'.
88 option2 VALUE X'02'.
88 option3 VALUE X'03'.
06 choiceExample-cont PIC X(16).

01 Example-optionl.
03 optionl-length PIC S9999 COMP-5 SYNC.
03 optionl PIC X(255).

01 Example-option2.
03 option2 PIC S9(9) COMP-5 SYNC.

01 Example-option3.
03 option3 OCCURS 2 PIC S9999 COMP-5 SYNC.

Limitations for <xsd:choice> at mapping level 2.2 and higher

DFHSC2LS and DFHWS2LS do not support nested <xsd:choice> elements; for
example, the following XML is not supported:

<xsd:choice>
<xsd:element name ="namel" type="string"/>
<xsd:choice>
<xsd:element name ="name2a" type="string"/>
<xsd:element name ="name2b" type="string"/>
</xsd:choice>
</xsd:choice>

DFHSC2LS and DFHWS2LS do not support recurring <xsd:choice> elements; for
example, the following XML is not supported:

220 CICS TS for z/OS 4.2: Web Services Guide

<xsd:choice maxOccurs="2">
<xsd:element name ="namel" type="string"/>
</xsd:choice>

DFHSC2LS and DFHWS2LS support a maximum of 255 options in an
<xsd:choice> element.

Support for <xsd:choice> at mapping level 2.1 and below

At mapping level 2.1 and below, DFHWS2LS provides limited support for
<xsd:choice> elements. DFHWS2LS treats each of the options in an <xsd:choice>
element as though it is an <xsd:sequence> element that can occur at most once.

Only one of the options in an <xsd:choice> element can be used, so take care
when you implement an application using the <xsd:choice> element that you
generate only valid combinations of options. Each of the elements has its own
count field in the generated languages structure, exactly one of which must be set
to 1 and the others must all be set to 0. Any other combination of values is
incorrect, except when the <xsd:choice> is itself optional, in which case it is valid
for all of the fields to be set to 0.

Related reference:

[“Support for <xsd:any> and xsd:anyType” on page 217

DFHWS2LS and DFHSC2LS support the use of <xsd:any> and xsd:anyType in the
XML schema. You can use the <xsd:any> XML schema element to describe a
section of an XML document with undefined content. xsd:anyType is the base data
type from which all simple and complex data types are derived; it has no
restrictions or constraints on the data content.

[“Support for abstract elements and abstract data types” on page 222

The CICS assistants provide support for abstract elements and abstract data types
at mapping level 2.2 and higher. The CICS assistants map abstract elements and
abstract data types in a similar way to substitution groups.

[“Support for substitution groups”|

You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS assistants provide support for substitution groups at
mapping level 2.2 and higher.

Support for substitution groups

You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS assistants provide support for substitution groups at
mapping level 2.2 and higher.

At mapping level 2.2 and higher, DFHSC2LS and DFHWS2LS support substitution
groups using similar mappings to those used for <xsd:choice> elements. The
assistant generates an enumeration field and a new container name in the language
structure.

The following XML schema fragment includes an array of two subGroupParent
elements, each of which can be replaced with replacementOptionl or
replacementOption2:

<xsd:eTement name="subGroupExample" >
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="subGroupParent" maxOccurs="2" minOccurs="2" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Chapter 7. Creating a web service 221

<xsd:element name="subGroupParent" type="xsd:anySimpleType" />
<xsd:element name="replacementOptionl" type="xsd:int" substitutionGroup="subGroupParent" />
<xsd:element name="replacementOption2" type="xsd:short" substitutionGroup="subGroupParent" />

Processing this XML fragment with the assistant generates the following COBOL
language structures:

03 subGroupExample.
06 subGroupParent OCCURS2.

09 subGroupExample-enum PIC X DISPLAY.
88 empty VALUE X '00'.
88 replacementOptionl VALUE X '0O1'.
88 replacementOption2 VALUE X '02'.
88 subGroupParent VALUE X '03"'.

09 subGroupExample-cont PIC X (16).

01 Example-replacementOptionl.
03 replacementOptionl PIC S9(9) COMP-5 SYNC.

01 Example-replacementOption2.
03 replacementOption2 PIC S9999 COMP-5 SYNC.

01 Example-subGroupParent.
03 subGroupParent-length PIC S9999 COMP-5 SYNC.
03 subGroupParent PIC X(255).

For more information about substitution groups, see the W3C XML Schema Part 1:
Structures Second Edition specification: |attp:/ /www.w3.org /TR /xmlschema-1/|
#Elements_Equivalence_Class|

Related reference:

[“Support for <xsd:any> and xsd:anyType” on page 217

DFHWS2LS and DFHSC2LS support the use of <xsd:any> and xsd:anyType in the
XML schema. You can use the <xsd:any> XML schema element to describe a
section of an XML document with undefined content. xsd:anyType is the base data
type from which all simple and complex data types are derived; it has no
restrictions or constraints on the data content.

[“Support for <xsd:choice>" on page 219

An <xsd:choice> element indicates that only one of the options in the element can
be used. The CICS assistants provide varying degrees of support for <xsd:choice>
elements at the various mapping levels.

[“Support for abstract elements and abstract data types”]

The CICS assistants provide support for abstract elements and abstract data types
at mapping level 2.2 and higher. The CICS assistants map abstract elements and
abstract data types in a similar way to substitution groups.

Support for abstract elements and abstract data types

The CICS assistants provide support for abstract elements and abstract data types
at mapping level 2.2 and higher. The CICS assistants map abstract elements and
abstract data types in a similar way to substitution groups.

Support for abstract elements at mapping level 2.2 and higher

At mapping level 2.2 and above, DFHSC2LS and DFHWS2LS treat abstract
elements in almost the same way as substitution groups except that the abstract
element is not a valid member of the group. If there are no substitutable elements,
the abstract element is treated as an <xsd:any> element and uses the same
mappings as an <xsd:any> element at mapping level 2.1.

222 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/xmlschema-1/#Elements_Equivalence_Class
http://www.w3.org/TR/xmlschema-1/#Elements_Equivalence_Class

The following XML schema fragment specifies two options that can be used in
place of the abstract element. The abstract element itself is not a valid option:

<xsd:element name="abstractElementExample" >
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="abstractElementParent" maxOccurs="2" minOccurs="2" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="abstractElementParent" type="xsd:anySimpleType" abstract="true" />
<xsd:element name="replacementOptionl" type="xsd:int" substitutionGroup="abstractElementParent" />
<xsd:element name="replacementOption2" type="xsd:short" substitutionGroup="abstractElementParent" />

Processing this XML fragment with the assistant generates the following COBOL
language structures:
03 abstractETementExample.

06 abstractElementParent OCCURS 2.
09 abstractElementExample-enum PIC X DISPLAY.

88 empty VALUE X '00'.
88 replacementOptionl VALUE X '01'.
88 replacementOption2 VALUE X '02'.

09 abstractElementExample-cont PIC X (16).
01 Example-replacementOptionl.
03 replacementOptionl PIC S9(9) COMP-5 SYNC.

01 Example-replacementOption2.
03 replacementOption2 PIC S9999 COMP-5 SYNC.

For more information about abstract elements, see the W3C XML Schema Part O:
Primer Second Edition specification: |ttp:/ /www.w3.org/TR/xmlschema-0/|

Support for abstract data types at mapping level 2.2 and higher

At mapping level 2.2 and higher, DFHSC2LS and DFHWS2LS treat abstract data
types as substitution groups. The assistant generates an enumeration field and a
new container name in the language structure.

The following XML schema fragment specifies two alternatives that can be used in
place of the abstract type:

<xsd:element name="AbstractDataTypeExample" type="abstractDataType" />

<xsd:complexType name="abstractDataType" abstract="true">
<xsd:simpleContent>
<xsd:extension base="xsd:string" />
</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="optionl">
<xsd:simpleContent>
<xsd:restriction base="abstractDataType">
<xsd:Tength value="5" />
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="option2">
<xsd:simpleContent>
<xsd:restriction base="abstractDataType">

Chapter 7. Creating a web service 223

http://www.w3.org/TR/xmlschema-0/#SubsGroups
http://www.w3.org/TR/xmlschema-0/#SubsGroups

<xsd:Tength value="10" />
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

Processing this XML fragment with the assistant generates the following COBOL
language structures:

03 AbstractDataTypeExamp-enum PIC X DISPLAY.

88 empty VALUE X'00'.
88 optionl VALUE X'0O1'.
88 option2 VALUE X'02'.

03 AbstractDataTypeExamp-cont PIC X(16).

The language structures are generated into separate copy books. The language
structure generated for optionl is generated into one copybook:

03 optionl PIC X(5).

The language structure for option2 is generated into a different copybook:
03 option2 PIC X(10).

For more information about abstract data types, see the W3C XML Schema Part 0:
Primer Second Edition specification: [http: / /www.w3.org /TR /xmlschema-0 /|

Related reference:

[“Support for <xsd:any> and xsd:anyType” on page 217

DFHWS2LS and DFHSC2LS support the use of <xsd:any> and xsd:anyType in the
XML schema. You can use the <xsd:any> XML schema element to describe a
section of an XML document with undefined content. xsd:anyType is the base data
type from which all simple and complex data types are derived; it has no
restrictions or constraints on the data content.

[“Support for <xsd:choice>” on page 219

An <xsd:choice> element indicates that only one of the options in the element can
be used. The CICS assistants provide varying degrees of support for <xsd:choice>
elements at the various mapping levels.

[“Support for substitution groups” on page 221|

You can use a substitution group to define a group of XML elements that are
interchangeable. The CICS assistants provide support for substitution groups at
mapping level 2.2 and higher.

How to handle variably repeating content in COBOL

In COBOL, you cannot process variably repeating content by using pointer
arithmetic to address each instance of the data. Other programming languages do
not have this limitation. This example shows you how to handle variably repeating
content in COBOL for a Web service application.

This technique also applies to transforming XML to application data using the
TRANSFORM API commands. The following example WSDL document represents a
Web service with application data that consists of an 8-character string that recurs
a variable number of times:

<?xml version="1.0"?>

<definitions name="ExampleWSDL"
targetNamespace="http://www.example.org/variablyRepeatingData/"
xmins="http://schemas.xmlsoap.org/wsd1/"
xmlns:soap="http://schemas.xmlsoap.org/wsd1/soap/"
xmins:tns="http://www.example.org/variablyRepeatingData/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

224 CICS TS for z/OS 4.2: Web Services Guide

http://www.w3.org/TR/xmlschema-0/#SubsGroups
http://www.w3.org/TR/xmlschema-0/#SubsGroups

<types>
<xsd:schema targetNamespace="http://www.example.org/variablyRepeatingData/">
<xsd:element name="applicationData">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="component" minOccurs="1" maxOccurs="unbounded">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="8"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</types>

<message name="exampleMessage">
<part element="tns:applicationData" name="messagePart"/>
</message>

<portType name="examplePortType">
<operation name="exampleOperation">
<input message="tns:exampleMessage"/>
<output message="tns:exampleMessage"/>
</operation>
</portType>

<binding name="exampleBinding" type="tns:examplePortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="exampleOperation">
<soap:operation soapAction=""/>
<input><soap:body parts="messagePart" encodingStyle="" use="literal"/></input>
<output><soap:body parts="messagePart" encodingStyle="" use="literal"/></output>
</operation>
</binding>
</definitions>

Processing this WSDL document through DFHWS2LS generates the following
COBOL language structures:

03 applicationData.

06 component-num PIC S9(9) COMP-5 SYNC.
06 component-cont PIC X(16).

01 DFHWS-component.
03 component PIC X(8).

Note that the 8-character component field is defined in a separate structure called
DFHWS-component. The main data structure is called applicationData and it contains
two fields, component-num and component-cont. The component-num field indicates
how many instances of the component data are present and the component-cont
field indicates the name of a container that holds the concatenated list of component
fields.

The following COBOL code demonstrates one way to process the list of variably
recurring data. It makes use of a linkage section array to address subsequent
instances of the data, each of which is displayed by using the DISPLAY statement:

IDENTIFICATION DIVISION.
PROGRAM-1ID. EXVARY.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

Chapter 7. Creating a web service 225

226

* working storage variables

01 APP-DATA-PTR USAGE IS POINTER.

01 APP-DATA-LENGTH PIC S9(8) COMP.

01 COMPONENT-PTR USAGE IS POINTER.

01 COMPONENT-DATA-LENGTH PIC S9(8) COMP.

01 COMPONENT-COUNT PIC S9(8) COMP-4 VALUE 0.
01 COMPONENT-LENGTH PIC S9(8) COMP.

LINKAGE SECTION.

* a large linkage section array
01 BIG-ARRAY PIC X(659999).

* application data structures produced by DFHWS2LS
* this is normally referenced with a COPY statement
01 DFHWS2LS-data.

03 applicationData.
06 component-num PIC S9(9) COMP-5 SYNC.
06 component-cont PIC X(16).

01 DFHWS-component.

03 component PIC X(8).

PROCEDURE DIVISION USING DFHEIBLK.
A-CONTROL SECTION.
A010-CONTROL.

* Get the DFHWS-DATA container

EXEC CICS GET CONTAINER('DFHWS-DATA')
SET (APP-DATA-PTR)
FLENGTH (APP-DATA-LENGTH)
END-EXEC
SET ADDRESS OF DFHWS2LS-data TO APP-DATA-PTR

Get the recurring component data
EXEC CICS GET CONTAINER(component-cont)
SET (COMPONENT-PTR)
FLENGTH(COMPONENT-DATA-LENGTH)
END-EXEC

Point the component structure at the first instance of the data
SET ADDRESS OF DFHWS-component TO COMPONENT-PTR

Store the length of a single component
MOVE LENGTH OF DFHWS-component TO COMPONENT-LENGTH

process each instance of component data in turn
PERFORM WITH TEST AFTER
UNTIL COMPONENT-COUNT = component-num

display the current instance of the data
DISPLAY 'component value is: ' component

address the next instance of the component data
SET ADDRESS OF BIG-ARRAY TO ADDRESS OF DFHWS-component
SET ADDRESS OF DFHWS-component
TO ADDRESS OF BIG-ARRAY (COMPONENT-LENGTH + 1:1)
ADD 1 TO COMPONENT-COUNT

end the Toop
END-PERFORM.

* Point the component structure back at the first instance of
* of the data, for any further processing we may want to perform

CICS TS for z/OS 4.2: Web Services Guide

SET ADDRESS OF DFHWS-component TO COMPONENT-PTR
* return to CICS.

EXEC CICS
RETURN
END-EXEC

GOBACK.

The code above provides a generic solution to handling variably repeating content.
The array, BIG-ARRAY, moves to the start of each component in turn and does not
remain fixed at the start of the data. The component data structure is then moved
to point at the first byte of the next component. COMPONENT-PTR can be used to
recover the start position of the component data if required.

Here is an example SOAP message that conforms to the WSDL document:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<applicationData xmlins="http://www.example.org/variablyRepeatingData/">
<component xmlns="">VALUEl</component>
<component xmlns="">VALUE2</component>
<component xmlns="">VALUE3</component>
</applicationData>
</SOAP-ENV :Body>
</SOAP-ENV:Envelope>

Here is the output produced by the COBOL program when it processes the SOAP
message:
CPIH 20080115103151 component value is: VALUE1

CPIH 20080115103151 component value is: VALUE2
CPIH 20080115103151 component value is: VALUE3

Creating a web service provider by using the web services assistant

You can create a service provider application from a web service description that
complies with WSDL 1.1 or WSDL 2.0, or from a high-level language data
structure. The CICS web services assistant helps you to deploy your CICS
applications in a service provider setting.

About this task

When you use the assistant to deploy a CICS application as a service provider, you
have two options:

 Start with a web service description and use the assistant to generate the
language data structures.
Use this option when you are implementing a service provider that conforms
with an existing web service description.

e Start with the language data structures and use the assistant to generate the web
service description.

Use this option when you are exposing an existing program as a web service
and are willing to expose aspects of the program interfaces in the web service
description and the SOAP messages.

You can expose the web service description associated with your service provider
using a URL This URI has the same path as the URI associated with the
WEBSERVICE with the suffix ?wsd1 appended. This enables requesters within your

Chapter 7. Creating a web service 227

business, or external to it, to discover the WSDL files associated with your service
providers.

Creating a service provider application from a web service
description

Using the CICS web services assistant, you can create a service provider
application from a web service description that complies with WSDL 1.1 or WSDL
2.0.

Before you begin

Before you can create a service provider application, the following conditions must
be satisfied:

* Your web services description must be in a UNIX file in z/OS and you must
create a suitable provider mode pipeline in the CICS region.

* You must define to OMVS the user ID under which DFHWS2LS runs.

* The user ID must have read permission to z/OS UNIX and PDS libraries and
write permission to the directories specified on the LOGFILE, WSBIND, and WSDL
parameters.

* You must allocate sufficient storage to the user ID for the ID to run Java. You
can use any supported version of Java. By default, DFHWS2LS uses the Java
version specified in the JAVADIR parameter.

About this task

You can use the web services assistant to create language structures from your
WSDL for the service provider application. You can also use a WSDL document
that is stored in an IBM webSphere Service Registry and Repository (WSRR) server.

Procedure

1. Use the DFHWS2LS batch program to generate a web service binding file and
one or more language data structures. DFEHWS2LS contains a large set of
optional parameters that provide you with flexibility to create the binding file
and language structures that your application requires. Consider these options
when you enable an existing application for web services:

* Which mechanism will CICS use to pass data to the service provider
application program? You can use channels and pass the data in containers
or use a COMMAREA. Channels and containers are recommended. Specify
them with the PGMINT parameter.

* Which language do you want to generate? DFHWS2LS can generate
COBOL, C/C++, or PL/I language data structures. Specify the language
using the LANG parameter.

* Which mapping level do you want to use? The higher the mapping level, the
more control and support you have available for the handling of character
and binary data at run time. Some optional parameters are available only at
the higher mapping levels. You are recommended to use the highest level of
mapping available. Specify the mapping level with the MAPPING-LEVEL
parameter.

* Which URI do you want the web service requester to use? Specify a relative
URI using the URI parameter; for example, URI=/my/test/webservice. The
value is used by CICS when it creates the URIMAP resource.

¢ Under which transaction and user ID will you run the web service request
and response? You can use an alias transaction to run the application to

228 CICS TS for z/OS 4.2: Web Services Guide

compose a response to the service requester. The alias transaction is attached
under the user ID. Specify it with the TRANSACTION and USERID parameters.
These values are used when creating the URIMAP resource. If you do not
want to use a specific transaction, do not use these parameters.

¢ Where is the WSDL document stored? If you want to retrieve a WSDL
document from a WSRR server, instead of from the local file system, you
must specify certain parameters in DFHWS2LS. As a minimum, you must
specify the WSRR-SERVER parameter with the location of the WSRR server and
the WSRR-NAME parameter with the name of the WSDL document that you
want to retrieve from WSRR. For information about other parameters that
you might want to specify if you are using WSRR, see|”DFHW52LS: WSDI_I
[to high-level language conversion” on page 164/

* If you intend to retrieve your WSDL document from a WSRR server, do you
want to do so using a secure connection? You can use secure socket layer
(SSL) encryption by setting the appropriate parameters to interoperate
securely with WSRR. For an example, see [“Example of how to use SSL with|
[the web services assistant and WSRR” on page 325]

When you submit DFHWS2LS, CICS generates the web service binding file and
places it in the location that you specified with the WSBIND parameter. The
language structures are placed in the partitioned data set that you specified
with the PDSLIB parameter.

. Copy the generated web service binding file to the pickup directory of the

provider mode PIPELINE resource that you want to use for your web service
application. You must copy the binding file in binary mode.

. Optional: Copy the web service description or the archive file containing one or

more web service descriptions to the same directory as the web service binding
file. The archive file must be a .zip file and the file name must match the
WSDL file name. With this copy, you can discover the WSDL.

. Write a service provider application program to interface with the generated

language structures and implement the required business logic.

. Use the PIPELINE SCAN command to dynamically create the WEBSERVICE

resource and two URIMAP resources.

¢ The WEBSERVICE resource encapsulates the web service binding file in CICS
and is used at run time.

* The first URIMAP resource provides CICS with the information to associate
the WEBSERVICE resource with a specific URI.

* The second URIMAP resource provides CICS with the information to
associate the WSDL archive file or WSDL document with a specific URL This
URI has the same path as the URI associated with the WEBSERVICE with the
suffix ?wsd1 appended. This URIMAP resource is created so that external
requesters can use the URI to discover the WSDL archive file or WSDL
document. This URIMAP resource is created only if the web service
description or the archive file containing one or more web service
descriptions has been copied to the same directory as the web service
binding file. If the pickup directory contains a WSDL archive file and a
WSDL document, the URI returns only the WSDL in the archive file. This
function is only available for web services installed using the pipeline scan
operation.

Alternatively, you can define the resources yourself, although this is not
recommended.

Chapter 7. Creating a web service 229

Results

If you have any problems submitting DFHWS2LS, or the resources do not install
correctly, see [“Diagnosing deployment errors” on page 327

Creating a service provider application from a data structure

Using the CICS web services assistant, you can create a service provider
application from a high-level language data structure.

Before you begin

Before you create a service provider application, make sure that these
preconditions have been completed:

* Your high-level language data structures must meet the following criteria:

— The data structures must be defined separately from the source program; for
example, in a COBOL copybook.

— If your PL/I or COBOL application program uses different data structures for
input and output, the data structures must be defined in two different
members in a partitioned data set. If the same structure is used for input and
output, the structure must be defined in a single member.

For C and C++, your data structures can be in the same member in a
partitioned data set.

e The data structures you process depend on whether you are using a wrapper
program:
— If you are using a wrapper program, the copybook is the interface to the
wrapper program.

— If you are not using a wrapper program, the copybook is the interface to the
business logic.

* The language structures must be available in a partitioned data set and you
must create a suitable PIPELINE resource in the CICS region:

— You must define to OMVS the user ID under which DFHLS2WS runs.

— The user ID must have read permission to z/OS UNIX and PDS libraries and
write permission to the directories specified on the LOGFILE, WSBIND, and WSDL
parameters.

— The user ID must have a sufficiently large storage allocation to run Java. You
can use any supported version of Java. By default, DFHLS2WS uses the Java
version specified in the JAVADIR parameter.

Procedure

Follow these steps to create a service provider application from a data structure:

1. If the service provider application interface uses channels and many containers,
create a channel description document that describes the interface in XML. You
must put the channel description document in a suitable directory on z/OS
UNIX. CICS uses this document to construct and deconstruct a SOAP message
from the containers on a channel. Alternatively, you can use one container on a
channel and not create a channel description document.

For more information on how to create a channel description document, see
[“Creating a channel description document” on page 232.|

2. Use the DFHLS2WS batch program to generate a web service binding file and
web service description from the language structure. DFHLS2WS contains a
large set of optional parameters that provide you with flexibility to create the

230 CICS TS for z/OS 4.2: Web Services Guide

binding file and language structures that your application requires. Consider
these options when web service enabling an existing application:

* Which mechanism will CICS use to pass data to the service provider
application program? You can use channels and pass the data in containers
or use a COMMAREA. Specify the mechanism using the PGMINT parameter. If
your application interface uses channels and many containers, specify the
REQUEST-CHANNEL parameter and optionally the RESPONSE-CHANNEL. You can
only use these parameters when the mapping level is 3.0 or higher.

* Which level of web service description (WSDL document) do you want to
generate? CICS generates descriptions that comply with either WSDL 1.1 or
WSDL 2.0 documents. If you want the service provider application to
support requests that comply with both levels of WSDL, specify values for
the WSDL_1.1 and WSDL_2.0 parameters. Ensure that the file names are
different when using more than one WSDL parameter. This specification
produces two web service descriptions and a binding file.

* Which version of the SOAP protocol do you want to use? You can specify the
version with the SOAPVER parameter. You are recommended to use the ALL
value, which gives the flexibility to use either SOAP 1.1 or SOAP 1.2 as the
binding for the web service description, although you must install the web
service into a pipeline that is configured with the SOAP 1.2 message handler.
You can use this parameter only when the MINIMUM-RUNTIME-LEVEL is 2.0 or
higher.

* Which mapping level do you want to use? The higher the mapping level, the
more control and support you have available for the handling of character
and binary data at run time. Some optional parameters are available only at
the higher mapping levels. You are recommended to specify the highest level
of mapping available in the MAPPING-LEVEL parameter.

* Which URI do you want the web service requester to use? Specify an
absolute URI using the URI parameter; for example, URI=http://
www.example.org:80/my/test/webservice. The relative part of this address,
/my/test/webservice, is used when creating the URIMAP resource. The full
URI is used as the<soap:address> element in the web service description.
This usage is true for both HTTP and WebSphere MQ URIs.

* Do you want to publish your WSDL document to an IBM WebSphere Service
Registry and Repository (WSRR)? If you want to publish your WSDL
document to a WSRR, you must specify the WSRR-SERVER parameter in
DFHLS2WS. For more information on the parameters that you can specify
when using WSRR, see ['DFHLS2WS: high-level language to WSDLJ
[conversion” on page 152

* If you intend to publish your WSDL document on a WSRR server, do you
want to do so using a secure connection? You can use secure socket layer
(SSL) encryption by setting the appropriate parameters to interoperate
securely with WSRR. For an example, see [‘Example of how to use SSL withl
[the web services assistant and WSRR” on page 325)

When you submit DFHLS2WS, CICS generates the web service binding file and
places it in the location that you specified with the WSBIND parameter. The
generated web service description is placed in the location that you specified
with the WSDL, WSDL_1.1, or WSDL_2.0 parameter.

If you have used the WSRR parameters in DFHLS2WS, your WSDL document
is published to the WSRR server that you specified.

. Review the generated web service description and perform any necessary
customization. For more information, see [‘Customizing generated web service|
[description documents” on page 234)

Chapter 7. Creating a web service 231

4. Copy the web service binding file to the pickup directory of the provider mode
pipeline that you want to use for your web service application. You must copy
the web service binding file in binary mode.

5. Optional: Copy the web service description or the archive file containing one or
more web service descriptions to the same directory as the web service binding
file. The archive file must be a .zip file and the file name must match the
WSDL file name. With this copy, you can discover the WSDL.

6. Use the PIPELINE SCAN command to dynamically create the WEBSERVICE
resource and two URIMAP resources.

* The WEBSERVICE resource encapsulates the web service binding file in CICS
and is used at run time.

* The first URIMAP resource provides CICS with the information to associate
the WEBSERVICE resource with a specific URL

¢ The second URIMAP resource provides CICS with the information to
associate the WSDL archive file or WSDL document with a specific URI. This
URI has the same path as the URI associated with the WEBSERVICE with the
suffix ?wsd1 appended. This URIMAP resource is created so that external
requesters can use the URI to discover the WSDL archive file or WSDL
document. This URIMAP resource is created only if the web service
description or the archive file containing one or more web service
descriptions has been copied to the same directory as the web service
binding file. If the pickup directory contains a WSDL archive file and a
WSDL document, the URI returns only the WSDL in the archive file. This
function is only available for web services installed using the pipeline scan
operation.

Alternatively, you can define the resources yourself, although this is not
recommended.

Results

When you have successfully created the CICS resources, the creation of your
service provider application is complete.

If you have any problems submitting DFHLS2WS, or the resources do not install
correctly, see[‘Diagnosing deployment errors” on page 327/

What to do next

Make the web services description available to anyone who needs to develop a
web service requester that will access your service.

Creating a channel description document

Create a channel description document when your service provider application
uses a channel interface with many containers.

About this task

Use an XML editor to create the channel description document. The schema for the
channel description is called channel.xsd and is in the /usr/1pp/cicsts/cicsts42/
schemas/channel directory (where /usr/1pp/cicsts/cicsts42 is the default install
directory for CICS files on z/OS UNIX).

232 CICS TS for z/OS 4.2: Web Services Guide

Procedure

1. Create an XML document with a <channel> element and the CICS channel
namespace:

<channel name="myChannel" xmlns="http://www.ibm.com/xmlns/prod/CICS/channel">
</channel>

2. Add a <container> element for every container that the application program
interface uses on the channel. You must use name, type and use attributes to
describe each container. The following example shows six containers with
different attribute values:

<container name="contl" type="char" use="required"/>
<container name="cont2" type="char" use="optional"/>
<container name="cont3" type="bit" use="required"/>
<container name="cont4" type="bit" use="optional"/>
<container name="cont5" type="bit" use="required">
<structure location="//HLQ.PDSNAME (MEMBER)" />
</container>
<container name="cont6" type="bit" use="optional">
<structure location="//HLQ.PDSNAME (MEMBER2)" />
</container>

The structure element indicates that the content is defined in a language
structure located in a partitioned data set member.

3. Save the XML document in z/0OS UNIX.
Channel schema

The channel description document must conform to the following schema:

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.ibm.com/xmlns/prod/CICS/channel"
xmins:tns="http://www.ibm.com/xmIns/prod/CICS/channel" elementFormDefault="qualified">
<element name="channel">|f]
<complexType>
<sequence>
<element name="container" maxOccurs="unbounded" "unbounded" minOccurs="0">H
<complexType>
<sequence>
<element name="structure" minOccurs="0">El
<complexType>
<attribute name="Tocation" type="string" use="required"/>
<attribute name="structure" type="string" use="optional"/>
</complexType>
</element>
</sequence>
<attribute name="name" type="tns:namel6Type" use="required"/>
<attribute name="type" type="tns:typeType" use="required"/>
<attribute name="use" type="tns:useType" use="required"/>
</complexType>
</element>
</sequence>
<attribute name="name" type="tns:namel6Type" use="optional" />
</complexType>
</element>
<simpleType name="namel6Type">
<restriction base="string">
<maxLength value="16"/>
</restriction>
</simpleType>
<simpleType name="typeType">
<restriction base="string">
<enumeration value="char"/>
<enumeration value="bit"/>
</restriction>
</simpleType>
<simpleType name="useType">

Chapter 7. Creating a web service 233

<restriction base="string">
<enumeration value="required"/>
<enumeration value="optional"/>
</restriction>
</simpleType>
</schema>

1. This element represents a CICS channel.
2. This element represents a CICS container within the channel.

3. A structure can only be used with 'bit' mode containers. The 'location' attribute
indicates the location of a file that maps the contents of container. The
'structure’ attribute may be used in C and C++ to indicate the name of
structure.

What to do next

Run DFHLS2WS to create the mappings and WSDL document for the web service
provider application. DFHLS2WS puts the mappings for the channel in the WSDL
document in the order that the containers are specified in the channel description
document.

Customizing generated web service description documents

The web service description (WSDL) documents that are generated by DFHLS2WS
contain some automatically generated content that might be appropriate for you to
change before publishing. Customizing WSDL documents can result in
regenerating the web services binding file and, in some cases, writing a wrapper
program.

About this task
Follow these steps to customize generated web service description documents:

Procedure

1. If you want to advertise support for HTTPS or communicate using WebSphere
MQ, use the URI parameter in DFHLS2WS to set an absolute URI. If you have
not used the URI parameter, you must change the <wsdl:service> and
<wsdl:binding> elements at the end of the WSDL document. The generated
WSDL includes comments to assist you in making these changes. Changing
these elements does not require you to regenerate the web services binding file.

2. If you want to supply the network location of your web service, use the URI

parameter in DFHLS2WS to set an absolute URL If you have not used the URI
parameter, add the details to the soap:address in the wsdl:service element.

a. If you are using an HTTP-based protocol, replace my-server with the TCP/IP
host name of your CICS region and my-port with the port number of the
TCPIPSERVICE resource.

b. If you are using WebSphere MQ as the transport protocol, replace myQueue
with the name of the appropriate queue.

You can make these changes without requiring any change to the web services
binding file.
If you are changing the port name and namespace without regenerating the

WSBind file, the monitoring information might be wrong at runtime level 2.1
onwards.

3. Consider whether the automatically generated names in the WSDL document
are appropriate for your purposes. You can rename these values:

* The targetNamespace of the WSDL document

234 CICS TS for z/OS 4.2: Web Services Guide

* The targetNamespace of the XML schemas within the WSDL document
¢ The <wsdl:portType> name

* The <wsdl:operation> name

¢ The <wsdl:binding> name

* The <wsdl:service> name

* The names of the fields in the XML schemas in the WSDL document.

These values form part of the programmatic interface to which you code a
client program. If the generated names are not sufficiently meaningful,
maintenance of your application code might be more difficult over a long
period of time. Use the DFHLS2WS REQUEST-NAMESPACE and
RESPONSE-NAMESPACE parameters to change the targetNamespace of the XML
schemas, and the WSDL-NAMESPACE parameter to change the targetNamespace of
the WSDL document.

If you change any of these values, you must use DFHWS2LS to regenerate the
web services binding file. The language structures that are produced will not be
the same as your existing language structures, but are compatible with your
existing application, so no application changes are required. However, you can
ignore the new language structures and use the new web services binding file
with the original structures.

. Consider if the COMMAREA fields exposed in the XML schemas are
appropriate. You might consider removing any fields that are not helpful to a
web service client developer:

* Fields that are used only for output values can be removed from the schema
that maps the input data structures.

e Filler fields.

¢ Automatically generated annotations.

If you make any of these changes, you must regenerate the web services
binding file using DFHWS2LS. The new language structures that are generated
are not compatible with the original language structures, so you must write a
wrapper program to map data from the new representation to the old one. This
wrapper program needs to perform an EXEC CICS LINK command to the target
application program and then map the returned data.

This level of customization requires the most effort, but results in the most
meaningful programmatic interfaces for your web services client developers.

. If you want to put the generated WSDL document through DFHWS2LS to
create new language structures, decide whether to keep the annotations in the
WSDL document. The annotations override the normal mapping rules when
DFHWS2LS generates the language structures. When you override the mapping
rules, ensure that the generated language structures are compatible with the
version that was used by DFHLS2WS. If you want to use the default mapping
rules to produce the language structures, remove the annotations.

Results

If you want to publish your customized WSDL document to an IBM WebSphere
Service Registry and Repository (WSRR) server, you must publish it manually
using the WSRR interface. You can find more information about WSRR at the
following location: [WebSphere Service Registry and Repositoryl

Chapter 7. Creating a web service 235

http://www.ibm.com/software/integration/wsrr/

Example

For an example of a WSDL document, see|An example of the generated WSDIL|

Sending a SOAP fault

In a service provider, you can use the CICS API to send a SOAP fault to a web
service requester. The fault can be issued by the service provider application or by
a header processing program in the pipeline.

Before you begin

To use the API, the service provider application must use channels and containers.
If the application uses COMMAREAs, write a wrapper program that does use
channels and containers to create the SOAP fault message. You can use the API in
a header processing program only if it is invoked directly from a CICS-supplied
SOAP message handler.

About this task

You might want to issue a SOAP fault to the web service requester if your
application logic cannot satisfy the request, for example, or if there is an
underlying problem with the request message. Note that CICS does not consider
issuing a SOAP fault as an error, so the normal message response pipeline
processing takes place rather than any error processing. If you do want to roll back
any transactions, you must use the application program.

Procedure

1. In your program, use the EXEC CICS SOAPFAULT CREATE command to send a
SOAP fault, seSOAPFAULT CREATE]

2. Add the CLIENT or SERVER option on the command. This option indicates
where the problem has occurred, either on the client side or on the server.

e CLIENT indicates that the problem is with the request message that was
received.

¢ SERVER indicates that the problem occurs when the request message was
processed by CICS. This problem might be in an application program, for
example, it might be unable to satisfy the request, or it might be an
underlying problem that occurs during the pipeline processing.

3. Add the FAULTSTRING option and its length in the FAULTSTRLEN option to
provide a summary of why the fault has been issued by the service provider.
The contents of this option are in XML. Any data supplied by the application
must be in a format that is suitable for direct inclusion in an XML document.
The application might have to specify some characters as XML entities. For
example, if the < character is used anywhere other than the start of an XML
tag, the application must change it to &1t;. The following example shows an
incorrect FAULTSTRING option:

dcl msg_faultString char(x) constant('Error: Value A < Value B');

The correct way to specify this FAULTSTRING option is as follows:
dcl msg_faultString char(*) constant('Error: Value A &It; Value B');

Tip: To avoid using XML entities, you can wrapper the data in an XML
CDATA construct. XML processors do not parse character data in this construct.
Using this method, you could specify the following FAULTSTRING option:

236 CICS TS for z/OS 4.2: Web Services Guide

dcl msg_faultString char(*) constant('<![CDATA[Error: Value A < Value B]]>');

4. Code the DETAIL option and its length in the DETAILLENGTH option to provide
the details of why the fault has been issued by the service provider. The
contents of this option are in XML. The same guidance applies to the DETAIL
option as to the FAULSTRING option.

5. Optional: If you are invoking the API from a header processing program,
define the program in the pipeline configuration file. The header processing
program is defined in either the <cics_soap_l.1_handler>,
<cics_soap_1.2 handler>, <cics_soap_l.1 handler_ java> or
<cics_soap_l.2 handler_java> element.

Results

When your program issues this command, CICS creates the SOAP fault response
message at the appropriate SOAP level. If your service provider application issues
the command, it does not need to create a SOAP response and put it in the
DFHRESPONSE container. The pipeline processes the SOAP fault through the
message handlers and sends the response to the web service provider.

Example

The SOAPFAULT CREATE command has a number of options to provide you with
flexibility to respond appropriately to a web service requester. Here is a simple
example of a completed command that creates a SOAP fault that can be used for
both SOAP 1.1 and SOAP 1.2:

EXEC CICS SOAPFAULT CREATE CLIENT
DETAIL(msg_detail)
DETAILLENGTH(1ength(msg_detail))
FAULTSTRING (msg_faultString)
FAULTSTRLEN(Tength(msg_faultString));

You can code msg_detail and msg_faultString with the following values:

dcl msg_detail char(*) constant('<ati:ExampleFault xmlins="http://www.example.org/faults"
xmins:ati="http://www.example.org/faults">Detailed error message goes here.</ati:ExampleFault>');
dcl msg_faultString char(x) constant('Something went wrong');

Creating a web service requester using the web services assistant

You can create a service requester application from a web service description that
complies with WSDL 1.1 or WSDL 2.0. The CICS web services assistant helps you
to deploy your CICS applications in a service requester setting.

Before you begin

Your web services description must be in a file in z/OS UNIX or it must be
published on an IBM WebSphere Services Registry and Repository (WSRR) server,
and a requester mode pipeline must be installed in the CICS region.

You must allocate sufficient storage to the user ID so that the ID can run Java. You

can use any supported version of Java. By default, DFHWS2LS uses the Java
version specified in the JAVADIR parameter.

Chapter 7. Creating a web service 237

About this task

When you use the CICS web services assistant to deploy a CICS application as a
service requester, you must start with a web service description and generate the
language data structures from it.

Procedure

1. Use the DFHWS2LS batch program to generate a web service binding file and
one or more language structures. Consider these options when creating a
service requester application from a web service description:

* Which mapping level do you want to use? The higher the mapping level, the
more control and support you have available for the handling of character
and binary data at run time. Some optional parameters are available only at
the higher mapping levels. You are recommended to use the highest level of
mapping available.

* Which code page do you want to use when transforming data at run time? If
you want to use a specific code page for your application that is different
from the code page for the CICS region, use the CCSID parameter. The code
page must be EBCDIC and it must be supported by both Java and z/OS
conversion services.

* Do you want to support a subset of the operations that are declared in the
web service description? If you have a very large web service description,
and want your service requester application to support only a certain
number of operations, use the OPERATION parameter to list the ones you want.
Each operation must be separated with a space and is case sensitive.

* Where is the WSDL document stored? If the WSDL document that you want
to use as input to DFHWS2LS is stored on a WSRR server, you can retrieve it
by running DFHWS2LS with certain parameters specified. Use the
WSRR-SERVER parameter to specify the location of the WSRR server and use
the WSRR-NAME parameter to specify the name of the WSDL document that
you want to retrieve. For information about other parameters on DFHWS2LS
that you might want to use to interact with WSRR, see ["DFHWS2LS: WSDL|
[to high-level language conversion” on page 164)

* If you want to retrieve the WSDL document from a WSRR server, do you
want to do so using a secure connection? You can use secure socket layer
(SSL) encryption with the web services assistant to interoperate securely with
WSRR. For an example, see|”Example of how to use SSL with the web]|
[services assistant and WSRR” on page 325)

Do not specify parameters such as PROGRAM, URI, TRANSACTION, and USERID when
you use DFHWS2LS. These parameters apply only to a service provider
application and, if specified, cause a provider mode web service binding file to
be produced.In addition to the web service binding file, the program generates
a language data structure.

2. Check the log file to see whether any problems occurred when DHWS2LS
generated the binding file and language structures. CICS might not support
some elements or options in the web service description. If any warning or
error messages are issued, read the advice that is provided and take
appropriate action. You might need to rerun the batch program.

3. Copy the web service binding file to the pickup directory of the requester mode
pipeline that you want to use for your web service application.

4. Ensure that the PIPELINE resource is configured for service requester
applications. The value of the MODE parameter shows whether the pipeline
supports requester or provider web service applications.

238 CICS TS for z/OS 4.2: Web Services Guide

5. Ensure that the correct SOAP protocol is supported in the pipeline for your
web service. The SOAPLEVEL parameter indicates which version is supported. In
service requester mode, the binding of the web service must match the version
of SOAP that is supported in the pipeline. You cannot install a web service
with a SOAP 1.1 binding into a service requester pipeline that supports SOAP
1.2.

6. Ensure that the configured timeout for the pipeline is suitable for your service
requester application. The timeout is displayed as the value of the RESPWAIT
attribute on the PIPELINE resource. If no timeout is specified on the pipeline,
the default for the transport is used.

e The default timeout for HTTP is 10 seconds.
* The default timeout for WebSphere MQ is 60 seconds.

Each transaction in the CICS region has a dispatcher timeout. If this value is
less than the default for either protocol, the timeout occurs with the dispatcher.

7. Optional: Copy the web service description to the same pickup directory as the
web service binding file, so that you can turn on validation for the web service
at run time.

8. Use the PIPELINE SCAN command to dynamically create the WEBSERVICE
resource. The WEBSERVICE resource encapsulates the web service binding file
in CICS and is used at run time. Alternatively, you can define the resource
yourself, although this is not recommended.

9. Write a wrapper program that you can substitute for your communications
logic. Use the language data structure generated in step |1 to write your
wrapper program. Use an EXEC CICS INVOKE SERVICE command in your
wrapper program to communicate with the web service. The command
includes these options:

* The URI of the web service
* The operation for which the web service is being called

When you call the web service, you can specify a resource that
contains the information about the URI of the web service. You can specify this
information directly on the INVOKE SERVICE command instead of using a
URIMAP resource. However, using a URIMAP resource means that you do not
need to recompile your applications if the URI of a service provider changes.
With a URIMAP resource you can also choose to implement connection
pooling, where CICS keeps the client connection open after use, so that it can
be reused by the application for subsequent requests, or by another application
that calls the same service. The PIPELINE SCAN command does not create
URIMAP resources for a service provider, so you must define the URIMAP
resource yourself following the instructions in [Creating a URIMAP resource for]
[CICS as an HTTP client in the Internet Guide

Results

When you have successfully created the CICS resources, the creation of your
service requester application is complete.

Checking the configuration of a PIPELINE resource
You can check the configuration of a PIPELINE with the following interfaces:

CICS Explorer

[+ [The CICS Explorer administration views

Use the Pipelines view.

Chapter 7. Creating a web service 239

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/urimap/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_urioutbound.html#dfhtl_urioutbound
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_urioutbound.html#dfhtl_urioutbound
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_administration.html

CICSPlex SM
The PIPELINE definitions view

CEMT
[* [The INQUIRE PIPELINE command]

The CICS SPI
[[The INQUIRE PIPELINE command]

Creating a web service using tooling

Instead of using the web services assistant JCL, you can use Rational Developer for
System z or write your own Java program to create the required files in CICS.

Procedure
1. You have two choices:

* Use the Rational Developer for System z tool to create a web service binding
file and the web service description or language structures. For more
information about this tool, see |http://www-306.ibm.com /software /|
[awdtools/devzseries /|

* Write your own Java program, using the provided AP], to invoke the web
services assistant. This API is described in the [Web services assistant: Clasg]
Javadoc. It includes comments that explain the classes, and sample
code is provided to give an example of how you might invoke the web
services assistant. The Javadoc also contains a complete list of the JAR files
that are required and their location in z/OS UNIX.

You can run your Java program on the z/OS, Windows, or Linux platform. If
you run the program on Windows or Linux, transfer the generated web
services binding file to a suitable pickup directory in binary mode using FTP
or an equivalent process.

2. Optional: If you are generating a web service description from a language
structure, review the file and perform any necessary customization. For more
information, see [“Customizing generated web service description documents”|

|0n page 234.|

3. Deploy the generated web service binding file into a suitable pipeline pickup
directory.

4. Optional: Copy the web service description into the pickup directory of the
pipeline, so that you can perform validation of the web service to check that it
is working as expected.

5. If you started with a web service description, write a service provider or
requester application program to interface with the generated language
structures.

6. Run a PIPELINE SCAN command to automatically create the required CICS
resources.

240 CICS TS for z/OS 4.2: Web Services Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7cl.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_inquirepipeline.html
http://www-306.ibm.com/software/awdtools/devzseries/
http://www-306.ibm.com/software/awdtools/devzseries/

Creating your own XML-aware web service applications

If you decide not to use the CICS-supplied data mappings, you can write your
own XML-aware data applications in two ways instead. You can either use the
XML-ONLY parameter on DFHWS2LS or you can write your own application without
using any of the tooling. Using the XML-ONLY parameter is the most straightforward
way to configure the CICS pipeline process to pass the XML data to the application
to be handled.

About this task

Writing your own XML-aware applications involves writing code to both parse and
generate XML documents. One way to write your own XML-aware application
uses the XML PARSE and XML GENERATE statements in COBOL. Another way to write
your own XML-aware applications uses other IBM tools; for example, you can use
the IBM Rational Developer for System z tool to generate COBOL XML converter
programs that can be invoked from your applications.

Creating an XML-aware service provider application

Your XML-aware service provider application must work with the containers that
are passed to it and handle the data conversion between the XML and the program
language.

About this task

The following steps guide you through the creation of your XML-aware
application, including the decision about the use of any of the CICS tooling.

Procedure

1. Decide if you want to generate a web service binding file for your XML-aware
application using DFHWS2LS. The advantage of generating a web service
binding file is that you can use CICS services, such as validation, to test your
web service and CICS monitoring using global user exits.

* If you want to generate a web service binding file, run DFHWS2LS
specifying the XML-ONLY parameter and a MINIMUM-RUNTIME-LEVEL of 2.1 or
higher. The web service binding file enables the application program to work
directly with the contents of the DFHWS-BODY container. In all other
respects, the generated binding file shares the same deployment
characteristics and the same runtime behavior as a file generated without the
XML-ONLY parameter, including parsing of the XML during SOAP message

handling. To prevent this parsing, you must not specify [SOAP message|
handers

ndlers|in your pipeline configuration file.

* If you do not want to use a web service binding file, configure your service
provider pipeline so that the web service request reaches your XML-aware
application. You can either configure the terminal handler in the pipeline
configuration file to use your XML-aware application program or create a
message handler that dynamically switches to your application depending on
the URI that is received in the pipeline.

2. Write your application to handle the web service request that is held in the
following containers:

DFHWS-BODY
The contents of the SOAP body for an inbound SOAP request when the
pipeline includes a CICS-provided SOAP message handler.

Chapter 7. Creating a web service 241

DFHREQUEST
The complete request, including the envelope for a SOAP request,
received from the pipeline.

DFHWS-XMLNS
A list of name-value pairs that map namespace prefixes to namespaces
for the XML content of the request.

DFHWS-SOAPACTION
The SOAPAction header associated with the SOAP message in
container DFHWS-BODY.

When you code APl commands to work with the containers, do not specify the
CHANNEL option, because all the containers are associated with the current
channel (the channel that was passed to the program). If you need to know the
name of the channel, use the EXEC CICS ASSIGN CHANNEL command.

3. Optional: Your application can also use additional containers that are available
to message handlers in the pipeline, as well as any other containers that the
message handlers create as part of their processing. For a complete list of
containers, see [“Containers used in the pipeline” on page 127

4. When your application has processed the request, construct a web service
response using the following containers:

DFHRESPONSE
The complete response message to be passed to the pipeline. Use this
container if you do not use SOAP for your messages, or if you want to
build the complete SOAP message, including the envelope, in your
program instead of using the CICS-provided SOAP message handler.

If you supply a SOAP body in container DFHWS-BODY,
DFHRESPONSE is ignored.

DFHWS-BODY
For an outbound SOAP response, the contents of the SOAP body.
Provide this container when the terminal handler of your pipeline is a
CICS-provided SOAP message handler. The message handler constructs
the full SOAP message containing the body.

Your program must create this container, even if the request and
response are identical. If you do not, CICS issues an internal server
error.

You can also use any of the other containers to pass information that your
pipeline needs for processing the outbound response.

If your web service does not return a response, you must return container
DFHNORESPONSE to indicate that there is no response. The contents of the
container are unimportant, because the message handler checks only whether
the container is present or not.

5. Create a URIMAP resource. If you are using the XML-ONLY parameter and you
have specified a value for the URI parameter of DFHWS2LS, the URIMAP is
created automatically for you during the PIPELINE SCAN process.

Creating an XML-aware service requester application

Your XML-aware web service requester application handles the data conversion
between the XML and the programming language and populates the control
containers in the pipeline.

242 CICS TS for z/OS 4.2: Web Services Guide

Before you begin

You can write your own XML-aware service requester application using the
XML-ONLY parameter on DFHWS2LS or you can write it without using any of the
tooling. The most straightforward way to write your own XML-aware service
requester application is by using the XML-ONLY parameter on DFHWS2LS; the
XML-ONLY parameter is available at runtime level 2.1 and above.

About this task

Using the XML-ONLY parameter results in the generation of a WSBind file that
instructs CICS that the application will work directly with the contents of the
DFHWS-BODY container. The generated WSBind file must be installed into a
requester mode PIPELINE to create a requester mode WEBSERVICE resource. The
application must generate XML for the body of the web service request and store it
in the DFHWS-BODY container. It must then call the EXEC CICS INVOKE SERVICE
command. The outbound message is sent to the web services provider. The body
of the response message is also in the DFHWS-BODY container after the call
completes.

The XML of the response messages is parsed during SOAP message handling. To
prevent this parsing, you must not specify [SOAP message handlerg in your
pipeline configuration file.

XML-aware requester applications can receive SOAP Fault messages back from the
remote provider mode application. In this case, the requester application is
responsible for interpreting the SOAP Fault and distinguishing it from a regular
response message. If the INVOKE SERVICE command is used with an XML-ONLY
WEBSERVICE, CICS does not set the response code which is normally used to
indicate that a SOAP Fault was received.

If you are writing your own XML-aware service requester application without
using the XML-ONLY option, complete the following steps:

Procedure

1. Create a channel and populate it with containers. Provide the following
information in each container:

DFHWS-PIPELINE
The name of the PIPELINE resource used for the outbound request.

DFHWS-URI
The URI of the target web service

DFHWS-BODY
For an outbound SOAP request, the contents of the SOAP body.
Provide this container when the pipeline includes a CICS-provided
SOAP message handler. The message handler constructs the full SOAP
message containing the body.

DFHREQUEST
The complete request message to be passed to the pipeline. Use this
container if you do not use SOAP for your messages or if you want to
build the complete SOAP message, including the envelope, in your
program. The pipeline must not include a CICS-provided SOAP
message handler to avoid duplicate SOAP headers being sent in the
outbound message.

Chapter 7. Creating a web service 243

If you supply a SOAP body in container DFHWS-BODY,
DFHREQUEST must be empty. If you supply content in both
DFHWS-BODY and DFHREQUEST, CICS uses DFHREQUEST.

DFHWS-XMLNS
A list of name-value pairs that map namespace prefixes to namespaces
for the XML content of the request.

DFHWS-SOAPACTION
The SOAPAction header to be added to the SOAP message specified in
container DFHWS-BODY.

Tip: If you add container DFHWS-NOABEND to the channel, when DFHPIRT
is called any abends will not be issued from within DFHPIRT. This is useful if

you are running a C/C++ program because you can handle errors via the
DFHERROR container.

2. Link to program DFHPIRT. Use this command:
EXEC CICS LINK PROGRAM(DFHPIRT) CHANNEL(userchannel)

where userchannel is the channel that holds your containers. The outbound
message is processed by the message handlers and header processing programs
in the pipeline and sent to the web service provider.

3. Retrieve the containers that contain the web service response from the same
channel. The response from the web service provider might be a successful
response or a SOAP fault. The web service requester application must be able
to handle both types of response from the service provider. The complete
response is contained in the following containers:

DFHRESPONSE
The complete response, including the envelope for a SOAP response,
received from the web service provider.

DFHWS-BODY
When the pipeline includes a CICS-provided SOAP message handler,
the contents of the SOAP body.

DFHERROR
Error information from the pipeline.

Using Java with web services

You can use Java to create web service applications. Different techniques are used
to create these applications compared with the techniques used with other
programming languages.

For most non-Java programming languages, you use the web services assistants to
enable applications. Using the web services assistant means that the data is shared
between CICS and the application by using a container or COMMAREA. You can

use the web services assistant with Java applications, however, the following tasks
provide more suitable methods for creating Java web services for Java applications.

Deploying a provider-mode Axis2 web service

You can deploy an Axis2 application as a provider mode web service in CICS.
These applications are typically generated using JAX-WS and can be hosted in a
Java enabled pipeline.

244 CICS TS for z/OS 4.2: Web Services Guide

You might want to deploy Java applications using this method for one of the
following reasons:

* You want to create web services in Java.

* You have experience of Axis2 web services on other platforms and want to
create web services in CICS.

* You have complicated WSDL documents that would be difficult to handle using
the CICS web services assistants.

* You want to offload the handling of the web service application to the IBM
System z Application Assist Processor (zZAAP).

Note: Axis2-style applications do not use the WEBSERVICE resources. They
interact with CICS using the Axis2 programming model and therefore cannot use
the some of the CICS web services support. The following services are not fully
supported for Axis2-style applications:

* [SOAPFAULT CREATE in CICS Application Programmingl
+ [WSACONTEXT GET in CICS Application Programming]|

« |"DFHWS-OPERATION container” on page 139

+ |“"DFHWS-MEP container” on page 13§|
 |"DFHWS-USERID container” on page 143

+ ["'DFHWS-TRANID container” on page 140

+ |Web services security|

Before you begin

You must have a Java application that is suitable for deployment in Axis2, for
example a POJO application using JAX-WS. For this task, the following POJO
application is used as an example:
[**

* Simple example

*/
@javax.jws.WebService(targetNamespace = "com.ibm.cics.example", name = "pojoExample")
public class TestAxis2

{
public String getMessage(String input)
{

}

return "CICS got this: '" + input + "'";

}

This application specifies the XML namespace that is used to generate the WSDL,
and a name to associate with the web service.

The Java code for this application must be compiled, and the JAX-WS generator
run, to package the application into a jar file called TestAxis2.jar. You can do this
by issuing the following code:

javac TestAxis2.java

wsgen -cp . TestAxis2 -wsdl
jar -cvf TestAxis2.jar =

The JAX-WS generator also creates a WSDL document and the bindings used by
Axis2.

Chapter 7. Creating a web service 245

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_soapfaultcreate.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_wsacontextget.html

About this task

To deploy an Axis2 web service you must create the pipeline infrastructure for
your web services. When you have created the pipeline, you can create your web
services. You can reuse the created pipeline for as many web services as you need.
The following steps describe how to create the pipeline and web services.

Note: No WEBSERVICE resource is created or installed as part of this task.

Procedure
1. Create the pipeline infrastructure.

a. Create a web service infrastructure for a Java pipeline. For more
information, see [“Creating the CICS infrastructure for a service provider” on|
[page 66]

b. Create an Axis2 repository. To do this, create a copy of the supplied
repository located in $CICS_HOME/1ib/pipeline/repository.

C. Add the <repository> element to your pipeline configuration file. This
element must specify the name of the Axis2 repository that you created.

d. Create and enable a PIPELINE resource.
2. Create the web service.

a. Deploy the Axis2 application to the Axis2 repository. For example, the jar
file created in the example must be deployed to a directory called
servicejars within the repository directory. You must create this directory
if it does not exist.

b. Define and install a URIMAP resource for the web service. The URIMAP
resource must specify the URI and PIPELINE resource associated with the
web service. The URI must follow the Axis2 naming conventions for URIs.
The default Axis2 naming convention is:

/name_of_serviceService.name_of portPort/suffix, where name_of_service
is the name of the web service in the WSDL, name_of_port is the name of the
port in the WSDL and suffix is an optional suffix of your can define. For the
preceding example, the following URIMAP resource could be used:

Urimap : EXAMPLE

Group : EXAMPLE

STatus : Enabled

USAge : Pipeline

SCheme : HTTP

POrt : No

HOST Tk

PAth : /TestAxis2Service.pojoExamplePort/example/TestAxis2
TRansaction : CPIH

PIpeline : EXAMPLE

This example assumes that the PIPELINE resource used is called
EXAMPLE.

C. Repeat steps 2a and 2b for each web service associated with the pipeline.
What to do next

Test that your web services run correctly.

246 CICS TS for z/OS 4.2: Web Services Guide

Creating a Java web service that generates and parses XML

You can create Java applications that parse and generate XML themselves. These
applications are consistent with XML-aware applications written in other
programming languages, but they benefit from using standard Java technologies
for processing the XML.

Procedure

1. Create an XML-ONLY WEBSERVICE resource. For more information, see
Creating an XML-aware service provider application| or [Creating an XML-aware]
service requester application]

2. Write a Java web service that can parse and generate XML for the body of the
SOAP message. You can use various tools, such as the Java 6 Java Architecture
for XML Binding (JAXB) library, to help you create a Java web service with
these capabilities.

3. Optional: If you are using a provider pipeline and you want to add the
capability for a SOAP Fault message to be returned to the requester, use the
JCICS SoapFault class to issue the EXEC CICS SOAPFAULT CREATE command.

4. Optional: If you are using a requester pipeline, use the JCICS Service class to
issue the EXEC CICS INVOKE SERVICE command.

What to do next

Creating a Java web service that has a COBOL interface

You can create Java applications that interact with CICS using the same techniques
used in other programming languages. To create these applications, you must write
or generate Java code to create structured COMMERA- or container-style data.

Procedure

1. Use DFHWS2LS to create COBOL language structures for the web service.

2. Write a Java web service that generates and parses COBOL language structures.
For more information about tools that allow Java programs to access existing
CICS application data and links to examples of how to create a Java web

service that can generate and parse COBOL language structures, see
[with structured data from Java in Java Applications in CICS

3. Optional: If you are using a provider pipeline and you want to add the
capability for a SOAP Fault message to be returned to the requester, use the
JCICS SoapFault class to issue the EXEC CICS SOAPFAULT CREATE command.

4. Optional: If you are using a requester pipeline, use the JCICS Service class to
interface with the CICS SERVICE API and issue the EXEC CICS INVOKE SERVICE
command.

What to do next

Deploying a requester-mode Axis2 web service

You can deploy an Axis2 application as a requester mode web service in CICS.
However, these applications do not use the EXEC CICS INVOKE command,
instead they interact with the remote web services using Axis2.

About this task

The advantage of deploying an Axis2 application as a requester mode web service
is that you create a platform-independent web service requester application, which

Chapter 7. Creating a web service 247

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webservices.doc/tasks/dfhws_xml_provider.dita
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.webservices.doc/tasks/dfhws_xml_requester.dita
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.webservices.doc/tasks/dfhws_xml_requester.dita
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html

uses the IBM System z Application Assist Processor (zAAP). Using zAAP can
reduce the cost of transactions; for more information, see the IBM Redbooks
publication: [zSeries Application Assist Processor (zAAP) Implementation|

Procedure

1. Create a web service requester application in Java and use an appropriate API,
such as the Java API for XML web Services (JAX-WS), to call the remote web
service.

2. Optional: If you use JAX-WS to start a remote web service, you must also use
JAX-WS to generate the SOAP messages, handle the network communication,
and process the SOAP response.

What to do next

Test that your web services start correctly.

Validating SOAP messages

When you use the CICS web services assistant to deploy your applications, you
can specify that the SOAP messages are validated at run time, to ensure that they
conform to the schema that is contained in the web service description. You can
perform validation in both provider and requester mode.

Before you begin

During development and testing of your web service deployment, full validation
assists in detecting problems in the message exchange between a service requester
and a service provider. However, complete validation of the SOAP messages
carries a substantial overhead, and it is inadvisable to validate messages in a fully
tested production application.

CICS uses a Java program to validate SOAP messages. Therefore, you must have
Java support enabled in your CICS region to perform validation.

About this task

The SOAP message is validated before it is transformed into an application data
structure and when a SOAP message is generated from the application data
structure. The SOAP message is validated using the XML schema in the WSDL and
is validated again against the transformation requirements of CICS. The WSDL
used for validation can either be the WSDL file specified in the WSDLFILE attribute
of the WEBSERVICE resource or a WSDL file contained in the .zip archive file
specified in the ARCHIVEFILE attribute of the WEBSERVICE resource. If a WSDL file
is specified in the WSDLFILE attribute and an archive file is specified in the
ARCHIVEFILE attribute, the WSDL file specified in the archive file in the ARCHIVEFILE
attribute is used.

When validation is turned off, CICS does not use the Java program. CICS validates
SOAP messages only to the extent that is necessary to confirm that they contain
well-formed XML, and to transform them. Therefore a SOAP message might be
successfully validated using the WSDL but then fail in the runtime environment
and vice versa.

To have your SOAP message validated, perform the following steps:

248 CICS TS for z/OS 4.2: Web Services Guide

http://www.redbooks.ibm.com/abstracts/sg246386.html

Procedure

1. Ensure that you have a web service description associated with your
WEBSERVICE resource. This association is created for WEBSERVICE resource
definitions that are automatically created when a WSDL file or a .zip file
containing one or more WSDL is present in the pickup directory of the pipeline
during a pipeline scan.

For WEBSERVICE definitions that are created with RDO, the web service
description is specified with the WSDLFILE attribute.

2. Turn validation on for the web service. You can specify whether validation is
required when you define the resource, and you can change this setting after
the resource is installed

Results

Check the system log to find out if the SOAP message is valid. Message
DFHPI1002 indicates that the SOAP message was successfully validated, and
message DFHPI1001 indicates that the validation failed.

What to do next

Turn validation off when you no longer need it.
Changing the validation status of a web service

You can change the validation status of a web service with the following
interfaces:

CICS Explorer

[*#* The CICS Explorer administration views|
Use the Validation Status attribute in the Web Services view.

CICSPlex SM
The WEBSERVICE definitions view

CEMT
[[The SET WEBSERVICE command|

The CICS SPI
[The SET WEBSERVICE command|

Chapter 7. Creating a web service 249

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.explorer.doc/topics/explorer_administration.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7cq.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/commands/dfha8_setwebservice.html

250 CICS TS for z/OS 4.2: Web Services Guide

Chapter 8. Runtime processing for web services

To send a request to a web service provider or to receive a request from a web
service requester, your application (or wrapper program) must interact correctly
with the web services support in CICS. You can also control the processing that
takes place in the pipeline to determine how the inbound and outbound requests
are handled.

How CICS invokes a service provider program deployed with the web
services assistant

When a service provider application that has been deployed using the CICS web
services assistant is invoked, CICS links to it with a COMMAREA or a channel.

You specify which sort of interface is used when you run JCL procedure
DFHWS2LS or DFHLS2WS with the PGMINT parameter. If you specify a channel,
you can name the container in the CONTID parameter.

* If the program is invoked with a COMMAREA interface, the COMMAREA
contains the top level data structure that CICS created from the SOAP request.

* If the program is invoked with a channel interface, the top level data structure is
passed to your program in the container that was specified in the CONTID
parameter of DFHWS2LS or DFHLS2WS. If you did not specify the CONTID
parameter, the data is passed in container DFHWS-DATA. The channel interface
supports arrays with varying numbers of elements, which are represented as
series of connected data structures in a series of containers. These containers will
also be present.

When you code API commands to work with the containers, you do not need to
specify the CHANNEL option, because all the containers are associated with the
current channel (the channel that was passed to the program). If you need to
know the name of the channel, use the EXEC CICS ASSIGN CHANNEL command.

When your program has processed the request, it must use the same mechanism to
return the response: if the request was received in a COMMAREA, then the
response must be returned in the COMMAREA,; if the request was received in a
container, the response must be returned in the same container.

If an error is encountered when the application program is issuing a response
message, CICS rolls back all of the changes unless the application has performed a

syncpoint.

If the web service provided by your program is not designed to return a response,
CICS will ignore anything in the COMMAREA or container when the program
returns.

Invoking a web service from an application deployed with the web
services assistant

A service requester application that is deployed with the web services assistant
uses the EXEC CICS INVOKE SERVICE command to invoke a web service. The request
and response are mapped to a data structure in container DFHWS-DATA.

© Copyright IBM Corp. 2005, 2012 251

Procedure

1. Create a channel and populate it with containers. At the minimum, container
DFHWS-DATA must be present. DFHWS-DATA holds the top level data
structure that CICS will convert into a SOAP request. If the SOAP request
contains any arrays that have varying numbers of elements, they are
represented as a series of connected data structures in a series of containers.
These containers must also be present in the channel.

2. Invoke the target web service. Use this command:

EXEC CICS INVOKE SERVICE(webservice)
CHANNEL (userchannel)
OPERATION(operation)

where:

* webservice is the name of the WEBSERVICE resource that defines the web
service to be invoked. The WEBSERVICE resource specifies the location of
the web service description and the web service binding file that CICS uses
when it communicates with the web service.

e userchannel is the channel that holds container DFHWS-DATA and any
other containers associated with the application's data structure.

* operation is the name of the operation that is to be invoked in the target
web service.

If you have created a URIMAP resource for client requests to the URI of the
target web service, also specify URIMAP (urimap) where urimap is the name of
your URIMAP resource. Alternatively, you can specify URI(uri) where uri is
the URI of the web service to be invoked. If you omit both the URIMAP and
URI options, then the web service binding file associated with the
WEBSERVICE resource definition must include either a provider URI (obtained
from the web service description by DFHWS2LS) or a provider application
name (specified as the PGMNAME input parameter to DFHWS2LS).

The provider application name in the web service binding file associated with
the WEBSERVICE resource is used to enable local optimization of the web
service request. If you use this optimization, the EXEC CICS INVOKE SERVICE
command is optimized to an EXEC CICS LINK command. This optimization has
an effect on the behavior of the EXEC CICS INVOKE SERVICE command when the
web service is not expected to send a response:

* When the optimization is not in effect, control returns from the EXEC CICS
INVOKE SERVICE command as soon as th