INFORMIX-Universal
Server

Informix Guide to SQL: Tutorial

Version 9.1
March 1997
Part No. 000-3856

INFORMIX

Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

Copyright ” 1981-1997 by Informix Software, Inc. or their subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

INFORMIX"; INFORMIX"-OnLine Dynamic Server(; DataBlade"

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

Adobe Systems Incorporated: PostScript”

International Business Machines Corporation: DRDAO;; 1BMY

Microsoft Corporation: Microsoft”; MS™; MS-DOS"; CodeView"; MS Windows[l ; Windows[] ; Windows
NTO; ODBCU; Visual Basicll; Visual C++0
Microsoft Memory Management Product: HIMEM.SYS
(“DOS” as used herein refers to MS-DOS and/or PC-DOS operating systems.)

X/OpenCompany Ltd.: UNIXY; X/Open”

All other marks or symbols are registered trademarks or trademarks of their respective owners.

Documentation Team: Diana Chase, Brian Deutscher, Geeta Karmarkar, Jennifer Leland

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary

large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party

intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-

party rights.
RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend

must reproduce the legend.

Section |

Chapter 1

Table of Contents

Introduction

About This Manual .
Organization of This Manual
Types of Users . .
Software Dependencies .
Assumptions About Your Locale.
Demonstration Database

Major Features .

Documentation Conventlons
Typographical Conventions
Icon Conventions . .
Sample-Code Conventions.
On-Line Manuals .
Printed Manuals
Error Message Files
Documentation Notes, Release Notes Machme Notes

Compliance with Industry Standards
Informix Welcomes Your Comments .

Using Basic SQL

Informix Databases

The Data Illustration of a Data Model
Concurrent Use and Security .
Centralized Management .

Important Database Terms
The Object-Relational Model

Structured Query Language .
Standard SQL .

Informix SQL and ANSI SQL

OO0 N NO OO Ww

1-3
1-8

1-10
1-10
1-15
1-15
1-16

Chapter 2

Chapter 3

iv Informix Guide to SQL: Tutorial

ANSI-Compliant Databases .
GLS Databases

Summary .

Composing Simple SELECT Statements

Introducing the SELECT Statement .
Some Basic Concepts
The Forms of SELECT .
Special Data Types . .
Single-Table SELECT Statements .
Selecting All Columns and Rows
Selecting Specific Columns
Using the WHERE Clause.
Creating a Comparison Condition .
Expressions and Derived Values
Using Functions in SELECT Statements .

Using SPL Routines in SELECT Statements.

Multiple-Table SELECT Statements .
Creating a Cartesian Product.
Creating a Join.

Some Query Shortcuts .

Summary .

Composing Advanced SELECT Statements

Using the GROUP BY and HAVING Clauses
Using the GROUP BY Clause .
Using the HAVING Clause

Creating Advanced Joins
Self-Joins
Outer Joins . o

Subqueries in SELECT Statements
Using ALL . S
Using ANY . .o
Single-Valued Subqueries .

Correlated Subqueries .
Using EXISTS .

Set Operations
Union.

Intersection.
Difference

Summary .

1-17
1-17
1-17

2-4

2-9
2-10
2-10
2-11
2-17
2-27
2-28
2-45
2-50
2-64
2-66
2-66
2-67
2-73
2-78

3-4
3-4

311
3-11
3-20
3-29
3-31
3-31
3-32
3-34
3-35
3-38
3-39
3-46
3-47
3-49

Chapter 4

Chapter 5

Modifying Data
Statements That Modify Data
Deleting Rows . .
Deleting a Known Number of Rows.
Inserting Rows .
Updating Rows .
Database Privileges .
Displaying Table Pr|V|Ieges
Data Integrity .
Entity Integrity .
Semantic Integrity .
Referential Integrity .
Object Modes and Violation Detectlon
Interrupted Modifications
The Transaction.
Transaction Logging .
Specifying Transactions .

Backups and Logs

Backing Up with INFORMIX Unlversal Server .

Concurrency and Locks
Data Replication .

INFORMIX- Unlversal Server Data Repllcatlon .

Summary

Programming with SQL
SQL in Programs .
SQL in SQL APIs
Static Embedding .
Dynamic Statements .
Program Variables and Host Varlables
Calling the Database Server . .
The SQL Communications Area .
The SQLCODE Field .
The SQLERRD Array .
The SQLWARN Array .o
The SQLERRM Character Array .
The SQLSTATE Value.
Retrieving Single Rows
Data Type Conversion
Working with Null Data .
Dealing with Errors

44
4-4
45

4-13
4-16
4-18
4-19
4-19
4-20
4-21
4-25
4-27
4-28
4-29
4-30
4-31
4-31
4-32
4-32
4-33
4-34

5-4
55
5-5
5-6
5-8
5-8
5-9
5-10
5-12
5-13
5-13
5-14
5-15
5-16
5-17

Table of Contents v

Vi

Chapter 6

Chapter 7

Informix Guide to SQL: Tutorial

Retrieving Multiple Rows
Declaring a Cursor .
Opening a Cursor
Fetching Rows.
Cursor Input Modes.
The Active Set of a Cursor
Using a Cursor: A Parts Explosion.
Dynamic SQL .
Preparing a Statement
Executing Prepared SQL .
Dynamic Host Variables
Freeing Prepared Statements.
Quick Execution .
Embedding Data Definition Statements
Embedding Grant and Revoke Privileges

Summary .

Modifying Data Through SQL Programs
Using DELETE .
Direct Deletions .
Deleting with a Cursor .
Using INSERT
Using an Insert Cursor
Rows of Constants
An Insert Example
Using UPDATE . .
Using an Update Cursor .
Cleaning Up a Table.

Summary .

Programming for a Multiuser Environment

Concurrency and Performance
Locking and Integrity

Locking and Performance
Concurrency Issues

How Locks Work
Kinds of Locks
Lock Scope . .
The Duration of a Lock.
Locks While Modifying

5-19
5-20
5-20
5-21
5-22
5-23
5-26
5-28
5-29
5-31
5-32
5-32
5-33
5-33
5-34
5-36

6-4
6-7
6-9
6-9

6-12

6-12

6-15

6-15

6-17

6-18

7-3
7-3
7-4
7-4
7-6
7-7
7-7

7-10

7-10

Section |l

Chapter 8

Setting the Isolation Level Y ek
Comparing SET TRANSACTION W|th SET ISOLATION ... 112
ANSI Read Uncommitted and Informix Dirty Read Isolation . . 7-13
ANSI Read Committed and Informix Committed Read Isolation. 7-14
Informix Cursor Stability Isolation . 7-14
ANSI Serializable, ANSI Repeatable Read, and Informlx

Repeatable Read Isolation . .o 7-16

Controlling Data Modification with Access Modes . 7-17

Setting the Lock Mode . 7-18
Waiting for Locks . 7-18
Not Waiting for Locks 7-18
Waiting a Limited Time . 7-19
Handling a Deadlock . 7-19
Handling External Deadlock . 7-20

Simple Concurrency . 7-20

Locking with Other Database Servers 7-21
Isolation While Reading . 7-22
Locking Updated Rows . 7-22

Hold Cursors . 7-23

Summary 7-24

Designing and Managing Databases

Building Your Data Model

Why Build a Data Model . . 8-3
Entity-Relationship Data—ModeI Overwew 8-4

Identifying and Defining Your Prlnupal Data Ob]ECtS . 8-5
Discovering Entities . . S . 8-5
Defining the Relationships . 8-9
Identifying Attributes 8-17

Diagramming Your Data Objects 8-19

Translating E-R Data Objects into Relational Constructs 8-22
Rules for Defining Tables, Rows, and Columns . 8-23
Determining Keys for Tables 8-25

Resolving Your Relationships 8-29

Normalizing Your Data Model . 8-31

Summary 8-36

Table of Contents vii

viii

Chapter 9

Chapter 10

Chapter 11

Implementing Your Data Model

Defining Column-Specific Properties
Extended Data Types
Built-In Data Types .
Null Values.
Default Values.
Check Constraints
Domains. .
Creating the Database . .
Using CREATE DATABASE
Using CREATE TABLE.
Using Command Scripts .
Populating the Tables
Fragmenting Tables and Indexes .
Creating a Fragmented Table
Fragmenting a New Table.
Creating a Fragmented Table from Nonfragmented Tables
Modifying a Fragmented Table .
Modifying Fragmentation Strategies .
Dropping a Fragment .
Accessing Data Stored in Fragmented Tables
Using Primary Keys Instead of Rowids .

Summary .

Understanding Complex Data Types

What Are Complex Data Types? .
Named Row Types .
Unnamed Row Types
Collection Data Types .

What Is Inheritance? .

Type Inheritance .
Table Inheritance .

Summary .

Granting and Limiting Access to Your Database
Securing Confidential Data .
Granting Privileges

Database-Level Pr|V|Ieges

Ownership Rights

Table-Level Privileges .

Type-Level Privileges

Informix Guide to SQL: Tutorial

9-3

9-4

9-5
9-33
9-34
9-34
9-35
9-37
9-38
9-40
9-42
9-43
9-45
9-45
9-46
9-47
9-48
9-49
9-51
9-52
9-52
9-55

10-4

10-5
10-13
10-14
10-20
10-20
10-27
10-39

11-4
11-5
11-5
11-7
11-8
11-12

Section Il

Chapter 12

Chapter 13

Routine-Level Privileges.
Automating Privileges .
Controlling Access to Data Using Routines .
Restricting Reads of Data
Restricting Changes to Data
Monitoring Changes to Data .
Restricting Object Creation .
Using Views
Creating Views .
Creating Typed Views
Modifying Through a View.
Privileges and Views
Privileges When You Create a Vlew
Privileges When You Use a View .

Summary

Using Advanced SQL

Accessing Complex Data Types

Accessing Row-Type Data .o
Selecting Columns of a Typed Table
Using an Alias for a Typed Table .

Selecting Columns That Contain Row-Type Data .

Modifying Rows from Typed Tables.

Modifying Columns That Contain Row Type Data.

Accessing Collection Type Data
Selecting Collections .
Modifying Collections
Accessing Rows from Tables in a Table H|erarchy
Selecting Rows from a Supertable
Using an Alias for a Supertable
Inserting Rows into a Supertable .
Updating Rows from a Supertable
Deleting Rows from a Supertable.

Summary

Casting Data Types

What Is a Cast?
Creating User-Deflned Casts
Invoking Casts .

. 11-13
. 11-14
. 11-19
. 11-19
. 11-20
. 11-21
. 11-22
. 11-23
. 11-24
. 11-27
. 11-29
. 11-32
. 11-32
. 11-33

. 11-35

12-4
12-5
12-6

. 12-7

.12-10

1211

. 12-14

. 12-15

. 12-19

L 12-21

.12-23

L 12-24

L 12-24

. 12-25

.12-26

. 12-26

13-3
13-5
13-6

Table of Contents ix

Casting Row Types . . . P < S

Casting Between Named Row Types S 138
Casting Between Named and Unnamed Row Types oo . 139
Casting Between Unnamed Row Types 13-10
Row-Type Conversions that Require Explicit Casts on Flelds . 1311
Casting FieldsofaRow Type 1313
Casting Collection Data Types. 1313
Converting Between Collection Types Wlth the
Same Element Type. . . 13-14
Converting Between Collections with leferent Element Types 13-15
Casting Distinct Data Types 1316
Applying Casts that a Distinct Type Inherlts 1316
Casting Between a Distinct Type and Its Source Type 13-17
An Example of Casts with Conversion Functions 13-20
Summary . 1323

Chapter 14 Creating and Using SPL Routines

Introduction to SPL Routines 145
Writing SPL Routines . . . e 46
Using the CREATE PROCEDURE or
CREATE FUNCTION Statement 14-6
Defining and Using Variables 1415
Declaring Local Variables. 1415
Declaring Global Variables 1424
Assigning Values to Variables 1425
Writing the Statement Block . . . Co 14-28
Implicit and Explicit Statement Blocks T v RA
Using Cursors. . . T v S0
Using an IF - ELIF - ELSE Structure P B
Adding WHILEand FOR Loops 1435
Exitinga Loop. Co e 1437
Returning Values from an SPL Function 14-38
Returning aSingleValue 1439
Returning Multiple Values 14-39
Handling Collections 144
Collection Examples. 144
The First Steps. 1443
Declaring a Collection Varlable e 1443
Declaring an Element Variable B R
Selecting a Collection into a Collection Varlable L. L1444
Inserting Elements into a Collection Variable 1445
Selecting Elements from a Collection 14-48
Deleting a Collection Element 1451

X Informix Guide to SQL: Tutorial

Chapter 15

Updating a Collection Element
Updating the Entire Collection
Inserting into a Collection .
Handling Row Types .
Updating a Row-Type Column
Precedence of Dot Notation
Executing Routines . .
The EXECUTE Statements .
Using the CALL Statement .
Executing Routines in Expressions .
Executing Cursor Functions from an SPL Routlne
Dynamic Routine-Name Specification .
Privileges on Routines .
Privileges for Registering a Routlne
Privileges for Executing a Routine
Privileges on Objects Associated with a Routlne
Executing a Routine as DBA
Finding Errors in an SPL Routine .
Looking at Compile-Time Warnings.
Generating the Text of the Routine .

Debugging an SPL Routine

Exception Handling . .
Trapping an Error and Recoverlng .
Scope of Control of an ON EXCEPTION Statement
User-Generated Exceptions.

Checking the Number of Rows Processed in an SPL Routine

Summary

Creating and Using Triggers
When to Use Triggers
How to Create a Trigger
Assigning a Trigger Name .
Specifying the Trigger Event
Defining the Triggered Actions .
A Complete CREATE TRIGGER Statement
Using Triggered Actions .
Using BEFORE and AFTER Trlggered Actlons .
Using FOR EACH ROW Triggered Actions .
Using SPL Routines as Triggered Actions .

Tracing Triggered Actions

. 14-55
. 14-57
. 14-60
. 14-65
. 14-66
. 14-67
. 14-67
. 14-68
. 14-69
. 14-70
. 14-71
. 14-72
. 14-74
. 14-75
. 14-75
. 14-77
.14-78
. 14-80
. 14-80
. 14-81

. 14-82
. 14-84
. 14-84
. 14-85
. 14-87
. 14-89
. 14-89

15-3
15-4
15-5
15-5
15-6
15-7
15-7
15-7
15-9

. 15-11

. 15-13

Table of Contents ~ Xi

Generating Error Messages
Applying a Fixed Error Message

Generating a Variable Error Message .

Summary .

Index

15-14
15-14
15-16
15-17

Introduction

About This Manual. . 3
Organization of This Manual 3
Types of Users . 6
Software Dependenmes . 6
Assumptions About Your Locale. 6
Demonstration Database 7
Major Features 7
Documentation Conventions 8
Typographical Conventions e e e 9
Icon Conventions 10
Commentlcons oL 10
Feature lcons . . . Ce e 10
Sample-Code Conventlons Ce e 11
On-LineManuals L. 11
Printed Manuals 12
Error Message Files . . . o 12
Documentation Notes, Release Notes Machlne Notes o 13

Compliance with Industry Standards 13

Informix Welcomes Your Comments. 14

2 Informix Guide to SQL: Tutorial

ead this introduction for an overview of the information
provided in this manual and for an understanding of the documentation
conventions used.

About This Manual

The Informix Guide to SQL: Tutorial includes instructions for using basic and
advanced Structured Query Language (SQL) as well as for designing and
managing your database.

This manual is part of a series of manuals that discusses the Informix imple-
mentation of SQL. Once you finish reading this manual, you can use the
Informix Guide to SQL.: Reference and the Informix Guide to SQL: Syntax as refer-
ences to help you with daily SQL issues.

Organization of This Manual
This manual includes the following chapters:

= This Introduction provides an overview of the manual and describes
the documentation conventions used.

= Chapter 1, “Informix Databases,” covers the fundamental concepts
of databases and defines some terms that are used throughout the
book. This chapter discusses how a database is different from a
collection of files; what terms are used to describe the main compo-
nents of a database; and what language is used to create, query, and
modify a database.

Introduction 3

Organization of This Manual

s Chapter 2, “Composing Simple SELECT Statements,” shows how
you can use the SELECT statement to query and retrieve data. This
chapter discusses how to tailor your statements to select columns or
rows of data from one or more tables, how to include expressions
and functions in SELECT statements, and how to create various join
conditions between relational database tables.

= Chapter 3, “Composing Advanced SELECT Statements,” increases
the scope of what you can do with the SELECT statement and enables
you to perform more complex database queries and data
manipulation.

= Chapter 4, “Modifying Data,” discusses solutions to problems such
as the security of user access to the database and its tables. It also
explains how to minimize the risk of system failure caused by
external events.

s Chapter 5, “Programming with SQL,” is an introduction to the
concepts that are common to SQL programming.

= Chapter 6, “Modifying Data Through SQL Programs,” covers the
issues that arise when a program needs to modify the database by
deleting, inserting, or updating rows.

= Chapter 7, “Programming for a Multiuser Environment,” addresses
concurrency, locking, and isolation level issues as they pertain to a
database that is accessed simultaneously by multiple users.

» Chapter 8, “Building Your Data Model,” contains a cursory
overview the first step towards constructing a data model—a
precise, complete definition of the data to be stored.

= Chapter 9, “Implementing Your Data Model,” covers the decisions
that you must make to implement the data model.

= Chapter 10, “Understanding Complex Data Types,” describes row
types and collection types and shows the different ways you can use
these types. The chapter also explains inheritance and shows how to
create an inheritance hierarchy for row types and tables.

s Chapter 11, “Granting and Limiting Access to Your Database,”
discusses how you can restrict access to your database. By using
statements such as GRANT, REVOKE, and CREATE VIEW, you can
deny access to some or all of the data to specified users.

4 INFORMIX

Organization of This Manual

Chapter 12, “Accessing Complex Data Types,” shows how to query
and modify complex data types. The chapter provides examples of
SELECT, UPDATE, INSERT, and DELETE operations on row types and
collection types.

Chapter 13, “Casting Data Types,” introduces user-defined routines.
This chapter explains the concepts of routine overloading and
routine resolution and includes two examples that show how to
create and register casts to convert between data types. The chapter
also describes how to use SQL to register and use external routines.

Chapter 14, “Creating and Using SPL Routines,” discusses how you
can write procedures using SQL and additional statements belonging
to the Stored Procedure Language (SPL), and store the procedures in
the database. These stored procedures are effective tools for
controlling SQL activity.

Chapter 15, “Creating and Using Triggers,” describes the purpose of
each component of the CREATE TRIGGER statement, illustrates some
uses for triggers, and describes the advantages of using a stored
procedure as a triggered action.

The Index is a combined index for the manuals in the SQL series.
Each page reference in the index ends with a code that identifies the
manual in which the page appears. The same index also appears in
the Informix Guide to SQL.: Reference and the Informix Guide to SQL:
Syntax.

The following items are an integral part of this manual although they do not
appear in it:

A description of the structure and contents of the stores7 demon-
stration database appears in the Informix Guide to SQL: Reference.

A glossary of object-relational database terms that are used in the
SQL manual series appears in the Informix Guide to SQL: Reference.

Introduction 5

Types of Users

6

INFORMIX

Types of Users

This manual is written for SQL users, database administrators and SQL devel-
opers who use Informix products and SQL on a regular basis.

Software Dependencies

This manual assumes that you are using the following Informix software:

= INFORMIX-Universal Server, Version 9.1

The database server must be installed either on your computer or on
another computer to which your computer is connected over a
network.

In this manual, all instances of Universal Server refer to INFORMIX-
Universal Server.

= An Informix SQL application programming interface (API), such as
INFORMIX-ESQL/C, Version 9.1, or the DB-Access database access
utility, which is shipped as part of your database server.

The SQL API or DB-Access enables you to compose queries, send
them to the database server, and view the results that the database
server returns.

Assumptions About Your Locale

Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

This manual assumes that you are using the default locale, en_us.8859-1. This
locale supports U.S. English format conventions for dates, times, and
currency. In addition, this locale supports the 1ISO 8859-1 code set, which
includes the ASCII code set plus many 8-bit characters such as é, ¢, and A.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale(s). For instructions on
how to specify a nondefault locale, additional syntax, and other consider-
ations related to GLS locales, see the Guide to GLS Functionality.

Demonstration Database

Demonstration Database

The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores7 that contains

information about a fictitious wholesale sporting-goods distributor. Sample
command files are also included.

Many examples in Informix manuals are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in Appendix A of the Informix Guide to SQL: Reference.

The script that you use to install the demonstration database is called
dbaccessdemo? and is located in the $SINFORMIXDIR/bin directory. For a
complete explanation of how to create and populate the demonstration
database on your database server, refer to the DB-Access User Manual.

Major Features

The following SQL features are new with Universal Server, Version 9.1.

ALLOCATE COLLECTION
ALLOCATE ROW

CREATE CAST

CREATE DISTINCT TYPE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE ROUTINE FROM
CREATE ROW TYPE
DEALLOCATE COLLECTION
DEALLOCATE ROW

DROP CAST

DROP FUNCTION

DROP OPCLASS

DROP ROUTINE

DROP ROW TYPE

DROP TYPE
EXECUTE FUNCTION
SET AUTOFREE

SET DEFERRED_PREPARE

Argument

Collection Derived Table
External Routine Reference

Function Name

Literal Collection
Literal Row

Quoted Pathname
Return Clause

Routine Modifier
Routine Parameter List
Specific Name
Statement Block

Introduction 7

Documentation Conventions

The following SQL features are enhanced for use with Universal Server,

Version 9.1.
ALLOCATE DESCRIPTOR FLUSH
ALTER FRAGMENT FREE

ALTER INDEX GET DESCRIPTOR
ALTER TABLE GET DIAGNOSTICS
CREATE INDEX GRANT

CREATE PROCEDURE INFO

CREATE PROCEDURE FROM INSERT

CREATE SCHEMA OPEN

CREATE SYNONYM PREPARE

CREATE TABLE PUT

CREATE VIEW REVOKE
DEALLOCATE DESCRIPTOR SELECT

DECLARE SET DESCRIPTOR
DELETE SET EXPLAIN
DESCRIBE UPDATE

DROP INDEX UPDATE STATISTICS
DROP PROCEDURE Condition

DROP TABLE Data Type
EXECUTE Expression

EXECUTE PROCEDURE
FETCH

Procedure Name
Quoted String

The Introduction to each Version 9.1 product manual contains a list of major
features for that product. The Introduction to each manual in the Version 9.1
Informix Guide to SQL series contains a list of new SQL features.

Major features for Version 9.1 Informix products also appear in release notes.

Documentation Conventions

This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other Informix
manuals.

The following conventions are covered:

= Typographical conventions
= Icon conventions
= Sample-code conventions

8 INFORMIX

Typographical Conventions

Typographical Conventions

This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax diagrams, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,

functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

monospace Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

¢ This symbol indicates the end of feature-, product-, platform-,

or compliance-specific information.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Introduction 9

Icon Conventions

Icon Conventions

Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify warnings, important notes, or tips. This information
is always displayed in italics.

Icon Description

The warning icon identifies vital instructions, cautions, or
critical information.

The important icon identifies significant information about
the feature or operation that is being described.

The tip icon identifies additional details or shortcuts for the
functionality that is being described.

Feature Icons

Feature icons identify paragraphs that contain feature-specific information.

Icon Description

GLS Identifies information that relates to the Informix Global
Language Support (GLS) feature.

These icons can apply to arow in atable, one or more paragraphs, or an entire
section. A ¢ symbol indicates the end of the feature-specific information.

10 INFORMIX

Sample-Code Conventions

Sample-Code Conventions

Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores7/

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using the Query-language option of
DB-Access, you must delimit multiple statements with semicolons. If you are
using an SQL API, you must use EXEC SQL at the start of each statement and
a semicolon (or other appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

On-Line Manuals

A CD that contains Informix manuals in electronic format is provided with
your Informix products. You can install the documentation or access it
directly from the CD. For information about how to install, read, and print on-
line manuals, see either the installation guide for your product or the instal-
lation insert that accompanies the documentation CD.

The documentation set that is provided on the CD describes Universal Server,
its implementation of SQL, and its associated application-programming
interfaces. For an overview of the manuals in the Universal Server
documentation set, see Getting Started with INFORMIX-Universal Server.

Introduction 11

Printed Manuals

Printed Manuals

The Universal Server documentation set describes Universal Server, its
implementation of SQL, and its associated application-programming
interfaces. For an overview of the manuals in the Universal Server
documentation set, see Getting Started with INFORMIX-Universal Server.

To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com.

Please provide the following information:

= The documentation that you need
= The quantity that you need
= Your name, address, and telephone number

Error Message Files

Informix software products provide ASCII files that contain all the Informix
error messages and their corrective actions. To read the error messages in the
ASCII file, Informix provides scripts that let you display error messages on
the screen (finderr) or print formatted error messages (rofferr). For a detailed
description of these scripts, see the Introduction to the Informix Error Messages
manual.

12 INFORMIX

Documentation Notes, Release Notes, Machine Notes

Documentation Notes, Release Notes, Machine Notes

In addition to printed documentation, the following on-line files, located in
the $INFORMIXDIR/release/en_us/0333 directory, supplement the infor-
mation in this manual.

On-Line File Purpose

SQLTDOC 9.1 The documentation-notes file describes features that are not
covered in this manual or that have been modified since
publication.

SERVERS_9.1 The release-notes file describes feature differences from earlier

versions of Informix products and how these differences might
affect current products. This file also contains information about
any known problems and their workarounds.

IUNIVERSAL_9.1 The machine-notes file describes any special actions that are
required to configure and use Informix products on your
computer. Machine notes are named for the product described.

Please examine these files because they contain vital information about
application and performance issues.

Compliance with Industry Standards

The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to 1SO 9075:1992, on INFORMIX-Universal Server. In addition, many features
of Universal Server comply with the SQL-92 Intermediate and Full Level and
X/0pen SQL CAE (common applications environment) standards.

Introduction 13

Informix Welcomes Your Comments

Informix Welcomes Your Comments

Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about corrections or clari-
fications that you would find useful. Include the following information:

= The name and version of the manual that you are using
= Any comments that you have about the manual
= Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.

SCT Technical Publications Department
4100 Bohannon Drive

Menlo Park, CA 94025

If you prefer to send email, our address is:
doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at;
415-926-6571

We appreciate your feedback.

14 INFORMIX

Using Basic SQL

-
2
)

O

D
)

Informix Databases

The Data lllustration of a Data Model
Storing Data
Querying Data.
Modifying Data . .
Concurrent Use and Security .
Centralized Management .

INFORMIX-Universal Server Databases .

Important Database Terms . .
The Object-Relational Model .
Tables. Coe
Columns.
Rows . .
Tables, Rows, and Columns .
Operations on Tables

Structured Query Language.
Standard SQL .
Informix SQL and ANSI SQL
ANSI-Compliant Databases
GLS Databases . .

Summary .

1-3
1-5
1-6

1-8
1-8

1-10
1-10
1-11
1-12
1-13
1-13
1-13

1-15
1-15
1-16
1-17
1-17

1-17

1-2 Informix Guide to SQL: Tutorial

his book is about databases and about how you can exploit them
using Informix software. As you start reading, keep in mind the following
fundamental database characteristics: a database comprises not only data but
also a plan, or model, of the data; a database can be a common resource, used
concurrently by many people. Your real use of a database begins with the
SELECT statement, which is described in Chapter 2, “Composing Simple
SELECT Statements.”

This chapter covers the fundamental concepts of databases and defines some
terms that are used throughout the book, emphasizing the following topics:

= What terms are used to describe the main components of a database?
= What language is used to create, query, and modify a database?

The Data lllustration of a Data Model

The principal difference between information collected in a database versus
information collected in a file is the way the data is organized. A flat file is
organized physically; certain items precede or follow other items. But the
contents of a database are organized according to a data model. A data model
is a plan, or map, that defines the units of data and specifies how each unit is
related to the others.

For example, a number can appear in either a file or a database. In a file, it is
simply a number that occurs at a certain point in the file. A number in a
database, however, has a role that the data model assigns to it. It might be a
price that is associated with a product that was sold as one item of an order that
was placed by a customer. Each of these components, price, product, item,
order, and customer, also has a role that the data model specifies. See
Figure 1-1 on page 1-4.

Informix Databases 1-3

The Data Illustration of a Data Model

The data model is designed when the database is created. Units of data are
then inserted according to the plan that the model lays out. Some books use
the term schema instead of data model.

Figure 1-1
The Advantage of Using a Data Model

/ 1015 06/27/94 1 case baseball gloves $450.00
/1014 06/25/94 1 case football __ $960.00
1013 06/22/94 1 each tennis racquet $19.80
1012 06/18/94 1 case volleyball $840.00
/ 1011 06/18/94 5 each tennis racquet $99.00
1010 06/17/94 1 case tennisball $36.00 \

—/

ORDERS

order
1003
05/22/94

order
1001
05/20/94

customer
Anthony
Higgins

item

tennis
06/18/94
racquet order
1013
06/22/94

item

1 case
volleyball tennis
nets ball

1-4 Informix Guide to SQL: Tutorial

The Data Illustration of a Data Model

Storing Data

Another difference between a database and a file is that the organization of
the database is stored with the database.

A file can have a complex inner structure, but the definition of that structure
is not within the file; it is in the programs that create or use the file. For
example, a document file that a word-processing program stores might
contain very detailed structures describing the format of the document.
However, only the word-processing program can decipher the contents of the
file because the structure is defined within the program, not within the file.

A data model, however, is contained in the database it describes. It travels
with the database and is available to any program that uses the database. The
model defines not only the names of the data items but also their data types,
so a program can adapt itself to the database. For example, a program can
find out that, in the current database, a price item is a decimal humber with
eight digits, two to the right of the decimal point; then it can allocate storage
for a number of that type. How programs work with databases is the subject
of Chapter 5, “Programming with SQL,” and Chapter 6, “Modifying Data
Through SQL Programs.”

Informix Databases 1-5

The Data Illustration of a Data Model

Querying Data

Another difference between a database and a file is the way you can
interrogate them. You can search a file sequentially, looking for particular
values at particular physical locations in each line or record. That is, you
might ask a file, “What records have numbers under 20 in the fifth field?”
Figure 1-2 shows this type of search.

Figure 1-2
Searching a File
Sequentially

50.00

101306/22/94 each tennis racquet $19.80
06/22/941 case tennis ball $36.00
06/22/941 ca i

1012 06/18/94 1 case volleyball $840.00
/ 1011 06/18/94 5 each tennis racquet $99.00
1010 06/17/94 1 case tennis ball $36.00 \

—

ORDERS

In contrast, when you query a database, you use the terms that its model
defines. You can query the database with questions such as, “What orders
have been placed for products made by the Shimara Corporation, by customers
in New Jersey, with ship dates in the third quarter?” Figure 1-3 on page 1-7
shows this type of query.

In other words, when you interrogate data that is stored in a file, you must
state your question in terms of the physical layout of the file. When you query
a database, you can ignore the arcane details of computer storage and state
your query in terms that reflect the real world, at least to the extent that the
data model reflects the real world.

1-6 Informix Guide to SQL: Tutorial

The Data Illustration of a Data Model

In this manual, Chapter 2 and Chapter 3 describe the language you use for
making queries. Chapter 8 and Chapter 9 describe how to design an accurate,
robust data model for other users to query.

Figure 1-3
Querying a Database

state
New Jersey

manufacturer
Shimara

order
1019
07/16/94

customer
Cathy
O’Brian

customer
Bob
Shorter

order
1023
07/24/94

Run: Next Restart Exit
Display the next page of query results

stores7 Press CTRL-W for Help------

s 1019 Bob Shorter SHM swimcap 07/16/94 .

Modifying Data

The model also makes it possible to modify the contents of the database with
less chance for error. You can query the database with statements such as
“Find every stock item with a manufacturer of Presta or Schraeder, and increase
its price by 13 percent.” You state changes in terms that reflect the meaning of
the data. You do not have to waste time and effort thinking about details of
fields within records in afile, so the chances for error are less.

The statements you use to modify stored data are covered in Chapter 5,
“Programming with SQL.”

Informix Databases 1-7

Concurrent Use and Security

1-8

Concurrent Use and Security

A database can be a common resource for many users. Multiple users can
query and modify a database simultaneously. The database server (the
program that manages the contents of all databases) ensures that the queries
and modifications are done in sequence and without conflict.

Having concurrent users on a database provides great advantages but also
introduces new problems of security and privacy. Some databases are
private; individuals set them up for their own use. Other databases contain
confidential material that must be shared but among only a select group of
persons; still other databases provide public access.

Informix database software provides the means to control database use.
When you design a database, you can perform any of the following
functions:

= Keep the database completely private

= Open its entire contents to all users or to selected users

= Restrict the selection of data that some users can view (In fact, you
can reveal entirely different selections of data to different groups of
users.)

= Allow specified users to view certain items but not modify them
= Allow specified users to add new data but not modify old data

= Allow specified users to modify all, or specified items of, existing
data

= Ensure that added or modified data conforms to the data model

The facilities that make these and other things possible are discussed in
Chapter 11, “Granting and Limiting Access to Your Database.”

Centralized Management

Databases that are used by many people are highly valuable and must be
protected as important business assets. Compiling a store of valuable data
and simultaneously allowing many employees to access it creates a signif-
icant problem: protecting data while maintaining performance. INFORMIX-
Universal Server lets you centralize these tasks.

Informix Guide to SQL: Tutorial

Centralized Management

Databases must be guarded against loss or damage. The hazards are many:
failures in software and hardware, and the risks of fire, flood, and other
natural disasters. Losing an important database creates a huge potential for
damage. The damage could include not only the expense and difficulty of
re-creating the lost data but also the loss of productive time by the database
users as well as the loss of business and good will while users cannot work.
A plan for regular backups helps avoid or mitigate these potential disasters.

A large database used by many people must be maintained and tuned.
Someone must monitor its use of system resources, chart its growth, antic-
ipate bottlenecks, and plan for expansion. Users will report problems in the
application programs; someone must diagnose these problems and correct
them. If rapid response is important, someone must analyze the performance
of the system and find the causes of slow responses.

INFORMIX-Universal Server Databases

Universal Server is designed to manage large databases with requirements
for high reliability, high availability, and high performance. Although
Universal Server supports private and group databases very well, it is at its
best managing the databases that are essential for your organization to carry
out its work.

Universal Server lets you make backups while the databases are in use. It also
allows incremental backups (backing up only modified data), an important
feature when you are making a complete copy that could take many tapes.

Universal Server has an interactive monitor program that lets its operator (or
any user) monitor the activities within the database server to see when bottle-
necks are developing. It also comes with utility programs to analyze its use
of disk storage. In addition, Universal Server provides the sysmaster tables
that contain information about an entire database server, which might
manage many databases. For more information about the sysmaster tables,
see the INFORMIX-Universal Server Administrator’s Guide.

The INFORMIX-Universal Server Performance Guide contains tips on
optimizing placement of tables on disk. All the details of using and managing
Universal Server are contained in the INFORMIX-Universal Server Adminis-
trator’s Guide.

Informix Databases 1-9

Important Database Terms

1-10

Important Database Terms

You should know the following set of terms before you begin the next
chapter. These terms describe the database and the data model.

The Object-Relational Model

Universal Server is an object-relational database server that combines object-
oriented and relational capabilities. In addition to providing support for
alphanumeric data such as character strings, integers, decimal, and date,
Universal Server offers the following object-oriented capabilities:

= Extensibility. You can extend the capability of the database server by
defining new data types (and the access methods and functions to
support them) and user-defined routines (UDRs) that allow you to
store and manage images, audio, video, large text documents, and so
forth.

Informix, as well as third-party vendors, package some data types
and their access methods into DataBlade modules, or shared class
libraries, that you can add on to the database server, if they suit your
needs. DataBlade modules enable you to store non-traditional data
types such as two-dimensional spatial objects (lines, polygons,
ellipses, and circles) and to access them through R-tree indexes. A
DataBlade might also provide new types of access to large text
documents, including phrase matching, fuzzy searches, and
synonym matching.

You can also extend the database server on your own, by using the
features of the Universal Server that enable you to add data types
and access methods. For more information, see Extending
INFORMIX-Universal Server: Data Types.

You can create UDRs in Stored Procedure Language (SPL) and the C
programming language to encapsulate application logic or to
enhance the functionality of Universal Server. For more information,
see Chapter 14, “Creating and Using SPL Routines.”

Informix Guide to SQL: Tutorial

The Object-Relational Model

= Complex Types. You can define new data types that combine one or
more existing data types. Complex types enable greater flexibility in
how you organize data at the level of columns and tables. For
example, with complex types you can define columns that contain
collections of values of a single type and columns that contain
multiple component types. For information about complex types, see
Chapter 10, “Understanding Complex Data Types.”

= Inheritance. You can define objects (types and tables) that acquire the
properties of other objects and add new properties that are specific to
the object that you define. For information about inheritance, see
“What Is Inheritance?” on page 10-20.

Universal Server provides object-oriented capabilities beyond those of the
relational model but represents all data in the form of tables with rows and
columns. Although the object-relational model extends the capabilities of the
relational model, you can implement your data model as a traditional
relational database if you choose.

Tables

A database is a collection of information that is grouped into one or more
tables. A table is an array of data items organized into rows and columns. A
demonstration database is distributed with every Informix product. A partial
table from the demonstration database follows.

stock_num manu_code description unit_price unit unit_descr

1 HRO baseball gloves 250.00 case 10 gloves/case
1 HSK baseball gloves 800.00 case 10 gloves/case
1 SMT baseball gloves 450.00 case 10 gloves/case
2 HRO baseball 126.00 case 24/case

3 HSK baseball bat 240.00 case 12/case

4 HSK football 960.00 case 24/case

(10of2)

Informix Databases 1-11

The Object-Relational Model

1-12

stock_num manu_code description unit_price unit unit_descr
4 HRO football 480.00 case 24/case
5 NRG tennis racquet 28.00 each each
313 ANZ swim cap 60.00 case 12/box
(20f2)

A table represents all that is known about one entity, one type of thing that
the database describes. The example table, stock, represents all that is known
about the merchandise that is stocked by a sporting-goods store. Other tables
in the demonstration database represent such entities as customer and
orders.

Think of a database as a collection of tables. To create a database is to create
a set of tables. The right to query or modify tables can be controlled on a
table-by-table basis, so that some users can view or modify some tables but
not others.

Columns

In a traditional relational model, each column of a table stands for one
attribute, which is one characteristic, feature, or fact that is true of the subject
of the table. For example, the stock table has separate columns for each of the
following facts about items of merchandise: stock numbers, manufacturer
codes, descriptions, prices, and units of measure.

In the object-relational model, each column of a table can stand for one
attribute or multiple attributes. For example, you might create a single
column that contains all the address-related attributes. Such a column might
contain distinct attributes for street, city, state, and zip code data. For infor-
mation about creating columns that contain multiple attributes, see “Using a
Named Row Type to Create a Column” on page 10-10. A column can also
stand for a collection of values within a single row of a table. For information
about creating columns that contain collections, see “Collection Data Types”
on page 10-14.

Informix Guide to SQL: Tutorial

The Object-Relational Model

Rows

In an object-relational model, each row of a table stands for one instance of the
subject of the table, which is one particular example of that entity. Each row
of the stock table stands for one item of merchandise that the sporting-goods
store sells.

Tables, Rows, and Columns

Now you understand that the object-relational model is a way of organizing
data to reflect the world. It uses the following simple corresponding
relationships:

table = entity A table represents all that the database knows about
one subject or kind of thing.

column = attribute(s) A column represents one or more features, character-
istics, or facts that is true of the table subject.

row = instance A row represents one individual instance of the table
subject.

Some rules apply about how you choose entities and attributes, but they are
important only when you are designing a new database. (Chapter 8 and
Chapter 9 cover database design.) The data model in an existing database is
already set. To use the database, you need to know only the names of the
tables and columns and how they correspond to the real world.

Operations on Tables

Because a database is really a collection of tables, database operations are
operations on tables. The relational model supports three fundamental
operations, two of which are shown in the following illustration. (All three
operations are defined in more detail, with many examples, in Chapter 2,
“Composing Simple SELECT Statements,” and Chapter 3, “Composing
Advanced SELECT Statements.”)

When you select data from a table, you are choosing certain rows and
ignoring others. For example, you can query the stock table by asking the
database management system to “select all rows in which the manufacturer
code is HRO and the unit price is between 100.00 and 200.00.”

Informix Databases 1-13

The Object-Relational Model

When you project from a table, you are choosing certain columns and

ignoring others. For example, you can query the stock table by asking the
database management system to “project the stock_num, unit_price, and
unit_descr columns.”

A table contains information about only one entity; when you want
information about multiple entities, you must join their tables. You can join
tables in many ways. (The join operation is the subject of Chapter 3,
“Composing Advanced SELECT Statements.”) See Figure 1-4.

Figure 1-4

Hlustration of Selection and Projection

1-14

Stock Table

stock_num manu_code description unit_price unit unit_descr
1 HRO baseball gloves 250.00 case 10 gloves/case
1 HSK baseball gloves 800.00 case 10 gloves/case
1 SMT baseball gloves 450.00 case 10 gloves/case
2 HRO baseball 126.00 case 24/case
3 HSK baseball bat 240.00 case 12/case
4 HSK football 960.00 case 24/case
4 HRO football 480.00 case 24/case
5 NRG tennis racquet 28.00 each each
313 ANZ swim cap 60.00 case 12/box

P R (6] J E C T | (6] N

Informix Guide to SQL: Tutorial

SELECT

Structured Query Language

Structured Query Language

Most computer software has not yet reached a point where you can literally
ask a database, “What orders have been placed by customers in New Jersey
with ship dates in the second quarter?” You must still phrase questions in a
restricted syntax that the software can easily parse. You can pose the same
guestion to the demonstration database in the following terms:

SELECT * FROM customer, orders
WHERE customer.customer_num = orders.customer_num
AND customer.state = "NJ'
AND orders.ship_date
BETWEEN DATE('7/1/94') AND DATE('7/30/94")

This question is a sample of Structured Query Language (SQL). It is the
language that you use to direct all operations on the database. SQL is
composed of statements, each of which begins with one or two keywords that
specify a function. The Informix implementation of SQL includes about 76
statements, from ALLOCATE DESCRIPTOR to WHENEVER.

All the SQL statements are specified in detail in the Informix Guide to SQL.:
Syntax. Most of the statements are used infrequently, when you set up or tune
a database. Most users generally use only three or four statements to query
or update databases.

One statement, SELECT, is in almost constant use. SELECT is the only
statement that you can use to retrieve data from the database. It is also the
most complicated statement, and the next two chapters of this book explore
its many uses.

Standard SQL

SQL and the relational model were invented and developed at IBM in the
early and middle 1970s. Once IBM proved that it was possible to implement
practical relational databases and that SQL was a usable language for manip-
ulating them, other vendors began to provide similar products for non-IBM
computers.

Informix Databases 1-15

Informix SQL and ANSI SQL

1-16

For reasons of performance or competitive advantage, or to take advantage
of local hardware or software features, each SQL implementation differed in
small ways from the others and from the IBM version of the language. To
ensure that the differences remained small, a standards committee was
formed in the early 1980s.

Committee X3H2, sponsored by the American National Standards Institute
(ANSI), issued the SQL1 standard in 1986. This standard defines a core set of
SQL features and the syntax of statements such as SELECT.

Informix SQL and ANSI SQL

The SQL version that Informix products support is highly compatible with
standard SQL (it is also compatible with the IBM version of the language).
However, it does contain extensions to the standard; that is, extra options or
features for certain statements, and looser rules for others. Most of the differ-
ences occur in the statements that are not in everyday use. For example, few
differences occur in the SELECT statement, which accounts for 90 percent of
the SQL use for a typical person.

However, the extensions do exist and create a conflict. Thousands of Informix
customers have embedded Informix-style SQL in programs and stored
queries. They rely on Informix to keep its language the same. Other
customers require the ability to use databases in a way that conforms exactly
to the ANSI standard. They rely on Informix to change its language to
conform.

Informix resolved the conflict with the following compromise:

= The Informix version of SQL, with its extensions to the standard, is
available by default.

= You can ask any Informix SQL language processor to check your use
of SQL and post a warning flag whenever you use an Informix
extension.

This resolution is fair but makes the SQL documentation more complicated.
Wherever a difference exists between Informix and ANSI SQL, the Informix
Guide to SQL: Syntax describes both versions. Because you probably intend to
use only one version, simply ignore the version you do not need.

Informix Guide to SQL: Tutorial

GLS

ANSI-Compliant Databases

ANSI-Compliant Databases

Use the MODE ANSI keywords when you create a database to designate it as
ANSI compliant. Within such a database, certain characteristics of the ANSI
standard apply. For example, all actions that modify data automatically take
place within a transaction, which means that the changes are made in their
entirety or not at all. Differences in the behavior of ANSI-compliant databases
are noted where appropriate in the Informix Guide to SQL: Syntax.

GLS Databases

The Version 7.2 and later Informix database server products provide Global
Language Support (GLS). In addition to U.S. ASCII English, GLS allows you to
work in other locales. You can use GLS to conform to the customs of a specific
locale. The locale files contain unique information such as various money and
date formats and multibyte characters used in identification or data names. ¢

Summary

A database contains a collection of related information but differs in a
fundamental way from other methods of storing data. The database contains
not only the data but also a data model that defines each data item and
specifies its meaning with respect to the other items and to the real world.

More than one user can access and modify a database at the same time. Each
user has a different view of the contents of a database, and their access to
those contents can be restricted in several ways.

To manipulate and query a database, use SQL. IBM pioneered SQL and ANSI
standardized it. Informix added extensions to the ANSI-defined language
that you can use to your advantage. Informix tools also make it possible to
maintain strict compliance with ANSI standards.

Informix Databases 1-17

Composing Simple SELECT
Statements

Introducing the SELECT Statement 2-4
Some Basic Concepts. 2-5
Privileges . . . C e e 2-5
Relational Operatlons e e 2-5
Selection and Projection 2-6
Joining . . e e s 2-8
The Forms of SELECT Ce e 2-9
Special DataTypes. 2710
Single-Table SELECT Statements 210
Selecting All Columnsand Rows. 211
Using the Asterisk Symbol (*) 211
Reordering the Columns 212
SortingtheRows 212
Selecting Specific Columns. . . S
ORDER BY and Non-English Data e e e 224
Selecting Substrings. 226
Using the WHERE Clause 227
Creating a Comparison Condition 2-28
Using Variable-Text Searches. 236
Using Exact Text Comparisons 236
Using a Single-Character Wildcard. 2-38
MATCHES and Non-EnglishData. 241
Comparing for Special Characters 243
Expressions and Derived Values. 245
Arithmetic Expressions. 245
Sorting on Derived Columns. 250
Using Functions in SELECT Statements 250
Aggregate Functions 251
Time Functions . . e 254
Other Functions and Keywords)Y

Using SPL Routines in SELECT Statements 264

Multiple-Table SELECT Statements 2-66

Creating a Cartesian Product 2-66
Creatingaloin 267
Equi-Join. 268
Natural Join. 269
Multiple-Table Join 271

Some Query Shortcuts 273
Using Aliases 274

The INTOTEMPClause 276
Summary . 278

2-2 Informix Guide to SQL: Tutorial

ELECT is the most important and the most complex SQL statement.
You can use it, along with the SQL statements INSERT, UPDATE, and DELETE,
to manipulate data. You can use the SELECT statement in the following ways:

= By itself to retrieve data from a database
= As part of an INSERT statement to produce new rows
= As part of an UPDATE statement to update information

The SELECT statement is the primary way to query information in a database.
It is your key to retrieving data in a program, report, screen form, or
spreadsheet.

This chapter shows how you can use the SELECT statement to query on and
retrieve data in a variety of ways from a relational database. It discusses how
to tailor your statements to select columns or rows of information from one
or more tables, how to include expressions and functions in SELECT state-
ments, and how to create various join conditions between relational database
tables.

This chapter introduces the basic methods for retrieving data from a
relational database. More complex uses of SELECT statements, such as
subqueries, outer joins, and unions, are discussed in Chapter 3, “Composing
Advanced SELECT Statements.” The syntax and usage for the SELECT
statement are described in detail in Chapter 1 of the Informix Guide to SQL.:
Syntax.

Most examples in this chapter come from the tables in the stores?
demonstration database, which is installed with the software for your
Informix SQL API or database utility. In the interest of brevity, the examples
show only part of the data that is retrieved for each SELECT statement. For
information on the structure and contents of the stores7 database, see
Appendix A in the Informix Guide to SQL: Reference. For emphasis, keywords
are shown in uppercase letters in the examples, although SQL is not case
sensitive.

Composing Simple SELECT Statements 2-3

Introducing the SELECT Statement

2-4

Introducing the SELECT Statement

The SELECT statement is constructed of clauses that let you look at data in a
relational database. These clauses let you select columns and rows from one
or more database tables or views, specify one or more conditions, order and
summarize the data, and put the selected data in a temporary table.

This chapter shows how to use five SELECT statement clauses. You must
include these clauses in a SELECT statement in the following order:
SELECT clause

FROM clause

WHERE clause

ORDER BY clause

INTO TEMP clause

o &~ wn e

Only the SELECT and FROM clauses are required. These two clauses form the
basis for every database query because they specify the tables and columns
to be retrieved. Use one or more of the other clauses from the following list:

= AddaWHERE clause to select specific rows or create a join condition.

= Add an ORDER BY clause to change the order in which data is
produced.

= Add an INTO TEMP clause to save the results as a table for further
queries.

Two additional SELECT statement clauses, GROUP BY and HAVING, let you
perform more complex data retrieval. They are introduced in Chapter 3,
“Composing Advanced SELECT Statements.” Another clause, INTO,
specifies the program or host variable to receive data from a SELECT
statement in SQL APIs. Complete syntax and rules for using the SELECT
statement are shown in Chapter 1 of the Informix Guide to SQL: Syntax.

Informix Guide to SQL: Tutorial

Some Basic Concepts

Some Basic Concepts

The SELECT statement, unlike the INSERT, UPDATE, and DELETE statements,
does not modify the data in a database. It simply queries the data. Whereas

only one user at a time can modify data, multiple users can query on or select
the data concurrently. The statements that modify data appear in Chapter 4,
“Modifying Data.” The INSERT, UPDATE, and DELETE statements appear in

Chapter 1 of the Informix Guide to SQL: Syntax.

In a relational database, a column is a data element that contains a particular
type of information that occurs in every row in the table. A row is a group of
related items of information about a single entity across all columns in a
database table.

You can select columns and rows from a database table; from a system-catalog
table, a file that contains information on the database; or from a view, a virtual
table created to contain a customized set of data. System catalog tables are
shown in Chapter 1 of the Informix Guide to SQL: Reference. Views are
discussed in Chapter 11, “Granting and Limiting Access to Your Database,”
of this manual.

Privileges

Before you query data, make sure you have the database Connect privilege
and the table Select privileges. These privileges are normally granted to all
users. Database access privileges are discussed in Chapter 11, “Granting and
Limiting Access to Your Database,” of this manual and in the GRANT and
REVOKE statements in Chapter 1 of the Informix Guide to SQL: Syntax.

Relational Operations

A relational operation involves manipulating one or more tables, or relations, to
result in another table. The three kinds of relational operations are selection,
projection, and join. This chapter includes examples of selection, projection,
and simple joining.

Composing Simple SELECT Statements 2-5

Some Basic Concepts

Selection and Projection

In relational terminology, selection is defined as taking the horizontal subset of
rows of a single table that satisfies a particular condition. This kind of SELECT
statement returns some of the rows and all of the columns in a table. Selection
is implemented through the WHERE clause of a SELECT statement, as Query
2-1 shows.

Query 2-1

SELECT * FROM customer
WHERE state = 'NJ'

Query Result 2-1 contains the same number of columns as the customer table,
but only a subset of its rows. Because the data in the selected columns does
not fit on one line of the DB-Access or ROM Interactive Schema Editor (ISED)
screen, the data is displayed vertically instead of horizontally.

customer_
fname
Tname
company
addressl
address?
city
state
zipcode
phone

customer_
fname
Tname
company
addressl
address2
city
state
zipcode
phone

num 119
Bob
Shorter

Query Result 2-1

The Triathletes Club
2405 Kings Highway

Cherry Hill

NJ
08002

609-663-6079

num 122
Cathy
0‘Brian

The Sporting Life
543d Nassau

Princeton
NJ
08540

609-342-0054

In relational terminology, projection is defined as taking a vertical subset from
the columns of a single table that retains the unique rows. This kind of
SELECT statement returns some of the columns and all of the rows in a table.

2-6 Informix Guide to SQL: Tutorial

Some Basic Concepts

Projection is implemented through the select list in the SELECT clause of a
SELECT statement, as Query 2-2 shows.

Query 2-2

SELECT UNIQUE city, state, zipcode
FROM customer

Query Result 2-2 contains the same number of rows as the customer table,
but it projects only a subset of the columns in the table.

city

Bartlesville
Blue IsTand
Brighton
Cherry Hill
Denver
Jacksonville
Los Altos
Menlo Park
Mountain View
Mountain View
Oakland

Palo Alto
Palo Alto
Phoenix
Phoenix
Princeton
Redwood City
Redwood City
Redwood City
San Francisco
Sunnyvale
Sunnyvale
Wilmington

Query Result 2-2

state zipcode

0K
NY
MA
NJ
co
FL
CA
CA
CA
CA
CA
CA
CA
AZ
AZ
NJ
CA
CA
CA
CA
CA
CA
DE

74006
60406
02135
08002
80219
32256
94022
94025
94040
94063
94609
94303
94304
85008
85016
08540
94026
94062
94063
94117
94085
94086
19898

The most common kind of SELECT statement uses both selection and
projection. A query of this kind, shown in Query 2-3, returns some of the
rows and some of the columns in a table.

Query 2-3

SELECT UNIQUE city, state, zipcode
FROM customer
WHERE state = 'NJ'

Composing Simple SELECT Statements 2-7

Some Basic Concepts

Query Result 2-3 contains a subset of the rows and a subset of the columns in
the customer table.

Query Result 2-3
city state zipcode
Cherry Hill NJ 08002
Princeton NJ 08540

Joining

A join occurs when two or more tables are connected by one or more columns
in common, creating a new table of results. The query in the example uses a
subset of the items and stock tables to illustrate the concept of a join, as
Figure 2-1 shows.

Figure 2-1
A Join Between Two Tables

SELECT unique item_num, order_num, stock.stock_num, description
FROM items, stock
WHERE items.stock_num = stock.stock_num

items Table (example) stock Table (example)

item_num order_num stock_num stock_num manu_code description
1 1001 1 T .1 HRO baseball gloves
1 1002 4 T\ Yt HSK baseball gloves
2 1002 3 2 HRO baseball
3 1003 5 | / T 4 HSK football
1 1005 5 4| 5 NRG tennis racquet

item_num order_num stock, num description

1 1001 1 - baseball gloves

1 1002 4 - football

3 1003 5 tennis racquet

1 1005 5 tennis racquet

2-8 Informix Guide to SQL: Tutorial

The Forms of SELECT

Query 2-4 joins the customer and state tables.

Query 2-4

SELECT UNIQUE city, state, zipcode, sname
FROM customer, state
WHERE customer.state = state.code

Query Result 2-4 consists of specified rows and columns from both the
customer and state tables.

Query Result 2-4
city state zipcode sname
Bartlesville 0K 74006 OkTlahoma
Blue Island NY 60406 New York
Brighton MA 02135 Massachusetts
Cherry Hill NJ 08002 New Jersey
Denver Cco 80219 Colorado
Jacksonville FL 32256 Florida
Los Altos CA 94022 California
Menlo Park CA 94025 California
Mountain View CA 94040 California
Mountain View CA 94063 California
Oakland CA 94609 California
Palo Alto CA 94303 California
Palo Alto CA 94304 California
Phoenix AZ 85008 Arizona
Phoenix AZ 85016 Arizona
Princeton NJ 08540 New Jersey
Redwood City CA 94026 California
Redwood City CA 94062 California
Redwood City CA 94063 California
San Francisco CA 94117 California
Sunnyvale CA 94085 California
Sunnyvale CA 94086 California
WiTmington DE 19898 Delaware

The Forms of SELECT

Although the syntax remains the same across all Informix products, the form
of a SELECT statement and the location and formatting of the resulting output
depends on the application. The examples in this chapter and in Chapter 3,
“Composing Advanced SELECT Statements,” display the SELECT statements
and their output as they appear when you use the interactive Query-
language option in DB-Access or the SQL Editor. You can embed SELECT state-
ments in a language such as INFORMIX-ESQL/C (where they are treated as
executable code).

Composing Simple SELECT Statements 2-9

Special Data Types

Special Data Types

The examples in this chapter use the INFORMIX-Universal Server database
server, which enables database applications to include the data types
VARCHAR, CLOB, BLOB, TEXT, and BYTE.

With DB-Access or the SQL Editor, when you issue a SELECT statement that
includes one of these three data types, the results of the query are displayed
differently:

= If you execute a query on a VARCHAR column, the entire VARCHAR
value is displayed, just as CHARACTER values are displayed.

= Ifyou select a CLOB or TEXT column, the contents of the column are
displayed, and you can scroll through them.

= IfyouqueryonaBLOB or BYTE column, the words <BLOB value> or
<BYTE value> are displayed instead of the actual value.

Differences specific to VARCHAR, CLOB, BLOB, TEXT, and BYTE are noted as
appropriate throughout this chapter.

GLS You can issue a SELECT statement that queries on NCHAR columns instead of
CHAR columns. If you are using Universal Server, you can query on
NVARCHAR columns instead of VARCHAR columns.

For complete GLS information, see the Guide to GLS Functionality. For
additional information on GLS and other data types, see Chapter 9, “Imple-
menting Your Data Model,” in this manual, and Chapter 2 of the Informix
Guide to SQL.: Reference. ¢

Single-Table SELECT Statements

You can query a single table in a database in many ways. You can tailor a
SELECT statement to perform the following actions:

= Retrieve all or specific columns

= Retrieve all or specific rows

= Perform computations or other functions on the retrieved data

= Order the data in various ways

2-10 Informix Guide to SQL: Tutorial

Selecting All Columns and Rows

Selecting All Columns and Rows

The most basic SELECT statement contains only the two required clauses,
SELECT and FROM.

Using the Asterisk Symbol (*)

Query 2-5a specifies all the columns in the manufact table in a select list. A
select list is a list of the column names or expressions that you want to project
from a table.

Query 2-5a

SELECT manu_code, manu_name, lead_time
FROM manufact

Query 2-5b uses the wildcard asterisk symbol (*), which is shorthand for the
select list. The * represents the names of all the columns in the table. You can
use the asterisk symbol (*) when you want all the columns, in their defined
order.

Query 2-5b
SELECT * FROM manufact
Query 2-5a and Query 2-5b are equivalent and display the same results; that

is, a list of every column and row in the manufact table. Query Result 2-5
shows the results as they would appear on a DB-Access or SQL Editor screen.

Query Result 2-5

manu_code manu_name lTead_time
SMT Smith 3

ANZ Anza 5

NRG Norge 7

HSK Husky 5

HRO Hero 4

SHM Shimara 30

KAR Karsten 21

NKL Nikolus 8

PRC ProCycle 9

Composing Simple SELECT Statements 2-11

Selecting All Columns and Rows

Reordering the Columns

Query 2-6 shows how you can change the order in which the columns are
listed by changing their order in your select list.

Query 2-6

SELECT manu_name, manu_code, Tead_time
FROM manufact

Query Result 2-6 includes the same columns as the previous query result, but
because the columns are specified in a different order, the display is also
different.

manu_name

Smith
Anza
Norge
Husky
Hero
Shimara
Karsten
Nikolus
ProCycle

Query Result 2-6
manu_code Tead_time

SMT
ANZ
NRG
HSK
HRO
SHM
KAR
NKL
PRC

N W
OO OPMUOITNOTW

Sorting the Rows

You can add an ORDER BY clause to your SELECT statement to direct the
system to sort the data in a specific order.You must include the columns that
you want to use in the ORDER BY clause in the select list either explicitly or
implicitly.

An explicit select list, shown in Query 2-7a, includes all the column names
that you want to retrieve.

Query 2-7a

SELECT manu_code, manu_name, lead_time
FROM manufact
ORDER BY Tead_time

2-12 Informix Guide to SQL: Tutorial

Selecting All Columns and Rows

An implicit select list uses the asterisk symbol (*), as Query 2-7b shows.

Query 2-7b

SELECT * FROM manufact
ORDER BY Tead_time

Query 2-7a and Query 2-7b produce the same display. Query Result 2-7
shows a list of every column and row in the manufact table, in order of
lead_time.

Query Result 2-7

manu_code manu_name lead_time
SMT Smith 3

HRO Hero 4

HSK Husky 5

ANZ Anza 5

NRG Norge 7

NKL Nikolus 8

PRC ProCycle 9

KAR Karsten 21
SHM Shimara 30

Ascending Order

The retrieved data is sorted and displayed, by default, in ascending order.
Ascending order is uppercase A to lowercase z for CHARACTER data types,
and lowest to highest value for numeric data types. DATE and DATETIME
data is sorted from earliest to latest, and INTERVAL data is ordered from
shortest to longest span of time.

Descending Order

Descending order is the opposite of ascending order, from lowercase z to
uppercase A for character types and highest to lowest for numeric data types.
DATE and DATETIME data is sorted from latest to earliest, and INTERVAL data
is ordered from longest to shortest span of time. Query 2-8 shows an example
of descending order.

Query 2-8

SELECT * FROM manufact
ORDER BY Tead_time DESC

Composing Simple SELECT Statements 2-13

Selecting All Columns and Rows

The keyword DESC following a column name causes the retrieved data to be
sorted in descending order, as Query Result 2-8 shows.

Query Result 2-8

manu_code manu_name lead_time
SHM Shimara 30

KAR Karsten 21

PRC ProCycle 9

NKL Nikolus 8

NRG Norge 7

HSK Husky 5

ANZ Anza 5

HRO Hero 4

SMT Smith 3

2-14

You can specify any column (except CLOB, BLOB, TEXT, or BYTE) in the
ORDER BY clause, and the database server sorts the data based on the values
in that column.

Sorting on Multiple Columns

You can also ORDER BY two or more columns, creating a nested sort. The
default is still ascending, and the column that is listed first in the ORDER BY
clause takes precedence.

Query 2-9 and Query 2-10 and corresponding query results show nested
sorts. To modify the order in which selected data is displayed, change the
order of the two columns that are named in the ORDER BY clause.

Query 2-9

SELECT * FROM stock
ORDER BY manu_code, unit_price

Informix Guide to SQL: Tutorial

Selecting All Columns and Rows

In Query Result 2-9, the manu_code column data appears in alphabetical
order and, within each set of rows with the same manu_code (for example,
ANZ, HRO), the unit_price is listed in ascending order.

Query Result 2-9
stock_num manu_code description unit_price unit unit_descr
5 ANZ tennis racquet $19.80 each each
9 ANZ volleyball net $20.00 each each
6 ANZ tennis ball $48.00 case 24 cans/case
313 ANZ swim cap $60.00 box 12/box
201 ANZ golf shoes $75.00 each each
310 ANZ kick board $84.00 case 12/case
301 ANZ running shoes $95.00 each each
304 ANZ watch $170.00 box 10/box
110 ANZ helmet $244.00 case 4/case
205 ANZ 3 golf balls $312.00 case 24/case
8 ANZ volleyball $840.00 case 24/case
302 HRO ice pack $4.50 each each
309 HRO ear drops $40.00 case 20/case
113 SHM 18-spd, assmbld $685.90 each each
5 SMT tennis racquet $25.00 each each
6 SMT tennis ball $36.00 case 24 cans/case
1 SMT baseball gloves $450.00 case 10 gloves/case

Query 2-10 shows the reversed order of the columns in the ORDER BY clause.
Query 2-10

SELECT * FROM stock
ORDER BY unit_price, manu_code

Composing Simple SELECT Statements 2-15

Selecting All Columns and Rows

In Query Result 2-10, the data appears in ascending order of unit_price and,
where two or more rows have the same unit_price (for example, $20.00,
$48.00, $312.00), the manu_code is in alphabetical order.

stock_num

2-16

manu_code description
302 HRO ice pack
302 KAR ice pack
5 ANZ tennis racquet
9 ANZ volleyball net
103 PRC frnt derailleur
106 PRC bicycle stem
5 SMT tennis racquet
301 HRO running shoes
204 KAR putter
108 SHM crankset
6 ANZ tennis ball
305 HRO first-aid kit
303 PRC socks
311 SHM water gloves
110 HSK helmet
205 ANZ 3 golf balls
205 HRO 3 golf balls
205 NKL 3 golf balls
1 SMT baseball gloves
4 HRO football
102 PRC bicycle brakes
111 SHM 10-spd, assmbld
112 SHM 12-spd, assmbld
7 HRO basketball
203 NKL irons/wedge
113 SHM 18-spd, assmbld
1 HSK baseball gloves
8 ANZ volleyball
4 HSK football

Informix Guide to SQL: Tutorial

$4.

$5.
$19.
$20.
$20.
$23.
$25.

$42.
$45.
$45.
$48.
$48.
$48.
$48.

$308.
$312.
$312.
$312.
$450.
$480.
$480.
$499.
$549.
$600.
$670.
$685.
$800.
$840.
$960.

unit_price

50
00
80
00
00
00
00

50
00

00
00
00
00

unit

each
each
each
each
each
each
each

each
each
each
case
case
box

box

case
case
case
case
case
case
case
each
each
case
case
each
case
case
case

unit_descr

each
each
each
each
each
each
each

each

each

each

24 cans/case
4/case

24 pairs/box
4 pairs/box

4/case

24/case
24/case
24/case

10 gloves/case
24/case

4 sets/case
each

each

24/case

2 sets/case
each

10 gloves/case
24/case
24/case

Query Result 2-10

Selecting Specific Columns

The order of the columns in the ORDER BY clause is important, and so is the
position of the DESC keyword. Although the statements in Query 2-11
contain the same components in the ORDER BY clause, each produces a
different result (not shown).

Query 2-11
SELECT * FROM stock
ORDER BY manu_code, unit_price DESC

SELECT * FROM stock
ORDER BY wunit_price, manu_code DESC

SELECT * FROM stock
ORDER BY manu_code DESC, unit_price

SELECT * FROM stock
ORDER BY wunit_price DESC, manu_code

Selecting Specific Columns

The previous section showed how to select and order all data from a table.
However, often all you want to see is the data in one or more specific
columns. Again, the formula is to use the SELECT and FROM clauses, specify
the columns and table, and perhaps order the data in ascending or
descending order with an ORDER BY clause.

If you want to find all the customer numbers in the orders table, use a
statement such as the one in Query 2-12.

Query 2-12
SELECT customer_num FROM orders

Composing Simple SELECT Statements 2-17

Selecting Specific Columns

Query Result 2-12 shows how the statement simply selects all data in the
customer_num column in the orders table and lists the customer numbers on
all the orders, including duplicates.

customer num Query Result 2-12

104
101
104
106
106
112
117
110
111
115
104
117
104
106
110
119
120
121
122
123
124
126
127

The output includes several duplicates because some customers have placed
more than one order. Sometimes you want to see duplicate rows in a
projection. At other times, you want to see only the distinct values, not how
often each value appears.

To suppress duplicate rows, include the keyword DISTINCT or its synonym
UNIQUE at the start of the select list, as Query 2-13 shows.

Query 2-13
SELECT DISTINCT customer_num FROM orders

SELECT UNIQUE customer_num FROM orders

2-18 Informix Guide to SQL: Tutorial

Selecting Specific Columns

To produce a more readable list, Query 2-13 limits the display to show each
customer number in the orders table only once, as Query Result 2-13 shows.

Query Result 2-13
customer_num

101
104
106
110
111
112
115
116
117
119
120
121
122
123
124
126
127

Suppose you are handling a customer call, and you want to locate purchase
order number DM354331. To list all the purchase order numbers in the orders
table, use a statement such as the one that Query 2-14 shows.

Query 2-14
SELECT po_num FROM orders

Composing Simple SELECT Statements 2-19

Selecting Specific Columns

Query Result 2-14 shows how the statement retrieves data in the po_num
column in the orders table.

Query Result 2-14
po_num

B77836
9270
B77890
8006
2865
Q13557
278693
LZ230
4745
429Q
B77897
278701
B77930
8052
MAOO3
PC6782
DM354331
S22942
255709
W2286
3288
W9925
KF2961

However, the list is not in a very useful order. You can add an ORDER BY
clause to sort the column data in ascending order and make it easier to find
that particular po_num, as Query Result 2-15 shows.

Query 2-15

SELECT po_num FROM orders
ORDER BY po_num

2-20 Informix Guide to SQL: Tutorial

Selecting Specific Columns

po_num

278693
278701
2865
429Q
4745
8006
8052
9270
B77836
B77890
B77897
B77930
3288
DM354331
KF2961
L2230
MAOO3
PC6782
Q13557
S22942
W2286
W9925
/55709

Query Result 2-15

To select multiple columns from a table, list them in the select list in the
SELECT clause. Query 2-16 shows that the order in which the columns are
selected is the order in which they are produced, from left to right.

Query 2-16

SELECT paid_date, ship_date, order_date,
customer_num, order_num, po_num
FROM orders
ORDER BY paid_date, order_date, customer_num

Composing Simple SELECT Statements 2-21

Selecting Specific Columns

As shown in “Sorting on Multiple Columns” on page 2-14, you can use the
ORDER BY clause to sort the data in ascending or descending order and
perform nested sorts. Query Result 2-16 shows ascending order.

Query Result 2-16
paid_date ship_date order_date customer_num order_num po_num
05/30/1994 05/22/1994 106 1004 8006
05/30/1994 112 1006 Q13557
06/05/1994 05/31/1994 117 1007 278693
06/29/1994 06/18/1994 117 1012 278701
07/12/1994 06/29/1994 119 1016 PC6782
07/13/1994 07/09/1994 120 1017 DM354331
06/03/1994 05/26/1994 05/21/1994 101 1002 9270
06/14/1994 05/23/1994 05/22/1994 104 1003 B77890
06/21/1994 06/09/1994 05/24/1994 116 1005 2865
07/10/1994 07/03/1994 06/25/1994 106 1014 8052
07/21/1994 07/06/1994 06/07/1994 110 1008 LZ230
07/22/1994 06/01/1994 05/20/1994 104 1001 B77836
07/31/1994 07/10/1994 06/22/1994 104 1013 B77930
08/06/1994 07/13/1994 07/10/1994 121 1018 S22942
08/06/1994 07/16/1994 07/11/1994 122 1019 755709
08/21/1994 06/21/1994 06/14/1994 111 1009 4745
08/22/1994 06/29/1994 06/17/1994 115 1010 429Q
08/22/1994 07/25/1994 07/23/1994 124 1021 C3288
08/22/1994 07/30/1994 07/24/1994 127 1023 KF2961
08/29/1994 07/03/1994 06/18/1994 104 1011 B77897
08/31/1994 07/16/1994 06/27/1994 110 1015 MA0O3
09/02/1994 07/30/1994 07/24/1994 126 1022 W9925
09/20/1994 07/16/1994 07/11/1994 123 1020 W2286

When you use SELECT and ORDER BY on several columns in a table, you
might find it helpful to use integers to refer to the position of the columns in
the ORDER BY clause.The statements in Query 2-17 retrieve and display the
same data, as Query Result 2-17 shows.

Query 2-17
SELECT customer_num, order_num, po_num, order_date

FROM orders
ORDER BY 4, 1

SELECT customer_num, order_num, po_num, order_date
FROM orders
ORDER BY order_date, customer_num

2-22 Informix Guide to SQL: Tutorial

Selecting Specific Columns

customer_num

104
101
104
106
116
112
117
110
111
115
104
117
104
106
110
119
120
121
122
123
124
126
127

order_num

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

po_num

B77836
9270
B77890
8006
2865
Q13557
278693
LZ230
4745
429Q
B77897
278701
B77930
8052
MA0O3
PC6782
DM354331
$22942
255709
W2286
3288
W9925
KF2961

order_date

05/20/1994
05/21/1994
05/22/1994
05/22/1994
05/24/1994
05/30/1994
05/31/1994
06/07/1994
06/14/1994
06/17/1994
06/18/1994
06/18/1994
06/22/1994
06/25/1994
06/27/1994
06/29/1994
07/09/1994
07/10/1994
07/11/1994
07/11/1994
07/23/1994
07/24/1994
07/24/1994

SELECT customer_num,

FROM orders

ORDER BY 4 DESC,

order_num,

1

po_num,

order_date

Query Result 2-17

You can include the DESC keyword in the ORDER BY clause when you assign
integers to column names, as Query 2-18 shows.

Query 2-18

In this case, data is first sorted in descending order by order_date and in
ascending order by customer_num.

Composing Simple SELECT Statements 2-23

Selecting Specific Columns

GLS

2-24

ORDER BY and Non-English Data

By default, Informix database servers use the U.S. English language
environment, called a locale, for database data. The U.S. English locale
specifies data sorted in code-set order. This default locale uses the 1SO 8859-1
code set.

If your database contains non-English data, the ORDER BY clause should
return data in the order appropriate to that language. Query 2-19 uses a
SELECT statement with an ORDER BY clause to search the table, abonnés, and
to order the selected information by the data in the nom column.

Query 2-19

SELECT numéro,nom,prénom
FROM abonnés
ORDER BY nom;

The collation order for the results of this query can vary, depending on the
following system variations:

= Whether the nom column is CHAR or NCHAR data type.

The database server sorts data in CHAR columns by the order the
characters appear in the code set. The database server sorts data in
NCHAR columns by the order the characters are listed in the collation
portion of the locale. Store non-English data in NCHAR (or
NVARCHAR) columns to obtain results sorted by the language.

= Whether the database server is using the correct non-English locale
when accessing the database.

To use a non-English locale, you must set the CLIENT_LOCALE and
DB_LOCALE environment variables to the appropriate locale name.

For Query 2-19 to return expected results, the nom column should be NCHAR
data type in a database that uses a French locale. Other operations, such as
less than, greater than, or equal to, are also affected by the user-specified
locale. Refer to the Guide to GLS Functionality for more information on non-
English data and locales.

Informix Guide to SQL: Tutorial

Selecting Specific Columns

Query Result 2-19a and Query Result 2-19b show two sample sets of output.

numéronomprénom Query Result 2-19a

13612AzevedoEdouardo Freire
13606DupréMichele Francoise
13607HammerGerhard
13602HdmmerleGreta
13604LaForétJean-Noél
13610LeMaitreHéloise
13613LTaneroGloria Dolores
13603MontafadJosé Antonio
136110atfieldEmily
13609TiramisuPaolo Alfredo
13600da Sousadodo Lourengo Antunes
13615di GirolamoGiuseppe
13601ATesundSverre
13608EtaixEmile
136050tkerHans-Jiirgen
136140verstPer-Anders

Query Result 2-19a follows the ISO 8859-1 code-set order, which ranks
uppercase letters before lowercase letters and moves the names that start
with an accented character (Alesund, Etaix, Otker, and @verst) to the end of
the list.

Query Result 2-19b
numéronomprénom

13601AlesundSverre
13612AzevedoEdouardo Freire
13600da Sousadodo Lourengo Antunes
13615di GirolamoGiuseppe
13606DupréMichele Francoise
13608EtaixEmile
13607HammerGerhard
13602HdmmerleGreta
13604LaForétdean-Noél
13610LeMaitreHéloise
13613LTaneroGloria Dolores
13603MontafiadJosé Antonio
136110atfieldEmily
136050tkerHans-Jirgen
136140verstPer-Anders
13609TiramistuPaolo Alfredo

Composing Simple SELECT Statements 2-25

Selecting Specific Columns

Query Result 2-19b shows that when the appropriate locale file is referenced
by the data server, names starting with non-English characters (Alesund,
Etaix, Otker, and @verst) are collated differently than they are in the 1SO
8859-1 code set. They are sorted correctly for the locale. It does not distin-
guish between uppercase and lowercase letters. ¢

Selecting Substrings

To select part of the value of a CHARACTER column, include a substring in the
select list. Suppose your marketing department is planning a mailing to your
customers and wants a rough idea of their geographical distribution based
on zip codes. You could write a query similar to the one in Query 2-20.

Query 2-20

SELECT zipcodel[1l,3], customer_num
FROM customer
ORDER BY zipcode

2-26 Informix Guide to SQL: Tutorial

Using the WHERE Clause

Query 2-20 uses a substring to select the first three characters of the zipcode
column (which identify the state) and the full customer_num, and lists them
in ascending order by zip code, as Query Result 2-20 shows.

Query Result 2-20

zipcode customer_num

021
080
085
198
322
604
740
802
850
850
940
940
940
940
940
940
940
940
940
940
940
940
940
940
941
943
943
946

125
119
122
121
123
127
124
126
128
120
105
112
113
115
104
116
110
114
106
108
117
111
101
109
102
103
107
118

Using the WHERE Clause

Add a WHERE clause to a SELECT statement if you want to see only those
orders that a particular customer placed or the calls that a particular
customer service representative entered.

You can use the WHERE clause to set up a comparison condition or a join
condition. This section demonstrates only the first use. Join conditions are
described in a later section and in the next chapter.

Composing Simple SELECT Statements 2-27

Creating a Comparison Condition

2-28

The set of rows returned by a SELECT statement is its active set. A singleton
SELECT statement returns a single row. Use a cursor to retrieve multiple rows
in an SQL API. See Chapter 5, “Programming with SQL,” and Chapter 6,
“Modifying Data Through SQL Programs.”

Creating a Comparison Condition

The WHERE clause of a SELECT statement specifies the rows that you want to
see. A comparison condition employs specific keywords and operators to
define the search criteria.

For example, you might use one of the keywords BETWEEN, IN, LIKE, or
MATCHES to test for equality, or the keywords IS NULL to test for null values.
You can combine the keyword NOT with any of these keywords to specify the
opposite condition.

The following table lists the relational operators that you can use in a WHERE
clause in place of a keyword to test for equality.

Operator Operation

= equals

I=or <> does not equal

> greater than

>= greater than or equal to
< less than

<= less than or equal to

For CHAR expressions, greater than means after in ASCII collating order, where
lowercase letters are after uppercase letters, and both are after numerals. See
the ASCII Character Set chart in Chapter 1 of the Informix Guide to SQL:
Syntax. For DATE and DATETIME expressions, greater than means later in time,
and for INTERVAL expressions, it means of longer duration. You cannot use
CLOB, BLOB, TEXT, or BYTE columns in string expressions, except when you
test for null values.

Informix Guide to SQL: Tutorial

Creating a Comparison Condition

You can use the preceding keywords and operators in a WHERE clause to
create comparison-condition queries that perform the following actions:

= Include values

= Exclude values

» Find a range of values

= Find a subset of values

= ldentify null values
To perform variable text searches using the criteria listed below, use the
preceding keywords and operators in a WHERE clause to create comparison-
condition queries:

= Exact-text comparison

= Single-character wildcards

= Restricted single-character wildcards

= Variable-length wildcards

= Subscripting

The following section contains examples that illustrate these types of queries.

Including Rows

Use the relational operator = to include rows in a WHERE clause, as Query
2-21 shows.

Query 2-21

SELECT customer_num, call_code, call_dtime, res_dtime
FROM cust_calls
WHERE user_id = 'maryj'

Query 2-21 returns the set of rows that Query Result 2-21 shows.

customer_num call_code call_dtime res_dtime Query Result 2-21
106 D 1994-06-12 08:20 1994-06-12 08:25
121 0 1994-07-10 14:05 1994-07-10 14:06
127 1 1994-07-31 14:30

Composing Simple SELECT Statements 2-29

Creating a Comparison Condition

Excluding Rows
Use the relational operators != or <> to exclude rows in a WHERE clause.

Query 2-22 assumes that you are selecting from an ANSI-compliant database;
the statements specify the owner or login name of the creator of the customer
table. This qualifier is not required when the creator of the table is the current
user, or when the database is not ANSI compliant. However, you can include
the qualifier in either case. For a complete discussion of owner naming, see
Chapter 1 in the Informix Guide to SQL: Syntax.

Query 2-22

SELECT customer_num, company, city, state
FROM odin.customer
WHERE state != "CA'

SELECT customer_num, company, city, state
FROM odin.customer
WHERE state <> 'CA'

Both statements in Query 2-22 exclude values by specifying that, in the
customer table that the user odin owns, the value in the state column should
not be equal to CA, as Query Result 2-22 shows.

Query Result 2-22
customer_num company city state
119 The Triathletes Club Cherry HiTll NJ
120 Century Pro Shop Phoenix AZ
121 City Sports WiTmington DE
122 The Sporting Life Princeton NJ
123 Bay Sports Jacksonville FL
124 Putnum’s Putters Bartlesville 0K
125 Total Fitness Sports Brighton MA
126 Neelie’s Discount Sp Denver Cco
127 Big Blue Bike Shop Blue Island NY
128 Phoenix College Phoenix AZ

2-30 Informix Guide to SQL: Tutorial

Creating a Comparison Condition

Specifying Rows
Query 2-23 shows two ways to specify rows in a WHERE clause.

Query 2-23

SELECT catalog_num, stock_num, manu_code, cat_advert
FROM catalog
WHERE catalog_num BETWEEN 10005 AND 10008

SELECT catalog_num, stock_num, manu_code, cat_advert
FROM catalog
WHERE catalog_num >= 10005 AND catalog_num <= 10008

Each statement in Query 2-23 specifies a range for catalog_num from 10005
through 10008, inclusive. The first statement uses keywords, and the second
uses relational operators to retrieve the rows as Query Result 2-23 shows.

catalog_num 10005 Query Result 2-23
stock_num 3

manu_code HSK

cat_advert High-Technology Design Expands the Sweet Spot
catalog_num 10006

stock_num 3

manu_code SHM

cat_advert Durable Aluminum for High School and Collegiate Athletes
catalog_num 10007

stock_num 4

manu_code HSK

cat_advert Quality Pigskin with Joe Namath Signature

catalog_num 10008

stock_num 4

manu_code HRO

cat_advert Highest Quality Football for High School

and Collegiate Competitions

Although the catalog table includes a column with the BYTE data type, that
column is not included in this SELECT statement because the output would
show only the words <BYTE value> by the column name. You can display
TEXT and BYTE values when you write an SQL API application to do so.

Composing Simple SELECT Statements 2-31

Creating a Comparison Condition

Excluding a Range of Rows

Query 2-24 uses the keywords NOT BETWEEN to exclude rows that have the
character range 94000 through 94999 in the zipcode column, as Query Result

2-24 shows.
Query 2-24
SELECT fname, Tname, company, city, state
FROM customer
WHERE zipcode NOT BETWEEN '94000' AND '94999'
ORDER BY state
. Query Result 2-24
fname Tname company city state
Fred Jewell Century* Pro Shop Phoenix AZ
Frank Lessor Phoenix University Phoenix AZ
Eileen Neelie Neelie’s Discount Sp Denver Co
Jason Wallack City Sports WiTmington DE
Marvin HanTon Bay Sports Jacksonville FL
James Henry Total Fitness Sports Brighton MA
Bob Shorter The Triathletes Club Cherry Hill NJ
Cathy 0’Brian The Sporting Life Princeton NJ
Kim Satifer Big Blue Bike Shop Blue Island NY
Chris Putnum Putnum’s Putters Bartlesville 0K

Using a WHERE Clause to Find a Subset of Values

As shown in “Excluding Rows” on page 2-30, Query 2-25 also assumes the
use of an ANSI-compliant database. The owner qualifier is in quotation marks
to preserve the case sensitivity of the literal string.

Query 2-25

SELECT Tname, city, state, phone
FROM "Aleta'.customer
WHERE state = "AZ' OR state = 'NJ'
ORDER BY Tname

SELECT Tname, city, state, phone
FROM '"Aleta'.customer
WHERE state IN ("AZ', 'NJ")
ORDER BY Tname

2-32 Informix Guide to SQL: Tutorial

Creating a Comparison Condition

Each statement in Query 2-25 retrieves rows that include the subset of AZ or
NJ in the state column of the Aleta.customer table, as Query Result 2-25
shows.

Tname

Jewell
Lessor
0’Brian
Shorter

Query Result 2-25
city state phone
Phoenix AZ 602-265-8754
Phoenix AZ 602-533-1817
Princeton NJ 609-342-0054
Cherry Hill NJ 609-663-6079

You cannot test a CLOB, BLOB, TEXT or BYTE column with the IN keyword.

In Query 2-26, an example of a query on an ANSI-compliant database, no
guotation marks exist around the table owner name. Whereas the two state-
ments in Query 2-25 searched the Aleta.customer table, Query 2-26 searches
the table ALETA.customer, which is a different table, because of the way
ANSI-compliant databases look at owner names.

Query 2-26

SELECT Tname, city, state, phone
FROM Aleta.customer
WHERE state NOT IN ('"AZ', 'NJ')
ORDER BY state

Composing Simple SELECT Statements 2-33

Creating a Comparison Condition

Query 2-26 adds the keyword NOT IN, so the subset changes to exclude the
subsets AZ and NJ in the state column. Query Result 2-26 shows the results in
order of the state column.

Tname

Pauli
Sadler
Currie
Higgins
Vector
Watson
Ream
Quinn
Miller
Jaeger
Keyes
Lawson
Beatty
Albertson
Grant
Parmelee
Sipes
Baxter
Neelie
Wallack
Hanlon
Henry
Satifer
Putnum

] Query Result 2-26
city state phone
Sunnyvale CA 408-789-8075
San Francisco CA 415-822-1289
Palo Alto CA 415-328-4543
Redwood City CA 415-368-1100
Los Altos CA 415-776-3249
Mountain View CA 415-389-8789
Palo Alto CA 415-356-9876
Redwood City CA 415-544-8729
Sunnyvale CA 408-723-8789
Redwood City CA 415-743-3611
Sunnyvale CA 408-277-7245
Los Altos CA 415-887-7235
Menlo Park CA 415-356-9982
Redwood City CA 415-886-6677
Menlo Park CA 415-356-1123

Mountain View CA 415-534-8822
Redwood City CA 415-245-4578

Oakland CA 415-655-0011
Denver co 303-936-7731
Wilmington DE 302-366-7511
Jacksonville FL 904-823-4239
Brighton MA 617-232-4159
Blue Island NY 312-944-5691

Bartlesville 0K 918-355-2074

Identifying Null Values

Use the ISNULL or ISNOT NULL option to check for null values. A null value
represents either the absence of data or an unknown value. A null value is not
the same as a zero or a blank.

Query 2-27 returns all rows that have a null paid_date, as Query Result 2-27
shows.

Query 2-27

SELECT order_num, customer_num, po_num, ship_date
FROM orders
WHERE paid_date IS NULL
ORDER BY customer_num

2-34 Informix Guide to SQL: Tutorial

Creating a Comparison Condition

order_num

1004
1006
1007
1012
1016
1017

customer_num po_num ship_date Query Result 2-27
106 8006 05/30/1994
112 Q13557

117 278693 06/05/1994
117 278701 06/29/1994
119 PC6782 07/12/1994
120 DM354331 07/13/1994

Forming Compound Conditions

To connect two or more comparison conditions, or Boolean expressions, by
use the logical operators AND, OR, and NOT. A Boolean expression evaluates
as true or false or, if null values are involved, as unknown. You can use
CLOB, BLOB, TEXT, or BYTE objects in a Boolean expression only when you
test for a null value.

In Query 2-28, the operator AND combines two comparison expressions in
the WHERE clause.

Query 2-28

SELECT order_num, customer_num, po_num, ship_date
FROM orders
WHERE paid_date IS NULL
AND ship_date IS NOT NULL
ORDER BY customer_num

The query returns all rows that have a null paid_date and the ones that do not
also have a null ship_date, as Query Result 2-28 shows.

order_num

1004
1007
1012
1016
1017

Query Result 2-28
customer_num po_num ship_date
106 8006 05/30/1994
117 278693 06/05/1994
117 278701 06/29/1994
119 PC6782 07/12/1994

120 DM354331 07/13/1994

Composing Simple SELECT Statements 2-35

Creating a Comparison Condition

2-36

Using Variable-Text Searches

You can use the keywords LIKE and MATCHES for variable-text queries that
are based on substring searches of CHARACTER fields. Include the keyword
NOT to indicate the opposite condition. The keyword LIKE is the ANSI
standard, whereas MATCHES is an Informix extension.

Variable-text search strings can include the wildcards listed with LIKE or
MATCHES in the following table.

Symbol Meaning
LIKE
% Evaluates to zero or more characters

Evaluates to a single character

\ Escapes special significance of next character
MATCHES

* Evaluates to zero or more characters

? Evaluates to a single character (except null)

[1 Evaluates to a single character or range of values
\ Escapes special significance of next character

You cannot test a CLOB, BLOB, TEXT, or BYTE column with LIKE or MATCHES.

Using Exact Text Comparisons

The following examples include a WHERE clause that searches for exact text
comparisons by using the keyword LIKE or MATCHES or the equal sign (=)
relational operator. Unlike earlier examples, these examples illustrate how to
guery on an external table in an ANSI-compliant database.

An external table is a table that is not in the current database. You can access
only external tables that are part of an ANSI-compliant database.

Informix Guide to SQL: Tutorial

Creating a Comparison Condition

Whereas the database used previously in this chapter was the demonstration
database called stores7, the FROM clause in the following examples specifies
the manatee table, created by the owner bubba, which resides in an ANSI-
compliant database named syzygy. For more information on defining

external tables, see Chapter 1 in the Informix Guide to SQL: Syntax.

Each statement in Query 2-29 retrieves all the rows that have the single word

helmet in the description column as Query Result 2-29 shows.

Query 2-29
SELECT * FROM syzygy:bubba.manatee
WHERE description = 'helmet'
ORDER BY mfg_code
SELECT * FROM syzygy:bubba.manatee
WHERE description LIKE 'helmet'
ORDER BY mfg_code
SELECT * FROM syzygy:bubba.manatee
WHERE description MATCHES 'helmet'
ORDER BY mfg_code
stock_no mfg_code description unit_price unit unit_type Query Result 2-29
991 ANT helmet $222.00 case 4/case
991 BKE helmet $269.00 case 4/case
991 JsK helmet $311.00 each 4/case
991 PRM helmet $234.00 case 4/case
991 SHR helmet $245.00 case 4/case

Composing Simple SELECT Statements 2-37

Creating a Comparison Condition

Using a Single-Character Wildcard

The statements in Query 2-30 illustrate the use of a single-character wildcard
in a WHERE clause. Further, they demonstrate a query on an external table.
The stock table is in the external database sloth. Besides being outside the
current stores?7 database, sloth is on a separate database server called

meerkat.

For details on external tables and external databases, see Chapter 1 in the

Informix Guide to SQL: Syntax.

Query 2-30

SELECT * FROM sloth@meerkat:stock
WHERE manu_code LIKE '_R_"'

AND unit_price

ORDER BY description,

>= 100
unit_price

SELECT * FROM sloth@meerkat:stock

WHERE manu_code MATCHES

AND unit_price

ORDER BY description,

"?R?!
>= 100
unit_price

Each statement in Query 2-30 retrieves only those rows for which the middle
letter of the manu_code is R, as Query Result 2-30 shows.

stock_num

205 HRO
2 HRO
1 HRO
7 HRO
102 PRC
114 PRC
4 HRO
110 PRC
110 HRO
307 PRC
306 PRC
308 PRC
304 HRO

manu_code description

unit_price unit

3 golf balls
baseball
baseball gloves
basketball
bicycle brakes
bicycle gloves

$312.00 case
$126.00 case
$250.00 case
$600.00 case
$480.00 case
$120.00 case

football $480.00 case
helmet $236.00 case
helmet $260.00 case

$250.00 each
$160.00 each
$280.00 each
$280.00 box

infant jogger
tandem adapter
twin jogger
watch

Query Result 2-30

unit_descr

24/case
24/case

10 gloves/case
24/case

4 sets/case
10 pairs/case
24/case
4/case

4/case

each

each

each

10/box

2-38

The comparison' R_'(for LIKE) or "?R?" (for MATCHES) specifies, from left to

right, the following items:

= Any single character
s The letter R
= Any single character

Informix Guide to SQL: Tutorial

Creating a Comparison Condition

WHERE Clause with Restricted Single-Character Wildcard

Query 2-31 selects only those rows where the manu_code begins with A
through H and returns the rows that Query Result 2-31 shows. The class test
'[A-H]" specifies any single letter from A through H, inclusive. No equivalent
wildcard symbol exists for the LIKE keyword.

SELECT * FROM stock

WHERE manu_code MATCHES

ORDER BY description,

Query 2-31

"[A-H]*"
manu_code,

unit_price

stock_num

205
205

N W N

manu_code descr pt on

ANZ
HRO
HRO
HSK
HRO
HSK
HRO

ANZ
HRO
HSK

ANZ
HRO
ANZ
ANZ
ANZ
ANZ
ANZ
ANZ
HRO

3 golf balls

3 golf balls
baseball
baseball bat
baseball gloves
baseball gloves
basketball

helmet
helmet
helmet

running shoes
running shoes
swim cap
tennis ball
tennis racquet
volleyball
volleyball net
watch

watch

un t_pr

$312.
$312.
$126.
$240.
$250.
$800.
$600.

$244.
$260.
$308.

$95.
$42.
$60.
$48.
$19.
$840.
$20.
$170.
$280.

ce

00
00
00
00
00
00
00

00
00
00

00
50
00
00
80
00
00
00
00

un €

case
case
case
case
case
case
case

case
case
case

each
each
box
case
each
case
each
box
box

un t_descr

24/case
24/case
24/case
12/case

10 gloves/case
10 gloves/case

24/case

4/case
4/case
4/case

each
each
12/box

24 cans/case

each
24/case
each
10/box
10/box

Query Result 2-31

Composing Simple SELECT Statements 2-39

Creating a Comparison Condition

WHERE Clause with Variable-Length Wildcard

The statements in Query 2-32 use a wildcard at the end of a string to retrieve
all the rows where the description begins with the characters bicycle.

Query 2-32

SELECT * FROM stock
WHERE description LIKE 'bicycle%'
ORDER BY description, manu_code

SELECT * FROM stock
WHERE description MATCHES 'bicycle*'
ORDER BY description, manu_code

Either statement returns the rows that Query Result 2-32 shows.

stock_num manu_code description unit_price unit unit_descr Query Result 2-32
102 PRC bicycle brakes $480.00 case 4 sets/case
102 SHM bicycle brakes $220.00 case 4 sets/case
114 PRC bicycle gloves $120.00 case 10 pairs/case
107 PRC bicycle saddle $70.00 pair pair
106 PRC bicycle stem $23.00 each each
101 PRC bicycle tires $88.00 box 4/box
101 SHM bicycle tires $68.00 box 4/box
105 PRC bicycle wheels $53.00 pair pair
105 SHM bicycle wheels $80.00 pair pair

The comparison 'bicycle%' or 'bicycle*' specifies the characters bicycle
followed by any sequence of zero or more characters. It matches bicycle
stem with stem matched by the wildcard. It matches to the characters
bicycle alone, if a row exists with that description.

Query 2-33 narrows the search by adding another comparison condition that
excludes a manu_code of PRC.

Query 2-33
SELECT * FROM stock
WHERE description LIKE 'bicycle%'
AND manu_code NOT LIKE "PRC'
ORDER BY description, manu_code

2-40 Informix Guide to SQL: Tutorial

Creating a Comparison Condition

The statement retrieves only the rows that Query Result 2-33 shows.

Query Result 2-33
stock_num manu_code description unit_price unit unit_descr
102 SHM bicycle brakes $220.00 case 4 sets/case
101 SHM bicycle tires $68.00 box 4/box
105 SHM bicycle wheels $80.00 pair pair

GLS

When you select from a large table and use an initial wildcard in the
comparison string (such as '4cyc1e'), the query often takes longer to execute.
Because indexes cannot be used, every row is searched.

MATCHES and Non-English Data

By default, Informix database servers use the U.S. English language
environment, called a locale, for database data. This default locale uses the
I1SO 8859-1 code set. The U.S. English locale specifies that MATCHES will use
code-set order.

If your database contains non-English data, the MATCHES clause should use
the correct non-English code set for that language. Query 2-34 uses a SELECT
statement with a MATCHES clause in the WHERE clause to search the table,
abonnés, and to compare the selected information with the data in the nom
column.

Query 2-34

SELECT numéro,nom,prénom
FROM abonnés
WHERE nom MATCHES '[E-PJ]*'
ORDER BY nom;

The result of the comparison in this query is the same whether nom isaCHAR
or NCHAR column. The database server uses the sort order that the locale
specifies to determine what characters are in the range E through P. This
behavior is an exception to the rule that the database server collates CHAR
and VARCHAR columns in code-set order and NCHAR and NVARCHAR
columns in the sort order that the locale specifies.

Composing Simple SELECT Statements 2-41

Creating a Comparison Condition

In Query Result 2-34b, the rows for Etaix, Otker, and @verst are not selected
and listed because, with 1SO 8859-1 code-set order, the accented first letter of
each name is not in the E through P MATCHES range for the nom column. The
database server uses code-set order when the nom column is CHAR data
type. It also uses localized ordering when the column is NCHAR data type,
and you specify a nondefault locale.

numéronomprénom Query Result 2-34a

13607HammerGerhard
13602HdmmerleGreta
13604LaForétdean-Noél
13610LeMaitreHéloise
13613LTaneroGloria Dolores
13603MontafiadJosé Antonio
136110atfieldEmily

In Query Result 2-34b, the rows for Etaix, Otker, and @verst are included in
the list because the database server uses a locale-specific comparison.

numéronomprénom Query Result 2-34b

13608EtaixEmile
13607HammerGerhard
13602HammerleGreta
13604LaForétdean-Noél
13610LeMattreHéloise
13613LTaneroGloria Dolores
13603Montanadosé Antonio
136110atfieldEmily
136050tkerHans-Jdiirgen
136140verstPer-Anders

For more information on non-English data and locales, refer to the Guide to
GLS Functionality. ¢

2-42 Informix Guide to SQL: Tutorial

Creating a Comparison Condition

Comparing for Special Characters

Query 2-35 uses the keyword ESCAPE with LIKE or MATCHES so you can
protect a special character from misinterpretation as a wildcard symbol.

Query 2-35

SELECT * FROM cust_calls
WHERE res_descr LIKE '%!%%' ESCAPE "!'

The ESCAPE keyword designates an escape character (itis! in this example)
that protects the next character so that it is interpreted as data and not as a
wildcard. In the example, the escape character causes the middle percent sign
(%) to be treated as data. By using the ESCAPE keyword, you can search for
occurrences of a percent sign (%) in the res_descr column by using the LIKE
wildcard percent sign (%). The query retrieves the row that Query Result 2-35
shows.

customer_num
call_dtime
user_id
call_code
call_descr

res_dtime
res_descr

116 Query Result 2-35

1993-12-21 11:24

mannyn

I

Second complaint from this customer! Received
two cases right-handed outfielder gloves

(1 HRO) instead of one case lefties.
1993-12-27 08:19

Memo to shipping (Ava Brown) to send case of
left-handed gloves, pick up wrong case; memo
to billing requesting 5% discount to placate
customer due to second offense and Tateness
of resolution because of holiday

Using Subscripting in a WHERE Clause

You can use subscripting in the WHERE clause of a SELECT statement to specify
a range of characters or numbers in a column, as Query 2-36 shows.

Query 2-36

SELECT catalog_num, stock_num, manu_code, cat_advert,
cat_descr
FROM catalog
WHERE cat_advert[1,4] = 'High'

Composing Simple SELECT Statements 2-43

Creating a Comparison Condition

The subscript [1, 4] causes Query 2-36 to retrieve all rows in which the first
four letters of the cat_advert column are High, as Query Result 2-36 shows.

catalog_num 10004
stock_num 2
manu_code HRO
cat_advert Highest Quality Ball Available, from
Hand-Stitching to the Robinson Signature
cat_descr
Jackie Robinson signature ball. Highest professional quality, used by National
League.

catalog_num 10005

stock_num 3

manu_code HSK

cat_advert High-Technology Design Expands the Sweet Spot
cat_descr

Pro-style wood. Available in sizes: 31, 32, 33, 34, 35.

catalog_num 10008

stock_num 4

manu_code HRO

cat_advert Highest Quality Football for High School and
Collegiate Competitions

cat_descr

NFL-style, pigskin.

catalog_num 10012

stock_num 6

manu_code SMT

cat_advert High-Visibility Tennis, Day or Night
cat_descr
Soft yellow color for easy visibility in sunlight or
artificial 1ight.

catalog_num 10043

stock_num 202

manu_code KAR

cat_advert High-Quality Woods Appropriate for High School
Competitions or Serious Amateurs

cat_descr

Full set of woods designed for precision control and

power performance.

catalog_num 10045

stock_num 204

manu_code KAR

cat_advert High-Quality Beginning Set of Irons
Appropriate for High School Competitions

cat_descr

Ideally balanced for optimum control. Nylon covered shaft.

catalog_num 10068
stock_num 310

manu_code ANZ
cat_advert High-Quality Kickboard
cat_descr

White. Standard size.

2-44 Informix Guide to SQL: Tutorial

Query Result 2-36

Expressions and Derived Values

Expressions and Derived Values

You are not limited to selecting columns by name. You can use the SELECT
clause of a SELECT statement to perform computations on column data and
to display information derived from the contents of one or more columns. To
do this, list an expression in the select list.

An expression consists of a column name, a constant, a quoted string, a
keyword, or any combination of these items connected by operators. It can
also include host variables (program data) when the SELECT statement is
embedded in a program.

Arithmetic Expressions

An arithmetic expression contains at least one of the arithmetic operators listed
in the following table and produces a number. You cannot use CLOB, BLOB,
TEXT, or BYTE columns in arithmetic expressions.

Operator Operation

+ addition
- subtraction
* multiplication

/ division

Operations of this nature enable you to see the results of proposed
computations without actually altering the data in the database. You can add
an INTO TEMP clause to save the altered data in a temporary table for further
reference, computations, or impromptu reports. Query 2-37 calculates a 7
percent sales tax on the unit_price column when the unit_price is $400 or
more (but does not update it in the database).

Query 2-37

SELECT stock_num, description, unit, unit_descr,
unit_price, unit_price * 1.07
FROM stock
WHERE unit_price >= 400

Composing Simple SELECT Statements 2-45

Expressions and Derived Values

If you are using DB-Access or the SQL Editor, the result is displayed in a
column labeled expression, as Query Result 2-37 shows.

Query Result 2-37
stock_num description unit unit_descr unit_price (expression)
1 baseball gloves case 10 gloves/case $800.00 $856.0000
1 baseball gloves case 10 gloves/case $450.00 $481.5000
4 football case 24/case $960.00 $1027.2000
4 football case 24/case $480.00 $513.6000
7 basketball case 24/case $600.00 $642.0000
8 volleyball case 24/case $840.00 $898.8000
102 bicycle brakes case 4 sets/case $480.00 $513.6000
111 10-spd, assmbld each each $499.99 $534.9893
112 12-spd, assmbld each each $549.00 $587.4300
113 18-spd, assmbld each each $685.90 $733.9130
203 irons/wedge case 2 sets/case $670.00 $716.9000

Query 2-38 calculates a surcharge of $6.50 on orders when the quantity
ordered is less than 5.

Query 2-38

SELECT item_num, order_num, quantity,
total_price, total_price + 6.50
FROM items
WHERE quantity < 5

2-46 Informix Guide to SQL: Tutorial

Expressions and Derived Values

If you are using DB-Access or the SQL Editor, the result appears in a column
labeled expression, as Query Result 2-38 shows.

item_num

B N N e N

DO WMN WM B W =

order_num quantity total_price (expression)

1001 1 $250.00 $256.50
1002 1 $960.00 $966.50
1002 1 $240.00 $246.50
1003 1 $20.00 $26.50
1003 1 $840.00 $846.50
1004 1 $250.00 $256.50
1004 1 $126.00 $132.50
1004 1 $240.00 $246.50
1004 1 $800.00 $806.50
1021 2 $75.00 $81.50
1021 3 $225.00 $231.50
1021 3 $690.00 $696.50
1021 2 $624.00 $630.50
1022 1 $40.00 $46.50
1022 2 $96.00 $102.50
1022 2 $96.00 $102.50
1023 2 $40.00 $46.50
1023 2 $116.00 $122.50
1023 1 $80.00 $86.50
1023 1 $228.00 $234.50
1023 1 $170.00 $176.50
1023 1 $190.00 $196.50

days, hours, and minutes.

SELECT customer_num, user_id,
call_dtime, res_dtime
FROM cust_calls
ORDER BY wuser_id

call_code,

call_dtime

I ——

customer_num

116
116
106
121
127
110
119

user_ d call_code call_dt me

mannyn 1 1993-12-21 11:24
mannyn 1 1993-11-28 13:34
maryj D 1994-06-12 08:20
maryj 0 1994-07-10 14:05
maryj I 1994-07-31 14:30
richc L 1994-07-07 10:24
richc B 1994-07-01 15:00

(express on)

coow

oo

20:
03:
00:
00:

00:
17:

Query Result 2-38

Query 2-39 calculates and displays in an expression column (if you are using
DB-Access or the SQL Editor) the interval between when the customer call
was received (call_dtime) and when the call was resolved (res_dtime), in

Query 2-39

Query Result 2-39

Composing Simple SELECT Statements 2-47

Expressions and Derived Values

Using Display Labels

FROM stock

SELECT stock_num, description,
unit_price, unit_price * 1.07 taxed

WHERE unit_price >= 400

unit,

unit_descr,

2-48

stock_num

1
1
4
4
7

8
102
111
112
113
203

description unit unit_descr unit_price
baseball gloves case 10 gloves/case $800.00
baseball gloves case 10 gloves/case $450.00
football case 24/case $960.00
football case 24/case $480.00
basketball case 24/case $600.00
volleyball case 24/case $840.00
bicycle brakes case 4 sets/case $480.00
10-spd, assmbld each each $499.99
12-spd, assmbld each each $549.00
18-spd, assmbld each each $685.90
irons/wedge case 2 sets/case $670.00

FROM items
WHERE quantity < 5

Informix Guide to SQL: Tutorial

SELECT item_num, order_num,
total_price, total_price + 6.50 surcharge

$856
$481
$1027

$513.
$642.
$898.
$513.
$534.
$587.
$733.
$716.

quantity,

taxed

.0000
.5000
.2000
6000
0000
8000
6000
9893
4300
9130
9000

You can assign a display label to a computed or derived data column to replace
the default column header expression. In Query 2-40, Query 2-41, and Query
2-42, the derived data is shown in acolumn called (expression). Query 2-40
also presents derived values, but the column that displays the derived values
now has the descriptive header taxed.

Query 2-40

Query Result 2-40 shows that the label taxed is assigned to the expression in
the select list that displays the results of the operation unit_price * 1.07.

Query Result 2-40

In Query 2-41, the label surcharge is defined for the column that displays the
results of the operation total_price + 6.50.

Query 2-41

Expressions and Derived Values

The surcharge column is labeled in the output, as Query Result 2-41 shows.

item_num order_n

10
10
10
10
10
10
10
10
10
10
10
10

N R WN RN R W

Query Result 2-41

um quantity total_price surcharge

13 1 $36.00 $42.50
13 1 $48.00 $54.50
13 2 $40.00 $46.50
14 1 $960.00 $966.50
14 1 $480.00 $486.50
15 1 $450.00 $456.50
16 2 $136.00 $142.50
16 3 $90.00 $96.50
16 1 $308.00 $314.50
16 1 $120.00 $126.50
17 4 $150.00 $156.50
17 1 $230.00 $236.50

Query 2-42 assigns the label span to the column that displays the results of
subtracting the DATETIME column call_dtime from the DATETIME column
res_dtime.

Query 2-42

SELECT customer_num, user_id, call_code,
call_dtime, res_dtime - call_dtime span
FROM cust_calls
ORDER BY wuser_id

The span column is labeled in the output, as Query Result 2-42 shows.

116 manny
116 manny
106 maryj
121 maryj
127 maryj
110 richc
119 richc

customer_num user_

) i Query Result 2-42
id call_code call_dtime span
n 1 1993-12-21 11:24 5 20:55
n I 1993-11-28 13:34 0 03:13
D 1994-06-12 08:20 0 00:05
0 1994-07-10 14:05 0 00:01
1 1994-07-31 14:30
L 1994-07-07 10:24 0 00:06
B 1994-07-01 15:00 0 17:21

Composing Simple SELECT Statements 2-49

Using Functions in SELECT Statements

Sorting on Derived Columns

When you want to use ORDER BY as an expression, you can use either the
display label assigned to the expression or an integer, as Query 2-43 shows.

Query 2-43

SELECT customer_num, user_id, call_code,
call_dtime, res_dtime - call_dtime span
FROM cust_calls
ORDER BY span

Query 2-43 retrieves the same data from the cust_calls table as Query 2-42. In
Query 2-43, the ORDER BY clause causes the data to be displayed in ascending
order of the derived values in the span column, as Query Result 2-43 shows.

customer_num
127
121
106
110
116
119
116

user_id call_code call_dtime span Query Result 2-43
maryj I 1994-07-31 14:30

maryj 0 1994-07-10 14:05 0 00:01

maryj D 1994-06-12 08:20 0 00:05

richc L 1994-07-07 10:24 0 00:06

mannyn 1 1992-11-28 13:34 0 03:13

richc B 1994-07-01 15:00 017:21

mannyn I 1992-12-21 11:24 5 20:55

Query 2-44 uses an integer to represent the result of the operation
res_dtime - call_dtimeand retrievesthe same rows that appear in Query
Result 2-43.

Query 2-44

SELECT customer_num, user_id, call_code,
call_dtime, res_dtime - call_dtime span
FROM cust_calls
ORDER BY 5

Using Functions in SELECT Statements

In addition to column names and operators, an expression can also include
one or more functions.

Expressions supported include aggregate, function (which include
arithmetic functions), constant, and column expressions. These expressions
are described in Chapter 1 of the Informix Guide to SQL: Syntax.

2-50 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements

Aggregate Functions

The aggregate functions are COUNT, AVG, MAX, MIN, and SUM. They take on
values that depend on all the rows selected and return information about
rows, not the rows themselves. You cannot use these functions with CLOB,
BLOB, TEXT, or BYTE columns.

Aggregates are often used to summarize information about groups of rows
in a table. This use is discussed in Chapter 3, “Composing Advanced
SELECT Statements.” When you apply an aggregate function to an entire
table, the result contains a single row that summarizes all of the selected
rows.

Query 2-45 counts and displays the total number of rows in the stock table.
Query 2-45

SELECT COUNT(*)
FROM stock

(count(*)) Query Result 2-45

74

Query 2-46 includes a WHERE clause to count specific rows in the stock table;
in this case, only those rows that have a manu_code of SHM.

Query 2-46
SELECT COUNT (*)
FROM stock
WHERE manu_code = 'SHM'
Query Result 2-46

(count(*))

17

Composing Simple SELECT Statements 2-51

Using Functions in SELECT Statements

By including the keyword DISTINCT (or its synonym UNIQUE) and a column
name in Query 2-47, you can tally the number of different manufacturer
codes in the stock table.

Query 2-47

SELECT COUNT (DISTINCT manu_code)
FROM stock

(count)

9

Query Result 2-47

Query 2-48 computes the average unit_price of all rows in the stock table.

Query 2-48

SELECT AVG (unit_price)
FROM stock

(avg)
$197.14

Query Result 2-48

Query 2-49 computes the average unit_price of just those rows in the stock
table that have a manu_code of SHM.

2-52

Query 2-49
SELECT AVG (unit_price)
FROM stock
WHERE manu_code = 'SHM'
Query Result 2-49
(avg)
$204.93
You can combine aggregate functions as Query 2-50 shows.
Query 2-50

SELECT MAX (ship_charge), MIN (ship_charge)
FROM orders

Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements

Query 2-50 finds and displays both the highest and lowest ship_charge in the
orders table, as Query Result 2-50 shows.

(max)

$25.20

Query Result 2-50
(min)

$5.00

You can apply functions to expressions, and you can supply display labels for
their results, as Query 2-51 shows.

Query 2-51

SELECT MAX (res_dtime - call_dtime) maximum,
MIN (res_dtime - call_dtime) minimum,
AVG (res_dtime - call_dtime) average
FROM cust_calls

Query 2-51 finds and displays the maximum, minimum, and average
amount of time (in days, hours, and minutes) between the reception and
resolution of a customer call and labels the derived values appropriately.
These amounts of time are shown in Query Result 2-51.

maximum

5 20:55

. Query Result 2-51
minimum average

0 00:01 1 02:56

Query 2-52 calculates the total ship_weight of orders that were shipped on
July 13, 1994,

Query 2-52
SELECT SUM (ship_weight)
FROM orders
WHERE ship_date = '07/13/1994"
(sum) Query Result 2-52
130.50

Composing Simple SELECT Statements 2-53

Using Functions in SELECT Statements

Time Functions

You can use the time functions DAY, MDY, MONTH, WEEKDAY, YEAR, and
DATE in either the SELECT clause or the WHERE clause of a query. These
functions return a value that corresponds to the expressions or arguments
that you use to call the function. You can also use the CURRENT function to
return a value with the current date and time, or use the EXTEND function to
adjust the precision of a DATE or DATETIME value.

Using DAY and CURRENT

Query 2-53 returns the day of the month for the call_dtime and res_dtime
columns in two expression columns, as Query Result 2-53 shows.

Query 2-53

SELECT customer_num, DAY (call_dtime), DAY (res_dtime)
FROM cust_calls

customer_num (expression)

(expression)

106 12 12
110 7 7
119 1 2
121 10 10
127 31

116 28 28
116 21 27

Query Result 2-53

Query 2-54 uses the DAY and CURRENT functions to compare column values
to the current day of the month. It selects only those rows where the value is
earlier than the current day.

2-54 Informix Guide to SQL: Tutorial

SELECT customer_num,
FROM cust_calls
WHERE DAY

(call_dtime)

DAY (call_dtime),

Query 2-54

DAY (res_dtime)

Using Functions in SELECT Statements

customer_num (expression) (expression) Query Result 2-54

106 12 12
110 7 7
119 1 2
121 10 10

Query 2-55 shows another use of the CURRENT function, selecting rows
where the day is earlier than the current one.

Query 2-55
SELECT customer_num, call_code, call_descr
FROM cust_calls
WHERE call_dtime < CURRENT YEAR TO DAY
Query Result 2-55

customer_num 106

call_code D

call_descr Order was received, but two of the cans of ANZ tennis balls
within the case were empty

customer_num 116

call_code 1

call_descr Second complaint from this customer! Received two cases
right-handed outfielder gloves (1 HRO) instead of one case
lefties.

Using MONTH

Query 2-56 uses the MONTH function to extract and show what month the
customer call was received and resolved, and it uses display labels for the
resulting columns. However, it does not make a distinction between years.

Query 2-56
SELECT customer_num,
MONTH (call_dtime) call_month,
MONTH (res_dtime) res_month
FROM cust_calls

Composing Simple SELECT Statements 2-55

Using Functions in SELECT Statements

Query Result 2-56

customer_num call_month res_month

106 6 6

110 7 7

119 7 7

121 7 7

127 7

116 11 11

116 12 12

Query 2-57 uses the MONTH function plus DAY and CURRENT to show what
month the customer call was received and resolved if DAY is earlier than the
current day.

Query 2-57

SELECT customer_num,
MONTH (call_dtime) called,
MONTH (res_dtime) resolved
FROM cust_calls
WHERE DAY (res_dtime) < DAY (CURRENT)

Query Result 2-57

customer_num called resolved
106 6 6
110 7 7
119 7 7
121 7 7

Using WEEKDAY

In Query 2-58, the WEEKDAY function is used to indicate which day of the
week calls are received and resolved (0 represents Sunday, 1 is Monday, and
so on), and the expression columns are labeled.

Query 2-58

SELECT customer_num,
WEEKDAY (call_dtime) called,
WEEKDAY (res_dtime) resolved
FROM cust_calls
ORDER BY resolved

2-56 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements

customer_num called resolved Query Result 2-58

127 0

116 0 0
106 0 0
121 0 0
116 2 1
110 4 4
119 5 6

Query 2-59 uses the COUNT and WEEKDAY functions to count how many
calls were received on a weekend. This kind of statement can give you an
idea of customer-call patterns or indicate whether overtime pay might be

required.
Query 2-59
SELECT COUNT(*)
FROM cust_calls
WHERE WEEKDAY (call_dtime) IN (0,6)
Query Result 2-59

(count(*))

4

Query 2-60 retrieves rows where the call_dtime is earlier than the beginning
of the current year.

Query 2-60
SELECT customer_num, call_code,
YEAR (call_dtime) call_year,
YEAR (res_dtime) res_year
FROM cust_calls
WHERE YEAR (call_dtime) < YEAR (TODAY)

Query Result 2-60
customer_num call_code call_year res_year

106 D 1994 1994
110 L 1994 1994

Composing Simple SELECT Statements 2-57

Using Functions in SELECT Statements

Formatting DATETIME Values

In Query 2-61, the EXTEND function restricts the two DATETIME values by
displaying only the specified subfields.

Query 2-61

SELECT customer_num,
EXTEND (call_dtime, month to minute) call_time,
EXTEND (res_dtime, month to minute) res_time
FROM cust_calls
ORDER BY res_time

Query Result 2-61 returns the month-to-minute range for the columns
labeled call_time and res_time and gives an indication of the workload.

customer_num

127
106
119
110
121
116
116

call_

07-31
06-12
07-01
07-07
07-10
11-28
12-21

Query Result 2-61

time res_time

14:30

08:20 06-12 08:25
15:00 07-02 08:21
10:24 07-07 10:30
14:05 07-10 14:06
13:34 11-28 16:47
11:24 12-27 08:19

Using the DATE Function

Query 2-62 retrieves DATETIME values only when call_dtime is later than the
specified DATE.

Query 2-62

SELECT customer_num, call_dtime, res_dtime
FROM cust_calls
WHERE call_dtime > DATE ('12/31/93")

Query Result 2-62 returns the following rows.

Query Result 2-62

customer_num call_dtime res_dtime

106 1994-06-12 08:20 1994-06-12 08:25
110 1994-07-07 10:24 1994-07-07 10:30
119 1994-07-01 15:00 1994-07-02 08:21
121 1994-07-10 14:05 1994-07-10 14:06
127 1994-07-31 14:30

2-58 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements

Query 2-63 converts DATETIME values to DATE format and displays the
values, with labels, only when call_dtime is greater than or equal to the
specified date.

Query 2-63

SELECT customer_num,
DATE (call_dtime) called,
DATE (res_dtime) resolved
FROM cust_calls
WHERE call_dtime >= DATE ('1/1/94")

customer_num called

106 06/12/1994
110 07/07/1994
119 07/01/1994
121 07/10/1994
127 07/31/1994

resolved

06/12/1994
07/07/1994
07/02/1994
07/10/1994

Query Result 2-63

Other Functions and Keywords

You also can use the LENGTH, USER, CURRENT, and TODAY functions
anywhere in an SQL expression that you would use a constant. In addition,
with Universal Server, you can include the DBSERVERNAME keyword in a
SELECT statement to display the name of the database server where the
current database resides.

You can use these functions and keywords to select an expression that
consists entirely of constant values or an expression that includes column
data. In the first instance, the result is the same for all rows of output.

In addition, you can use the HEX function to return the hexadecimal encoding
of an expression, the ROUND function to return the rounded value of an
expression, and the TRUNC function to return the truncated value of an
expression.

Composing Simple SELECT Statements 2-59

Using Functions in SELECT Statements

In Query 2-64, the LENGTH function calculates the number of bytes in the
combined fname and Iname columns for each row where the length of
company is greater than 15.

Query 2-64
SELECT customer_num,
LENGTH (fname) + LENGTH (lname) namelength

FROM customer
WHERE LENGTH (company) > 15

Query Result 2-64
customer_num namelength
101 11
105 13
107 11
112 14
115 11
118 10
119 10
120 10
122 12
124 11
125 10
126 12
127 10
128 11

Although the LENGTH function might not be useful when you work with
DB-Access or the SQL Editor, it can be important to determine the string
length for programs and reports. LENGTH returns the clipped length of a
CHARACTER or VARCHAR string and the full number of bytes in a TEXT or
BYTE string.

The USER function can be handy when you want to define a restricted view
of atable that contains only your rows. For information on creating views, see
Chapter 11, “Granting and Limiting Access to Your Database,” in this manual
and the GRANT and CREATE VIEW statements in Chapter 1 of the Informix
Guide to SQL: Syntax.

2-60 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements

Query 2-65a specifies the USER function and the cust_calls table.

Query 2-65a
SELECT USER from cust_calls

Query 2-65b returns the user name (login account name) of the user who
executes the query. It is repeated once for each row in the table.

Query 2-65b

SELECT * FROM cust_calls
WHERE user_id = USER

If the user name of the current user is richc, Query 2-65b retrieves only those
rows in the cust_calls table that are owned by that user, as Query Result 2-65
shows.

Query Result 2-65
customer_num 110
call_dtime 1994-07-07 10:24

user_id richc

call_code L

call_descr Order placed one month ago (6/7) not received.

res_dtime 1994-07-07 10:30

res_descr Checked with shipping (Ed Smith). Order sent yesterday- we

were waiting for goods from ANZ. Next time will call with
delay if necessary

customer_num 119
call_dtime 1994-07-01 15:00

user_id richc

call_code B

call_descr Bill does not reflect credit from previous order

res_dtime 1994-07-02 08:21

res_descr Spoke with Jane Akant in Finance. She found the error and is

sending new bill to customer

Composing Simple SELECT Statements 2-61

Using Functions in SELECT Statements

If Query 2-66 is issued when the current system date is July 10, 1994, it returns
this one row.

Query 2-66

SELECT * FROM orders
WHERE order_date = TODAY

order_num
order_date

ship_instru
backlog
po_num
ship_date
ship_weight
ship_charge
paid_date

Query Result 2-66
1018
07/10/1994

customer_num 121

ct SW corner of Biltmore Mall

n

522942
07/13/1994
70.50
$20.00
08/06/1994

You can include the keyword DBSERVERNAME (or its synonym, SITENAME)
in a SELECT statement in Universal Server to find the name of the database
server. You can query on the DBSERVERNAME for any table that has rows,
including system catalog tables.

In Query 2-67, you assign the label server to the DBSERVERNAME expression
and also select the tabid column from the systables system catalog table. This
table describes database tables, and tabid is the serial-interval table identifier.

Query 2-67

SELECT DBSERVERNAME server, tabid FROM systables
WHERE tabid <= 4

server

montague
montague
montague
montague

Query Result 2-67
tabid

S WM

Without the WHERE clause to restrict the values in the tabid, the database
server name would be repeated for each row of the systables table.

2-62 Informix Guide to SQL: Tutorial

Using Functions in SELECT Statements

In Query 2-68, the HEX function returns the hexadecimal format of three

specified columns in the customer table.

Query 2-68

SELECT HEX (customer_num) hexnum, HEX (zipcode) hexzip,

HEX (rowid) hexrow
FROM customer

hexnum

0x00000065
0x00000066
0x00000067
0x00000068
0x00000069
0x0000006A
0x0000006B
0x0000006C
0x0000006D
0x0000006E
0x0000006F
0x00000070
0x00000071
0x00000072
0x00000073
0x00000074
0x00000075
0x00000076
0x00000077
0x00000078
0x00000079
0x0000007A
0x00000078B
0x0000007C
0x0000007D
0x0000007E
0x0000007F
0x00000080

hexzip

0x00016F86
0x00016FAS5
0x0001705F
0x00016F4A
0x00016F46
0x00016F6F
0x00017060
0x00016F6F
0x00016F86
0x00016F6E
0x00016F85
0x00016F46
0x00016F49
0x00016F6E
0x00016F49
0x00016F58
0x00016F6F
0x00017191
0x00001F42
0x00014C18
0x00004DBA
0x0000215C
0x00007E00
0x00012116
0x00000857
0x00013958B
0x0000EBF6
0x00014C10

hexrow

0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000A
0x0000000B
0x0000000C
0x0000000D
0x0000000E
0x0000000F
0x00000010
0x00000011
0x00000012
0x00000013
0x00000014
0x00000015
0x00000016
0x00000017
0x00000018
0x00000019
0x0000001A
0x0000001B
0x0000001C

Query Result 2-68

Composing Simple SELECT Statements 2-63

Using SPL Routines in SELECT Statements

2-64

Using SPL Routines in SELECT Statements

We have seen examples of SELECT statement expressions that consist of
column names, operators, and functions. Another type of expression
contains an SPL routine call.

SPL routines contain special Stored Procedure Language (SPL) statements as
well as SQL statements. For more information on SPL routines, refer to
Chapter 4, “Modifying Data.”

SPL routines provide a way to extend the range of functions available; you
can perform a subquery on each row you select.

For example, suppose you want a listing of the customer number, the
customer’s last name, and the number of orders the customer has made.
Query 2-69 shows one way to retrieve this information. The customer table
has customer_num and Iname columns but no record of the number of
orders each customer has made. The following query assumes you have
written a get_orders routine, which queries the orders table for each
customer_num and returns the number of corresponding orders that is
labeled n_orders.

Query 2-69

SELECT customer_num, l1name, get_orders(customer_num) n_orders
FROM customer

Informix Guide to SQL: Tutorial

Using SPL Routines in SELECT Statements

Query Result 2-69 shows the output from this SPL routine.

Query Result 2-69
customer_num lname n_orders

101 Pauli
102 Sadler
103 Currie
104 Higgins
105 Vector
106 Watson
107 Ream
108 Quinn
109 Miller
110 Jaeger
111 Keyes
112 Lawson
113 Beatty
114 Albertson
115 Grant
116 Parmelee
117 Sipes
118 Baxter
119 Shorter
120 Jewell
121 Wallack
122 0’Brian
123 Hanlon
124 Putnum
125 Henry
126 Neelie
127 Satifer
128 Lessor

O PRPORRPRPPRPRPRPRPRPONRFRPPRPOORRPNOOONO RO

Use SPL routines to encapsulate operations that you frequently perform in
your queries. For example, the condition in Query 2-70 contains a routine,
conv_price, that converts the unit price of a stock item to a different currency
and adds any import tariffs.

Query 2-70

SELECT stock_num, manu_code, description FROM stock
WHERE conv_price(unit_price, ex_rate = 1.50, tariff = 50.00) < 1000

Composing Simple SELECT Statements 2-65

Multiple-Table SELECT Statements

2-66

Multiple-Table SELECT Statements

To select data from two or more tables, name these tables in the FROM clause.
Add a WHERE clause to create a join condition between at least one related
columnin each table. This WHERE clause creates a temporary composite table
in which each pair of rows that satisfies the join condition is linked to form a
single row.

A simple join combines information from two or more tables based on the
relationship between one column in each table. A composite join is a join
between two or more tables based on the relationship between two or more
columns in each table.

To create a join, you must specify a relationship, called a join condition,
between at least one column from each table. Because the columns are being
compared, they must have compatible data types. When you join large tables,
performance improves when you index the columns in the join condition.

Data types are described in Chapter 2 of the Informix Guide to SQL: Reference;
indexing is discussed in detail in the administrator’s guide for your database
Server.

Creating a Cartesian Product

When you perform a multiple-table query that does not explicitly state a join
condition among the tables, you create a Cartesian product. A Cartesian
product consists of every possible combination of rows from the tables. This
result is usually very large and unwieldy, and the data is inaccurate.

Query 2-71 selects from two tables and produces a Cartesian product.

Query 2-71
SELECT * FROM customer, state

Informix Guide to SQL: Tutorial

Creating a Join

Although only 52 rows exist in the state table and only 28 rows exist in the
customer table, the effect of Query 2-71 is to multiply the rows of one table
by the rows of the other and retrieve an impractical 1,456 rows. Query 2-71
shows the first record that DB-Access displays. To view each subsequent
record, highlight the NEXT menu and press RETURN.

customer_num 101

fname
Tname
company
addressl
address?
city
state
zipcode
phone
code

sname

Query Result 2-71

Ludwig

Pauli

A11 Sports Supplies
213 Erstwild Court

Sunnyvale

CA

94086
408-789-8075
AK

Alaska

Some of the data that is displayed in the concatenated rows is inaccurate. For
example, although the city and state from the customer table indicate an
address in California, the code and sname from the state table might be for a
different state.

Creating a Join

Conceptually, the first stage of any join is the creation of a Cartesian product.
To refine or constrain this Cartesian product and eliminate meaningless rows
of data, include a WHERE clause with a valid join condition in your SELECT
statement.

This section illustrates equi-joins, natural joins, and multiple-table joins.
Additional complex forms, such as self-joins and outer joins, are covered in
Chapter 3, “Composing Advanced SELECT Statements.”

Composing Simple SELECT Statements 2-67

Creating a Join

Equi-Join

An equi-join is a join based on equality or matching values. This equality is
indicated with an equal sign (=) in the comparison operation in the WHERE
clause, as Query 2-72 shows.

Query 2-72

SELECT * FROM manufact, stock
WHERE manufact.manu_code = stock.manu_code

Query 2-72 joins the manufact and stock tables on the manu_code column. It
retrieves only those rows for which the values for the two columns are equal,
as Query Result 2-72 shows.

Query Result 2-72

manu_code SMT
manu_name Smith
lead_time 3
stock_num 1
manu_code SMT

description baseball gloves
unit_price $450.00

unit case

unit_descr 10 gloves/case

manu_code SMT
manu_name Smith
lead_time 3
stock_num 5
manu_code SMT

description tennis racquet
unit_price $25.00

unit each
unit_descr each

In this equi-join, Query Result 2-72 includes the manu_code column from
both the manufact and stock tables because the select list requested every
column.

You can also create an equi-join with additional constraints, one where the
comparison condition is based on the inequality of values in the joined
columns. These joins use a relational operator other than the equal sign (=)
in the comparison condition that is specified in the WHERE clause.

2-68 Informix Guide to SQL: Tutorial

Creating a Join

To join tables that contain columns with the same name, precede each column
name with a period and its table name, as Query 2-73 shows.

Query 2-73

SELECT order_num, order_date, ship_date, cust_calls.x*
FROM orders, cust_calls
WHERE call_dtime >= ship_date
AND cust_calls.customer_num = orders.customer_num
ORDER BY customer_num

Query 2-73 joins on the customer_num column and then selects only those

rows where the call_dtime in the cust_calls table is greater than or equal to
the ship_date in the orders table. Query Result 2-73 shows the first row that
DB-Access returns.

order_num
order_date
ship_date
customer_num
call_dtime
user_id
call_code
call_descr

res_dtime
res_descr

Query Result 2-73
1004

05/22/1994

05/30/1994

106

1994-06-12 08:20

maryJ

D

Order received okay, but two of the cans of
ANZ tennis balls within the case were empty
1994-06-12 08:25

Authorized credit for two cans to customer,
issued apology. Called ANZ buyer to report
the ga problem.

Natural Join

A natural join is structured so that the join column does not display data
redundantly, as Query 2-74 shows.

Query 2-74

SELECT manu_name, lead_time, stock.*
FROM manufact, stock
WHERE manufact.manu_code = stock.manu_code

Composing Simple SELECT Statements 2-69

Creating a Join

Like the example for equi-join, Query 2-74 joins the manufact and stock
tables on the manu_code column. Because the select list is more closely
defined, the manu_code is listed only once for each row retrieved, as Query

Result 2-74 shows.

2-70

manu_name
lead_time
stock_num
manu_code
description
unit_price
unit
unit_descr

manu_name
lead_time
stock_num
manu_code
description
unit_price
unit
unit_descr

Smith
3
1
SMT
baseball gloves
$450.00
case
10 gloves/case

Smith
3
5
SMT
tennis racquet
$25.00
each
each

Query Result 2-74

All joins are associative; that is, the order of the joining terms in the WHERE

clause does not affect the meaning of the join.

Both of the statements in Query 2-75 create the same natural join.

SELECT catalog.*, description, unit_price, unit,

FROM catalog, stock

WHERE catalog.stock_num = stock.stock_num
AND catalog.manu_code = stock.manu_code
AND catalog_num = 10017

SELECT catalog.*, description, unit_price, unit,

FROM catalog, stock

WHERE catalog_num = 10017
AND catalog.manu_code stock.manu_code
AND catalog.stock_num = stock.stock_num

Informix Guide to SQL: Tutorial

Query 2-75
unit_descr

unit_descr

Creating a Join

Each statement retrieves the row that Query Result 2-75 shows.

Query Result 2-75
catalog_num 10017

stock_num 101

manu_code PRC

cat_descr

Reinforced, hand-finished tubular. Polyurethane belted.

Effective against punctures. Mixed tread for super wear

and road grip.

cat_picture <BYTE value>

cat_advert Ultimate in Puncture Protection, Tires
Designed for In-City Riding

description bicycle tires

unit_price $88.00

unit box

unit_descr 4/box

Query Result 2-75 includes a TEXT column, cat_descr; a BYTE column,
cat_picture; and a VARCHAR column, cat_advert.

Multiple-Table Join

A multiple-table join connects more than two tables on one or more
associated columns; it can be an equi-join or a natural join.

Query 2-76 creates an equi-join on the catalog, stock, and manufact tables
and retrieves the following row:

Query 2-76
SELECT * FROM catalog, stock, manufact
WHERE catalog.stock_num = stock.stock_num

AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025

Composing Simple SELECT Statements 2-71

Creating a Join

Query 2-76 retrieves the rows Query Result 2-76 shows.

catalog_num

stock_num
manu_code
cat_descr

uery Result 2-76
10025 Query

106
PRC

Hard anodized alloy with pearl finish; 6mm hex bolt hardware.
Available in Tengths of 90-140mm in 10mm increments.

cat_picture

cat_advert
stock_num
manu_code
description
unit_price
unit
unit_descr
manu_code

manu_name
lead_time

<BYTE value>

ProCycle Stem with Pearl Finish
106

PRC

bicycle stem

$23.00

each

each

PRC

ProCycle

The manu_code is repeated three times, once for each table, and stock_num
is repeated twice.

Because of the considerable duplication of a multiple-table query in Query
2-76, define the SELECT statement more closely by including specific columns
in the select list, as Query 2-77 shows.

Query 2-77

SELECT catalog.*, description, unit_price, unit,
unit_descr, manu_name, lead_time
FROM catalog, stock, manufact
WHERE catalog.stock_num = stock.stock_num
AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025

2-72 Informix Guide to SQL: Tutorial

Some Query Shortcuts

Query 2-77 uses a wildcard to select all columns from the table with the most
columns and then specifies columns from the other two tables. Query Result
2-77 shows the natural join produced by Query 2-77. It displays the same
information as the previous example, but without duplication.

Query Result 2-77
catalog_num 10025
stock_num 106
manu_code PRC
cat_descr
Hard anodized alloy with pearl finish. 6mm hex bolt
hardware.
Available in lengths of 90-140mm in 10mm increments.
cat_picture <BYTE value>

cat_advert ProCycle Stem with Pearl Finish
description bicycle stem
unit_price $23.00

unit each
unit_descr each
manu_name ProCycle
lead_time 9

Some Query Shortcuts

You can use aliases, the INTO TEMP clause, and display labels to speed your
way through joins and multiple-table queries and to produce output for
other uses.

Composing Simple SELECT Statements 2-73

Some Query Shortcuts

2-74

Using Aliases

You can make multiple-table queries shorter and more readable by assigning
aliases to the tables in a SELECT statement. An alias is a word that immedi-
ately follows the name of a table in the FROM clause. You can use it wherever
the table name would be used, for instance, as a prefix to the column names
in the other clauses.

Query 2-78a

SELECT s.stock_num, s.manu_code, s.description,
s.unit_price, s.unit, c.catalog_num,
c.cat_descr, c.cat_advert, m.lead_time
FROM stock s, catalog c, manufact m
WHERE s.stock_num = c.stock_num

AND s.manu_code = c.manu_code

AND s.manu_code = m.manu_code

AND s.manu_code IN ('HRO', 'HSK")

AND s.stock_num BETWEEN 100 AND 301
ORDER BY catalog_num

The associative nature of the SELECT statement allows you to use an alias
before you define it. In Query 2-78a, the aliases s for the stock table, c for the
catalog table, and m for the manufact table are specified in the FROM clause
and used throughout the SELECT and WHERE clauses as column prefixes.

Compare the length of Query 2-78a with Query 2-78b, which does not use
aliases.

Query 2-78b

SELECT stock.stock_num, stock.manu_code, stock.description,
stock.unit_price, stock.unit, catalog.catalog_num,
catalog.cat_descr, catalog.cat_advert,
manufact.lead_time

FROM stock, catalog, manufact

WHERE stock.stock_num = catalog.stock_num
AND stock.manu_code = catalog.manu_code
AND stock.manu_code = manufact.manu_code
AND stock.manu_code IN ('HRO', '"HSK")
AND stock.stock_num BETWEEN 100 AND 301

ORDER BY catalog_num

Informix Guide to SQL: Tutorial

Some Query Shortcuts

Query 2-78a and Query 2-78b are equivalent and retrieve the data that is
shown in Query Result 2-78.

Query Result 2-78
stock_num 110

manu_code HRO

description helmet

unit_price $260.00

unit case
catalog_num 10033
cat_descr

Newest ultralight helmet uses plastic shell. Largest ventilation

channels of any helmet on the market. 8.5 oz.

cat_advert Lightweight Plastic Slatted with Vents Assures Cool
Comfort Without Sacrificing Protection

lead_time 4

You cannot use the ORDER BY clause for the TEXT column cat_descr or the
BYTE column cat_picture. You can also use aliases to shorten your queries on
external tables that reside in external databases.

Query 2-79 joins columns from two tables that reside in different databases
and systems, neither of which is the current database or system.

Query 2-79

SELECT order_num, Iname, fname, phone
FROM masterdb@central:customer c, sales@western:orders o
WHERE c.customer_num = o.customer_num
AND order_num <= 1010

Composing Simple SELECT Statements 2-75

Some Query Shortcuts

By assigning the aliases ¢ and o to the long database@system:table names,
masterdb@central:customer and sales@western:orders, respectively, you
can use the aliases to shorten the expression in the WHERE clause and retrieve
the data as Query Result 2-79 shows.

Query Result 2-79
order_num Tname fname phone
1001 Higgins Anthony 415-368-1100
1002 Pauli Ludwig 408-789-8075
1003 Higgins Anthony 415-368-1100
1004 Watson George 415-389-8789
1005 Parmelee Jean 415-534-8822
1006 Lawson Margaret 415-887-7235
1007 Sipes Arnold 415-245-4578
1008 Jaeger Roy 415-743-3611
1009 Keyes Frances 408-277-7245
1010 Grant Alfred 415-356-1123

For more information on external tables and external databases, see
Chapter 1 in the Informix Guide to SQL: Syntax.

You can also use synonyms as shorthand references to the long names of
external and current tables and views. For details on how to create and use
synonyms, see the CREATE SYNONYM statement in Chapter 1 of the Informix
Guide to SQL: Syntax.

The INTO TEMP Clause

By adding an INTO TEMP clause to your SELECT statement, you can
temporarily save the results of a multiple-table query in a separate table that
you can query or manipulate without modifying the database. Temporary
tables are dropped when you end your SQL session or when your program or
report terminates.

The following example creates a temporary table called stockman and stores
the results of the query in it. Because all columns in a temporary table must
have names, the alias adj_price is required.

SELECT DISTINCT stock_num, manu_name, description,
unit_price, unit_price * 1.05 adj_price
FROM stock, manufact
WHERE manufact.manu_code = stock.manu_code
INTO TEMP stockman

2-76 Informix Guide to SQL: Tutorial

Some Query Shortcuts

You can now query the stockman table and join it with other tables, which
avoids a multiple sort and lets you move more quickly through the database.
Temporary tables are discussed at greater length in the INFORMIX-Universal
Server Administrator’s Guide. Query 2-80 shows how to view the contents of
the stockman temporary table, which the preceding SELECT statement

returns.
Query 2-80
SELECT * FROM stockman
Query Result 2-80

stock_num manu_name description unit_price adj_price
1 Hero baseball gloves $250.00 $262.5000

1 Husky baseball gloves $800.00 $840.0000

1 Smith baseball gloves $450.00 $472.5000

2 Hero baseball $126.00 $132.3000

3 Husky baseball bat $240.00 $252.0000

4 Hero football $480.00 $504.0000

4 Husky football $960.00 $1008.0000
306 Shimara tandem adapter $190.00 $199.5000
307 ProCycle infant jogger $250.00 $262.5000
308 ProCycle twin jogger $280.00 $294.0000
309 Hero ear drops $40.00 $42.0000
309 Shimara ear drops $40.00 $42.0000
310 Anza kick board $84.00 $88.2000
310 Shimara kick board $80.00 $84.0000
311 Shimara water gloves $48.00 $50.4000
312 Hero racer goggles $72.00 $75.6000
312 Shimara racer goggles $96.00 $100.8000
313 Anza swim cap $60.00 $63.0000
313 Shimara swim cap $72.00 $75.6000

Composing Simple SELECT Statements 2-77

Summary

2-78

Summary

This chapter introduced sample syntax and results for basic kinds of SELECT
statements that are used to query on a relational database. Earlier sections of
the chapter showed how to perform the following actions:

Select all columns and rows from a table with the SELECT and FROM
clauses

Select specific columns from a table with the SELECT and FROM
clauses

Select specific rows from a table with the SELECT, FROM, and WHERE
clauses

Use the DISTINCT or UNIQUE keyword in the SELECT clause to
eliminate duplicate rows from query results

Sort retrieved data with the ORDER BY clause and the DESC keyword
Select and order data that contains non-English characters

Use the BETWEEN, IN, MATCHES, and LIKE keywords and various
relational operators in the WHERE clause to create a comparison
condition

Create comparison conditions that include values, exclude values,
find a range of values (with keywords, relational operators, and
subscripting), and find a subset of values

Perform variable text searches by using exact-text comparisons,
variable-length wildcards, and restricted and unrestricted wildcards

Use the logical operators AND, OR, and NOT to connect search
conditions or Boolean expressions in a WHERE clause

Use the ESCAPE keyword to protect special characters in a query

Search for null values with the IS NULL and 1S NOT NULL keywords
in the WHERE clause

Use arithmetic operators in the SELECT clause to perform
computations on number fields and display derived data

Use substrings and subscripting to tailor your queries

Assign display labels to computed columns as a formatting tool for
reports

Informix Guide to SQL: Tutorial

Summary

Use the aggregate functions COUNT, AVG, MAX, MIN, and SUM in the
SELECT clause to calculate and retrieve specific data

Include the time functions DATE, DAY, MDY, MONTH, WEEKDAY,
YEAR, CURRENT, and EXTEND plus the TODAY, LENGTH, and USER
functions in your SELECT statements

Include SPL routines in your SELECT statements

This chapter also introduced simple join conditions that enable you to select
and display data from two or more tables. The section “Multiple-Table
SELECT Statements” described how to perform the following actions:

Create a Cartesian product

Constrain a Cartesian product by including a WHERE clause with a
valid join condition in your query

Define and create a natural join and an equi-join
Join two or more tables on one or more columns
Use aliases as a shortcut in multiple-table queries

Retrieve selected data into a separate, temporary table with the INTO
TEMP clause to perform computations outside the database

The next chapter explains more complex queries and subqueries; self-joins
and outer joins; the GROUP BY and HAVING clauses; and the UNION,
INTERSECTION, and DIFFERENCE set operations.

Composing Simple SELECT Statements 2-79

Composing Advanced SELECT
Statements

Using the GROUP BY and HAVING Clauses 3-4
Usingthe GROUPBY Clause 3-4
Using the HAVING Clause. 3-9

Creating Advanced Joins. 31
Self-Joins 31
OuterJoins 32

SimpleJoin. A
Simple Outer Join on Two Tables e 322
Outer Join for a Simple Jointoa Third Table 3-23
Outer Join for an Outer Jointoa Third Table 3-25
Outer Join of Two Tablestoa Third Table 3-27

Subqueries in SELECT Statements 329
UsingALL 33
Using ANY T B X
Single-Valued Subquerles T Y4
Correlated Subqueries 334
UsingEXISTS 33

Set Operations . 338
Union 339
Intersection . 346
Difference. 347

summary L ..o 349

3-2 Informix Guide to SQL: Tutorial

he previous chapter, “Composing Simple SELECT Statements,”
demonstrates some basic ways to retrieve data from a relational database
with the SELECT statement. This chapter increases the scope of what you can
do with this powerful SQL statement and enables you to perform more
complex database queries and data manipulation.

Whereas the previous chapter focused on five of the clauses in SELECT
statement syntax, this chapter adds two more. You can use the GROUP BY
clause with aggregate functions to organize rows returned by the FROM
clause. You can include a HAVING clause to place conditions on the values
that the GROUP BY clause returns.

This chapter extends the earlier discussion of joins. It illustrates self-joins,
which enable you to join a table to itself, and four kinds of outer joins, in which
you apply the keyword OUTER to treat two or more joined tables unequally.
It also introduces correlated and uncorrelated subqueries and their opera-
tional keywords, shows how to combine queries with the UNION operator,
and defines the set operations known as union, intersection, and difference.

Examples in this chapter show how to use some or all of the SELECT
statement clauses in your queries. The clauses must appear in the following
order:

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

INTO TEMP

No g s e bR

Composing Advanced SELECT Statements 3-3

Using the GROUP BY and HAVING Clauses

3-4

An additional SELECT statement clause, INTO, which you can use to specify
program and host variables in SQL APIs, is described in Chapter 5,
“Programming with SQL,” as well as in the manuals that come with the
product.

Using the GROUP BY and HAVING Clauses

The optional GROUP BY and HAVING clauses add functionality to your
SELECT statement. You can include one or both in a basic SELECT statement
to increase your ability to manipulate aggregates.

The GROUP BY clause combines similar rows, producing a single result row
for each group of rows that have the same values for each column listed in the
select list. The HAVING clause sets conditions on those groups after you form
them. You can use a GROUP BY clause without a HAVING clause, or a HAVING
clause without a GROUP BY clause.

Using the GROUP BY Clause

The GROUP BY clause divides a table into sets. This clause is most often
combined with aggregate functions that produce summary values for each of
those sets. Some examples in Chapter 2, “Composing Simple SELECT State-
ments” show the use of aggregate functions applied to a whole table. This
chapter illustrates aggregate functions applied to groups of rows.

Using the GROUP BY clause without aggregates is much like using the
DISTINCT (or UNIQUE) keyword in the SELECT clause. Chapter 2,
“Composing Simple SELECT Statements,” included the statement found in
Query 3-1a.

Query 3-1a
SELECT DISTINCT customer_num FROM orders
You can also write the statement as Query 3-1b shows.
Query 3-1b
SELECT customer_num

FROM orders
GROUP BY customer_num

Informix Guide to SQL: Tutorial

Using the GROUP BY Clause

Query 3-1a and Query 3-1b return the rows that Query Result 3-1 shows.

Query Result 3-1
customer_num

101
104
106
110
111
112
115
116
117
119
120
121
122
123
124
126
127

The GROUP BY clause collects the rows into sets so that each row in each set
has equal customer numbers. With no other columns selected, the result is a
list of the unique customer_num values.

The power of the GROUP BY clause is more apparent when you use it with
aggregate functions.

Query 3-2 retrieves the number of items and the total price of all items for

each order.
Query 3-2
SELECT order_num, COUNT (*) number, SUM (total_price) price
FROM items

GROUP BY order_num

The GROUP BY clause causes the rows of the items table to be collected into
groups, each group composed of rows that have identical order_num values
(that is, the items of each order are grouped together). After you form the
groups, the aggregate functions COUNT and SUM are applied within each

group.

Composing Advanced SELECT Statements 3-5

Using the GROUP BY Clause

Query 3-2 returns one row for each group. It uses labels to give names to the
results of the COUNT and SUM expressions, as Query Result 3-2 shows.

Query Result 3-2
order_num number price
1001 1 $250.00
1002 2 $1200.00
1003 3 $959.00
1004 4 $1416.00
1005 4 $562.00
1006 5 $448.00
1007 5 $1696.00
1008 2 $940.00
1015 1 $450.00
1016 4 $654.00
1017 3 $584.00
1018 5 $1131.00
1019 1 $1499.97
1020 2 $438.00
1021 4 $1614.00
1022 3 $232.00
1023 6 $824.00

Query Result 3-2 collects the rows of the items table into groups that have
identical order numbers and computes the COUNT of rows in each group and
the sum of the prices.

You cannot include a column having a CLOB, BLOB, TEXT, or BYTE data type
in a GROUP BY clause. To group, you must be able to sort, and no natural sort
order exists for CLOB, BLOB, TEXT, or BYTE data.

3-6 Informix Guide to SQL: Tutorial

Using the GROUP BY Clause

Unlike the ORDER BY clause, the GROUP BY clause does not order data.
Include an ORDER BY clause after your GROUP BY clause if you want to sort
data in a particular order or sort on an aggregate in the select list.

Query 3-3 is the same as Query 3-2 but includes an ORDER BY clause to sort
the retrieved rows in ascending order of price, as Query Result 3-3 shows.

SELECT order_num, COUNT(*)

FROM items

GROUP BY order_num

ORDER BY price

Query 3-3

number, SUM (total_price) price

order_num

1010
1011
1013
1022
1001
1020
1006
1015
1009

1018
1002
1004
1014
1019
1021
1007

number price

RO WS N

(S A IR V@

$84.

$99.
$143.
$232.
$250.
$438.
$448.
$450.
$450.

$1131.
$1200.
$1416.
$1440.
$1499.
$1614.
$1696.

00
00
80
00
00
00
00
00
00

00
00
00
00
97
00
00

Query Result 3-3

As stated in Chapter 2, “Composing Simple SELECT Statements,” you can
use an integer in an ORDER BY clause to indicate the position of a column in
the select list. You also can use an integer in a GROUP BY clause to indicate the
position of column names or display labels in the group list.

Composing Advanced SELECT Statements 3-7

Using the GROUP BY Clause

Query 3-4 returns the same rows as Query 3-3, as Query Result 3-3 shows.

Query 3-4
SELECT order_num, COUNT(*) number, SUM (total_price) price
FROM items
GROUP BY 1
ORDER BY 3

When you build a query, remember that all nonaggregate columns that are in
the select list in the SELECT clause must also be included in the group list in
the GROUP BY clause. The reason is that a SELECT statement with a GROUP
BY clause must return only one row per group. Columns that are listed after
GROUP BY are certain to reflect only one distinct value within a group, and
that value can be returned. However, a column not listed after GROUP BY
might contain different values in the rows that are contained in a group.

As Query 3-5 shows, you can use the GROUP BY clause in a SELECT statement
that joins tables.

Query 3-5
SELECT o.order_num, SUM (i.total_price)
FROM orders o, items i
WHERE o.order_date > '01/01/93"
AND o.customer_num = 110

AND o.order_num = 1i.order_num
GROUP BY o.order_num

Query 3-5joins the orders and items tables, assigns table aliases to them, and
returns the rows that Query Result 3-5 shows.

order_num

1008
1015

Query Result 3-5
(sum)

$940.00
$450.00

3-8

Informix Guide to SQL: Tutorial

Using the HAVING Clause

Using the HAVING Clause

The HAVING clause usually complements a GROUP BY clause by applying
one or more qualifying conditions to groups after they are formed, which is
similar to the way the WHERE clause qualifies individual rows. One
advantage to using a HAVING clause is that you can include aggregates in the
search condition, whereas you cannot include aggregates in the search
condition of a WHERE clause.

Each HAVING condition compares one column or aggregate expression of the
group with another aggregate expression of the group or with a constant. You
can use HAVING to place conditions on both column values and aggregate
values in the group list.

Query 3-6 returns the average total price per item on all orders that have
more than two items. The HAVING clause tests each group as it is formed and
selects those that are composed of two or more rows.

Query 3-6
SELECT order_num, COUNT(*) number, AVG (total_price) average
FROM items
GROUP BY order_num
HAVING COUNT(*) > 2

order_num

1003
1004
1005
1006
1007
1013
1016
1017
1018
1021
1022
1023

Query Result 3-6
number average

$319.67
$354.00
$140.50

$89.60
$339.20

$35.95
$163.50
$194.67
$226.20
$403.50

$77.33
$137.33

OwWwbowbbboob~pPbw

If you use a HAVING clause without a GROUP BY clause, the HAVING
condition applies to all rows that satisfy the search condition. In other words,
all rows that satisfy the search condition make up a single group.

Composing Advanced SELECT Statements 3-9

Using the HAVING Clause

Query 3-7, a modified version of Query 3-6, returns just one row, the average
of all total_price values in the table.

Query 3-7

SELECT AVG (total_price) average
FROM items
HAVING count(*) > 2

Query Result 3-7
average

$270.97

3-10

If Query 3-7, like Query 3-6, had included the nonaggregate column
order_num in the select list, you would have to include a GROUP BY clause
with that column in the group list. In addition, if the condition in the HAVING
clause was not satisfied, the output would show the column heading and a
message would indicate that no rows were found.

Query 3-8 contains all the SELECT statement clauses that you can use in the
Informix version of interactive SQL (the INTO clause that names host
variables is available only in an SQL API).

Query 3-8

SELECT o.order_num, SUM (i.total_price) price,
paid_date - order_date span
FROM orders o, items i
WHERE o.order_date > '01/01/93"
AND o.customer_num > 110
AND o.order_num = i.order_num
GROUP BY 1, 3
HAVING COUNT (*) < 5
ORDER BY 3
INTO TEMP temptabl

Informix Guide to SQL: Tutorial

Creating Advanced Joins

Query 3-8 joins the orders and items tables; employs display labels, table
aliases, and integers that are used as column indicators; groups and orders
the data; and puts the following results in a temporary table. If you query
with SELECT * from that table, you see the rows as Query Result 3-8 shows.

order_num

1017
1016
1012
1019
1005
1021
1022
1010
1009
1020

Query Result 3-8
price span
$584.00
$654.00
$1040.00
$1499.97 26
$562.00 28
$1614.00 30
$232.00 40
$84.00 66
$450.00 68
$438.00 71

Creating Advanced Joins

Chapter 2, “Composing Simple SELECT Statements,” shows how to include
a WHERE clause in a SELECT statement to join two or more tables on one or
more columns. It illustrates natural joins and equi-joins.

This chapter discusses the uses of two more complex kinds of joins, self-joins
and outer joins. As described for simple joins, you can define aliases for
tables and assign display labels to expressions to shorten your multiple-table
queries. You can also issue a SELECT statement with an ORDER BY clause that
sorts data into a temporary table.

Self-Joins

A join does not always have to involve two different tables. You can join a
table to itself, creating a self-join. Joining a table to itself can be useful when
you want to compare values in a column to other values in the same column.

Composing Advanced SELECT Statements 3-11

Self-Joins

To create a self-join, list a table twice in the FROM clause and assign it a
different alias each time. Use the aliases to refer to the table in the SELECT and
WHERE clauses as if it were two separate tables. (Aliases in SELECT state-
ments are shown in Chapter 2, “Composing Simple SELECT Statements,” in
this manual and discussed in Chapter 1 of the Informix Guide to SQL: Syntax.)

Just as in joins between tables, you can use arithmetic expressions in
self-joins. You can test for null values, and you can use an ORDER BY clause
to sort the values in a specified column in ascending or descending order.

Query 3-9 finds pairs of orders where the ship_weight differs by a factor of
five or more and the ship_date is not null. The query then orders the data by
ship_date.

SELECT x.order_num,
y.order_num,
FROM orders x,

x.ship_weight, x.ship_date,
y.ship_weight, y.ship_date

orders y

WHERE x.ship_weight >= 5 * y.ship_weight

AND x.ship_date IS NOT NULL
AND y.ship_date IS NOT NULL

ORDER BY x.ship_date
order_num ship_weight ship_date order_num ship_weight ship_date
1004 95.80 05/30/1994 1011 10.40 07/03/1994
1004 95.80 05/30/1994 1020 14.00 07/16/1994
1004 95.80 05/30/1994 1022 15.00 07/30/1994
1007 125.90 06/05/1994 1015 20.60 07/16/1994
1007 125.90 06/05/1994 1020 14.00 07/16/1994
1007 125.90 06/05/1994 1022 15.00 07/30/1994
1007 125.90 06/05/1994 1011 10.40 07/03/1994
1007 125.90 06/05/1994 1001 20.40 06/01/1994
1007 125.90 06/05/1994 1009 20.40 06/21/1994
1005 80.80 06/09/1994 1011 10.40 07/03/1994
1005 80.80 06/09/1994 1020 14.00 07/16/1994
1005 80.80 06/09/1994 1022 15.00 07/30/1994
1012 70.80 06/29/1994 1011 10.40 07/03/1994
1012 70.80 06/29/1994 1020 14.00 07/16/1994
1013 60.80 07/10/1994 1011 10.40 07/03/1994
1017 60.00 07/13/1994 1011 10.40 07/03/1994
70.50 07/13/1994 1011 10.40 07/03/1994

3-12

1018

Informix Guide to SQL: Tutorial

Query 3-9

Query Result 3-9

Self-Joins

If you want to store the results of a self-join into a temporary table, append
an INTO TEMP clause to the SELECT statement and rename at least one set of
columns by assigning them display labels. Otherwise, the duplicate column
names cause an error and the temporary table is not created.

Query 3-10, which is similar to Query 3-9, labels all columns selected from the
orders table and puts them in a temporary table called shipping.

SELECT x.order_num ordersl,
x.ship_date shipl,

y.po_num purch?,
orders y
WHERE x.ship_weight >= 5 * y.ship_weight

FROM orders x,

INTO TEMP shipping

Query 3-10
X.po_num purchl,

y.order_num orders?,
y.ship_date ship?2

AND x.ship_date IS NOT NULL
AND y.ship_date IS NOT NULL

ORDER BY ordersl, orders?

If you query with SELECT * from that table, you see the rows that Query
Result 3-10 shows.

ordersl

1004
1004
1004
1005
1005
1005
1007
1007
1007
1007
1007
1007
1012
1012
1013
1017
1018
1018
1019
1019
1019
1023

purchl

8006

8006

8006

2865

2865

2865

278693
278693
278693
278693
278693
278693
278701
278701
B77930
DM3543
S22942
$22942
755709
755709
755709
KF2961

shipl

05/30/1994
05/30/1994
05/30/1994
06/09/1994
06/09/1994
06/09/1994
06/05/1994
06/05/1994
06/05/1994
06/05/1994
06/05/1994
06/05/1994
06/29/1994
06/29/1994
07/10/1994
31 07/13/1994
07/13/1994
07/13/1994
07/16/1994
07/16/1994
07/16/1994
07/30/1994

orders?2

1011
1020
1022
1011
1020
1022
1001
1009
1011
1015
1020
1022
1011
1020
1011
1011
1011
1020
1011
1020
1022
1011

purch?

B77897
W2286
W9925
B77897
W2286
W9925
B77836
4745
B77897
MA0O3
W2286
W9925
B77897
W2286
B77897
B77897
B77897
W2286
B77897
W2286
W9925
B77897

Query Result 3-10
ship2

07/03/1994
07/16/1994
07/30/1994
07/03/1994
07/16/1994
07/30/1994
06/01/1994
06/21/1994
07/03/1994
07/16/1994
07/16/1994
07/30/1994
07/03/1994
07/16/1994
07/03/1994
07/03/1994
07/03/1994
07/16/1994
07/03/1994
07/16/1994
07/30/1994
07/03/1994

You can join a table to itself more than once. The maximum number of
self-joins depends on the resources available to you.

Composing Advanced SELECT Statements 3-13

Self-Joins

The self-join in Query 3-11 creates a list of those items in the stock table that
are supplied by three manufacturers. By including the last two conditions in
the WHERE clause, it eliminates duplicate manufacturer codes in rows
retrieved.

Query 3-11

SELECT sl.manu_code, s2.manu_code, s3.manu_code,
sl.stock_num, sl.description

FROM stock sl1, stock s2, stock s3

WHERE sl.stock_num = s2.stock_num
AND s2.stock_num = s3.stock_num
AND sl.manu_code < s2.manu_code
AND s2.manu_code < s3.manu_code

ORDER BY stock_num

Query Result 3-11

manu_code manu_code manu_code stock_num description

HRO
ANZ
ANZ

KAR
KAR
KAR
NKL

PRC

HSK SMT 1 baseball gloves
NRG SMT 5 tennis racquet
HRO HSK 110 helmet

SHM 301 running shoes
NKL PRC 301 running shoes
NKL SHM 301 running shoes
PRC SHM 301 running shoes
PRC SHM 301 running shoes

If you want to select rows from a payroll table to determine which employees
earn more than their manager, you can construct the self-join that Query
3-12a shows.

Query 3-12a

SELECT emp.employee_num, emp.gross_pay, emp.level,
emp.dept_num, mgr.employee_num, mgr.gross_pay,
mgr.dept_num, mgr.level

FROM payroll emp, payroll mgr
WHERE emp.gross_pay > mgr.gross_pay
AND emp.Tevel < mgr.level
AND emp.dept_num = mgr.dept_num
ORDER BY 4

3-14 Informix Guide to SQL: Tutorial

Self-Joins

Query 3-12b uses a correlated subquery to retrieve and list the 10 highest-
priced items ordered.

Query 3-12b

SELECT order_num, total_price
FROM items a
WHERE 10 >
(SELECT COUNT (*)
FROM items b
WHERE b.total_price < a.total_price)
ORDER BY total_price

Query 3-12b returns the 10 rows that Query Result 3-12 shows.

order_num

1018
1013
1003
1005
1006
1013
1010
1013
1022
1023

Query Result 3-12
total_price

$15.00
$19.80
$20.00
$36.00
$36.00
$36.00
$36.00
$40.00
$40.00
$40.00

You can create a similar query to find and list the 10 employees in the
company who have the most seniority.

Correlated and uncorrelated subqueries are described in “Subqueries in
SELECT Statements” on page 3-29.

Using Rowid Values

Universal Server assigns a unique rowid to rows in nonfragmented tables.
Rows in fragmented tables do not contain the rowid column. Informix recom-
mends that you use primary keys as a method of access in your applications
rather than rowids. Because primary keys are defined in the ANSI specifi-
cation of SQL, using them to access data makes your applications more
portable. In addition, Universal Server requires less time to access data in a
fragmented table using a primary key than it requires to access the same data
using rowid. For information about rowids and tables, see “Accessing Data
Stored in Fragmented Tables” on page 9-52.

Composing Advanced SELECT Statements 3-15

Self-Joins

You can use the hidden rowid column in a self-join to locate duplicate values
in a table. In the following example, the condition x.rowid != y.rowidis
equivalent to saying “row x is not the same row as row y.”

Query 3-13 selects data twice from the cust_calls table, assigning it the table
aliases x and y.

Query 3-13

SELECT x.rowid, x.customer_num
FROM cust_calls x, cust_calls y
WHERE x.customer_num = y.customer_num
AND x.rowid != y.rowid

Query 3-13 searches for duplicate values in the customer_num column, and
for their rowids, finding the pair Query Result 3-13 shows.

Query Result 3-13
rowid customer_num
515 116
769 116

You can write the last condition as Query 3-13 shows.

AND x.rowid != y.rowid
AND NOT x.rowid = y.rowid

Another way to locate duplicate values is with a correlated subquery, as
Query 3-14 shows.

Query 3-14

SELECT x.customer_num, x.call_dtime
FROM cust_calls x
WHERE 1 <
(SELECT COUNT (*) FROM cust_calls y
WHERE x.customer_num = y.customer_num)

Query 3-14 locates the same two duplicate customer_num values as Query
3-13 and returns the rows Query Result 3-14 shows.

Query Result 3-14

customer_num call_dtime

116 1993-11-28 13:34
116 1993-12-21 11:24

3-16 Informix Guide to SQL: Tutorial

Self-Joins

You can use the rowid, shown earlier in a self-join, to locate the internal
record number that is associated with a row in a database table. The rowid is,
in effect, a hidden column in every table. The sequential values of rowid have
no special significance and can vary depending on the location of the
physical data in the chunk. Your rowid might vary from the example shown.
The use of rowid is discussed in detail in the INFORMIX-Universal Server
Administrator’s Guide.

Query 3-15 uses the rowid and the wildcard asterisk symbol (*) in the SELECT
clause to retrieve every row in the manufact table and their corresponding
rowids.

Query 3-15
SELECT rowid, * FROM manufact

rowid

257
258
259
260
261
262
263
264
265

Query Result 3-15

manu_code manu_name lead_time
SMT Smith 3
ANZ Anza 5
NRG Norge 7
HSK Husky 5
HRO Hero 4
SHM Shimara 30
KAR Karsten 21
NKL Nikolus 8
PRC ProCycle 9

You also can use the rowid when you select a specific column, as Query 3-16
shows.

Query 3-16
SELECT rowid, manu_code FROM manufact

rowid

258
261
260
263
264
259
265
262
257

Query Result 3-16
manu_code

ANZ
HRO
HSK
KAR
NKL
NRG
PRC
SHM
SMT

—

Composing Advanced SELECT Statements 3-17

Self-Joins

You can use the rowid in the WHERE clause to retrieve rows based on their
internal record number. This method is handy when no other unique column
exists in a table. Query 3-17 uses a rowid from Query 3-16.

Query 3-17
SELECT * FROM manufact WHERE rowid = 263

Query 3-17 returns the row that Query Result 3-17 shows.

manu_code manu_name lead_time

KAR

Query Result 3-17

Karsten 21

Using the USER Function

To obtain additional information about a table, you can combine the rowid
with the USER function.

Query 3-18 assigns the label username to the USER expression column and
returns this information about the cust_calls table.

Query 3-18
SELECT USER username, rowid FROM cust_calls

For example, if the user zenda used Query 3-18, the output appears as in
Query Result 3-18.

username

zenda
zenda
zenda
zenda
zenda
zenda
zenda

Query Result 3-18
rowid

257
258
259
513
514
515
769

You can also use the USER function in a WHERE clause when you select the
rowid.

3-18 Informix Guide to SQL: Tutorial

Self-Joins

Query 3-19 returns the rowid for only those rows that are inserted or updated
by the user who performs the query.

Query 3-19
SELECT rowid FROM cust_calls WHERE user_id = USER

For example, if the user richc used Query 3-19, the output appears as in
Query Result 3-19..

rowid

258

259

Query Result 3-19

Using the DBSERVERNAME Function

With Universal Server, you can add the DBSERVERNAME keyword (or its
synonym, SITENAME) to a query to find out where the current database
resides.

Query 3-20 finds the database server name and the user name as well as the
rowid and the tabid, which is the serial-interval table identifier for system
catalog tables.

Query 3-20

SELECT DBSERVERNAME server, tabid, rowid, USER username
FROM systables
WHERE tabid >= 105 OR rowid <= 260
ORDER BY rowid

Composing Advanced SELECT Statements 3-19

Outer Joins

Query 3-20 assigns display labels to the DBSERVERNAME and USER
expressions and returns the 10 rows from the systables system catalog table.
For example, if user zenda is connected to a server called manatee, the output
appears as in Query Result 3-20.

3-20

server

manatee
manatee
manatee
manatee
manatee
manatee
manatee
manatee
manatee
manatee

Query Result 3-20
tabid rowid username
1 257 zenda
2 258 zenda
3 259 zenda
4 260 zenda
105 274 zenda
106 1025 zenda
107 1026 zenda
108 1027 zenda
109 1028 zenda
110 1029 zenda

Never store a rowid in a permanent table or attempt to use it as a foreign key
because the rowid can change. For example, if a table is dropped and then
reloaded from external data, all the rowids are different.

USER and DBSERVERNAME are discussed in Chapter 2, “Composing Simple
SELECT Statements.”

Outer Joins

Chapter 2, “Composing Simple SELECT Statements,” shows how to create
and use some simple joins. Whereas a simple join treats two or more joined
tables equally, an outer join treats two or more joined tables unsymmetrically.
A simple join makes one of the tables dominant (also called preserved) over the
other subservient tables.

Outer joins occur in four basic types:

= Asimple outer join on two tables

= Asimple outer join to a third table

= An outer join for a simple join to a third table
= An outer join for an outer join to a third table

Informix Guide to SQL: Tutorial

Outer Joins

This section discusses these types of outer joins. For full information on their
syntax, use, and logic, see the discussion of outer joins in Chapter 1 of the
Informix Guide to SQL: Syntax.

In a simple join, the result contains only the combinations of rows from the
tables that satisfy the join conditions. Rows that do not satisfy the join conditions
are discarded.

In an outer join, the result contains the combinations of rows from the tables
that satisfy the join conditions. Rows from the dominant table that would
otherwise be discarded are preserved, even though no matching row was found in the
subservient table. The dominant-table rows that do not have a matching
subservient-table row receive a row of nulls before the selected columns are
projected.

An outer join applies conditions to the subservient table while it sequentially
applies the join conditions to the rows of the dominant table. The conditions
are expressed in a WHERE clause.

An outer join must have a SELECT clause, a FROM clause, and a WHERE
clause. To transform a simple join into an outer join, insert the keyword
OUTER directly before the name of the subservient tables in the FROM clause.
As shown later in this section, you can include the OUTER keyword more
than once in your query.

Before you use outer joins heavily, determine whether one or more simple
joins can work. You often can get by with a simple join when you do not need
supplemental information from other tables.

The examples in this section use table aliases for brevity. Table aliases are
discussed in Chapter 2, “Composing Simple SELECT Statements.”

Simple Join

Query 3-21 is an example of the type of simple join on the customer and
cust_calls tables that is shown in Chapter 2, “Composing Simple SELECT
Statements.”

Query 3-21

SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_descr

FROM customer ¢, cust_calls u
WHERE c.customer_num = u.customer_num

Composing Advanced SELECT Statements 3-21

Outer Joins

Query 3-21 returns only those rows in which the customer has made a call to
customer service, as Query Result 3-21 shows.

customer_num
Tname
company
phone
call_dtime
call_descr

customer_num
Tname
company
phone
call_dtime
call_descr

customer_num
Tname
company
phone
call_dtime
call_descr

3-22

uery Result 3-21
106 Query

Watson

Watson & Son

415-389-8789

1994-06-12 08:20

Order was received, but two of the cans of
ANZ tennis balls within the case were empty

110

Jaeger

AA Athletics

415-743-3611

1994-07-07 10:24

Order placed one month ago (6/7) not received.

119

Shorter

The Triathletes Club

609-663-6079

1994-07-01 15:00

Bi1l does not reflect credit from previous order

Simple Outer Join on Two Tables

Query 3-22 uses the same select list, tables, and comparison condition as the
preceding example, but this time it creates a simple outer join.

Query 3-22
SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_descr
FROM customer c, OUTER cust_calls u
WHERE c.customer_num = u.customer_num

Informix Guide to SQL: Tutorial

Outer Joins

The addition of the keyword OUTER in front of the cust_calls table makes it
the subservient table. An outer join causes the query to return information on
all customers, whether or not they have made calls to customer service. All
rows from the dominant customer table are retrieved, and null values are
assigned to corresponding rows from the subservient cust_calls table, as
Query Result 3-22 shows.

customer_num
Tname
company
phone
call_dtime
call_descr

customer_num
Tname
company
phone
call_dtime
call_descr

customer_num
Tname
company
phone
call_dtime
call_descr

uery Result 3-22
101 Query

Pauli
A11 Sports Supplies
408-789-8075

102

Sadler
Sports Spot
415-822-1289

103

Currie

Phil’s Sports
415-328-4543

Outer Join for a Simple Join to a Third Table

Query 3-23 shows an outer join that is the result of a simple join to a third
table. This second type of outer join is known as a nested simple join.

Query 3-23

SELECT c.customer_num, c.lname, o.order_num,
i.stock_num, i.manu_code, i.quantity
FROM customer ¢, OUTER (orders o, items
WHERE c.customer_num o.customer_num
AND o.order_num i.order_num
AND manu_code IN ('KAR', 'SHM')
ORDER BY Tname

i)

Composing Advanced SELECT Statements 3-23

Outer Joins

Query 3-23 first performs a simple join on the orders and items tables,
retrieving information on all orders for items with a manu_code of KAR or
SHM. It then performs an outer join to combine this information with data
from the dominant customer table. An optional ORDER BY clause reorganizes

the data into the form Query Result 3-23 shows.

3-24

114
118
113
103
115
123
123
125
104
110
120
120
111
112
128
109
126
122
116
101
124
108
107
102
127
127
127
119
117
105
121
106

Informix Guide to SQL: Tutorial

customer_num Tname

Albertson
Baxter
Beatty
Currie
Grant
Hanlon
Hanlon
Henry
Higgins
Jaeger
Jewell
Jewell
Keyes
Lawson
Lessor
Miller
Neelie
0’Brian
Parmelee
Pauli
Putnum
Quinn
Ream
Sadler
Satifer
Satifer
Satifer
Shorter
Sipes
Vector
Wallack
Watson

1020
1020

1017
1017

1019

1021

1023
1023
1023
1016

1018

301
204

202
301

111

202

306
105
110
101

302

KAR
KAR

KAR
SHM

SHM

KAR

SHM
SHM
SHM
SHM

KAR

order_num stock_num manu_code quantity

SIS

N

[—

Query Result 3-23

Outer Joins

Outer Join for an Outer Join to a Third Table

Query 3-24 creates an outer join that is the result of an outer join to a third
table. This third type is known as a nested outer join.

Query 3-24

SELECT c.customer_num, lname, o.order_num,
stock_num, manu_code, quantity
FROM customer ¢, OUTER (orders o, OUTER items i)
WHERE c.customer_num = o.customer_num
AND o.order_num = i.order_num
AND manu_code IN ('KAR', 'SHM")
ORDER BY Tname

Query 3-24 first performs an outer join on the orders and items tables,
retrieving information on all orders for items with a manu_code of KAR or
SHM. It then performs an outer join, which combines this information with
data from the dominant customer table. Query 3-24 preserves order numbers
that the previous example eliminated, returning rows for orders that do not
contain items with either manufacturer code. An optional ORDER BY clause
reorganizes the data, as Query Result 3-24 shows.

Composing Advanced SELECT Statements ~ 3-25

Outer Joins

3-26

customer_num

114
118
113
103
115
123
123
125
104
104
104
104
110
110
120
120
111
112
128
109
126
122
116
101
124
108
107
102
127
127
127
119
117
117
105
121
106
106

Informix Guide to SQL: Tutorial

Tname

Albertson
Baxter
Beatty
Currie
Grant
Hanlon
Hanlon
Henry
Higgins
Higgins
Higgins
Higgins
Jaeger
Jaeger
Jewell
Jewell
Keyes
Lawson
Lessor
Miller
Neelie
0’Brian
Parmelee
Pauli
Putnum
Quinn
Ream
Sadler
Satifer
Satifer
Satifer
Shorter
Sipes
Sipes
Vector
Wallack
Watson
Watson

1010
1020
1020

1011
1001
1013
1003
1008
1015
1017
1017
1009
1006

1022
1019
1005
1002
1021

1023
1023
1023
1016
1012
1007

1018
1014
1004

order_num stock_num

204
301

301
202

111

202

110
105
306
101

302

manu_code quantity

KAR
KAR

SHM
KAR

SHM

KAR

SHM
SHM
SHM
SHM

KAR

INEN

— N

I =

Query Result 3-24

You can state the join conditions in two ways when you apply an outer join
to the result of an outer join to a third table. The two subservient tables are
joined, but you can join the dominant table to either subservient table
without affecting the results if the dominant table and the subservient table
share a common column.

Outer Joins

Outer Join of Two Tables to a Third Table

Query 3-25 shows an outer join that is the result of an outer join of each of two
tables to a third table. In this fourth type of outer join, join relationships are
possible only between the dominant table and the subservient tables.

Query 3-25

SELECT c.customer_num, lname, o.order_num,
order_date, call_dtime
FROM customer ¢, OUTER orders o, OUTER cust_calls x
WHERE c.customer_num = o.customer_num
AND c.customer_num = x.customer_num
ORDER BY Tname
INTO TEMP service

Query 3-25 individually joins the subservient tables orders and cust_calls to
the dominant customer table; it does not join the two subservient tables. An
INTO TEMP clause selects the results into a temporary table for further
manipulation or queries, as Query Result 3-25 shows.

Composing Advanced SELECT Statements 3-27

Outer Joins

customer_num Tname order_num order_date call_dtime

Query Result 3-25

114 Albertson

118 Baxter

113 Beatty

103 Currie

115 Grant 1010 06/17/1994

123 Hanlon 1020 07/11/1994

125 Henry

104 Higgins 1003 05/22/1994

104 Higgins 1001 05/20/1994

104 Higgins 1013 06/22/1994

104 Higgins 1011 06/18/1994

110 Jaeger 1015 06/27/1994 1994-07-07 10:24
110 Jaeger 1008 06/07/1994 1994-07-07 10:24
120 Jewell 1017 07/09/1994

111 Keyes 1009 06/14/1994

112 Lawson 1006 05/30/1994

109 Miller

128 Moore

126 Neelie 1022 07/24/1994

122 0’Brian 1019 07/11/1994

116 Parmelee 1005 05/24/1994 1993-12-21 11:24
116 Parmelee 1005 05/24/1994 1993-11-28 13:34
101 Pauli 1002 05/21/1994

124 Putnum 1021 07/23/1994

108 Quinn

107 Ream

102 Sadler

127 Satifer 1023 07/24/1994 1994-07-31 14:30
119 Shorter 1016 06/29/1994 1994-07-01 15:00
117 Sipes 1007 05/31/1994

117 Sipes 1012 06/18/1994

105 Vector

121 Wallack 1018 07/10/1994 1994-07-10 14:05
106 Watson 1004 05/22/1994 1994-06-12 08:20
106 Watson 1014 06/25/1994 1994-06-12 08:20

If Query 3-25 had tried to create a join condition between the two subservient
tables o and x, as Query 3-26 shows, an error message would have indicated
the creation of a two-sided outer join.

Query 3-26
WHERE o.customer_num = x.customer_num

3-28 Informix Guide to SQL: Tutorial

Subqueries in SELECT Statements

Subqueries in SELECT Statements

A SELECT statement nested in the WHERE clause of another SELECT statement
(or in an INSERT, DELETE, or UPDATE statement) is called a subquery. Each
subquery must contain a SELECT clause and a FROM clause. A subquery must
be enclosed in parentheses so that the database server performs that
operation first.

Subqueries can be correlated or uncorrelated. A subquery (or inner SELECT
statement) is correlated when the value that it produces depends on a value
produced by the outer SELECT statement that contains it. Any other kind of
subquery is considered uncorrelated.

The important feature of a correlated subquery is that, because it depends on
avalue from the outer SELECT, it must be executed repeatedly, once for every
value that the outer SELECT produces. An uncorrelated subquery is executed
only once.

You can construct a SELECT statement with a subquery to replace two
separate SELECT statements.

Subqueries in SELECT statements allow you to perform the following actions:

= Compare an expression to the result of another SELECT statement

= Determine whether the results of another SELECT statement include
an expression

s Determine whether another SELECT statement selects any rows

An optional WHERE clause in a subquery is often used to narrow the search
condition.

Composing Advanced SELECT Statements 3-29

Subqueries in SELECT Statements

3-30

A subquery selects and returns values to the first or outer SELECT statement.
A subquery can return no value, a single value, or a set of values:

= If asubquery returns no value, the query does not return any rows.
Such a subquery is equivalent to a null value.

= Ifasubquery returns one value, the value is in the form of either one
aggregate expression or exactly one row and one column. Such a
subquery is equivalent to a single number or character value.

» Ifasubquery returnsalist or set of values, the values represent either
one row or one column.

The following keywords introduce a subquery in the WHERE clause of a
SELECT statement:

= ALL

= ANY

= IN

s EXISTS

You can use any relational operator with ALL and ANY to compare something
to every one of (ALL) or to any one of (ANY) the values that the subquery
produces. You can use the keyword SOME in place of ANY. The operator IN is
equivalent to =ANY. To create the opposite search condition, use the keyword
NOT or a different relational operator.

The EXISTS operator tests a subquery to see if it found any values; that is, it
asks if the result of the subquery is not null.

For the complete syntax used to create a condition with a subquery, see
Chapter 1 in the Informix Guide to SQL: Syntax.

Informix Guide to SQL: Tutorial

Using ALL

Using ALL

Use the keyword ALL preceding a subquery to determine whether a
comparison is true for every value returned. If the subquery returns no
values, the search condition is true. (If it returns no values, the condition is
true of all the zero values.)

Query 3-27 lists the following information for all orders that contain an item
for which the total price is less than the total price on every item in order
number 1023.

Query 3-27
SELECT order_num, stock_num, manu_code, total_price
FROM items
WHERE total_price < ALL
(SELECT total_price FROM items
WHERE order_num = 1023)

Query Result 3-27
order_num stock_num manu_code total_price
1003 9 ANZ $20.00
1005 6 SMT $36.00
1006 6 SMT $36.00
1010 6 SMT $36.00
1013 5 ANZ $19.80
1013 6 SMT $36.00
1018 302 KAR $15.00

Using ANY

Use the keyword ANY (or its synonym SOME) preceding a subquery to
determine whether a comparison is true for at least one of the values
returned. If the subquery returns no values, the search condition is false.
(Because no values exist, the condition cannot be true for one of them.)

Composing Advanced SELECT Statements 3-31

Single-Valued Subqueries

Query 3-28 finds the order number of all orders that contain an item for
which the total price is greater than the total price of any one of the items in
order number 1005.

Query 3-28

SELECT DISTINCT order_num
FROM items
WHERE total_price > ANY
(SELECT total_price
FROM items
WHERE order_num = 1005)

order_num

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

Query Result 3-28

3-32

Single-Valued Subqueries

You do not need to include the keyword ALL or ANY if you know the
subquery can return exactly one value to the outer-level query. A subquery that
returns exactly one value can be treated like a function. This kind of subquery
often uses an aggregate function because aggregate functions always return
single values.

Informix Guide to SQL: Tutorial

Single-Valued Subqueries

Query 3-29 uses the aggregate function MAX in a subquery to find the
order_num for orders that include the maximum number of volleyball nets.

Query 3-29
SELECT order_num FROM items
WHERE stock_num = 9
AND quantity =
(SELECT MAX (quantity)
FROM 1items
WHERE stock_num = 9)

order_num

1012

Query Result 3-29

Query 3-30 uses the aggregate function MIN in the subquery to select items
for which the total price is higher than 10 times the minimum price.

Query 3-30
SELECT order_num, stock_num, manu_code, total_price
FROM items x
WHERE total_price >
(SELECT 10 * MIN (total_price)
FROM items
WHERE order_num = x.order_num)
Query Result 3-30
order_num stock_num manu_code total_price
1003 8 ANZ $840.00
1018 307 PRC $500.00
1018 110 PRC $236.00
1018 304 HRO $280.00

Composing Advanced SELECT Statements 3-33

Correlated Subqueries

Correlated Subqueries

Query 3-31 is an example of a correlated subquery, which returns a list of the
10 earliest shipping dates in the orders table. It includes an ORDER BY clause
after the subquery to order the results because you cannot include ORDER BY
within a subquery.

Query 3-31

SELECT po_num, ship_date FROM orders main
WHERE 10 >
(SELECT COUNT (DISTINCT ship_date)
FROM orders sub
WHERE sub.ship_date > main.ship_date)
AND ship_date IS NOT NULL
ORDER BY ship_date, po_num

The subquery is correlated because the number that it produces depends on
main.ship_date, a value that the outer SELECT produces. Thus, the subquery
must be executed anew for every row that the outer query considers.

Query 3-31 uses the COUNT function to return a value to the main query. The
ORDER BY clause then orders the data. The query locates and returns the 13
rows that have the 10 latest shipping dates, as Query Result 3-31 shows.

Query Result 3-31
po_num ship_date
4745 06/21/1994
278701 06/29/1994
429Q 06/29/1994
8052 07/03/1994
B77897 07/03/1994
L2230 07/06/1994
B77930 07/10/1994
PC6782 07/12/1994
DM354331 07/13/1994
S22942 07/13/1994
MAQO3 07/16/1994
W2286 07/16/1994
/55709 07/16/1994
3288 07/25/1994
KF2961 07/30/1994
W9925 07/30/1994

3-34 Informix Guide to SQL: Tutorial

Using EXISTS

If you use a correlated subquery, such as Query 3-31, on a very large table,
you should index the ship_date column to improve performance. Otherwise,
this SELECT statement is inefficient because it executes the subquery once for
every row of the table. Indexing and performance issues are discussed in the
administrator’s guide for your database server.

Using EXISTS

The keyword EXISTS is known as an existential qualifier because the subquery
is true only if the outer SELECT, as Query 3-32a shows, finds at least one row.

Query 3-32a

SELECT UNIQUE manu_name, lead_time
FROM manufact
WHERE EXISTS
(SELECT * FROM stock
WHERE description MATCHES '*shoe*'
AND manufact.manu_code = stock.manu_code)

You can often construct a query with EXISTS that is equivalent to one that uses
IN. You can also substitute =ANY for IN, as Query 3-32b shows.

Query 3-32b
SELECT UNIQUE manu_name, Tlead_time
FROM stock, manufact
WHERE manufact.manu_code IN
(SELECT manu_code FROM stock
WHERE description MATCHES '#*shoe*')
AND stock.manu_code = manufact.manu_code

Query 3-32a and Query 3-32b return rows for the manufacturers that produce
a kind of shoe as well as the lead time for ordering the product. Query Result
3-32 shows the return values.

manu_name

Anza
Hero
Karsten
Nikolus
ProCycle
Shimara

Query Result 3-32
lead_time

Composing Advanced SELECT Statements ~ 3-35

Using EXISTS

You cannot use the predicate IN for a subquery that contains a column with
a CLOB, BLOB, TEXT, or BYTE data type.

Add the keyword NOT to IN or to EXISTS to create a search condition that is
the opposite of the one in the preceding queries. You also can substitute
I=ALL for NOT IN.

Query 3-33 shows two ways to do the same thing. One way might allow the
database server to do less work than the other, depending on the design of
the database and the size of the tables. To find out which query might be
better, use the SET EXPLAIN command to get a listing of the query plan. SET
EXPLAIN is discussed in the INFORMIX-Universal Server Performance Guide
and in Chapter 1 of the Informix Guide to SQL: Syntax.

Query 3-33

SELECT customer_num, company FROM customer
WHERE customer_num NOT IN
(SELECT customer_num FROM orders
WHERE customer.customer_num = orders.customer_num)

SELECT customer_num, company FROM customer
WHERE NOT EXISTS
(SELECT * FROM orders
WHERE customer.customer_num = orders.customer_num)

Each statement in Query 3-33 returns the rows that Query Result 3-33 shows,
which identify customers who have not placed orders.

customer_num

102
103
105
107
108
109
113
114
118
125
128

Query Result 3-33
company

Sports Spot

Phil’s Sports

Los Altos Sports
Athletic Supplies
Quinn’s Sports
Sport Stuff
Sportstown
Sporting Place
Blue Ribbon Sports
Total Fitness Sports
Phoenix University

The keywords EXISTS and IN are used for the set operation known as
intersection, and the keywords NOT EXISTS and NOT IN are used for the set
operation known as difference. These concepts are discussed in “Set
Operations” on page 3-38.

3-36 Informix Guide to SQL: Tutorial

Using EXISTS

Query 3-34 performs a subquery on the items table to identify all the items in
the stock table that have not yet been ordered.

Query 3-34
SELECT stock.* FROM stock
WHERE NOT EXISTS
(SELECT * FROM items
WHERE stock.stock_num = items.stock_num
AND stock.manu_code = items.manu_code)

Query 3-34 returns the rows that Query Result 3-34 shows.

Query Result 3-34

stock_num manu_code description unit_price unit unit_descr

101
102
102
105
106
107
108
109
110
110
112
113
201
202
203
205
205
301
301
301
301
302
303

PRC
SHM
PRC
PRC
PRC
PRC
SHM
SHM
ANZ
HRO
SHM
SHM
KAR
NKL
NKL
NKL
HRO
NKL
HRO
PRC
ANZ
HRO
KAR

bicycle tires $88.00 box 4/box
bicycle brakes $220.00 case 4 sets/case
bicycle brakes $480.00 case 4 sets/case
bicycle wheels $53.00 pair pair

bicycle stem $23.00 each each

bicycle saddle $70.00 pair pair
crankset $45.00 each each

pedal binding $200.00 case 4 pairs/case
helmet $244.00 case 4/case
helmet $260.00 case 4/case

12-spd, assmbld $549.00 each each
18-spd, assmbld $685.90 each each

golf shoes $90.00 each each

metal woods $174.00 case 2 sets/case
irons/wedge $670.00 case 2 sets/case
3 golf balls $312.00 case 24/case

3 golf balls $312.00 case 24/case
running shoes $97.00 each each
running shoes $42.50 each each
running shoes $75.00 each each
running shoes $95.00 each each

ice pack $4.50 each each

socks $36.00 box 24 pairs/box

No logical limit exists to the number of subqueries a SELECT statement can
have, but the size of any statement is physically limited when it is considered
as a character string. However, this limit is probably larger than any practical
statement that you are likely to compose.

Composing Advanced SELECT Statements 3-37

Set Operations

Perhaps you want to check whether information has been entered correctly
in the database. One way to find errors in a database is to write a query that
returns output only when errors exist. A subquery of this type serves as a
kind of audit query, as Query 3-35 shows.

Query 3-35
SELECT * FROM items
WHERE total_price != quantity *
(SELECT unit_price FROM stock
WHERE stock.stock_num = items.stock_num
AND stock.manu_code = items.manu_code)

Query 3-35 returns only those rows for which the total price of an item on an
order is not equal to the stock unit price times the order quantity. If no
discount has been applied, such rows were probably entered incorrectly in
the database. The query returns rows only when errors occur. If information
is correctly inserted into the database, no rows are returned.

Query Result 3-35

item_num order_num stock_num manu_code quantity total_price

No rows found.

Set Operations

The standard set operations union, intersection, and difference let you
manipulate database information. These three operations let you use SELECT
statements to check the integrity of your database after you perform an
update, insert, or delete. They can be useful when you transfer data to a
history table, for example, and want to verify that the correct data is in the
history table before you delete the data from the original table.

3-38 Informix Guide to SQL: Tutorial

Union

Union

The union operation uses the UNION keyword, or operator, to combine two
gueries into a single compound query. You can use the UNION keyword
between two or more SELECT statements to unite them and produce a
temporary table that contains rows that exist in any or all of the original
tables. (You cannot use a UNION operator inside a subquery or in the
definition of a view.) Figure 3-1 illustrates the union set operation.

Figure 3-1
The Union Set Operation

SELECT DISTINCT stock_num, manu_code
FROM stock
WHERE unit_price < 25.00

UNTON quantity
SELECT stock_num, manu_code
FROM items greater than 3 | less than or .
WHERE quantity > 3 equal to 3 unit_price < 25.00
less than . .
25 00 qualifies qualifies
unit_price
greater than or -
equal to 25.00 | qualifies

The UNION keyword selects all rows from the two queries, removes
duplicates, and returns what is left. Because the results of the queries are
combined into a single result, the select list in each query must have the same
number of columns. Also, the corresponding columns that are selected from
each table must contain the same data type (CHARACTER data type columns
must be the same length), and these corresponding columns must all allow
or all disallow nulls.

Composing Advanced SELECT Statements 3-39

Union

Query 3-36 performs a union on the stock_num and manu_code columns in
the stock and items tables.

Query 3-36

SELECT DISTINCT stock_num, manu_code
FROM stock
WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3

Query 3-36 selects those items that have a unit price of less than $25.00 or that
have been ordered in quantities greater than three and lists their stock_num
and manu_code, as Query Result 3-36 shows.

stock_num

3-40

O o1 o1 o

106
201
301
302
302

Query Result 3-36
manu_code

ANZ
NRG
SMT
ANZ
PRC
PRC
NKL
KAR
HRO
KAR

If you include an ORDER BY clause, it must follow Query 3-36 and use an
integer, not an identifier, to refer to the ordering column. Ordering takes
place after the set operation is complete.

Query 3-37

SELECT DISTINCT stock_num, manu_code
FROM stock
WHERE unit_price < 25.00

UNTION

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3
ORDER BY 2

Informix Guide to SQL: Tutorial

Union

The compound query in Query 3-37 selects the same rows as Query 3-36 but
displays them in order of the manufacturer code, as Query Result 3-37 shows.

Query Result 3-37

stock_num manu_code

5
9
302
301
302
201

103
106

ANZ
ANZ
HRO
KAR
KAR
NKL
NRG
PRC
PRC
SMT

By default, the UNION keyword excludes duplicate rows. Add the optional
keyword ALL, as Query 3-38 shows, to retain the duplicate values.

Query 3-38

SELECT stock_num, manu_code
FROM stock
WHERE unit_price < 25.00

UNION ALL

SELECT stock_num, manu_code
FROM items
WHERE quantity > 3
ORDER BY 2

INTO TEMP stockitem

Composing Advanced SELECT Statements 3-41

Union

Query 3-38 uses the UNION ALL keywords to unite two SELECT statements
and adds an INTO TEMP clause after the final SELECT to put the results into a
temporary table. If you query with SELECT * from that table, you see the
results as shown in Query Result 3-38. Query Result 3-38 includes duplicate
values that are not shown in Query Result 3-37.

Query Result 3-38
stock_num manu_code

ANZ
ANZ
ANZ
ANZ
ANZ
ANZ
ANZ
ANZ
302 HRO
302 KAR
301 KAR
201 NKL

5 NRG

5 NRG
103 PRC
106 PRC

5 SMT

5 SMT

01O OO 01O 01O

Corresponding columns in the select lists for the combined queries must
have identical data types, but the columns do not need to use the same
identifier.

Query 3-39 selects the state column from the customer table and the
corresponding code column from the state table.

Query 3-39

SELECT DISTINCT state
FROM customer
WHERE customer_num BETWEEN 120 AND 125

UNION
SELECT DISTINCT code

FROM state
WHERE sname MATCHES '*a'

3-42 Informix Guide to SQL: Tutorial

Union

Query Result 3-39 returns state code abbreviations for customer numbers 120
through 125 and for states whose sname ends in a.

Query Result 3-39
state

AK

VA
WV

In compound queries, the column names or display labels in the first SELECT
statement are the ones that appear in the results. Thus, in Query 3-40, the
column name state from the first SELECT statement is used instead of the
column name code from the second.

Query 3-40 performs a union on three tables. The maximum number of
unions depends on the practicality of the application and any memory
limitations.

Query 3-40

SELECT stock_num, manu_code
FROM stock
WHERE unit_price > 600.00

UNION ALL
SELECT stock_num, manu_code

FROM catalog
WHERE catalog_num = 10025

UNION ALL

SELECT stock_num, manu_code
FROM items
WHERE quantity = 10
ORDER BY 2

Composing Advanced SELECT Statements 3-43

Union

Query 3-40 selects items where the unit_price in the stock table is greater
than $600.00, the catalog_num in the catalog table is 10025, or the quantity
in the items table is 10; and the query orders the data by manu_code. Query
Result 3-40 shows the return values.

stock_num

5
9
8
4
1
3

20

5
106
113

Query Result 3-40

manu_code

ANZ
ANZ
ANZ
HSK
HSK
NKL
NRG
PRC
SHM

For the complete syntax of the SELECT statement and the UNION operator,
see Chapter 1 of the Informix Guide to SQL: Syntax. For information specific to
INFORMIX-ESQL/C and any limitations that involve the INTO clause and
compound queries, see Chapter 5, “Programming with SQL,”and Chapter 6,
“Modifying Data Through SQL Programs,”as well as the product manuals.

Query 3-41 uses a combined query to select data into a temporary table and
then adds a simple query to order and display it. You must separate the
combined and simple queries with a semicolon.

The combined query uses a literal in the select list to tag the output of part of
aunion so it can be distinguished later. The tag is given the label sortkey. The
simple query uses that tag as a sort key for ordering the retrieved rows.

Query 3-41

SELECT '"1" sortkey, lname, fname, company,
city, state, phone
FROM customer x
WHERE state = 'CA'

UNION

SELECT '2" sortkey, lname, fname, company,
city, state, phone

3-44 Informix Guide to SQL: Tutorial

FROM customer y
WHERE state <> '"CA'
INTO TEMP calcust;

SELECT * FROM calcust
ORDER BY 1

Union

Query 3-41 creates a list in which the most frequently called customers, those
from California, appear first, as Query Result 3-41 shows.

sortkey
Tname
fname
company
city
state
phone

sortkey
Tname
fname
company
city
state
phone

sortkey
Tname
fname

company
city
state
phone

1

Baxter

Dick

Blue Ribbon Sports
Oakland

CA

415-655-0011

1

Beatty

Lana
Sportstown
Menlo Park
CA
415-356-9982

1

Currie

Philip

Phil’s Sports
Palo Alto

CA
415-328-4543

Query Result 3-41

Composing Advanced SELECT Statements 3-45

Intersection

Intersection

The intersection of two sets of rows produces a table containing rows that exist
in both the original tables. Use the keyword EXISTS or IN to introduce
subqueries that show the intersection of two sets. Figure 3-2 illustrates the
intersection set operation.
Figure 3-2
The Intersection Set Operation

SELECT stock_num, manu_code, unit_price tock
FROM stock stock_num
WHERE stock_num IN
(SELECT stock_num FROM items) L. L.
ORDER BY stock_num existsinitems | not in items stock table
table table
exists in stock .
table qualifies
stock_num items table

not in stock
table

Query 3-42 is an example of a nested SELECT statement that shows the
intersection of the stock and items tables.

Query 3-42

SELECT stock_num, manu_code, unit_price
FROM stock
WHERE stock_num IN
(SELECT stock_num FROM items)
ORDER BY stock_num

3-46 Informix Guide to SQL: Tutorial

Difference

Query Result 3-42 contains all the elements from both sets.

- - Query Result 3-42
stock_num manu_code unit_price
1 HRO $250.00
1 HSK $800.00
1 SMT $450.00
2 HRO $126.00
3 HSK $240.00
3 SHM $280.00
4 HRO $480.00
4 HSK $960.00
5 ANZ $19.80
5 NRG $28.00
5 SMT $25.00
6 ANZ $48.00

Difference

The difference between two sets of rows produces a table containing rows in
the first set that are not also in the second set. Use the keywords NOT EXISTS
or NOT IN to introduce subqueries that show the difference between two sets.
Figure 3-3 illustrates the difference set operation.

Figure 3-3
The Difference Set Operation

SELECT stock_num, manu_code,
unit_price
FROM stock stock_num
WHERE stock_num NOT IN
(SELECT stock_num FROM items)

ORDER BY stock_num existsinitems | not in items stock table
table table
existsinstock -
table qualifies
stock_fum items table
not in stock
table

Composing Advanced SELECT Statements ~ 3-47

Difference

Query 3-43 is an example of a nested SELECT statement that shows the
difference between the stock and items tables.

Query 3-43

SELECT stock_num, manu_code, unit_price
FROM stock
WHERE stock_num NOT IN
(SELECT stock_num FROM items)
ORDER BY stock_num

Query Result 3-43 contains all the elements from only the first set, which
returns 17 rows.

3-48

stock_num

102
102
106
107
108
112
113
203
305
308
310
310
311
312
312
313
313

Informix Guide to SQL: Tutorial

Query Result 3-43
manu_code unit_price
PRC $480.00
SHM $220.00
PRC $23.00
PRC $70.00
SHM $45.00
SHM $549.00
SHM $685.90
NKL $670.00
HRO $48.00
PRC $280.00
ANZ $84.00
SHM $80.00
SHM $48.00
HRO $72.00
SHM $96.00
ANZ $60.00
SHM $72.00

Summary

Summary

This chapter builds on concepts introduced in Chapter 2, “Composing
Simple SELECT Statements.” It provides sample syntax and results for more
advanced kinds of SELECT statements, which are used to perform a query on
a relational database. This chapter presents the following material:

= Introduces the GROUP BY and HAVING clauses, which can be used
with aggregates to return groups of rows and apply conditions to
those groups

= Describes how to use the rowid to retrieve internal record numbers
from tables and system-catalog tables and discusses the serial iternal
table identifier or tabid

= Shows how to join a table to itself with a self-join to compare values
in a column with other values in the same column and to identify
duplicates

= Introduces the keyword OUTER, explains how an outer join treats
two or more tables asymmetrically, and provides examples of the
four kinds of outer join

= Describes how to create correlated and uncorrelated subqueries by
nesting a SELECT statement in the WHERE clause of another SELECT
statement and shows the use of aggregate functions in subqueries

= Demonstrates the use of the keywords ALL, ANY, EXISTS, IN, and
SOME in creating subqueries, and the effect of adding the keyword
NOT or a relational operator

= Discusses the union, intersection, and difference set operations

= Shows how to use the UNION and UNION ALL keywords to create
compound queries that consist of two or more SELECT statements

Composing Advanced SELECT Statements 3-49

Modifying Data

Statements That Modify Data .
Deleting Rows .
Deleting All Rows of a Table
Deleting a Known Number of Rows
Deleting an Unknown Number of Rows .
Complicated Delete Conditions .
Inserting Rows .
Single Rows
Multiple Rows and Expressmns
Restrictions on the Insert-Selection.
Updating Rows. .
Selecting Rows to Update
Updating with Uniform Values .
Impossible Updates . .
Updating with Selected Values .

Database Privileges.
Displaying Table inleges

Data Integrity. .
Entity Integrity .
Semantic Integrity .
Referential Integrity .

Using the ON DELETE CASCADE Optlon .

Object Modes and Violation Detection .
SQL Statements and Examples .

Interrupted Modifications
The Transaction.
Transaction Logging . .
Logging and Cascading Deletes
Specifying Transactions . .

4-4
4-4
4-4

4-5
4-6

4-7
4-10
4-11
4-13
4-13
4-14
4-15
4-15

4-16
4-18

4-19
4-19
4-20
4-21
4-23
4-25
4-27

4-27
4-28
4-29
4-29
4-30

4-2

Backups and Logs

Backing Up with INFORMIX Unlversal Server .

Concurrency and Locks

Data Replication .

INFORMIX- Unlversal Server Data Repllcatlon .

Summary .

Informix Guide to SQL: Tutorial

4-31
4-31

4-32

4-32
4-33

4-34

odifying data is fundamentally different from querying
data. Querying data involves examining the contents of tables. Modifying
data involves changing the contents of tables.

Think about what happens if the system hardware or software fails during a
query. In this case, the effect on the application can be severe, but the
database itself is unharmed. However, if the system fails while a modification
is under way, the state of the database is in doubt. Obviously, a database in
an uncertain state has far-reaching implications. Before you delete, insert, or
update rows in a database, ask yourself the following questions:

= Isuser access to the database and its tables secure; that is, are specific
users given limited database and table-level privileges?

= Does the modified data preserve the existing integrity of the
database?

= Are systems in place that make the database relatively immune to
external events that might cause system or hardware failures?

If you cannot answer yes to each of these questions, do not panic. Solutions
to all these problems are built into the Informix database servers. After an
introduction to the statements that modify data, this chapter discusses these
solutions. Chapters 8 through 10 cover these topics in greater detail.

Modifying Data 4-3

Statements That Modify Data

4-4

Statements That Modify Data

The following statements modify data:

= DELETE
s INSERT
= UPDATE

Although these SQL statements are relatively simple when compared with
the more advanced SELECT statements, use them carefully because they
change the contents of the database.

Deleting Rows

The DELETE statement removes any row or combination of rows from a table.
You cannot recover a deleted row after the transaction is committed. (Trans-
actions are discussed under “Interrupted Modifications” on page 4-27. For
now, think of a transaction and a statement as the same thing.)

When you delete a row, you must also be careful to delete any rows of other
tables whose values depend on the deleted row. If your database enforces
referential constraints, you can use the ON DELETE CASCADE option of the
CREATE TABLE or ALTER TABLE statements to allow deletes to cascade from
one table in a relationship to another. For more information on referential
constraints and the ON DELETE CASCADE option, refer to “Referential
Integrity” on page 4-21.

Deleting All Rows of a Table

The DELETE statement specifies a table and usually contains a WHERE clause
that designates the row or rows that are to be removed from the table. If the
WHERE clause is left out, all rows are deleted. Do not execute the following
statement:

DELETE FROM customer

Informix Guide to SQL: Tutorial

Deleting a Known Number of Rows

Because this DELETE statement does not contain a WHERE clause, all rows
from the customer table are deleted. If you attempt an unconditional delete
using the DB-Access or the SQL Editor menu options, the program warns you
and asks for confirmation. However, an unconditional delete from within a
program can occur without warning.

Deleting a Known Number of Rows

The WHERE clause in a DELETE statement has the same form as the WHERE
clause in a SELECT statement. You can use it to designate exactly which row
or rows should be deleted. You can delete a customer with a specific
customer number, as the following example shows:

DELETE FROM customer WHERE customer_num = 175

In this example, because the customer_num column has a unique constraint,
you can ensure that no more than one row is deleted.

Deleting an Unknown Number of Rows

You can also choose rows that are based on nonindexed columns, as the
following example shows:

DELETE FROM customer WHERE company = 'Druid Cyclery'

Because the column that is tested does not have a unique constraint, this
statement might delete more than one row. (Druid Cyclery might have two
stores, both with the same name but different customer numbers.)

To find out how many rows a DELETE statement affects, select the count of
qualifying rows from the customer table for Druid Cyclery.

SELECT COUNT(*) FROM customer WHERE company = 'Druid Cyclery'

You can also select the rows and display them to ensure that they are the ones
you want to delete.

Modifying Data 4-5

Deleting a Known Number of Rows

4-6

Using a SELECT statement as a test is only an approximation, however, when
the database is available to multiple users concurrently. Between the time
you execute the SELECT statement and the subsequent DELETE statement,
other users could have modified the table and changed the result. In this
example, another user might perform the following actions:

= Insert a new row for another customer named Druid Cyclery
» Delete one or more of the Druid Cyclery rows before you do so

= Update a Druid Cyclery row to have a new company name, or
update some other customer to have the name Druid Cyclery

Although it is not likely that other users would do these things in that brief
interval, the possibility does exist. This same problem affects the UPDATE
statement. Ways of addressing this problem are discussed under “Concur-
rency and Locks” on page 4-32, and in greater detail in Chapter 7,
“Programming for a Multiuser Environment.”

Another problem you might encounter is a hardware or software failure
before the statement finishes. In this case, the database might have deleted no
rows, some rows, or all specified rows. The state of the database is unknown,
which is undesirable. To prevent this situation, use transaction logging, as
discussed in “Interrupted Modifications” on page 4-27.

Complicated Delete Conditions

The WHERE clause in a DELETE statement can be almost as complicated as the
one in a SELECT statement. It can contain multiple conditions that are
connected by AND and OR, and it might contain subqueries.

Suppose you discover that some rows of the stock table contain incorrect
manufacturer codes. Rather than update them, you want to delete them so
that they can be reentered. You know that these rows, unlike the correct ones,
have no matching rows in the manufact table. The fact that these incorrect
rows have no matching rows in the manufact table allows you to write a
DELETE statement such as the one in the following example:

DELETE FROM stock
WHERE 0 = (SELECT COUNT(*) FROM manufact
WHERE manufact.manu_code = stock.manu_code)

Informix Guide to SQL: Tutorial

Inserting Rows

The subquery counts the number of rows of manufact that match; the count
is 1 for a correct row of stock and 0 for an incorrect one. The latter rows are
chosen for deletion.

One way to develop a DELETE statement with a complicated condition is to
first develop a SELECT statement that returns precisely the rows to be deleted.
Write itas SELECT «;when it returns the desired set of rows, change SELECT
= to read DELETE and execute it once more.

The WHERE clause of a DELETE statement cannot use a subquery that tests
the same table. That is, when you delete from stock, you cannot use a
subquery in the WHERE clause that also selects from stock.

The key to this rule is in the FROM clause. If a table is named in the FROM
clause of a DELETE statement, it cannot also appear in the FROM clause of a
subquery of the DELETE statement.

Inserting Rows

The INSERT statement adds a new row, or rows, to a table. The statement has
two basic functions. It can create a single new row using column values you
supply, or it can create a group of new rows using data selected from other
tables.

Single Rows

In its simplest form, the INSERT statement creates one new row from a list of
column values and puts that row in the table. The following statement shows
an example of adding a row to the stock table:

INSERT INTO stock
VALUES (115, 'PRC', 'tire pump', 108, 'box', '6/box")

Modifying Data 4-7

Inserting Rows

The stock table has the following columns:

s stock_num (a number identifying the type of merchandise)

= manu_code (a foreign key to the manufact table)

= description (a description of the merchandise)

= unit_price (the unit price of the merchandise)

= unit (of measure)

= unit_descr (characterizing the unit of measure)
The values that are listed in the VALUES clause in the preceding example have
a one-to-one correspondence with the columns of this table. To write a

VALUES clause, you must know the columns of the tables as well as their
sequence from first to last.

Possible Column Values

The VALUES clause accepts only constant values, not expressions. You can
supply the following values:

= Literal numbers

= Literal datetime values

= Literal interval values

= Quoted strings of characters

= The word NULL for a null value

= The word TODAY for the current date

= The word CURRENT for the current date and time

= The word USER for your user name

= The word DBSERVERNAME (or SITENAME) for the name of the

computer where the database server is running

Some columns of a table might not allow null values. If you attempt to insert
NULL in such a column, the statement is rejected. Or a column in the table
might not permit duplicate values. If you specify a value that is a duplicate
of one that is already in such a column, the statement is rejected. Some
columns might even restrict the possible column values allowed. These
restrictions are placed on columns using data integrity constraints. For more
information on data restrictions, see “Database Privileges” on page 4-16.

4-8 Informix Guide to SQL: Tutorial

Inserting Rows

Only one column in a table can have the SERIAL data type. The database
server generates values for a serial column. To make this happen when you
insert values, specify the value zero for the serial column. The database
server generates the next actual value in sequence. Serial columns do not
allow null values.

You can specify a nonzero value for a serial column (as long as it does not
duplicate any existing value in that column), and the database server uses the
value. However, that nonzero value might set a new starting point for values
that the database server generates. The next value the database server
generates for you is one greater than the maximum value in the column.

Do not specify the currency symbols for columns that contain money values.
Just specify the numeric value of the amount.

The database server can convert between numeric and character data types.
You can give a string of numeric characters (for example, ' -0075.6") as the
value of a numeric column. The database server converts the numeric string
to a number. An error occurs only if the string does not represent a number.

You can specify a number or a date as the value for a character column. The
database server converts that value to a character string. For example, if you
specify TODAY as the value for a character column, a character string that
represents the current date is used. (The DBDATE environment variable
specifies the format that is used.)

Listing Specific Column Names

You do not have to specify values for every column. Instead, you can list the
column names after the table name and then supply values for only those
columns that you named. The following example shows a statement that
inserts a new row into the stock table:

INSERT INTO stock (stock_num, description,unit_price,manu_code)
VALUES (115, "tyre pump', 114, 'SHM")

Modifying Data 4-9

Inserting Rows

Only the data for the stock humber, description, unit price, and manufacturer
code is provided. The database server supplies the following values for the
remaining columns:

= It generates a serial number for an unlisted serial column.

= It generates a default value for a column with a specific default
associated with it.

= Itgenerates a null value for any column that allows nulls but it does
not specify a default value for any column that specifies null as the
default value.

This means that you must list and supply values for all columns that
do not specify a default value or do not permit nulls.

You can list the columns in any order, as long as the values for those columns
are listed in the same order. For information about setting a default value for
a column, see Chapter 9, “Implementing Your Data Model.”

After the INSERT statement is executed, the following new row is inserted
into the stock table:

stock_num manu_code description wunit_price unit unit_descr
115 SHM tyre pump 114

Both unit and unit_descr are blank, indicating that null values are in those
two columns. Because the unit column permits nulls, the number of tire
pumps that were purchased for $114 is not known. Of course, if a default
value of box were specified for this column, then box would be the unit of
measure. In any case, when you insert values into specific columns of a table,
pay attention to what data is needed for that row.

Multiple Rows and Expressions

The other major form of the INSERT statement replaces the VALUES clause
with a SELECT statement. This feature allows you to insert the following data:

= Multiple rows with only one statement (each time the SELECT
statement returns a row, a row is inserted)

= Calculated values (the VALUES clause permits only constants)
because the select list can contain expressions

4-10 Informix Guide to SQL: Tutorial

Inserting Rows

For example, suppose a follow-up call is required for every order that has
been paid for but not shipped. The INSERT statement in the following
example finds those orders and inserts a row in cust_calls for each order:

INSERT INTO cust_calls (customer_num, call_descr)
SELECT customer_num, order_num FROM orders
WHERE paid_date IS NOT NULL
AND ship_date IS NULL

This SELECT statement returns two columns. The data from these columns (in
each selected row) is inserted into the named columns of the cust_calls table.
Then, an order number (from order_num, a serial column) is inserted into the
call description, which is a character column. Remember that the database
server allows you to insert integer values into a character column. It
automatically converts the serial number to a character string of decimal
digits.

Restrictions on the Insert-Selection

The following list contains the restrictions on the SELECT statement for
inserting rows:

= It cannot contain an INTO clause.

= It cannot contain an INTO TEMP clause.

= It cannot contain an ORDER BY clause.

= It cannot refer to the table into which you are inserting rows

The INTO, INTO TEMP, and ORDER BY clause restrictions are minor. The INTO
clause is not useful in this context. (It is discussed in Chapter 5,
“Programming with SQL.””) To work around the INTO TEMP clause
restriction, first select the data you want to insert into a temporary table and
then insert the data from the temporary table with the INSERT statement.
Likewise, the lack of an ORDER BY clause is not important. If you need to
ensure that the new rows are physically ordered in the table, you can first
select them into a temporary table and order it, and then insert from the
temporary table. You can also apply a physical order to the table using a
clustered index after all insertions are done.

Modifying Data 4-11

Inserting Rows

The last restriction is more serious because it prevents you from naming the
same table in both the INTO clause of the INSERT statement and the FROM
clause of the SELECT statement. Naming the same table in both the INTO
clause of the INSERT statement and the FROM clause of the SELECT statement
causes the database server to enter an endless loop in which each inserted
row is reselected and reinserted.

In some cases, however, you might want to do this. For example, suppose
that you have learned that the Nikolus company supplies the same products
as the Anza company, but at half the price. You want to add rows to the stock
table to reflect the difference between the two companies. Optimally, you
want to select data from all the Anza stock rows and reinsert it with the
Nikolus manufacturer code. However, you cannot select from the same table
into which you are inserting.

To get around this restriction, select the data you want to insert into a
temporary table. Then select from that temporary table in the INSERT
statement as the following example shows:

SELECT stock_num, 'HSK' temp_manu, description, unit_price/?2
half_price, unit, unit_descr FROM stock
WHERE manu_code = "ANZ'
AND stock_num < 110
INTO TEMP anzrows;

INSERT INTO stock SELECT * FROM anzrows;
DROP TABLE anzrows;

This SELECT statement takes existing rows from stock and substitutes a
literal value for the manufacturer code and a computed value for the unit
price. These rows are then saved in a temporary table, anzrows, which is
immediately inserted into the stock table.

When you insert multiple rows, a risk exists that one of the rows contains
invalid data that might cause the database server to report an error. When
such an error occurs, the statement terminates early. Even if no error occurs,
a very small risk exists that a hardware or software failure might occur while
the statement is executing (for example, the disk might fill up).

In either event, you cannot easily tell how many new rows were inserted. If
you repeat the statement in its entirety, you might create duplicate rows, or
you might not. Because the database is in an unknown state, you cannot
know what to do. The answer lies in using transactions, as discussed in
“Interrupted Modifications” on page 4-27.

4-12 Informix Guide to SQL: Tutorial

Updating Rows

Updating Rows

You use the UPDATE statement to change the contents of one or more
columns in one or more existing rows of a table. This statement takes two
fundamentally different forms. One lets you assign specific values to
columns by name; the other lets you assign a list of values (that might be
returned by a SELECT statement) to a list of columns. In either case, if you are
updating rows, and some of the columns have data integrity constraints, the
data you change must be within the constraints placed on those columns. For
more information, refer to “Database Privileges” on page 4-16.

Selecting Rows to Update

Either form of the UPDATE statement can end with a WHERE clause that
determines which rows are modified. If you omit the WHERE clause, all rows
are modified. The WHERE clause can be quite complicated to select the
precise set of rows that need changing. The only restriction on the WHERE
clause is that the table that you are updating cannot be named in the FROM
clause of a subquery.

The first form of an UPDATE statement uses a series of assignment clauses to
specify new column values, as the following example shows:

UPDATE customer
SET fname = 'Barnaby', lname = 'Dorfler’
WHERE customer_num = 103

The WHERE clause selects the row to be updated. In the stores7 database, the
customer.customer_num column is the primary key for that table, so this
statement can update no more than one row.

You can also use subqueries in the WHERE clause. Suppose that the Anza
Corporation issues a safety recall of their tennis balls. As a result, any
unshipped orders that include stock number 6 from manufacturer ANZ must
be put on back order, as the following example shows:

UPDATE orders
SET backlog = "'y'
WHERE ship_date IS NULL
AND order_num IN
(SELECT DISTINCT items.order_num FROM items
WHERE items.stock_num = 6
AND items.manu_code = "ANZ")

Modifying Data 4-13

Updating Rows

This subquery returns a column of order numbers (zero or more). The
UPDATE operation then tests each row of orders against the list and performs
the update if that row matches.

Updating with Uniform Values

Each assignment after the keyword SET specifies a new value for a column.
That value is applied uniformly to every row that you update. In the
examples in the previous section, the new values were constants, but you can
assign any expression, including one based on the column value itself.
Suppose the manufacturer code HRO has raised all prices by 5 percent, and
you must update the stock table to reflect this increase. Use a statement such
as the following :

UPDATE stock
SET unit_price = unit_price * 1.05
WHERE manu_code = "HRO'

You can also use a subquery as part of the assigned value. When a subquery
is used as an element of an expression, it must return exactly one value (one
column and one row). Perhaps you decide that for any stock number, you
must charge a higher price than any manufacturer of that product. You need
to update the prices of all unshipped orders. The SELECT statements in the
following example specify the criteria:

UPDATE items
SET total_price = quantity *
(SELECT MAX (unit_price) FROM stock
WHERE stock.stock_num = items.stock_num)
WHERE items.order_num IN
(SELECT order_num FROM orders
WHERE ship_date IS NULL)

The first SELECT statement returns a single value: the highest price in the
stock table for a particular product. The first SELECT statement is a correlated
subquery because, when a value from items appears in the WHERE clause for
the first SELECT statement, you must execute it for every row that you
update.

The second SELECT statement produces a list of the order numbers of
unshipped orders. It is an uncorrelated subquery that is executed once.

4-14 Informix Guide to SQL: Tutorial

Updating Rows

Impossible Updates

Restrictions exist on the use of subqueries when you modify data. In
particular, you cannot query the table that is being modified. You can refer to
the present value of a column in an expression, as in the example in which
the unit_price column was incremented by 5 percent. You can refer to a value
of a column in a WHERE clause in a subquery, as in the example that updated
the stock table, in which the items table is updated and items.stock_num is
used in a join expression.

The need to update and query a table at the same time does not occur often
in a well-designed database. (Database design is covered in Chapter 8 and
Chapter 9.) However, you might want to update and query at the same time
when a database is first being developed, before its design has been carefully
thought through. A typical problem arises when a table inadvertently and
incorrectly contains a few rows with duplicate values in a column that should
be unique. You might want to delete the duplicate rows or update only the
duplicate rows. Either way, a test for duplicate rows inevitably requires a
subquery, which is not allowed in an UPDATE statement or DELETE
statement. Chapter 6, “Modifying Data Through SQL Programs,” discusses
how to use an update cursor to perform this kind of modification.

Updating with Selected Values

The second form of UPDATE statement replaces the list of assignments with
a single bulk assignment, in which a list of columns is set equal to a list of
values. When the values are simple constants, this form is nothing more than
the form of the previous example with its parts rearranged, as the following
example shows:

UPDATE customer
SET (fname, TIname)
WHERE customer_num

('Barnaby', 'Dorfler')
103

No advantage exists to writing the statement this way. In fact, it is harder to
read because it is not obvious which values are assigned to which columns.

Modifying Data 4-15

Database Privileges

4-16

However, when the values to be assigned come from a single SELECT
statement, this form makes sense. Suppose that changes of address are to be
applied to several customers. Instead of updating the customer table each
time a change is reported, the new addresses are collected in a single
temporary table named newaddr. It contains columns for the customer
number and the address-related fields of the customer table. Now the time
comes to apply all the new addresses at once.

UPDATE customer
SET (addressl, address2, city, state, zipcode) =
((SELECT addressl, address2, city, state, zipcode
FROM newaddr
WHERE newaddr.customer_num=customer.customer_num))
WHERE customer_num IN
(SELECT customer_num FROM newaddr)

The values for multiple columns are produced by a single SELECT statement.
If you rewrite this example in the other form, with an assignment for each
updated column, you must write five SELECT statements, one for each
column to be updated. Not only is such a statement harder to write but it also
takes much longer to execute.

Tip: In ESQL/C programs, you can use host variables to update values.

Database Privileges

Two levels of privileges exist in a database: database-level privileges and
table-level privileges. When you create a database, you are the only one who
can access it until you, as the owner or database administrator (DBA) of the
database, grant database-level privileges to others. When you create a table
in a database that is not ANSI compliant, all users have access privileges to
the table until you, as the owner of the table, revoke table-level privileges
from specific users.

The following list contains database-level privileges:

Connect privilege allows you to open a database, issue queries, and
create and place indexes on temporary tables.

Resource privilege allows you to create permanent tables and user-
defined data types.

DBA privilege allows you to perform several additional functions as
the DBA.

Informix Guide to SQL: Tutorial

Database Privileges

Only four of the several table-level privileges are covered here:

Select privilege is granted on a table-by-table basis and allows you to
select rows from a table. (This privilege can be limited
by specific columns in a table.)

Delete privilege allows you to delete rows.
Insert privilege allows you to insert rows.
Update privilege allows you to update existing rows (that is, to change

their content).

The people who create databases and tables often grant the Connect and
Select privileges to public so that all users have them. If you can query a
table, you have at least the Connect and Select privileges for that database
and table. For more information about public, see “The Users and the Public”
on page 11-6.

You need the other table-level privileges to modify data. The owners of tables
often withhold these privileges or grant them only to specific users. As a
result, you might not be able to modify some tables that you can query freely.

Because these privileges are granted on a table-by-table basis, you can have
only Insert privileges on one table and only Update privileges on another, for
example. The Update privileges can be restricted even further to specific
columns in a table.

Chapter 11, “Granting and Limiting Access to Your Database,” discusses
granting privileges from the standpoint of the DBA. A complete list of privi-
leges and a summary of the GRANT and REVOKE statements can be found in
Chapter 1 of the Informix Guide to SQL: Syntax.

Modifying Data 4-17

Displaying Table Privileges

4-18

Displaying Table Privileges

If you are the owner of a table (that is, if you created it), you have all
privileges on that table. Otherwise, you can determine the privileges you
have for a certain table by querying the system catalog. The system catalog
consists of system tables that describe the database structure. The privileges
granted on each table are recorded in the systabauth system table. To display
these privileges, you must also know the unique identifier number of the
table. This number is specified in the systables system table. To display privi-
leges granted on the orders table, you might enter the following SELECT
statement:
SELECT * FROM systabauth
WHERE tabid = (SELECT tabid FROM systables
WHERE tabname = 'orders')

The output of the query resembles the following example.

grantorgranteetabidtabauth

tfecitmutatorlOlsu-i-x--
tfecitprocrustesl0ls--idx--
tfecitpubliclOls--i-x--

The grantor is the user who grants the privilege. The grantor is usually the
owner of the table but can be another user empowered by the grantor. The
grantee is the user to whom the privilege is granted, and the grantee public
means “any user with Connect privilege.” If your user name does not appeatr,
you have only those privileges granted to public.

The tabauth column specifies the privileges granted. The letters in each row
of this column are the initial letters of the privilege names except that i means
Insert and x means Index. In this example, public has Select, Insert, and
Index privileges. Only the user mutator has Update privileges, and only the
user procrustes has Delete privileges.

Before the database server performs any action for you (for example, execute
a DELETE statement), it performs a query similar to the preceding one. If you
are not the owner of the table, and if it cannot find the necessary privilege on
the table for your user name or for public, it refuses to perform the operation.

Informix Guide to SQL: Tutorial

Data Integrity

Data Integrity

The INSERT, UPDATE, and DELETE statements modify data in an existing
database. Whenever you modify existing data, the integrity of the data can be
affected. For example, an order for a nonexistent product could be entered
into the orders table, a customer with outstanding orders could be deleted
from the customer table, or the order number could be updated in the orders
table and not in the items table. In each of these cases, the integrity of the
stored data is lost.

Data integrity is actually made up of the following parts:

= Entity integrity. Each row of a table has a unique identifier.

= Semantic integrity. The data in the columns properly reflects the
types of information the column was designed to hold.

= Referential integrity. The relationships between tables are enforced.

Well-designed databases incorporate these principles so that when you
modify data, the database itself prevents you from doing anything that might
harm the data integrity.

Entity Integrity

An entity is any person, place, or thing to be recorded in a database. Each
entity represents a table, and each row of a table represents an instance of that
entity. For example, if order is an entity, the orders table represents the idea of
order and each row in the table represents a specific order.

To identify each row in a table, the table must have a primary key. The
primary key is a unique value that identifies each row. This requirement is
called the entity integrity constraint.

For example, the orders table primary key is order_num. The order_num
column holds a unique system-generated order number for each row in the
table. To access a row of data in the orders table, you can use the following
SELECT statement:

SELECT * FROM orders WHERE order_num = 1001

Modifying Data 4-19

Semantic Integrity

Using the order number in the WHERE clause of this statement enables you
to access a row easily because the order number uniquely identifies that row.
If the table allowed duplicate order numbers, it would be almost impossible
to access one single row, because all other columns of this table allow
duplicate values.

For more information on primary keys and entity integrity, refer to
Chapter 8, “Building Your Data Model.”

Semantic Integrity

Semantic integrity ensures that data entered into a row reflects an allowable
value for that row. The value must be within the column-specific properties, or
allowable set of values, for that column. For example, the quantity column of
the items table permits only numbers. If a value outside the column-specific
properties can be entered into a column, the semantic integrity of the data is
violated.

Semantic integrity is enforced using the following constraints:

= Data type. The data type defines the types of values that you can
store in a column. For example, the data type SMALLINT allows you
to enter values from -32,767 to 32,767 into a column.

» Default value. The default value is the value inserted into the
column when an explicit value is not specified. For example, the
user_id column of the cust_calls table defaults to the login name of
the user if no name is entered.

s Check constraint. The check constraint specifies conditions on data
inserted into a column. Each row inserted into a table must meet
these conditions. For example, the quantity column of the items
table might check for quantities greater than or equal to one.

For more information on using semantic integrity constraints in database
design, refer to “Defining Column-Specific Properties” on page 9-3.

4-20 Informix Guide to SQL: Tutorial

Referential Integrity

Referential Integrity

Referential integrity refers to the relationship between tables. Because each
table in a database must have a primary key, this primary key can appear in
other tables because of its relationship to data within those tables. When a
primary key from one table appears in another table, it is called a foreign key.

Foreign keys join tables and establish dependencies between tables. Tables
can form a hierarchy of dependencies in such a way that if you change or
delete arow in one table, you destroy the meaning of rows in other tables. For
example, Figure 4-1 shows that the customer_num column of the customer
table is a primary key for that table and a foreign key in the orders and
cust_call tables. Customer humber 106, George Watson, is referenced in both
the orders and cust_calls tables. If customer 106 is deleted from the customer
table, the link between the three tables and this particular customer is
destroyed.

When you delete a row that contains a primary key or update it with a
different primary key, you destroy the meaning of any rows that contain that
value as a foreign key. Referential integrity is the logical dependency of a
foreign key on a primary key. The integrity of a row that contains a foreign key
depends on the integrity of the row that it references—the row that contains
the matching primary key.

Modifying Data 4-21

Referential Integrity

By default, the database server does not allow you to violate referential
integrity and gives you an error message if you attempt to delete rows from
the parent table before you delete rows from the child table. You can,
however, use the ON DELETE CASCADE option to cause deletes from a parent

table to trip deletes on child tables. See “Using the ON DELETE CASCADE
Option” on page 4-23.

Figure 4-1

Referential Integrity in the stores7 Database

customer Table
(detail)
customer_num fname Iname
103 Philip Currie
(106) George Watson
orders Table /
(detail)
order_num order_date customer_num
1002 05/21/1994 101
1003 05/22/1994 104
1004 05/22/1994 (106)
cust_calls Table
(detail)
customer_num call_dtime user_id
(106) 1994-06-12 8:20 maryj
110 1994-07-07 10:24 richc
119 1994-07-01 15:00 richc

4-22 Informix Guide to SQL: Tutorial

Referential Integrity

To define primary and foreign keys, and the relationship between them, use
the CREATE TABLE and ALTER TABLE statements. For more information on
these statements, see Chapter 1 of the Informix Guide to SQL: Syntax. For infor-
mation on building data models using primary and foreign keys, refer to
Chapter 8, “Building Your Data Model.”

Using the ON DELETE CASCADE Option

To maintain referential integrity when you delete rows from a primary key
for atable, use the ON DELETE CASCADE option in the REFERENCES clause of
the CREATE TABLE and ALTER TABLE statements. This option allows you to
delete a row from a parent table and its corresponding rows in matching
child tables with a single delete command.

Locking During Cascading Deletes

During deletes, locks are held on all qualifying rows of the parent and child
tables. When you specify a delete, the delete that is requested from the parent
table occurs before any referential actions are performed.

What Happens to Multiple Children Tables

If you have a parent table with two child constraints, one child with
cascading deletes specified and one child without cascading deletes, and you
attempt to delete a row from the parent table that applies to both child tables,
the DELETE statement fails, and no rows are deleted from either the parent or
child tables.

Logging Must Be Turned On

You must turn logging on in your current database for cascading deletes to
work. Logging and cascading deletes are discussed in “Transaction Logging”
on page 4-29.

Modifying Data 4-23

Referential Integrity

4-24

Example

Suppose you have two tables with referential integrity rules applied, a parent
table, accounts, and a child table, sub_accounts. The following CREATE
TABLE statements define the referential constraints:

CREATE TABLE accounts (
acc_num SERIAL primary key,
acc_type INT,
acc_descr CHAR(20));

CREATE TABLE sub_accounts (
sub_acc INTEGER primary key,
ref_num INTEGER REFERENCES references accounts (acc_num) ON DELETE CASCADE,
sub_descr CHAR(20));

The primary key of the accounts table, the acc_num column, uses a SERIAL
data type, and the foreign key of the sub_accounts table, the ref_num
column, uses an INTEGER data type. Combining the SERIAL data type on the
primary key and the INTEGER data type on the foreign key is allowed. Only
in this condition can you mix and match data types. The SERIAL data type is
an INTEGER, and the database automatically generates the values for the
column. All other primary and foreign key combinations must match
explicitly. For example, a primary key that is defined as CHAR must match a
foreign key that is defined as CHAR.

To delete a row from the accounts table that will cascade a delete to the
sub_accounts table, you must turn on logging. After logging is turned on,
you can delete the account number 2 from both tables, as the following
example shows:

DELETE FROM accounts WHERE acc_num = 2

Restrictions on Cascading Deletes

You can use cascading deletes for most deletes, including deletes on self-
referencing and cyclic queries. The only exception is correlated subqueries. In
correlated subqueries, the subquery (or inner SELECT) is correlated when the
value it produces depends on a value produced by the outer SELECT
statement that contains it. If you have implemented cascading deletes, you
cannot write deletes that use a child table in the correlated subquery. You
receive an error when you attempt to delete from a correlated subquery.

Informix Guide to SQL: Tutorial

Object Modes and Violation Detection

Object Modes and Violation Detection

The object modes and violation detection features of the database can help
you monitor data integrity. These features are particularly powerful when
they are combined during schema changes or when insert, delete, and update
operations are performed on large volumes of data over short periods.

You can use the object modes feature to change the modes of database objects.
Database objects, within the context of a discussion of the object modes
feature, are constraints, indexes, and triggers. Do not confuse database
objects that are relevant to the object modes feature with generic database
objects. Generic database objects are things like tables and synonyms. The
database objects that relate specifically to object modes are constraints,
indexes, and triggers, and all of them have different modes.

Constraints can be enabled, disabled, or filtering. The database manager does
not enforce disabled constraints even though their definitions are still in the
system catalogs. Only constraints in the enabled and filtering mode are
enforced. However, when a constraint is in filter mode, the database manager
ensures the integrity of the base table for that particular constraint. The
difference between enabled mode and filtering mode is apparent in the way
the database manager handles a query that poses a violation of the constraint.
The database manager uses the violation-detection feature when it deals with
a constraint violation.

Modifying Data 4-25

Object Modes and Violation Detection

4-26

Consider an insert statement that violates a constraint. Depending on the
mode of the constraint, the database manager handles the insert statement as
follows:

s The constraint is enabled.

An insert operation that violates an enabled constraint is not inserted
into the target table. A constraint violation error is returned to the
user, and effects of the statement are rolled back.

= The constraint is disabled.

An insert operation that violates a disabled constraint is inserted in
the target table, and no error is returned to the user.

= The constraint is filtering.

An insert operation that violates a filtering constraint is not inserted
into the target table; instead it is inserted into the violations table.
The information about the integrity violation is created and stored in
a third table called the diagnostics table. The effects of the insert
operation are not rolled back. When you switch the mode of the
constraint to filtering, you can determine whether or not an error is
returned after a constraint is violated.

You can identify the reason for the failure when you analyze the
information in the violations and diagnostic tables. You can then take
corrective action or roll back the operation.

A unique index also has enabled, disabled, and filter modes. A unique index
in filter mode operates the same way as a constraint in filter mode. An index
that does not avoid duplicate entries, however, only has enabled and
disabled modes. When an index is disabled, its contents are not updated
following insert, delete, or update modifications to the base table of the
index. The optimizer cannot use a disabled index during a query because the
index contents are not current.

Unlike constraints and unique indexes, triggers have two modes. Formerly, a
trigger either existed and was fired at the appropriate time by the database
manager, or nothing happened because the trigger did not exist. Now you
can use object modes to disable an existing trigger. The database manager
ignores a trigger in disabled mode even though the catalog information of the
disabled trigger is kept up to date. The database manager does not ignore a
trigger in enabled mode. Triggers do not have a filtering mode since they do
not impose any kind of integrity specification on the database.

Informix Guide to SQL: Tutorial

Interrupted Modlifications

SQL Statements and Examples

For more detailed information, see the SET, START VIOLATIONS TABLE, and
STOP VIOLATIONS TABLE statements in the Informix Guide to SQL: Syntax.

Interrupted Modifications

Even if all the software is error-free, and all the hardware is utterly reliable,
the world outside the computer can interfere. Lightning might strike the
building, interrupting the electrical supply and stopping the computer in the
middle of your UPDATE statement. A more likely scenario occurs when a disk
fills up, or a user supplies incorrect data, causing your multirow insert to stop
early with an error. In any case, as you are modifying data, you must assume
that some unforeseen event can interrupt the modification.

When a modification is interrupted by an external cause, you cannot be sure
how much of the operation was completed. Even in a single-row operation,
you cannot know whether the data reached the disk or the indexes were
properly updated.

If multirow modifications are a problem, multistatement modifications are
worse. They are usually embedded in programs so you do not see the
individual SQL statements being executed. For example, the job of entering a
new order in the stores7 database requires you to perform the following
steps:

= Insertarow in the orders table. (This insert generates an order
number.)

= For each item ordered, insert a row in the items table.

Modifying Data 4-27

The Transaction

Two ways to program an order-entry application exist. One way is to make it
completely interactive so that the program inserts the first row immediately,
and then inserts each item as the user enters data. But this approach exposes
the operation to the possibility of many more unforeseen events: the
customer’s telephone disconnecting, the user pressing the wrong key, the
user’s terminal or computer losing power, and so on.

The right way to build an order-entry application is described in the
following list:

= Accept all the data interactively.

= Validate the data and expand it (by looking up codes in stock and
manufact, for example).

= Display the information on the screen for inspection.
= Wait for the operator to make a final commitment.
= Perform the insertions quickly.

Even with these steps, an unforeseen circumstance can halt the program after
it inserts the order but before it finishes inserting the items. If that happens,
the database is in an unpredictable condition: its data integrity is
compromised.

The Transaction

The solution to all these potential problems is called the transaction. A
transaction is a sequence of modifications that must be accomplished either
completely or not at all. The database server guarantees that operations
performed within the bounds of a transaction are either completely and
perfectly committed to disk, or the database is restored to the same state as
before the transaction started.

The transaction is not merely protection against unforeseen failures; it also
offers a program a way to escape when the program detects a logical error.

4-28 Informix Guide to SQL: Tutorial

Transaction Logging

Transaction Logging

The database server can keep a record of each change that it makes to the
database during a transaction. If something happens to cancel the trans-
action, the database server automatically uses the records to reverse the
changes. Many things can make a transaction fail. For example, the program
that issues the SQL statements can crash or be terminated. As soon as the
database server discovers that the transaction failed, which might be only
after the computer and the database server are restarted, it uses the records
from the transaction to return the database to the same state as before.

The process of keeping records of transactions is called transaction logging or
simply logging. The records of the transactions, called log records, are stored in
a portion of disk space separate from the database. In Universal Server, this
space is called the logical log (because the log records represent logical units
of the transactions).

Databases do not generate transaction records automatically. The database
administrator decides whether to make a database use transaction logging.
Without transaction logging, you cannot roll back transactions.

Logging and Cascading Deletes

Logging must be turned on in your database for cascading deletes to work
because, when you specify a cascading delete, the delete is first performed on
the primary key of the parent table. If the system crashes after the rows of the
primary key of the parent table are performed but before the rows of the
foreign key of the child table are deleted, referential integrity is violated. If
logging is turned off, even temporarily, deletes do not cascade. After logging
is turned back on, however, deletes can cascade again. Turn logging on with
the CREATE DATABASE statement for Universal Server.

Modifying Data 4-29

Specifying Transactions

Specifying Transactions

You can use two methods to specify the boundaries of transactions with SQL
statements. In the most common method, you specify the start of a multi-
statement transaction by executing the BEGIN WORK statement. In databases
that are created with the MODE ANSI option, no need exists to mark the
beginning of a transaction. One is always in effect; you indicate only the end
of each transaction.

In both methods, to specify the end of a successful transaction, execute the
COMMIT WORK statement. This statement tells the database server that you
reached the end of a series of statements that must succeed together. The
database server does whatever is necessary to make sure that all
modifications are properly completed and committed to disk.

A program can also cancel a transaction deliberately by executing the
ROLLBACK WORK statement. This statement asks the database server to
cancel the current transaction and undo any changes.

An order-entry application can use a transaction in the following ways when
it creates a new order:

= Accept all data interactively

= Validate and expand it

= Wait for the operator to make a final commitment

s Execute BEGIN WORK

= Insert rows in the orders and items tables, checking the error code
that the database server returns

= If noerrors occurred, execute COMMIT WORK; otherwise execute
ROLLBACK WORK

If any external failure prevents the transaction from being completed, the
partial transaction rolls back when the system restarts. In all cases, the
database is in a predictable state. Either the new order is completely entered,
or it is not entered at all.

4-30 Informix Guide to SQL: Tutorial

Backups and Logs

Backups and Logs

By using transactions, you can ensure that the database is always in a
consistent state and that your modifications are properly recorded on disk.
But the disk itself is not perfectly safe. It is vulnerable to mechanical failures
and to flood, fire, and earthquake. The only safeguard is to keep multiple
copies of the data. These redundant copies are called backup copies.

The transaction log (also called the logical log) complements the backup copy
of a database. Its contents are a history of all modifications that occurred since
the last time the database was backed up. If you ever need to restore the
database from the backup copy, you can use the transaction log to roll the
database forward to its most recent state.

Backing Up with INFORMIX-Universal Server

Universal Server contains elaborate features to support backups and logging.
They are described in the INFORMIX-Universal Server Archive and Backup
Guide.

If you want to make a personal backup copy of a single database or table that
is held by Universal Server, you can do it with the onunload utility. This
program copies a table or a database to tape. Its output consists of binary
images of the disk pages as they were stored in Universal Server. As a result,
the copy can be made very quickly, and the corresponding onload program
can restore the file very quickly. However, the data format is not meaningful
to any other programs.

If your Universal Server administrator is using ON-Archive to create backups
and back up logical logs, you might also be able to create your own backup
copies using ON-Archive. For more information, see your
INFORMIX-Universal Server Archive and Backup Guide.

Modifying Data 4-31

Concurrency and Locks

4-32

Concurrency and Locks

If your database is contained in a single-user workstation, without a network
connecting it to other computers, concurrency is unimportant. In all other
cases, you must allow for the possibility that, while your program is
modifying data, another program is also reading or modifying the same data.
Concurrency involves two or more independent uses of the same data at the
same time.

A high level of concurrency is crucial to good performance in a multiuser
database system. Unless controls exist on the use of data, however, concur-
rency can lead to a variety of negative effects. Programs could read obsolete
data; modifications could be lost even though it seems they were entered
successfully.

To prevent errors of this kind, the database server imposes a system of locks.
A lock is a claim, or reservation, that a program can place on a piece of data.
The database server guarantees that, as long as the data is locked, no other
program can modify it. When another program requests the data, the
database server either makes the program wait or turns it back with an error.

You use a combination of SQL statements to control the effect that locks have
on your data access: SET LOCK MODE and either SET ISOLATION or SET
TRANSACTION. You can understand the details of these statements after
reading a discussion on the use of cursors from within programs. Cursors are
covered in Chapter 5, “Programming with SQL,” and Chapter 6, “Modifying
Data Through SQL Programs.” For more information about locking and
concurrency, see Chapter 7, “Programming for a Multiuser Environment.”

Data Replication

Data replication, in the broadest sense of the term, is when database objects
have more than one representation at more than one distinct site. For
example, one way to replicate data, so that reports can be run against the data
without disturbing client applications that are using the original database, is
to copy the database to a database server on a different computer.

Informix Guide to SQL: Tutorial

INFORMIX-Universal Server Data Replication

The following list describes the advantages of data replication:

= Clients accessing replicated data locally, as opposed to remote data
that is not replicated, experience improved performance because
they do not have to use network services.

= Clients at all sites experience improved availability with replicated
data, because if local replicated data is unavailable, a copy of the data
is still available, albeit remotely.

These advantages do not come without a cost. Data replication obviously
requires more storage for replicated data than for unreplicated data, and
updating replicated data can take more processing time than updating a
single object.

Data replication can actually be implemented in the logic of client
applications, by explicitly specifying where data should be found or
updated. However, this way of achieving data replication is costly, error-
prone, and difficult to maintain. Instead, the concept of data replication is
often coupled with replication transparency. Replication transparency is
functionality built into a database server (instead of client applications) to
handle the details of locating and maintaining data replicas automatically.

INFORMIX-Universal Server Data Replication

Within the broad framework of data replication, Universal Server imple-
ments nearly transparent data replication of entire database servers. All the
data managed by one Universal Server is replicated and dynamically
updated on another Universal Server, usually at a remote site. Universal
Server data replication is sometimes called hot site backup, because it provides
a means of maintaining a backup copy of the entire database server that can
be used quickly in the event of a catastrophic failure.

Because Universal Server provides replication transparency, you generally
do not need to be concerned with or aware of data replication; the Universal
Server administrator takes care of it. However, if your organization decides
to use data replication, you should be aware that special connectivity consid-
erations exist for client applications in a data replication environment. These
considerations are described in the INFORMIX-Universal Server Adminis-
trator’s Guide.

Modifying Data 4-33

Summary

Summary

Database access is regulated by the privileges that the database owner grants
to you. The privileges that let you query data are often granted automatically,
but the ability to modify data is regulated by specific Insert, Delete, and
Update privileges that are granted on a table-by-table basis.

If data integrity constraints are imposed on the database, your ability to
modify data is restricted by those constraints. Your database- and table-level
privileges, along with any data constraints, control how and when you can
modify data.

You can delete one or more rows from a table with the DELETE statement. Its
WHERE clause selects the rows; use a SELECT statement with the same clause
to preview the deletes.

Rows are added to a table with the INSERT statement. You can insert a single
row that contains specified column values, or you can insert a block of rows
that a SELECT statement generates.

You use the UPDATE statement to modify the contents of existing rows. You
specify the new contents with expressions that can include subqueries, so
that you can use data that is based on other tables or the updated table itself.
The statement has two forms. In the first form, you specify new values
column by column. In the second form, a SELECT statement or a record
variable generates a set of new values.

You use the REFERENCES clause of the CREATE TABLE and ALTER TABLE
statements to create relationships between tables. The ON DELETE CASCADE
option of the REFERENCES clause allows you to delete rows from parent and
associated child tables with one DELETE statement.

You use transactions to prevent unforeseen interruptions in a modification
from leaving the database in an indeterminate state. When modifications are
performed within a transaction, they are rolled back after an error occurs. The
transaction log also extends the periodically made backup copy of the
database. If the database must be restored, it can be brought back to its most
recent state.

Data replication, which is transparent to users, offers another type of
protection from catastrophic failures.

4-34 Informix Guide to SQL: Tutorial

Programming with SQL

SQLinPrograms 5-4
SQLINSQLAPIso 5-4
StaticEmbeddingo 5-5
Dynamic Statements e e 5-5
Program Variables and Host Varlables e 5-6

Calling the Database Server. 5-8
The SQL Communications Area 5-8
The SQLCODE Field 5-9

EndofData. L. 5-9
NegativeCodes 510
The SQLERRD Array. 510
The SQLWARN Array . . . S 4
The SQLERRM Character Array bi13
The SQLSTATEVvValue 513

Retrieving SingleRows 514
Data Type Conversion 515
Working with Null Data. 516
Dealing withErrors b17

End of Data. 517
End of Data with Databases That Are Not ANSI Complrant . . 517
Serious Errors 517
Interpreting End of Data Wlth Aggregate Functlons 518
Using Default Values b18

Retrieving MultipleRows 519
DeclaringaCursor 520
OpeningaCursor. 520
Fetching Rows . . . T A

Detecting End of Data T A

Locating the INTO Clause. 522

Cursor InputModes 522

The Active SetofaCursor 523
Creating the ActiveSet e« .« .« 523

The Active Set for a Sequential Cursor -

The Active Set for a Scroll Cursor 525

The Active Setand Concurrency 525

Using a Cursor: A Parts Explosion 526
DynamicSQL. b28
Preparing a Statement P 24
Executing PreparedSQL. 531
Dynamic Host Variables. 532
Freeing Prepared Statements 532
Quick Execution 533
Embedding Data Definition Statements. 533
Embedding Grant and Revoke Privileges 534
Summary . 536

5-2 Informix Guide to SQL: Tutorial

n the examples in the previous chapters, SQL is treated as if it were an
interactive computer language; that is, as if you could type a SELECT
statement directly into the database server and see rows of data rolling back
to you.

Of course, that is not the case. Many layers of software stand between you
and the database server. The database server retains data in a binary form
that must be formatted before it can be displayed. It does not return a mass
of data at once; it returns one row at a time, as a program requests it.

You can access information in your database in several ways: through inter-
active access using DB-Access or the SQL Editor or through application
programs written with an SQL API.

Almost any program can contain SQL statements, execute them, and retrieve
data from a database server. This chapter explains how these activities are
performed and indicates how you can write programs that perform them.

This chapter is only an introduction to the concepts that are common to SQL
programming in any language. Before you can write a successful program in
a particular programming language, you must first become fluent in that
language. Then, because the details of the process are slightly different in
every language, you must become familiar with the manual for the Informix
SQL API specific to that language.

Programming with SQL 5-3

SQL in Programs

SQL in Programs

You can write a program in any of several languages and mix SQL statements
in among the other statements of the program, just as if they were ordinary
statements of that programming language. These SQL statements are
embedded in the program, and the program contains embedded SQL, which
Informix often abbreviates as ESQL.

SQL in SQL APIs

ESQL products are Informix SQL APIs. Informix produces SQL APIs for the
following programming languages:

s C
= COBOL

All SQL API products work in a similar way, as Figure 5-1 shows. You write a
source program in which you treat SQL statements as executable code. Your
source program is processed by an embedded SQL preprocessor, a program
that locates the embedded SQL statements and converts them into a series of
procedure calls and special data structures.

Figure 5-1
Overview of Processing a Program with Embedded SQL Statements

wg/»%b»

ESQL source ESQL Source program with Language Executable
program preprocessor procedure calls compiler program

5-4 Informix Guide to SQL: Tutorial

Static Embedding

The converted source program then passes through the programming
language compiler. The compiler output becomes an executable program
after it is linked with a static or dynamic library of SQL API procedures. When
the program runs, the SQL API library procedures are called; they set up
communication with the database server to carry out the SQL operations.

If you link your executable program to a threading library package, such as
DCE (Distributed Computing Environment package), you can develop
ESQL/C multithreaded applications. A multithreaded application can have
many threads of control. It separates a process into multiple execution
threads, each of which runs independently. The major advantage of a multi-
threaded ESQL/C application is that each thread can have many active
connections to a database server simultaneously. While a nonthreaded
ESQL/C application can establish many connections to one or more
databases, it can have only one connection active at a time. A multithreaded
ESQL/C application can have one active connection per thread and many
threads per application.

For more information on multithreaded applications, see the
INFORMIX-ESQL/C Programmer’s Manual.

Static Embedding

You can introduce SQL statements into a program in two ways. The simpler
and more common way is by static embedding, which means that the SQL
statements are written as part of the code. The statements are static because
they are a fixed part of the source text.

Dynamic Statements

Some applications require the ability to compose SQL statements in response
to user input. For example, a program might have to select different columns
or apply different criteria to rows, depending on what the user wants.

With dynamic SQL, the program composes an SQL statement as a string of
characters in memory and passes it to the database server to be executed.
Dynamic statements are not part of the code; they are constructed in memory
during execution.

Programming with SQL 5-5

Program Variables and Host Variables

5-6

Program Variables and Host Variables

Application programs can use program variables within SQL statements. In
SPL, you put the program variable in the SQL statement as syntax allows. For
example, a DELETE statement can use a program variable in its WHERE
clause.

The following code example shows a program variable in SPL:

CREATE PROCEDURE delete_item (drop_number INT)

DELETE FROM items WHERE order_num = drop_number

In applications that use embedded SQL statements, the SQL statements can
refer to the contents of program variables. A program variable that is named
in an embedded SQL statement is called a host variable because the SQL
statement is thought of as being a “guest” in the program.

The following example is a DELETE statement as it might appear when
embedded in a COBOL source program:

EXEC SQL
DELETE FROM items
WHERE order_num = :o0-num
END-EXEC.

The first and last lines mark off embedded SQL from the normal COBOL
statements. Between them, you see an ordinary DELETE statement, as
described in Chapter 4, “Modifying Data.” When this part of the COBOL
program is executed, a row of the items table is deleted; multiple rows can
also be deleted.

The statement contains one new feature. It compares the order_num column
to an item written as :0-num, which is the name of a host variable.

Each SQL API product provides a means of delimiting the names of host
variables when they appear in the context of an SQL statement. In COBOL,
host-variable names are designated with an initial colon. The example
statement asks the database server to delete rows in which the order number
equals the current contents of the host variable named :0-num. This numeric
variable has been declared and assigned a value earlier in the program.

Informix Guide to SQL: Tutorial

Program Variables and Host Variables

The same DELETE statement embedded in an INFORMIX-ESQL/C program
looks like the following example:

EXEC SQL DELETE FROM items
WHERE order_num = :onum;

In INFORMIX-ESQL/C, an SQL statement can be introduced with either a
leading dollar sign ($) or the words EXEC SQL.

These differences of syntax are trivial; the essential points in all languages (an
SQL API or SPL) are described in the following list:

= You can embed SQL statements in a source program as if they were
executable statements of the host language.

= You can use program variables in SQL expressions the way literal
values are used.

If you have programming experience, you can immediately see the
possibilities. In the example, the order number to be deleted is passed in the
variable onum. That value comes from any source that a program can use. It
can be read from afile, the program can prompt a user to enter it, or it can be
read from the database. The DELETE statement itself can be part of a
subroutine (in which case onum can be a parameter of the subroutine); the
subroutine can be called once or repetitively.

In short, when you embed SQL statements in a program, you can apply all the
power of the host language to them. You can hide the SQL statements under
a multitude of interfaces, and you can embellish the SQL functions in a
multitude of ways.

Programming with SQL 5-7

Calling the Database Server

5-8

Calling the Database Server

Executing an SQL statement is essentially calling the database server as a
subroutine. Information must pass from the program to the database server
and information must be returned.

Some of this communication is done through host variables. You can think of
the host variables named in an SQL statement as the parameters of the
procedure call to the database server. In the examples on page 5-6, a host
variable acts as a parameter of the WHERE clause. Host variables receive data
that the database server returns, as described in “Retrieving Multiple Rows”
on page 5-19.

The SQL Communications Area

The database server always returns a result code, and possibly other
information about the effect of an operation, in a data structure known as the
SQL Communications Area (SQLCA). If the database server executes an SQL
statement in a stored procedure, the SQLCA of the calling application
contains the values triggered by the SQL statement in the procedure.

The principal fields of the SQLCA are discussed in the following sections. The
syntax that you use to describe a data structure such as the SQLCA, as well as
the syntax that you use to refer to a field in it, differs among programming
languages. For details, see your SQL API manual.

You can also use the SQLSTATE variable of the GET DIAGNOSTICS statement
to detect, handle, and diagnose errors. See “The SQLSTATE Value” on
page 5-13.

In particular, the subscript by which you name one element of the SQLERRD
and SQLWARN arrays differs. Array elements are numbered starting with
zero in INFORMIX-ESQL/C, but starting with one in the other languages. In
this discussion, the fields are named using specific words such as third, and
you must translate into the syntax of your programming language.

Informix Guide to SQL: Tutorial

The SQLCODE Field

The SQLCODE Field

The SQLCODE field is the primary return code of the database server. After
every SQL statement, SQLCODE is set to an integer value as Figure 5-2 shows.
When that value is zero, the statement is performed without error. In
particular, when a statement is supposed to return data into a host variable,
a code of zero means that the data has been returned and can be used. Any
nonzero code means the opposite. No useful data was returned to host
variables.

Figure 5-2
Values of SQLCODE

Return value

Interpretation

value <0

Specifies an error code.

value =0

Indicates success.

0 < value < 100

After a DESCRIBE statement, an integer value that represents the type of SQL
statement that is described.

100

After a successful query that returns no rows, indicates the NOT FOUND
condition. NOT FOUND can also occur in an ANSI-compliant database after an
INSERT INTO/SELECT, UPDATE, DELETE, or SELECT... INTO TEMP statement
fails to access any rows.

End of Data

The database server sets SQLCODE to 100 when the statement is performed
correctly but no rows are found. This condition can occur in two situations.

The first situation involves a query that uses a cursor. (Queries that use
cursors are described under “Retrieving Multiple Rows” on page 5-19.) In
these queries, the FETCH statement retrieves each value from the active set
into memory. After the last row is retrieved, a subsequent FETCH statement
cannot return any data. When this condition occurs, the database server sets
SQLCODE to 100, which indicates end of data, no rows found.

Programming with SQL 5-9

The SQLERRD Array

5-10

The second situation involves a query that does not use a cursor. In this case,
the database server sets SQLCODE to 100 when no rows satisfy the query
condition. In ANSI-compliant databases, SELECT, DELETE, UPDATE, and
INSERT statements all set SQLCODE to 100 if no rows are returned. In
databases that are not ANSI compliant, only a SELECT statement that returns
no rows causes SQLCODE to be set to 100.

Negative Codes

When something unexpected goes wrong during a statement, the database
server returns a negative number in SQLCODE to explain the problem. The
meanings of these codes are documented in the Informix Error Messages
manual and in the on-line error message file.

The SQLERRD Array

Some error codes that can be reported in SQLCODE reflect general problems.
The database server can set a more detailed code in the second field of
SQLERRD (referred to as the ISAM error) that reveals the error encountered by
the database server 170 routines or by the operating system.

The integers in the SQLERRD array are set to different values following
different statements. The first and fourth elements of the array are used only
in INFORMIX-ESQL/C and INFORMIX-ESQL/COBOL. The fields are used as
Figure 5-3 on page 5-11 shows.

These additional details can be very useful. For example, you can use the
value in the third field to report how many rows were deleted or updated.
When your program prepares an SQL statement that is entered by the user,
and an error is found, the value in the fifth field enables you to display to the
user the exact point of error. (DB-Access and the SQL Editor use this feature to
position the cursor when you ask to modify a statement after an error.)

Informix Guide to SQL: Tutorial

The SQLERRD Array

Figure 5-3
Fields of SQLERRD

Field

Interpretation

first

After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or DELETE
statement, or after a select cursor is opened, this field contains the estimated number of
rows affected

second

When SQLCODE contains an error code, this field contains either zero or an additional
error code, called the ISAM error code, that explains the cause of the main error.

After a successful insert operation of a single row, this field contains the value of any
SERIAL value generated for that row

third

After a successful multirow insert, update, or delete operation, this field contains the
number of rows that were processed.

After a multirow insert, update, or delete operation that ends with an error, this field
contains the number of rows that were successfully processed before the error was
detected.

fourth

After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or DELETE
statement, or after a select cursor has been opened, this field contains the estimated
weighted sum of disk accesses and total rows processed.

fifth

After a syntax error in a PREPARE, EXECUTE IMMEDIATE, DECLARE, or static SQL
statement, this field contains the offset in the statement text where the error was detected.

sixth

After a successful fetch of a selected row, or a successful insert, update, or delete
operation, this field contains the rowid (physical address) of the last row that was
processed. Whether this rowid value corresponds to a row that the database server
returns to the user depends on how the database server processes a query, particularly
for SELECT statements.

Programming with SQL 5-11

The SQLWARN Array

The SQLWARN Array

statement just executed.

The eight character fields in the SQLWARN array are set to either a blank or to
W to indicate a variety of special conditions. Their meanings depend on the

A set of warning flags appears when a database opens, that is, following a
CONNECT, DATABASE, or CREATE DATABASE statement. These flags tell you
some characteristics of the database as a whole.

A second set of flags appears following any other statement. These flags
reflect unusual events that occur during the statement, which are usually not
serious enough to be reflected by SQLCODE.

Figure 5-4
Fields of SQLWARN
Field When Opening or Connecting to a Database: All Other Operations:
first Set to W when any other warning field is set to W. If blank, others need not be checked.
second Set to W when the database how open Set to W if a column value is truncated when it
uses a transaction log. is fetched into a host variable using a FETCH
or a SELECT...INTO statement. On a REVOKE
ALL statement, set to W when not all seven
table-level privileges are revoked.
third Set to W when the database now openis Setto W when a FETCH or SELECT statement
ANSI compliant. returns an aggregate function (SUM, AVG,
MIN, MAX) value that is null.
fourth Set to W when the database server is On a SELECT...INTO, FETCH...INTO, or
INFORMIX-Universal Server. EXECUTE...INTO statement, set to W when the
number of items in the select list is not the
same as the number of host variables given in
the INTO clause to receive them. On a GRANT
ALL statement, set to W when not all seven
table-level privileges are granted.
fifth Set to W when the database server stores Set to W after a DESCRIBE statement if the
the FLOAT data type in DECIMAL form prepared statement contains a DELETE
(done when the host system lacks statement or an UPDATE statement without a
support for FLOAT types). WHERE clause.
(10of2)
5-12 Informix Guide to SQL: Tutorial

The SQLERRM Character Array

Field When Opening or Connecting to a Database: All Other Operations:

sixth Set to W when the database server stores Set to W following execution of a statement
the FLOAT data type in DECIMAL form that does not use ANSI-standard SQL syntax
(done when the host system lacks (provided the DBANSIWARN environment
support for FLOAT types). variable is set).

seventh Set to W when the application is Set to W when a data fragment (a dbspace) has
connected to a database server that is been skipped during query processing (when
running in secondary mode. The the DATASKIP feature is on).
database server is a secondary serverin a
data-replication pair (that is, the server is
available only for read operations).

eighth Setto W when client DB_LOCALE doesnot Reserved.

match the database locale. For more
information, see the Guide to GLS
Functionality.

(2 of 2)

The SQLERRM Character Array

The SQLERRM array is a 71-character array that contains the variable, such as
a table name, that is placed in the error message. For some networked appli-
cations, it contains an error message generated by networking software.

The SQLSTATE Value

Certain Informix products, such as INFORMIX-ESQL/COBOL and
INFORMIX-ESQL/C, support the SQLSTATE value in compliance with X/Open
and ANSI SQL standards. The GET DIAGNOSTICS statement reads the
SQLSTATE value in order to diagnose errors after you run an SQL statement.
The database server returns a result code in a five-character string that is
stored in a variable called SQLSTATE. The SQLSTATE error code, or value,
provides the following information about the most recently executed SQL
statement:

= If the statement was successful
» If the statement was successful but generated warnings

Programming with SQL 5-13

Retrieving Single Rows

5-14

» If the statement was successful but generated no data
» If the statement failed

For more information on GET DIAGNOSTICS, the SQLSTATE variable, and the
meanings of the SQLSTATE return codes, see the GET DIAGNOSTICS statement
in Chapter 1 of the Informix Guide to SQL: Syntax. If your Informix product
supports GET DIAGNOSTICS and SQLSTATE, Informix recommends that you
use them as the primary structure to detect, handle, and diagnose errors.
Using SQLSTATE allows you to detect multiple errors, and it is ANSI
compliant.

Retrieving Single Rows

You can use embedded SELECT statements to retrieve single rows from the
database into host variables. When a SELECT statement returns more than
one row of data, however, a program must use a more complicated method
to fetch the rows one at a time. Multiple-row select operations are discussed
in “Retrieving Multiple Rows” on page 5-19.

To retrieve a single row of data, simply embed a SELECT statement in your
program. The following example shows how the embedded SELECT
statement can be written using INFORMIX-ESQL/C:

EXEC SQL select avg (total_price)
into :avg_price
from items
where order_num in
(select order_num from orders
where order_date < date('6/1/94'));

The INTO clause is the only detail that distinguishes this statement from any
example in Chapter 2, “Composing Simple SELECT Statements,” or
Chapter 3, “Composing Advanced SELECT Statements.” This clause
specifies the host variables that are to receive the data that is produced.

When the program executes an embedded SELECT statement, the database
server performs the query. The example statement selects an aggregate value,
so that it produces exactly one row of data. The row has only a single column,
and its value is deposited in the host variable named avg_price. Subsequent
lines of the program can use that variable.

Informix Guide to SQL: Tutorial

Data Type Conversion

You can use statements of this kind to retrieve single rows of data into host
variables. The single row can have as many columns as desired. If a query
produces more than one row of data, the database server cannot return any
data. It returns an error code instead.

You should list as many host variables in the INTO clause as there are items
in the select list. If, by accident, these lists are of different lengths, the
database server returns as many values as it can and sets the warning flag in
the fourth field of SQLWARN.

Data Type Conversion

The following example retrieves the average of a DECIMAL column, which is
itself a DECIMAL value. However, the host variable into which the average of
the DECIMAL column is placed is not required to have that data type.

EXEC SQL select avg (total_price) into :avg_price
from items;

The declaration of the receiving variable avg_price in the previous example
of ESQL/C code is not shown. It could be any one of the following definitions:

int avg_price;

double avg_price;

char avg_pricel[l6];

dec_t avg_price; /* typedef of decimal number structure */

The data type of each host variable used in a statement is noted and passed
to the database server along with the statement. The database server does its
best to convert column data into the form used by the receiving variables.
Almost any conversion is allowed, although some conversions cause a loss of
precision. The results of the preceding example differ, depending on the data
type of the receiving host variable, as described in the following list:

FLOAT The database server converts the decimal result to FLOAT,
possibly truncating some fractional digits.

If the magnitude of a decimal exceeds the maximum
magnitude of the FLOAT format, an error is returned.

Programming with SQL 5-15

Working with Null Data

5-16

INTEGER The database server converts the result to INTEGER, truncating
fractional digits if necessary.

If the integer part of the converted number does not fit the
receiving variable, an error occurs.

CHARACTER The database server converts the decimal value to a
CHARACTER string.

If the string is too long for the receiving variable, it is
truncated. The second field of SQLWARN is set to W, and the
value in the SQLSTATE variable is 01004.

Working with Null Data

What if the program retrieves a null value? Null values can be stored in the
database, but the data types supported by programming languages do not
recognize a null state. A program must have some way of recognizing a null
item to avoid processing it as data.

Indicator variables meet this need in SQL APIs. An indicator variable is an
additional variable that is associated with a host variable that might receive
a null item. When the database server puts data in the main variable, it also
puts a special value in the indicator variable to show whether the data is null.
In the following INFORMIX-ESQL/C example, a single row is selected, and a
single value is retrieved into the host variable op_date:

EXEC SQL select paid_date
into :op_date:op_d_ind
from orders
where order_num = $the_order;
if (op_d_ind < 0) /* data was null */
rstrdate ('01/01/1900', :op_date);

Because the value might be null, an indicator variable named op_d_ind is
associated with the host variable. (It must be declared as a short integer
elsewhere in the program.)

Following execution of the SELECT statement, the program tests the indicator
variable for a negative value. A negative number (usually - 1) means that the
value retrieved into the main variable is null. If that is the case, this program
uses an ESQL/C library function to assign a default value to the host variable.
(The function rstrdate is part of the INFORMIX-ESQL/C product.)

Informix Guide to SQL: Tutorial

Dealing with Errors

The syntax that you use to associate an indicator variable differs with the
language you are using, but the principle is the same in all languages.

Dealing with Errors

Although the database server handles conversion between data types
automatically, several things can still go wrong with a SELECT statement. In
SQL programming, as in any kind of programming, you must anticipate
errors and provide for them at every point.

End of Data

One common event is that no rows satisfy a query. This event is signalled by
an SQLSTATE code of 02000 and by a code of 100 in SQLCODE following a
SELECT statement. This code indicates an error or a normal event, depending
entirely on your application. If you are sure a row or rows should satisfy the
query (for example, if you are reading a row using a key value that you just
read from a row of another table), then the end-of-data code represents a
serious failure in the logic of the program. On the other hand, if you select a
row based on a key that is supplied by a user or by some other source that is
less reliable than a program, a lack of data can be a normal event.

End of Data with Databases That Are Not ANSI Compliant

If your database is not ANSI compliant, the end-of-data return code, 100, is
set in SQLCODE only following SELECT statements. In addition, the SQLSTATE
value is set to 02000. (Other statements, such as INSERT, UPDATE, and
DELETE, set the third element of SQLERRD to show how many rows they
affected,; this topic is covered in Chapter 6, “Modifying Data Through SQL
Programs.”)

Serious Errors

Errors that set SQLCODE to a negative value or that set SQLSTATE to a value
that begins with anything other than 00, 01, or 02 are usually serious.
Programs that you have developed and that are in production should rarely
report these errors. Nevertheless, it is difficult to anticipate every problematic
situation, so your program must be able to deal with these errors.

Programming with SQL 5-17

Dealing with Errors

5-18

For example, a query can return error -206, which means table name is
not in the database. This condition occurs if someone dropped the table
after the program was written, or if the program opened the wrong database
through some error of logic or mistake in input.

Interpreting End of Data with Aggregate Functions

A SELECT statement that uses an aggregate function such as SUM, MIN, or
AVG always succeeds in returning at least one row of data, even when no
rows satisfy the WHERE clause. An aggregate value based on an empty set of
rows is null, but it exists nonetheless.

However, an aggregate value is also null if it is based on one or more rows
that all contain null values. If you must be able to detect the difference
between an aggregate value that is based on no rows and one that is based on
some rows that are all null, you must include a COUNT function in the
statement and an indicator variable on the aggregate value. You can then
work out the following cases.

Count Value Indicator Case
0 -1 zero rows selected
>0 -1 some rows selected; all were null
>0 0 some non-null rows selected

Using Default Values

You can handle these inevitable errors in many ways. In some applications,
more lines of code are used to handle errors than to execute functionality. In
the examples in this section, however, one of the simplest solutions, the
default value, should work, as the following example shows:

avg_price = 0; /* set default for errors */
EXEC SQL select avg (total_price)
into :avg_price:null_flag
from items;
if (null_flag < 0) /* probably no rows */
avg_price = 0; /* set default for 0 rows */

Informix Guide to SQL: Tutorial

Retrieving Multiple Rows

The previous example deals with the following considerations:

If the query selects some non-null rows, the correct value is returned
and used. This result is the expected and most frequent one.

If the query selects no rows, or in the much less likely event that it
selects only rows that have null values in the total_price column (a
column that should never be null), the indicator variable is set, and
the default value is assigned.

If any serious error occurs, the host variable is left unchanged; it
contains the default value initially set. At this point in the program,
the programmer sees no need to trap such errors and report them.

Retrieving Multiple Rows

When any chance exists that a query could return more than one row, the
program must execute the query differently. Multirow queries are handled in
two stages. First, the program starts the query. (No data is returned
immediately.) Then the program requests the rows of data one at a time.

These operations are performed using a special data object called a cursor. A
cursor is a data structure that represents the current state of a query. The
following list shows the general sequence of program operations:

1.

The program declares the cursor and its associated SELECT statement,
which merely allocates storage to hold the cursor.

The program opens the cursor, which starts the execution of the
associated SELECT statement and detects any errors in it.

The program fetches a row of data into host variables and processes it.
The program closes the cursor after the last row is fetched.

When the cursor is no longer needed, the program frees the cursor to
deallocate the resources it uses.

These operations are performed with SQL statements named DECLARE,
OPEN, FETCH, CLOSE, and FREE.

Programming with SQL 5-19

Declaring a Cursor

5-20

Declaring a Cursor

You use the DECLARE statement to declare a cursor. This statement gives the
cursor a name, specifies its use, and associates it with a statement. The
following example is written in INFORMIX-ESQL/C:

EXEC SQL DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num
INTO o_num, i_num, s_num
FROM items
FOR READ ONLY;

The declaration gives the cursor a name (the_item in this case) and associates
it with a SELECT statement. (Chapter 6, “Modifying Data Through SQL
Programs,” discusses how a cursor can also be associated with an INSERT
statement.)

The SELECT statement in this example contains an INTO clause. The INTO
clause specifies which variables receive data. You can also specify which
variables receive data by using the FETCH statement as discussed in
“Locating the INTO Clause” on page 5-22.

The DECLARE statement is not an active statement; it merely establishes the
features of the cursor and allocates storage for it. You can use the cursor
declared in the preceding example to read once through the items table.
Cursors can be declared to read backward and forward (see “Cursor Input
Modes” on page 5-22). This cursor, because it lacks a FOR UPDATE clause and
because it is designated FOR READ ONLY, is used only to read data, not to
modify it. (The use of cursors to modify data is covered in Chapter 6,
“Modifying Data Through SQL Programs.”)

Opening a Cursor

The program opens the cursor when it is ready to use it. The OPEN statement
activates the cursor. It passes the associated SELECT statement to the database
server, which begins the search for matching rows. The database server
processes the query to the point of locating or constructing the first row of
output. It does not actually return that row of data, but it does set a return
code in SQLSTATE and SQLCODE for SQL APIs. The following example shows
the OPEN statement:

EXEC SQL OPEN the_item;

Informix Guide to SQL: Tutorial

Fetching Rows

Because the database server is seeing the query for the first time, many errors
are detected. After the program opens the cursor, it should test SQLSTATE or
SQLCODE. If the SQLSTATE value is greater than 02000, or the SQLCODE
contains a negative number, the cursor is not usable. An error might be
present in the SELECT statement, or some other problem might prevent the
database server from executing the statement.

If SQLSTATE is equal to 00000, or SQLCODE contains a zero, the SELECT
statement is syntactically valid, and the cursor is ready for use. At this point,
however, the program does not know if the cursor can produce any rows.

Fetching Rows

The program uses the FETCH statement to retrieve each row of output. This
statement names a cursor and can also name the host variables to receive the
data. The following example shows the completed INFORMIX-ESQL/C code:

EXEC SQL DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num
INTO :o_num, :i_num, :s_num
FROM items;
EXEC SQL OPEN the_item;
while(SQLCODE == 0)
{
EXEC SQL FETCH the_item;
if(SQLCODE == 0)
printf("%d, %d, %d", o_num, i_num, s_num);

Detecting End of Data

In the previous example, the while condition prevents execution of the loop
in case the OPEN statement returns an error. The same condition terminates
the loop when SQLCODE is set to 100 to signal the end of data. However, the
loop contains a second test of SQLCODE. This test is necessary because, if the
SELECT statement is valid yet finds no matching rows, the OPEN statement
returns a zero, but the first fetch returns 100, end of data, and no data. The
following example shows another way to write the same loop:

EXEC SQL DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num
INTO :o_num, :i_num, :s_num
FROM items;

EXEC SQL OPEN the_item;

if(SQLCODE == 0)

Programming with SQL 5-21

Cursor Input Modes

5-22

EXEC SQL FETCH the_item; /* fetch 1st row
while(SQLCODE == 0)
{

printf("%d, %d, %d", o_num, i_num, s_num);

EXEC SQL FETCH the_item;
}

In this version, the case of zero returned rows is handled early, so no second
test of SQLCODE exists within the loop. These versions have no measurable

difference in performance because the time cost of a test of SQLCODE is a tiny
fraction of the cost of a fetch.

Locating the INTO Clause

The INTO clause names the host variables that are to receive the data returned
by the database server. The INTO clause must appear in either the SELECT or
the FETCH statement. However it cannot appear in both. The following
example specifies host variables in the FETCH statement:

EXEC SQL DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num
FROM items;
EXEC SQL OPEN the_item;
while(SQLCODE == 0)
{
EXEC SQL FETCH the_item INTO :o_num, :i_num, :S_num;
if(SQLCODE == 0)
printf("%d, %d, %d", o_num, i_num, s_num);
}

This form lets you fetch different rows into different locations. For example,
you could use this form to fetch successive rows into successive elements of
an array.

Cursor Input Modes

For purposes of input, a cursor operates in one of two modes, sequential or
scrolling. A sequential cursor can fetch only the next row in sequence so a
sequential cursor can read through a table only once each time the sequential
cursor is opened. A scroll cursor can fetch the next row or any prior row, so
it can read rows multiple times. The following example shows a sequential
cursor declared in INFORMIX-ESQL/C:

EXEC SQL declare pcurs cursor for
select customer_num, Tname, city
from customer;

Informix Guide to SQL: Tutorial

The Active Set of a Cursor

After the cursor is opened, it can be used only with a sequential fetch that
retrieves the next row of data, as the following example shows.

EXEC SQL fetch p_curs into :cnum, :clname, :ccity;

Each sequential fetch returns a new row.

A scroll cursor is declared with the keywords SCROLL CURSOR, as the
following example from INFORMIX-ESQL/C shows:

EXEC SQL DECLARE s_curs SCROLL CURSOR FOR
SELECT order_num, order_date FROM orders
WHERE customer_num > 104

Use the scroll cursor with a variety of fetch options. The ABSOLUTE option
specifies the rank number of the row to fetch.

EXEC SQL FETCH ABSOLUTE :numrow s_curs
INTO :nordr, :nodat

This statement fetches the row whose position is given in the host variable
numrow. You can also fetch the current row again or fetch the first row and
then scan through the entire list again. However, these features have a price,
as the next section describes.

The Active Set of a Cursor

Once a cursor is opened, it stands for some selection of rows. The set of all
rows that the query produces is called the active set of the cursor. It is easy to
think of the active set as a well-defined collection of rows and to think of the
cursor as pointing to one row of the collection. This situation is true as long
as no other programs are modifying the same data concurrently.

Creating the Active Set

When a cursor is opened, the database server does whatever is necessary to
locate the first row of selected data. Depending on how the query is phrased,
this action can be very easy, or it can require a great deal of work and time.
Consider the following declaration of a cursor:

EXEC SQL DECLARE easy CURSOR FOR

SELECT fname, lname FROM customer
WHERE state = "NJ'

Programming with SQL 5-23

The Active Set of a Cursor

5-24

Because this cursor queries only a single table in a simple way, the database
server quickly determines whether any rows satisfy the query and identifies
the first one. The first row is the only row the cursor finds at this time. The
rest of the rows in the active set remain unknown. As a contrast, consider the
following declaration of a cursor:

EXEC SQL DECLARE hard SCROLL CURSOR FOR
SELECT C.customer_num, O.order_num, sum (items.total _price)
FROM customer C, orders 0, items I
WHERE C.customer_num = 0.customer_num
AND 0.order_num = I.order_num
AND O.paid_date is null
GROUP BY C.customer_num, O0.order_num

The active set of this cursor is generated by joining three tables and grouping
the output rows. The optimizer might be able to use indexes to produce the
rows in the correct order, but generally the use of ORDER BY or GROUP BY
clauses requires the database server to generate all the rows, copy them to a
temporary table, and sort the table, before it can know which row to present
first.

In cases where the active set is entirely generated and saved in a temporary
table, the database server can take quite some time to open the cursor.
Afterward, it can tell the program exactly how many rows the active set
contains. This information is not made available, however. One reason is that
you can never be sure which method the optimizer uses. If the optimizer can
avoid sorts and temporary tables, it does; but very small changes in the
query, in the sizes of the tables, or in the available indexes can change its
methods.

The Active Set for a Sequential Cursor

The database server attempts to use as few resources as possible in
maintaining the active set of a cursor. If it can do so, the database server never
retains more than the single row that is fetched next. It can do this for most
sequential cursors. On each fetch, it returns the contents of the current row
and locates the next one.

Informix Guide to SQL: Tutorial

The Active Set of a Cursor

The Active Set for a Scroll Cursor

All the rows in the active set for a scroll cursor must be retained until the
cursor closes because the database server cannot be sure which row the
program will ask for next.

Most frequently, the database server implements the active set of a scroll
cursor as a temporary table. The database server might not fill this table
immediately, however (unless it created a temporary table to process the
query). Usually it creates the temporary table when the cursor is opened.
Then, the first time a row is fetched, the database server copies it into the
temporary table and returns it to the program. When a row is fetched for a
second time, it can be taken from the temporary table. This scheme uses the
fewest resources in the event that the program abandons the query before it
fetches all the rows. Rows that are never fetched are not created or saved.

The Active Set and Concurrency

When only one program is using a database, the members of the active set
cannot change. This situation describes most personal computers, and it is
the easiest situation to think about. But some programs must be designed for
use in a multiprogramming system, where two, three, or dozens of different
programs can work on the same tables simultaneously.

When other programs can update the tables while your cursor is open, the
idea of the active set becomes less useful. Your program can see only one row
of data at a time, but all other rows in the table can be changing.

In the case of a simple query, when the database server holds only one row of
the active set, any other row can change. The instant after your program
fetches a row, another program can delete the same row or update it so that
if it is examined again, it is no longer part of the active set.

When the active set, or part of it, is saved in a temporary table, stale data can
present a problem. That is, the rows in the actual tables, from which the
active-set rows are derived, can change. If they do, some of the active-set
rows no longer reflect the current table contents.

Programming with SQL 5-25

Using a Cursor: A Parts Explosion

These ideas seems unsettling at first, but as long as your program only reads
the data, stale data does not exist, or rather, all data is equally stale. The active
set is a snapshot of the data as it is at one moment in time. A row is different
the next day; it does not matter if it is also different in the next millisecond.
To put it another way, no practical difference exists between changes that
occur while the program is running and changes that are saved and applied
the instant that the program terminates.

The only time that stale data can cause a problem is when the program
intends to use the input data to modify the same database; for example, when
a banking application must read an account balance, change it, and write it
back. Chapter 6, “Modifying Data Through SQL Programs,” discusses
programs that modify data.

Using a Cursor: A Parts Explosion

When you use a cursor, supplemented by program logic, you can solve
problems that plain SQL cannot solve. One of these is the parts-explosion
problem, sometimes called Bill of Materials processing. At the heart of this
problem is a recursive relationship among objects; one object contains other
objects, which contain yet others.

The problem is usually stated in terms of a manufacturing inventory. A
company makes a variety of parts, for example. Some parts are discrete, but
some are assemblages of other parts.

These relationships are documented in a single table, which might be called
contains. The column contains.parent holds the part numbers of parts that
are assemblages. The column contains.child has the part number of a part
that is acomponent of the parent. If part #123400 is an assembly of nine parts,
nine rows exist with 123400 in the first column and other part numbers in the
second. Figure 5-5 shows one of the rows that describe part #123400.

Figure 5-5
CONTAINS Parts-Explosion
Problem
PARENT CHILD
FK NN FK NN
23400 432100
432100 765899

5-26 Informix Guide to SQL: Tutorial

Using a Cursor: A Parts Explosion

Here is the parts-explosion problem: given a part number, produce a list of
all parts that are components of that part. The following is a sketch of one
solution, as implemented in INFORMIX-ESQL/C:

int part_1ist[200];

boom(top_part)

int top_part;

{
long this_part, child_part;
int next_to_do = 0, next_free = 1;
part_list[next_to_do] = top_part;

EXEC SQL DECLARE part_scan CURSOR FOR
SELECT child INTO child_part FROM contains
WHERE parent = this_part;
while(next_to_do < next_free)
{
this_part = part_Tlistlnext_to_do];
EXEC SQL OPEN part_scan;
while(SQLCODE == 0)
{
EXEC SQL FETCH part_scan;
if(SQLCODE == 0)
{
part_list[next_freel = child_part;
next _free += 1;
}
}
EXEC SQL CLOSE part_scan;
next_to_do += 1;
}
return (next_free

1);
}

Technically speaking, each row of the contains table is the head node of a
directed acyclic graph, or tree. The function performs a breadth-first search of
the tree whose root is the part number passed as its parameter. The function
uses a cursor named part_scan to return all the rows with a particular value
in the parent column. The innermost while loop opens the part_scan cursor,
fetches each row in the selection set, and closes the cursor when the part
number of each component has been retrieved.

This function addresses the heart of the parts-explosion problem, but the
function is not a complete solution. For example, it does not allow for compo-
nents that appear at more than one level in the tree. Furthermore, a practical
contains table would also have a column count, giving the count of child
parts used in each parent. A program that returns a total count of each
component part is much more complicated.

Programming with SQL 5-27

Dynamic SQL

The iterative approach described earlier is not the only way to approach the
parts-explosion problem. If the number of generations has a fixed limit, you
can solve the problem with a single SELECT statement using nested, outer
self-joins.

If up to four generations of parts can be contained within one top-level part,
the following SELECT statement returns all of them:

SELECT a.parent, a.child, b.child, c.child, d.child
FROM contains a
OUTER (contains b,
OUTER (contains c, outer contains d))
WHERE a.parent = top_part_number

AND a.child = b.parent
AND b.child = c.parent
AND c.child = d.parent

This SELECT statement returns one row for each line of descent rooted in the
part given as top_part_number. Null values are returned for levels that do

not exist. (Use indicator variables to detect them.) To extend this solution to
more levels, select additional nested outer joins of the contains table.You can
also revise this solution to return counts of the number of parts at each level.

Dynamic SQL

Although static SQL is extremely useful, it requires that you know the exact
content of every SQL statement at the time you write the program. For
example, you must state exactly which columns are tested in any WHERE
clause and exactly which columns are named in any select list.

No problem exists when you write a program to perform a well-defined task.
But the database tasks of some programs cannot be perfectly defined in
advance. In particular, a program that must respond to an interactive user
might need the ability to compose SQL statements in response to what the
user enters.

5-28 Informix Guide to SQL: Tutorial

Preparing a Statement

Dynamic SQL allows a program to form an SQL statement during execution,
so that the contents of the statement can be determined by user input. This
action is performed in the following steps:

1. The program assembles the text of an SQL statement as a character
string, which is stored in a program variable.

2. Itexecutes a PREPARE statement, which asks the database server to
examine the statement text and prepare it for execution.

3. Ituses the EXECUTE statement to execute the prepared statement.

In this way, a program can construct and then use any SQL statement, based
on user input of any kind. For example, it can read a file of SQL statements
and prepare and execute each one.

DB-Access, the utility that you use to explore SQL interactively, is an
INFORMIX-ESQL/C program that constructs, prepares, and executes SQL
statements dynamically. For example, it lets users specify the columns of a
table using simple, interactive menus. When the user is finished, DB-Access
builds the necessary CREATE TABLE or ALTER TABLE statement dynamically
and prepares and executes it.

Preparing a Statement

In form, a dynamic SQL statement is like any other SQL statement that is
written into a program, except that it cannot contain the names of any host
variables.

This situation leads to two restrictions. First, if it is a SELECT statement, it
cannot include the INTO clause. The INTO clause hames host variables into
which column data is placed, and host variables are not allowed in a dynamic
statement. Second, wherever the name of a host variable normally appears in
an expression, a question mark (?) is written as a placeholder.

Programming with SQL 5-29

Preparing a Statement

You can prepare a statement in this form for execution with the PREPARE
statement. The following example is written in INFORMIX-ESQL/C:

EXEC SQL prepare query 2 from
'select * from orders
where customer_num = ? and
order_date > ?';

The two question marks in this example indicate that when the statement is
executed, the values of host variables are used at those two points.

You can prepare almost any SQL statement dynamically. The only ones that
cannot be prepared are the ones directly concerned with dynamic SQL and
cursor management, such as the PREPARE and OPEN statements. After you
prepare an UPDATE or DELETE statement, it is a good idea to test the fifth field
of SQLWARN to see if you used a WHERE clause (see “The SQLWARN Array”
on page 5-12).

The result of preparing a statement is a data structure that represents the
statement. This data structure is not the same as the string of characters that
produced it. In the PREPARE statement, you give a name to the data structure;
it is query_2 in the preceding example. This name is used to execute the
prepared SQL statement.

The PREPARE statement does not limit the character string to one statement.
It can contain multiple SQL statements, separated by semicolons. The
following example shows a fairly complex example in
INFORMIX-ESQL/COBOL:

MOVE '"BEGIN WORK;
UPDATE account
SET balance = balance + ?
WHERE acct_number = ?;
UPDATE teller
SET balance = balance + ?
WHERE teller_number = ?;
UPDATE branch
SET balance = balance + ?
WHERE branch_number = 7;
INSERT INTO history VALUES(t1mestamp, values);'

TO BIG-QUERY.
EXEC SQL

PREPARE BIG-Q FROM :BIG-QUERY
END-EXEC.

5-30 Informix Guide to SQL: Tutorial

Executing Prepared SQL

When this list of statements is executed, host variables must provide values
for six place-holding question marks. Although it is more complicated to set
up a multistatement list, the performance is often better because fewer
exchanges take place between the program and the database server.

Executing Prepared SQL

Once a statement is prepared, it can be executed multiple times. Statements
other than SELECT statements, and SELECT statements that return only a
single row, are executed with the EXECUTE statement.

The following INFORMIX-ESQL/C code prepares and executes a
multistatement update of a bank account:

EXEC SQL BEGIN DECLARE SECTION;
char bigquery[270] = "begin work;";
EXEC SQL END DECLARE SECTION;

stcat ("update account set balance = balance + ? where ", bigquery);
stcat ("acct_number = ?;', bigquery);

stcat ("update teller set balance = balance + ? where ", bigquery);
stcat ("teller_number = ?;', bigquery);

stcat ("update branch set balance = balance + ? where ", bigquery);
stcat ("branch_number = ?;', bigquery);

stcat ("insert into history values(timestamp, values);", bigquery);

EXEC SQL prepare bigq from :bigquery;

EXEC SQL execute bigq using :delta, :acct_number, :delta,
:teller_number, :delta, :branch_number;

EXEC SQL commit work;

The USING clause of the EXECUTE statement supplies a list of host variables
whose values are to take the place of the question marks in the prepared
statement. If a SELECT statement (or EXECUTE PROCEDURE) returns only one
row, you can use the INTO clause of EXECUTE to specify the host variables
that receive the values.

Programming with SQL 5-31

Dynamic Host Variables

5-32

Dynamic Host Variables

SQL APIs, which support dynamically allocated data objects, take dynamic
statements one step further. They let you dynamically allocate the host
variables that receive column data.

Dynamic allocation of variables makes it possible to take an arbitrary SELECT
statement from program input, determine how many values it produces and
their data types, and allocate the host variables of the appropriate types to
hold them.

The key to this ability is the DESCRIBE statement. It takes the name of a
prepared SQL statement and returns information about the statement and its
contents. It sets SQLCODE to specify the type of statement; that is, the verb
with which it begins. If the prepared statement is a SELECT statement, the
DESCRIBE statement also returns information about the selected output data.
If the prepared statement is an INSERT statement, the DESCRIBE statement
returns information about the input parameters. The data structure is a
predefined data structure that is allocated for this purpose and is known as a
system-descriptor area. If you are using INFORMIX-ESQL/C, you can use a
system-descriptor area or, as an alternative, an sglda structure.

The data structure that a DESCRIBE statement returns or references for a
SELECT statement includes an array of structures. Each structure describes
the data that is returned for one item in the select list. The program can
examine the array and discover that a row of data includes a decimal value,
a character value of a certain length, and an integer.

With this information, the program can allocate memory to hold the retrieved
values and put the necessary pointers in the data structure for the database
server to use.

Freeing Prepared Statements

A prepared SQL statement occupies space in memory. With some database
servers, it can consume space owned by the database server as well as space
that belongs to the program. This space is released when the program
terminates, but in general, you should free this space when you finish with it.

Informix Guide to SQL: Tutorial

Quick Execution

You can use the FREE statement to release this space. The FREE statement
takes either the name of a statement or the name of a cursor that was declared
for a statement name, and releases the space allocated to the prepared
statement. If more than one cursor is defined on the statement, freeing the
statement does not free the cursor.

Quick Execution

For simple statements that do not require a cursor or host variables, you can
combine the actions of the PREPARE, EXECUTE, and FREE statements into a
single operation. The following example shows how the EXECUTE
IMMEDIATE statement takes a character string, prepares it, executes it, and
frees the storage in one operation:

EXEC SQL execute immediate 'drop index my_temp_index';

This capability makes it easy to write simple SQL operations. However,
because no USING clause is allowed, the EXECUTE IMMEDIATE statement
cannot be used for SELECT statements.

Embedding Data Definition Statements

Data definition statements, the SQL statements that create databases and
modify the definitions of tables, are not usually put into programs. The
reason is that they are rarely performed. A database is created once, but it is
queried and updated many times.

The creation of a database and its tables is generally done interactively, using
DB-Access or the SQL Editor. These tools can also be driven from a file of state-
ments, so that the creation of a database can be done with one operating-
system command.

Programming with SQL 5-33

Embedding Grant and Revoke Privileges

5-34

Embedding Grant and Revoke Privileges

One task related to data definition is performed repeatedly: the granting and
revoking of privileges. The reasons for this are discussed in Chapter 11,
“Granting and Limiting Access to Your Database.” Because privileges must
be granted and revoked frequently, and possibly by users who are not skilled
in SQL, it can be useful to package the GRANT and REVOKE statements in
programs to give them a simpler, more convenient user interface.

The GRANT and REVOKE statements are especially good candidates for
dynamic SQL. Each statement takes the following parameters:

= Alist of one or more privileges
= Atable name
= The name of a user

You probably need to supply at least some of these values based on program
input (from the user, command-line parameters, or a file) but none can be
supplied in the form of a host variable. The syntax of these statements does
not allow host variables at any point.

The only alternative is to assemble the parts of a statement into a character
string and to prepare and execute the assembled statement. Program input
can be incorporated into the prepared statement as characters.

The following INFORMIX-ESQL/C function assembles a GRANT statement
from parameters, and then prepares and executes it:

char priv_to_grant[100];
char table_namel[207;
char user_id[20];

table_grant(priv_to_grant, table_name, user_id)
char *priv_to_grant;
char *table_name;
char *user_id;
{
EXEC SQL BEGIN DECLARE SECTION;
char grant_stmt[2007];
EXEC SQL END DECLARE SECTION;

sprintf(grant_stmt, " GRANT %s ON %s TO %s",
priv_to_grant, table_name, user_id);
PREPARE the_grant FROM :grant_stmt;
if(SQLCODE == 0)
EXEC SQL EXECUTE the_grant;

Informix Guide to SQL: Tutorial

Embedding Grant and Revoke Privileges

else
printf("Sorry, got error # %d attempting %s",
SQLCODE, grant_stmt);

EXEC SQL FREE the_grant;
}

The function’s opening statement, shown in the following example, specifies
its name and its three parameters. The three parameters specify the privileges
to grant, the name of the table on which to grant privileges, and the ID of the
user to receive them:

table_grant(priv_to_grant, table_name, user_id)
char *priv_to_grant;

char *table_name;

char *user_id;

The function uses the statements in the following example to define a local
variable, grant_stmt, which is used to assemble and hold the GRANT
statement:

EXEC SQL BEGIN DECLARE SECTION;
char grant_stmt[200];
EXEC SQL END DECLARE SECTION;

As the following example illustrates, the GRANT statement is created by
concatenating the constant parts of the statement and the function
parameters:

sprintf(grant_stmt, " GRANT %s ON %s TO %s",priv_to_grant, table_name, user_id);

This statement concatenates the following six character strings:

= 'GRANT'
= The parameter that specifies the privileges to be granted
= 'ON'
= The parameter that specifies the table name
s 'TO'
= The parameter that specifies the user.
The result is a complete GRANT statement composed partly of program

input. The PREPARE statement passes the assembled statement text to the
database server for parsing.

Programming with SQL 5-35

Summary

If the database server returns an error code in SQLCODE following the
PREPARE statement, the function displays an error message. If the database
server approves the form of the statement, it sets a zero return code. This
action does not guarantee that the statement is executed properly; it means
only that the statement has correct syntax. It might refer to a nonexistent table
or contain many other kinds of errors that can be detected only during
execution. The following portion of the example checks that the_grant was
prepared successfully before executing it:
f(SQLCODE == 0)
EXEC SQL EXECUTE the_grant;
else
printf("Sorry, got error # %d attempting %s", SQLCODE, grant_stmt);
If the preparation is successful, SQLCODE = = 0, the next step executes the
prepared statement.

Summary

SQL statements can be written into programs as if they were normal
statements of the programming language. Program variables can be used in
WHERE clauses, and data from the database can be fetched into them. A
preprocessor translates the SQL code into procedure calls and data structures.

Statements that do not return data, or queries that return only one row of
data, are written like ordinary imperative statements of the language.
Queries that can return more than one row are associated with a cursor that
represents the current row of data. Through the cursor, the program can fetch
each row of data as it is needed.

Static SQL statements are written into the text of the program. However, the
program can form new SQL statements dynamically, as it runs, and execute
them also. In the most advanced cases, the program can obtain information
about the number and types of columns that a query returns and
dynamically allocate the memory space to hold them.

5-36 Informix Guide to SQL: Tutorial

Modifying Data Through SQL
Programs

Using DELETE 6-3
Direct Deletions . . . e e 6-4
Errors During Direct Deletlons e 6-4

Using Transaction Logging 6-5
Coordinated Deletions 6-6
Deleting withaCursor 6-7
Using INSERT 6-9
Usingan InsertCursor 6-9
Declaring an Insert Cursor 6-9
Inserting with a Cursor. 610

Status Codes After PUT and FLUSH T Sk
Rowsof Constants. 612
AnlInsertExample. 612
Using UPDATE 615
Using an Update Cursor - 615
The Purpose of the Keyword UPDATE« 616
Updating Specific Columns« 616
UPDATE Keyword Not Always Needed. ©6-16
CleaningUpaTable 617

Summary . 618

6-2 Informix Guide to SQL: Tutorial

he preceding chapter introduced the idea of putting SQL statements,
especially the SELECT statement, into programs written in other languages.
Embedded SQL enables a program to retrieve rows of data from a database.

This chapter covers the issues that arise when a program needs to modify the
database by deleting, inserting, or updating rows. Like Chapter 5,
“Programming with SQL,” this chapter aims to prepare you for reading the
manual for your Informix embedded language.

The general use of the INSERT, UPDATE, and DELETE statements is covered in
Chapter 4, “Modifying Data.” This chapter examines their use from within a
program. You can easily put the statements in a program, but it can be
difficult to handle errors and to deal with concurrent modifications from
multiple programs.

Using DELETE

To delete rows from a table, a program executes a DELETE statement. The
DELETE statement can specify rows in the usual way with a WHERE clause,
or it can refer to a single row, the last one fetched through a specified cursor.

Whenever you delete rows, you must consider whether rows in other tables
depend on the deleted rows. This problem of coordinated deletions is
covered in Chapter 4, “Modifying Data.” The problem is the same when
deletions are made from within a program.

Modifying Data Through SQL Programs ~ 6-3

Direct Deletions

Direct Deletions

You can embed a DELETE statement in a program. The following example
uses INFORMIX-ESQL/C:

EXEC SQL delete from items
where order_num = :onum;

You can also prepare and execute a statement of the same form dynamically.
In either case, the statement works directly on the database to affect one or
more rows.

The WHERE clause in the example uses the value of a host variable named
onum. Following the operation, results are posted in SQLSTATE and in the
sqlca structure, as usual. The third element of the SQLERRD array contains
the count of rows deleted even if an error occurs. The value in SQLCODE
shows the overall success of the operation. If the value is not negative, no
errors occurred and the third element of SQLERRD is the count of all rows that
satisfied the WHERE clause and were deleted.

Errors During Direct Deletions

When an error occurs, the statement ends prematurely. The values in
SQLSTATE and in SQLCODE and the second element of SQLERRD explain its
cause, and the count of rows reveals how many rows were deleted. For many
errors, that count is zero because the errors prevented the database server
from beginning the operation. For example, if the named table does not exist,
or if a column tested in the WHERE clause is renamed, no deletions are
attempted.

However, certain errors can be discovered after the operation begins and
some rows are processed. The most common of these errors is a lock conflict.
The database server must obtain an exclusive lock on a row before it can
delete that row. Other programs might be using the rows from the table,
preventing the database server from locking a row. Because the issue of
locking affects all types of modifications, it is discussed in Chapter 7,
“Programming for a Multiuser Environment.”

Other, rarer types of errors can strike after deletions begin, for example,
hardware errors that occur while the database is being updated.

6-4 Informix Guide to SQL: Tutorial

Direct Deletions

Using Transaction Logging

The best way to prepare for any kind of error during a modification is to use
transaction logging. In the event of an error, you can tell the database server
to put the database back the way it was. The following example is based on
the example in “Direct Deletions” on page 6-4, which is extended to use
transactions:

EXEC SQL begin work;/* start the transaction*/
EXEC SQL delete from items

where order_num = :onum;
del_result = sqlca.sqglcode;/* save two error */
del_isamno = sqlca.sqlerrd[1];/* ...code numbers */
del_rowcnt = sqlca.sqlerrdl2];/* ...and count of rows */

if (del_result < 0)/* some problem, */

EXEC SQL rollback work;/* ...put everything back */
else /* everything worked 0K, */

EXEC SQL commit work;/* ...finish transaction */

An important point in this example is that the program saves the important
return values in the sqlca structure before it ends the transaction. Both the
ROLLBACK WORK and COMMIT WORK statements, like other SQL statements,
set return codes in the sqlca structure. Executing a ROLLBACK WORK
statement after an error wipes out the error code; unless it was saved, it
cannot be reported to the user.

The advantage of using transactions is that the database is left in a known,
predictable state no matter what goes wrong. No question remains about
how much of the modification is completed; either all of it or none of it is
completed.

Modifying Data Through SQL Programs ~ 6-5

Direct Deletions

Coordinated Deletions

The usefulness of transaction logging is particularly clear when you must
modify more than one table. For example, consider the problem of deleting
an order from the demonstration database. In the simplest form of the
problem, you must delete rows from two tables, orders and items, as the
following example of INFORMIX-ESQL/C shows:

EXEC SQL BEGIN WORK;
EXEC SQL DELETE FROM items
WHERE order_num = :o0_num;
if (SQLCODE >= 0)
{
EXEC SQL DELETE FROM orders
WHERE order_num = :o0_num;
if (SQLCODE >= 0)
EXEC SQL COMMIT WORK;
else

{
printf("Error %d on DELETE", SQLCODE);
EXEC SQL ROLLBACK WORK;

}

The logic of this program is much the same whether or not transactions are
used. If they are not used, the person who sees the error message has a much
more difficult set of decisions to make. Depending on when the error
occurred, one of the following situations applies:

= No deletions were performed; all rows with this order number
remain in the database.

= Some, but not all, item rows were deleted; an order record with only
some items remains.

= All item rows were deleted, but the order row remains.
= All rows were deleted.

In the second and third cases, the database is corrupted to some extent; it
contains partial information that can cause some queries to produce wrong
answers. You must take careful action to restore consistency to the
information. When transactions are used, all these uncertainties are
prevented.

6-6 Informix Guide to SQL: Tutorial

Deleting with a Cursor

Deleting with a Cursor

You can also write a DELETE statement through a cursor to delete the row that
was last fetched. Deleting rows in this manner lets you program deletions
based on conditions that cannot be tested in a WHERE clause, as the following
example shows:

int delDupOrder()

{

}

int ord_num;
int dup_cnt, ret_code;

EXEC SQL declare scan_ord cursor for
select order_num, order_date
into :ord_num, :ord_date
from orders for update;
EXEC SQL open scan_ord;
if (sqglca.sqlcode != 0)
return (sqlca.sqlcode);
EXEC SQL begin work;
for(;;)
{
EXEC SQL fetch next scan_ord;
if (sqlca.sqlcode != 0) break;
dup_cnt = 0; /* default in case of error */
EXEC SQL select count(*) into dup_cnt from orders
where order_num = :ord_num;
if (dup_cnt > 1)
{
EXEC SQL delete where current of scan_ord;
if (sqglca.sqlcode != 0)
break;
}
}
ret_code = sglca.sqlcode;

if (ret_code == 100) /* merely end of data */
EXEC SQL commit work;
else /* error on fetch or on delete */

EXEC SQL rollback work;
return (ret_code);

Warning: The design of the ESQL/C function in the previous example is unsafe. It
depends on the current isolation level for correct operation. Isolation levels are
covered later in this chapter. For more information on isolation levels, see Chapter 7,
“Programming for a Multiuser Environment.” Even when the design works as
intended, its effects depend on the physical order of rows in the table, which is not
generally a good idea.

Modifying Data Through SQL Programs ~ 6-7

Deleting with a Cursor

6-8

The purpose of the function is to delete rows that contain duplicate order
numbers. In fact, in the demonstration database, the orders.order_num
column has a unique index, so duplicate rows cannot occur in it. However, a
similar function can be written for another database; this one uses familiar
column names.

The function declares scan_ord, a cursor to scan all rows in the orders table.
It is declared with the FOR UPDATE clause, which states that the cursor can
modify data. If the cursor opens properly, the function begins a transaction
and then loops over rows of the table. For each row, it uses an embedded
SELECT statement to determine how many rows of the table have the order
number of the current row. (This step fails without the correct isolation level,
as described in Chapter 7, “Programming for a Multiuser Environment.”)

In the demonstration database, with its unique index on this table, the count
returned to dup_cnt is always one. However, if it is greater, the function
deletes the current row of the table, reducing the count of duplicates by one.

Clean-up functions of this sort are sometimes needed, but they generally
need more sophisticated design. This one deletes all duplicate rows except
the last one delivered by the database server. That ordering has nothing to do
with the contents of the rows or their meanings. You can improve the
function in the previous example by adding, perhaps, an ORDER BY clause to
the cursor declaration. However, you cannot use ORDER BY and FOR UPDATE
together. A better approach is presented in “An Insert Example” on

page 6-12.

Informix Guide to SQL: Tutorial

Using INSERT

Using INSERT

You can embed the INSERT statement in programs. Its form and use in a
program are the same as described in Chapter 4, “Modifying Data,” with the
additional feature that you can use host variables in expressions, both in the
VALUES and WHERE clauses. Moreover, a program has the additional ability
to insert rows using a cursor.

Using an Insert Cursor

The DECLARE CURSOR statement has many variations. Most are used to

create cursors for different kinds of scans over data, but one variation creates
a special kind of cursor called an insert cursor. You use an insert cursor with
the PUT and FLUSH statements to insert rows into a table in bulk efficiently.

Declaring an Insert Cursor

To create an insert cursor, declare a cursor to be for an INSERT statement
instead of a SELECT statement. You cannot use such a cursor to fetch rows of
data; you can use it only to insert them. The following is an example of the
declaration of an insert cursor:

DEFINE the_company LIKE customer.company,
the_fname LIKE customer.fname,
the_Iname LIKE customer.lIname
DECLARE new_custs CURSOR FOR
INSERT INTO customer (company, fname, Tname)
VALUES (the_company, the_fname, the_1Iname)

When you open an insert cursor, a buffer is created in memory to hold a block
of rows. The buffer receives rows of data as the program produces them; then
they are passed to the database server in a block when the buffer is full. This
reduces the amount of communication between the program and the
database server, and it lets the database server insert the rows with less diffi-
culty. As a result, the insertions go faster.

The minimum size of the insert buffer is set for any implementation of
embedded SQL; you have no control over it (it is typically 1 or 2 kilobytes).
The buffer is always made large enough to hold at least two rows of inserted
values. It is large enough to hold more than two rows when the rows are
shorter than the minimum buffer size.

Modifying Data Through SQL Programs 6-9

Using an Insert Cursor

6-10

Inserting with a Cursor

The code in the previous example prepares an insert cursor for use. The
continuation, as the following example shows, demonstrates how the cursor
can be used. For simplicity, this example assumes that a function named
next_cust returns either information about a new customer or null data to
signal the end of input.

EXEC SQL BEGIN WORK;
EXEC SQL OPEN new_custs;
while(SQLCODE == 0)
{
next_cust();
if(the_company == NULL)
break;
EXEC SQL PUT new_custs;

}
if(SQLCODE == 0) /* if no problem with PUT */
{
EXEC SQL FLUSH new_custs;/* write any rows left */
if(SQLCODE == 0)/* if no problem with FLUSH */
EXEC SQL COMMIT WORK;/* commit changes */

}
else
EXEC SQL ROLLBACK WORK;/* else undo changes */

The code in this example calls next_cust repeatedly. When it returns non-null
data, the PUT statement sends the returned data to the row buffer. When the
buffer fills, the rows it contains are automatically sent to the database server.
The loop normally ends when next_cust has no more data to return. Then the
FLUSH statement writes any rows that remain in the buffer, after which the
transaction terminates.

Examine the INSERT statement on page 6-9 once more. The statement by
itself, not part of a cursor definition, inserts a single row into the customer
table. In fact, the whole apparatus of the insert cursor can be dropped from
the example code, and the INSERT statement can be written into the code
where the PUT statement now stands. The difference is that an insert cursor
causes a program to run somewhat faster.

Informix Guide to SQL: Tutorial

Using an Insert Cursor

Status Codes After PUT and FLUSH

When a program executes a PUT statement, the program should test whether
the row is placed in the buffer successfully. If the new row fits in the buffer,

the only action of PUT is to copy the row to the buffer. No errors can occur in
this case. However, if the row does not fit, the entire buffer load is passed to
the database server for insertion, and an error can occur.

The values returned into the SQL Communications Area (SQLCA) give the
program the information it needs to sort out each case. SQLCODE and
SQLSTATE are set after every PUT statement, to zero if no error occurs and to
a negative error code if an error occurs.

The third element of SQLERRD is set to the number of rows actually inserted
into the table. It is set to zero if the new row is merely moved to the buffer; to
the count of rows that are in the buffer if the buffer load is inserted without
error; or to the count of rows inserted before an error occurs, if one does
occur.

Read the code once again to see how SQLCODE is used (see the previous
example). First, if the OPEN statement yields an error, the loop is not executed
because the WHILE condition fails, the FLUSH operation is not performed,
and the transaction rolls back.

Second, if the PUT statement returns an error, the loop ends because of the
WHILE condition, the FLUSH operation is not performed, and the transaction
rolls back. This condition can occur only if the loop generates enough rows to
fill the buffer at least once; otherwise, the PUT statement cannot generate an
error.

The program might end the loop with rows still in the buffer, possibly
without inserting any rows. At this point, the SQL status is zero, and the
FLUSH operation occurs. If the FLUSH operation produces an error code, the
transaction rolls back. Only when all inserts are successfully performed is the
transaction committed.

Modifying Data Through SQL Programs ~ 6-11

Rows of Constants

Rows of Constants

The insert cursor mechanism supports one special case where high
performance is easy to obtain. In this case, all the values listed in the INSERT
statement are constants: no expressions and no host variables, just literal
numbers and strings of characters. No matter how many times such an
INSERT operation occurs, the rows it produces are identical. In that case, there
is no point in copying, buffering, and transmitting each identical row.

Instead, for this kind of INSERT operation, the PUT statement does nothing
except to increment a counter. When a FLUSH operation is finally performed,
a single copy of the row, and the count of inserts, is passed to the database
server. The database server creates and inserts that many rows in one
operation.

It is not common to insert a quantity of identical rows. You can do it when
you first establish a database, to populate a large table with null data.

An Insert Example

“Deleting with a Cursor” on page 6-7 contains an example of the DELETE
statement whose purpose is to look for and delete duplicate rows of a table.
A Dbetter way to do the same thing is to select the desired rows instead of
deleting the undesired ones. The code in the following INFORMIX-ESQL/C
example shows one way to do this.

EXEC SQL BEGIN DECLARE SECTION;
long last_ord = 1;

struct {
lTong int o_num;
date o_date;
Tong c_num;
char o_shipinst[40];
char o_backlog;
char o_pol[107;
date o_shipdate;
decimal o_shipwt;
decimal o_shipchg;
date 0_paiddate;
} ord_row;

EXEC SQL END DECLARE SECTION;

EXEC SQL BEGIN WORK;
EXEC SQL INSERT INTO new_orders
SELECT * FROM orders main
WHERE 1 = (SELECT COUNT(*) FROM orders minor

6-12 Informix Guide to SQL: Tutorial

An Insert Example

WHERE main.order_num = minor.order_num);
EXEC SQL COMMIT WORK;

EXEC SQL DECLARE dup_row CURSOR FOR
SELECT * FROM orders main INTO :ord_row
WHERE 1 < (SELECT COUNT(*) FROM orders minor
WHERE main.order_num = minor.order_num)
ORDER BY order_date;
EXEC SQL DECLARE ins_row CURSOR FOR
INSERT INTO new_orders VALUES (:ord_row);

EXEC SQL BEGIN WORK;
EXEC SQL OPEN ins_row;
EXEC SQL OPEN dup_row;
while(SQLCODE == 0)
{
EXEC SQL FETCH dup_row;
if(SQLCODE == 0)
{
if(ord_row.o_num != last_ord)
EXEC SQL PUT ins_row;
last_ord = ord_row.o_num
continue;
}
break;
}
if(SQLCODE != 0 && SQLCODE != 100)
EXEC SQL ROLLBACK WORK;
else
EXEC SQL COMMIT WORK;
EXEC SQL CLOSE ins_row;
EXEC SQL CLOSE dup_row;

This example begins with an ordinary INSERT statement, which finds all the
nonduplicated rows of the table and inserts them into another table,
presumably created before the program started. That action leaves only the
duplicate rows. (In the demonstration database, the orders table has a unique
index and cannot have duplicate rows. Assume that this example deals with
some other database.)

The code in the previous example then declares two cursors. The first, called
dup_row, returns the duplicate rows in the table. Because dup_row is for
input only, it can use the ORDER BY clause to impose some order on the dupli-
cates other than the physical record order used in the example on page 6-7.
In this example, the duplicate rows are ordered by their dates (the oldest one
remains), but you can use any other order based on the data.

The second cursor, ins_row, is an insert cursor. This cursor takes advantage
of the ability to use a C structure, ord_row, to supply values for all columns
in the row.

Modifying Data Through SQL Programs ~ 6-13

An Insert Example

The remainder of the code examines the rows that are returned through
dup_row. It inserts the first one from each group of duplicates into the new
table and disregards the rest.

For the sake of brevity, this example uses the simplest kind of error handling.
If an error occurs before all rows have been processed, the sample code rolls
back the active transaction.

How Many Rows Were Affected?

When your program uses a cursor to select rows, it can test SQLCODE for 100
(or SQLSTATE for 02000), the end-of-data return code. This code is set to
indicate that no rows, or no more rows, satisfy the query conditions. For
databases that are not ANSI compliant, the end-of-data return code is set in
SQLCODE or SQLSTATE only following SELECT statements; it is not used
following DELETE, INSERT, or UPDATE statements. For ANSI-compliant
databases, SQLCODE is also set to 100 for updates, deletes, and inserts that
affect zero rows.

A query that finds no data is not a success. However, an UPDATE or DELETE
statement that happens to update or delete no rows is still considered a
success. It updated or deleted the set of rows that its WHERE clause said it
should; however, the set was empty.

In the same way, the INSERT statement does not set the end-of-data return
code even when the source of the inserted rows is a SELECT statement, and
the SELECT statement selected no rows. The INSERT statement is a success
because it inserted as many rows as it was asked to do (that is, zero).

To find out how many rows are inserted, updated, or deleted, a program can
test the third element of SQLERRD. The count of rows is there, regardless of
the value (zero or negative) in SQLCODE.

6-14 Informix Guide to SQL: Tutorial

Using UPDATE

Using UPDATE

You can embed the UPDATE statement in a program in any of the forms
described in Chapter 4, “Modifying Data,” with the additional feature that
you can name host variables in expressions, both in the SET and WHERE
clauses. Moreover, a program can update the row that is addressed by a
cursor.

Using an Update Cursor

An update cursor permits you to delete or update the current row; that is, the
most recently fetched row. The following example (in
INFORMIX-ESQL/COBOL) shows the declaration of an update cursor:

EXEC SQL
DECLARE names CURSOR FOR
SELECT fname, Tname, company
FROM customer
FOR UPDATE
END-EXEC.

The program that uses this cursor can fetch rows in the usual way.
EXEC SQL
FETCH names INTO :FNAME, :LNAME, :COMPANY
END-EXEC.
If the program then decides that the row needs to be changed, it can do so.

IF COMPANY IS EQUAL TO 'SONY'

EXEC SQL
UPDATE customer
SET fname = 'Midori', Tname = 'Tokugawa'
WHERE CURRENT OF names
END-EXEC.

The words CURRENT OF names take the place of the usual test expressions in
the WHERE clause. In other respects, the UPDATE statement is the same as
usual, even including the specification of the table name, which is implicit in
the cursor name but still required.

Modifying Data Through SQL Programs ~ 6-15

Using an Update Cursor

6-16

The Purpose of the Keyword UPDATE

The purpose of the keyword UPDATE in a cursor is to let the database server
know that the program can update (or delete) any row that it fetches. The
database server places a more demanding lock on rows that are fetched
through an update cursor and a less demanding lock when it fetches a row
for a cursor that is not declared with that keyword. This action results in
better performance for ordinary cursors and a higher level of concurrent use
in a multiprocessing system. (Levels of locks and concurrent use are
discussed in Chapter 7, “Programming for a Multiuser Environment.”)

Updating Specific Columns

The following example has updated specific columns of the preceding
example of an update cursor:

EXEC SQL
DECLARE names CURSOR FOR
SELECT fname, Tname, company, phone
INTO :FNAME,:LNAME, :COMPANY,:PHONE FROM customer
FOR UPDATE OF fname, lTname
END-EXEC.

Only the fname and Iname columns can be updated through this cursor. A
statement such as the following one is rejected as an error:

EXEC SQL
UPDATE customer
SET company = 'Siemens'
WHERE CURRENT OF names
END-EXEC.

If the program attempts such an update, an error code is returned and no
update occurs. An attempt to delete using WHERE CURRENT OF is also
rejected because deletion affects all columns.

UPDATE Keyword Not Always Needed

The ANSI standard for SQL does not provide for the FOR UPDATE clause in a
cursor definition. When a program uses an ANSI-compliant database, it can
update or delete using any cursor.

Informix Guide to SQL: Tutorial

Cleaning Up a Table

Cleaning Up a Table

A final, hypothetical example of using an update cursor presents a problem
that should never arise with an established database but could arise in the
initial design phases of an application.

In the example, a large table named target is created and populated. A
character column, datcol, inadvertently acquires some null values. These
rows should be deleted. Furthermore, a new column, serials, is added to the
table with the ALTER TABLE statement. This column is to have unique integer
values installed. The following example shows the INFORMIX-ESQL/C code
needed to accomplish these things:

EXEC SQL BEGIN DECLARE SECTION;
char dcol1[807;

short dcolint;

int sequence;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE target_row CURSOR FOR
SELECT datcol
INTO :dcol:dcolint
FROM target
FOR UPDATE OF serials;
EXEC SQL BEGIN WORK;
EXEC SQL OPEN target_row;
if (sqlca.sqlcode == 0) EXEC SQL FETCH NEXT target_row;
for(sequence = 1; sqlca.sqlcode == 0; ++sequence)
{
if (dcolint < 0) /* null datcol */
EXEC SQL DELETE WHERE CURRENT OF target_row;
else
EXEC SQL UPDATE target SET serials = :sequence
WHERE CURRENT OF target_row;
}
if (sqlca.sqlcode >= 0)
EXEC SQL COMMIT WORK;
else EXEC SQL ROLLBACK WORK;

Modifying Data Through SQL Programs ~ 6-17

Summary

Summary

A program can execute the INSERT, DELETE, and UPDATE statements as
described in Chapter 4, “Modifying Data.” A program also can scan through
a table with a cursor, updating or deleting selected rows. It can also use a
cursor to insert rows, with the benefit that the rows are buffered and sent to
the database server in blocks.

In all these activities, you must make sure that the program detects errors and
returns the database to a known state when an error occurs. The most
important tool for doing this is the transaction. Without transaction logging,
it is more difficult to write programs that can recover from errors.

6-18 Informix Guide to SQL: Tutorial

Programming for a Multiuser
Environment

Concurrency and Performance. 7-3
Locking and Integrity 7-3
Locking and Performance 7-4
Concurrency Issues.o 7-4
How LocksWork 7-6
KindsofLocks 7-7
Lock Scope 7-7
Database Locks L. 7-8
Table Locks. . . e 7-8
Page, Row, and Key Locks e 7-9
The Durationofalock 710
Locks While Modifying 7-10
Setting the Isolation Level . . . S Sk |
Comparing SET TRANSACTION Wlth SET ISOLATION ... T1-12
ANSI Read Uncommitted and Informix Dirty Read Isolation . . . 7-13
ANSI Read Committed and Informix Committed Read Isolation. . 7-14
Informix Cursor Stability Isolation . . . e T1-14
ANSI Serializable, ANSI Repeatable Read, and Informlx
Repeatable Read Isolation. 17-16
Controlling Data Modification with AccessModes 7-17
Setting the Lock Mode. T7-18
Wiaiting for Locks [7-18
Not Waiting for Locks 7-18
Waiting a Limited Time 719
Handling a Deadlock. 719

Handling External Deadlock 720

7-2

Simple Concurrency

Locking with Other Database Servers
Isolation While Reading .
Locking Updated Rows .

Hold Cursors .

Summary .

Informix Guide to SQL: Tutorial

7-20

7-21
7-22
7-22

7-23
7-24

f your database is contained in a single-user workstation and is not
connected on a network to other computers, your programs can modify data
freely. But in all other cases, you must allow for the possibility that, while
your program is modifying data, another program is reading or modifying
the same data. This situation describes concurrency: two or more independent
uses of the same data at the same time. This chapter addresses concurrency,
locking, and isolation levels.

Concurrency and Performance

Concurrency is crucial to good performance in a multiprogramming system.
When access to the data is serialized so that only one program at a time can
use it, processing slows dramatically.

Locking and Integrity

Unless controls are placed on the use of data, concurrency can lead to a
variety of negative effects. Programs can read obsolete data, or modifications
can be lost even though they were apparently completed.

To prevent errors of this kind, the database server imposes a system of locks.
A lock is a claim, or reservation, that a program can place on a piece of data.
The database server guarantees that, as long as the data is locked, no other
program can modify it. When another program requests the data, the
database server either makes the program wait or turns it back with an error.

Programming for a Multiuser Environment ~ 7-3

Locking and Performance

7-4

Locking and Performance

Because a lock serializes access to one piece of data, it reduces concurrency;
any other programs that want access to that data must wait. The database
server can place a lock on a single row, a disk page (which holds multiple
rows), a whole table, or an entire database. The more locks it places and the
larger the objects it locks, the more concurrency is reduced. The fewer the
locks and the smaller the locked objects, the greater concurrency and
performance can be.

This section discusses how a program can achieve the following goals:

= To place all the locks needed to ensure data integrity

= To lock the fewest, smallest pieces of data possible consistent with
the preceding goal

Concurrency Issues

To understand the hazards of concurrency, you must think in terms of
multiple programs, each executing at its own speed. Suppose that your
program is fetching rows through the following cursor:

EXEC SQL DECLARE sto_curse CURSOR FOR
SELECT * FROM stock
WHERE manu_code = "ANZ';

The transfer of each row from the database server to the program takes time.
During and between transfers, other programs can perform other database
operations. At about the same time that your program fetches the rows
produced by that query, another user’s program might execute the following
update:

EXEC SQL UPDATE stock
SET unit_price = 1.15 * unit_price
WHERE manu_code = "ANZ';

Informix Guide to SQL: Tutorial

Concurrency Issues

In other words, both programs are reading through the same table, one
fetching certain rows and the other changing the same rows. The following
possibilities are concerned with what happens next:

1.

The other program finishes its update before your program fetches
its first row.

Your program shows you only updated rows.

Your program fetches every row before the other program has a
chance to update it.

Your program shows you only original rows.

After your program fetches some original rows, the other program
catches up and goes on to update some rows that your program has
yet to read; then it executes the COMMIT WORK statement.

Your program might return a mixture of original rows and updated
rows.

Same as number 3, except that after updating the table, the other
program issues a ROLLBACK WORK statement.

Your program can show you a mixture of original rows and updated
rows that no longer exist in the database.

The first two possibilities are harmless. In number 1, the update is complete
before your query begins. It makes no difference whether the update finished
a microsecond ago or a week ago.

In number 2, your query is, in effect, complete before the update begins. The
other program might have been working just one row behind yours, or it
might not start until tomorrow night; it does not matter.

Programming for a Multiuser Environment ~ 7-5

How Locks Work

The last two possibilities, however, can be very important to the design of
some applications. In number 3, the query returns a mix of updated and
original data. That result can be a negative thing in some applications. In
others, such as one that is taking an average of all prices, it might not matter
atall.

In number 4, it can be disastrous if a program returns some rows of data that,
because their transaction was cancelled, can no longer be found in the table.

Another concern arises when your program uses a cursor to update or delete
the last-fetched row. Erroneous results occur with the following sequence of
events:

= Your program fetches the row.

= Another program updates or deletes the row.

= Your program updates or deletes WHERE CURRENT OF names.

To control concurrent events such as these, use the locking and isolation level
features of the database server.

How Locks Work

The database server supports a complex, flexible set of locking features that
is described in this section. For a summary of the locking features for the
database server, see Getting Started with INFORMIX-Universal Server.

7-6 Informix Guide to SQL: Tutorial

Kinds of Locks

Kinds of Locks

Universal Server supports the following kinds of locks, which it uses in
different situations:

shared

exclusive

promotable

A shared lock reserves its object for reading only. It prevents
the object from changing while the lock remains. More than
one program can place a shared lock on the same object.

An exclusive lock reserves its object for the use of a single
program. This lock is used when the program intends to
change the object.

An exclusive lock cannot be placed where any other kind of
lock exists. Once one has been placed, no other lock can be
placed on the same object.

A promotable lock establishes the intent to update. It can only
be placed where no other promotable or exclusive lock exists.
Promotable locks can be placed on records that already have
shared locks. When the program is about to change the locked
object, the promotable lock can be promoted to an exclusive
lock, but only if no other locks, including shared locks, are on
the record at the time the lock would change from promotable
to exclusive. If a shared lock was on the record when the
promotable lock was set, the shared lock must be dropped
before the promotable lock can be promoted to an exclusive
lock.

Lock Scope

You can apply locks to entire databases, entire tables, disk pages, single rows,
or index-key values. The size of the object that is being locked is referred to
as the scope of the lock (also called the lock granularity). In general, the larger
the scope of a lock, the more concurrency is reduced, but the simpler
programming becomes.

Programming for a Multiuser Environment ~ 7-7

Lock Scope

Database Locks

You can lock an entire database. The act of opening a database places a shared
lock on the name of the database. A database is opened with the CONNECT,
DATABASE, or CREATE DATABASE statements. As long as a program has a
database open, the shared lock on the name prevents any other program from
dropping the database or putting an exclusive lock on it.

You can lock an entire database exclusively with the following statement:
DATABASE database name EXCLUSIVE

This statement succeeds if no other program has opened that database. Once
the lock is placed, no other program can open the database, even for reading
because its attempt to place a shared lock on the database name fails.

A database lock is released only when the database closes. That action can be
performed explicitly with the DISCONNECT or CLOSE DATABASE statements
or implicitly by executing another DATABASE statement.

Because locking a database reduces concurrency in that database to zero, it
makes programming very simple; concurrent effects cannot happen.
However, you should lock a database only when no other programs need
access. Database locking is often used before applying massive changes to
data during off-peak hours.

Table Locks

You can lock entire tables. In some cases, this action is performed automati-
cally. Universal Server always locks an entire table while it performs any of
the following statements:

= ALTER INDEX

s ALTER TABLE

= CREATE INDEX

= DROP INDEX

= RENAME COLUMN

= RENAME TABLE

The completion of the statement (or end of the transaction) releases the lock.
An entire table can also be locked automatically during certain queries.

7-8 Informix Guide to SQL: Tutorial

Lock Scope

You can use the LOCK TABLE statement to lock an entire table explicitly. This
statement allows you to place either a shared lock or an exclusive lock on an
entire table.

A shared table lock prevents any concurrent updating of that table while
your program is reading from it. Universal Server achieves the same degree
of protection by setting the isolation level, as described in the next section,
which allows greater concurrency than using a shared table lock. However,
all Informix database servers support the LOCK TABLE statement.

An exclusive table lock prevents any concurrent use of the table and,
therefore, can have a serious effect on performance if many other programs
are contending for the use of the table. Like an exclusive database lock, an
exclusive table lock is often used when massive updates are applied during
off-peak hours. For example, some applications do not update tables during
the hours of peak use. Instead, they write updates to an update journal. During
off-peak hours, that journal is read, and all updates are applied in a batch.

Page, Row, and Key Locks

One row of a table is the smallest object that can be locked. A program can
lock one row or a selection of rows while other programs continue to work
on other rows of the same table.

Universal Server stores data in units called disk pages. (Its disk-storage
methods are described in detail in the INFORMIX-Universal Server Adminis-
trator’s Guide. Tips for optimizing tables on disk storage can be found in the
INFORMIX-Universal Server Performance Guide.) A disk page contains one or
more rows. In some cases, it is better to lock a disk page than to lock
individual rows on it.

You choose between locking by rows or locking by pages when you create the
table. Universal Server supports a clause, LOCK MODE, to specify either page
or row locking. You can specify lock mode in the CREATE TABLE statement
and later change it with the ALTER TABLE statement. (Other Informix
database servers do not offer the choice; they lock by row or by page,
whichever makes the better implementation.)

Page and row locking are used identically. Whenever Universal Server needs
to lock a row, it locks either the row itself or the page it is on, depending on
the lock mode established for the table.

Programming for a Multiuser Environment ~ 7-9

The Duration of a Lock

7-10

In certain cases, the database server has to lock a row that does not exist. In
effect, it locks the place in the table where the row would be if it did exist. The
database server does this by placing a lock on an index-key value. Key locks
are used identically to row locks. When the table uses row locking, key locks
are implemented as locks on imaginary rows. When the table uses page
locking, a key lock is placed on the index page that contains the key or that
would contain the key if it existed.

The Duration of a Lock

The program controls the duration of a database lock. A database lock is
released when the database closes.

Depending on whether the database uses transactions, table lock durations
will vary. If the database does not use transactions (that is, if no transaction
log exists and you do not use COMMIT WORK statement), a table lock remains
until it is removed by the execution of the UNLOCK TABLE statement.

The duration of table, row, and index locks depends on what SQL statements
are used and on whether transactions are in use.

When transactions are used, the end of a transaction releases all table, row,
page, and index locks. When a transaction ends, all locks are released.

Locks While Modifying

When the database server fetches a row through an update cursor, it places a
promotable lock on the fetched row. If this action succeeds, the database
server knows that no other program can alter that row. Because a promotable
lock is not exclusive, other programs can continue to read the row. This helps
performance because the program that fetched the row can take some time
before it issues the UPDATE or DELETE statement, or it can simply fetch the
next row.

When itis time to modify a row, the database server obtains an exclusive lock
on the row. If it already had a promotable lock, it changes that lock to
exclusive status.

Informix Guide to SQL: Tutorial

Setting the Isolation Level

The duration of an exclusive row lock depends on whether transactions are
in use. If they are not in use, the lock is released as soon as the modified row
is written to disk. When transactions are in use, all such locks are held until
the end of the transaction. This action prevents other programs from using
rows that might be rolled back to their original state.

When transactions are in use, a key lock is used whenever a row is deleted.
Using a key lock prevents the following error from occurring:

= Program A deletes a row.

= Program B inserts a row that has the same key.

= Program A rolls back its transaction, forcing the database server to
restore its deleted row. What is to be done with the row inserted by
Program B?

By locking the index, the database server prevents a second program from
inserting a row until the first program commits its transaction.

The locks placed while the database reads various rows are controlled by the
current isolation level, which is discussed in the next section.

Setting the Isolation Level

The isolation level is the degree to which your program is isolated from the
concurrent actions of other programs. Universal Server offers a choice of
isolation levels. It implements them by setting different rules for how a
program uses locks when it is reading. (This description does not apply to
reads performed on update cursors.)

To set the isolation level, use either the SET ISOLATION or SET TRANSACTION
statement. The SET TRANSACTION statement also lets you set access modes
in Universal Server. For more information about access modes, see
“Controlling Data Modification with Access Modes” on page 7-17.

Programming for a Multiuser Environment ~ 7-11

Comparing SET TRANSACTION with SET ISOLATION

7-12

Comparing SET TRANSACTION with SET ISOLATION

The SET TRANSACTION statement complies with ANSI SQL-92. This statement
is similar to the Informix SET ISOLATION statement; however, the SET
ISOLATION statement is not ANSI compliant and does not provide access
modes.

The isolation levels that you can set with the SET TRANSACTION statement
are comparable to the isolation levels that you can set with the SET
ISOLATION statement, as the following table shows.

SET TRANSACTION Correlates to SET ISOLATION

Read Uncommitted Dirty Read

Read Committed Committed Read

Not Supported Cursor Stability

(ANSI) Repeatable Read (Informix) Repeatable Read
Serializable (Informix) Repeatable Read

The major difference between the SET TRANSACTION and SET ISOLATION
statements is the behavior of the isolation levels within transactions. The SET
TRANSACTION statement can be issued only once for a transaction. Any
cursors opened during that transaction are guaranteed to get that isolation
level (or access mode if you are defining an access mode). With the SET
ISOLATION statement, after a transaction is started, you can change the
isolation level more than once within the transaction. The following
examples show both the SET ISOLATION and SET TRANSACTION statements:

SET ISOLATION

EXEC SQL BEGIN WORK;
EXEC SQL SET ISOLATION TO DIRTY READ;
EXEC SQL SELECT ...
EXEC SQL SET ISOLATION TO REPEATABLE READ;
EXEC SQL INSERT ...
EXEC SQL COMMIT WORK;
Executes without error

Informix Guide to SQL: Tutorial

ANSI Read Uncommitted and Informix Dirty Read Isolation

SET TRANSACTION

EXEC SQL BEGIN WORK;

EXEC SQL SET TRANSACTION ISOLATION LEVEL TO SERIALIZABLE;
EXEC SQL SELECT ... ;

EXEC SQL SET TRANSACTION ISOLATION LEVEL TO READ COMMITTED;
Error 876: Cannot issue SET TRANSACTION more than once in an
active transaction.

ANSI Read Uncommitted and Informix Dirty Read Isolation

The simplest isolation level, ANSI Read Uncommitted and Informix Dirty
Read, amounts to virtually no isolation. When a program fetches a row, it
places no locks, and it respects none; it simply copies rows from the database
without regard for what other programs are doing.

A program always receives complete rows of data; even under ANSI Read
Uncommitted or Informix Dirty Read isolation, a program never sees a row
in which some columns have been updated and some have not. However, a
program that uses ANSI Read Uncommitted or Informix Dirty Read isolation
sometimes reads updated rows before the updating program ends its trans-
action. If the updating program later rolls back its transaction, the reading
program processed data that never really existed (number 4 in the list of
concurrency issues on page 7-5).

ANSI Read Uncommitted or Informix Dirty Read is the most efficient
isolation level. The reading program never waits and never makes another
program wait. It is the preferred level in any of the following cases:

= Alltables are static; that is, concurrent programs only read and never
modify data.

= The table is held in an exclusive lock.
= Only one program is using the table.

Programming for a Multiuser Environment ~ 7-13

ANSI Read Committed and Informix Committed Read Isolation

7-14

ANSI Read Committed and Informix Committed Read
Isolation

When a program requests the ANSI Read Committed or Informix Committed
Read isolation level, Universal Server guarantees that it never returns a row
that is not committed to the database. This action prevents reading data that
is not committed and that is subsequently rolled back.

ANSI Read Committed or Informix Committed Read is implemented very
simply. Before it fetches a row, the database server tests to determine whether
an updating process placed a lock on the row; if not, it returns the row.
Because rows that are updated but not committed have locks on them, this
test ensures that the program does not read uncommitted data.

ANSI Read Committed or Informix Committed Read does not actually place
a lock on the fetched row, so it is almost as efficient as ANSI Read Uncom-
mitted or Informix Dirty Read. It is appropriate for use when each row of
data is processed as an independent unit, without reference to other rows in
the same or other tables.

Informix Cursor Stability Isolation

The next level, Cursor Stability, is available only with the Informix SQL
statement SET ISOLATION. When Cursor Stability is in effect, the database
server places a lock on the latest row fetched. It places a shared lock for an
ordinary cursor or a promotable lock for an update cursor. Only one row is
locked at a time; that is, each time a row is fetched, the lock on the previous
row is released (unless that row is updated, in which case the lock holds until
the end of the transaction).

Cursor Stability ensures that a row does not change while the program
examines it. Such row stability is important when the program updates some
other table based on the data it reads from this row. Because of Cursor
Stability, the program is assured that the update is based on current infor-
mation. It prevents the use of stale data.

Informix Guide to SQL: Tutorial

Informix Cursor Stability Isolation

The following example illustrates the point. In terms of the demonstration
database, Program A wants to insert a new stock item for manufacturer Hero
(HRO). Concurrently, Program B wants to delete manufacturer HRO and all
stock associated with it. The following sequence of events can occur:

1.

Program A, operating under Cursor Stability, fetches the HRO row
from the manufact table to learn the manufacturer code: This action
places a shared lock on the row.

Program B issues a DELETE statement for that row. Because of the
lock, the database server makes the program wait.

Program A inserts a new row in the stock table using the manufac-
turer code it obtained from the manufact table.

Program A closes its cursor on the manufact table or reads a different
row of it, releasing its lock.

Program B, released from its wait, completes the deletion of the row
and goes on to delete the rows of stock that use manufacturer code
HRO, including the row just inserted by Program A.

If Program A used a lesser level of isolation, the following sequence could

occur:

1.

o &~ w D

6.

Program A reads the HRO row of the manufact table to learn the
manufacturer code. No lock is placed.

Program B issues a DELETE statement for that row. It succeeds.
Program B deletes all rows of stock that use manufacturer code HRO.
Program B ends.

Program A, not aware that its copy of the HRO row is now invalid,
inserts a new row of stock using the manufacturer code HRO.

Program A ends.

At the end, a row occurs in stock that has no matching manufacturer code in
manufact. Furthermore, Program B apparently has a bug; it did not delete the
rows that it was supposed to delete. The use of the Cursor Stability isolation
level prevents these effects.

Programming for a Multiuser Environment ~ 7-15

ANSI Serializable, ANSI Repeatable Read, and Informix Repeatable Read Isolation

The preceding scenario could be rearranged to fail even with Cursor Stability.
All that is required is for Program B to operate on tables in the reverse
sequence to Program A. If Program B deletes from stock before it removes the
row of manufact, no degree of isolation can prevent an error. Whenever this
kind of error is possible, all programs that are involved must use the same
sequence of access.

Because Cursor Stability locks only one row at a time, it restricts concurrency
less than a table lock or database lock does.

ANSI Serializable, ANSI Repeatable Read, and Informix
Repeatable Read Isolation

The definitions for ANSI Serializable, ANSI Repeatable Read, and Informix
Repeatable Read isolation levels are all the same.

The Repeatable Read isolation level asks the database server to put a lock on
every row the program examines and fetches. The locks that are placed are
shareable for an ordinary cursor and promotable for an update cursor. The
locks are placed individually as each row is examined. They are not released
until the cursor closes or a transaction ends.

Repeatable Read allows a program that uses a scroll cursor to read selected
rows more than once and to be sure that they are not modified or deleted
between readings. (Scroll cursors are described in Chapter 5, “Programming
with SQL.””) No lower isolation level guarantees that rows still exist and are
unchanged the second time they are read.

Repeatable Read isolation places the largest number of locks and holds them
the longest. Therefore, it is the level that reduces concurrency the most. If
your program uses this level of isolation, think carefully about how many
locks it places, how long they are held, and what the effect can be on other
programs.

7-16 Informix Guide to SQL: Tutorial

Controlling Data Modification with Access Modes

In addition to the effect on concurrency, the large number of locks can be a
problem. The database server records the number of locks by each program
in a lock table. If the maximum number of locks is exceeded, the lock table
fills up, and the database server cannot place a lock. An error code is
returned. The person who administers a database server system can monitor
the lock table and tell you when it is heavily used.

The Serializable isolation level is automatically used in an ANSI-compliant
database. The Serializable isolation level is required to ensure operations
behave according to the ANSI standard for SQL.

Controlling Data Modification with Access Modes

Universal Server supports access modes. Access modes affect read and write
concurrency for rows within transactions and are set with the SET TRANS-
ACTION statement. You can use access modes to control data modification
among shared files.

Transactions are read-write by default. If you specify that a transaction is
read-only, that transaction cannot perform the following tasks:

= Insert, delete, or update table rows

= Enable or disable constraints, triggers, or indexes

= Create, alter, or drop any database object such as schemas, tables,
temporary tables, indexes, or stored procedures

= Grant or revoke privileges
= Update statistics
= Rename columns or tables

Read-only access mode prohibits updates.

You can execute stored procedures in a read-only transaction as long as the
procedure does not try to perform any restricted statements.

Programming for a Multiuser Environment ~ 7-17

Setting the Lock Mode

7-18

Setting the Lock Mode

The lock mode determines what happens when your program encounters
locked data. One of the following situations occurs when a program attempts
to fetch or modify a locked row:

= The database server immediately returns an error code in SQLCODE
or SQLSTATE to the program.

= The database server suspends the program until the program that
placed the lock removes the lock.

= The database server suspends the program for a time and then, if the
lock is not removed, the database server sends an error-return code
to the program.

You choose among these results with the SET LOCK MODE statement.

Waiting for Locks

If you prefer to wait (this choice is best for many applications), execute the
following statement:

SET LOCK MODE TO WAIT

When this lock mode is set, your program usually ignores the existence of
other concurrent programs. When your program needs to access a row that
another program has locked, it waits until the lock is removed, then proceeds.
The delays are usually imperceptible.

Not Waiting for Locks

The disadvantage of waiting for locks is that the wait might become very
long (although properly designed applications should hold their locks very
briefly). When the possibility of a long delay is not acceptable, a program can
execute the following statement;

SET LOCK MODE TO NOT WAIT

Informix Guide to SQL: Tutorial

Waiting a Limited Time

When the program requests a locked row, it immediately receives an error
code (for example, error -107 Record is locked), and the current SQL
statement terminates. The program must roll back its current transaction and
try again.

The initial setting is not waiting when a program starts up. If you are using
SQL interactively and see an error related to locking, set the lock mode to
wait. If you are writing a program, consider making that one of the first
embedded SQL statements that the program executes.

Waiting a Limited Time

When you use Universal Server, you have an additional choice. You can ask
the database server to set an upper limit on a wait. You can issue the
following statement:

SET LOCK MODE TO WAIT 17

This statement places an upper limit of 17 seconds on the length of any wait.
If a lock is not removed in that time, the error code is returned.

Handling a Deadlock

A deadlock is a situation in which a pair of programs block the progress of each
other. Each program has a lock on some object that the other program wants
to access. A deadlock arises only when all programs concerned set their lock
modes to wait for locks.

Universal Server detects deadlocks immediately when they involve only
data at a single network server. It prevents the deadlock from occurring by
returning an error code (error -143 ISAM error: deadlock detected)tothe
second program to request a lock. The error code is the one the program
receives if it sets its lock mode to not wait for locks. If your program receives
an error code related to locks even after it sets lock mode to wait, you know
the cause is an impending deadlock.

Programming for a Multiuser Environment ~ 7-19

Hanaling External Deadlock

7-20

Handling External Deadlock

A deadlock can also occur between programs on different database servers.
In this case, Universal Server cannot instantly detect the deadlock. (Perfect
deadlock detection requires excessive communications traffic among all
database servers in a network.) Instead, each database server sets an upper
limit on the amount of time that a program can wait to obtain a lock on data
at a different database server. If the time expires, the database server assumes
that a deadlock was the cause and returns a lock-related error code.

In other words, when external databases are involved, every program runs
with a maximum lock-waiting time. The database administrator can set or
modify the maximum for the database server.

Simple Concurrency

If you are not sure which choice to make concerning locking and concurrency;,
and if your application is straightforward, have your program execute the
following statements when it starts up (immediately after the first DATABASE
statement):

SET LOCK MODE TO WAIT
SET ISOLATION TO REPEATABLE READ

Ignore the return codes from both statements. Proceed as if no other
programs exist. If no performance problems arise, you do not need to read
this section again.

Informix Guide to SQL: Tutorial

Locking with Other Database Servers

Locking with Other Database Servers

Universal Server manages its own locking so that it can provide the different
kinds of locks and levels of isolation described in the preceding topics. Other
Informix database servers implement locks using the facilities of the host
operating system and cannot provide the same conveniences.

Some host operating systems provide locking functions as operating-system
services. In these systems, database servers support the SET LOCK MODE
statement.

Some host operating systems do not provide kernel-locking facilities. In these
systems, the database server performs its own locking based on small files
that it creates in the database directory. These files have the suffix .lok.

To determine the kind of system in which your database server is running,
execute the SET LOCK MODE statement and test the error code, as shown in
the following fragment of INFORMIX-ESQL/C code:

J#define LOCK_SERVER 1
#define LOCK_KERNEL 2
j#define LOCK_FILES 3
int which_Tocks()
{

int lTocktype;

locktype = LOCK_FILES;
EXEC SQL set lock mode to wait 30;
if (sqglca.sqglcode == 0)
locktype = LOCK_SERVER;
else
{
EXEC SQL set lock mode to wait;
if (sqlca.sqlcode == 0)
locktype = LOCK_KERNEL;
}
/* restore default condition */
EXEC SQL set lock mode to not wait;
return(locktype);
}

If the database server does not support the SET LOCK MODE statement, your
program is effectively always in NOT WAIT mode; that is, whenever it tries to
lock a row that is locked by another program, it receives an error code
immediately.

Programming for a Multiuser Environment ~ 7-21

Isolation While Readling

7-22

Isolation While Reading

Informix database servers other than Universal Server do not normally place
locks when they fetch rows. Nothing exists that is comparable to the shared
locks that Universal Server uses to implement the Cursor Stability isolation
level.

If your program fetches a row with a singleton SELECT statement or through
a cursor that is not declared FOR UPDATE, the row is fetched immediately,
regardless of whether it is locked or modified by an unfinished transaction.

This design produces the best performance, especially when locks are
implemented by writing notes in disk files, but you must be aware that the
program can read rows that are modified by uncommitted transactions.

You can obtain the effect of Cursor Stability isolation by declaring a cursor
FOR UPDATE, and then using it for input. Whenever the database server
fetches a row through an update cursor, it places a lock on the fetched row. (If
the row is already locked, the program waits or receives an error, depending
on the lock mode.) When the program fetches another row without updating
the current one, the lock on the current row is released, and the new row is
locked.

To ensure that the fetched row is locked as long as you use it, you can fetch
through an update cursor. (The row cannot become stale.) You are also
assured of fetching only committed data because locks on rows that are
updated are held until the end of the transaction. Depending on the host
operating system and the database server, you might experience a
performance penalty for using an update cursor in this way.

Locking Updated Rows

When a cursor is declared FOR UPDATE, locks are handled as follows. Before
a row is fetched, it is locked. If it cannot be locked, the program waits or
returns an error.

The next time a fetch is requested, the database server notes whether the

current row is modified (using either the UPDATE or DELETE statement with
WHERE CURRENT OF) and whether a transaction is in progress. If both these
things are true, the lock on the row is retained. Otherwise, the lock is released.

Informix Guide to SQL: Tutorial

Hold Cursors

So if you perform updates within a transaction, all updated rows remain
locked until the transaction ends. Rows that are not updated are locked only
while they are current. Rows updated outside a transaction, or in a database
that does not use transaction logging, are also unlocked as soon as another
row is fetched.

Hold Cursors

When transaction logging is used, the database server guarantees that
anything done within a transaction can be rolled back at the end of it. To do
this reliably, the database server normally applies the following rules:

= All cursors are closed by ending a transaction.
= Alllocks are released by ending a transaction.

These rules are normal with all database systems that support transactions,
and they do not cause any trouble for most applications. However, circum-
stances exist in which using standard transactions with cursors is not
possible. For example, the following code works fine without transactions.
However, when transactions are added, closing the cursor conflicts with
using two cursors simultaneously.

EXEC SQL DECLARE master CURSOR FOR . . .
EXEC SQL DECLARE detail CURSOR FOR . . . FOR UPDATE
EXEC SQL OPEN master;
while(SQLCODE == 0)
{
EXEC SQL FETCH master INTO
if(SQLCODE == 0)
{
EXEC SQL BEGIN WORK;
EXEC SQL OPEN detail USING
EXEC SQL FETCH detail . . .
EXEC SQL UPDATE . . . WHERE CURRENT OF detail
EXEC SQL COMMIT WORK;
}

}
EXEC SQL CLOSE master;

In this design, one cursor is used to scan a table. Selected records are used as
the basis for updating a different table. The problem is that when each update
is treated as a separate transaction (as the pseudocode in the previous
example shows), the COMMIT WORK statement following the UPDATE closes
all cursors, including the master cursor.

Programming for a Multiuser Environment ~ 7-23

Summary

The simplest alternative is to move the COMMIT WORK and BEGIN WORK
statements to be the last and first ones, respectively, so that the entire scan
over the master table is one large transaction. Treating the scan of the master
table as one large transaction is sometimes possible, but it can become
impractical if many rows need to be updated. The number of locks can be too
large, and they are held for the duration of the program.

A solution that Informix database servers support is to add the keywords
WITH HOLD to the declaration of the master cursor. Such a cursor is referred
to as a hold cursor and is not closed at the end of a transaction. The database
server still closes all other cursors, and it still releases all locks, but the hold
cursor remains open until it is explicitly closed.

Before you attempt to use a hold cursor, you must be sure that you
understand the locking mechanism described here, and you must also under-
stand the programs that are running concurrently. Whenever COMMIT WORK
is executed, all locks are released, including any locks placed on rows fetched
through the hold cursor.

The removal of locks has little importance if the cursor is used as intended,
for a single forward scan over a table. However, you can specify WITH HOLD
for any cursor, including update cursors and scroll cursors. Before you do
this, you must understand the implications of the fact that all locks (including
locks on entire tables) are released at the end of a transaction.

Summary

Whenever multiple programs have access to a database concurrently (and
when at least one of them can modify data), all programs must allow for the
possibility that another program can change the data even as they read it. The
database server provides a mechanism of locks and isolation levels that
usually allows programs to run as if they were alone with the data.

7-24 Informix Guide to SQL: Tutorial

Designing and Managing
Databases

Building Your Data Model

Why Build a Data Model C e 8-3
Entity-Relationship Data-Model Overwew C e e 8-4
ldentifying and Defining Your Pr|n0|pal Data Objects e 8-5
Discovering Entities e 8-5
Choosing Possible Entltles C e 8-5
Pruning Your List of Entities. 8-6

The Telephone-Directory Example. 8-7
Diagramming Your Entities 8-9
Defining the Relationships 8-9
Connectivity . . . < R ()
Existence Dependency . < R ()
Cardinality e < Rk
Discovering the Relatlonshlps e < Rk
Diagramming Your Relationships 8-16
Identifying Attributes . . . e - N 4
Selecting Attributes for Your Entltles e - 4

Listing Your Attributes. 818

About Entity Occurrences. 818
Diagramming Your Data Objects - R
Reading Entity-Relationship Dlagrams 820

The Telephone-Directory Example. 821
Translating E-R Data Objects into Relational Constructs 8-22
Rules for Defining Tables, Rows, and Columns. 823
Placing Constraints on Columns 824
Determining Keys for Tables 825
Primary Keys . . . T 14
Foreign Keys (Join Columns) .o 827

Adding Keys to the Telephone- D|rectory Dlagram 828

8-2

Resolving Your Relationships
Resolving m:n Relationships .
Resolving Other Special Relationships

Normalizing Your Data Model .
First Normal Form
Second Normal Form
Third Normal Form . Lo
Summary of Normalization Rules .

Summary .

Informix Guide to SQL: Tutorial

8-29
8-29
8-30

8-31
8-32
8-33
8-34
8-35

8-36

he first step in creating a database is to construct a data model: a
precise, complete definition of the data to be stored. This chapter contains a
cursory overview of one method of doing this. Chapter 9, “Implementing
Your Data Model” describes how to implement a data model once you design
it. The data model shown in this chapter assumes a relational database. It
does not show how to construct a data model for an object-relational
database. Nonetheless, in a general sense, the entity-relationship diagrams
shown in this chapter can be used to design a data model for an object-
relational database.

To understand the material in this chapter, you should have a basic
understanding of SQL and relational database theory.

Why Build a Data Model

You already have some idea regarding the type of data in your database and
how that data needs to be organized. This is the beginning of a data model.
By using some type of formal notation to build your data model, you can help
your design in two ways:

= It makes you think through the data model completely.

A mental model often contains unexamined assumptions;
formalizing the design reveals these points.

= Itiseasier to communicate your design to other people.

A formal statement makes the model explicit, so that others can
return comments and suggestions in the same form.

Building Your Data Model 8-3

Entity-Relationship Data-Moadel Overview

8-4

Entity-Relationship Data-Model Overview

Different books present different formal methods of modeling data. Most
methods force you to be thorough and precise. If you have already learned a
method, by all means use it.

This chapter presents a summary of the entity-relationship (E-R) data model,
a modeling method taught in training courses presented by Informix. The
E-R modeling method uses the following steps:

1. Identify and define the principal data objects (entities, relationships,
and attributes).

2. Diagram the data objects using the entity-relationship approach.

3. Translate your entity-relationship data objects into relational
constructs.

4. Resolve the logical data model.
5. Normalize the logical data model.

Steps 1 through 5 are discussed in this chapter. Chapter 9, “Implementing
Your Data Model,” discusses the final step of converting your logical data
model to a physical schema.

The end product of data modeling is a fully defined database design encoded
in a diagram similar to Figure 8-21 on page 8-33, which shows the final set of
tables for a personal telephone directory. The personal telephone directory is
an example developed in this chapter. It is used rather than the stores7
database because it is small enough to be developed completely in one
chapter but large enough to show the entire method.

Informix Guide to SQL: Tutorial

Identifying and Defining Your Principal Data Objects

Identifying and Defining Your Principal Data
Objects

The first step in building an entity-relationship data model is to identify and
define your principal data objects. The principal data objects are entities,
relationships, and attributes.

Discovering Entities

An entity is a principal data object that is of significant interest to the user. It
is usually a person, place, thing, or event to be recorded in the database. If the
data model were a language, entities would be its nouns. The stores7
database contains the following entities: customer, orders, items, stock, catalog,
cust_calls, call_type, manufact, and state.

The first step in modeling is to choose the entities to record. Most of the
entities that you choose will become tables in the model.

Choosing Possible Entities

If you have an idea for your database, you can probably list several entities
immediately. However, if other people use the database, you should poll
them for their understanding of what fundamental things the database
should contain. Make a preliminary list of all the entities you can identify.
Interview the potential users of the database for their opinions about what
must be recorded in the database. Determine basic characteristics for each
entity, such as “at least one address must be associated with a name.” All the
decisions you make in determining your entities become your business rules.
“The Telephone-Directory Example” on page 8-7 provides some of the
business rules for the example in this chapter.

Later, when you normalize your data model, some of the entities can expand
or become other data objects. See “Normalizing Your Data Model” on
page 8-31 for additional information.

Building Your Data Model 8-5

Discovering Entities

8-6

Pruning Your List of Entities

When the list of entities seems complete, prune it by making sure that each
entity has the following qualities:

s Itissignificant.

List only entities that are important to the users of the database and
worth the trouble and expense of computer tabulation.

= |tis generic.

List only types of things, not individual instances. For instance,
symphony might be an entity, but Beethoven’s Fifth would be an entity
instance or entity occurrence.

= Itis fundamental.

List only entities that exist independently, without needing
something else to explain them. Anything you could call a trait, a
feature, or a description is not an entity. For example, a part number
is a feature of the fundamental entity called part. Also, do not list
things that you can derive from other entities; for example, avoid any
sum, average, or other quantity that you can calculate in a SELECT
expression.

= Itisunitary.

Be sure that each entity you name represents a single class. It cannot
be broken down into subcategories, each with its own features. In
planning the telephone-directory model (see “The Telephone-
Directory Example” on page 8-7), the telephone number, an
apparently simple entity, turns out to consist of three categories, each
with different features.

These choices are neither simple nor automatic. To discover the best choice of
entities, you must think deeply about the nature of the data you want to store.
Of course, that is exactly the point of making a formal data model. The
following section describes this chapter’s example in further detail.

Informix Guide to SQL: Tutorial

The Telephone-Directory Example

Discovering Entities

Suppose that you create a database that computerizes a personal telephone
directory. The database model must record the names, addresses, and

telephone numbers of people and organizations that its user deals with for
business and pleasure.

The first step is to define the entities, and the first thing you might do is look
carefully at a page from a telephone directory to see what entities are there.

PHONE
~503-776-3428

NAME PHONE
Catherine Morgan 206-789-5396
ADDRESS

u I U 429 Bridge Way
Seattle, WA 98103

(P

PHONE NAME
, @V

ADDRESS

@ I Q)| Morganthaler Industries

@ | e

“HONE

Thomas Morrison 503-256-6031
ADDRESS
866 Gage Rd.
Klamath Falls, OR 97601

Building Your Data Model

Figure 8-1
Partial Page from a
Telephone Directory

8-7

Discovering Entities

8-8

The physical form of the existing data can be misleading. Do not let the
layout of pages and entries in the telephone directory mislead you into trying
to specify an entity that represents one entry in the book—some kind of
alphabetized record with fields for name, number, and address. You want to
model the data, not the medium.

At first glance, the entities that are recorded in a telephone directory include
the following items:

= Names (of persons and organizations)
= Addresses
s Telephone numbers

Do these entities meet the earlier criteria? They are clearly significant to the
model and are generic.

Are they fundamental? A good test is to ask if an entity can vary in number
independently of any other entity. After you think about it, you realize that a
telephone directory sometimes lists people who have no number or current
address (people who move or change jobs). A telephone directory also can
list both addresses and numbers that are used by more than one person. All
three of these entities can vary in number independently; this fact strongly
suggests that they are fundamental, not dependent.

Are they unitary? Names can be split into personal names and corporate
names. After thinking about it, you decide that all names should have the
same features in this model; that is, you do not plan to record different infor-
mation about a company than you would about a person. Likewise, you
decide only one kind of address exists; no need exists to treat home addresses
differently from business ones.

However, you also realize that more than one kind of telephone number
exists. Voice numbers are answered by a person, fax numbers connect to a fax
machine, and modem numbers connect to a computer. You decide that you
want to record different information about each kind of number, so these
three are different entities.

Informix Guide to SQL: Tutorial

Defining the Relationships

For the personal telephone-directory example, you decide that you want to
keep track of the following entities:

= Name

= Address (mailing)

= Telephone number (voice)

s Telephone number (fax)

s Telephone number (modem)

Diagramming Your Entities

A section in this chapter will teach you how to use the entity-relationship
diagrams. For now, create a separate, rectangular box for each entity in the
telephone-directory example. You will learn how to put the entities together
with relationships in “Diagramming Your Data Objects” on page 8-19.

Figure 8-2

name

Entities in the
address voice fax modem Personal Telephone-
Directory Example

Defining the Relationships

After you choose your entities, you need to consider the relationships
between them. Relationships are not always obvious, but all the ones worth
recording must be found. The only way to ensure that all the relationships are
found is to list all possible relationships exhaustively. Consider every pair of
entities A and B and ask, “What is the relationship between an A and a B?”

A relationship is an association between two entities. Usually, a verb or
preposition that connects two entities implies a relationship. A relationship
between entities is described in terms of connectivity, existence dependency, and
cardinality.

Building Your Data Model 8-9

Defining the Relationships

Connectivity

Connectivity refers to the number of entity instances. An entity instance is a
particular occurrence of an entity. The three types of connectivity are one-to-
one (written 1:1), one-to-many (written 1:n), and many-to-many (written
m:n) as Figure 8-3 shows.

Figure 8-3
Connectivity in
Relationships

00
O M NV
| /\ //\
[] Ll | | | |

one-to-one one-to-many many-to-many

For example, in the telephone-directory example, an address can be
associated with more than one name. The connectivity for the relationship
between the name and address entities is one-to-many (1:n).

Existence Dependency

Existence dependency describes whether an entity in a relationship is
optional or mandatory. Analyze your business rules to identify whether an
entity must exist in a relationship. For example, your business rules might
dictate that an address must be associated with a name. Such an association
makes the existence dependency for the relationship between the name and
address entities mandatory. An example of an optional existence dependency
could be a business rule that says a person might or might not have children.

8-10 Informix Guide to SQL: Tutorial

Cardinality

Defining the Relationships

Cardinality places a constraint on the number of times an entity can appear
in a relationship. The cardinality of a 1:1 relationship is always one. But the
cardinality of a 1:n relationship is open; n could be any number. If you need
to place an upper limit on n, you do it by specifying a cardinality for the
relationship. For example, in a store sale example, you could limit the
number of sale items that a customer can purchase at one time. You usually
place cardinality constraints through your application program or through

stored procedures.

For additional information about cardinality, see any entity-relationship
data-modeling text. See the “Summary” on page 8-36 for references to two
data-modeling books.

Discovering the Relationships

A compact way to discover the relationships is to prepare a matrix that names
all the entities on the rows and again on the columns. The matrix in Figure 8-4
reflects the entities for the personal telephone directory.

Figure 8-4
name address number number number A Matrix That
(voice) (fax) (modem) Reflects the Entities
for a Personal
name Telephone Directory
address
number
(voice)
number
(fax)
number
(modem)

Building Your Data Model 8-11

Defining the Relationships

You can ignore the lower triangle of the matrix, which is shaded. You must
consider the diagonal cells; that is, you must ask the question “What is the
relationship between an A and another A?” In this model, the answer is
always none. No relationship exists between a name and a hame or an
address and another address, at least none that is worth recording in this
model. When a relationship exists between an A and another A, you have
found a recursive relationship. (See “Resolving Other Special Relationships”
on page 8-30.)

For all cells for which the answer is clearly none, write none in the matrix.
Figure 8-5 shows the current matrix.

Figure 8-5
name address number number number A Matrix with Initial
(voice) (fax) (modem) Relationships
Included
name none
address none
number none
(voice)
number none
(fax)
number none
(modem)

Although no entities relate to themselves in this model, this is not always true
in other models. A typical example is an employee who is the manager of
another employee. Another example occurs in manufacturing, when a part
entity is a component of another part.

8-12 Informix Guide to SQL: Tutorial

Defining the Relationships

In the remaining cells, you write the connectivity relationship that exists
between the entity on the row and the entity on the column. The following
kinds of relationships are possible:

= One-to-one (1:1), in which never more than one entity A exists for one
entity B and never more than one B for one A.

= One-to-many (1:n), in which more than one entity A never exists, but
several entities B can be related to A (or vice versa).

= Many-to-many (m:n), in which several entities A can be related to one
B and several entities B can be related to one A.

One-to-many relationships are the most common. The telephone-directory
model examples shows one-to-many and many-to-many relationships.

As Figure 8-5 shows, the first unfilled cell represents the relationship
between names and addresses. What connectivity lies between these entities?
You might ask yourself, “How many names can be associated with an
address?” You decide that a name can have zero or one address but no more
than one. You write 0-1 opposite name and below address, as Figure 8-6

shows.

Figure 8-6
name address Relationship
Between Name and
Address

name none v

0-1
‘_’

Ask yourself how many addresses can be associated with a name. You decide
that an address can be associated with more than one name. For example, you
can know several people at one company or more than two people who live
at the same address.

Building Your Data Model 8-13

Defining the Relationships

Can an address be associated with zero names? That is, should it be possible
for an address to exist when no names use it? You decide that yes, it can.
Below address and opposite name, you write 0-n, as Figure 8-7 shows.

Figure 8-7
Relationship
name address Between Address
/ and Name
\ 4
name none 0-n
0-1

If you decide that an address cannot exist unless it is associated with at least
one name, you write 1-n instead of 0-n.

When the cardinality of a relationship is limited on either side to 1, itisa 1:n
relationship. In this case, the relationship between names and addresses is a
1:n relationship.

Now consider the next cell, the relationship between a name and a voice
number. How many voice numbers can a name be associated with, one or
more than one? Glancing at your telephone directory, you see that you have
often noted more than one telephone number for a person. For a busy sales-
person you have a home number, an office number, a paging number, and a
car phone number. But you might also have names without associated
numbers. You write 0-n opposite name and below number (voice), as
Figure 8-8 shows.

8-14

Figure 8-8
name address number Relationship
(voice) Between Name and
Number
name none 0-n
0-1 0-n

Informix Guide to SQL: Tutorial

Defining the Relationships

What is the other side of this relationship? How many names can be
associated with a voice number? You decide that only one name can be
associated with a voice number. Can a number be associated with zero
names? No, you decide there is no point to recording a number unless
someone uses it. You write 1 under number (voice) and opposite name, as
Figure 8-9 shows.

Figure 8-9
Relationship
name address nun_]ber Between Number
(voice) and Name
name none 0-n 1
0-1 0-n

Fill out the rest of the matrix in the same fashion, using the following
decisions:

= A name can be associated with more than one fax number; for
example, a company can have several fax machines. Going the other
way, a fax number can be associated with more than one name; for
example, several people can use the same fax number.

= A modem number must be associated with exactly one name. (This
is an arbitrary decree to complicate the example; pretend it is a
requirement of the design.) However, a name can have more than
one associated modem number; for example, a company computer
can have several dial-up lines.

= Although some relationship exists between a voice number and an
address, a modem number and an address, and a fax number and an
address in the real world, none needs to be recorded in this model.
An indirect relationship already exists through name.

Building Your Data Model 8-15

Defining the Relationships

Figure 8-10 shows a completed matrix.

Figure 8-10
name address number number number A Completed Matrix
(voice) (fax) (modem) for a Te/gphone
Directory
name none 0-n 1 1-n 1
0-1 0-n 0-n 0-n
address none none none none
number none none none
(voice)
number none none
(fax)
number none
(modem)

The matrix also reflects the following decisions:

= No relationship exists between a fax number and a modem number.

= No relationship exists between a voice number and a fax number.

= No relationship exists between a voice number and a modem
number.

You might disagree with some of these decisions (for example, that a
relationship between voice numbers and modem numbers is not supported).
For the sake of this example, these are our business rules.

Diagramming Your Relationships

For now, save the matrix that you created in this section. You will learn how
to create an entity-relationship diagram in “Diagramming Your Data
Objects” on page 8-19.

8-16 Informix Guide to SQL: Tutorial

Identifying Attributes

ldentifying Attributes

Entities contain attributes, which are characteristics or modifiers, qualities,
amounts, or features. An attribute is a fact or nondecomposable piece of
information about an entity. Later, when you represent an entity as a table, its
attributes are added to the model as new columns.

Before you can identify your attributes, you must identify your entities. After
you determine your entities, ask yourself, “What characteristics do | need to
know about each entity?” For example, in an address entity, you probably
need information about street, city, state, and zipcode. Each of these character-
istics of the address entity becomes an attribute.

Selecting Attributes for Your Entities
In selecting attributes, choose ones that have the following qualities:

= They are significant.
Include only attributes that are useful to the database users.
= They are direct, not derived.

An attribute that can be derived from existing attributes (for
instance, through an expression in a SELECT statement) should not
be made part of the model. The presence of derived data greatly
complicates the maintenance of a database.

At a later stage of the design, you can consider adding derived
attributes to improve performance, but at this stage you should
exclude them. Performance improvements are discussed in the
INFORMIX-Universal Server Performance Guide.

= They are nondecomposable.

An attribute can contain only single values, never lists or repeating
groups. Composite values must be broken into separate attributes.

= They contain data of the same type.
For example, you would want to enter only date values in a birthday
attribute, not names or telephone numbers.

The rules for defining attributes are the same as those for defining columns.
For more information about defining columns, see “Placing Constraints on
Columns” on page 8-24.

Building Your Data Model 8-17

Identifying Attributes

The following attributes are added to the telephone-directory example to
produce the diagram shown in Figure 8-15 on page 8-21:

m Street, city, state, and zip code are added to the address entity.

= Birth date is added to the name entity. Also added to the name entity
are email address, anniversary date, and children’s first names.

= Type is added to the voice entity to distinguish car phones, home
phones, and office phones. A voice number can be associated with
only one voice type.

= The hours that a fax machine is attended are added to the fax entity.

= Whether a modem supports 9,600-, 14,400-, or 28,800-baud rates is
added to the modem entity.

Listing Your Attributes

For now, simply list the attributes for the telephone-directory example with
the entities with which you think they belong. Your list should look
something like Figure 8-11.

Figure 8-11
name address voice fax modem Attributes for the
fname street vce_num fax_num mdm_num Telephone-Directory
Iname city vee_type oper_from h9600 Example
bdate state oper_till b14400
anniv zipcode h28800
email
childl
child2
child3

About Entity Occurrences

An additional data object that you need to know about is the entity
occurrence. Each row in a table represents a specific, single occurrence of the
entity. For example, if customer is an entity, a customer table represents the
idea of customer; in it, each row represents one specific customer, such as Sue
Smith. Keep in mind that entities will become tables, attributes will become
columns, and rows will become entity occurrences.

8-18 Informix Guide to SQL: Tutorial

Diagramming Your Data Objects

Diagramming Your Data Objects

At this point, you have already discovered and understood the entities and
relationships in your database. That is the most important part of the
relational database design process. Once you have determined the entities
and relationships, you might find it helpful to have a method for displaying
your thought process during database design.

Most data-modeling methods provide some form of graphically displaying
your entities and relationships. Informix uses the E-R diagram approach
originally developed by C. R. Bachman. E-R diagrams serve the following
purposes:

= They model the information needs of an organization.

= They identify entities and their relationships.

= They provide a starting point for data definition (data-flow
diagrams).

= They provide an excellent source of documentation for application
developers as well as database and system administrators.

= They create a logical design of the database that can be translated
into a physical schema.

Several different styles of documenting E-R diagrams exist. If you already
have a style that you prefer, use it. Figure 8-12 shows a sample E-R diagram.

Figure 8-12

name address Symbols of an

Entity-Relationship
Diagram

entity j

k entity

relationship

Building Your Data Model 8-19

Diagramming Your Data Objects

Entities are represented by a box. Relationships are represented by a line that
connects the entities. In addition, you use several graphical items to display
the following features of relationships, as Figure 8-13 shows:

= Acircle across a relationship link indicates optionality in the
relationship (zero instances can occur).

= A small bar across a relationship link indicates that exactly one
instance of the entity is associated with another entity (consider the
bar to be a “1”).

= The “crow’s feet” represent many in your relationship.

Figure 8-13

optionality optionality The Parts of a

w Relationship in an
Entity-Relationship
Diagram
k many exactly _J

one

Reading Entity-Relationship Diagrams

You read the diagrams first from left to right and then from right to left. In the
case of the name-address relationship in Figure 8-14, you read the relation-
ships as follows. Names can be associated with zero or exactly one address;
addresses can be associated with zero, one, or many names.

8-20

Figure 8-14

can have zero or Reading an_Ent/ty-

> exactly 1 Relationship

e ! Diagram
name g

X

address

DO

\ can have zero or many

Informix Guide to SQL: Tutorial

Diagramming Your Data Objects

The Telephone-Directory Example

Figure 8-15 shows the telephone-directory example and includes the entities,
relationships, and attributes. This diagram includes the relationships that
were established with the matrix. After you study the diagram symbols,
compare the E-R diagram in Figure 8-15 with the matrix in Figure 8-10 on
page 8-16. Verify for yourself that the relationships are the same in both
figures.

A matrix such as Figure 8-10 on page 8-16 is a useful tool when you are first
designing your model because, in filling it out, you are forced to think of
every possible relationship. However, the same relationships appear in a
diagram such as Figure 8-15, and this type of diagram might be easier to read
when you are reviewing an existing model.

Figure 8-15
name Preliminary Entity-
fname Relationship
Iname Diagram of the
bdate Telephone-Directory
anniv address Example
email street
childl city
child2 H state
child3 Zipcode
SR voice fax modem
vce_num fax_num mdm_num
vece_type oper_from b9600
oper_till h14400
h28800

Building Your Data Model 8-21

Translating E-R Data Objects into Relational Constructs

8-22

After the Diagram Is Complete
The rest of the chapter describes the following tasks:

= How to translate the entities, relationships, and attributes into
relational constructs

= How to resolve the E-R data model

= How to normalize the E-R data model

Chapter 9, “Implementing Your Data Model,” shows you how to create a
database from the E-R data model.

Translating E-R Data Objects into Relational
Constructs

All the data objects you have learned about so far, entities, relationships,
attributes, and entity occurrences, will be translated into SQL tables, joins
between tables, columns, and rows. The tables, columns, and rows of your
database must fit the rules found in “Rules for Defining Tables, Rows, and
Columns” on page 8-23.

Your data objects should fit these rules before you normalize your data
objects. To normalize your data objects, analyze the dependencies between
your entities, relationships, and attributes. Normalization is discussed in
“Normalizing Your Data Model” on page 8-31.

After you normalize the data model, you can use SQL statements to create a
database that is based on your data model. Chapter 9, “Implementing Your
Data Model,” describes how to create your database and provides the
database schema for the telephone-directory example.

Each entity that you choose is represented as a table in the model. The table
stands for the entity as an abstract concept, and each row represents a
specific, individual occurrence of the entity. In addition, each attribute of an
entity is represented by a column in the table.

Informix Guide to SQL: Tutorial

Rules for Defining Tables, Rows, and Columns

Universal Server is an object-relational database server. Support for exten-
sible data types and inheritance define the object-oriented capabilities of
Universal Server. (For information about extensible data types, see
“Extended Data Types” on page 9-4. For information about inheritance, see
“What Is Inheritance?” on page 10-20.) Support for SQL and many concepts
that are fundamental to relational data-model methods, including the E-R
data model, define the relational capabilities of Universal Server.

You can apply the following rules, which represent the relational aspect of
Universal Server, to help you design your data model. Following these rules
will save you time and effort when you normalize your model.

Rules for Defining Tables, Rows, and Columns

You are already familiar with the idea of a table that is composed of rows and
columns. But you must respect the following rules when you define the tables
of a formal data model:

= Rows must stand alone.

Each row of a table is independent and does not depend on any other
row of the same table. As a consequence, the order of the rows in a
table is not significant in the model. The model should still be correct
even if all the rows of a table are shuffled into random order.

After the database is implemented, you can tell the database server
to store rows in a certain order for the sake of efficiency, but that
order does not affect the model.

= Rows must be unique.

In every row, some column must contain a unique value. If no single
column has this property, the values of some group of columns taken
as a whole must be different in every row.

Building Your Data Model 8-23

Rules for Defining Tables, Rows, and Columns

8-24

s Columns must stand alone.

The order of columns within a table has no meaning in the model.
The model should still be correct even if the columns are rearranged.

After the database is implemented, programs and stored queries that
use an asterisk to mean all columns are dependent on the final order
of columns, but that order does not affect the model.

= Each column must have a unique name.

Two columns within the same table cannot share the same name.
However, you can have columns that contain similar information.
For example, the name table in the telephone-directory example
contains columns for children’s names. You can name each column,
childl, child2, and so on.

If your previous experience is only with data organized as arrays or
sequential files, these rules might seem unnatural. However, Universal
Server requires that you use only tables, rows, and columns (that follow these
rules) to represent all types of data. With a little practice, these rules become
automatic.

Placing Constraints on Columns

When you define your table and columns with the CREATE TABLE statement,
you constrain each column. These constraints specify whether you want the
column to contain characters or numbers, the form that you want dates to
use, and other constraints. The column-specific properties describe the
constraints and identify the set of valid values that attributes can assume. The
column-specific properties of a column can consist of the following items:

= Data type (INTEGER, CHAR, DATE, and so on)

s Format (for example, yy/mm/dd)

= Range (for example, 1,000 to 5,400)

= Meaning (for example, personnel number)

= Allowable values (for example, only grades S or U)

Informix Guide to SQL: Tutorial

Determining Keys for Tables

= Uniqueness

= Null support

» Default value

= Referential constraints

You define the column-specific properties of columns when you create your
tables. Defining column-specific properties and creating your tables and
database are discussed in Chapter 9, “Implementing Your Data Model.”

Determining Keys for Tables

The columns of a table are either key columns or descriptor columns. A key
column is one that uniquely identifies a particular row in the table. For
example, a social-security number is unique for each employee. A descriptor
column specifies the nonunique characteristics of a particular row in the
table. For example, two employees can have the same first name, Sue. The
first name Sue is a nonunique characteristic of an employee. The main types
of keys in a table are primary keys and foreign keys.

You designate primary and foreign keys when you create your tables.
Primary and foreign keys are used to relate tables physically. Your next task
is to specify a primary key for each table. That is, you must identify some
guantifiable characteristic of the table that distinguishes each row from every
other row.

Primary Keys

The primary key of a table is the column whose values are different in every
row. Because they are different, they make each row unique. If no one such
column exists, the primary key is a composite of two or more columns whose
values, taken together, are different in every row.

Every table in the model must have a primary key. This rule follows automat-
ically from the rule that all rows must be unique. If necessary, the primary
key is composed of all the columns taken together.

The primary key should be a numeric data type (INT or SMALLINT), SERIAL
data type, or a short character string (as used for codes). Informix recom-
mends that you avoid using long character strings as primary keys.

Building Your Data Model 8-25

Determining Keys for Tables

8-26

Null values are never allowed in a primary-key column. Null values are not
comparable; that is, they cannot be said to be alike or different. Hence, they
cannot make a row unique from other rows. If a column permits null values,
it cannot be part of a primary key.

Some entities have ready-made primary keys such as catalog codes or
identity numbers, which are defined outside the model. These are
user-assigned keys.

Sometimes more than one column or group of columns can be used as the
primary key. All columns or groups that qualify to be primary keys are called
candidate keys. All candidate keys are worth noting because their property of
uniqueness makes them predictable in a SELECT operation. When you select
the column of a candidate key, you know the result does not contain any
duplicate rows, therefore, the result of a SELECT operation can be a table in
its own right, with the selected candidate key as its primary key.

Composite Keys

A composite key is used when the values of two or more columns are required
to uniquely identify each row. Some entities lack features that are reliably
unique. Different people can have identical names; different books can have
identical titles. You can usually find a composite of attributes that work as a
primary key. For example, people rarely have identical names and identical
addresses, and different books rarely have identical titles, authors, and publi-
cation dates.

System-Assigned Keys

A system-assigned primary key is usually preferable to a composite key. A
system-assigned key is a number or code that is attached to each instance of
an entity when the entity is first entered into the database. The easiest system-
assigned keys to implement are serial numbers because the database server
can generate them automatically. Informix offers the SERIAL data type for
serial numbers. However, the people who use the database might not like a
plain numeric code. Other codes can be based on actual data; for example, an
employee identification code could be based on a person’s initials combined
with the digits of the date that they were hired. In the telephone-directory
example, a system-assigned primary key is used for the name table.

Informix Guide to SQL: Tutorial

Determining Keys for Tables

Foreign Keys (Join Columns)

A foreign key is simply a column or group of columns in one table that
contains values that match the primary key in another table. Foreign keys are
used to join tables; in fact, most of the join columns referred to earlier in this
book are foreign-key columns. Figure 8-16 shows the primary and foreign
keys of the customer and order tables from the stores7 database.

Figure 8-16
customer orders . ;

Primary and Foreign

customer_num order_num | customer_num Keys in the

Customer-Order

< Relationships

primary key

foreign key

Foreign keys are noted wherever they appear in the model because their
presence can restrict your ability to delete rows from tables. Before you can
delete a row safely, either you must delete all rows that refer to it through
foreign keys, or you must define the relationship using special syntax that
allows you to delete rows from primary-key and foreign-key columns with a
single delete command. The database server disallows deletes that violate
referential integrity.

You can always preserve referential integrity by deleting all foreign-key rows
before you delete the primary key to which they refer. If you are imposing
referential constraints on your database, the database server does not permit
you to delete primary keys with matching foreign keys. It also does not
permit you to add a foreign-key value that does not reference an existing
primary-key value. Referential integrity is discussed in Chapter 4,
“Modifying Data.”

Building Your Data Model 8-27

Determining Keys for Tables

Adding Keys to the Telephone-Directory Diagram

The initial choices of primary and foreign keys are as Figure 8-17 shows. This
diagram reflects some important decisions.

For the name table, the primary key rec_num is chosen. Note that the data
type for rec_num is SERIAL. The values for rec_num are system generated. If
you look at the other columns (or attributes) in the name table, you see that
the data types that are associated with the columns are mostly character-
based. None of these columns alone is a good candidate for a primary key. If
you combine elements of the table into a composite key, you create an exceed-
ingly cumbersome key. The SERIAL data type gives you a key that you can
also use to join other tables to the name table.

For the voice, fax, and modem tables, the telephone numbers are shown as
primary keys. These tables are joined to the name table through the rec_num
key.

The address table also uses a system-generated primary key, id_num. The
address table must have a primary key because the business rules state that
an address can exist when no names use it. If the business rules prevent an
address from existing unless a name is associated with it, then the address
table could be joined to the name table with the foreign key rec_num only.

name Figure 8-17
rec_num PK ~ Telephone-
[name Directory Diagram
fname address W{th ana% an
bdate id_num PK Foreign Keys Adde
anniv rec_num FK
email >O—O'|— street
childl city
child2 state
child3 zipcode
fax modem
/(R voice fax_num PK mdm_num PK PK = Primary Key
rec_num FK rec_num FK FK = Foreign Key
vce_num PK oper_from b9600
rec_num FK oper_til b14400
vee_type 28800

8-28 Informix Guide to SQL: Tutorial

Resolving Your Relationships

Resolving Your Relationships

The aim of a good data model is to create a structure that provides the
database server with quick access. To further refine the telephone-directory
data model, you can resolve the relationships and normalize the data model.
This section addresses the hows and whys of resolving your relationships.
Normalizing your data model is discussed in “Normalizing Your Data
Model” on page 8-31.

Resolving m:n Relationships

Many-to-many (m:n) relationships add complexity and confusion to your
model and to the application development process. The key to resolving m:n
relationships is to separate the two entities and create two one-to-many (1:n)
relationships between them with a third intersect entity. The intersect entity
usually contains attributes from both connecting entities.

To resolve a m:n relationship, analyze your business rules again. Have you
accurately diagrammed the relationship? In the telephone-directory
example, we have a m:n relationship between the name and fax entities as
Figure 8-17 on page 8-28 shows. To resolve the relationship between name
and fax, we carefully reviewed the business rules. The business rules say:
“One person can have zero, one, or many fax numbers; a fax number can be for
several people.” Based on what we selected earlier as our primary key for the
voice entity, a m:n relationship exists.

A problem exists in the fax entity because the telephone number, which is
designated as the primary key, can appear more than one time in the fax
entity; this violates the qualification of a primary key. Remember, the primary
key must be unique.

To resolve this m:n relationship, you can add an intersect entity between name
and fax entities. The new intersect entity, faxname, contains two attributes,
fax_num and rec_num. The primary key for the entity is a composite of both
attributes. Individually, each attribute is a foreign key that references the
table from which it came. The relationship between the name and faxname
tables is 1:n because one name can be associated with many fax numbers; in
the other direction, each faxname combination can be associated with one
rec_num. The relationship between the fax and faxname tables is 1:n because
each number can be associated with many faxname combinations.

Building Your Data Model 8-29

Resolving Your Relationships

Figure 8-18
name name Resolving a
rec_num PK rec_num PK Many-to-Many
Iname Intersect Iname (m:n) Relationship
fname Entity fname
bdate \ bdate
anniv v faxname anniv
email email
child1 fax_num PKFK 5O child
. rec_num PK FK .
child2 v child2
child3 child3
fax
fax_num PK fax PK = Primary Key
rec_num FK fax_num PK FK = Foreign Key
oper_from oper_from
oper_till oper_till
BEFORE AFTER

Resolving Other Special Relationships

You might encounter other special relationships that can hamper a smooth-
running database. The following list shows these relationships:

= Complex relationships
= Recursive relationships
= Redundant relationships

A complex relationship is an association among three or more entities. All the
entities must be present for the relationship to exist. To reduce this
complexity, reclassify all complex relationships as an entity, related through
binary relationships to each of the original entities.

A recursive relationship is an association between occurrences of the same
entity type. These types of relationships do not occur often. Examples of
recursive relationships are bill-of-materials (parts are composed of subparts)
and organizational structures (employee manages other employees). See
Chapter 5, “Programming with SQL,” for an extended example of a recursive
relationship. You might choose not to resolve recursive relationships.

8-30 Informix Guide to SQL: Tutorial

Normalizing Your Data Model

A redundant relationship exists when two or more relationships are used to
represent the same concept. Redundant relationships add complexity to the
data model and lead a developer to place attributes in the model incorrectly.
Redundant relationships might appear as duplicated entries in your entity-
relationship diagram. For example, you might have two entities that contain
the same attributes. To resolve a redundant relationship, review your data
model. Do you have more than one entity that contains the same attributes?
You might need to add an entity to the model to resolve the redundancy. The
INFORMIX-Universal Server Performance Guide discusses additional topics
that are related to redundancy in a data model.

Normalizing Your Data Model

The telephone-directory example in this chapter appears to be a good model.
You could implement it at this point into a database, but this example might
present problems later on with application development and data-
manipulation operations. Normalization is a formal approach to applying a set
of rules used in associating attributes with entities.

Normalizing your data model can do the following things:

= Produce greater flexibility in your design

= Ensure that attributes are placed in the proper tables

» Reduce data redundancy

= Increase programmer effectiveness

= Lower application maintenance costs

= Maximize stability of the data structure
Normalization consists of several steps to reduce the entities to more
desirable physical properties. These steps are called normalization rules, also
referred to as normal forms. Several normal forms exist; this chapter discusses
the first three normal forms. Each normal form constrains the data to be more
organized than the last form. Because of this, you must achieve first normal

form before you can achieve second normal form, and you must achieve
second normal form before you can achieve third normal form.

Building Your Data Model 8-31

Normalizing Your Data Model

First Normal Form

An entity is in first normal form if it contains no repeating groups. In
relational terms, a table is in first normal form if it contains no repeating
columns. Repeating columns make your data less flexible, waste disk space,
and make it more difficult to search for data. In the telephone-directory
example, it appears that the name table contains repeating columns, childl,
child2, and child3, as Figure 8-19 shows.

Figure 8-19
name Name Entity Before
rec_num | Iname | fname | bdate | anniv | email | childl | child2 | child3 Normalization

repeating columns

You can see some problems in the current table. The table always reserves
space on the disk for three child records, whether the person has children or
not. The maximum number of children that you can record is three, but some
of your acquaintances might have four or more children. To look for a
particular child, you would have to search all three columns in every row.

To eliminate the repeating columns and bring the table to first normal form,
separate the table into two tables as Figure 8-20 shows. Put the repeating
columns into one of the tables. The association between the two tables is
established with a primary-key and foreign-key combination. Because a child
cannot exist without an association in the name table, you can reference the
name table with a foreign key, rec_num.

Figure 8-20
name First Normal Form
rec_num | Iname | fname | bdate | anniv | email Reached for gﬁg}i

Primary Key

child
| rec_num | child_name

Foreign Key

8-32 Informix Guide to SQL: Tutorial

Normalizing Your Data Model

Now check Figure 8-17 on page 8-28 for groups that are not in first normal
form. The name-modem relationship is not at the first normal form because the
columns b9600, b14400, and b28800 are considered repeating columns. Add
a new attribute called b_type to the modem table to contain occurrences of
b9600, b14400, and b28800. Figure 8-21 shows the data model normalized
through first normal form.

Figure 8-21
name child The Data Model of a
rec_num PK rec_num FK Personal Te/gphone
Iname child._name . addr?:asi Directory
fname \ 1a_num h
bdate rec_num
7 ()'|—
anniv | street
email | city
state
Zipcode
voice faxname
vce_num PK fax_num PK FK
rec_num rec_num PK FK mod
vee_type A\ 0dem
mdm_num PK
fax rec_num FK
fax_num PK b_type
oper_f_rom PK = Primary Key
oper_till)
FK = Foreign Key
Second Normal Form

An entity is in the second normal form if it is in the first normal form, and all
its attributes depend on the whole (primary) key. In relational terms, every
column in a table must be functionally dependent on the whole primary key of
that table. Functional dependency indicates that a link exists between the
values in two different columns.

Building Your Data Model 8-33

Normalizing Your Data Model

8-34

If the value of an attribute depends on a column, the value of the attribute must
change if the value in the column changes. The attribute is a function of the
column. The following explanations make this more specific:

= Ifthetable has a one-column primary key, the attribute must depend
on that key.

= If the table has a composite primary key, the attribute must depend
on the values in all its columns taken as a whole, not on one or some
of them.

= Iftheattribute also depends on other columns, they must be columns
of a candidate key; that is, columns that are unique in every row.

If you do not convert your model to the second normal form, you risk data
redundancy and difficulty in changing data. To convert first-normal-form
tables to second-normal-form tables, remove columns that are not dependent
on the primary key.

Third Normal Form

An entity is in the third normal form if it is in the second normal form, and
all its attributes are not transitively dependent on the primary key. Transitive
dependence means that descriptor key attributes depend not only on the
whole primary key but also on other descriptor key attributes that, in turn,
depend on the primary key. In SQL terms, the third normal form means that
no column within a table is dependent on a descriptor column that, in turn,
depends on the primary key.

To convert to the third normal form, remove attributes that depend on other
descriptor key attributes.

Informix Guide to SQL: Tutorial

Normalizing Your Data Model

Summary of Normalization Rules

The following normal forms are discussed in this section:

First normal form: A table is in the first normal form if it contains no
repeating columns.

Second normal form: A table is in the second normal form if it is in
the first normal form and contains only columns that are dependent
on the whole (primary) key.

Third normal form: A table is in the third normal form if it is in the
second normal form and contains only columns that are
nontransitively dependent on the primary key.

When you follow these rules, the tables of the model are in the third normal
form, according to E. F. Codd, the inventor of relational databases. When
tables are not in the third normal form, either redundant data exists in the
model, or problems exist when you attempt to update the tables.

If you cannot find a place for an attribute that observes these rules, you have
probably made one of the following errors:

The attribute is not well defined.

The attribute is derived, not direct.

The attribute is really an entity or a relationship.
Some entity or relationship is missing from the model.

Building Your Data Model 8-35

Summary

Summary

This chapter summarized and illustrated the following steps of E-R data
modeling:

1. Identify and define your principal data objects, including the following
options:
= Entities
= Relationships
= Attributes
2. Diagram your data objects using the E-R diagram approach.
3. Translate your E-R data objects into relational constructs.
= Determine the primary and foreign keys for each entity.
4. Resolve your relationships, particularly the following relationships:
s 1:1 relationships
= m:n relationships
= Other special relationships
5. Normalize your data model in one of the following forms:
= First normal form
= Second normal form
= Third normal form

When the process is done right, you must examine every aspect of the data
not once, but several times.

If you are interested in learning more about relational database design, you
can attend the Informix course, Relational Database Design. This thorough
course teaches you how to create an E-R data model.

If you are interested in pursuing more about database design on your own,
Informix recommends the following excellent books:

= Database Modeling and Design, The Entity-Relationship Approach by
Toby J. Teorey (Morgan Kauffman Publishers, Inc., 1990)

= Handbook of Relational Database Design by Candace C. Fleming and
Barbara von Halle (Addison-Wesley Publishing Company, 1989)

8-36 Informix Guide to SQL: Tutorial

Implementing Your Data Model

Defining Column-Specific Properties. 9-3
Extended Data Types.« 9-4
Built-InDataTypes 9-5

ChoosingaDataType 9-5
Numeric Data Types. 9-9
Chronological DataTypes. 915
BooleanDataType 919
CharacterDataTypes 920
Large Object DataTypes 924
Changing the Data Type e * P K
Null Values I R K
DefaultValues 934
Check Constraints. 934
Domains . . . T R 1)
Creating a Domam P < 1)
Dropping a Domain. 936

Creating the Database. . . e BT

Using CREATE DATABASE e . 9-38
Using CREATE DATABASE with INFORMIX Unlversal Server. 9-38
UsingCREATETABLE 940
Using Command Scripts 942
Capturing the Schema 942
Executing theFile 942
AnExample 943
Populating the Tables. 943

Fragmenting Tablesand Indexes 945

Creatinga Fragmented Table 945
Fragmenting a New Table 946

Creating a Fragmented Table from Nonfragmented Tables 947

9-2

Creating a Table from More Than One Nonfragmented Table.
Creating a Fragmented Table from a Single Nonfragmented Table

Modifying a Fragmented Table .
Modifying Fragmentation Strategies .
Using the MODIFY Clause to Change a Fragmentatlon Strategy
Adding a New Fragment . .
Using the INIT Clause to Relnltlallze a Fragmentatlon Scheme
Completely .
Dropping a Fragment.

Accessing Data Stored in Fragmented Tables .
Using Primary Keys Instead of Rowids.
Rowid in a Fragmented Table.
Creating a Rowid Column.
Granting and Revoking.

Summary .

Informix Guide to SQL: Tutorial

9-47
9-48

9-48
9-49
9-49
9-50

9-50
9-51

9-52
9-52
9-52
9-53
9-54

9-55

nce a data model is prepared, it must be implemented as a
database and tables. This chapter covers the decisions that you must make to
implement the model.

The first step in implementation is to complete the data model by defining the
column-specific properties, or set of data values, for every column. The
second step is to implement the model using SQL statements.

The first section of this chapter covers defining column-specific properties in
detail. The second section shows how you create the database (using the
CREATE DATABASE and CREATE TABLE statements) and populate it with
data.

Defining Column-Specific Properties

To complete the data model described in Chapter 8, “Building Your Data
Model,” you must define column-specific properties for each column. The
column-specific properties describe the constraints and identify the set of
valid values that attributes (or columns) can assume.

The purpose of column-specific properties is to guard the semantic integrity of
the data in the model; that is, to ensure that it reflects reality in a sensible way.
The integrity of the data model is at risk if you can substitute a name for a
telephone number or if you can enter a fraction where only integers are
allowed.

Implementing Your Data Model 9-3

Extended Data Types

9-4

To define column-specific properties, first define the constraints that a data
value must satisfy before it can be part of the column. Use the following
constraints to specify column-specific properties:

» Data types (user-defined types and built-in types)
» Default values
= Check constraints

You can identify the primary and foreign keys in each table to place
referential constraints on columns. For more information on primary and
foreign keys, see Chapter 8, “Building Your Data Model.”

Extended Data Types

In addition to the built-in data types that Universal Server supports, you can
create and use the following data types to specify the data type of a column:

= Opaque data types. You can use these encapsulated data types to
define columns in the same way that you use built-in types. When
you create an opaque data type, you also define the functions,
operators, and aggregates to operate on the type. For information
about opaque types, see the CREATE OPAQUE TYPE statement in the
Informix Guide to SQL: Syntax and the user guide Extending
INFORMIX-Universal Server: Data Types.

= Distinct data types. These data types have the same representation
as, but are distinct from, existing data types. You can create a distinct
type from a built-in type, opaque type, named row type, or other
distinct type. For information about distinct types, see Chapter 3,
“Environment Variables” in the Informix Guide to SQL: Reference and
the CREATE DISTINCT TYPE statement in the Informix Guide to SQL.:
Syntax.

s Complex data types. These data types combine one or more existing
data types to create a new data type. A complex data type allows
access to each of its component data types. For information about
complex types, see Chapter 10, “Understanding Complex Data
Types.”

Informix Guide to SQL: Tutorial

Built-In Data Types

Built-In Data Types

A built-in data type is a data type that the database server defines. INTEGER,
CHAR, DATE, and DECIMAL are examples of built-in data types. To help you
choose the appropriate data types for implementing your data model, this
section provides a description of the built-in data types. For additional infor-
mation on the built-in data types, see Chapter 3, “Environment Variables,” in
the Informix Guide to SQL: Reference.

Choosing a Data Type

The first constraint on any column is the one that is implicit in the data type
for the column. When you choose a data type, you constrain the column so
that it contains only values that can be represented by that type.

Every column in a table must have a data type that is chosen from the built-
in or extended types that the database server supports. The choice of data
type is important for the following reasons:

= It establishes the basic properties of the column; that is, the set of
valid data items that the column can store.

= It determines the kinds of operations that you can perform on the
data. For example, you cannot apply aggregate functions, such as
SUM, to columns with a character data type.

» It determines how much space each data item occupies on disk. The
space required to accommodate data items is not as important for
small tables as it for tables with tens or hundreds of thousands of
rows. When a table reaches that many rows, the difference between
a 4-byte and an 8-byte type can be crucial.

Implementing Your Data Model 9-5

Built-In Data Types

Using Data Types in Referential Constraints

Almost all data type combinations must match when you are trying to pick
columns for primary and foreign keys. For example, if you define a primary
key as a CHAR data type, you must also define the foreign key as a CHAR data
type. However, when you specify a SERIAL data type on a primary key in one
table, you specify an INTEGER on the foreign key of the relationship.
Similarly, when you specify a SERIALS8 data type on a primary key in one
table, you specify an INT8 on the foreign key of the relationship.The only data
type combinations that you can mix in a relationship are as follows:

= SERIAL and INTEGER
= SERIAL8 and INT8
Figure 9-1 on page 9-7 shows the decision tree that summarizes the choices

among built-in data types. The choices are explained in the following
sections.

9-6 Informix Guide to SQL: Tutorial

Built-In Data Types

Figure 9-1
Choosing a Data Type

(Data items purely numeric? yes

no

(Numbers all integral? yes

no

All numbers between
-(2%-1) and 2%°-1?

no

All numbers between
-(231-1) and 2%%-1?

no

All numbers between
-(2%-1)and 254 -1

no

DECIMAL(p,0)

is fixed?

(Number of fractional digits yes

no

DECIMAL(p,s)

no

(At most 8 significant digits? >ye_s|

SMALLFLOAT

(At most 16 significant digits?) yes

no

FLOAT

DECIMAL(p)

yes

SMALLINT

yes

INTEGER

yes

INT8

(1of2)

Implementing Your Data Model 9-7

Built-In Data

Types

|

Y

Data is chronological?) _ves
J
no Span of time or specific poin
in time?
(Data is Boolean? yes point
no BOOLEAN

Data contains
characters?

non-English "\ yes

Precise only to nearest day?

no |
DATETIME

S

no

(Data is ASCII characters? \ yes
J

No or little variance in item
lengths?

no

NVARCHAR(m, r)

BLOB

(Lengths exceed 255 bytes?) yes

no
Read or write to any portion of\ Y€S
the data?
no
BYTE

9-8 Informix Guide to SQL: Tutorial

(No or little variance initem "\ Yes

lengths?

no

no

VARCHAR(m,r) or
CHARACTER VARYING(m,r)

t) span

INTERVAL

yes

DATE

yes

NCHAR(n)

(Lengths under 32,767 bytes?) yes

no

LVARCHAR

CRead or write to any portion

of data?

o]

TEXT

CHAR(n)

yes

CLOB

(2 of 2)

Built-In Data Types

Numeric Data Types

Informix database servers support eight numeric data types. Some are best
suited for counters and codes, some for engineering quantities, and some for
money.

Counters and Codes: INTEGER, SMALLINT, and INT8

;The INTEGER and SMALLINT data types hold small whole numbers. They
are suited for columns that contain counts, sequence numbers, numeric
identity codes, or any range of whole numbers when you know in advance
the maximum and minimum values to be stored.

Both types are stored as signed binary integers. INTEGER values have 32 bits
and can represent whole numbers from —(23! -1) through 23-1; that is, from
-2,147,483,647 through 2,147,483,647. (The maximum negative number,
—-2,147,483,248, is reserved and cannot be used.)

SMALLINT values have only 16 bits. They can represent whole numbers from
-32,767 through 32,767. (The maximum negative number, —32,768, is reserved
and cannot be used.)

The INTEGER and SMALLINT data types have the following advantages:

= They take up little space (2 bytes per value for SMALLINT and 4 bytes
per value for INTEGER).

= Arithmetic expressions such as SUM and MAX as well as sort compar-
isons can be done very efficiently on them.

The disadvantage to using INTEGER and SMALLINT is the limited range of
values that they can store. The database server does not store a value that
exceeds the capacity of an integer. Of course, such excess is not a problem
when you know the maximum and minimum values to be stored.

The INT8 data type is stored as a signed binary integer, which uses 8 bytes
per value. Although INT8 takes up twice the space as the INTEGER data type,
INT8 has the advantage of a significantly larger range of data representation.
INT8 can represent integers ranging from — (2 82 -1) through 2 %% -1; that is
from - 9,223,372,036,854,775,807 through 9,223,372,036,854,775,807. (The
maximum negative number, — 9,223,372,036,854,775,808, is reserved and
cannot be used.)

Implementing Your Data Model 9-9

Built-In Data Types

9-10

Automatic Sequences: SERIAL and SERIALS8

The SERIAL data type is simply INTEGER with a special feature. Similarly, the
SERIALS data type is INT8 with a special feature. Whenever a new row is
inserted into a table, the database server automatically generates a new value
for a SERIAL or SERIAL8 column. A table can have only one SERIAL or SERIALS
column, but it can have both a SERIAL column and a SERIAL8 column.
Because the database server generates them, the serial values in new rows are
always different even when multiple users are adding rows at the same time.
This service is useful, because it is quite difficult for an ordinary program to
coin unique numeric codes under those conditions.

The SERIAL data type can yield up to 231-1 positive integers. Consequently,
the database server uses all the positive serial numbers by the time it inserts
2311 rows in a table. For most users the exhaustion of the positive serial
numbers is not a concern, however, because a single application would need
to insert a row every second for 68 years, or 68 applications would need to
insert a row every second for a year, to use all the positive serial numbers.
However, if all the positive serial numbers were used, the database server
would continue to generate new numbers. It would treat the next serial
guantity as a signed integer. Because the database server uses only positive
values, it would simply wrap around and start to generate integer values that
begin with a 1.

The SERIALS data type can yield up to 283 -1 positive integers. With a
reasonable starting value, it is virtually impossible to cause a SERIALS8 value
to wrap around during insertions.

For SERIAL and SERIALS data types, the sequence of generated numbers
always increases. When rows are deleted from the table, their serial numbers
are not reused. Rows that are sorted on a SERIAL or SERIALS column are
returned in the order in which they were created. That cannot be said of any
other data types.

You can specify the initial value in a SERIAL or SERIALS column in the
CREATE TABLE statement. This makes it possible to generate different subse-
guences of system-assigned keys in different tables. The stores7 database
uses this technique. In stores7, the customer numbers begin at 101, and the
order numbers start at 1001. As long as this small business does not register
more than 899 customers, all customer numbers have three digits, and order
numbers have four.

Informix Guide to SQL: Tutorial

Built-In Data Types

A SERIAL or SERIALS8 column is not automatically a unique column. If you
want to be perfectly sure that no duplicate serial numbers occur, you must
apply a unique constraint (see “Using CREATE TABLE” on page 9-40). If you
define the table using the interactive schema editor in DB-Access or SQL
Editor, it automatically applies a unique constraint to any SERIAL or SERIALS8
column.

The SERIAL and SERIALS data types have the following advantages:

= They provide a convenient way to generate system-assigned keys.

= They produce unique numeric codes even when multiple users are
updating the table.

= Different tables can use different ranges of numbers.
The SERIAL and SERIALS data types have the following disadvantages:

= Only one SERIAL or SERIALS column is permitted in a table.
= They can produce only arbitrary numbers.

Altering the next SERIAL or SERIAL8 number

The starting value for a SERIAL or SERIAL8 column is set when the column is
created (see “Using CREATE TABLE” on page 9-40). You can use the ALTER
TABLE statement later to reset the next value, the value that is used for the
next-inserted row.

You cannot set the next value below the current maximum value in the
column because doing so causes the database server to generate duplicate
numbers in certain situations. However, you can set the next value to any
value higher than the current maximum, thus creating gaps in the sequence.

Approximate Numbers: FLOAT and SMALLFLOAT

In scientific, engineering, and statistical applications, numbers are often
known to only a few digits of accuracy, and the magnitude of a number is as
important as its exact digits.

Implementing Your Data Model 9-11

Built-In Data Types

9-12

The floating-point data types are designed for these applications. They can
represent any numerical quantity, fractional or whole, over a wide range of
magnitudes from the cosmic to the microscopic. For example, they can easily
represent both the average distance from the Earth to the Sun (1.5 x 10°
meters) or Planck’s constant (6.625 x 10'27). Their only restriction is their
limited precision. Floating-point numbers retain only the most significant
digits of their value. If a value has no more digits than a floating-point
number can store, the value is stored exactly. If it has more digits, it is stored
in approximate form, with its least-significant digits treated as zeros.

This lack of exactitude is fine for many uses, but you should never use a
floating-point data type to record money or any other quantity whose least
significant digits should not be changed to zero.

Two sizes of floating-point data types exist. The FLOAT type is a double-
precision, binary floating-point number as implemented in the C language on
your computer. A FLOAT data type value usually takes up 8 bytes. The
SMALLFLOAT (also known as REAL) data type is a single-precision, binary
floating-point number that usually takes up 4 bytes. The main difference
between the two data types is their precision. A FLOAT column retains about
16 digits of its values; a SMALLFLOAT column retains only about 8 digits.

Floating-point numbers have the following advantages:
= They store very large and very small numbers, including fractional
ones.
= They represent numbers compactly in 4 or 8 bytes.
= Arithmetic functions such as AVG, MIN, and sort comparisons are
efficient on these data types.

The main disadvantage of floating-point numbers is that digits outside their
range of precision are treated as zeros.

Adjustable-Precision Floating Point: DECIMAL(p)

The DECIMAL(p) data type is a floating-point data type similar to FLOAT and
SMALLFLOAT. The important difference is that you specify how many signif-
icant digits it retains. The precision you write as p can range from 1 to 32, from
fewer than SMALLFLOAT up to twice the precision of FLOAT.

The magnitude of a DECIMAL(p) number ranges from 107130 to 10124,

Informix Guide to SQL: Tutorial

Built-In Data Types

It is easy to be confused about decimal data types. The one under discussion
is DECIMAL(p); that is, DECIMAL with only a precision specified. The size of
DECIMAL(p) numbers depends on their precision; they occupy 1+p/2 bytes
(rounded up to a whole number, if necessary).

DECIMAL(p) has the following advantages over FLOAT:

= Precision can be set to suit the application, from highly approximate
to highly precise.

= Numbers with as many as 32 digits can be represented exactly.
= Storage is used in proportion to the precision of the number.

= Every Informix database server supports the same precision and
range of magnitudes, regardless of the host operating system.

The DECIMAL(p) data type has the following disadvantages compared to
FLOAT:

= Performing arithmetic and sorts on DECIMAL(p) values is somewhat
slower than on FLOAT values.

= Many programming languages do not support the DECIMAL(p) data
format the way that they support FLOAT and INTEGER. When a
program extracts a DECIMAL (p) value from the database, it might
have to convert the value to another format for processing.

Fixed-Point Numbers: DECIMAL and MONEY

Most commercial applications need to store numbers that have fixed
numbers of digits on the right and left of the decimal point. Amounts of
money are the most common examples. Amounts in U.S. and other
currencies are written with two digits to the right of the decimal point.
Normally, you also know the number of digits needed on the left, depending
on the kind of transactions that are recorded: perhaps 5 digits for a personal
budget, 7 digits for a small business, and 12 or 13 digits for a national budget.

Implementing Your Data Model 9-13

Built-In Data Types

These numbers are fixed-point numbers because the decimal point is fixed at
a specific place, regardless of the value of the number. The DECIMAL(p,s) data
type is designed to hold them. When you specify a column of this type, you
write its precision (p) as the total number of digits that it can store, from 1 to
32. You write its scale (s) as the number of those digits that fall to the right of
the decimal point. (Figure 9-2 shows the relation between precision and
scale.) Scale can be zero, meaning it stores only whole numbers. When only
whole numbers are stored, DECIMAL(p,S) provides a way of storing integers
of up to 32 digits.

Figure 9-2

precision: 8 digits The Relation

/ #‘ Between Precision
DECIMAL(8,3) 31964.535 and Scale in a Fixed-

— Point Number
\ scale: 3 digits

Like the DECIMAL(p) data type, DECIMAL(p,s) takes up space in proportion
to its precision. One value occupies 1+p/2 bytes, rounded up to a whole
number of bytes.

The MONEY type is identical to DECIMAL(p,S), but with one extra feature.
Whenever the database server converts a MONEY value to characters for
display, it automatically includes a currency symbol.

The advantages of DECIMAL(p,S) over INTEGER and FLOAT are that much
greater precision is available (up to 32 digits as compared with 10 digits for
INTEGER and 16 digits for FLOAT), and both the precision and the amount of
storage required can be adjusted to suit the application.

The disadvantages are that arithmetic operations are less efficient and that
many programming languages do not support numbers in this form.
Therefore, when a program extracts a number, it usually must convert the
number to another numeric form for processing. (However, INFORMIX-4GL
programs can use DECIMAL(p,s) and MONEY values directly.)

9-14 Informix Guide to SQL: Tutorial

GLS

Built-In Data Types

Choosing a currency format

Each nation has its own way of displaying money values. When an Informix
database server displays a MONEY value, it refers to a currency format that
the user specifies. The default locale specifies a U.S. English currency format
of the following form:

$7,822.45

For non-English locales, you can change the current format by means of the
MONETARY category of the locale file. For more information on using locales,
refer to Chapter 1 of the Guide to GLS Functionality. ¢

To customize this currency format, choose your locale appropriately or set
the DBMONEY environment variable. For more information, see Chapter 3,
“Environment Variables” of the Informix Guide to SQL: Reference.

Chronological Data Types

Informix database servers support three data types for recording time. The

DATE data type stores a calendar date. DATETIME records a point in time to
any degree of precision from a year to a fraction of a second. The INTERVAL
data type stores a span of time; that is, a duration.

Calendar Dates: DATE

The DATE data type stores a calendar date. A DATE value is actually a signed
integer whose contents are interpreted as a count of full days since midnight
on December 31, 1899. Most often it holds a positive count of days into the
current century.

The DATE format has ample precision to carry dates into the far future (58,000
centuries). Negative DATE values are interpreted as counts of days prior to
the epoch date; that is, a DATE value of -1 represents the day December 30,
1899.

Implementing Your Data Model 9-15

Built-In Data Types

GLS

9-16

Because DATE values are integers, Informix database servers permit them to
be used in arithmetic expressions. For example, you can take the average of
a DATE column, or you can add 7 or 365 to a DATE column. In addition, a rich
set of functions exists specifically for manipulating DATE values. (See the
Informix Guide to SQL: Syntax.)

The DATE data type is compact, at 4 bytes per item. Arithmetic functions and
comparisons execute quickly on a DATE column.

Choosing a date format

You can punctuate and order the components of a date in many ways. When
an Informix database server displays a DATE value, it refers to a date format
that the user specifies. The default locale specifies a U.S. English date format
of the form:

10/25/95

To customize this date format, choose your locale appropriately or set the
DBDATE environment variable. For more information, see Chapter 3 of the
Informix Guide to SQL: Reference.

For languages other than English, you can also change the date format by
means of the TIME category of the locale file. For more information on using
locales, refer to the Guide to GLS Functionality. ¢

Exact Points in Time: DATETIME

The DATETIME data type stores any moment in time in the era that begins

1 A.D. In fact, DATETIME is really a family of 28 data types, each with a
different precision. When you define a DATETIME column, you specify its
precision. The column can contain any sequence from the list year, month, day,
hour, minute, second, and fraction. Thus, you can define a DATETIME column
that stores only a year, only a month and day, or a date and time that is exact
to the hour or even to the millisecond. The size of a DATETIME value ranges
from 2 to 11 bytes depending on its precision, as Figure 9-3 on page 9-17
shows.

Informix Guide to SQL: Tutorial

Built-In Data Types

The advantage of DATETIME is that it can store dates more precisely than to
the nearest day, and it can store time values. Its sole disadvantage is an
inflexible display format, but you can circumvent this advantage. (See
“Forcing the format of a DATETIME or INTERVAL value” on page 9-18.)

Precision

year to year

year to month
year to day

year to hour

year to minute
year to second
year to fraction (f)
month to month
month to day
month to hour
month to minute
month to second
month to fraction(f)
day to day

_ . _ Figure 9-3
Size* Precision Size* Precisions for the
3 day to hour 3 DATETIME Data
4 day to minute 4 Type
5 day to second 5
6 day to fraction(f) 5+f/2
7 hour to hour 2
8 hour to minute 3
8+f/2 hour to second 4
2 hour to fraction(f) 4+1/2
3 minute to minute 2
4 minute to second 3
5 minute to fraction(f) 3+f/2
6 second to second 2
6+f/2 second to fraction(f) 2+f/2
2 fraction to fraction(f) 1+f/2

*When f is odd, round the size to the next full byte.

Durations: INTERVAL

The INTERVAL data type stores a duration, that is, a length of time. The
difference between two DATETIME values is an INTERVAL, which represents
the span of time that separates them. The following examples might help to
clarify the differences:

An employee began working on January 21, 1994 (either a DATE or a
DATETIME).

She has worked for 254 days (an INTERVAL value, the difference
between the TODAY function and the starting DATE or DATETIME
value).

She begins work each day at 0900 hours (a DATETIME value).

She works 8 hours (an INTERVAL value) with 45 minutes for lunch
(another INTERVAL value).

Her quitting time is 1745 hours (the sum of the DATETIME when she
begins work and the two INTERVALS).

Implementing Your Data Model 9-17

Built-In Data Types

Like DATETIME, INTERVAL is a family of types with different precisions. An
INTERVAL value can represent a count of years and months; or it can
represent a count of days, hours, minutes, seconds, or fractions of seconds; 18
precisions are possible. The size of an INTERVAL value ranges from 2 to 12
bytes, depending on the formulas that Figure 9-4 shows.

Figure 9-4
Precision Size* Precision Size* Precisions for the
year(p) to year 1+p/2 hour(p) to minute 2+p/2 INTERVAL Data
year(p) to month 2+p/2 hour(p) to second 3+p/2 Type
month(p) to month 1+p/2 hour(p) to fraction(f) 4+(p+f)/2
day(p) to day 1+p/2 minute(p) to minute 1+p/2
day(p) to hour 2+p/2 minute(p) to second 2+p/2
day(p) to minute 3+p/2 minute(p) to fraction(f) 3+(p+f)/2
day(p) to second 4+p/2 second(p) to second 1+p/2
day(p) to fraction(f) 5+(p+f)/2 second(p) to fraction(f) 2+(p+f)/2
hour(p) to hour 1+p/2 fraction to fraction(f) 1+f/2

* Round a fractional size to the next full byte.

INTERVAL Vvalues can be negative as well as positive. You can add or subtract
them, and you can scale them by multiplying or dividing by a number. This
is not true of either DATE or DATETIME. You can reasonably ask, “What is
one-half the number of days until April 23?”” but not, “What is one-half of
April 23?”

Forcing the format of a DATETIME or INTERVAL value

The database server always displays the components of an INTERVAL or
DATETIME value in the order year-month-day hour:minute:second.fraction. It
does not refer to the date format that is defined to the operating system, as it
does when it formats a DATE value.

You can write a SELECT statement that displays the date part of a DATETIME
value in the system-defined format. The trick is to isolate the component

fields using the EXTEND function and pass them through the MDY () function,
which converts them to a DATE. The following code shows a partial example:

SELECT ... MDY (
EXTEND (DATE_RECEIVED, MONTH TO MONTH),
EXTEND (DATE_RECEIVED, DAY TO DAY),
EXTEND (DATE_RECEIVED, YEAR TO YEAR))
FROM RECEIPTS ...

9-18 Informix Guide to SQL: Tutorial

GLS

Built-In Data Types

Choosing a DATETIME Format

When an Informix database server displays a DATETIME value, it refers to a
DATETIME format that the user specifies. The default locale specifies a U.S.
English DATETIME format of the following form:

1995-10-25 18:02:13

For languages other than English, you change the DATETIME format by
means of the TIME category of the locale file. For more information on using
locales, refer to the Guide to GLS Functionality.

To customize this DATETIME format, choose your locale appropriately or set
the GL_DATETIME or DBTIME environment variable. For more information,
see the Guide to GLS Functionality. ¢

Boolean Data Type

The BOOLEAN data type is a one byte data type. In DB-Access or SQL Editor,
legal values are true ('t"), false (‘f') or NULL. The values are case insensitive.

The following table shows how the BOOLEAN data type is represented.

BOOLEAN Internal Literal
Representation Representation Representation
TRUE \1 't T

FALSE \0 ', 'F

NULL For internal use only =~ NULL

You can compare a BOOLEAN column against another BOOLEAN column, or
against Boolean values ('t', ' f'). For example, suppose you create the
following table:

CREATE TABLE emp_info
(
emp_id INTEGER,
bool_col BOOLEAN

Implementing Your Data Model 9-19

Built-In Data Types

GLS

9-20

The following query returns rows from the emp_info table where bool_col
values are true.

SELECT *
FROM emp_info
WHERE bool_col = 't

The following query returns rows from the emp_info table where bool_col
values are null.

SELECT =
FROM emp_info
WHERE bool_col IS NULL;

You can also use a column that is assigned the BOOLEAN data type to capture
the results of an expression as shown in the following example:

UPDATE emp_info
SET bool_col = (1 < 2)
WHERE emp_id = 439

Character Data Types

The database server supports the NCHAR data type and NVARCHAR, the
special-use character data type.

Character Data: CHAR(n) and NCHAR(n)

The CHAR(Nn) data type contains a sequence of n bytes. These characters can
be a mixture of English and non-English characters and can be either single
byte or multibyte (Asian). The length n ranges from 1 to 32,767. Whenever a
CHAR(n) value is retrieved or stored, exactly n bytes are transferred. If an
inserted value is shorter than n, the database server extends the value by
using single byte ASCII space characters to make up n bytes.

Data in CHAR columns is sorted in code-set order. For example, in the ASCII
code set, the character a has a code-set value of 97, b has 98, and so forth. The
database server sorts CHAR(n) data in this order.

Informix Guide to SQL: Tutorial

Built-In Data Types

The NCHAR(n) data type also contains a sequence of n bytes. These characters
can be a mixture of English and non-English characters and can be either
single byte or multibyte (Asian). The length of n has the same limits as the
CHAR(n) data type. Whenever an NCHAR(n) value is retrieved or stored,
exactly n bytes are transferred. The number of characters transferred can be
less than the number of bytes if the data contains multibyte characters. If an
inserted value is shorter than n, the database server extends the value by
using single byte ASCII space characters to make up n bytes.

Tip: The database server accepts values from the user that are extended with either
single-byte or multibyte spaces as the locale defines.

The database server sorts data in NCHAR(n) columns according to the order
that the locale specifies. For example, the French locale specifies that the
character € is sorted after the value e but before the value f. In other words,
the sort order dictated by the French locale is ¢, &, f, and so on. For more infor-
mation on using locales, refer to the Guide to GLS Functionality.

Tip: The only difference between CHAR(n) and NCHAR(n) data is the data sorting
and comparison. You can store non-English characters in a CHAR(n) column.
However, because the database server uses code-set order to perform any sorting or
comparison on CHAR(n) columns, you might not obtain the results in the order that
you expected.

A CHAR(n) or NCHAR(Nn) value can include tabs and spaces but normally
contains no other nonprinting characters. When rows are inserted using
INSERT or UPDATE, or when rows are loaded with a utility program, no
means exists for entering nonprintable characters. However, when rows are
created by a program using embedded SQL, the program can insert any
character except the null (binary zero) character. It is not a good idea to store
nonprintable characters in a character column because standard programs
and utilities do not expect them.

The advantage of the CHAR(n) or NCHAR(n) data type is its availability on all
database servers. The only disadvantage of CHAR(n) or NCHAR(N) is its fixed
length. When the length of data values varies widely from row to row, space
is wasted.

Implementing Your Data Model 9-21

Built-In Data Types

9-22

Varying-Length Strings: CHARACTER VARYING(m,r), VARCHAR(m,),
NVARCHAR(m,r), and LVARCHAR

For the following data types, m represents the maximum number of bytes
and r represents the minimum number of bytes.

Tip: The data type CHARACTER VARYING (m,r) is ANSI compliant. VARCHAR(m,r)
is an Informix data type.

Often the items in a character column have different lengths; that is, many
have an average length, and only a few have the maximum length. The
following data types are designed to save disk space when you store such
data:

= CHARACTER VARYING (m,r). The CHARACTER VARYING (m,r) data
type contains a sequence of, at most, m bytes or at the least, r bytes.
This data type is the ANSI-compliant format for character data of
varying length. CHARACTER VARYING (m,r) supports code-set order
for comparisons of its character data.

= VARCHAR (m,r). VARCHAR (m,r) is an Informix-specific data type for
storing character data of varying length. In functionality, it is the
same as CHARACTER VARYING(m,r).

= NVARCHAR (m,r). NVARCHAR (m,r) is also an Informix-specific data
type for storing character data of varying length. It compares
character data in the order that the locale specifies.

= LVARCHAR. LVARCHAR is an Informix-specific data type for storing
character data of varying length for values greater than 256 bytes but
less than 32 kilobytes. LVARCHAR supports code-set order for
comparisons of its character data

Tip: The difference in the way data is compared distinguishes NVARCHAR(m,r) data
from CHARACTER VARYING(m,r) or VARCHAR(m,r) data. For more information on
code set and sort order determined by the locale, see “Character Data: CHAR(n) and
NCHAR(n)” on page 9-20.

When you define columns of VARCHAR(m,r), CHARACTER VARYING(m,r), or
VARCHAR(m,r) data types, you specify m as the maximum number of bytes.
If an inserted value consists of fewer than m bytes, the database server does
not extend the value with single-byte spaces (as with CHAR(n) and NCHAR(n)
values.) Instead, it stores only the actual contents on disk, with a 1-byte
length field. The limit on m is 254 bytes for indexed columns and 255 bytes
for non-indexed columns.

Informix Guide to SQL: Tutorial

Built-In Data Types

The second parameter, r, is an optional reserve length that sets a lower limit
on the number of bytes required by the value that is being stored on disk.
Even if a value requires fewer than r bytes, r bytes are nevertheless allocated
to hold it. The purpose is to save time when rows are updated. (See “Varying-
Length Execution Time™.)

The advantages of the CHARACTER VARYING(m,r) or VARCHAR(m,r) data
type over the CHAR(n) data type are as follows:

= It conserves disk space when the number of bytes that data items
require vary widely or when only a few items require more bytes
than average.

= Queries on the more compact tables can be faster.

These advantages also apply to the NVARCHAR(m,r) data type in comparison
to the NCHAR(n) data type.

The following list describes the disadvantages of using CHARACTER
VARYING(m,r), VARCHAR(m,r), and NVARCHAR(m,r) data types:

= They do not allow lengths that exceed 255 bytes.

= Table updates can be slower in some circumstances.

= They are not available with all Informix database servers. ¢

Varying-Length Execution Time

When you use the CHARACTER VARYING(m,r), VARCHAR(M,r), or
NVARCHAR(m,r) data types, the rows of a table have a varying number of
bytes instead of a fixed number of bytes. The speed of database operations is
affected when the rows of a table have a varying number of bytes.

Because more rows fit in a disk page, the database server can search the table
with fewer disk operations than if the rows were of a fixed number of bytes.
As a result, queries can execute more quickly. Insert and delete operations
can be a little quicker for the same reason.

Implementing Your Data Model 9-23

Built-In Data Types

9-24

When you update a row, the amount of work the database server must do
depends on the number of bytes in the new row as compared with the
number of bytes in the old row. If the new row uses the same number of bytes
or fewer, the execution time is not significantly different than it is with fixed-
length rows. However, if the new row requires a greater number of bytes than
the old one, the database server might have to perform several times as many
disk operations. Thus, updates of a table that use CHARACTER
VARYING(m,r), VARCHAR(m,r), or NVARCHAR(mM,r) data can sometimes be
slower than updates of a fixed-length field.

To mitigate this effect, specify r as a number of bytes that covers a high
proportion of the data items. Then most rows use the reserve number of
bytes, and padding wastes only a little space. Updates are slow only when a
value using the reserve number of bytes is replaced with a value that uses
more than the reserve number of bytes.

Large Object Data Types

Universal Server supports both simple large objects and smart large objects
to handle data that exceeds a length of 255 bytes and non-ASCII character
data.

Smart large objects refer to columns that are assigned a BLOB or CLOB data
type. A smart large object allows an application program to randomly access
column data, which means you can read or write to any part of a BLOB or
CLOB column in any arbitrary order.

Simple large objects refer to columns that are assigned a TEXT or BYTE data
type. A simple large object can store and retrieve character data or binary
data, but cannot randomly access portions of the column data. In other
words, TEXT or BYTE data can be inserted or deleted but cannot be modified.
The database server simply stores or retrieves the TEXT or BYTE data in a
single SQL statement.

The following sections describe additional differences between simple large
objects and smart large objects.

Informix Guide to SQL: Tutorial

Built-In Data Types

Smart Large Objects: CLOB

The CLOB data type stores a block of text. It is designed to store ASCII text
data, including formatted text such as HTML or PostScript. Although you can
store any data in a CLOB object, Informix tools expect a CLOB object to be
printable, so restrict this data type to printable ASCII text.

CLOB values are not stored with the rows of which they are a part. They are
allocated in whole disk pages, usually areas away from rows. (For more
information, see the INFORMIX-Universal Server Administrator’s Guide.)

The CLOB datatype is similar to the TEXT data type except that the CLOB data
type provides the following advantages:

An application program can read from or write to any portion of the
CLOB object.

Access times can be significantly faster because an application
program can access any portion of a CLOB object.

Default characteristics are relatively easy to override. Database
administrators can override default characteristics for shspace at the
column level. Application programmers can override some default
characteristics for the column when they create a CLOB object.

You can use the equals operator (=) to test whether two CLOB values
are equal.

A CLOB object is recoverable in the event of a system crash and obeys
transaction isolation modes (when specified by the DBA or appli-
cation programmer). (Recovery of CLOB objects requires that your
database system has the necessary resources to provide buffers large
enough to handle CLOB objects.)

You can use the CLOB data type to provide large storage for a user-
defined data type.

DataBlade developers can create indexes on CLOB data types.

The disadvantages of the CLOB data type are as follows:

It is allocated in whole disk pages, so a short item wastes space.

Restrictions apply on how you can use a CLOB column in an SQL
statement. (See “Using Smart Large Objects” on page 9-26.)

It is not available with all Informix database servers.

Implementing Your Data Model 9-25

Built-In Data Types

9-26

Smart Large Objects: BLOB

The BLOB datatype is designed to hold any data that a program can generate:
graphic images, satellite images, video clips, audio clips, or formatted
documents saved by any word processor or spreadsheet. The database server
permits any kind of data of any length in a BLOB column.

BLOB data items are stored in whole disk pages in separate disk areas from
normal row data.

The advantage of the BLOB data type, as opposed to CLOB, is that it accepts
any data. Otherwise, the advantages and disadvantages of the BLOB data
type are the same as for the CLOB data type.

Using Smart Large Objects

To store columns of a CLOB or BLOB data type, you must allocate an sbspace.
An shspace is a logical storage unit that stores BLOB and CLOB data in the most
efficient way possible. You can write INFORMIX-ESQL/C programs that allow
users to fetch and store CLOB and BLOB data. Application programmers who
want to access and manipulate large objects directly can consult the
INFORMIX-ESQL/C Programmer’s Manual.

In any SQL statement, interactive or programmed, a CLOB or BLOB column
cannot be used in the following ways:

= Inarithmetic or Boolean expressions

= InaGROUP BY or ORDER BY clause

= InaUNIQUE test

= For indexing, as part of an Informix B+ tree index

However, DataBlade developers have the capability to create indexes
on CLOB columns.

Informix Guide to SQL: Tutorial

Built-In Data Types

In a SELECT statement entered interactively, a CLOB or BLOB column can:
= specify null values as a default when you create a table with the
DEFAULT NULL clause.

= disallow null values using the NOT NULL constraint when you create
a table.

= be tested with the IS[NOT] NULL predicate.

From an ESQL/C program, you can use the ifx_lo_stat() function to
determine the length of CLOB or BLOB data.

Important: Casts between CLOB and BLOB data types are not permitted.

Copying smart large objects

Universal Server provides functions that you can call from within an SQL
statement to import and export smart large objects. Figure 9-5 shows the
smart-large-object functions. For detailed information and the syntax of
smart-large-object functions, see the Expression segment in the Informix
Guide to SQL: Syntax.

Figure 9-5
SQL Functions for Smart Large Objects

Function Name Purpose

FILETOBLOB() Copies a file into a BLOB column.
FILETOCLOB() Copies a file into a CLOB column.

LOCOPY() Copies BLOB or CLOB data into another BLOB or

CLOB column.

LOTOFILE() Copies a BLOB or CLOB into a file.

You can use any of the functions that Figure 9-5 shows in the SELECT,
UPDATE, and INSERT statements. (The following examples assume that the
SBSPACENAME parameter has been specified as sbspacel.)

Implementing Your Data Model 9-27

Built-In Data Types

Suppose you create the following inmate and fbi_list tables:

CREATE TABLE inmate

(
id_num INT,
picture BLOB,
felony CLOB

)3

CREATE TABLE fbi_Tlist
(
id INTEGER,
mugshot BLOB
) PUT mugshot IN (sbspacel);

The following INSERT statement uses the FILETOBLOB() and FILETOCLOB()
functions to insert a row of the inmate table.

INSERT INTO inmate
VALUES (437, FILETOBLOB('datafile', 'client'),
FILETOCLOB('"tmp/text', 'server'))

In the preceding example, the first argument for the FILETOBLOB() and
FILETOCLOB() functions specifies the path of the source file to be copied into
the BLOB and CLOB columns respectively. The second argument for each
function specifies whether the source file is located on the client computer
(‘client’) or server computer (‘server’). The following rules apply for speci-
fying the path of a filename in a function argument, depending on whether
the file resides on the client or server computer:

» Ifthe source file resides on the server computer, you must specify the
full pathname to the file (not the pathname relative to the current
working directory).

» Ifthesource file resides on the client computer, you can specify either
the full or relative pathname to the file.

The following UPDATE statement uses the LOCOPY/() function to copy BLOB
data from the mugshot column of the fbi_list table into the picture column
of the inmate table:

UPDATE inmate (picture)
SET picture = LOCOPY(mugshot, 'fbi_Tist', 'mugshot')
WHERE inmate.id_num = 437 AND fbi_list.id = 669;

9-28 Informix Guide to SQL: Tutorial

Built-In Data Types

The first argument for LOCOPY/() specifies the column (mugshot) from which
the large object is exported. The second and third arguments specify the
name of the table (fbi_list) and column (mugshot) whose storage character-
istics are used for the newly created large object. After execution of the
UPDATE statement, the picture column contains data from the mugshot
column. Because LOCOPY/() uses the storage defaults of the column that it
exports, this instance of the picture column is stored in sbspace3, which is the
default storage specified for the mugshot column of the fbi_list table.

The following SELECT statement uses the LOTOFILE() function to copy data
from the felony column into the felon_322.txt file that is located on the client
computer:

SELECT id_num, LOTOFILE(felony, 'felon_322.txt', 'client')
FROM inmate
WHERE id = 322

The first argument for LOTOFILE() specifies the name of the column from
which data is to be exported. The second argument specifies the name of the
file into which data is to be copied. The third argument specifies whether the
target file is located on the client computer (‘client’) or server computer
(‘'server"). (See the previous discussion for the rules that apply to specifying
the path of a filename for client and server computers.)

Inheritance of characteristics for smart large objects

The database administrator can specify, at the column level, the estimated
extent size for CLOB or BLOB data to override shspace defaults. An extent is
the unit of storage allocation that is used when a large object needs additional
storage. For information about how to specify an extent size when you create
atable, see the CREATE TABLE statement in the Informix Guide to SQL: Syntax.
If the size of the smart large object is not specified at the column-level, the
CLOB or BLOB column inherits characteristics from the sbspace defaults or (if
shspace defaults are not specified) from the default values in the database
server.

ESQL/C programs that access CLOB or BLOB data from a row can override
some column-level defaults at the time that the program creates a BLOB or
CLOB instance. For information about how to override column-level defaults
when you create an instance of a smart large object from an ESQL/C program,
see the INFORMIX-ESQL/C Programmer’s Manual.

Implementing Your Data Model 9-29

Built-In Data Types

Figure 9-6 shows the precedence rules that Universal Server uses to
determine which characteristics a smart large object inherits.

Figure 9-6
Precedence Rules That Determine How a Smart Large Object Inherits Characteristics

’ Database server defaults ‘

v

’ shspace defaults ‘

’ Column (usmé' ifx_lo_info()) \

’ CLOB or BLOB instance ‘

For information about Universal Server defaults and sbspace defaults, see the
INFORMIX-Universal Server Administrator’s Guide.

Simple Large Objects: TEXT

The TEXT data type stores a block of text. It is designed to store self-contained
documents: business forms, program source or data files, or memos.
Although you can store any data in a TEXT item, Informix tools expect a TEXT
item to be printable, so restrict this data type to printable ASCII text.

TEXT values are not stored with the rows of which they are a part. They are
allocated in whole disk pages, usually in areas away from rows. (See the
INFORMIX-Universal Server Administrator’s Guide.)

9-30 Informix Guide to SQL: Tutorial

Built-In Data Types

The advantage of the TEXT data type over CHAR(n) and VARCHAR(m,r) is
that the size of a TEXT data item has no limit except the capacity of disk
storage to hold it. The disadvantages of the TEXT data type are as follows:

= You cannot write to a portion of a TEXT column. (However, you can
read from and write to any portion of a CLOB column.)

= Itisallocated in whole disk pages, so a short item wastes space.

= Restrictions apply on how you can use a TEXT column in an SQL
statement. (See “Using Simple Large Objects” on page 9-32.)

= A system crash under certain circumstance can result in a loss of
data.

s Overriding default characterisitcs for TEXT columns can be a time-
intensive task (in comparison with CLOB columns).

= Itis not available with all Informix database servers.

You can display TEXT values in reports that you generate with INFORMIX-4GL
programs or the ACE report writer. You can display TEXT values on a screen
and edit them using screen forms generated with INFORMIX-4GL programs

or with the PERFORM screen-form processor.

Simple Large Objects: BYTE

The BYTE data type is designed to hold any data that a program can generate:
graphic images, program object files, and formatted documents saved by any
word processor or spreadsheet. The database server permits any kind of data
of any length in a BYTE column.

As with TEXT, BYTE data items are stored in whole disk pages in separate disk
areas from normal row data.

The advantage of the BYTE data type, as opposed to TEXT or CHAR(n), is that
it accepts any data. Its disadvantages are the same as those of the TEXT data

type.

Implementing Your Data Model 9-31

Built-In Data Types

9-32

Using Simple Large Objects

To store columns of a TEXT or BYTE data type, you must allocate a blobspace.
A blobspace is a logical storage unit that stores TEXT and BYTE data in the most
efficient way possible. Normally, you use INFORMIX-ESQL/C or NewEra
programs to fetch and store TEXT and BYTE data. In such a program, you can
fetch, insert, or update a simple large object value in a manner similar to the
way that you read or write a sequential file.

In any SQL statement, interactive or programmed, a TEXT or BYTE column
cannot be used in the following ways:

= Inarithmetic or Boolean expressions

= Ina GROUP BY or ORDER BY clause

= InaUNIQUE test

= For indexing, either by itself or as part of a composite index
In a SELECT statement entered interactively, or in a form or report, a TEXT or
BYTE column can:

= be selected by name, optionally with a subscript to extract part of it.

= have its length returned by selecting LENGTH(column).

= be tested with the IS[NOT] NULL predicate.
In an interactive INSERT statement, you can use the VALUES clause to insert a
simple-large-object value, but the only value that you can give that column is

null. However, you can use the SELECT form of the INSERT statement to copy
a simple large object value from another table.

In an interactive UPDATE statement, you can update a simple-large-object
column to null or to a subquery that returns a simple-large-object column.

Informix Guide to SQL: Tutorial

Null Values

Changing the Data Type

After the table is built, you can use the ALTER TABLE statement to change the
data type that is assigned to a column. Although such alterations are
sometimes necessary, you should avoid them for the following reasons:

= Tochange a data type, the database server must copy and rebuild the
table. For large tables, copying and rebuilding can take a lot of time
and disk space.

= Some data type changes can cause a loss of information. For
example, when you change a column from a longer to a shorter
character type, long values are truncated; when you change to a less-
precise numeric type, low-order digits are truncated.

= Existing programs, forms, reports, and stored queries might also
have to be changed.

Restrictions apply for using the ALTER TABLE statement to change the data
type that is assigned to a column of a table in an inheritance hierarchy. For

information about altering a table in an inheritance hierarchy, see “Altering
the Structure of a Table in a Table Hierarchy” on page 10-37.

Null Values

Columns in a table can be designated as containing null values. A null value
means that the value for the column can be unknown or not applicable. For
example, in the telephone-directory example in Chapter 8, the anniv column
of the name table can contain null values; if you do not know the person’s
anniversary, you do not specify it. Do not confuse null value with zero or
blank value. To specify that the value of a column is null, you use the NULL
keyword. For example, the following statement inserts a row into the
manufact table and specifies that the value for the lead_time column is null:

INSERT INTO manufact VALUES ('DRM', 'Drumm', NULL)

Columns that are collection types cannot contain null elements. For more
information, see “Collection Data Types” on page 10-14.

Implementing Your Data Model 9-33

Default Values

Default Values

A default value is the value that is inserted into a column when an explicit
value is not specified in an INSERT statement. A default value can be a literal
character string that either you define or one of the following SQL null,
constant expressions defines:

= USER
= CURRENT
= TODAY

= DBSERVERNAME

Not all columns need default values, but as you work with your data model,
you might discover instances where the use of a default value saves
data-entry time or prevents data-entry error. For example, the telephone-
directory model has a State column. While you are looking at the data for this
column, you discover that more than 50 percent of the addresses list
California as the state. To save time, you specify the string “CA” as the default
value for the State column.

Check Constraints

Check constraints specify a condition or requirement on a data value before
data can be assigned to a column during an INSERT or UPDATE statement. If
a row evaluates to false for any of the check constraints that are defined on a
table during an insert or update, the database server returns an error. To
define a constraint, use the CREATE TABLE or ALTER TABLE statements. For
example, the following requirement constrains the values of an integer
domain to a certain range:

Customer_Number >= 50000 AND Customer_Number <= 99999

To express constraints on character-based domains, use the MATCHES
predicate and the regular-expression syntax that it supports. For example,
the following constraint restricts a telephone domain to the form of a U.S.
local telephone number;

vce_num MATCHES '[2-91[2-9][0-9]-[0-9]J[0-9][0-9][0-9]"

For additional information about check constraints, see the CREATE TABLE
and ALTER TABLE statements in the Informix Guide to SQL: Syntax.

9-34 Informix Guide to SQL: Tutorial

Domains

Domains

A domain is an alias that you create to substitute for the name of a data type.
In particular, domains provide a useful shorthand notation for collection data
types that have long typenames. (For information about collection data
types, see “Collection Data Types” on page 10-14.) Once you create a domain
you can use it anywhere the typename would be used. You can use a domain
to specify a data type only; a domain does not have any other properties such
as constraints or default values.

You cannot use the CREATE DOMAIN statement to create an alias for the
following data types:

= User-defined opaque data types
= User-defined distinct data types

= BOOLEAN
= CLOB
= BLOB

Creating a Domain

To create or drop a domain you use the CREATE DOMAIN or DROP DOMAIN
statement. For example, suppose you want to use the following collection
data type to define columns in different tables:

SET(VARCHAR(30) NOT NULL)
The following statement creates a domain name for the collection data type.
CREATE DOMAIN d_employee AS SET(VARCHAR(30) NOT NULL)

You can use the domain anywhere you might use the typename. For example,
the following statement use the d_employee domain to define the data type
of acolumn in a table:

CREATE TABLE department (dept_num INT, employees d_employee);

For more information, see the description of the CREATE DOMAIN statement
in the Informix Guide to SQL.: Syntax.

Implementing Your Data Model 9-35

Domains

Dropping a Domain

To drop a domain you use the DROP DOMAIN statement. You can drop a
domain that is currently being used to specify the data type of a column. For
example, suppose you want to drop the d_employee domain that was used
to define a column of the department table in the preceding section. The
following statement shows how to drop a domain:

DROP DOMAIN d_employee

After you drop a domain, any columns that currently are defined on the
domain continue to retain the original data type assigned to the column. For
example, consider the following sequence of SQL statements:

DROP DOMAIN d_employee;

SELECT employees FROM department;

CREATE DOMAIN d_employee SET(INTEGERS) NOT NULL);
SELECT employees FROM department;

The first SELECT statement returns the employee column, which is of type,
SET(VARCHAR(30)NOT NULL), even though the d_employee domain has
been dropped.The second SELECT statement returns the employee column,
which is also of type SET(VARCHAR(30)NOT NULL) even though the
d_employee domain has been recreated as a different data type. As the
examples illustrate, once you define a column on a domain, the type of the
column does not change.

For more information, see the description of the DROP DOMAIN statement in
the Informix Guide to SQL: Syntax.

To change the data type of a column defined on a domain

1. Drop the domain
2. Create a new domain
3. Use the ALTER TABLE statement to modify the column data type

9-36 Informix Guide to SQL: Tutorial

Creating the Database

For example, to change the data type of the employees column of the
department table (shown in the preceding examples), you might construct
the following statements:

DROP DOMAIN d_employee;
CREATE DOMAIN d_employee AS SETCINTEGER NOT NULL);
ALTER TABLE department MODIFY employees d_employee;

Although execution of the DROP DOMAIN and CREATE DOMAIN statements
changes the domain definition, to change the data type of the employees
column, which has been defined on the d_employee domain, you must use
the ALTER TABLE statement.

Creating the Database

Now you are ready to create the data model as tables in a database. You do
this with the CREATE DATABASE, CREATE TABLE, and CREATE INDEX state-
ments. The Informix Guide to SQL: Syntax shows the syntax of these
statements in detail. This section discusses the use of CREATE DATABASE and
CREATE TABLE in implementing a data model. The use of CREATE INDEX is
covered in Chapter 11, “Granting and Limiting Access to Your Database.”

Remember that the telephone-directory data model is used for illustrative
purposes only. For the sake of the example, it is translated into SQL
statements.

You might have to create the same database model more than once. However,
the statements that create the model can be stored and executed automati-
cally. For more information, see “Using Command Scripts” on page 9-42.

When the tables exist, you must populate them with rows of data. You can do
this manually, with a utility program, or with custom programming.

Implementing Your Data Model 9-37

Using CREATE DATABASE

GLS

9-38

Using CREATE DATABASE

A database is a container that holds all the parts of a data model. These parts
include not only the tables but also views, indexes, synonyms, and other
objects that are associated with the database. You must create a database
before you can create anything else.

When the database server creates a database, it stores the locale of the
database that is derived from the DB_LOCALE environment variable in its
system catalog. This locale determines how the database server interprets
character data that is stored within the database. By default, the database
locale is the U.S. English locale that uses the 1SO8859-1 code set. For infor-
mation on using alternative locales, see the Guide to GLS Functionality. ¢

Using CREATE DATABASE with INFORMIX-Universal Server

Universal Server differs from other database servers in the way that it creates
databases and tables. When Universal Server creates a database, it sets up
records that show the existence of the database and its mode of logging. It
manages disk space directly, so these records are not visible to operating-
system commands.

Avoiding Name Conflicts

Normally, only one copy of Universal Server is running on a computer, and
it manages the databases that belong to all users of that computer. It keeps
only one list of database names. The name of your database must be different
from that of any other database managed by that database server. (It is
possible to run more than one copy of the database server. This is sometimes
done, for example, to create a safe environment for testing apart from the
operational data. In that case, be sure that you are using the correct database
server when you create the database, and again when you access it later.)

Informix Guide to SQL: Tutorial

Using CREATE DATABASE

Selecting a Dbspace

Universal Server offers you the option of creating the database in a particular
dbspace. A dbspace is a named area of disk storage. Ask your Universal Server
administrator whether you should use a particular dbspace. The adminis-
trator can put a database in a dbspace to isolate it from other databases or to
locate it on a particular disk device. (The INFORMIX-Universal Server Admin-
istrator’s Guide discusses dbspaces and their relationship to disk devices.)

Some dbspaces are mirrored (duplicated on two disk devices for high
reliability); your database can be put in a mirrored dbspace if its contents are
of exceptional importance.

Choosing the Type of Logging
Universal Server offers the following choices for transaction logging:

= No logging at all. Informix does not recommend this choice. If you
lose the database due to a hardware failure, you lose all data alter-
ations since the last backup.

CREATE DATABASE db_with_no_Tlog

When you do not choose logging, BEGIN WORK and other SQL state-
ments that are related to transaction processing are not permitted in
the database. This situation affects the logic of programs that use the
database.

= Regular (unbuffered) logging. This choice is best for most
databases. In the event of a failure, you lose only uncommitted
transactions.

CREATE DATABASE a_logged_db WITH LOG

Implementing Your Data Model 9-39

Using CREATE TABLE

9-40

Buffered logging. If you lose the database, you lose a few or possibly
none of the most recent alterations. In return for this small risk,
performance during alterations improves slightly.

CREATE DATABASE buf_log_db WITH BUFFERED LOG

Buffered logging is best for databases that are updated frequently (so
that speed of updating is important), but you can re-create the
updates from other data in the event of a crash. Use the SET LOG
statement to alternate between buffered and regular logging.

ANSI-compliant logging. This logging is the same as regular
logging, but the ANSI rules for transaction processing are also
enforced.

CREATE DATABASE std_rules_db WITH LOG MODE ANSI
The design of ANSI SQL prohibits the use of buffered logging.

The Universal Server administrator can turn transaction logging on and off
later. For example, the administrator can turn it off before inserting a large
number of new rows.

Using CREATE TABLE

Use the CREATE TABLE statement to create each table that you designed in the
data model. This statement has a complicated form, but it is basically a list of
the columns of the table. For each column, you supply the following
information:

The name of the column
The data type (from the domain list you made)

If the column (or columns) is a primary key, the primary-key
constraint

If the column (or columns) is a foreign key, the foreign-key constraint

If the column is not a primary key and should not allow nulls, the not
null constraint

If the column is not a primary key and should not allow duplicates,
the unique constraint

If the column has a default value, the default constraint
If the column has a check constraint, the check constraint

Informix Guide to SQL: Tutorial

Using CREATE TABLE

In short, the CREATE TABLE statement is an image in words of the table as you
drew it in the data-model diagram. The following example shows the state-
ments for the telephone-directory model:

CREATE TABLE name

(

rec_num SERIAL PRIMARY KEY,
Tname CHAR(20),

fname CHAR(20),

bdate DATE,

anniv DATE,

email VARCHAR(25)

)3

CREATE TABLE child

(

child CHAR(20),

rec_num INT,

FOREIGN KEY (rec_num) REFERENCES NAME (rec_num)

)
CREATE TABLE address

(

id_num SERIAL PRIMARY KEY,

rec_num INT,

street VARCHAR (50,20),

city VARCHAR (40,10),

state CHAR(5) DEFAULT ’CA’

zipcode CHAR(10),

FOREIGN KEY (rec_num) REFERENCES name (rec_num)

)3

CREATE TABLE voice
(
vce_num CHAR(13) PRIMARY KEY,
vce_type CHAR(10),
rec_num INT,
FOREIGN KEY (rec_num) REFERENCES name (rec_num)

)3

CREATE TABLE fax
(
fax_num CHAR(13),
oper_from DATETIME HOUR TO MINUTE,
oper_till DATETIME HOUR TO MINUTE,
PRIMARY KEY (fax_num)
)3

CREATE TABLE faxname
(
fax_num CHAR(13),
rec_num INT,
PRIMARY KEY (fax_num, rec_num),

Implementing Your Data Model ~ 9-41

Using Command Scripts

9-42

FOREIGN KEY (fax_num) REFERENCES fax (fax_num),
FOREIGN KEY (rec_num) REFERENCES name (rec_num)
)

CREATE TABLE modem
(
mdm_num CHAR(13) PRIMARY KEY,
rec_num INT,
b_type CHAR(5),
FOREIGN KEY (rec_num) REFERENCES name (rec_num)
)

Using Command Scripts

You can create the database and tables by entering the statements
interactively. But, in some cases you might have to do it again or several more
times.

You might have to do it again to make a production version after a test
version is satisfactory. You might have to implement the same data model on
several computers. To save time and reduce the chance of errors, you can put
all the commands to create a database in a file and execute them
automatically.

Capturing the Schema

You can write the statements to implement your model into a file. However,
you can also have a program do it for you. See the Informix Migration Guide
for information about the dbschema utility, a program that examines the
contents of a database and generates all the SQL statements required to re-
create it. You can build the first version of your database interactively,
making changes until it is exactly as you want it. Then you can use dbschema
to generate the SQL statements necessary to duplicate it.

Executing the File

Programs that you use to enter SQL statements interactively, such as
DB-Access or SQL Editor, can be driven from a file of commands. The use of
these products is covered in the DB-Access User Manual or the INFORMIX-SQL
User Guide. You can start DB-Access or INFORMIX-SQL to read and execute a
file of commands that you or dbschema prepared.

Informix Guide to SQL: Tutorial

Populating the Tables

An Example

Most Informix database server products come with a demonstration
database called stores7 (the database used for most of the examples in this
book). The stores7 database is delivered as an operating-system command
script that calls Informix products to build the database. You can copy this
command script and use it as the basis for automating your own data model.

Populating the Tables

For your initial tests, the easiest way to populate the tables interactively is to
type INSERT statements in DB-Access or the SQL Editor. To insert a row into
the manufact table of the stores7 database in DB-Access, enter the following
command:

INSERT INTO manufact VALUES ('MKL', 'Martin', '15")

If you are preparing an application program in another language, you can
use the program to enter rows.

If your database contains typed tables or tables that contain complex data
types, the syntax you use to insert data into tables is somewhat different than
that shown in the preceding example. For information about how to perform
an insert or update on a table that contains a complex data type, see
Chapter 12, “Accessing Complex Data Types.”

Often, the initial rows of a large table can be derived from data that is stored
in tables in another database or in operating-system files. You can move the
data into your new database in a bulk operation. If the data is in another
Informix database, you can retrieve it in several ways.

If you are using Universal Server, you can simply select the data you want
from the other database on another database server as part of an INSERT
statement in your database. As the following example shows, you could
select information from the items table in the stores7 database to insert into
a new table:

INSERT INTO newtable
SELECT item_num, order_num, quantity, stock_num,
manu_code, total_price
FROM stores/@otherserver:items

Implementing Your Data Model 9-43

Populating the Tables

9-44

When the source is another kind of file or database, you must find a way to
convert it into a flat ASCII file; that is, a file of printable data in which each
line represents the contents of one table row.

After you have the data in afile, you can use the dbload utility to load it into
a table. For more information on dbload, see the Informix Migration Guide.
The LOAD statement in DB-Access and the SQL Editor can also load rows from
a flat AsCIl file. For information about the LOAD and UNLOAD statements,
see the Informix Guide to SQL: Syntax.

Inserting hundreds or thousands of rows goes much faster if you turn off
transaction logging. No point exists in logging these insertions because, in
the event of a failure, you can easily re-create the lost work. The following list
contains the steps of a large bulk-load operation:

= If any chance exists that other users are using the database, exclude
them with the DATABASE EXCLUSIVE statement.

= If you are using Universal Server, ask the administrator to turn off
logging for the database.

The existing logs can be used to recover the database in its present
state, and you can run the bulk insertion again to recover those rows
if they are lost.

= Perform the statements or run the utilities that load the tables with
data.

= Back up the newly loaded database.

If you are using Universal Server, either ask the administrator to
perform a full or incremental backup, or use the onunload utility to
make a binary copy of your database only.

If you are using other database servers, use operating-system
commands to back up the files that represent the database.

= Restore transaction logging, and release the exclusive lock on the
database.

You can enclose the steps of populating a database in a script of operating-
system commands. You can automate the database server administrator
commands by invoking the command-line equivalents to ON-Monitor.

Informix Guide to SQL: Tutorial

Fragmenting Tables and Indexes

Fragmenting Tables and Indexes

This section on fragmentation explains how to create and manage
fragmented tables using SQL statements. It covers the following topics:

= How to create and maintain fragmented tables and indexes

= How to access data that is stored in fragmented tables
Before you read this section, familiarize yourself with the terms and concepts

related to fragmentation and parallel database queries (PDQ) that are
contained in the INFORMIX-Universal Server Administrator’s Guide.

Creating a Fragmented Table

You can fragment a table at the same time that you create it, or you can
fragment existing nonfragmented tables. An overview of both alternatives is
given in the following sections. For the complete syntax of the SQL statements
that you use to create fragmented tables, see the CREATE TABLE and ALTER
TABLE statements in the Informix Guide to SQL: Syntax.

Before you create a fragmented table, you must decide on an appropriate
distribution scheme for your tables. For advice on choosing a distribution
scheme that meets your needs, see the INFORMIX-Universal Server Adminis-
trator’s Guide.

Implementing Your Data Model ~ 9-45

Fragmenting a New Table

9-46

Fragmenting a New Table

To create a fragmented table, use the FRAGMENT BY clause of the CREATE
TABLE statement. Suppose that you wish to create a fragmented table similar
to the stores7 table, orders. You decide on a round-robin distribution scheme
with three fragments. Consult with the Universal Server administrator to set
up three dbspaces, one for each of the fragments: dbspacel, dbspace2, and
dbspace3. To create the fragmented table, execute the following SQL
statement:

CREATE TABLE my_orders (
order_num SERTAL(1001),
order_date DATE,
customer_num INT,
ship_instruct CHAR(40),
backlog CHAR(1),
po_num CHAR(10),
ship_date DATE,
ship_weight DECIMAL(8,2),
ship_charge MONEY(6),
paid_date DATE,
PRIMARY KEY (order_num),
FOREIGN KEY (customer_num) REFERENCES customer(customer_num))
FRAGMENT BY ROUND ROBIN IN dbspacel,dbspace?,dbspace3

If you decide instead to create the table using an expression-based
distribution scheme, you can use the FRAGMENT BY EXPRESSION clause of
CREATE TABLE. Suppose that your my_orders table has 30,000 rows, and you
wish to distribute rows evenly across three fragments stored in dbspacel,
dbspace?, and dbspace3. You decide to use the column order_num to define
the expression fragments.

You can define the expression as the following example shows:

CREATE TABLE my_orders (order_num serial, ...)
FRAGMENT BY EXPRESSION
order_num < 10000 IN dbspacel,
order_num < 20000 IN dbspace?,
order_num >= 20000 IN dbspace3

For information about how you can specify a fragmentation strategy for
typed tables that are part of an inheritance hierarchy, see “Inheritance of
Table Behavior in a Table Hierarchy” on page 10-30.

Informix Guide to SQL: Tutorial

Creating a Fragmented Table from Nonfragmented Tables

Creating a Fragmented Table from Nonfragmented Tables

You might need to convert nonfragmented tables into fragmented tables in
the following circumstances:

= You have an application-implemented version of table
fragmentation.

In this case, you will probably want to convert several small tables
into one large fragmented table. The following section tells you how
to proceed when this is the case.

= You have an existing large table that you want to fragment.

Follow the instructions in the section “Creating a Fragmented Table
from a Single Nonfragmented Table” on page 9-48.

Tip: Before you perform the conversion, you must set up an appropriate number of
dbspaces to contain the newly created fragmented tables.

Creating a Table from More Than One Nonfragmented Table

You can combine two or more nonfragmented tables into a single fragmented
table. The nonfragmented tables must have identical table structures and
must be stored in separate dbspaces. To combine the nonfragmented tables,
use the ATTACH clause of the ALTER FRAGMENT statement.

For example, suppose that you have three nonfragmented tables, accountl,
account2, and account3, and that you store the tables in the dbspaces
dbspacel, dbspace2, and dbspace3, respectively. All three tables have
identical structures, and you want to combine the three tables into one table
that is fragmented by expression on the common column acc_num.

You want rows with acc_num less than or equal to 1120 to be stored in the
fragment that is stored in dbspacel. Rows with acc_num greater than 1120
but less than or equal to 2000 are to be stored in dbspace2. Finally, rows with
acc_num greater than 2000 are to be stored in dbspace3.

Implementing Your Data Model ~ 9-47

Modifying a Fragmented Table

9-48

To fragment the tables with this fragmentation strategy, execute the following
SQL statement:

ALTER FRAGMENT ON TABLE tabl ATTACH
tabl AS acc_num <= 1120,
tab2 AS acc_num > 1120 and acc_num <= 2000,
tab3 AS acc_num > 2000

The result is a single table, tabl. The other tables, tab2 and tab3, were
consumed and no longer exist. For more information on the ATTACH clause
of the ALTER FRAGMENT statement, see Chapter 1 of the Informix Guide to
SQL: Syntax.

Creating a Fragmented Table from a Single Nonfragmented Table

To create a fragmented table from a nonfragmented table, use the INIT clause
of the ALTER FRAGMENT statement. For example, suppose you want to
convert the table orders to a table fragmented by round-robin. The following
SQL statement performs the conversion:

ALTER FRAGMENT ON TABLE orders INIT FRAGMENT BY ROUND ROBIN

Any existing indexes on the nonfragmented table will become fragmented
with the same fragmentation strategy as the table.

Modifying a Fragmented Table

You can make two general types of modifications to a fragmented table. The
first type consists of the modifications that you can make to a nonfragmented
table. Such modifications include adding a column dropping a column,
changing a column data type, and so on. For these modifications, use the
same SQL statements that you would normally use on a nonfragmented table.

The second type of modification consists of changes to a fragmentation
strategy. This section explains how to modify a fragmentation strategy using
SQL statements.

Informix Guide to SQL: Tutorial

Modifying Fragmentation Strategies

Modifying Fragmentation Strategies

The need to alter a fragmentation strategy after you implement
fragmentation sometimes occurs. Most frequently, you will need to modify
your fragmentation strategy when you use fragmentation with intraquery
parallelization or interquery parallelization. Modifying your fragmentation
strategy in these circumstances is one of several ways you can tune the
performance of your Universal Server system.

Using the MODIFY Clause to Change a Fragmentation Strategy

To modify an existing fragmentation strategy, use the ALTER FRAGMENT
statement. Use the MODIFY clause of the ALTER FRAGMENT statement to
modify one or more of the expressions in a fragmentation strategy.

For example, suppose that you initially created the fragmented table with the
following CREATE TABLE statement:

CREATE TABLE account (acc_num INTEGER,)
FRAGMENT BY EXPRESSION
acc_num <= 1120 in dbspacel,
acc_num > 1120 and acc_num < 2000 in dbspace?,
REMAINDER IN dbspace3

Executing the following ALTER FRAGMENT statement ensures that no
account numbers with a value less than or equal to zero are stored in the
fragment that is contained in dbspacel:

ALTER FRAGMENT ON TABLE account
MODIFY dbspacel to acc_num > 0 and acc_num <=1120

You cannot use the MODIFY clause to alter the number of fragments
contained in your distribution scheme. Use the INIT or ADD clause of ALTER
FRAGMENT described in the next section instead.

Implementing Your Data Model ~ 9-49

Modifying Fragmentation Strategies

9-50

Adding a New Fragment

If the modifications that you want to make require adding a new fragment to
your table, use the ADD clause of the ALTER FRAGMENT statement.

For example, suppose that you want to add a fragment to a table that you
created using the following SQL statement:

CREATE TABLE frag_table ...
FRAGMENT BY ROUND ROBIN IN dbspacel,dbspace?2,dbspace3

To add a fourth dbspace, dbspace4, execute the following SQL statement:
ALTER FRAGMENT ON TABLE frag table ADD dbspace4

The ADD clause of ALTER FRAGMENT contains options for adding a dbspace
before or after an existing dbspace, provided the fragmentation strategy is
expression based. For more information, see the ALTER FRAGMENT
statement in the Informix Guide to SQL: Syntax.

Using the INIT Clause to Reinitialize a Fragmentation Scheme
Completely

Consider using the INIT clause when you want to reinitialize a fragmentation
strategy completely. For example, suppose that you initially created the
fragmented table with the following CREATE TABLE statement:

CREATE TABLE account (acc_num INTEGER,)
FRAGMENT BY EXPRESSION
acc_num <= 1120 in dbspacel,
acc_num > 1120 and acc_num < 2000 in dbspace?,
REMAINDER IN dbspace3

However, after several months of operation with this distribution scheme,
you find that the number of rows in the fragment contained in dbspace2 is
twice the number of rows contained in the other two fragments. This
imbalance causes the disk containing dbspace2 to become an 170 bottleneck.

To remedy this situation, you decide to modify the distribution so that the
number of rows in each fragment is approximately even. You want to modify
the distribution scheme so that it contains four fragments instead of three
fragments. A new dbspace, dbspace2a, is to contain the new fragment that
will store the first half of the rows that were previously contained in
dbspace2. The fragment in dbspace2 will contain the second half of the rows
that it previously stored.

Informix Guide to SQL: Tutorial

Dropping a Fragment

To implement the new distribution scheme, first create the dbspace
dbspace2a. Then execute the following statement:

ALTER FRAGMENT ON TABLE account INIT
FRAGMENT BY EXPRESSION
acc_num <= 1120 in dbspacel,
acc_num > 1120 and acc_num <= 1500 in dbspace?a,
acc_num > 1500 and acc_num < 2000 in dbspace2,
REMAINDER IN dbspace3

As soon as you execute this statement, Universal Server discards the old
fragmentation strategy, and the rows contained in the table are redistributed
according to the new fragmentation strategy.

You can also use the INIT clause of ALTER FRAGMENT to perform the
following actions:
= Convert a single nonfragmented table into a fragmented table
= Convert a fragmented table into a nonfragmented table

= Convert a table fragmented by round-robin to an expression-based
fragmentation strategy

= Convert a table fragmented by expression to a round-robin
fragmentation strategy

For more information, see the ALTER FRAGMENT statement in the Informix
Guide to SQL: Syntax.

Dropping a Fragment

In the process of defining a fragmentation strategy, you might find it
necessary to drop one or more fragments. Suppose you wish to drop a
fragment that was defined by this SQL statement:

CREATE TABLE frag_table (col_a int, col_b int)
FRAGMENT BY ROUND ROBIN IN dbspacel,dbspace?2,dbspace3

To drop the second fragment, issue the following SQL statement:
ALTER FRAGMENT ON TABLE frag table DROP dbspace?

When you issue this statement, all the rows in dbspace2 are moved to the
remaining dbspaces, dbspacel and dbspace3. For more information on
dropping fragments, see the ALTER FRAGMENT statement in Chapter 1 of the
Informix Guide to SQL: Syntax.

Implementing Your Data Model 9-51

Accessing Data Stored in Fragmented Tables

9-52

Accessing Data Stored in Fragmented Tables

Rows that are stored in nonfragmented tables can be accessed by several
methods. One method is to reference the rowid of the row that you are
seeking. The term rowid refers to an integer that defines the physical location
of a row. The database server assigns rows in a nonfragmented table a unique
rowid, which allows applications access to a particular row in a table.

Rows in fragmented tables, in contrast, are not assigned a rowid. If you wish
to access data by rowid, you must explicitly create a rowid column as
described in “Creating a Rowid Column” on page 9-53. If user applications
attempt to reference a rowid in a fragmented table that does not contain a
rowid that you explicitly created, Universal Server displays an appropriate
error message, and execution of the application is halted.

Using Primary Keys Instead of Rowids

Informix recommends that you use primary keys rather than rowids as a
method of access in your applications. Because primary keys are defined in
the ANSI specification of SQL, using them to access data makes your
applications more portable.

For a complete description of how to define and use primary keys to access
data, see the Informix Guide to SQL: Reference and the Informix Guide to SQL.:
Syntax.

Rowid in a Fragmented Table

From the viewpoint of an application, the functionality of a rowid column in
a fragmented table is identical to that of a rowid of a nonfragmented table.
However, unlike the rowid of a nonfragmented table, the database server
uses an index to map the rowid to a physical location. Accessing data in a
fragmented table by rowid is significantly slower than accessing data in a
nonfragmented table by rowid. Accessing data in a fragmented table by
rowid is no faster than accessing data using a primary key. In addition,
primary-key access can lead to significantly improved performance in many
situations, particularly when access is in parallel.

Informix Guide to SQL: Tutorial

Using Primary Keys Instead of Rowids

When Universal Server accesses a row in a fragmented table using the rowid
column, it uses an index to look up the physical address of the row before it
attempts to access the row. For a nonfragmented table, Universal Server uses
direct physical access without having to do an index lookup. Consequently,
accessing a row in a fragmented table using rowid takes slightly longer than
accessing a row using rowid in a nonfragmented table. You should also
expect a small performance impact on the processing of inserts and deletes
due to the cost of maintaining the rowid index for fragmented tables.

The section that follows explains how to create a rowid in a fragmented table.

Creating a Rowid Column

If, for some reason, you find that your applications must access data in a
fragmented table using a rowid column, you must create a rowid column for
the fragmented table.

You can create the column at the same time that you create the table by using
the WITH ROWIDS clause of the CREATE TABLE statement. When you issue
the CREATE TABLE...WITH ROWIDS statement, Universal Server creates a
rowid column that adds 4 bytes to each row in the fragmented table. In
addition, Universal Server creates an internal index that it uses to access the
data in the table by rowid. After the rowid column is created, Universal
Server inserts a row in the sysfragments catalog table, which indicates the
existence and attributes of the rowid column.

If you decide that you need a rowid column after you build the fragmented
table, use the ADD ROWIDS clause of the ALTER TABLE statement or the INIT
clause of the ALTER FRAGMENT statement.

You can drop the rowid column from a fragmented table with the DROP
ROWIDS clause of the ALTER TABLE statement. For more information, see the
ALTER TABLE statement in Chapter 1 of the Informix Guide to SQL: Syntax.

Important: Typed tables do not support rowids. Therefore you cannot specify the
WITH ROWID or ADD ROWID clauses on any table to which you have assigned a
named row type. For information about typed tables, see “Using a Named Row Type
to Create a Typed Table” on page 10-8.

Implementing Your Data Model 9-53

Using Primary Keys Instead of Rowids

9-54

You cannot create or add a rowid column by haming it as one of the columns
in a table that you create or alter. For example, you will receive an error if you
execute the following statement:

CREATE TABLE test_table (rowid INTEGER,)
You will get the following error:

-227 DDL options on rowid are prohibited. error

Granting and Revoking

You need to have a strategy for controlling data distribution if you want to
grant useful fragment privileges. Fragmenting data records by expression is
such a strategy. The round-robin data-record distribution strategy, on the
other hand, is not a useful strategy because each new data record is added to
the next fragment. This distribution nullifies any clean method of tracking
data distribution and therefore eliminates any real use of fragment authority.
Because of this difference between expression-based distribution and
round-robin distribution, the GRANT FRAGMENT and REVOKE FRAGMENT
statements apply only to tables that are fragmented by an expression
strategy.

Important: If you issue a GRANT FRAGMENT or REVOKE FRAGMENT statement
against a table that is fragmented with a round-robin strategy, the command fails,
and an error message is returned.

When you create a fragmented table, no default fragment authority exists.
Use the GRANT FRAGMENT statement to grant insert, update, or delete
authority on one or more of the fragments. If you want to grant all three privi-
leges at once, use the ALL keyword of the GRANT FRAGMENT statement.
However, you cannot grant fragment privileges by merely naming the table
that contains the fragments. You must name the specific fragments.

Informix Guide to SQL: Tutorial

Summary

When the time comes to revoke insert, update, or delete privileges, use the
REVOKE FRAGMENT statement. This statement revokes privileges on one or
more fragments of a fragmented table from one or more users. If you want to
revoke all privileges that currently exist for a table, you can use the ALL
keyword. If no fragments are specified in the command, the permissions
being revoked apply to all fragments in the table that currently have
permissions.

For more information, see the GRANT FRAGMENT, REVOKE FRAGMENT, and
SET statements in the Informix Guide to SQL: Syntax.

Summary

This chapter covered the following work, which you must do to implement
a data model:

= Specify the column-specific properties, or constraints, that are used
in the model, and complete the model diagram by assigning
constraints to each column.

= Use interactive SQL to create the database and the tables in it.

= If you must create the database again, write the SQL statements to do
so into a script of commands for the operating system.

= Populate the tables of the model, first using interactive SQL and then
by bulk operations.

= Possibly write the bulk-load operation into a command script so that
you can repeat it easily.

= Possibly use the fragmentation SQL statements to create, alter, and
modify fragmented tables.

You can now use and test your data model. If it contains very large tables, or
if you must protect parts of it from certain users, more work remains to be
done. That work is one of the subjects in the INFORMIX-Universal Server
Performance Guide.

Implementing Your Data Model ~ 9-55

Chapter

Understanding Complex Data
Types

What Are Complex Data Types?
Named Row Types :
When to Use a Named Row Type : :
Choosing a Name for a Named Row Type .
Restrictions on Named Row Types. .
Using a Named Row Type to Create a Typed Table .
Converting an Untyped Table into a Typed Table.
Using a Named Row Type to Create a Column
Using a Named Row Type Within Another Named Row Type
Dropping Named Row Types .
Unnamed Row Types. .
Restrictions on Data Types AIIowed in Unnamed Row Types
Collection Data Types
Null Values in Collections.
Using a Set .
Using a Multiset .
Using a List. .
Nesting Collection Types .
Adding a Collection Type to an EX|st|ng Table
Restrictions on Data Types Allowed in Collections .

What Is Inheritance?

Type Inheritance .
Defining a Type H|erarchy
Overloading Routines for Types in a Type H|erarchy
Inheritance and Type Substitutability .
Dropping Named Row Types from a Type Hlerarchy
Restrictions on Type Hierarchies

Table Inheritance . .
The Relationship Between Type and Table Hlerarchles .
Defining a Table Hierarchy .
Inheritance of Table Behavior in a Table Hlerarchy .

10-4
10-5
10-6
10-7
10-7
10-8
10-9
10-10
10-12
10-12
10-13
10-14
10-14
10-15
10-16
10-17
10-18
10-19
10-19
10-20

10-20
10-20
10-21
10-24
10-25
10-26
10-27
10-27
10-28
10-29
10-30

10

10-2

Modifying Table Behavior in a Table Hierarchy
Adding a New Table to a Table Hierarchy

Dropping a Table in a Table Hierarchy .
Altering the Structure of a Table in a Table H|erarchy
Querying Tables in a Table Hierarchy . .o
Creating a View on a Table in a Table Hlerarchy .

Summary .

Informix Guide to SQL: Tutorial

10-32
10-35
10-37
10-37
10-38
10-38

10-39

n a traditional relational database, users are limited to the built-in data
types that the database server provides. Consequently, you can store and
access only those types of data that the built-in data types support. In
contrast, INFORMIX-Universal Server lets you create user-defined data types
and complex data types that extend the type system of the database server
and provide greater flexibility in the types of data that you can store and
manipulate. A user-defined type (opaque type or distinct type), from the
point of view of the user, is an atomic data type. When you create a user-
defined type, you define the structure of the data type as well as the
functions, operators, and aggregates that operate on the new data type. A
complex data type is usually a composite of other existing data types. For
example, you might create a complex type whose components include built-
in types, opaque types, distinct types, or other complex types. An important
advantage that complex types have over user-defined types is that users can
access and manipulate the individual components of a complex data type
through SQL.

This chapter introduces complex data types and describes how to use them.
It covers the following topics:

= What are complex data types?
= What is inheritance?
= Casting row types

Understanding Complex Data Types 10-3

What Are Complex Data Types?

What Are Complex Data Types?

A complex data type is a user-defined data type that can contain multiple
data types of any kind and in any combination. An important characteristic
of a complex data type is that you can easily access each of its component
data types. In contrast, built-in types and opaque types are self-contained
(encapsulated) data types. Consequently, the only way to access the
component values of an opaque data type is through functions that you
define on the opaque type. (For more information on opaque data types, see
Chapter 3, “Environment Variables,” in the Informix Guide to SQL: Reference.)

Figure 10-1 shows the complex types that Universal Server supports and the
syntax that you use to create the complex types.

Figure 10-1
Complex Types
’ Complex types ‘
’ Collection types ‘ ’ Row types
’ LIST H SET H MULTISET ‘ Named row type: Unnamed row type:
ROW OF TYPE ROW

The complex types illustrated in Figure 10-1 provide the following extended
data type support:

= Collection types. You can use a collection type whenever you need
to store and manipulate collections of data within a table cell. You
can assign collection types to columns.

= Row types. You can assign a row type to a column or a table. A
column that is a named row type contains multiple fields
(subcolumns). When you assign a named row type to a table, the
type defines the structure of the entire table.

10-4 Informix Guide to SQL: Tutorial

Named Row Types

You can use complex types in the same way that you use built-in or opaque
data types. For example, you can use complex types as:

= column types.
= routine argument types and return types.
= field types in other complex types.

For complete information about how to perform SELECT, INSERT, UPDATE,
and DELETE operations on the complex data types described in this chapter,
see Chapter 12, “Accessing Complex Data Types.”

Named Row Types

A named row type is a group of fields that are defined under a single name. A
field refers to a component of a row type and should not be confused with a
column, which is associated with tables only. The fields of a named row type
are analogous to the fields of a C-language structure or members of a class in
object-oriented programming. Once you create a named row type, the name
that you assign to the row type represents a unique type within the database.
To create a named row type, you specify a name for the row type and the
names and data types of its constituent fields. The following example shows
how you might create a named row type called person_t:

CREATE ROW TYPE person_t
(
name VARCHAR(30) NOT NULL,
address VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip VARCHAR(9),
bdate DATE

Understanding Complex Data Types 10-5

Named Row Types

The person_t row type contains six fields: name, address, city, state, zip, and
bdate. You can use any data type to define the fields of a row type, except the
TEXT, BYTE, SERIAL, or SERIALS8 data type. When you create a named row
type, you can use it just as you would any other data type. For example,
person_t can occur anywhere that you might use any other data type.

For the syntax you use to create a named row type, see the CREATE ROW TYPE
statement in the Informix Guide to SQL: Syntax. For information about how to
cast row type values, see Chapter 13 in this manual.

When to Use a Named Row Type

A named row type is one way to create a new data type in Universal Server.
When you create a named row type, you are defining a template for fields of
data types known to the database server. Thus the field definitions of a row
type are analogous to the column definitions of a table: both are constructed
from data types known to the database server.

You can create a named row type when you want a type that acts as container
for component values that users need to access. For example, you might
create a named row type to support address values since users need direct
access to the individual component values of an address such as street, city,
state, and zip code. When you create the address type as a named row type,
users always have direct access to each of the fields.

In contrast, if you create an opaque data type to handle address values, a
C-language data structure stores all the address information. Because the
component values of an opaque type are encapsulated, you would have to
define functions to extract the component values for street, city, state, zip
code. Thus, an opaque data type is a more complicated type to define and
use.

Before you define a data type, determine whether the type is just a container
for a group of values that users can access directly. If the type fits this
description, use a named row type.

10-6 Informix Guide to SQL: Tutorial

Named Row Types

Choosing a Name for a Named Row Type

You can give a named row type any name that you like provided that the
name does not violate the conventions established for the SQL identifiers. The
conventions for SQL identifiers are described in the Identifier segment in the
Informix Guide to SQL: Syntax. To avoid confusing type and table names, the
examples in this manual designate named row types with the _t characters at
the end of the row type name.

You must have the Resource privilege to create a named row type. The name
that you assign to a named row type should not be the same as any other data
type that exists in the database because all data types share the same name
space. In an ANSI-compliant database, the combination owner. type must be
unique within the database. In a database that is not ANSI-compliant, the
name must be unique within the database.

Important: You must grant USAGE privileges on a named row type before other
users can use it. For information about granting and revoking privileges on named
row types, see Chapter 11, “Granting and Limiting Access to Your Database.”

Restrictions on Named Row Types

You cannot use the following data types to define fields of a named row type:

= SERIAL
= SERIALS

Informix recommends that you use the BLOB or CLOB data types instead of
the TEXT or BYTE data types when you create a typed table that contains
columns for large objects. For backward compatibility, you can create a
named row type that contains TEXT or BYTE fields and use that type to
recreate an existing (untyped) table as a typed table. However, although you
can use a row type that contains BYTE or TEXT fields to create a typed table,
you cannot use such a row type as a column. You can use a row type that
contains CLOB or BLOB fields in both typed tables and columns.

In a CREATE ROW TYPE statement, you can specify only the NOT NULL
constraint for the fields of a named row type. You must define all other
constraints in the CREATE TABLE statement. For more information, see the
CREATE TABLE statement in the Informix Guide to SQL: Syntax.

Understanding Complex Data Types 10-7

Named Row Types

Using a Named Row Type to Create a Typed Table

You can create a table that is typed or untyped. A typed table is a table that has
anamed row type assigned to it. An untyped table is a table that does not have
a named row type assigned to it. The CREATE ROW TYPE statement creates a
named row type but does not allocate storage for instances of the row type.
To allocate storage for instances of a named row type, you must assign the
row type to a table. The following example shows how to create a typed table:

CREATE ROW TYPE person_t

(
name VARCHAR(30),
address VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip INTEGER,
bdate DATE

)3

CREATE TABLE person OF TYPE person_t;

The first statement creates the person_t type. The second statement creates
the person table, which contains instances of the person_t type. More specif-
ically, each row in a typed table contains an instance of the named row type
that is assigned to the table. In the preceding example, the fields of the
person_t type define the columns of the person table.

Inserting data into a typed table is no different than inserting data into an
untyped table. When you insert data into a typed table, the operation creates
an instance of the row type and inserts it into the table. The following
example shows how to insert a row into the person table:

INSERT INTO person
VALUES ('Brown, James', '13 First St.', 'San Carlos', 'CA',
94070, '01/04/1940")

The INSERT statement creates an instance of the person_t type and inserts it
into the table. For information about how to insert, update, and delete
columns that are defined on named row types, see “Modifying Columns That
Contain Row Type Data” on page 12-11.

10-8 Informix Guide to SQL: Tutorial

Named Row Types

You can use a single named row type to create multiple typed tables. In this
case, each table has a unique name, but all tables share the same type.

Important: You cannot create a typed table that is a temporary table.

For information on the advantages of choosing to implement your data
model using typed tables, see “Type Inheritance” on page 10-20.

Converting an Untyped Table into a Typed Table

The primary advantage of typed tables over untyped tables is that typed
tables can be used in an inheritance hierarchy. In general, inheritance allows
a table to acquire the representation and behavior of another table. For more
information about inheritance, see “What Is Inheritance?”” on page 10-20.

If you want to convert an existing untyped table into a typed table, you can
use the ALTER TABLE statement. For example, consider the following
untyped table:

CREATE TABLE manager
(

name VARCHAR(30),
department VARCHAR(20),
salary INTEGER

)3

To convert an untyped table to a typed table, both the field names and the
field types of the named row type must match the column names and column
types of the existing table. For example, to make the manager table a typed
table, you must first create a named row type that matches the column defini-
tions of the table. The following statement creates the manager_t type, which
contains field names and field types that match the columns of the manager
table:

CREATE ROW TYPE manager_t
(

name VARCHAR(30),
department VARCHAR(30),
salary INTEGER

)

Understanding Complex Data Types 10-9

Named Row Types

Once you create the named row type that you want to assign to the existing
untyped table, use the ALTER TABLE statement to assign the type to the table.
The following statement alters the manager table and makes it a typed table
of type manager _t:

ALTER TABLE manager ADD TYPE manager_t

The new manager table contains the same columns and data types as the old
table but now provides the advantages of a typed table.

Using a Named Row Type to Create a Column

Both typed and untyped tables can contain columns that are defined on
named row types. A column that is defined on a named row type behaves in
the same way whether the column occurs in a typed table or untyped table.
In the following example, the first statement creates a named row type
address_t; the second statement assigns the address_t type to the address
column in the employee table:

CREATE ROW TYPE address_t
(
street VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip VARCHAR(9)
)

CREATE TABLE employee

(
name VARCHAR(30),
address address_t,
salary INTEGER

10-10 Informix Guide to SQL: Tutorial

Named Row Types

In the preceding CREATE TABLE statement, the address column has the street,
city, state, and zip fields of the address_t type. Consequently, the employee
table, which has only three columns, contains values for name, street, city,
state, zip, and salary. You use dot notation to access the individual fields of a
column that is defined on a row type. For information about using dot
notation to access fields of a column, see “Field Projections” on page 12-9.

When you insert data into a column that is assigned a row type, you need to
use the ROW constructor to specify row literal values for the row type. The
following example shows how to use the INSERT statement to insert a row
into the employee table:

INSERT INTO employee

VALUES ("John Bryant',

ROW('10 Bay Street', 'Madera', 'CA', 95400)::address_t,
55000) ;

Strong typing is not enforced for an insert or update on a named row type. To
ensure that the row values are of the named row type, you must explicitly
cast to the named row type to generate values of a named row type, as shown
in the previous example. The INSERT statement inserts three values, one of
which is a row type value that contains four values. More specifically, the
operation inserts unitary values for the name and salary columns, but it
creates an instance of the address_t type and inserts it into the address
column.

For more information about how to insert, update, and delete columns that
are defined on row types, see “Modifying Columns That Contain Row Type
Data” on page 12-11.

Understanding Complex Data Types 10-11

Named Row Types

Using a Named Row Type Within Another Named Row Type

You can use a row type as the data type of a field within another row type. In
the following example, the first statement creates the address_t type, which
is also used in the second statement to define the type of the address field of
the employee _t type:

CREATE ROW TYPE address_t
(
street VARCHAR (20),
city VARCHAR(20),
state CHAR(2),
zip VARCHAR(9)
)

CREATE ROW TYPE employee_t

(
name VARCHAR(30) NOT NULL,
address address_t,
salary INTEGER

)3

Important: A row type cannot be used recursively. If type_t is a row type, then
type_t cannot be used as the data type of a field contained in type_t.

Dropping Named Row Types

To drop a named row type, use the DROP ROW TYPE statement. You can drop
a type only if it has no dependencies. You cannot drop a named row type if
any of the following conditions are true:

= The type is currently assigned to a table.

= The type is currently assigned to a column in a table.

= The type is currently assigned to a field within another row type.
The following example shows how to drop the person_t type:

DROP ROW TYPE person_t restrict;

For information about dropping a named row type from a type hierarchy, see
“Dropping Named Row Types from a Type Hierarchy” on page 10-26.

10-12 Informix Guide to SQL: Tutorial

Unnamed Row Types

Unnamed Row Types

An unnamed row type is a group of typed fields that you create with the ROW
constructor. An important distinction between named and unnamed row
types is that you cannot assign an unnamed row type to a table. You use an
unnamed row type to define the type of a column or field only. In addition,
an unnamed row type is identified by its structure alone, whereas a named
row type is identified by its name. The structure of a row type consists of the
number and data types of its fields. In general, it is easier to cast between
unnamed row types than named row types because type checking on
unnamed row types is by structural equivalence only.

The following statement assigns two unnamed row types to columns of the
student table:

CREATE TABLE student
(
S_name ROW(f_name VARCHAR(20), m_init CHAR(1),
1_name VARCHAR(20) NOT NULL),
s_address ROW(street VARCHAR(20), city VARCHAR(20),
state CHAR(2), zip VARCHAR(9))
)

The s_name and s_address columns of the student table each contain
multiple fields. Each field of an unnamed row type can have a different data
type. Although the student table has only two columns, the unnamed row
types define a total of seven fields: f_name, m_init, |_name, street, city, state,
and zip.

The following example shows how to use the INSERT statement to insert data
into the student table:
INSERT INTO student
VALUES (ROW(C'Jim', 'K', '"Johnson'), ROW('10 Grove St.',
"Eldorado’, 'CA', 94108))

For more information about how to modify columns that are defined on row
types, see “Modifying Columns That Contain Row Type Data” on page 12-11.

Understanding Complex Data Types 10-13

Collection Data Types

10-14

The database server does not distinguish between two unnamed row types
that contain the same number of fields and that have corresponding fields of
the same type. Field names are irrelevant in type checking of unnamed row
types. For example, the database server does not distinguish between the
following unnamed row types:

ROW(a INTEGER, b CHAR(4));
ROW(x INTEGER, y CHAR(4));

For information on the syntax for unnamed row types, see the Data Type
segment of the Informix Guide to SQL: Syntax. For information about how to
cast row type values, see Chapter 13 in this manual.

Restrictions on Data Types Allowed in Unnamed Row Types

You cannot use the following data types in the field definition of an unnamed
row type:

= SERIAL
= SERIALS
= BYTE

s TEXT

Collection Data Types

Collection data types enable you to store and manipulate collections of data
within a single row of a table. A collection type has two components: a type
constructor, which determines whether the collection type is a SET, MULTISET,
or LIST, and an element type, which specifies the type of data that the collection
can contain. (The SET, MULTISET, and LIST collection types are described in
detail in the following sections.)

The elements of a collection can be of most any data type. (For a list of excep-
tions, see “Restrictions on Data Types Allowed in Collections” on

page 10-20.) The elements of a collection are the values that the collection
contains. In a collection that contains the values: { 'blue', 'green',
'yellow', and 'red'},'blue’ represents asingle elementin the collection.
Every element in a collection must be of the same type. For example, a
collection whose element type is INTEGER can contain only integer values.

Informix Guide to SQL: Tutorial

Collection Data Types

The element type of a collection can represent a single data type (column) or
multiple data types (row). In the following example, the col_1 column repre-
sents a SET of integers:

col_1 SETCINTEGER NOT NULL)

To define a collection type that contains multiple data types, you can use a
named row type or an unnamed row type. In the following example, the
col_2 column represents a SET of rows that contain name and salary fields:

col_2 SET(ROW(name VARCHAR(20), salary INTEGER) NOT NULL)

Once you define a column as a collection type, you can perform the following
operations on the collection:

= Select and modify individual elements of a collection (from ESQL/C
programs only)

= Count the number of elements that a collection contains
= Determine if certain values are in a collection

For information on the syntax that you use to create collection data types, see
the Data Type segment of the Informix Guide to SQL: Syntax. For information
about how to cast between collection data types, see Chapter 13 in this
manual.

Important: The contents of a collection, including spaces and tabs, must not exceed
32 kilobytes.

Null Values in Collections

A collection cannot contain null elements. When you insert elements into a
collection that is a row type, you must specify a value for at least one field of
the row type for each element in the collection. For example, to insert data
into col_2, you must provide, at minimum, a value for either the name or
salary field. If you attempt to insert null values for both the name and salary
fields, the database server returns an error.

Important: When you define a collection type, you must include the not null con-
straint as part of the type definition. No other column constraints are allowed on a
collection type.

Understanding Complex Data Types 10-15

Collection Data Types

10-16

Using a Set

A setis an unordered collection of elements in which each element is unique.
You define a column as a SET collection type when you want to store collec-
tions whose elements have the following characteristics:

= The elements contain no duplicate values.
= The elements have no specific order associated with them.

To illustrate how you might use a SET, imagine that your human resources
department needs information about the dependents of each employee in the
company. You can use a collection type to define a column in an employee
table that stores the names of an employee’s dependents. The following
statement creates a table in which the dependents column is defined as a SET:

CREATE TABLE employee
(

name CHAR(30),
address CHAR (40),
salary INTEGER,

dependents SET(VARCHAR(30) NOT NULL)
)

A query against the dependents column for any given row returns the names
of all the dependents of the employee. In this case, SET is the appropriate
collection type because the collection of dependents for each employee
should not contain any duplicate values. A column that is defined as a SET
ensures that each element in a collection is unique.

To illustrate how to define a collection type whose elements are a row type,
suppose that you want the dependents column to include the name and
birthdate of an employee’s dependents. In the following example, the depen-
dents column is defined as a SET whose element type is a row type:

CREATE TABLE employee
(

name CHAR(30),

address CHAR (40),

salary INTEGER,

dependents SET(ROW(name VARCHAR(30), bdate DATE)
NOT NULL)

Informix Guide to SQL: Tutorial

Collection Data Types

Each element of a collection from the dependents column contains values for
the name and bdate. Each row of the employee table contains information
about the employee as well as a collection with the names and birthdates of
the employee’s dependents. For example, if an employee has no dependents
the collection for the dependents column is empty. If an employee has 10
dependents, the collection should contain 10 elements.

Using a Multiset

A multiset is a collection of elements in which elements can have duplicate
values. For example, a multiset of integers might contain the collection
{1,3,4,3,3}, which has duplicate elements. You can define a column as a
MULTISET collection type when you want to store collections whose elements
have the following characteristics:

= The elements might not be unique.
= The elements have no specific order associated with them.

To illustrate how you might use a MULTISET, suppose that your human
resources department wants to keep track of the bonuses awarded to
employees in the company. To track each employee’s bonuses over time, you
can use a MULTISET to define a column in a table that records all the bonuses
that each employee receives. In the following example, the bonus column is
a MULTISET:

CREATE TABLE employee
(

name CHAR(30),

address CHAR (40),

salary INTEGER,

bonus MULTISET(MONEY NOT NULL)

)3

You can use the bonus column in this statement to store and access the
collection of bonuses for each employee. A query against the bonus column
for any given row returns the dollar amount for each bonus that the
employee has received. Because an employee might receive multiple bonuses
of the same amount (resulting in a collection whose elements are not all
unique), the bonus column is defined as a MULTISET, which allows duplicate
values.

Understanding Complex Data Types 10-17

Collection Data Types

10-18

Using a List

A listis an ordered collection of elements that allows duplicate values. A list
differs from a MULTISET in that each element in a list has an ordinal position
in the collection. The order of the elements in a list corresponds with the
order in which values are inserted into the LIST. You can define a column as
a LIST collection type when you want to store collections whose elements
have the following characteristics:

= The elements have a specific order associated with them.
= The elements might not be unique.

To illustrate how you might use a LIST, suppose your sales department wants
to keep a monthly record of the sales total for each salesperson. You can use
a LIST to define a column in a table that contains the monthly sales totals for
each salesperson. The following example creates a table in which the
month_sales column is a LIST. The first entry (element) in the LIST, with an
ordinal position of 1, might correspond to the month of January, the second
element, with an ordinal position of 2, February, and so forth.

CREATE TABLE sales_person
(
name CHAR(30),
month_sales LIST(MONEY NOT NULL)
)

You can use the month_sales column in this statement to store and access the
monthly sales totals for each salesperson. More specifically, you might
perform queries on the month_sales column to find out:

= The total sales generated by a salesperson during a specified month.

= The total sales for every salesperson during a specified month.

Informix Guide to SQL: Tutorial

Collection Data Types

Nesting Collection Types

A nested collection is a collection type that contains another collection type.
You can nest any collection type within another collection type. There is no
practical limit on how deeply you can nest a collection type. However,
performing inserts or updates on a collection that has been nested more than
one or two levels can be difficult. The following example shows several ways
in which you might create columns that are defined on nested collection

types:
col_1 SET(MULTISET(VARCHAR(20) NOT NULL) NOT NULL);

col_2 MULTISET(ROW(x CHAR(5), y SETCINTEGER NOT NULL))
NOT NULL);

col_3 LIST(MULTISET(ROW(a CHAR(Z2), b INTEGER) NOT NULL)
NOT NULL);

For information about how to access a nested collection, see “Modifying
Collections” on page 12-19.

Adding a Collection Type to an Existing Table

You can use the ALTER TABLE statement to add or drop a column that is a
collection type (or any other data type). For example, the following statement
adds the flowers column, which is defined as a SET, to the nursery table:

ALTER TABLE nursery ADD
flowers SET(VARCHAR(30) NOT NULL)

You cannot modify an existing column that is a collection type or convert a
non-collection type column into a collection type.

For more information on adding and dropping collection-type columns, see
the ALTER TABLE statement in the Informix Guide to SQL: Syntax.

Important: You cannot use the ALTER TABLE statement to add a column to a typed
table because the named row type that is assigned to the table specifies the structure
of the table.

Understanding Complex Data Types 10-19

What Is Inheritance?

10-20

Restrictions on Data Types Allowed in Collections

You cannot use either of the following data types as the element type of a
collection:

= SERIAL
= SERIALS

What Is Inheritance?

Inheritance is the process that allows a type or a table to acquire the properties
of another type or table. The type or table that inherits the properties is called
the subtype or subtable. The type or table whose properties are inherited is
called the supertype or supertable. Inheritance allows for incremental modifi-
cation, so that a type or table can inherit a general set of properties and add
properties that are specific to itself. You can use inheritance to make modifi-
cations only to the extent that the modifications do not alter the inherited
supertypes or supertables.

Universal Server supports inheritance only for named row types and typed
tables. Universal Server supports only single inheritance. With single inher-
itance, each subtype or subtable has only one supertype or supertable.

Type Inheritance

Type inheritance applies to named row types only. You can use inheritance to
group named row types into a type hierarchy in which each subtype inherits
the representation (data fields) and the behavior (routines, aggregates, and
operators) of the supertype under which it is defined. A type hierarchy
provides the following advantages:

= It encourages modular implementation of your data model.

= It ensures consistent reuse of schema components.

= It ensures that no data fields are accidentally left out.

= Itallows a type to inherit routines that are defined on another type.

Informix Guide to SQL: Tutorial

Type Inheritance

Defining a Type Hierarchy

Figure 10-2 provides an example of a simple type hierarchy that contains
three named row types.

Figure 10-2

Example of a Type

’ person_t ‘ Hierarchy
’ employee_t ‘
’ sales_rep_t ‘

The supertype at the top of the type hierarchy contains a group of fields that
all underlying subtypes inherit. A supertype must exist before you can create
its subtype. The following example creates the person_t supertype of the
type hierarchy that Figure 10-2 shows:

CREATE ROW TYPE person_t
(
name VARCHAR(30) NOT NULL,
address VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip INTEGER,
bdate DATE

Understanding Complex Data Types 10-21

Type Inheritance

To create a subtype, specify the UNDER keyword and the name of the
supertype whose properties the subtype inherits. The following example
illustrates how you might define employee_t as a subtype that inherits all the
fields of person_t. The example adds salary and manager fields that do not
exist in the person_t type.

CREATE ROW TYPE employee_t
(
salary INTEGER,
manager VARCHAR(30)
)
UNDER person_t;

Important: You must have the UNDER privilege on the supertype before you can cre-
ate a subtype that inherits the properties of the supertype. For information about
UNDER privileges, see Chapter 11, “Granting and Limiting Access to Your
Database.”

In the type hierarchy of Figure 10-2, sales_rep_t is a subtype of employee _t,
which is the supertype of sales_rep_t in the same way that person_t is the
supertype of employee_t. The following example creates sales_rep_t, which
inherits all fields from person_t and employee_t and adds four new fields.
Because the modifications on a subtype do not affect its supertype,
employee_t does not have the four fields that are added for sales_rep_t.

CREATE ROW TYPE sales_rep_t
(

rep_num INTS,
region_num INTEGER,
commission DECIMAL,
home_office BOOLEAN

)

UNDER employee_t;

The sales_rep_t type contains 12 fields: name, address, city, state, zip, bdate,
salary, manager, rep_num, region_num, commission, and home_office.

Instances of both the employee_t and sales_rep_t types inherit all the
routines that are defined for the person_t type. Any additional routines that
are defined on employee_t automatically apply to instances of the
employee_t type and to instances of its subtype sales_rep_t, but not to
instances of person _t.

10-22 Informix Guide to SQL: Tutorial

Type Inheritance

The preceding type hierarchy is an example of single inheritance because
each subtype inherits from a single supertype. Figure 10-3 illustrates how
you can define multiple subtypes under a single supertype. Although single
inheritance requires that every subtype inherits from one and only one
supertype, there is no practical limit on the depth or breadth of the type
hierarchy that you define.

Figure 10-3
Example of a Type Hierarchy That Is a Tree Structure

’ person_t ‘

’ employee_t ‘ ’ customer_t ‘

sales_rep_t ‘ ’ engineer_t ‘ ’ us_customer_t ‘ ’non_us_customer_t‘

’ local_customers_t ‘ ’ regional_customers_t‘

The topmost type of any hierarchy is referred to as the root supertype. In
Figure 10-3, person_t is the root supertype of the hierarchy. Except for the
root supertype, any type in the hierarchy can be potentially both a supertype
and subtype at the same time. For example, customer _t is a subtype of
person_t and a supertype of us_customer_t. A subtype at the lower levels of
the hierarchy contains properties of the root supertype but does not directly
inherit its properties from the root supertype. For example, us_customer _t
has only one supertype, customer_t, but because customer _t is itself a
subtype of person_t, the fields and routines that customer_t inherits from
person_t are also inherited by us_customer _t.

Understanding Complex Data Types 10-23

Type Inheritance

Overloading Routines for Types in a Type Hierarchy

Routine overloading refers to the ability to assign one name to multiple
routines and specify different types of arguments on which the routines can
operate. In atype hierarchy, a subtype automatically inherits the routines that
are defined on its supertype. However you can define a new routine on a
subtype to override the inherited routine with the same name. For example,
suppose you create a getinfo() routine on type person_t that returns the last
name and birthdate of an instance of type person_t. You can register another
getinfo() routine on type employee_t that returns the last name and salary
from an instance of employee_t. In this way, you can overload a routine, so
that you have a customized routine for every type in the type hierarchy, as
Figure 10-4 shows.

Figure 10-4
Example of Routine Overloading in a Type Hierarchy

’ person_t getinfo()
’ employee_t ‘ getinfo()
’ sales_rep_t getinfo()

When you overload a routine so that routines are defined with the same
name but different arguments for different types in the type hierarchy, the
argument that you specify determines which routine executes. For example,
if you call getinfo() with an argument of type employee_t, a getinfo() routine
defined on type employee_t overrides the inherited routine of the same
name. Similarly, if you define another getinfo() on type sales_rep_t, a call to
getinfo() with an argument of type sales_rep_t overrides the routine that
sales_rep_t inherits from employee _t.

For information about how to create and register external routines, see
Chapter 13, “Casting Data Types.” For information about how to create and
register routines in Stored Procedure Language (SPL), see Chapter 14,
“Creating and Using SPL Routines.”

10-24 Informix Guide to SQL: Tutorial

Type Inheritance

Inheritance and Type Substitutability

In a type hierarchy, a subtype automatically inherits all the routines defined
on its supertype. Consequently, if you call a routine with an argument of a
subtype and no routines are defined on the subtype, the database server can
invoke a routine that is defined on a supertype. Type substitutability refers to
the ability to use an instance of a subtype when an instance of a supertype is
expected. As an example, suppose that you create a routine p_info() that
accepts an argument of type person_t and returns the last name and
birthdate of an instance of type person_t. If no other p_info() routines are
registered, and you invoke p_info() with an argument of type employee t,
the routine returns the name and birthdate fields (inherited from person_t)
from an instance of type employee_t. This behavior is possible because
employee_t inherits the functions of its supertype, person_t.

In general, when the database server attempts to evaluate a routine, the
database server searches for a signature that matches the routine name and
the arguments that you specify when you invoke the routine. If such a routine
is found, then the database server uses this routine. If an exact match is not
found, the database server attempts to find a routine with the same name and
whose argument type is a supertype of the argument type that is specified
when the routine is invoked. Figure 10-5 on page 10-26 shows how the
database server searches for a routine that it can use when a get() routine is
called with an argument of the subtype sales_rep_t. Although no get()
routine has been defined on the sales_rep_t type, the database server
searches for a routine until it finds a get() routine that has been defined on a
supertype in the hierarchy. In this case, neither sales_rep_t nor its supertype
employee_t has a get() routine defined over it. However, because a routine is
defined for person_t, this routine is invoked to operate on an instance of
sales_rep_t.

Understanding Complex Data Types 10-25

Type Inheritance

Figure 10-5
Example of How the Database Server Searches for a Routine in a Type Hierarchy

’ person_t get()
’ employee_t _ LD
’ sales_rep_t N

The process in which the database server searches for a routine that it can use
is called routine resolution. For more information about routine resolution, see
Extending INFORMIX-Universal Server: User-Defined Routines.

Dropping Named Row Types from a Type Hierarchy

To drop a named row type from a type hierarchy, use the DROP ROW TYPE
statement. However, you can drop a type only if it has no dependencies. You
cannot drop a named row type if either of the following conditions is true:

= Thetype is currently assigned to a table.
= The type is a supertype of another type.

The following example shows how to drop the sales_rep_t type:

DROP ROW TYPE games_t restrict;

10-26 Informix Guide to SQL: Tutorial

Table Inheritance

To drop a supertype, you must first drop each subtype that inherits
properties from the supertype. You drop types in a type hierarchy in the
reverse order in which you create the types. For example, to drop the
person_t type shown in Figure 10-5, you must first drop its subtypes in the
following order:

DROP ROW TYPE sale_rep_t restrict;

DROP ROW TYPE employee_t restrict;

DROP ROW TYPE person_t restrict;
Important: To drop a type, you must be the database administrator or the owner of
the type.

Restrictions on Type Hierarchies

If a column is defined on a named row type, the column cannot contain an
instance of any type other than the type on which column is defined. For
example, a column of type address_t can only contain instances of type
address _t.

A named row type cannot contain a column that is defined on the SERIAL or
SERIALS data types. Consequently, the types that define a type hierarchy
cannot contain fields that are defined on the SERIAL or SERIALS data type.

Table Inheritance

Only tables that are defined on named row types support table inheritance.
Table inheritance is the property that allows a table to inherit the behavior
(constraints, storage options, triggers) from the supertable above it in the
table hierarchy. A table hierarchy is the relationship that you can define among
tables in which subtables inherit the behavior of supertables. A table inher-
itance provides the following advantages:

= It encourages modular implementation of your data model.
= It ensures consistent reuse of schema components.

= Itallows you to construct queries whose scope can be some or all of
the tables in the table hierarchy.

Understanding Complex Data Types 10-27

Table Inheritance

In a table hierarchy, a subtable automatically inherits the following
properties from its supertable:

= All constraint definitions (primary key, unique, and referential
constraints)

= Storage option

= Alltriggers

= Indexes

= Access method

Important: Typed tables do not support rowids. Therefore you cannot specify the
WITH ROWID or ADD ROWID clauses when you create tables in a table hierarchy.

The Relationship Between Type and Table Hierarchies

Every table in a table hierarchy must be assigned to a named row type in a
corresponding type hierarchy. Figure 10-6 shows an example of the
relationships that can exist between a type hierarchy and table hierarchy.

Figure 10-6
Example of the Relationship Between Type Hierarchy and Table Hierarchy
Type hierarchy Table hierarchy
’ person_t ‘ - ’ person ‘
’ employee_t ‘ - ’ employee ‘
’ sales_rep_t ‘ — ’ sales_rep ‘

10-28 Informix Guide to SQL: Tutorial

Table Inheritance

However, you also can define a type hierarchy in which the named row types
do not necessarily have a one-to-one correspondence with the tables in a
table hierarchy. Figure 10-7 shows how you might create a type hierarchy for
which only some of the named row types have been assigned to tables.

Figure 10-7
Example of an Inheritance Hierarchy in Which Only Some Types Have Been Assigned to Tables

Type hierarchy Table hierarchy
person_t ‘
custo‘r'ner_t ‘
’ retail_cdétomer_t ‘ — ’ retail_customer ‘
’ Whlsale_c‘lrjstomer_t ‘ — ’ whlsale_‘éustomer ‘

Defining a Table Hierarchy

The type that you use to define a table must exist before you can create the
table. Similarly, you define a type hierarchy before you define a corre-
sponding table hierarchy. To establish the relationships between specific
subtables and supertables in a table hierarchy, use the UNDER keyword. The
following CREATE TABLE statements define the simple table hierarchy that
Figure 10-6 shows. The examples in this section assume that the person_t,
employee_t, and sales_rep_t types already exist.

CREATE TABLE person OF TYPE person_t;

CREATE TABLE employee OF TYPE employee_t
UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t
UNDER employee;

Understanding Complex Data Types 10-29

Table Inheritance

The person, employee, and sales_rep tables are defined on the person_t,
employee_t, and sales_rep_t types, respectively. Thus, for every type in the
type hierarchy, a corresponding table exists in the table hierarchy. In addition,
the relationship between the tables of a table hierarchy must match the
relationship between the types of the type hierarchy. For example, the
employee table inherits from person table in the same way that the
employee_t type inherits from the person_t type, and the sales_rep table
inherits from the employee table in the same way that the sales_rep_t type
inherits from the employee_t type.

Subtables automatically inherit all inheritable properties that are added to

supertables. Therefore, you can add or alter the properties of a supertable at
any time and the subtables automatically inherit the changes. For more infor-
mation, see “Modifying Table Behavior in a Table Hierarchy” on page 10-32.

Important: You must have the UNDER privilege on the supertable before you can cre-
ate a subtable that inherits the properties of the supertable. For information about
UNDER privileges, see “Table-Level Privileges” on page 11-8.

Inheritance of Table Behavior in a Table Hierarchy

When you create a subtable under a supertable, the subtable inherits all the
properties of its supertable, including the following ones:

= All columns of the supertable.

= Constraint definitions.

= Storage options.

= Indexes.

= Referential integrity.

= Triggers.

= The access method.

10-30 Informix Guide to SQL: Tutorial

Table Inheritance

In addition, if table c inherits from table b and table b inherits from table a,
then table c automatically inherits the behavior unique to table b as well as
the behavior that table b has inherited from table a. Consequently, the
supertable that actually defines behavior can be several levels distant from
the subtables that inherit the behavior. For example, consider the following
table hierarchy:

CREATE TABLE person OF TYPE person_t
(PRIMARY KEY (name))

FRAGMENT BY EXPRESSION

name < 'n'" IN dbspacel,

name >= 'n' IN dbspace?;

CREATE TABLE employee OF TYPE employee_t
(CHECK(salary > 34000))
UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t
LOCK MODE ROW
UNDER employee;

In this table hierarchy, the employee and sales_rep tables inherit the primary
key name and fragmentation strategy of the person table. The sales_rep table
inherits the check constraint of the employee table and adds a LOCK MODE.
The following table shows the behavior for each table in the hierarchy.

Table Table Behavior

person PRIMARY KEY, FRAGMENT BY EXPRESSION

employee PRIMARY KEY, FRAGMENT BY EXPRESSION, CHECK constraint
sales_rep PRIMARY KEY, FRAGMENT BY EXPRESSION, CHECK constraint,

LOCK MODE ROW

Understanding Complex Data Types 10-31

Table Inheritance

A table hierarchy might also contain subtables in which behavior defined on
a subtable can override behavior (otherwise) inherited from its supertable.
Consider the following table hierarchy, which is identical to the previous
example except that the employee table adds a new storage option:

CREATE TABLE person OF TYPE person_t
(PRIMARY KEY (name))

FRAGMENT BY EXPRESSION

name < 'n'" IN personl,

name>= 'n"' IN person2;

CREATE TABLE employee OF TYPE employee_t
(CHECK(salary > 34000))

FRAGMENT BY EXPRESSION

name < 'n' IN employl,

name>= 'n' IN employ?

UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t
LOCK MODE ROW
UNDER employee;

Again, the employee and sales_rep tables inherit the primary key name of
the person table. However, the fragmentation strategy of the employee table
overrides the fragmentation strategy of the person table. Consequently, both
the employee and sales_rep tables store data in dbspaces employl and
employ2, whereas the person table stores data in dbspaces personl and
person2.

Modifying Table Behavior in a Table Hierarchy

Once you define a table hierarchy, you cannot modify the structure (columns)
of the existing tables. However, you can modify the behavior of tables in the
hierarchy. Figure 10-8 on page 10-33 shows the table behavior that you can
modify in a table hierarchy and the syntax that you use to make
modifications.

10-32 Informix Guide to SQL: Tutorial

Table Inheritance

Figure 10-8
Table Behavior That You Can Modify in a Table Hierarchy

Table Behavior

Syntax Considerations

Constraint definitions ALTER TABLE To add or drop a constraint, use the ADD CONSTRAINT or

DROP CONSTRAINT clause. For information about constraints
on tables in a table hierarchy, see “Constraints on Tables in a
Table Hierarchy.”

Indexes CREATE INDEX, For information about indexes on tables in a table hierarchy,
ALTERINDEX see “Adding Indexes to Tables in a Table Hierarchy.” For infor-
mation about how to create or alter an index on a table, see the
CREATE INDEX or ALTER INDEX statements in the Informix
Guide to SQL: Syntax.
Triggers CREATE/DROP You cannot drop an inherited trigger. However, you can drop

TRIGGER atrigger from a supertable or override an inherited trigger by
adding a trigger to a subtable. For information about modi-
fying triggers on supertables and subtables, see “Triggers on
Tables in a Table Hierarchy” on page 10-34. For information
about how to create a trigger, see Chapter 15, “Creating and
Using Triggers.”

All existing subtables automatically inherit new table behavior when you
modify a supertable in the hierarchy.

Important: \When you use the ALTER TABLE statement to modify a table in a table
hierarch, you can use only the ADD CONSTRAINT, DROP CONSTRAINT,
MODIFY NEXT SIZE, and LOCK MODE clauses.

Constraints on Tables in a Table Hierarchy

You can alter or drop a constraint only in the table on which it is defined. You
cannot drop or alter a constraint from a subtable when the constraint is
inherited. However, a subtable can add additional constraints. Any
additional constraints that you define on a table are also inherited by any
subtables that inherit from the table that defines the constraint. Because
constraints are additive, all inherited and current (added) constraints apply.

Understanding Complex Data Types 10-33

Table Inheritance

Adding Indexes to Tables in a Table Hierarchy

An index that a subtable inherits from a supertable cannot be dropped or
modified. However, you can add indexes to a subtable. Indexes, unique
constraints, and primary keys are all closely related. (When you specify a
unique constraint or primary key, the database server automatically creates a
unique index on the column). A primary key or unique constraint that you
define on a supertable applies to all the subtables. For example, suppose
there are two tables (a supertable and subtable), both of which contain a
column emp_id. If the supertable specifies that emp_id has a unique
constraint, the subtable must contain emp_id values that are unique across
both the subtable and the supertable.

Important: You cannot define more than one primary key across a table hierarchy,
even if some of the tables in the hierarchy do not inherit the primary key.

Triggers on Tables in a Table Hierarchy

You cannot drop an inherited trigger. However, you can add a trigger to a
subtable that overrides the trigger that the subtable inherits from a
supertable. Unlike constraints, triggers are not additive; only the nearest
trigger on a supertable in the hierarchy applies. If you want to disable the
trigger that a subtable inherits from its supertable, you can create an empty
trigger on the subtable that has the same name as the trigger from the
supertable. Because triggers are not additive, this empty trigger executes for
the subtable (and any subtables under the subtable, which are not subject to
further overrides).

10-34 Informix Guide to SQL: Tutorial

Table Inheritance

Adding a New Table to a Table Hierarchy

Once you define a table hierarchy, you cannot use the ALTER TABLE
statement to add, drop, or modify columns of a table within the hierarchy.
However, you can add new subtypes and subtables to an existing inheritance
hierarchy provided that the new subtype and subtable do not interfere with
existing inheritance relationships. Figure 10-9 illustrates one way that you
might add a type and corresponding table to an existing inheritance
hierarchy. The dashed lines indicate the added subtype and subtable.

Figure 10-9
Example of How You Might Add a Subtype and Subtable to an Existing Inheritance Hierarchy
Type Hierarchy Table Hierarchy
’ person_t ‘ — ’ person ‘
’ employee_t ‘ - ’ employee ‘
’ sales_rep_t ‘ — ’ sales_rep ‘

The following statements show how you might add the type and table to the
inheritance hierarchy shown in Figure 10-9:

CREATE ROW TYPE us_sales_rep_t
(

domestic_sales DECIMAL(15,2)
)

UNDER employee_t;

CREATE TABLE us_sales_rep OF TYPE us_sales_rep_t
UNDER sales_rep;

Understanding Complex Data Types 10-35

Table Inheritance

You can also add subtypes and subtables that branch from an existing
supertype and its parallel supertable. Figure 10-10 shows how you might
add the customer_t type and customer table to existing hierarchies. In this
example, both the customer table and the employee table inherit properties
from the person table.

Figure 10-10
Example of Adding a Type and Table Under an Existing Supertype and Supertable

Type Hierarchy Table Hierarchy
’ person_t ‘ ’ person ‘
x"“" 4 ! ~~~~“.‘
(cusomert [| emloeet | [emploee |7 cusiomer
H ’ sales:_rep_t ‘ ’ sales'_rep ‘ v

The following statements create the customer_t type and customer table
under the person_t type and person table, respectively:

CREATE ROW TYPE customer_t
(

cust_num INTEGER

)

UNDER person_t;

CREATE TABLE customer OF TYPE customer_t
UNDER person;

10-36 Informix Guide to SQL: Tutorial

Table Inheritance

Dropping a Table in a Table Hierarchy

If atable and its corresponding named row type have no dependencies (they
are not a supertable and supertype), you can drop the table and its type. You
must drop the table before you can drop the type. For information about how
to drop a table, see the DROP TABLE statement in the Informix Guide to SQL:
Syntax. For information about how to drop a named row type, see “Dropping
Named Row Types” on page 10-12.

Altering the Structure of a Table in a Table Hierarchy

You cannot use the ALTER TABLE statement to add or drop the columns of a
table in a table hierarchy. Although you can use the ALTER TABLE statement
to add or drop constraints, the following clauses in an ALTER TABLE
statement are disallowed on typed tables:

= ADD/DROP/MODIFY clauses

= ADD ROWID/DROP ROWID clauses
Because of the preceding restrictions, the process of adding or dropping a

column of a table in a table hierarchy (or otherwise altering the structure of a
table) can be a time-intensive task.

To alter the structure of a table in a table hierarchy
1. Download data from all subtables and the supertable that you want
to modify.
Drop the subtables and subtypes.
Modify the unloaded data file.
Modify the supertable.
Re-create the subtypes and subtables.
Upload the data.

e g &~ N

Understanding Complex Data Types 10-37

Table Inheritance

Querying Tables in a Table Hierarchy

A table hierarchy allows you to construct a SELECT, UPDATE, or DELETE
statement whose scope is a supertable and its subtables—in a single SQL
command. For example, a query against any supertable in a table hierarchy
returns data for all columns of the supertable and the columns that subtables
inherit from the supertable. To limit the results of a query to one table in the
table hierarchy, you must include the ONLY keyword in the query. For
complete information about how to query and modify data from tables in a
table hierarchy, see “Accessing Rows from Tables in a Table Hierarchy” on
page 12-21.

Creating a View on a Table in a Table Hierarchy

You can create a view based upon any table in a table hierarchy. For example,
the following statement creates a view on the person table, which is the root
supertable of the table hierarchy that Figure 10-6 shows:

CREATE VIEW name_view AS
SELECT name FROM person

Because the person table is a supertable, the view name_view displays data
from the name column of the person, employee, and sales_rep tables. To
create a view that displays only data from the person table, use the ONLY
keyword, as the following example shows:

CREATE VIEW name_view AS

SELECT name FROM ONLY(person)
Important: You cannot perform an insert or update on a view that is defined on a
supertable because the database server cannot know where in the table hierarchy to
put the new rows.

For information about how to create a typed view, see “Creating Typed
Views” on page 11-27.

10-38 Informix Guide to SQL: Tutorial

Summary

Summary

Complex types comprise row types and collection types, which allow greater
flexibility in how you can organize data at the level of columns and tables.
When you want to store more than one kind of data in a single column, you
can define a column as a row type. Row types come in two kinds: named row
types and unnamed row types. A row type usually contains multiple fields.
You can assign an unnamed row type to columns only. You can assign a
named row type to columns or tables. When you assign a named row type to
atable, the table is a typed table. A primary advantage of typed tables is that
they can be used to define an inheritance hierarchy.

Inheritance is the process that allows a type or table to acquire the properties
of another type or table. You can create type and table hierarchies to modify
the types and tables incrementally within the respective hierarchies. In an
inheritance hierarchy, a type or table can inherit a general set of properties
and can add properties that are specific to itself.

To store a collection of values of a specific data type in a column, you can
assign a collection type to a column. There are three kinds of collection types:
SET, MULTISET, and LIST. You can define a column as a SET when you want to
store collections whose elements do not contain duplicate values. You can
define a column as a MULTISET when you want to store collections whose
elements might contain duplicate values. You can define a column as a LIST
when you want to store collections whose elements have a specific order
associated with them and might contain duplicate values.

Understanding Complex Data Types 10-39

Granting and Limiting Access to

Your Database

Securing Confidential Data .

Granting Privileges. .o
Database-Level Privileges .
Connect Privilege.
Resource Privilege .
Database Administrator Pr|V|Iege .
Ownership Rights .
Table-Level Privileges
Access Privileges .
Index, Alter, and References Pr|V|Ieges
Column-Level Privileges .
Type-Level Privileges.

Usage Privileges for User-Deflned Types.

Routine-Level Privileges

Automating Privileges .
Automating with a Command Scrlpt
Using Roles.

Controlling Access to Data Using Routines
Restricting Reads of Data
Restricting Changes to Data
Monitoring Changes to Data .
Restricting Object Creation.

Using Views .

Creating Views . .
Duplicate Rows from Vlews .
Restrictions on Views
When the Basis Changes .

Creating Typed Views .

Modifying Through a View

11-4

11-5
11-5
11-5
11-6
11-7
11-7
11-8
11-8
11-10
11-10
11-12
11-13
11-13
11-14
11-15
11-16

11-19
11-19
11-20
11-21
11-22

11-23
11-24
11-25
11-26
11-26
11-27
11-29

11-2

Deleting Through a View .
Updating a View .
Inserting into a View.

Using the WITH CHECK OPTION Clause .

Privileges and Views
Privileges When You Create a Vlew
Privileges When You Use a View .

Summary .

Informix Guide to SQL: Tutorial

11-29
11-29
11-30
11-31

11-32
11-32
11-33

11-35

n some databases, all data is accessible to every user. In others, this is

not the case; some users are denied access to some or all of the data. You can
restrict access to data at the following levels, which are the subject of this

chapter:

When the database is stored in operating-system files, you can
sometimes use the file-permission features of the operating system.

This level is not available when INFORMIX-Universal Server holds
the database. It manages its own disk space, and the
operating-system rules do not apply.

You can use the GRANT and REVOKE statements to give or deny
access to the database or to specific tables, and you can control the
kinds of uses that people can make of the database.

You can use the CREATE PROCEDURE or CREATE FUNCTION
statement to write and compile a stored routine, which controls and
monitors the users who can read, modify, or create database tables.
A stored routine is a stored function or a stored procedure. A stored
function is an SPL routine that returns a value. A stored procedure is an
SPL routine that does not return a value.

You can use the CREATE VIEW statement to prepare a restricted or
modified view of the data. The restriction can be vertical, which
excludes certain columns, or horizontal, which excludes certain
rows, or both.

You can combine GRANT and CREATE VIEW statements to achieve
precise control over the parts of a table that a user can modify and
with what data.

bGranting and Limiting Access to Your Database 11-3

Securing Confidential Data

Securing Confidential Data

No matter what access controls the operating system gives you, when the
contents of an entire database are highly sensitive, you might not want to
leave it on a public disk that is fixed to the computer. You can circumvent
normal software controls when the data must be secure.

When you or another authorized person is not using the database, it does not
have to be available on-line. You can make it inaccessible in one of the
following ways, which have varying degrees of inconvenience:

= Detach the physical medium from the computer, and take it away. If
the disk itself is not removable, the disk drive might be removable.

= Copy the database directory to tape, and take possession of the tape.

= Use an encryption utility to copy the database files. Keep only the
encrypted version.

In the latter two cases, after making the copies, you must remember to erase
the original database files using a program that overwrites an erased file with
null data.

Instead of removing the entire database directory, you can copy and then
erase the files that represent individual tables. Do not overlook the fact that
index files contain copies of the data from the indexed column or columns.
Remove and erase the index files as well as the table files.

11-4 Informix Guide to SQL: Tutorial

Granting Privileges

Granting Privileges

The authorization to use a database is called a privilege. For example, the
authorization to use a database is called the Connect privilege, and the autho-
rization to insert a row into a table is called the Insert privilege. You control
the use of a database by granting these privileges to other users or by
revoking them.

The following groups of privileges control the actions a user can perform on
data.

= Database-level privileges, which affect the entire database

= Table-level privileges, which relate to individual tables

= Type-level privileges, which determine who can use opaque types,
distinct types, and complex types

Database-Level Privileges

The three levels of database privilege (Connect, Resource, and DBA) provide
an overall means of controlling who accesses a database.

Connect Privilege

The least of the privilege levels is Connect, which gives a user the basic ability
to query and modify tables. Users with the Connect privilege can perform the
following functions:

= Execute the SELECT, INSERT, UPDATE, and DELETE statements,
provided that they have the necessary table-level privileges

= Execute a stored routine, provided that they have the necessary
table-level privileges

= Create views, provided that they are permitted to query the tables on
which the views are based

= Create temporary tables and create indexes on the temporary tables

bGranting and Limiting Access to Your Database 11-5

Database-Level Privileges

11-6

Before users can access a database, they must have the Connect privilege.
Ordinarily, in a database that does not contain highly sensitive or private
data, you give the GRANT CONNECT TO PUBLIC privilege shortly after you
create the database.

If you do not grant the Connect privilege to public, the only users who can
access the database through the database server are those to whom you
specifically grant the Connect privilege. If limited users should have access,
this privilege lets you provide it to them and deny it to all others.

The Users and the Public

Privileges are granted to single users by name or to all users under the name
of public. Any privileges granted to public serve as default privileges.

Prior to executing a statement, the database server determines whether a user
has the necessary privileges. (The information is in the system catalog; see
“Privileges in the System Catalog” on page 11-9.)

The database server looks first for privileges that are granted specifically to
the requesting user. If it finds such a grant, it uses that information. It then
checks to see if less restrictive privileges have been granted to public. If so,
the database server uses the less-restrictive privileges. If no grant has been
made to that user, the database server looks for privileges granted to public.
If it finds a relevant privilege, it uses that one.

Thus, to set a minimum level of privilege for all users, grant privileges to
public. You can override that, in specific cases, by granting higher individual
privileges to users.

Resource Privilege

The Resource privilege carries the same authorization as the Connect
privilege. In addition, users with the Resource privilege can create new,
permanent tables, data types (opaque, distinct, complex), indexes, and stored
routines, thus permanently allocating disk space.

Informix Guide to SQL: Tutorial

Ownership Rights

Database Administrator Privilege

The highest level of database privilege is Database Administrator, or DBA.
When you create a database, you are automatically the DBA. Holders of the
DBA privilege can perform the following functions:

= Execute the DROP DATABASE, START DATABASE, and
ROLLFORWARD DATABASE statements

= Drop or alter any object regardless of who owns it

= Create tables, data types, views, and indexes to be owned by other
users

= Grant database privileges, including the DBA privilege, to another
user

= Alter the NEXT SIZE (but no other attribute) of the system catalog
tables, and insert, delete, or update rows of any system catalog table
except systables

Warning: Although users with the DBA privilege can modify most system catalog
tables, Informix strongly recommends that you do not update, delete, or insert any
rows in them. Modifying the system catalog tables can destroy the integrity of the
database. Informix does support using the ALTER TABLE statement to modify the size
of the next extent of system catalog tables.

Ownership Rights

The database, and every table, view, index, procedure, and synonym in it, has
an owner. The owner of an object is usually the person who created it,
although a user with the DBA privilege can create objects to be owned by
others.

The owner of an object has all rights to that object and can alter or drop it
without additional privileges.

bGranting and Limiting Access to Your Database 11-7

Table-Level Privileges

11-8

Table-Level Privileges

You can apply several privileges, table by table, to allow nonowners the
privileges of owners. Four of them, the Select, Insert, Delete, and Update
privileges, control access to the contents of the table. The Index privilege
controls index creation. The Alter privilege controls the authorization to
change the table definition. The References privilege controls the
authorization to specify referential constraints on a table. The Under
privilege controls the authorization to define a table in an inheritance
hierarchy as a supertable.

In an ANSI-compliant database, only the table owner has any privileges. In
other databases, the database server, as part of creating a table, automatically
grants all table privileges except Alter and References to public. Automati-
cally granting all table privileges to public means that a newly created table
is accessible to any user with the Connect privilege. If this is not what you
want (if users exist with the Connect privilege who should not be able to
access this table), you must revoke all privileges on the table from public
after you create the table.

Access Privileges

Four privileges govern how users can access a table. As the owner of the
table, you can grant or withhold the following privileges independently:

»s The Select privilege allows selection, including selecting into
temporary tables.
= The Insert privilege allows a user to add new rows.
= The Update privilege allows a user to modify existing rows.
= The Delete privilege allows a user to delete rows.
The Select privilege is necessary for a user to retrieve the contents of a table.

However, the Select privilege is not a precondition for the other privileges. A
user can have Insert or Update privileges without having the Select privilege.

For example, your application might have a usage table. Every time a certain
program is started, it inserts a row into the usage table to document that it
was used. Before the program terminates, it updates that row to show how
long it ran and perhaps to record counts of work its user performed.

Informix Guide to SQL: Tutorial

Table-Level Privileges

If you want any user of the program to be able to insert and update rows in
this usage table, grant Insert and Update privileges on it to public. However,
you might grant the Select privilege to only a few users.

Privileges in the System Catalog

Privileges are recorded in the system catalog tables. Any user with the
Connect privilege can query the system catalog tables to determine what
privileges have been granted and to whom.

Database privileges are recorded in the sysusers table, in which the primary
key is user ID, and the only other column contains a single character C, R, or
D for the privilege level. A grant to the keyword of PUBLIC is reflected as a
user name of public (lowercase).

Table-level privileges are recorded in systabauth, which uses a composite
primary key of the table number, grantor, and grantee. In the tabauth
column, the privileges are encoded in the list that Figure 11-1 shows.

Insert Figure 11-1
unconditional Update | Index List of Encoded
Privileges

N
Su-idXar — References

unconditional Select

Alter

* if column privilege granted Delete

A hyphen means an ungranted privilege, so that a grant of all privileges is
shown as su-idxar,and -u------ shows a grant of only Update. The code
letters are normally lowercase, but they are uppercase when the keywords
WITH GRANT OPTION are used in the GRANT statement.

When an asterisk (*) appears in the third position, some column-level
privilege exists for that table and grantee. The specific privilege is recorded
in syscolauth. Its primary key is a composite of the table number, the grantor,
the grantee, and the column number. The only attribute is a three-letter list
that shows the type of privilege: s, u, or r.

bGranting and Limiting Access to Your Database 11-9

Table-Level Privileges

11-10

Index, Alter, and References Privileges

The Index privilege permits its holder to create and alter indexes on the table.
The Index privilege, similar to the Select, Insert, Update, and Delete
privileges, is granted automatically to public when a table is created.

You can grant the Index privilege to anyone, but to exercise the ability, the
user must also hold the Resource database privilege. So, although the Index
privilege is granted automatically (except in ANSI-compliant databases),
users who have only the Connect privilege to the database cannot exercise
their Index privilege. Such a limitation is reasonable because an index can fill
a large amount of disk space.

The Alter privilege permits its holder to use the ALTER TABLE statement on
the table, including the power to add and drop columns, reset the starting
point for SERIAL columns, and so on. You should grant the Alter privilege
only to users who understand the data model very well and whom you trust
to exercise their power very carefully.

The References privilege allows you to impose referential constraints on a
table. As with the Alter privilege, you should grant the References privilege
only to users who understand the data model very well.

Column-Level Privileges

You can qualify the Select, Update, and References privileges with the names
of specific columns. Naming specific columns allows you to grant very
specific access to a table. You can permit a user to see only certain columns,
to update only certain columns, or to impose referential constraints on
certain columns.

Informix Guide to SQL: Tutorial

Table-Level Privileges

You can limit privileges on certain columns so that only certain users can
access the salary, performance review, or other sensitive information about
an employee. To make the example specific, suppose a table of employee data
is defined as the following example shows:

CREATE TABLE hr_data
(
emp_key INTEGER,
emp_name CHAR(40),
hire_date DATE,
dept_num SMALLINT,
user-id CHAR(18),
salary DECIMAL(8,2)
performance_Tlevel CHAR(1),
performance_notes TEXT
)

Because this table contains sensitive data, you execute the following
statement immediately after you create it:

REVOKE ALL ON hr_data FROM PUBLIC

For selected persons in the Human Resources department and for all
managers, you might execute the following statement:

GRANT SELECT ON hr_data TO harold_r

In this way, you permit certain users to view all columns. (The final section
of this chapter discusses a way to limit the view of managers to their
employees only.) For the first-line managers who carry out performance
reviews, you could execute a statement such as the following one:

GRANT UPDATE (performance_level, performance_notes)
ON hr_data TO wallace_s, margot_t

This statement permits the managers to enter their evaluations of their
employees. You would execute a statement such as the following one only for
the manager of the Human Resources department or whoever is trusted to
alter salary levels:

GRANT UPDATE (salary) ON hr_data to willard_b

For the clerks in the Human Resources department, you could execute a
statement such as the following one:

GRANT UPDATE (emp_key, emp_name, hire_date, dept_num)
ON hr_data TO marvin_t

bGranting and Limiting Access to Your Database 11-11

Type-Level Privileges

11-12

This statement gives certain users the ability to maintain the nonsensitive
columns but denies them authorization to change performance ratings or
salaries. The person in the MIS department who assigns computer user IDs is
the beneficiary of a statement such as the following one:

GRANT UPDATE (user_id) ON hr_data TO eudora_b

On behalf of all users who are allowed to connect to the database but who are
not authorized to see salaries or performance reviews, execute statements
such as the following one permit them to see the nonsensitive data:

GRANT SELECT (emp_key, emp_name, hire_date, dept_num, user-id)
ON hr_data TO george_b, Jjohn_s

These users can perform queries such as the following one:
SELECT COUNT(*) FROM hr_data WHERE dept_num IN (32,33,34)

However, any attempt to execute a query such as the following one produces
an error message and no data:

SELECT performance_level FROM hr_data
WHERE emp_name LIKE '"*Smythe’

Type-Level Privileges

Universal Server allows you to create new data types, including opaque
types, distinct types, and complex types. When a data type is created only the
DBA or owner of the a new data type can apply type-level privileges that
control who can use the data type. Universal Server supports the following
type-level privileges:

= Usage privilege controls authorization to use a user-defined data
type.

= Under privilege controls the authorization to define a type as a
supertype in an inheritance hierarchy.

Informix Guide to SQL: Tutorial

Routine-Level Privileges

Usage Privileges for User-Defined Types

To control who can use an opaque type, distinct type, or named row type, you
specify the Usage privilege on the data type. The Usage privilege allows the
DBA or owner of the type to restrict a user’s ability to assign a data type to a
column (or table for a named row type) or assign a cast to the data type. The
Usage privilege is granted to public automatically when a data type is
created (except in ANSI-compliant databases). In an ANSI-compliant
database, the Usage privilege on a data type is granted to the owner of the
data type.

To limit who can use an opaque, distinct, or named row type, you must first
revoke the Usage privilege for public and then specify the names of the users
to whom you want to grant the Usage privilege. For example, to limit the use
of a data type called circle to a group of users, you might execute the
following statements:

REVOKE USAGE ON circle
FROM PUBLIC;

GRANT USAGE ON circle
TO dawns, steph, terryk, pcannan;

Routine-Level Privileges

Universal Server allows users to create user-defined routines (UDRS) in SPL
or C language. To create a routine, a user must have RESOURCE privilege in
the database. In addition, to create a UDR in C language, a user must also have
the Usage privilege on C language.(Usage privilege on SPL is granted to
public by default.) The following statement shows how you grant a group of
users permission to create a UDR in the C language:

GRANT USAGE ON LANGUAGE C
T0 mays, jones, freeman

bGranting and Limiting Access to Your Database 11-13

Automating Privileges

11-14

You can apply the Execute privilege on a routine to authorize nonowners to
run aroutine. If you create a routine in a database that is not ANSI compliant,
the default routine-level privilege is PUBLIC; you do not need to grant the
Execute privilege to specific users unless you have first revoked it. If you
create a routine in an ANSI-compliant database, no other users have the
Execute privilege by default; you must grant specific users the Execute
privilege. The following example grants the Execute privilege to the user
orion so that orion can use the stored routine that is named read-address:

GRANT EXECUTE ON read_address
TO orion;

Routine-level privileges are recorded in the sysprocauth system catalog
table. The sysprocauth table uses a primary key of the routine number,
grantor, and grantee. In the procauth column, the execute privilege is
indicated by a lowercase letter e. If the execute privilege was granted with the
WITH GRANT option, the privilege is represented by an uppercase letter E.

For more information on routine-level privileges, see “Privileges on
Routines” on page 14-74.

Automating Privileges

This design might seem to force you to execute a tedious number of GRANT
statements when you first set up the database. Furthermore, privileges
require constant maintenance as people change jobs. For example, if a clerk
in Human Resources is terminated, you should revoke the Update privilege
as soon as possible; otherwise the unhappy employee might execute a
statement such as the following one:

UPDATE hr_data
SET (emp_name, hire_date, dept_num) = (NULL, NULL, 0)

Less dramatic, but equally necessary, changes of privilege are required daily,
or even hourly, in any model that contains sensitive data. If you anticipate
this need, you can prepare some automated tools to help maintain privileges.

Informix Guide to SQL: Tutorial

Automating Privileges

Your first step should be to specify privilege classes that are based on the jobs
of the users, not on the structure of the tables. For example, a first-line
manager needs the following privileges:

= The Select and limited Update privilege on the hypothetical hr_data
table

= The Connect privilege to this and other databases
= Some degree of privilege on several tables in those databases

When the manager is promoted to a staff position or sent to a field office, you
must revoke all those privileges and grant a new set of privileges.

Define the privilege classes you support, and for each class specify the
databases, tables, and columns to which you must give access. Then devise
two automated routines for each class, one to grant the class to a user and one
to revoke it.

Automating with a Command Script

Your operating system probably supports automatic execution of command
scripts. In most operating environments, interactive SQL tools such as
DB-Access and the SQL Editor accept commands and SQL statements to
execute from the command line. You can combine these two features to
automate privilege maintenance.

The details depend on your operating system and the version of DB-Access
or the SQL Editor that you are using. In essence, create a command script that
performs the following functions:

= Takes a user ID whose privileges are to be changed as its parameter

= Prepares a file of GRANT or REVOKE statements customized to
contain that user 1D

= Invokes DB-Access or the SQL Editor with parameters that tell it to
select the database and execute the prepared file of GRANT or
REVOKE statements

In this way, you can reduce the change of the privilege class of a user to one
or two commands.

bGranting and Limiting Access to Your Database 11-15

Automating Privileges

Using Roles

Another way to avoid the difficulty of changing user privileges on a case-by-
case basis is to use roles. The concept of a role in the database environment is
similar to the group concept in an operating system. A role is a database
feature that lets the DBA standardize and change the privileges of many users
by treating them as members of a class.

For example, you can create a role called news_mes that grants connect, insert,
and delete privileges for the databases that handle company news and
messages. When a new employee arrives, you need only add that person to
the role news_mes. The new employee acquires the privileges of the role
news_mes. This process also works in reverse. To change the privileges of all
the members of news_mes, change the privileges of the role.

Creating a Role

To start the role-creation process, determine the name of the role along with
the connections and privileges you want to grant. Although the connections
and privileges are strictly in your domain, you need to consider some factors
when you name a role. Do not use any of the following words as role names.

alter default index null resource
connect delete insert public select
DBA execute none references update

A role name must be different from existing role names in the database. A
role name must also be different from user names that are known to the
operating system, including network users known to the server computer. To
make sure your role name is unique, check the names of the users in the
shared memory structure who are currently using the database as well as the
following system catalog tables:

= Sysusers

= systabauth

= syscolauth

= sSysprocauth

= sysfragauth

= sysroleauth

11-16 Informix Guide to SQL: Tutorial

Automating Privileges

When the situation is reversed, and you are adding a user to the database,
check that the user name is not the same as any of the existing role names.

After you have approved the role name, use the CREATE ROLE statement to
create a new role. After the role is created, all privileges for role adminis-
tration are, by default, given to the DBA.

Manipulating User Privileges and Granting Roles to Other Roles

As DBA, you can use the GRANT statement to grant role privileges to users.
You can also give a user the option to grant privileges to other users. Use the
WITH GRANT OPTION clause of the GRANT statement to do this. You can use
the WITH GRANT OPTION clause only when you are granting privileges to a
user.

For example, the following query returns an error because you are granting
privileges to a role with the grantable option:

GRANT SELECT on tabl to roll
WITH GRANT OPTION

Important: Do not use the WITH GRANT OPTION clause of the GRANT statement
when you grant privileges to a role. Only a user can grant privileges to other users.

When you grant role privileges, you can substitute a role name for the user
name in the GRANT statement. You can grant a role to another role. For
example, say that role A is granted to role B. When a user enables role B, the
user gets privileges from both role A and role B.

However, a cycle of role-grant cannot be transitive. If role A is granted role B,
and role B is granted role C, then granting C to A returns an error.

If you need to change privileges, use the REVOKE statement to delete the
existing privileges, and then use the GRANT statement to add the new
privileges.

bGranting and Limiting Access to Your Database 11-17

Automating Privileges

11-18

Users Need to Enable Roles

After the DBA grants privileges and adds users to a role, you must use the SET
ROLE statement in a database session to enable the role. Unless you enable
the role, you are limited to the privileges that are associated with PUBLIC or
the privileges that are directly granted to you because you are the owner of
the object.

Confirming Membership in Roles and Dropping Roles

You can find yourself in a situation where you are uncertain which user is
included in a role. Perhaps you did not create the role or the person who
created the role is not available. Issue queries against the sysroleauth and
sysusers tables to find who is authorized for which table and how many roles
are in existence.

After you determine which users are members of which roles, you might
discover that some roles are no longer useful. To remove a role, use the DROP
ROLE statement. Before you remove a role, the following conditions must be
met:

= Only roles that are listed in the sysusers catalog table as a role can be
destroyed.

= You must have DBA privileges, or you must be given the grantable
option in the role to drop a role.

Informix Guide to SQL: Tutorial

Controlling Access to Data Using Routines

Controlling Access to Data Using Routines

You can use a Stored Procedure Language (SPL) routine to control access to
individual tables and columns in the database. You can accomplish various
degrees of access control through a routine. (SPL Routines are fully described
in Chapter 14, “Creating and Using SPL Routines.””) A powerful feature of
Stored Procedure Language (SPL) is the ability to designate a routine as a
DBA-privileged routine. When you write a DBA-privileged routine, you can
allow users who have few or no table privileges to have DBA privileges when
they execute the routine. In the routine, users can carry out very specific tasks
with their temporary DBA privilege. The DBA-privileged feature lets you
accomplish the following tasks:

= You can restrict how much information individual users can read
from a table.

= You can restrict all the changes that are made to the database and
ensure that entire tables are not emptied or changed accidentally.

= You can monitor an entire class of changes made to a table, such as
deletions or insertions.

= You can restrict all object creation (data definition) to occur within a
stored routine so that you have complete control over how tables,
indexes, and views are built.

Restricting Reads of Data

The routine in the following example hides the SQL syntax from users, but it
requires that users have the Select privilege on the customer table. If you
want to restrict what users can select, write your routine to work in the
following environment:

= You are the DBA of the database.

= The users have the Connect privilege to the database. They do not
have the Select privilege on the table.

= Your stored routine (or set of stored routines) is created using the
DBA keyword.

= Your stored routine (or set of stored routines) reads from the table for
users.

bGranting and Limiting Access to Your Database 11-19

Restricting Changes to Data

11-20

If you want users to read only the name, address, and telephone number of a
customer, you can modify the routine (in this case, a function) as the
following example shows:

CREATE DBA FUNCTION read_customer(cnum INT)
RETURNING CHAR(15), CHAR(15), CHAR(18);

DEFINE p_lname,p_fname CHAR(15);
DEFINE p_phone CHAR(18);

SELECT fname, Tname, phone
INTO p_fname, p_Iname, p_phone
FROM customer
WHERE customer_num = cnum;

RETURN p_fname, p_Iname, p_phone;

END FUNCTION;

Restricting Changes to Data

Using stored routines, you can restrict changes made to a table. Simply
channel all changes through a stored routine. The stored routine makes the
changes, rather than users making the changes directly. If you want to limit
users to deleting one row at a time to ensure that they do not accidentally
remove all the rows in the table, set up the database with the following
privileges:

= You are the DBA of the database.

= All the users have the Connect privilege to the database. They might
have the Resource privilege. They do not have the Delete privilege
(for this example) on the table being protected.

= Your stored routine is created using the DBA keyword.
= Your stored routine performs the deletion.
Write a stored routine (in this case, a procedure) similar to the following one,

which deletes rows from the customer table using a WHERE clause with the
customer_num that the user provides:

CREATE DBA PROCEDURE delete_customer(cnum INT)

DELETE FROM customer
WHERE customer_num = cnum;

END PROCEDURE;

Informix Guide to SQL: Tutorial

Monitoring Changes to Data

Monitoring Changes to Data

Using stored routines, you can create a record of changes made to a database.
You can record changes made by a particular user, or you can make a record
of each time a change is made.

You can monitor all the changes made to the database by a single user. Simply
channel all changes through stored routines that keep track of changes that
each user makes. If you want to record each time the user acctclrk modifies
the database, set up the database with the following privileges:

= You are the DBA of the database.

= All other users have the Connect privilege to the database. They
might have the Resource privilege. They do not have the Delete
privilege (for this example) on the table being protected.

= Your stored routine is created using the DBA keyword.
= Your stored routine performs the deletion and records that a certain
user has made a change.

Write a stored routine similar to the following one, which uses a customer
number the user provides to update a table. If the user happens to be acctclrk,
a record of the deletion is put in the file updates.

CREATE DBA PROCEDURE delete_customer(cnum INT)
DEFINE username CHAR(8);

DELETE FROM customer
WHERE customer_num = cnum;

IF username = 'acctclrk' THEN
SYSTEM 'echo Delete from customer by acctclrk >>
/mis/records/updates’
ENF IF
END PROCEDURE;

bGranting and Limiting Access to Your Database 11-21

Restricting Object Creation

11-22

To monitor all the deletions made through the routine, remove the IF
statement and make the SYSTEM statement more general. If you change the
previous routine to record all deletions, it looks like the routine shown next.

CREATE DBA PROCEDURE delete_customer(cnum INT)

DEFINE username CHAR(8);
LET username = USER ;
DELETE FROM tbname WHERE customer_num = cnum;

SYSTEM
"echo Deletion made from customer table, by '||username
||'>>/hr/records/deletes’;

END PROCEDURE;

Restricting Object Creation

To put restraints on what objects are built and how they are built, use stored
routines within the following setting:

= You are the DBA of the database.

= All the other users have the Connect privilege to the database. They
do not have the Resource privilege.

= Your stored routine (or set of stored routines) is created using the
DBA keyword.

= Your stored routine (or set of stored routines) creates tables, indexes,
and views in the way you defined them. You might use such a
routine to set up a training database environment.

Your routine might include the creation of one or more tables and associated
indexes, as the following example shows:

CREATE DBA PROCEDURE all_objects()

CREATE TABLE Tearnl (intone SERIAL, inttwo INT NOT NULL,

charcol CHAR(10));

CREATE INDEX learn_ix ON Tearnl (inttwo);

CREATE TABLE toys (name CHAR(15) NOT NULL UNIQUE,
description CHAR(30), on_hand INT);

END PROCEDURE;

Informix Guide to SQL: Tutorial

Using Views

To use the all_objects routine to control additions of columns to tables,
revoke the Resource privilege on the database from all users. When users try
to create a table, index, or view using an SQL statement outside your routine,
they cannot do so. When users execute the routine, they have a temporary
DBA privilege so the CREATE TABLE statement, for example, succeeds, and
you are guaranteed that every column that is added has a constraint that is
placed on it. In addition, objects that users create are owned by that user. For
the all_objects routine, whoever executes the routine owns the two tables
and the index.

Using Views

A view is a synthetic table. You can query it as if it were a table, and in some
cases, you can update it as if it were a table. However, it is not a table. Itis a
synthesis of the data that exists in real tables and other views.

The basis of a view is a SELECT statement. When you create a view, you define
a SELECT statement that generates the contents of the view at the time the
view is accessed. A user also queries a view using a SELECT statement. The
database server merges the SELECT statement of the user with the one
defined for the view and then actually performs the combined statements.

The result has the appearance of a table; it is similar enough to a table that a
view even can be based on other views, or on joins of tables and other views.

Because you write a SELECT statement that determines the contents of the
view, you can use views for any of the following purposes:
= To restrict users to particular columns of tables
You name only permitted columns in the select list in the view.
= To restrict users to particular rows of tables
You specify a WHERE clause that returns only permitted rows.
= To constrain inserted and updated values to certain ranges

You can use the WITH CHECK OPTION (discussed on page 11-31) to
enforce constraints.

bGranting and Limiting Access to Your Database 11-23

Creating Views

GLS

= To provide access to derived data without having to store redundant
data in the database

You write the expressions that derive the data into the select list in
the view. Each time you query the view, the data is derived anew. The
derived data is always up to date, yet no redundancies are
introduced into the data model.

= To hide the details of a complicated SELECT statement

You hide complexities of a multitable join in the view so that neither
users nor application programmers need to repeat them.

Creating Views

The following example creates a view based on a table in the stores7
database:

CREATE VIEW name_only AS
SELECT customer_num, fname, Iname FROM customer

The view exposes only three columns of the table. Because it contains no
WHERE clause, the view does not restrict the rows that can appear.

The following example creates a view based on a table that is available when
alocale other than the default U.S. English locale using the 1ISO8859-1 code set
has been enabled. In the example, the view, column, and table names contain
non-English characters.

CREATE VIEW c¢a_va AS
SELECT numéro, nom FROM abonnés; 4

The following example is based on the join of two tables:

CREATE VIEW full_addr AS

SELECT addressl, address?2, city, state.sname, zipcode
FROM customer, state
WHERE customer.state = state.code

11-24 Informix Guide to SQL: Tutorial

Creating Views

The table of state names reduces the redundancy of the database; it lets you
store the full state names only once, which can be useful for long state names
such as Minnesota. This full_addr view lets users retrieve the address as if
the full state name were stored in every row. The following two queries are
equivalent:

SELECT * FROM full_addr WHERE customer_num = 105

SELECT addressl, address?2, city, state.sname, zipcode
FROM customer, state
WHERE customer.state

AND customer_num

state.code
105

However, be careful when you define views that are based on joins. Such
views are not modifiable; that is, you cannot use them with UPDATE, DELETE,
or INSERT statements. (Modifying through views is covered beginning on
page 11-29.)

The following example restricts the rows that can be seen in the view:

CREATE VIEW no_cal_cust AS
SELECT * FROM customer WHERE NOT state = 'CA'

This view exposes all columns of the customer table, but only certain rows.
The following example is a view that restricts users to rows that are relevant
to them:

CREATE VIEW my_calls AS
SELECT * FROM cust_calls WHERE user_id = USER

All the columns of the cust_calls table are available but only in those rows
that contain the user IDs of the users who can execute the query.

Duplicate Rows from Views

A view might produce duplicate rows, even when the underlying table has
only unique rows. If the view SELECT statement can return duplicate rows,
the view itself can appear to contain duplicate rows.

You can prevent this problem in two ways. One way is to specify DISTINCT
in the select list in the view. However, specifying DISTINCT makes it impos-
sible to modify through the view. The alternative is to always select a column
or group of columns that is constrained to be unique. (You can be sure that

only unique rows are returned if you select the columns of a primary key or
of a candidate key. Primary and candidate keys are discussed in Chapter 8,

“Building Your Data Model.”)

bGranting and Limiting Access to Your Database 11-25

Creating Views

Restrictions on Views

Because a view is not really a table, it cannot be indexed, and it cannot be the
object of such statements as ALTER TABLE and RENAME TABLE. The columns
of a view cannot be renamed with RENAME COLUMN. To change anything
about the definition of a view, you must drop the view and re-create it.

Because it must be merged with the user’s query, the SELECT statement on
which a view is based cannot contain any of the following clauses:

INTO TEMP The user’s query might contain INTO TEMP; if the view also
contains it, the data would not know where to go.

UNION The user’s query might contain UNION. No meaning has been
defined for nested UNION clauses.

ORDERBY The user’s query might contain ORDER BY. If the view also
contains it, the choice of columns or sort directions could be in
conflict.

When the Basis Changes

The tables and views on which a view is based can change in several ways.
The view automatically reflects most of the changes.

When a table or view is dropped, any views in the same database that depend
on it are automatically dropped.

The only way to alter the definition of a view is to drop and re-create it.
Therefore, if you change the definition of a view on which other views
depend, you must also re-create the other views (because they all have been
dropped).

When a table is renamed, any views in the same database that depend on it
are modified to use the new name. When a column is renamed, views in the
same database that depend on that table are updated to select the proper
column. However, the names of columns in the views themselves are not
changed. For an example of this, recall the following view on the customer
table:

CREATE VIEW name_only AS
SELECT customer_num, fname, lname FROM customer

11-26 Informix Guide to SQL: Tutorial

Creating Typed Views

Now suppose that the customer table is changed in the following way:
RENAME COLUMN customer.Iname TO surname

To select last names of customers directly, you must now select the new
column name. However, the name of the column as seen through the view is
unchanged. The following two queries are equivalent:

SELECT fname, surname FROM customer
SELECT fname, Tname FROM name_only

When you alter a table by dropping a column, views are not modified. If they
are used, error -217 (Column not found in any table in the query)
occurs. The reason views are not dropped is that you can change the order of
columns in a table by dropping a column and then adding a new column of
the same name. If you do this, views based on that table continue to work.
They retain their original sequence of columns.

Universal Server permits you to base a view on tables and views in external
databases. Changes to tables and views in other databases are not reflected in
views. Such changes might not be apparent until someone queries the view
and gets an error because an external table changed.

Creating Typed Views

You can create a typed view when you want to distinguish between two
views that display data of the same data type. For example, suppose you
want to create two views on the following table:

CREATE TABLE emp

(
name VARCHAR(30),
age INTEGER,
salary INTEGER

bGranting and Limiting Access to Your Database 11-27

Creating Typed Views

11-28

The following statements create two typed views, name_age and
name_salary, on the emp table:

CREATE ROW TYPE name_age_t
(name VARCHAR(20),
age INTEGER) ;

CREATE VIEW name_age OF TYPE name_age_t AS
SELECT name, age FROM emp;

CREATE ROW TYPE name_salary_t
(name VARCHAR(20),
salary INTEGER);

CREATE VIEW name_salary OF TYPE name_salary_t AS
SELECT name, salary FROM emp

When you create a typed view, the data that the view displays is of a named
row type. For example, the name_age and name_salary views contain
VARCHAR and INTEGER data. Because the views are typed, a query against
the name_age view returns a column view of type name_age whereas a
guery against the name_salary view returns a column view of type
name_salary. Consequently, Universal Server is able to distinguish between
rows that the name_age and name_salary views return.

In some cases, a typed view has a distinct advantage over an untyped view.
For example, suppose you have overloaded a function foo(). Depending on
the argument types that you specify, the database server calls a different
function foo(). (For more information about function overloading, see
Extending INFORMIX-Universal Server: User-Defined Routines.) Because the
name_age and name_salary views are typed views, the following statements
resolve to the appropriate foo() function, according to the type of the view
that is associated with the alias p:

SELECT foo(p) FROM name_age p;
SELECT foo(p) FROM name_salary p;

If two views that contain the same data types are not created as typed views,
Universal Server cannot distinguish between the rows that the two views
display.

Informix Guide to SQL: Tutorial

Moditying Through a View

Modifying Through a View

You can modify views as if they were tables. Some views can be modified and
others not, depending on their SELECT statements. The restrictions are
different, depending on whether you use DELETE, UPDATE, or INSERT
statements.

No modification is possible on a view when its SELECT statement contains
any of the following features:

= Ajoin of two or more tables

Many anomalies arise if the database server tries to distribute
modified data correctly across the joined tables.

= An aggregate function or the GROUP BY clause

The rows of the view represent many combined rows of data; the
database server cannot distribute modified data into them.

= The DISTINCT keyword or its synonym UNIQUE

The rows of the view represent a selection from among possibly
many duplicate rows; the database server cannot tell which of the
original rows should receive the modification.

When a view avoids all these things, each row of the view corresponds to
exactly one row of one table. Such a view is modifiable. (Of course, particular
users can modify a view only if they have suitable privileges. Privileges on
views are discussed beginning on page 11-32.)

Deleting Through a View

You can use a modifiable view with a DELETE statement as if it were a table.
The database server deletes the proper row of the underlying table.

Updating a View

You can use a modifiable view with an UPDATE statement as if it were a table.
However, a modifiable view can still contain derived columns; that is,
columns that are produced by expressions in the select list of the CREATE
VIEW statement. You cannot update derived columns (sometimes called
virtual columns).

bGranting and Limiting Access to Your Database 11-29

Moditying Through a View

11-30

When a column is derived from a simple arithmetic combination of a column
with a constant value (for example, order_date+30), the database server
can, in principle, figure out how to invert the expression (in this case, by
subtracting 30 from the update value) and perform the update. However,
much more complicated expressions are possible, most of which cannot
easily be inverted. Therefore, the database server does not support updating
any derived column.

The following example shows a modifiable view that contains a derived
column and an UPDATE statement that can be accepted against it:

CREATE VIEWcall_response(user_id,received,resolved,duration

JAS
SELECT user_id,call_dtime,res_dtime, res_dtime
call_dtime

FROM cust_calls
WHERE user_id = USER

UPDATE call_response SET resolved = TODAY
WHERE resolved IS NULL

The duration column of the view cannot be updated because it represents an
expression (the database server cannot, even in principle, decide how to
distribute an update value between the two columns named in the
expression). But as long as no derived columns are named in the SET clause,
the update can be performed as if the view were a table.

A view can return duplicate rows even though the rows of the underlying
table are unique. You cannot distinguish one duplicate row from another. If
you update one of a set of duplicate rows (for example, by using a cursor to
update WHERE CURRENT), you cannot be sure which row in the underlying
table receives the update.

Inserting into a View

You can insert rows into a view provided that the view is modifiable and
contains no derived columns. The reason for the second restriction is that an
inserted row must provide values for all columns, and the database server
cannot tell how to distribute an inserted value through an expression. An
attempt to insert into the call_response view, as the previous example shows,
would fail.

Informix Guide to SQL: Tutorial

Moditying Through a View

When a modifiable view contains no derived columns, you can insert into it
as if it were a table. However, the database server uses null as the value for
any column that is not exposed by the view. If such a column does not allow
nulls, an error occurs, and the insert fails.

Using the WITH CHECK OPTION Clause

You can insert into a view a row that does not satisfy the conditions of the
view; that is, a row that is not visible through the view. You can also update
a row of a view so that it no longer satisfies the conditions of the view.

To avoid updating a row of a view so that it no longer satisfies the conditions
of the view, you can add the WITH CHECK OPTION clause when you create
the view. This clause asks the database server to test every inserted or
updated row to ensure that it meets the conditions set by the WHERE clause
of the view. The database server rejects the operation with an error if the
conditions are not met.

In the previous example, the view named call_response is defined as the
following example shows:

CREATEVIEWcall_response(user_id,received, resolved,duration)AS
SELECT user_id,call_dtime,res_dtime,res_dtime-call_dtime
FROM cust_calls
WHERE user_id = USER

You can update the user_id column of the view, as the following example
shows:

UPDATE call_response SET user_id = 'lenora'
WHERE received BETWEEN TODAY AND TODAY -7

The view requires rows in which user_id equals USER. If a user named tony
performs this update, the updated rows vanish from the view. However, you

can create the view as the following example shows:
CREATEVIEW call_response (user_id,received,resolved,duration) AS
SELECT user_id,call_dtime,res_dtime,res_dtime-call_dtime
FROM cust_calls

WHERE user_id = USER
WITH CHECK OPTION

The preceding update by tony is rejected as an error.

bGranting and Limiting Access to Your Database 11-31

Privileges and Views

11-32

You can use the WITH CHECK OPTION clause to enforce any kind of data
constraint that can be stated as a Boolean expression. In the following
example, you can create a view of a table in which all the logical constraints
on data are expressed as conditions of the WHERE clause. Then you can
require all modifications to the table to be made through the view.

CREATE VIEW order_insert AS
SELECT * FROM orders 0
WHERE order_date = TODAY -- no back-dated entries
AND EXISTS -- ensure valid foreign key
(SELECT * FROM customer C
WHERE O.customer_num = C.customer_num)
AND ship_weight < 1000 -- reasonableness checks
AND ship_charge < 1000
WITH CHECK OPTION

Because of EXISTS and other tests, which are expected to be successful when
retrieving existing rows, this view displays data from orders inefficiently.
However, if insertions to orders are made only through this view (and you
are not already using integrity constraints to constrain data), users cannot
insert a back-dated order, an invalid customer number, or an excessive
shipping weight and shipping charge.

Privileges and Views

When you create a view, the database server tests your privileges on the
underlying tables and views. When you use a view, only your privileges with
regard to the view are tested.

Privileges When You Create a View

When you create a view, the database server tests to make sure that you have
all the privileges that you need to execute the SELECT statement in the view
definition. If you do not, the view is not created.

This test ensures that users cannot gain unauthorized access to a table by
creating a view on the table and querying the view.

After you create the view, the database server grants you, the creator and
owner of the view, at least the Select privilege on it. No automatic grant is
made to public, as is the case with a newly created table.

Informix Guide to SQL: Tutorial

Privileges When You Use a View

The database server tests the view definition to see if the view is modifiable.
If it is, the database server grants you the Insert, Delete, and Update privi-
leges on the view, provided that you also have those privileges on the
underlying table or view. In other words, if the new view is modifiable, the
database server copies your Insert, Delete, and Update privileges from the
underlying table or view, and grants them on the new view. If you have only
the Insert privilege on the underlying table, you receive only the Insert
privilege on the view.

This test ensures that users cannot use a view to gain access to any privileges
that they did not already have.

Because you cannot alter or index a view, the Alter and Index privileges are
never granted on a view.

Privileges When You Use a View

When you attempt to use a view, the database server tests only the privileges
that you are granted on the view. It does not test your right to access the
underlying tables.

If you created the view, your privileges are the ones noted in the preceding
paragraph. If you are not the creator, you have the privileges that were
granted to you by the creator or someone who had the WITH GRANT OPTION
privilege.

Therefore you can create a table and revoke public access to it; then you can
grant limited access privileges to the table through views. The process of
creating such a table can be demonstrated through the previous examples
using the hr_data table. The following table shows its definition:

CREATE TABLE hr_data
(
emp_key INTEGER,
emp_name CHAR(40),
hire_date DATE,
dept_num SMALLINT,
user-id CHAR(18),
salary DECIMAL(8,2),
performance_Tlevel CHAR(1),
performance_notes TEXT
)

bGranting and Limiting Access to Your Database 11-33

Privileges When You Use a View

11-34

The previous example centers on granting privileges directly on this table.
The following examples take a different approach. Assume that when the
table was created, the following statement was executed:

REVOKE ALL ON hr_data FROM PUBLIC

(Such a statement is not necessary in an ANSI-compliant database.) Now you
create a series of views for different classes of users. For those who should
have read-only access to the nonsensitive columns, you create the following
view:

CREATE VIEW hr_public AS
SELECT emp_key, emp_name, hire_date, dept_num, user_id
FROM hr_data

Users who are given the Select privilege for this view can see nonsensitive
data and update nothing. For Human Resources personnel who must enter
new rows, you create a different view, as the following example shows:

CREATE VIEW hr_enter AS
SELECT emp_key, emp_name, hire_date, dept_num
FROM hr_data

You grant these users both Select and Insert privileges on this view. Because
you, the creator of both the table and the view, have the Insert privilege on
the table and the view, you can grant the Insert privilege on the view to others
who have no privileges on the table.

On behalf of the person in the MIS department who enters or updates new
user 1Ds, you create still another view, as the following example shows:

CREATE VIEW hr_MIS AS
SELECT emp_key, emp_name, user_id
FROM hr_data

This view differs from the previous view in that it does not expose the
department number and date of hire.

Informix Guide to SQL: Tutorial

Summary

Finally, the managers need access to all columns and they need the ability to
update the performance-review data for their own employees only. These
requirements can be met by creating a table, hr_data, that contains a
department number and a computer user IDs for each employee. Let it be a
rule that the managers are members of the departments that they manage.
Then the following view restricts managers to rows that reflect only their
employees:

CREATE VIEW hr_mgr_data AS
SELECT * FROM hr_data
WHERE dept_num =
(SELECT dept_num FROM hr_data
WHERE user_id = USER)
AND NOT user_id = USER

The final condition is required so that the managers do not have update
access to their own row of the table. Therefore, you can safely grant the
Update privilege to managers for this view, but only on selected columns, as
the following statement shows:

GRANT SELECT, UPDATE (performance_level, performance_notes)
ON hr_mgr_data TO peter_m

Summary

When a database contains public material, or when only you and trusted
associates use the database, security is not an important consideration, and
few of the ideas in this chapter are needed. But as more people are allowed
to use and modify the data, and as the data becomes increasingly confi-
dential, you must spend more time and be ever more ingenious at controlling
the way users can approach the data.

bGranting and Limiting Access to Your Database 11-35

Summary

The techniques discussed here can be divided into the following groups:

Keeping data confidential

When the database resides in operating-system files, you can use
features of the operating system to deny access to the database. In
any case, you control the granting of the Connect privilege to keep
people out of the database.

When different classes of users have different degrees of authori-
zation, you must give them all the Connect privilege. You can use
table-level privileges to deny access to confidential tables or
columns. Or, you can use a stored routine to provide limited access
to confidential tables or columns. In addition, you can deny all access
to tables and allow it only through views that do not expose confi-
dential rows or columns.

Controlling changes to data and database structure

To safeguard the integrity of the data model, restrict grants of the
Resource, Alter, References, and DBA privileges. To ensure that only
authorized persons modify the data, control the grants of the Delete
and Update privileges and grant the Update privilege on as few
columns as possible. To ensure that consistent, reasonable data is
entered, grant the Insert privilege only on views that express logical
constraints on the data. Alternatively, to control the insertion and
modification of data, or the modification of the database itself, limit
access to constrictive stored routines.

11-36 Informix Guide to SQL: Tutorial

Using Advanced SQL

Chapter

Accessing Complex Data Types 12

Accessing Row-Type Data . . . 72
Selecting Columns of a Typed Table T 23]
Using an Alias for a Typed Table. 126
Selecting Columns That Contain Row-Type Data T VA4

Field Projections 129
Selecting Nested Fields. 12-10
Modifying Rows from Typed Tables 1210
Modifying Columns That Contain Row Type Data e Rk |
Inserting Rows That Contain Named Row Types. 12-11
Inserting Rows That Contain Unnamed Row Types 12-12
Updating Rows That Contain Named Row Types 12-12
Updating Rows That Contain Unnamed Row Types. 12-13
Deleting Rows That Contain Row Types. 12-13

Accessing Collection TypeData 12-14

Selecting Collections . . . C e 1215
Selecting Nested Collectlons . . 12-16

Using the IN Keyword to Search for Elements ina Collectlon . 12-16
Using the CARDINALITY() Function to Count the

Elements in a Collection. . . . oo ... 12418

Modifying Collections . . . oo ... 12419
Inserting Rows That Contain Collectlon Types oo ... 12419
Updating Collection Types 1220
Deleting Rows That Contain Collectlon Types e 2vA
Accessing Rows from Tables in a Table Hierarchy 12-21
Selecting Rows from a Supertable 12-23
Using an Alias for a Supertable 12-24

Inserting Rows into a Supertable. 12-24

Updating Rows from a Supertable 12-25
Deleting Rows from a Supertable. 12-26

Summary 12-26

12-2 Informix Guide to SQL: Tutorial

his chapter describes how to use SELECT, INSERT, DELETE, and
UPDATE statements to manipulate complex data types. Before you read this
chapter, you should be familiar with the material that is covered in Chapters
2, 3, and 4 of this manual. This chapter covers the following topics:

= Accessing row-type data

= Accessing collection-type data

= Accessing data from tables in a table hierarchy
Although the SQL syntax remains the same across all Informix products, the
form of the statements that you use to manipulate data and the location and
formatting of the resulting output depends on the application. The examples

in this chapter show the statements and their output as they appear when
you use the interactive query language option in DB-Access or the SQL Editor.

The type and table examples that appear in this chapter are for demon-
stration purposes only and do not exist in the stores7 demonstration
database.

Accessing Complex Data Types 12-3

Accessing Row-Type Data

Accessing Row-Type Data

This section describes how to query and modify data contained in typed
tables and in columns that are defined on row types.

The examples used throughout this section use the row types zip _t,
address_t, and employee_t, which define the employee table. Figure 12-1
shows the SQL syntax that creates the row types and table:

Figure 12-1

CREATE ROW TYPE zip_t
(
z_code CHAR(5),
z_suffix CHAR(4)
)

CREATE ROW TYPE address_t
(
street VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip zip_t
)

CREATE ROW TYPE employee_t
(

name VARCHAR(30),
address address_t

salary INTEGER

)3

CREATE TABLE employee OF TYPE employee_t;

Important: The order in which you create named row types is important because a
named row type must exist before you can use it to define a table, column, or field of
another named row type.

The named row types zip_t, address_t and employee_t serve as templates
for the fields and columns of the employee table. The employee _t type that
serves as the template for the employee table uses the address_t type as the
data type of the address field. The address_t type uses the zip_t type as the
data type of the zip field.

12-4 Informix Guide to SQL: Tutorial

Selecting Columns of a Typed Table

Figure 12-2 shows the SQL syntax that creates the student table. The
s_address column of the student table is defined on an unnamed row type.

Figure 12-2

CREATE TABLE student

(

s_name VARCHAR(30),

s_address ROW(street VARCHAR (20), city VARCHAR(20),
state CHAR(2), zip VARCHAR(9)),
GPA DECIMAL(3,2)

Selecting Columns of a Typed Table

A query on a typed table is no different than a query on any other table. For
example, Query 12-1 uses the asterisk symbol (*) to construct an implicit
SELECT statement that returns all columns of the employee table.

Query 12-1
SELECT =*
FROM employee

The implicit SELECT statement on the employee table returns all rows for all
columns and fields, as Query Result 12-1 shows.

name
address
salary

name
address
salary

Paul, J. Query Result 12-1

(102 Ruby, Belmont, CA, 49932, 1000)
78000

Davis, J.
(133 First, San Jose, CA, 85744, 4900)
75000

Accessing Complex Data Types 12-5

Using an Alias for a Typed Table

Query 12-2 shows how to construct a query that returns rows for the name
and address columns of the employee table.
Query 12-2
SELECT name, address
FROM employee
Query Result 12-2

name Paul, J.
address (102 Ruby, Belmont, CA, 49932, 1000)

name Davis, J.
address (133 First, San Jose, CA, 85744, 4900)

For information about how to select data from supertables in a table
hierarchy, see “Selecting Rows from a Supertable” on page 12-23.

Using an Alias for a Typed Table

You can specify an alias for a table name in a SELECT or UPDATE statement
and then use the alias as an expression by itself. For example, suppose you
create a function foo() that accepts an argument of type employee_t and
returns a Boolean value. Query 12-3 shows how you can construct a query
that creates an alias e for the employee table. The table alias e is then used as
the argument type for function foo(). Where foo() returns true, the query
returns an entire row from the employee table.

Query 12-3

SELECT e FROM employee e
WHERE foo(e)

Query Result 12-3

name Revere, V.
address (152 Topaz, Willits, CA, 69445, 1000)
salary 78000

12-6

Informix Guide to SQL: Tutorial

Selecting Columns That Contain Row-Type Data

Selecting Columns That Contain Row-Type Data

You can use named row types or unnamed row types to define columns in a
table. In either case, the SELECT statements that you can use are the same. The
output of a query on a column is the same whether the data returned is of a
named row type or unnamed row type.

When atable contains a column that is defined on a row type, a query on the
column returns data from all the fields that the column contains. For
example, the address column of the employee table is of type address _t,
which contains four fields: address, city, state, and zip. Query 12-4 shows
how to construct a query that returns all fields of the address column from
the employee table.

Query 12-4

SELECT address
FROM employee

Query Result 12-4

address (102 Ruby, Belmont, CA, 49932, 1000)
address (133 First, San Jose, CA, 85744, 4900)

address (152 Topaz, Willits, CA, 69445, 1000))

. ___|

To access individual fields that a column contains, you use single-dot
notation to project the individual fields of the column. For example, suppose
you want to access specific fields from the address column of the employee

table. The following SELECT statement projects the city and state fields from
the return value of the address column.

Query 12-5

SELECT address.city, address.state
FROM employee

Accessing Complex Data Types 12-7

Selecting Columns That Contain Row-Type Data

Query Result 12-5

address (Belmont, CA)
address (San Jose, CA)

address (Willits, CA)

You construct a query on a column that contains an unnamed row type in the
same way you construct a query on a column that contains a named row
type. For example, suppose you want to access data from the address column
of the student table that Figure 12-2 shows. You can use dot notation to query
the individual fields of a column that are defined on an unnamed row type.
Query 12-6 shows how to construct a SELECT statement on the student table
that returns rows for the city and state fields of the s_address column.

Query 12-6

SELECT s_address.city, s_address.state
FROM student

Query Result 12-6
s_address (Belmont, CA)

s_address (Mount Prospect, IL)

s_address (Greeley, CO0)

12-8 Informix Guide to SQL: Tutorial

Selecting Columns That Contain Row-Type Data

Field Projections

Do not confuse fields with columns. Columns are only associated with tables,
and column projections use conventional dot notation of the form
name_1.name_2 for atable and column, respectively. With the addition of
row types (and the capability to assign a row type to a single column), you
can reference individual fields in a column with single dot notation of the
form: name_a.name_b.name_c.name_d. Informix uses the following prece-
dence rules to interpret dot notation;

1. schemaname_a. table name_b . column name_c . field name_d
2. table name_a. column name_b . field name_c . field name_d
3. column name_a. field name_b . field name_c . field name_d

When the meaning of a particular identifier is ambiguous, Universal Server
uses precedence rules to determine which database object the identifier
specifies. Consider the following two tables;

CREATE TABLE b (c ROW(d INTEGER, e CHAR(2));:
CREATE TABLE ¢ (d INTEGER);

In the following SELECT statement, the expression c . d references column d
of table c (rather than field d of column c in table b) because a table identifier
has a higher precedence than a column identifier:

SELECT *
FROM b,c
WHERE c.d = 10

To reduce the risk of referencing the wrong database object, you can specify
the full notation for a field projection. Suppose, for example, you want to
reference field d of column ¢ in table b (not column d of table c). The
following statement specifies the table, column, and field identifiers of the
object you want to reference:

SELECT *
FROM b,c
WHERE b.c.d = 10

Tip: Although precedence rules greatly reduce the chance of the database server mis-
interpreting field projections, Informix recommends that you use unique names for
all table, column, and field identifiers.

Accessing Complex Data Types 12-9

Modifying Rows from Typed Tables

Selecting Nested Fields

When the row type that defines a column itself contains other row types, the
column contains nested fields. To access nested fields within a column, you use
dot notation. For example, the address column of the employee table
contains the fields: address, city, state, zip. In addition, the zip field contains
the nested fields: z_code and z_suffix. (You might want to review the row
type and table definitions that Figure 12-1 shows.) A query on the zip field
returns rows for the z_code and z_suffix fields. However, you can specify
that a query returns only specific nested fields. Query 12-7 shows how to
construct a SELECT statement that returns rows of the z_code field of the
address column only.

Query 12-7

SELECT address.zip.z_code
FROM employee

address
address
address

address

uery Result 12-7
(39444) Query

(96500)
(76055)
(19004)

Modifying Rows from Typed Tables

You can modify the rows of a typed table in the same way you modify the
rows of an untyped table. For information on how to use the DELETE, INSERT,
and UPDATE statements to modify rows in a table, see Chapter 4, “Modifying
Data.”

If the named row type that you assign to a table itself contains another
(nested) row type, the typed table contains a column that is also a row type.
For information about how to modify a column that is defined on a row type,
see “Modifying Columns That Contain Row Type Data” on page 12-11.

12-10 Informix Guide to SQL: Tutorial

Modifying Columns That Contain Row Type Data

Modifying Columns That Contain Row Type Data

You can use named row types or unnamed row types to define columns in a
table. The following syntax rules apply for inserts and updates on columns
that are defined on named row types or unnamed row types:

= Specify the ROW constructor before the field values to be inserted.
= Enclose the field values of the row type in parentheses.

= For named row types, you must also cast the row expression to the
appropriate named row type.

Inserting Rows That Contain Named Row Types

The following statement shows you how to insert a row into the employee
table of Figure 12-1:

INSERT INTO employee

VALUES ('Poole, John',

ROW('402 High St', '"Willits', 'CA"',

ROW('69055"','1450"))::address_t,
35000)

Because the address column of the employee table is a named row type, you
must use a cast operator and the name of the row type to cast the row column
value to type address_t.

When you use a named row type to define a column, by default, the fields of
the column can contain null values. For example, the following statement is
allowed:

INSERT INTO employee

VALUES (
'Singer, John',
ROW(NULL, "Davis', "CA"', ROW(NULL, NULL))::address_t,
67000)

Accessing Complex Data Types 12-11

Modifying Columns That Contain Row Type Data

12-12

Inserting Rows That Contain Unnamed Row Types

The following statement shows you how to add a row to the student table,
which contains a column that is an unnamed row type:

INSERT INTO student

VALUES (
'Keene, Terry',
ROW('53 Terra Villa', 'Wheeling', 'IL', '45052"),
3.75)

When you use an unnamed row type to define a column, the fields of the
column can contain null values. For example, the following INSERT statement
specifies null values for the street and zip fields of the address column:

INSERT INTO student

VALUES (
'Dorf, Beatrice',
ROW(NULL, 'Redding', 'CA', NULL),
3.50)

Updating Rows That Contain Named Row Types

To update a column that is defined on a named row type, you must specify
all fields of the row type. For example, the following statement updates only
the street and city fields of the address column in the employee table, but
each field of the row type must contain a value (null values are allowed):

UPDATE employee
SET address = ROW('103 California St',
"San Francisco', address.state, address.zip)::address_t

WHERE name = 'zawinul, joe'

In this example, the values of the state and zip fields are read from and then
immediately reinserted into the row. Only the street and city fields of the
address column are updated. To update the fields of a column that are
defined on a named row type, always specify the name of the row type before
the field values to be inserted.

Informix Guide to SQL: Tutorial

Modifying Columns That Contain Row Type Data

Updating Rows That Contain Unnamed Row Types

To update a column that is defined on an unnamed row type, you must
specify all fields of the row type. For example, the following statement
updates only the street and city fields of the address column in the student
table, but each field of the row type must contain a value (null values are
allowed):

UPDATE student

SET address = ROW('13 Sunset', 'Fresno', address.state,
address.zip)
WHERE s_name = 'henry, john'

To update the fields of a column that are defined on an unnamed row type,
always specify the ROW constructor before the field values to be inserted.

Deleting Rows That Contain Row Types

You can use a WHERE clause in a DELETE statement to determine which row
or rows of the table to delete. When a row contains a column that is defined
on a row type, you can use dot notation to specify that only rows in which a
column with a specific field value is deleted. For example, the following
statement deletes only those rows from the employee table in which the
value of the city field in the address column is San Jose:

DELETE FROM employee
WHERE address.city = 'San Jose'

In the preceding statement, the address column might be a named row type
or an unnamed row type. The syntax you use to specify field values of a row
type is the same.

Accessing Complex Data Types 12-13

Accessing Collection Type Data

12-14

Accessing Collection Type Data

This section describes how to use DB-Access and the SQL Editor to query and
modify columns that are defined on collection types. The only way to select,
insert, update, or delete individual elements in a collection is through an
external or SPL routine. In addition, you cannot perform subqueries on a
column that is a collection type.

For information on how to create an ESQL/C program to modify collection
type data, see the INFORMIX-ESQL/C Programmer’s Manual. For information
on how to create a stored procedure to modify collection type data, see
Chapter 14, “Creating and Using SPL Routines.”

Figure 12-3 shows the manager table, which is used in examples throughout
this section. The manager table contains examples of simple and nested
collection types. A simple collection is a collection type that does not contain
any fields that are themselves collection types. The direct_reports column of
the manager table is an example of a simple collection. A nested collection is a
collection type that contains another collection type. The projects column of
the manager table is an example of a nested collection.

Figure 12-3
CREATE TABLE manager
(
mgr_name VARCHAR(30),
department VARCHAR(12),
direct_reports SET(VARCHAR(30) NOT NULL),
projects LIST(ROW(pro_name VARCHAR(15),

pro_members SET(VARCHAR(20)
NOT NULL)) NOT NULL)

Informix Guide to SQL: Tutorial

Selecting Collections

Selecting Collections

A query on a column that is a collection type returns, for each row in the
table, all the elements that the particular collection contains. For example,
Query 12-8 shows a query that returns data in the department column and
all elements in the direct_reports column, for each row of the manager table.

Query 12-8
SELECT department, direct_reports
FROM manager

department
direct_reports

department
direct_reports

department
direct_reports

department
direct_reports

Query Result 12-8
marketing
SET {Smith, Waters, Adams, Davis, Kurasawal

engineering
SET {Joshi, Davis, Smith, Waters, Fosmire, Evans, Jones)

publications
SET {Walker, Fremont, Porat, Johnson}

accounting
SET {Baker, Freeman, Jacobs}

The output of a query on a collection type always includes the type
constructor that specifies whether the collection is a SET, MULTISET, or LIST.
For example, in Query Result 12-8, the SET constructor precedes the elements
of each collection. Braces ({}) demarcate the elements of a collection; commas
separate individual elements of a collection.

Accessing Complex Data Types 12-15

Selecting Collections

Selecting Nested Collections

The projects column of the manager table (see Figure 12-3) is a nested
collection. A query on a nested collection type returns all the elements that
the particular collection contains. Query 12-9 shows a query that returns all
elements from the projects column for a specified row. The WHERE clause
limits the query to a single row in which the value in the mgr_name column
is Sayles.

Query 12-9

SELECT projects
FROM manager
WHERE mgr_name = 'Sayles'

Query Result 12-9 shows a project column collection for a single row of the
manager table. The collection contains, for each element in the LIST, the

project name (pro_name) and the SET of individuals (pro_members) who are
assigned to each project.

Query Result 12-9

projects LIST {ROW(voyager_project, SET{Simonian, Waters, Adams, Davis})}

projects LIST {ROW(horizon_project, SET{Freeman, Jacobs, Walker, Cannan})}

projects LIST {ROW(saphire_project, SET{Villers, Reeves, Doyle, Strongin})}

Using the IN Keyword to Search for Elements in a Collection

You can use the IN keyword in the WHERE clause of an SQL statement to
determine whether a collection contains a certain element. For example,
Query 12-10 shows how to construct a query that returns values for
mgr_name and department where Adams is an element of a collection in the
direct_reports column.

mgr_name
department

Query 12-10
SELECT mgr_name, department
FROM manager
WHERE 'Adams' IN (direct_reports)
Query Result 12-10

Sayles
marketing

12-16 Informix Guide to SQL: Tutorial

Selecting Collections

Although you can use a WHERE clause with the IN keyword to search for a
particular element in a simple collection, the query always returns the
complete collection. For example, Query 12-12 returns all the elements of the
collection where Adams is an element of a collection in the direct_reports
column.

mgr_name
direct_reports

Query 12-11
SELECT mgr_name, direct_reports
FROM manager
WHERE '"Adams' IN (direct_reports)
Query Result 12-11

Sayles
SET {Smith, Waters, Adams, Davis, Kurasawa}

As Query Result 12-11 shows, the query returns the entire collection, never a
particular element within the collection.

You can use the IN keyword in a WHERE clause to reference a simple
collection only. You cannot use the IN keyword to reference a collection that
contains fields that are themselves collections. For example, you cannot use
the IN keyword to reference the projects column in the manager table
because projects is a nested collection.

You can combine the NOT and IN keywords in the WHERE clause of a SELECT
statement to search for collections that do not contain a certain element. For
example, Query 12-12 shows a query that returns values for mgr_name and
department where Adams is not an element of a collection in the
direct_reports column.

Query 12-12
SELECT mgr_name, department
FROM manager
WHERE '"Adams' NOT IN (direct_reports)

mgr_name
department

mgr_name
department

mgr_name
department

Query Result 12-12
WiTTliams

engineering

Lyman
publications

Cole
accounting

-

Accessing Complex Data Types 12-17

Selecting Collections

Using the CARDINALITY() Function to Count the Elements in a
Collection

The CARDINALITY() function counts the number of elements that a collection
contains. Any duplicates in a collection are counted as individual elements.
Query 12-13 shows a query that returns, for every row in the manager table,
department values and the number of elements in each direct_reports

department
department

department

department

collection.
Query 12-13
SELECT department, CARDINALITY(direct_reports)
FROM manager
Query Result 12-13

marketing 5
engineering 7
publications 4

accounting 3.

You can also evaluate the number of elements in a collection from within a
predicate expression, as Query 12-14 shows.

department
department

department

Query 12-14
SELECT department, cardinality(direct_reports)
FROM manager
WHERE CARDINALITY(direct_reports) < 6
GROUP BY department
Query Result 12-14

accounting 3
marketing 5

publications 4

12-18 Informix Guide to SQL: Tutorial

Moditying Collections

Modifying Collections

This section describes how to insert, update, and delete rows that contain
collection-type data.

Inserting Rows That Contain Collection Types

When you use DB-Access or the SQL Editor to insert values into a row that
contain a collection-type column, you insert the values of all the elements
that the particular collection contains as well as values for the other columns.
For example, the following statement inserts a single row into the manager
table, which includes columns for both simple collections and nested
collections:

INSERT INTO manager(mgr_name, department, direct_reports,

projects)
VALUES
(
"Sayles', 'marketing',
"SET{'Simonian', 'Waters', 'Adams', 'Davis', 'Jdones'}",
"LIST{
ROW('"voyager_project', SET{'Simonian', 'Waters',
"Adams', 'Davis'}),
ROW ('horizon_project', SET{'Freeman', 'Jacobs"',
'Walker', 'Smith', 'Cannan'}),
ROW ('saphire_project', SET{'Villers', 'Reeves',

'Doyle', 'Strongin'})
X
)

To insert values into a collection that is a row type, you must specify a value
for each field in the row type. You can insert null values into the fields of a
collection row type, provided that at least one of the fields of the row type is
not null. In other words, for a specific element of a collection, you can insert
values for some fields of the collection row and specify null values for other
fields.

Accessing Complex Data Types 12-19

Moditying Collections

12-20

collections:

INSERT INTO manager

projects column specify null elements:
INSERT INTO manager

"USET{NULLE""))"

collection types:

contains

elements of both the inner and outer collections

Updating Collection Types

the IN keyword to perform a search on the direct_reports column.

UPDATE manager

SET projects = "LIST
{
ROW("brazil_project', SET{'Pryor', 'Murphy', 'Kinsley',
"Bryant'}),
ROW ('cuba_project', SET{'Forester', 'Barth', 'Lewis',

"Leonard'})
=
WHERE 'Williams' IN direct_reports

Informix Guide to SQL: Tutorial

You also can specify an empty collection. An empty collection is a collection
that contains no elements. To specify an empty collection, use the braces ({}).
For example, the following statement inserts data into a row in the manager
table but specifies that the direct_reports and projects columns are empty

VALUES ('Sayles', 'marketing', "SET{}", "LIST{ROW(SET{})}")

A collection column cannot contain null elements. The following statement
returns an error because the direct_reports column and all fields of the

VALUES ('Cole', "accounting', "SET{NULL}", "LIST{ROWCNULL,

The following syntax rules apply for performing inserts and updates on

= Use braces ({}) to demarcate the elements that each collection

= Ifthe collection is a nested collection, use braces ({}) to demarcate the

When you use DB-Access or the SQL Editor to update a collection type, you
must update the entire collection. The following statement shows how to
update the projects column. To locate the row that needs to be updated, use

Accessing Rows from Tables in a Table Hierarchy

The first occurrence of the SET keyword in the preceding statement is part of
the UPDATE statement syntax. Do not confuse it with the SET constructor
which indicates that a collection is a SET.

Although you can use the IN keyword to locate specific elements of a simple
collection, you cannot update individual elements of a collection column
from DB-Access or the SQL Editor.

Deleting Rows That Contain Collection Types

When a row contains a column that is defined on a collection type, you can
search for a particular element in a collection and delete the row or rows in
which that element is found. For example, the following statement deletes
rows in which the direct_reports column contains a collection with the
element Baker:

DELETE FROM manager
WHERE 'Baker' IN direct_reports

Accessing Rows from Tables in a Table Hierarchy

This section describes how to query and modify rows from tables in a table
hierarchy. Figure 12-4 on page 12-22 shows the statements that create the
type hierarchy and corresponding table hierarchy that are used in examples
throughout this section:

Accessing Complex Data Types 12-21

Accessing Rows from Tables in a Table Hierarchy

Figure 12-4

CREATE ROW TYPE address_t
(
street VARCHAR (20),
city VARCHAR(20),
state CHAR(2),
zip VARCHAR(9)
)

CREATE ROW TYPE person_t

(
name VARCHAR(30),
address address_t
soc_sec CHAR(9)

)

CREATE ROW TYPE employee_t
(

salary INTEGER

)

UNDER person_t;

CREATE ROW TYPE sales_rep_t
(
rep_num SERIALS,
region_num INTEGER)
UNDER employee_t;

CREATE TABLE person OF TYPE person_t;

CREATE TABLE employee OF TYPE employee_t
UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t
UNDER employee;

12-22 Informix Guide to SQL: Tutorial

Selecting Rows from a Supertable

Selecting Rows from a Supertable

Atable hierarchy allows you to construct a query whose scope is a supertable
and its subtables, in a single SQL statement. A query on asupertable in atable
hierarchy returns rows from both the supertable and the subtables that
inherit from the supertable. Query 12-15 shows a query on the person table,
which is the root supertable in the table hierarchy.

Query 12-15
SELECT * FROM person

The preceding query on a supertable returns all columns in the supertable
and those columns in subtables that are inherited from the supertable. A
guery on a supertable does not return columns from subtables that are not in
the supertable. Query Result 12-15 shows the name, address, and soc_sec
columns in the person, employee, and sales_rep tables.

name
address
SoC_sec

name
address
SoC_sec

name
address
soc_sec

Query Result 12-15
Rogers, J.

(102 Ruby Ave, Belmont, CA, 69055)

454849344

Sallie, A.
(134 Rose St, San Carlos, CA, 69025)
348441214

Bates, N.
(102 Lily St, Weed, CA, 64055)
543441577

Although a SELECT statement on a supertable returns rows from both the
supertable and its subtables, you cannot tell which rows come from the
supertable and which rows come from the subtables. To limit the results of a
query to the supertable only, you must include the ONLY keyword in the
SELECT statement. For example, Query 12-16 returns rows in the person table
only.

Query 12-16
SELECT * FROM ONLY(person)

Accessing Complex Data Types 12-23

Using an Alias for a Supertable

Query Result 12-16

name Rogers, J.
address (102 Ruby Ave, Belmont, CA, 69055)

soc_sec 454849344

Using an Alias for a Supertable

You can specify an alias for a typed table in a SELECT or UPDATE statement
and then use the alias as an expression by itself. If you create an alias for a
supertable, the alias can represent values from the supertable or the subtables
that inherit from the supertable. For example, suppose you define a function
foo() that accepts an argument of type person_t and returns a Boolean value.
Query 12-17 can return row values from the person, employee, and
sales_rep tables. More specifically, the query returns values for all instances
of the person, employee, and sales_rep table that foo() evaluates as TRUE.

Query 12-17

SELECT p FROM person p
WHERE foo(p)

Inserting Rows into a Supertable

There are no special considerations for inserting a row into a supertable. An
INSERT statement applies only to the supertable that is specified in the
statement. For example, the following statement inserts values into the
supertable but does not insert values into any subtables:

INSERT INTO person

VALUES ('Poole, John',

ROW("402 Saphire St.', 'Elmondo', 'CA', 69055"),
345605900)

12-24 Informix Guide to SQL: Tutorial

Updating Rows from a Supertable

Updating Rows from a Supertable

When you update the rows of a supertable, the scope of the update is a
supertable and its subtables.

When you construct an UPDATE statement on a supertable, you can update
all columns in the supertable and columns of subtables that are inherited
from the supertable. For example, the following statement updates rows
from the employee and sales_rep tables:

UPDATE employee
SET salary=65000
WHERE address.state = '"CA'

However, an update on a supertable does not allow you to update columns
from subtables that are not in the supertable. For example, in the previous
update statement, you cannot update the region_num column of the
sales_rep table because the region_num column does not occur in the
employee table.

When performing updates on supertables, be aware of the scope of the
update. For example, an UPDATE statement on the person table that does not
include a WHERE clause to restrict which rows to update, modifies all rows
of the person, employee, and sales_rep table.

To limit an update to rows of the supertable only, you must use the ONLY
keyword in the UPDATE statement. For example, the following statement
updates rows of the person table only:

UPDATE ONLY(person)

SET address = ROW('14 Jackson St', 'Berkeley', address.state,
address.zip)

WHERE name = 'Sallie, A.'

Warning: Use caution when you update rows of a supertable because the scope of an
update on a supertable includes the supertable and all its subtables.

Accessing Complex Data Types 12-25

Deleting Rows from a Supertable

12-26

Deleting Rows from a Supertable

When you delete the rows of a supertable, the scope of the delete is a
supertable and its subtables. For example, a DELETE statement on the person
table deletes rows of the person, employee, and sales_rep table. To limit a
delete to rows of the supertable only, you must use the ONLY keyword in the
DELETE statement. For example, the following statement deletes rows of the
employee table only:

DELETE FROM ONLY(employee)
WHERE name ='Walker'

Warning: Use caution when you delete rows from a supertable because the scope of a
delete on a supertable includes the supertable and all its subtables.

Summary

This chapter introduced sample syntax and results for querying and
modifying complex objects. The sections on row-type data showed how to
perform the following actions;

= Select columns of a typed table

= Use an alias for a typed table in a SELECT or UPDATE statement

= Select fields from columns that contain row type data

» Select nested fields from columns that contain row type data

» Insert, update, and delete fields from columns that contain named
row type data

= Insert, update, and delete fields from columns that contain unnamed
row type data

Informix Guide to SQL: Tutorial

Summary

The sections on collection-type data showed how to perform the following

actions:

Select elements from columns that are collection types
Select elements from nested collections
Use the IN keyword to search for elements in a collection

Use the CARDINALITY() function to determine the number of
elements in a collection

Insert, update, and delete rows that contain collection types

The sections on accessing rows from tables in a table hierarchy showed how
to perform the following actions:

Select rows from a supertable
Use an alias for a supertable in a SELECT or UPDATE statement
Insert, update, and delete rows of a supertable

Accessing Complex Data Types 12-27

Casting Data Types

What Is a Cast? . .
Creating User—Deflned Casts .
Invoking Casts .

Casting Row Types . .

Casting Between Named Row Types .

Casting Between Named and Unnamed Row Types .

Casting Between Unnamed Row Types .

Row-Type Conversions that Require Explicit Casts on Flelds .
Explicit Casts on Fields of an Unnamed Row Type .
Explicit Casts on Fields of a Named Row Type

Casting Fields of a Row Type . Coe

Casting Collection Data Types .
Converting Between Collection Types W|th the Same
Element Type .
Converting Between CoIIectlons W|th Dn‘ferent EIement Types
When the Conversion Between Element Types Requires
an Implicit Cast.
When the Conversion Between Element Types Reqwres
an Explicit Cast. e

Casting Distinct Data Types . .
Applying Casts that a Distinct Type Inherlts
Casting Between a Distinct Type and Its Source Type.
Adding and Dropping Casts on a Distinct Type

An Example of Casts with Conversion Functions
Creating a Conversion Function Cast . S
Performing MultiLevel Casts with Explicit Casts .

Summary .

13-3
13-5
13-6

13-7
13-8
13-9
13-10
13-11
13-12
13-12
13-13

13-13

13-14
13-15

13-15

13-15

13-16
13-16
13-17
13-19

13-20
13-20
13-22

13-23

13-2 Informix Guide to SQL: Tutorial

his chapter introduces user-defined casts and shows how to use casts

to perform data conversions on extended data types. This chapter provides
information about the following topics:

What is a cast?

Casting row types

Casting collection types

Casting distinct types

An example of casts with conversion functions

What Is a Cast?

A cast is a mechanism that converts a value from one data type to another
data type. Casts allow you to make comparisons between values of different
data types or substitute a value of one data type for a value of another data
type. Casts are supported in the following types of expressions:

Column expressions

Constant expressions

Function expressions

SPL variables

Host variables (ESQL)

Statement local variable (SLV) expressions

Casting Data Types 13-3

What Is a Cast?

To convert a value of one data type to another data type, a cast must exist in
the database or in the database server. Universal Server supports three kinds

of cast:

System-defined casts

A system-defined cast is a cast that is built in to the database server. A
system-defined casts performs automatic conversions between
different built-in data types.

User-defined Casts
o Implicit cast

A cast is implicit if you specify the implicit keyword when you create
the cast. An implicit cast is invoked automatically to perform conver-
sions between two data types.

o Explicit cast

A cast is explicit if you specify the explicit keyword when you create
the cast. (The default is explicit.) To invoke an explicit cast, you must
use the CAST AS keywords or the double colon (::) cast operator.
Explicit casts are never invoked automatically.

For information about system-defined casts, see Chapter 2 of the Informix
Guide to SQL.: Reference.

For the syntax that you use to create a user-defined cast, see the CREATE CAST

statement in the Informix Guide to SQL: Syntax.

13-4 Informix Guide to SQL: Tutorial

Creating User-Defined Casts

Creating User-Defined Casts

To perform conversions between two data types when no cast exists to
convert values of one data type to the other, you can create a user-defined
cast. A user-defined cast is a cast you create with the CREATE CAST statement.
User-defined casts are typically used to provide data type conversions for the
following extended data types:

Opaque data types. Developers of opagque data types must define
casts to handle conversions between the internal/external represen-
tations of the opaque data type. For information about how to create
and register casts for opaque data types, see the Extending
INFORMIX-Universal Server: Data Types manual.

Distinct data types. You cannot directly compare a distinct data type
to its source type. However, Universal Server automatically registers
explicit casts from the distinct type to the source type and vice versa.
Although a distinct type inherits the casts that are defined on its
source type, any user-defined casts that you define on a distinct type
are not available to its source type. For more information and
examples that show how you can create and use casts for distinct
types, see “An Example of Casts with Conversion Functions” on
page 13-20.

Named row types. In most cases, you can explicitly cast a named row
type to another row-type value without having to create the cast.
However, in some cases, you might want to create a cast to convert
between a named row type and some other data type.

Important: You cannot create more than one cast to handle conversions between the
same two data types.

For information about how to create user-defined casts, see the Extending
INFORMIX-Universal Server: Data Types manual.

Casting Data Types 13-5

Invoking Casts

Invoking Casts

For system-defined and implicit user-defined casts, the database server
automatically (implicitly) invokes the cast to handle the data conversion. For
example, you can compare a value of type INT with SMALLINT, FLOAT, or
CHAR values without explicitly casting the expression because system-
defined casts automatically handle the conversions between these built-in
data types.

When an explicit cast has been defined to handle conversions between two
data types, you must explicitly invoke the cast with the CAST... AS keywords
or the double-colon cast operator (::). The following partial examples show
the two ways that you can invoke an explicit cast:

...WHERE new_col = CAST(old_col AS newtype)
...WHERE new_col = old_col::newtype

In general, a cast between two data types assumes that each data type repre-
sents an equal number of component values. For example, a cast between a
row type and an opaque data type is possible if each field in the row type has
a corresponding field in the opaque data type. Of course, to perform a cast
between an opaque data type and a named row type, you would first need to
create the conversion function and register it as a cast with the CREATE CAST
statement.

You cannot create a user-defined cast that includes any of the following data
types as either the source type or target type for the cast:

= Collection data types
= Unnamed row types

= BLOB
= CLOB
s TEXT
s BYTE

13-6 Informix Guide to SQL: Tutorial

Casting Row Types

Casting Row Types

You can compare or substitute between values of any two row types (named
or unnamed) only if both row types have the same number of fields, and one
of the following conditions is also true:

= All corresponding fields of the two row types have the same data
type.
Two row types are structurally equivalent when they have the same
number of fields and the data types of corresponding fields are the
same.

= System-defined or user-defined casts exist to perform the necessary
conversions for corresponding field values that are not of the same
data type.

When the corresponding fields are not of the same data type,
Universal Server can use either system-defined casts or user-defined
casts to handle data conversions on the fields.

If a system-defined cast exists to handle data conversions on the individual
fields, you only need to explicitly cast the value of one row type to the other
row type (unless the row types are both unnamed row types, in which case
an explicit cast is not necessary).

If a system-defined cast does not exist to handle field conversions, you can
create a user-defined cast. The cast can be either implicit or explicit.

In general, when a row type is cast to another row type, some fields might be
cast explicitly while other fields are cast implicitly. When the conversion
between corresponding fields requires an explicit cast, the value of the field
that is cast must match the value of the corresponding field exactly because
the database server applies no additional implicit casts on a value that has
been explicitly cast.

Casting Data Types 13-7

Casting Between Named Row Types

13-8

Casting Between Named Row Types

A named row type is strongly typed, which means that two named row types
are recognized by the database server as two separate types even if the row
types are structurally equivalent.

Suppose you create two named row types and a table, as Figure 13-1 shows.
Although the named row types are structurally equivalent, writer_t and
editor_t are unique data types.

Figure 13-1
CREATE ROW TYPE writer_t (name VARCHAR(30), depart CHAR(3));

CREATE ROW TYPE editor_t (name VARCHAR(30), depart CHAR(3));

CREATE TABLE projects

(
book_title VARCHAR(20),
writer writer_t,
editor editor_t

)

To compare a named row type with another named row type, you must
explicitly cast one row type value to the other row type.

In the following example, values of type writer_t are explicitly cast as
editor_t. The explicit cast in the WHERE clause enables comparisons between
values of type writer_tand editor_t. The query returns the titles of any books
for which the writer is also the editor.

SELECT book_title
FROM projects
WHERE CAST(writer AS editor_t) = editor

If you prefer, you can use the :: cast operator to perform the same cast, as the
following example shows:

SELECT book_title
FROM projects
WHERE writer::editor_t = editor

Informix Guide to SQL: Tutorial

Casting Between Named and Unnamed Row Types

Casting Between Named and Unnamed Row Types

You must use an explicit cast for comparisons between a named row type and
an unnamed row type. Suppose that you create a named row type and two
tables, as Figure 13-2 shows.

Figure 13-2
CREATE ROW TYPE info_t (x BOOLEAN, y BOOLEAN)

CREATE TABLE customer (cust_info info_t)
CREATE TABLE retailer (ret_info ROW (a CHAR(1), b CHARC(1)))

Universal Server provides a system-defined cast that handles conversions
between the BOOLEAN and CHAR fields of the respective row types, but you
must explicitly cast the value of the unnamed row type to a named row type.
In the following query, the ret_info column (an unnamed row type) is
explicitly cast to info_t (a named row type). The explicit cast enables you to
make comparisons between the cust_info and ret_info columns.

SELECT cust_info
FROM customer, retailer
WHERE cust_info = ret_info::info_t

In general, to perform a conversion between a named row type and an
unnamed row type, you must explicitly cast one row type to the other row
type. You can perform an explicit cast in either direction: you can cast the
named row type to an unnamed row type or cast the unnamed row type to a
named row type. The following statement returns the same results as the
previous example. However, the named row type in this example is explicitly
cast to the unnamed row type:

SELECT cust_info
FROM customer, retailer
WHERE cust_info::ROW(a CHAR(1), b CHAR(1)) = ret_info

Before you can explicitly cast between two row types whose fields contain
different data types, a cast (either system-defined or user-defined) must exist
to perform conversions between the corresponding field data types. For
example, to explicitly cast between values of the info_t type and an unnamed
row type that is defined as ROW(a INT, b INT), you must first create a user-
defined cast that performs conversions between INT and BOOLEAN values. If
such a cast has been registered in your database, you can explicitly cast
values of the unnamed row type ROW(a INT, b INT) to the info_t type, to
compare values of the two row types.

Casting Data Types 13-9

Casting Between Unnamed Row Types

13-10

Casting Between Unnamed Row Types

You can compare two unnamed row types that are structurally equivalent
without using an explicit cast.You can also compare an unnamed row type
with another unnamed row type if both row types have the same number of
fields, and casts exist that can convert values of corresponding fields that are
not of the same data type. In other words, the cast from one unnamed row
type to another is implicit if all the casts to handle field conversions are
system-defined or implicit casts. Otherwise, you must explicitly cast an
unnamed row type to compare it with another row type.

Suppose you create the table that Figure 13-3 shows.

Figure 13-3

CREATE TABLE prices

(
coll ROW(Ca SMALLINT, b FLOAT)
col? ROW(x INT, y REAL)

)

The following query compares values of coll and col2 of the prices table and
returns rows where coll is equal to col2:

SELECT *
FROM prices
WHERE coll = col?2

The values of the two unnamed row types can be compared (without an
explicit cast) when system-defined casts exist to perform conversions
between the corresponding fields of the row types. In the preceding example,
the database server automatically makes the necessary conversions between
the corresponding fields of coll and col2, using system-defined casts that
convert values of SMALLINT to INT and REAL to FLOAT.

If corresponding fields of two row types cannot implicitly cast to one another,
you can explicitly cast between the types providing that a cast exists for data
conversion between the two types. For example, suppose your database
contains the distinct types, table, and user-defined cast as Figure 13-4 on
page 13-11 shows.

Informix Guide to SQL: Tutorial

Row-Type Conversions that Require Explicit Casts on Fields

Figure 13-4
CREATE DISTINCT TYPE dollar AS DOUBLE PRECISION

CREATE DISTINCT TYPE yen AS DOUBLE PRECISION
CREATE TABLE imports(price ROW(x VARCHAR(20), y yen))
CREATE CAST (yen AS dollar)

Because a user-defined cast has been created to convert yen values to dollar
values, you might explicitly cast the price column from the imports table as
an unnamed row type in which values of type yen are converted to type
dollar, as Figure 13-5 shows.

Figure 13-5
INSERT INTO imports VALUES(ROW('chair', 5.76::yen))

SELECT price::ROW(x VARCHAR(20), y dollar) FROM imports

Row-Type Conversions that Require Explicit Casts on Fields

When you explicitly cast between two row types, the database server
automatically invokes any explicit casts that are required to convert
individual fields to the appropriate data type. In other words, you do not
have to explicitly cast both the field and row type values.

Suppose you create the types and tables that Figure 13-6 shows.

Figure 13-6
CREATE DISTINCT TYPE d_float AS FLOAT

CREATE ROW TYPE row_t (a INT, b d_float)
CREATE TABLE tabl (coll ROW (a INT, b d_float))
CREATE TABLE tab2(col2 ROW (a INT, b FLOAT))

CREATE TABLE tab3 (col3 row_t)

Casting Data Types 13-11

Row-Type Conversions that Require Explicit Casts on Fields

13-12

Explicit Casts on Fields of an Unnamed Row Type

When a conversion between two row types involves an explicit cast to
convert between particular field values, you can explicitly cast the row type
value but do not need to explicitly cast the individual field. For example, to
substitute a value from coll of tabl into col2 of tab2, you can explicitly cast
the row value, as follows:

INSERT INTO tab?
SELECT coll::ROW(Ca INT, b FLOAT)
FROM tabl

In this example, the cast that is used to convert the b field is explicit because
the conversion from d_float to FLOAT requires an explicit cast (to convert a
distinct type to its source type requires an explicit cast).

In general, to cast between two unnamed row types where one or more of the
fields uses an explicit cast, you must explicitly cast at the level of the row
type, not at the level of the field.

Explicit Casts on Fields of a Named Row Type

When you explicitly cast a value as a named row type, the database server
automatically invokes any implicit or explicit casts that are used to convert
field values to the appropriate data type. In the following statement, the
explicit cast of coll to type row_t also invokes the explicit cast that converts
the FLOAT field value to a d_float value:

INSERT INTO tab3 SELECT col2::row_t
FROM tab?

The following INSERT statement includes an explicit cast to the row_t type.
The explicit cast to the row type also invokes any explicit casts that are
defined to handle conversions of individual field values.

INSERT INTO tab3
VALUES (ROW(5,6.55)::row_t)

The following statement is also valid and returns the same results as the
preceding statement. However, this statement shows all the explicit casts that
are performed to insert a row _t value into the tab3 table.

INSERT INTO tab3
VALUES (ROW(5, 6.55::d_float)::row_t)

Informix Guide to SQL: Tutorial

Casting Fields of a Row Type

Casting Fields of a Row Type

If an operation on a field of a row type requires an explicit cast, you can
explicitly cast the individual field value without consideration of the row
type with which the field is associated. The following statement uses an
explicit cast on the field value to handle the conversion:

SELECT coll from tabl, tab?
WHERE coll.b = col2.b::FLOAT

If an operation on a field of a row type requires an implicit cast, you can
simply specify the appropriate field value and the database server handles
the conversion automatically. In the following statement, which compares
field values of different data types, the cast is handled automatically because
a system-defined cast converts between INT and FLOAT values:

SELECT coll from tabl, tab?
WHERE coll.a = col2.b

Casting Collection Data Types

In some cases, you can use an explicit cast to convert from one collection type
to another collection type. To compare or substitute between values of any
two collection types, one of the following conditions must be true:

= The element types of the two collection types are the same.

Two element types are equivalent when all component types are the
same. For example, if the element type of one collection is a row type,
the other collection type is also a row type with the same number of
fields and the same field data types.

» Casts exist in the database to perform conversions between any and
all components of the element types that are not of the same data
type.

If the corresponding element types are not of the same data type,

Universal Server can use either system-defined casts or user-defined
casts to handle data conversions on the element types.

Casting Data Types 13-13

Converting Between Collection Types with the Same Element Type

13-14

When the database server inserts, updates, or compares values of a collection
data type, type checking occurs at the level of the element data type. Conse-
guently, in a cast between two collection types, the data conversion occurs at
the level of the element type because the actual data stored in a collection is
of a particular element type.

Suppose you create the types and tables that Figure 13-7 shows. These types
and tables are used in the collection casting examples that follow.

Figure 13-7
CREATE DISTINCT TYPE my_int AS INT;

CREATE TABLE set_tabl (coll SET(my_int NOT NULL));
CREATE TABLE set_tab2(col2 SETCINT NOT NULL)):
CREATE TABLE set_tab3 (col3 SET(FLOAT NOT NULL));
CREATE TABLE Tist_tab (col4 LISTCINT NOT NULL));

CREATE TABLE m_set_tab(col5 MULTISETCINT NOT NULL));

Converting Between Collection Types with the Same
Element Type

When the element type of two collections is the same but the collection types
differ, you can insert or update elements from one collection with elements
from the other collection without an explicit cast. The following INSERT
statement retrieves elements from the list_tab table and inserts the elements
into the m_set_tab table. Although one collection isa MULTISET and the other
collection is a LIST, no explicit cast is necessary because the element types of
the two collection types are the same (both are of the INT element type).

INSERT INTO m_set_tab SELECT col4 FROM Tist_tab

Because each collection data type (SET, MULTISET, and LIST) has different
characteristics, elements retrieved from one collection type and inserted into
another collection type are represented differently. For example, elements
stored in a LIST collection have a specific order associated with them. This
order is lost when these same elements are inserted into a MULTISET
collection.

Informix Guide to SQL: Tutorial

Converting Between Collections with Different Element Types

Converting Between Collections with Different Element
Types

How you handle conversions between two collections depends on the
element type of each collection and the type of cast that the database server
uses to convert one element type to another when the element types are
different:

» Ifasystem-defined cast or implicit user-defined cast exists to handle
the conversion between two element types, you do not need to
explicitly cast between the collection types.

= If an explicit cast exists to handle the conversion between element
types, you must explicitly cast between the collection types.

When the Conversion Between Element Types Requires an Implicit
Cast

When an implicit cast exists in the database to convert between different
element types of two collections, you do not need to use an explicit cast to
insert or update elements from one collection type into the other collection
type. The following INSERT statement retrieves elements from the set_tab?2
table and inserts the elements into the set_tab3 table. Although the collection
column from set_tab2 has an INT element type and the collection column
from set_tab3 has a FLOAT element type, a system-defined cast implicitly
handles the conversion between INT and FLOAT values. An explicit cast is
unnecessary in this case.

INSERT INTO set_tab3 SELECT col?2
FROM set_tab2

When the Conversion Between Element Types Requires an Explicit
Cast

When a conversion between different element types of two collections is
performed with an explicit cast, you must explicitly cast one collection to the
other collection type. In the following example, the conversion between the
element types (INT and my_int) requires an explicit cast. (A cast between a
distinct type and its source type is always explicit).

Casting Data Types 13-15

Casting Distinct Data Types

13-16

The following INSERT statement retrieves elements from the set_tab2 table
and inserts the elements into the set_tabl table. The collection column from
set_tab2 has an INT element type and the collection column from set_tabl
has a my_int element type. Because the conversion between the element
types (INT and my_int) requires an explicit cast, you must explicitly cast the
collection type.

INSERT INTO set_tabl SELECT col2::SET(my_int NOT NULL)
FROM set_tab?

To perform an explicit cast on a collection type, you must include the
constructor (SET, MULTISET, or LIST), the element type, and the NOT NULL
keyword.

The following INSERT statement retrieves elements from the m_set_tab table
and inserts the elements into the set_tab1. The explicit cast is necessary
because a conversion between the INT and my_int element types requires an
explicit cast. This example differs from the previous example in that here a
MULTISET collection is explicitly cast as a SET collection.

INSERT INTO set_tabl SELECT col5::SET(my_int NOT NULL)
FROM m_set_tab

Casting Distinct Data Types

A distinct type inherits all the functions and casts defined on its source type.
Anywhere a cast exists to convert between a source type and particular data
type, a cast also exists to convert between the distinct type (that is defined on
the source type) and the particular data type. However, to compare or
substitute between values of a distinct type and its source type, you must
explicitly cast one type to the other. For example, to insert into or update a
column of a distinct type with values of the source type, you must explicitly
cast the values to the distinct type.

Applying Casts that a Distinct Type Inherits

A distinct type has available for its use any casts that are defined on its source
type. Consequently, if a cast exists to convert between values of the source
type and INTEGER type, a cast also exists to convert between values of the
distinct type and INTEGER type.

Informix Guide to SQL: Tutorial

Casting Between a Distinct Type and Its Source Type

Suppose you create a distinct type, num_type, that is based on the NUMERIC
data type and a table with two columns, one of type num_type and the other
of type NUMERIC.

CREATE DISTINCT TYPE num_type AS NUMERIC;
CREATE TABLE tab(coll num_type, col2 NUMERIC);

Universal Server can invoke any cast that num_type inherits from the
NUMERIC data type to resolve expressions involving the num_type and
some other type. In the following INSERT statement, the database server
invokes a cast to convert the INT value 35 to a num_type value:

INSERT INTO tab (coll) VALUES (35);

When the preceding statement is parsed, the database server identifies 35 as
an INT value. Because an implicit cast exists to convert INT values to
NUMERIC values, a cast also exists to convert INT values to num_type.

Important: You cannot drop or alter the casts that a distinct type inherits from its
source type.

Casting Between a Distinct Type and Its Source Type

Although data of a distinct type has the same representation as its source
type, a distinct type cannot be compared directly to its source type. For this
reason, when you create a distinct data type, Universal Server automatically
registers the following explicit casts:

= A cast from the distinct type to its source type
= A cast from the source type to the distinct type
Suppose you create two distinct types: one to handle movie titles and the

other to handle music recordings. Figure 13-8 shows how you might create
two distinct types that are based on the VARCHAR data type.

Figure 13-8

CREATE DISTINCT TYPE movie_type AS VARCHAR(30);
CREATE DISTINCT TYPE music_type AS VARCHAR(30);

Figure 13-9 on page 13-18 creates the entertainment table that includes
columns of type movie_type, music_type, and VARCHAR.

Casting Data Types 13-17

Casting Between a Distinct Type and Its Source Type

13-18

Figure 13-9
CREATE TABLE entertainment
(
video movie_type,
compact_disc music_type,
laser_disc VARCHAR(30)

)

To compare a distinct type with its source type or vice versa, you must
perform an explicit cast from one data type to the other. For example,
suppose you want to check for movies that are available on both video and
laser disc. The following statement requires an explicit cast in the WHERE
clause to compare a value of a distinct type (music_type) with a value of its
source type (VARCHAR). In this example, the source type is explicitly cast to
the distinct type.

SELECT video
FROM entertainment
WHERE video = laser_disc::movie_type

In the preceding example, the source type is explicitly cast to the distinct
type. However, you might also explicitly cast the distinct type to the source
type as the following statement shows:

SELECT video
FROM entertainment
WHERE video::VARCHAR(30) = laser_disc

To perform a conversion between two distinct types that are defined on the
same source type, you must use an explicit cast. The following statement
requires an explicit cast to compare a value of music_type with a value of
movie_type:

SELECT video
FROM entertainment
WHERE video = compact_disc::movie_type

Informix Guide to SQL: Tutorial

Casting Between a Distinct Type and Its Source Type

Adding and Dropping Casts on a Distinct Type

To enforce strong typing on a distinct type, the database server provides
explicit casts to handle conversions between a distinct type and its source
type. However, the creator of a distinct type can drop the existing explicit
casts and create implicit casts, so that conversions between a distinct type
and its source type do not require an explicit cast. The following DROP CAST
statements drop the two explicit casts that were automatically defined on the
movie_type that Figure 13-8 shows:

DROP CAST(movie_type as VARCHAR(30))
DROP CAST(VARCHAR(30) AS movie_type)

Once the existing casts are dropped, you can create two implicit casts to
handle conversions between movie_type and VARCHAR. The following
CREATE CAST statements create two implicit casts:

CREATE IMPLICIT CAST (movie_type AS VARCHAR(30))
CREATE IMPLICIT CAST (VARCHAR(30) AS movie_type)

You cannot create a cast to convert between two data types if such a cast
already exists in the database.

Once you create implicit casts to convert between the distinct type and its
source type, you can make comparisons between the two types without an
explicit cast. In the following statement, the comparison between the video
and laser_disc column requires a conversion. Because an implicit cast has
been created, the conversion between VARCHAR and movie_type is implicit.

SELECT video
FROM entertainment
WHERE video = laser_disc

Casting Data Types 13-19

An Example of Casts with Conversion Functions

13-20

An Example of Casts with Conversion Functions

If your database contains opaque data types, distinct data types, or named
row types, you might want to create user-defined casts that allow you to
convert between the different data types. When you wish to perform conver-
sions between two data types that have the same storage structure, you can
use the CREATE CAST statement without a conversion function. However, in
some cases you must create a conversion function that you then register as a
cast. You need to create a conversion function under the following
conditions:

= Theconversion is between two data types that have different storage
structures

= The conversion involves the manipulation of values to ensure that
data conversions are meaningful

The following sections show how to create and use casts that you create with
a conversion function.

Creating a Conversion Function Cast

Suppose you wish to define distinct types to represent dollar, yen, and
sterling currencies. Any comparison between two currencies must take the
exchange rate into account. Thus, you need to create conversion functions
that not only handle the cast from one data type to the other data type but
also calculate the exchange rate for the values that you want to compare.

Figure 13-10 shows how you might define three distinct types on the same
source type, DOUBLE PRECISION.

Figure 13-10
CREATE DISTINCT TYPE dollar AS DOUBLE PRECISION;

CREATE DISTINCT TYPE yen AS DOUBLE PRECISION;
CREATE DISTINCT TYPE sterling AS DOUBLE PRECISION;

After you define the distinct types, you can create a table that provides the
prices that manufacturers charge for comparable products. Figure 13-11 on
page 13-21 creates the manufact_price table, which contains a column for the
dollar, yen, and sterling distinct types.

Informix Guide to SQL: Tutorial

An Example of Casts with Conversion Functions

Figure 13-11

CREATE TABLE manufact_price
(

product_desc VARCHAR(20),
us_price dollar,
japan_price yen,

uk_price sterling

)
When you insert values into the manufact_price table, you can cast to the

appropriate distinct type for dollar, yen, and sterling values, as follows:

INSERT INTO manufact_price

VALUES ('baseball', 5.00::dollar, 510.00::yen,
3.50::sterling)

Before you can compare the dollar, yen, and sterling data types, you must
create conversion functions and register them as casts. Figure 13-12 shows
how to create an SPL function, dollar_to_yen(), that you can use to compare
dollar and yen values. To account for the exchange rate, the function multi-
plies dollar values by 106 to derive equivalent yen values.

Figure 13-12

CREATE FUNCTION dollar_to_yen(d dollar)
RETURNS yen

RETURN CAST((d::DOUBLE PRECISION * 106) AS yen);
END FUNCTION;

Figure 13-13 creates an SPL function to compare sterling and dollar values. To
account for the exchange rate, the function multiplies sterling values by 1.59
to derive equivalent dollar values.

Figure 13-13

CREATE FUNCTION sterling_to_dollar(s sterling)
RETURNS dollar

RETURN CAST((s::DOUBLE PRECISION * 1.59) AS dollar);
END FUNCTION;

Once you write the conversion functions, you must use the CREATE CAST
statement to register the functions as casts. Figure 13-14 shows how to
register the dollar_to_yen() and sterling_to_dollar() functions as explicit
casts.

Figure 13-14
CREATE CAST(dollar AS yen WITH dollar_to_yen);

CREATE CAST(sterling AS dollar WITH sterling_to_dollar);

Casting Data Types 13-21

An Example of Casts with Conversion Functions

13-22

Once you register the function as a cast, use it for operations that require
conversions between the data types. For the syntax that you use to create a
conversion function and register it as a cast, see the CREATE FUNCTION and
CREATE CAST statements in the Informix Guide to SQL: Syntax.

In the following query, the WHERE clause includes an explicit cast that
invokes the dollar_to_yen() function to compare dollar and yen values:

SELECT *
FROM manufact_price
WHERE CAST(us_price AS yen) < japan_price

You can also use a cast to convert values that a query returns. The following
query includes a cast so that dollar values are returned as their yen equiva-
lents. The WHERE clause of the query also uses an explicit cast to compare
dollar and yen values.

SELECT CAST(us_price AS yen), Jjapan_price
FROM manufact_price
WHERE CAST(us_price AS yen) < japan_price

Performing MultiLevel Casts with Explicit Casts

Up to this point, all the cast examples have been single-level casts. A single-
level cast is simply an operation that requires one and only one cast to convert
a value of one data type to the desired data type. A single-level cast can be
implicit or explicit.

A multilevel cast refers to an operation that requires two or more levels of
casting in an expression to convert a value of one data type to another data
type. A multilevel cast can include implicit and/or explicit casts. In some
cases, the database server might use several system-defined casts to
implicitly cast a value of one data type to another data type. In other cases,
you might need to use multiple explicit casts to convert between two data
types, as the following query shows. Because no cast exists for direct compar-
isons between yen and sterling values, the query requires two explicit casts.
The first (inner) cast converts sterling values to dollar values; the second
(outer) cast converts dollar values to yen values.

SELECT *
FROM manufact_price
WHERE japan_price < uk_price::dollar::yen

Informix Guide to SQL: Tutorial

Summary

The preceding query requires two levels of casting to get from sterling to yen
because a sterling to yen cast does not exist in the database.

You might add another casting function to handle yen to sterling conversions
directly. Figure 13-15 shows how to create the function yen_to_sterling() and
register it as a cast. To account for the exchange rate, the function multiplies
yen values by .01 to derive equivalent sterling values.

Figure 13-15

CREATE FUNCTION yen_to_sterling(y yen)

RETURNS sterling

RETURN CAST((y::DOUBLE PRECISION * .01) AS sterling);
END FUNCTION;

CREATE CAST (yen AS sterling WITH yen_to_sterling);

With the addition of the cast in Figure 13-15, you can use a single-level cast
to compare yen and sterling values, as the following query shows. In the
SELECT statement, the explicit cast is used to return yen values as their
sterling equivalents. In the WHERE clause, the cast is used to compare yen
and sterling values.

SELECT japan_price, uk_price
FROM manufact_price
WHERE CAST(japan_price AS sterling) < uk_price;

Summary

A cast is a mechanism that allows you to compare values of different data
types or substitute a value of one data type with another data type.
INFORMIX-Universal Server supports both system-defined casts and user-
defined casts. When a conversion operation requires the use of an explicit
cast, you must use the CAST AS keyword or cast operator (::) to explicitly cast
the value to be converted.

You can use an explicit cast to compare or substitute between values of a
named row type and another row type when both row types have the same
number of fields, and either the fields of the two row types are structurally
equivalent or casts exist to perform the necessary conversions for corre-
sponding field values that are not the same. Two unnamed row types that are
structurally equivalent can be compared without an explicit cast.

Casting Data Types 13-23

Summary

You can use an explicit cast to convert from one collection type to another
collection type when the element types of the two collection types are the
same, or casts exist to perform conversions between any and all components
of the element types that are not of the same data type.

A distinct type inherits all the functions and casts defined on its source type.
Anywhere a cast exists to convert between a source type and particular data
type, a cast also exists to convert between the distinct type (that is defined on
the source type) and the particular data type. However, to compare or
substitute between values of a distinct type and its source type, you must
explicitly cast one type to the other.

When you wish to perform conversions between two data types that have the
same storage structure, you can use the CREATE CAST statement without a
conversion function. However, in some cases you must create a conversion
function that you then register as a cast. You use a conversion function when
the conversion is between two data types that have different storage struc-
tures or the data conversion involves the manipulation of the actual values.

13-24 Informix Guide to SQL: Tutorial

Chapter

Creating and Using SPL
Routines

Introduction to SPL Routines

Writing SPL Routines .

Using the CREATE PROCEDURE or CREATE FUNCTION Statement

Beginning and Ending the Routine.
Specifying a Routine Name
Adding a Specific Name

Adding a Parameter List .
Adding a Return Clause
Specifying a Document Clause .
Specifying a Listing File

Adding Comments .

Defining and Using Variables .
Declaring Local Variables

Scope of Local Variables :
Declaring Built-In Type Varlables : S
Declaring Variables for Simple Large Objects .
Declaring Collection Variables . .
Declaring Row-Type Variables . . .
Declaring Opaqgue- and Distinct-Type Varlables .

Declaring Variables for Column Data with the LIKE Clause .

Declaring PROCEDURE Type Variables .

Using Subscripts with Variables. .

Variable and Keyword Ambiguity .
Declaring Global Variables . :
Assigning Values to Variables .

The LET Statement . .

Other Ways to Assign Values to Varlables

Writing the Statement Block.
Implicit and Explicit Statement Blocks
Using Cursors .

14-5

14-6
14-6
14-6
14-7
14-8
14-9
14-11
14-12
14-12
14-13

14-15
14-15
14-16
14-17
14-17
14-17
14-19
14-20
14-21
14-21
14-22
14-22
14-24
14-25
14-26
14-28

14-28
14-29
14-30

14

The FOREACH Loop
Using an IF - ELIF - ELSE Structure
Expressions in an IF Statement .
Adding WHILE and FOR Loops .
Exiting a Loop . :

Returning Values from an SPL Function.
Returning a Single Value.
Returning Multiple Values .

Handling Collections .

Collection Examples .

The First Steps .

Declaring a Collection Varlable

Declaring an Element Variable.

Selecting a Collection into a Collection Varlable

Inserting Elements into a Collection Variable.
Inserting into a SET or MULTISET .
Inserting intoa LIST.
Checking the Cardinality of a LIST Collectlon .
Syntax of the VALUES Clause .o

Selecting Elements from a Collection
The Collection Query

Adding the Collection Query to the SPL Routme .

Deleting a Collection Element .
Updating the Collection in the Database
Deleting the Entire Collection

Updating a Collection Element
Updating a Collection with a Varlable

Updating the Entire Collection .
Updating a Collection of Row Types .
Updating a Nested Collection

Inserting into a Collection .
Inserting into a Nested Collectlon .

Handling Row Types .
Updating a Row-Type Column
Precedence of Dot Notation.

Executing Routines . .

The EXECUTE Statements .
How to Use the Statements

Using the CALL Statement .

14-2 Informix Guide to SQL: Tutorial

14-31
14-33
14-35
14-35
14-37

14-38
14-39
14-39

14-41
14-41
14-43
14-43
14-44
14-44
14-45
14-45
14-46
14-47
14-48
14-48
14-49
14-50
14-51
14-53
14-54
14-55
14-56
14-57
14-57
14-59
14-60
14-61

14-65
14-66
14-67

14-67
14-68
14-68
14-69

Executing Routines in Expressions.
Executing Cursor Functions from an SPL Routme
Dynamic Routine-Name Specification

Privileges on Routines
Privileges for Registering a Routme
Privileges for Executing a Routine .
Granting and Revoking the Execute Pr|V|Iege
Privileges on Objects Associated with a Routine .
Executing a Routine as DBA .

Effect of DBA Privileges on Objects and Nested Routmes

Finding Errors in an SPL Routine
Looking at Compile-Time Warnings
Generating the Text of the Routine.

Debugging an SPL Routine.

Exception Handling .
Trapping an Error and Recovermg
Scope of Control of an ON EXCEPTION Statement
User-Generated Exceptions G
Simulating SQL Errors
Using RAISE EXCEPTION to EX|t Nested Code

Checking the Number of Rows Processed in an SPL Routine .

Summary .

.14-70
.14-71
.14-72

.14-74
. 14-75
. 14-75
.14-76
.14-77
.14-78
. 14-79

.14-80
.14-80
.14-81

.14-82

.14-84
.14-84
.14-85
.14-87
.14-87
.14-88

. 14-89
.14-89

Creating and Using SPL Routines

14-3

n SPL routine is a user-defined routine written in Informix
Stored Procedure Language (SPL). Informix SPL is an extension to SQL that
provides flow control, such as looping and branching. Anyone who has the
Resource privilege on a database can create an SPL routine.

Routines written in SQL are parsed, optimized as far as possible, and then
stored in the system catalog tables in executable format. An SPL routine
might be a good choice for SQL-intensive tasks. SPL routines can execute
routines written in C or other external languages, and external routines can
execute SPL routines.

You can use SPL routines to perform any task that you can perform in SQL
and to expand what you can accomplish with SQL alone. Because SPL is a
language native to the database, and because SPL routines are parsed and
optimized when they are created rather than at runtime, SPL routines can
improve performance for some tasks. SPL routines can also reduce traffic
between a client application and the database server and reduce program
complexity.

Introduction to SPL Routines

In Universal Server, SPL routine is a generic term that includes SPL procedures
and SPL functions. An SPL procedure is a routine written in SPL and SQL that
does not return a value.

An SPL function is a routine written in SPL and SQL that returns a single value,
a value with a complex data type, or multiple values. Any routine written in
SPL that returns a value is an SPL function.

Tip: Many of the routines that you wrote in SPL in earlier Informix products are now
called SPL functions.

Creating and Using SPL Routines 14-5

Writing SPL Routines

14-6

Writing SPL Routines

An SPL routine consists of a beginning statement, a statement block, and an
ending statement. Within the statement block, you can use SQL or SPL
statements.

Using the CREATE PROCEDURE or CREATE FUNCTION
Statement

You must first decide if the routine you are creating returns values or not. If
the routine does not return values, you create an SPL procedure. To create an
SPL procedure, you use the CREATE PROCEDURE statement. If the routine
returns a value, you create an SPL function. To create an SPL function, you use
the CREATE FUNCTION statement.

Tip: To create an SPL routine, you use one CREATE PROCEDURE or CREATE
FUNCTION statement to write the body of the routine and register it. In contrast,
external routines require that you write and register the routine as separate tasks.

Beginning and Ending the Routine

When you create an SPL procedure that does not return values, start with the
CREATE PROCEDURE statement and end with the END PROCEDURE
keyword. Figure 14-1 shows how to begin and end an SPL procedure.

Figure 14-1
CREATE PROCEDURE new_price(per_cent REAL)

END PROCEDURE;

The name that you assign to the SPL routine can be up to 18 characters long.
For more information about naming conventions, see the Identifier ssgment
in the Informix Guide to SQL: Syntax.

Informix Guide to SQL: Tutorial

Using the CREATE PROCEDURE or CREATE FUNCTION Statement

To create an SPL function that returns one or more values, start with the
CREATE FUNCTION statement and end with the END FUNCTION keyword.
Figure 14-2 shows how to begin and end an SPL function.

Figure 14-2

CREATE FUNCTION discount_price(per_cent REAL)
RETURNING MONEY;

END FUNCTION;

The entire text of an SPL routine, including spaces and tabs, must not exceed
64 Kilobytes.

In SPL routines, the END PROCEDURE or END FUNCTION keywords are
required. Furthermore, the keyword PROCEDURE or FUNCTION must match
in the beginning and ending statements.

Important: For compatibility with earlier Informix products, you can use CREATE
PROCEDURE with a RETURNING clause to create a routine that returns a value.
However, Informix recommends that you use CREATE PROCEDURE for SPL
routines that do not return values (SPL procedures) and CREATE FUNCTION for SPL
routines that return one or more values (SPL functions).

Specifying a Routine Name

You specify a name for the routine immediately following the CREATE
PROCEDURE or CREATE FUNCTION statement and before the parameter list,
as Figure 14-3 shows.

Figure 14-3
CREATE PROCEDURE add_price (arg INT)...

Universal Server allows you to create more than one SPL routine with the
same name but with different parameters. This feature is known as routine
overloading. For example, you might create each of the following SPL routines
in your database:

CREATE PROCEDURE multiply (a INT, b basetypel)...

CREATE PROCEDURE multiply (a INT, b basetype2)...
CREATE PROCEDURE multiply (a REAL, b basetype3)...

Creating and Using SPL Routines 14-7

Using the CREATE PROCEDURE or CREATE FUNCTION Statement

14-8

If you call a routine with the name multiply(), the database server evaluates
the name of the routine and its arguments to determine which routine to
execute. Routine resolution is the process in which the database server
searches for a routine signature that it can use, given the name of the routine
and a list of arguments. Every routine has a signature that uniquely identifies
the routine based on the following information:

= The type of routine (procedure or function)
= The routine name
= The number of parameters
= The data types of the parameters
= The order of the parameters
The routine signature is used in a CREATE, DROP, or EXECUTE statement if

you enter the full parameter list of the routine. For example, each statement
in Figure 14-4 uses a routine signature.

Figure 14-4
CREATE FUNCTION multiply(a INT, b INT);

DROP PROCEDURE end_of_Tist(n SET, row_id INT);

EXECUTE FUNCTION compare_point(m point, n point);

Adding a Specific Name

Due to routine overloading, an SPL routine might not be uniquely identified
by its name alone. However, a routine can be uniquely identified by a specific
name. A specific name is a unique identifier that you define in the CREATE
PROCEDURE or CREATE FUNCTION statement, in addition to the routine
name. A specific name is defined with the SPECIFIC keyword and is unique
in the database. Two routines in the same database cannot have the same
specific name, even if they have different owners.

A specific name can be up to 18 characters long. Figure 14-5 on page 14-9
shows how to define the specific name calc in a CREATE FUNCTION statement
that creates the calculate() function.

Informix Guide to SQL: Tutorial

Using the CREATE PROCEDURE or CREATE FUNCTION Statement

Figure 14-5

CREATE FUNCTION calculate(a INT, b INT, c INT
RETURNING INT
SPECIFIC calcl;

END FUNCTION;

Because the owner bsmith has given the SPL function the specific name calc1,
no other user can define a routine—SPL or external—with the specific name
calcl. Now you can refer to the routine as bsmith.calculate, or with the
SPECIFIC keyword as calcl, in any statement that requires the SPECIFIC
keyword.

Adding a Parameter List

When you create an SPL routine, you can define a parameter list, so that the
routine accepts one or more arguments when itis invoked. The parameter list
is optional.

A parameter to an SPL routine must have a name and can be defined with a
default value. A parameter can specify any of the following categories of data

types:
= Built-in data type
= Opaque data type
= Distinct data type
= Row type
= Collection type

A parameter cannot specify any of the following data types:

= SERIAL
= SERIALS
s TEXT

= BYTE

= CLOB

= BLOB

Each statement in Figure 14-6 shows a valid parameter list.

Creating and Using SPL Routines 14-9

Using the CREATE PROCEDURE or CREATE FUNCTION Statement

14-10

Figure 14-6
CREATE PROCEDURE raise_price(per_cent INT)

CREATE FUNCTION raise_price(per_cent INT DEFAULT 5)

CREATE PROCEDURE update_emp(n employee_t)

CREATE FUNCTION update_nums(Tistl LIST (ROW a varchar(10),
b varchar(10),
c int) NOT NULL)

When you define a parameter, you accomplish two tasks at once:

= You request that the user supply a value when the routine is
executed.

= You implicitly define a variable (with the same name as the
parameter name) that you can use as a local variable in the body of
the routine.

If you define a parameter with a default value, the user can execute the SPL
routine with or without the corresponding argument. If the user executes the
SPL routine without the argument, the database server assigns the parameter
the default value as an argument.

When you invoke an SPL routine, you can give an argument a null value. SPL
routines handle null values by default. However, you cannot give an
argument a null value if the argument is a collection element.

Using Simple Large Objects as Parameters

Although you cannot define a parameter with a TEXT or BYTE data type, you
can use the REFERENCES keyword to define a parameter that points to a TEXT
or BYTE data type as Figure 14-7 shows.

Figure 14-7
CREATE PROCEDURE procl(lo_text REFERENCES TEXT)

CREATE PROCEDURE proc2(lo_byte REFERENCES BYTE DEFAULT NULL)

The REFERENCES keyword means that the SPL routine is passed a descriptor
that contains a pointer to the simple large object, not the object itself.

Informix Guide to SQL: Tutorial

Using the CREATE PROCEDURE or CREATE FUNCTION Statement

Undefined Arguments

When you invoke an SPL routine, you can specify all, some, or none of the
defined arguments. If you do not specify an argument, and if its corre-
sponding parameter does not have a default value, the argument, which is
used as a variable within the SPL routine, is given a status of undefined.

Undefined is a special status used for SPL variables that have no value. The SPL
routine executes without error, as long as you do not attempt to use the
variable that has the status undefined in the body of the routine.

The undefined status is not the same as a null value. Null means the value is
not available or not applicable.

Adding a Return Clause

If you use CREATE FUNCTION to create an SPL routine, you must specify a
return clause that returns one or more values.

Tip: 1f you use CREATE PROCEDURE to create an SPL routine, you have the option
of specifying a return clause. However, Informix recommends that you always use
CREATE FUNCTION to create routines that return values.

To specify a return clause, use the RETURNING or RETURNS keyword with a
list of data types the routine will return. The data types can be any SQL data
types except SERIAL, SERIALS, TEXT, BYTE, CLOB, or BLOB.

The return clause in Figure 14-8 specifies that the SPL routine will return an
INT value and a REAL value.

Figure 14-8

CREATE FUNCTION find_group(id INT)
RETURNING INT, REAL;

END FUNCTION;

Once you specify a return clause, you must also specify a RETURN statement
in the body of the routine that explicitly returns the values to the calling
routine. For more information on writing the RETURN statement, see
“Returning Values from an SPL Function” on page 14-38.

Creating and Using SPL Routines 14-11

Using the CREATE PROCEDURE or CREATE FUNCTION Statement

14-12

To specify that the function should return a simple large object (a TEXT or
BYTE value), you must use the REFERENCES clause, as in Figure 14-9, because
an SPL routine returns only a pointer to the object, not the object itself.

Figure 14-9

CREATE FUNCTION find_obj(id INT)
RETURNING REFERENCES BYTE;

Specifying a Document Clause

The DOCUMENT and WITH LISTING IN clauses follow END PROCEDURE or
END FUNCTION.

The DOCUMENT clause lets you add comments to your SPL routine that
another routine can select from the system catalog tables, if needed. The
DOCUMENT clause in Figure 14-10 contains a usage statement that shows a
user how to run the SPL procedure.

Figure 14-10
CREATE PROCEDURE raise_prices(per_cent INT)

END PROCEDURE
DOCUMENT "USAGE: EXECUTE PROCEDURE raise_prices (xxx)",
"xxx = percentage from 1 - 100";

Remember to place single or double quotation marks around the literal
clause. If the literal clause extends past one line, place quotation marks
around each line.

Specifying a Listing File

The WITH LISTING IN option allows you to direct any compile-time warnings
that may occur to a file. Figure 14-11, which is similar to Figure 14-10, logs the
compile-time warnings in /tmp/warn_file.

Figure 14-11
CREATE PROCEDURE raise_prices(per_cent INT)

END PROCEDURE
WITH LISTING IN '"/tmp/warn_file';

Informix Guide to SQL: Tutorial

Using the CREATE PROCEDURE or CREATE FUNCTION Statement

Remember to place single or double quotation marks around the filename or
pathname.

Adding Comments
You can add a comment to any line of an SPL routine, even a blank line.

To add acomment, place a double dash (--) before the comment or enclose the
comment in braces ({ }). The double dash complies with the ANSI standard.
The braces are an Informix extension to the ANSI standard.

To add a multiple-line comment, you can either

= Place a double dash before each line of the comment
= Enclose the entire comment within braces

All the examples in Figure 14-12 are valid comments.

Figure 14-12
SELECT * FROM customer -- Selects all columns and rows

SELECT * FROM customer
- Selects all columns and rows
- from the customer table

SELECT * FROM customer
{ Selects all columns and rows
from the customer table }

Warning: Braces ({ }) are used to delimit both comments and the list of elements in
a collection. To ensure that the parser correctly recognizes the end of a comment or
list of elements in a collection, Informix recommends that you use the double dash for
comments when an SPL routine operates on collection types.

Dropping an SPL Routine

Once you create an SPL routine, you cannot change the body of the routine.
Instead, you need to drop the routine and re-create it. Before you drop the
routine, however, make sure that you have a copy of its text somewhere
outside the database.

In general, use DROP PROCEDURE with a procedure name and DROP
FUNCTION with a function name, as Figure 14-13 on page 14-14 shows.

Creating and Using SPL Routines 14-13

Using the CREATE PROCEDURE or CREATE FUNCTION Statement

14-14

Figure 14-13

DROP PROCEDURE raise_prices;
DROP FUNCTION calculate;

Tip: You can also use DROP PROCEDURE with a function name to drop an SPL
function. However, Informix recommends that you use DROP PROCEDURE only
with procedure names and DROP FUNCTION only with function names.

However, if the database has other routines of the same name (overloaded
routines), you cannot drop the SPL routine by its routine name alone. To drop
a routine that has been overloaded, you must specify either its signature or
its specific name. Figure 14-14 shows two ways that you might drop a routine
that is overloaded.

Figure 14-14

DROP FUNCTION calculate(a INT, b INT, c INT);
- this is a signature

DROP SPECIFIC FUNCTION calcl;
- this is a specific name

If you do not know the type of a routine (function or procedure), you can use
the DROP ROUTINE statement to drop it. DROP ROUTINE works with either
functions or procedures. DROP ROUTINE also has a SPECIFIC keyword, as
Figure 14-15 shows.

Figure 14-15

DROP ROUTINE calculate;
DROP SPECIFIC ROUTINE calcl;

Before you drop an SPL routine stored on a remote database server, be aware
of the following restriction. You can drop an SPL routine with a fully qualified
routine name in the form database@dbservername:owner. routinename
only if the routine name alone, without its arguments, is enough to identify
the routine. Because user-defined data types on one database might not exist
on another database, you cannot use qualified names with arguments that are
user-defined types.

Informix Guide to SQL: Tutorial

Defining and Using Variables

Defining and Using Variables

Any variable that you use in an SPL routine, other than a variable that is
implicitly defined in the parameter list of the routine, must be defined in the
body of the routine.

The value of a variable is held in memory; the variable is not a database
object. Therefore, rolling back a transaction does not restore the values of SPL
variables.

To define a variable in an SPL routine, use the DEFINE statement. DEFINE is
not an executable statement. DEFINE must appear after the CREATE
PROCEDURE statement and before any other statements. The examples in
Figure 14-16 are all legal variable definitions.

Figure 14-16

DEFINE a INT;

DEFINE colors COLLECTION;

DEFINE person person_t;

DEFINE GLOBAL gl_out INT DEFAULT 13;

For more information on DEFINE, see the description of “DEFINE” on
page 2-8 of the Informix Guide to SQL: Syntax.

An SPL variable has a name and a data type. The variable name must be a
valid identifier, as described in the “Identifier” segment of the Informix Guide
to SQL: Syntax.

Declaring Local Variables

You can define a variable to be either local or global in scope. This section
describes local variables. For more information on defining global variables,
see “Declaring Global Variables” on page 14-24.

In an SPL routine, local variables:

= are valid only for the duration of the SPL routine.

= are reset to their initial values, or to a value the user passes to the
routine, each time the routine is executed.

= cannot have default values.

Creating and Using SPL Routines 14-15

Declaring Local Variables

You can define a local variable on any of the following data types:

= any built-in data type other than SERIAL, SERIALS, TEXT, BYTE, CLOB,
or BLOB.

= any opaque, distinct, collection, or row type defined in the database
by the time the SPL routine is executed.

The scope of alocal variable is the statement block in which it is declared. You
can use the same variable name outside the statement block with a different
definition.

Scope of Local Variables

A local variable is valid within the statement block in which it is defined and
within any nested statement blocks, unless you redefine the variable within
the statement block.

In the beginning of the SPL procedure in Figure 14-17, the integer variables x,
y, and z are defined and initialized.

Figure 14-17

CREATE PROCEDURE scope()
DEFINE x,y,z INT;

LET x = 5;

LET y = 10;

LET z = x +y; --z is 15
BEGIN

DEFINE x, g INT;
DEFINE z CHAR(5);

LET x = 100;

LET g = x + y; -- g =110

LET z = 'silly'; -- z receives a character value
END
LET y = x; -- y is now 5
LET x = z; -- z is now 15, not 'silly'

END PROCEDURE;

The BEGIN and END statements mark a nested statement block in which the
integer variables x and q are defined as well as the CHAR variable z. Within
the nested block, the redefined variable x masks the original variable x. After
the END statement, which marks the end of the nested block, the original
value of x is accessible again.

14-16 Informix Guide to SQL: Tutorial

Declaring Local Variables

Declaring Built-In Type Variables

Built-in type variables hold data retrieved from built-in data types. You can
define an SPL variable with any built-in type, except SERIAL, SERIALS, CLOB,
and BLOB as Figure 14-18 shows.

Figure 14-18

DEFINE x INT;

DEFINE y INT8;

DEFINE name CHAR(15);

DEFINE today DATETIME YEAR TO DAY;

Declaring Variables for Simple Large Objects

A variable for a simple large object (a TEXT or BYTE object) does not contain
the object itself, but rather a pointer to the object. When you define the
variable, you must use the keyword REFERENCES before the data type, as
Figure 14-19 shows.

Figure 14-19

DEFINE t REFERENCES TEXT;
DEFINE b REFERENCES BYTE;

A variable for a simple large object does not contain the object itself but rather
a pointer to the object.

Declaring Collection Variables

In order to hold a collection fetched from the database, a variable must be of
type COLLECTION, SET, MULTISET, or LIST. A variable of COLLECTION type
is an untyped collection variable that can hold any type of collection fetched
from the database. For example, the variable defined in Figure 14-20 can hold
any SET, MULTISET, or LIST defined in the database.

Figure 14-20
DEFINE a COLLECTION;

If you define a variable of COLLECTION type, the variable can acquire
different type assignments if it is reused within the same statement block, as
in Figure 14-21 on page 14-18.

Creating and Using SPL Routines 14-17

Declaring Local Variables

14-18

Figure 14-21

DEFINE varA COLLECTION;
LET varA = setB;

LET varA = 1istC;

In this example, varA is an untyped collection variable that changes its data
type to the data type of the collection currently assigned to it. The first LET
statement makes varA a SET variable. The second LET statement makes varA
a LIST variable. If you add another LET statement, you can assign varA still
another data type.

A variable of SET, MULTISET, or LIST type is a typed collection variable that
holds only a collection of the type named in the DEFINE statement.
Figure 14-22 shows how to define typed collection variables:

Figure 14-22
DEFINE a SET (INT NOT NULL);

DEFINE b MULTISET (ROW (bl INT,
b2 CHAR(50),
) NOT NULL)3

DEFINE ¢ LIST (SET (DECIMAL NOT NULL) NOT NULL);

Tip: You must always define the elements of a collection variable as NOT NULL. In
this example, the variable a is defined to hold a SET of non-null integers; b will hold
a MULTISET of non-null row types; and ¢ will hold a LIST of non-null sets of non-
null decimal values.

In a variable definition, you can nest complex types in any combination or
depth to match the data types stored in your database.

If you have defined both typed and untyped collection variables in an SPL
routine, you can assign any typed collection variable (SET, MULTISET, or LIST)
to an untyped collection variable. However, you cannot assign a typed
collection variable to another typed collection variable, unless they have the
same type.

Important: You cannot define a collection variable as a global variable.

Informix Guide to SQL: Tutorial

Declaring Local Variables

Declaring Row-Type Variables

Row-type variables hold data from named or unnamed row types. You can
define a generic row variable, a named row variable, or an unnamed row variable.
Suppose you define the named row types that Figure 14-23 shows.

Figure 14-23
Some Example Row Types

CREATE ROW TYPE zip_t
(
z_code CHAR(5),
z_suffix CHARC(4)
)

CREATE ROW TYPE address_t
(

street VARCHAR(20),
city VARCHAR(20),
state CHARC(2),

zip zip_t

)

CREATE ROW TYPE employee_t
(

name VARCHAR(30),
address address_t
salary INTEGER

)

CREATE TABLE employee OF TYPE employee_t;

You can define a generic row variable that can hold any row-type value.
Figure 14-24 shows how to use the ROW keyword without the name or
definition of a row type to define a generic row variable.

Figure 14-24
DEFINE d ROW;

Creating and Using SPL Routines 14-19

Declaring Local Variables

If you define a variable with the name of a named row type, the variable can
only hold data of that row type. In Figure 14-25 the person variable can only
hold data of employee_t type. The person variable cannot hold data of zip_t
type, address_t type, or any other row type in the database.

Figure 14-25
DEFINE person employee_t;

To define a variable that holds data stored in an unnamed row type, use the
ROW keyword followed by the fields of the row type, as Figure 14-26 shows.

Figure 14-26

DEFINE manager ROW (nameVARCHAR(30),
department VARCHAR(30),
salaryINTEGER)

Because unnamed row types are type-checked for structural equivalence
only, a variable defined with an unnamed row type can hold data from any
unnamed row type that has the same number of fields and the same type
definitions. Therefore, the variable manager can hold data from any of the
row types in Figure 14-27.

Figure 14-27

ROW (name VARCHAR(30),
department VARCHAR(30),
salary INTEGER);

ROW (french VARCHAR(30),
spanish VARCHAR(30),

number INTEGER);
ROW (title VARCHAR(30),

musician VARCHAR(30),

price INTEGER)3

Important: Before you can use a row type variable, you must initialize the row
variable with a LET statement or SELECT...INTO statement.

Declaring Opaque- and Distinct-Type Variables

Opaque-type variables hold data retrieved from opaque data types. Distinct-
type variables hold data retrieved from distinct data types. If you define a
variable with an opaque data type or a distinct data type, the variable can
only hold data of that type.

14-20 Informix Guide to SQL: Tutorial

Declaring Local Variables

If you define an opaque data type named point and a distinct data type
named centerpoint, you can define SPL variables to hold data from the two
types, as Figure 14-28 shows.

Figure 14-28
DEFINE a point;
DEFINE b centerpoint;

The variable a can only hold data of type point, and b can only hold data of
type centerpoint.

Declaring Variables for Column Data with the LIKE Clause

If you use the LIKE clause, the database server defines a variable to have the
same data type as a column in a table or view.

If the column contains a collection, row type, or nested complex type, the
variable has the complex or nested complex type defined in the column.

In Figure 14-29, the variable locl defines the data type for the locations
column in the image table.

Figure 14-29
DEFINE Tocl LIKE image.locations;

Declaring PROCEDURE Type Variables

In an SPL routine, you can define a variable of type PROCEDURE and assign
the variable the name of an existing SPL routine or external routine. Defining
a variable of PROCEDURE type indicates that the variable is a call to a user-

defined routine, not a built-in routine of the same name.

For example, the statement in Figure 14-30 defines length as an SPL
procedure or SPL function, not as the built-in LENGTH function.

Figure 14-30

DEFINE Tength PROCEDURE;
LET x = length(a,b,c);

This definition disables the built-in LENGTH function within the scope of the
statement block. You would use such a definition if you had already created
an SPL or external routine with the name LENGTH.

Creating and Using SPL Routines 14-21

Declaring Local Variables

14-22

Because Universal Server supports routine overloading, you can define more
than one SPL routine or external routine with the same name. If you call any
routine from an SPL routine, Universal Server determines which routine to
use, based on the arguments specified and the routine determination rules.
For information about routine overloading and routine determination, see
the Extending INFORMIX-Universal Server: User-Defined Routines manual.

Tip: If you create an SPL routine with the same name as an aggregate function (SUM,
MAX, MIN, AVG, COUNT), or with the name extend, you must qualify the routine
name with an owner name.

Using Subscripts with Variables

You can use subscripts with variables of CHAR, VARCHAR, NCHAR,
NVARCHAR, BYTE, or TEXT type. The subscripts indicate the starting and
ending character positions that you want to use within the variable.

Subscripts must always be constants. You cannot use variables as subscripts.
Figure 14-31 illustrates how to use a subscript with a CHAR(15) variable.

Figure 14-31
DEFINE name CHAR(15);

LET name[4,7] = 'Ream';
SELECT fname[1,3] INTO name[1,3] FROM customer
WHERE Tname = 'Ream';

In this example, the customer’s last name is placed between positions 4 and
7 of name. The first three characters of the customer’s first name is retrieved
into positions 1 through 3 of name. The part of the variable that is delimited
by the two subscripts is referred to as a substring.

Variable and Keyword Ambiguity

If you define a variable as an SQL keyword, ambiguities can occur. The
following rules for identifiers help you avoid ambiguities for SPL variables,
SPL routine names, and built-in function names:

» Defined variables take the highest precedence.

= Routines defined with the PROCEDURE keyword in a DEFINE
statement take precedence over SQL functions.

= SQL functions take precedence over SPL routines that exist but are not
identified with the PROCEDURE keyword in a DEFINE statement.

Informix Guide to SQL: Tutorial

Declaring Local Variables

In general, avoid using an ANSI-reserved word for the name of the variable.
For example, you cannot define a variable with the name count or max
because they are the names of aggregate functions. For a list of the reserved
keywords that you should avoid using as variable names, see the Identifier
segment in the Informix Guide to SQL: Syntax.

Variables and Column Names

If you use the same identifier for an SPL variable that you use for a column
name, the database server assumes that each instance of the identifier is a
variable. Qualify the column name with the table name, using dot notation,
in order to use the identifier as a column name. In the following example, the
SPL variable Iname is the same as the column name.

In the SELECT statement in Figure 14-32, customer.Iname is a column name,
and Iname is a variable name.

Figure 14-32
CREATE PROCEDURE table_test()

DEFINE Tname CHAR(15);
LET Tname = 'Miller';

SELECT customer.Iname INTO lname FROM customer
WHERE customer_num = 502;

END PROCEDURE ;

Variables and SQL Functions

If you use the same identifier for an SPL variable as for an SQL function, the
database server assumes that an instance of the identifier is a variable and
disallows the use of the SQL function. You cannot use the SQL function within
the block of code in which the variable is defined. The example in

Figure 14-33 on page 14-24 shows a block within an SPL procedure in which
the variable called user is defined. This definition disallows the use of the
USER function in the BEGIN ... END block.

Creating and Using SPL Routines ~ 14-23

Declaring Global Variables

14-24

Figure 14-33

CREATE PROCEDURE user_test()
DEFINE name CHAR(10);
DEFINE name2 CHAR(10);

LET name = user; -- the SQL function
BEGIN
DEFINE user CHAR(15); -- disables user function
LET user = '"Miller';
LET name = user; -- assigns 'Miller' to variable name
END
LET name2 = user; -- SQL function again

Procedure Names and SQL Functions

For information about ambiguities between procedure names and SQL
function names, see the Informix Guide to SQL: Syntax.

Declaring Global Variables

A global variable has its value stored in memory and is available to other SPL
routines, run by the same user session, on the same database. A global
variable has the following characteristics:

= It requires a default value.

= Itcan be used in any SPL routine, although it must be defined in each
routine in which it is used.

= It carries its value from one SPL routine to another, until the session
ends.

Informix Guide to SQL: Tutorial

Assigning Values to Variables

Figure 14-34 shows two SPL functions that share a global variable:

Figure 14-34

CREATE FUNCTION funcl()
RETURNING INT;
DEFINE GLOBAL gvar INT DEFAULT 2;
LET gvar = gvar + 1;
RETURN gvar;
END FUNCTION;

CREATE FUNCTION func2()
RETURNING INT;
DEFINE GLOBAL gvar INT DEFAULT 5;
LET gvar = gvar + 1;
RETURN gvar;
END FUNCTION;

Although you must define a global variable with a default value, the variable
is only set to the default the first time you use it. If you execute the two
functions in Figure 14-35 in the order given, the value of gvar would be 4.

Figure 14-35

EXECUTE FUNCTION funcl();
EXECUTE FUNCTION func2();

But if you execute the functions in the opposite order, as Figure 14-36 shows,
the value of gvar would be 7.

Figure 14-36

EXECUTE FUNCTION func2();
EXECUTE FUNCTION funcl();

Executing SPL routines is described in more detail in “Executing Routines”
on page 14-67.

Assigning Values to Variables

Within an SPL routine, use the LET statement to assign values to the variables
you have already defined.

If you do not assign a value to a variable, either by an argument passed to the
routine or by a LET statement, the variable has an undefined value. An
undefined value is different than a null value. If you attempt to use a variable
with an undefined value within the SPL routine, you receive an error.

Creating and Using SPL Routines ~ 14-25

Assigning Values to Variables

14-26

You can assign a value to a procedure variable in any of the following ways:

s Use a LET statement.
s Use aSELECT...INTO statement.

s Use a CALL statement with a procedure that has a RETURNING
clause.

s Use an EXECUTE PROCEDURE...INTO statement.

The LET Statement

With a LET statement, you can use one or more variable names with an equal
(=) sign and a valid expression or function name. Each example in
Figure 14-37 is a valid LET statement.

Figure 14-37

LET a = 5;

LET b = 6; LET ¢ = 10;

LET a,b = 10,c+d;

LET a,b = (SELECT cola,colb FROM tabl WHERE cola=10);
LET d = funcl(x,y);

In Universal Server, you can assign a value to an opaque-type variable. You
can also return the value of an external function or another SPL function to an
SPL variable.

In Universal Server, you can assign a value to an opaque-type variable, a
row-type variable, or a field of a row type. You can also return the value of an
external function or another SPL function to an SPL variable.

Suppose you define the named row types zip_t and address_t of

Figure 14-23. Anytime you define a row-type variable, you must initialize the
variable before you can use it. Figure 14-38 shows how you might define and
initialize a row-type variable. You can use any row-type value to initialize the
variable.

Figure 14-38

DEFINE a address_t;
LET a = ROW ('A Street', 'Nowhere', 'AA',
ROWCNULL, NULL))::address_t

Informix Guide to SQL: Tutorial

Assigning Values to Variables

Once you define and initialize the row-type variable, you can write the LET
statements that Figure 14-39 shows.

Figure 14-39

LET a.zip.z_code = 32601;
LET a.zip.z_suffix = 4555;
- Assign values to the fields of address_t

Tip: Use dot notation in the form variable.field or variable.field.field to access the
fields of a row type, as described in “Handling Row Types” on page 14-65.

Suppose you define an opaque-type point that contains two values that
define a two-dimensional point, and the text representation of the values is
'(x,¥)". You might also have a function circum() that calculates the circum-
ference of a circle, given the point '(x,y)' and a radius r.

If you define an opaque-type center that defines a point as the center of a
circle, and a function circum() that calculates the circumference of a circle,
based on a point and the radius, you can write variable declarations for each.
In Figure 14-40, c is an opaque type variable and d holds the value that the
external function circum() returns.

Figure 14-40

DEFINE ¢ point;
DEFINE r REAL;
DEFINE d REAL;

LET ¢ = "(29.9,1.0)"
- Assign a value to an opaque type variable

LET d = circum(c, r);
- Assign a value returned from circum()

The detailed syntax of the LET statement is described in the Informix Guide to
SQL: Syntax.

Creating and Using SPL Routines ~ 14-27

Writing the Statement Block

14-28

Other Ways to Assign Values to Variables

You can use the SELECT statement to fetch a value from the database and
assign it directly to a variable as Figure 14-41 shows.

Figure 14-41
SELECT fname, Tname INTO a, b FROM customer
WHERE customer_num = 101
Use the CALL or EXECUTE PROCEDURE statements to assign values returned
by an SPL function or an external function to one or more SPL variables. You
might use either of the statements in Figure 14-42 to return the full name and
address from the SPL function read_address into the specified SPL variables.

Figure 14-42
EXECUTE FUNCTION read_address('Smith")
INTO p_fname, p_lname, p_add, p_city, p_state, p_zip;

CALL read_address('Smith")
RETURNING p_fname, p_Iname, p_add, p_city, p_state, p_zip;

Writing the Statement Block

Every SPL routine has at least one statement block, which is a group of SQL
and SPL statements between the CREATE statement and the END statement.
You can use any SPL statement or any allowed SQL statement within a
statement block. For a list of SQL statements that are not allowed within an
SPL statement block, see the description of the Statement Block segment in
the Informix Guide to SQL: Syntax.

Informix Guide to SQL: Tutorial

Implicit and Explicit Statement Blocks

Implicit and Explicit Statement Blocks

In an SPL routine, the implicit statement block extends from the end of the
CREATE statement to the beginning of the END statement. You can also define
an explicit statement block, which starts with a BEGIN statement and ends with
an END statement, as Figure 14-43 shows.

Figure 14-43

BEGIN
DEFINE distance INT;
LET distance = 2;
END

The explicit statement block allows you to define variables or processing that
are valid only within the statement block. For example, you can define or
redefine variables, or handle exceptions differently, for just the scope of the
explicit statement block.

The SPL function in Figure 14-44 has an explicit statement block that
redefines a variable defined in the implicit block.

Figure 14-44

CREATE FUNCTION block_demo()
RETURNING INT;

DEFINE distance INT;
LET distance = 37;
BEGIN
DEFINE distance INT;
LET distance = 2;
END
RETURN distance;

END FUNCTION;

In this example, the implicit statement block defines the variable distance
and gives it a value of 37. The explicit statement block defines a different
variable named distance and gives it a value of 2. However, the RETURN
statement returns the value stored in the first distance variable, or 37.

Creating and Using SPL Routines 14-29

Using Cursors

Using Cursors

A FOREACH loop defines a cursor, a specific identifier that points to one item
in a group.

A FOREACH loop defines a cursor, a specific identifier that points to one item
in a group, whether a group of rows or the elements in a collection.

The FOREACH loop declares and opens a cursor, fetches rows from the
database, works on each item in the group, and then closes the cursor. You
must declare a cursor if a SELECT, EXECUTE PROCEDURE, or EXECUTE
FUNCTION statement might return more than one row. Once you declare the
cursor, you place the SELECT, EXECUTE PROCEDURE, or EXECUTE FUNCTION
statement within it.

An SPL routine that returns a group of rows is called a cursor routine, because
you must use a cursor to access the data it returns. An SPL routine that returns
no value, a single value, or any other value that does not require a cursor is
called a noncursor routine. The FOREACH loop declares and opens a cursor,
fetches rows or a collection from the database, works on each item in the
group, and then closes the cursor. You must declare a cursor if a SELECT,
EXECUTE PROCEDURE, or EXECUTE FUNCTION statement might return more
than one row or a collection. Once you declare the cursor, you place the
SELECT, EXECUTE PROCEDURE, or EXECUTE FUNCTION statement within it.

In a FOREACH loop, you can use an EXECUTE FUNCTION or SELECT...INTO
statement to execute an external function that is an iterator function.

An SPL routine that returns more than one row or a collection is called a cursor
routine because you must use a cursor to access the data it returns. An SPL
routine that returns no value, a single value, a row type, or any other value
that does not require a cursor is called a noncursor routine.

14-30 Informix Guide to SQL: Tutorial

Using Cursors

The FOREACH Loop

A FOREACH loop begins with the FOREACH keyword and ends with END
FOREACH. Between FOREACH and END FOREACH, you can declare a cursor
or use EXECUTE PROCEDURE or EXECUTE FUNCTION. The two examples in
Figure 14-45 show the structure of FOREACH loops.

Figure 14-45

FOREACH cursor FOR
SELECT column FROM table INTO variable;

END FOREACH
FOREACH

EXECUTE FUNCTION name() INTO variable;
END FOREACH

The semicolon is placed after each statement within the FOREACH loop and
after END FOREACH.

Figure 14-46 creates a routine that uses a FOREACH loop to operate on the
employee table. Figure 14-23 defines the employee table.

Figure 14-46
CREATE_PROCEDURE increase_by_pct(pct INTEGER)

DEFINE s INTEGER;
FOREACH sal_cursor FOR

SELECT salary INTO s FROM employee
WHERE salary > 35000

LET s = s + s * (pct/100);

UPDATE employee SET salary = s
WHERE CURRENT OF sal_cursor;

END FOREACH

END PROCEDURE;

Creating and Using SPL Routines 14-31

Using Cursors

14-32

The routine performs the following tasks within the FOREACH loop:

= Declares a cursor

= Selects one salary value at a time from employee
= Increases the salary by a percentage

s Updates employee with the new salary

» Fetches the next salary value

The SELECT statement is placed within a cursor because it returns all of the
salaries in the table greater than 35000.

The WHERE CURRENT OF clause in the UPDATE statement updates only the
row on which the cursor is currently positioned. The clause also automati-
cally sets an update cursor on the current row. An update cursor places an
update lock on the row so that no other user can update the row until your
update occurs.

An SPL routine will set an update cursor automatically if an UPDATE or
DELETE statement within the FOREACH loop uses the WHERE CURRENT OF
clause. If you use WHERE CURRENT OF, you must explicitly name the cursor
in the FOREACH statement.

If you are using an update cursor, you can add a BEGIN WORK statement
before the FOREACH statement and a COMMIT WORK statement after END
FOREACH, as Figure 14-47 shows.

Figure 14-47
BEGIN WORK;

FOREACH sal_cursor FOR
SELECT salary INTO s FROM employee
WHERE salary > 35000;
LET s = s + s * (pct/100);
UPDATE employee SET salary = s
WHERE CURRENT OF sal_cursor
END FOREACH
COMMIT WORK;

For each iteration of the FOREACH loop, the COMMIT WORK statement
commits the work done since the BEGIN WORK statement and releases the
lock on the updated row.

Informix Guide to SQL: Tutorial

Using an IF - ELIF - ELSE Structure

Using an IF - ELIF - ELSE Structure

The SPL routine in Figure 14-48 uses an IF - ELIF - ELSE structure to compare
the two arguments that the routine accepts.

Figure 14-48

CREATE FUNCTION str_compare(strl CHAR(20), str2 CHAR(20))
RETURNING INTEGER;

DEFINE result INTEGER;

IF strl > str2 THEN
result = 1;

ELIF str2 > strl THEN
result = -1;

ELSE
result = 0;

END IF

RETURN result;

END FUNCTION;

Suppose you define a table named manager with the columns that
Figure 14-49 shows.

Figure 14-49
The manager Table

CREATE TABLE manager
(

mgr_name VARCHAR(30),

department VARCHAR(12),

dept_no SMALLINT,

direct_reports SET(VARCHAR(30) NOT NULL),

projects LISTC ROW (pro_name VARCHAR(1b5),
pro_members SET(VARCHAR(20) NOT NULL))
NOT NULL),

salary INTEGER,

Creating and Using SPL Routines 14-33

Using an IF - ELIF - ELSE Structure

14-34

The SPL routine in Figure 14-48 uses an IF - ELIF - ELSE structure to check the
number of elements in the SET in the direct_reports column and call various
external routines based on the results.

Figure 14-50

CREATE FUNCTION check_set(d SMALLINT)
RETURNING VARCHAR(30), VARCHAR(12), INTEGER;

DEFINE name VARCHAR(30);
DEFINE dept VARCHAR(12);
DEFINE num INTEGER;

SELECT mgr_name, department, cardinality(direct_reports)
FROM manager INTO name, dept, num
WHERE dept_no = d;
IF num > 20 THEN
EXECUTE FUNCTION add_mgr(dept);
ELIF num = 0 THEN
EXECUTE FUNCTION del_mgr(dept);
ELSE
RETURN name, dept, num;
END IF;

END FUNCTION;

The CARDINALITY() function counts the number of elements that a collection
contains. For a description of the CARDINALITY/() function, see “Using the
CARDINALITY() Function to Count the Elements in a Collection” on

page 12-18.

An IF - ELIF - ELSE structure in an SPL routine has up to four parts:

= AnIF... THEN condition

If the condition following the IF statement is TRUE, the routine
executes the statements in the IF block. If the condition is false, the
routine evaluates the ELIF condition.

= One or more ELIF conditions (optional)

The routine evaluates the ELIF condition only if the IF condition is
false. If the ELIF condition is true, the routine executes the statements
in the ELIF block. If the ELIF condition is false, the routine either
evaluates the next ELIF block or executes the ELSE statement.

Informix Guide to SQL: Tutorial

Adding WHILE and FOR Loops

= An ELSE condition (optional)

The routine executes the statements in the ELSE block if the IF
condition and all of the ELIF conditions are false.

= AnEND IF statement
The END IF statement ends the statement block.

Expressions in an IF Statement

The expression in an IF statement can be any valid condition, as the
Condition segment of the Informix Guide to SQL: Syntax describes. For the
complete syntax and a detailed discussion of the IF statement, see Chapter 2
of the Informix Guide to SQL: Syntax.

Adding WHILE and FOR Loops

Both the WHILE and FOR statements create execution loops in SPL routines.
A WHILE loop starts with WHILE condition, executes a block of statements as
long as the condition is true, and ends with END WHILE.

Figure 14-51 shows a valid WHILE condition. The routine executes the WHILE
loop as long as the condition specified in the WHILE statement is true.

Figure 14-51
CREATE PROCEDURE test_rows(num INT)

DEFINE i INTEGER;
LET i = 1;

WHILE 7 < num
INSERT INTO tablel (numbers) VALUES (i);
LET i =1 + 1;

END WHILE;

END PROCEDURE;

The SPL procedure in Figure 14-51 accepts an integer as an argument and
then inserts an integer value in to the numbers column of tablel each time it
executes the WHILE loop. The values inserted start at 1 and increase to

num - 1.

Creating and Using SPL Routines 14-35

Adding WHILE and FOR Loops

CREATE PROCEDURE endless_Tloop()

DEFINE i INTEGER;
LET 1 = 1;
WHILE (1 =1) -- don’t do this!
LET 1 =1 + 1;
INSERT INTO tablel VALUES (i);
END WHILE;

END PROCEDURE;

loop.
FOR i = 1 T0 10

END FOR;

FOR i =1 TO 10 STEP 2

END FOR;

FOR i IN (2,4,8,14,22,32)

END FOR;

FOR i IN (1 TO 20 STEP 5, 20 to 1 STEP

END FOR:

14-36 Informix Guide to SQL: Tutorial

Be careful that you do not create an endless loop, as Figure 14-52 shows.

Figure 14-52

A FOR loop extends from a FOR statement to an END FOR statement and
executes for a specified number of iterations, which are defined in the FOR
statement. Figure 14-53 shows several ways to define the iterations in the FOR

Figure 14-53

1,2,3,4,5)

Exiting a Loop

In the first example, the SPL procedure executes the FOR loop as long as i is

between 1 and 10, inclusive. In the second example, i steps from 1to 3, 5, 7,

and so on, but never exceeds 10. The third example checks whether i is within
a defined set of values. In the fourth example, the SPL procedure executes the
loopwheniis1, 6,11, 16, 20, 15, 10, 5, 1, 2, 3, 4, or 5—in other words, 11 times,
because the list has two duplicate values, 1 and 5.

Tip: The main difference between a WHILE loop and a FOR loop is that a FOR loop is
guaranteed to finish, but a WHILE loop is not. The FOR statement specifies the exact
number of times the loop executes, unless a statement causes the routine to exit the
loop. With WHILE, it is possible to create an endless loop.

Exiting a Loop

In a FOR, FOREACH, or WHILE loop, you can use a CONTINUE or EXIT
statement to control the execution of the loop.

CONTINUE causes the routine to skip the statements in the rest of the loop
and move to the next iteration of the FOR statement. EXIT ends the loop and
causes the routine to continue executing with the first statement following
END FOR. Remember that EXIT must be followed by the keyword of the loop
the routine is executing—for example, EXIT FOR or EXIT FOREACH.

Figure 14-54 shows examples of CONTINUE and EXIT within a FOR loop.

Figure 14-54

FOR i =1 T0 10
IF i = 5 THEN
CONTINUE FOR;

ELIF i = 8 THEN
EXIT FOR;
END IF;

END FOR;

Tip: You can use CONTINUE and EXIT to improve the performance of SPL routines
so that loops do not execute unnecessarily.

Creating and Using SPL Routines ~ 14-37

Returning Values from an SPL Function

Returning Values from an SPL Function

SPL functions can return one or more values. To have your SPL function
return values, you need to include two parts:

= First, you must write a RETURNING clause in the CREATE
PROCEDURE or CREATE FUNCTION statement that specifies the
number of values to be returned and their data types.

= Second, in the body of the function, you enter a RETURN statement
that explicitly returns the values.

Tip: You can define a routine with CREATE PROCEDURE that returns values, but in
that case, the routine is actually a function. Informix recommends that you use
CREATE FUNCTION if the routine returns values.

Once you define a return clause (with a RETURNING statement), the SPL
function can return values that match those specified in number and data
type, or no values at all. If you specify a return clause, and the SPL routine
returns no actual values, it is still considered a function. In that case, the
routine returns a null value for each value defined in the return clause.

An SPL function can return variables, expressions, or the result of another
function call. If the SPL function returns a variable, the function must first
assign the variable a value by one of the following methods:

s A LET statement

s A default value

= A SELECT statement

= Another function that passes a value into the variable

Each value an SPL function returns can be up to 32 kilobytes long.

14-38 Informix Guide to SQL: Tutorial

Returning a Single Value

Returning a Single Value
Figure 14-55 shows how an SPL function can return a single value.

Figure 14-55

CREATE FUNCTION increase_by_pct(amt DECIMAL, pct DECIMAL)
RETURNING DECIMAL;

DEFINE result DECIMAL;
LET result = amt + amt * (pct/100);
RETURN result;

END FUNCTION;

The increase_by_pct function receives two arguments of DECIMAL value, an
amount to be increased and a percentage by which to increase it. The return
clause specifies that the function will return one DECIMAL value. The
RETURN statement returns the DECIMAL value stored in result.

Returning Multiple Values

Suppose that the table person is a typed table based on the named row type
person_t, whose definition Figure 14-56 shows.

CREATE ROW TYPE person_t

(

)

emp_no
name
address
city
state
zip
bdate

Figure 14-56
The person_t Row

INTEGER NOT NULL, Type and person
VARCHAR(30), Typed Table
VARCHAR(20),

VARCHAR(20),

CHAR(2),

INTEGER,

DATE NOT NULL

CREATE TABLE person OF TYPE person_t;

Creating and Using SPL Routines 14-39

Returning Multiple Values

14-40

Figure 14-57 shows an example of an SPL function that returns more than one
value from a single row of a table.

Figure 14-57

CREATE FUNCTION b_date(num INTEGER)
RETURNING VARCHAR(30), DATE;

DEFINE n VARCHAR(30);
DEFINE b DATE;

SELECT name, bdate INTO n, b FROM person
WHERE emp_no = num;

RETURN n, b;
END FUNCTION;

The function in Figure 14-57 returns to the calling routine, two values (a
name and birthdate) from one row of the person table. In this case, the calling
routine must be prepared to handle the VARCHAR and DATE values returned.

Suppose you want an SPL function to return more than one value from more
than one row, as in Figure 14-58.

Figure 14-58

CREATE FUNCTION b_date_2(num INTEGER)
RETURNING VARCHAR(30), DATE;

DEFINE n VARCHAR(30);
DEFINE b DATE;

FOREACH cursorl FOR
SELECT name, bdate INTO n, b FROM person
WHERE emp_no > num;
RETURN n, b WITH RESUME;
END FOREACH

END FUNCTION;

In Figure 14-58, the SELECT statement fetches two values from the set of rows
whose employee number is higher than the number the user enters. The set
of rows that satisfy the condition could contain one row, many rows, or 0
rows. Because the SELECT statement can return many rows, it is placed
within a cursor.

Tip: When a statement within an SPL routine returns no rows, the corresponding
SPL variables are assigned null values.

Informix Guide to SQL: Tutorial

Handling Collections

The RETURN statement uses the WITH RESUME keywords. When RETURN
WITH RESUME is executed, control is returned to the calling routine. But the
next time the SPL function is called (by a FETCH or the next iteration of a
cursor in the calling routine), all of the variables in the SPL function keep their
same values, and execution continues at the statement immediately
following the RETURN WITH RESUME statement.

If your SPL routine returns multiple values, the calling routine must be able
to handle the multiple values through a cursor or loop, as follows:
= If the calling routine is an SPL routine, it needs a FOREACH loop.

= Ifitisan ESQL/C program, it needs a cursor declared with the
DECLARE statement.

= Ifitisanexternal routine, it needs a cursor or loop appropriate to the
language in which the routine is written.

Handling Collections

A collection is a group of elements of the same data type, such as a SET,
MULTISET, or LIST. Chapter 10 describes collection data types.

A table may contain a collection stored as the contents of a column or as a
field of a row type within a column. A collection can be either simple or
nested. A simple collection is a SET, MULTISET, or LIST of built-in, opaque, or
distinct types. A nested collection is a collection that contains other collections.

Collection Examples

The following sections of the chapter rely on several different examples to
show how you can manipulate collections in SPL programs.

Creating and Using SPL Routines 14-41

Collection Examples

The basics of handling collections in SPL programs are illustrated with the
numbers table, as Figure 14-59 shows.

Figure 14-59
The numbers Table

CREATE TABLE numbers
(

id INTEGER PRIMARY KEY,
primes SET(INTEGER NOT NULL),
evens LIST(C INTEGER NOT NULL),

twin_primes LIST(C SET(C INTEGER NOT NULL) NOT NULL)

The primes and evens columns hold simple collections. The twin_primes
column holds a nested collection, a LIST of SETs. (Twin prime numbers are
pairs of consecutive prime numbers whose difference is 2, such as 5and 7, or
11 and 13. The twin_primes column is designed to allow you to enter such
pairs.

Some examples in this chapter use the polygons table of Figure 14-60 to illus-
trate how to manipulate collections. The polygons table contains a collection
to represent two-dimensional graphical data. For example, suppose that you
define an opaque data type named point that has two double-precision
values that represent the x and y coordinates of a two-dimensional point
whose coordinates might be representedas '1.0, 3.0'.Usingthe point data
type, you can create a table that contains a set of points that define a polygon,
as Figure 14-60 shows.

Figure 14-60
The polygons Table

CREATE OPAQUE TYPE point (INTERNALLENGTH = 8);

CREATE TABLE polygons

(
id INTEGER PRIMARY KEY,
definition SET(point NOT NULL)

The definition column in the polygons table contains a simple collection, a
SET of point values.

14-42 Informix Guide to SQL: Tutorial

The First Steps

The First Steps

Before you can access and handle an individual element of a simple or nested
collection, you must follow a basic set of steps:

= Declare a collection variable to hold the collection.

= Declare an element variable to hold an individual element of the
collection.

= Select the collection from the database into the collection variable.

Once you have taken these initial steps, you can insert elements into the
collection, or select and handle elements that are already in the collection.

Each of these steps is explained in the following sections, using the numbers
table as an example.

Tip: You can handle collections in either an SPL procedure or an SPL function.

Declaring a Collection Variable

Before you can retrieve a collection from the database into an SPL routine, you
must declare a collection variable. You can declare either a typed or untyped
collection variable.

If you want to retrieve the primes column from numbers, you can use either
of the variable declarations that Figure 14-61 shows:

Figure 14-61
DEFINE p_coll COLLECTION;

DEFINE p_coll SET(C INTEGER NOT NULL);

The first DEFINE statement declares an untyped collection variable. The
second DEFINE statement declares a typed collection variable, whose type
matches the type of the collection stored in the primes column.

Creating and Using SPL Routines ~ 14-43

Declaring an Element Variable

14-44

Declaring an Element Variable

After you declare a collection variable, you declare an element variable to
hold individual elements of the collection. The data type of the element
variable must match the data type of the collection elements.

For example, to hold an element of the SET in the primes column, use an
element variable declaration such as the one that Figure 14-62 shows.

Figure 14-62
DEFINE p INTEGER;

To declare a variable that holds an element of the twin_primes column,
which holds a nested collection, use a variable declaration such as the one
that Figure 14-63 shows.

Figure 14-63
DEFINE s SET(C INTEGER NOT NULL);

The variable s holds a SET of integers. Each SET is an element of the LIST
stored in twin_primes.

Selecting a Collection into a Collection Variable

Once you declare a collection variable, you can fetch a collection into it. To
fetch a collection into a collection variable, enter a SELECT ... INTO statement
that selects the collection column from the database into the collection
variable you have named.

For example, to select the collection stored in one row of the primes column
of numbers, add a SELECT statement, such as the one that Figure 14-64
shows, to your SPL routine.

Figure 14-64

SELECT primes INTO p_coll FROM numbers
WHERE id = 220;

The WHERE clause in the SELECT statement specifies that you want to select
the collection stored in just one row of numbers. The statement places the
collection into the collection variable p_coll, which Figure 14-61 declares.

The variable p_coll now holds a collection from the primes column, which
could contain the value SET {5,7,31,19,13}.

Informix Guide to SQL: Tutorial

Inserting Elements into a Collection Variable

Inserting Elements into a Collection Variable

Once you retrieve a collection into a collection variable, you can insert a value
into the collection variable. The syntax of the INSERT statement varies
slightly, depending on the type of the collection to which you want to add
values.

Inserting into a SET or MULTISET

To insertinto a SET or MULTISET stored in a collection variable, use an INSERT
statement with the TABLE keyword followed by the collection variable, as
Figure 14-65 shows.

Figure 14-65
INSERT INTO TABLE(p_coll) VALUES(3);

The TABLE keyword makes the collection variable a collection-derived table,
that is, a collection used as a table in an SQL statement. Think of a collection-
derived table as a table of one column, with each element of the collection
being a row of the table. Before the insert, visualize p_coll as a “table,” such
as the one that Figure 14-66 shows.

Figure 14-66

5
7
31
19
13

After the insert, p_coll might look like the “table” that Figure 14-67 shows.

Figure 14-67

Because the collection is a SET, the new value is added to the collection, but
the position of the new element is undefined. The same principle is true for a
MULTISET.

Tip: You can only insert one value at a time into a simple collection.

Creating and Using SPL Routines 14-45

Inserting Elements into a Collection Variable

14-46

Inserting into a LIST

If the collection is a LIST, you can add the new element at a specific point in
the LIST or at the end of the LIST. As with a SET or MULTISET, you must first
define a collection variable and select a collection from the database into the
collection variable.

Figure 14-68 shows the statements you need to define a collection variable
and select a LIST from the numbers table into the collection variable.

Figure 14-68

DEFINE e_coll LISTCINTEGER NOT NULL);

SELECT evens INTO e_coll FROM numbers
WHERE id = 99;

At this point, the value of e_coll mightbe LIST {2,4,6,8,10}. Because
e_coll holds a LIST, each element has a numbered position in the list. To add
an element at a specific pointin a LIST, add an AT position clause to the INSERT
statement, as Figure 14-69 shows.

Figure 14-69
INSERT AT 3 INTO TABLE(e_coll) VALUES(12);

Now the LIST in e_coll has the elements {2,4,12,6,8,10}, in that order.

The value you enter for the position in the AT clause can be a number or a
variable, but it must have an INTEGER or SMALLINT data type. You cannot
use a letter, floating-point number, decimal value, or expression.

Tip: Remember that you can only insert one value at a time into a simple collection.

Informix Guide to SQL: Tutorial

Inserting Elements into a Collection Variable

Checking the Cardinality of a LIST Collection

At times you may want to add an element at the end of a LIST. In this case,
you can use the CARDINALITY() function to find the number of elementsin a
LIST and then enter a position that is greater than the value CARDINALITY()
returns.

In this release of Universal Server, you can use the CARDINALITY() function
with a collection that is stored in a column, but not with a collection that is
stored in a collection variable. In an SPL routine, you can check the cardinality
of a collection in a column with a SELECT statement and return the value to a
variable.

Suppose that in the numbers table, the evens column of the row whose id
column is 99 still contains the collection LIST {2,4,6,8,10}. This time, you
want to add the element 12 at the end of the LIST. You can do so with the SPL
procedure end_of _list, as Figure 14-70 shows.

Figure 14-70
CREATE PROCEDURE end_of_Tist()

DEFINE n SMALLINT;
DEFINE Tist_var LISTCINTEGER NOT NULL);

SELECT cardinality(evens) FROM numbers INTO n
WHERE id = 100;

LET n=n+ 1;

SELECT evens INTO list_var FROM numbers
WHERE id = 100;

INSERT AT n INTO TABLE(Tist_var) VALUES(12);

END PROCEDURE;

Inend_of list, the variable n holds the value CARDINALITY() returns, that is,
the count of the items in the LIST. The LET statement increments n, so that the
INSERT statement can insert a value at the last position of the LIST. The
SELECT statement selects the collection from one row of the table into the
collection variable list_var. The INSERT statement inserts the element 12 at
the end of the list.

Creating and Using SPL Routines ~ 14-47

Selecting Elements from a Collection

14-48

Syntax of the VALUES Clause

The syntax of the VALUES clause is different when you insert into an SPL
collection variable than when you insert into a collection column. The syntax
rules for inserting literals into collection variables are as follows:

= Use parentheses after the VALUES keyword to enclose the complete
list of values.

» Ifyou are inserting into a simple collection, you do not need to use a
type constructor or brackets.

= If you are inserting into a nested collection, you need to specify a
literal collection.

Selecting Elements from a Collection

Suppose you want your SPL routine to select elements from the collection
stored in the collection variable, one at time, so that you can handle the
elements.

To move through the elements of a collection, you first need to declare a
cursor using a FOREACH statement, just as you would declare a cursor to
move through a set of rows. Figure 14-71 shows the FOREACH and END
FOREACH statements, but with no statements between them yet.

Figure 14-71
FOREACH cursorl FOR

END FOREACH

The FOREACH statement is described in “Using Cursors” on page 14-30 and
in Chapter 2 of the Informix Guide to SQL: Syntax.

The statements that are omitted between the FOREACH and END FOREACH
statements are described in the next section, “The Collection Query.”

The examples in the following sections are based on the polygons table of
Figure 14-60 on page 14-42.

Informix Guide to SQL: Tutorial

Selecting Elements from a Collection

The Collection Query

After you declare the cursor, between the FOREACH and END FOREACH
statements, you enter a special, restricted form of the SELECT statement
known as a collection query.

A collection query is a SELECT statement that uses the FROM TABLE
keywords followed by the name of a collection variable. Figure 14-72 shows
this structure, which is known as a collection-derived table.

Figure 14-72

FOREACH cursorl FOR

SELECT * INTO pnt FROM TABLE(vertexes)

END FOREACH

The SELECT statement in Figure 14-72 uses the collection variable vertexes as
a collection-derived table. You can think of a collection-derived table as a
table of one column, with each element of the collection being a row of the
table. For example, you can visualize the SET of four points stored in vertexes
as a “table” with four rows, such as the one that Figure 14-73 shows.

Figure 14-73

(3.0,1.0)"
(8.0,1.0)"
(3.0,4.0)"
(8.0,4.0)")

After the first iteration of the FOREACH statement of Figure 14-73, the
collection query selects the first element in vertexes and stores it in pnt, so
that pnt contains the value '(3.0,1.0)".

Tip: Because the collection variable vertexes contains a SET, not a LIST, the elements
in vertexes have no defined order. In a real database, the value ' (3.0,1.0) ' might
not be the first element in the SET.

Creating and Using SPL Routines ~ 14-49

Selecting Elements from a Collection

14-50

Adding the Collection Query to the SPL Routine

Now you can add the cursor defined with FOREACH and the collection query
to the SPL routine, as Figure 14-74 shows.

Figure 14-74
CREATE PROCEDURE shapes()

DEFINE vertexes SET(point NOT NULL);
DEFINE pnt point;

SELECT definition INTO vertexes FROM polygons
WHERE id = 207;

FOREACH cursorl FOR
SELECT * INTO pnt FROM TABLE(vertexes);

END FOREACH

END PROCEDURE;

The statements that Figure 14-74 shows form the framework of an SPL
routine that handles the elements of a collection variable. Now that you have
selected one element into pnt, you can update or delete that element, as
described in “Updating a Collection Element” on page 14-55 and “Deleting a
Collection Element” on page 14-51.

For the complete syntax of the collection query, see the SELECT statement in
the Informix Guide to SQL: Syntax.

Tip: 1f you are selecting from a collection that contains no elements or zero elements,
you can use a collection query without declaring a cursor. However, if the collection
contains more than one element, and you do not use a cursor, you will receive an error
message.

Informix Guide to SQL: Tutorial

Deleting a Collection Element

Deleting a Collection Element

Once you select an individual element from a collection variable into an
element variable, you can delete the element from the collection. For
example, once you select a point from the collection variable vertexes with a
collection query, you can remove the point from the collection.

The steps involved in deleting a collection element include:

1.
2.
3.

Declare a collection variable and an element variable.
Select the collection from the database into the collection variable.

Declare a cursor so that you can select elements one at a time from
the collection variable.

Write a loop or branch that locates the element that you want to
delete.

Delete the element from the collection using a DELETE ... WHERE
CURRENT OF statement that uses the collection variable as a
collection-derived table.

Figure 14-75 on page 14-52 shows a routine that deletes one of the four points
in vertexes, so that the polygon becomes a triangle instead of a rectangle.

Creating and Using SPL Routines 14-51

Deleting a Collection Element

14-52

Figure 14-75
CREATE PROCEDURE shapes()

DEFINE vertexes SET(point NOT NULL);
DEFINE pnt point;

SELECT definition INTO vertexes FROM polygons
WHERE id = 207;

FOREACH cursorl FOR
SELECT * INTO pnt FROM TABLE(vertexes)
IF pnt = "(3,4)"' THEN
-- calls the equals function that
-- compares two values of point type
DELETE FROM TABLE(vertexes)
WHERE CURRENT OF cursorl;
EXIT FOREACH;
ELSE
CONTINUE FOREACH;
END IF;
END FOREACH

END PROCEDURE;

In Figure 14-75, the FOREACH statement declares a cursor. The SELECT
statement is a collection-derived query that selects one element at a time from
the collection variable vertexes into the element variable pnt.

The IF ... THEN ... ELSE structure tests the value currently in pnt to see if it is
the point ' (3,4) '. Note that the expression pnt = ' (3,4) ' calls the instance
of the equal() function defined on the point data type. If the current value in
pntis ' (3,4)"', the DELETE statement deletes it, and the EXIT FOREACH
statement exits the cursor.

Tip: Deleting an element from a collection stored in a collection variable does not
delete it from the collection stored in the database. After you delete the element from
a collection variable, you must update the collection stored in the database with the
new collection. For an example that shows how to update a collection column, see
“Updating the Collection in the Database” on page 14-53.

The syntax for the DELETE statement is described in the Informix Guide to
SQL: Syntax.

Informix Guide to SQL: Tutorial

Deleting a Collection Element

Updating the Collection in the Database

Once you change the contents of a collection variable in an SPL routine (by
deleting, updating, or inserting an element), you must update the database
with the new collection.

To update a collection in the database, add an UPDATE statement that sets the
collection column in the table to the contents of the updated collection
variable. For example, the UPDATE statement in Figure 14-76 shows how to
update the polygons table to set the definition column to the new collection
stored in the collection variable vertexes.

Figure 14-76

CREATE PROCEDURE shapes()

DEFINE vertexes SET(point NOT NULL);
DEFINE pnt point;

SELECT definition INTO vertexes FROM polygons
WHERE id = 207;

FOREACH cursorl FOR
SELECT * INTO pnt FROM TABLE(vertexes)
IF pnt = '"(3,4)" THEN
-- calls the equals function that
-- compares two values of point type
DELETE FROM TABLE(vertexes)
WHERE CURRENT OF cursorl;
EXIT FOREACH;
ELSE
CONTINUE FOREACH;
END IF;
END FOREACH

UPDATE polygons SET definition = vertexes
WHERE id = 207;

END PROCEDURE;

Now the shapes() routine is complete. After you run shapes(), the collection
stored in the row whose ID column is 207 is updated so that it contains three
values instead of four.

You can use the shapes() routine as a framework for writing other SPL
routines that manipulate collections.

Creating and Using SPL Routines 14-53

Deleting a Collection Element

14-54

The elements of the collection now stored in the definition column of row
207 of the polygons table are listed below:

"(3,1)"

"(8,1)"
'(8,4)"

Deleting the Entire Collection

If you want to delete all the elements of a collection, you can use a single SQL
statement. You do not need to declare a cursor.

To delete an entire collection, you must perform the following tasks:

s Define a collection variable.
= Select the collection from the database into a collection variable.

= Enter a DELETE statement that uses the collection variable as a
collection-derived table.

= Update the collection from the database

Figure 14-77 shows the statements that you might use in an SPL routine to
delete an entire collection.

Figure 14-77

DEFINE vertexes SET(INTEGER NOT NULL)

SELECT definition INTO vertexes FROM polygons
WHERE id = 207;

DELETE FROM TABLE(vertexes);

UPDATE polygons SET definition = vertexes
WHERE id = 207;

This form of the DELETE statement deletes the entire collection in the
collection variable vertexes. You cannot use a WHERE clause in a DELETE
statement that uses a collection-derived table.

After the UPDATE statement, the polygons table contains an empty collection
where the id column is equal to 207.

The syntax for the DELETE statement is described in the Informix Guide to
SQL: Syntax.

Informix Guide to SQL: Tutorial

Updating a Collection Element

Updating a Collection Element

You can update a collection element by accessing the collection within a
cursor just as you select or delete an individual element.

If you want to update the collection SET{100, 200, 300, 500} to change
the value 500 to 400, retrieve the SET from the database into a collection
variable and then declare a cursor to move through the elements in the SET,
as Figure 14-78 shows.

Figure 14-78

DEFINE s SETCINTEGER NOT NULL):
DEFINE n INTEGER;

SELECT numbers INTO s FROM orders
WHERE order_num = 10;

FOREACH cursorl FOR
SELECT * INTO n FROM TABLE(s)
IF (n == 500) THEN
UPDATE TABLE(s)(x)
SET x = 400 WHERE CURRENT OF cursorl;
EXIT FOREACH;
ELSE
CONTINUE FOREACH;
END IF;
END FOREACH

The UPDATE statement uses the collection variable s as a collection-derived
table. The value (x) that follows (s) in the UPDATE statement is a derived
column, a column name you supply because the SET clause requires it, even
though the collection-derived table does not have columns.

You can think of the collection-derived table as having one row and looking
something like this:

100 200 300 500

Creating and Using SPL Routines 14-55

Updating a Collection Element

14-56

In this example, x is a fictitious column name for the “column” that contains
the value 500. You only specify a derived column if you are updating a
collection of built-in, opaque, distinct, or collection type elements. If you are
updating a collection of row types, use a field name instead of a derived
column, as described in “Updating a Collection of Row Types” on

page 14-57.

Updating a Collection with a Variable

You can also update a collection with the value stored in a variable instead of
a literal value.

The SPL procedure in Figure 14-79 uses statements that are similar to the ones
that Figure 14-78 shows, except that this procedure updates the SET in the
direct_reports column of the manager table with a variable, rather than with
a literal value. Figure 14-49 defines the manager table.

Figure 14-79

CREATE PROCEDURE new_report(mgr VARCHAR(30),
old VARCHAR(30), new VARCHAR(30))

DEFINE s SET (VARCHAR(30) NOT NULL);
DEFINE n VARCHAR(30);

SELECT direct_reports INTO s FROM manager
WHERE mgr_name = mgr;

FOREACH cursorl FOR
SELECT * INTO n FROM TABLE(s)
IF (n == o0ld) THEN
UPDATE TABLE(s)(x)
SET x = new WHERE CURRENT OF cursorl;
EXIT FOREACH;
ELSE
CONTINUE FOREACH;
END IF;
END FOREACH

UPDATE manager SET mgr_name = s
WHERE mgr_name = mgr;

END PROCEDURE;

Informix Guide to SQL: Tutorial

Updating the Entire Collection

The UPDATE statement nested in the FOREACH loop uses the collection
derived table s and the derived column x. If the current value of n is the same
as old, the UPDATE statement changes it to the value of new. The second
UPDATE statement stores the new collection in the manager table.

Updating the Entire Collection

If you want to update all the elements of a collection to the same value, or if
the collection contains only one element, you do not need to use a cursor. The
statements in Figure 14-80 show how you can retrieve the collection into a
collection variable and then update it with one statement.

Figure 14-80

DEFINE s SET (INTEGER NOT NULL);

SELECT numbers INTO s FROM orders
WHERE order_num = 10;

UPDATE TABLE(s)(x) SET x = 0;

UPDATE orders SET numbers = s
WHERE order_num = 10;

The first UPDATE statement in this example uses a derived column named x
with the collection derived table s and gives all the elements in the collection
the value 0. The second UPDATE statement stores the new collection in the
database.

Updating a Collection of Row Types

To update a collection of row types, you can use the name of the field you
want to update in the UPDATE statement, instead of a derived column name.

The manager table of Figure 14-49 has a column named projects that
contains a LIST of row types with the definition that Figure 14-81 shows.

Figure 14-81

projects LISTC ROWC pro_name VARCHAR(15),
pro_members SET(VARCHAR(20) NOT NULL)) NOT NULL)

Creating and Using SPL Routines 14-57

Updating the Entire Collection

14-58

and the new data, as Figure 14-82 shows.

CREATE PROCEDURE update_pro(mgr VARCHAR(30),
pro VARCHAR(15))

DEFINE p COLLECTION;
DEFINE r ROW;
LET r = ROW("project", "SET{'member'}";

SELECT projects INTO p FROM manager
WHERE mgr_name = mgr;

FOREACH cursorl FOR
SELECT * INTO r FROM TABLE(p)
IF (r.pro_name == 'Zephyr') THEN
UPDATE TABLE(p) SET pro_name = pro
WHERE CURRENT OF cursorl;
EXIT FOREACH;
END IF;
END FOREACH

UPDATE manager SET projects = p
WHERE mgr_name = mgr;

END PROCEDURE;

“Updating a Collection Element” on page 14-55.

Informix Guide to SQL: Tutorial

To access the individual row types in the LIST, declare a cursor and select the
LIST into a collection variable. Once you retrieve an individual row type, you
can update the pro_name or pro_members fields by supplying a field name

Figure 14-82

Before you can use a row type variable in an SPL program, you must initialize
the row variable with a LET statement or a SELECT...INTO statement. The
UPDATE statement nested in the FOREACH loop of Figure 14-82 sets the
pro_name field of the row type to the value supplied in the variable pro.

Tip: To update a value in a SET in the pro_members field of the row type, declare
cursor and use an UPDATE statement with a derived column, as explained in

Updating the Entire Collection

Updating a Nested Collection

If you want to update a collection of collections, you must declare a cursor to
access the outer collection and then declare a nested cursor to access the inner
collection.

For example, suppose that the manager table has an additional column,
scores, which contains a LIST whose element type is a MULTISET of integers,
as Figure 14-83 shows.

Figure 14-83
scores LIST(MULTISETCINT NOT NULL) NOT NULL)

To update a value in the MULTISET, declare a cursor that moves through each
value in the LIST and a nested cursor that moves through each value in the
MULTISET, as Figure 14-84 shows.

Figure 14-84

CREATE FUNCTION check_scores (mgr VARCHAR(30))
SPECIFIC NAME nested;
RETURNING INT;

DEFINE 1 LISTC MULTISET(C INT NOT NULL) NOT NULL);
DEFINE m MULTISETC INT NOT NULL);

DEFINE n INT;

DEFINE c INT;

SELECT scores INTO 1 FROM manager
WHERE mgr_name = mgr;

FOREACH 1ist_cursor FOR
SELECT * FROM TABLE(1) INTO m;

FOREACH set_cursor FOR
SELECT * FROM TABLE(m) INTO n;
IF (n == 0) THEN
DELETE FROM TABLE(m)
WHERE CURRENT OF set_cursor;
ENDIF;
END FOREACH;
LET ¢ = cardinality(m);
RETURN ¢ WITH RESUME;
END FOREACH

END FUNCTION
WITH LISTING IN '/tmp/nested.out';

Creating and Using SPL Routines 14-59

Inserting into a Collection

The SPL function in Figure 14-84 selects each MULTISET in the scores column
into I, and then each value in the MULTISET into m. If a value in mis 0, the
function deletes it from the MULTISET. Once the values of 0 are deleted, the
function counts the remaining elements in each MULTISET and returns an
integer.

Tip: Because this function returns a value for each MULTISET in the LIST, you must
use a cursor to enclose the EXECUTE FUNCTION statement when you execute the
function.

Inserting into a Collection

You can insert a value into a collection without declaring a cursor. If the
collection is a SET or MULTISET, the value is added to the collection but the
position of the new element is undefined because the collection has no
particular order. If the value is a LIST, you can add the new element at a
specific point in the LIST or at the end of the LIST.

In the manager table, the direct_reports column contains collections of SET
type, and the projects column contains a LIST. To add a name to the SET in the
direct_reports column, use an INSERT statement with a collection-derived
table, as Figure 14-85 shows.

Figure 14-85
CREATE PROCEDURE new_emp(emp VARCHAR(30), mgr VARCHAR(30))

DEFINE r SET(VARCHAR(30) NOT NULL);

SELECT direct_reports INTO r FROM manager
WHERE mgr_name = mgr;

INSERT INTO TABLE (r) VALUES(emp);

UPDATE manager SET direct_reports = r
WHERE mgr_name = mgr;

END PROCEDURE;

This SPL procedure takes an employee name and a manager name as
arguments. The procedure then selects the collection in the direct_reports
column for the manager the user has entered, adds the employee name the
user has entered, and updates the manager table with the new collection.

14-60 Informix Guide to SQL: Tutorial

Inserting into a Collection

The INSERT statement in Figure 14-85 inserts the new employee name that
the user supplies into the SET contained in the collection variable, r. The
UPDATE statement then stores the new collection in the manager table.

Notice the syntax of the VALUES clause. The syntax rules for inserting literal
data and variables into collection variables are as follows:

= Use parentheses after the VALUES keyword to enclose the complete
list of values.

= If the collection is SET, MULTISET, or LIST, use the type constructor
followed by brackets to enclose the list of values to be inserted. In
addition, the collection value must be enclosed in quotes.
VALUES("SET{ 1,4,8,9 1")
= If the collection contains a row type, use ROW followed by paren-
theses to enclose the list of values to be inserted:
VALUES(C ROW('Waters', 'voyager_project'))
= Ifitisanested collection, nest keywords, parentheses, and brackets,
according to how the data type is defined:
VALUES(C "SET{ ROW('Waters', 'voyager_project'),
ROW('Adams', 'horizon_project') }")

For more information on inserting values into collections, see Chapter 12,
“Accessing Complex Data Types” in this manual and the Literal Collection
segment in the Informix Guide to SQL: Syntax.

Inserting into a Nested Collection

If you want to insert into a nested collection, the syntax of the VALUES clause
changes. Suppose, for example, that you want to insert a value into the
twin_primes column of the numbers table that Figure 14-59 shows.

With the twin_primes column, you might want to insert a SET into the LIST,
or an element into the inner SET. The following sections describe each of these
tasks.

Creating and Using SPL Routines 14-61

Inserting into a Collection

14-62

Inserting a Collection into the Outer Collection

Inserting a SET into the LIST is similar to inserting a single value into a simple
collection.

To insert a SET into the LIST, declare a collection variable to hold the LIST and
select the entire collection into it. When you use the collection variable as a

collection derived table, each SET in the LIST becomes a “row” in the “table.”
You can then insert another SET at the end of the LIST, or at a specified point.

For example, the twin_primes column of one row of numbers might contain
the following LIST, as Figure 14-85 shows.

Figure 14-86
LISTC SET{3,5}, SET{5,7}, SET{11,13})

If you think of the LIST as a collection-derived table, it might look similar to
the one that Figure 14-87 shows.

Figure 14-87

You might want to insert the value "SET{17,19}" as a second item in the
LIST. The statements in Figure 14-88 show how to do this.

Figure 14-88
CREATE PROCEDURE add_set()

DEFINE 1_var LISTC SET(C INTEGER NOT NULL) NOT NULL);

SELECT twin_primes INTO 1_var FROM numbers
WHERE id = 100;

INSERT AT 2 INTO TABLE (1_var) VALUESC "SET{17,19}");

UPDATE numbers SET twin_primes = 1
WHERE id = 100;

END PROCEDURE;

In the INSERT statement, the VALUES clause inserts the value SET (17,19} at
the second position of the LIST. Now the LIST looks like the one that
Figure 14-89 on page 14-63 shows.

Informix Guide to SQL: Tutorial

Inserting into a Collection

Figure 14-89

You can perform the same insert by passing a SET to an SPL routine as an
argument, as Figure 14-90 shows.

Figure 14-90

CREATE PROCEDURE add_set(set_var SET(INTEGER NOT NULL),
row_id INTEGER);

DEFINE Tist_var LISTC SETCINTEGER NOT NULL) NOT NULL)
DEFINE n SMALLINT;

SELECT cardinality(twin_primes) INTO n FROM numbers
WHERE id = row_id;

LET n=n+ 1;

SELECT twin_primes INTO Tist_var FROM numbers
WHERE id = row_id;

INSERT AT n INTO TABLEC Tist_var) VALUES(C set_var);

UPDATE numbers SET twin_primes = list_var
WHERE id = row_id;

END PROCEDURE;

In add_set(), the user supplies a SET to add to the LIST and an INTEGER value
that is the id of the row in which the SET will be inserted.

Inserting a Value into the Inner Collection

In an SPL routine, you can also insert a value into the inner collection of a
nested collection. In general, to access the inner collection of a nested
collection and add a value to it, use the following steps:

1. Declare a collection variable to hold the entire collection stored in
one row of a table.

2. Declare an element variable to hold one element of the outer
collection. The element variable is itself a collection variable.

3. Select the entire collection from one row of a table into the collection
variable.

Creating and Using SPL Routines 14-63

Inserting into a Collection

14-64

4. Declare a cursor so that you can move through the elements of the
outer collection.

5. Select one element at a time into the element variable.

6. Use abranch or loop to locate the inner collection you want to
update.

7. Insert the new value into the inner collection.
8. Close the cursor.
9. Update the database table with the new collection.

As an example, you can use this process on the twin_primes column of
numbers. For example, suppose that twin_primes contains the values that
Figure 14-91 shows, and you want to insert the value 18 into the last SET in
the LIST.

Figure 14-91
LISTC SETC (3,5}, (5,7}, (11,13}, (17,19}))

Figure 14-92 shows the beginning of a procedure that inserts the value.

Figure 14-92
CREATE PROCEDURE add_int()

DEFINE Tist_var LIST(C SET(C INTEGER NOT NULL) NOT NULL);
DEFINE set_var SET(INTEGER NOT NULL);

SELECT twin_primes INTO Tist_var FROM numbers
WHERE id = 100;

So far, the add_int procedure has performed steps 1, 2, and 3. The first
DEFINE statement declares a collection variable that holds the entire
collection stored in one row of numbers.

The second DEFINE statement declares an element variable that holds an
element of the collection. In this case, the element variable is itself a collection
variable because it holds a SET. The SELECT statement selects the entire
collection from one row into the collection variable, list_var.

Informix Guide to SQL: Tutorial

Handling Row Types

Figure 14-93 shows how to declare a cursor so that you can move through the
elements of the outer collection.

Figure 14-93

FOREACH Tist_cursor FOR
SELECT * INTO set_var FROM TABLE(Tist_var);

FOREACH element_cursor FOR

Handling Row Types

In an SPL routine, you can use hamed row types and unnamed row types as
parameter definitions, arguments, variable definitions, and return values.
For information about how to declare a row variable in SPL, see “Declaring
Row-Type Variables” on page 14-19.

Figure 14-94 defines a row type salary_t and an emp_info table, which are
the examples that this section uses.

Figure 14-94
The salary_t Row Type and emp_info Table

CREATE ROW TYPE salary_t(base MONEY(9,2), bonus MONEY(9,2))

CREATE TABLE emp_info (emp_name VARCHAR(30), salary salary_t);
. __|

The emp_info table has columns for the employee name and salary
information.

Creating and Using SPL Routines 14-65

Updating a Row-Type Column

14-66

Updating a Row-Type Column

From within an SPL routine, you can use a row variable to update a row type
or specific fields of a row type. Figure 14-95 shows an SPL procedure that

increases the base salary of an employee. The procedure retrieves data stored
in the form of a row type and updates salary column of the emp_info table.

Figure 14-95

CREATE PROCEDURE raise(name VARCHAR(30),
pct DECIMAL(3,2))

DEFINE row_var salary_t;

SELECT salary INTO row_var FROM emp_info
WHERE emp_name = name;

LET row_var.base = row_var.base * pct;

UPDATE emp_info SET salary = row_var;
END PROCEDURE;

The SELECT statement selects one row from the salary column of emp_info
table into the row variable row_var.

The procedure of Figure 14-95 uses SPL dot notation to directly access the
base and bonus fields of the variable row_var. In this case, the dot notation
means variable.field. The procedure recalculates the value of row_var.base as
(row.var * pct) and the new value is used to update the salary column of
the emp_info table.

Tip: A row type variable must be initialized as a row before its fields can be set or
referenced. You can initialize a row variable with a LET statement or SELECT...INTO
statement.

Informix Guide to SQL: Tutorial

Precedence of Dot Notation

Precedence of Dot Notation

With Universal Server a value that uses dot notation (as in proj.name) in an
SQL statement in an SPL routine has one of three meanings, in the following
order:

1. variable. field

2. column.field

3. table.column
In other words, the expression proj.name is first evaluated as variable.field.
If the routine does not find a variable proj, it evaluates the expression as

column.field. If the routine does not find a column proj, it evaluates the
expression as table.column.

Executing Routines

You can execute an SPL routine or external routine in several ways:

= Using a standalone EXECUTE PROCEDURE or EXECUTE FUNCTION
statement that you execute from DB-Access

= Calling the routine explicitly from another SPL routine or an external
routine

= Using the routine name with an expression in an SQL statement

An external routine is a routine written in C or some other external language.

Creating and Using SPL Routines ~ 14-67

The EXECUTE Statements

14-68

The EXECUTE Statements

You can use EXECUTE PROCEDURE or EXECUTE FUNCTION to execute an SPL
routine or external routine. In general, it is best to use EXECUTE PROCEDURE
with procedures and EXECUTE FUNCTION with functions.

Tip: For backward compatibility, the EXECUTE PROCEDURE statement allows you
to use an SPL function name and an INTO clause to return values. However, Informix
recommends that you use EXECUTE PROCEDURE only with procedures and
EXECUTE FUNCTION only with functions.

You can issue EXECUTE PROCEDURE and EXECUTE FUNCTION statements as
standalone statements from DB-Access or from within an SPL routine or
external routine.

How to Use the Statements

If the routine name is unique within the database, and if it does not require
arguments, you can execute it by entering just its name and parentheses after
EXECUTE PROCEDURE as Figure 14-96 shows.

Figure 14-96
EXECUTE PROCEDURE update_orders();

The INTO clause is never present when you invoke a procedure with the
EXECUTE statement because a procedure does not return a value.

If the routine expects arguments, or if the routine name is not unique in the
database, you must enter the argument values within parentheses, as
Figure 14-97 shows.

Figure 14-97

EXECUTE FUNCTION scale_rectangles(107, 1.9)
INTO new;

If the database has more than one function of the same name, Universal
Server locates the right function based on the data types of the arguments.
For example, the statement in Figure 14-97 supplies INTEGER and REAL
values as arguments, so the scale_rectangles() function that accepts those
data types is executed.

Informix Guide to SQL: Tutorial

Using the CALL Statement

Notice that the statement in Figure 14-97 executes a function. Because a
function returns a value, EXECUTE FUNCTION uses an INTO clause that
specifies a variable where the return value is stored. The INTO clause must
always be present when you use an EXECUTE statement to execute a function.

Remember that the parameter list of an SPL routine always has parameter
names, as well as data types. When you execute the routine, the parameter
names are optional. However, if you pass arguments by name (instead of just
by value) to EXECUTE PROCEDURE or EXECUTE FUNCTION, as in

Figure 14-98, Universal Server resolves the routine-by-routine name and
arguments only, a process known as partial routine resolution.

Figure 14-98

EXECUTE FUNCTION scale_rectangles(rectid = 107,
scale = 1.9) INTO new_rectangle;

You can also execute an SPL routine stored on another server by adding a
qualified routine name to the statement, that is, a hame in the form
database@dbserver:owner_name.routine_name, asin Figure 14-99.

Figure 14-99
EXECUTE PROCEDURE informix@davinci:bsmith.update_orders();

When you execute a routine remotely, the owner_name in the qualified
routine name is optional.

Using the CALL Statement

You can call an SPL routine or an external routine from an SPL routine using
the CALL statement. CALL executes both procedures and functions. If you use
CALL to execute a function, add a RETURNING clause and the name of an SPL
variable (or variables) that will receive the value (or values) the function
returns.

Suppose, for example, that you want the scale_rectangles function to call an
external function that calculates the area of the rectangle and then returns the
area, along with the rectangle description.

Creating and Using SPL Routines 14-69

Executing Routines in Expressions

14-70

Figure 14-100

CREATE FUNCTION scale_rectangles(rectid INTEGER,
scale REAL)
RETURNING rectangle_t, REAL;

DEFINE rectv rectangle_t;
DEFINE a REAL;
SELECT rect INTO rectv
FROM rectangles WHERE id = rectid;
IF (rectv IS NULL) THEN
LET rectv.start = (0.0,0.0);
LET rectv.length = 1.0;
LET rectv.width = 1.0;
LET a = 1.0;
RETURN rectv, a;
ELSE
LET rectv.length = scale * rectv.length;
LET rectv.width = scale * rectv.width;
CALL area(rectv.length, rectv.width) RETURNING a;
RETURN rectv, a;
END IF;

END FUNCTION;

The SPL function in Figure 14-100 uses a CALL statement that executes the
external function area(). The value area() returns is stored in a and returned
to the calling routine by the RETURN statement.

In this example, area() is an external function, but you can use CALL in the
same manner with an SPL function.

Executing Routines in Expressions

Just as with built-in functions, you can execute SPL routines (and external
routines from SPL routines) by using them in expressions in SQL and SPL
statements. A routine used in an expression is usually a function because it
returns a value to the rest of the statement.

For example, you might execute a function by a LET statement that assigns
the return value to a variable. The statements in Figure 14-101 on page 14-71
perform the same task. They execute an external function within an SPL
routine and assign the return value to the variable a.

Informix Guide to SQL: Tutorial

Executing Cursor Functions from an SPL Routine

Figure 14-101

LET a = area(rectv.length, rectv.width);

CALL area(rectv.length, rectv.width) RETURNING a;
-- these statements are equivalent

You can also execute an SPL routine from an SQL statement as Figure 14-102
shows. Suppose you have written an SPL function, increase_by pct, which
increases a given price by a given percentage. Once you write an SPL routine,
it is available for use in any other SPL routine.

Figure 14-102

CREATE FUNCTION raise_price (num INT)
RETURNING DECIMAL;

DEFINE p DECIMAL;

SELECT increase_by_pct(price, 20) INTO p
FROM inventory WHERE prod_num = num;

RETURN p:
END FUNCTION:

The example in Figure 14-102 selects the price column of a specified row of
inventory and uses the value as an argument to the SPL function
increase_by pct. The function then returns the new value of price, increased
by 20 percent, in the variable p.

Executing Cursor Functions from an SPL Routine

A cursor function is a user-defined function that returns one or more rows of
data and therefore requires a cursor to execute. A cursor function can be
either of the following functions:

= An SPL function with a RETURN statement that contains the WITH
RESUME keywords
= An external function that is defined as an iterator function
The behavior of a cursor function is the same whether the function is an SPL
function or an external function. However, an SPL cursor function can return

more than one value per iteration whereas an external cursor function
(iterator function) can return only one value per iteration.

Creating and Using SPL Routines 14-71

Dynamic Routine-Name Specification

14-72

To execute a cursor function from an SPL routine, you must include the
function in a FOREACH loop of an SPL routine. The following examples show
different ways to execute a cursor function in a FOREACH loop:

FOREACH SELECT cur_funcl(col_name) INTO spl_var FROM tabl
INSERT INTO tab2 VALUES (spl_var);
END FOREACH

FOREACH EXECUTE FUNCTION cur_func2() INTO spl_var
INSERT INTO tab2 VALUES (spl_var);
END FOREACH

Dynamic Routine-Name Specification

Dynamic routine-name specification allows you to execute an SPL routine from
another SPL routine by building the name of the called routine within the
calling routine. Dynamic routine-name specification simplifies the writing of
an SPL routine that calls another SPL routine whose name is not known until
runtime. In Universal Server, you can specify an SPL variable instead of the
explicit name of a SPL routine in the EXECUTE PROCEDURE or EXECUTE
FUNCTION statement.

In Figure 14-103 on page 14-73, the SPL procedure company_proc updates a
large company sales table and then assigns an SPL variable named
salesperson_proc to hold the dynamically created name of an SPL procedure
that updates another, smaller table that contains the monthly sales of an
individual salesperson.

Informix Guide to SQL: Tutorial

Dynamic Routine-Name Specification

Figure 14-103

CREATE PROCEDURE company_proc (no_of_items INT,
itm_quantity SMALLINT, sale_amount MONEY,
customer VARCHAR(50), sales_person VARCHAR(30))

DEFINE salesperson_proc VARCHAR(60);
-- Update the company table

INSERT INTO company_tbl VALUES (no_of_items, itm_quantity,
sale_amount, customer, sales_person);

-- Generate the procedure name for the variable
-- salesperson_proc

LET salesperson_proc = sales_person || "." || "tbl" |
current_month || "_" || current_year || "_proc"

-- Execute the SPL procedure that the salesperson_proc
-- variable names

EXECUTE PROCEDURE salesperson_proc (no_of_items,
itm_quantity, sale_amount, customer)

END PROCEDURE;

In Figure 14-103 the procedure company _proc accepts five arguments and
inserts them into company_tbl. Then the LET statement uses various values
and the concatenation operator | | to generate the name of another SPL
procedure to execute. In the LET statement:

= sales_person is an argument passed to the company_proc procedure
= current_month is the current month in the system date
= current_year is the current year in the system date
Therefore, if a salesperson named Bill makes a sale in July 1996,
company_proc inserts a record in company_tbl and executes the SPL

procedure bill.tbl07_1996 proc, which updates a smaller table that contains
the monthly sales of an individual salesperson.

Creating and Using SPL Routines 14-73

Privileges on Routines

14-74

Rules for Dynamic Routine-Name Specification

You must define the SPL variable that holds the name of the dynamically
executed SPL routine as CHAR, VARCHAR, NCHAR, or NVARCHAR type. You
must also give the SPL variable a valid and non-null name.

The SPL routine that the dynamic routine-name specification identifies must
exist before it can be executed. If you assign the SPL variable the name of a
valid SPL routine, the EXECUTE PROCEDURE or EXECUTE FUNCTION
statement executes the routine whose name is contained in the variable, even
if a built-in function of the same name exists.

In an EXECUTE PROCEDURE or EXECUTE FUNCTION statement, you cannot
use two SPL variables to create a variable name in the form
owner.routine_name. However, you can use an SPL variable that contains a
fully qualified routine name, for example, bill.procl. Figure 14-104 shows
both cases.

Figure 14-104
EXECUTE PROCEDURE owner_variable.proc_variable
-- this is not allowed

LET procl = bill.procl;
EXECUTE PROCEDURE procl -- this is allowed

Privileges on Routines

Privileges differentiate users who can create a routine from users who can
execute a routine. Some privileges accrue as part of other privileges. For
example, the DBA privilege includes permissions to create routines, execute
routines, and grant these privileges to other users.

Informix Guide to SQL: Tutorial

Privileges for Registering a Routine

Privileges for Registering a Routine

To register a routine in the database, a qualified user wraps the SPL
commands in a CREATE FUNCTION or CREATE PROCEDURE statement. The
database server stores a registered SPL routine internally. The following users
qualify to register a new routine in the database:

= Any user with the DBA privilege can register a routine with or
without the DBA keyword in the CREATE statement.

For an explanation of the DBA keyword, see “Executing a Routine as
DBA” on page 14-78.

= A user who does not have the DBA privilege needs the Resource
privilege to register an SPL routine. The creator is the owner of the
routine.

A user who does not have the DBA privilege cannot use the DBA
keyword to register the routine.

A DBA must give other users the Resource privilege needed to create
routines. The DBA can also revoke the Resource privilege, preventing
the revokee from creating further routines.

A DBA and the routine owner can cancel the registration with the DROP
FUNCTION or DROP PROCEDURE statement.

Privileges for Executing a Routine

The Execute privilege enables users to invoke a routine. The routine might be
invokded by the EXECUTE or CALL statements, or by using a function in an
expression.The following users have a default Execute privilege, which
enables them to invoke a routine:

= By default, any user with the DBA privilege can execute any routine
in the database.

= Iftheroutine is registered with the qualified CREATE DBA FUNCTION
or CREATE DBA PROCEDURE statements, only users with the DBA
privilege have a default Execution privilege for that routine.

Creating and Using SPL Routines 14-75

Privileges for Executing a Routine

ANSI

= If the database is not ANSI compliant, user public (any user with
Connect database privilege) automatically has the Execute privilege
to a routine that is not registered with the DBA keyword.

= Inan ANSI-compliant database, the procedure owner and any user
with the DBA privilege can execute the routine without receiving
additional privileges. ¢

Granting and Revoking the Execute Privilege
Routines have the following GRANT and REVOKE requirements:

= The DBA can grant or revoke the Execute privilege to any routine in
the database.

= The creator of a routine can grant or revoke the Execute privilege on
that particular routine. The creator forfeits the ability to grant or
revoke by including the AS grantor clause with the GRANT EXECUTE
ON statement.

= Another user can grant the Execute privilege if the owner applied the
WITH GRANT keywords in the GRANT EXECUTE ON statement.

A DBA or the routine owner must explicitly grant the Execution privilege to
non-DBA users for the following conditions:

= Arroutine in an ANSI-compliant database

= A database with the NODEFDAC environment variable set to yes

= Aroutine that was created with the DBA keyword
An owner can restrict the Execution privilege on a routine even though the
database server grants that privilege to public by default. To do this, issue the
REVOKE EXECUTION ON.... PUBLIC statement. The DBA and owner still can

Execute the routine and can grant the Execution privilege to specific users, if
applicable.

14-76 Informix Guide to SQL: Tutorial

Privileges on Objects Associated with a Routine

The following example demonstrates both limiting privileges for a function
and its negator to one group of users. Suppose you create the following pair
of negator functions:

CREATE FUNCTION greater(y PERCENT, z PERCENT)
RETURNS BOOLEAN
NEGATOR= Tess(y PERCENT, z PERCENT)

CREATE FUNCTION Tess(y PERCENT, z PERCENT)
RETURNS BOOLEAN
NEGATOR= greater(y PERCENT, z PERCENT)

By default, any user can execute both the function and negator. The following
statements allow only accounting to execute these functions:

REVOKE EXECUTE ON greater FROM PUBLIC
REVOKE EXECUTE ON less FROM PUBLIC
GRANT ROLE accounting TO mary, Jjim, ted
GRANT EXECUTE ON greater TO accounting
GRANT EXECUTE ON Tess TO accounting

A user might receive the Execute privilege accompanied by the WITH GRANT
option authority to grant the Execute privilege to other users. If a user loses
the Execute privilege on a routine, the Execute privilege is also revoked from
all users who were granted the Execute privilege by that user.

For more information, see the GRANT and REVOKE statements in the Informix
Guide to SQL: Syntax.

Privileges on Objects Associated with a Routine

The database server checks the existence of any referenced objects and
verifies that the user invoking the routine has the necessary privileges to
access the referenced objects. For example, if a user executes a routine that
updates data in a table, the user must have the Update privilege for the table
or columns referenced in the routine.

Obijects referenced by a routine include:

= Tables and columns
= User-defined data types
= Other routines executed by the routine

Creating and Using SPL Routines ~ 14-77

Executing a Routine as DBA

14-78

The owner of the routine, and not the user who runs the routine, owns the
unqualified objects created in the course of executing the routine. For
example, assume tony registers an SPL routine that creates two tables, using
the following statements:

CREATE PROCEDURE promo()

CREATE TABLE hotcatalog
(
catlog_num INTEGER
cat_advert VARCHAR(255, 65)
cat_picture BLOB
) s
CREATE TABLE Tibby.mailers
(
cust_num INTEGER
interested_in SET(catlog_num INTEGER)
)

END PROCEDURE;

User marty runs the routine, which creates the table hotcatalog. Because no
owner name qualifies table name hotcatalog, the routine owner (tony) owns
hotcatalog. By contrast, the qualified name libby.maillist identifies libby as
the owner of maillist.

Executing a Routine as DBA

If a DBA creates a routine using the DBA keyword, the database server
automatically grants the Execute privileges only to other users with the DBA
privilege. A DBA can, however, explicitly grant the Execute privilege on a
DBA routine to a user who does not have the DBA privilege.

When a user executes a routine that was registered with the DBA keyword,
that user assumes the privileges of a DBA for the duration of the routine. If a
user who does not have the DBA privilege runs a DBA routine, the database
server implicitly grants a temporary DBA privilege to the invoker. Before
exiting a DBA routine, the database server implicitly revokes the temporary
DBA privilege.

Informix Guide to SQL: Tutorial

Executing a Routine as DBA

Effect of DBA Privileges on Objects and Nested Routines

Objects created in the course of running a DBA routine are owned by the user
who executes the routine, unless a statement in the routine explicitly names
someone else as the owner. For example, suppose that tony registers the
promo() routine with the DBA keyword, as follows:

CREATE DBA PROCEDURE promo()

CREATE TABLE hotcatalog

éREATE TABLE T1ibby.mailers

END PROCEDURE;

Although tony owns the routine, if marty runs it, then marty owns table
hotcatalog. User libby owns libby.maillist because her name qualifies the
table name, making her the table owner.

A called routine does not inherit the DBA privilege. If a DBA routine executes
a routine that was created without the DBA keyword, the DBA privileges do
not effect the called routine.

The following example demonstrates what occurs when a DBA and non-DBA
routine interact. Procedure dbspace_cleanup() executes procedure
cluster_catalog().Procedure cluster_catalog() creates an index. The
SPL source for cluster_catalog() includes the following statements:

CREATE CLUSTER INDEX c_clust_ix ON catalog (catalog_num);

DBA procedure dbspace_cleanup() invokes the other routine with the
following statement:

EXECUTE PROCEDURE cluster_catalog(hotcatalog)

Assume tony registered dbspace_cleanup() as a DBA procedure and
cluster_catalog() is registered without the DBA keyword, as follows:

CREATE DBA PROCEDURE dbspace_cleanup(loc CHAR)
CREATE PROCEDURE cluster_catalog(catalog CHAR)
GRANT EXECUTION ON dbspace_cleanup(CHAR) to marty;

Creating and Using SPL Routines 14-79

Findling Errors in an SPL Routine

14-80

User marty runs dbpace_cleanup (). Because index c_clust_ix is created by
a non-DBA routine, tony, who owns both routines, also owns ¢_clust_ix. By
contrast, marty would own index ¢c_clust_ix if cluster_catalog() isa DBA
procedure, as the following registering and grant statements show:

CREATE PROCEDURE dbspace_cleanup(loc CHAR)
CREATE DBA PROCEDURE cluster_catalog(catalog CHAR)
GRANT EXECUTION ON cluster_catalog(CHAR) to marty;

Notice that dbspace_cleanup() need not be a DBA procedure to call a DBA
procedure.

Finding Errors in an SPL Routine

When you use CREATE PROCEDURE or CREATE FUNCTION to write an SPL
routine, the statement fails when you select Run from the menu, if a syntax
error occurs in the body of the routine.

If you are creating the routine in DB-Access, when you choose the Modify
option from the menu, the cursor moves to the line that contains the syntax
error. You can select Run and Modify again to check subsequent lines.

Looking at Compile-Time Warnings

If the database server detects a potential problem, but the syntax of the SPL
routine is correct, the database server generates a warning and places itin a
listing file. You can examine this file to check for potential problems before
you execute the routine.

The filename and pathname of the listing file are specified in the WITH
LISTING IN clause of the CREATE PROCEDURE or CREATE FUNCTION state-
ments. For information about how to specify the pathname of the listing file,
see “Specifying a Document Clause” on page 14-12.

Informix Guide to SQL: Tutorial

Generating the Text of the Routine

If you are working on a network, the listing file is created on the system
where the database resides. If you provide an absolute pathname and
filename for the file, the file is created at the location you specify. If you
provide a relative pathname for the listing file, the file is created in your home
directory on the computer where the database resides. If you do not have a
home directory, the file is created in the root directory.

After you create the routine, you can view the file that is specified in the WITH
LISTING IN clause to see the warnings that it contains.

Generating the Text of the Routine

Once you create an SPL routine, it is stored in the sysprocbody system catalog
table. The sysprocbody table contains the executable routine, as well as its
text.

To retrieve the text of the routine, select the data column from the
sysprocbody system catalog table. The datakey column for a text entry has
the code T.

The SELECT statement in Figure 14-105 reads the text of the SPL routine
read_address.

Figure 14-105

SELECT data FROM informix.sysprocbody
WHERE datakey = 'T' -- find text lines
AND procid =
(SELECT procid
FROM informix.sysprocedures
WHERE informix.sysprocedures.procname =
'read_address"')

Creating and Using SPL Routines 14-81

Debugging an SPL Routine

Debugging an SPL Routine

Once you successfully create and run an SPL routine, you can encounter logic
errors. If the routine has logic errors, use the TRACE statement to help find
them. You can trace the values of the following items:

= Variables
= Arguments
= Return values
= SQL error codes
= ISAM error codes
To generate a listing of traced values, first use the SQL statement SET DEBUG

FILE to name the file that is to contain the traced output. When you create the
SPL routine, include a TRACE statement.

The following methods specify the form of TRACE output:

TRACE ON traces all statements except SQL statements. The contents
of variables are printed before they are used. Routine calls
and returned values are also traced.

TRACE traces only the routine calls and returned values.
PROCEDURE

TRACE expression prints a literal or an expression. If necessary, the value of
the expression is calculated before it is sent to the file.

The following example shows how you can use the TRACE statement in an
SPL function.

Figure 14-106

CREATE FUNCTION read_many (lastname CHAR(15))
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHARC(2),
CHAR(5);

DEFINE p_Iname,p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);

DEFINE p_state CHAR(2);

DEFINE p_zip CHAR(5);

14-82 Informix Guide to SQL: Tutorial

Debugging an SPL Routine

DEFINE Tlcount, i INT;
LET Tcount = 1;

TRACE ON; -- Every expression will be traced from here on
TRACE 'Foreach starts';

-- A trace statement with a literal

FOREACH
SELECT fname, Tname, addressl, city, state, zipcode
INTO p_fname, p_lname, p_add, p_city, p_state, p_zip
FROM customer
WHERE Tname = lastname
RETURN p_fname, p_Iname, p_add, p_city, p_state, p_zip
WITH RESUME;
LET Tcount = Tcount + 1; ~-- count of returned addresses
END FOREACH

TRACE 'Loop starts'; -- Another literal
FOR i IN (1 TO 5)
BEGIN
RETURN 1 , i+1, i*i, i/i, i-1,i with resume;
END
END FOR;

END FUNCTION;

Figure 14-106 demonstrates how the TRACE statement can help you monitor
how the function executes.

With the TRACE ON statement, each time you execute the traced routine,
entries are added to the file you specified in the SET DEBUG FILE statement.
To see the debug entries, view the output file with any text editor.

The following list contains some of the output generated by the function in
Figure 14-106. Next to each traced statement is an explanation of its contents.

TRACE ON echoes TRACE ON statement.

TRACE Foreach starts traces expression, in this case, the literal string
Foreach starts.

start select cursor provides notification that a cursor is opened
to handle a FOREACH loop.

Creating and Using SPL Routines 14-83

Exception Handling

14-84

select cursor iteration provides notification of the start of each
iteration of the select cursor.

expression: (+lcount, 1) evaluatesthe encountered expression,
(Tcount+1), to 2.

let Tcount = 2 echoes each LET statement with the value.

Exception Handling

You can use the ON EXCEPTION statement to trap any exception (or error)
that the database server returns to your SPL routine, or any exception raised
by the routine. The RAISE EXCEPTION statement lets you generate an
exception within the SPL routine.

In an SPL routine, you cannot use exception handling to handle the following
conditions:

= Success (row returned)
= Success (no rows returned)

Trapping an Error and Recovering
The ON EXCEPTION statement provides a mechanism to trap any error.

To trap an error, enclose a group of statements in a statement block marked
with BEGIN and END and add an ON EXCEPTION IN statement at the
beginning of the statement block. If an error occurs in the block that follows
the ON EXCEPTION statement, you can take recovery action.

Figure 14-107 shows an ON EXCEPTION statement within a statement block.

Figure 14-107

BEGIN

DEFINE ¢ INT;

ON EXCEPTION IN
(
-206, -- table does not exist
-217 -- column does not exist
) SET err_num

Informix Guide to SQL: Tutorial

Scope of Control of an ON EXCEPTION Statement

IF err_num = -206 THEN
CREATE TABLE t (c INT);
INSERT INTO t VALUES (10);
-- continue after the insert statement
ELSE
ALTER TABLE t ADD(d INT);
LET ¢ = (SELECT d FROM t);
-- continue after the select statement.
END IF

END EXCEPTION WITH RESUME

INSERT INTO t VALUES (10); ~-- will fail if t does not exist
LET ¢ = (SELECT d FROM t); ~-- will fail if d does not exist
END

When an error occurs, the SPL interpreter searches for the innermost ON
EXCEPTION declaration that traps the error. The first action after trapping the
error is to reset the error. When execution of the error action code is complete,
and if the ON EXCEPTION declaration that was raised included the WITH
RESUME keywords, execution resumes automatically with the statement
following the statement that generated the error. If the ON EXCEPTION decla-
ration did not include the WITH RESUME keywords, execution exits the
current block entirely.

Scope of Control of an ON EXCEPTION Statement

An ON EXCEPTION statement is valid for the statement block that follows the
ON EXCEPTION statement, all the statement blocks nested within the
following statement block, and all the statement blocks that follow the ON
EXCEPTION statement. It is not valid in the statement block that contains the
ON EXCEPTION statement.

Creating and Using SPL Routines 14-85

Scope of Control of an ON EXCEPTION Statement

The pseudo code in Figure 14-108 shows where the exception is valid within
the routine. That is, if error 201 occurs in any of the indicated blocks, the
action labeled a201 occurs.

Figure 14-108

CREATE PROCEDURE scope()
DEFINE i INT;

EEGIN -- begin statement block A

ON EXCEPTION IN (201)
-- do action a201
END EXCEPTION
BEGIN -- statement block aa
-- do action, a201 valid here
END
BEGIN -- statement block bb
-- do action, a201 valid here
END
WHILE i < 10
-- do something, a201 is valid here

END WHILE

END

BEGIN -- begin statement block B
-- do something
-- a201 is NOT valid here

END

END PROCEDURE;

14-86 Informix Guide to SQL: Tutorial

User-Generated Exceptions

User-Generated Exceptions
You can generate your own error using the RAISE EXCEPTION statement, as
the example in Figure 14-109 shows.
Figure 14-109
BEGIN

ON EXCEPTION SET esql, eisam ~-- trap all errors
IF esql = -206 THEN -- table not found
recover somehow
ELSE
RAISE exception esql, eisam ; -- pass the error up
END IF

END EXCEPTION
- do something
END

In Figure 14-109, the ON EXCEPTION statement uses two variables, esql and
eisam, to hold the error numbers that the database server returns. The IF
clause executes if an error occurs and if the SQL error number is -206. If any
other SQL error is caught, it is passed out of this BEGIN...END block to the last
BEGIN...END block of the previous example.

Simulating SQL Errors

You can generate errors to simulate SQL errors, as the following example
shows. In Figure 14-110, if the user is pault, then the SPL routine acts as if that
user has no update privileges, even if the user really does have that privilege.

Figure 14-110

BEGIN
IF user = "pault' THEN
RAISE EXCEPTION -273; -- deny Paul update privilege
END IF
END

Creating and Using SPL Routines ~ 14-87

User-Generated Exceptions

14-88

Using RAISE EXCEPTION to Exit Nested Code

Figure 14-111 shows how you can use the RAISE EXCEPTION statement to
break out of a deeply nested block.

Figure 14-111

BEGIN
ON EXCEPTION IN (1)
END EXCEPTION WITH RESUME -- do nothing significant (cont)

BEGIN
FOR i IN (1 TO 1000)
FOREACH select ..INTO aa FROM t
IF aa < 0 THEN

RAISE EXCEPTION 1 ; -- emergency exit
END IF
END FOREACH
END FOR
RETURN 1;
END
--do something; -- emergency exit to

- this statement.
TRACE 'Negative value returned';
RETURN -10;
END

If the innermost condition is true (if aa is negative), then the exception is
raised, and execution jumps to the code following the END of the block. In
this case, execution jumps to the TRACE statement.

Remember that a BEGIN...END block is a single statement. If an error occurs
somewhere inside a block and the trap is outside the block, the rest of the
block is skipped when execution resumes and execution begins at the next
statement.

Unless you set a trap for this error somewhere in the block, the error
condition is passed back to the block that contains the call and back to any
blocks that contain the block. If no ON EXCEPTION statement exists that is set
to handle the error, execution of the SPL routine stops, creating an error for
the routine that is executing the SPL routine.

Informix Guide to SQL: Tutorial

Checking the Number of Rows Processed in an SPL Routine

Checking the Number of Rows Processed in an SPL
Routine

Within SPL routines, you can use the DBINFO function to find out the number
of rows that have been processed in SELECT, INSERT, UPDATE, DELETE,
EXECUTE PROCEDURE, and EXECUTE FUNCTION statements.

Figure 14-112 shows an SPL function that uses the DBINFO function with the
'sqlca.sqglerrd2' option to determine the number of rows that are deleted from
a table.

Figure 14-112

CREATE FUNCTION del_rows (pnumb INT)
RETURNING INT;

DEFINE nrows INT;

DELETE FROM sec_tab WHERE part_num = pnumb;
LET nrows = DBINFO('sqglca.sqlerrd2');

RETURN nrows;
END FUNCTION;

To ensure valid results, use this option after SELECT and EXECUTE
PROCEDURE or EXECUTE FUNCTION statements have completed executing.
In addition, if you use the 'sglca.sglerrd2' option within cursors, make sure
that all rows are fetched before the cursors are closed to ensure valid results.

Summary

SPL routines provide many opportunities for streamlining your database
process, including enhanced database performance, simplified applications,
and limited or monitored access to data. You can also use SPL routines to
handle extended data types, such as collection types, row types, opaque
types, and distinct types. For syntax diagrams of SPL statements, see the
Informix Guide to SQL: Syntax.

Creating and Using SPL Routines 14-89

Creating and Using Triggers

When to Use Triggers .

How to Create a Trigger .
Assigning a Trigger Name .
Specifying the Trigger Event .
Defining the Triggered Actions .
A Complete CREATE TRIGGER Statement .

Using Triggered Actions

Using BEFORE and AFTER Trlggered Actlons .

Using FOR EACH ROW Triggered Actions .
Using the REFERENCING Clause .
Using the WHEN Condition .

Using SPL Routines as Triggered Actlons
Passing Data to a SPL Routine .
Using SPL Procedure Language. .
Updating Nontriggering Columns with Data from

an SPL Routine. .o

Tracing Triggered Actions

Generating Error Messages .
Applying a Fixed Error Message
Generating a Variable Error Message

Summary .

15-3

15-4
15-5
15-5
15-6
15-7

15-7
15-7
15-9
15-9
15-10
15-11
15-11
15-12

15-12
15-13

15-14
15-14
15-16

15-17

15-2 Informix Guide to SQL: Tutorial

n SQL trigger is a mechanism that resides in the database. It is
available to any user who has permission to use it. It specifies that when a
particular action, an insert, a delete, or an update, occurs on a particular table,
the database server should automatically perform one or more additional
actions. The additional actions can be INSERT, DELETE, UPDATE, EXECUTE
PROCEDURE, or EXECUTE FUNCTION statements.

This chapter describes the purpose of each component of the CREATE
TRIGGER statement, illustrates some uses for triggers, and describes the
advantages of using an SPL routine as a triggered action.

When to Use Triggers

Because a trigger resides in the database and anyone who has the required
privilege can use it, a trigger lets you write a set of SQL statements that
multiple applications can use. It lets you avoid redundant code when
multiple programs need to perform the same database operation.

You can use triggers to perform the following actions as well as others that
are not found in this list:

= Create an audit trail of activity in the database. For example, you can
track updates to the orders table by updating corroborating
information to an audit table.

= Implementabusiness rule. For example, you can determine when an
order exceeds a customer’s credit limit and display a message to that
effect.

Creating and Using Triggers ~ 15-3

How to Create a Trigger

= Derive additional data that is not available within a table or within
the database. For example, when an update occurs to the quantity
column of the items table, you can calculate the corresponding
adjustment to the total_price column.

= Enforce referential integrity. When you delete a customer, for
example, you can use a trigger to delete corresponding rows (that is,
rows that have the same customer number) in the orders table.

How to Create a Trigger

You use the CREATE TRIGGER statement to create a trigger. The CREATE
TRIGGER statement is a data definition statement that associates SQL state-
ments with a precipitating action on a table. When the precipitating action
occurs, the associated SQL statements, which are stored in the database, are
triggered. Figure 15-1 illustrates the relationship of the precipitating action,
or trigger event, to the triggered action.

Figure 15-1
UPDATE Trigger Event and
Triggered Action

item_num quantity total_price
2 3 15.00 EXECUTE PROCEDURE
3 1 236.00 upd_items
4 4 100.00
5 1 280.00

15-4

Trigger event

The CREATE TRIGGER statement consists of clauses that perform the
following actions:
= Assign a trigger name.

= Specify the trigger event, that is, the table and the type of action that
initiate the trigger.

= Define the SQL actions that are triggered.

Informix Guide to SQL: Tutorial

Assigning a Trigger Name

An optional clause, called the REFERENCING clause, is discussed in “Using
FOR EACH ROW Triggered Actions” on page 15-9.

You can create a trigger using DB-Access, the SQL Editor, or one of the SQL
APIs. This section describes the CREATE TRIGGER statement as you would
enter it using the interactive Query-language option in DB-Access. In an SQL
API, you simply precede the statement with the symbol or keywords that
identify it as an embedded statement.

Assigning a Trigger Name

The trigger name identifies the trigger. It follows the words CREATE TRIGGER
in the statement. It can be up to 18 characters long, beginning with a letter
and consisting of letters, the digits 0 to 9, and the underscore. In the following
example, the portion of the CREATE TRIGGER statement that is shown assigns
the name upqty to the trigger:

CREATE TRIGGER upqty -- assign trigger name

Specifying the Trigger Event

The trigger event is the type of statement that activates the trigger. When a
statement of this type is performed on the table, the database server executes
the SQL statements that make up the triggered action. The trigger event can
be an INSERT, DELETE, or UPDATE statement. When you define an UPDATE
trigger event, you can name one or more columns in the table to activate the
trigger. If you do not name any columns, then an update of any column in the
table activates the trigger. You can create only one INSERT and one DELETE
trigger per table, but you can create multiple UPDATE triggers as long as the
triggering columns are mutually exclusive.

In the following excerpt of a CREATE TRIGGER statement, the trigger event is
defined as an update of the quantity column in the items table:

CREATE TRIGGER upqty
UPDATE OF quantity ON items-- an UPDATE trigger event

Creating and Using Triggers ~ 15-5

Defining the Triggered Actions

15-6

This portion of the statement identifies the table on which you create the
trigger. If the trigger event is an insert or delete, only the type of statement
and the table name are required, as the following example shows:

CREATE TRIGGER ins_qty
INSERT ON items -- an INSERT trigger event

Defining the Triggered Actions

The triggered actions are the SQL statements that are performed when the
trigger event occurs. The triggered actions can consist of INSERT, DELETE,
UPDATE, EXECUTE PROCEDURE, or EXECUTE FUNCTION statements. In
addition to specifying what actions are to be performed, however, you must
also specify when they are to be performed in relation to the triggering
statement. You have the following choices:

= Before the triggering statement executes

m After the triggering statement executes
= For each row that is affected by the triggering statement

A single trigger can define actions for each of these times.

You define a triggered action by specifying when it occurs and then
providing the SQL statement or statements to execute. You specify when the
action is to occur with the keywords BEFORE, AFTER, or FOR EACH ROW. The
triggered actions follow, enclosed in parentheses. The following triggered
action definition specifies that the SPL routine upd_items_p1l is to be
executed before the triggering statement:

BEFORE(EXECUTE PROCEDURE upd_items_pl)-- a BEFORE action

Informix Guide to SQL: Tutorial

A Complete CREATE TRIGGER Statement

A Complete CREATE TRIGGER Statement

If you combine the trigger-name clause, the trigger-event clause, and the
triggered-action clause, you have a complete CREATE TRIGGER statement.
The following CREATE TRIGGER statement is the result of combining the
components of the statement from the preceding examples. This trigger
executes the SPL routine upd_items_p1 whenever the quantity column of the
items table is updated.

CREATE TRIGGER upqty
UPDATE OF quantity ON items
BEFORE(CEXECUTE PROCEDURE upd_items_pl)

If a database object in the trigger definition, such as the SPL routine
upd_items_pl1 in this example, does not exist when the database server
processes the CREATE TRIGGER statement, it returns an error.

Using Triggered Actions

To use triggers effectively, you need to understand the relationship between
the triggering statement and the resulting triggered actions. You define this
relationship when you specify the time that the triggered action occurs; that
is, BEFORE, AFTER, or FOR EACH ROW.

Using BEFORE and AFTER Triggered Actions

Triggered actions that occur before or after the trigger event execute only
once. A BEFORE triggered action executes before the triggering statement, that
is, before the occurrence of the trigger event. An AFTER triggered action
executes after the action of the triggering statement is complete. BEFORE and
AFTER triggered actions execute even if the triggering statement does not
process any rows.

Creating and Using Triggers ~ 15-7

Using BEFORE and AFTER Triggered Actions

15-8

Among other uses, you can use BEFORE and AFTER triggered actions to
determine the effect of the triggering statement. For example, before you
update the quantity column in the items table, you could call the SPL routine
upd_items_pl1, as the following example shows, to calculate the total
guantity on order for all items in the table. The routine stores the total in a
global variable called old_qty.

CREATE PROCEDURE upd_items_pl()

DEFINE GLOBAL old_qgty INT DEFAULT O;

LET old_qty = (SELECT SUM(Cquantity) FROM items);
END PROCEDURE;

After the triggering update completes, you can calculate the total again to see
how much it has changed. The following SPL routine, upd_items_p2, calcu-
lates the total of quantity again and stores the result in the local variable
new_qty. Then it compares new_qty to the global variable old_qty to see if
the total quantity for all orders has increased by more than 50 percent. If so,
the routine uses the RAISE EXCEPTION statement to simulate an SQL error.

CREATE PROCEDURE upd_items_p2()
DEFINE GLOBAL old_qgty INT DEFAULT 0;
DEFINE new_qty INT;
LET new_qty = (SELECT SUM(quantity) FROM items);
IF new_qgty > old_qty * 1.50 THEN
RAISE EXCEPTION -746, 0, 'Not allowed - rule violation';
END IF
END PROCEDURE;

The following trigger calls upd_items_p1 and upd_items_p2 to prevent an
extraordinary update on the quantity column of the items table:

CREATE TRIGGER up_items

UPDATE OF quantity ON items
BEFORE(CEXECUTE PROCEDURE upd_items_pl())
AFTER(CEXECUTE PROCEDURE upd_items_p2())

s

If an update raises the total quantity on order for all items by more than 50
percent, the RAISE EXCEPTION statement in upd_items_p2 terminates the
trigger with an error. When a trigger fails in INFORMIX-Universal Server and
the database has logging, the database server rolls back the changes made by
both the triggering statement and the triggered actions. For more information
on what happens when a trigger fails, see CREATE TRIGGER in the Informix
Guide to SQL: Syntax.

Informix Guide to SQL: Tutorial

Using FOR EACH ROW Triggered Actions

Using FOR EACH ROW Triggered Actions

A FOR EACH ROW triggered action executes once for each row that the
triggering statement affects. For example, if the triggering statement has the
following syntax, a FOR EACH ROW triggered action executes once for each
row in the items table in which the manu_code column has a value of ‘KAR’:

UPDATE items SET quantity = quantity * 2 WHERE manu_code = 'KAR'

If the triggering statement does not process any rows, a FOR EACH ROW
triggered action does not execute.

Using the REFERENCING Clause

When you create a FOR EACH ROW triggered action, you must usually
indicate in the triggered action statements whether you are referring to the
value of a column before or after the effect of the triggering statement. For
example, imagine that you want to track updates to the quantity column of
the items table. To do this, you create the following table to record the
activity:

CREATE TABLE log_record
(item_num SMALLINT,

ord_num INTEGER,

username CHARACTER(8),
update_time DATETIME YEAR TO MINUTE,
old_qty SMALLINT,

new_qty SMALLINT) ;

To supply values for the old_qgty and new_qty columns in this table, you
must be able to refer to the old and new values of quantity in the items table;
that is, the values before and after the effect of the triggering statement. The
REFERENCING clause enables you to do this.

The REFERENCING clause lets you create two prefixes that you can combine
with a column name, one to reference the old value of the column and one to
reference its new value. These prefixes are called correlation names. You can
create one or both correlation names, depending on your requirements. You
indicate which one you are creating with the keywords OLD and NEW. The
following REFERENCING clause creates the correlation names pre_upd and
post_upd to refer to the old and new values in a row:

REFERENCING OLD AS pre_upd NEW AS post_upd

Creating and Using Triggers ~ 15-9

Using FOR EACH ROW Triggered Actions

15-10

The following triggered action creates a row in log_record when quantity is
updated in a row of the items table. The INSERT statement refers to the old
values of the item_num and order_num columns and to both the old and
new values of the quantity column.

FOR EACH ROW(INSERT INTO Tog_record
VALUES (pre_upd.item_num, pre_upd.order_num, USER, CURRENT,
pre_upd.quantity, post_upd.quantity));
The correlation names defined in the REFERENCING clause apply to all rows
affected by the triggering statement.

Important: If you refer to a column name in the triggering table without using a
correlation name, the database server makes no special effort to search for the column
in the definition of the triggering table. You must always use a correlation name with
a column name in SQL statements within a FOR EACH ROW triggered action, unless
the statement is valid independent of the triggered action. For more information, see
CREATE TRIGGER in the “Informix Guide to SQL: Syntax.”

Using the WHEN Condition

As an option, you can precede a triggered action with a WHEN clause to make
the action dependent on the outcome of a test. The WHEN clause consists of
the keyword WHEN followed by the condition statement given in paren-
theses. In the CREATE TRIGGER statement, the WHEN clause follows the
keywords BEFORE, AFTER, or FOR EACH ROW and precedes the triggered-
action list.

When a WHEN condition is present, if it evaluates to true, the triggered
actions execute in the order in which they appear. If the WHEN condition
evaluates to false or unknown, the actions in the triggered-action list do not
execute. If the trigger specifies FOR EACH ROW, the condition is evaluated for
each row also.

Informix Guide to SQL: Tutorial

Using SPL Routines as Triggered Actions

In the following trigger example, the triggered action executes only if the
condition in the WHEN clause is true; that is, if the post-update unit price is
greater than two times the pre-update unit price:

CREATE TRIGGER up_price
UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)
(INSERT INTO warn_tab VALUES(pre.stock_num, pre.order_num,
pre.unit_price, post.unit_price, CURRENT))

For more information on the WHEN condition, see CREATE TRIGGER in the
Informix Guide to SQL: Syntax.

Using SPL Routines as Triggered Actions

Probably the most powerful feature of triggers is the ability to call an SPL
routine as a triggered action. The EXECUTE FUNCTION statement, which calls
an SPL routine, lets you pass data from the triggering table to the SPL routine
and also to update the triggering table with data that the SPL routine returns.
SPL also lets you define variables, assign data to them, make comparisons,
and use procedural statements to accomplish complex tasks within a
triggered action.

Passing Data to a SPL Routine

You can pass data to an SPL routine in the argument list of an EXECUTE
PROCEDURE or EXECUTE FUNCTION statement. Figure 15-2 shows an
EXECUTE FUNCTION statement that passes values from the quantity and
total_price columns of the items table to the SPL routine calc_totpr:

Figure 15-2

CREATE TRIGGER upd_totpr

UPDATE OF quantity ON items

REFERENCING OLD AS pre_upd NEW AS post_upd

FOR EACH ROW(EXECUTE FUNCTION calc_totpr(pre_upd.quantity,
post_upd.quantity, pre_upd.total_price) INTO total_price)

Passing data to an SPL routine lets you use the data in the operations that the
routine performs.

Creating and Using Triggers 15-11

Using SPL Routines as Triggered Actions

15-12

Using SPL Procedure Language

Figure 15-3 shows the SPL routine calc_totpr, which is executed in the trigger
example shown in Figure 15-2. SPL is used in the calc_totpr routine to
calculate the change that needs to be made to the total_price column when
quantity is updated in the items table.

Figure 15-3

CREATE FUNCTION calc_totpr(old_qty SMALLINT, new_qty SMALLINT,
total MONEY(8)) RETURNING MONEY(8);
DEFINE u_price LIKE items.total_price;
DEFINE n_total LIKE items.total_price;
LET u_price = total / old_qty;
LET n_total = new_qgty * u_price;
RETURN n_total;
END FUNCTION;

The calc_totpr routine receives both the old and new values of quantity and
the old value of total_price and performs the following operations:

= Dividesthe old total price by the old quantity to derive the unit price.

= Multiplies the unit price by the new quantity to obtain the new total
price.

= Returns the new total price.

The EXECUTE FUNCTION statement in the trigger example of Figure 15-2
calls the calc_totpr routine. In this example, SPL allows the trigger to derive
data (from the calc_totpr routine) that is not directly available from the
triggering table.

Updating Nontriggering Columns with Data from an SPL Routine

Within a triggered action, the INTO clause of the EXECUTE FUNCTION
statement lets you update nontriggering columns in the triggering table. The
EXECUTE FUNCTION statement in the following example calls the calc_totpr
SPL routine that contains an INTO clause, which references the column
total_price:

FOR EACH ROW(CEXECUTE FUNCTION calc_totpr(pre_upd.quantity,
post_upd.quantity, pre_upd.total_price) INTO total_price);
The value that is updated into total_price is returned by the RETURN
statement at the conclusion of the SPL routine. The total_price column is
updated for each row that the triggering statement affects.

Informix Guide to SQL: Tutorial

Tracing Triggered Actions

Tracing Triggered Actions

If a triggered action does not behave as you expect, place it in an SPL routine,
and use the SPL TRACE statement to monitor its operation. Before starting the
trace, you must direct the output to a file with the SET DEBUG FILE TO
statement. The following example shows TRACE statements that have been
added to the SPL routine items_pct. The SET DEBUG FILE TO statement directs
the trace output to the file /usr/mydir/trig.trace. The TRACE ON statement
begins tracing the statements and variables within the routine.

CREATE PROCEDURE items_pct(mac CHAR(3))

DEFINE tp MONEY;

DEFINE mc_tot MONEY;

DEFINE pct DECIMAL;

SET DEBUG FILE TO '/usr/mydir/trig.trace';

TRACE 'begin trace';

TRACE ON;

LET tp = (SELECT SUM(total_price) FROM items);

LET mc_tot = (SELECT SUM(total_price) FROM items
WHERE manu_code = mac);

LET pct = mc_tot / tp;

IF pct > .10 THEN
RAISE EXCEPTION -745;

END IF

TRACE OFF;

END PROCEDURE;

CREATE TRIGGER items_ins

INSERT ON items

REFERENCING NEW AS post_ins

FOR EACH ROW(EXECUTE PROCEDURE items_pct (post_ins.manu_code));

The following example shows sample trace output from the items_pct
routine as it appears in the file /fusr/mydir/trig.trace. The output reveals the
values of routine variables, routine arguments, return values, and error
codes.

trace expression :begin trace
trace on
expression:
(select (sum total_price)
from items)
evaluates to $18280.77
let tp = $18280.77
expression:
(select (sum total_price)
from items
where (= manu_code, mac))
evaluates to $3008.00 ;
let mc_tot = $3008.00
expression:(/ mc_tot, tp)

Creating and Using Triggers 15-13

Generating Error Messages

15-14

evaluates to 0.16

let pct = 0.16

expression: (> pct, 0.1)

evaluates to 1

expression: (- 745)

evaluates to -745

raise exception :-745, 0,

exception : looking for handler

SQL error = -745 ISAM error = 0 error string = ="'
exception : no appropriate handler

For more information on using the TRACE statement to diagnose logic errors
in SPL routine, see Chapter 14, “Creating and Using SPL Routines.”

Generating Error Messages

When a trigger fails because of an SQL statement, the database server returns
the SQL error number that applies to the specific cause of the failure.

When the triggered action is an SPL routine, you can generate error messages
for other error conditions by using one of two reserved error numbers. The
first one is error number -745, which has a generalized and fixed error
message. The second one is error number -746, which allows you to supply
the message text, up to a maximum of 71 characters.

Applying a Fixed Error Message

You can apply error number -745 to any trigger failure that is not an SQL error.
The following fixed message is for this error:

-745 Trigger execution has failed.

Informix Guide to SQL: Tutorial

Applying a Fixed Error Message

You can apply this message with the RAISE EXCEPTION statement in SPL. The
following example generates error -745 if new_qty is greater than
old_qty multiplied by 1.50:

CREATE PROCEDURE upd_items_p2()
DEFINE GLOBAL old_qgty INT DEFAULT O0;
DEFINE new_qty INT;
LET new_qgty = (SELECT SUM(quantity) FROM items);
IF new_qgty > old gty * 1.50 THEN
RAISE EXCEPTION -745;
END IF
END PROCEDURE

If you are using DB-Access, the text of the message for error -745 displays on
the bottom of the screen, as Figure 15-4 shows.

c . : Figure 15-4
Press CTRL-W for_He

;;.Lrl Error Message -745
SQL: New Run |Modify | Use-editor Output Choose Save Info Drop Exit ith Fi cfh?
Modify the curren statements using the SQL editor. wi Ixe essage

*********************** stores/@myserver --------- Press CTRL-W for Help ----

INSERT INTO items VALUESC 2, 1001, 2, "HRO ', 1, 126.00);

745: Trigger execution has failed. |

If you trigger the erring routine through an SQL statement in your SQL API,
the database server sets the SQL error status variable to -745 and returns it to
your program. To display the text of the message, follow the routine that your
Informix application development tool provides for retrieving the text of an
SQL error message.

Creating and Using Triggers 15-15

Generating a Variable Error Message

Generating a Variable Error Message

Error number -746 allows you to provide the text of the error message. Like
the preceding example, the following one also generates an error if new_qty
is greater than old_gty multiplied by 1.50. However, in this case the error
number is -746, and the message text Too many items for Mfr. issupplied
as the third argument in the RAISE EXCEPTION statement. For more infor-
mation on the syntax and use of this statement, see the RAISE EXCEPTION
statement in Chapter 14, “Creating and Using SPL Routines.”

CREATE PROCEDURE upd_items_p2()
DEFINE GLOBAL old_qgty INT DEFAULT 0O;
DEFINE new_qty INT;
LET new_qty = (SELECT SUM(quantity) FROM items);
IF new_qgty > old gty * 1.50 THEN
RAISE EXCEPTION -746, 0, 'Too many items for Mfr.';
END IF
END PROCEDURE;

If you use DB-Access to submit the triggering statement, and if new_qty is
greater than old_qty, you will get the result that Figure 15-5 shows.

Figure 15-5
Press CTRL-W for Help Error Number -746
SQL: New Run Use-editor Output Choose Save Info Drop Exit with User-Specified
Modify the curre v; tatements using the SQL editor. Aﬂessage Text

ffffffffffffffffffffff store/@myserver --------- Press CTRL-W for Help -----

INSERT INTO items VALUES(2, 1001, 2, "HRO', 1, 126.00);

746: Too many items for Mfr.

15-16 Informix Guide to SQL: Tutorial

Summary

If you invoke the trigger through an SQL statement in an SQL API, the
database server sets sqlcode to -746 and returns the message text in the
sqlerrm field of the SQL Communications Area (SQLCA). See the manual for
your SQL API for in-depth information about using the SQLCA.

Summary

To introduce triggers, this chapter covers the following topics:

The purpose of each component of the CREATE TRIGGER statement

How to create BEFORE and AFTER triggered actions and how to use
them to determine the impact of the triggering statement

How to create a FOR EACH ROW triggered action and how to use the
REFERENCING clause to refer to the values of columns both before
and after the action of the triggering statement

The advantages of using SPL routines as triggered actions
How to trace triggered actions if they are behaving unexpectedly

How to generate two types of error messages within a triggered
action

Creating and Using Triggers ~ 15-17

Index

A

Access
restricting to columns or
rows 11-23
restricting to view 11-32
restricting with SPL routine 11-19
Access mode 7-17
Active set
cursor 5-23 to 5-26
Aggregate function
and GROUP BY clause 3-5
in ESQL 5-14
in subquery 3-32
restrictions in modifiable
view 11-29
Alias
SELECT...FROM with 2-74
table name replacement 2-74
to assign column names in
temporary table 3-13
typed table with 12-6
use before define 2-74
ALTER FRAGMENT statement
example 9-49
INIT clause 9-50, 9-53
ALTER TABLE statement
ADD ROWIDS clause 9-53
DROP ROWIDS clause 9-53
ANSI 1-16
ANSI compliance
Informix SQL solution 1-16
level Intro-13
ANSI-compliant database
FOR UPDATE not required
in 6-16
logging restrictions 9-40

SQLWARN flag 5-12

table privileges 11-8
Application

design of order-entry 4-27

handling errors 5-17
Archiving

description of 1-9, 4-31
Arithmetic operator

SELECT with 2-45
Attribute

identifying 8-17

important qualities of 8-17

nondecomposable 8-17

B

Bachman, C. R. 8-19
BEGIN WORK statement
specifies start of a
transaction 4-30
BLOB data type 9-26
displaying values 2-10
restrictions
with GROUP BY 3-6
SQL restrictions 9-26
blobspace 9-32
BOOLEAN data type 9-19
Building your data
model 8-3 to 8-36
Built-in data type 9-5to 9-33
BYTE data type 9-31
displaying values 2-10
LENGTH function 2-60
restrictions
with GROUP BY 3-6

SQL interactively with 9-32
SQL restrictions 9-32

C

Candidate key 8-26
Cardinality 8-11
in relationship 8-15
CARDINALITY function 12-18
Cartesian product 2-66
refining 2-67
Cascading deletes 4-23
restrictions 4-24
Cast 13-3to 13-23
CAST AS keywords 13-4
collection data
type 13-13 to 13-16
collection elements 13-16
distinct data type 13-5, 13-17
explicit 13-4
invoking 13-4
implicit 13-4
invoking 13-6
named row type 13-5, 13-12
operator for explicit cast 13-4
row type 13-7 to 13-13
single-level vs. multilevel 13-22
system-defined 13-4
types of 13-4
unnamed row type fields 13-12
user-defined 13-20 to 13-22
creating 13-5
CHAR data type 9-20
Character data type 9-20 to 9-24
execution time 9-23
subscripting 2-43
substring notation 2-26
varying length 9-22
CHARACTER VARYING data
type 9-22
Check constraint 4-20, 9-34
Class libraries, shared 1-10
CLOB data type 9-25
displaying values 2-10
restrictions
with GROUP BY 3-6
SQL restrictions 9-26
CLOSE DATABASE statement

2 INFORMIX

effect on database locks 7-8
COBOL 5-6
Codd, E. F. 1-10, 8-35
Collation order
ascending and descending 2-13
non-English data 2-24
Collection data type 10-14 to 10-20
accessing 12-14
casting 13-13 to 13-16
examples 13-15
requirements 13-16
counting elements in 12-18
creating a domain for 9-35
element
searching for with IN 12-16
element type 10-14
nesting 10-19
simple 12-14
type checking 13-14
type constructor 10-14
Collection variable
nested 12-14
selecting 12-16
Column
check constraint 4-20, 9-34
constraint properties 8-24
constraints 4-20
data type 4-20
default value 4-20, 9-34
defining 8-23
multiple attributes in 10-10,
10-13
label on 3-43
number 2-22
order listed from SELECT 2-12
privileges 11-10
properties 4-20, 9-3
relational and object-relational
model 1-12
Command script file
creating database 9-42
Comment icons Intro-10
COMMIT WORK statement
closing cursors 7-23
releasing locks 7-10, 7-23
setting SQLCODE 6-5
Committed Read
isolation level (Informix) 7-14

Complex data type 9-4,
10-4 to 10-39
using 10-5
Complex relationship 8-30
Compliance, with industry
standards Intro-13
Composite key 8-26
Compound query 3-39
Concurrency
access modes 7-17
ANSI Read Committed
isolation 7-14
ANSI Read Uncommitted
isolation 7-13
ANSI Repeatable Read
isolation 7-16
ANSI Serializable isolation 7-16
database lock 7-8
deadlock 7-19
description of 4-32, 7-3
effect on performance 7-3
Informix Cursor Stability
isolation 7-14
Informix Dirty Read
isolation 7-13
Informix Read Committed
isolation 7-14
Informix Repeatable Read
isolation 7-16
isolation level 7-11
lock duration 7-10
lock scope 7-7
lock types 7-7
SERIAL and SERIALS
values 9-10
Condition
BETWEEN operator 2-31
boolean 2-35
comparison 2-27 to 2-44
ESCAPE character
substitution 2-43
range of values 2-43
special characters 2-43
compound 2-35
LIKE comparator
wildcards 2-36
MATCHES comparator
wildcards 2-36
NOT operator 2-31

subscript delimiters 2-43
Connectivity in relationship 8-10,
8-13, 8-20
Constant
inserting rows of 6-12
Constraint
cardinality 8-11
column-level 8-24
disabled 4-26
enabled 4-26
enforcing 11-31
Constraints
enforcing 11-23
Coordinated deletes 6-6
COUNT function
and GROUP BY 3-6
count rows to delete 4-5
DISTINCT keyword with 2-52
use in a subquery 4-6
CREATE DATABASE
statement 9-38
in command script 9-42
sets shared lock 7-8
SQLWARN flags 5-12
CREATE DOMAIN statement
using 9-35
CREATE FUNCTION statement
cast registration examples 13-21
WITH LISTING IN clause 14-80
CREATE PROCEDURE statement
WITH LISTING IN clause 14-80
CREATE TABLE statement
description of 9-40
in command script 9-42
WITH ROWIDS clause 9-53
CREATE VIEW statement
WITH CHECK OPTION
keywords 11-31
Cursor
active set 5-23 to 5-26
closing 7-23
declaring 5-20
example
parts explosion 5-26
fetching values 5-21
opening 5-20
scroll 5-22

Cursor routine 14-30
Cursor Stability isolation level
(Informix) 7-14

D

Data
accessing in fragmented
tables 9-52
Data definition language
statements 5-33
Data integrity 4-19, 4-27 to 4-30
Data model
attribute 8-17
building 8-3 to 8-36
defining relationships 8-9
description of 1-3, 8-3
entity relationship 8-5
many-to-many relationship 8-13
one-to-many relationship 8-13
one-to-one relationship 8-13
telephone-directory example 8-7
Data type
automatic conversions 5-15
changing with ALTER
TABLE 9-33
character 9-20 to 9-24
choosing 9-5to 9-8
referential constraint
considerations 9-6
chronological 9-15 to 9-19
conversion 4-9
date and time 9-15
duration interval 9-17
execution time 9-23
fixed-point 9-13
floating-point 9-12
for code 9-9
for counter 9-9
numeric 9-9 to 9-15
varying length 9-22 to 9-24
Database
ANSI-compliant 1-17
archiving 1-9
concurrent use 1-8
GLS 1-17
management of 1-8
mission-critical 1-9

naming unique to database
server 9-38
object-relational, description
of 1-10
populating new tables 9-43
script for creating 9-42
server 1-8
Database administrator (DBA) 11-7
Database lock 7-8
Database object
constraints as a 4-25
index as a 4-25
object modes 4-25
trigger as a 4-25
violation detection 4-25
Database server
archiving 4-31
DATABASE statement
exclusive mode 7-8
locking 7-8
SQLWARN after 5-12
DataBlade modules 1-10
DATE data type 9-15
international date formats 1-17
ORDER BY sequence 2-13
DATE function 2-58
DATETIME data type 9-16
DATE function with 2-58
EXTEND function with 2-58
format 9-18
format for 2-58
international formats 9-19
ORDER BY sequence with 2-13
DB-Access
creating database with 5-33, 9-42
Modify option 14-80
syntax error 14-80
UNLOAD statement 9-44
dbaccessdemo? script Intro-7
DBDATE environment
variable 4-9, 9-16
DBMONEY environment
variable 9-15
dbschema utility 9-42
DBSERVERNAME function
example 3-19
dbspace
ALTER FRAGMENT to add 9-50
CREATE DATABASE with 9-39

Index 3

DBTIME environment
variable 9-19
Deadlock detection 7-19
DECIMAL data type
fixed-point 9-13
floating-point 9-12
DECLARE statement
CURSOR FOR keyword 5-20
FOR INSERT clause 6-9
FOR UPDATE 6-15
SCROLL keyword 5-23
WITH HOLD clause 7-24
Default locale Intro-6
Default value 9-34
Delete privilege 11-8
DELETE statement
all rows of table 4-4
coordinated deletes 6-6
count of rows 6-4
description of 4-4
embedded 5-6, 6-3 to 6-8
number of rows 5-10
preparing 5-30
privilege for 11-5, 11-8
transactions with 6-5
using subquery 4-6
view with 11-29
WHERE clause restricted 4-7
with cursor 6-7
Demonstration database Intro-7
DESCRIBE statement
describing statement type 5-32
Descriptor column 8-25
Dirty Read isolation level
(Informix) 7-13
Disabled object mode
defined 4-25
Display label
derived SELECT data 2-48
in ORDER BY clause 2-50
Distinct data type
cast for 13-5
casting 13-17
DISTINCT keyword
relation to GROUP BY 3-4
restrictions in modifiable
view 11-29
Distributed deadlock 7-20
Documentation conventions

4 INFORMIX

icon Intro-10
sample-code Intro-11
typographical Intro-9
Documentation notes Intro-13
Documentation, types of
documentation notes Intro-13
error message files Intro-12
machine notes Intro-13
on-line manuals Intro-11
printed manuals Intro-12
release notes Intro-13
Domain
definition of 9-35
Dominant table 3-20
Dot notation 12-9
DROP CAST statement
changing cast for distinct data
type 13-19
Duplicate values
finding 3-15
Dynamic routine-name
specification
of SPL functions 14-72
of SPL procedures 14-72
rules for 14-74
Dynamic SQL
description of 5-5, 5-28
freeing prepared statements 5-32

E

Element 10-14
Element type 10-14
Embedded SQL
defined 5-4
languages available 5-4
Enabled object mode
defined 4-25
End of data
signal in SQLCODE 5-9, 5-17
when opening cursor 5-20
Entity
attributes associated with 8-17
business rules 8-5
criteria for choosing 8-8
defined 8-5
important qualities of 8-6

in telephone-directory
example 8-9
naming 8-5
occurrence of 8-18
Entity integrity 4-19
Entity-relationship diagram
connectivity 8-20
discussed 8-19
meaning of symbols 8-19
reading 8-20
Environment variable
CLIENT_LOCALE 2-24
DB_LOCALE 2-24
en_us.8859-1 locale Intro-6
Equi-join 2-68
Error checking
simulating errors 14-87
SPL routine 14-84 to 14-88
Error message files Intro-12
Error message variable 5-13
Error messages
retrieving trigger text in a
program 15-15, 15-17
trigger failure 15-14
Errors
after DELETE 6-4
codes for 5-10
dealing with 5-17
detected on opening cursor 5-20
during updates 4-27
inserting with a cursor 6-11
ISAM error code 5-10
ESQL
DELETE statement in 6-3
delimiting host variables 5-6
dynamic embedding 5-5, 5-28
error handling 5-17
host variable 5-6, 5-8
indicator variable 5-16
INSERT in 6-9
overview 5-3 to 5-36, 6-3 to 6-18
preprocessor 5-4
selecting single rows 5-14
SQL Communications Area 5-8
SQLCODE 5-9
SQLERRD fields 5-10
static embedding 5-5
UPDATE in 6-15
EXECUTE IMMEDIATE statement

description of 5-33
Execute privilege

DBA keyword, effect of 14-78

objects referenced by a

routine 14-78

EXECUTE statement

description of 5-31
Execution time

varying length data types

influences 9-23

Existence dependency 8-10
EXISTS keyword

in a WHERE clause 3-30
Expression

cast allowed in 13-3

display label for 2-48
EXTEND function 2-58
Extended data types 9-4
Extensibility

description of 1-10

F

Feature icons Intro-10
Features, product Intro-7
FETCH statement 5-21
ABSOLUTE keyword 5-23
INTO clause location 5-22
Field 10-5
Field projection 12-9
File
compared to database 1-3
Filtering object mode
defined 4-25
First normal form 8-32
Fixed-point data types 9-13
FLOAT data type 9-11
Floating-point data types 9-12
FLUSH statement
count of rows inserted 6-11
writing rows to buffer 6-10
Foreign key 4-21, 8-27
Fragmentation 9-45 to 9-55
accessing table data 9-52
initializing 9-50
modifying 9-49
rowid column 9-53
FREE statement

freeing prepared statements 5-32

Function
SELECT with 2-50
Functional dependency 8-33

restrictions in prepared
statement 5-29
with EXECUTE 5-31

G

Global Language Support
(GLS) Intro-6
collation (sort) order 2-24
database, description of 1-17
DATETIME format 9-19
default locale 2-24
MATCHES with 2-41

SELECT...ORDER BY with 2-24

global variable
defined 14-24
GL_DATETIME environment
variable 9-19
GRANT FRAGMENT
statement 9-54
GRANT statement
database-level privileges 11-5
in embedded SQL 5-34 to 5-36
table-level privileges 11-7
GROUP BY keywords
column number with 3-7
description of 3-4
restrictions in modifiable
view 11-29

H

HAVING keyword
description of 3-9

Hold cursor 7-23

Host variable
delimiter for 5-6
description of 5-6
dynamic allocation of 5-32
fetching data into 5-21
in DELETE statement 6-4
in INSERT 6-9
in UPDATE 6-15
in WHERE clause 5-15
INTO keyword sets 5-14
null indicator 5-16

Icons
comment Intro-10
feature Intro-10
IN relational operator 3-30
Index
disabled mode 4-26
enabled mode 4-26
filtering mode 4-26
fragmentation with 9-45
table locks 7-8
Indicator variable
definition of 5-16
Industry standards, compliance
with Intro-13
INFORMIX-4GL
detecting null value 5-17
indicator variable not used 5-17
program variable 5-6
STATUS variable 5-9
terminates on errors 5-36, 6-14
using SQLCODE with 5-9
WHENEVER ERROR
statement 5-35
INFORMIXDIR/bin
directory Intro-7
INFORMIX-SQL
creating database with 5-33, 9-42
UNLOAD statement 9-43
INFORMIX-Universal Server
characteristics of 1-9
Inheritance 10-20 to 10-38
single 10-20
type hierarchy 10-20
type substitutability 10-25
Insert cursor 6-9
constants with 6-12
definition of 6-9
Insert privilege 11-8
INSERT statement 4-7
constant data with 6-12
count of rows inserted 6-11
duplicate values in 4-8

Index 5

embedded 6-9 to 6-14
multiple rows 4-10
null values in 4-8
number of rows 5-10
privilege for 11-5, 11-8
SELECT statement with 4-10
VALUES clause 4-7
view with 11-30
Instance 1-13
example 10-8
INT8 data type 9-9
INTEGER data type 9-9
Interrupted modifications 4-27
INTERVAL data type 9-17
format 9-18
INTO keyword
restrictions in prepared
statement 5-29
retrieving single rows 5-14
INTO TEMP keywords
description of 2-76
ISAM error code 5-10
ISO 8859-1 code set Intro-6, 2-24
Isolation level
ANS| Read Committed 7-14
ANSI Read Uncommitted 7-13
ANSI Repeatable Read 7-16
ANSI Serializable 7-16
description of 7-11
Informix Committed Read 7-14
Informix Cursor Stability 7-14
Informix Dirty Read 7-13
Informix Repeatable Read 7-16
setting 7-11

multiple-table 2-71

multiple-table join 2-71

natural 2-69

nested outer 3-25

nested simple 3-23

outer 3-20

restrictions in modifiable
view 11-29

self-join 3-11

simple 3-21

storing results 3-13

K

Key
composite 8-26
foreign 8-27
primary 8-25
Key column 8-25
Key lock 7-10

J

Join 2-8

associative property of 2-70

creating 2-67

creating with
SELECT..WHERE 2-67

dominant and subservient
table 3-20

equality (equi-join) 2-68

equi-join 2-68

foreign keys in 8-27

illustrated 2-8

6 INFORMIX

L

Label 2-48, 3-43
Large object 9-24 to 9-32
LENGTH function 2-60
LET statement 14-26
LIST 10-18
local variable

defined 14-15
Locale Intro-6, 1-17
Lock

database 7-8

exclusive 7-7, 7-10

granularity 7-7

key 7-9

page 7-9

promotable 7-7, 7-10

row 7-9

scope of 7-7

shared lock 7-7

table

explicit 7-9
implicit 7-8

Lock mode

setting 7-9

LOCK TABLE statement 7-9

Locking

and concurrency 4-32
and integrity 7-3
deadlock 7-19
DELETE statement with 6-4
description of 7-6
lock duration 7-10
lock mode 7-18
not wait 7-18
wait 7-18
locks released at end of
transaction 7-23
modifying data with 7-10
setting lock mode 7-18
types of locks
database lock 7-8
Logging
buffered 9-40
types of 9-39
unbuffered 9-39
Logical log 4-31
Loop
exiting with RAISE
exception 14-88
LVARCHAR data type 9-22

M

Machine notes Intro-13
Major features Intro-7
Mandatory entity in
relationship 8-10
Many-to-many relationship 8-10,
8-13, 8-29
MONEY data type 9-13
display format 9-15
INSERT statement with 4-9
international money
formats 1-17, 9-15
MONTH function 2-55
MULTISET 10-17

N

Named row type 10-5 to 10-12
casting 13-5
column of 10-10
creating a typed table with 10-8
dropping 10-12

example 10-5
naming conventions 10-7
restrictions on 10-7
when to use 10-6
Natural join 2-69
NCHAR data type 9-21
collation order 2-24
querying on 2-10
Nested
collection 10-19
NODFDAC
effect on privileges granted to
public 14-76
Nondecomposable attributes 8-17
Normal form 8-31
Normalization
benefits 8-31
first normal form 8-32
of data model 8-31
rules 8-31
rules, summary 8-35
second normal form 8-33
third normal form 8-34
NOT NULL keywords
use in CREATE TABLE 9-40
NOT relational operator 2-31
NULL relational operator 2-34
Null value 9-33
detecting in ESQL 5-16
inserting 4-8
restrictions in primary key 8-25
testing for 2-34
Numeric data types 9-9 to 9-15
NVARCHAR data type
collation order 2-24
querying on 2-10

0

Object-relational database,
description of 1-10

Object-relational model
description of 1-10

ON EXCEPTION statement
scope of control 14-85
trapping errors 14-84
user-generated errors 14-87

One-to-many relationship 8-10,
8-13
One-to-one relationship 8-10, 8-13
On-line manuals Intro-11
onload utility 4-31
onunload utility 4-31, 9-44
Opaque data type 9-4
cast for 13-5
OPEN statement
activating a cursor 5-20
opening select or update
cursors 5-20

Optional entity in relationship 8-10

OR logical operator 2-32
ORDER BY keywords
relation to GROUP BY 3-7
restrictions with FOR
UPDATE 6-8
Ownership 11-7

P

Page lock

effect on index 7-10
Performance

buffered log 9-40

depends on concurrency 7-3
Populating tables 9-43
Precedence

dot notation 12-9
PREPARE statement

description of 5-30

error return in SQLERRD 5-10

multiple SQL statements 5-30
Primary key

definition of 8-25

restrictions with 8-25
Primary key constraint 4-21
Printed manuals Intro-12
Privilege 11-5to 11-18

column-specific 11-10

database-level 4-16

DBA 11-7

encoded in system catalog 11-9

Execute 11-14

fragment 9-54

granting 11-5 to 11-15

Insert 11-8

overview 1-8
public 4-17
Resource 11-6
Select 11-8, 11-10
table-level 4-17,11-8 to 11-12
column-specific 11-10
in ANSI-compliant
database 11-8
making column-specific 11-10
systabauth information 4-18
Update 11-8
view 11-32
Projection 1-14, 2-6
Promotable lock 7-10
PUBLIC keyword
privilege granted to all users 11-6
PUT statement
constant data with 6-12
count of rows inserted 6-11
sends returned data to buffer 6-10

Q

Query
alias with 2-74
examples 2-6 to 2-79
stated in terms of data model 1-6
variable text 2-36

R

RAISE EXCEPTION
statement 14-84
Rational operator
list of 2-28
Read Committed isolation level
(ANSI) 7-14
Read Uncommitted isolation level
(ANSI) 7-13
Recursive relationship 8-12, 8-30
Redundant relationship 8-31
Referential constraint
data type considerations 9-6
Referential integrity 4-19, 4-21
defining primary and foreign
keys 8-27
Relational model
attribute 8-17

Index 7

description of 8-3 to 8-36
entity 8-5
join 2-8

many-to-many relationship 8-13

normalizing data 8-31
one-to-many relationship 8-13
one-to-one relationship 8-13
projection 2-6
resolving relationships 8-29
rules for defining tables, rows,
and columns 8-23
selection 2-6
Relational operation 2-5
Relational operator
BETWEEN 2-31
equals 2-29
EXISTS 3-30
IN 3-30
NOT 2-31
NULL 2-34
OR 2-32
WHERE clause with 2-28
Relationship
attribute 8-17
cardinality 8-11, 8-15
complex 8-30
connectivity 8-10, 8-13
defining in data model 8-9
entity 8-6
existence dependency 8-10
mandatory 8-10
many-to-many 8-10, 8-13
many-to-many, resolving 8-29
one-to-many 8-10, 8-13
one-to-one 8-10, 8-13
optional 8-10
recursive 8-30
redundant 8-31
using matrix to discover 8-11

granting privileges with
GRANT 11-17
naming restrictions 11-16
sysroleauth system catalog
table 11-18
sysusers system catalog
table 11-18
using 11-16
ROLLBACK WORK statement
closes cursors 7-23
releases locks 7-10, 7-23
sets SQLCODE 6-5
Routine
security purposes 11-3
Routine overloading 10-24
Routine resolution 10-26
Row
checking rows processed in SPL
routines 14-89
defining 8-23
deleting 4-4
cascading to child rows 4-23
in relational model 8-23
inserting 4-7
inserting multiple 4-10
instance of entity 1-13
object-relational model 1-13
sorting with SELECT...ORDER
BY 2-12
Row type
accessing 12-4
casting 13-7 to 13-13
casting individual field 13-13
dot notation with 12-9
field projection 12-9
nested 10-12, 12-10
selecting columns of 12-7
Rowid
fragmented tables and 9-52

defaults, overriding with
extent 9-29
Scroll cursor
active set 5-25
Second normal form 8-33
Security
database-level privileges 11-4
making database
inaccessible 11-4
restricting access to rows 11-25
table-level privileges 11-10
with routines 11-3
Select cursor
opening 5-20
use of 5-20
Select list 2-17
explicit 2-12
implicit 2-13
labels in 3-43
substring notation 2-26
Select privilege
column level 11-10
definition of 11-8
SELECT statement 2-10 to 2-79
active set 2-28
alias names 2-74
alias with 2-74
column list
display label 2-48
compound query 3-39
correlated subquery 3-29
cursor for 5-20
deriving data from
expressions 2-45
description of
advanced 3-4 to 3-49
display label 2-48
DISTINCT keyword 2-52
embedded 5-14

Release notes Intro-13
Repeatable Read isolation
level 7-16
Resource privilege 11-6
REVOKE FRAGMENT
statement 9-55 S
REVOKE statement
in embedded SQL 5-34 to 5-36
Role
enabling with SET ROLE 11-18

join using 3-15
locating internal row
numbers 3-17

end of data indicator 6-14
functions in 2-50 to 2-63
GROUP BY clause 3-4
HAVING clause 3-9
INSERT with 4-10
INTO TEMP clause 2-76
join 2-67 to 2-73
multiple-table 2-66
ORDER BY clause 2-12
display label with 2-50

Sample-code conventions Intro-11
sbspace 9-26

8 INFORMIX

sorting rows 2-12
outer join 3-20 to 3-28
privilege for 11-5, 11-8
rowid 3-15, 3-20
search criteria 2-28
singleton 2-28
SPL routines in 2-64
SQLCODE, SQLSTATE with 6-14
subquery 3-29 to 3-38
subquery (inner SELECT) 3-29
UNION operator 3-39
view with 11-29
WHERE clause 2-27 to 2-44
* (asterisk) with 2-11
Selection 1-13, 2-6
Self-referencing query 3-11
Semantic integrity 4-19, 4-20, 9-3
Sequential cursor 5-22
active set 5-24
SERIAL data type 9-10
generated number in
SQLERRD 5-10
initializing value 9-10
starting value 4-9
SERIALS data type 9-10
initializing value 9-10
Serializable isolation level
(ANSI) 7-16
SET 10-16
Set difference 3-47
Set intersection 3-46
SET ISOLATION statement
controlling the effect of locks 4-32
discussed 7-11
similarities to SET
TRANSACTION
statement 7-12
SET LOCK MODE statement
controlling the effect of locks 4-32
description of 7-18
SET LOG statement
buffered vs. unbuffered 9-40
SET TRANSACTION statement
access mode 7-17
similarities to SET ISOLATION
statement 7-12
Shared class libraries 1-10
Simple large object 9-24,
9-30 to 9-32

blobspace storage for 9-32
SQL interactively with 9-32
SQL restrictions 9-32
Single inheritance 10-20
Singleton SELECT statement 2-28
SITENAME function
example 3-19
SMALLFLOAT data type 9-11
SMALLINT data type 9-9
Smart large object 9-24, 9-25 to 9-30
column defaults inherited 9-29
extent size 9-29
functions for copying 9-27
importing and exporting 9-27
sbspace storage for 9-26
SQL interactive uses 9-27
SQL restrictions 9-26
Software dependencies Intro-6
Sorting
column by number in
SELECT 2-23
nested 2-14
non-English data 2-24
with ORDER BY 2-13
Sorting rows 2-12
SPL
program variable 5-6
SPL function
dynamic routine-name
specification 14-72
SPL procedure
dynamic routine-name
specification 14-72
SPL routine
as triggered action 15-11
automating access control 11-19
compiler warning 14-80
cursor routine 14-30
debugging 14-82
exceptions 14-84 to 14-88
finding in system catalog 14-81
FOREACH loop 14-30
listing compiler messages 14-80
SELECT statement with 2-64
syntax error 14-80
tracing triggered actions 15-13
SQL
error handling 5-17
history 1-15

Informix 1-16
Structured Query Language 1-15
SQL Communications Area
(SQLCA)
altered by end of transaction 6-5
description of 5-8
inserting rows 6-11
SQL statements
ANSI-compliant with Informix
extensions 1-16
SQLCODE field
after opening cursor 5-20
description of 5-9
end of data on SELECT 6-14
end of data signalled 5-17
set by DELETE 6-4
set by DESCRIBE 5-32
set by PUT, FLUSH 6-11
SQLERRD array
count of deleted rows 6-4
count of inserted rows 6-11
count of row 6-14
description of 5-10
syntax of naming 5-8
SQLERRM character array 5-13
SQLSTATE variable
in databases that are not ANSI
compliant 5-17
use with a cursor 5-21
SQLWARN array 5-12
syntax of naming 5-8
with PREPARE 5-30
Static SQL 5-5
STATUS variable (4GL) 5-9
Stored procedure
name confusion with SQL
functions 14-24
Stored routine
granting privileges on 11-14
stores7 database Intro-7
Subquery
collection column and 12-14
correlated 3-29
cascading deletes error 4-24
correlated vs. uncorrelated 3-29,
4-14
in DELETE statement 4-6
in SELECT 3-29 to 3-38
UPDATE with 4-13

Index 9

Subscripting
SPL variables 14-22
Subservient table 3-20
Substitutability 10-25
Substring 14-22
Subtable 10-20
Subtype 10-20
Supertable 10-20
Supertype 10-20
systabauth 4-18
systables 4-18
System catalog
privilegesin 11-9
syscolauth 11-9
sysprocbody 14-81
systabauth 11-9
sysusers 11-9

T

Table

creating with CREATE
TABLE 9-40

dependencies 4-21
descriptor column 8-25
fragmenting 9-45
in object-relational model 1-11
in relational model 8-23
join 4-21
key column 8-25
object-relational model 1-11
operations on 1-13
ownership 11-7
primary key 8-25
privileges 11-8 to 11-12
represents an entity 8-25
untyped 10-8

Temporary table
assigning column names 3-13
creating with SELECT 2-76
cursor active set with 5-24
example 4-12

TEXT data type 9-30
displaying values 2-10
restrictions

with GROUP BY 3-6

SQL interactively with 9-32
SQL restrictions 9-32

10 INFORMIX

with LENGTH function 2-60
Third normal form 8-34
Time function
SELECT with 2-54
TODAY function
constant expression with 4-9
TRACE statement
debugging an SPL routine 14-82
output 15-13
Transaction
boundaries 4-30
cursors in 7-23
data integrity protection 4-28
example 6-5
locks with 7-10, 7-23
MODE ANSI with 4-30
SQLWARN flag 5-12
Transaction logging 4-29
buffered 9-40
contents of log 4-31
establishing with CREATE
DATABASE 9-38
turning off for faster loading 9-44
unbuffered 9-39
Transitive dependency 8-34
Trigger
actions
BEFORE and AFTER 15-7
statements allowed 15-3
tracing 15-13
WHEN 15-10
creating 15-4
definition of 15-3
disabled mode 4-26
enabled mode 4-26
event 15-5
name 15-5
SPL routines with 15-11
using 15-7 to 15-12
when to use 15-3
Triggered action 15-6
error message 15-14
FOR EACH ROW 15-9
Type constructor 10-14
Type hierarchy 10-20
Type substitutability 10-25
Typed table 10-8
alias, creating 12-6
modifying rows of 12-10

U

UNION operator
description of 3-39
display labels with 3-43
UNIQUE keyword
constraint in CREATE
TABLE 9-40
restrictions in modifiable
view 11-29
UNLOAD statement
exporting data to a file 9-43
Unnamed row type 10-13 to 10-14
restrictions on 10-14
Untyped table
converting to a typed table 10-9
Update cursor 6-15, 7-10
definition of 6-15
Update privilege
column level 11-10
definition of 11-8
UPDATE statement 4-13 to 4-16
description of 4-13
embedded 6-15 to 6-17
number of rows 5-10
preparing 5-30
privilege for 11-5, 11-8
SET clause 4-13, 4-15
subquery restrictions 4-15
view with 11-29
USER function 2-60
examples 3-18
User-defined cast
casting between data types 13-16
User-defined data type
cast for 13-5
Utility program
dbload 9-44
dbschema 9-42
onload 4-31
onunload 4-31
onunload utility 9-44

V

VARCHAR data type 9-22
displaying values 2-10
LENGTH function 2-60

Variable
with same name as a
keyword 14-22
Varying length data type
execution time 9-23
View 11-23 to 11-32
changes to base table 11-26
constraints with 11-31
creating 11-24
derived data 11-24
dropped when basis is
dropped 11-26
duplicate rows 11-25, 11-30
external table and 11-27
inserting rows in 11-30
modifying data through 11-29
restrictions on 11-26
typed 11-27
using CHECK OPTION 11-31

w

WEEKDAY function 2-56
WHERE clause
host variables in 5-15
WHERE CURRENT OF keywords
use
in DELETE 6-7
in UPDATE 6-15
WHERE keyword
in DELETE 4-4 to 4-7
subqueries in 3-30
WITH CHECK OPTION keywords,
of CREATE VIEW
statement 11-31
WITH HOLD keywords
declaring a hold cursor 7-24

X

X/0Open compliance
level Intro-13

Symbols

*, asterisk
wildcard character in
SELECT 2-11
i1, cast operator 13-4
=, equal sign, relational operator
including rows with 2-29
joining tables with 2-68
?, question mark
placeholder in PREPARE 5-29
[...], square brackets
range delimiters in condition 2-43

Index

11

12 INFORMIX

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	Major Features
	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature Icons

	Sample-Code Conventions
	On-Line Manuals
	Printed Manuals
	Error Message Files
	Documentation Notes, Release Notes, Machine Notes

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Informix Databases
	The Data Illustration of a Data Model
	Storing Data
	Querying Data
	Modifying Data
	Concurrent Use and Security
	Centralized Management
	INFORMIX-Universal Server Databases

	Important Database Terms
	The Object-Relational Model
	Tables
	Columns
	Rows
	Tables, Rows, and Columns
	Operations on Tables

	Structured Query �Language
	Standard SQL
	Informix SQL and ANSI SQL
	ANSI-Compliant Databases
	GLS Databases

	Summary

	Composing Simple SELECT Statements
	Introducing the SELECT Statement
	Some Basic Concepts
	Privileges
	Relational Operations
	Selection and Projection
	Joining

	The Forms of SELECT
	Special Data Types

	Single-Table SELECT Statements
	Selecting All Columns and Rows
	Using the Asterisk Symbol (*)
	Reordering the Columns
	Sorting the Rows

	Selecting Specific Columns
	ORDER BY and Non-English Data
	Selecting Substrings

	Using the WHERE Clause
	Creating a Comparison Condition
	Using Variable-Text Searches
	Using Exact Text Comparisons
	Using a Single-Character Wildcard
	MATCHES and Non-English Data
	Comparing for Special Characters

	Expressions and Derived Values
	Arithmetic Expressions
	Sorting on Derived Columns

	Using �Functions in SELECT �Statements
	Aggregate �Functions
	Time Functions
	Other Functions and Keywords

	Using SPL Routines in SELECT Statements

	Multiple-Table SELECT Statements
	Creating a �Cartesian �Product
	Creating a Join
	Equi-Join
	Natural Join
	Multiple-Table Join

	Some Query Shortcuts
	Using Aliases
	The INTO TEMP Clause

	Summary

	Composing Advanced SELECT Statements
	Using the GROUP BY and HAVING Clauses
	Using the GROUP BY Clause
	Using the HAVING Clause

	Creating Advanced Joins
	Self-Joins
	Outer Joins
	Simple Join
	Simple Outer Join on Two Tables
	Outer Join for a Simple Join to a Third Table
	Outer Join for an Outer Join to a Third Table
	Outer Join of Two Tables to a Third Table

	Subqueries in SELECT Statements
	Using ALL
	Using ANY
	Single-Valued Subqueries
	Correlated Subqueries
	Using EXISTS

	Set �Operations
	Union
	Intersection
	Difference

	Summary

	Modifying Data
	Statements That Modify Data
	Deleting Rows
	Deleting All Rows of a Table

	Deleting a Known Number of Rows
	Deleting an Unknown Number of Rows
	Complicated Delete Conditions

	Inserting Rows
	Single Rows
	Multiple Rows and Expressions
	Restrictions on the Insert-Selection

	Updating Rows
	Selecting Rows to Update
	Updating with Uniform Values
	Impossible Updates
	Updating with Selected Values

	Database Privileges
	Displaying Table Privileges

	Data Integrity
	Entity Integrity
	Semantic Integrity
	Referential Integrity
	Using the ON DELETE CASCADE Option

	Object Modes and Violation Detection
	SQL Statements and Examples

	Interrupted Modifications
	The Transaction
	Transaction Logging
	Logging and Cascading Deletes

	Specifying Transactions

	Backups and Logs
	Backing Up with INFORMIX-Universal Server

	Concurrency and Locks
	Data Replication
	INFORMIX-Universal Server Data Replication

	Summary

	 Programming with SQL
	SQL in �Programs
	SQL in SQL APIs
	Static �Embedding
	Dynamic �Statements
	Program Variables and Host Variables

	Calling the Database Server
	The SQL Communications Area
	The SQLCODE Field �
	End of Data
	Negative Codes

	The SQLERRD Array
	The SQLWARN Array
	The SQLERRM Character Array
	The SQLSTATE Value

	Retrieving Single Rows
	Data Type �Conversion
	Working with Null Data
	Dealing with Errors
	End of Data
	End of Data with Databases That Are Not ANSI Compl...
	Serious Errors
	Interpreting End of Data with Aggregate Functions
	Using Default Values

	Retrieving Multiple Rows
	Declaring a Cursor
	Opening a �Cursor
	Fetching Rows
	Detecting End of Data
	Locating the INTO Clause

	Cursor Input Modes
	The Active Set of a Cursor
	Creating the Active Set
	The Active Set for a Sequential Cursor
	The Active Set for a Scroll Cursor
	The Active Set and Concurrency

	Using a Cursor: A Parts �Explosion

	Dynamic SQL
	Preparing a Statement
	Executing Prepared SQL
	Dynamic Host Variables
	Freeing Prepared Statements
	Quick Execution

	Embedding Data �Definition Statements
	Embedding Grant and Revoke Privileges

	Summary

	Modifying Data �Through SQL �Programs
	Using �DELETE
	Direct Deletions
	Errors During Direct �Deletions
	Using Transaction Logging
	Coordinated �Deletions

	Deleting with a Cursor

	Using �INSERT
	Using an Insert Cursor
	Declaring an Insert Cursor
	Inserting with a �Cursor
	Status Codes After PUT and FLUSH

	Rows of Constants
	An Insert Example

	Using �UPDATE
	Using an Update Cursor
	The Purpose of the Keyword UPDATE
	Updating Specific Columns
	UPDATE Keyword Not Always Needed

	Cleaning Up a Table

	Summary

	Programming for a Multiuser Environment
	Concurrency and Performance
	Locking and I�ntegrity
	Locking and �Performance
	Concurrency Issues
	How Locks Work
	Kinds of Locks
	Lock Scope
	Database Locks
	Table Locks
	Page, Row, and Key Locks

	The Duration of a Lock
	Locks While �Modifying

	Setting the I�solation Level
	Comparing SET TRANSACTION with SET ISOLATION
	ANSI Read �Uncommitted and Informix Dirty Read Iso...
	ANSI Read Committed and Informix Committed Read Is...
	Informix Cursor Stability �Isolation
	ANSI Serializable, ANSI Repeatable Read, and Infor...

	Controlling Data Modification with Access Modes
	Setting the Lock Mode
	Waiting for Locks
	Not Waiting for Locks
	Waiting a Limited Time
	Handling a Deadlock
	Handling External Deadlock

	Simple Concurrency
	Locking with Other Database Servers
	Isolation While Reading
	Locking Updated Rows

	Hold Cursors
	Summary

	Building Your Data Model
	Why Build a Data Model
	Entity-Relationship Data-Model Overview

	Identifying and Defining Your Principal Data Objec...
	Discovering Entities
	Choosing Possible Entities
	Pruning Your List of Entities
	The Telephone-Directory �Example
	Diagramming Your Entities

	D�efining the Relationships
	Connectivity
	Existence Dependency
	Cardinality
	Discovering the Relationships
	Diagramming Your Relationships

	Identifying Attributes
	Selecting Attributes for Your Entities
	Listing Your Attributes
	About Entity Occurrences

	Diagramming Your Data Objects
	Reading Entity-Relationship Diagrams
	The Telephone-Directory Example

	Translating E-R Data Objects into Relational Const...
	Rules for Defining Tables, Rows, and Columns
	Placing Constraints on Columns

	Determining Keys for Tables
	Primary Keys
	Foreign Keys (Join Columns)
	Adding Keys to the Telephone-Directory Diagram

	Resolving Your Relationships
	Resolving m:n Relationships
	Resolving Other Special Relationships

	Normalizing Your Data Model
	First Normal Form
	Second Normal Form
	Third Normal Form
	Summary of Normalization Rules

	Summary

	Implementing Your Data Model
	Defining Column-Specific Properties
	Extended Data Types
	Built-In Data Types
	Choosing a Data Type
	Numeric Data Types
	Chronological Data Types
	Boolean Data Type
	Character Data Types
	Large Object Data Types
	Changing the Data Type

	Null Values
	Default Values
	Check Constraints
	Domains
	Creating a Domain
	Dropping a Domain

	Creating the Database
	Using CREATE DATABASE
	Using CREATE DATABASE with INFORMIX-Universal Serv...

	Using CREATE TABLE
	Using Command Scripts
	Capturing the Schema
	Executing the File
	An Example

	Populating the Tables

	Fragmenting Tables and Indexes
	Creating a Fragmented Table
	Fragmenting a New Table
	Creating a Fragmented Table from Nonfragmented Tab...
	Creating a Table from More Than One Nonfragmented ...
	Creating a Fragmented Table from a Single Nonfragm...

	Modifying a Fragmented Table
	Modifying Fragmentation Strategies
	Using the MODIFY Clause to Change a Fragmentation ...
	Adding a New Fragment
	Using the INIT Clause to Reinitialize a Fragmentat...

	Dropping a Fragment

	Accessing Data Stored in Fragmented Tables
	Using Primary Keys Instead of Rowids
	Rowid in a Fragmented Table
	Creating a Rowid Column
	Granting and Revoking

	Summary

	Understanding Complex Data Types
	What Are Complex Data Types?
	Named Row Types
	When to Use a Named Row Type
	Choosing a Name for a Named Row Type
	Restrictions on Named Row Types
	Using a Named Row Type to Create a Typed Table
	Converting an Untyped Table into a Typed Table
	Using a Named Row Type to Create a Column
	Using a Named Row Type Within Another Named Row Ty...
	Dropping Named Row Types

	Unnamed Row Types
	Restrictions on Data Types Allowed in Unnamed Row ...

	Collection Data Types
	Null Values in Collections
	Using a Set
	Using a Multiset
	Using a List
	Nesting Collection Types
	Adding a Collection Type to an Existing Table
	Restrictions on Data Types Allowed in Collections

	What Is Inheritance?
	Type Inheritance
	Defining a Type Hierarchy
	Overloading Routines for Types in a Type Hierarchy...
	Inheritance and Type Substitutability
	Dropping Named Row Types from a Type Hierarchy
	Restrictions on Type Hierarchies

	Table Inheritance
	The Relationship Between Type and Table Hierarchie...
	Defining a Table Hierarchy
	Inheritance of Table Behavior in a Table Hierarchy...
	Modifying Table Behavior in a Table Hierarchy
	Adding a New Table to a Table Hierarchy
	Dropping a Table in a Table Hierarchy
	Altering the Structure of a Table in a Table Hiera...
	Querying Tables in a Table Hierarchy
	Creating a View on a Table in a Table Hierarchy

	Summary

	Granting and Limiting Access to Your Database
	 Securing Confidential Data
	Granting Privileges
	Database-Level Privileges
	Connect Privilege
	Resource Privilege
	Database Administrator Privilege

	Ownership Rights
	Table-Level Privileges
	Access Privileges
	Index, Alter, and References Privileges
	Column-Level �Privileges

	Type-Level Privileges
	Usage Privileges for User-Defined Types

	Routine-Level Privileges
	Automating Privileges
	Automating with a Command Script
	Using Roles

	Controlling Access to Data Using Routines
	Restricting Reads of Data
	Restricting Changes to Data
	Monitoring Changes to Data
	Restricting Object Creation

	Using Views
	Creating Views
	Duplicate Rows from Views
	Restrictions on Views
	When the Basis Changes

	Creating Typed Views
	Modifying Through a View
	Deleting Through a View
	Updating a View
	Inserting into a View
	Using the WITH CHECK OPTION Clause

	Privileges and Views
	Privileges When You Create a View
	Privileges When You Use a View

	Summary

	Accessing Complex Data Types
	Accessing Row-Type Data
	Selecting Columns of a Typed Table
	Using an Alias for a Typed Table
	Selecting Columns That Contain Row-Type Data
	Field Projections
	Selecting Nested Fields

	Modifying Rows from Typed Tables
	Modifying Columns That Contain Row Type Data
	Inserting Rows That Contain Named Row Types
	Inserting Rows That Contain Unnamed Row Types
	Updating Rows That Contain Named Row Types
	Updating Rows That Contain Unnamed Row Types
	Deleting Rows That Contain Row Types

	Accessing Collection Type Data
	Selecting Collections
	Selecting Nested Collections
	Using the IN Keyword to Search for Elements in a C...
	Using the CARDINALITY() Function to Count the Elem...

	Modifying Collections
	Inserting Rows That Contain Collection Types
	Updating Collection Types
	Deleting Rows That Contain Collection Types

	Accessing Rows from Tables in a Table Hierarchy
	Selecting Rows from a Supertable
	Using an Alias for a Supertable
	Inserting Rows into a Supertable
	Updating Rows from a Supertable
	Deleting Rows from a Supertable

	Summary

	Casting Data Types
	What Is a Cast?
	Creating User-Defined Casts
	Invoking Casts

	Casting Row Types
	Casting Between Named Row Types
	Casting Between Named and Unnamed Row Types
	Casting Between Unnamed Row Types
	Row-Type Conversions that Require Explicit Casts o...
	Explicit Casts on Fields of an Unnamed Row Type
	Explicit Casts on Fields of a Named Row Type

	Casting Fields of a Row Type

	Casting Collection Data Types
	Converting Between Collection Types with the Same ...
	Converting Between Collections with Different Elem...
	When the Conversion Between Element Types Requires...
	When the Conversion Between Element Types Requires...

	Casting Distinct Data Types
	Applying Casts that a Distinct Type Inherits
	Casting Between a Distinct Type and Its Source Typ...
	Adding and Dropping Casts on a Distinct Type

	An Example of Casts with Conversion Functions
	Creating a Conversion Function Cast
	Performing MultiLevel Casts with Explicit Casts

	Summary

	Creating and Using SPL Routines
	Introduction to SPL Routines
	Writing SPL Routines
	Using the CREATE PROCEDURE or CREATE FUNCTION Stat...
	Beginning and Ending the Routine
	Specifying a Routine Name
	Adding a Specific Name
	Adding a Parameter List
	Adding a Return Clause
	Specifying a Document Clause
	Specifying a Listing File
	Adding Comments

	Defining and Using Variables
	Declaring Local Variables
	Scope of Local Variables
	Declaring Built-In Type Variables
	Declaring Variables for Simple Large Objects
	Declaring Collection Variables
	Declaring Row-Type Variables
	Declaring Opaque- and Distinct-Type Variables
	Declaring Variables for Column Data with the LIKE ...
	Declaring PROCEDURE Type Variables
	Using Subscripts with Variables
	Variable and Keyword Ambiguity

	Declaring Global Variables
	Assigning Values to Variables
	The LET Statement
	Other Ways to Assign Values to Variables

	Writing the Statement Block
	Implicit and Explicit Statement Blocks
	Using Cursors
	The FOREACH Loop

	Using an IF - ELIF - ELSE Structure
	Expressions in an IF Statement

	Adding WHILE and FOR Loops
	Exiting a Loop

	Returning Values from an SPL Function
	Returning a Single Value
	Returning Multiple Values

	Handling Collections
	Collection Examples
	The First Steps
	Declaring a Collection Variable
	Declaring an Element Variable
	Selecting a Collection into a Collection Variable
	Inserting Elements into a Collection Variable
	Inserting into a SET or MULTISET
	Inserting into a LIST
	Checking the Cardinality of a LIST Collection
	Syntax of the VALUES Clause

	Selecting Elements from a Collection
	The Collection Query
	Adding the Collection Query to the SPL Routine

	Deleting a Collection Element
	Updating the Collection in the Database
	Deleting the Entire Collection

	Updating a Collection Element
	Updating a Collection with a Variable

	Updating the Entire Collection
	Updating a Collection of Row Types
	Updating a Nested Collection

	Inserting into a Collection
	Inserting into a Nested Collection

	Handling Row Types
	Updating a Row-Type Column
	Precedence of Dot Notation

	Executing Routines
	The EXECUTE Statements
	How to Use the Statements

	Using the CALL Statement
	Executing Routines in Expressions
	Executing Cursor Functions from an SPL Routine
	Dynamic Routine-Name Specification

	Privileges on Routines
	Privileges for Registering a Routine
	Privileges for Executing a Routine
	Granting and Revoking the Execute Privilege

	Privileges on Objects Associated with a Routine
	Executing a Routine as DBA
	Effect of DBA Privileges on Objects and Nested Rou...

	Finding Errors in an SPL Routine
	Looking at Compile-Time Warnings
	Generating the Text of the Routine

	Debugging an SPL Routine
	Exception Handling
	Trapping an Error and Recovering
	Scope of Control of an ON EXCEPTION Statement
	User-Generated Exceptions
	Simulating SQL Errors
	Using RAISE EXCEPTION to Exit Nested Code

	Checking the Number of Rows Processed in an SPL Ro...
	Summary

	Creating and Using Triggers
	When to Use Triggers
	How to Create a Trigger
	Assigning a Trigger Name
	Specifying the Trigger Event
	Defining the Triggered Actions
	A Complete CREATE TRIGGER Statement

	Using Triggered Actions
	Using BEFORE and AFTER Triggered Actions
	Using FOR EACH ROW Triggered Actions
	Using the REFERENCING Clause
	Using the WHEN Condition

	Using SPL Routines as Triggered Actions
	Passing Data to a SPL Routine
	Using SPL Procedure Language
	Updating Nontriggering Columns with Data from an S...

	Tracing Triggered Actions
	Generating Error Messages
	Applying a Fixed Error Message
	Generating a Variable Error Message

	Summary

	Index

