
z/OS

UNIX System Services
Programming Tools

SA22-7805-00

���

z/OS

UNIX System Services
Programming Tools

SA22-7805-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 279.

First Edition, March 2001

This edition applies to Version 1 Release 1 of z/OS (5694-A01) and to subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Tables . ix

About This Book . xi
Who Should Use This Book . xi
How to Use This Book . xi
Where to Find More Information xi

Softcopy Publications . xi
Accessing licensed books on the Web xii
Using LookAt to look up message explanations xii
IBM Systems Center Publications xiii
z/OS UNIX Porting Information xiii
z/OS UNIX Courses . xiv
z/OS UNIX Home Page . xiv
z/OS UNIX Customization Assistant xiv
Discussion List . xv

Chapter 1. Tutorial on Using lex and yacc 1
Uses for the lex and yacc Utilities 1
Code Produced by lex and yacc 2

lex Output . 2
yacc Output . 2
Defining Tokens . 2
Calling the Code. 3
Using the lex and yacc Commands 3

Tokenizing with lex . 4
Characters and Regular Expressions 4
Definitions . 7
Translations . 8
Declarations . 9
lex Input for Simple Desk Calculator 11

yacc Grammars. 11
The Declarations Section . 11
The Grammar Rules Section 13
The Functions Section . 16
The Simple Desk Calculator 16

Error Handling . 17
Error Handling in lex . 17
lex Input for the Improved Desk Calculator. 18
Error Handling in yacc . 19

A Sophisticated Example . 21
Multiple Values for yylval . 22
lex Input . 22
The Bare Grammar . 23
Expression Trees . 25
Compilation . 30

Chapter 2. Generating a Lexical Analyzer Using lex 33
Introduction to the lex Utility . 33
The lex Input Language . 33

Language Fundamentals . 34
Putting Things Together. 35
lex Programs . 37
Definitions . 37

© Copyright IBM Corp. 1996, 2001 iii

Translations . 38
Declarations . 39

Using lex . 40
Using yylex(). 40
Generating a Table File . 40
Compiling the Table File . 41
The lex Library Routines . 42

Error Detection and Recovery 45
Ambiguity and Lookahead . 46

Lookahead . 47
Left Context Sensitivity and Start Conditions 48
Tracing a lex Program . 50
The REJECT Action . 52
Character Set . 52

Chapter 3. Generating a Parser Using yacc 55
How yacc Works . 55

yyparse() and yylex(). 55
Grammar Rules . 56

Input to yacc. 56
Declarations Section . 57
Grammar Rules Section . 60
Function Section . 65

Internal Structures. 66
States . 66
Diagramming States . 67
State Actions . 67

Error Handling . 71
The Error Symbol . 71
The Error Condition . 71
Examples . 72
Error Recognition Actions . 73
The yyclearin Macro . 73
The yyerror Function . 74
The yyerrok Macro . 74
Other Error Support Routines 75

yacc Output . 75
Rules Summary . 76
State Descriptions. 76
Parser Statistics . 78

Types . 80
The Default Action . 81

Ambiguities . 81
Resolving Conflicts by Precedence 82
Rules to Help Remove Ambiguities 82
Conflicts in yacc Output . 84

Advanced yacc Topics . 84
Rules with Multiple Actions 85
Selection Preference for Rules 86
Using Nonpositive Numbers in $N Constructs 88
Using Lists and Handling Null Strings 88
Right Recursion versus Left Recursion 90
Using YYDEBUG to Generate Debugging Information 91
Important Symbols Used for Debugging 92
Using the YYERROR Macro 93
Rules Controlling the Default Action 95

iv z/OS V1R1.0 UNIX System Services Programming Tools

Errors and Shift-Reduce Conflicts 95
Making yyparse() Reentrant 95
Miscellaneous Points. 95

Chapter 4. Tutorial on Using make 97
Basic Concepts. 97

The Makefile. 97
Writing a Rule . 98
Targets with More Than One Recipe 100
Comments . 100
Running make. 100

Macros . 101
Naming Macros . 103
Macro Examples . 103
Command-Line Macros . 104
Variations . 104
Special Runtime Macros . 105
Modified Expansions . 106
Substitution Modifiers . 107
Tokenization . 108
Prefix and Suffix Operations 108

Inference Rules . 109
Metarules . 109
Suffix Rules. 110
The Default Rules File . 111

Controlling the Behavior of make 112
Some Important Attributes 112
Some Important Special Targets 113
Some Important Control Macros 115

Recipes . 117
Recipe Lines . 117
Group Recipes . 118

Libraries . 119
Metarules for Library Support 121

Chapter 5. More Information on make 123
Command-Line Options . 123
Finding the Makefile . 124
Makefile Input . 125

Comments . 126
Rules . 126
Macros . 129
Text Diversion . 133

Using Attributes to Control Updates 134
Special Target Directives . 135
Special Macros . 138

Control Macros . 138
Runtime Macros . 141

Binding Targets . 142
Using Inference Rules . 143

Metarules . 144
Suffix Rules . 145

Compatibility Considerations 146
Conditionals . 146
BSD UNIX make . 147

System V AUGMAKE . 147

Contents v

Improving make Performance 148

Chapter 6. Debugging z/OS C/C++ Programs 149
Controlling Processes . 149

Obtaining the Status of z/OS UNIX Application Program Processes 149
Killing a Runaway Process 150

Introduction to the z/OS Debugger 151
Using the z/OS UNIX Debugger to Debug Your Application 153
Using the z/OS UNIX Debugger with Multithreaded Applications 154
z/OS UNIX Debugger Restrictions and Debugging Limitations 154

Debugging from the Shell with the dbx Utility 157
Running the dbx Utility . 157
Examples of Using the dbx Utility. 160
Controlling Program Execution. 161
Displaying and Manipulating the Source File 166
Debugging Programs Involving Multiple Processes 168
Examining Program Data. 169
Debugging Application Programs Involving Threads 174
Debugging at the Machine Level 182
Customizing the dbx Debugging Environment 184
Debugging MVS dumps . 187
Debugging Considerations/Setup On MVS 189

List of dbx Subcommands . 194
Debugging Environment Control 196
Debugging Threads. 196
Displaying the Source File 196
Ending Program Execution 197
Machine-Level Debugging 197
Multiprocess Debugging . 197
Printing and Modifying Variables, Expressions, and Types 197
Procedure Calling . 198
Running Your Program . 198
Setting and Deleting Breakpoints 199
Signal Handling . 199
Tracing Program Execution 199

Appendix A. TSO/3270 Passthrough Mode 201
Overview . 201
Supported TSO Functions . 202
Using the TSO/3270 Passthrough Data Stream 202
Preliminary Processing of TSO/3270 Passthrough Mode Requests 204

Processing of Return Codes from Invoked TSO Services 206
TSO/3270 Passthrough Mode Data Stream 210
Miscellaneous Programming Notes 238
The ENDPASSTHROUGH Key 240
ENDPASSTHROUGH Specification Results 242
Other Documentation . 244
Usage Scenario . 244
Sample Programs . 245

Appendix B. Message Facility Overview 271
Creating a Message Source File 271

Continuing Messages on the Next Line 272
Special Characters in the Message Text 272
Defining a Character to Delimit Message Text 272
Assigning Message Set Numbers and Message ID Numbers 273

vi z/OS V1R1.0 UNIX System Services Programming Tools

Creating a Message Catalog 273
Catalog Sizing. 274
Removing Messages from a Catalog 274

Examples . 275
Displaying Messages with an Application Program 276
Understanding the NLSPATH Environment Variable 277
References . 277

Appendix C. Notices . 279
Trademarks. 280
Acknowledgments . 280

Source Code Policy. 281

Index . 283

Contents vii

viii z/OS V1R1.0 UNIX System Services Programming Tools

Tables

1. POSIX-Defined Character Classes in lex . 35
2. lex Table Size Specifications . 38
3. Additional UNIX lex Table Size Specifications . 38

© Copyright IBM Corp. 1996, 2001 ix

x z/OS V1R1.0 UNIX System Services Programming Tools

About This Book

This book presents the information you need to use the lex, yacc, and make z/OS
UNIX shell utilities.

This book also describes debugging services associated with z/OS UNIX System
Services (z/OS UNIX).

Using the book, the people who plan for and write application programs can create,
compile, debug, and maintain application programs that adhere to open standards
and, optionally, take advantage of traditional OS/390 services.

Who Should Use This Book
This book is for application programmers who need to:

v Port to z/OS UNIX their POSIX-conforming applications that use lex and yacc

v Develop POSIX-conforming applications for z/OS UNIX that use lex and yacc

v Manage application development using make

v Debug applications

This book assumes that readers are somewhat familiar with z/OS and with the
information for z/OS and its accompanying elements and features.

How to Use This Book
This book contains information useful to application programmers who are using the
z/OS UNIX shells and utilities to develop applications.

Where to Find More Information
Where necessary, this book references information in other books about the
elements and features of z/OS. For complete titles and order numbers for all z/OS
books, see z/OS Information Roadmap.

Direct your request for copies of any IBM publication to your IBM representative or
to the IBM branch office serving your locality.

There is also a toll-free customer support number (1-800-879-2755) available
Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can
use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

v Activate the program reorder form to provide faster and more convenient ordering
of software updates

Softcopy Publications
The z/OS UNIX library is available on the z/OS Collection Kit, SK2T-6700. This
softcopy collection contains a set of z/OS and related unlicensed product books.
The CD-ROM collection includes the IBM Library Reader, a program that enables
customers to read the softcopy books.

© Copyright IBM Corp. 1996, 2001 xi

Softcopy z/OS publications are also available for web-browsing and PDF versions
of the z/OS publications for viewing or printing using Adobe Acrobat Reader at this
URL:
http://www.ibm.com/servers/eserver/zseries/zos/

Select “Library”.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:

xii z/OS V1R1.0 UNIX System Services Programming Tools

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

IBM Systems Center Publications
IBM systems centers produce redbooks that can be helpful in setting up and using
z/OS UNIX System Services. You can order these publications through normal
channels, or you can view them with a web browser from this URL:
http://www.redbooks.ibm.com

These books have not been subjected to any formal review nor have they been
checked for technical accuracy, but they represent current product understanding
(at the time of their publication) and provide valuable information on a wide range of
z/OS UNIX topics. You must order them separately. A selected list of these books
follows:

v Selecting a Server — The Value of S/390, SG24-4812

v OS/390 Version 2 Release 6 UNIX System Services Implementation and
Customization, SG24-5178

v OS/390 TCP/IP OpenEdition Implementation Guide, SG24-2141. Written for
OS/390 TCP/IP OpenEdition, a replacement for TCP/IP for MVS Version 3
Release 2 Application Feature.

v Accessing OS/390 OpenEdition MVS from the Internet, SG24-4721. Written for
TCP/IP for MVS Version 3 Release 2 Application Feature.

v MVS/ESA SP 5.2.2 OpenEdition MVS Installation and Customization Starter Kit,
SG24-4529

v Porting Applications to the OpenEdition MVS Platform, GG24–4473. This book
was written for the OpenEdition MVS feature of MVS/ESA SP 5.1.

z/OS UNIX Porting Information
There is a Porting Guide on the z/OS UNIX porting page on the World Wide Web,
at this URL:
http://www.ibm.com/s390/unix/bpxa1por.html

You can read the Porting Guide from the web or download it as a PDF file that you
can view or print using Adobe Acrobat Reader. The Porting Guide covers a range of
useful topics, including: sizing a port, setting up a porting environment,
ASCII-EBCDIC issues, performance, and much more.

About This Book xiii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

The porting page also features a variety of porting tips, and lists porting resources
that will help you in your port.

z/OS UNIX Courses
The following classroom courses are available:

v UNIX System Services for OS/390 Implementation, ESP25

v Introduction to OS/390 UNIX Services, ESP05

v Exploiting OS/390 Through UNIX Apps, ES74A

v TCPIP Implementation for OS/390, CB694

v UNIX System Services for OS/390 DCE Implementation, ESP26

v Web Server Implementation on OS/390, ES170

v 1999 OS/390 Expo and Performance Conference, E5438

The availability of educational offerings changes. For current information on
classroom courses and other offerings, see your IBM representative or call
1-800-IBM-TEACH (1-800-426-8322).

z/OS UNIX Home Page
The z/OS UNIX home page on the World Wide Web has the latest technical news,
customer stories, tools, and FAQs (frequently asked questions). You can visit it at
this URL:
http://www.ibm.com/s390/unix/

Some of the tools available from the web site are ported tools, and some are
home-grown tools designed for z/OS UNIX. All this code works in our environment
at the time we make it available, but is not officially supported. Each tool has a
README file that describes the tool and any restrictions on its use.

The simplest way to reach these tools is through the z/OS UNIX home page. From
the home page, click on Tools and Toys.

The code is also available from www.ibm.com.s390 through anonymous ftp.

Restrictions
Because the tools are not officially supported,
v There are no guaranteed enhancements.
v No APARs can be accepted.

z/OS UNIX Customization Assistant
If you’d like help with customizing z/OS UNIX, then check out our Web-based
wizard. You can access it at this url:
http://www.ibm.com/servers/eserver/zeries/zos/bkserv/wizards.html

This wizard builds two BPXPRMxx parmlib members; one with system processing
parameters and one with file system statements. It also builds a batch job that does
the initial RACF security setup for z/OS UNIX. Whether you are installing z/OS
UNIX for the first time or are a current user who wishes to verify settings, you can
use this wizard.

xiv z/OS V1R1.0 UNIX System Services Programming Tools

Beginning with OS/390 R9, the wizard also allows sysplex users to build a single
BPXPRMxx parmlib member to define all the file systems used by systems
participating in shared HFS.

An edition of the wizard is available for OS/390 V2R8, as well.

Discussion List
Customers and IBM participants also discuss z/OS UNIX on the mvs-oe
discussion list. This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion so you can receive postings, send a note to:
listserv@vm.marist.edu

Include the following line in the body of the note, substituting your first name and
last name as indicated:
subscribe mvs-oe first_name last_name

After you are subscribed, you will receive further instructions on how to use the
mailing list.

About This Book xv

xvi z/OS V1R1.0 UNIX System Services Programming Tools

Chapter 1. Tutorial on Using lex and yacc

This tutorial introduces the basic concepts of lex and yacc and describes how you
can use the programs to produce a simple desk calculator. New users should work
through the tutorial to get a feel for how to use lex and yacc.

Those who are already familiar with the concepts of input analysis and
interpretation may decide to skip this chapter and go directly to Chapter 2 and
Chapter 3. These chapters give full details of all aspects of the programs.

All documentation for lex and yacc assumes that you are familiar with the C
programming language. To use the two programs, you need to be able to write C
code.

Uses for the lex and yacc Utilities
lex and yacc are a pair of programs that help write other programs. Input to lex
and yacc describes how you want your final program to work. The output is source
code in the C programming language; you can compile this source code to get a
program that works the way that you originally described.

You use lex and yacc to produce software that analyzes and interprets input. For
example, suppose you want to write a simple desk calculator program. Such a desk
calculator is easy to create using lex and yacc, and this tutorial shows how one
can be put together.

The C code produced by lex analyzes input and breaks it into tokens. In the case
of a simple desk calculator, math expressions must be divided into tokens. For
example:
178 + 85

would be treated as 178, +, and 85.

The C code produced by yacc interprets the tokens that the lex code has obtained.
For example, the yacc code figures out that a number followed by a + followed by
another number means that you want to add the two numbers together.

lex and yacc take care of most of the technical details involved in analyzing and
interpreting input. You just describe what the input looks like; the code produced by
lex and yacc then worries about recognizing the input and matching it to your
description. Also, the two programs use a format for describing input that is simple
and intuitive; lex and yacc input is much easier to understand than a C program
written to do the same work.

You can use the two programs separately if you want. For example, you can use
lex to break input into tokens and then write your own routines to work with those
tokens. Similarly, you can write your own software to break input into tokens and
then use yacc to analyze the tokens you have obtained. However, the programs
work very well together and are often most effective when combined.

© Copyright IBM Corp. 1996, 2001 1

Code Produced by lex and yacc
The C code that is directly produced by lex and yacc is intended to be
POSIX-conforming. When user-written code is added, the portability of the resulting
program depends on whether the added code conforms to the POSIX standards.

To make it easy for you to add your own code, all identifiers and functions created
by lex and yacc begin with yy or YY. If you avoid using such identifiers in your own
code, your code will not conflict with code generated by the two programs.

lex Output
The goal of lex is to generate the code for a C function named yylex(). This
function is called with no arguments. It returns an int value. A value of 0 is returned
when end-of-file is reached; otherwise, yylex() returns a value indicating what kind
of token was found.

lex also creates two important external data objects:

1. A string named yytext. This string contains a sequence of characters making up
a single input token. The token is read from the stream yyin, which, by default,
is the standard input (stdin).

2. An integer variable named yyleng. This gives the number of characters in the
yytext string.

In most lex programs, a token in yytext has an associated value that must be
calculated and passed on to the supporting program. By convention, yacc names
this data object yylval. For example, if yylex() reads a token which is an integer,
yytext contains the string of digits that made up the integer, while yylval typically
contains the actual value of the integer. By default, yylval is declared to be an int,
but there are ways to change this default.

Usually, a call to yylex() obtains a single token from the standard input; however, it
is possible to have yylex() process the entire input, applying transformations and
writing new output.

yacc Output
The goal of yacc is to generate the code for a C function named yyparse(). The
yyparse() function calls yylex() to read a token from the standard input until end of
file. yyparse() uses the return values from yylex() to figure out the types of each
token obtained, and it uses yylval in each case as the actual value of that token.

The yyparse() function is called without any arguments. The result of the function is
0 if the input that was parsed was valid (that is, if the form of the input matched the
descriptions given to lex and yacc). The result is 1 if the input contained errors of
any kind.

Defining Tokens
As noted previously, yylex() returns a code value indicating what kind of token has
been found, and yyparse() bases its actions on this value. Obviously then, the two
functions must agree on the values that they assign to different tokens.

One way to do this is by using C header files. For example, consider a simple desk
calculator program. Its input consists of expressions with simple forms such as:

2 z/OS V1R1.0 UNIX System Services Programming Tools

789 + 45
3 * 24
9045 − 723

Thus there are two types of tokens: integer operands and mathematical operators.

If yylex() reads an operator like + or −, it can just return the operator itself to
indicate the type of token obtained. If it reads an integer operand, it should store
the value of the operand in yylval, and return a code indicating that an integer has
been found. To make sure that both yylex() and yyparse() agree on this code, you
might create a file that contains the C definition:
#define INTEGER 257

The values of the tokens are started at 257 to distinguish them from characters,
and because yacc uses 256 internally. After this has been defined, you can include
this file, with a C #include statement, and then use the INTEGER definition any
time you want to refer to an integer token.

Suppose now that we expand our desk calculator so that it recognizes variables as
well as integer operands. Then we can change our header file to show that there
are now two types of operands:
#define INTEGER 257
#define VARIABLE 258

Again, by using these definitions, we can make sure that yylex() and yyparse()
agree on what stands for what.

yacc has facilities that can automatically generate such definition files; therefore,
early chapters speak in terms of header files created by hand; later chapters use
header files created by yacc.

Calling the Code
The code produced by lex and yacc only constitutes part of a program. For
example, it does not include a main routine. At the very minimum, therefore, you
need to create a main routine of the form:
main()
{

return yyparse();
}

This calls yyparse(), which then goes on to read and process the input, calling on
yylex() to break the input into tokens. yyparse() terminates when it reaches
end-of-file, when it encounters some construct that marks the logical end of input,
or when it finds an error that it is not prepared to handle. The value returned by
yyparse() is returned as the status of the whole program. This main routine is
available in a yacc library, as shown later.

Obviously, the main routine may have to be much more complex It may also be
necessary to write a number of functions that are called by yylex() to help analyze
the input, or by yyparse() to help process it.

Using the lex and yacc Commands
Suppose that file.l contains lex input. Then the command
lex file.l

Chapter 1. Tutorial on Using lex and yacc 3

uses that input to produce a file named lex.yy.c. This file can then be compiled
using c89 to produce the object code for yylex().

Suppose that file.y contains yacc input. Then the command:
yacc file.y

uses that input to produce a file named y.tab.c. You can then compile this file using
c89 to produce the object code for yyparse().

To produce a complete program, you must link the object code for yyparse() and
yylex() together, along with any other necessary functions.

The z/OS UNIX shells provide a library of useful lex routines. It also provides a
yacc library that contains the entry point for the simple main entry point described
earlier. These libraries should have been installed or created as part of your
installation. When you use any library, be sure to add the library name to the linker
commands that you use to build the final program. Chapter 2 and Chapter 3
describe these routines.

Tokenizing with lex
As mentioned earlier, the code produced by lex breaks its input into tokens, the
basic logical pieces of the input. This section discusses how you describe input
tokens to lex and what lex does with your description.

Characters and Regular Expressions
lex assumes that the input is a sequence of characters. The most important of
these characters are usually the printable ones: the letters, digits, and assorted
punctuation marks.

The input to lex indicates the patterns of characters that make up various types of
tokens. For example, suppose you are using lex to help make a desk calculator
program. Such a program performs various calculations with numbers, so you must
tell lex what pattern of characters makes up a number. Of course, a typical number
is made up of a sequence of one or more digit characters, so you need a way to
describe such a sequence.

In lex, patterns of characters are described using regular expressions. The sections
that follow describe several kinds of regular expressions you can use to describe
character patterns.

Character Strings
The simplest way to describe a character pattern is just to list the characters. In lex
input, enclose the characters in quotation marks:
"if"
"while"
"goto"

These are called character strings. A character string matches the sequence of
characters enclosed in the string.

Inside character strings, the standard C escape sequences are recognized:
\n — newline
\b — backspace
\t — tab

4 z/OS V1R1.0 UNIX System Services Programming Tools

and so on. See Chapter 2 for the complete list. These can be used in regular
expressions to stand for otherwise unprintable characters.

Anchoring Patterns
A pattern can be anchored to the start or end of a line. You can use | at the start of
a regular expression to force a match to the start of a line, and $ at the end of an
expression to match the end of a line. For example,
|"We"

matches the string We only when it appears at the beginning of a line. The pattern:
"end"$

matches the string end only when it appears at end of a line, whereas the pattern:
|"name"$

matches the string name only when it appears alone on a line.

Character Classes
A character class is written as a number of characters inside square brackets, as in:
[0123456789]

This is a regular expression that stands for any one of the characters inside the
brackets. This character class stands for any digit character.
[0123456789][0123456789][0123456789]

stands for any three digits in a row.

The digit character class can be written more simply as:
[0−9]

The − stands for all the characters that come between the two characters on either
side. Thus:
[a−z]

stands for all characters between a and z, whereas:
[a−zA−Z]

stands for all characters in both the range a to z and the range A to Z.

Note: − is not treated as a range indicator when it appears at the beginning or end
of a character class.

If the first character after the [is a circumflex (|), the character class stands for all
characters that are not listed in the brackets. For example:
[|0−9]

stands for all characters that are not digits. Similarly:
[|a−zA−Z0−9]

stands for all characters that are not alphabetic or numeric.

There is a special character class—written as . —that matches any character
except newline. The pattern:
“p.x”

Chapter 1. Tutorial on Using lex and yacc 5

matches any 3-character sequence starting with p and ending with x.

Note: A newline is never matched except when explicitly specified as \n, or in a
range. In particular, a . never matches newline.

New character class symbols have been introduced by POSIX. These are provided
as special sequences that are valid only within character class definitions. The
sequences are:
[.coll.]" collation of character coll
[=equiv=] collation of the character class equiv
[:char-class:] any of the characters from char-class

lex accepts only the POSIX locale for these definitions. In particular, multicharacter
collation symbols are not supported. You can still use, for example, the character
class:
[[.a.]-[.z.]]

which is equivalent to:
[a-z]

for the POSIX locale.

lex accepts the following POSIX-defined character classes:
[:alnum:] [:cntrl:] [:lower:] [:space:]
[:alpha:] [:digit:] [:print:] [:upper:]
[:blank:] [:graph:] [:punct:] [:xdigit:]

It is more portable (and more obvious) to use the new expressions.

Repetitions
Any regular expression followed by an asterisk (*) stands for zero or more
repetitions of the character pattern that matches the regular expression. For
example, consider:
[[:digit:]][[:digit:]]*

This stands for a pattern of characters beginning with a digit, followed by zero or
more additional digits. In other words, this regular expression stands for the pattern
of characters that form a typical number. As another example, consider:
[[:upper:]][[:lower:]]*

This stands for an uppercase letter followed by zero or more lowercase letters.

Take a moment to consider the regular expression that matches any legal variable
name in the C programming language. The answer is:
[[:alpha:]_][[:alnum:]_]*

which stands for a letter or underscore, followed by any number of letters, digits, or
underscores.

The * stands for zero or more repetitions. You can use the + character in the same
way to stand for one or more repetitions. For example:
[[:digit:]]+

stands for a sequence of one or more digit characters. This is another way to
represent the pattern of a typical number. It is equivalent to:

6 z/OS V1R1.0 UNIX System Services Programming Tools

[[:digit:]][[:digit:]]*

You can indicate a specific number of repetitions by putting a number inside brace
brackets. For example:
[[:digit:]]{3}

stands for a sequence of three digits. You can also indicate a possible range of
repetitions with a form such as:
[[:digit:]]{1,10}

This indicates a pattern of one to ten digits. You might use this kind of regular
expression if you want to avoid numbers that are too large to handle. As another
example:
[[:alpha:]_][[:alnum:]_]{0,31}

describes a pattern of 1 to 32 characters. You might use this to describe C variable
names that can be up to 32 characters long. (Just remember that you must provide
an action to discard the extra characters in a longer name.)

Optional Expressions
A regular expression followed by a question mark (?) makes that expression
optional. For example:
A?

matches 0 or 1 occurrence of the character A.

Alternatives
Two regular expressions separated by an “or” bar (|) produces a regular expression
that matches either one of the expressions. For example:
[[:lower:]]│[[:upper:]]

matches either a lowercase letter or an uppercase one.

Grouping
You may use parentheses to group together regular expressions. For example,
("high"|"low"|"medium")

matches one occurrence of any of the three strings high, low, or medium.

Note: Quotes do not group; a common mistake is to write:
"is"?

This pattern matches the letter i, followed by an optional s. To make the
entire string optional, use parentheses:
("is")?

Definitions
A lex definition associates a name with a character pattern. The format of a
definition is:
name regular-expression

where the regular-expression describes the pattern that gets the name. For
example:

Chapter 1. Tutorial on Using lex and yacc 7

digit [[:digit:]]
lower [[:lower:]]
upper [[:upper:]]

are three definitions that give names to various character patterns.

A lex definition can refer to a name that has already been defined by putting that
name in brace brackets. For example,
letter {lower}│{upper}

defines the letter pattern as one that matches the previously defined lower or
upper patterns. Similarly,
variable {letter}({letter}│{digit})*

defines a variable pattern as a letter followed by zero or more letters or digits.

For POSIX conformance, lex now treats the definition, when expanded, as a group.
Essentially, the expression is treated as if you had enclosed it in parentheses. Older
lex processors did not always do this.

Definitions are always the first things that appear in the input to lex. They make the
rest of the lex input more readable, since names are more easily understood than
regular expressions. In lex input, the last definition is followed by a line containing
only:
%%

This serves to mark the end of the definitions.

Translations
After the %% that marks the end of definitions, lex input contains a number of
translations. The translations describe the actual tokens that you expect to see in
input, and what is to be done with each token when it is received.

The format of a translation is:
token-pattern { actions }

The token-pattern is given by a regular expression that may contain definitions from
the previous section. The actions are a set of zero or more C source code
statements indicating what is to be done when such a pattern is recognized. Actions
are written with the usual C formatting rules, so they can be split over a number of
lines.

Also allowed as an action is a single “or” bar (|) which indicates that the action to
be used is that of the next translation rule; for example:
"if"│
"while"{
/* handle keywords */
}

This could have been written as:
("if")│("while") { }

but you will find that using the alteration operator (|) makes your scanner larger and
slower. It is always better to have many simple expressions that share one action
separated with a single “or” bar.

8 z/OS V1R1.0 UNIX System Services Programming Tools

In general, the actions associated with a token should determine the value to be
returned by yylex() to indicate the token type. The actions may also assign a value
to yylval to indicate the value of the token.

As a simple example, let’s go back to the desk calculator. This might have the
translation rule:
[[:digit:]]+ {
yylval = atoi(yytext);
return INTEGER;
}

Recall that yytext holds the text of the token that was found, and yylval is
supposed to hold the actual value of that token. Thus:
yylval = atoi(yytext);

uses the C atoi() library function to convert this text into an integer value and
assigns that integer to yylval. After this conversion has taken place, the action
returns the defined value INTEGER to indicate that an integer has been obtained. (
“Defining Tokens” on page 2 talks about this kind of definition.)

As another example of a translation, consider this:
[−+*/] {
return *yytext;
}

This says each of the four operator characters inside the parentheses is also a
separate token. If one of these is found, the action returns the first character of
yytext, which is the operator character itself; therefore if yylex() finds an operator, it
returns the operator itself, which is the first character in yytext. (Remember that −
is not treated as a range indicator when it appears at the beginning or end of a
character class.) If the action in a translation consists of a single C statement, you
can omit the brace brackets. For example, you could have written:
[−+*/] return *yytext;

Declarations
The definition or translation sections of lex input may contain declarations. These
are normal C declarations for any data objects that the actions in translations may
need.

If a translation section contains declarations, they must appear at the beginning of
the section. The special construct %{ is used to begin the declarations, and %} is
used to end them. These constructs must appear alone at the beginning of a line.

As an example, consider the following:
%%

%{
int wordcount = 0;
%}

[| \t\n]+ { wordcount++; }
[\t] ;
[\n] {
printf("%d\n",wordcount);

wordcount = 0;
}

Chapter 1. Tutorial on Using lex and yacc 9

This generates a simple program that counts the words on each line of input. If
yylex() finds a token consisting of one or more characters that are not spaces,
tabs, or newlines, it increments wordcount. For sequences of one or more tabs or
spaces, it does nothing (the action is just ;—a null statement). When it encounters a
newline, it displays the current value of wordcount and resets the count to zero.

Declarations given in the translations section are local to the yylex() function that
lex produces. Declarations may also appear at the beginning of the definition
section; in this case, they are external to the yylex() function. As an example,
consider the following lex input, provided as the file wc1.l in the /samples directory:
%{

int characters = 0;
int words = 0;
int lines = 0;

%}
%%
\n {

++lines;
++characters;

}
[\t]+ characters += yyleng;
[| \t\n]+ {

++words;
characters += yyleng;

}

%%

The definition section ends at the %%, which means that it consists only of the
given declarations. These declare external data objects. After the %% come three
translations. If a newline character is found, yylex() increments the count of lines
and characters. If a sequence of spaces or tabs is found, the character count is
incremented by the length of the sequence (specified by yyleng, which gives the
length of a token). If a sequence of one or more other characters is found, yylex()
increments the word count and again increments the character count by the value
of yyleng.

You can use the yylex() generated by this example with a main routine of the form:
#include <stdio.h>

int yylex(void);

int main(void)
{

extern int characters, words, lines;

yylex();
printf("%d characters, ", characters);
printf("%d words, ", words);
printf("%d lines\n", lines);
return 0;

}

This example is provided as wc.c in the /samples directory. It calls yylex() to
tokenize the standard input. Since none of the translation actions tell yylex() to
return, it keeps reading token after token until it reaches end-of-file. At this point, it
returns and the main function proceeds to display the accumulated counts of
characters, words, and lines in the input.

10 z/OS V1R1.0 UNIX System Services Programming Tools

lex Input for Simple Desk Calculator
This chapter has been discussing the lex input for a simple desk calculator. To
finish things off, here’s the complete input file. (This example, with minor changes,
is provided as the file dc1.l in the /samples directory of the distribution.) Assume
that the file y.tab.h contains the C definition for INTEGER, as given earlier:
#define INTEGER 257

%{
#include "y.tab.h"
extern int yylval;
%}

%%

[[:digit:]]+ {
yylval = atoi(yytext);
return INTEGER;

}

[-+/*\n] return *yytext;

[\t]+ ;

This is almost the same as the previous presentation, except that it includes the
newline as one of the operator characters. Each line of input is a separate
calculation, so you have to pay attention to where lines end.

This input creates a yylex() that recognizes all the tokens required for the desk
calculator. The next section, yacc Grammars, discusses how to use yacc to create
a yyparse() that can use this yylex().

yacc Grammars
By tradition, the input for yacc is called a grammar. yacc was invented to create
parsers for compilers of computing languages; the yacc input was used to describe
the grammar of such a language.

The primary output of yacc is a file named y.tab.c. This file contains the source
code for a function named yyparse(). yacc can also produce a number of other
kinds of output, as later sections describe.

yacc input is divided into three sections: the declarations section, the rule section,
and the function section.

The Declarations Section
The declarations section of a yacc grammar describes the tokens that make up the
grammar.

The simplest way to describe a token is with a line of the form:
%token name

where name is a name that stands for some kind of token. For example, you might
have:
%token INTEGER

to state that INTEGER represents an integer token.

Chapter 1. Tutorial on Using lex and yacc 11

Creating Token Definition Files
When you run a grammar through yacc using the -d option, yacc produces a C
definition file containing C definitions for all the names declared with %token lines
in the declarations section of the grammar. The name of this file is y.tab.h. Each
definition created in this way is given a unique number.

You can use a definition file created by yacc to provide definitions for lex, or other
parts of the program. For example, suppose that file.l contains lex input for a
program and that file.y contains yacc input:
yacc −d file.y

creates a y.tab.h file as well as a y.tab.c file containing yyparse(). In the
declarations part of the definitions section of the lex input in file.l, you can have:
%{
#include "y.tab.h"
%}

to get the C definitions from the generated file. The rest of file.l can make use of
these definitions.

Precedence Rules
The declarations section of yacc input can also contain precedence rules. These
describe the precedence and binding of operator tokens.

To understand precedence and binding, it is best to start with an example. In
conventional mathematics, multiplication and division are supposed to take place
before addition and subtraction (unless parentheses are used to change the order
of operation). Multiplication has the same precedence as division, but multiplication
and division have higher precedence than addition and subtraction have.

To understand binding, consider the C expressions:
A - B - C
A = B + 8 * 9

To evaluate the first expression, you usually picture the operation proceeding from
left to right:
(A - B) - C

To evaluate the second however, you perform the multiplication first, because it has
higher precedence than addition:
A = (B + (8 * 9))

The multiplication takes place first, the value is added to B, and then the result is
assigned to A.

Operations that operate from left to right are called left associative; operations that
operate from right to left are called right associative. For example:
a/b/c

can be parsed as:
(a/b)/c left associative

or:
a/(b/c) right associative

12 z/OS V1R1.0 UNIX System Services Programming Tools

Inside the declarations section of a yacc grammar, you can specify the precedence
and binding of operators with lines of the form:
%left operator operator ...
%right operator operator ...

Operators listed on the same line have the same precedence. For example, you
might say:
%left '+' '−'

to indicate that the + and − operations have the same precedence and left
associativity. The operators are expressed as single characters inside apostrophes.
Literal characters in yacc input are always shown in this format.

When you are listing precedence classes in this way, list them in order of
precedence, from lowest to highest. For example:
%left '+' '−'
%left '*' '/'

says that addition and subtraction have a lower precedence than multiplication and
division have.

As an example, C generally evaluates expressions from left to right (that is, left
associative) while FORTRAN evaluates them from right to left (that is, right
associative).

Code Declarations
The declarations section of a yacc grammar can contain explicit C source code
declarations. These are external to the yyparse() function that yacc produces. As in
lex, explicit source code is introduced with the %{ construct and ends with %}; thus:
%{

/* source code */
%}

The Grammar Rules Section
The end of the declarations section is marked by a line consisting only of:
%%

After this comes the rules section, the heart of the grammar.

A rule describes a valid grammatical construct, which can be made out of the
recognized input tokens and other grammatical constructs. To understand this, here
are some sample rules that make sense for a desk calculator program:
expression : INTEGER;
expression : expression '+' expression;
expression : expression '−' expression;
expression : expression '*' expression;
expression : expression '/' expression;

These rules describe various forms of a grammatical construct called an
expression. The simplest expression is just an integer token. More complex
expressions may be created by adding, subtracting, multiplying, or dividing simpler
expressions. In a rule like:
expression : expression ’+’ expression

the definition has three components: an expression, a + token, and another
expression.

Chapter 1. Tutorial on Using lex and yacc 13

If a program uses this grammar to analyze the input:
1 + 2 + 3

what does it do? First, it sees the number 1. This is an INTEGER token, so it can
be interpreted as an expression. The input thus has the form:
expression + 2 + 3

Of course, the 2 is also an INTEGER and therefore an expression. This gives the
form:
expression + expression + 3

But the program recognizes the first part of this input as one valid form of an
expression. Thus, it boils down to:
expression + 3

In a similar way, this is interpreted as a valid form for an expression.

Actions
The rules section of a yacc grammar does not just describe grammatical
constructs; it also tells what to do when each construct is recognized. In other
words, it lets you associate actions with rules. The general form of a rule is:
name : definition { action } ;

where name is the name of the construct being defined, definition is the definition of
the construct in terms of tokens and other nonterminal symbols, and action is a
sequence of zero or more instructions that are to be carried out when the program
finds input of a form that matches the given definition. For compatibility with older
yacc processors, a single = can be placed before the opening { of the action.

The instructions in the action part of the rule can be thought of as C source code;
however, they can also contain notations that are not valid in C. The notation $1
stands for the value of the first component of the definition; if the component is a
token, this is the yylval value associated with the token. Similarly, $2 stands for the
value of the second component, $3 stands for the value of the third component, and
so on. The notation $$ is used to represent the value of the construct being
defined.

As an example, consider the following rule:
expression: expression '+' expression { $$ = $1 + $3; } ;

This action adds the value of the first component (the first subexpression) to the
value of the third component (the second subexpression) and uses this as the result
of the whole expression. Similarly, you can write:
expression: expression '−' expression { $$ = $1 - $3; };
expression: expression '*' expression { $$ = $1 * $3; };
expression: expression '/' expression { $$ = $1 / $3; };
expression: INTEGER { $$ = $1; };

The last rule says that if the form of an expression is just an integer token, the
value of the expression is just the value of the token.

If no action is specified in a rule, the default action is:
{ $$ = $1 }

14 z/OS V1R1.0 UNIX System Services Programming Tools

This says that the default value of a construct is the value of its first component.
Thus you can just write:
expression: INTEGER ;

Compressing Rules
If several rules give different forms of the same grammatical construct, they can be
compressed into the form:
name : definition1 { action1}
│ definition2 { action2 }
│ definition3 { action3 }
...
;

There must be a semicolon to mark the end of the rule. Also, each definition has its
own associated action. If a particular definition does not have an explicit action, the
default action $$=$1 is assumed.

Using this form, you can write:
expression:

INTEGER
│ expression '+' expression { $$ = $1 + $3;}
│ expression '−' expression { $$ = $1 − $3; }
│ expression '*' expression { $$ = $1 * $3; }
│ expression '/' expression { $$ = $1 / $3; }
;

Start Symbols
The first grammatical construct defined in the rules section must be the most
all-inclusive construct in the grammar. For example, if yacc input describes the
grammar of a programming language, the first rule defined should be a complete
program. The name of this first rule is called the start symbol.

The goal of the yyparse() routine is to gather input that fits the description of the
start symbol. If your grammar defines a programming language and the start
symbol represents a complete program, yyparse() stops when it finds a complete
program according to this rule.

Obviously, you should define the starting symbol in such a way that it takes in all
the valid streams of input that you expect. For example, consider our desk
calculator. You might define a program with the rule:
program :

program expression ’\n'
│ /* NOTHING */
;

This gives two definitions for a program: it can consist of an expression followed by
a newline character (a line to be calculated) followed by more such lines; or it can
be nothing at all. The nothing definition comes into play at the start of input.

Interior Actions
We need to associate an action with the program rule of the previous section. We
want this action to display the result of the expression on the input line as soon as
the entire line has been read; therefore, we write:
program:

expression ’\n’ { printf("%d\n",$1); } program
│ /* NOTHING */
;

Chapter 1. Tutorial on Using lex and yacc 15

This rule contains an interior action. The instruction in the brace brackets is run as
soon as yyparse() reaches the part of the rule where the instruction appears (that
is, as soon as it has read the newline token). This call to the printf() function of the
C library immediately displays the value of the first component $1 as a decimal
integer. Then yyparse() goes on to gather the rest of the definition of program
(more input lines).

Explicit Internal Source Code Declarations
The rules section of a yacc grammar can contain explicit source code declarations.
As before, these begin with %{ and end with %}. They are internal to the yyparse()
function that yacc produces.

The Functions Section
The functions section of a yacc grammar does not always appear. When it does, it
must begin with another %% construct (thus there is one %% between the
declarations and the rules section, and another between the rules and the
functions).

The functions section consists entirely of C source code. This source code typically
contains definitions of functions that actions in the rules section call.

It is usually better to compile all such functions separately, rather than include them
as part of the yacc input.

The Simple Desk Calculator
We are now ready to present the yacc input for our simple desk calculator program.
This input corresponds to the lex input given in the previous section. (This example
is provided as the file dc1.y.)
%{
#include <stdio.h>
%}

%token INTEGER
%left '+' '-'
%left '*' '/'

%%

program:
program expression '\n' = { printf("%d\n", $2); }

| /* NOTHING */
;

expression:
INTEGER

| expression '+' expression = { $$ = $1 + $3; }
| expression '-' expression = { $$ = $1 - $3; }
| expression '*' expression = { $$ = $1 * $3; }
| expression '/' expression = { $$ = $1 / $3; }
;

When this is run through yacc, the result is source code for a function named
yyparse() that reads and interprets line after line of input. Linking this program with
the yacc and lex libraries, you get a simple main function that calls yyparse() and
exits. The exit status is 1 if the input was not in the correct format (for example, if
you mistyped a calculation); it is 0 if the input was correct. (Be sure to link the yacc
library before the lex library, to get the main routine in the yacc library that calls
yyparse().)

16 z/OS V1R1.0 UNIX System Services Programming Tools

Error Handling
Errors are possible in any input. Dealing with errors always tends to be difficult,
because there is no way to predict the forms that errors may take. Dealing with
errors in highly structured forms of input (for example, program source code) is
especially difficult, because you want to get back on track as soon as possible.
Usually, you want to discard erroneous input and then resume processing good
input as normal. The trick lies in figuring out where erroneous input ends and where
good input begins.

This section looks at some of the error handling abilities of lex and yacc. To make
things more concrete, the examples give the simple desk calculator program the
ability to handle errors. They also give it a few more sophisticated features:

v Users can store integer values in variables (using assignment statements).
Variables have names that are only one letter long. Uppercase letters are
equivalent to lowercase ones, so there are a maximum of 26 possible variables.

v You can use parentheses in the usual way, to change the order of arithmetic
evaluation.

v You can express integers in octal or hexadecimal as well as decimal forms, using
the C conventions for octal numbers (leading zero) and hexadecimal numbers
(leading 0x).

It may be useful to think about how you might go about writing lex and yacc
descriptions of these new features before you read the rest of this chapter.

Error Handling in lex
From the point of view of lex, the most common sort of error is an input that does
not have the form of any of the recognized tokens. A translation rule of the form:
. { action }

(a dot followed by an action) can be placed at the end of all the other translation
rules to take care of unrecognized input. For example, you can write:
. { printf("Invalid input: %s\n",yytext); }

to issue an error message for any input that is not one of the recognized tokens.
Since the action is a single C statement, you can omit the brace brackets, as in:
. printf("Invalid input: %s\n",yytext);

Instead of using printf(), you can make use of a lex library function named
yyerror(). yyerror simply displays a text string, followed by a newline, to stderr
using fprintf and returns the integer value returned from fprintf. It is better to use
yyerror() than making your own call to printf(), since lex also uses yyerror() for
issuing error messages. If your code uses yyerror(), all the error messages are
issued in the same way. Thus, you might write:
. { yyerror("Unrecognized input"); }

You can replace the standard yyerror() function with a version of your own if there
is some standard error message format that you want to use.

Other Errors in lex
It is possible for other errors to be detected in the yylex() function that lex
produces, but these have to be expected errors. In other words, you must write a
translation rule that says, ‘‘If you see a token with this format, it is an error and here
is how it is to be handled.’’ This sort of behavior is different for each application;

Chapter 1. Tutorial on Using lex and yacc 17

however, trying to detect such errors is a useful exercise if there are some types of
erroneous input that you can predict and handle in some special useful way.

lex Input for the Improved Desk Calculator
The following is the lex input to produce our improved version of the desk calculator
program. (This example is provided as dc2.l.)
%{
#include "y.tab.h"
extern int yylval;
char upper[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
char lower[] = "abcdefghijklmnopqrstuvwxyz";
%}

%%

[[:upper:]] {
int i;
for (i = 0; *yytext != upper[i]; ++i)

;
yylval = i;
return VARIABLE;

}

[[:lower:]] {
int i;
for (i = 0; *yytext != lower[i]; ++i)

;
yylval = i;
return VARIABLE;

}

[[:digit:]]+ {
yylval = strtol(yytext, (char **)NULL, 0);
return INTEGER;

}

0x[[:xdigit:]]+ {
yylval = strtol(yytext, (char **)NULL, 16);
return INTEGER;

}

[-()=+/*\n] return *yytext;

[\t]+ ;

. yyerror("Unknown character");

Note: This code looks complex because it handles character sets where characters
are not continuous. If you’re familiar with ASCII, it’s tempting to get the value
of yylval with a statement like yylval = *yytext - ’A’; but this depends
upon character ordering in ASCII. The loops in the example are slower but
portable. If an input token is a single letter (uppercase or lowercase), the
program returns a token value named VARIABLE. This is defined in the
yacc input; it is obtained with the #include directive that gets the y.tab.h file
that yacc generates.

To indicate which VARIABLE is being referred to, the yylval variable is set to an
integer that indicates the letter: 0 for A, 1 for B, and so on. The same integer is
used for both the uppercase and lowercase version of the letter. This corresponds
to the 26 different variables that the desk calculator recognizes.

18 z/OS V1R1.0 UNIX System Services Programming Tools

There are two types of integer tokens. Ones that begin with 0x are interpreted as
hexadecimal integers using the C strtol() function (which takes an integer string
and produces the corresponding integer). Other integer tokens are also interpreted
by strtol(), which determines the correct base to use (base 8 or base 10).

All the operators that the desk calculator recognizes are simply returned directly
from yylex(). Blanks and horizontal tabs are skipped.

Any other character produces the error message associated with the . translation
rule. The yylex() function then tries to get another token; if this also finds erroneous
input, yylex() keeps looping until it finds something it recognizes. The result is that
erroneous input is skipped—yylex() never returns any indication that it found such
input.

Error Handling in yacc
Error handling in yacc must be much more sophisticated than in lex. The yylex()
function that lex produces only has to detect erroneous input that can never have a
recognized meaning; the yyparse() function that yacc produces has to figure out
what to do with tokens that can be valid in some contexts but are not valid in the
current context. For example, yyparse() has to figure out what to do with:
A = + * 5

All the tokens in this input are valid tokens, but put together in this way, they have
no meaning. yyparse() has to figure out what to do when things do not make
sense.

The Error Construct
To handle errors, yacc introduces a symbol named error. This stands for any
ungrammatical construct: any sequence of one or more tokens that do not fit into
the grammar anywhere else.

The yacc input for the new desk calculator shows how this is used. This example is
provided as dc2.y.
%token INTEGER VARIABLE
%left '+' '-'
%left '*' '/'

%{
static int variables[26];
%}

%%

program:
program statement '\n'
| program error '\n' { yyerrok; }
| /* NULL */
;

statement:
expression { printf("%d\n", $1); }
| VARIABLE '=' expression { variables[$1] = $3; }
;

expression:
INTEGER
| VARIABLE { $$ = variables[$1]; }
| expression '+' expression { $$ = $1 + $3; }
| expression '-' expression { $$ = $1 - $3; }

Chapter 1. Tutorial on Using lex and yacc 19

| expression '*' expression { $$ = $1 * $3; }
| expression '/' expression { $$ = $1 / $3; }
| '(' expression ')' { $$ = $2; }
;

The rules for expression are almost the same as before. To evaluate an operand
that consists of a variable, you obtain the value of the variable from the variables
array. To evaluate a parenthesized expression, just take the value of the expression
inside the parentheses.

The rules for statement are new, but simple. If a statement just consists of an
expression, it displays the value of the expression; otherwise, it assigns the result of
an expression to a variable, so you can store the value of the expression in the
array element associated with the variable.

A program is either a null input, a valid program followed by a statement, or a valid
program followed by an error. You do not have to do anything for null inputs. You do
not have to do anything for valid programs followed by statements either, since the
definition of statement does the work associated with each statement.

Now, consider what yyparse() does when it reads a line that contains an error.

1. Up to the point when it begins reading the line, it has collected a valid program
construct.

2. It begins reading the erroneous line. Since it has already gathered a valid
program construct, there are two rules that can apply to the situation:
program : program statement ’\n'
program : program error ’\n'

3. Partway through the line, it comes across an erroneous construct. This rules out
the possibility that the input has the form:
program statement ’\n'

Therefore the form of the input must be:
program error ’\n'

4. yyparse() keeps reading. Any sequence of tokens matches the error construct,
so yyparse() is happy.

5. When it finally gets to the end of the line, yyparse() has successfully read the
sequence:
program error ’\n'

This is one definition for a valid program construct. It performs the action
associated with this rule; a later section discusses the action.

When yyparse() finishes performing the action, it has successfully dealt with the
rule:
program : program error ’\n'

In essence, yyparse() has found one of the expected forms of a valid program
construct. yyparse() therefore proceeds to process the next line as if it has just
finished reading a valid program.

Using yyerror()
As soon as yyparse() encounters input that does not match any known
grammatical construction, it calls the yyerror() function. In this case, the argument
that it passes to yyerror() is:
"Syntax error"

20 z/OS V1R1.0 UNIX System Services Programming Tools

If you are using the default version of yyerror(), it simply displays this message to
stderr; however, you can supply your own yyerror() function if you want to do other
processing. See “The yyerror Function” on page 74 for more details.

The yyerrok Function
When yyparse() discovers ungrammatical input, it calls yyerror(). It also sets a flag
saying that it is now in an error state. yyparse() stays in this error state until it sees
three consecutive tokens that make sense (that is, are not part of the error).

It is possible for yyparse() to leave the error state as soon as it finds one or two
tokens that make sense; however, experience has shown that this is not enough to
be sure that the error has really passed; one or two tokens being correct may just
be a coincidence. If yyparse() leaves its error state quickly and then finds more
erroneous input, it raises another error, calls yyerror() again to issue a new error
message, and so on. In other words, it behaves as if it had found a brand new
error, even though it is likely just a continuation of the old error. Waiting for three
good tokens prevents a lot of error messages arising from a single error.

There are, however, times when you want yyparse() to leave the error state before
it finds the three good tokens. To do this, invoke the macro yyerrok, as in:
yyerrok;

In effect, yyerrok says, ‘‘The old error is finished. If something else goes wrong, it
is to be regarded as a new error.’’

This should help you understand the rule:
program : program error ’\n' { yyerrok; }

in the desk calculator program. Once yyparse() has found the newline that ends an
erroneous input line, you want to leave the error state. Any errors on the line should
be regarded as closed. If the next line also contains errors, you want to see a new
error message produced.

Other Error Handling Facilities
The error handling facilities in yacc offer a much greater level of sophistication than
the simple features discussed here. For further details, see Chapter 3.

A Sophisticated Example
This section examines a sophisticated desk calculator program. This is similar to
the example in the previous section, but has several new features:

v while loops (similar to C while loops).

v if and if-else constructs.

v The introduction of C comparison operations (>, >=, <, <=, ==, !=) to support
condition testing.

v An explicit print command that displays the result of an expression.

v Statements can now extend over more than one line, using a semicolon to mark
the end of a statement.

v Blocks of statements can now be enclosed in brace brackets, as in C.

Here is an example of the sort of input that the new program accepts:
a = 100;
while (a > 0) {

print a;
b = 50;

Chapter 1. Tutorial on Using lex and yacc 21

while (b > 0) {
print b;
b = b - 10;

}
a = a - 20;

}

These new features introduce an interesting amount of complexity to the problem.
For example, with the introduction of loops and if-else statements, you can no
longer evaluate a statement as soon as you come to the end of the statement; you
must save the input and run it when you reach the end of each construct. Because
you can nest constructs, you need a way to record a lot of information.

Multiple Values for yylval
By default, the yylval variable has the int type. Up until now, this has been
satisfactory; however, yylval should be able to represent the value of any token you
find, which means that in some programs it should be able to represent more than
just the int type. This means giving yylval a union type, the different interpretations
of which match the various types of value that tokens may have. This is done in the
yacc input using a construct of the form:
%union {
/* union declaration */
};

For example, suppose that you want the yylex routine to be able to return either
integers or floating point numbers. Then you write:
%union {
int i;
float f;
};

to show that yylval can have either type.

In the case of the desk calculator, you want to represent variables and integers. You
can therefore define:
%union {
char variable;
int ivalue;
};

lex Input
Here is the lex input for the new desk calculator program. This example is provided
as dc3.l.
%{
#include "header.h"
#include "y.tab.h"
char upper[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
char lower[] = "abcdefghijklmnopqrstuvwxyz";
%}

%%

[[:upper:]] {
int i;
for (i = 0; *yytext != upper[i]; ++i)

;
yylval.variable = i;
return VARIABLE;

}

22 z/OS V1R1.0 UNIX System Services Programming Tools

[[:lower:]] {
int i;
for (i = 0; *yytext != lower[i]; ++i)

;
yylval.variable = i;
return VARIABLE;

}

[[:digit:]]+ {
yylval.ivalue = strtol(yytext, (char **)NULL, 0);
return INTEGER;

}

0x[[:xdigit:]]+ {
yylval.ivalue = strtol(yytext, (char **)NULL, 16);
return INTEGER;

}

[-{}()<>=+/*;] return yylval.ivalue = *yytext;

">=" return yylval.ivalue = GE;
"<=" return yylval.ivalue = LE;
"==" return yylval.ivalue = EQ;
"!=" return yylval.ivalue = NE;

"while" return WHILE;
"if" return IF;
"else" return ELSE;
"print" return PRINT;

[\t\n] ;

. yyerror("Unknown character");

The new definitions are:
">=" return GE;
"<=" return LE;
"==" return EQ;
"!=" return NE;
"while" return WHILE;
"if" return IF;
"else" return ELSE;
"print" return PRINT;

The symbols GE, LE, and so on are all C definitions. They represent new kinds of
tokens that can be found in the input. If yylex() finds one of these new tokens, it
returns the corresponding defined value.

These definitions, as given, recognize only lowercase keywords. The translation
rule:
"while"|"WHILE" return WHILE;

recognizes either all uppercase or all lowercase. To accept mixed case, you can
write:
[wW][hH][iI][lL][eE] return WHILE;

The Bare Grammar
The following is the bare grammar without actions attached to the rules in the rules
section. It also leaves out a bit of explicit code in the declarations section.

Chapter 1. Tutorial on Using lex and yacc 23

%union {
int ivalue;
char variable;
struct nnode *np; /* discussed later */

};
.*.5v
%token <variable> VARIABLE
%token <ivalue> INTEGER '+' '-' '*' '/' '<' '>' GE LE NE EQ

%token WHILE IF PRINT ELSE
%left GE LE EQ NE '>' '<'
%left '+' '-'
%left '*' '/'

%type <np> statement expression statementlist simplestatement

%%

program: program statement
| error ';'
| /* NOTHING */
;

statement: simplestatement ';'
| WHILE '(' expression ')' statement
| IF '(' expression ')' statement ELSE statement
| IF '(' expression ')' statement
| '{' statementlist '}'
;

statementlist: statement
| statementlist statement
;

simplestatement: expression
| PRINT expression
| VARIABLE '=' expression
;

expression: INTEGER
| VARIABLE
| expression '+' expression
| expression '-' expression
| expression '*' expression
| expression '/' expression
| expression '<' expression
| expression '>' expression
| expression GE expression
| expression LE expression
| expression EQ expression
| expression NE expression
| '(' expression ')'
;

As you can see, the definition of the grammar is quite straightforward. You may
notice that the format of the %token lines has changed.
%token <ivalue> INTEGER

states that when the return value of yylex() is INTEGER, the yyparse() routine is to
use the ivalue interpretation of yylval. The same sort of thing applies to:
%token <variable> VARIABLE

You may also notice that this example introduces:

24 z/OS V1R1.0 UNIX System Services Programming Tools

%type <np> statement expression statementlist simplestatement

as a new statement. This tells how to interpret the $$ construct in definitions of
statement, expression, statementlist, and simplestatement. In those constructs,
$$ (the value of the constructs) should have the np type. Since program does not
have an assignment to $$, it is not given a type.

np is given as another possible interpretation in the %union directive. The %union
gives possible interpretations of both yylval and $$, so we had to add the extra
interpretation to the %union.

In general, %type lines can indicate the type of $$ in any construct. The form of the
directive is:
%type <interp>
construct construct ...

where interp is one of the interpretation names given in the %union directive.

The next section discusses what the np type does.

Expression Trees
Earlier this chapter discussed the need to record expression while reading them for
future evaluation. The best way to do this is by using a tree. To understand how a
tree works, consider an expression such as:
8 + 9 * 5

which is evaluated as:
8 + (9 * 5)

Each operation has three components: the operator, and the two operands.

The operators are called the nodes of the tree. At each node, there are two
branches, representing the two operands of the operator. The end of each branch is
a simple operand that is not an expression; such an operand is called a leaf.

Tree structures are a good way to represent expressions. They record all the
information needed to evaluate the expression.

59

*

+

8

Chapter 1. Tutorial on Using lex and yacc 25

Tree structures can also represent a list of statements. In this case, think of the
operator as the semicolon that separates the two.

A while loop is represented similarly, with one branch giving the condition
expression and the other giving the statement list. Finally, an if-else statement can
be represented as a tree with three branches: one for the condition expression, one
for the if statements, and one for the else statements. An if without an else is just
a special case where the third branch is empty.

To represent these trees, the desk calculator example creates the following data
types. These are defined in the header file header.h, which you include (with the
#include directive) into the appropriate C source code files.
typedef union {

int value;
struct nnode *np;

} ITEM;
typedef struct nnode {

int operator;
ITEM left, right, third;

} NODE;
#define LEFT left.np
#define RIGHT right.np

#define NNULL ((NODE *) 0)
#define node(a,b,c) triple(a, b, c, NNULL)

extern int variables[26];

int execute(NODE *np);

To record an expression, use malloc() to allocate an nnode structure. The operator
is set to the operator of the expression; the tokens INTEGER, VARIABLE, WHILE,
and IF are also used as appropriate. For leaves of the tree (simple operands), call a
function named leaf() to fill in the left field and put null pointers in the other two. For
operations that have two operands, call a function named node() to fill in the left
and right fields with pointers to trees for the operands; the third field is given a null
pointer value. For operations with three operands, call a function named triple() to
fill in all three pointers.

As input is collected, tree structures are allocated and organized. When a complete
statement has been collected, you can then call a function named execute() to walk
through the tree and run the statement appropriately.

When the statement has been run, the tree is no longer needed. At that point, call a
function named freeall() to free the memory used for all the structures that make up
the tree.

;

s t a t e m e n t 1 s t a t e m e n t 2

26 z/OS V1R1.0 UNIX System Services Programming Tools

Putting all this together produces the following grammar for the desk calculator
program. Note that the functions part of the input contains everything you need
except the execute() function. This example is provided in dc3.y.
%{
#include <stdio.h>
#include <stdlib.h>

#include "header.h"

static NODE *nalloc(void);
static NODE *leaf(int type, int value);
static NODE *triple(int op, NODE *left, NODE *right, NODE *third);
static void freeall(NODE *np);

int variables[26];
%}

%union {
int ivalue;
char variable;
NODE *np;

};

%token <variable> VARIABLE
%token <ivalue> INTEGER '+' '-' '*' '/' '<' '>' GE LE NE EQ

%token WHILE IF PRINT ELSE
%left GE LE EQ NE '>' '<'
%left '+' '-'
%left '*' '/'

%type <np> statement expression statementlist simplestatement

%%

program:
program statement { execute($2); freeall($2); }

| program error ';' { yyerrok; }
| /* NULL */
;

statement:
simplestatement ';'

| WHILE '(' expression ')' statement
{ $$ = node(WHILE, $3, $5); }

| IF '(' expression ')' statement ELSE statement
{ $$ = triple(IF,$3,$5,$7); }

| IF '(' expression ')' statement
{ $$ = triple(IF,$3,$5,NNULL); }

| '{' statementlist '}'
{ $$ = $2; }

;

statementlist:
statement

| statementlist statement { $$ = node(';', $1, $2); }
;

simplestatement:
expression

| PRINT expression { $$ = node(PRINT,$2,NNULL); }
| VARIABLE '=' expression

{ $$ = node('=', leaf(VARIABLE, $1), $3); }
;

expression:

Chapter 1. Tutorial on Using lex and yacc 27

INTEGER { $$ = leaf(INTEGER, $1); }
| VARIABLE { $$ = leaf(VARIABLE, $1); }
| expression '+' expression

{ binary: $$ = node($2, $1, $3); }
| expression '-' expression { goto binary; }
| expression '*' expression { goto binary; }
| expression '/' expression { goto binary; }
| expression '<' expression { goto binary; }
| expression '>' expression { goto binary; }
| expression GE expression { goto binary; }
| expression LE expression { goto binary; }
| expression NE expression { goto binary; }
| expression EQ expression { goto binary; }
| '(' expression ')' { $$ = $2; }
;

%%

static NODE *
nalloc()
{

NODE *np;

np = (NODE *) malloc(sizeof(NODE));
if (np == NNULL) {

printf("Out of Memory\n");
exit(1);

}
return np;

}

static NODE *
leaf(type, value)
int type, value;
{

NODE *np = nalloc();

np->operator = type;
np->left.value = value;
return np;

}

static NODE *
triple(op, left, right, third)
int op;
NODE *left, *right, *third;
{

NODE *np = nalloc();

np->operator = op;
np->left.np = left;
np->right.np = right;
np->third.np = third;
return np;

}

static void
freeall(np)
NODE *np;
{

if (np == NNULL)
return;

switch(np->operator) {
case IF: /* Triple */

freeall(np->third.np);
/* FALLTHROUGH */

/* Binary */

28 z/OS V1R1.0 UNIX System Services Programming Tools

case '+': case '-': case '*': case '/':
case ';': case '<': case '>':
case GE: case LE: case NE: case EQ:
case WHILE:
case '=':

freeall(np->RIGHT);
/* FALLTHROUGH */
case PRINT: /* Unary */

freeall(np->LEFT);
break;

}
free(np);

}

Note that there is a shift-reduce conflict in this grammar. This is due to the rules:
statement: IF ’(’ expression ’)’ statement ELSE statement ;
statement: IF ’(’ expression ’)’ statement ;

The default rules for resolving this conflict favor the shift action, which is what is
desired in this case. An else that follows an if statement matches with the closest
preceding if. (See Chapter 3 for more details.)

The source code for the execute() function can be compiled separately. It walks
through the tree node by node, calling itself recursively to run the branches at each
node. The execute() function is basically a big switch statement, which looks at the
node operator and takes appropriate action. It is quite straightforward. In the
examples provided, this is file execute.c.
#include <stdio.h>
#include <stdlib.h>

#include "header.h"
#include "y.tab.h"

int
execute(np)
struct nnode *np;
{

switch(np->operator) {
case INTEGER: return np->left.value;
case VARIABLE: return variables[np->left.value];
case '+': return execute(np->LEFT) + execute(np->RIGHT);
case '-': return execute(np->LEFT) - execute(np->RIGHT);
case '*': return execute(np->LEFT) * execute(np->RIGHT);
case '/': return execute(np->LEFT) / execute(np->RIGHT);
case '<': return execute(np->LEFT) < execute(np->RIGHT);
case '>': return execute(np->LEFT) > execute(np->RIGHT);
case GE: return execute(np->LEFT) >= execute(np->RIGHT);
case LE: return execute(np->LEFT) <= execute(np->RIGHT);
case NE: return execute(np->LEFT) != execute(np->RIGHT);
case EQ: return execute(np->LEFT) == execute(np->RIGHT);
case PRINT: printf("%d\n", execute(np->LEFT)); return 0;
case ';': execute(np->LEFT); return execute(np->RIGHT);
case '=':

return
variables[np->LEFT->left.value] = execute(np->RIGHT);

case WHILE:
while (execute(np->LEFT))

execute(np->RIGHT);
return 0;

case IF:
if (execute(np->LEFT))

execute(np->RIGHT);
else if (np->third.np != NNULL)

execute(np->third.np);

Chapter 1. Tutorial on Using lex and yacc 29

return 0;
}
printf("Internal error! Bad node type!");
exit(1);

}

Note that execute() calls the yyerror() function to issue error messages.

Compilation
By changing the execute function, you can compile the input program instead of
just running it. The output of the function is the sequence of hardware commands
required to run the program. Doing this for a real machine is too complicated for the
purposes of this tutorial; however, this section shows how to do it for a simple
hypothetical machine.

Note: This section assumes that you have a basic knowledge of computer
architecture.

Consider a hypothetical machine with the following characteristics:

v The machine works with a hardware stack.

v It has 26 registers, numbered 0 through 25.

v It has a push register command that pushes the value of a register onto the
stack.

v It has a push constant command (push) that pushes the value of a constant onto
the stack.

v It has a pop register command (pop) that pops the top value off the stack and
stores it in a specified register.

v It has the following binary operators:
add sub /* + and - */
mul div /* * and / */
cmpl cmpg /* < and > */
cmple cmpge /* <= and >= */
cmpeq cmpne /* == and != */

Each of these instructions pops the top two values from the stack, performs the
indicated operation, and then pushes the result. The result of a comparison is 1 if
true, and 0 if false.

v There is a print operation that pops the top value from the stack and displays it.

v There is a jmp command that transfers control to a different location.

v There is a jfalse command that pops a value off the stack and transfers to a
different location if the value is zero.

Given this setup, here is the compiling version of execute. Store this in a file so
that you can run the compiled program anytime. In the examples, this is the file
compile.c.
#include <stdio.h>
#include <stdlib.h>

#include "header.h"
#include "y.tab.h"

int
execute(np)
struct nnode *np;
{

int toplab, botlab, falselab;

30 z/OS V1R1.0 UNIX System Services Programming Tools

static int labno;

switch(np->operator) {
case INTEGER:

printf("\tpush\t$%d\n", np->left.value);
break;

case VARIABLE:
printf("\tpush\tr%d\n", np->left.value);
break;

case '=':
execute(np->RIGHT);
printf("\tpop\tr%d\n", np->LEFT->left.value);
return 0;

case '+': case '*': case '-': case '/':
case '<': case '>': case GE: case LE: case NEcreate_option

execute(np->LEFT); execute(np->RIGHT);
switch(np->operator) {
case '+': printf("\tadd\n"); break;
case '-': printf("\tsub\n"); break;
case '*': printf("\tmul\n"); break;
case '/': printf("\tdiv\n"); break;
case '<': printf("\tcmpl\n"); break;
case '>': printf("\tcmpg\n"); break;
case GE: printf("\tcmpge\n"); break;
case LE: printf("\tcmple\n"); break;
case NE: printf("\tcmpne\n"); break;
case EQ: printf("\tcmpeq\n"); break;
}
break;

case PRINT:
execute(np->LEFT);
printf("\tprint\n");
break;

case ';':
execute(np->LEFT); execute(np->RIGHT);
break;

case WHILE:
printf("L%d:", toplab = labno++);
execute(np->LEFT);
printf("\tjfalse\tL%d\n", botlab = labno++);
execute(np->RIGHT);
printf("\tjmp\tL%d\n", toplab);
printf("L%d:", botlab);
break;

case IF:
execute(np->LEFT);
printf("\tjz\tL%d\n", falselab = labno++);
execute(np->RIGHT);
printf("\tjmp\tL%d\n", botlab = labno++);
printf("L%d:", falselab);
if(np->third.np != NNULL)

execute(np->third.np);
printf("L%d:", botlab);
break;

default:
printf("Internal error! Bad node type!");
exit(1);

}
}

Chapter 1. Tutorial on Using lex and yacc 31

32 z/OS V1R1.0 UNIX System Services Programming Tools

Chapter 2. Generating a Lexical Analyzer Using lex

A computer program often has an input stream of characters that are easier to
process as larger elements, such as tokens or names. A compiler is a common
example of such a program: It reads a stream of characters forming a program, and
converts this stream into a sequence of items (for example, identifiers and
operators) for parsing. In a compiler, the procedures that do this are collectively
called the lexical analyzer or scanner.

Expressing the scanning task in a general-purpose procedural programming
language is usually difficult. The scanning transformations are usually easy enough
to describe; however, it is hard to express them concisely in these languages.

Introduction to the lex Utility
The z/OS UNIX lex utility is a program that writes large parts of a lexical analyzer
automatically, based on a description supplied by the programmer. The items or
tokens to be recognized are described as regular expressions in a special-purpose
language for writing lexical analyzers. lex translates this language, which is easy to
write, into an analyzer that is both fast and compact.

The purpose of a lex program is to read an input stream and recognize tokens. As
the lexical analyzer usually exists as a subroutine in a larger set of programs, it is
usually written to return a token number, indicating the token that was found, and
possibly a token value, providing more detailed information about the token (for
example, a copy of the token itself, or an index into a symbol table). This need not
be the only possibility; by itself, a lex program is often a good description of the
structure of a computation.

lex is based on a similar program written by Charles Forsyth at the University of
Waterloo (Ontario, Canada), and described in an unpublished paper entitled “A
Lexical Analyzer Generator” (1978). The implementation is loosely based on the
description and suggestions in the book Compilers, Principles, Techniques, and
Tools , by A. V. Aho, Ravi Sethi, and J. D. Ullman (Addison-Wesley, 1986).

This lex was inspired by a processor of the same name at Bell Labs, which also
runs under UNIX systems, and, more distantly, on AED-0. UNIX lex is described in
the paper “Lex — A Lexical Analyser Generator,” by M. E. Lesk, Computer Science
Technical Report 39 (Bell Labs, October 1975). AED-0 is described in “Automatic
Generation of Efficient Lexical Analysers Using Finite State Techniques,” by W. L.
Johnson, appearing in Communications of the ACM 11 (no. 12, 1968): 805-13.

The lex Input Language
In this section we discuss the lex input language. This includes the following topics:

v Fundamentals of the language, including characters, strings, and character
classes

v Putting together the fundamentals to form regular expressions

v lex programs and their basic form

v Using definitions for regular expressions

v Translations, which associate regular expressions with actions

v C declarations that can be included in lex programs

© Copyright IBM Corp. 1996, 2001 33

Language Fundamentals
lex expressions (also known as regular expressions or patterns) are basic to its
operation. The nature and construction of these expressions is described first.

Characters, strings, and sets of characters called character classes are the
fundamental elements of lex expressions. These stand for, or match, characters in
the input stream; characters and character classes match single characters of the
input, whereas strings match a fixed-length sequence of input characters.

Characters
A character is any character. The letters a through z, A through Z, the underscore
_, and the digits 0 to 9 stand for single occurrences of themselves in the input. Most
other characters are treated specially by lex. The escape character (\) written in
front of a special character has no special significance; it can match an occurrence
of itself in the input stream.

The escape can also be used to create an escape sequence standing for a different
character. lex understands the following C language escape sequences. The value
in parentheses is the EBCDIC value for that escape sequence. With these, you can
represent any 8-bit character, including the escape character, quotes, and newlines:
\a BEL (0X2F)
\b BS (0X16)
\f FF (0X0C)
\n NL (0X15)
\r CR (0X0D)
\t TAB (0X05)
\v VTAB (0X0B)
\nnn (nnn)
\xhh (hh)
\” ”
\’ ’
\c c
\\ \

where nnn is a number in octal, hh is a number in hexadecimal, and c is any
printable character.

Strings
A string is a sequence of characters, not including newline, enclosed in double
quotes. For example, “+” is a string that matches a single + in the input. Within a
string, only the escape character (\) has any special significance. The escape
sequences given earlier are recognized within a string. You can continue long
strings across a line by placing an escape before the end of the line. The escape
and the newline are not incorporated into the string.

Character Classes
A sequence of characters enclosed by brackets—[and]—forms a character class,
which matches a single instance of any character within the brackets. If a circumflex
(|) follows the opening bracket, the class matches any characters except those
inside the brackets.

Within a character class the character − is treated specially, unless it occurs at the
start (after any |) or end of the character class. If two characters are written
separated by − the sequence is taken to include all characters in the character set
from the first to the second (using the numeric values of characters in the character
set). Thus [a−z} stands for all characters between a and z. You can use the
escapes used in strings in character classes as well.

34 z/OS V1R1.0 UNIX System Services Programming Tools

The POSIX locale is supported in lex. These are provided as special sequences
that are valid only within character class definitions. The sequences are:
[.coll.] collation of character coll
[=equiv=] collation of the character class equiv
[:char-class:] any of the characters from char-class

lex accepts the POSIX locale only for these definitions. In particular, multicharacter
collation symbols are not supported. You can still use, for example, the character
class:
[[.a.]-[.z."]

which is equivalent to:
[a-z]

for the POSIX locale.

lex accepts the POSIX-defined character classes shown in Table 1.

It is more portable (and more obvious) to use the new expressions; for example, the
character class:
[[:alnum:]]

is the same as:
[a-zA-Z0-9]

in the POSIX locale, but is portable to other locales.

There is a special character class, written as—which matches any character but
newline. Newline must always be matched explicitly.

Table 1. POSIX-Defined Character Classes in lex

Name Definition

[:alpha:] Any letter

[:lower:] A lowercase letter

[:upper:] An uppercase letter

[:digit:] Any digit

[:xdigit:] Any digit, or the letters a–fA–F

[:alnum:] Any letter or digit

[:cntrl:] Any control (nonprinting) character

[:space:] Any spacing character, including blank, tab, and carriage return

[:print:] Any printable character

[:blank:] A blank or tab character

[:graph:] Any printable character other than space

[:punct:] A punctuation mark

Putting Things Together
Various operators are available to construct regular expressions or patterns from
strings, characters, and character classes. A reference to an occurrence of a regular
expression is generally taken to mean an occurrence of any string matched by that
regular expression.

Chapter 2. Generating a Lexical Analyzer Using lex 35

The operators are presented in order of decreasing priority. In all cases, operators
work on characters, character classes, strings, or regular expressions.

1. Any character, string, or character class forms a regular expression that
matches whatever the character, string, or character class stands for (as
described earlier).

2. The operator * following a regular expression forms a new regular expression,
which matches an arbitrary number of (that is, zero or more) adjacent
occurrences of the first regular expression. The operation is often referred to as
(Kleene) closure. For example, the expression:
ab*

matches a followed by zero or more b’s; that is a, ab, abb, and so on.

3. The operator + is used like * but forms a regular expression that matches one
or more adjacent occurrences of a given regular expression. For example:
ab+

matches a followed by one or more b’s. This is equivalent to abb*.

4. A repetition count can follow a regular expression, enclosed in {}. This is
analogous to simply writing the same regular expression as many times as
indicated. A range of repetitions can be provided, separated by a comma. For
example:
ab{4}

matches a followed by exactly four b’s. That is, abbbb.
ab{2,4}

matches a followed by from 2 to 4 b’s.

5. The operator ? written after a regular expression indicates that the expression is
optional: the resulting regular expression matches either the first regular
expression, or the empty string. For example:
[[:lower:]]?

matches a lowercase letter or nothing (an optional letter).

6. The operation of concatenation of two regular expressions is expressed simply
by writing the regular expressions adjacent to each other. The resulting regular
expression matches any occurrence of the first regular expression followed
directly by an occurrence of the second regular expression. For example:
a*b*

matches any number of a’s followed immediately by any number of b’s.

7. The operator |, alternation, written between two regular expressions forms a
regular expression that matches an occurrence of the first regular expression or
an occurrence of the second regular expression. For example:
[[:lower:]]│[[:digit:]]

matches a lowercase letter or a digit. This is equivalent to:
[[:lower:][:digit:]]

8. You can enclose any regular expression in parentheses to cause the priority of
operators to be overridden. For example, the expression:

[[:lower:]]([[:digit:]]│[[:lower:]])*

36 z/OS V1R1.0 UNIX System Services Programming Tools

matches a name starting with a lowercase letter, followed by any number of
lowercase letters or digits.

9. Operators lose special meaning when escaped by \ or quoted as in a string
"...". The characters also stand for themselves within brackets.

lex Programs
A lex program consists of three sections: a section containing definitions, a section
containing translations, and a section containing functions. The style of this layout is
similar to that of yacc.

Throughout a lex program, you can freely use newlines and C-style comments; they
are treated as white space. Lines starting with a blank or tab are copied through to
the lex output file. Blanks and tabs are usually ignored, except when you use them
to separate names from definitions, or expressions from actions.

The definition section is separated from the following section by a line consisting
only of %%. In this section, named regular expressions can be defined, which
means you can use names of regular expressions in the translation section, in
place of common subexpressions, to make that section more readable. The
definition section can be empty, but the %% separator is required.

The translation section follows the definition section, and contains regular
expressions paired with actions, which describe what the lexical analyzer is to do
when a match of a given regular expression is found. The first nonescaped space
or tab on a line in the translation section signals the start of the action. Actions are
further described in later sections of this chapter.

You can omit the function section; if it is present, it is separated from the translation
section by a line containing only %%. This section can contain anything, because it
is simply attached to the end of the lex output file.

Definitions
You can define regular expressions once, and then refer to them by name in any
subsequent regular expression. Definition must precede use. A definition has the
form:
name expression

where a name is composed of a letter or underscore, followed by a sequence of
letters, underscores, or digits. Within an expression, you can refer to another
defined name by enclosing that name in braces, as in {name}. For example:
digit [[:digit:]]
letter [[:alpha:]]
name {letter}({letter}│{digit})

which defines an expression called name that matches a variable name. A definition
must completely fit onto one line.

As well as definitions, the definition section can also contain declarations and
directives. Declarations are described in “Declarations” on page 39. Directives are
used to define start conditions and to change the size of internal lex tables.

New directives are provided to define the type of yytext. The %array directive
causes yytext to be defined as an array of char; this is also the default. The
%pointer directive causes yytext to be defined as a pointer to an array of char.

Chapter 2. Generating a Lexical Analyzer Using lex 37

Internal lex tables include NFA and DFA tables, and a move table. (For an
explanation of these terms, see the book Compilers, Principles, Techniques, and
Tools mentioned in the beginning of this chapter.) The default sizes of these tables
may not be sufficient for large scanners. You can change table sizes by the
following directives, with the number size giving the number of entries to use:

Table 2. lex Table Size Specifications

Line Table Size Affected Default Size

%e size Number of NFA entries 1000

%n size Number of DFA entries 500

%p size Number of move entries 2500

Often, you can reduce the NFA and DFA space to make room for more move
entries. UNIX lex allows additional table size specifications, as follows:

Table 3. Additional UNIX lex Table Size Specifications

Line Table Size Affected

%asize Number of transitions

%ksize Packed character classes

%osize Output array size

As these sizes are unnecessary in lex, a warning is issued, and the specification is
ignored.

Translations
An action can be associated with a regular expression in the translation section.
The resulting translation has the following form:
expression action

or
expression {
action
}

The action is given as either a single C statement on the rest of the line, or a C
statement within braces, possibly spread out over a number of lines, and starting
after the first blank or tab on the line. (Remember not to use blanks or tabs inside
an expression unless they are escaped with \ or within strings.)

A compiler typically enters an identifier into a symbol table, reads and remembers a
string, or returns a particular token to the parser. In text processing, you might want
to reproduce most of the input stream on an output stream unchanged, but make
substitutions when a particular sequence of characters is found.

Allowing a translation action to be in C provides a great deal of power to the
scanner, as shown in later sections. A library of C functions and macros is provided
to allow controlled access to some of the data structures used by the scanner.

Token String and Length
A lex expression typically matches a number of input strings. For example:
%%
[[:alpha:]_][[:alnum:]_]*

38 z/OS V1R1.0 UNIX System Services Programming Tools

matches any C identifiers in the input. It is useful to be able to obtain the portion of
the input matched by such expressions, for use by the action code.

In lex, the current token is found in the character array yytext. The end of the
token is marked by a null byte, so that it has the usual form of a string in C. The
following lex program displays all the identifiers in a C program (including
keywords), one per line.
%%
[[:alpha:]_][[:alnum:]_]* printf("%s\n", yytext);
\n│. ; /* discard other input */

In some applications, the null byte might itself be a valid input character, and it may
be useful to know the true length of the token. The value yyleng holds the length of
the token in yytext and also may save a call to strlen() to determine the length of a
token.

Numbers and Values
Typically, a lexical analyzer returns a value to its caller indicating which token has
been found. Within an action, this is done by writing a C return statement, which
returns the appropriate value:
digit [[:digit:]]
letter [[:lower:]]
integer {digit}+
name {letter}({letter}│{digit})*
%%
"goto" { return GOTO; }
{integer} { return INTEGER; }
{name} { lookup(yytext); return NAME; }

In many cases, the lexical analyzer must supply other information to its caller.
Within a compiler, for example, when an identifier is recognized, both a pointer to a
symbol table entry and the token number NAME must be returned; however, the C
return statement can return only a single value. yacc solves this problem by having
the lexical analyzer set an external yylval to the token value, and return the token
number. This mechanism can be used by lex programs when used with yacc;
otherwise, you can define another interface. For example:
{name} { yylval = lookup(yytext); return(NAME); }

In the absence of a return statement, the lexical analyzer does not return to its
caller, but looks instead for another token. This is typically used when a comment
sequence has been discovered and discarded, or when the purpose of the lex
program is to change a set of tokens into some other set of strings.

To summarize, the token number is set by the action with a return statement, and
the token value is set by assigning this value to the external value yylval. An action
need not return.

Declarations
C declarations can be included in both the definition and translation sections. C
code in the declarations section should be bracketed by the sequence %{ and %}
on lines by themselves, as in yacc. Such declarations are external to the function
yylex(). The characters within these brackets are copied unchanged into the
appropriate spots in the lexical analyzer program that lex writes.

An action enclosed in braces forms a local block, and declarations therein are local
to the particular action, as determined by C scope rules.

Chapter 2. Generating a Lexical Analyzer Using lex 39

To declare variables that are local within yylex(), you can use the same %{ .. %}
syntax at the beginning of the translation section. Names declared in this way do
not conflict with other external variables.

Using lex
This section discusses how to use lex in practice, with attention to the following
aspects:
v Using the lexical analyzer, yylex(), in conjunction with yacc
v Generating a table file from the lex program
v Compiling the table file
v An overview of the lex library routines fully usable with yylex()

Using yylex()
The structure of lex programs is influenced by what yacc requires of its lexical
analyzer.

To begin with, the lexical analyzer is named yylex() and has no parameters. It is
expected to return a token number (of type int), where that number is determined
by yacc. The token number for a character is its value as a C character constant.
yacc can also be used to define token names, using the token statement, where C
definitions of these tokens can be written on the file y.tab.h with the -d option to
yacc. This file defines each token name as its token number.

yacc also allows yylex() to pass a value to the yacc action routines, by assigning
that value to the external yylval. The type of yylval is by default int, but this may
be changed by the use of the yacc %union statement. lex assumes that the
programmer defines yylval correctly; yacc writes a definition for yylval to the file
y.tab.h if the %union statement is used.

For compatibility with yacc, lex provides a lexical analyzer named yylex(), which
interprets tables formed from the lex program, and which returns token numbers
from the actions it performs. The actions may include assignments to yylval (or its
components, if it is a union of types), so that use with yacc is straightforward.

In the absence of a return statement in an action, yylex() does not return but
continues to look for further matches. If some computation is performed entirely by
the lexical analyzer with no normal return from any action, a suitable main program
is:
#include <stdio.h>

main()
{
return yylex();
}

The value 0 (zero) is returned by yylex() at end-of-file; this program allows for an
error return to the program’s caller. You can find such a main program in the lex
library.

Generating a Table File
In the absence of instructions to the contrary, lex reads a given lex language file,
and produces a C program file lex.yy.c, which contains a set of tables, and a
yylex() program to interpret them. The actions you supply in each translation are
combined with a switch statement into a single function, which the table interpreter
calls when a particular token is found. The contents of the program section of the

40 z/OS V1R1.0 UNIX System Services Programming Tools

lex file are added at the end of the C program file. Declarations and macro
definitions required by lex are inserted at the top of the file. You can modify some
of these, as described in the following sections. lex uses the standard I/O library,
and automatically generates the directive:
#include <stdio.h>

required to use that library.

A set of C macros is provided that allows the user to access values maintained by
lex, or to control the operation of the lexical analyzer in various ways.

The values maintained by lex are:

yytext The characters forming the current token, terminated by a null byte.

yyleng
The length of the token; this is useful if the token may contain a null byte.

yylineno
The current line number of the input.

Some other defined constants are also special to lex:

YYLEX
Provides the name of the lexical analyzer function. By default, this is yylex,
but a user may use #undef and then redefine YYLEX to obtain another
name.

YYLMAX
Specifies the maximum length of the token buffer yytext. The default length
is 100 characters. This value is checked when pushing characters back into
the input (see unput in “The lex Library Routines” on page 42). During the
scan, an error message is produced if insufficient space remains.

Compiling the Table File
lex is called by the command line:
lex source.l

where source.l is the name of a file containing a lex source program. lex reads the
given file, and (in the absence of any unrecoverable errors) produces the file
lex.yy.c, described earlier.

Compile this file in the usual way. Using the c89 command, you can type something
like this:
c89 −c lex.yy.c

When linking, the lex library is usually required. This library, described in “The lex
Library Routines” on page 42, can be in a number of different places. The usual
library is:
/usr/lib/libl.a

which can be abbreviated on the c89 command line to -11.

As lex writes its output, it prepends the contents of the /etc/yylex.c file. The
yylex.c file contains the prototype scanner.

Chapter 2. Generating a Lexical Analyzer Using lex 41

The following example shows the use of a program with lex and yacc, with the lex
source in scanner.l and the yacc source in grammar.y. The user code is in the file
code.c, and the code uses components of the lex library and the main() routine
from the yacc library.

Note: The yacc library is specified first. (There is a main() routine in the lex library
as well; if the lex library is specified first, that main() is used, calling the
lexical analyzer once and exiting.) The user code and the scanner make use
of tokens defined by yacc; so the -D option is given to yacc to create the
gram.h file:

lex scanner.l
yacc -D gram.h grammar.y
c89 code.c lex.yy.c y.tab.c -ly -ll

The gram.h file has to be included by the scanner.l file, with:
%{
#include “gram.h”
%}

in the definition section of the scanner lex file.

The lex Library Routines
The lex library contains routines that are either essential or generally useful to lex
programs. These routines have an intimate knowledge of yylex(), and can correctly
manipulate the input stream.

Those functions that produce diagnostics do so by calling yyerror(), which is called
as:
external int yyerror(const char * format)

and is expected to write its arguments using fprintf, followed by a newline, on
some output stream, typically stderr. A yyerror() function is included in the lex
library but can be redefined by the programmer.

A description of the typedefs, constants, variables, macros, functions, and library
routines currently available follows:

Typedefs
YY_SAVED

A typedef that is an internal data structure used to save the current state of
the scanner. See the description of yySaveScan in the functions
subsection.

yy_state_t
A typedef defined by lex to be the appropriate unsigned integral for
indexing state tables. It will be either “unsigned char” or “unsigned int”,
depending on the size of your scanner.

Constants
YYLMAX

A constant that defines the maximum length of tokens the lex scanner can
recognize. Its default value is 100 characters, and can be changed with the
C preprocessor #undef and #define directives in the input declarations
section.

42 z/OS V1R1.0 UNIX System Services Programming Tools

Variables
yyleng

A variable that defines the length of the input token in yytext.

yylineno
A variable that defines the current input line number, maintained by input
and yycomment.

yyin A variable that determines the input stream for the yylex() and input
functions.

yyout A variable that determines the output stream for the output macro, which
processes input that does not match any rules. The values of yyin and
yyout can be changed by assignment.

yytext A variable that defines the current input token recognized by the lex
scanner. It is accessible both within a lex action and on return of the
yylex() function. It is terminated with a null (zero) byte. If %pointer is
specified in the definitions section, yytext is defined as a pointer to a
preallocated array of char.

Macros
BEGIN

A macro that can be used as an action to cause lex to enter a new start
condition.

ECHO A macro that can be used as an action to copy the matched input token
yytext to the lex output stream yyout.

NLSTATE
A macro that resets yylex() as though a newline had been seen on the
input.

REJECT
A macro that causes yylex() to discard the current match and examine the
next possible match, if any.

YY_FATAL
A macro that can be called with a string message upon an error. The
message is printed to stderr, and yylex() exits with an error code of 1.

yygetc()
A macro that is called by yylex() to obtain characters. Currently, this is
defined as:
#define yygetc() getc(yyin)

A new version can be defined for special purposes, by first using #undef to
remove the current macro definition.

YY_INIT
A macro that reinitializes yylex() from an unknown state. This macro can be
used only in a lex action; otherwise, use the function yy_reset.

YY_INTERACTIVE
A macro that is normally defined in the code as being equal to 1. If defined
as 1, yylex() attempts to satisfy its input requirements without looking
ahead past newlines, which is useful for interactive input. If
YY_INTERACTIVE is defined as 0, yylex() does look past newlines; it is
also slightly faster.

Chapter 2. Generating a Lexical Analyzer Using lex 43

YY_PRESERVE
A macro that is normally not defined. If defined, when an expression is
matched, lex saves any pushback in yytext before calling any user action
and restores this pushback after the action. This may be needed for older
lex programs that change yytext. It is not recommended, because the state
saves are fairly expensive.

Functions
input A function that returns the next character from the lex input stream. (This

means that lex does not see it.) This function properly accounts for any
lookahead that lex may require.

unput(int c)
A function that may be called by a translation when lex recognizes the
sequence of characters that marks the start of a comment in the given
syntax.

yycomment
A function that takes a sequence of characters marking the end of a
comment, and skips over characters in the input stream until this sequence
is found. Newlines found while skipping characters increment the external
yylineno. An unexpected end-of-file produces a suitable diagnostic (using
yyerror). The following lex rules match C and shell-style comments:
"/*" yycomment("*/");
#.*\n ;

A lex pattern is more efficient at recognizing a newline-terminated comment,
whereas the function can handle comments longer than YYLMAX.

yyerror
A function that is used by routines that generate diagnostics. A version of
yyerror() is provided in the library, which simply passes its arguments to
fprintf with output to the error stream stderr. A newline is written following
the message. yyerror() returns an integer value which is the value returned
from fprintf. You can provide a replacement. The definition of yyerror must
agree with the prototype of yyerror() defined in yylex.c:
external int yyerror(const char * format, ...)

yylex The scanner that lex produces. It returns a token if it has located in the
input. A negative or zero value indicates error or end of input.

yymapch(intdelim,intesc)
A function that can be used to process C-style character constants or
strings. It returns the next string character from the input, or −1 when the
character delim is reached. The usual C escapes are recognized: esc is the
escape character to use; for C it is backslash.

yymore
A function that causes the next token to be concatenated to the current
token in yytext. The current token is not rescanned.

yy_reset
A function that can be called from outside a lex action to reset the lex
scanner. This is useful when starting a scan of new input.

yyRestoreScan
A function that restores the state of scanner after a yySaveScan call, and
frees the allocated save block. The yySaveScan and yyRestoreScan
functions allow an include facility to be safely defined for lex. Here is how
the save functions can be used:

44 z/OS V1R1.0 UNIX System Services Programming Tools

include(FILE * newfp)
{
void * saved;
saved = (void *) yySaveScan(newfp);
/*
* scan new file
* using yylex() or yyparse()
*/
yyRestoreScan(saved);
}

yySaveScan
A function that can be called to save the current state of yylex() and
initialize the scanner to read from the given file pointer. The scanner state is
saved in a newly allocated YY_SAVED record; this record is then returned.
The contents of the save block are not of interest to the caller. Instead, the
save block is intended to be passed to yyRestoreScan to reset the
scanner.

Library Routines
yywrap

A library routine called by yylex() when it gets EOF from yygetc. The
default version of yywrap returns 1, which indicates that no more input is
available. yylex() then returns 0, indicating end of file. If the user wishes to
supply more input, a yywrap should be provided, which sets up the new
input (possibly by assigning a new file stream to yyin), then returns 0 to
indicate that more input is available.

Error Detection and Recovery
A character that is detected in the input stream that cannot be added to the
last-matched string, and that cannot start a string, is considered illegal by lex. lex
might be instructed to write the character to an output stream, write a diagnostic
and discard the character, ignore the character, or return an error token. The
default action is to write the character to the output stream yyout. lex does this by
invoking the macro:
#define output(c) putc((c),yyout)

By replacing the output macro, the user may change the default action to any C
statement. Some possible definitions are:
/* type a diagnostic */
#define output(x) \
error("Illegal character %c (%o)", (x),(x))

/* ignore the character */
#define output(c)

The file yyout is the standard output, by default.

When lex encounters input that cannot be handled, such as an overflow of the
buffer, it calls the macro YY_FATAL:
YY_FATAL("message");

This macro displays the indicated message on stderr and then exits the program.

Chapter 2. Generating a Lexical Analyzer Using lex 45

To change this behavior, you can redefine YY_FATAL in the definition section. For
example, if lex is scanning an input file, but error recovery requires that other
operations be carried out, you can redefine YY_FATAL to return a special value to
flag that error.

For debugging a complex scanner, you can invoke lex with the -T option. This
causes a description of the various states of the scanner to be left in the text file
l.output. You can then compile the scanner in lex.yy.c with the preprocessor flag
YY_DEBUG defined, to get a scanner that displays, on stderr, the intermediate
transitions and states of the scanner as it reads input. With the l.output information
as a guide, these states can be related back to the input scanner description.

Ambiguity and Lookahead
A lex program may be ambiguous, in the sense that a particular input string may
match more than one translation expression. Consider this example:
%%
[[:lower:]] { putchar(*yytext); }
aaa* { printf("abc"); }

in which the string aa matches by both regular expressions (twice by the first, and
once by the second). Also, the string aaaaaa may be matched in many different
ways.

If the input matches more than one expression, lex uses the following rules to
determine which action to take:

1. The rule that matches the longest possible input stream is preferred.

2. If more than one rule matches an input of the same length, the rule that
appears first in the translations section is preferred.

In the previous example, rule 1 causes both aa and aaaaaa to match the second
action, while a single a matches the first action.

As another example, the following program works as expected:
"<" { return(LESS); }
"=&"; { return(EQUAL); }
"<=" { return(LESSEQ); }

Here, the sequence <= is taken to be an instance of a less-than-or-equal symbol,
rather than an instance of a less-than symbol followed by an equals symbol.

Consider yet another example:
letter [[:lower:]]
%%
a({letter})* { return(’A'); }
ab({letter})* { return(’B'); }

which attempts to distinguish sequences of letters that begin with a from similar
sequences that begin with ab. In this example, rule 1 is not sufficient, as, for
example, the string abb9 applies to either action; therefore, by rule 2, the first
matching action should apply.

As written, the second action is never performed. To achieve the effect indicated,
reverse the rules as follows:

46 z/OS V1R1.0 UNIX System Services Programming Tools

letter [[:lower:]]
%%
ab{letter}* { return(’B'); }
a{letter}* { return(’A'); }

There is a danger in the lookahead that is done in trying to find the longest match.
For example, an expression such as:
[.\n]+

causes the entire input to be read for a match! Another example is reading a quoted
expression; for example:
'.*'

matches the string:
’quote one' followed by ’quote two'

because lex attempts to read too much of the input. The correct definition of this
string is:
'[|’\n]*'

which stops after reading ’quote one’.

Lookahead
A facility for looking ahead in the input stream is sometimes required. You can also
use this facility to control the default ambiguity resolution process.

A traditional example is from FORTRAN, which does not have reserved words.
Further scanning is required to determine whether the sequence if(is in fact an if
statement, and not the subscripting of an array named if. In this case, a rather large
amount of lookahead is required, to see what character follows the closing); if the
character is a letter, or a digit, then an if statement has indeed been found;
otherwise, the array reference (or a syntax error) is indicated.

Another example is from C, where a name followed by (is to be contextually
declared as an external function if it is otherwise undefined. In Pascal, lookahead is
required to determine that:
123..1234

is an integer 123, followed by the subrange symbol ..—which is followed by the
integer 1234, and not simply two real numbers run together.

In all these cases, the desire is to look ahead in the input stream far enough to be
able to make a decision, but without losing tokens in the process.

A special form of regular expression is used to indicate lookahead:
re1/ re2

where re1 and re2 are regular expressions that do not themselves contain
lookahead. The slash is treated as concatenation for the purposes of matching
incoming characters: Both re1 and re2 must match adjacently for an action to be
performed. re1 indicates that part of the input string which is the token to be
returned in yytext, whereas re2 indicates the context. The characters matched by
re2 are reread at the next call to yylex() and broken into tokens.

Chapter 2. Generating a Lexical Analyzer Using lex 47

For the C external function example, the lookahead operator is used in the following
manner:
digit [[:digit:]]
letter [[:lower:]]\
name {letter}({digit}│{letter})*

%%

{name}/”(” {
if (name undefined)
declare name a global function;
}
{name} { usual processing for identifiers }

To handle the (not reserved) if identifier in FORTRAN, the following is used:
space [\t]*
digit [[:digit:]]
letter [[:lower:]]

%%

if/{space}"(".*")"{space}({letter}│{digit}) {
/* if statement */

}
{name} { /* any other use of if */ }

If a lex expression is a prefix of some other expression, it has a hidden 1-character
lookahead at the end, whether the lookahead operator is used or not. This enables
lex to implement the longest-string rule correctly.

Left Context Sensitivity and Start Conditions
Even a fairly simple syntax may be difficult or impossible to describe with a single
set of translations. For example, in the C programming language, literal strings have
a different structure, and must be read and parsed separately from the rest of the
input.

lex provides a facility called start conditions, which allow the input to be processed
by different sets of rules. Start conditions are declared in the definitions section,
with lines of the form:
%Start name1 name2

(You can abbreviate %Start to %S or %s.) When a start condition name is placed
at the beginning of a rule within <>, that rule can match only when lex is in that
start condition. To enter a start condition, you can code the action:
BEGIN name

To revert to the normal state, use:
BEGIN 0

To make a rule active in several start conditions, use the prefix:
<name1,name2,...>

at the beginning of the expression. All rules without a start condition prefix are
always active.

48 z/OS V1R1.0 UNIX System Services Programming Tools

Here is a simple example of the use of start conditions. When lex sees a line
containing only a 1, it switches to the OTHER start condition, until a line containing
only a 0 is seen. While in the OTHER start condition, input is echoed with the text
OTHER prefixed to each line.
%s OTHER
%%

"0"\n BEGIN 0;
"1"\n BEGIN OTHER;
<OTHER>.* printf("OTHER %s",yytext);

A more realistic example follows. This parses a C string.
%{
#include <stdio.h>

static char buf[200];
char *s;
char *strchr();
long strtol();
char *yylval;

#define STRING 1
%}

%s string

%%

<0>\" { BEGIN string; s = buf; }
<string>\\[0-7]{1,3} {

*s++ = strtol(yytext+1,
(char **)0, 8);

}
<string>\\\" *s++ = '"';
<string>\\[rbfntv] {

*s++ = *(strchr("\rr\bb\ff\nn\tt\vv",
yytext[1])-1);

}
<string>\\\n /* Escaped newline ignored */;
<string>\n {

yyerror("Unterminated string");
BEGIN 0;

}
<string>\" {

*s = '\0';
BEGIN 0;
yylval = buf;
return STRING;

}
<string>. *s++ = *yytext;

%%

main()
{

while(yylex() == STRING) {
printf(">>>"),
fputs(yylval, stdout),
printf("<<<\n);

}
}

Sometimes the input is so structured that you require several completely different
and conflicting sets of rules. You need a mechanism for defining minianalyzers that
are enabled for some specific task.

Chapter 2. Generating a Lexical Analyzer Using lex 49

To handle this need, you can define exclusive start conditions. When an exclusive
start condition is active, no other rules are active; thus, a set of rules with the same
(prefix) exclusive start condition effectively describes a minianalyzer that is
independent of the normal rules. Exclusive start conditions are entered and exited
in the usual way, with the BEGIN action. To define exclusive start conditions, use
%x instead of %s in the definition section.

The main feature of exclusive start conditions is that rules without a start condition
prefix are not automatically applied to all start conditions. This allows a better
structuring of the rules in some situations.

Tracing a lex Program
With the -T option, lex produces a description of the scanner that it is generating in
the file l.output. This description consists of two parts: a description of the initial
state table, specified as an NFA, followed by a description of the minimized DFA for
the final scanner. Usually only the latter is of interest. Here is the complete output
for the previous example using start conditions. The actions are not represented.
NFA for complete syntax

state 0
3: rule 0, start set 0 1 2 3

epsilon 1
4: rule 1, start set 0 1 2 3

epsilon 5
5: rule 2, start set 2 3

epsilon 11
6: rule 3, start set 0 1 2 3

epsilon 15

state 1
0 2

state 2
\n 4

state 4
final state

state 5
1 6

state 6
\n 8

state 8
final state

state 11
epsilon 9
epsilon 12

state 9
[\0-\t\13-\177] 10

state 10
epsilon 9
epsilon 12

state 12
final state

state 15
epsilon 13

50 z/OS V1R1.0 UNIX System Services Programming Tools

epsilon 16

state 13
[\0-\t\13-\177] 14

state 14
epsilon 13
epsilon 16

state 16
final state

Minimized DFA for complete syntax

state 0, rule 3, lookahead
[\0-\t] 4
[\13-/] 4
0 7
1 5
[2-\177] 4

state 1, rule 3, lookahead
. same as 0

state 2, rule 2, rule 3, lookahead
[\0-\t] 9
[\13-/] 9
0 11
1 10
[2-\177] 9

state 3, rule 2, rule 3, lookahead
. same as 2

state 4, rule 3, lookahead
[01] 4
. same as 0

state 5, rule 3, lookahead
\n 6
[01] 4
. same as 0

state 6, rule 1, lookahead

state 7, rule 3, lookahead
\n 8
[01] 4
. same as 0

state 8, rule 0, lookahead

state 9, rule 2, rule 3, lookahead
[01] 9
. same as 2

state 10, rule 2, rule 3, lookahead
\n 6
[01] 9
. same as 2

state 11, rule 2, rule 3, lookahead
\n 8
[01] 9
. same as 2

Chapter 2. Generating a Lexical Analyzer Using lex 51

Looking at the minimal DFA reported, the table transitions are easy to trace.
Starting at state 0, the rules are:
state 0, rule 3, lookahead

[\0-\t] 4
[\13-/] 4
0 7
1 5
[2-\177] 4

The meaning of this description is as follows: while in state 0 (which is based on
rule 3), on reading the letter 0, switch to state 7; for the letter 1, switch to state 5;
and on any other letter, switch to state 4.

Assume that the letter 1 is read. The scanner checks the rules for state 0, and
transfers to state 5. In states 5 and 6, the following rules apply:
state 5, rule 3, lookahead

\n 6
[01] 4
. same as 0

state 6, rule 1, lookahead

The rules in state 5 describe a transition to state 6 upon reading a newline (\n), and
a return to state 4 if anything else is read. (An optimization in the state tables
allows state 5 to reuse state 0’s transitions.) State 6 has no rules; it corresponds to
the action that triggers the OTHER start condition.

The REJECT Action
To remember the results of a previous scan for the purpose of finding another
possible match, the action REJECT can be used in the translation section. This
action causes lex to do the next alternative. For example, the following program
counts instances of the words he and she:
she s++;
he h++;
\n │
. ;

Anything not matching he or she is ignored, because of the bottom two rules.

This program, however, does not count instances of he embedded inside instances
of she. To obtain this behavior, a REJECT action is required to force lex to
consider any other rules that might match, adjusting the input accordingly. The
program then becomes:
she { s++; REJECT; }
he { h++; REJECT; }
\n │
. ;

After counting each he or she, the expression is rejected and the other expression
is examined. As he cannot include she, the second REJECT is actually not
required in this case.

Character Set
lex handles characters internally as small integer values, as given by the bit pattern
on the host computer’s character set. To change the interpretation of input
characters, you can provide a translation table in the definition section that

52 z/OS V1R1.0 UNIX System Services Programming Tools

associates an integer value with a character or group of characters. The translation
table should be bracketed by lines containing %T.
%T
1 Aa
2 Bb
...
26 Zz
27 \n
28 +
29 -
30 0
31 1
...
39 9
%T

This table maps lowercase and uppercase letters together into the range 1–26,
newline into 27, + into 28, − into 29, and the digits into 30–39. The character values
range from 0 to the highest possible value in the host computer’s character set.
Every possible input character must be enumerated in the table.

To work properly, the user must then redefine yygetc to translate input characters,
so that A or a is given to lex as 1, B or b is given as 2, and so on.

Chapter 2. Generating a Lexical Analyzer Using lex 53

54 z/OS V1R1.0 UNIX System Services Programming Tools

Chapter 3. Generating a Parser Using yacc

The z/OS UNIX yacc utility is a tool for writing compilers and other programs that
parse input according to strict grammar rules. The z/OS UNIX yacc utility can
produce anything from a simple parser for a desk calculator program to a very
elaborate parser for a programming language. Those who are using yacc for
complex tasks have to know all the idiosyncrasies of the program, including a good
deal about the internal workings of yacc. On the other hand, the internal workings
are mostly irrelevant to someone who is making an easy straightforward parser.

For this reason, novices may want to concentrate on the information in Chapter 1
for an overview of how to use yacc. This tutorial also shows how you can use lex
and yacc together in the construction of a simple desk calculator.

How yacc Works
The input to yacc describes the rules of a grammar. yacc uses these rules to
produce the source code for a program that parses the grammar. You can then
compile this source code to obtain a program that reads input, parses it according
to the grammar, and takes action based on the result.

The source code produced by yacc is written in the C programming language. It
consists of a number of data tables that represent the grammar, plus a C function
named yyparse(). By default, yacc symbol names used begin with yy. This is an
historical convention, dating back to yacc’s predecessor, UNIX yacc. You can avoid
conflicts with yacc names by avoiding symbols that start with yy.

If you want to use a different prefix, indicate this with a line of the form:
%prefix prefix

at the beginning of the yacc input. For example:
%prefix ww

asks for a prefix of ww instead of yy. Alternatively, you could specify −p ww on the
lex command line. The prefix chosen should be 1 or 2 characters long; longer
prefixes lead to name conflicts on systems that truncate external names to 6
characters during the loading process. In addition, at least 1 of the characters in the
prefix should be a lowercase letter (because yacc uses an all-uppercase version of
the prefix for some special names, and this has to be different from the specified
prefix).

Note: Different prefixes are useful when two yacc-produced parsers are to be
merged into a single program. For the sake of convenience, however, the yy
convention is used throughout this manual.

yyparse() and yylex()
yyparse() returns a value of 0 if the input it parses is valid according to the given
grammar rules. It returns a 1 if the input is incorrect and error recovery is
impossible.

yyparse() does not do its own lexical analysis. In other words, it does not pull the
input apart into tokens ready for parsing. Instead, it calls a routine called yylex()
everytime it wants to obtain a token from the input.

© Copyright IBM Corp. 1996, 2001 55

yylex() returns a value indicating the type of token that has been obtained. If the
token has an actual value, this value (or some representation of the value, for
example, a pointer to a string containing the value) is returned in an external
variable named yylval.

It is up to the user to write a yylex() routine that breaks the input into tokens and
returns the tokens one by one to yyparse(). See “Function Section” on page 65 for
more information on the lexical analyzer.

Grammar Rules
The grammar rules given to yacc not only describe what inputs are valid according
to the grammar, but also specify what action is to be taken when a given input is
encountered. For example, if the parser recognizes a statement that assigns a
value to a variable, the parser should either perform the assignment itself or take
some action to ensure that the assignment eventually takes place.

If the parser is part of an interactive desk calculator, it can carry out arithmetic
calculations as soon as the instructions are recognized; however, if the parser is the
first pass in a compiler, it may simply encode the input in a way that is used in a
later code-generation pass.

In summary, you must provide a number of things when using yacc to produce a
parser:

v Grammar rules indicating what input is and is not valid.

v A lexical analyzer—yylex()—that breaks raw input into tokens for the parsing
routine yyparse().

v Any source code or functions that may be needed to perform appropriate actions
once particular inputs are recognized.

v A mainline routine that performs any necessary initializations, calls yyparse(),
and then performs possible cleanup actions. The simplest kind of mainline is just
a function main that calls yyparse() and then returns.

Input to yacc
This section describes the input to yacc when you are defining an LALR(1)
grammar.

The input to yacc is broken into three sections:
v Declarations section
v Grammar rules section
v Functions section

The contents of each section are described shortly, but first, here are some overall
rules for yacc input.

Sections of yacc input are separated by the symbol %%.

The general layout of yacc input is therefore:
declarations
%%
grammar rules
%%
functions

56 z/OS V1R1.0 UNIX System Services Programming Tools

You can omit the declarations section if no declarations are necessary. In this case,
the input starts with the first %%. You can also omit the function section, from the
second %% on. The simplest input for yacc is therefore:
%%
grammar rules

Blanks, tabs, and newlines are used to separate items in yacc input. These are
called white-space characters. Wherever a white-space character is valid, any
number of blanks, tabs, or newlines can be used. This means, for example, that the
%% to separate sections does not have to be on a line all by itself; however, giving
it a line of its own makes the yacc input easier to read.

Comments may appear anywhere a blank is valid. As in C, comments begin with /*
and end with */.

Identifiers used in yacc input can be of arbitrary length, and can consist of all
letters (uppercase and lowercase), all digits, and the characters dot (.) and
underscore (_). The first character of an identifier cannot be a digit. yacc
distinguishes between uppercase and lowercase letters; this, THIS, and This are
all different identifiers.

Literals in yacc input consist of a single character enclosed in single quotes—for
example, ’c’. The standard C escape sequences are recognized:
\b — backspace
\n — newline
\r — carriage return
\t — tab
\v — vertical tab
\' — single quote
\\ — backslash
\nnn — any character
(nnn is octal representation)

For technical reasons, the null character (\000) should never appear in yacc input.

Declarations Section
The declarations section describes many of the identifiers that are used in the rest
of the yacc input. There are two types of declarations:

v Token declarations

v Declarations of functions and variables used in the actions that the parser takes
when a particular input is recognized

The declarations section can also specify rules for the precedence and binding of
operators used in the grammar. For example, you normally define the standard
order of arithmetic operations in the declarations section.

Token Declarations
All characters are automatically recognized as tokens. For example, ’a’ stands for a
token that is the literal character a.

Other tokens are declared with statements of the form:
%token name1 name2 name3 ...

This tells yacc that the given names refer to tokens. For example:
%token INTEGER

Chapter 3. Generating a Parser Using yacc 57

indicates that the identifier INTEGER refers to a particular type of token returned by
the lexical analyzer yylex(). If INTEGER stands for any integer number token, you
might have the following code in a handcoded yylex():
c = getchar();
if ((c >= ’0') && (c <= ’9')) {

yylval = 0;
do {

yylval = (yylval * 10) + (c - ’0');
c = getchar();

} while (c >= ’0' && c <= ’9');
ungetc(c, stdin);
return(INTEGER);

}

yylex() returns INTEGER to indicate that a certain kind of token (an integer
number) has been returned. The actual value of this number is returned in yylval.
The grammar rules in the yacc input dictate where an INTEGER token is valid.

In the C source code produced by yacc, the identifiers named in a %token
statement appear as constants set up with #define. The first named token has a
defined value of 257, the next is defined as 258, and so on. Token values start at
257, so they do not conflict with characters that have values in the 0-to-255 range
or with character 256, which is used internally by yacc.

Because token identifiers are set up as defined constants, they must not conflict
with reserved words or other identifiers that are used by the parser. For example:
%token if yyparse ...

almost certainly leads to errors when you try to compile the source code output of
yacc. To avoid this, this manual uses the convention of creating token names in
uppercase, and you should follow the same practice.

Precedence and Associativity
Parsers that evaluate expressions usually have to establish the order in which
various operations are carried out. For example, parsers for arithmetic expressions
usually carry out multiplications before additions. Two factors affect order of
operation: precedence and associativity.

Precedence dictates which of two different operations is to be carried out first. For
example, in:
A + B * C

the standard arithmetic rules of precedence dictate that the multiplication is to take
place before the addition. Operations that are to be carried out first are said to have
a higher precedence than operations that are to be performed later.

Different operators can sometimes have the same precedence. In C, for example,
addition and subtraction are similar enough to share the same precedence.

Associativity indicates which of two similar operations is to be carried out first. By
similar, we mean operations with the same precedence (for example, addition and
subtraction in C). For example, C chooses to parse
A - B - C

as
(A - B) - C

58 z/OS V1R1.0 UNIX System Services Programming Tools

whereas such languages as APL or FORTRAN use:
A - (B - C)

If the first operation is evaluated before the second (as C does), the operation is left
associative. If the second operation is evaluated before the first (as APL does), the
operation is right associative.

Occasionally, a compiler may have operations that are not associative. For
example, FORTRAN regards:
A .GT. B .GT. C

as invalid. In this case, the operation is nonassociative.

You can declare the precedence and associativity of operator tokens in the
declarations section by using the keywords:
%left
%right
%nonassoc

For example:
%left '+' '-'

indicates that the + and − operations have the same precedence and are left
associative.

Associativity declarations should be given in order of precedence. Operations with
lowest precedence are listed first, and those with highest precedence are listed last.
Operations with equal precedence are listed on the same line. For example,
%right '='
%left '+' '-'
%left '*' '/' '%'

says that = has a lower precedence than + and −, which in turn have a lower
precedence than *, /, and %. = is also right associative, so that
A = B = C

is parsed as
A = (B = C)

Because of the way yacc specifies precedence and associativity, operators with
equal precedence always have the same associativity. For example, if A and B
have equal precedence, their precedence must have been set with one of
%left A B
%right A B
%nonassoc A B

which means A and B must have the same associativity.

The names supplied with %right, %left, and %nonassoc can be literals or yacc
identifiers. If they are identifiers, they are regarded as token names. yacc generates
a %token directive for such names if they have not already been declared. For
example, in:
%left '+' '-'
%left '*' '/'
%left UMINUS

Chapter 3. Generating a Parser Using yacc 59

UMINUS is taken to be a token identifier. There is no need to define UMINUS as a
token identifier; a %token directive is generated automatically if necessary. It is
perfectly valid to have an explicit:
%token UMINUS

if you want; however, it must precede the %left declaration.

For a more technical discussion of how precedence and associativity rules affect a
parser, see “Ambiguities” on page 81.

Variable and Function Declarations
The declarations section may contain standard C declarations for variables or
functions used in the actions specified in the grammar rules section. All such
declarations should be included in a block that begins with %{ and ends with %}.
For example:
%{

int i, j, k;
static float x = 1.0;

%}

gives a few variable declarations. These declarations are essentially transferred as
is to the beginning of the source code that yacc produces. This means that they
are external to yyparse() and therefore global definitions.

Summary
The source code produced by yacc contains the following:
v Code from the declarations section
v Parsing tables produced by yacc to represent the grammar
v The yyparse() routine
v Code specified in the function section

Grammar Rules Section
A yacc grammar rule has the general form
identifier : definition ;

A colon separates the definition from the identifier being defined. A semicolon ends
the definition.

The identifiers defined in the grammar rule section are known as nonterminal
symbols. Nonterminal suggests that these symbols are not final; instead, they are
made up of smaller things: tokens or other nonterminal symbols.

Here is a simple example of the definition of a nonterminal symbol:
paren_expr : '(' expr ')' ;

This says that a paren_expr consists of a left parenthesis, followed by an expr,
followed by a right parenthesis. The expr is either a token or a nonterminal symbol
defined in another grammar rule. This grammar rule can be interpreted to say that a
parenthesized expression consists of a normal expression inside parentheses.

A nonterminal symbol can have more than one definition. For example, you might
define if statements with:
if_stat : IF '(' expr ')' stat ;
if_stat : IF '(' expr ')' stat ELSE stat ;

60 z/OS V1R1.0 UNIX System Services Programming Tools

This definition assumes that IF and ELSE are tokens recognized by the lexical
analyzer (which means that this parser’s yylex() can recognize keywords). The
definition also assumes that expr and stat are nonterminal symbols defined
elsewhere.

When a single symbol has more than one meaning, yacc lets you join the various
possibilities into a single definition. Different meanings are separated by “or” bars
(|). Thus you can write:
if_stat : IF '(' expr ')' stat

│ IF '(' expr ')' stat ELSE stat
;

This technique is highly recommended, since it makes yacc input more readable.

Definitions in a grammar can be recursive. For example:
list : item

│ list ',' item
;

defines list to be one or more items separated by commas.
intexp : '(' intexp ')'

│ intexp '+' intexp
│ intexp '-' intexp
│ intexp '*' intexp
│ intexp '/' intexp
│ INTEGER
;

says that an integer expression can be another integer expression in parentheses,
the sum of integer expressions, the difference of integer expressions, the product of
integer expressions, the quotient of integer expressions, or an integer number
standing on its own (where INTEGER is a token recognized by the lexical analyzer).

In recursive symbol definitions, it is often useful to have the empty string as one of
the possible definitions. For example:
program :

/* the empty string */
│ statement ’;’ program
;

defines a program as zero or more statements separated by semicolons.

The definition of list was an example of left recursion because list was on the left
in the recursive definition. The definition of program was an example of right
recursion, which is seldom recommended. For a discussion of the pros and cons of
the two types of recursion, see “Right Recursion versus Left Recursion” on page 90.

Recognition Actions
In addition to defining what a nonterminal symbol is, a grammar rule usually
describes what to do if the nonterminal symbol is encountered in parser input. This
is called a recognition action.

Recognition actions are specified as part of the grammar rule. They are enclosed in
brace brackets in the definition:
break_stat : BREAK ';' { breakfn(); };

Chapter 3. Generating a Parser Using yacc 61

In this definition, break_stat is a nonterminal symbol made up of the token known
as BREAK, followed by a semicolon. If this symbol is recognized, the parser
invokes a function named breakfn. Presumably this is a user-defined function that
handles a break; statement.

Note: A semicolon is needed to mark the end of the definition, even though the
recognition action ends in a brace bracket. Programmers who are used to C
should bear this in mind.

For compatibility with some versions of UNIX yacc, z/OS UNIX yacc lets you put
an equals sign (=) before the opening brace that begins a recognition action:
break_stat : BREAK ';' = { breakfn(); };

When a symbol has more than a single definition, a different recognition action may
be associated with each definition. The next section shows an example of this.

Token and Symbol Values
One of the most common recognition actions is to return a value. For example, if an
input is recognized as an expression to be evaluated, the parser may want to return
the resulting value of the expression. To return a value, the recognition action
merely assigns the value to a special variable named $$. For example:
hexdigit : ’0' { $$ = 0; }

│ ’1' { $$ = 1; }
...

│ ’A' { $$ = 10; }
│ ’B' { $$ = 11; }
│ ’C' { $$ = 12; }
│ ’D' { $$ = 13; }
│ ’E' { $$ = 14; }
│ ’F' { $$ = 15; }
;

is one way to convert hexadecimal digits into numeric values. In this case, yylex()
just returns the digits it finds, and yyparse() performs the actual conversion.

Another common recognition action is to return a value based on one or more of
the items that make up the nonterminal symbol. Inside the recognition action, $1
stands for the value of the first item in the symbol, $2 stands for the value of the
second item, and so on. If the item is a token, its value is the yylval value returned
by yylex() when the token was read. If the item is a nonterminal symbol, its value is
the $$ value set by the recognition action associated with the symbol. Thus you
might write:
intexp : '(' intexp ')' { $$ = $2; }

/* value of parenthesized expression
is expression inside parentheses */

│ intexp '+' intexp { $$ = $1 + $3 ; }
/* value of addition is sum of two

expressions */
│ intexp '-' intexp { $$ = $1 - $3 ; }

/* value of subtraction is difference
of two expressions */

│ /* and so on */
;

This particular definition shows that each part of a multiple definition may have a
different recognition action.

In the source code for yyparse(), this set of actions is turned into a large switch
statement. The cases of the switch are the various possible recognition actions.

62 z/OS V1R1.0 UNIX System Services Programming Tools

If no recognition action is specified for a definition, the default is:
{ $$ = $1 ; }

This action just returns the value of the first item (if the item has a value).

Precedence in the Grammar Rules
The discussion of the declarations section showed how precedence can be
assigned to operators. Precedence can also be assigned to grammar rules, and this
is done in the grammar rules section.

One way to give a grammar rule a precedence uses the %prec construct:
%prec TOKEN

in a grammar rule indicates that the rule has the same precedence as the specified
token.

For example, consider the unary minus operator. Suppose your declaration section
contains:
%left '+' '-'
%left '*' '/'
%left UMINUS

In the grammar rules section, you can write:
exp : exp '+' exp

│ exp '-' exp
│ exp '*' exp
│ exp '/' exp
│ '-' exp %prec UMINUS
│ /* and so on */
;

You cannot directly set up a precedence for the unary minus, since you had already
set up a precedence for the “−” token. Instead, you created a token named
UMINUS and gave it the precedence you wanted to assign the unary minus. The
grammar rule for the unary minus added:
%prec UMINUS

to show that this rule has the precedence of UMINUS.

As another example, you might set up precedence rules for the right shift and left
shift operations of C with:
%left RS LS

...
exp :

│ exp '<' '<' exp %prec LS
│ exp '>' '>' exp %prec RS
...

In this way you give the shift operations the proper precedence and avoid confusing
them with the comparison operations > and <. Of course, another way to resolve
this problem is to make the lexical analyzer clever enough to recognize >> and <<
and to return the RS or LS tokens directly.

Although symbols like UMINUS, LS, and RS are treated as tokens, they do not
have to correspond to actual input. They may just be placeholders for operator
tokens that have two different meanings.

Chapter 3. Generating a Parser Using yacc 63

Note: The use of %prec is relatively rare in yacc. People do not usually think of
%prec in their first draft of a grammar. %prec is added only in later drafts,
when it is needed to resolve conflicts that appear when the rules are run
through yacc.

If a grammar rule is not assigned a precedence using %prec, the precedence of
the rule is determined by the last token in the rule. For example, if the rule is:
expr : expr '+' expr

the last token in the rule is “+” (since expr is a nonterminal symbol, not a token).
Thus the precedence of the rule is the same as the precedence of +.

If the last token in a rule has no assigned precedence, the rule does not have a
precedence. This can result in some surprises if you are not careful. For example, if
you define:
expr : expr '+' expr ';'

the last token in the rule is “;”— so the rule probably does not have a precedence
even if + does.

Start Symbol
The first nonterminal symbol defined in the rules section is called the start symbol.
This symbol is taken to be the largest, most general structure described by the
grammar rules. For example, if you are generating the parser for a compiler, the
start symbol should describe what a complete program looks like in the language to
be parsed.

If you do not want the first grammar rule to be taken as the start symbol, you can
use the directive:
%start name

in your rules section. This indicates that the nonterminal symbol name is the start
symbol. name must be defined somewhere in the rules section.

The start symbol must be all-encompassing: Every other rule in the grammar must
be related to it. In a sense, the grammar rules form a tree: The root is the start
symbol, the first set of branches are the symbols that make up the start symbol, the
next set of branches are the symbols that make up the first set, and so on. Any
symbol that is outside this tree is reported as a useless variable in yacc output. The
parser ignores useless variables; it is looking for a complete start symbol, and
nothing else.

End Marker
The end of parser input is marked by a special token called the end marker. This
token is often written as $end; the value of the token is zero.

It is the job of the lexical analyzer yylex() to return a zero to indicate $end when
the end of input is reached (for example, at end of file, or at a keyword that
indicates end of input).

yyparse() terminates when it has parsed a start symbol followed by the end marker.

Declarations in yyparse()
You can specify C declarations that are local to yyparse() in much the same way
that you specify external declarations in the Declarations Section. Enclose the
declarations in %{ and %} symbols, as in

64 z/OS V1R1.0 UNIX System Services Programming Tools

%{
/* External declarations */

%}
%%
/* Grammar Rules start here */
%{

/* Declarations here are
local to yyparse() */

%}
/* Rules */
%%
/* Function section */

You can also put declarations at the start of recognition action code, which is local
to that action.

Function Section
The function section of yacc input may contain functions that should be linked in
with the yyparse() routine. yacc itself does nothing with these functions; it simply
adds the source code on the end of the source code produced from the grammar
rules. In this way, the functions can be compiled at the same time that the
yacc-produced code is compiled.

Of course, these additional functions can be compiled separately and linked with
the yacc-produced code later on (after everything is in object code format).
Separate compilation of modules is strongly recommended for large parsers;
however, functions that are compiled separately need a special mechanism if they
want to use any definitions that are defined in the yacc-produced code, and it is
sometimes simpler to make the program part of the yacc input.

For example, consider the case of yylex(). Every time yylex() obtains a token from
the input, it returns to yyparse() with a value that indicates the type of token found.
Obviously, then, yylex() and yyparse() must agree on which return values indicate
which kind of tokens. Since yyparse() already refers to tokens using compile-time
constants (created in the declarations section with the %token directive), it makes
sense for yylex() to use the same constants. The lexical analyzer can do this very
easily if it is compiled along with yyparse().

Size might be the determining factor. With very simple parsers, it is easier to put
yylex() in the function section. With larger parsers, the advantages of separate
compilation are well worth the extra effort.

If you are going to compile yylex() or other routines separately from yyparse(), use
the:
−D file.h

option on the yacc command line. yacc writes out the compiler constant definitions
to the file of your choice. This file can then be included (with the #include directive)
to obtain these definitions for yylex() or any other routine that needs them. The
constants are already included in the generated parser code, so you need them
only for separately compiled modules.

Lexical Analyzer
The lexical analyzer yylex() reads input and breaks it into tokens; in fact, it
determines what constitutes a token. For example, some lexical analyzers may
return numbers one digit at a time, whereas others collect numbers in their entirety
before passing them to the parser.

Chapter 3. Generating a Parser Using yacc 65

Similarly, some lexical analyzers may recognize such keywords as if or while and
tell the parser that an if token or while token has been found. Others may not be
designed to recognize keywords, so it is up to the parser itself to distinguish
between keywords and other things, such as variable names.

Each token named in the declarations section of the yacc input is set up as a
defined C constant. The value of the first token named is 257, the value of the next
is 258, and so on. You can also set your own values for tokens by placing a
positive integer after the first appearance of any token in the declarations section.
For example:
%token AA 56

assigns a value of 56 to the definition of the token symbol AA. This mechanism is
very seldom needed, and you should avoid it whenever possible.

There is little else to say about requirements for yylex(). If the function is to return
the value of a token as well as an indication of its type, the value is assigned to the
external variable yylval. By default, yylval is defined as an int value, but it can also
be used to hold other types of values. For more information, see the description of
%union in “Types” on page 80.

Internal Structures
To use yacc effectively, it is helpful to understand some of the internal workings of
the parser that yacc produces. This section looks at some of these workings.

As a point of reference, consider a parser with the following grammar:
%token NUM
%left '+' '-'
%left '*' '/'
%%
expr : NUM

│ expr '+' expr
│ expr '-' expr
│ expr '*' expr
│ expr '/' expr
│ '(' expr ')'
;

States
As the parser reads in token after token, it switches between various states. You
can think of a state as a point where the parser says, ″I have read this particular
sequence of input tokens and now I am looking for one of these tokens.″

For example, a parser for the C language might be in a state where it has finished
reading a complete statement and is ready for the start of a new statement. It
therefore expects some token that can legitimately start a statement (for example, a
keyword such as if or while, or the name of a variable for an assignment). In this
state, it reads a token. Say it finds the token corresponding to the keyword if. It
then switches to a new state, where it says, ″I have seen an if and now I want to
see the (that begins the if condition.″ When it finds the (, it switches again to a
state that says, ″I have found if(and now I want the start of a condition
expression.″

States break the parsing process into simple steps. At each step, the parser knows
what it has seen and what it is looking for next.

66 z/OS V1R1.0 UNIX System Services Programming Tools

yacc assigns numbers to every possible state the parser can enter. The 0th state is
always the one that describes the parser’s condition before it has read any input.
Other states are numbered arbitrarily.

Sometimes a particular input is the start of only one construct. For example, the for
keyword in C can be the start of only a for statement, and the for statement has
only one form.

On the other hand, a grammar can have several nonterminal symbols that start the
same way. In the sample grammar, all of:
expr '+' expr
expr '-' expr
expr '*' expr
expr '/' expr

start with expr. If the parser finds that the input begins with expr, the parser has no
idea which rule matches the input until it has read the operator following the first
expr.

The parser chooses which state it enters next by looking at the next input token.
This token is called the lookahead symbol for that state.

Diagramming States
yacc uses simple diagrams to describe the various states of the parser. These
diagrams show what the parser has seen and what it is looking for next. The
diagrams are given in the parser description report produced by yacc. See “yacc
Output” on page 75 for more information.

For example, consider the state where the parser has just read a complete expr at
the beginning of a larger expression. It is now in a state where it expects to see
one of the operators +, −, *, or /, or perhaps the $end marker (indicating the end of
input). yacc diagrams this state as:
$accept: expr.$end
expr: expr.'+' expr
expr: expr.'-' expr
expr: expr.'*' expr
expr: expr.'/' expr

This lists the possible grammar constructs that the parser may be working on. (In
the first line, $accept stands for the start symbol.) The dot (.) indicates how much
the parser has read so far.

If the lookahead symbol is *, the parser switches to a state diagrammed by:
expr: expr '*'.expr

In this state, the parser knows that the next thing to come is another expr. This
means that the only valid tokens that can be read next are “(” or NUM, since those
are the only things that start a valid expr.

State Actions
There are several possible actions that the parser can take in a state:

v Accept the input

v Shift to a new state

v Reduce one or more input tokens to a single nonterminal symbol, according to a
grammar rule

Chapter 3. Generating a Parser Using yacc 67

v Go to a new state

v Raise an error condition

To decide which action to take, the parser checks the lookahead symbol (except in
states where the parser can take only one possible action, so that the lookahead
symbol is irrelevant).

This means that a typical state has a series of possible actions based upon the
possible values of the lookahead symbol. In yacc output, you might see:
'+' shift 8
'-' shift 7
'*' shift 6
'/' shift 5
')' shift 9
. error

This says that if the parser is in this state and the lookahead symbol is “+”, the
parser shifts to state 8. If the lookahead symbol is “−”, the parser shifts to state 7,
and so on.

The dot (.) in the final line stands for any other token not mentioned in the
preceding list. If the parser finds any unexpected tokens in this particular state, it
takes the Error action.

The sections that follow explain precisely what each state action means and what
the parser does to handle these actions.

Accept
The Accept action happens only when the parser is in a state that indicates it has
seen a complete input and the lookahead symbol is the end marker $end. When
the parser takes the Accept action, yyparse() terminates and returns a zero to
indicate that the input was correct.

Shift
The Shift action happens when the parser is partway through a grammar construct
and a new token is read in. As an example, state 4 in the sample parser is
diagrammed with:
expr: expr.'+' expr
expr: expr.'-' expr
expr: expr.'*' expr
expr: expr.'/' expr
expr: '(' expr.')'

'+' shift 8
'-' shift 7
'*' shift 6
'/' shift 5
')' shift 9
. error

This shows that the parser shifts to various other states depending on the value of
the lookahead symbol. For example, if the lookahead symbol is “*”—the parser
shifts to state 6, which has the diagram:
expr: expr '*'.expr

NUM shift 2

68 z/OS V1R1.0 UNIX System Services Programming Tools

'(' shift 1
. error

expr goto 11

In this new state, the parser has further shifts it can make, depending on the next
lookahead symbol.

When the parser shifts to a new state, it saves the previous state on a stack called
the state stack. The stack provides a history of the states that the parser has
passed through while it was reading input. It is also a control mechanism, as
described in “yacc Output” on page 75.

Paralleling the state stack is a value stack, which records the values of tokens and
nonterminal symbols encountered while parsing. The value of a token is the yylval
value returned by yylex() at the time the token was read. The value of a
nonterminal symbol is the $$ value set by the recognition action associated with
that symbol’s definition. If the definition did not have an associate recognition
action, the value of the symbol is the value of the first item in the symbol’s
definition.

At the same time that the Shift action pushes the current state onto the state stack,
it also pushes the yylval value of the lookahead symbol (token) onto the value
stack.

Reduce
The Reduce action takes place in states where the parser has recognized all the
items that make up a nonterminal symbol. For example, the diagram of state 9 in
the sample grammar is:
expr: '(' expr ')'.

At this point, the parser has seen all three components that make up the
nonterminal symbol expr. As the line:
. reduce (6)

shows, it does not matter what the lookahead symbol is at this point. The
nonterminal symbol has been recognized, and the parser is ready for a Reduce
action.

Note: The (6) just means that the parser has recognized the nonterminal symbol
defined in rule (6) of the grammar. See “yacc Output” on page 75 for more
information.

The Reduce action performs a number of operations. First, it pops states off the
state stack. If the recognized nonterminal symbol had N components, a reduction
pops N−1 states off the 1 stack. In other words, the parser goes back to the state it
was in when it first began to gather the recognized construct.

Next, the Reduce action pops values off the value stack. If the definition that is
being reduced consisted of N items, the Reduce action conceptually pops N values
off the stack. The topmost value on the stack is assigned to $N, the next to $N−1,
and so on down to $1.

Once the Reduce action has gathered all the $X values, the parser invokes the
recognition action that was associated with the grammar rule being reduced. This
recognition action uses the $1−$N values to come up with a $$ value for the

Chapter 3. Generating a Parser Using yacc 69

nonterminal symbol. This value is pushed onto the value stack, thereby replacing
the N values that were previously on the stack.

If the nonterminal symbol had no recognition action, or if the recognition action did
not set $$, the parser puts the value of $1 back on the stack. (In reality, the value is
never popped off.)

Lastly, the Reduce action sets things up so that the lookahead symbol seems to be
the nonterminal symbol that was just recognized. For example, it may say that the
lookahead symbol is now an expr instead of a token.

Goto
The Goto action is a continuation of the Reduce process. Goto is almost the same
as Shift; the only difference is that the Goto action takes place when the lookahead
symbol is a nonterminal symbol while a Shift takes place when the lookahead
symbol is a token.

For example, state 6 in the sample grammar reads:
expr: expr '*'.expr

NUM shift 2
'(' shift 1
. error

expr goto 12

The first time the parser enters this state, the lookahead symbol is a token and the
parser shifts into some state where it begins to gather an expr. When it has a
complete expr, it performs a Reduce action that returns to this state and set the
lookahead symbol to expr. Now when the parser has to decide what to do next, it
sees that it has an expr for the lookahead symbol and therefore takes the Goto
action and moves to state 12.

The Shift action pushes the current state onto the state stack. The Goto does not
have to do this: The state was on the stack already. Similarly, Shift pushes a value
onto the value stack, but Goto does not, since the value corresponding to the
nonterminal symbol was already put on the value stack by the Reduce action. Goto
replaces the top of the state stack with the target stack.

When the parser reaches the new state, the lookahead symbol is restored to
whatever it was at the time of the Reduce action.

Essentially then, a Goto is like a Shift, except that it takes place when you come
back to a state with the Reduce action. Also, a Shift is based on the value of a
single input token, whereas a Goto is based on a nonterminal symbol.

Error
The parser takes the Error action when it encounters any input token that cannot
legally appear in a particular input location. When this happens, the parser raises
the error condition. Since error handling can be quite complicated, the whole of the
next section is devoted to the subject.

70 z/OS V1R1.0 UNIX System Services Programming Tools

Error Handling
If a piece of input is incorrect, the parser can do nothing with it. Except in extreme
cases, however, it is inappropriate for the parser to stop all processing as soon as
an error is found. Instead, the parser should skip over the incorrect input and
resume parsing as soon after the error as possible. In this way, the parser can find
many syntax errors in a single pass through the input, saving time and trouble for
the user.

yacc therefore tries to generate a parser that can restart as soon as possible after
an error occurs. yacc does this by letting you specify points at which the parser can
pick up after errors. You can also dictate what special processing is to take place if
an error is encountered at one of these points.

The Error Symbol
yacc’s error handling facilities use the identifier error to stand for erroneous input.
Therefore, you should not use error as the name of a user-defined token or
nonterminal symbol.

You should put error in your grammar rules where error recovery might take place.
For example, you might write:
statement: error

│ /* other definitions of a statement */;

This tells yacc that errors may occur in statements, and that after an error, the
parser is free to restart parsing at the end of a complete statement.

The Error Condition
As noted in “Internal Structures” on page 66, yacc takes the Error action if it finds
an input that is not valid in a particular location. The Error action has the following
steps:

1. See if the current state has a Shift action associated with the error symbol. If it
does, shift on this action.

2. If the current state has no such action, pop the state off the stack and check the
next state. Also pop off the top value on the value stack, so that the state stack
and value stack stay in synch.

3. Repeat the second step until the parser finds a state that can shift on the error
symbol.

4. Take the Shift action associated with the error symbol. This pushes the current
state on the stack—that is, the state that can handle errors. No new value is
pushed onto the value stack; the parser keeps whatever value was already
associated with the state that can handle errors.

When the parser shifts out of the state that can handle errors, the lookahead
symbol is whatever token caused the error condition in the first place. The parser
then tries to proceed with normal processing.

Of course, it is quite possible that the original lookahead symbol is incorrect in the
new context. If the lookahead symbol causes an error again, it is discarded and the
error condition stays in effect. The parser continues to read new tokens and discard
them until it finds a token that can validly follow the error. The parser then takes
whatever action is associated with the valid token.

Chapter 3. Generating a Parser Using yacc 71

In a typical grammar, the state that has been handling errors is eventually popped
off the stack in a Reduce operation.

Notice that the parser always shifts (through the Shift action) on the error token. It
never reduces on error, even if the grammar has a state where error is associated
with a Reduce action.

In some situations, an error condition is raised and the parser pops all the way to
the bottom of the state stack without finding a state that can handle the error
symbol. For example, the grammar may have no provisions for error recovery. In
this case, yyparse() simply terminates and returns a 1 to its caller.

Examples
As a simple example, consider a parser for a simple desk calculator. All statements
end in a semicolon. Thus you might see the rule:
statement : var '=' expr ';'

│ expr ';'
│ error ';'
;

When an error occurs in input, the parser pops back through the state stack until it
comes to a state where the error symbol is recognized. For example, the state
might be diagrammed as:
$accept: .statement $end

error shift 2
NUM shift 4
. error

var goto 7
expr goto 3
statement goto 5

If an error occurs anywhere in an input statement, the parser pops back to this
state, and then shifts to state 2. State 2 looks like this:
statement: error.';'

';' shift 6
. error

In other words, the next token must be a semicolon. If it is not, another error
occurs. The parser pops back to the previous state and takes the error shift again.
Input is discarded token by token until a semicolon is found. When the semicolon is
found, the parser is able to shift from state 2 to state 6, which is:
statement: error ';'.

. reduce (3)

The erroneous line is reduced to a statement nonterminal symbol.

Now this example is simple, but it has its drawbacks. It gets you into trouble if the
grammar has any concept of block structure or parenthesization. Why? Once an
error occurs, the rule:
statement : error ';'

72 z/OS V1R1.0 UNIX System Services Programming Tools

effectively tells the parser to discard absolutely everything until it finds a character.
If you have a parser for C, for example, it would skip over important characters
such as) or } until it found a semicolon. Your parentheses and braces would be out
of balance for the rest of the input, and the whole parsing process would be a
waste of time. The same principle applies to any rule that shows the error token
followed by some other nonnull symbol: It can lead to hopeless confusion in a lot of
grammars.

It is safer to write the rule in a form like this:
statement : error

│ ';'
│ /* other stuff */

In this case, the error token matches material only until the parser finds something
else it recognizes (for example, the semicolon). After this happens, the error state
is reduced to a statement symbol and popped off the stack. Parsing can then
proceed as usual.

Error Recognition Actions
The easiest way to generate an error message is to associate a recognition action
with the grammar rule that recognizes the error. You can do something simple:
statement: error

{
printf("You made an error!\n");

}

or you can be fancier:
line: error ’\n' prompt line

{ $$ = $4; };
prompt: /* null token */

{ printf("Please reenter line.\n"); };

If an error occurs, the parser skips until it finds a newline character. After the
newline, it always finds a null token matching prompt, and the recognition action for
prompt displays the message:
Please reenter line.

The final symbol in the rule is another line, and the action after the error rule
shows that the result of the rule ($$) should be the material associated with the
second input line.

All this means that if the user makes a mistake entering an input line, the parser
displays an error message and accepts a second input line in place of the first. This
allows for an interactive user to correct an input line that was incorrectly typed the
first time.

Of course, this setup works only if the user does not make an error the second time
the line is typed too. If the next token he or she types is also incorrect, the parser
discards the token and decides that it is still gobbling up the original error.

The yyclearin Macro
After an Error action, the parser restores the lookahead symbol to the value it had
at the time the error was detected; however, this is sometimes undesirable.

For example, your grammar may have a recognition action associated with the
error symbol, and this may read through the next lot of input until it finds the next

Chapter 3. Generating a Parser Using yacc 73

sure-to-be-valid data. If this happens, you certainly do not want the parser to pick
up the old lookahead symbol again once error recovery is finished.

If you want the parser to throw away the old lookahead symbol after an error, put:
yyclearin ;

in the recognition action associated with the error symbol. yyclearin is a macro
that expands into code that discards the lookahead symbol.

The yyerror Function
The first thing the parser does when it performs the Error action is to call a function
named yyerror(). This happens before the parser begins going down the state
stack in search of a state that can handle the error symbol. yyerror() is a lex and
yacc library function that simply displays a text string argument to stderr using
fprintf, and returns the integer value received from fprintf. The user may choose to
supply their own version. See “The lex Library Routines” on page 42 for information
about creating a user-defined yyerror().

The simplest yyerror() functions either abort the parsing job or just return so that
the parser can perform its standard error handling.

The yacc passes one argument to yyerror(): a character string describing the type
of error that just took place. This string is almost always:
Syntax error

The only other argument strings that might be passed are:
Not enough space for parser stacks
Parser stack overflow

which are used when the parser runs out of memory for the state stack.

Once yyerror() returns to yyparse(), the parser proceeds popping down the stack
in search of a state that can handle errors.

If another error is encountered soon after the first, yyerror() is not called again. The
parser considers itself to be in a potential error situation until it finds three correct
tokens in a row. This avoids the torrents of error messages that often occur as the
parser wades through input in search of some recognizable sequence.

After the parser has found three correct tokens in a row, it leaves the potential error
situation. If a new error is found later on, yyerror() is called again.

The yyerrok Macro
In some situations, you may want yyerror() to be called even if the parser has not
seen three correct tokens since the last error.

For example, suppose you have a parser for a line-by-line desk calculator. A line of
input contains errors, so yyerror() is called. yyerror() displays an error message to
the user, throws away the rest of the line, and prompts for new input. If the next line
contains an error in the first three tokens, the parser normally starts discarding input
without calling yyerror() again. This means that yyerror() does not display an error
message for the user, even though the input line is wrong.

To avoid this problem, you can explicitly tell the parser to leave its potential error
state, even if it has not yet seen three correct tokens. Simply code:

74 z/OS V1R1.0 UNIX System Services Programming Tools

yyerrok ;

as part of the error recognition action.

For example, you might have the rule:
expr : error {

yyerrok;
printf("Please re-enter line.\n");
yyclearin;

}

yyerrok expands into code that takes the parser out of its potential error state and
lets it start fresh.

Other Error Support Routines
YYABORT

Halts yyparse() in midstream and immediately returns a 1. To the function
that called yyparse(), this means that yyparse() failed for some reason.

YYACCEPT
Halts the parser in midstream and returns a 0. To the function that called
yyparse(), this means that yyparse() ended successfully, even if the entire
input has not yet been scanned.

YYRETURN(value)
Halts the parser in midstream and returns whatever value is. You should
use this rather than simply coding return(value).

YYERROR
Is a macro that fakes an error. (Note that it is uppercase.) When YYERROR
is encountered in the code, the parser reacts as if it just saw an error and
goes about recovering from the error. “Advanced yacc Topics” on page 84
gives an example of how YYERROR can be useful.

yacc Output
yacc can produce several output files. Options on the yacc command line dictate
which files are actually generated.

The most important output file is the one containing source code that can be
compiled into the actual parser. The name of this file is specified with the -o file.c
command line option.

Another possible output file contains compile-time definitions. The name of this file
is specified with -D file.h on the command line. This file is a distillation of the
declarations section of the yacc input. For example, all the %token directives are
restated in terms of constant definitions.
%token IF

appears as:
#define IF 257

in the definition file (assuming that IF is the first token in the declarations section).
By including this file with:
#include "file.h"

Chapter 3. Generating a Parser Using yacc 75

separately compiled modules can make use of all the pertinent definitions in the
yacc input.

The third output file that yacc can produce is called the parser description, where
the file name is specified with the -v or -V option. y.output is the name of the file
when -v is used. When you need to specify an alternate name, use -V. The parser
description is split into three sections:
v A summary of the grammar rules
v A list of state descriptions
v A list of statistics for the parser generated by yacc

The sections that follow show what the parser description looks like for the following
grammar:
%token IF ELSE A
%%
stmt : IF stmt ELSE stmt

│ IF stmt
│ A
;

Rules Summary
The rules summary section of the parser description begins with the command line
used to invoke yacc. This is intended to serve as a heading for the output material.

Next comes a summary of the grammar rules. The example has:
Rules:

(0) $accept: stmt $end
(1) stmt: IF stmt ELSE stmt
(2) stmt: IF stmt
(3) stmt: A

The 0th rule is always the definition for a symbol named $accept. This describes
what a complete input looks like: the Start symbol followed by the end marker.
Other rules are those given in the grammar.

yacc puts a form-feed character (0x0C) on the line after the last grammar rule, so
that the next part of the parser description starts on a new page.

State Descriptions
The parser description output contains complete descriptions of every possible
state. For example, here is the description of one state from the sample grammar:
State 2

stmt : IF.stmt ELSE stmt
stmt : IF.stmt

IF shift 2
A shift 1
. error

stmt goto 4

By now, this sort of diagram should be familiar to you. The numbers after the word
shift indicate the state to which the parser shifts if the lookahead symbol happens
to be IF or A. If the lookahead symbol is anything else, the parser raises the error
condition and starts error recovery.

76 z/OS V1R1.0 UNIX System Services Programming Tools

If the parser pops back to state 2 by means of a Reduce action, the lookahead
symbol is now stmt and the parser will go to state 4.

As another example of a state, here is state 1:
State 1

(3) stmt: A.

. reduce (3)

This is the state that is entered when an A token has been found. The (3) on the
end of the first line is a rule number. It indicates that this particular line sums up the
whole of the third grammar rule that was specified in the yacc input. The line:

. reduce (3)

indicates that no matter what token comes next, you can reduce this particular input
using grammar rule (3) and say that you have successfully collected a valid stmt.
The parser performs a reduction by popping the top state off the stack and setting
the lookahead symbol to stmt.

It is important to distinguish between:
A shift 1

in state 2 and:
. reduce (3)

in state 1. In the Shift instruction, the number that follows is the number of a state.
In the Reduce instruction, the number that follows is the number of a grammar rule
(using the numbers given to the grammar rules in the first part of the parser
description). The parser description always encloses rule numbers in parentheses,
and leaves state numbers as they are.

Here is the complete list of state descriptions for the grammar:
State 0

$accept: .stmt $end

IF shift 2
A shift 1
. error

stmt goto 3

State 1
(3) stmt: A.

. reduce (3)

State 2
stmt: IF.stmt ELSE stmt
stmt: IF.stmt

IF shift 2
A shift 1
. error

stmt goto 4

State 3
$accept: stmt.$end

Chapter 3. Generating a Parser Using yacc 77

$end accept
. error

State 4
stmt: IF stmt.ELSE stmt

(2) stmt: IF stmt. { $end ELSE }

ELSE shift 5
. reduce (2)

State 5
stmt: IF stmt ELSE.stmt

IF shift 2
A shift 1
. error

stmt goto 6

State 6
(1) stmt: IF stmt ELSE stmt.

. reduce (1)

The parser always begins in state 0, that is, in a state where no input has been
read yet. An acceptable input is a stmt followed by the end marker. When a stmt
has been collected, the parser goes to state 3. In state 3, the required end marker,
$end, indicates that the input is to be accepted. Anything else found is excess input
and means an error.

In state 4, the rule labeled (2) has:
[$end ELSE]

on the end. This just means that the parser expects to see one of these two tokens
next.

Parser Statistics
The last section of the parser description is a set of statistics summarizing yacc’s
work. Here are the statistics you see when you run the sample grammar through
yacc:
4 rules, 5 tokens, 2 variables, 7 states
Memory: max = 9K
States: 3 wasted, 4 resets
Items: 18, 0 kernel, (2,0) per state, maxival=16 (1 w/s)
Lalr: 1 call, 2 recurs, (0 trans, 12 epred)
Actions: 0 entries, gotos: 0 entries
Exceptions: 1 states, 4 entries
Simple state elim: 0%, Error default elim: 33%
Optimizer: in 0, out 0
Size of tables: 24 bytes
1 seconds, final mem = 4K

Some of these values are machine-independent (for example, the number of rules),
others are machine-dependent (for example, the amount of memory used), and
some can be different every time you run the job (for example, time elapsed while
yacc was running).

Many of these are of no interest to the normal user; yacc generates them only for
the use of those maintaining the yacc software. A number of the statistics refer to

78 z/OS V1R1.0 UNIX System Services Programming Tools

shift-reduce or reduce-reduce conflicts; for a discussion of these, see “Ambiguities”
on page 81. Here is a description of the statistic lines:

4 rules, 5 tokens, 2 variables, 7 states
The four rules are the grammar rules given in the first part of the parser
description. The five tokens are A, IF, ELSE, $endf, and error (which is
always defined, even if it is not used in this grammar). The two variables
are the nonterminal symbols, stmt and the special $accept. The seven
states are states 0 to 6.

Memory: max = 9K
This gives the maximum amount of dynamic memory that yacc required
while producing the parser. This line may also have a success rate, which
tells how often yacc succeeded in having enough memory to handle a
situation and how often it had to ask for more memory.

States: 3 wasted, 4 resets
The algorithm that constructs states from the grammar rules makes a guess
at the number of states it needs, very early in the yacc process. If this
guess is too high, the excess states are said to be wasted.

When states from the various grammar rules are being created, a state
from one rule sometimes duplicates the state from another (for example,
there were two rules that started with IF in the previous example). In the
final parsing tables, such duplicate states are merged into a single state.
The number of resets is the number of duplicate states formed and then
merged.

Items: 18, 0 kernel, (2,0) per state, maxival=16 (1 w/s)
A state is made of items, and the kernel items are an important subset of
these: The size of the resulting parsing tables and the running time for yacc
are proportional to the number of items and kernel items. The rest of the
statistics in this line are not of interest to normal users.

Lalr: 1 call, 2 recurs, (0 trans, 12 epred)
This gives the number of calls and recursive calls to the conflict resolution
routine. The parenthesized figures are related to the same process. In
some ways, this is a measure of the complexity of the grammar being
parsed. This line does not appear if there are no reduce-reduce or
shift-reduce conflicts in your grammar.

Actions: 0 entries, gotos: 0 entries
This gives the number of entries in the tables yyact and yygo. yyact keeps
track of the possible shifts that a program may make and yygo keeps track
of the gotos that take place at the end of states.

Exceptions: 1 states, 4 entries
This gives the number of entries in the table yygdef, yet another table used
in yacc. yygdef keeps track of the possible Reduce, Accept, and Error
actions that a program may make.

Simple state elim: 0%, Error default elim: 33%
The percentage figures indicate how much table space can be saved
through various optimization processes. The better written your grammar,
the greater the percentage of space that can be saved; therefore, high
percentages here are an indication of a well-written grammar.

Optimizer: in 0, out 0
These are optimization statistics, not of interest to typical yacc users.

Chapter 3. Generating a Parser Using yacc 79

Size of tables: 24 bytes
The size of the tables generated to represent the parsing rules. This size is
given in bytes on the host machine, so it is inaccurate if a cross-compiler is
being used on the eventual source code output. The size does not include
stack space used by yyparse() or debug tables obtained by defining
YYDEBUG.

1 second, final mem = 4K
The total real time that yacc used to produce the parser, and the final
dynamic memory of the parser (in K bytes).

Types
Earlier sections mentioned that yylval is int by default, as are $$, $1, $2, and so
on. If you want these to have different types, you can redeclare them in the
declarations section of the yacc input. This is done with a statement of the form:
%union {

/*
* possible types for yylval and
* $$, $1, $2, and so on
*/

}

For example, suppose yylval can be either integer or floating point. You might write:
%union {

int intval;
float realval;

}

in the declarations section of the yacc input. yacc converts the %union statement
into the following C source:
typedef union {

int intval;
float realval;

} YYSTYPE;

yylval is always declared to have type YYSTYPE. If no %union statement is given
in the yacc input, it uses:
#define YYSTYPE int

Once YYSTYPE has been defined as a union, you may specify a particular
interpretation of the union by including a statement of the form:
%type <interpretation> symbol

in the declarations section of the yacc input. The interpretation enclosed in the
angle brackets is the name of the union member you want to use. The symbol is
the name of a nonterminal symbol defined in the grammar rules. For example, you
might write:
%type <intval> intexp
%type <realval> realexp

to indicate that an integer expression has an integer value and a real expression
has a floating-point value.

Tokens can also be declared to have types. The %token statement follows the
same form as %type. For example:
%token <realval> FLOATNUM

80 z/OS V1R1.0 UNIX System Services Programming Tools

If you use types in your yacc input, yacc enforces compatibility of types in all
expressions. For example, if you write:
$$ = $2

in an action, yacc demands that the two corresponding tokens have the same type;
otherwise, the assignment is marked as invalid. The reason for this is that yacc
must always know what interpretation of the union is being used to generate correct
code.

The Default Action
The default action associated with any rule can be written as:
$$ = $1

which means that the value of associated with $1 on the value stack is assigned $$
on the value stack when the rule is reduced. If, for example, $1 is an integer, then
$$ is the same integer after the reduction occurs.

On the other hand, suppose that the recognition action associated with a rule
explicitly states:
$$ = $1

This explicit assignment may not have the same effect as the implicit assignment.
For example, suppose that you define:
%union {

float floatval;
int intval;

}

Also suppose that the type associated with $$ is floatval and the type associated
with $1 is intval. Then the explicit statement:
$$ = $1

performs an integer to floating-point conversion when the value of $1 is assigned to
$$, whereas the implicit statement did an integer to integer assignment and did not
perform this conversion. You must therefore be careful and think about the effects
of implicit versus explicit assignments.

Ambiguities
Suppose you have a grammar with the rule:
expr : expr '-' expr ;

and the parser is reading an expression of the form:
expr - expr - expr

The parser reads this token by token, of course, so after three tokens it has:
expr - expr

The parser recognizes this form. In fact, the parser can reduce this right away into
a single expr according to the given grammar rule.

The parser, however, has a problem. At this point, the parser does not know what
comes next, and perhaps the entire line is something like:
expr - expr * expr

Chapter 3. Generating a Parser Using yacc 81

If it is, the precedence rules specify that the multiplication is to be performed before
the subtraction, so handling the subtraction first is incorrect. The parser must
therefore read another token to see if it is really all right to deal with the subtraction
now, or if the correct action is to skip the subtraction for the moment and deal with
whatever follows the second expr.

In terms of parser states, this problem boils down to a choice between reducing the
expression:
expr - expr

or shifting and acquiring more input before making a reduction. This is known as a
shift-reduce conflict.

Sometimes a parser must also choose between two possible reductions. This kind
of situation is called a reduce-reduce conflict.

In case you are curious, there is no such thing as a shift-shift conflict. To see why
this is impossible, suppose that you have the following definitions:
thing : a b

│ a c
;

b : T rest_of_b;
c : T rest_of_c;

If the parser is in the state where it has seen a, you have the diagram:
thing : a.b
thing : a.c

You might think that if the lookahead symbol was the token T, the parser would be
confused, since T is the first token of both b and c; however, there is no confusion
at all. The parser just shifts to a state diagrammed with:
thing : a T.rest_of_b
thing : a T.rest_of_c

Resolving Conflicts by Precedence
The precedence directives (%left, %right, and %nonassoc) let yacc-produced
parsers resolve shift-reduce conflicts in an obvious way:

1. The precedence of a Shift operation is defined to be the precedence of the
token on which the Shift takes place.

2. The precedence of a Reduce operation is defined to be the precedence of the
grammar rule that the Reduce operation uses.

If you have a shift-reduce conflict, and the Shift and Reduce operations both have
a precedence, the parser chooses the operation with the high precedence.

Rules to Help Remove Ambiguities
Precedence cannot resolve conflicts if one or both conflicting operations have no
precedence. For example, consider the following:
statmt: IF '(' cond ')' statmt

| IF '(' cond ')' statmt ELSE statmt ;

Given this rule, how should the parser interpret the following input?
IF (cond1) IF (cond2) statmt1 ELSE statmt2

There are two equally valid interpretations of this input:

82 z/OS V1R1.0 UNIX System Services Programming Tools

IF (cond1) {
IF (cond2) statmt1
ELSE statmt2

}

and:
IF (cond1) {

IF (cond2) statmt1
}
ELSE statmt2

In a typical grammar, the IF and IF-ELSE statements would not have a precedence,
so precedence could not resolve the conflict. Thus consider what happens at the
point when the parser has read:
IF (cond1) IF (cond2) statmt1

and has just picked up ELSE as the look-ahead symbol.

1. It can immediately reduce the:
IF (cond2) statmt1

using the first definition of statmt and obtain:
IF (cond1) statmt ELSE ...

thereby associating the ELSE with the first IF.

2. It can shift, which means ignoring the first part (the IF with cond1) and going on
to handle the second part, thereby associating the ELSE with the second IF.

In this case, most programming languages choose to associate the ELSE with the
second IF; that is, they want the parser to shift instead of reduce. Because of this
(and other similar situations), yacc-produced parsers are designed to use the
following rule to resolve shift-reduce conflicts.

Rule 1
If there is a shift-reduce conflict in situations where no precedence rules
have been created to resolve the conflict, the default action is to shift.

The conflict is also reported in the yacc output so you can check that shifting
is actually what you want. If it is not what you want, the grammar rules have to
be rewritten.

The rule is used only in situations where precedence rules cannot resolve the
conflict. If both the shift operation and the reduce operation have an assigned
precedence, the parser can compare precedences and decide which operation to
perform first. Even if the precedences are equal, the precedences must have
originated from either %left, %right, or %nonassoc, so the parser knows how to
handle the situation. The only time a rule is needed to remove ambiguity is when
one or both of the shift or reduce operations does not have an assigned
precedence.

In a similar vein, yacc-produced parsers use the following rule to resolve
reduce-reduce conflicts.

Chapter 3. Generating a Parser Using yacc 83

Rule 2
If there is a reduce-reduce conflict, the parser always reduces by the rule
that was given first in the rules section of the yacc input.

Again, the conflict is reported in the yacc output so that users can ensure that
the choice is correct.

Precedence is not consulted in reduce-reduce conflicts. yacc always reduces by the
earliest grammar rule, regardless of precedence.

The rules are simple to state, but they can have complex repercussions if the
grammar is nontrivial. If the grammar is sufficiently complicated, these simple rules
for resolving conflicts may not be capable of handling all the necessary intricacies in
the way you want. Users should pay close attention to all conflicts noted in the
parsing table report produced by yacc and should ensure that the default actions
taken by the parser are the desired ones.

Conflicts in yacc Output
If your grammar has shift-reduce or reduce-reduce conflicts, there is also a table of
conflicts in the statistics section of the parser description. For example, if you
change the rules section of the sample grammar to:
stmt : IF stmt ELSE stmt

│ IF stmt
│ stmt stmt
│ A ;

you get the following conflict report:
Conflicts:

State Token Action
5 IF shift 2
5 IF reduce (3)
5 A shift 1
5 A reduce (3)

This shows that state 5 has two shift-reduce conflicts. If the parser is in state 5 and
encounters an IF token, it can shift to state 2 or reduce using rule 3. If the parser
encounters an A token, it can shift to state 1 or reduce using rule 3. This is
summarized in the final statistics with the line:
2 shift-reduce conflicts

Reading the conflict report shows you what action the parser takes in case of a
conflict: The parser always takes the first action shown in the report. This action is
chosen in accordance with the two rules for removing ambiguities.

Advanced yacc Topics
The following topics are covered in this section:
v Rules with multiple actions
v Selection preferences for rules
v Using nonpositive numbers in $N constructs
v Using lists and handling null strings
v Right recursion versus left recursion
v Using YYDEBUG to generate debugging information

84 z/OS V1R1.0 UNIX System Services Programming Tools

v Important symbols used for debugging
v Using the YYERROR macro
v Rules controlling the default action
v Errors and shift-reduce conflicts
v Making yyparse() reentrant
v Miscellaneous points

Rules with Multiple Actions
A rule can have more than one action. For example, you might have:
a : A1 {action1} A2 {action2} A3 {action3};

The nonterminal symbol a consists of symbols A1, A2, and A3. When A1 is
recognized, action1 is invoked; when A2 is recognized, action2 is invoked; and
when A3 is recognized (and therefore the entire symbol A), action3 is invoked. In
this case:
$1 — is the value of A1
$2 — is the value of $$ in action1
$3 — is the value of A2
$4 — is the value of $$ in action2
$5 — is the value of A3

If types are involved, multiple actions become more complicated. If action1
mentions $$, there is no way for yacc to guess what type $$ has, since it is not
really associated with a token or nonterminal symbol. You must therefore state it
explicitly by specifying the appropriate type name in angle brackets between the
two dollar signs. If you had:
%union {

int intval;
float realval;

}

you might code:
$<realval>$

in place of $$ in the action, to show that the result had type float. In the same way,
if action2 refers to $2 (the result of action1), you might code:
$<realval>2

To deal with multiple actions, yacc changes the form of the given grammar rule and
creates grammar rules for dummy symbols. The dummy symbols have names
made up of a $ followed by the rule number. For example:
a : A1 {action1} A2 {action2} A3 {action3};

might be changed to the rules:
$21 : /* null */ {action1} ;
$22 : /* null */ {action2} ;
a : A1 $21 A2 $22 A3 {action3};

These rules are shown in the rules summary of the parser description report.

This technique can introduce conflicts. For example, if you have:
a : A1 {action1} A2 X;
b : A1 A2 Y;

These are changed to:

Chapter 3. Generating a Parser Using yacc 85

$50 : /* null */ {action1};
a : A1 $50 A2 X;
b : A1 A2 Y;

The definitions of a and b give a shift-reduce conflict because the parser cannot tell
whether A1 followed by A2 has the null string for $50 in the middle. It has to decide
whether to reduce $50 or to shift to a state diagrammed by:
b : A1 A2.Y

As a general rule, you can resolve this conflict by moving intermediate actions to
just before a disambiguating token.

Selection Preference for Rules
A selection preference can be added to a grammar rule to help resolve conflicts.
The following input shows a simple example of how a selection preference can
resolve conflicts between two rules:
a1 : a b ['+' '-']

{ /* Action 1 */ } ;
a2 : a b

{ /* Action 2 */ } ;

The selection preference is indicated by zero or more tokens inside square
brackets. If the token that follows the b is one of the tokens inside the square
brackets, the parser uses the grammar rule for a1. If it is not one of the given
tokens, the parser uses the rule for a2. In this way, the conflict between the two
rules is resolved; the preference tells which one to select, depending on the value
of the lookahead token.

Note: A selection preference states that a rule is to be used when the next token is
one of the ones listed in the brackets and is not to be used if it is not in the
brackets.

The lookahead token is merely used to determine which rule to select. It is not part
of the rule itself. For example, suppose you have:
a1 : a b ['+' '-'] ;
a2 : a b ;
xx : a1 op expr ;

and suppose you have an a, a b, and “+” as the lookahead token. The + indicates
that the a and b is to be reduced to a1. The parser does this and finds that the a1
is part of the xx rule. The + lookahead token is associated with the op symbol in
the xx rule. In other words, a selection preference does not use up an input token;
it just looks at the token value to help resolve a conflict.

The square brackets of a selection preference may contain no tokens, as in:
x : y z [];

This says that the parser will never use this rule unless it cannot be avoided.

Selection preferences can also be stated using the construct:
[| T1 T2 T3 ...]

where the first character is a caret (∧) and T1, T2, and so on are tokens. When this
is put on the end of a rule, it indicates that the rule is to be used if the lookahead
token is not one of the listed tokens. For example:

86 z/OS V1R1.0 UNIX System Services Programming Tools

a1 : a b
{ /* Action 1 */ } ;

a2 : a b [| '+' '-']
{ /* Action 2 */ } ;

says that rule a2 is to be used if the token after the b is not a + or −. If the token is
+ or −, a2 is not to be used (so a1 is).

Selection preference constructs can be put in the middle of rules as well as on the
end. For example, you can write:
expr : expr ['+' '-'] op expr

{ /* Action 1 */ }
│ expr op expr

{ /* Action 2 */ } ;

This states that if the first expr is followed by a + or − you want to use the first rule;
otherwise, you want to use the second. The preference does not use up the + or −
token; you still need a symbol (op) to represent such tokens.

Selection preferences that appear in the middle of a rule are implemented in the
same way as multiple actions, using dummy rules. The previous example results in
something like the following:
$23 : ['+' '-'] ;
expr : expr $23 op expr

{ /* Action 1 */ }
│ expr op expr

{ /* Action 2 */ } ;

(where the 23 in $23 is just a number chosen at random). The dummy rule that is
created is a null string with the selection preference on the end. The first token for
op is the + or − that was the lookahead token in rule $23.

If a selection preference in the middle of a rule is immediately followed by an
action, only one dummy rule is created to handle both the action and the
preference.

In most cases, a selection preference counts as a $N symbol, but it has no
associated value. For example, in:
expr : expr ['+' '-'] op expr

there is:
$1 — first expr
$2 — no value
$3 — op
$4 — second expr

If the preference is followed by an action, the preference and the action count as a
single $N symbol, the value of which is equal to the $$ value of the action. For
example, in:
expr : expr ['+' ’−'] {action} op expr

there is:
$1 — first expr
$2 — $$ of action
$3 — op
$4 — second expr

Chapter 3. Generating a Parser Using yacc 87

The %prec construct is incompatible with rules that contain selection preferences,
because the preference is all that is needed to resolve conflicts. For this reason,
yacc issues an error message if a rule contains both a preference and the %prec
construct.

Selection preferences can be used to resolve most conflicts. Indeed, there may be
cases where the most practical course of action is to write a number of conflicting
rules that contain selection preferences to resolve the conflicts, as in:
expr : expr ['+' '-'] op expr

│ expr ['*' '/' '%'] op expr
│ expr ['&'; '|'] op expr

...

Note: Selection preferences of the form:
[error]
[| error]

are not useful. Selection preferences are implemented through (dummy)
Reduce actions, but the parser’s error-handling routines always look for
Shift actions and ignore reductions.

Using Nonpositive Numbers in $N Constructs
yacc lets you use constructs like $0, $-1, $-2, and so on in recognition actions.
These were once important, but the techniques for specifying multiple actions have
made them obsolete. yacc supports the constructs only for compatibility with older
grammars.

To understand what these constructs mean, it is important that you think in terms of
the state stack. Each $N construct is associated with a state on the stack; the value
of $N is the value of the token or nonterminal symbol associated with the state at
the time of a Reduce operation. (Recall that recognition actions are performed
when the appropriate Reduce action takes place.) $1 is the value associated with
the state that found the first component of the grammar rule, $2 is the value
associated with the second state, and so on. $0 is the value associated with the
state that was on top of the stack before the first component of the grammar rule
was found. $-1 is the value associated with the state before that, and so on. All of
these states are still on the stack, and their value can be obtained in this way.

As an artificial example, suppose that a grammar has the rules:
stmt : IF condition stmt

│ WHILE condition stmt
condition : /* something */

{ /* action */ }

The action associated with the condition can use the $-1 construct to find out if the
preceding token was IF or WHILE. (Of course, this assumes that the only items that
can precede a condition are the IF and WHILE tokens.) There are occasionally
times when this sort of information is needed.

Using Lists and Handling Null Strings
Grammars often define lists of items. There are two common ways to do this:
list : item

│ list item ;

or:

88 z/OS V1R1.0 UNIX System Services Programming Tools

list : /* null */
│ list item ;

The first definition means that every list has at least one item. The second allows
zero-length lists.

Using the second definition is sometimes necessary or convenient, but it can lead
to difficulties. To understand why, consider a grammar with:
list1 : /* null */

│ list1 item1 ;
list2 : /* null */

│ list2 item2 ;
list : list1

│ list2 ;

When the parser is in a position to look for a list, it automatically finds a null string
and then gets a conflict because it cannot decide if the null string is an instance of
list1 or list2. This problem is less likely to happen if you define:
list1 : item1

│ list1 item1 ;
list2 : item2

│ list2 item2 ;
list : /* null */

│ list1
│ list2
;

The parser can determine if it has a list1 or a list2 by seeing if the list starts with
item1 or item2.

A yacc-produced parser avoids infinite recursions that result from matching the
same null string over and over again. If the parser matches a null string in one
state, goes through a few more states, and shifts once more into the state where
the null string was matched, it does not match the null string again. Without this
behavior, infinite recursions on null strings can occur; however, the behavior
occasionally gets in the way if you want to match more than one null string in a row.
For example, consider how you might write the grammar rules for types that may be
used in a C cast operation, as in:
char_ptr = (char *) float_ptr;

The rules for the parenthesized cast expression might be written as:
cast : '(' basic_type opt_abstract ')' ;
opt_abstract : /* null */

│ abstract;
abstract : '(' abstract ')'

│ opt_abstract '[' ']'
│ opt_abstract '(' ')'
│ '*' opt_abstract
;

Consider what happens with a cast such as:
(int *[])

This is interpreted as a “*” followed by a null opt_abstract followed by a null
opt_abstract followed by square brackets; however, the parser does not accept two
null opt_abstracts in a row, and takes some other course of action. To correct this
problem, you must rewrite the grammar rules. Rather than using the opt_abstract
rules, have rules with and without an abstract:

Chapter 3. Generating a Parser Using yacc 89

cast : '(' basic_type abstract ')' ;
abstract : /* null */

│ abstract '[' ']'
│ '[' ']'
│ abstract '(' ')'
│ '(' ')'
│ '*' abstract
│ '*'
;

Right Recursion versus Left Recursion
“Input to yacc” on page 56 mentioned left and right recursion. For example, if a
program consists of a number of statements separated by semicolons, you might
define it with right recursion as:
program : statement

│ statement ';' program ;

or with left recursion as:
program : statement

│ program ';' statement ;

If you think about the way that the state stack works, you can see that the second
way is much to be preferred. Consider, for example, the way something like:
S1 ; S2 ; S3 ; S4

is handled (where all the Sn’s are statements).

With right recursion, the parser gathers S1; and then go looking for a program. To
gather this program, it gathers S2. It then looks at the lookahead symbol “;” and
sees that this program has the form:
statement ';' program

The parser then gathers the program after the semicolon. But after S3, it finds
another semicolon, so it begins gathering yet another program. If you work the
process through, you find that the state stack grows to seven entries (one for each
Sn: and one for each “;”) before the first Reduce takes place.

On the other hand, if you have the left recursion:
program : program ';' statement

and the same input, the parser performs a Reduce as soon as it sees:
S1 ; S2

This is reduced to a single state corresponding to the nonterminal symbol program.
The parser reads ;S3 and reduces:
program ; S3

to program again. The process repeats for the last statement. If you follow it
through, the state stack never grows longer than three states, as compared with the
seven that are required for the right recursive rule. With right recursion, no
reduction takes place until the entire list of elements has been read; with left
recursion, a reduction takes place as each new list element is encountered. Left
recursion can therefore save a lot of stack space.

The choice of left or right recursion can also affect the order that recognition actions
are performed in. Suppose T is a token. If you define:

90 z/OS V1R1.0 UNIX System Services Programming Tools

x : /* null */
│ y ',' x {a1} ;

y : T {a2} ;

then the input:
T , T , T

performs recognition actions in the order:
{a2} {a2} {a2} {a1} {a1} {a1}

The {a2} actions are performed each time a T is reduced to y. The {a1} actions do
not happen until the entire list has been read, because right recursion reads the
entire list before any Reduce actions take place.

On the other hand, if you define:
x : /* null */

│ x ',' y {a1} ;
y : T {a2};

the recognition actions for the same input take place in the order:
{a2} {a1} {a2} {a1} {a2} {a1}

With left recursion, Reduce actions take place every time a new element is read in
for the list.

This means that if you want the action order:
{a2} {a2} {a2} {a1} {a1} {a1}

you must use right recursion even though it takes more stack space.

Using YYDEBUG to Generate Debugging Information
If you define a symbol (with the #define directive) named in the declarations section
and set the variable yydebug to a nonzero value, your parser displays a good deal
of debugging information as it parses input. The -t command line option is a
convenient shortcut to defining the symbol named . Your program may set yydebug
to a nonzero value before calling yyparse() or while yyparse() is executing. The
following describes the output you may see.

Every time yylex() obtains a token, the parser displays:
read T (VALUE)

T is the name of the token and VALUE is the numeric value. Thus if yylex() has
read an IF token, you might see:
read IF (257)

Every time the parser enters a state, it displays:
state N (X), char (C)

where N is the state number as given in the state description report, and X and C
are other integers. X is another number for the state; yacc actually renumbers the
states and grammar rules after it generates the state description report to improve
the parser’s efficiency, and X gives the state number after renumbering. C is the
token type of the lookahead symbol if the symbol is a token. If the symbol is not a
token, or if there is no lookahead symbol at the moment, C is −1. As an example:
state 6 (22), char (-1)

Chapter 3. Generating a Parser Using yacc 91

indicates that the parser has entered state 6 on the state description report (state
22 after renumbering) and that the current lookahead symbol is not a token.

Every time the parser performs a Shift action, it displays:
shift N (X)

where N is the number of the state that the parser is shifting to and X is the number
of the same state after renumbering.

Every time the parser performs a Reduce action, it displays:
reduce N (X), pops M (Y)

This says the parser has reduced by grammar rule N (renumbered to X). After the
reduction, the state on top of the state stack was state M (renumbered to Y).

Important Symbols Used for Debugging
Debugging a yacc-produced parser is difficult, since only part of the code is
produced by user input. The remainder is standard code produced by yacc. This is
aggravated by the fact that the state and rule numbers shown in the state
description report are not the same as those used when the parser actually runs.
For optimization purposes, the states are sorted into a more convenient order.
Thus, the internal state number used by the program is usually not the same as the
external state number known to the user.

To help you when examining parser code using a symbolic debugger, the following
are a few of the important variables that the parser uses:

yyval Holds the value $$ at the time of a reduction. This has the type YYSTYPE.

yychar
Holds the most recent token value returned by yylex().

yystate
Is the internal number of the current state.

yyps Points to the current top of the state stack. Thus yyps[0] is the internal
number of the current state, yyps[-1] is the internal number of the previous
state, and so on.

yypv Points to the top of the current value stack. The entries in this stack have
the type YYSTYPE. When a Reduce operation performs a recognition
action, this pointer is moved down the stack to the point where:
yypv[1] = $1
yypv[2] = $2

and so on.

yyi Is the internal number of the rule being reduced by a Reduce action.

yyrmap
is an array present only when is defined. It is used to convert internal rule
numbers to external ones. For example, yyrmap[yyi] is the external
number of the rule being reduced by a Reduce action.

yysmap
Is an array present only when is defined. It is used to convert internal state
numbers to external ones. For example, yysmap[yystate] is the external
number of the current state.

92 z/OS V1R1.0 UNIX System Services Programming Tools

Using the YYERROR Macro
The YYERROR macro creates an artificial error condition. To show how this can be
useful, suppose you have a line-by-line desk calculator that allows parenthesizing
expressions and suppose you have a variable depth that keeps track of how deeply
parentheses are nested. Every time the parser finds an opening parenthesis, it adds
1 to depth. Every time it finds a closing parenthesis, it subtracts 1.

Consider how the following definitions work:
expr : lp expr ')'

{depth--;}
│ lp error

{depth--;}
;

lp : '(' {depth++;};

If no error occurs, the depth variable is incremented and decremented correctly. If
an error does occur, however, what happens? Your yyerror() routine is called on to
recover from the error in the middle of an expression. Often, it is more reasonable
to postpone this recovery until you reach a point where you have a whole
expression; therefore, you might use the following alternate definition:
expr : lp error

{depth--; YYERROR;}
;

line : error ’\n' prompt line
{ $$ = $4; } ;

prompt : /* null token */
{printf("Please reenter line.\n");};

Now, what happens when the grammar is asked to parse a line such as:
1 + ((a +

When the end of the line is encountered, the parser recognizes an error has
occurred. Going up the stack, the first state ready to handle the error is:
expr : lp error ;

At this point, the parser reduces the input:
(a +

into an expr. The reduction performs the recognition action: it decrements the depth
variable and then signals that an error has taken place. The Error action begins
popping the stack again. It finds the previous opening parenthesis, recognizes
another:
lp error

construct, and performs another reduction. The parenthesis count is again
decremented, and another error condition is generated.

This time, the grammar rule that deals with the error is the definition of line. An
error message is issued and a new line is requested. In this way, the parser has
worked its way back to error-handling code that can deal with the situation. Along
the way, the parser correctly decremented the depth variable to account for the
missing parentheses.

This method of dealing with errors decrements depth for every unbalanced opening
parenthesis on the line. This corrects the depth count properly. Our first definition
(without the YYERROR call) would have decremented depth only once.

Chapter 3. Generating a Parser Using yacc 93

This example is somewhat contrived, of course; you can always just set depth to
zero whenever you start a new line of input. The usefulness of the technique is
more apparent in situations where you obtain memory with malloc, whenever you
get an opening delimiter and free the memory with free, and whenever you get a
closing delimiter. In this case, it is obvious that you need to do precisely as many
free operations as malloc operations, so you must raise the error condition for
each unbalanced opening delimiter.

You might think that the symbol lp is unnecessary, and you can just define:
expr : '(' {depth++;} expr ')' {depth--;}

│ '(' error {depth--;} ;

However, this does not work in general. There is no guarantee that the action:
{depth++;}

is performed in all cases, particularly if the token after the “(” is one that could not
start an expression.

As an interesting example of another way to use YYERROR, consider the following
(taken from a parser for the Pascal programming language):
program:
declaration
│ program declaration
;
declaration:
LABEL label_list
│ CONST const_list
│ VAR var_list
│ PROC proc_header
│ CTION func_header
;
label_list :
label_list ',' label
│ label
│ error
│ error [LABEL CONST VAR PROC FUNC BEGIN]

{ YYERROR; /* other code */ }
;

This deals with errors in two different ways:

1. If an error is followed by one of the tokens LABEL, CONST, and so on
(representing the beginning of new declaration sections in Pascal), the input is
reduced to a complete label_list and an appropriate action is taken. This action
uses YYERROR to raise the error condition, but only after the reduction has
taken place.

2. The other rule is used when the parser finds an error that is not followed by one
of the listed tokens. This corresponds to an error in the middle of a label list and
requires a different sort of handling. In this case, error handling is allowed to
take place immediately, without reduction, because there may be another
label_list to come.

This kind of approach can be used to distinguish different kinds of errors that may
take place in a particular situation.

94 z/OS V1R1.0 UNIX System Services Programming Tools

Rules Controlling the Default Action
The default action is the one that is taken when the parser finds a token that has no
specified effect in the current state. In a state diagram, the default action is marked
with a dot (.). The default is always a Reduce or an Error action, chosen according
to the following rules:

1. If the state has no Shift actions and only one Reduce, the default is the
Reduce action.

2. Apart from rule 1, an empty rule never has Reduce as a default.

3. If a state has more than one Reduce action, the parser examines the popularity
of each Reduce. For example, if reduction A is used with any of three different
input tokens and reduction B is used with only one input token, reduction A is
three times as popular as B. If one Reduce action is more than twice as
popular as its closest contender (that is, if it is taken on more than twice as
many input tokens), and if that Reduce action is associated with a rule that
contains at least five tokens, the popular Reduce action is made the default.

4. In all other cases, the default action is an Error action. For example, Error is
chosen when a rule has more than one Reduce action, and there is no Reduce
that is more than twice as popular as all the other contenders.

Note: z/OS UNIX yacc’s predecessor UNIX yacc always chooses the most popular
Reduce action as a default (if there is one). It does not use the same
requirements as 3. As a result of this difference, z/OS UNIX yacc’s parser
tables are about 20% larger than UNIX yacc’s, but an z/OS UNIX
yacc-generated parser usually detects errors much earlier than a parser
generated by UNIX yacc.

Errors and Shift-Reduce Conflicts
A grammar may contain shift-reduce conflicts that occur when an error is
encountered. In this case, the Shift action is always taken and no warning message
is displayed.

Making yyparse() Reentrant
If you define YYALLOC in the declarations section (with the #define directive), the
state and value stacks used by yyparse() are allocated dynamically through malloc
and freed before yyparse() returns. In other words, yyparse() makes itself reentrant
by saving a number of externals when it begins execution and restoring them upon
completion. The externals involved are:
yylval yyval yypvt
yynerrs yychar yyerrflag

If you specify longjmp to get out of yyparse() (due to an action), the externals are
not restored, and yyparse() is not reentrant.

Miscellaneous Points
It is incorrect to code either:
%token X 0

or:
%token X 256

The value 0 is reserved for the end marker and 256 is reserved for error.

Chapter 3. Generating a Parser Using yacc 95

If you define YYSTATIC, both the state and value stacks are static; otherwise, the
state stack is auto (allocated on the program stack) and the value stack is static.
Defining YYALLOC saves both stack space and static space; defining YYSTATIC
saves stack space.

If you define YYSYNC, the parser always has a lookahead token when it performs
a shift or reduce action. If the symbol is not defined, the parser obtains a lookahead
token only if the value of the token is needed.

96 z/OS V1R1.0 UNIX System Services Programming Tools

Chapter 4. Tutorial on Using make

make can be a key factor in the successful management of software development
projects, as well as any other type of project where you must keep a collection of
files in synchronization with one another. make is used in situations where a
change in one file necessitates the updating of one or more other files that depend
on the changed file.

For example, suppose a program is built from several separate object files, each of
which depends on its own source file. If you change a source file and then run
make, make can automatically determine which object files are out of date (older
than their corresponding source files). make can then recompile the changed
source files to get new object modules, and then link all the component object files
to get an updated version of the program.

Basic Concepts
This section discusses the major concepts that underlie the make command and
gives some simple examples of how to use make.

The Makefile
To use make, you usually require a makefile, a text file that describes the
interdependencies of the files that you want make to supervise, as well as the
recipes for remaking files whenever necessary.

An example makes this easier to understand. (You will find this example a lot more
verbose than a typical makefile, but there is no need to confuse things by taking a
lot of shortcuts right now.) The following example shows the contents of a sample
makefile for a small program using the c89 compiler interface:
program : main.o func.o
c89 −o program main.o func.o
main.o : main.c
c89 −c main.c
func.o : func.c
c89 −c func.c

This makefile consists of three rules. The first rule is:
program : main.o func.o
c89 −o program main.o func.o

The first line in this rule states that the file program depends upon the two .o files
that follow the colon (:). If any or all of the .o files have changed since the last time
program was made, make attempts to remake program. It does this using the
recipe on the next line. This recipe consists of a c89 command that links program
from the two object files.

Before make remakes program, it checks to see if any of the .o files need
remaking. To do this, it checks the other rules in the makefile to determine the
dependencies of the .o files. If any of the .o files need remaking (because they’ve
become out of date with their associated .c files), make remakes the .o files first,
and then makes program. make updates each object file by executing the recipe
that follows the appropriate file.

© Copyright IBM Corp. 1996, 2001 97

Writing a Rule
The previous example showed a collection of simple rules. All the rules follow a
consistent format:
target target ... : prerequisite
prerequisite ... <tab> recipe

make accepts rules with more complicated formats, but this tutorial restricts itself to
this simple form for the time being.

The term target usually refers to a file made from other files. For example, a target
could consist of an object file built by compiling a source file. make also recognizes
a number of special targets, which are not files.

A rule may have several targets:
func1.o func2.o : includes.h

c89 −c func1.c
c89 −c func2.c

This says that if you change includes.h, you must update both func1.o and
func2.o.

The prerequisite part of a rule consists of a list of files. The targets depend directly
or indirectly on these files: if any of the files change, the targets require remaking.
The prerequisite list appears on the same line as the targets, separated from the
targets by a colon (:).

The recipe part of a rule consists of one or more commands that remake the target
when necessary. The recipe usually begins on the line following the target and
prerequisite list. A recipe can consist of any number of lines, but each line in the
recipe must begin with a tab character.

98 z/OS V1R1.0 UNIX System Services Programming Tools

Typing a Tab Character
If you are using the ed editor, you can type a tab character as a <Esc-i>
sequence. After you press <Enter>, the tab character is displayed as the
correct number of blanks.

If you are using the ISPF/PDF editor, you cannot type a tab character (ISPF
handles only displayable characters). Instead, you can:

1. Select a character that you will not be using in the file—for example, the
character @.

2. At the beginning of each line of the recipe, type an @ instead of a tab
character.

3. When you have finished editing the file, on the command line type:
change @
X'05'
all 1

This converts the @ to the hex character 05, which is a tab.

In ISPF Edit, the X'05' now displays as a blank space, which you cannot
type over. If you use ISPF to edit or browse an existing file that has tabs in
it:

v In browse mode, the X'05' (tab) displays as a period (.) by default.

v In edit mode, the X'05' displays as a blank space. When you edit the
file, ISPF displays a message that the file contains “nonprintables”
(meaning the tab characters) and tells you how to use the FIND
command to locate them. You can change the tabs back to @ by typing
this on the command line:
change
X'05'
@ all 1

You can insert any number of blank lines between lines in a recipe, provided that
each line begins with a tab character. A line that does not begin with a tab ends the
recipe.

In the interests of efficiency, make executes most recipe lines itself. However, a
recipe line may contain a character special to your command interpreter or shell(for
example, the > and < redirection constructs). In these cases, make calls the
command interpreter to execute the line, so that the special characters are handled
properly.

Filenames Containing a Colon
Occasionally, target names may contain a colon:
a:file

Usually, make interprets a colon as the mark separating the target names from the
prerequisite list. To avoid confusion, use quotes to enclose any filename that
contains a colon:
“a:program” : “a:main.o” func1.o ...

recipe

Chapter 4. Tutorial on Using make 99

White Space
White space separates items in a target or prerequisite list. White space consists of
one or more blanks or tab characters. You can also surround the colon between the
target list and the prerequisite list with white space; however, you do not have to.

Continuation Lines
A backslash (\) as the last character of a line indicates that the line is not finished; it
continues on to the next line of the file. For example:
target list : \
prerequisite list

is equivalent to:
target list : prerequisite list

You will find this useful if the length of a list makes it impossible to fit everything on
one line. You can do this several times; a single line can be broken into any number
of continuation lines.

Targets with More Than One Recipe
A file may appear as the target in more than one rule. If several of these rules have
associated recipes, use a double colon (::) to separate the target and prerequisites.
As an example, consider the file A that depends on three other files: B, C, and D:
A :: B C

first recipe
A :: C D

second recipe

If A is up to date with C and D, but not B, make executes only the first recipe. If A
is out of date with C, make executes both recipes.

When a target has different recipes for different prerequisites, you must use the
double colon in each of the rules associated with the target. You can use a single
colon in several rules for the same target, provided that only one of those rules
contains a recipe. Metarules do not follow this general rule. For more information on
metarules, see “Metarules” on page 109.

As a special case, if no prerequisites are specified, the target is always remade.

Comments
A makefile may contain comments. A comment begins with a number sign character
(#), and extends to the end of the line. Consider the following example:
This is a comment line
target : prerequisite # This is another comment
recipe # One more comment

make ignores the contents of all comments; they simply allow the creator of the
makefile to explain its contents.

Running make
To run make in its most basic form, type the following command:
make

When you use make in this way, it expects to find your makefile in the working
directory with the name makefile. Once it finds your makefile, make checks to see

100 z/OS V1R1.0 UNIX System Services Programming Tools

if the first target has become out of date with its prerequisites. Part of this process
requires checking that the prerequisites themselves do not require remaking. make
remakes all the files it requires to properly remake the first target.

Because of this, many users often put an artificial rule at the beginning of a
makefile, naming all the targets they remake most frequently. The following example
could serve as the first rule of a makefile:
all : target1 target2 ...

The file named all does not exist, but when make tries to remake all, it
automatically checks all’s specified prerequisites to ensure they do not require
remaking. make looks through the makefile for any rules that have all’s
prerequisites as targets. make remakes any that have become out of date with their
own specific prerequisites. When make remakes the files, it displays the recipe
lines as it runs them.

You can also specify targetnames on the command line:
make target1 target2

make attempts to remake only the given targets, plus any prerequisites of those
targets that need remaking. For example, you could type the following command:
make func1.o func2.o

make then remakes the given .o files, if they require it.

If you give your makefile a name other than makefile, or place it in a separate
directory, you have to specify the name of the file you want make to use. You do
this with the -f option:
make -f filename

In this case, you indicate a makefile called filename. You can combine these two
options; you can specify particular targets and a different name for the makefile:
make -f filename target1 target2 ...

One other interesting option is -n. When you specify this option (before any target
names), make displays the commands it must execute to bring the targets up to
date, but does not actually execute the commands. Consider the following example:
make -n program

make displays the commands needed to bring program up to date. You will find
this option useful if you have just created a makefile and you want to check it to
see if it behaves the way you expect. In effect, it gives you a dry run of the
updating process.

There are a large number of other options for the make command. This tutorial
discusses a few of these options. The full list of options is provided with the make
command description in z/OS UNIX System Services Command Reference .

Macros
Suppose you are using make to maintain a C program that you are compiling with
the c89 command. The c89 command features a -L option that allows you to
specify a directory to add to the search path when c89 searches for libraries.

Chapter 4. Tutorial on Using make 101

All the modules that make up this C program should be compiled with libraries from
the same directory. This means that you can set up your makefile as follows:
module1.o : module1.c

c89 −L libdir −c module1.c
module2.o : module2.c

c89 −L libdir −c module2.c
And so on

These commands all use libraries from the directory libdir. (They also use the -c
option, which compiles the source code but does not link it.)

Now suppose that you want to use the libraries stored in the directory libdir2
instead of those stored in libdir. You need to go back to your makefile and change
all the:
−L libdir

references into:
−L libdir2

This task is time consuming and error-prone. You may easily miss one of the
recipes that have to be changed, or make a typing mistake while you are editing the
file.

Macros simplify this kind of situation. The term macro refers to a symbol that stands
for a string of text. The following example demonstrates the form used to create a
macro:
macro_name = string

When make encounters the construction:
$(macro_name)

it expands it to the string associated with macro_name.

For example, consider the following:
CC = c89
CFLAGS = −L libdir
module1.o : module1.c

$(CC) -c $(CFLAGS) module1.c
module2.o : module2.c

$(CC) -c $(CFLAGS) module2.c
And so on

The first line creates a macro named CC. The makefile assigns the string c89 (the
command that invokes your compiler) to the macro. The second line creates a
macro named CFLAGS, which contains the options you want to specify to the
compiler. Throughout the makefile, the example uses $(CC) and $(CFLAGS) in place
of the compilation command and its options.

This makefile works exactly the same as the previous one; however, it is much
easier to change. If you decide that you want to compile with libraries from the
directory libdir2 instead of libdir, you just have to change the CFLAGS definition
to:
CFLAGS = -L libdir2

By changing the one line, you can change all the appropriate recipes in the file. In
the same way, you can add more standard options to your definition of CFLAGS.

102 z/OS V1R1.0 UNIX System Services Programming Tools

By changing the definition of CC, you can switch to an entirely different C compiler.
The following example shows the same makefile in terms of a hypothetical C
compiler invoked by ccomp.
CC = ccomp
CFLAGS = −L libdir
module1.o : module1.c

$(CC) -c $(CFLAGS) module1.c
module2.o : module2.c

$(CC) -c $(CFLAGS) module2.c
And so on

You did not need to modify the rules and recipes, just the two macro definitions.

Naming Macros
Any sequence of uppercase or lowercase letters, digits, or underscores (_) may
form the name of a macro. The first character cannot be a digit. Traditionally,
macros are given uppercase names to stand out more clearly in your makefile.

Because make assumes the $ represents the beginning of a macro expansion
when it appears in a makefile, you must type two $ characters to represent an
actual (literal) $ character. The following example creates a macro named DOLLAR
containing the single character $.
DOLLAR = $$

Macro Examples
For example, if you are using c89, you might have a makefile with these definitions:
USER = /usr/jsmith
directory where object modules are kept
DIROBJ = $(USER)/project/obj
directory where src modules are kept
DIRSRC = $(USER)/project/src
$(DIROBJ)/module.o : $(DIRSRC)/module.c

compile the file
$(CC) -c $(DIRSRC)/module.c
and move the object file to the specified directory
mv $(DIRSRC)/module.o $(DIROBJ)/module.o

This makefile defines macros for the directories that contain source files and object
modules. These macros can be changed easily. For example, if you want to store
all the object files in a different directory, just change the definition of DIROBJ.

The next example comes from a difference between various C compilers. Some
compilers put compiled object code into files ending with .obj and executable code
into files ending with .exe, whereas others put the object code into files ending with
.o and executable code into files with no suffix. If you plan to switch from one
system to another, you might use the following macro definitions:
O = .obj
E = .exe
program$(E) : module1$(O) module2$(O) ...

recipe
module1$(O) : ...

If you change to a compiler that uses the .o suffix for object files, you can just
change the definition of O to change all the suffixes in the file. Similarly, if you
change to a system that does not use suffixes with executable programs, you can
define:
E =

Chapter 4. Tutorial on Using make 103

so that $(E) expands to an empty (null) string.

When a macro name consists of a single character, make lets you omit the
parentheses, so that, for example, you can write the macro $(E) as $E. You will find
this useful if you use common suffix macros:
program$E : module1$O module2$O ...

recipe
module1$O : ...

Command-Line Macros
The command line that you use to call make may contain macro definitions. You
place these after any options and before any targets:
make -f makefile DIROBJ=/usr/rhood program

The macro definition:
DIROBJ=/usr/rhood

assigning DIROBJ the value of /usr/rhood follows the make -f option and precedes
the target program.

A macro definition on the command line always overrides any macro definitions
inside the makefile.

If a command-line macro definition contains white space, you must enclose it in
quotes or apostrophes, as in the following example:
make ’FILES = a.c b.c’ target target...

Variations
You can contain a macro name within braces ({}) as well as parentheses. The
following two forms are equivalent:
$(macro)

and:
${macro}

A $(name) construct can contain other $(name) constructs. For example, suppose
you have a program suitable with either the c89 compiler interface and the
hypothetical ccomp compiler. You might write the following in your makefile:
CFLAGS_C89 = −L libdir
CFLAGS_CCOMP = −l libdir
CC_C89 = c89
CC_CCOMP = ccomp
module1.o : module1.c

$(CC_$(COMP)) -c $(CFLAGS_$(COMP)) module1.c

You can then call make with the following command line:
make “COMP=C89”

Inside the construct $(CC_$(COMP)) the $(COMP) is replaced with C89. The
original construct becomes:
$(CC_C89)

which then expands to c89. Similarly, the following transformations occur, in order:
$(CFLAGS_$(COMP)) expands to $(CFLAGS_C89)
$(CFLAGS_C89) expands to −L libdir

104 z/OS V1R1.0 UNIX System Services Programming Tools

On the other hand, if you call make with:
make “COMP=CCOMP”

the macro expansions produce CC_CCOMP and CFLAGS_CCOMP. These, in turn,
produce ccomp and -l libdir.

Special Runtime Macros
In addition to the macros already discussed, make lets you use a number of special
runtime macros that make expands as it carries out a recipe. These macros yield
meaningful results only when they appear in the recipe part of a rule, except for the
dynamic prerequisite macros (which are useful outside recipe lines).

The most straightforward of the special macros is $@. When this appears in a
recipe, it expands to the name of the target currently being updated. For example,
suppose we have the rule:
file1.o file2.o : includes.h

cp $@ /backup
rm $@
commands to remake file

This rule has two targets. When either target needs remaking, the recipe uses the
cp command to copy the current target file to the /backup directory and then uses
the rm command to delete the current file. make then goes on to remake the file. In
this instance, the $@ conveniently stands for whichever file is being remade. You
do not want to delete one of the targets if it was not being remade.

The special macro $* stands for the name of the target, with its suffix omitted. For
example, if the target is:
/dir1/dir2/file.o

then $* is:
/dir1/dir2/file

Consider this example of using $* in a makefile:
file1.o file2.o : include.h

$(CC) -c $(CFLAGS) $*.c

If include.h changes, make updates file1.o by compiling file1.c, and updates
file2.o by compiling file2.c. Remember that this form can appear only in the recipe
part of a rule, not in the prerequisite list.

The special construct $& stands for all the prerequisites of a target in all the rules
that apply to that target. $| stands for all the prerequisites of a target in the single
rule the recipe of which is being used to remake the target. For example, consider:
A : B C

recipe ...
A : D

Inside the recipe, $| stands for B C, whereas $& stands for B C D.

Note: The $| symbol is an extension not found in traditional implementations of
make.

Chapter 4. Tutorial on Using make 105

The $< macro is similar to $∧,but it only gives the names of the prerequisites that
prompt the execution of the associated rule (for normal rules, those newer than the
target). In the previous example, if B is newer than A, but C is older, $< stands for
B inside the recipe.

Several other macros of this kind exist. For more detail on runtime macros, see
“Runtime Macros” on page 141.

Dynamic Prerequisites
The special macros discussed in the previous section become useful only when
used in the recipe part of a rule. There are similar constructs that you can use in
the prerequisite part of a rule, written as $$@, and $$*. You can use these
constructs to create dynamic prerequisites.

When $$@ appears in the prerequisite list, it stands for the target name. If you are
building a library, it stands for the name of the archive library. For example, the two
following rules are equivalent:
file1 : $$@.c
file1 : file1.c

Similarly, the following rule uses the dynamic prerequisite symbol as well as one of
the special runtime macros discussed in the previous section:
file1 file2 file3 : $$@.c

$(CC) -c $(CFLAGS) $@.c

When $$* appears in the prerequisite list, it stands for the name of the target, but
without the suffix.

See “Modified Expansions” for examples that make use of the $$@ dynamic
prerequisite. There are other dynamic prerequisite macros. For more detail see
“Dynamic Prerequisites” on page 141 and the make command description in z/OS
UNIX System Services Command Reference.

Modified Expansions
You can modify the way in which make expands macros. This section describes
extensions not found in traditional implementations of make.

The following example shows you how macro modification works. If the macro FILE
represents the full pathname of a file, then$(FILE:d) expands to the name of the
directory that contains the file.

For example, if you define:
FILE = /usr/george/program.c

then $(FILE:d) expands to /usr/george. The macro modifier d. stands for
directories only. To modify a macro, put a colon followed by one or more modifiers
after the macro name.

If a filename has no explicit directory, the :d modifier produces dot (.), standing for
the working directory.

Consider these two other macro modifiers:
b (base) — file portion of name, not including suffix
f (file) — file portion of name, with suffix

106 z/OS V1R1.0 UNIX System Services Programming Tools

Using the previous definition of $(FILE), the two other macro modifiers produce
these results:
$(FILE:b) expands to program
$(FILE:f) expands to program.c

You can combine modifiers. For example:
$(FILE:db) expands to /usr/george/program

If a macro consists of several pathnames, modifiers apply to each appropriate
pathname in the expansion. For example, suppose you define:
LIST = /d1/d2/d3/file.ext x.ext d4/y.ext

Then you have the following sample macro expansions:
$(LIST:d) → /d1/d2/d3 . d4
${LIST:b} → file x y
${LIST:f} → file.ext x.ext y.ext
$(LIST:db) → /d1/d2/d3/file x d4/y

You can apply modifiers to special runtime macros and to the dynamic prerequisite
symbol. For example, consider:
all: file1.o file2.o

file1.o file2.o : $$(@:b).c
$(CC) -c $(CFLAGS) $(@:b).c

make evaluates these statements as:
all: file1.o file2.o

file1.o : file1.c
$(CC) -c $(CFLAGS) file1.c

file2.o : file2.c
$(CC) -c $(CFLAGS) file2.c

Substitution Modifiers
The substitution modifier is another extension not found in traditional
implementations of make. It is similar to the modifiers discussed in the previous
section but somewhat more complicated.

The substitution modifier has the following form:
s/original/replacement/

The original string normally appears in the macro expansion, and the substitution
modifier will replace original with the replacement string.

As an example, using the previous definition for $(LIST):
$(LIST:s/ext/abc/) expands to /d1/d2/d3/file.abc x.abc d4/y.abc

Every occurrence of ext is replaced with abc. As another example:
FILE = /usr/jsmith/file.c
$(FILE) : $(FILE:s/jsmith/mjones/)

cp $(FILE:s/jsmith/mjones/) $(FILE)

is equivalent to:
/usr/jsmith/file.c : /usr/mjones/file.c

cp /usr/mjones/file.c /usr/jsmith/file.c

Chapter 4. Tutorial on Using make 107

You can combine the substitution modifier with other modifiers, and make applies
the modifiers in order from left to right. For example:
$(LIST:s/ext/abc/:f) expands to file.abc x.abc y.abc

Tokenization
The tokenization modifier is another extension not found in traditional
implementations of make. For make’s purposes, a token represents a sequence of
characters lacking any blanks or tab characters. make interprets a string enclosed
in quote characters as a single token, even if the quoted string includes blanks or
tabs.

The construct:
$(macro:t"string")

expands the given macro and puts the given string between each token in the
expanded macro. This process is called tokenization. For example, if you define:
LIST = a b c

the tokenization construct
$(LIST:t"+")

produces:
a+b+c

make places the + between each pair of tokens; however, it does not add it after
the last token. This more useful example puts a + and a newline character (\en)
between pairs of tokens:
$(LIST:t"+\n") expands to a+
b+
c

“Recipes” on page 117 tells how to use this kind of expansion with linkers.

Prefix and Suffix Operations
The prefix and suffix modifiers:
:|"prefix"
:+"suffix"

add a prefix or suffix to each space-separated token in the expanded macro.
Consider the following macro definition:
test = main func1 func2

This definition of test produces the following expansions:
$(test:|"/src/")

expands to:
/src/main /src/func1 /src/func

and:
$(test:+".c")

expands to:
main.c func1.c func2.c

108 z/OS V1R1.0 UNIX System Services Programming Tools

You can combine these modifiers:
$(test:|"/src/":+".c")

expands to:
/src/main.c /src/func1.c /src/func2.c

If the prefix and suffix strings themselves consist of a blank-separated list of tokens,
the expansion produces the cross-product of both lists. For example, given the
following macro assignment:
test = a b c

the following expansions occur:
$(test:|"1 2 3") expands to 1a 1b 1c 2a 2b 2c 3a 3b 3c
$(test:+"1 2 3") expands to a1 b1 c1 a2 b2 c2 a3 b3 c3

In combination, make produces this expansion:
$(test:|"1 2 3":+"1 2 3")

expands to 1a1 1b1 1c1 2a1 2b1 2c1 3a1 3b1 3c1
1a2 1b2 1c2 2a2 2b2 2c2 3a2 3b2 3c2
1a3 1b3 1c3 2a3 2b3 2c3 3a3 3b3 3c3

Inference Rules
So far, you have had to create explicit recipes for remaking every target. You would
find it useful, however, if make offered a way to state general guidelines, like this:
‘‘If you want to remake an object file, compile the source file with the same
basename.’’

Metarules create such guidelines. Metarules employ a form similar to normal rules;
however, they describe general guidelines, not specific recipes for specific rules.
This section examines the ways you create and use metarules.

Note: The new metarule format, discussed in this chapter, may not be recognized
by older versions of make. Older versions of make need the less general
suffix rules. For compatibility, make also supports suffix rules; see “Suffix
Rules” on page 110 for more information.

Metarules
Consider this simple example of a metarule:
%.o : %.c

$(CC) -c $(CFLAGS) $<

The first line says ‘‘If the name of a target ends with the suffix .o and you do not
have an explicit rule, the prerequisite of the target has the same base name but
with the suffix .c.’’ After that comes the recipe line, which uses the special $<macro
to refer to the single prerequisite in this rule (that is, the .c file).

As an example of a makefile that uses metarules, consider the following:
CC = c89
CFLAGS = −O
FILES=main func
program : $(FILES:+".o")

$(CC) $(CFLAGS) $& -o program
%.o : %.c

$(CC) -c $(CFLAGS) $*.c

Chapter 4. Tutorial on Using make 109

When make tries to remake program, it checks the two specified object files to see
if either needs remaking. make notes that these files end in the .o suffix. Since
there is no explicit rule for these files, make uses the metarule for targets ending in
.o:
%.o : %.c

$(CC) -c $(CFLAGS) $*.c

make therefore checks on the .c files that correspond to the .o files. If any of the .o
files are out of date with respect to their corresponding .c files, make uses the
metarule recipe to remake the .o files from the .c source.

Note: There is no need for specific rules for any of the .o files; the general
metarule covers them all.

If a rule is given without a recipe, and a metarule applies, the metarule and the
prerequisites in the explicit rule are combined. For example:
file.o : includes.h
%.o : %.c

$(CC) -c $(CFLAGS) $*.c

states that file.o depends on includes.h as well as file.c. The metarule is used to
remake file.o if it is out of date with respect to either includes.h or file.c.

Suffix Rules
Suffix rules are an older form of inference rule. They have the form:
.suf1.suf2:
recipe...

make matches the suffixes against the suffixes of targets with no explicit rules.
Unfortunately, they don’t work quite the way you would expect. The rule
.c.o :
recipe...

says that .o files depend on .c files. Compare this with the usual rules
file.o : file.c # compile file.c to get file.o

and you will see that suffix rule syntax seems backward! This, by itself, serves as
good reason to avoid suffix rules.

You can also specify single-suffix rules such as:
.c:
recipe...

which match files ending in .c.

For a suffix rule to work, the component suffixes must appear in the prerequisite list
of the .SUFFIXES special target. You turn off suffix rules by placing:
.SUFFIXES:

in your makefile. This clears the prerequisites of the .SUFFIXES target, which
prevents the enactment of any suffix rules. The order in which the suffixes appear in
the .SUFFIXES rule determines the order in which make checks the suffix rules.

The following steps describe the search algorithm for suffix rules:

1. Extract the suffix from the target.

110 z/OS V1R1.0 UNIX System Services Programming Tools

2. Is it in the .SUFFIXES list? If not, quit the search.

3. If it is in the .SUFFIXES list, look for a double suffix rule that matches the target
suffix.

4. If you find one, extract the basename of the file, add on the second suffix, and
see if the resulting file exists. If it doesn’t, keep searching the double suffix
rules. If it does exist, use the recipe for this rule.

5. If no successful match is made, the inference has failed.

6. If the target did not have a suffix, check the single suffix rules in the order that
the suffixes are specified in the .SUFFIXES target.

7. For each single suffix rule, add the suffix to the target name and see if the
resulting filename exists.

8. If the file exists, execute the recipe associated with that suffix rule. If the file
doesn’t exist, continue trying the rest of the single suffix rules. If no successful
match is made, the inference has failed.

Try some experiments with the -v option specified to see how this works.

make also provides a special feature in the suffix rule mechanism for archive library
handling. If you specify a suffix rule of the form:
.suf.a:

recipe

the rule matches any target having the LIBRARYM attribute set, regardless of what
the actual suffix was. For example, if your makefile contains the rules:
SUFFIXES: .a .o
.o.a:
echo adding $< to library $@

then if mem.o exists,
make "mylib(mem.o)"

causes:
adding mem.o to library mylib

to be printed.

See “Libraries” on page 119 for more information about libraries and the .LIBRARY
and .LIBRARYM attributes.

The Default Rules File
When you run make, it usually begins by examining the startup file that contains
the default rules.(“Command-Line Options” on page 123 explains how to use the -r
option to prevent make from using the default rules in the startup file.)

The startup file is created at the time that you installmake on your system. The
name of the file is /etc/startup.mk.

The startup file contains a number of macro definitions andoption settings, as well
as various metarules. make processes the information in the startup file beforeyour
makefile, so you can think of the default information as predefined.

Consider the metarules in the startup file.For example, this file contains:

Chapter 4. Tutorial on Using make 111

O = .o
%$O : %.c

$(CC) -c $(CFLAGS) $<

The definition of the O macro gives the standard suffix for object files. The metarule
that follows the definition tells how object files can be obtained from .c files.

The metarule makes several assumptions:

v The macro CC gives the name of the command to invoke the compiler.When you
install make, you tell the installation procedure which C compiler you are using.
The installation procedure then sets things up so that the CC macro refers to
your choice of C compiler.

v The CFLAGS macro specifies any compiler arguments that appear before the
name of the source file. You can redefine your own CFLAGS macro to specify
any standard flags. Again, the installation procedure sets up a default value for
CFLAGS based on the compiler you use.

v A -c option is specified. This option indicates that the source file is only to be
compiled, not linked.

v The rule ends with $<.Recall that, in normal rules, this special runtime macro
stands for the list of prerequisites in the rule that prompt the rule’s execution; in
this metarule, it stands for the .c file associated with the object file being remade.

If some of these assumptions are not useful to you, you may consider changing the
startup file.For example, you might change the default definition of CFLAGS to a
set of compilation options that you intend to use frequently. You can edit the startup
file with any text editor.

Controlling the Behavior of make
There are several methods for controlling the way that make does its work. This
discussion of make touches on attributes, special targets, and control macros.

Some Important Attributes
Attributes are qualities which you may attach to targets. When make finds it
necessary to update a target that has one or more attributes, the attributes cause
make to take special actions. This section covers only a few of the attributes
available; see “Using Attributes to Control Updates” on page 134 for a complete list.

The first attribute is .IGNORE.If make encounters an error when trying to remake a
target with this attribute, it ignores the error, and goes on trying to remake other
targets. (Normally, if make encounters an error, it just issues an error message and
stops all processing.)

You can assign attributes to targets in two different ways. First, your makefile can
contain a separate line of the following form:
attribute attribute ... : target target...

For example:
.IGNORE : file.o

indicates that file.o has the .IGNORE attribute. Errors that arise while making file.o
are ignored.

112 z/OS V1R1.0 UNIX System Services Programming Tools

You can also specify attributes inside a rule. The rule would then have the following
form:
targets attribute attribute ... :
prerequisites

recipe

This assigns attributes to the given targets as well as stating the prerequisites and
recipes for the targets. Consider the following example:
file.o .IGNORE : file.c

$(CC) -c $(CFLAGS) file.c

indicates that make may ignore errors when remaking file.o.

When make remakes a target, it normally displays the recipe lines that are being
used in the operation; however, if a target has the .SILENT attribute, make does
not display these lines. In addition, make does not issue any warnings that might
normally result.

The .PRECIOUSattribute may be used in a rule. .PRECIOUS tells make that it must
not remove the associated target. For example, you can use the following rule to
protect object files employed in making a program:
.PRECIOUS : main.o func1.o func2.o

You will find .PRECIOUS useful because make normally removes intermediate
targets that did not exist before make started execution. For example, if you have a
target with dependencies on main.o, func1.o, and func2.o, make compiles main.c,
func1.c, and func2.c to produce them. These .o files are intermediate targets. If
they did not exist before make is invoked, they are deleted after the target is
created. Marking these object files as .PRECIOUS avoids this deletion.

Some Important Special Targets
The special targets of make are not really targets at all; they are keywords that
control the behavior of make. These keywords are called targets because they
appear as targets in lines that have the same format as normal rules.

A rule with a special target may not have any other targets (normal or special);
however, some special targets may be given attributes.

The sections that follow discuss some useful special targets. “Special Target
Directives” on page 135 provides complete details on all the recognized special
targets.

The .ERROR Target
A rule of the form
.ERROR : prerequisites

recipe

tells make to execute the given recipe if it encounters an error in other processing.

For example, you might code:
.ERROR :

echo “We had an error! Removing tempfile."
rm tempfile

Chapter 4. Tutorial on Using make 113

to issue an error message. Normally, this is not necessary, since make displays
error messages of its own; however, you can use the .ERROR rule to perform extra
cleanup actions after errors.

If a special .ERROR rule has prerequisites, all the prerequisites are brought up to
date if an error occurs.

Including Other Makefiles
You use the .INCLUDE special target in a rule of the form:
.INCLUDE : file1 file2 ...

When make encounters a rule like this in a makefile, it reads in the contents of the
given files (in order from left to right) and uses their contents as if they had
appeared in the current makefile. For example, suppose the file macrodef contains
a set of macro definitions. Then:
.INCLUDE : macrodef

obtains those macro definitions and processes them as if they actually appeared at
this point in the makefile.

It is possible to store includable files under other directories. To do this, you use
another special target:
.INCLUDEDIRS : dir1 dir2 ...

specifies a list of directories to be searched if make cannot find a relative name in
an .INCLUDE rule in the working directory. For example, with:
.INCLUDEDIRS : /usr/dir1
.INCLUDE : file1

make searches for file1 in the working directory first, and then in /usr/dir1.

If you enclose the filenames in an .INCLUDE rule in angle brackets:
.INCLUDE : <file1> <dir/file2>

make does not look for these files in the working directory. It goes straight to the
directories named in any preceding .INCLUDEDIRS rule. This lets you obtain input
for make from other directories without worrying about conflicts with files in the
working directory.

If a filename given in an .INCLUDE rule is an absolute name (for example,
/usr/jsmith/file), make uses the name as is. In the case of a relative name, make
looks for the file in the include directories as described earlier.

An included file may contain .INCLUDE rules of its own. This process is called
nesting include files.

If make cannot find a file you want to .INCLUDE , make normally issues an error
message and quits. However, you can give the .IGNOREattribute to the .INCLUDE
target:
.INCLUDE .IGNORE : file

If make cannot find the given file, it simply continues processing the current
makefile. .IGNORE is the only attribute that can be given to .INCLUDE.

114 z/OS V1R1.0 UNIX System Services Programming Tools

Environment Variables
The .IMPORT special target imports environment variables and defines them as
macros. For example:
.IMPORT : SHELL

obtains the value of the SHELL environment variable. It creates a macro named
SHELL containing the current value of the SHELL environment variable.

If you try to import a currently undefined environment variable, make issues an
error message and quits. However, you can use the .IGNORE attribute to tell make
to ignore this error:
.IMPORT .IGNORE: HOME

The special rule:
.IMPORT : .EVERYTHING

imports all the currently defined environment variables, and sets up appropriate
macros.

You use the .EXPORT special target to export variables to the environment of
subsequently run commands. The following line exports environment variables that
have the same names as the given macros:
.EXPORT : macro1 macro2 ...

make assigns the current values of the macros to the environment variables. make
ignores any attributes attached to this special target. Environment changes do not
affect the environment of the process that called make (usually your command
interpreter).

Some Important Control Macros
Control macros are special macros that give information to make and obtain
information in return. For example, the PWD control macro contains the name of
the working directory. Thus you can use $(PWD) to refer to the working directory in
a makefile.

Some control macros let you control how make behaves. For example, you can use
the SHELL macro to indicate the command interpreter that make uses to execute
certain recipecommand lines.

The sections that follow describe some useful control macros. “Control Macros” on
page 138 provides complete descriptions of all the recognized control macros.

Information Macros
You can obtain certain types of information with information macros while using
make.

DIRSEPSTR
Gives the characters that you can use to separate parts of a file name. This
is usually just the slash (/) character.

MAKEDIR
Gives the full pathname of the working directory from which make was
called.

NULL Contains the null string (that is, a string with no characters). This section
describes one use of this, later on.

Chapter 4. Tutorial on Using make 115

OS Contains the name of the operating system you are using.

PWD Gives the full pathname of the working directory.

make automatically sets all these information macros.

Attribute Macros
You can set attributes for make using attribute macros. These macros all follow the
same pattern. If the macro has a NULL value, make turns off the associated
attribute. If the macro has a non-NULL value, make turns on the associated
attribute for all subsequent targets.

As an example, the .IGNORE attribute macro lets you assign the .IGNORE attribute
to all the targets named in the makefile.
.IGNORE = yes

turns on the option. make gives the .IGNORE attribute to every target and ignores
all errors. The following macro assignment assigns the null string to the .IGNORE
control macro.
.IGNORE = $(NULL)

After this, make only ignores errors in targets that explicitly have the .IGNORE
attribute. Note the use of the NULL macro in turning off the option.

Similarly, the macros .PRECIOUS and .SILENT give all targets the associated
attributes.

Other Control Macros
Consider this list of some other useful control macros.

MAKESTARTUP
Contains the full pathname of the startup file. A built-in rule sets this to
/etc/startup.mk, but you can change it on the command line or in the
environment.

SHELL
Names a file that contains a shell. Normally, make tries to execute recipe
lines without calling a shell; however, some recipe lines require execution
by a shell to work properly. For example, lines that employ the redirection
constructs > or < require execution by a shell. The SHELL macro tells
make where to find the appropriate shell. The startup file specifies this
macro’s value.

SHELLFLAGS
Gives a collection of flags to pass to the shell if and when make invokes it
to execute a recipe command line. The startup file specifies the default
value for SHELLFLAGS, based on the value of SHELL.

SHELLMETAS
Contains a string of characters for which make keeps watch when
examining recipe command lines. If a command line contains any of the
characters in the string line, make passes the command line to the shell
specified by the SHELL macro. If a command line does not contain any of
these characters, make executes it directly.

As an example, you want the SHELLMETAS macro to contain the
redirection symbols < and > as part of its value. Command recipes
commonly employ redirection, but make must perform redirection through a

116 z/OS V1R1.0 UNIX System Services Programming Tools

shell; make cannot directly perform redirection. The startup file specifies a
default value for SHELLMETAS, based on the value of SHELL.

Recipes

Recipe Lines
Until now, examples have placed all recipe lines after the first line of a rule, starting
every recipe line with a tab. In fact, you can put a recipe on the same line as the
prerequisite list if you put a semicolon (;) after the list. For example, you can write:
%.o : %.c ; $(CC) -c $(CFLAGS) $<

The recipe comes immediately after the semicolon.

As another feature, make lets you designate special processing for particular recipe
lines. If the tab at the beginning of a recipe line is immediately followed by an at
character (@), make does not echo the line when it is executed. Using the @ this
way affects make like .SILENT, but for one line only:
file1.o : file1.c

@cp file1.o /backup
$(CC) -c $(CFLAGS) file1.c

make does not show the cp command when executing it, but does display the
compilation command.

A minus sign (\-) immediately following the initial tab of a recipe line, affects make
like .IGNORE,but for one line only:
file1.o : file1.c

-cp file1.o /backup
$(CC) -c $(CFLAGS) file1.c

make does not stop if the cp command gets an error (for example, because the
device with the directory /backup is full). More technically, when minus sign
precedes a command line, make ignores any nonzero return value the command
produces.

A plus sign (+) immediately following the initial tab of a recipe line,forces make to
execute the recipe line even when you specify the -n, \-q, or \-t options. You will
find this particularly useful when doing a recursive make. For example, suppose you
have the following rule in your recipe:
dir :
+make -c subdir

and you invoke make in the following way:
make -n

make simply prints most commands. However, make executes this recipe line
allowing you to see what make will build in subdir. Because make will place -n in
the MAKEFLAGS inherited by the child process, it also will print rather than
execute. This allows you to see all of the commands that would be executed, not
just the ones in the working directory.

You can combine these markers in any order:
file1.o : file1.c

-@+cp file1.o /backup
$(CC) -c $(CFLAGS) file1.c

Chapter 4. Tutorial on Using make 117

Executing Regular Recipes
To update a target, make expands and executes a recipe. The expansion process
replaces all macros and text diversions within the recipe. Then make either
executes the commands directly, or passes them to a shell.

When make calls a regular recipe, it executes each line of the recipe separately
(using a new shell for each, if a shell is required). This means that the effect of
some commands does not persist across recipe lines. For example, a change
directory (cd) request in a recipe line changes only the current working directory for
that recipe line. The next recipe line reverts to the previous working directory.

The value of the macro SHELLMETAS determines whether make uses a shell to
execute a command. If make finds any character in the value of SHELLMETAS in
the expanded recipe line, it passes the command to a shell for execution;
otherwise, it executes the command directly. Also, if the makefile contains the
.POSIX target, make always uses the shell to execute recipe lines.

To force make to use a shell, you can add characters from SHELLMETAS to the
recipe line.

The value of the macro SHELL determines the shell that make uses for execution.
The value of the macro SHELLFLAGS provides the options that make passes to
the shell. Therefore, the command that make uses to run the expanded recipe line
is:
$(SHELL) -$(SHELLFLAGS) expanded_recipe_line

When make is about to invoke a recipe line, it normally writes the line to the
standard output. If the .SILENT attribute is set for the target or the recipe line (using
@), make does not echo the line.

Group Recipes
make supports group recipes, but traditional implementations of make do not. A
group recipe signifies a collection of command lines fed as a unit to the command
interpreter. By contrast, make executes commands in normal recipe one by one.

You enclose a group recipe’s command lines in square brackets. The opening
square bracket ([) must appear as the first non-white space character in a line. The
closing square bracket (]) must also appear as the first non-white space character
in a line. The square brackets can enclose as many command lines as you want.
Recipe lines must begin on the line following the opening square bracket.

A typical group recipe might involve special command constructs, such as the
looping constructs of the z/OS Shell. Consider the following example:
book : chap1.tr chap3.tr
[

>book
for i in $&
do

fmt -j -l 66 $$i >>book
done

]

This creates a shell for loop that uses the fmt command to format each file under
the dir directory and append the formatted material to the book file. A normal rule
cannot be written in this way, because the recipe command lines in a normal rule
are executed one by one.

118 z/OS V1R1.0 UNIX System Services Programming Tools

Note: make expands the group recipe; therefore, you must write the $i shell
variable as $$i; otherwise, make attempts to expand the $i make variable.

The command lines inside a group recipe do not require an initial tab character.
Also, an @ character, a + character, or a − character immediately after the opening
([) has the same effect as in a normal recipe, for the entire group recipe:

1. @ silences the group recipe execution

2. + causes the recipe always to be executed regardless of the option flags set

3. − ignores error returns

Special Group Recipe Constructs
You can set the GROUPSHELL control macro to indicate which command
interpreter will receive your group recipes. For example, you might set:
SHELL = rsh
GROUPSHELL = sh

so that you pass normal recipes to the restricted shell and group recipes to the full
z/OS Shell. The default rules specify the same value for the GROUPSHELL as for
SHELL.

When make encounters group recipes, it creates a temporary file to hold the
command lines and then submits this temporary file to the shell.

The GROUPFLAGS control macro lets you specify any option flags make uses
when invoking a group recipe. This is similar to the SHELLFLAGS control macro
used for normal recipe lines.

Executing Group Recipes
Group recipe processing is similar to that of regular recipes, except that make
always invokes a shell. make writes the entire group recipe to a temporary file, with
a suffix provided by the GROUPSUFFIX macro. make then submits this temporary
file to a command interpreter for execution. The value of GROUPSHELL provides
the appropriate command interpreter, and make provides the flags from the value of
GROUPFLAGS.

If you have set the .PROLOG attribute for the target being made, make adds the
recipe associated with the special target .GROUPPROLOG at the beginning of the
group recipe. If you have also set the .EPILOG attribute, make adds the recipe
associated with the special target .GROUPEPILOG onto the end of the group
recipe. You can use this facility to append a common header or trailer to group
recipes.

make echoes group recipes to standard output just like standard recipes.

Libraries
It is often good programming practice to save compiled object code in an object
library, a collection of object modules stored in a single file. When a library is linked
with your code, only the object modules referred to in the library are actually linked
into the final program.

If object code is stored in a library, your makefile must have access to the code
from that library. This means you have to tell make when a target is a library, since
make requires special handling to check whether library members are up to date.

Chapter 4. Tutorial on Using make 119

To make a library, specify the library as a target with the .LIBRARY attribute, and
give as prerequisites the object files that you want to make members. If you specify
the prerequisites in the form:
name (member)

then make automatically sets the .LIBRARY attribute for the target, and interprets
the member inside the parentheses as a prerequisite of the library target.

make employs the .LIBRARY attribute to determine if a particular target is a library:
LIBOBJS = mod1 mod2 mod3
userlib$(LIBSUFFIX) .LIBRARY : $(LIBOBJS:+"$O")

This example tells make that userlib$(LIBSUFFIX) has the .LIBRARY attribute and
is therefore a library. The prerequisites for this target are the object files
mod1$O mod2$O mod3$O

This example makes use of the LIBSUFFIX macro defined in the startup
file.LIBSUFFIX specifies the usual suffix for libraries, just as O specifies the usual
suffix for object files. (For brevity, the default rules also define the A macroequal in
value to LIBSUFFIX.)

make gives the prerequisites of a .LIBRARY target the .LIBRARYM attribute. The
library name is also internally associated with the prerequisites. This lets the file
binding mechanism look for the member in an appropriate library if an object file
cannot be found.

Using these features, you can write:
mylib$A : mylib$A(mem1$O) mylib$A(mem2$O)

recipe for making library

Note that make gives the A macro the same value as the LIBSUFFIX macro in the
startup file.

In any rule, you may use a construct of the form:
libname$(LIBSUFFIX)(member)

to refer to an object file contained in a library. This kind of construct may appear as
a target or prerequisite. For example, you might have:
prog$E : prog$O mylib$(LIBSUFFIX)(module$O)

recipe for linking object and library

make infers the following information from this:

v The file mylib$(LIBSUFFIX) is a library.

v The module module$O is a member of that library; and therefore, it is a
prerequisite for the library.

v The module$O module inside the library is a prerequisite of prog$E (that is, the
program links in that module).

The recipe in this rule should tell make how to link the object file with the library
module. The library metarules in the standard startup file specify themeans for
updating libraries.

If a target or prerequisite has the form:
name ((entry))

120 z/OS V1R1.0 UNIX System Services Programming Tools

make gives the entry the .SYMBOL attribute, and gives the target name the
.LIBRARY attribute. make then searches the library for the entry point, and returns
not only the modification time of the member which defines the entry, but also the
name of the member file. This name then replaces entry, and make uses it for
making the member file. Once bound to a library member, make removes the
.SYMBOL attribute from the target.

Metarules for Library Support
The startup file defines several macros and metarules that are useful in
manipulating libraries.LIBSUFFIX and A both give the standard suffix for a library,
and O gives the standard suffix for an object file. The AR macro specifies the
librarian program. By default, the macro contains the ar program provided with
make. By default, ARFLAGS contains the string -ruv. These flags cause ar to
update the library with all the specified members that have changed since the
library was last updated. ar updates libraries stored in the standard library format.
You can assign the ARFLAGS macro any option flags used in the library updating
process; the default rules set the flags to update an existing library, or create a new
library as appropriate.

For further information on the ar command, see the command description in z/OS
UNIX System Services Command Reference.

The startup file contains the following metarule:
%$(LIBSUFFIX) .LIBRARY .precious :

$(AR) $(ARFLAGS) $@ $?

With this metarule, you need not directly use the ar command in your makefile.
make automatically rebuilds a library with the appropriate suffix when any of the
prerequisite object modules are out of date.

You can accomplish your library handling simply by specifying the names of the
object members of the library:
LIBOBJS= mod1 mod2 mod3
userlib$(LIBSUFFIX) .LIBRARY: $(LIBOBJS:+"$O")

As an example of the effect of this metarule, suppose that a makefile contains:
lib$A .LIBRARY : mod1$O mod2$O mod3$O

make gives the .LIBRARY attribute to the lib$A target, so the metarule applies:
make lib.a

The startup file contains a metarule for making executable files from object files.
This metarule adds the value of the macro LDLIBS as a list of libraries to be linked
with the object files. If you have several programs, all of which depend on the same
library, you can add the name of your library to the definition of LDLIBS, and
automatically get it linked when using the metarule. For example, assume this
metarule for your compiler:
%$E : %$O

$(LD) $(LDFLAGS) -o $@ $< $(LDLIBS)

You can add the following lines to your makefile:
LDLIBS += mylib$A
program1$E : mylib$A
program2$E : mylib$A

Chapter 4. Tutorial on Using make 121

The first line adds mylib$A to the current definition of LDLIBS. Subsequent lines
describe the programs you want to build using this library; because a recipe is not
given, make uses the metarule from the startup file to relink the programs. Thus,
the command:
make program1

remakes the library mylib. if required, and then relinks program1 from program1.o
using the libraries specified in LDLIBS.

122 z/OS V1R1.0 UNIX System Services Programming Tools

Chapter 5. More Information on make

The following example describes the general form of the make command line:
make [options] [macro definitions] [

target ...]

You can omit items shown between [and] brackets. The brackets are part of the
standard documentation style; they enclose optional items and are not used on
make’s actual command line.

The targets specified on the command line are usually filenames. make attempts to
update these targets, if necessary, using the rules defined in a startup file and rules
taken from a user makefile.

If you do not specify any target names on the command line, make attempts to find
a makefile. It also updates the first nonspecial target specified in the makefile.
(“Special Target Directives” on page 135 describes special targets.)

The macro definitions specified on the command line have the same form as macro
definitions in a makefile. Command-line macro definitions take effect after any
definitions in the startup file and the user makefile. See “Macros” on page 129 for
more information.

Command-Line Options
You can specify a number of options on the make command line. Most take the
form of a minus sign (−) followed by a single letter. The case of the letter is
significant; for example, -e and -E are different options and have different effects.

If a command line has several such options, they can be bundled together. For
example, the following two command lines are equivalent:
make -i -e
make -ie

The following list explains all the command line options of make. Many of these
match options in other versions of make.

-c dir Attempts to change into the specified directory when make starts up. If
make can’t change the directory, an error message is printed. This is useful
for recursive makefiles when building in a different directory.

-E Suppresses reading of the environment. Normally when make starts up, it
reads all strings defined in the environment into the corresponding macros.
For example, if you have an environment variable named PATH defined,
make creates a macro with the same name and value. If you specify
neither \-E nor \-e, make reads the environment before reading the
makefile.

-e Reads the environment after reading the makefile. If you specify neither -e
nor -E, make reads the environment before reading the makefile.

-f file Tells make to use file as the makefile. If you specify a minus sign (−) in
place of file, make reads the standard input. (In other words, make expects
you to enter the makefile from the terminal or redirect it from a file.)

-i Tells make to ignore all errors and continue making targets. This is
equivalent to the .IGNORE attribute or macro.

© Copyright IBM Corp. 1996, 2001 123

-k Makes all independent targets, even if an error occurs. Ordinarily, make
stops after a command returns a nonzero status. Specifying -k tells make
to ignore the error and continue to make other targets, as long as they are
unrelated to the target that received the error. make does not attempt to
update anything that depends on the target that was being made when the
error occurred.

-n Displays the commands that need to be run to update the chosen targets,
but does not actually run the commands. This feature works with group
recipes, but in this case, make will run the commands. If make finds the
string $(MAKE) in a recipe line, that line is run with $(MAKE) replaced by:
make -n $(MAKEFLAGS)

(MAKEFLAGS is described in “Special Macros” on page 138). This lets you
see what recursive calls to make do. (“Makefile Input” on page 125 explains
group recipes.)

-p Prints the digested makefile. This display is in a human-readable form
useful for debugging, but you cannot use it as input to make.

-q Checks whether the target is up to date. If it is up to date, make exits with
a status of 0; otherwise, it exits with a status of 1 (typically interpreted as an
error by other software). No commands are run when -q is specified.

-r Tells make not to read the startup file. “Finding the Makefile”

-S Terminates make if an error occurs during operations to bring a target up to
date (opposite of -k). This is the default.

-s Tells make to do all its work silently. make does not display the commands
it is running or any warning messages. This is equivalent to setting the
.SILENT attribute, or assigning a nonnull value to the .SILENT macro.

-t Touches the targets to mark them as up to date, without actually running
any commands to change the targets. Use the -t option with caution:
careless use may cause make to consider files as recently changed
(because they have been touched), even though you have not changed
them. This can result in a target that isn’t brought up to date when required.

-u Forces an unconditional update: make behaves as if all the prerequisites of
the given target are out of date.

-V Prints the version number of make. It also prints the built-in rules of this
version of make. For more about built-in rules, see “Finding the Makefile”.

-v Causes make to display a detailed account of its progress. This includes:
v What files it reads
v The definition and redefinition of each macro
v Metarule and suffix rule searches
v Other information

-x Exports all macro definitions to the environment. This happens just before
making any targets, but after the entire makefile has been read.

Finding the Makefile
make works with information from several different sources:

Built-in rules
The make program itself contains built-in rules. They may change from one
release to the next, but you cannot change them yourself. The command
make −V displays the built-in rules for your version of make.

124 z/OS V1R1.0 UNIX System Services Programming Tools

Default rules
The standard startup file contains a group of default rules used by make.
You can specify the name of this startup file by setting the value of the
MAKESTARTUP environment variable. If MAKESTARTUP contains a null
value (the default), then make uses /etc/startup.mk. You can use a
different file by assigning a filename to MAKESTARTUP on the make
command line as if it were a macro. You can edit the contents of the startup
file with a normal text editor. When make is installed, the startup file is set
up according to your specifications. You should not customize this file until
you are familiar with make and have decided how you want to control its
behavior. This file defines various control macros and default rules; if you
lose this file or put incorrect material into it, make will not work as
documented here. The standard startup file specifies default values for all
required control macros and default metarules.

A local default rules file
As distributed, the last line of the startup file prompts make to read the
local startup.mk file, if such a file exists.

The makefile
A makefile is just a normal text file that you create with any text editor. It
provides specific rules for remaking your targets. (If you use a word
processor or editor that inserts embedded control characters, you have to
save the file as a normal text file, without those control characters.)

When you invoke make, it first tries to find a startup file and then tries to find a user
makefile. make follows these steps to find the startup file:

v If the command line contains a macro definition for MAKESTARTUP, make uses
that value as the name of a different startup file. If the file can be read, make
uses it as the startup file.

v If the command line does not have a MAKESTARTUP macro, or if make cannot
read the file it names, make checks the environment for a variable named
MAKESTARTUP. If this variable exists, make attempts to read its value as the
startup file.

v If neither of these is successful, make looks for the file named startup.mk as
defined in the built-in rules.

You can therefore use a MAKESTARTUP macro definition on the command line or
in the environment to obtain a different startup file.

The special target .MAKEFILES determines the location of your makefile. This is
discussed in “Special Target Directives” on page 135. The built-in rules version of
.MAKEFILES tells make to look for makefile or Makefile in the working directory.
makefile is tried first; Makefile is used only if makefile cannot be found. You can
also use the -f file option to give the name of the user makefile explicitly.

If you specify the -r option on the command line, make does not attempt to read a
startup file. Instead, it uses the built-in rules and attempts to find a user makefile
directly.

Makefile Input
A makefile can contain any or all of the following:
v Macro definition lines
v Target definition lines
v Recipe lines

Chapter 5. More Information on make 125

v Comments

The ordering of these within a makefile is very flexible. There are only two
restrictions:

v The recipe lines for a target must immediately follow the target definition line.

v The recipe describing how to make a target cannot span more than one makefile.

For a discussion of how to use more than one makefile, see the explanation of
.INCLUDE in “Special Target Directives” on page 135.

If a makefile line cannot fit on a single text line, you can break it over several text
lines by putting a backslash (\) at the end of each partial line. For example:
macro = abc\
def

is the same as:
macro = abcdef

If you are using the -n option to display what make would execute, make puts
backslash and line-feed characters at the end of each partial line so that the output
resembles the makefile input.

Comments
Comments begin with the # character and extend to the end of line, as in:
This is a comment

make itself ignores all comment text. If you need to put a # in your makefile without
creating a comment, put a backslash (\) in front of it, or enclose it in double quotes.

Rules
A makefile contains a series of rules that specify targets, dependencies, and
recipes. For example, a rule might state that an object file depends on a source file;
if you change the source file, you want make to remake the object file using the
changed source.

Files that depend on other files are called targets. The files that a target depends
on are called prerequisites.

This is the general format of a rule:
targets [attributes]
ruleop [prerequisites] [; recipe]
{<tab> recipe}

You need to include items enclosed by []; items within { } can appear zero or more
times. In a rule:

targets
Represents a list of one or more dependent files.

attributes
Represents a list, possibly empty, of attributes to apply to the list of targets.
See “Using Attributes to Control Updates” on page 134 for more details.

ruleop Represents an operator that separates the target names from the
prerequisite names, and optionally affects the processing of the specified

126 z/OS V1R1.0 UNIX System Services Programming Tools

targets. All rule operators begin with a colon (:). For more information about
rule operators, see “Rule Operators”.

prerequisites
Represents a list of filenames on which the specified targets depend.

recipe May follow on the same line as the prerequisites, separated from them by a
semicolon. If such a recipe exists, make uses it as the first in a list of
recipe lines defining a method for remaking the named targets. Additional
recipe lines may follow the first line of the rule. Each such recipe line must
begin with a tab character. For more about recipes, see “Recipes” on
page 129.

As an example of a simple rule, consider the following:
main.o : include.h

This rule contains a single target, main.o, and a single prerequisite, include.h. The
rule states that if include.h changes, main.o will require remaking. A typical
makefile does not specify a recipe for making main.o from main.c; instead, the
default rules provide the recipe using a metarule or suffix rule. These rules are
discussed in “Using Inference Rules” on page 143.

When make parses rules, it treats the targets and prerequisites as tokens
separated by white space (one or more blank or tab characters). In addition, make
treats the rule operator (ruleop) as a token, but does not require white space
around it.

Makefiles can contain special rules that control the behavior of make instead of
stating a dependency between targets and prerequisites. For more information
about such rules, see “Special Target Directives” on page 135.

Rule Operators
The rule operator in a rule separates the targets from the prerequisites. Rule
operators also let you modify the way in which make handles the making of the
associated targets. make recognizes the following rule operators:

: Separates targets and prerequisites. The same target may have many :
rules stating different prerequisites for the target, but only one such rule can
specify a recipe for making the target, except with metarules. Within
metarules, you can specify more than one recipe for making the target. If
the target has more than one associated metarule, make uses the first
metarule that matches.

:: If no prerequisites are specified, the target is always remade. Otherwise,
this indicates that this rule may not be the only rule with a recipe for the
target. There may be other :: rules that specify a different set of
prerequisites, with different recipes for updating the target. make builds any
such target if any of the rules find the target out of date with any related
prerequisites. make then uses the corresponding recipe to perform the
update. You can find an example later in this section.

:! Tells make to execute the recipe for the associated targets once in turn for
each recently changed prerequisite. Ordinarily, make executes the recipe
only once for all recently changed prerequisites at the same time.

:| Tells make to insert the specified prerequisites before any other
prerequisites already associated with the specified targets.

:− Forces make to clear the previous list of prerequisites before adding the
new prerequisites. Thus, you can replace:

Chapter 5. More Information on make 127

.SOURCE

.SOURCE: dir1 dir2

with the following:
.SOURCE :− dir1 dir2

However, the old form still works as expected. See “Special Target
Directives” on page 135.

:| Used only in metarules, tells make to treat each metadependency as an
independent metarule; for example:
%.o :│ archive/%.c rcs/%.c /srcarc/RCS/%.c
recipe...

is equivalent to:
%.o : archive/%.c
recipe...
%.o : rcs/%.c
recipe...
%.o : /srcarc/rcs/%.c
recipe...

You will find this operator particularly useful for searching for rcs file archives. If the
RCSPATH variable used by rcs contains the following value:
archive/%f;rcs/%f;/srcarc/rcs/%f

then the metarule:
% :│ $(RCSPATH:s/%f/%/:s/;/ /)
co -l $<

searches the path looking for an rcs file and checks it. See “Pattern Substitution” on
page 131 for an explanation of macro expansion.

It is meaningless to specify :!, :−, or :| with an empty list of prerequisites (although
this is not considered an error).

The following example shows how :: works. Suppose a makefile contains:
a.o :: a.c b.h
first recipe for making a.o

a.o :: a.y b.h
second recipe for making a.o

If make finds a.o out of date with respect to a.c, it uses the first recipe to make a.o.
If a.o is found out of date with respect to a.y, make uses the second recipe. If
make finds a.o out of date with respect to b.h, it calls both recipes to make a.o. In
the last case, the order of invocation matches the order of the rule definitions in the
makefile.

Remember that you should use the :: operator if a target has more than one
associated recipe, unless you form metarules. For more information on metarules,
see “Metarules” on page 144.

The following example is an error:
joe : fred ... ; recipe
joe : more ... ; recipe #error

128 z/OS V1R1.0 UNIX System Services Programming Tools

Recipes
The recipe consists of a list (possibly empty) of lines defining the actions make
carries out to update a target. make defines recipe lines as arbitrary strings that
may contain macro expansions. These follow a target-prerequisite line, and you can
space them apart by comment or blank lines. You terminate a recipe by a new
target description, a macro definition, or end of file.

Each recipe line must begin with a tab character. Optionally, you can place −, @, +
(or any combination) directly after the tab.

v − instructs make to ignore nonzero exit values when it executes this recipe line;
otherwise, make stops processing after an error.

v @ instructs make not to echo the recipe line to the standard output prior to its
execution; otherwise, make prints each line as it executes the line.

v + instructs make to always execute the recipe line, even when you have
specified the -n, -q, or -t options.

See “Special Target Directives” on page 135 for other ways to obtain this behavior.

make also accepts group recipes. A group recipe begins with an opening bracket
([) in the first non-white-space position of a line, and ends with a closing bracket (])
in the first non-white-space position of a line. In this format, recipe lines do not
require a leading tab character.

make passes group recipes, as a single unit, to a command interpreter for
execution whenever the corresponding target requires updating. If the [that starts
the group immediately precedes one or more of −, +, or @, they apply to the entire
group in the same way that −, +, and @ apply to single recipe lines.

As noted earlier, rules can have ;recipe on the same line as the target definition
line. If additional lines with a leading tab character follow the rule definition, ;recipe
is used as the first recipe line, and the additional lines follow it. Otherwise, the text
after the ; is used as the entire recipe. If the semicolon is present but the rest of the
recipe line is empty, make interprets this as an empty recipe.

Missing Recipes
If make cannot find a recipe for a particular target, it normally displays a message
on the standard error stream, in the form:
Don’t know how to make target

make does not generate this message if a rule has an explicitly empty recipe.

Macros
A macro fulfills a function similar to a programming language’s variable: You can
assign a value to a macro, and then use this value in subsequent operations by
referring to the macro. You can define make macros within the makefile or on the
command line, or by importing them from the environment. For instructions on
importing environment variables as macros, see “Special Target Directives” on
page 135.

On the command line and inside a makefile, you have three ways to create a
macro. make recognizes the first form (most other versions of make do as well):
macro = string

This example gives the value of string to macro.

Chapter 5. More Information on make 129

The other two forms are not found in traditional implementations of make:
macro := string

expands string (including any macros it contains) and then assigns the expanded
string to macro.
macro += string

changes the current value of macro by adding a single space and then the value of
string. In this case, make does not expand string.

When make defines a macro other than definitions read from the environment, it
strips any leading and trailing white space from the macro value. White space
consists of any combination of blanks or tabs.

After you have defined a macro, you can use it in any makefile line. Whenever
make finds one of the following constructs in a makefile:
$(macro)
${macro}

it replaces macro with its associated, predefined string. Thus, $(TEST) causes an
expansion of the macro variable named TEST. If you have defined TEST, make
expands any reference to $(TEST) to your associated string. If you haven’t defined
TEST at that time, $(TEST) expands to the NULL string (a string containing no
characters). This is equivalent to the following macro definition:
TEST=

If the name of a macro consists of a single character, you can omit the parentheses
or braces. Thus, $X is equivalent to $(X).

make processes macro definitions on the command line last; they will override
definitions for macros of the same name found within the makefile. Therefore,
definitions found inside the makefile cannot redefine macros defined on the
command line.

Modified Macro Expansions
make supports several new macro expansion expressions, of the form:
$(macro_name:modifier_list:modifier_list:...)

Each modifier_list consists of one or more characters that tell make to extract only
part of the string associated with the given macro. A list of characters and their
meanings follows:
b or B — File portion of all pathnames, without suffix
d or D — Directory portion of all pathnames
f or F — File portion of all pathnames, including suffix
s or S — Simple pattern substitution (see “Pattern Substitution” on page 131)
t or T — Tokenization (see “Tokenization” on page 131)
u or U — All characters in the expansion are mapped into uppercase
l or L — All characters in the expansion are mapped into lowercase
| — token prefixing (see “Prefix and Suffix Operations” on page 131)
+ — token suffixing (see “Prefix and Suffix Operations” on page 131)

You can use either uppercase or lowercase for modifier letters. Suppose, for
example, you define a macro with:
test = D1/D2/d3/a.out f.out d1/k.out

Then the following macro expansions take on the values shown.

130 z/OS V1R1.0 UNIX System Services Programming Tools

$(test:d) → D1/D2/d3 . d1
$(test:b) → a f k
$(test:F) → a.out f.out k.out
${test:DB} → D1/D2/d3/a f d1/k
${test:s/out/in/} → D1/D2/D3/a.in f.in d1/k.in
$(test:t"+") → D1/D2/D3/a.out+f.out+d1/k.out
$(test:u) → D1/D2/D3/A.OUT F.OUT D1/K.OUT
$(test:l) → d1/d2/d3/a.out f.out d1/k.out
$(test:|"/rd/") → /rd/D1/D2/d3/a.out /rd/f.out /rd/d1/k.out
$(test:+".Z") → D1/D2/d3/a.out.Z f.out.Z d1/k.out.Z

The :d modifier gives a . for names that do not have explicit directories.

Pattern Substitution
You use the substitution modifier to substitute strings in a macro definition:
:s/pattern/replace/

You can use any printing character in place of the / character to delimit the pattern
and replacement text, as long as you use it consistently within the command.

For compatibility with UNIX System V, make also supports the suffix replacement
modifier:
$(name:oldsuffix=newsuffix)

This expands $(name) normally, and then replaces any occurrences of the suffix
oldsuffix with newsuffix. make replaces the o string only when it appears in the
position of a suffix:
LIST = apple.o orange.o object.o
$(LIST:o=c) → apple.c orange.c object.c

Tokenization
The tokenization modifier:
:t"string"

expands the macro value into tokens (strings of characters separated by white
space) separated by the quoted string that follows the t modifier. make does not
append the separator string to the last token. The following list shows the special
escape sequences that may appear in the separator string and their meanings:
\" → "
\\ → \
\a → alert (bel)
\b → backspace
\f → formfeed
\n → newline
\r → carriage return
\t → horizontal tab
\v → vertical tab
\ooo → EBCDIC character octalooo>

Thus, using the previous definition of $test, the following expansion occurs:
$(test:f:t"+\n") expands to a.out+

; f.out+
k.out

Prefix and Suffix Operations
You use prefix and suffix modifiers:
:|"prefix"
:+"suffix"

Chapter 5. More Information on make 131

to add a prefix or suffix to each space separated token in the expanded macro.

For example, suppose you specify the following macro definition:
test = main func1 func2

Then the following expansions occur:
$(test:|"/src/")expands to /src/main /src/func1 /src/func2
$(test:+".c") expands to main.c func1.c func2.c

You can combine these two macro references:
$(test:|"/src/":+".c")

expands to:
/src/main.c /src/func1.c/src/func2.c

If the prefix and suffix strings themselves consist of a list of tokens separated by
blanks, the resulting expansion is the cross-product of both lists.

For example, if you specify the following definition of test:
test = a b c

Then the following expansions occur:
$(test:|"1 2 3") expands to 1a 1b 1c 2a 2b 2c 3a 3b 3c
$(test:+"1 2 3") expands to a1 b1 c1 a2 b2 c2 a3 b3 c3

You can combine these two references:
$(test:|"1 2 3":+"1 2 3")

expands to 1a1 1b1 1c1 2a1 2b1 2c1 3a1 3b1 3c1
1a2 1b2 1c2 2a2 2b2 2c2 3a2 3b2 3c2
1a3 1b3 1c3 2a3 2b3 2c3 3a3 3b3 3c3

Nested Macros
make also allows the values of macros to control the expansion of other macros.
You can include such nested macros in the following ways:
$(string)

or
${string}

where string contains additional $(...) or ${...} macro expansions. Consider the
following example:
$(CFLAGS$(_HOST)$(_COMPILER))

make first expands $(_HOST) and $(_COMPILER) to get results and then uses
those results as the name of the macro to expand. This is useful when you write a
makefile for more than one target environment. Suppose you import $(_HOST) and
$(_COMPILER) from the environment and they represent the host machine type
and the host compiler, respectively. If the makefile contains the following macro
definition, CFLAGS takes on a value that corresponds to the environment in which
make is being called:
CFLAGS_VAX_CC = -c -O

for _HOST == "_VAX", _COMPILER == "_CC"
CFLAGS_PC_MSC = -c -ML

for _HOST == "_PC", _COMPILER == "_MSC"
CFLAGS := $(CFLAGS$(_HOST)$(_COMPILER))

132 z/OS V1R1.0 UNIX System Services Programming Tools

Text Diversion
With text diversion you can directly create files from within a recipe. This feature is
an extension to traditional make systems and probably absent from other
implementations.

In a recipe, you can use a construct of the form:
<+ text +>

where the given text can stand for anything; several lines long if desired, each
beginning with a tab, as must all recipes. When make encounters this construct, it
creates a temporary file with a unique name, and copies the given text to that file.
Then make executes the recipe with the name of the temporary file inserted in
place of the diversion. When make finishes processing, it removes all the temporary
files. (You can use the -v option to have make show the names of these temporary
files, and leave them around to be examined.)

make places temporary files in the /tmp directory unless the TMPDIR environment
variable is set.

make expands macro references inside the text in the normal way, so that the file
contains the text with all macro references replaced by the associated strings.
Newline characters are copied as they appear in the diversion.

Normally, make does not copy white space at the beginning of each line of the text
into the temporary file, unless you put a backslash at the front of a white space
character, in which case the white space from that point on is copied into the
temporary file:
<+

This line does not begin with white space
\ This one does.
+>

As a simple example of text diversion, suppose that the CC macro currently
contains c89 (the c89 compiler interface). If make encounters the recipe line:
copy <+ Using $(CC) as compiler

+> hifile

it creates a temporary file containing:
Using c89 as compiler

Since make strips white space from the beginning of the second line, the contents
of the temporary file end at the newline character at the end of the first line.

The temporary file that the text diversion process creates has a unique name.
Suppose that the name is temp. make changes the original recipe line to:
copy temp hifile

with the result that the line:
Using c89 as compiler

is copied into hifile.

Consider a more realistic example of how you can use this feature:

Chapter 5. More Information on make 133

OBJECTS=program$O module1$O module2$O
program: $(OBJECTS)

link @<+ $(OBJECTS:t"+\n")
$@/noignorecase

$(NULL)
$(LDLIBS)

+>

The tokenizing expression:
$(OBJECTS:t"+\n")

adds a + and a newline after each token in the OBJECTS macro. The runtime
macro $@ stands for the name of the target being made (as explained in “Special
Macros” on page 138). As a result, the temporary file created by the text diversion
contains:
program.o+
module1.o+
module2.o
program/noignorecase

which is the sort of input file that the link command can handle. The recipe
therefore consists of the following command:
link @tempfile

tempfile stands for the name of the temporary file holding the text diversion.

Creating a text diversion in this way is complicated, but it may be the only way to
handle some situations.

Using Attributes to Control Updates
make defines several target attributes. You can assign attributes to a single target,
a group of targets, or to all targets in the makefile. Attributes affect what make does
when it needs to update a target. make recognizes the following attributes:

.EPILOG
Inserts shell epilog code when executing a group recipe associated with
any target having this attribute set. (See also .PROLOG).

.IGNORE
Ignores any errors encountered when trying to make a target with this
attribute set.

.LIBRARY
Indicates that target is a library. If make finds a target of the form
lib(member) or lib((entry)), make automatically gives the .LIBRARY attribute
to the target named lib. For further information, see “Libraries” on page 119.

.PRECIOUS
Tells make not to remove this target under any circumstances. Any
automatically inferred prerequisite inherits this attribute. For an explanation
of why this is provided, see the discussion of .REMOVE in “Special Target
Directives” on page 135.

.PROLOG
Inserts shell prolog code when executing a group recipe associated with
any target having this attribute set.

134 z/OS V1R1.0 UNIX System Services Programming Tools

.SETDIR
Changes the working directory to a specified directory when making
associated targets. The syntax of this attribute is:
.SETDIR=path

where path represents the pathname of the desired working directory.

.SILENT
Does not echo the recipe lines when making any target with this attribute
set, and does not issue any warnings.

You can set any of the previous attributes. make recognizes two more attributes
which you cannot set: the .LIBRARYM and .SYMBOL attributes.

.LIBRARYM
Indicates that target is a library member. You cannot explicitly set this
attribute; make automatically gives it to targets or prerequisites of the form
lib(entry); that is, lib sets the .LIBRARY attribute, and entry gets the
.LIBRARYM attribute.

.SYMBOL
Indicates that target is the library member with a given entry point. You
cannot explicitly set this attribute; make automatically gives it to targets or
prerequisites of the form lib((entry)).

You can use attributes in several ways:
targets attribute_list :
prerequisites attribute_list : targets

Both of these examples assign the attributes specified by attribute_list to each of
the targets.

A line of the form:
attribute_list :

(with no targets) applies the list of attributes to all targets in the makefile. Traditional
versions of make may let you do this with the .IGNORE attribute, but not with any
others attributes.

You can use any attribute with any target (including special targets). Some
combinations are useless (for example, .INCLUDE .PRECIOUS: ...). Other
combinations are quite useful:
.INCLUDE .IGNORE : "startup.mk"

This example tells make not to complain if it cannot find startup.mk using the
include file search rules. If you do not use a specified attribute with the special
target, make issues a warning and ignores the attribute.

Special Target Directives
Special targets are called targets because they appear in the target position of
rules; however, they really function as keywords, not targets; and the rules in which
they appear serve as directives, which control the behavior of make.

The special target must be the only target in a special target rule; you cannot list
other normal or special targets.

Chapter 5. More Information on make 135

Some attributes do not affect special targets. You can give any attribute to any
special target, but often the combination is meaningless and the attribute has no
effect.

.BRACEEXPAND
Cannot have prerequisites or recipes associated with it. If set, the
.BRACEEXPAND special target allows use of the brace expansion feature
from previous versions of make. If you have old makefiles that use the
now-outdated brace expansion feature, you can use this special target to
continue using them without modification. For more information about brace
expansion, see z/OS UNIX System Services Command Reference.

.DEFAULT
Takes no prerequisites, but does have a recipe associated with it. If make
cannot find a mechanism to build a target, it uses the recipe from the
.DEFAULT rule. If your makefile contains:
.DEFAULT:
echo no other rule found
echo so doing default rule for $<

and no other rule for file.c, then:
make file.c

displays:
no other rule found
so doing default rule for file.c

.ERROR
If defined, prompts the execution of the recipe associated with this target
whenever make detects an error condition. You can use any attribute with
this target. make brings any prerequisites of this target up to date during its
processing.

Note: make ignores any errors while making this target.

.EXPORT
Prompts make to determine which prerequisites associated with this target
correspond to macro names. make exports these to the environment, with
the values they hold, at the point in the makefile at which make reads this
rule. make ignores any attributes specified with this target. Although make
exports the value specified to the environment at the point at which it reads
the rule, no actual execution of commands takes place until the entire
makefile is read. Only the final exported value of a given variable affects
executed commands.

.GROUPEPILOG
Prompts make to add the recipe associated with this target after any group
recipe for a target that has the .EPILOG attribute. See “Executing Regular
Recipes” on page 118 for further information.

.GROUPPROLOG
Puts the recipe associated with this target in before any group recipe for a
target that has the .PROLOG attribute. See “Executing Regular Recipes” on
page 118 for further information.

.IMPORT
Prompts make to search for the associated prerequisite names in the
environment. make defines the names it finds as macros with the value of
the macro taken from the environment. If it cannot find a name, it issues an

136 z/OS V1R1.0 UNIX System Services Programming Tools

error message; however, if you specify the .IGNORE attribute, make does
not generate an error message and does not change the macro value.

If you give the prerequisite .EVERYTHING to .IMPORT, make reads in the
entire environment. (Requiring this special prerequisite instead of an empty
string helps to avoid accidentally importing the entire environment by
expanding a null macro as the prerequisite of .IMPORT.)

Note: Normally make imports the entire environment unless suppressed by
the -E option.

.INCLUDE
Tells make to process one or more additional makefiles, as if their contents
had been inserted at the line where make found the .INCLUDE in the
current makefile. You specify the makefiles to be read as the prerequisites
for .INCLUDE. If the list contains more than one makefile, make reads them
in order from left to right.

make uses the following search rules when trying to find the makefile:

v If a relative filename is enclosed in quotes (") or is not enclosed, make
begins its search in the working directory. If the file is not found, make
then searches for it in each directory specified by the .INCLUDEDIRS
special target.

v If a relative filename is enclosed with < and >, (as in <file>), make
searches only in the directories specified by the .INCLUDEDIRS special
target.

v If an absolute (fully qualified) filename is given, make looks for that file,
and ignores the .INCLUDEDIRS list.

If make cannot find a file, it normally issues an error message and ends; however,
if the .IGNORE attribute is specified, make just ignores missing files. The .IGNORE
attribute is the only attribute that can be specified with .INCLUDE.

For compatibility with make on UNIX System V:
include file

at the beginning of a line has the same meaning as:
.INCLUDE: file

.INCLUDEDIRS
Contains a list of specified prerequisites that define the set of directories to
search when trying to include a makefile.

.MAKEFILES
Contains a list of prerequisites that name a set of files to try to read as the
user makefile. make processes these files in the order specified (from left
to right) until it finds one up to date. The built-in rules specify:
.MAKEFILES : makefile Makefile

.POSIX
Causes make to process the makefile as specified in the POSIX.2
standard. This special target must appear before the first noncomment line
in the makefile. This target may have no prerequisites and no recipes
associated with it. The .POSIX target does the following:

v It causes make to use the shell when running all recipe lines (one per
shell).

Chapter 5. More Information on make 137

v It disables any brace expansion (set with the .BRACEEXPAND special
target).

v It disables metarule inferencing.

v It disables conditionals.

v It disables make’s use of dynamic prerequisites.

v It disables make’s use of group recipes.

v make will not check for the string $(MAKE) when run with the -n option
specified.

.REMOVE
Causes make to remove intermediate targets. In the course of making
some targets, make may create new files as intermediate targets. For
example, if make creates an executable file, it may have to create some
object files if they don’t currently exist. make tries to remove any such
intermediate targets that did not exist initially. It does this by using the
recipe associated with the .REMOVE special target. The startup file set up
an appropriate rm command to serve as a default for .REMOVE. If you
want to avoid this automatic removal for certain targets, give those targets
the .PRECIOUS attribute. (.PRECIOUS is especially useful for marking
libraries, since you usually want them to remain.)

.SOURCE
Contains a prerequisite list that defines a set of directories to check when
trying to locate a target filename. For more information, see “Binding
Targets” on page 142.

.SOURCE.x
Is similar to .SOURCE, except that make searches the .SOURCE.x list first
when trying to locate a file with a name ending in the suffix .x.

.SUFFIXES
Contains a prerequisite list of this target, which defines a set of suffixes to
use when trying to infer a prerequisite for making a target. There is no need
to declare suffixes. If the .SUFFIXES rule has no prerequisites, the list of
suffixes is cleared, and make does not use suffix rules when inferring
targets.

Special Macros
make defines two classes of special macros: control macros and runtime macros.

The control macros control make’s behavior. If you have several ways of doing the
same thing, using the control macros is preferable. A control macro having the
same function as a special target or attribute also has the same name.

make defines the runtime macros when making targets, and they are usually useful
only within recipes. The exceptions to this are the dynamic prerequisite macros,
discussed later in this chapter.

Control Macros
There are two groups of control macros:
v String-valued macros
v Attribute macros

138 z/OS V1R1.0 UNIX System Services Programming Tools

make automatically creates internally defined macros. You can use these macros
with the usual $(name) construct. For example, you can use $(PWD) to obtain the
working directory name.

String-Valued Macros
DIRSEPSTR

Is defined internally. It gives the characters that you can use to separate
components in a pathname. This is usually just /. If make finds it necessary
to make a pathname, it uses the first character of DIRSEPSTR to separate
pathname components.

GROUPFLAGS
Is set by the startup file and can be changed by you. This macro contains
the set of flags to pass to the command interpreter when make calls it to
execute a group recipe. See the discussion of MFLAGS for more about
switch characters.

GROUPSHELL
Is set by the startup file and can be changed by you. It defines the full path
to the executable image used as the shell (command interpreter) when
processing group recipes. This macro must be defined if you use group
recipes. It is assigned the default value in the standard startup file.

GROUPSUFFIX
Is set by the startup file and can be changed by you. If defined, this macro
gives the string used as a suffix when make creates group recipe files to be
handed to the command interpreter. For example, if it is defined as .sh, all
group recipe files created by make end in the suffix .sh.

INCDEPTH
Is defined internally. It gives the current depth of makefile inclusion. This
macro contains a string of digits. In your original makefile, this value is 0. If
you include another makefile, the value of INCDEPTH is 1 while make
processes the included makefile, and goes back to 0 when make returns to
the original makefile.

MAKE Is set by the startup file and can be changed by you. The standard startup
file defines it as:
$(MAKECMD) $(MFLAGS)

make itself does not use the MAKE macro, but it recognizes the string
$(MAKE) when using the -n option for single-line recipes.

MAKECMD
Is defined internally. It gives the name you used to call make.

MAKEDIR
Is defined internally. It contains the full path to the directory from which you
called make.

MAKEFLAGS
Contains all the flags specified in the MAKEFLAGS environment variable
plus all the flags specified on the command line, with the following
exceptions. It is an error to specify \-c, -f, or \-p in the environment variable,
and any specified on the command line do not appear in the MAKEFLAGS
macro. Flags in the MAKEFLAGS environment variable can optionally have
leading dashes and spaces separating the flags. make strips these out
when the MAKEFLAGS macro is constructed.

Chapter 5. More Information on make 139

MAKESTARTUP
May be set by you, but only on the command line or in the environment.
This macro defines the full path to the startup file. The built-in rules assign
a default value to this macro.

MFLAGS
Is defined internally. It gives the list of flags given to make including a
leading dash. That is, $(MFLAGS) is the same as −$(MAKEFLAGS).

NULL Is defined internally. It is permanently defined to be the NULL string. This is
useful when comparing a conditional expression to a NULL value and in
constructing metarules without ambiguity. See “Metarules” on page 109 for
more information.

OS Is defined internally. It contains the name of the operating system you are
running.

PWD Is defined internally. It represents the full path to the working directory in
which make runs.

SHELL
Is set by the default rules and can be changed by you. It defines the full
path to the executable image used as the shell (command interpreter) when
processing single-line recipes. This macro must be defined if you use
recipes that require execution by a shell. The default rules assign a default
value to this macro by inspecting the value of the SHELL environment
variable.

Note: The startup file must explicitly import the SHELL environment
variable. The default importation of the environment does not apply
to SHELL.

SHELLFLAGS
Is set by the startup file and can be changed by you. This macro specifies
the list of options (flags) to pass to the shell when calling it to execute a
single-line recipe. The flags listed in the macro do not possess a leading
dash.

SHELLMETAS
Is set by the startup file and can be changed by you. This macro defines a
list of characters that you want make to search for in a single recipe line. If
make finds any of these characters in the recipe line, make uses the shell
to call the recipe; otherwise, make calls the recipe without using the shell.

Attribute Macros
The attribute macros let you turn global attributes on or off. You use the macros by
assigning them a value. If the value does not contain a NULL string, make sets the
attribute on and gives all targets the associated attribute. If the macro does contain
a NULL string, make sets the attribute off.

The following macros correspond to attributes of the same name:
.EPILOG
.IGNORE
.PRECIOUS
.PROLOG
.SILENT

See “Using Attributes to Control Updates” on page 134 for more information.

140 z/OS V1R1.0 UNIX System Services Programming Tools

Runtime Macros
Runtime macros receive values as make is making targets. They take on different
values for each target. These are the recognized runtime macros:

$@ Evaluates to the full name of the target, when building a normal target.
When building a library, it expands to the name of the archive library. For
example, if the target is mylib(member), $@ expands to mylib.

$% Also evaluates to the full name of the target, when building a normal target.
When building a library, it expands to the name of the archive member. In
the previous example, $% expands to member.

$& Evaluates to the list of all prerequisites, in all rules that apply to the target.

$? Evaluates to the list of all prerequisites that are newer than the target. In
inference rules, however, this macro evaluates to the same value as the $|
macro.

$> Evaluates to the name of the library if the current target is a library member.
For example, if the target is mylib(member), $> expands to mylib.

$| Evaluates to the list of prerequisites given in the rule that contains the
recipe make is executing.

$< In normal rules, it evaluates the same as $?. In inference rules it evaluates
to the single prerequisite that causes the execution of the rule.

$* Is equivalent to $(%:db). This expands to the target name with no suffix.

$$ Expands to $.

The following example illustrates the difference between these:
a.o : a.c
a.o : b.h c.h

recipe for making a.o

Assume a.c and c.h are newer than a.o, whereas b.h is not. When make executes
the recipe for a.o, the macros expand to the following values:
$@ → a.o
$* → a
$& → a.c b.h c.h
$? → a.c c.h
$| → b.h c.h
$< → b.h c.h

Consider this example of a library target:
mylib(mem1.o):
recipe...

For this target, the internal macros then expand to:
$@ → mylib
$* → mem1
$> → mylib

Dynamic Prerequisites
You can use the symbols $$@, $$%, $$*, and $$> to create dynamic prerequisites
(that is, prerequisites calculated at the time that make tries to update a target). Only
these runtime macros yield meaningful results outside of recipe lines.

Chapter 5. More Information on make 141

When make finds $$@ in the prerequisite list, the macro expands to the target
name. If you are building a library, it expands to the name of the archive library.
With the line:
fred : $$@.c

make expands $$@ when making fred, so the target name fred replaces the
macro.

You can modify the value of $$@ with any of the macro modifiers. For example, in:
a.c : $$(@:b).c

the $$(@:b) expands to a.

You can apply modifiers to special runtime macros and to the dynamic prerequisite
symbol. For example, consider:
all: file1 file2

file1 file2: $$@.c
$(CC) $(CFLAGS) -o $@ $@.c

make evaluates these statements as:
all: file1 file2

file1: $$@.c
$(CC) $(CFLAGS) -o file1 file1.c

file2: $$@.c
$(CC) $(CFLAGS) -o file2 file2.c

When make finds $$% in the prerequisite list, it also stands for the name of the
target, but when building a library, it stands for the name of the archive member.

When make finds $$* in the prerequisite list, it stands for the name of the target,
but without the suffix.

You can use the $$> macro in the prerequisite list only if you are building a library.
In this case, it stands for the name of the archive library. Otherwise, its use is
invalid.

For more information on dynamic prerequisites and their use, see z/OS UNIX
System Services Command Reference.

Binding Targets
Makefiles often specify target names in the shortest manner possible, relative to the
directory that contains the target files. make possesses relatively sophisticated
techniques of searching for the file that corresponds to a target name in a makefile.

Assume that you try to bind a target with a name of the form pathname.ext, where
.ext is the suffix and pathname is the stem portion (that is, that part which contains
the directory and the basename). make performs all search operations relative to
the working directory except when the given name is a full pathname starting at the
root of a file system.

1. Look for pathname.ext relative to the working directory, and use it if it is found.

2. Otherwise; if the .SOURCE.ext special target is defined, search each directory
given in its list of prerequisites for pathname.ext. If .ext is a NULL suffix (that

142 z/OS V1R1.0 UNIX System Services Programming Tools

is, pathname.ext is really just pathname) use .SOURCE.NULL instead. If it is
found, use that file. If it is still not found, try this step again using the directories
specified by .SOURCE .

3. If it is still not found, and the target has the library member attribute
(.LIBRARYM) set, try to find the target in the library of which the target is a
member (see “Libraries” on page 119).

Note: This same set of rules is used to bind a file to the library target at an
earlier stage of the makefile processing.

4. If still not found, the search fails. make returns the original name pathname.ext.

If at any point the search succeeds, make replaces the name X.a of the target with
the new bound name and then refers to it by that name internally.

There is potential here for a lot of search operations. The trick is to define
.SOURCE.x special targets with short search lists and leave .SOURCE undefined,
or as short as possible. Initially, make simply defines .SOURCE as:
.SOURCE : .NULL

In this context, .NULL tells make to search the working directory by default.

The search algorithm has the following useful side effect. When make searches for
a target that has the .LIBRARYM (library member) attribute, make first searches for
the target as an ordinary file. When a number of library members require updating,
it is desirable to compile all of them first and to update the library at the end in a
single operation. If one of the members does not compile and make stops, you can
fix the error and run make again. make does not remake any of the targets with
object files that have already been generated as long as none of their prerequisite
files have been modified.

If a target has the .SYMBOL attribute set (see “Libraries” on page 119), make
begins its search for the target in the library. If make finds the target, it searches for
the member using the search rules. Thus, make first binds library entry point
specifications to a member file, and then checks that member file to see if it is out
of date.

When defining .SOURCE or .SOURCE.x targets, the construct:
.SOURCE :
.SOURCE : fred gerry

is equivalent to:
.SOURCE :− fred gerry

More generally, the processing of the .SOURCE special targets is identical to the
processing of the .SUFFIXES special targets.

Using Inference Rules
Specifying recipes for each and every target becomes tedious and error-prone. For
this reason, make provides a number of mechanisms allowing you to specify
generic rules for a particular type of target. These mechanisms are called inference
rules. There are two major types: suffix rules and metarules.

Chapter 5. More Information on make 143

Suffix rules are a historical mechanism that matches the suffix of a target against a
list of special suffixes and rules to find a recipe to use. For more information, see
“Suffix Rules” on page 110.

The second mechanism is called metarules. These pattern rules are a more recent
invention provided by a number of modern versions of make. They are much more
flexible and general than the older suffix rules. You should use the metarules rather
than the suffix rules. make provides the suffix rules primarily for compatibility
reasons. A final way to specify a recipe to a target that doesn’t have any other rule
is through the .DEFAULT special target. See “Special Target Directives” on
page 135.

Here is the search order for the various mechanisms:

1. Search explicit rules in the makefile.

2. Check to see if an appropriate metarule exists.

3. Check to see if an appropriate suffix rule exists.

4. Check to see if the .DEFAULT target was defined; otherwise, display an error
and stop.

Metarules
A metarule states, in general, that targets with names of a particular form depend
on prerequisites with names of a related form. The most common example is that
targets with a name ending in .o depend on prerequisites with the same basename,
but with the suffix .c. The process of deriving a specific rule from a metarule is
called making an inference.

Consider this example, which explains the general metarule format:
%.o : %.c
$(CC) -c $(CFLAGS) $<

This rule states that any target file that has the suffix .o, and doesn’t have an
explicit rule, depends on a prerequisite with the suffix .c and the same basename.
For example, file.o depends on file.c. The recipe that follows the command tells
how to compile the .c file to get a corresponding .o file.

As another example, consider the following metarule:
%.c .PRECIOUS : RCS/%.c,v

-co -q $<

Anyone who uses the public-domain application rcs to manage C source files will
find this useful. The metarule says that any target with the suffix .c depends on a
prerequisite that has the same filename, but is found in the subdirectory RCS under
the same directory that contains the target. For example, dir/file.c is checked out of
dir/RCS/file.c,v. The recipe line uses the special $< macro to stand for the
prerequisite (in the RCS directory).

The general metarule format is:
pre%suf :
prerequisite prerequisite... recipes

where pre and suf are arbitrary (possibly empty) strings. If the % character appears
in the prerequisite list, it stands for whatever the % matched in the target.

Here is an inference rule that omits both the suf and pre strings:

144 z/OS V1R1.0 UNIX System Services Programming Tools

% .PRECIOUS: RCS/%,v
-co -q $<

This rule matches any target and tries to check it out from the rcs archive.

A number of technical considerations dictate the order in which make tries to make
inferences. If several metarules can apply to the same target, there is no way to
control the one that make actually uses. You can use the -v and -n options to find
out what make chooses. A well-designed set of metarules yields only one rule for a
particular target.

A metarule may specify attributes for a target. If make attempts to make a target
that has a particular attribute, it first checks for a metarule that applies to the target
and specifies the given attribute. If no such metarule exists, make looks for a
metarule that does not specify the attribute. This lets you specify different metarules
for targets with different attributes. make performs this test for all attributes except
.SILENT, .IGNORE, and .SYMBOL.

Suffix Rules
Suffix rules are an older form of inference rule. They have the form:
.suf1.suf2:
recipe...

make matches the suffixes against the suffixes of targets with no explicit rules.
Unfortunately, they don’t work quite the way you would expect.

The rule:
.c.o :
recipe...

says that .o files depend on .c files. Compare this with the usual rules:
file.o : file.c
compile file.c to get file.o

and you will see that suffix rule syntax is backward! This, by itself, gives good
reason to avoid suffix rules.

You can also specify single-suffix rules similar to the following, which match files
ending in .c:
.c:
recipe...

For a suffix rule to work, the component suffixes must appear in the prerequisite list
of the .SUFFIXES special target. The way to turn off suffix rules is simply to place:
.SUFFIXES:

in your makefile with no prerequisites. This clears the prerequisites of the
.SUFFIXES targets and prevents any suffix rules from firing. The order in which
suffixes appear in the .SUFFIXES rule determines the order in which make checks
the suffix rules.

Here is the search algorithm for suffix rules:

1. Extract the suffix from the target.

2. If it does not appear in the .SUFFIXES list, quit the search.

Chapter 5. More Information on make 145

3. If it is in the .SUFFIXES list, look for a double suffix rule that matches the target
suffix.

4. If you find one; extract the basename of the file, add on the second suffix, and
see if the resulting file exists. If it doesn’t, keep searching the double suffix
rules. If it does exist, use the recipe for this rule.

5. If no successful match is made, the inference has failed.

6. If the target did not have a suffix, check the single suffix rules in the order that
the suffixes are specified in the .SUFFIXES target.

7. For each single suffix rule, add the suffix to the target name and see if the
resulting filename exists.

8. If the file exists, execute the recipe associated with that suffix rule. If the file
doesn’t exist, continue trying the rest of the single suffix rules. If no successful
match is made, the inference has failed.

Try some experiments with the -v option specified to see how this works.

There is a ″special″ feature in the suffix rule mechanism that wasn’t described
earlier. It is for archive library handling. If you specify a suffix rule of the form:
.suf.a:
recipe

the rule matches any target having the LIBRARYM attribute set, regardless of the
target’s actual suffix.

For example, suppose your makefile contains the rules, and mem.o exists:
.SUFFIXES: .a .o
.o.a:
echo adding $< to library $@

Then, the following command:
make "mylib(mem.o)"

causes make to print the following line:
adding mem.o to library mylib

Refer to “Libraries” on page 119 for more information about libraries and the
.LIBRARY and .LIBRARYM attributes.

Compatibility Considerations
make attempts to remain compatible with versions of make found on UNIX and
POSIX-conforming systems, while meeting the needs of differing environments. This
section examines ways in which make may differ from traditional versions.

Conditionals
Conditionals let you selectively include or exclude parts of a makefile. This lets you
write rules that have different formats for different systems.

Note: Traditional implementations of make do not recognize conditionals. They are
extensions to the POSIX standard.

A conditional has the following format:

146 z/OS V1R1.0 UNIX System Services Programming Tools

.IF expression
input1
.ELSIF expression
input2
.ELSE
input3
.END

The expression has one of the following forms:
text
text == text
text != text

The value of the first form is true if the given text is not null; otherwise, it is false.
The value of the second form is true if the two pieces of text are equal, and the
value of the last form is true if the two pieces of text are not equal.

When make encounters a conditional construct, it begins by evaluating the
expression after the .IF. If the value of the expression is true, make processes the
first piece of input (input1) and ignores the second; if the value is false, make
processes the second (input2) and ignores the first. Otherwise, it processes the
third input.

The .IF , .ELSE , .ELSIF, and .END keywords must begin in the first column of an
input line (no preceding white space).

You may be used to indenting material inside if-else constructs; however, you
should not use tabs to indent text inside conditionals (except, of course, for recipe
lines, which are always indented with tabs). The text inside the conditional should
have the same form that you would use outside the conditional.

You can omit the .ELSE part of a conditional.

BSD UNIX make
The following is a list of the notable differences between z/OS UNIX make and the
4.2 or 4.3 BSD UNIX version of make.

v BSD UNIX make supports wildcard filename expansion for prerequisite names.
Thus, if a directory contains a.h, b.h, and c.h, BSD UNIX make performs the
following expansion:
target: *.h expands to target: a.h b.h c.h

z/OS UNIX make does not support this type of filename expansion.

v Unlike BSD UNIX make, touching library members causes make to search the
library for the member name and to update the time stamp if the member is
found.

v z/OS UNIX make does not support the BSD VPATH variable. A similar and more
powerful facility is provided through the .SOURCE special target.

System V AUGMAKE
The following special features have been implemented to make make more
compatible with System V AUGMAKE:

v You can use the word include at the start of a line instead of the .INCLUDE:
construct that is normally understood by make.

Chapter 5. More Information on make 147

v make supports the macro modifier expression $(macro:str=sub) for suffix
changes.

v When defining special targets for the suffix rules, the special target .X is
equivalent to .X.NULL.

Improving make Performance
For possible improvement in the performance of make, set the shell variable
_MAKE_BI=YES. When this shell variable is set, sh will invoke the built-in make,
built-in c89, built-in c++, and built-in cc instead of the /bin commands. Using built-in
make may be especially beneficial when making large applications since the sh
does not need to start another process but instead calls the built-in make. As with
other shell variables, this may be set in /etc/profile, $HOME/.profile or on
command line by a user. For more information about built-in commands, see z/OS
UNIX System Services Command Reference under sh utility (Built-in Commands
section).

148 z/OS V1R1.0 UNIX System Services Programming Tools

Chapter 6. Debugging z/OS C/C++ Programs

This chapter describes the z/OS UNIX services available to you for debugging z/OS
C/C++ application programs as you develop them.

This chapter describes:

v How to control processes for an application and interrupt applications

v The formal debugging services available for z/OS C/C++ applications, including
the z/OS UNIX dbx utility

v Debugging from the z/OS UNIX shells with dbx

The chapter concludes with a list of dbx subcommands.

The z/OS UNIX System Services web page also has information about dbx. Go to:
http://www9.s390.ibm.com/products/oe/dbx/

If you’re interested in porting applications to z/OS UNIX, see the online z/OS UNIX
System Services Porting Guide at:
http://www.s390.ibm.com/products/oe/bpxa1por.html

If you are viewing this book using IBM BookManager BookServer, you can click on
either url above and be automatically linked to its associated page.

Controlling Processes
This section discusses how you find out information about processes associated
with z/OS UNIX C/MVS application programs so that you can end them if the
application program develops problems.

Obtaining the Status of z/OS UNIX Application Program Processes
When the z/OS UNIX C/MVS application program you are developing runs, you can
check the processes assigned to it to determine where it is running and how much
processor time it is using as it runs.

In order for you to be able to check the status of your application program
processes, the program must run in a shell or create processes by requesting z/OS
UNIX C/MVS services. You can check the status of processes for executable files
running in the following environments:
v Shell foreground
v Shell background
v TSO/E foreground, when processes are started
v MVS batch, when processes are started

Note: If the application program is submitted for MVS batch processing using the
BPXBATCH program, a JCL job stream is used to invoke a batch program,
which executes a shell environment from which the application program
executable file is run.

You must also enter a shell ps or jobs command to determine the process IDs for
the application if you do not already have them recorded.

To check the status of your z/OS UNIX C/MVS application program processes,
follow these procedures:

1. Record the process IDs when the application is started.

© Copyright IBM Corp. 1996, 2001 149

http://www9.s390.ibm.com/products/oe/dbx/
http://www.s390.ibm.com/products/oe/bpxa1por.html

2. Issue the process status or job status command when you want to check on the
shell-initiated application:
ps

The preceding command displays the status of only those processes associated
with the default user ID. The following command, when entered by a user with
superuser authority, displays the status of all active processes. Otherwise, it
displays the status of all processes associated with the default user ID.
ps -A

The following command displays the status of all active jobs in the
shell—including process ID and user ID information:
jobs -l

Note: If the application was started from TSO/E for MVS batch submission and
you go into the shell (using the TSO/E OMVS command to create a shell
environment or the PA1 key from the TSO escape prompt to return to an
existing shell environment), you can use the ps command to determine
the status of the processes associated with your user ID. If you stay in
the TSO/E environment, you can use TSO/E commands to check the
MVS batch job queues.

3. From the resulting status display, check the status of the process and any of its
child processes.

4. Record the necessary process IDs for the application program’s job.

If you are running the application program executable file from a shell and it
appears to be hung, and you cannot enter shell commands, you can query the
process status and IDs either by using the open subcommand or by creating
another shell session. When the second shell session is started, enter:
ps -ef

and record the process ID for the application. You can then kill the C/MVS
application program process. For information on killing processes, see Killing a
Runaway Process. To return to the first shell session, enter: exit.

The output from the ps command is displayed to stdout, which is normally the
terminal. You can redirect output from the command using the > character and a
specified HFS filename.

Killing a Runaway Process
When the z/OS UNIX C/MVS application program you are developing and testing
runs unchecked, the processes assigned to it can be out of the normal control of
the application user. These processes need to be ended to free address spaces
and associated storage. You may need to kill an application program’s active
processes to do this.

Before you can kill an application program’s processes, you must know the process
IDs to send a kill signal to. See “Obtaining the Status of z/OS UNIX Application
Program Processes” on page 149 for information on how to do this.

You can, if you want, code the C/MVS source such that the application program
checks the status of its processes and raises a flag if it detects and intercepts a
program signal that a process is not behaving as anticipated. The application
program can then kill the flagged process and take the appropriate processing

150 z/OS V1R1.0 UNIX System Services Programming Tools

action. You need to use the z/OS UNIX C/MVS signal functions to do this. See
z/OS C/C++ Run-Time Library Reference, for the descriptions of the signal-handling
functions. For information on z/OS UNIX C/MVS considerations for signal delivery,
see z/OS C/C++ Programming Guide. For more information on POSIX signal
handling, see The POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick
(Redwood City, CA: The Benjamin/Cummings Publishing Company, Inc., 1991). This
book contains a thorough discussion of POSIX.1-defined signal handling.

Follow these procedures to kill a process:

v Interactively, you can do one of three things to end a runaway process:

– Enter the “break” keystroke sequence (<Ctrl-C>) from the terminal.

– Issue the kill command specifying the kill signal and the process IDs to end
the processes and free memory. The following example shows two ways to kill
the same z/OS shell processes:
- kill -S KILL 2819 15163
- kill -9 2819 15163

– If the shell prompt is not available, invoke the shell again. Then enter the kill
command for the correct process ID from a user ID that has the appropriate
privilege to kill the process.

v From within an application program, you can:

1. Intercept a signal indicating that something has gone wrong with a process.

2. Call the z/OS UNIX C/MVS getpid() or getppid() function to get the process
ID in question.

3. Call the kill(pid,sig) function to pass the signal on to the process identified.
The process responds to the signal according to how the process has been
coded to handle signals.

4. Call the sigaction() function if the action indicated by the kill command is to
be changed.

Note: There is no special method for killing a process under the TSO/E
environment if the z/OS UNIX application program is started from that
environment.

After you kill a process, control is returned to the parent process or the application
continues on with conditional processing.

Introduction to the z/OS Debugger
You need to create an z/OS UNIX C/MVS application program that will compile,
link-edit, and run successfully. After your program has been developed, you can
take advantage of the z/OS UNIX debugger (with its dbx utility) to debug the
program from within the shell environment on an MVS system.

Using dbx, you can debug your program at the source level and at the machine
level. Source-level debugging allows you to:

v Set breakpoints at selected statements with conditions for activation

v Hold and release thread execution

v Run a program one line at a time

v Access variables symbolically and display them in the correct format

v Examine the source text using simple search functions or the ed editor

v Debug processes that contain fork() and exec() functions

v Interrupt and examine a program that is already in progress

Chapter 6. Debugging z/OS C/C++ Programs 151

v Trace execution of a program by line, routine, or variable

v Display expressions using a wide range of operators

v Print a list of the active routines and their parameters (stack traceback)

v Print declarations of variables, along with their fully qualified names

v Modify the directory list from which to search for source files

v Determine the application programs loaded into a process

v Debug applications involving threads

v Display information about thread, condition variable, and mutex objects

v Debug applications involving DLLs

v Refer to, display, and modify program variables that contain doublebyte character
set (DBCS) characters

v View MVS dumps of C/C++ programs

Machine-level debugging allows you to:
v Set breakpoints at selected machine instructions with conditions for activation
v Hold and release thread execution
v Run a program one instruction at a time
v Display or modify the contents of machine registers and memory
v Debug processes that contain fork() and exec() functions
v Interrupt and examine a program that is already in progress
v Trace execution of a program by instruction
v Display expressions using a wide range of operators
v Determine the application programs loaded into a process
v Debug applications involving threads
v Display information about thread, condition variable, and mutex objects
v View MVS dumps

You can tailor the dbx utility to:

v Customize your interface to the dbx utility with command aliases

v Customize your debugging environment with an initialization file

v Invoke your choice of an editor (the default editor is ed) and use shell commands
during the debugging session

v Enter commands from either standard input or a named file

v Reroute standard output and standard error to HFS files

v Set or change predefined variables

v Change the command prompt

so that dbx fits your work preferences.

Your application program may or may not strictly conform to the z/OS
UNIX-supported POSIX standards. You can debug POSIX-conforming C/MVS
applications in three environments available to most z/OS UNIX application
programmers:

v A POSIX-conforming workstation environment.

v A shell environment.

v A shell environment started through MVS batch. From an MVS batch
environment, use the BPXBATCH program to enter the dbx command, passing
to it the appropriate subcommands in a command file. dbx is run from the shell
through MVS batch, and subcommands are entered from a command file to do
the appropriate debugging. You need to specify the decimal value of process ID
(PID) for the running application with the dbx -a option. The results of the
debugging session can be directed to an HFS file. See “Running the dbx Utility”

152 z/OS V1R1.0 UNIX System Services Programming Tools

on page 157 for more information on use of the -a option. See C/C++ User’s
Guide for more information on using the BPXBATCH program to run applications
from the shell through MVS batch.

If an z/OS UNIX C/MVS application program being developed is POSIX-conforming,
it can be compiled and link-edited at a workstation that conforms to the same
POSIX standards supported by the system where it will eventually run. A
UNIX-related source-level debugging facility can then be used at the workstation to
do some debugging of the application.

Prepare your C/MVS application program source for debugging using the z/OS
UNIX c89 utility. For a discussion of how to set the necessary compiler and linkage
editor options for debugging, see z/OS Language Environment Debugging Guide.

An z/OS UNIX POSIX-conforming C application can be debugged to some extent at
a POSIX-conforming workstation. However, final debugging and verification of the
application’s correctness should be performed from the MVS system. The z/OS
UNIX dbx utility is the C/MVS source-level debugging solution supported by z/OS
UNIX for application programs.

The application source most likely will be created and coded on one or more
workstations connected to an MVS system. Assuming that the application is
POSIX-conforming and the workstations used to develop it run POSIX-conforming
operating systems, you can do more than just edit your application source at a
workstation.

From a workstation operating system that conforms to z/OS UNIX-supported
standards, you can:

v Create and code application source files.

v Create and store the correct POSIX and user-defined include file libraries.

v Store user or application data.

Note: To create and test an z/OS UNIX C/MVS application program on such a
workstation using user or application data, you must first understand all
the ASCII-EBCDIC data conversion considerations and plan for them.

v Use a compiler.

v Test the application modules.

v Use a UNIX-style source-level debugger (for example, the dbx debugger).

You can then move the application source to an MVS system to be compiled,
link-edited, and tested before putting it into a production environment.

Using the z/OS UNIX Debugger to Debug Your Application
You debug your z/OS UNIX C/MVS application on an MVS system using the dbx
utility running in the shell environment.

1. Run the z/OS UNIX debugger’s dbx utility, specifying the name of the
executable file to be debugged and any of the options desired.

For example, to start source-level debugging for a file named payroll which is in
your working directory, and search the /u/user/src directory for the source files,
specify:
dbx -I /u/user/src payroll

2. When prompted by dbx, supply the subcommands you plan to use to debug the
program source.

Chapter 6. Debugging z/OS C/C++ Programs 153

Note: You can use dbx to debug an z/OS UNIX C/MVS application program
that you are running under the MVS batch environment through use of
the BPXBATCH program.

For more information on how to use the dbx utility from the shell, see “Debugging
from the Shell with the dbx Utility” on page 157. For a list of the dbx subcommands,
see page 157.

For more information on the dbx command, see z/OS UNIX System Services File
System Interface Reference.

Using the z/OS UNIX Debugger with Multithreaded Applications
The dbx debugger allows you to debug multithreaded applications at the source
level or at the machine level. dbx supports three objects related to multithreaded
applications: threads, mutexes, and condition variables.

In a multithreaded process, dbx will give control to the user in the context of a
single thread called the current thread. Many commands operate in the context of
the current thread—for example, commands that display information about variables
within threads. To use dbx commands on a given thread, you must first make it the
current thread.

When dbx gives control to the user, all threads must be stopped. All other threads
in the process are stopped while the debugger is working on a particular thread.
The debugger assigns a thread variable—for example, $t1—to each thread in the
process. This variable is like a temporary name, and is easier to use when referring
to the thread than the hexadecimal thread ID. When tracing program execution, the
debugger displays this variable for the thread that causes each breakpoint.

Note: The debugger must obtain information about threads, mutexes, and condition
variables from LE/370. If you do not want the debugger to maintain this
information, use the nodebug option when you compile your application
program. The nodebug option tells LE/370 not to inform dbx about condition
variables and mutex objects. It nonetheless maintains almost all information
about multiple threads.

z/OS UNIX Debugger Restrictions and Debugging Limitations
Although the z/OS UNIX debugger is provided for your application development use
in a POSIX-conforming environment, it cannot differentiate between
POSIX-conforming code and non-POSIX-conforming code. As long as your
application program meets the requirements for using the z/OS UNIX debugger and
is not dependent on any listed restrictions, you may be able to debug it using the
debugger. The feature is limited, however, in its ability to step through application
programs that use application program interfaces (APIs) not provided through a
POSIX-conforming C programming language.

Application programs containing CICS statements cannot be debugged with the
z/OS UNIX debugger.

IBM provides the debugger to debug z/OS UNIX C/MVS application programs.
Other MVS debuggers, such as INSPECT, cannot be used.

The Debugger has the following restrictions
v dbx can be run only from one of the z/OS UNIX shells. It cannot be used from

the TSO/E environment.

154 z/OS V1R1.0 UNIX System Services Programming Tools

v Core file debugging (dump analysis) is not supported.

The debugger provides fully supported source-level debugging of z/OS UNIX
C/MVS application programs if you ensure that:

v The application program was compiled using the c89 -g option.

v The executable file resides in the hierarchical file system (HFS), or resides in an
MVS partitioned data set linked to by a file in the HFS that has the sticky bit on

v The source files reside in the HFS or as MVS partitioned data sets (PDS)
members. If the source is in a PDS, the PDS must have organization VB. dbx
does support source in FB PDS’s.

v The application program was compiled as reentrant but link-edited as a
nonreentrant z/OS UNIX application executable file. For more information on
preparing your z/OS UNIX C/MVS application program for debugging, see z/OS
Language Environment Debugging Guide.

v The application program is loaded into the user read/write storage.

v The application program does not load additional executable files into its address
space. The dbx utility cannot support fetch() function calls.

Note: To avoid dynamic loading by an application program, link-edit all parts of
the application program. Doing so makes it easier to get full debugging
support. dbx does support source level debugging of programs that
contain DLLs. Source symbolic information for a DLL is processed by dbx
after a DLL is loaded, before code is executed in the DLL.

v The application program to be debugged runs in an z/OS UNIX POSIX process
space. A process space is an MVS address space that was created either
through a fork() function or through a request for z/OS UNIX services from within
a non-POSIX application program.

v In a multiprocessing environment, specified with the dbx multproc on
subcommand setting, you must enter dbx -A once for each new child process to
be debugged. This requires a separate shell session for each process to be
debugged. For more information on how to debug a multiprocess application
program, see “Debugging Programs Involving Multiple Processes” on page 168.

v You must code the application to report information about condition variable,
mutex objects, and thread object events from LE/370. If your application is not
coded in one of the following ways, neither condition variable nor mutex
information nor stack size information for threads will be available. Also, trace
output from threads ($tv events), mutexes ($mv events), and condition variables
($cv events) will not be available. Other thread information will be available,
however. To enable your program for thread debugging, you must either:

– Add the following line at the top of the C program:
#pragma runopts(TEST(ALL))

Or:

– Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro,
which specifies TEST(ALL). For examples of how to code this program, see
z/OS Language Environment Debugging Guide.

v This setup is also needed for dbx to do proper source level stepping when the
$LE_hookstep is set and for proper DLL processing when the $LE_dlls is set.
Note that both these flags are set by default.

Note: If not all the conditions described are met, you may still be able to use the
dbx utility at a reduced level of effectiveness. The limitations of debugging
for each case are outlined below.

Chapter 6. Debugging z/OS C/C++ Programs 155

Debugging limitations of z/OS UNIX dbx
v If the source that contains the main() function is compiled without the C/MVS

compiler TEST(ALL) and GONUM options (by specifying c89 -s or not specifying
c89 -g), dbx cannot:

– Set breakpoints at source statements or function entry points

– Use symbolic names to display or alter data, storage, and program
instructions

– Support source-level debugging

v If the application program is running without the POSIX(ON) runtime option, dbx
cannot:
– Use POSIX synchronous signaling
– Support process check intercepts

v If the source files reside somewhere outside the hierarchical file system, dbx can
debug them if you compiled and link-edited them into the file system using c89
and identified the files as MVS PDS members with the use // subcommand.

Note: The MVS data sets must be variable block (VB) data sets. Fixed block
(FB) data sets are not supported by dbx.

v If the executable file is loaded into a read-only subpool, dbx cannot:
– Set breakpoints
– Support instruction stepping

v If the application program dynamically loads other program modules, dbx cannot:

– Access the modules loaded by the application program

– Determine entry points

– Support source-level debugging with symbolic access to storage for such
modules

– Set breakpoints

v Do not use the step subcommand to leave a signal catcher that was entered as
the result of the delivery of a signal. dbx may not give you control again where
you expect it and may not give you control until the program exits.

Restrictions on dbx for C++
Using the OS/390 V2R4 compiler and LE prelinker removes most of the restrictions
that existed previously. The following is an updated list of restrictions on dbx for
C++ that reflect compiler symbolic limitations as of OS/390 Version 2 Release 4:

v The OS/390 V2R4 version of dbx cannot source level debug C++ programs
created with -g by the 3.2 or lower compiler versions. If you need to source level
debug these types of programs, you should keep an older version of dbx. The
better option is to recompile the older C++ programs using the new
compiler/prelinker, which allows the new dbx to function properly.

v Type-checking for reference types fails because the information is not available in
the symbolics.

v The definition for anonymous class class/struct/union/enum field items appears
both in the normal location inside the { }, but also outside in the enclosing { }.

v Unreferenced member functions appear in a class as function_name:1 instead
of the correct return_type function_name(parms) definition.

v Symbolics for inline, virtual, pure are not available, so dbx cannot report them.

v You cannot step/next into an inline function. However, you can set a stop in an
inline function and use run or continue to get it. This includes explicit and implicit
inlines. Implicit inlines are member functions that completely reside inside a class
and are not just prototyped.

156 z/OS V1R1.0 UNIX System Services Programming Tools

v When the $LE-hookstep flag is set and the LE RUNOPTS(TEST(ALL)) flag is
set, dbx can now step to any source line where the source file has been
compiled with —g.

Debugging from the Shell with the dbx Utility
This section provides information on how to do the following tasks:
v Running the dbx utility

– Using the dbx utility (examples)
– Running shell commands from dbx

v Controlling program execution
– Setting and deleting breakpoints to step through a program
– Running a program
– Consulting a stopped program
– Tracing execution

v Displaying and manipulating the source file
– Changing the source directory path
– Displaying the current file
– Changing the current file or procedure
– Editing source files while debugging a program

v Debugging application programs involving multiple processes
v Examining program data

– Handling signals
– Displaying a stack traceback
– Displaying and modifying variables
– Scoping of names
– Understanding operators and modifiers allowed in expressions
– Understanding type checking in expressions
– Converting variables to lowercase and uppercase
– Changing print output with special debugging variables

v Debugging application programs involving threads
– Examining multithread program status
– Controlling multithread program execution

v Debugging at the machine level
– Using machine registers
– Examining memory addresses
– Running a program at the machine level

v Source level debug of DLLs
v Customizing the dbx debugging environment

– Defining a new dbx prompt
– Creating subcommand aliases
– Using the .dbxsetup file
– Using the .dbxinit file
– Reading dbx subcommands from a file

Running the dbx Utility
There are several common ways to start a debug session using dbx options. By
default, dbx prepares the named program for execution by forking a new process
and loading the program into that child process. dbx then prompts you to enter
debugger subcommands. You can then begin setting breakpoints, single-stepping
instructions, displaying variables, and other debugging aids. If no executable
program is specified when dbx is entered, the default executable file a.out. is
assumed.

Chapter 6. Debugging z/OS C/C++ Programs 157

There are options for dbx you can specify that allow you to modify the default
behavior of the dbx utility:

dbx -r
Use the -r option if you want to enter the dbx utility only when your program
ends abnormally or is interrupted by a signal. If the executable program ends
successfully, dbx exits. Otherwise, the reason for termination or interruption is
reported and you enter the dbx utility.

Note: The dbx utility will know about a condition variable or mutex object only
if dbx is active when LE/370 creates the object for the application
program. Therefore, any mutex or condition variable activity will be lost
up to the point where dbx starts debugging your program. Also, dbx
cannot display information about the state of mutexes or condition
variables that were created before the you entered the debugger.

Syntax: dbx -r [options] [executable [CommandArguments]]

dbx -a
Use the -a option if you want to debug a process that is already in progress. To
use this option, you must have permission to kill the process that has the
specified process ID.

dbx connects to the process if access is allowed, determines the full pathname
of the executable file, reads in the symbolic information, and then prompts for
commands. Interaction at that point is no different from if you had invoked dbx
to begin execution of the process.

Note: You can specify the dbx -a option and supply the process ID for an
application executable file being run from the shell through the MVS
batch environment using the BPXBATCH program. You must make sure
that the process ID you pass to dbx is in decimal format.

Syntax: dbx [options] -a processid

Note: The dbx utility will know about a condition variable or mutex object only
if dbx is active when LE/370 creates the object for the application
program. Therefore, any mutex or condition variable activity will be lost
up to the point where dbx starts debugging your program. Also, dbx
cannot display information about the state of mutexes or condition
variables that were created before you entered dbx with the -a option.

dbx -A
Use the -A option if you want to debug a process created by a program being
debugged when the multproc subcommand is set to on. Under these
circumstances, dbx enters a message telling you to enter dbx -A processid to
begin debugging the new process. To use this option, you must have
permission to kill the process that has the specified process ID.

dbx interrupts the process if access is allowed, determines the full pathname of
the executable file, reads the symbolic information, and then prompts for
commands. Interaction at that point is no different from if you had invoked dbx
to begin execution of the process. Use the UNIX command ps to determine the
process ID of the program to be debugged.

Syntax: dbx [options] -A processid

dbx -I
Use the -I option to add the specified directories to the list of directories that are

158 z/OS V1R1.0 UNIX System Services Programming Tools

searched when dbx looks for a source file. dbx normally looks for source files
in the working directory and in the directory where the executable file is located.
If your source is in /u/user/src and /u/group/src, and the executable file is in
/u/user/bin, you should specify the -I option so that dbx can find the source
automatically.

Syntax: dbx -I directory1-I directory2... [options] [executable]

For example, to add two directories to the list of directories to be searched for
the source file of an executable file objfile, enter:
dbx -I /u/user/src -I /u/group/src objfile

or:
dbx -I /u/user/src:/u/group/src objfile

You can specify the use subcommand to do directory searches for the source
file after you have invoked dbx. The use subcommand differs from the dbx -I
option in that it resets the list of directories to be searched, whereas -I adds a
directory to the list.

If your C/MVS source files are MVS data sets, you can specify the dbx use
subcommand to search for an MVS data set for source-level debugging. You
indicate that the source is in an MVS data set with a double-slash (//) prefix.
For example, to search for the source file of an executable file objfile, enter:
dbx objfile
Entering debugger ...
dbx for MVS
Type 'help' for help.
reading symbolic information ...

(dbx) use //

(dbx)

dbx -c
Use the -c option to run the list of dbx commands in the specified file before
accepting commands from standard input.

Note: You can use the source subcommand for this purpose after dbx is
invoked.

Syntax: dbx -c file [options] [executable]

dbx -C
Use the -C option to put dbx in dump processing mode. In this mode, dbx can
operate on an MVS dump as if it were a running program. The exception is any
operations that involve modifying or executing the program is not supported in
dump processing mode.

Syntax: dbx -C dump -name[options]

dbx supports specification of program arguments on the dbx command line and
use of the cont subcommand when the dbx command prompt is first displayed.
This eliminates the need for the kill/fork/exec overhead that is required for the first
run.

As an example, if you specified the following:
$ dbx myprogram
(dbx) run a b c

Chapter 6. Debugging z/OS C/C++ Programs 159

You can specify:
$ dbx myprogram a b c
(dbx) cont

For a complete discussion of the dbx command’s syntax, options, and
subcommands, see z/OS UNIX System Services Command Reference.

Examples of Using the dbx Utility
To examine the state of the process in memory for a sample program
/mylog/appl/execut/samp:
main() {

int *p1;
p1 = 0;
*p1 = 888; }

that is the object from a compile using the c89 -g option, enter:
c89 -g -o samp samp.c
dbx -r samp

dbx runs the program until it reaches an abnormal termination condition and then
prompts you for a debugging subcommand:
Entering debugger ...
dbx for MVS
Type 'help' for help.
reading symbolic information ...

segmentation violation in main at line 4
4 *p1 = 888; }

(dbx) quit

As another example, consider that the following program, looper.c, can never end
because the value of i is never incremented:
main()
{

int i,x[64];

for (i = 0; i < 10;)
printf(x[i]);

}

Compile the program with the c89 -g option to produce an executable program with
symbolic debugging capability:
c89 -g -o looper looper.c

Then run the program from the command line:
looper &

Seeing that your program does not end as expected, you want to debug it while it
continues to run. To attach dbx to a process that was just started in the
background, type the following:
dbx -a $!

or perform the following steps:

1. Determine the ID number associated with the process that is running to attach
to looper. You must open another shell session if you did not run looper as a
background process. From the second shell session you just established, enter
the following shell command:

160 z/OS V1R1.0 UNIX System Services Programming Tools

ps -u userid -o pid,tty,time,comm

where userid is your TSO/E user ID that is running looper. All active processes
that belong to that user ID are displayed:

PID TT TIME COMMAND
655362 ? 00:00:10
458755 ttyp0000 00:00:00 /bin/sh
524292 ttyp0000 00:00:02 looper

6 ttyp0000 00:00:00 /bin/ps

The process ID associated with looper is 524292.

2. To attach dbx to looper, enter:
dbx -a 524292

dbx attaches to the process running the program, displays the last instruction
processed, and prompts you for a debugging subcommand:
Waiting to attach to process 524292 ...
Determining program name ...
Successfully attached to /tmp/looper...
dbx for MVS
Type 'help' for help.
reading symbolic information ...
6 printf(x[i]);
(dbx)

You can now query and debug the process as if it had been originally started with
dbx. When you are finished debugging the process and have ended dbx, enter the
shell exit command to end the second shell session and return to your initial
session.

Running Shell Commands from dbx
You can run shell commands without exiting from the dbx utility by using the sh
subcommand.

If sh is entered without any commands specified, the shell is entered for use until it
is exited, at which time control returns to dbx. The SHELL environment variable
determines which shell is used. For example:
(dbx) sh echo $SHELL
/bin/sh
(dbx) sh
$ echo 'This is the shell.' #You will remain in the shell until you exit.
This is the shell.
$ exit
(dbx)

Controlling Program Execution
The dbx utility allows you to set breakpoints (stopping places) in the program. After
entering dbx, you can specify which lines or addresses are to be breakpoints, and
then run the program with dbx. When the program reaches a breakpoint, it halts
and reports that it has reached a breakpoint. You can then use dbx subcommands
to examine the state of your program.

Setting and Deleting Breakpoints to Step through a Program
An alternative to setting breakpoints is to run your program one line or instruction at
a time, a procedure known as single-stepping. This section discusses how to set
and delete breakpoints, begin program execution, and control program execution.

Chapter 6. Debugging z/OS C/C++ Programs 161

Use the stop subcommand to set breakpoints in dbx. There are four variations of
the stop subcommand for programs compiled with the debug flag (the c89 -g
option):

stop at linenumber [if Condition]
Stops the program at a specified source line number. The linenumber
parameter consists of an optional filename and a :; (colon), followed by a line
number. For example, “hello.c”:23 and 23 are valid linenumber parameters. The
optional if condition flag specifies that execution should be halted at the
specified line number if the condition is true when the line number is reached.
Line numbers are relative to the beginning of the source file. A condition is an
expression that evaluates to true or false. For example:
(dbx) stop at "zinfo.c":57

stop in procedure [if condition]
Stops the program at the first executable statement in a procedure or function.
For example:
(dbx) stop in main

stop variable [in procedure ³ at linenumber] [if condition]
Stops the program when the value of variable changes.

For example:
(dbx) stop x

stop if condition
Stops the program whenever condition evaluates to true.

For example:
(dbx) stop if (x > y) and (x < 20000)

Note: See z/OS UNIX System Services Command Reference for more information
on the stop subcommand.

After any of the preceding subcommands, dbx responds with a message reporting
the event it has built as a result of your command. The message includes the event
ID associated with your breakpoint along with an interpretation of your command.
The syntax of the interpretation might not be exactly the same as your command.
The following are examples:
(dbx) stop in main
[1] stop in main
(dbx) stop at 19 if x == 3
[2] if x = 3 { stop } at "hello.c":19

The numbers in the brackets are the event identifiers associated with the
breakpoints. When the program is halted as a result of one of the events, the event
identifier is displayed along with the current line to show what event caused the
program to stop. The events you create exist with internal events created by dbx,
so event identifiers might not always be sequential.

Use the status command to display all current events. You can redirect output from
status to an HFS file. Each event is displayed in the same form as it was when
stored.

The clear and delete commands remove breakpoints. The clear command deletes
breakpoints by line number. The delete command eliminates events by event
identifier. Use delete all to remove all breakpoints and trace events.

The following examples show how to display the active events and remove them:

162 z/OS V1R1.0 UNIX System Services Programming Tools

(dbx) status

[1] stop in main
[2] if x = 3 { stop } at "hello.c":19
(dbx) delete 1
(dbx) status

[2] if x = 3 { stop } at "hello.c":19
(dbx) clear 19
(dbx) status
(dbx)

Running a Program
The run subcommand starts your program.

Note: See z/OS UNIX System Services Command Reference for more information
on the run subcommand and its format.

The run subcommand tells dbx to begin running an executable file and passes
arguments just as if they were typed on the shell command line. Input can be
redirected from a file and output redirected to a file.

Note: The rerun subcommand has the same form as run; the difference between
them is that for rerun if no arguments are passed, the argument list from the
previous execution is used.

After your program begins, it continues until one of the following occurs:
v The program reaches a breakpoint.
v A signal occurs that is not ignored, such as INTERRUPT or QUIT.
v A multiprocess event occurs while multiprocess debugging is enabled.
v The program completes.
v A DLL has been loaded.

In each case, the dbx utility receives control and displays a message explaining
why the program stopped.

Continuing a Stopped Program
There are several ways, using dbx subcommands, to continue the program after it
is stopped:

v cont [signalname ³ signalnumber] continues the program from the current
stopping point until either the program finishes, another breakpoint is reached, or
a signal is received which is trapped by dbx. If a signal is specified, the process
continues as though it received the signal. If a signal is not specified and the dbx
debugging program variable $sigblock is not set and a signal caused the
program being debugged to stop, using cont causes the program to continue as
if it had received the original signal. If a signal is not specified and the $sigblock
variable is set and a signal caused the program being debugged to stop, the
program resumes running.

Signals can be specified by name, number, or name without the SIG prefix.
Signal names can be either lowercase or uppercase. The following cont
subcommands are equivalent:
cont SIGQUIT
cont 24
cont quit

v step [nNumber] runs one or a specified nNumber of source lines.

next [number] runs up to the next source line, or runs a specified number of
source lines.

Chapter 6. Debugging z/OS C/C++ Programs 163

A common method of debugging is to step through your program one line at a
time. The step and next subcommands serve that purpose. The distinction
between these two commands is apparent only when the next source line to be
run involves a call to a subprogram. In this case, the step subcommand stops in
the subprogram; in contrast, the next subcommand runs until the subprogram
has finished and then stops at the next instruction after the call.

With the step subcommand, the dbx utility stops after each machine instruction
to see if the program has reached any line numbers. With the next
subcommand, the dbx utility sets an internal breakpoint at the address
associated with the next line number and runs until that breakpoint is reached.
For that reason, next runs much more quickly than step, and the difference is
most noticeable when step is run from a line that calls a subroutine that has not
been compiled with the debug flag. Also, next is faster than step if a line calls a
subroutine loaded into processor read-only storage, such as a link pack area
(LPA). The dbx utility cannot store breakpoints in read-only storage, so dbx sets
a breakpoint at every line in the current function. Those subroutines do not have
line numbers, and the dbx utility may have to run and stop at thousands of
machine instructions until it reaches a point that corresponds to a line number.
You should use next on any line that contains any subroutine and especially on
those that have not been compiled with the c89 -g option or have been loaded
into read-only storage.

There is no event number associated with these stops, because there is no
permanent event associated with stopping a program.

v return [procedure] continues execution until a return to procedure is
encountered, or until the current procedure returns if procedure is not specified.

If you accidentally step into a subroutine that you do not want to step through,
you can use the return subcommand to run through the current procedure or to
a specified procedure.

v skip [number] continues execution until the end of the program or until number+1
breakpoints are executed.

Tracing Execution
The trace subcommand tells dbx to print information about the state of the program
while the program is running. trace can slow your program considerably, depending
on how much work dbx has to do.

For applications with one or more threads, each thread in the process has a
number assigned by dbx. The trace subcommand displays information about the
thread that causes a breakpoint to occur, or the current thread. The current thread
number is displayed in parentheses and to the right of the dbx breakpoint response
as shown in the example in this section. All threads in the process are stopped
when dbx encounters a breakpoint in the current thread.

trace does not work unless you first enter a stop in main subcommand to stop at
the program’s main() function. You can then continue to step through the program
and enter trace subcommands. The following example shows what happens when
you try to run trace without stopping at the main() function:
dbx samp

Entering debugger ...
dbx for MVS
Type 'help' for help.
reading symbolic information ...

164 z/OS V1R1.0 UNIX System Services Programming Tools

(dbx) trace

Cannot determine where to set a breakpoint. You must specify
'Procedure', 'SourceLine' or 'Address'.

Here’s how to run trace correctly:
(dbx) stop in main
[1] stop in main
(dbx) run
[1] stopped in main at line 6 ($t1)

6 x = 0;
(dbx) trace
[2] trace
(dbx) cont
trace: 7 y = 1;
trace: 8 }
program exited
(dbx)

There are six forms of program tracing:

trace Single-steps the program, printing out each source line that is run. This can
be very slow for the same reasons that step can be slow.

trace in procedure [if condition];
Restricts the printing of source lines to when the specified procedure is
active. You can specify an optional condition to control when trace
information should be produced. For example:
(dbx) trace in sub2,

[1] trace in sub2
(dbx) run

trace in hellosub.c: 8 printf("%s",s);
trace in hellosub.c: 9 i = '5';
trace in hellosub.c: 10 }

trace procedure [in procedure] [if condition];
Displays a message each time procedure is called or returned from. When
procedure is called, the information includes passed parameters and the
name of the calling routine. On a return, the information includes the return
value from procedure. The following is an example:
(dbx) trace sub

[1] trace sub
(dbx) run

calling sub(s = "hello", a = -1, k = delete) from
function main
returning "hello" from sub

trace linenumber [if condition];
Prints the specified source line when the program reaches that line.

trace expression at linenumber [if condition]
Prints the value of expression when the program reaches the specified
source line. The line number and file are printed, but the source line is not.
For example:
(dbx) trace x*17 at "hellosub.c":8 if (x > 0)

[1] if x > 0 { trace x*17 } at "hellosub.c":8

Chapter 6. Debugging z/OS C/C++ Programs 165

(dbx) run

at line 8 in file "hellosub.c": x*17 = 51

trace variable [in procedure] [if condition]
Prints the location in the program and the value of variable each time the
memory location associated with variable is modified. This is the slowest
form of trace. The following is an example:
(dbx) trace x

[1] trace x
initially (at line 4 in "hello.c"): x = 0
after line 17 in "hello.c": x = 3

Deleting trace events is the same as deleting stop events. When the trace
subcommand is run, the event ID associated is displayed along with the internal
representation of the event.

Displaying and Manipulating the Source File
You can use the dbx utility to search through and display portions of the source
files for a program. For z/OS UNIX application program debugging with dbx,
program source files can exist as HFS files or as MVS data sets. For dbx to be
able to search and display program source in MVS data sets, you must enter the
dbx use subcommand to specify a search path of double-slash (//). This indicates
that the source for the executable file is to be searched for as an MVS data set.

The dbx utility keeps track of the current file, current procedure, and current line.
The current line and current file are set initially to the line and file containing the
source statement where the process ended.

Note: This is true only if the process stopped in a location compiled for debugging.

Changing the Source Directory Path
The dbx utility normally searches the working directory and the directory where the
program is located for source files for the program. If the source file cannot be
found, the debugger runs without displaying source statements.

You can change this with the -I option on the dbx invocation line, or with the use
command within dbx.

Displaying the Current File
The list subcommand allows you to list source lines.

Some special symbols representing SourcelineExpression are useful with the list
command, and with the stop and trace subcommands. These symbols are $ and
@:

$ Represents the next line to be run.

@ Represents the next line to be listed.

You can use simple integer expressions involving addition and subtraction in
SourcelineExpression expressions.

For example:
(dbx) list $

4 {
(dbx) list 5

166 z/OS V1R1.0 UNIX System Services Programming Tools

5 char i = '4';
(dbx) list sub

23 char *sub(s,a,k)
24 int a;
25 enum status k; ...

The move subcommand changes the next line number to be listed.
(dbx) move 25
(dbx) list @ -2

23 char *sub(s,a,k)

Changing the Current File or Procedure
You can use the func and file subcommands to change the current file, current
procedure, and current line within dbx without having to run any part of your
program.

Note: If your C/MVS application program source is in MVS data sets and you
compiled the application program with the c89 -g option for debugging, you
can specify the dbx use subcommand to identify the C/MVS source MVS
data set for source-level debugging.

You can search through the current file for text matching regular expressions; dbx
supports the basic regular expressions described in z/OS UNIX System Services
User’s Guide. If a match is found, the current line is set to the line containing the
matching text. The syntax of the search subcommand is:

/RegularExpression [/]
It searches forward in the current source file for the given expression.

? RegularExpression [?]
It searches backward in the current source file for the given expression.

If you repeat the search without arguments, the search wraps around the end of a
file.

For example:
(dbx) func
sub2
(dbx) file
hellosub.c
(dbx) func sub

(dbx) func
sub
(dbx) file
hello.c
(dbx) / i

5 static int x;
(dbx) /

6 int i = 0xfffffff;
(dbx) ? static

5 static int x;

Chapter 6. Debugging z/OS C/C++ Programs 167

Editing Source Files While Debugging a Program
You can also invoke an external text editor for your source using the edit
subcommand. The default editor invoked is ed. You can override this default by
setting the environment variable EDITOR to your desired editor before invoking
dbx.

Control returns to dbx after the return from an editing session.

Debugging Programs Involving Multiple Processes
Application programs involving multiple processes are those that call the fork() and
exec() functions. When a program forks, the operating system creates another
process that has the same image as the original; the original is called the parent
process, and the created process is called the child process.

When a process calls an exec() function, a new program takes over or overlays the
original program. Under default circumstances, the dbx utility can debug only the
original or parent program; however, dbx can follow the execution and debug the
program.

You must enter the multproc on subcommand to enable dbx to debug application
programs that call an exec() function or to debug child processes created through
use of the fork() function.

When multiprocess debugging is enabled and a fork occurs, both the parent and
the child process are halted in the fork. A separate shell session needs to be
opened for a new version of dbx to be started to control the running of the child
process. When the fork occurs, execution is stopped in the parent, and dbx
displays the state of the program:
(dbx) multproc on
(dbx) multproc

multiprocess debugging is enabled
(dbx) run

application forked, child pid=65544, process stopped, awaiting input
use 'dbx -A 65544' on another terminal to establish a debug session
for the child pid

stopped due to fork with multiprocessing enabled in fork at 0x2a89074
0x2a89074 bfffd084 icm $r15,X'F',X'84'($sp)
(dbx)

Another shell session must now be opened to debug the child process. On this
second shell session, enter the dbx -A option with the process ID for the child:
dbx -A 65544

Waiting to attach process 65544 ...

attached in fork at 0x2a89074
0x2a89074 bfffd084 icm $r15,X'F',X'84'($sp)
(dbx)

At this point there are two distinct debugging sessions. The debugging session for
the child process retains all the breakpoints from the parent process, but only the
parent process can be rerun.

When the program calls an exec() function while in multiprocess debugging mode,
the program overwrites itself and the original symbol information becomes obsolete.

168 z/OS V1R1.0 UNIX System Services Programming Tools

All breakpoints are deleted when the exec() occurs, and the new program is
stopped and identified in order for the debugging to be meaningful. dbx attaches
itself to the new program image, reports the name, and then prompts for input:
(dbx) multproc

multiprocess debugging is enabled
(dbx) run

Attaching to program from exec ...
Determining program name ...
Successfully attached to /u/user/execprog ...
Reading symbolic information ...
(dbx)

Enter the map subcommand to determine the name of the new program being
debugged.

When you are finished debugging the new program and end the dbx debugging
session, enter the exit shell command to end the shell session and return to your
first shell session.

Using _BPX_PTRACE_ATTACH to Load Programs into User
Modifiable Storage
When the environment variable _BPX_PTRACE_ATTACH is set to YES, programs
invoked via the spawn, exec and attach_exec callable services or via the C
language spawn() and exec() family of functions are loaded into user modifiable
storage. Then these target programs can be debugged using dbx. The programs
that are loaded into storage during the execution of the target program, except for
modules loaded from LPA, are also loaded.

For more information on _BPX_PTRACE_ATTACH, see z/OS UNIX System
Services Programming: Assembler Callable Services Reference.

Examining Program Data
This section discusses the following topics:
v Handling signals
v Displaying a stack traceback
v Displaying and modifying variables
v Scoping of names
v Understanding operators and modifiers allowed in expressions
v Understanding type checking in expressions
v Converting variables to lowercase and uppercase
v Changing print output with special debugging variables

Handling Signals
The dbx utility can either trap or ignore signals before they are sent to your
program. Each time your application program is to receive a signal, dbx is notified.
If the signal is to be ignored, it is passed to your program; otherwise, dbx stops the
program and notifies you that a signal has been trapped. All signals are caught by
default except the SIGHUP, SIGCHILD, SIGALRM, and SIGKILL signals. Change
the default handling with the catch and ignore subcommands.

Note: The dbx utility cannot ignore the SIGTRAP, SIGILL, SIGCONT, SIGDUMP,
or SIGKILL signal. The SIGKILL signal terminates the process without giving
dbx a chance to trap it.

Chapter 6. Debugging z/OS C/C++ Programs 169

In the following example, a program uses SIGINT to catch <Ctrl-c> from the
keyboard. In order not to stop dbx each time one of these signals is received,
enter:
(dbx) ignore SIGINT
(dbx) ignore

HUP INT KILL ALRM CHLD

To make dbx stop again when SIGINT is received, enter:
catch SIGINT

If a signal is not specified and the dbx debugging program variable $sigblock is not
set and a signal caused the program being debugged to stop, using cont causes
the program to continue as if it had received the original signal. If a signal is not
specified and the $sigblock variable is set and a signal caused the program being
debugged to stop, the program resumes running.

Displaying a Stack Traceback
To get a listing of the procedure calls preceding a program halt, use the where
subcommand.

In the following example, the executable file hello consists of two source files and
three procedure files, including the standard procedure main. The program stopped
at a breakpoint in procedure sub2.
(dbx) run

[1] stopped in sub2 at line 4 in file "hellosub.c"
(dbx) where

sub2(s = "hello", n = 52), line 4 in "hellosub.c"
sub(s = "hello", a = -1, k = delete), line 31 in "hello.c"
main(), line 19 in "hello.c"

The stack traceback shows the call in reverse order. Starting at the bottom, the
following events occurred:

1. The shell called main().

2. The main() called procedure sub at line 19 with values:
s = "hello"
a =-1
k = delete.

3. sub called procedure sub2 at line 31 with values:
s = "hello"
n = 52

4. The program stopped in procedure sub2 at line 4.

Note: Set the dbx utility variable $noargs to turn off the display of arguments
passed to procedures.

You can also display portions of the stack with the up and down subcommands.
For example:
(dbx) up 0

sub2(s = "hello", n = 54), line 4 in "hellosub.c"
(dbx) up 2

main(), line 19 in "hello.c"

170 z/OS V1R1.0 UNIX System Services Programming Tools

(dbx) down

sub(s = "hello", a = -1, k = delete), line 31 in "hello.c"

Displaying and Modifying Variables
To display an expression, use the print subcommand. To print the names and
values of variables, use the dump subcommand. If the given procedure name is .
(a period), all active variables are printed. To modify the value of a variable, use the
assign subcommand. If you use print expression, the expression cannot invoke a
function or procedure call.

Note: You cannot assign the value of a literal string to a character pointer. For
example, the following is not supported:
assign char_ptr="hello world"

For example, in a C/MVS program, you have an automatic integer variable x with
value 7, and you are in the sub2 procedure with parameters s and n:
(dbx) print x, n

7 52
(dbx) assign x = 3*x
(dbx) print x

21
(dbx) dump

sub2(s = "hello", n = 52)
x = 21

Scoping of Names
Names resolve first, using the static scope of the current function. The dynamic
scope is used if the name is not defined in the first scope. If static and dynamic
searches do not yield a result, an arbitrary symbol is chosen and the message
using QualifiedName is printed. You can override the name-resolution procedure by
qualifying an identifier with a block name (such as Module.Variable). Source files
are treated as modules named by the filename without the suffix. For example, the
x variable, which is declared in the sub procedure inside the hello.c file, has the
fully qualified name hello.sub.x. The program itself has the name . (a period).

Two dbx subcommands are helpful in determining which symbol is found when
multiple symbols with the same name exist: the which subcommand and the
whereis subcommand.

The following is an example after stopping in the sub2 procedure:
(dbx) which s

hellosub.sub2.s
(dbx) whereis s

hellosub.sub2.s
hello.sub.s
hello.main.s

The example shows there are three procedures in the program that have a symbol
named s.

Understanding Operators and Modifiers Allowed in Expressions
The dbx program can display a wide range of expressions.

Chapter 6. Debugging z/OS C/C++ Programs 171

* (asterisk) or | (circumflex)
Denotes indirection or pointer dereferencing.

[] (brackets) or () (parentheses)
Denotes subscript array expressions.

. (period)
Use this field reference operator with pointers and structures. This makes
the C programming language operator → (arrow) unnecessary, although it is
allowed.

& (ampersand)
Gets the address of a variable.

.. (two periods)
Separates the upper and lower bounds when specifying a subsection of an
array. For example: n[1..4].

The following types of operations are valid in expressions:

Algebraic
=, −, *,/(floating division); div (integral division); mod; exp (exponentiation)

Bitwise
−, ³, bitand, xor, ˜, <<, >>

Logical
or, and, not, ³³, &&;

Comparison
<, >, <=, >=, <> or !=, = or ==

Other sizeof

Note: Functions cannot be used in dbx expressions.

Logical and comparison expressions are allowed as conditions in stop and trace
subcommands.

Understanding Type Checking in Expressions
Expression types are checked. You can override the type of an expression by using
a renaming or casting operator. There are two forms of type renaming:

typename (expression)
expression\ typename

The following is an example where the x variable is an integer with value 97:
(dbx) print x

97
(dbx) print char (x), x \ char, x

'a' 'a' 97

The whatis subcommand prints the declaration of an identifier, which can then be
qualified with block names as in the previous example.

whatis name

The following is an example:
(dbx) whatis sub2

int sub2(s,n)

172 z/OS V1R1.0 UNIX System Services Programming Tools

char *s;
int n;
(dbx) whatis hello.sub.k

enum status k;

You can also print the declaration of an enumeration, structure, or union tag. The
construct $$tagname is used for that purpose:
(dbx) whatis $$status

enum $$status { run, create, delete, suspend };

The type of the assign subcommand expression must match the variable type it is
being assigned. If the types do not match, an error message is displayed. Change
the expression type using a type renaming. You can disable type checking by
setting a special dbx utility $unsafeassign variable.

For example, using n and status as in the previous example:
(dbx) assign n = delete

incompatible types
(dbx) assign n = int (delete)
(dbx) print n, $$status (n)

2 delete
(dbx) set $unsafeassign
(dbx) assign n = suspend; print n

3

Converting Symbols to Lowercase and Uppercase
By default, dbx converts symbols based on the current language. If the current
language is C/MVS or undefined, the symbols are not converted and they are
interpreted as they actually appear. The current language is undefined if the
program is in a section of code that has not been compiled with the debug flag. You
can override default handling with the case command.

Using case without arguments tells you how case is currently being handled.

Changing Print Output with Special Debugging Variables
You can use the set subcommand to set the following special dbx utility variables
to get different results from the print subcommand:
$asciichars

Prints characters interpreting the binary data of the characters as ascii.
$asciistrings

Prints strings interpreting the binary data of the strings as ascii.
$hexints

Prints integer expressions in hexadecimal.
$hexchars

Prints character expressions in hexadecimal.
$hexstrings

Prints the address of the character string, not the string itself.
$octints

Prints integer expressions in octal.
$expandunions

Prints fields within a union.

Use the unset subcommand to reset special dbx utility variables. Set and reset
these variables to get the desired results. For example:

Chapter 6. Debugging z/OS C/C++ Programs 173

(dbx) whatis x; whatis i; whatis s

int x;
char i;
char *s;
(dbx) print x, i, s

375 'c' "hello"
(dbx) set $hexints; set $hexchars
(dbx) print x, i, s

0x177 0x63 "hello"
(dbx) unset $hexchars; set $octints
(dbx) print x, i

0567 'c'

The variable $catchbp is available for use with the next subcommand. Normally,
execution of next does not honor breakpoints. In order to honor breakpoints with
next, set the special dbx utility variable $catchbp.

Debugging Application Programs Involving Threads
z/OS UNIX dbx allows you to debug multithreaded applications at the source level
or the machine level. It maintains state information about the following three types
of multithread application objects:

Threads
Portable facilities that support concurrent programming allowing an
application to perform many actions simultaneously.

Mutexes
Mutual exclusion locks (mutexes) that allow shared variables to be seen by
other threads in a consistent state.

Condition variables
A synchronization object, used with a mutex, allows a thread to block until
some event occurs, and allows for communication among multiple threads.

The dbx command updates information about these objects as your program runs.
The following dbx subcommands are provided so that you can view and modify
these multithread objects:

v The thread subcommand displays a list of active threads for the application
program. You can list all active threads as the default, or you can list specific
threads using the number parameter. You can also select threads by their
states—for example, active or asynchronous. You can control thread execution
with the hold and release options.

v The mutex subcommand displays a list of active mutex objects for the
application program. You can list all active mutexes as the default, or you can list
a specific mutex object using the number parameter. You can also select locked
or unlocked, and wait or no-wait, mutexes with a series of parameters supplied
with the subcommand.

v The condition subcommand displays a list of active condition variables for the
application program. You can list all active condition variables as the default, or
you can list a specific condition variable using the number parameter. You can
also select wait or no-wait condition variables with parameters supplied with the
subcommand.

v The readwritelock subcommand displays a list of active read/write lock objects
for the application program. You can list all active read/write locks as the default,
or you can list a specific read/write lock object using the number parameter. You

174 z/OS V1R1.0 UNIX System Services Programming Tools

can also select locked or unlocked, and wait or no-wait, read/write locks with a
series of parameters supplied with the subcommand.

For more information about these dbx subcommands, see z/OS UNIX System
Services Command Reference.

Examining Multithread Program Status
The dbx command provides three subcommands—condition, mutex,
readwritelock, and thread—for examining thread-related objects. To check on the
status of all threads in your application, enter the thread subcommand with no
operands. The following example shows a sample output of the thread
subcommand:
(dbx) thread
thread thread_id state substate held exit_status
>$t1 0x03567d9000000001 activ no 0x00000000
$t2 0x0356831000000002 activ cv_wait no 0x00000000
$t3 0x035688a000000003 activ mu_wait no 0x00000000
$t4 0x03568e2000000004 activ cv_wait no 0x00000000
$t5 0x035693b000000005 activ jn_wait no 0x00000000
$t6 0x0356993800000006 activ cv_wait no 0x00000000
(dbx)

The > (greater than) sign in the left margin marks the current thread, which is the
thread last notified of an event. A dbx internal name such as $t1 is assigned to
each thread for easy reference. Also, a data structure type is associated with the
thread object for referring to individual elements of the thread object. For an
example that uses the dbx whatis subcommand to display the data structure for an
individual thread, see “Examining the Status of Individual Threads” on page 176.

Note: Thread internal names change as the program executes and the debugger
automatically updates thread names. For example, if you have three
threads—$t1, $t2, and $t3—and $t2 finishes running, the remaining two
threads are renumbered to $t1 and $t2. You should keep this in mind when
using the dbx subcommands that refer to thread names. Break and trace
points that refer to thread names are automatically updated to their new
names when necessary.

The thread_id column lists a constant hexadecimal value that is assigned to the
thread when it is created.

The state column indicates the execution status of a thread. Possible states
include:

activ
The thread is currently executing, or it is executing in a wait state. The substate
field indicates if the thread is waiting: cv_wait for a thread waiting for a
condition variable, mu_wait for a thread waiting for a mutex, and jn_wait for a
thread waiting for a pthread_join call to return.

async
The thread is not currently executing on a task. For example, if the BPXPRMxx
PARMLIB member MAXTHREADS is set to 1000, but MAXTHREADTASKS is
set to 50, there can be only 50 threads in the activ state. If a program creates
more than 50 threads, the ones greater than 50 will have a state of async.

dead
The thread has finished processing. The exit_status field contains data about
the exit status of the thread when it finished processing.

Chapter 6. Debugging z/OS C/C++ Programs 175

pcanc
The thread is pending cancellation by either explicitly disabling cancellation or
waiting for controlled cancellation at a specified cancellation point.

The held field indicates whether a thread is being held by dbx. The thread will not
execute until it is released, allowing you to focus attention on other threads. For
example, if a variable changes, you can be certain that it was not changed by the
held thread.

Displaying Full Information about a Thread: The thread subcommand can be
used with the info parameter to return more detailed information about a particular
thread. For example, to display the full information about thread number 2, $t2,
enter:
(dbx) thread info 2
thread thread_id state substate held exit_status
>$t2 0x0356831000000002 activ no 0x00000000

pending signals:
None

general:
detached = no
asynch = no
pthread = no
weight = heavy
stack size = 5200

(dbx)

The weight of the thread is either medium or heavy. The default process thread is
always heavy.

Displaying and Switching the Current Thread: All dbx subcommands return
values based on the context of the current thread (indicated by >). To display the
current thread, enter:
(dbx) thread current
thread thread_id state substate held exit_status
>$t1 0x0356e28800000001 activ no 0x00000000

Thread number 1, $t1, is the current thread, as indicated by the > symbol. To
display or modify variables local to another thread, you must first make it the
current thread by entering:
(dbx) thread current 2

Then enter the thread current command to display information about the current
thread:
(dbx) thread current
thread thread_id state substate held exit_status
>$t2 0x03567d9000000001 activ no 0x00000000
(dbx)

In these examples, thread number 2, $t2, replaces thread number 1, $t1, as the
current thread.

Examining the Status of Individual Threads: After you know the names of the
individual threads in your application program, you can access information about
each thread using other dbx subcommands. Thread information can include the
thread ID, the execution state of the thread, and its exit status, as shown in the
preceding example. For example, you can use the set subcommand to display
hexadecimal information about a particular thread:

176 z/OS V1R1.0 UNIX System Services Programming Tools

(dbx) set $hexchars
(dbx) set $hexints
(dbx) print $t2
(thread_id = (0x3, 0x56, 0x9d, 0x90, 0x0, 0x0, 0x0, 0x1), state = 0x80,
kernel_attrs = 0x0, exit_status = (nil), signal_mask = (0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0))
(dbx)

You can also use the whatis subcommand to display the data structure associated
with a thread. For example:
(dbx) whatis $t1
struct {

$char thread_id[8];
$char state;
$short kernel_attrs;
$void *exit_status;
$char signal_mask[8];

} $t1;

(dbx)

Other dbx subcommands return information as usual in the context of the current
thread.

Displaying Information about Mutex Objects: To check on the status of all
mutex objects in your application, enter the mutex subcommand with no operands.
The example below shows a sample output of the mutex subcommand:
(dbx) mutex
mv obj_addr type lock owner # wait # recur waiters
$m1 0x341c418 yes $t1 0 0
$m2 0x341c404 yes $t4 2 0 $t10, $t15
$m3 0x341c410 recu yes $t2 0 0
$m4 0x341c3f8 recu yes $t6 0 3
$m5 0x341c3fc no 0 0
$m6 0x341c408 recu no 0 0
(dbx)

A dbx internal name such as $m1 is assigned to each mutex object for easy
reference. Also, a data structure type is associated with the mutex for referring to
individual elements of the mutex object. For an example that uses the dbx whatis
subcommand to display the data structure for an individual thread, see “Examining
the Status of Individual Mutex Objects” on page 178.

Note: Mutex internal names change as the program executes and the debugger
automatically updates mutex names. For example, if you have three
mutexes—$m1, $m2, and $m3—and $m2 is destroyed, the remaining two
mutexes are renumbered to $m1 and $m2. You should keep this in mind
when using the dbx subcommands that refer to mutex names. Break and
trace points that refer to mutex names are automatically updated to their new
names when necessary.

The obj_addr column contains the address of the object as allocated by the
application program.

The type column indicates whether the mutex is recursive, and the lock column
indicates whether the mutex is locked. If the mutex is locked, the owner column lists
the name of the owning thread. If the mutex is locked, and there are threads waiting
for the mutex, the # wait column shows how many threads are waiting for the
mutex, and the waiters column lists the names of the waiting threads.

Chapter 6. Debugging z/OS C/C++ Programs 177

If the mutex is recursive and it is locked more than once by the same thread, the #
recur column shows how many times that thread has locked the mutex after the
first lock.

Examining the Status of Individual Mutex Objects: After you know the names
of the individual mutex objects in your application, you can access information
about each mutex object using other dbx subcommands. Mutex information can
include the mutex ID, and its lock, wait, and recursion status, as shown in the
preceding example. For example, you can use the set subcommand to display
hexadecimal information about a particular mutex object:
(dbx) set $hexchars
(dbx) set $hexints
(dbx) print $m1
(type = "recu", lock = 0x1, num_wait=0x10, num_recur = 0x0)
(dbx)

You can also use the whatis subcommand to display the data structure associated
with a mutex object. For example:
(dbx) whatis $m1
struct {

enum { , recu } type;
$char lock;
$integer num_wait;
$integer num_recur;

} $m1;

(dbx)

Displaying Information about Condition Variables: To check on the status of all
condition variables in your application program, enter the condition subcommand
with no operands. The following example shows a sample output of the condition
subcommand:
(dbx) condition
cv obj_addr mutex # wait waiters
$c1 0x3340562 $m1 4 $t1 $t2 $t3 $t4
$c2 0x34030f0 0
(dbx)

A dbx internal name such as $c1 is assigned to each condition variable for easy
reference. Also, a data structure type is associated with the condition variable for
referring to individual elements of the condition variable. For an example that uses
the dbx whatis subcommand to display the data structure for an individual thread,
see “Examining the Status of Individual Condition Variables” on page 179.

Note: Condition variable internal names change as the program executes and the
debugger automatically updates condition variable names. For example, if
you have three condition variables—$c1, $c2, and $c3—and $c2 is
destroyed, the remaining two condition variables are renumbered to $c1 and
$c2. You should keep this in mind when using the dbx subcommands that
refer to condition variable names. Break and trace points that refer to
condition variable names are automatically updated to their new names
when necessary.

The obj_addr column contains the address of the object as allocated by the
application program.

178 z/OS V1R1.0 UNIX System Services Programming Tools

The mutex column shows the mutex object associated with the condition variable. If
there are any threads waiting for the condition variable, the # wait column shows
how many threads are waiting, and the waiters column lists the names of the
waiting threads.

Examining the Status of Individual Condition Variables: After you know the
names of the individual condition variables in your application program, you can
access information about each condition variable using other dbx subcommands.
Information can include the condition variable ID and wait status, as just shown. For
example, you can use the set subcommand to display hexadecimal information
about a particular condition variable:
(dbx) set $hexchars
(dbx) set $hexints
(dbx) print $c1
(mutex = 0x340e410, num_wait = 0)
(dbx)

You can also use the whatis subcommand to display the data structure associated
with a condition variable. For example:
(dbx) whatis $c1
struct {

$integer *mutex;
$integer num_wait;

} $c1;

(dbx)

Displaying Information about Read/Write Lock Objects: To check on the status
of all read/write lock objects in your application, enter the mutex subcommand with
no operands. The example below shows a sample output of the readwritelock
subcommand:
(dbx) mutex
mv obj_addr type shr lock holder # wait # recur waiters
$l1 0x341c418 yes yes $t1 0 0
$l2 0x341c404 no yes $t4 2 0 $t10, $t15
$l3 0x341c410 recu no yes $t2 0 0
$l4 0x341c3f8 recu no yes $t6 0 3
$l5 0x341c3fc yes no 0 0
$l6 0x341c408 recu no no 0 0
(dbx)

A dbx internal name such as $l1 is assigned to each mutex object for easy
reference. Also, a data structure type is associated with the mutex for referring to
individual elements of the mutex object. For an example that uses the dbx whatis
subcommand to display the data structure for an individual thread, see “Examining
the Status of Individual Mutex Objects” on page 178.

Note: Read/Write lock internal names change as the program executes and the
debugger automatically updates read/write lock names. For example, if you
have three read/write locks $l1, $l2, and $l3 and $l2 is destroyed, the
remaining two mutexes are renumbered to $l1 and $l2. You should keep this
in mind when using the dbx subcommands that refer to mutex names. Break
and trace points that refer to read/write lock names are automatically
updated to their new names when necessary.

The obj_addr column contains the address of the object as allocated by the
application program.

Chapter 6. Debugging z/OS C/C++ Programs 179

The type column indicates whether the read/write lock is recursive, and the lock
column indicates whether the read/write lock is locked. If the read/write lock is
locked, the holder column lists the name of the owning thread. If the read/write lock
is locked, and there are threads waiting for the read/write lock, the # wait column
shows how many threads are waiting for the read/write lock, and the waiters
column lists the names of the waiting threads.

If the read/write lock is recursive and it is locked more than once by the same
thread, the # recur column shows how many times that thread has locked the
read/write lock after the first lock.

Examining the Status of Individual Read/Write Lock Objects: After you know
the names of the individual read/write lock objects in your application, you can
access information about each read/write lock object using other dbx
subcommands. Read/write lock information can include the read/write lock ID, and
its lock, wait, and recursion status, as shown in the preceeding example. For
example, you can use the set subcommand to display hexadecimal information
about a particular read/write lock object:
(dbx) set $hexchars
(dbx) set $hexints
(dbx) print $l1
(type = "recu", lock = 0x1, num_wait=0x10, num_recur = 0x0, share = 0x0)
(dbx)

You can also use the whatis subcommand to display the data structure associated
with a read/write lock object. For example:
(dbx) whatis $m1
struct {

enum { , recu } type;
$char lock;
$integer num_wait;
$integer num_recur;
$char share;

} $m1;
(dbx)

Controlling Multithread Program Execution
z/OS UNIX threads are process-oriented threads that are maintained by the kernel.
They depend on one another in order to run successfully. If you stop execution of
any one thread, the entire process and all other threads in the process also stop.

Such dbx events as breakpoints are not specific to any single thread but apply to
all threads within a process. If one thread reaches a breakpoint, the process and its
threads also stop.

Using Breakpoint Subcommands: You can use the next(i) and step(i)
subcommands to set a breakpoint within the program and continue execution until
the breakpoint is reached. Since breakpoints are not specific to any one thread, the
step or next subcommands can be interrupted by another thread or threads
reaching the breakpoint intended for the next or step command.

To prevent other threads from reaching the specified breakpoint, you can prevent
them from running. For example, you can run the thread hold subcommand to hold
all threads, and then the thread release number subcommand to release the
current thread. You can make this process automatic by setting the variable
$hold_next; dbx then holds all threads except the current one before reaching the
specified breakpoint, and releases all threads afterward.

180 z/OS V1R1.0 UNIX System Services Programming Tools

Note: The execution of one thread may be dependent on the action of another
thread—for example, waiting for the release of a mutex held by another
thread. In this case, holding a thread may cause the program to deadlock.

Holding and Releasing Threads: You can control the running of your program by
holding and releasing individual threads. When a thread is held, it is not allowed to
run until it is released. For example, to hold thread number 4, enter:
(dbx) thread hold 4
(dbx)

Note: A program deadlocks if all its threads are held. In addition, the execution of
one thread may depend on the action of another thread—for example,
waiting for the release of a mutex held by another thread. In this case,
holding even one thread may cause the program to deadlock.

Setting Per-Thread Breakpoints with a Conditional Breakpoint: Normal
breakpoints are not specific to any one thread. If a thread reaches a breakpoint, all
threads and the process stop. However, you can use conditional breakpoints to
specify breakpoints for any one particular thread by checking the execution state of
the thread. For example, if you need a breakpoint for thread number 3 at line 42,
enter:
(dbx) stop at 42 if $t3==$current
(dbx)

Note: Be careful when determining where and how a conditional breakpoint is
placed. This operation may be very slow if the breakpoint is placed at a high
traffic area. Also, the subcommand stop at 42 if $t3==$current is much
faster than the subcommand stop in func if $t3==$current, because a
conditional breakpoint with the stop in subcommand forces dbx to check the
condition at every line within the function. Only one check is needed when
you enter an unconditional stop at subcommand.

Modifying Thread-Related Objects: You can use the dbx subcommand assign
with thread objects. For example, you can set the exit status for a particular thread:
(dbx) set $hexchars
(dbx) set $hexints
(dbx) print $t2
(thread_id = (0x3, 0x56, 0x9d, 0x90, 0x0, 0x0, 0x0, 0x1),
state = 0x80,
kernel_attrs = 0x0, exit_status = (nil),
signal_mask = (0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0))
(dbx) assign $t2.exit_status=&$void(0x2d48692)
(dbx) print $t2.exit_status
0x2d58692
(dbx)

Note: Currently, the exit_status field in the thread object is the only modifiable
field in a thread object, condition variable, or mutex object.

Preventing Unexpected Debugging Behavior: You can set the $hold_next
parameter to prevent the unexpected debugging behavior that results when multiple
threads are executing the same code where a breakpoint is set. When more than
one thread reaches a breakpoint at the same time, dbx processes all event
information for the first thread that reached the breakpoint before processing the
subsequent threads. As part of the event processing for the first thread, the
breakpoint can be deleted. All subsequent threads appear as though they received
a SIGTRAP signal instead of reaching the breakpoint.

Chapter 6. Debugging z/OS C/C++ Programs 181

The $hold_next parameter affects dbx operation whenever it does machine-level
instruction stepping, as well as during a next, nexti, step, or stepi. There are
cases where dbx must do machine-level instruction stepping to properly stop or to
provide trace information for a particular event. For example, the stop var
subcommand causes dbx to evaluate the value of var after every machine
instruction.

Debugging at the Machine Level
You can use the dbx utility to examine the program at the machine language level.
You can display and modify memory addresses, display machine instructions,
single-step instructions, set breakpoints and trace events at memory addresses,
and display the registers.

In the commands and examples that follow, an address is an expression that
evaluates to a memory address. The most common forms of addresses are integers
and expressions that involve taking the address of an identifier with the &
(ampersand) operator. You can also specify an address as an expression enclosed
in parenthesis in machine-level commands. Addresses can be composed of other
addresses and the operators + (plus), − (minus), and indirection (unary *).

Using Machine Registers
Use the registers subcommand to see the value of the machine registers.

Registers are divided into two groups:

v General-purpose registers are denoted by $rnumber, where number represents
the number of the register. Supported register numbers are in the range 0–15.

v Floating-point registers are denoted by $frnumber, where number represents the
number of the register. Supported register numbers are 0, 2, 4, and 6.
Floating-point registers in long double format are denoted $qfr0 and $qfr4.

Floating-point registers are not displayed by default. Use the unset subcommand
to reset the $noflregs dbx utility variable to enable the floating-point registers
display (unset $noflregs).

Supported system-control registers are:
$iar $pc

The instruction-address register
$sp $fp $stkp

The stack or frame pointer
$psw $psw0 $psw1

The program status words
$rtrn The return address register
$dest The destination address register

Note: If using the XPLINK output of the registers command $r4 changes to $sp
instead of $r13.

Examining Memory Addresses
Use the following to print the contents of memory starting at the first address and
continuing up to the second address, or until Count items are displayed. The mode
specifies how memory is to be printed.

address, address /[mode][> file]
address / [count][mode] [>file]

If mode is omitted, the previous mode specified is reused. The initial mode is X.
The following modes are supported:

182 z/OS V1R1.0 UNIX System Services Programming Tools

b Prints a byte in octal
c Prints a byte as a character
C Prints a wchar_t character
d Prints a short word in decimal
D Prints a long word in decimal
f Prints a single-precision floating-point number
g Prints a double-precision floating-point number
h Prints a byte in hexadecimal
i Prints the machine instruction
I Prints a wint_t character
o Prints a short word in octal
O Prints a long word in octal
q Prints a long double-precision floating-point number
s Prints a string of characters terminated by a null byte
S Prints a wchar_t string
W Prints a wint_t string
x Prints a short word in hexadecimal
X Prints a long word in hexadecimal

Note the following example:
(dbx) print &x

0x3fffe460
(dbx) &x/X;

3fffe460: 31323300
(dbx) &x,&x+12/x

3fffe460: 3132 3300 7879 7a5a 5958 5756 003d 0032
(dbx) ($pc)/2i

100002cc (sub) 7c0802a6 mflr r0
100002d0 (sub + 0x4) bfc1fff8 stm r30,-8(r1)

Expressions in parentheses can be used as an address.

Running a Program at the Machine Level
The commands for debugging your program at the machine level are similar to
those at the symbolic level. The stopi subcommand stops the machine when the
address is reached, or the condition is true, or the variable is changed. The tracei
subcommands are similar to the symbolic trace subcommands. The stepi
subcommand executes one or number machine instructions.

The nexti subcommand executes up to the next number machine instructions. The
nexti subcommand does not follow branch-and-link instructions; it continues until
execution returns to the next instruction. The gotoi subcommand changes the
program counter address.

Other subcommands such as assign and return work at the machine level. In fact,
if there are no symbolic addresses applicable; stop, trace, step, and next can be
used equivalently with the machine-level counterparts.

When your program stops in a procedure that has not been compiled for
debugging, the next instruction to be executed is displayed along with the current
machine address. This is analogous to the current line at the symbolic level. For
example:

Chapter 6. Debugging z/OS C/C++ Programs 183

(dbx) stopi at &sub

[1] stopi at 0x0010015e (sub)
(dbx) run

[1] stopped in sub at 0x10015e
0x0010015e (sub) 90bfd034 stm $r11,$r15,X'34'($sp)
(dbx) step 9

stopped in sub at 0x10017a
0x0010017a (sub+0x1c) 0def basr $r14,$r15 (sub2)

If you performed another stepi at this point, you would stop at address 0x220226f4,
the entry point of procedure printf. Issuing the nexti subcommand at this point
continues execution to 0x00100180 automatically.

Customizing the dbx Debugging Environment
You can customize your shell debugging environment by:
v Defining a prompt
v Creating subcommand aliases
v Using the .dbxinit file
v Passing subcommands from an HFS file

Defining a New dbx Prompt
The dbx prompt is normally the name with which you invoke the dbx utility. If you
specified /bin/dbx a.out on the command line, your prompt would be:
(/bin/dbx)

You can change the prompt to suit your preference with the prompt subcommand.
For example, to change the dbx prompt, enter the following to start the dbx utility
for the program to be debugged:
/bin/dbx hello

dbx for MVS
Type 'help' for help.
reading symbolic information ...
(/bin/dbx)

The cursor is now positioned after the prompt for (/bin/dbx). To change the prompt
to debug subcommand: enter:
(/bin/dbx)
prompt "debug subcommand:"

debug subcommand:

You can also use the prompt line in your .dbxinit file to specify a different prompt.
This causes your prompt to be used instead of the default each time you initialize
dbx.

For example, to define a new prompt in the .dbxinit file, enter the following line in
your .dbxinit file to initialize dbx with the debug prompt debug subcommand:

prompt "debug subcommand:

See “Using the .dbxinit. File” on page 186 for more information on using the
.dbxinit file.

184 z/OS V1R1.0 UNIX System Services Programming Tools

Creating dbx Subcommand Aliases
You can build your own commands from the dbx primitive subcommand set. The
following commands allow you to build a user alias from the arguments specified.
All commands in the replacement string for the alias must be dbx primitive
subcommands. You can then use your aliases in place of the dbx primitives:
alias [aliasname[commandname]]
alias aliasname “CommandString”
alias aliasname (parameter1, parameter2,...) “CommandString”

The alias subcommand with no arguments displays the current aliases in effect;
with one argument the command displays the replacement string associated with
that alias.

The first two forms of alias are used simply to substitute the replacement string for
the alias each time it is used. For example:
(dbx) alias rr rerun
(dbx) alias printandstep "print n; step"
(dbx)

Each time rr is typed at the subcommand prompt, dbx performs a rerun
subcommand. Similarly, printandstep results in two subcommands being executed:
print n and then step.

The third form of aliasing is a limited macro facility. Each parameter specified in the
alias subcommand is substituted for in the replacement string. This can be useful in
eliminating excessive typing:
(dbx) alias px(n) "set $hexints; print n; unset $hexints"
(dbx) alias a(x,y)"print symname[x] -> symvalue._n_n.name.Id[y]"
(dbx) px(126)

0xfe

The alias px in the previous example prints a value in hexadecimal without
permanently affecting the debugging environment. The following aliases and
associated subcommand names are supplied by dbx by default:
c cont
cv condition variable
d delete
e edit
h help
j status
l list
m map
mu mutex
n next
p print
q quit
r run
s step
st stop
t where
th thread
x registers

You can remove an alias with the unalias subcommand.

Chapter 6. Debugging z/OS C/C++ Programs 185

Using the .dbxinit. File
Each time you begin a debugging session, dbx searches for a special initialization
file named .dbxinit. This file is searched for first in your working directory and then
in the home directory. The .dbxinit file should contain a list of dbx subcommands to
run each time you begin a debugging session. These subcommands are run before
dbx begins to read subcommands from standard input.

Subcommands from the home directory .dbxinit file are processed before the
subcommands from the working directory .dbxinit file. Normally, .dbxinit contains
alias subcommands, but it can contain any valid dbx subcommands. For example:
cat .dbxinit

alias si "stop in"
prompt "debug subcommand:"
dbx a.out
dbx for MVS
Type 'help' for help.
reading symbolic information ...
debug subcommand: alias

si stop in
t where...
debug subcommand:

Reading dbx Subcommands from a File
The -c invocation option and .dbxinit provide mechanisms for executing dbx
subcommands before reading from standard input. There is also a way to read dbx
subcommands from a file after the debugging sessions has begun, using the
source subcommand:
source filename

This reads dbx subcommands from the given file. For example, to read and run the
list of subcommands in the dbx command file cmdfile, enter:
(dbx) source cmdfile

After running the list of commands in the cmdfile file, dbx displays a prompt and
again waits for input.

You can also use the -c option to specify a list of subcommands to be run when
initially invoking dbx.
dbx -cCommandFile [options][executable]

This runs the dbx subcommands in CommandFile before accepting subcommands
from standard input. The source subcommand can be used for this purpose after
dbx is invoked.

dbx Environment Variables
EDITOR

The editor to use during processing of the dbx edit subcommand. Set to
″vi″ by default.

HOME Your home directory.

PAGER
The pager to use during processing of the dbx help subcommand. Set to
″pg″ by default.

PATH Your program search path.

186 z/OS V1R1.0 UNIX System Services Programming Tools

SHELL
The shell to use during processing of the dbx sh subcommand. Set to ″sh″
by default.

_DBX_GCORECLISTDSN
Alternate name for the SYS1.SBLSCLI0 MVS PDS data set that contains
the IPCS clists, in particular BLSCDDIR is used to allocate a dump
directory by the BPXGCORE kernel service. Unset by default

_DBX_GCOREDIRSTR
Used to tailor the use of the IPCS dump directory. This string is used on the
invocation of the BLSCDDIR command and may contain any of the
parameters that are accepted by BSLCDDIR. The string may be used to
tailor the creation of a temporary VSAM dump directory, or may be specified
to request the use of an existing dump directory. Unset by default

_DBX_GCOREEXEDSN
Alternate name for the ’SYS1.SBPXEXEC’ MVS PDS data set that contains
the REXX exec BPXTIPCS, used to create a dump directory and establish
the IPCS environment for dump reading by the BPXGCORE kernel service.
Unset by default

_DBX_GCORELOGDSN
MVS data set name to contain the log created by the BPXGCORE kernel
service. Unset by default

dbx External Program Usage
dbx uses the external programs that are listed in the following to perform various
functions. Including a program in your PATH that has the same name as one of the
programs dbx uses, and which does not behave as the system installed version,
may cause dbx to behave unexpectedly. This includes any modified behavior that
may result from creating shell aliases, environment variables, and/or a ″login script″
($ENV).

echo
dbx uses echo to parse command line options passed to your program from the
dbx command line and on the run/rerun/sh dbx subcommands.

vi (EDITOR)
dbx uses the program specified in the EDITOR environment variable during
processing of the edit subcommand.

pg (PAGER)
dbx uses the program specified in the PAGER environment variable during
processing of the help subcommand.

sh (SHELL)
dbx uses the program specified in the SHELL environment variable during
processing of the sh subcommand.

Debugging MVS dumps
You can use the dbx utility to view MVS dumps to determine the cause of program
failure. Full source level debug is available for C/C++ programs that have been
compiled with -g. Machine level debug is also always available.

Commands that attempt to execute or modify the program are not available in dump
processing mode. The following subcommands are available:

v alias

v args

Chapter 6. Debugging z/OS C/C++ Programs 187

v case

v down

v edit

v exmane storage

v file

v func

v help

v history

v list

v listfiles

v listfuncs

v listi

v map

v move

v object

v print

v prompt

v quit

v record

v registers

v set

v sh

v source

v thread

v unalias

v up

v use

v whatis

v where

v whereis

v which

For example:
dbx -I /u/fred/src -C tsimple.dmp
FDBX0089: dbx for MVS.
FDBX0399: Compiled: Jul 7 2000 10:04:54 GMT as BFP
FDBX0400: OS level: 09.00 02, LE level: 2.9 without CWIs.
FDBX0100: Type 'help' for help.
FDBX0750: Initializing dump tsimple.dmp. This may take a while...
FDBX0751: BPXGMCDE token=0x241696f0, release=1, level=0
FDBX0752: BPXGMCDE Starting The TSO environment
FDBX0755: BPXGMCDE BPXTIPCS allocating dump directory via BLSCDDIR
FDBX0757: BPXGMCDE BPXTIPCS invoking IPCS
FDBX0760: BPXGMCDE Dump analysis processing ASIDs: 28 of 29
FDBX0762: Using ASID=0x0018
FDBX0763: Using PID=50331657
FDBX0732: interrupt code=0x4, abend code=0x940C4000, abend reason code=0x4, inst
ruction length=0x4
FDBX0099: reading symbolic information ...
FDBX0900: reading symbols for ./tsimple ...

188 z/OS V1R1.0 UNIX System Services Programming Tools

segmentation violation in f3 at line 23 ($t1)
23 printf("in f3() %d %p %s %d %d\n",bool,cptr,arry8,a,b);

(dbx) l 22
22 fptr=0; *fptr=1;

(dbx) p fptr
0x0
(dbx)

The FDBX0762 message shows that dbx has found the ASID in the dump that
caused the problem and will use that ASID for further processing. The FDBX0763
message shows that dbx has found the PID in the dump that casued the problem
and will use that PID for further processing. The FDBX0732 message shows
various information about the abend.

Finally dbx shows where the problem that occured, in this case a segmentation
violation and the source line after the problem occured. Listing the previous line or
lines will show the source line that was being processed when the error occured.
Commands such as where and print will allow viewing the final state of the program
and help to determine what went wrong. In our example, we see that the value of
fptr is zero, and storing into location zero caused the segmentation violation.

An example of how to invoke dbx against a dump in an MVS data set:
dbx -I /u/fred/src -C "//'sys1.dump00'"

Ananlyzing dump initialization problems
dbx calls the BPXGMCDE kernel service which in turn calls IPCS to initialize the
dump processing environment. Various problems can arise during this processing.
dbx provides two methods for diagnosis/fixing dump initialization problems.

1. dbx lists any error messages that was produced by the BPXGMCDE call
following the dbx message FDBX0379. This output can be used by an MVS
systems programmer to fix the dump initialization problem.

2. By allocating an MVS data set and exporting the _DBX_GCORELOGDSN
environment variable before running dbx against a dump, the BPXGMCDE
service will store log information into the data set that may can be used by an
MVS systems programmer to fix the dump initialization problem.

Maximizing source level debug of in production C/C++ program
dumps
Due to limitations on the C/C++ symbolics generated by the compiler, dbx cannot
perform source level debug of optimized compiled programs. Therefore, to allow
some source level debug, but still retain the speed of an optimized program, some
program restructure must be done. The key is to organize the program so that
types/classes/structs and other definitions are kept in one C/C++ part along with
global data that is compiled -g. The rest of the application references/modifies the
data in this part. When the application abends and takes a dump, the
state/important information is contained in the -g part, so dbx can now
display/format the data in the dump in source level mode. By casting the
types/structs/classes from this part to an address, dbx can display the data item
symbolically.

Debugging Considerations/Setup On MVS

Setting up CEEEVDBG for ptrace/dbx’s use
CEEEVDBG is a debugger exit that is provided by LE that dbx is now using for
more operations than just obtaining thread/mutex and condition variable information.
It is now also used for source level stepping and DLL processing.

Chapter 6. Debugging z/OS C/C++ Programs 189

In order for dbx to use this interface, a sample assembler program is supplied in
SYS1.SAMPLIB(CEEEVDBG) that needs to installed in some loadlib in LNKLIST or
a STEPLIB for example.

The following is a simple way to see if you have it installed correctly:
dbx hello_world_simple_program
(dbx) stop in main
(dbx) cont
(dbx) step
>>>> if the step just runs the program,
>>>> CEEEVDBG is not installed correctly

>>>> if you stopped at the next source line,
>>>> then CEEEVDBG is installed correctly

The following is some sample JCL that can be used to install CEEEVDBG into a
’USERID.LOADLIB’ PDS:
//CEEHASM JOB (0000),'CWU',CLASS=A,MSGCLASS=X,
// REGION=4M,NOTIFY=&SYSUID;
//**
//ASM EXEC PGM=ASMA90,PARM='OBJECT,NODECK,LINECOUNT(55)'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=CEE.SCEEMAC,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1;,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL,(1,1))
//SYSLIN DD DSN=&&SYSLIN;,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL,(1,1)),DCB=BLKSIZE=3200
//SYSIN DD DSN=SYS1.SAMPLIB(CEEEVDBG),DISP=SHR
//**
//LINK EXEC PGM=HEWL,PARM='LIST,XREF,MAP,RENT,REUS'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLIB DD DISP=SHR,DSN=CEE.SCEELKED
// DD DISP=SHR,DSN=SYS1.CSSLIB
//SYSLMOD DD DSN=USERID.LOADLIB(CEEEVDBG),DISP=SHR
//SYSLIN DD DSN=&&SYSLIN;,DISP=(OLD,DELETE,DELETE)
// DD *

NAME CEEEVDBG(R)
/*

Once USERID.LOADLIB(CEEEVDBG) is built, an MVS systems programmer can
add this loadlib to the systems LNKLIST or it can be STEPLIB’ed to from the shell
before running dbx:

export STEPLIB='USERID.LOADLIB'

Attach (-a) considerations
Some setup that is normally done by dbx when a program is started by dbx must
be done when the program is run outside of dbx, then dbx is attached to the
program at a later time. Two environment variables must be exported before the
program is run:

export _BPX_PTRACE_ATTACH=yes
Tells the kernel to always load programs into a R/W subpool

export _CEE_RUNOPTS=″test(all)″
Tells LE to load the CEEEVDBG debugger exit and send it debug events.

190 z/OS V1R1.0 UNIX System Services Programming Tools

Programs with DLL’s
When building DLLs it is important not to link the DLL with -g. When linked -g, a
DLL becomes non-reentrant. Therefore, when the DLL is loaded by LE, a new copy
at a new address gets loaded. dbx will produce a warning when this condition
occurs. The flow of the program from this point on is questionable since there is
more than one copy of the DLL in storage and also more than one copy of writable
static data in storage.

dbx does not load DLLs for the program, dbx only waits to get notified by LE when
a DLL has been loaded so that dbx can read the symbolics for the DLL.

dbx does not know any symbolic information about a DLL until after the DLL gets
loaded into storage by LE and dbx reads symbolics for the DLL. The default
behavior for dbx is to stop on the first reference of a DLL so that if debugging of the
DLL is desired, breakpoints can then be set or static DLL data can be
displayed/modified.

The default behavior of dbx to stop at the first reference of a DLL and to process
DLLs at all can be modified by the two dbx set variables $dll_loadstop and
$dll_loads which are set by default. In a .dbxsetup or at any time during debugging
the $dll_loads variable can be unset as in unset $dll_loads. This tells dbx to ignore
any DLL loads and do not process any symbols for the DLLs. This is useful if the
applications contains DLLs, however, no debugging of the DLLs is desired. The
benefit is faster execution of the application since dbx does not have to pause the
application to read symbolics for the newly loaded DLLs.

If debugging of the DLLs is still desired, IE, display static DLL data, however, the
only important stop/trace locations is in the main part of the program, then the
following command can be used to tell dbx not to stop at DLL references: unset
$dll_loadstop. When this set flag is unset, dbx will still read symbolics for DLLs as
they are loaded, however, will allow the application to continue running after
symbolics are processed.

If debugging of only certain DLLs is desired, the $dll_ask dbx set variable can be
set which is unset by default as in: set $dll_ask. Once set, before dbx reads
symbolics for a DLL, it prompt the user for a Y]N answer, telling dbx to read
symbolics for the DLL or not. This is useful when the program contains large DLLs
and/or a large number of DLLs and only a small number or one DLL needs to be
debugged. The benefit is to cut down on symbolics reading time for undesired
DLLs.

If stopping only in a specific function in a specific DLL is desired, the onload dbx
subcommand can be used in conjunction with $dll_loadstop. The following dbx
subcommand is placed in a .dbxsetup file: unset $dll_loadstop. This tells dbx to not
stop at the first reference of a DLL after DLL symbolics reading has completed. The
following dbx subcommand tells dbx to activate the stop event when the function
becomes defined in a DLL that was loaded: onload stop in myfunc. This allows a
deferred event to be setup at any time, in any DLL, only activated when the
particular file/symbol/line is known to dbx.

Programs that run fine only under dbx
When dbx is in control, the kernel loads programs into R/W storage so that dbx can
set breakpoints. If a program runs fine in this situation, it may be that the program
is attempting to write over the program code and/or some other write protected area
of the program.

Chapter 6. Debugging z/OS C/C++ Programs 191

This can be verified by running the program in R/W storage outside of dbx control.
To force the program to get loaded into R/W storage, before running the program
export the following environment variable:
export _BPX_PTRACE_ATTACH=yes

Now any program that is loaded will load into R/W storage, including any DLLs.

Multiprocess debugging
The default for multiprocess debugging is off. When dbx receives a fork event from
your application, dbx detaches itself from the child process of the fork, allowing the
child to execute without any dbx intervention. The parent remains under dbx control
and can be debugged as usual.

To debug both the parent and the child of the fork, you must first enter the dbx
subcommand multproc on. When your application forks, both the parent and the
child processes stop and dbx sends out a prompt that explains how to reattach
another dbx to the child process so that now there will be two dbxs. One debugging
the parent process and one debugging the child process.

To debug only the child of the forks, you must first enter the dbx subcommand
multproc child. When your application forks, dbx detaches itself from the parent
process of the fork, allowing the parent to execute with any dbx intervention. The
child remains under dbx control and can be debugged as usual.

Programs started via JCL/daemons
dbx can only debug or attach to processes. The following C program lines will
cause even a non-posix MVS program to become a process and wait for dbx to
attach to it:
printf("My PID is: %d\n",getpid());
sleep(30);

If the program was not yet a process, the getpid() will automatically turn the
program into a process. The resulting PID that is printed is the one that dbx can
attach to, IE, dbx -a 42.

There are other authority considerations for debugging daemaons that call such set
functions as setuid() and setgrp(). This is beyond the scope of this dbx chapter.
Special authorization in the security facilty, IE, RACF, may need to be setup by an
MVS system’s programmer to allow the authorized programs to run successfully
when using dbx to debug.

Programs that exist in MVS data sets rather than the HFS
dbx can debug programs that have source or loadmodules in MVS data sets as
compared to the heirarchtical file system (HFS).

dbx can only locate source in MVS data sets when:

1. The program was compiled with the source in an MVS data set or partioned
data set. This is required because the compiler puts the source file name inside
the symbolics of the loadmodule.

2. The source is in a variable block/record data set or partioned data set. dbx does
not support source code in fixed block/record data sets or partioned data sets.

3. The user places the special path // into the dbx source path directory list, IE,
use //. This tells dbx to specially search for MVS data sets.

dbx does not get proper events for DLLs or loadmodules that exist in MVS data
sets or MVS partioned data sets, therefore cannot support these programs directly.

192 z/OS V1R1.0 UNIX System Services Programming Tools

However, dbx does support loadmodules in MVS data sets when they are loaded
via external links in the hierarchtical file system. This program arrangement is
usually required for authorized programs such as daemons to run on MVS. In
addition, for performance reasons, dbx by default does not process symbolics for
MVS loadmodules that it finds in the load map. The following line must be added to
a .dbxsetup so that dbx will process MVS loadmodules: set $sticky_debug.

Performance considerations (symbolics reading)
By default dbx will attempt to spawn the program to be debugged so that dbx and
the program can exist in the same address space. This allows dbx to do direct read
of information in the debuggee which increases symbolics reading performance
greatly and reduces storage use since dbx can now point to the information directly
in the debuggee.

If dbx is in a different address than the debuggee because of a -a, -A or the spawn
startup failed, then dbx will use captured storage to map areas of the debuggee into
its own address space. This is faster than using ptrace() to read every piece of
information, however, does require table lookups and an address translation for
every storage access, so it is not as fast as being in the same address space.

If for some reason the above two fail, then dbx must resort to calling ptrace() for
every block of information it needs to processing in the debuggee. This is the
slowest access method to the debuggee.

Performance considerations (program execution)
As in symbolics reading, when dbx can use direct address space reads and writes,
performance is the best, followed by captured storage followed by the slowest
ptrace() calls. This is because dbx must inquire/change information in the debuggee
to performance operations like variable value queries and setting/removing
breakpoints.

There are some dbx events that will cause dbx to source level step the debuggee
which will cause a noticable speed degradation in the debuggee. Command
examples:
trace
trace in myfunc

There are some dbx events that will cause dbx to instruction step the debuggee
which will cause a significant speed degradation in the debuggee. Any events that
require dbx to query the value of storage or a variable will cause dbx to execute the
program in this mode. Command examples:
stop if a>2
trace x
trace if b==3
stop in myfunc if x<55

In the above examples, the last example limits the scope of the instruction stepping
when the program execution is within function myfunc.

Limiting the scope of where the instruction/single stepping occurs by using
infunc-name will help to maintain program execution. Setting stop/trace events at
specific lines is the fastest since dbx only needs to stop and query the program’s
state at a specific line. Command examples:
st at "myfile.c":52 if x>2
trace x at 99

Chapter 6. Debugging z/OS C/C++ Programs 193

List of dbx Subcommands
The dbx utility provides subcommands for the following task categories:
v Debugging environment control
v Displaying the source file
v Ending program execution
v Machine-level debugging
v Multiprocess debugging
v Multithread debugging
v Printing and modifying variables, expressions, and types
v Procedure calling
v Running your program
v Setting and deleting breakpoints
v Signal handling
v Tracing program execution

The complete alphabetized list of dbx subcommands is:

/ Searches forward in the current source file for a pattern.

? Searches backward in the current source file for a pattern.

address /
Just specifying an address displays the contents of memory.

alias Displays and assigns aliases for dbx subcommands.

assign
Assigns a value to a variable or change the exit status of a thread.

case Changes the way that dbx interprets symbols. Symbols are normally
interpreted as they appear.

catch Starts trapping a signal before that signal is sent to the application program.

clear Removes all stops at a given source line.

cleari Removes all breakpoints at an address.

condition
Displays a list of active condition variables for a multithread program.

cont Continues program execution from the current breakpoint until the program
finishes, another breakpoint is encountered, or a signal that cannot be
ignored is received.

delete Removes the traces and stops corresponding to the specified numbers.

display memory
See address.

down Moves the current function down the stack.

dump Displays the names and values of variables in the specified procedure.

edit Invokes an editor on the specified file.

file Changes the current source file to the specified file.

func Changes the current function to the specified function or procedure.

goto Causes the specified source line to be the next line executed.

gotoi Changes program counter addresses.

help Displays a list of commonly used dbx commands.

194 z/OS V1R1.0 UNIX System Services Programming Tools

ignore
Stops trapping a signal before that signal is sent to the application program.

list Displays lines of the current source file.

listi Lists instructions from the application program.

map Displays address maps and loader information for the application program.

move Changes the next line to be displayed.

multproc
Enables or disables multiprocess debugging.

mutex Displays a list of active mutex objects for the application program.

next Runs the application program up to the next source line. When you use
next with $hold_next, the current thread executes and all others are held.

nexti Runs the application program up to the next machine instruction. When you
use nexti with $hold_next, the current thread executes and all others are
held.

object filename
Loads the specified executable file, without the overhead of reloading dbx.

print Prints the value of expressions.

prompt
Changes the dbx prompt to the specified string.

quit Quits the dbx utility.

registers
Displays the values of all general-purpose registers, system-control
registers, floating-point registers, and the current instruction register.

rerun Restarts execution of an application program using the parameters from a
previous run or rerun command.

return Continues execution of the application program until a return to the
specified procedure is reached.

run Begins execution of an application program. Can pass parameters to the
application program.

set Defines a value for a nonprogram, condition, mutex, or thread variable.

sh Passes a command to the shell for execution.

skip Continues execution from the current stopping point and skips some
number of breakpoints.

source
Reads dbx commands from a file.

status Displays the currently active trace and stop subcommands.

step Runs a single source line. When you use step with $hold_next, the current
thread executes and all others are held.

stepi Runs a single machine instruction. When you use stepi with $hold_next,
the current thread executes and all others are held.

thread
Displays a list of active threads for the application program and can be
used to hold, release, and switch the current thread.

Chapter 6. Debugging z/OS C/C++ Programs 195

stop Stops execution of the application program.

stopi Sets a stop at a specified location.

trace Prints tracing information.

tracei Turns on tracing using a machine instruction address.

unalias
Removes an alias.

unset Deletes a nonprogram variable.

up Moves the current function up the stack.

use Sets the list of directories to be searched when looking for a source file
(HFS file or MVS data set).

whatis
Displays the declaration of application program components.

where Displays a list of all active procedures and functions.

whereis
Displays the full qualifications of all the symbols whose names match the
specified identifier.

which Displays the full qualification of the specified identifier.

See z/OS UNIX System Services Command Reference for a complete discussion of
the format and use of these dbx subcommands.

Debugging Environment Control
The dbx subcommands for debugging environment control are:

alias Displays and assigns aliases for dbx subcommands.

help Displays a list of commonly used dbx commands.

prompt
Changes the dbx prompt to the specified string.

sh Passes a command to the shell for execution.

source
Reads dbx commands from a file.

unalias
Removes an alias.

Debugging Threads
condition

Displays a list of active condition variables for a multithread program.

mutex Displays a list of active mutex objects for the application program.

thread
Displays a list of active threads for the application program and can be
used to hold, release, and switch the current thread.

Displaying the Source File
The dbx subcommands for displaying the source file are:

/ Searches forward in the current source file for a pattern.

196 z/OS V1R1.0 UNIX System Services Programming Tools

? Searches backward in the current source file for a pattern.

edit Invokes an editor on the specified file.

file Changes the current source file to the specified file.

func Changes the current function to the specified function or procedure.

list Displays lines of the current source file.

listi Lists instructions from the application program.

move Changes the next line to be displayed.

use Sets the list of directories to be searched when looking for a source file
(HFS file or MVS data set).

Ending Program Execution
The dbx subcommands for ending program execution are:

quit Quits the dbx utility.

Machine-Level Debugging
The dbx subcommands for machine-level debugging are:

address /
Just specifying an address displays the contents of memory.

display memory
Displays the contents of memory.

gotoi Changes program counter addresses.

map Displays address maps and loader information for the application program.

nexti Runs the application program up to the next machine instruction.

registers
Displays the values of all general-purpose registers, system-control
registers, floating-point registers, and the current instruction register.

stepi Runs one source instruction.

stopi Sets a stop at a specified location.

tracei Turns on tracing using a machine instruction address.

Multiprocess Debugging
The dbx subcommand for multiprocess debugging is:

multproc
Enables or disables multiprocess debugging.

Printing and Modifying Variables, Expressions, and Types
The dbx subcommands for printing and modifying variables, expressions, and types
are:

assign
Assigns a value to a variable.

case Changes the way in that dbx interprets symbols. Symbols are normally
interpreted as they appear.

Chapter 6. Debugging z/OS C/C++ Programs 197

condition
Displays a list of active condition variables for a multithread program.

dump Displays the names and values of variables in the specified procedure.

mutex Displays a list of active mutex objects for the application program.

print Prints the value of expressions.

set Assigns a value for a nonprogram variable.

thread
Displays a list of active threads for the application program and can be
used to hold, release, and switch the current thread.

unset Deletes a nonprogram variable.

whatis
Displays the declaration of application program components.

whereis
Displays the full qualifications of all the symbols whose names match the
specified identifier.

which Displays the full qualification of the specified identifier.

Procedure Calling
dbx does not support a print procedure or print function.

Running Your Program
The dbx subcommands for running your program are:

cont Continues program execution from the current breakpoint until the program
finishes, another breakpoint is encountered, or a signal that cannot be
ignored is received.

down Changes the current scoping content to the next stack frame.

goto Causes the specified source line to be the next line executed.

gotoi Changes program counter addresses.

mutex Displays a list of active mutex objects for the application program.

next Runs the application program up to the next source line. When used with
$hold_next, the current thread executes and all others are held.

nexti Runs the application program up to the next machine instruction. When
used with $hold_next, the current thread executes and all others are held.

object filename
Loads the specified executable file, without the overhead of reloading dbx.

rerun Restarts execution of an application program using the parameters from a
previous run or rerun command.

return Continues execution of the application program until a return to the
specified procedure is reached.

run Begins execution of an application program.

skip Continues execution from the current stopping point and skips some
number of breakpoints.

step Runs a single source line.

198 z/OS V1R1.0 UNIX System Services Programming Tools

stepi Runs a single source instruction.

thread
Displays a list of active threads for the application program and can be
used to hold, release, and switch the current thread.

up Changes the current scoping content to the previous stack frame.

Setting and Deleting Breakpoints
The dbx subcommands for setting and deleting breakpoints are:

clear Removes all stops at a given source line.

cleari Removes all breakpoints at an address.

delete Removes the traces and stops corresponding to the specified numbers.

status Displays the currently active trace and stop subcommands.

stop Stops execution of the application program.

Signal Handling
The dbx subcommands for signal handling are:

catch Starts trapping a signal before that signal is sent to the application program.

ignore
Stops trapping a signal before that signal is sent to the application program.

Tracing Program Execution
The dbx subcommands for tracing program execution are:

trace Prints tracing information.

tracei Turns on tracing using a machine instruction address.

where Displays a list of all active procedures and functions.

Chapter 6. Debugging z/OS C/C++ Programs 199

200 z/OS V1R1.0 UNIX System Services Programming Tools

Appendix A. TSO/3270 Passthrough Mode

Overview
TSO/3270 passthrough mode allows full-screen 3270 interactive applications to be
invoked from and run in a shell environment. A full-screen 3270 interactive
application can exercise significant control over the 3270 terminal device by sending
and receiving 3270 data, and can thus take full advantage of the display and
input/output capabilities of 3270 devices, as opposed to a line-mode only
application.

TSO/3270 passthrough mode allows a POSIX application program that is invoked
from a shell command prompt to change its mode of terminal interaction from line
mode to TSO/3270 passthrough mode. In line-mode interaction between the
terminal (in this case a 3270 device) and an application program, the application
can read and write lines of text data delimited by newline characters. While in
TSO/3270 passthrough mode the application can read and write 3270 data,
allowing it the same degree of control over the 3270 device as an application that
uses the TSO TPUT and TGET APIs.

Note: z/OS UNIX does no validation of the data stream prepared by the
application; therefore, sending data that is inappropriate for the device (for
example, that exceeds the device’s capabilities) may cause unpredictable
results.

TSO/3270 passthrough mode is an extension to that subset of the POSIX General
Terminal Interface (GTI) supported by z/OS UNIX for 3270 devices. The interface
provides the following functions:

v The application program can detect whether a file descriptor represents a 3270
terminal that can be put into TSO/3270 passthrough mode.

v The application program can change from line mode to TSO/3270 passthrough
mode and back again.

v An application can determine the current mode (line mode or TSO/3270
transparent mode).

v An application can indirectly issue certain TSO APIs (such as TPUT, TGET, and
TPG) to send or receive 3270 data to the terminal.

v An application can indirectly issue the IKJEFTSR API to invoke most TSO
commands.

v A program can return from 3270 transparent to line mode at appropriate times,
such as upon normal or abnormal termination of a child process that had been
operating in TSO/3270 passthrough mode.

TSO/3270 passthrough mode provides basic functions to read and write 3270 data
from a program that is invoked exclusively in the shell environment provided by the
combination of the z/OS UNIX shells and utilities, the OMVS command processor,
and related kernel pseudoterminal and line discipline functions. The programming
interfaces (using commands that are imbedded in the data read and written) are
direct mappings of TSO TGET and TPUT.

© Copyright IBM Corp. 1996, 2001 201

Supported TSO Functions
TSO/3270 passthrough mode supports only the following APIs:

v GTDEVSIZ

v GTSIZE

v GTTERM

ATTRIB=, PRMSIZE=, and ALTSIZE= are always specified (that is, all 3 fields are
always passed back to the TSO/3270 passthrough mode application).

v IKJEFTSR

v STCOM

v STFSMODE (RSHWKEY=n is not supported)

v STLINENO

v STSIZE

v STTMPMD

v TCLEARQ

v TGET

v TPG

v TPUT

HIGHP, ASID=, USERIDL=, TOKNIN= options are not supported, because OMVS is
not an authorized program. This prevents TSO/3270 passthrough mode applications
from sending messages to other users.

TSO Extensions Version 2 Programming Guide and TSO Extensions Version 2
Programming Services fully describe the services that can be invoked with the
TSO/3270 passthrough mode facility.

Using the TSO/3270 Passthrough Data Stream
To use the TSO/3270 Passthrough facility, a typical application program would:

1. Include the fomth32p.h header file, which contains the layout of the TSO/3270
passthrough data stream.

2. Use tcgetattr() against STDIN_FILENO or the controlling terminal to verify that
the terminal supports TSO/3270 passthrough mode. If the PKT3270 bit in
termios is set, the terminal supports TSO/3270 passthrough mode.

3. Use tcsetattr() to set the PTU3270 bit in termios. This sets the terminal into
TSO/3270 passthrough mode.

4. Indirectly issue TSO APIs using the TSO/3270 passthrough data stream:

v The application uses write() and read() to exchange data with the
passthrough-mode terminal. When the terminal is in TSO/3270 passthrough
mode, only the special TSO/3270 passthrough data stream can be sent.
Ordinary character data must not be sent to the terminal while it is in
passthrough mode.

v The TSO/3270 passthrough data stream consists of requests written to TSO
and responses from OMVS or TSO. Each request or response consists of a
12-byte header optionally followed by variable length binary data.

v Requests can be sent in a single write() to the TTY, or a single passthrough
request can be split across many separate write() calls to the TTY. More than
one request can be combined in a single write().

202 z/OS V1R1.0 UNIX System Services Programming Tools

v When reading responses, it is possible to get back part of a response when
doing read() to the TTY. Also, data from a single TTY read() can contain
more than one TSO/3270 passthrough response.

After TSO/3270 passthrough mode is entered, the first byte read() will be the
first byte of the first response header. The program can determine how long
this response is from the data length field in the response header. It can then
determine where the data for this response ends in the incoming data stream.
The next response header will immediately follow the end of the previous
response in the data stream. The TSO/3270 passthrough mode application
must accumulate or split up the incoming data stream into individual
responses.

v The application can use STFSMODE and STTMPMD to put the TSO session
into TSO fullscreen mode. It then can use TGET, TPUT, and TPG to send
3270 fullscreen data to the terminal.

A typical TPUT request would contain the 12-byte header followed by data to
be passed to TPUT. The various options on the TPUT macro are indicated in
the request header by coded values. TPUT responses are 12 bytes long, and
may contain error return codes from OMVS or from TSO.

TGET requests are 12 bytes long (they contain no optional data). The request
header contains coded values for the requested TGET options. TGET
responses contain a 12-byte header followed by any data returned from
TGET. The response header contains return code information from OMVS
and TSO, along with the length of the data from TGET.

v Typically, a program issues a request to TSO and then waits for the
response. It checks the return code in the response and handles any
received data. The response header can contain error return codes from TSO
or the OMVS command itself:

– If the TSO/E OMVS command detects an error in the passthrough request
(unknown TSO API requested, for example), it rejects the request without
passing it through to TSO. The __error field in the response header is set
to one of the codes described in the next section.

– If the TSO/E OMVS command does not find errors, the request is passed
through to TSO with the macro options in the request header and any
optional data. The results from TSO, along with any data from TSO, are
packaged into a response and sent back to the application through the
TTY. The application issues one or more read()s to get the results and
data. The fomth32p.h header file example shown later in this appendix
(“TSO/3270 Passthrough Mode Data Stream” on page 210) describes how
results and errors from each TSO command are passed back in the
response.

v Applications can indirectly invoke TSO commands using the IKJEFTSR
request and response.

The IKJEFTSR response contains only return code information from TSO and
the invoked command. Actual output from the invoked TSO command is not
returned as data following the response header.

5. Return the terminal to normal mode, using tcsetattr() to reset the PTU3270 bit
in termios. This will end TSO/3270 passthrough mode. The application should
read in any expected responses before issuing tcsetattr().

Appendix A. TSO/3270 Passthrough Mode 203

Preliminary Processing of TSO/3270 Passthrough Mode Requests
Preliminary error checks are performed on all TSO/3270 passthrough mode
requests received while the TTY is in TSO/3270 passthrough mode. If the
preliminary check fails, the request is not passed to TSO, and the error is reported
in the response.

The following severe errors can be reported:

__error Error description

0xC1 First byte of TSO/3270 passthrough mode request is not 0xFF.

When the TSO/E OMVS command reads a TSO/3270 passthrough
mode request from the master TTY, it expects the first byte of data
to be 0xFF, the TSO/3270 passthrough mode request introductory
byte. If the first byte is not 0xFF, this error occurs.

This error can occur if non-TSO/3270 data is written to the slave
TTY, or if the length field in the previous TSO/3270 passthrough
mode request was shorter than the amount of 3270 data following
it. 3270 application errors can also cause this problem.

Non-3270 data can be written to the TTY from background
processes, from the job-control shell, or by inter-user message
programs. This non-3270 data can get intermixed with the 3270
data stream, causing the end of the 3270 data to be treated as the
start of the next (bad) TSO3270 request.

0xC2 Length field is too long.

This error occurs when the __l field in the TSO/3270 passthrough
mode request is longer than 32767 bytes, which is not allowed for
any request.

Note: In addition to passing back the __error field listed in the TSO/3270
passthrough mode response, the __rc field is set to -1. OMVS also ends
TSO/3270 passthrough mode when one of these severe errors occurs.
OMVS passes back a TSO/3270 passthrough mode response with __error
set to the error code given above. OMVS then waits a few seconds, in case
the 3270 application has not already issued read() to get the TSO/3270
passthrough mode response. OMVS then ends TSO/3270 passthrough
mode. The TTY is set back to normal (non-TSO/3270 passthrough) mode.
The TSO/E OMVS command then sends SIGWINCH to all processes in the
foreground process group. The 3270 application may end when this error is
detected (either SIGWINCH is received or the __error field is seen). It should
catch SIGWINCH or else do frequent tcgetattr() to detect when OMVS ends
TSO/3270 passthrough mode on the TTY.

The following error conditions are also detected in the preliminary error check.
When one of these errors occurs, the requested TSO function is not invoked. The
__error field in the TSO/3270 passthrough mode response is set to the value
indicated, and the __rc field is set to -1.

__error Error description

0x81 The __fcn field contains an unknown TSO function code.

This error occurs when the __fcn field is not one of the known
coded values.

204 z/OS V1R1.0 UNIX System Services Programming Tools

0x82 This TSO function required no data, but data was provided.

This error occurs when the TSO function accepts no 3270 data, but
the __l field in the TSO/3270 passthrough mode request was
non-zero. The __l field must be zero in this case, and no data can
be passed in the TSO/3270 passthrough mode request. When
processing the failing request, OMVS steps past __l bytes of data
in the __d field and then looks for the start of the next TSO/3270
passthrough mode request.

0x91 The __p1 field contains an unknown coded value for this TSO/E
function.

This error occurs when the requested TSO function uses the __p1
field as an input parameter. The __p1 field does not contain one of
the allowed values for this TSO function.

0x92 The __p2 field contains an unknown coded value for this TSO/E
function.

This error occurs when the requested TSO function uses the __p2
field as an input parameter. The __p2 field does not contain one of
the allowed values for this TSO function.

0x93 The __p3 field contains an unknown coded value for this TSO/E
function.

This error occurs when the requested TSO function uses the __p3
field as an input parameter. The __p3 field does not contain one of
the allowed values for this TSO function.

0xA1 Not enough storage was available to invoke the requested TSO/E
function.

This error occurs when the TSO/E OMVS command cannot get
enough storage (usually only a few hundred bytes) to call the
requested TSO/E function. The lack of storage may be of short or
long duration. If this TSO/3270 passthrough mode request is
reissued, it may succeed, or it could fail again.

In addition, the following warning conditions can be detected. If one of these errors
is detected, the __error field in the response is set as indicated, and the requested
TSO/E service is invoked. The __rc field, and the __l and __d fields are set based
on the TSO/E return code and any returned data. (See the discussion of TSO return
code processing that follows.) These warning conditions can be reported:

__error Error description

0x41 Reserved __p1 field should be 0, but was non-zero.

This error occurs when the __p1 field in the TSO/3270 passthrough
mode request is not used for the requested TSO/E function. This
unused field is reserved, and should be set to zero in the TSO/3270
passthrough mode request.

0x42 Reserved __p2 field should be 0, but was non-zero.

This error occurs when the __p2 field in the TSO/3270 passthrough
mode request is not used for the requested TSO/E function. This
unused field is reserved, and should be set to zero in the TSO/3270
passthrough mode request.

0x43 Reserved __p3 field should be 0, but was non-zero.

Appendix A. TSO/3270 Passthrough Mode 205

This error occurs when the __p3 field in the TSO/3270 passthrough
mode request is not used for the requested TSO/E function. This
unused field is reserved, and should be set to zero in the TSO/3270
passthrough mode request.

0x49 One or more reserved bits in the __p1 field were on. This error
occurs when at least one of the reserved bits in the __p1 field is
not used for the requested TSO/E function. All unused bits are
reserved, and should be set to zero in the TSO/3270 passthrough
mode request.

0x4A One or more reserved bits in the __p2 field were on.

This error occurs when at least one of the reserved bits in the __p2
field is not used for the requested TSO/E function. All unused bits
are reserved, and should be set to zero in the TSO/3270
passthrough mode request.

Only one of these warning conditions is reported. The user 3270 application can
choose to ignore these warnings, but the application may fail in the future if a
reserved bit or field becomes meaningful. The 3270 application should treat these
warnings as unexpected errors. The 3270 application may be designed to fail
whenever the __error field is non-zero.

If none of these errors or warnings is detected, the __error field in the response will
be set to 0, and the requested TSO/E service is invoked. The __rc field, and the __l
and __d fields will be set based on the TSO/E return code and any returned data.

Processing of Return Codes from Invoked TSO Services
If all preliminary checks are correct, OMVS passes the request to TSO. The TSO
return code and any data are packaged into a response, depending on the TSO
return code.

This section describes how OMVS handles return codes from the invoked TSO
functions. See TSO Extensions Version 2 Programming Guide and TSO Extensions
Version 2 Programming Services for more information about each return code from
the TSO/E function.

Note: When the OMVS error action says that OMVS ends (because the terminal
has logged off), the master TTY is closed. This eventually causes read()
from the slave TTY to fail.

v GTDEVSIZ

r/c OMVS processing

0(0) Pass back: __rc=0, __l=8, __d = data from registers 0 and 1

4(4) Pass back: __rc=4, __l=0 -- (Parameter specified. This error should not
occur.)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v GTSIZE

r/c OMVS processing

0(0) Pass back: __rc=0, __l=8, __d = data from registers 0 and 1

4(4) Pass back: __rc=4, __l=0 -- (Parameter specified. This error should not
occur.)

206 z/OS V1R1.0 UNIX System Services Programming Tools

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v GTTERM

r/c OMVS processing

0(0) Pass back: __rc=0, __l=8, __d = 8 bytes of data, as described in
fomth32p.h (see below)

8(8) Pass back: __rc=8, __l=0 -- (Not a 3270 terminal. This error should not
occur.)

12(C) Pass back: __rc=12, __l=0 -- (Missing PRMSIZE parameter. This error
should not occur.)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v IKJEFTSR

r/c OMVS processing

0(0) Pass back: __rc=0, __l=12, __d = 12 bytes of data, as described in
fomth32p.h (Normal completion)

4(4) Pass back: __rc=0, __l=12, __d = 12 bytes of data, as described in
fomth32p.h (Non-zero return code from command. This return code is
reported in the response data.)

8(8) Pass back: __rc=0, __l=12, __d = 12 bytes of data, as described in
fomth32p.h (Attention ended the command.)

12(C) Pass back: __rc=0, __l=12, __d = 12 bytes of data, as described in
fomth32p.h (Command abended. The abend code and reason code are
in the response data.)

other Pass back: __rc=0, __l=12, __d = 12 bytes of data, as described in
fomth32p.h (These errors should not occur.)

v STCOM

r/c OMVS processing

0(0) Pass back: __rc=0, __l=0

4(4) Pass back: __rc=4, __l=0 -- (Invalid parameter specified. This error
should not occur.)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v STFSMODE

r/c OMVS processing

0(0) Pass back: __rc=0, __l=0

4(4) Pass back: __rc=4, __l=0 -- (Invalid parameter specified. This error
should not occur.)

8(8) Pass back: __rc=8, __l=0 -- (Not a 3270 terminal. This error should not
occur.)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v STLINENO

r/c OMVS processing

0(0) Pass back: __rc=0, __l=0

4(4) Pass back: __rc=4, __l=0 -- (Invalid parameter specified. This error
should not occur.)

Appendix A. TSO/3270 Passthrough Mode 207

8(8) Pass back: __rc=8, __l=0 -- (Not a 3270 terminal. This error should not
occur.)

12(C) Pass back: __rc=12, __l=0 -- (Line number was 0 or too high. This could
be a bad parameter from the TSO/3270 passthrough mode application.)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v STSIZE

r/c OMVS processing

0(0) Pass back: __rc=0, __l=0

4(4) Pass back: __rc=4, __l=0 -- (Invalid parameter specified. This error
should not occur.)

8(8) Pass back: __rc=8, __l=0 -- (SIZE= or LINE= was invalid. This could be
a bad parameter from the TSO/3270 passthrough mode application.)

12(C) Pass back: __rc=12, __l=0 -- (Screen size unknown. This could be a bad
parameter from the TSO/3270 passthrough mode application.)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v STTMPMD

r/c OMVS processing

0 Pass back: __rc=0, __l=0

4(4) Pass back: __rc=4, __l=0 -- (Invalid parameter specified. This error
should not occur.)

8(8) Pass back: __rc=8, __l=0 -- (Not a display terminal. This error should not
occur.)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v TCLEARQ

r/c OMVS processing

0(0) Pass back: __rc=0, __l=0

4(4) Pass back: __rc=4, __l=0 -- (Invalid parameter specified. This error
should not occur.)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v TGET

r/c OMVS processing

0(0) Pass back: __rc=0, __l=register 1, d = __l bytes of data

Note: If register 1 exceeds 32767, __error = 0xB1, __rc = -1, __l = 0,
and no data will be passed back. This error should not occur.)

4(4) Pass back: __rc=4, __l=0 -- (NOWAIT, and no data available; not an
error.)

8(8) Pass back: __rc=8, __l=0 -- (Attention occurred.) If
ENDPASSTHROUGH(ATTN) was specified on the TSO/E OMVS
command, TSO/3270 passthrough mode will end (see "The
ENDPASSTHROUGH key" later in this appendix).

12(C) Pass back: __rc=12, __l=register 1, d = __l bytes of data

208 z/OS V1R1.0 UNIX System Services Programming Tools

This TSO/E return code occurs when not all the available data fits in the
buffers passed to TGET. This is not an error. The next TGET will obtain
more of the available data.

Note: When TGET returns, if register 1 exceeds 32767, __error = 0xB1,
__rc = -1, __l = 0, and no data will be passed back. This error
should not occur.

16(10) Pass back: __rc=16, __l=0 -- (Invalid parameters; this error should not
occur.)

20(14) Pass back: __rc=20, __l=0 -- (Terminal logged off. OMVS ends after
TSO/3270 passthrough mode ends.)

24(18) Pass back: __rc=24, __l=register 1, d = __l bytes of data

Data was received in NOEDIT mode. This is the same as return code=0,
but in NOEDIT mode.

When TGET returns, if register 1 exceeds 32767, __error = 0xB1, __rc =
-1, __l = 0, and no data is passed back. This error should not occur.

28(1C)
Pass back: __rc=28, __l=register 1, d = __l bytes of data

This TSO/E return code occurs when not all the available data fits in the
buffers passed to TGET. This is not an error. The next TGET will obtain
more of the available data.

When TGET returns, if register 1 exceeds 32767, __error = 0xB1, __rc =
-1, __l = 0, and no data is passed back. This error should not occur.

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v TPG

r/c OMVS processing

0(0) Pass back: __rc=0, __l=0

4(4) Pass back: __rc=4, __l=0 -- (No TSO buffers)

8(8) Pass back: __rc=8, __l=0 -- (Attention occurred)

Note: if ENDPASSTHROUGH(ATTN) was specified on the TSO/E
OMVS command, TSO/3270 passthrough mode will end (see "the
ENDPASSTHROUGH key" later in this appendix).

12(C) Pass back: __rc=12, __l=0 -- (Invalid parameters; this error should not
occur.)

20(14) Pass back: __rc=20, __l=0 -- (Terminal logged off. OMVS ends after
TSO/3270 passthrough mode ends.)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

v TPUT

r/c OMVS processing

0(0) Pass back: __rc=0, __l=0

4(4) Pass back: __rc=4, __l=0 -- (No TSO buffers)

8(8) Pass back: __rc=8, __l=0 -- (Attention occurred)

Appendix A. TSO/3270 Passthrough Mode 209

Note: if ENDPASSTHROUGH(ATTN) was specified on the TSO/E
OMVS command, TSO/3270 passthrough mode will end (see "The
ENDPASSTHROUGH key" later in this appendix).

12(C) Pass back: __rc=12, __l=0 -- (ASID not receiving. This error should not
occur.)

16(10) Pass back: __rc=16, __l=0 -- (Invalid parameters. This error should not
occur.)

20(14) Pass back: __rc=20, __l=0 -- (Terminal logged off. OMVS will end after
TSO/3270 passthrough mode ends.)

24(18) Pass back: __rc=24, __l=0 -- (Send not permitted. This error should not
occur.)

28(1C)
Pass back: __rc=28, __l=0 -- (Receiver insecure. This error should not
occur.)

32(20) Pass back: __rc=32, __l=0 -- (Not enough TSO storage)

other Pass back: __rc=other, __l=0 -- (This error should not occur.)

TSO/3270 Passthrough Mode Data Stream
User applications can optionally include the fomth32p.h header file to map the
TSO/3270 passthrough mode data stream.
/*****START OF SPECIFICATIONS**
*
* $MAC (fomth32p.h) COMP(SCPX4) PROD(FOM):
*
01 macro NAME: fomth32p.h
*
01 DSECT NAME: fomth32p.h
*
01 DESCRIPTIVE NAME: TSO/3270 passthrough mode data stream
*
02 ACRONYM: fomth32p.h
* */
/*01* PROPRIETARY STATEMENT= */
/***PROPRIETARY_STATEMENT**/
/* */
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* THIS macro IS "RESTRICTED MATERIALS OF IBM" */
/* 5655-068 (C) COPYRIGHT IBM CORP. 1995 */
/* */
/* STATUS= HOT1130 */
/* */
/***END_OF_PROPRIETARY_STATEMENT*************************************/
/*
01 EXTERNAL CLASSIFICATION: GUPI
01 END OF EXTERNAL CLASSIFICATION:
*
*
01 FUNCTION:
*
* This header file defines structures and manifest constants used
* to map the TSO/3270 passthrough mode data stream.
*
*
01 METHOD OF ACCESS:
*
02 C/370:
*

210 z/OS V1R1.0 UNIX System Services Programming Tools

* - #include <fomth32p> -or-
* - #include "fomth32p"
*
* - When sending data, establish a pointer of type
* __tso3270_request_t* to the start of the data area.
*
* Fill in the various request parameters using the fields in
* __tso3270_request_s.
*
* - After receiving data from the TTY, determine where
* in the data the next response starts. If there is no
* leftover (unread) data from a prior response, the new
* response will begin at the start of the read-in data.
* Establish a pointer of type __tso3270_response_t* to the start
* of the response, and use the fields in the
* __tso3270_response_s structure to look at the received data.
*

**/
* General layout for TSO/3270 passthrough mode requests */
**/

typedef struct __tso3270_request_s
{

unsigned char __ff; /*(+00) introductory byte --
must be 0xFF */

unsigned char __fcn; /*(+01) Function code -- for
values, see below */

unsigned char __p1; /*(+02) First parameter byte --
contents depend on which
function is being
requested */

unsigned char __p2; /*(+03) Second parameter byte --
contents depend on which
function is being requested

*/
int __p3; /*(+04) Third parameter --

contents depend on which
function is being requested

*/

unsigned int __l; /*(+08) number of bytes of data
that follow -- can be 0,
meaning no data */

char __d[1] /*(+0C) variable number
of data bytes -- can be 0 */

} __tso3270_request_t;

#define _TSO3270_REQH_L 12U /* Length of request when there
is no data */

/**
*
* General Layout for TSO/3270 passthrough mode responses
* --
*
**/

typedef struct __tso3270_response_s
{

Appendix A. TSO/3270 Passthrough Mode 211

unsigned char __fe; /*(+00) introductory byte --
will be 0xFE */

unsigned char __fcn; /*(+01) Function code --
normally echoed back from
the original request -- if
__error = 0xC1, __fcn will
be 0x00 */

unsigned char __error; /*(+02) error code from the
TSO/E OMVS command itself --
0 means no error from OMVS,
and that the requested TSO/E
service was invoked. That
service completed (or failed)
with the return code in the
__rc field, below */

char __r0; /*(+03) (reserved) */

int __rc; /*(+04) Return code (usually
from register 15) from the
TSO/E service invoked -- if
OMVS itself detected an
error, __rc will be set to
-1 */

unsigned int __l; /*(+08) number of bytes of data
that follow -- can be 0,
meaning no data */

char __[1] /*(+0C) variable number
of data bytes -- can be 0 */

} __tso3270_response_t;

#define _TSO3270_RSPH_L 12U /* Length of response when
there is no data */

/**
*
*
* General constants in TSO/3270 passthrough mode requests/responses
* ===
*
*
***/

#define _TSO3270_FF 0xFFU /* 0xFF value used as the
introductory byte of each
request */

#define _TSO3270_FE 0xFEU /* 0xFE value used as the
introductory byte of each
response */

#define _TSO3270_L0 0U /* __l = 0, in a request or
response means the there is
no data following the length
field */

#define _TSO3270_LMAX 32767U /* __l = 32767, which is the
maximum allowed data length

*/

212 z/OS V1R1.0 UNIX System Services Programming Tools

#define _TSO3270_RCBAD (-1) /* __rc = -1 -- indicates that
OMVS found an error and that
the requested TSO/E function
was not invoked */

/*---
*
* TSO/3270 passthrough mode function codes for requests and responses
*
---/

#define _TSO3270_TPUT 0x11U /* function code for TPUT
request and response */

#define _TSO3270_TGET 0x12U /* function code for TGET
request and response */

#define _TSO3270_TPG 0x13U /* function code for TPG
request and response */

#define _TSO3270_GTDEVSIZ 0x21U /* function code for GTDEVSIZ
request and response */

#define _TSO3270_GTSIZE 0x22U /* function code for GTSIZE
request and response */

#define _TSO3270_GTTERM 0x23U /* function code for GTTERM
request and response */

#define _TSO3270_STFSMODE 0x31U /* function code for STFSMODE
request and response */

#define _TSO3270_STLINENO 0x32U /* function code for STLINENO
request and response */

#define _TSO3270_STTMPMD 0x33U /* function code for STTMPMD
request and response */

#define _TSO3270_STCOM 0x34U /* function code for STCOM
request and response */

#define _TSO3270_STSIZE 0x35U /* function code for STSIZE
request and response */

#define _TSO3270_TCLEARQ 0x41U /* function code for TCLEARQ
request and response */

#define _TSO3270_IKJEFTSR 0x51U /* function code for IKJEFTSR
request and response @D1A*/

/*---
*
* __error field in TSO/3270 passthrough mode responses
*
* note: When an error or severe error code is set in the __error
* field, __rc is set to -1. If a warning code is set in
* the _error field, the __rc field is set to the /return code from
* the invoked TSO/E service.
*
* note: if more than one error exists for a given TSO/3270 request,
* the TSO/E OMVS command will generally report the first
* error found. This will usually be the first applicable
* error in the following list:

Appendix A. TSO/3270 Passthrough Mode 213

*
---/

#define _TSO3270_ERROR_OK 0x00U /* error = 0: no error found by
TSO/E OMVS command before
the TSO/E service was invoked
-- means the service was
invoked, but errors may have
been reported by the invoked
TSO/E service -- also, no
OMVS-detected warning
condition were found */

/*
* Severe errors -- TSO/3270 connection is ended
* ============= ----------------------------
*
* The TSO/3270 request is not processed. The response is written
* back on the TTY. TSO/3270 passthrough mode is ended, and the TTY
* is placed back in normal operational mode. The rest of the
* request data is then treated as normal session data and is written
* into the output area of the shell session.
*/

#define _TSO3270_ERROR_NOTFF 0xC1U /* __ff field was not 0xFF,
probably indicating that the
__l field in the prior
request was incorrect, or
that too little or too much
data was present in the
prior request. */

#define _TSO3270_ERROR_TOOLONG 0xC2U /* __l field is too long. The
data length must be always
be 32767 or less for any
request */

/*
* Errors -- TSO/3270 request is not passed to TSO/E
* ====== ---------------------------------------
*
* The complete request and __l bytes of data in the __d field are
* read and flushed. The TSO/E OMVS command then looks for the 0xFF
* byte at the start of the next request.
*
*/

#define _TSO3270_ERROR_UNKFCN 0x81U /* __fcn field contains an
unknown Function code */

#define _TSO3270_ERROR_LNOT0 0x82U /* __l field was not zero, as
required for this TSO/3270
request */

#define _TSO3270_ERROR_P1BAD 0x91U /* __p1 field contains an
incorrect value for this
TSO/3270 passthrough mode
request */

#define _TSO3270_ERROR_P2BAD 0x92U /* __p2 field contains an
incorrect value for this
TSO/3270 passthrough mode

214 z/OS V1R1.0 UNIX System Services Programming Tools

request */

#define _TSO3270_ERROR_P3BAD 0x93U /* __p3 field contains an
incorrect value for this
TSO/3270 passthrough mode
request */

#define _TSO3270_ERROR_NOSTG 0xA1U /* There is not enough storage
to invoke the requested TSO/E
service -- this error
can also cause the TSO/E OMVS
command to end suddenly */

/*
* Errors -- TSO/3270 request was passed to TSO/E, data passback is
* ====== suppressed
* --
*
* The TSO/E service was invoked, but a proper TSO/3270 response
* cannot be passed back.
*
*/

#define _TSO3270_ERROR_R1LONG 0xB1U /* After TGET, data length in
register 1 was more than
32767 bytes, or was longer
than the OMVS TGET buffer
size. (Note: the OMVS TGET
buffer can be longer than
the __p3 (length) field of
the current TGET request) */

/*
* Warnings - TSO/3270 passthrough mode request is passed to TSO/E
* ======== --
*
* note: The warning code is placed in the response along with the
* /return code and any other passed back data from the invoked TSO/E
* service. The warning condition should not affect the
* results from the invoked TSO/E service.
*/

#define _TSO3270_ERROR_P1NOT0 0x41U /* __p1 field should be 0 for
this TSO/3270 request, but
was not */

#define _TSO3270_ERROR_P2NOT0 0x42U /* __p2 field should be 0 for
this TSO/3270 request, but
was not */

#define _TSO3270_ERROR_P3NOT0 0x43U /* __p3 field should be 0 for
this TSO/3270 request, but
was not */

#define _TSO3270_ERROR_P1RES1 0x49U /* one or more reserved bits
in the __p1 field are not
zero, as they should be */

#define _TSO3270_ERROR_P2RES1 0x4AU /* one or more reserved bits
in the __p2 field are not
zero, as they should be */

Appendix A. TSO/3270 Passthrough Mode 215

/**
*
*
* TSO/3270 Passthrough requests and responses
* ===
*
*
***/

/*---
*
* GTDEVSIZ request layout
* -----------------------
*
* __ff = 0xFF
*
* __fcn = _TSO3270_GTDEVSIZ
*
* __p1 = 0
* __p2 = 0
* __p3 = 0
*
* __l = 0 (no data is passed to GTDEVSIZ)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*
*
---/

/*---
*
* GTDEVSIZ response layout
* ------------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_GTDEVSIZ
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from GTDEVSIZ in register 15
* (-1 is set if error prevented the call to GTDEVSIZ)
*
* __l = 0 -- if error prevented GTDEVSIZ from being invoked
* 8 -- if GTDEVSIZ was invoked
*
* __d = not present, if GTDEVSIZ was not invoked (__l = 0)
* Otherwise, 8 bytes of data from GTDEVSIZ:
*
* Bytes 0-3 are register 0 (lines on screen, or 0)
* Bytes 4-7 are register 1 (characters per line)
*
*
---/

/*
* Layout of returned terminal size from GTDEVSIZ
* --
*/

216 z/OS V1R1.0 UNIX System Services Programming Tools

typedef struct __tso3270_gtdevsiz_data_s
{

unsigned int __reg0; /* value returned in register
0 from GTDEVSIZ */

unsigned int __reg1; /* value returned in register
1 from GTDEVSIZ */

} __tso3270_gtdevsiz_data_t;

/*
* GTDEVSIZ return codes in __rc field
* -----------------------------------
*/

#define _TSO3270_GTDEVSIZ_RC_OK 0 /* GTDEVSIZ successful */
#define _TSO3270_GTDEVSIZ_RC_PARM 4 /* Unwanted parm present */

/*- -
*
* macros to extract information from GTDEVSIZ reponse
* --
*
*
* _TSO3270_GTDEVSIZ_LENGTH(p) -- extract logical screen length from
* GTDEVSIZ response (register 0)
*
* returned type = unsigned int
*
*
* _TSO3270_GTDEVSIZ_LINESIZE(p) -- extract logical line size from
* GTDEVSIZ response (register 1)
*
* returned type = unsigned int
*
*
*
* notes: "p" is the address of the start of a TSO/3270 passthrough
* response from a successful invocation of GTSIZE. "p" must
* point to the 12-byte response header, not the data (__d)
* field. The entire 20-byte response from GTSIZE is assumed
* to be present in a contiguous area starting at "p".
*
* "p" must be castable to type (void *)
*
*
*
*
* Example:
* =======
*
* char read_buf[...]
* size_t screen_area ...
* ...
* ... issue GTDEVSIZ request using write() ...
* ... do read() to get response from GTDEVSIZ into read_buf ...
* ...
*
* screen_area = (size_t)_TSO3270_GTDEVSIZ_LENGTH(read_buf) *
* (size_t)_TSO3270_GTDEVSIZ_LINESIZE(read_buf);
*
- -/

#define _TSO3270_GTDEVSIZ_LENGTH(p) /* @D1A*/\
(/* @D1A*/\
(/* @D1A*/\
(__tso3270_gtdevsiz_data_t *)(void *) /* @D1A*/\

Appendix A. TSO/3270 Passthrough Mode 217

(((__tso3270_response_t *)(void *)(p))->__d) /* @D1A*/\
) /* @D1A*/\
->__reg0 /* @D1A*/\
) /* @D1A*/

#define _TSO3270_GTDEVSIZ_LINESIZE(p) /* @D1A*/\
(/* @D1A*/\
(/* @D1A*/\
(__tso3270_gtdevsiz_data_t *)(void *) /* @D1A*/\
(((__tso3270_response_t *)(void *)(p))->__d) /* @D1A*/\
) /* @D1A*/\
->__reg1 /* @D1A*/\
) /* @D1A*/

/*---
*
* GTSIZE request layout
* ---------------------
*
* __ff = 0xFF
*
* __fcn = _TSO3270_GTSIZE
*
* __p1 = 0
* __p2 = 0
* __p3 = 0
*
* __l = 0 (no data is passed to GTSIZE)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*
*
---/

/*---
*
* GTSIZE response layout
* ----------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_GTSIZE
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from GTSIZE in register 15
* (-1 is set if error prevented the call to GTSIZE)
*
* __l = 0 -- if error prevented GTSIZE from being invoked
* 8 -- if GTSIZE was invoked
*
* __d = not present, if GTSIZE was not invoked (__l = 0)
* Otherwise, 8 bytes of data from GTSIZE:
*
* Bytes 0-3 are register 0 (lines on screen, or 0)
* Bytes 4-7 are register 1 (characters per line)
*
*
---/

218 z/OS V1R1.0 UNIX System Services Programming Tools

/*
* Layout of returned terminal size data from GTSIZE
* ---
*/

typedef struct __tso3270_gtsize_data_s
{

unsigned int __reg0; /* value returned in register
0 from GTSIZE */

unsigned int __reg1; /* value returned in register
1 from GTSIZE */

} __tso3270_gtsize_data_t;

/*
* GTSIZE return codes in __rc field
* ---------------------------------
*/

#define _TSO3270_GTSIZE_RC_OK 0 /* GTSIZE successful */
#define _TSO3270_GTSIZE_RC_PARM 4 /* Unwanted parm present */

/*- -
*
* macros to extract information from GTSIZE response
* --
*
*
* _TSO3270_GTSIZE_LENGTH(p) -- extract screen length from
* GTSIZE response (register 0)
*
* returned type = unsigned int
*
*
* _TSO3270_GTSIZE_LINESIZE(p) -- extract line size from GTSIZE
* response (register 1)
*
* returned type = unsigned int
*
*
*
* notes: "p" is the address of the start of a TSO/3270 passthrough
* response from a successful invocation of GTSIZE. "p" must
* point to the 12-byte response header, not the data (__d)
* field. The entire 20-byte response from GTSIZE is assumed
* to be present in a contiguous area starting at "p".
*
* "p" must be castable to type (void *)
*
*
*
*
* Example:
* =======
*
* char read_buf[...] ...
* size_t screen_area ...
* ...
* ... issue GTSIZE request using write() ...
* ... do read() to get response from GTSIZE into read_buf ...
* ...
*
* screen_area = (size_t)_TSO3270_GTSIZE_LENGTH(read_buf) *
* (size_t)_TSO3270_GTSIZE_LINESIZE(read_buf);

Appendix A. TSO/3270 Passthrough Mode 219

*
- -/

#define _TSO3270_GTSIZE_LENGTH(p) /* @D1A*/\
(/* @D1A*/\
(/* @D1A*/\
(__tso3270_gtsize_data_t *)(void *) /* @D1A*/\
(((__tso3270_response_t *)(void *)(p))->__d) /* @D1A*/\
) /* @D1A*/\
->__reg0 /* @D1A*/\
) /* @D1A*/

#define _TSO3270_GTSIZE_LINESIZE(p) /* @D1A*/\
(/* @D1A*/\
(/* @D1A*/\
(__tso3270_gtsize_data_t *)(void *) /* @D1A*/\
(((__tso3270_response_t *)(void *)(p))->__d) /* @D1A*/\
) /* @D1A*/\
->__reg1 /* @D1A*/\
) /* @D1A*/

/*---
*
* GTTERM request layout
* ---------------------
*
* Note: The ALTSIZE= and ATTRIB= parameters are always set, so that
* GTTERM always returns the primary and alternate screen
* sizes and the terminal attributes.
*
*
* __ff = 0xFF
*
* __fcn = _TSO3270_GTTERM
*
* __p1 = 0
* __p2 = 0
* __p3 = 0
*
* __l = 0 (no data is passed to GTTERM)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*
*
---/

/*---
*
* GTTERM response layout
* ----------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_GTTERM
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from GTTERM in register 15
* (-1 is set if error prevented the call to GTTERM)

220 z/OS V1R1.0 UNIX System Services Programming Tools

*
* __l = 0 -- if error prevented GTTERM from being invoked
* 8 -- if GTTERM was invoked
*
* __d = not present, if GTTERM was not invoked (__l = 0)
* Otherwise, 8 bytes of data from GTTERM:
*
* Byte 0 -- first byte of PRMSIZE (primary screen rows)
* Byte 1 -- second byte of PRMSIZE (primary screen cols)
* Byte 2 -- first byte of ALTSIZE (alternate screen rows)
* Byte 3 -- second byte of ALTSIZE (alternate screen col)
* Bytes 4-7 -- 4 bytes of ATTRIB field (terminal attributes)
*
---/

/*
* Layout of 2-byte screen size field from PRMSIZE or ALTSIZE
* --
*/

typedef struct __tso3270_gtterm_size_s /* returned PRMSIZE/ALTSIZE */
{

unsigned char __rows; /* number of rows */
unsigned char __columns; /* number of columns */

} __tso3270_gtterm_size_t; /* defined type */

/*
* Layout of 4-byte terminal attributes (returned ATTRIB field)
* --
*/

typedef struct __tso3270_gtterm_attr_s /* returned ATTRIB field */
{

unsigned :8; /* ATTRIB byte 0 (unused) */

unsigned __dbcs :1; /* on if DBCS supported */
unsigned __language :7; /* 7-bit language field */

unsigned :4; /* ATTRIB byte 2 (unused) */
unsigned __ascii_type :2; /* ASCII-7 or ASCII-8 ID */
unsigned :2; /* (unused) */

unsigned :6; /* ATTRIB byte 3 (unused) */
unsigned __ascii :1; /* on if ASCII device */
unsigned __query :1; /* on if Query supported */

} __tso3270_gtterm_attr_t; /* defined type */

#define _TSO3270_GTTERM_DEFAULT 0U /* American English (default)*/
#define _TSO3270_GTTERM_ENU 1U /* American English */
#define _TSO3270_GTTERM_KATAKANA 17U /* Katakana */

#define _TSO3270_GTTERM_ASCII_7 0U /* ASCII-7 device */
#define _TSO3270_GTTERM_ASCII_8 1U /* ASCII-8 device */

/*
* Layout of 8-byte combined data from GTTERM in the TSO3270 response
* --
*/

typedef struct __tso3270_gtterm_data_s /* combined GTTERM output */
{

__tso3270_gtterm_size_t __pri; /* primary screen size

Appendix A. TSO/3270 Passthrough Mode 221

(PRMSZE) from GTTERM */

__tso3270_gtterm_size_t __alt; /* alternate screen size
(ALTSZE) from GTTERM */

__tso3270_gtterm_attr_t __attr; /* terminal attributes
(ATTRIB) from GTTERM */

} __tso3270_gtterm_data_t; /* defined type */

/*
* GTTERM return codes in __rc field
* ---------------------------------
*/

#define _TSO3270_GTTERM_RC_OK 0 /* GTTERM successful */
#define _TSO3270_GTTERM_RC_NODISP 8 /* Not a display */
#define _TSO3270_GTTERM_RC_PARM 12 /* Parm list error */

/*- -
*
* macros to extract information from GTTERM response
* --
*
*
* _TSO3270_GTTERM_PRI_ROWS(p) -- extract number of rows when
* primary screen size is active
*
* returned type = unsigned char
*
*
* _TSO3270_GTTERM_PRI_COLUMNS(p) -- extract number of columns when
* alternate screen size is active
*
* returned type = unsigned char
*
*
* _TSO3270_GTTERM_ALT_ROWS(p) -- extract number of rows when
* alternate screen size is active
*
* returned type = unsigned char
*
*
* _TSO3270_GTTERM_ALT_COLUMNS(p) -- extract number of columns when
* alternate screen size is active
*
* returned type = unsigned char
*
*
* _TSO3270_GTTERM_ATTR(p) -- extract terminal attributes
*
* returned type =
* __tso3270_gtterm_attr_t
*
*
* notes: "p" is the address of the start of a TSO/3270 passthrough
* response from a successful invocation of GTTERM. "p" must
* point to the 12-byte response header, not the data (__d)
* field. The entire 20-byte response from GTTERM is assumed
* to be present in a contiguous area starting at "p".
*
* "p" must be castable to type (void *)
*
*
*
*

222 z/OS V1R1.0 UNIX System Services Programming Tools

* Example:
* =======
*
* char read_buf[...] ...
* size_t size_1ry ...
* int query_supported ...
* int dbcs_supported ...
* ...
* ... issue GTTERM request using write() ...
* ... do read() to get response from GTTERM into read_buf ...
* ...
*
* size_1ry = (size_t)_TSO3270_GTTERM_PRI_ROWS(read_buf) *
* (size_t)_TSO3270_GTTERM_PRI_COLUMNS(read_buf);
*
* query_supported = (int)(_TSO3270_GTTERM_ATTR(read_buf).__query);
* dbcs_supported = (int)(_TSO3270_GTTERM_ATTR(read_buf).__dbcs);
*
*
- -/

#define _TSO3270_GTTERM_PRI_ROWS(p) /* @D1A*/\
(/* @D1A*/\
(/* @D1A*/\
(__tso3270_gtterm_data_t *)(void *) /* @D1A*/\
(((__tso3270_response_t *)(void *)(p))->__d) /* @D1A*/\
) /* @D1A*/\
->__pri.__rows /* @D1A*/\
) /* @D1A*/

#define _TSO3270_GTTERM_ALT_ROWS(p) /* @D1A*/\
(/* @D1A*/\
(/* @D1A*/\
(__tso3270_gtterm_data_t *)(void *) /* @D1A*/\
(((__tso3270_response_t *)(void *)(p))->__d) /* @D1A*/\
) /* @D1A*/\
->__alt.__rows /* @D1A*/\
) /* @D1A*/

#define _TSO3270_GTTERM_PRI_COLUMNS(p) /* @D1A*/\
(/* @D1A*/\
(/* @D1A*/\
(__tso3270_gtterm_data_t *)(void *) /* @D1A*/\
(((__tso3270_response_t *)(void *)(p))->__d) /* @D1A*/\
) /* @D1A*/\
->__pri.__columns /* @D1A*/\
) /* @D1A*/

#define _TSO3270_GTTERM_ALT_COLUMNS(p) /* @D1A*/\
(/* @D1A*/\
(/* @D1A*/\
(__tso3270_gtterm_data_t *)(void *) /* @D1A*/\
(((__tso3270_response_t *)(void *)(p))->__d) /* @D1A*/\
) /* @D1A*/\
->__alt.__columns /* @D1A*/\
) /* @D1A*/

#define _TSO3270_GTTERM_ATTR(p) /* @D1A*/\
(/* @D1A*/\
(/* @D1A*/\
(__tso3270_gtterm_data_t *)(void *) /* @D1A*/\
(((__tso3270_response_t *)(void *)(p))->__d) /* @D1A*/\
) /* @D1A*/\
->__attr /* @D1A*/\

Appendix A. TSO/3270 Passthrough Mode 223

) /* @D1A*/

/*---
*
* IKJEFTSR request layout
* -----------------------
*
* note: IKJEFTSR optional parameters 7, 8, and 9 are not used.
*
*
* __ff = 0xFF
*
* __fcn = _TSO3270_IKJEFTSR
*
* __p1 = 0
* __p2 = 0
*
* __p3 = IKJEFTSR parameter 1. This field is passed through to
* IKJEFTSR with no checking.
*
* __l = number of bytes of data to be passed to IKJEFTSR. This must
* be less than 32768. This length is passed to IKJEFTSR as
* parameter 3.
*
* __d = data to be passed to IKJEFTSR in parameter 2. This is the
* TSO command text string.
*
---/

/* Values for IKJEFTSR parameter 1 (in __p3 field) */
/* ------------------------------- */

#define _TSO3270_IKJEFTSR_P3_AUTH 0x00000000 /* authorized @D1A*/
#define _TSO3270_IKJEFTSR_P3_UNAUTH 0x00010000 /* unauthorized @D1A*/
#define _TSO3270_IKJEFTSR_P3_NODUMP 0x00000000 /* no dump @D1A*/
#define _TSO3270_IKJEFTSR_P3_DUMP 0x00000100 /* dump @D1A*/
#define _TSO3270_IKJEFTSR_P3_COMMAND 0x00000001 /* Invoke cmd @D1A*/
#define _TSO3270_IKJEFTSR_P3_PROGRAM 0x00000002 /* Invoke pgm @D1A*/
#define _TSO3270_IKJEFTSR_P3_EITHER 0x00000005 /* Invoke either @D1A*/

/*---
*
* IKJEFTSR response layout
* ------------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_IKJEFTSR
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from IKJEFTSR in register 15
* (-1 is set if error prevented the call to IKJEFTSR)
*
* __l = 0 -- If error prevented IKJEFTSR from being invoked
* 12 -- IF IKJEFTSR was invoked
*
* __d = not present, if IKJEFTSR was not invoked (__l = 0)
* Otherwise 12 bytes of data from IKJEFTSR
*
* Bytes 0-3 -- Function return code from IKJEFTSR parameter 4

224 z/OS V1R1.0 UNIX System Services Programming Tools

* Bytes 4-7 -- Reason code from IKJEFTSR parameter 5
* Bytes 8-12 -- abend code code from IKJEFTSR parameter 6
*
---/

/* Layout of returned parameters 4, 5, and 6 from IKJEFTSR */
/* --- */

typedef struct __tso3270_abend_s /* combined abend code @D1A*/
{ /* @D1A*/

unsigned __flags :8; /* abend flags from TCB @D1A*/
unsigned __system :12; /* system abend code @D1A*/
unsigned __user :12; /* user abend code @D1A*/

} __tso3270_abend_t; /* @D1A*/

typedef struct __tso3270_ikjeftsr_data_s /* IKJEFTSR results @D1A*/
{ /* @D1A*/

int __frc; /* Return code (parm 4) @D1A*/
int __reason; /* Reason code (parm 5) @D1A*/
__tso3270_abend_t __abend; /* abend code (parm 6) @D1A*/

} __tso3270_ikjeftsr_data_t; /* @D1A*/

/* IKJEFTSR return codes (reg 15) in __rc field */
/* -- */

#define _TSO3270_IKJEFTSR_RC_OK 0 /* Command Ran OK @D1A*/
#define _TSO3270_IKJEFTSR_RC_CMDRC 4 /* Non-zero command return code @D1A*/
#define _TSO3270_IKJEFTSR_RC_ATTN 8 /* ATTN ended the command @D1A*/
#define _TSO3270_IKJEFTSR_RC_abend 12 /* Command abended @D1A*/
#define _TSO3270_IKJEFTSR_RC_BADADR 16 /* Bad address in parm @D1A*/
#define _TSO3270_IKJEFTSR_RC_PARM 20 /* Parameter list error @D1A*/
#define _TSO3270_IKJEFTSR_RC_ERROR 24 /* Unexpected error @D1A*/
#define _TSO3270_IKJEFTSR_RC_31BIT 28 /* Unexpected 31-bit addr @D1A*/

/* Function return codes (parm 4) in __frc field */
/* --- */

#define _TSO3270_IKJEFTSR_FR_NONE (-1) /* Fcn return code not filled in @D1A*/
#define _TSO3270_IKJEFTSR_FR_OK 0 /* Normal return code @D1A*/

/* IKJEFTSR reason codes (parm 5) in __reason field */
/* -- */

#define _TSO3270_IKJEFTSR_R_NONE (-1) /* Reason not filled in @D1A*/
#define _TSO3270_IKJEFTSR_R_PLENGTH 4 /* Invalid Plist length @D1A*/
#define _TSO3270_IKJEFTSR_R_BADFLG1 8 /* 1st flag byte non-zero @D1A*/
#define _TSO3270_IKJEFTSR_R_BADFLG4 12 /* 4th flag byte invalid @D1A*/
#define _TSO3270_IKJEFTSR_R_PARM7 16 /* Unwanted 7th parameter @D1A*/
#define _TSO3270_IKJEFTSR_R_BADFLG3 20 /* 3rd flag byte invalid @D1A*/
#define _TSO3270_IKJEFTSR_R_NOTSO 24 /* Not TSO/E environment @D1A*/
#define _TSO3270_IKJEFTSR_R_TOOLONG 28 /* Text >32763 bytes long @D1A*/
#define _TSO3270_IKJEFTSR_R_BADADR7 32 /* Bad address in parm 7 @D1A*/
#define _TSO3270_IKJEFTSR_R_BADPRM7 36 /* Parm 7 is invalid @D1A*/
#define _TSO3270_IKJEFTSR_R_NOFOUND 40 /* Command not found @D1A*/
#define _TSO3270_IKJEFTSR_R_SYNTAX 44 /* Command syntax error @D1A*/
#define _TSO3270_IKJEFTSR_R_PERCENT 48 /* CMD started with % @D1A*/
#define _TSO3270_IKJEFTSR_R_BACKG 52 /* Unsupported backgd cmd @D1A*/
#define _TSO3270_IKJEFTSR_R_AUTHLIB 56 /* Not in auth library @D1A*/
#define _TSO3270_IKJEFTSR_R_AUTH 60 /* Authorized command @D1A*/
#define _TSO3270_IKJEFTSR_R_TOKEN 64 /* Invalid token @D1A*/

Appendix A. TSO/3270 Passthrough Mode 225

#define _TSO3270_IKJEFTSR_R_ESTAE 204 /* ESTAE error @D1A*/
#define _TSO3270_IKJEFTSR_R_STAX 208 /* STAX error @D1A*/
#define _TSO3270_IKJEFTSR_R_PUTGET 212 /* PUTGET error @D1A*/
#define _TSO3270_IKJEFTSR_R_SCAN 216 /* IKJSCAN error @D1A*/
#define _TSO3270_IKJEFTSR_R_BLDL 220 /* BLDL error @D1A*/
#define _TSO3270_IKJEFTSR_R_TBLS 224 /* IKJTBLS error @D1A*/
#define _TSO3270_IKJEFTSR_R_ATTACH 228 /* ATTACH error @D1A*/
#define _TSO3270_IKJEFTSR_R_LOAD 236 /* LOAD error @D1A*/
#define _TSO3270_IKJEFTSR_R_LINK 240 /* LINK error @D1A*/
#define _TSO3270_IKJEFTSR_R_IKJ441 244 /* IRXTVARS IKJCT441 err @D1A*/
#define _TSO3270_IKJEFTSR_R_DMSRVA 248 /* IRXTVARS DMSRVA error @D1A*/
#define _TSO3270_IKJEFTSR_R_CLENUP 252 /* IRXTVARS cleanup error @D1A*/
#define _TSO3270_IKJEFTSR_R_STACK 256 /* STACK error @D1A*/
#define _TSO3270_IKJEFTSR_R_TERM 260 /* TMP termination @D1A*/

/* abend codes (parm 6) in __abend field */
/* ------------------------------------- */

#define _TSO3270_IKJEFTSR_A_NONE (-1) /* abend not filled in @D1A*/

/*---
*
* STCOM request layout
* --------------------
*
* Note: The TSO/E OMVS command does not save the STCOM setting when
* TSO/3270 passthrough mode is entered, nor does is restore or
* reset it when TSO/3270 passthrough mode ends. Changes to the
* STCOM setting may persist after the TSO/3270 passthrough mode
* application has ended.
*
*
* __ff = 0xFF
*
* __fcn = _TSO3270_STCOM
*
* __p1 = 0, or one of the following:
*
* _TSO3270_STCOM_YES - do STCOM YES (default)
* _TSO3270_STCOM_NO - do STCOM NO
*
*
* __p2 = 0
*
* __p3 = 0
*
* __l = 0 (no data is passed to STCOM)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*
*
---/

#define _TSO3270_STCOM_YES 0U /* STCOM YES */
#define _TSO3270_STCOM_NO 1U /* STCOM NO */

/*---
*

226 z/OS V1R1.0 UNIX System Services Programming Tools

* STCOM response layout
* ---------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_STCOM
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from STCOM in register 15
* (-1 is set if error prevented the call to STCOM)
*
* __l = 0
*
* __d = not present
*
---/

/*
* STCOM return codes in __rc field
* --------------------------------
*/

#define _TSO3270_STCOM_RC_OK 0 /* STCOM successful */
#define _TSO3270_STCOM_RC_PARM 4 /* Bad parameter */

/*---
*
* STFSMODE request layout
* -----------------------
*
* note: The STFSMODE RSHWKEY=n option is not supported. The default
* reshow key, PA2, will be used.
*
*
* __ff = 0xFF
*
* __fcn = _TSO3270_STFSMODE
*
* __p1 = 0 or any valid combination (added or logically ORed
* together) of the following 4 sets of options:
*
* at most one of the following:
*
* _TSO3270_STFSMODE_ON - STFSMODE ON (default)
* _TSO3270_STFSMODE_OFF - STFSMODE OFF
*
* combined with at most one of the following:
*
* _TSO3270_STFSMODE_NOINITIAL - STFSMODE INITIAL=NO (default)
* _TSO3270_STFSMODE_INITIAL - STFSMODE INITIAL=YES
*
* note: _TSO3270_STFSMODE_INITIAL is ignored (by the
* STFSMODE macro) if _TSO3270_STFSMODE_OFF is
* specified.
*
*
* combined with at most one of the following:
*
* _TSO3270_STFSMODE_EDIT - STFSMODE NOEDIT=NO (default)
* _TSO3270_STFSMODE_NOEDIT - STFSMODE NOEDIT=YES
*

Appendix A. TSO/3270 Passthrough Mode 227

* note: _TSO3270_STFSMODE_NOEDIT is not allowed in
* combination with _TSO3270_STSFMODE_OFF. (The
* STFSMODE macro does not allow this combination.)
*
*
* combined with at most one of the following:
*
* _TSO3270_STFSMODE_NOPARTION - STFSMODE PARTION=NO (default)
* _TSO3270_STFSMODE_PARTION - STFSMODE PARTION=YES
*
*
*
* __p2 = 0
* __p3 = 0
*
* __l = 0 (no data is passed to STFSMODE)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*
*
---/

#define _TSO3270_STFSMODE_ON 0x00 /* STFSMODE ON */
#define _TSO3270_STFSMODE_OFF 0x01 /* STFSMODE OFF */

#define _TSO3270_STFSMODE_NOINITIAL 0x00 /* STFSMODE INITIAL=NO */
#define _TSO3270_STFSMODE_INITIAL 0x04 /* STFSMODE INITIAL=YES */

#define _TSO3270_STFSMODE_EDIT 0x00 /* STFSMODE NOEDIT=NO */
#define _TSO3270_STFSMODE_NOEDIT 0x02 /* STFSMODE NOEDIT=YES */

#define _TSO3270_STFSMODE_NOPARTION 0x00 /* STFSMODE PARTION=NO */
#define _TSO3270_STFSMODE_PARTION 0x08 /* STFSMODE PARTION=YES */

/*
* Map of bit subfields in __p1 for STFSMODE request
* ---
*/

typedef struct __tso3270_stfsmode_p1_s
{

unsigned :4; /* reserved */
unsigned __partion :1; /* STFSMODE PARTION=YES */
unsigned __initial :1; /* STFSMODE INITIAL=YES */
unsigned __noedit :1; /* STFSMODE NOEDIT=YES */
unsigned __off :1; /* STFSMODE OFF */

} __tso3270_stfsmode_p1_t;

/*---
*
* STFSMODE response layout
* ------------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_STFSMODE
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from STFSMODE in register 15

228 z/OS V1R1.0 UNIX System Services Programming Tools

* (-1 is set if error prevented the call to STFSMODE)
*
* __l = 0
*
* __d = not present
*
---/

/*
* STFSMODE return codes in __rc field
* -----------------------------------
*/

#define _TSO3270_STFSMODE_RC_OK 0 /* STFSMODE successful */
#define _TSO3270_STFSMODE_RC_PARM 4 /* Bad parameter */
#define _TSO3270_STFSMODE_RC_NO3270 8 /* Not VTAM 3270 terminal */

/*---
*
* STLINENO request layout
* -----------------------
*
* __ff = 0xFF
*
* __fcn = _TSO3270_STLINENO
*
* __p1 = 0, or one of the following:
*
* _TSO3270_STLINENO_OFF - do STLINENO MODE=OFF (default)
* _TSO3270_STLINENO_ON - do STLINENO MODE=ON
*
*
* __p2 = 0
*
* __p3 = line number to pass to STLINENO in the LINE=nn option
*
* __l = 0 (no data is passed to STLINENO)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*
*
---/

#define _TSO3270_STLINENO_OFF 0U /* STLINENO MODE=OFF */
#define _TSO3270_STLINENO_ON 1U /* STLINENO MODE=ON */

/*---
*
* STLINENO response layout
* ------------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_STLINENO
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from STLINENO in register 15
* (-1 is set if error prevented the call to STLINENO)

Appendix A. TSO/3270 Passthrough Mode 229

*
* __l = 0
*
* __d = not present
*
---/

/*
* STLINENO return codes in __rc field
* -----------------------------------
*/

#define _TSO3270_STLINENO_RC_OK 0 /* STLINENO successful */
#define _TSO3270_STLINENO_RC_PARM 4 /* Bad parameter */
#define _TSO3270_STLINENO_RC_NODISP 8 /* Not display terminal */
#define _TSO3270_STLINENO_RC_BADLINE 12 /* Bad line number */

/*---
*
* STSIZE request layout
* ---------------------
*
* __ff = 0xFF
*
* __fcn = _TSO3270_STSIZE
*
* __p1 = 0
*
* __p2 = logical line size to pass to STSIZE in the SIZE=nn operand
*
* Note: This number is limited to 255 both by STSIZE
* and the 1-byte length of this field in the TSO/3270
* data stream.
*
* __p3 = number of lines to pass to STSIZE in the LINE=nn operand
*
* __l = 0 (no data is passed to STSIZE)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*
*
---/

/*---
*
* STSIZE response layout
* ----------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_STSIZE
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from STSIZE in register 15
* (-1 is set if error prevented the call to STSIZE)
*
* __l = 0
*

230 z/OS V1R1.0 UNIX System Services Programming Tools

* __d = not present
*
---/

/*
* STSIZE return codes in __rc field
* ---------------------------------
*/

#define _TSO3270_STSIZE_RC_OK 0 /* STSIZE successful */
#define _TSO3270_STSIZE_RC_PARM 4 /* Invalid parm */
#define _TSO3270_STSIZE_RC_VALUES 8 /* Invalid LINE/SIZE */
#define _TSO3270_STSIZE_RC_SIZE 12 /* term size mismatch */

/*---
*
* STTMPMD request layout
* ----------------------
*
* __ff = 0xFF
*
* __fcn = _TSO3270_STTMPMD
*
* __p1 = 0, or any valid combination (added or logically ORed
* together) of the following 2 sets of options:
*
* at most one of the following:
*
* _TSO3270_STTMPMD_ON - do STTMPMD ON (default)
* _TSO3270_STTMPMD_OFF - do STTMPMD OFF
*
* combined with at most one of the following:
*
* _TSO3270_STTMPMD_KEYSNO - do STTMPMD KEYS=NO (default)
* _TSO3270_STTMPMD_KEYSALL - do STTMPMD KEYS=ALL
*
*
*
* __p2 = 0
*
* __p3 = 0
*
* __l = 0 (no data is passed to STTMPMD)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*
*
---/

#define _TSO3270_STTMPMD_ON 0x00U /* STTMPMD ON */
#define _TSO3270_STTMPMD_OFF 0x01U /* STTMPMD OFF */

#define _TSO3270_STTMPMD_KEYSNO 0x00U /* STTMPMD KEYS=NO */
#define _TSO3270_STTMPMD_KEYSALL 0x02U /* STTMPMD KEYS=ALL */

/*
* Map of bit subfields in __p1 for STTMPMD request
* --
*/

typedef struct __tso3270_sttmpmd_p1_s

Appendix A. TSO/3270 Passthrough Mode 231

{
unsigned :6; /* reserved */
unsigned __keysall :1; /* STTMPMD KEYS=ALL */
unsigned __off :1; /* STTMPMD OFF */

} __tso3270_sttmpmd_p1_t;

/*---
*
* STTMPMD response layout
* -----------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_STTMPMD
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from STTMPMD in register 15
* (-1 is set if error prevented the call to STTMPMD)
*
* __l = 0
*
* __d = not present
*
---/

/*
* STTMPMD return codes in __rc field
* ----------------------------------
*/

#define _TSO3270_STTMPMD_RC_OK 0 /* STTMPMD successful */
#define _TSO3270_STTMPMD_RC_PARM 4 /* Bad parameter */
#define _TSO3270_STTMPMD_RC_NODISP 8 /* Not display terminal */

/*---
*
* TCLEARQ request layout
* ----------------------
*
* __ff = 0xFF
*
* __fcn = _TSO3270_TCLEARQ
*
* __p1 = 0, or one of the following:
*
* _TSO3270_TCLEARQ_INPUT - do TCLEARQ INPUT (default)
* _TSO3270_TCLEARQ_OUTPUT - do TCLEARQ OUTPUT
*
*
* __p2 = 0
*
* __p3 = 0
*
* __l = 0 (no data is passed to TCLEARQ)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*

232 z/OS V1R1.0 UNIX System Services Programming Tools

*
---/

#define _TSO3270_TCLEARQ_INPUT 0U /* TCLEARQ INPUT */
#define _TSO3270_TCLEARQ_OUTPUT 1U /* TCLEARQ OUTPUT */

/*---
*
* TCLEARQ response layout
* -----------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_TCLEARQ
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from TCLEARQ in register 15
* (-1 is set if error prevented the call to TCLEARQ)
*
* __l = 0
*
* __d = not present
*
---/

/*
* TCLEARQ return codes in __rc field
* ----------------------------------
*/

#define _TSO3270_TCLEARQ_RC_OK 0 /* TCLEARQ successful */
#define _TSO3270_TCLEARQ_RC_PARM 4 /* Bad parameter */

/*---
*
* TGET request layout
* -------------------
*
* __ff = 0xFF
*
* __fcn = _TSO3270_TGET
*
*
* __p1 = 0 or any valid combination (added or logically ORed
* together) of the following 2 sets of options:
*
* at most one of the following:
*
* _TSO3270_TGET_EDIT - do TGET EDIT (default)
* _TSO3270_TGET_ASIS - do TGET ASIS
*
* combined with at most one of the following:
*
* _TSO3270_TGET_WAIT - do TGET WAIT (default)
* _TSO3270_TGET_NOWAIT - do TGET NOWAIT
*
*
*
* __p2 = 0
*

Appendix A. TSO/3270 Passthrough Mode 233

*
* __p3 = Buffer size used on the TGET request
*
* Must be from 0 to 32767 bytes.
*
*
* __l = 0 (no data is passed to TGET)
*
* __d = must not be present in the data stream. The FF byte of the
* next TSO/3270 request must immediately follow the __l field
* from this request
*
---/

#define _TSO3270_TGET_EDIT 0x00U /* do TGET EDIT */
#define _TSO3270_TGET_ASIS 0x01U /* do TGET ASIS */

#define _TSO3270_TGET_WAIT 0x00U /* do TGET WAIT */
#define _TSO3270_TGET_NOWAIT 0x10U /* do TGET NOWAIT */

/*
* Map of bit subfields in __p1 for TGET request
* ---
*/

typedef struct __tso3270_tget_p1_s
{

unsigned :3; /* reserved */
unsigned __nowait :1; /* TGET ,,NOWAIT */
unsigned :2; /* reserved */
unsigned __edit :2; /* TGET ASIS/EDIT field */

} __tso3270_tget_p1_t;

/*---
*
* TGET response layout
* -------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_TGET
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from TGET in register 15
* (-1 is set if error prevented the call to TGET)
*
* __l = number of bytes of data returned by TGET (register 1)
*
* __d = __l bytes of data from TGET
*
* note: If TGET reports more than 32767 bytes, or more
* data than the OMVS TGET buffer can hold, __error
* is set to 0xB1, and none of the data is returned
* (__l will be zero).
*
* Note that the OMVS TGET buffer size can exceed the
* length in __p3, so OMVS may not always return an
* error when __l exceeds __p3.
*
* (This error is not expected. The TSO/E OMVS
* can also end suddenly when this error occurs.)

234 z/OS V1R1.0 UNIX System Services Programming Tools

*
---/

/*
* TGET return codes in __rc field
* -------------------------------
*/

#define _TSO3270_TGET_RC_EDIT 0 /* EDIT/ASIS mode data */
#define _TSO3270_TGET_RC_NOWAIT 4 /* NOWAIT - no data available */
#define _TSO3270_TGET_RC_ATTN 8 /* Attention occurred */
#define _TSO3270_TGET_RC_MORE 12 /* More data than will fit */
#define _TSO3270_TGET_RC_PARM 16 /* Bad parameters */
#define _TSO3270_TGET_RC_LOGOFF 20 /* Terminal was logged off */
#define _TSO3270_TGET_RC_NOEDIT 24 /* NOEDIT mode data */
#define _TSO3270_TGET_RC_MORENOED 28 /* NOEDIT -- more data avail */

/*---
*
* TPG request layout
* ------------------
*
* __ff = 0xFF
*
* __fcn = _TSO3270_TPG
*
* __p1 = 0 or any valid combination (added or logically ORed
* together) of the following 3 sets of options:
*
* at most one of the following:
*
* _TSO3270_TPG_NOEDIT - do TPG NOEDIT (default)
*
* combined with at most one of the following:
*
* _TSO3270_TPG_WAIT - do TPG WAIT (default)
* _TSO3270_TPG_NOWAIT - do TPG NOWAIT
*
* combined with at most one of the following:
*
* _TSO3270_TPG_NOHOLD - do TPG NOHOLD (default)
* _TSO3270_TPG_HOLD - do TPG HOLD
*
*
* __p2 = 0
* __p3 = 0
*
* __l = number of bytes of data to be passed to TPG. This must be
* less than 32768.
*
* __d = data to be passed to TPG.
*
*
---/

#define _TSO3270_TPG_NOEDIT 0x00U /* do TPG NOEDIT */

#define _TSO3270_TPG_WAIT 0x00U /* do TPG WAIT */
#define _TSO3270_TPG_NOWAIT 0x10U /* do TPG NOWAIT */

#define _TSO3270_TPG_NOHOLD 0x00U /* do TPG NOHOLD */
#define _TSO3270_TPG_HOLD 0x08U /* do TPG HOLD */

Appendix A. TSO/3270 Passthrough Mode 235

/*
* Map of bit subfields in __p1 for TPG request
* --
*/

typedef struct __tso3270_tpg_p1_s
{

unsigned :3; /* reserved */
unsigned __nowait :1; /* TPG ,,NOWAIT */
unsigned __hold :1; /* TPG ,,,HOLD */
unsigned :3; /* reserved */

} __tso3270_tpg_p1_t;

/*---
*
* TPG response layout
* -------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_TPG
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from TPG in register 15
* (-1 is set if error prevented the call to TPG)
*
* __l = 0
*
* __d = not present
*
---/

/*
* TPG return codes in __rc field
* ------------------------------
*/

#define _TSO3270_TPG_RC_OK 0 /* TPG successful */
#define _TSO3270_TPG_RC_NOWAIT 4 /* NOWAIT - no buffer avail. */
#define _TSO3270_TPG_RC_ATTN 8 /* Attention occurred */
#define _TSO3270_TPG_RC_PARM 16 /* Bad parameters */
#define _TSO3270_TPG_RC_LOGOFF 20 /* Terminal was logged off */

/*---
*
* TPUT request layout
* -------------------
*
* __ff = 0xFF
*
* __fcn = _TSO3270_TPUT
*
* __p1 = 0 or any valid combination (added or logically ORed
* together) of the following 4 sets of options:
*
* at most one of the following:
*
* _TSO3270_TPUT_EDIT - do TPUT EDIT (default)
* _TSO3270_TPUT_NOEDIT - do TPUT NOEDIT

236 z/OS V1R1.0 UNIX System Services Programming Tools

* _TSO3270_TPUT_ASIS - do TPUT ASIS
* _TSO3270_TPUT_CONTROL - do TPUT CONTROL (may not be useful)
* _TSO3270_TPUT_FULLSCR - do TPUT FULLSCR
*
* combined with at most one of the following:
*
* _TSO3270_TPUT_WAIT - do TPUT WAIT (default)
* _TSO3270_TPUT_NOWAIT - do TPUT NOWAIT
*
* combined with at most one of the following:
*
* _TSO3270_TPUT_NOHOLD - do TPUT NOHOLD (default)
* _TSO3270_TPUT_HOLD - do TPUT HOLD
*
* combined with at most one of the following:
*
* _TSO3270_TPUT_NOBREAK - do TPUT NOBREAK (default)
* _TSO3270_TPUT_BREAKIN - do TPUT BREAKIN
*
*
* __p2 = 0
* __p3 = 0
*
* __l = number of bytes of data to be passed to TPUT. This must be
* less than 32768.
*
* __d = data to be passed to TPUT. This includes all bytes needed
* by TPUT (including the initial 0x27 byte if doing TPUT
* FULLSCR)
*
---/

#define _TSO3270_TPUT_EDIT 0x00U /* do TPUT EDIT */
#define _TSO3270_TPUT_NOEDIT 0x80U /* do TPUT NOEDIT */
#define _TSO3270_TPUT_ASIS 0x01U /* do TPUT ASIS */
#define _TSO3270_TPUT_CONTROL 0x02U /* do TPUT CONTROL */
#define _TSO3270_TPUT_FULLSCR 0x03U /* do TPUT FULLSCR */

#define _TSO3270_TPUT_WAIT 0x00U /* do TPUT WAIT */
#define _TSO3270_TPUT_NOWAIT 0x10U /* do TPUT NOWAIT */

#define _TSO3270_TPUT_NOHOLD 0x00U /* do TPUT NOHOLD */
#define _TSO3270_TPUT_HOLD 0x08U /* do TPUT HOLD */

#define _TSO3270_TPUT_NOBREAK 0x00U /* do TPUT NOBREAK */
#define _TSO3270_TPUT_BREAKIN 0x04U /* do TPUT BREAKIN */

/*
* Map of bit subfields in __p1 for TPUT request
* ---
*/

typedef struct __tso3270_tput_p1_s
{

unsigned __noedit :1; /* TPUT ,NOEDIT */
unsigned :2; /* reserved */
unsigned __nowait :1; /* TPUT ,,NOWAIT */
unsigned __hold :1; /* TPUT ,,,HOLD */
unsigned __breakin :1; /* TPUT ,,,,BREAKIN */
unsigned __edit :2; /* EDIT/ASIS/CONTROL/FULLSCR */

} __tso3270_tput_p1_t;

/*---
*

Appendix A. TSO/3270 Passthrough Mode 237

* TPUT response layout
* --------------------
*
* __fe = 0xFE
*
* __fcn = _TSO3270_TPUT
*
* __error = 0, or one of the errors listed earlier
*
* __r0 = 0
*
* __rc = Return code from TPUT in register 15
* (-1 is set if error prevented the call to TPUT)
*
* __l = 0
*
* __d = not present
*
---/

/*
* TPUT return codes in __rc field
* -------------------------------
*/

#define _TSO3270_TPUT_RC_OK 0 /* TPUT successful */
#define _TSO3270_TPUT_RC_NOWAIT 4 /* NOWAIT - no buffer avail. */
#define _TSO3270_TPUT_RC_ATTN 8 /* Attention occurred */
#define _TSO3270_TPUT_RC_ASID 12 /* ASID rejected message */
#define _TSO3270_TPUT_RC_PARM 16 /* Bad parameters */
#define _TSO3270_TPUT_RC_LOGOFF 20 /* Terminal was logged off */
#define _TSO3270_TPUT_RC_NOAUTH 24 /* Not authorized to send */
#define _TSO3270_TPUT_RC_SECURE 28 /* receiver not secure enough */
#define _TSO3270_TPUT_RC_NOSTG 32 /* No storage available */

/*---*/

Miscellaneous Programming Notes
When designing an application with the 3270 passthrough facility, consider the
following:

v Checking for TSO/3270 passthrough mode support

Use isatty(STDOUT_FILENO) to verify that a TTY is present, or open the
controlling terminal. Then, use tcgetattr() to get a copy of termios. If the
PKT3270 bit is set, TSO/3270 passthrough mode is supported.

v Redirecting STDERR (and STDOUT) using freopen()

To prevent LE from writing error messages to the slave TTY while it is in
TSO/3270 passthrough mode, STDERR_FILENO should be redirected to
something other than the TTY before the TTY is placed in TSO/3270 passthrough
mode. This will prevent any unexpected error messages from getting intermixed
with the 3270 data stream being sent to the terminal. You may want to do the
same thing with STDOUT_FILENO, and use some different file descriptor when
writing the TSO/3270 passthrough mode requests.

v Setting TTY permissions

You may want to change the permissions of the TTY before going into TSO/3270
passthrough mode. If the permissions are set to rwx------, no other users (except
the superuser) should be able to write() messages to this TTY. These messages

238 z/OS V1R1.0 UNIX System Services Programming Tools

could get mixed up with the 3270 data stream being sent to the terminal. The
program must be sure to reset the permissions back to normal, whether it ends
normally or abnormally.

v Setting TSO/3270 passthrough mode

Use tcgetattr() and tcsetattr() to set the TSO/3270 passthrough mode bit in
termios. As mentioned earlier, it may be desirable to set the termios TOSTOP bit
at the same time.

When using tcsetattr, you may want to use the TCSADRAIN option, to wait for
the TSO/E OMVS command to read() any queued non-3270 data first. Note that
the OMVS command user may have switched to another session or may have
escaped to TSO just before TSO/3270 passthrough mode was started. In these
cases, the TCSADRAIN operation may take a long time. If there is any queued
non-3270 data at the master TTY, and TSO/3270 passthrough mode is set
without draining the queued output data, OMVS will detect a severe error on the
first TSO/3270 passthrough mode request. OMVS will end TSO/3270
passthrough mode immediately. (The TSO/3270 passthrough mode application
will get SIGWINCH, as usual.)

v Initial screen and TSO state

After TSO/3270 passthrough mode is started, OMVS clears the screen before
processing the first TSO/3270 passthrough mode request. Also, the TSO terminal
is placed back into default state by issuing:
– STAX DEFER=NO (to undefer attentions)
– STFSMODE OFF (return to TSO line mode)
– STTMPMD OFF (re-allow session manager)
– TCLEARQ INPUT (to get rid of any queued-up input)

If the TSO/3270 passthrough mode application wants to send fullscreen 3270
data to the terminal, it must use STFSMODE, STTMPMD, or STLINENO, as
required to set up the TSO terminal before sending any data.

v Using TPUT FULLSCR

When invoking TPUT FULLSCR via the TSO/3270 passthrough mode interface,
make sure to include the initial 0x27 byte in the data stream. The TSO/E OMVS
command does not automatically supply this byte.

v STCOM

If STCOM is used to set the intercom on or off, the TSO/E OMVS command
does not restore the initial setting when TSO/3270 passthrough mode ends. Any
changes to the intercom status remain in effect until the next STCOM is done.

v Handling the TSO refresh AID

The PA2 AID byte from the 3270 is the TSO refresh indication. The TSO/E
OMVS command passes this refresh AID back to the TSO/3270 passthrough
mode application.

Note that the TSO/3270 passthrough mode interface does not allow the 3270
application to change the TSO refresh indication to a different AID byte, so it is
always PA2.

v The CLEAR key

If the TSO/3270 passthrough mode application does not request STTMPMD
KEYS=ALL, it (and the OMVS command, too) will not know when the CLEAR key
has erased the screen. This is a standard TSO feature, and the TSO/E OMVS
command does nothing to shield the TSO/3270 passthrough mode application
from it.

v Handling SIGWINCH

Appendix A. TSO/3270 Passthrough Mode 239

If an error causes OMVS to switch the TTY out of TSO/3270 passthrough mode,
OMVS will send SIGWINCH to all members of the foreground process group.
The 3270 application should establish a catcher for SIGWINCH. When
SIGWINCH is received, the application should do tcgetattr() to see if the TTY is
no longer in TSO/3270 passthrough mode. If not, the application should restore
the TTY permissions, and perhaps write out error messages.

Of course, the application could also re-establish TSO/3270 passthrough mode,
and completely re-establish TSO FULLSCREEN mode and repaint the screen.

v Handling SIGTTIN and SIGTTOU

The default action for these signals is to stop the process. When the process is
moved back into the foreground, SIGCONT should restart the process. However,
the TTY may no longer be in TSO/3270 passthrough mode. To make a TSO/3270
passthrough mode application work properly, it may be necessary to catch
SIGTTIN, SIGTTOU and maybe SIGCONT. After getting SIGTTIN or SIGTTOU,
the application should either restore the TTY permissions and end, or wait for
SIGCONT and then restore the TTY to TSO/3270 passthrough mode and repaint
the screen.

v Running in the TSO/E address space

In some cases, the 3270 application may run directly in the TSO/E address
space. This would occur, for example, if the OMVS SHAREAS option was used
(or defaulted), and the _BPX_SHAREAS environment variable was set. In other
cases, the TSO/3270 passthrough mode application will run in a non-TSO
address space. In this case, the only access to the TSO terminal is through the
TSO/3270 passthrough mode data stream.

v Handling sudden TSO/E LOGOFF and related errors

The TSO/E OMVS command may close the master end of the TTY when certain
errors occur. When this occurs, the 3270 application should close the slave TTY.
TTY cleanup is not required (nor is it usually possible).

v Cleaning up

Usually, the TSO/3270 passthrough mode application should restore the TTY to
the same state that it was in before TSO/3270 passthrough mode was entered.
This would include restoring the TTY file permissions. If the TSO/3270
passthrough mode application ends while in background mode (after getting
SIGTTOU/SIGTTIN) tcsetattr() cannot be used to restore termios. The file
permissions can still be restored, however.

Usually, the TSO/3270 passthrough mode application should catch all possible
signals (like SIGILL and SIGSEGV) and should restore the TTY to its original
state before ending.

The ENDPASSTHROUGH Key
TSO/3270 passthrough mode supports the ENDPASSTHROUGH option on the
TSO/E OMVS command.

OMVS other options

.

.

.

ENDPASSTHROUGH(ATTN|CLEAR|ENTER|NO|PA1|PA3|PF1|PF2|PF3 ... PF24|
CLEARPARTITION|SEL)

.

.

.

240 z/OS V1R1.0 UNIX System Services Programming Tools

This option sets up a 3270 key that allows the user to break out of TSO/3270
passthrough mode and return to the shell session. Pressing this key will often end
the 3270 application, but some 3270 applications might not give up control of the
terminal. Using this option prevents the 3270 application from seeing the specified
key when it is pressed. When the selected key is pressed, the OMVS command
gives the user no second chance to retract it.

This key may be used during 3270 application development, to set up a panic
button that can be used end certain application hangs. This ENDPASSTHROUGH
key may not work if the keyboard is locked, or if the 3270 application unlocks the
keyboard but reads no input data. The ENDPASSTHROUGH key might also not
work if the application causes the 3270 to send in structured fields (from explicit
created partitions).

The default is ENDPASSTHROUGH(NO), which means that all 3270 keys can be
used by the 3270 application and there is no breakout 3270 key. When some other
key is specified, the 3270 application cannot use that key. The selected key should
be one that is not used by the application. The possible keys are:

ATTN The 3270 Attention key

In some 3270 applications this key may be changed to PA1 before it is
seen by the TSO/E OMVS command. If so, OMVS will never see the
Attention key; specify PA1 instead of ATTN.

With some terminal connections, the ATTN key may not be available.

CLEARPARTITION
The 3270 Clear Partition key

This key is only effective if the application is using explicit 3270 partitions.

CLEAR
The 3270 CLEAR key

In some 3270 applications the CLEAR key may not be seen by the TSO/E
OMVS command when it is pressed. If so, OMVS will never break out of
TSO/3270 passthrough mode. Specify some other 3270 key.

ENTER
The 3270 ENTER key

This key is useful only if the 3270 application is completely driven by PF/PA
keys.

NO No breakout key (default)

PA1 The 3270 PA1 or Program Attention 1 key

Note that for some 3270 applications, the Attention (ATTN) keypress may
be converted to the PA1 keypress before being passed to the TSO/E OMVS
command.

PA3 The 3270 PA3 or Program Attention 3 key

The PA3 key may not be available on some keyboards.

PFn 3270 Function keys 1, 2, 3 ... 8, 9

PFnn 3270 Function keys 10, 11, 12, 13 ... 23, 24

SEL 3270 Cursor Select or light pen

This key is useful only when the 3270 application creates
light-pen-selectable fields on the 3270 screen.

Appendix A. TSO/3270 Passthrough Mode 241

If some 3270 key other than Attention is specified in the OMVS
ENDPASSTHROUGH option, the key will be recognized only when TGET is issued.
In TSO/3270 passthrough mode, OMVS does TGET only when requested by the
user 3270 application. After each TGET, the TSO/E OMVS command will check the
incoming AID byte (if the incoming data stream is just normal 3270 data that the
TSO/E OMVS command can understand) for the ENDPASSTHROUGH key. If the
ENDPASSTHROUGH key was pressed, OMVS will end TSO/3270 passthrough
mode (sending SIGWINCH as usual), and will return the display to the shell
session.

If the TGET buffer length is very short, OMVS may miss ENDPASS AID bytes that
are received inside inbound structured fields. This occurs if the AID byte is not
received with the first TGET for this inbound 3270 data stream.

Use of TCLEARQ INPUT may cause OMVS to miss ENDPASSTHROUGH AID
bytes from the 3270 (other than ATTN), if the inbound 3270 data is cleared from the
input queue before TGET is done to receive it.

Pressing the ENDPASS key as an application is abending may prevent the usual
LE/370 abend message from appearing on the screen.

The Attention key can be used as a more effective ENDPASSTHROUGH key,
because (under certain circumstances) TGET is not required to find out that the
Attention key has been pressed.

If the TSO/3270 passthrough mode application requests STTMPMD ON,KEYS=ALL,
TSO changes the incoming attention AID to PA1 before the OMVS command sees
it. In this case, specifying OMVS ENDPASSTHROUGH(ATTN) does not provide the
user with a working ENDPASSTHROUGH key. OMVS ENDPASSTHROUGH(PA1)
can be used, but the ENDPASSTHROUGH key will be effective only when TGET
requests are done. Also, STTMPMD ON,KEYS=NO causes TSO to suppress
incoming CLEAR key AID bytes, so ENDPASS(CLEAR) will not work in this case.

If STTMPMD KEYS=ALL is not done, the Attention key may function normally (if the
terminal connection provides a real Attention key). However, attentions are deferred
across all kernel SYSCALLs that OMVS makes. If OMVS
ENDPASSTHROUGH(ATTN) is specified and STTMPMD KEYS=ALL is not issued,
OMVS will not issue kernel SYSCALLs that wait forever to get the next output data
from the TSO/3270 passthrough mode application. Instead, OMVS will periodically
wake up to check for a TSO attention. If the user has caused attention, OMVS will
end TSO/3270 passthrough mode (sending SIGWINCH, as usual), and will return
the terminal to the shell session.

ENDPASSTHROUGH Specification Results
The following chart shows what happens when you press various keys that were
specified on the ENDPASSTHROUGH option of the OMVS command.
**
*
*
* +---+
* | |
* | TSO Programming Environment |
* | |
* +-------------------------+-------------------------+
* | | |
* | Unedited input | Edited input |
* | | |

242 z/OS V1R1.0 UNIX System Services Programming Tools

* | | |
* | - after TGET ASIS | - after TGET EDIT with |
* | - after TGET EDIT, with | STFSMODE OFF |
* | STFSMODE ON,NOEDIT | or |
* | | STFSMODE ON,EDIT |
* : +------------+------------+------------+------------+
* OMVS :Press| | | | |
* ENDPASS:this| STTMPMD | STTMPMD | STTMPMD | STTMPMD |
* operand: key| KEYS=ALL | KEYS=NO | KEYS=NO | KEYS=ALL |
* : | | | | |
*=============+============+============+============+============+
* |Action | No effect | No effect |
* |only after | | |
* CLEAR |TGET returns| (CLEAR is absorbed by | (CLEAR |
* |simple I/B | TSO) | AID byte |
* |data or | | not |
* |unsplit I/B | | returned |
* |SF | | from TGET) |
* |(only if KB | | |
* |unlocked) | | |
*-----+-------+------------+------------+------------+------------+
* : |Action | | |
* : press |only after | | |
* : <PA1> |TGET returns| | |
* : |simple I/B | | |
* : |data or | | No effect |
* : |unsplit I/B | | |
* : |SF | No effect | |
* : |(only if KB | | (PA1 AID |
* : |unlocked) | (appears as ATTN -- use | byte not |
* PA1 +-------+------------+ ENDPASS(ATTN)) + returned +
* : |Action | | from TGET) |
* : press|only after | | |
* : <ATTN>|TGET returns| | |
* : |simple I/B | | |
* : |data or | | |
* : |unsplit I/B | | |
* : |SF | | |
*-----+-------+------------+------------+------------+------------+
* : press | | After TGET/TPG/TPUT | |
* : <PA1> | No effect | (rc=8), maybe in- | No effect |
* : | | between. Effective | |
* : | (appears | only if keyboard is | (PA1 AID |
* : | as PA1 -- | unlocked. | byte not |
* ATTN:-------+ use +------------+------------+ returned +
* : press | ENDPASS(| After TGET/TPG/TPUT | from TGET) |
* :<ATTN> | PA1)) | (rc = 8), maybe in- | |
* : | | between. Can be | |
* : | | effective even when | |
* : | | keyboard is locked | |
*-----+-------+------------+------------+------------+------------+
* PFnn |Action only after TGET | |
* ENTER |that returns simple I/B | No effect |
* SEL |data stream or unsplit | |
* PA3 |I/B SF | |
* |(Works only if keyboard | |
* |is unlocked.) | (no AID byte |
*-----+-------+------------+------------+ returned from +
* |Action only after TGET | TGET) |
* CLEAR- |that returns unsplit I/B | |
* PARTITION |SF. 3270 must be in | |
* |explicit partition mode. | |
* |(Works only if Keyboard | |
* |is unlocked.) | |
*-----+-------+------------+------------+------------+------------+
* : press | |
* NO : any | No effect |

Appendix A. TSO/3270 Passthrough Mode 243

* : key | |
*-----+-------+------------+------------+------------+------------+
*
* Notes:
* An "unsplit I/B SF" is inbound 3270 structured field data that
* is long enough to include the imbedded 3270 AID byte in the first
* TGET. (In other words, the 1st TGET for this screen of 3270 data
* must specify a buffer size long enough (perhaps 8-10 bytes or more)
* to receive all inbound 3270 structured field data up to and
* including the AID byte from the incoming 3270 partition.)
* With some terminal connections, the <ATTN> key is not supported.
* Pressing <ATTN> does nothing in these cases.
*
*

Other Documentation
TSO Extensions Version 2 Programming Guide and TSO Extensions Version 2
Programming Services fully describe the services that can be invoked with the
TSO/3270 passthrough mode facility. (Note that only a small subset of TSO
services can be invoked, however.)

The 3270 data stream is fully described in 3270 Information Display System: Data
Stream Programmer’s Reference.

Usage Scenario
A typical usage of a TSO/3270 passthrough mode application might resemble the
following:

1. Use the TSO/E OMVS command to start the z/OS shell session.

When invoking the TSO/E OMVS command, the user should already know if
TSO/3270 passthrough mode will be used later, and which applications will be
used. The user may need to pick the proper ENDPASSTHROUGH key (panic
button), based on instructions from the 3270 application programmer. If (for
example) the panic button should be the 3270 attention key, enter;

OMVS ENDPASSTHROUGH(ATTN)

2. Prepare to run the 3270 application.

It may be a good idea to shut off any shell-provided messaging facility. Also, it is
best to end any background jobs before running the TSO/3270 passthrough
mode application.

3. Run the 3270 application.

Run the 3270 application using instructions provided by the application
programmer.

4. If the 3270 application hangs.

It may be possible to press the ENDPASSTHROUGH key (defined earlier) to
unhang the terminal. If not, the user may have to logoff using the SYSREQ key.

5. If the terminal displays stray data.

Stray data may appear on the 3270 screen while the 3270 application is
running. It may be possible to clear this up by pressing PA2 or CLEAR,
depending on the 3270 application. The application provider may give more
detailed instructions about this.

6. If background jobs break into the 3270 session.

The screen may be returned to the shell session, and error messages may be
displayed at the top of the screen.

244 z/OS V1R1.0 UNIX System Services Programming Tools

If this happens, the recovery directions provided with the 3270 application
should be followed. It may be possible to restart the 3270 application using job
control commands, or the 3270 application may have ended by itself, or the
3270 application might have to be killed.

7. After the 3270 application ends.

The normal shell session should be re-displayed on the terminal.

If the ENDPASS key is used to end TSO/3270 passthrough mode, or some
other error causes TSO/3270 passthrough mode to end, stray data may appear
on the screen. Also, you may have to press <ENTER> more than once to get
back to the shell prompt. The shell may issue error messages complaining
about invalid input.

Sample Programs
Two sample programs are supplied in SYS1.SAMPLIB.

v Simple example

This program is a simple TSO/3270 passthrough mode program that gets into
and out of TSO/3270 passthrough mode. It ends with cleanup when any
detectable error occurs. It does not guard against user messages, and does not
try to recover any errors.
/***/
/* */
/* Sample TSO/3270 passthrough mode program */
/* -- */
/* */
/* This is a simple example of a TSO/3270 passthrough program. */
/* */
/* It enters passthrough mode and puts up a message to ask for user */
/* input. The input is then echoed for 10 seconds before the */
/* program leaves passthrough mode and exits. */
/* */
/* */
/* Note: In order to simplify things, this program does not follow */
/* many of the programming guidelines for TSO/3270 passthrough */
/* mode. Although it does check for errors, it does not: */
/* */
/* - handle command line redirection of STDIN_FILENO or */
/* STDOUT_FILENO. (does not open the controlling terminal). */
/* */
/* - check for non-3270 terminals before trying to enter */
/* TSO/3270 passthrough mode. */
/* */
/* - set TOSTOP, or set up any signal catchers, or have any */
/* error recovery. In other words, it cannot tolerate */
/* TSO/3270 passthrough mode interruptions caused by */
/* background jobs writing to the TTY. */
/* */
/* - handle unexpected TSO return codes (like attentions) */
/* */
/***/

#pragma csect(code, "EXAMPCOD")
#pragma csect(static,"EXAMPSTA")
#pragma runopts(EXECOPS,POSIX(ON),ALL31(ON))

#define _ALL_SOURCE 1

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <termios.h>

Appendix A. TSO/3270 Passthrough Mode 245

#include <sys/types.h>
#include <unistd.h>
#include "fomth32p.h" /* TSO/3270 passthrough mode .h */

int __errno2(void); /* not in library headers */
int *__err2ad(void); /* not in library headers */

/***/
/* MACROs and manifest constants */
/***/

/* Messages for TPUT */
/* ----------------- */

#define MESSAGE_1 "Session is now in TSO/3270 Passthrough Mode --"
#define MESSAGE_2 "To continue, enter some data."

/* reset errno and errno2 before issuing a function */
/* -- */

#define RESET_ERRNO \
{ \

errno = 0; \
*__err2ad() = 0; \

}

/* complain and exit, if TSO R/C is abnormal in received response */
/* -- */

#define CHECK_RSP(fcn, rc) \
{ \

if (rsp_p->__rc != _TSO3270_##fcn##_RC_##rc) \
{ \

reset_passthrough(); \
fprintf(stderr, "error: " #fcn " R/C = %02X\n", rsp_p->__rc); \
return 0; \

} \
}

/* complain and exit after unexpected R/C is received */
/* -- */

#define ERROR_RC(fcn, rc) \
{ \

reset_passthrough(); \
fprintf(\

stderr, \
#fcn "() error: R/C=%d, errno=%d, errno2=%08X, msg=\"%s\"\n", \
rc, \
errno, \
__errno2(), \
strerror(errno) \
); \

exit(0); \
}

/**/
/* Static variables */
/**/

static int in_passthrough_mode = 0; /* 1 = in passthrough mode */

246 z/OS V1R1.0 UNIX System Services Programming Tools

/* Maximum-sized buffers for TSO/3270 passthrough request/response */
/* --- */

static char req_buf[_TSO3270_LMAX+_TSO3270_REQH_L] = "";
static char rsp_buf[_TSO3270_LMAX+_TSO3270_RSPH_L] = "";

static __tso3270_request_t *req_p =
(__tso3270_request_t *)(void *)req_buf;

static __tso3270_response_t *rsp_p =
(__tso3270_response_t *)(void *)rsp_buf;

/**/
/* */
/* reset_passthrough() -- end TSO/3270 passthrough mode (if needed) */
/* =================== --- */
/* */
/* notes: Assumes STDIN_FILENO is the TTY to be reset */
/* */
/* */
/**/

static void reset_passthrough(void)
{

int tc_rc = 0;
struct termios termios_v = {0};

/*
* Return TTY to normal operation only if required
* ---
*/

if (in_passthrough_mode == 1)
{

in_passthrough_mode = 0; /* prevent error recursion */

RESET_ERRNO
tc_rc = tcgetattr(STDIN_FILENO, &termios-v);
if (tc_rc != 0) ERROR_RC(tcgetattr, tc_rc)

termios_v.c_cflag &= ˜(unsigned)PTU3270;

RESET_ERRNO
tc_rc = tcsetattr(STDIN_FILENO, TCSAFLUSH, &termios-v);
if (tc_rc != 0) ERROR_RC(tcgetattr, tc_rc)

}

return;
}

/**/
/* */
/* send_request() -- send TSO/3270 passthrough request to TTY */
/* ============== -- */
/* */
/* */
/* notes: Always writes to STDOUT_FILENO */
/* */
/* Assumes TTY is in blocking mode, etc. */
/* */
/* Exits if write() error occurs */
/* */
/* */

Appendix A. TSO/3270 Passthrough Mode 247

/**/

static void send_request(
unsigned char fcn, /* passthrough function (e.g. TPUT) */
unsigned char p1, /* value for __p1 field in req hdr */
unsigned char p2, /* value for __p2 field in req hdr */
int p3, /* value for __p3 field in req hdr */
size_t data_l, /* data length (can be 0) for __l */
char *data_p /* ptr to data (NULL OK if data_l=0)*/
)

{
ssize_t write_rc = 0;
size_t write_l = data_l + _TSO3270_REQH_L; /* total write len */

/*
* Fill in passthrough request (with data) from caller's parameters
* --
*/

req_p->__ff = _TSO3270_FF;
req_p->__fcn = fcn;
req_p->__p1 = p1;
req_p->__p2 = p2;
req_p->__p3 = p3;
req_p->__l = data_l;

if (data_l > 0)
memcpy((void *)(req_p->__d), (void *)data_p, data_l);

write_l = data_l + _TSO3270_REQH_L;

/*
* Send passthrough request to TTY, exit if any errors
* ---
*/

RESET_ERRNO
write_rc = write(STDOUT_FILENO, (void *)req_buf, write_l);
if (write_rc != write_l) ERROR_RC(write, write_rc)

return;
}

/**/
/* */
/* receive_response() -- receive TSO/3270 passthrough response */
/* ================== ------------------------------------- */
/* */
/* This routine issues one or more read() requests to the */
/* TTY, until a complete TSO/3270 passthrough mode response */
/* has been received (i.e. __l bytes of data have been */
/* read in). */
/* */
/* */
/* notes: Always assumes that next byte from TTY starts a response */
/* */
/* Assumes that only one response is outstanding (i.e. */
/* no extra data from next response comes in on this */
/* read() from the TTY). */
/* */
/* Assumes TTY is in blocking mode, etc. */
/* */

248 z/OS V1R1.0 UNIX System Services Programming Tools

/* Exits if read() error occurs, or 1st read byte does not */
/* start a response */
/* */
/* */
/**/

static void receive_response(void)
{

ssize_t read_rc = 0;
size_t data_l = 0;
size_t read_l = sizeof rsp_buf;
char * read_p = rsp_buf;

/*
* Loop to accumulate a complete response in the buffer
* ==
*
* Keep issuing read() requests until __l bytes of data have been
* received (in addition to the response header).
*/

while (
(data_l < _TSO3270_RSPH_L) /* bypass __l until filled-in */
||
(data_l < (rsp_p->__l + _TSO3270_RSPH_L))
)

{
/*
* Wait for 1st/next part of response to come in
* ---
*/

RESET_ERRNO
read_rc = read(STDIN_FILENO, (void *)read_p, read_l);

if (read_rc <= 0) ERROR_RC(read, read_rc)

/*
* adjust read pointer and read length for next part of response
* ---
*/

data_l += (size_t)read_rc;
read_l -= (size_t)read_rc;
read_p += (size_t)read_rc;

/*
* If enough data received so far, check for 0xFE, to make sure
* we really have the start of a response.
* --
*/

if (data_l > 0U)
{

if (rsp_p->__fe != _TSO3270_FE)
{

reset_passthrough();
fprintf(

stderr,
"error: __fe = %02X in response\n",
rsp_p->__fe
);

exit(0);
}

Appendix A. TSO/3270 Passthrough Mode 249

}

/*
* If enough data received so far, make sure we have only data
* belonging to this response (i.e. only 1 response is expected)
* ---
*/

if (
(data_l >= _TSO3270_RSPH_L) /* complete hdr already?

(OK to look at __l) */
&&;
(data_l > _TSO3270_RSPH_L + rsp_p->__l)/* some data

past end of this rsp? */
)

{
reset_passthrough();
fprintf(

stderr,
"error: too much data, __l=%d, data_l=%d\n",
rsp_p->__l, data_l
);

exit(0);
}

} /* end of main loop */

/*
* Make sure no pre-TSO errors occurred during request processing
* --
*/

if (rsp_p->__error != _TSO3270_ERROR_OK)
{

reset_passthrough();
printf("error: __error = %02X\n");
exit(0);

}

return;
}

/**/
/* */
/* main() -- solicit input and echo it in TSO/3270 passthrough mode */
/* ==== -- */
/* */
/* - enter passthrough mode */
/* - issue two TPUTs to ask for user input */
/* - issue TGET to wait for and obtain user input */
/* - issue TPUT to echo back the input */
/* - wait 10 seconds, then end passthrough mode */
/* */
/**/

int main(void)
{

struct termios termios_v = {0}; /* for setting passthrough*/
char fmt_buf[201U+_TSO3270_LMAX] = ""; /* for echoed input */
size_t fmt_l = 0U; /* length of echoed input */
int tc_rc = 0; /* tcxxx() R/C */

/*

250 z/OS V1R1.0 UNIX System Services Programming Tools

* Switch into TSO/3270 passthru mode
* ----------------------------------
*/

RESET_ERRNO
tc_rc = tcgetattr(STDIN_FILENO, &termios-v);
if (tc_rc != 0) ERROR_RC(tcgetattr, tc_rc)

termios_v.c_cflag |= PTU3270; /* set passthrough flag in termios*/

RESET_ERRNO
tc_rc = tcsetattr(STDIN_FILENO, TCSAFLUSH, &termios-v);
if (tc_rc != 0) ERROR_RC(tcsetattr, tc_rc)

in_passthrough_mode = 1; /* cause passthrough reset later */

/*
* Issue TPUTs to solicit user input
* ---------------------------------
*/

send_request(
_TSO3270_TPUT,
0, 0, 0,
strlen(MESSAGE_1), MESSAGE_1
);

receive_response();
CHECK_RSP(TPUT,OK)

send_request(
_TSO3270_TPUT,
_TSO3270_TPUT_HOLD, 0, 0, /* wait until terminal gets data */
strlen(MESSAGE_2), MESSAGE_2
);

receive_response();
CHECK_RSP(TPUT,OK)

/*
* Obtain user input and echo it on the screen
* ---
*/

send_request(
_TSO3270_TGET,
0, 0, _TSO3270_LMAX, /* use max-sized TGET buffer */
0, NULL /* no data for the TGET request */
);

receive_response();
CHECK_RSP(TGET,EDIT)

fmt_l = (size_t)sprintf(
fmt_buf,
"Echoed data: \"%*.*s\"",
rsp_p->__l, rsp_p->__l, rsp_p->__d
);

send_request(
_TSO3270_TPUT,
_TSO3270_TPUT_HOLD, 0, 0, /* wait until terminal gets data */
fmt_l, fmt_buf /* formatted echoed input */
);

Appendix A. TSO/3270 Passthrough Mode 251

receive_response();
CHECK_RSP(TPUT,OK)

/*
* Wait 10 seconds, then end TSO/3270 passthrough mode
* ---
*/

sleep(10);
reset_passthrough();
return 0;

}

v Second example

This program illustrates all of the programming notes in the last section. It tries to
recover from all errors, and the 3270 data stream itself is fairly simple.

/* ***
*
* 3270 Transparent Mode sample application
* ===
*
* The 3270 TM system service allows an application to write to
* and read from the terminal, via OMVS api's that are similar to
* the TSO api's.
*
* This test application requires the following setup:
* - 3270 terminal using OMVS
*
* How to invoke:
* compile and bind as a shell program
* run interactively from the shell on a 3270 terminal
* press PA1 after th flag appears
*
* Program name = I3T3270X
*
* Possible error codes returned :
* 0 = success
* 1 = general error
* 2 = write() returned error
* 3 = all data not written
* 4 = read() returned error
* 5 = TGET response invalid
* 6 = TPUT response invalid
* 7 = SIGWINCH occurred
* 14 = STFSMODE response invalid
* 99 = EINTR signal received
* 100 = freopen for stdout file failed
* 101 = freopen for stderr file failed
* 102 = could not get controlling terminal pathname
* 103 = open terminal failed.
* 104 = not started by a terminal. isatty returned 0.
* 105 = could not get terminal attributes. tcgetattr failed.
* 106 = 3270 TM packet mode is not enabled.
* 107 = could not set terminal attributes. tcsetattr failed.
* 108 = set up signal handlers failed
* 109 = could not get permission flags (stat failed)
*
**/

/***
* Headers *
**/
#define _ALL_SOURCE
#define _OPEN_SOURCE_2
#define _OPEN_SYS_PTY_EXTENSIONS
#include <fomth32p.h> /* 3270 TM structure mapping */

252 z/OS V1R1.0 UNIX System Services Programming Tools

#include <string.h>
#include <stdio.h>
#include <limits.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <modes.h>
#include <sys/wait.h>
#include <signal.h>
#include <fcntl.h>
#include <termios.h>
#include <signal.h>
#ifndef SIGWINCH

#define SIGWINCH 28 /* temp until CRTL support */
#endif
#include <sys/times.h>
#include <time.h>
#include <unistd.h>
#define _BSD /* to get winsize, etc. */
#include <sys/ioctl.h>

/***
* Constants *
**/
#define NUMVARS 2

/* return codes */
#define VAR_SUCCESS 0
#define VAR_INVALID 1
#define WRITE_FAILED 2
#define WRITE_LENGTH_FAILURE 3
#define READ_FAILED 4
#define INVALID_TGET_RESPONSE 5
#define INVALID_TPUT_RESPONSE 6
#define INVALID_STFSMODE_RESPONSE 14
#define EINTR_RECEIVED 99

/***
* Global variables *
**/

int argcnt_0; /* no arguments for sig handlrs*/
int var_result; /* variation result */
int rc; /* return code */

struct stat status_info; /* original mode from stat() */
mode_t new_mode; /* mode with group bits off */

char terminal_pathname[1025]; /* pathname of controlling term*/
int terminal_fd; /* controlling terminal fd */
char outbuff[1932]; /* output buffer */
char inbuff[1932]; /* input buffer */
size_t write_length; /* length to write */
ssize_t read_length; /* amount read */
int tget_asis = 0; /* 1 = do TGET ASIS */

/* else do TGET EDIT */
int keep_going; /* !0 = keep writing & reading */
char a_line[] = "I3T3270X line mode. "

"Press PA1 to stop, "
"or type data and press enter.";

/* ptr to request structure */
__tso3270_request_t

*request_ptr = (__tso3270_request_t *)(void *) outbuff;

/* ptr to response structure */
__tso3270_response_t

Appendix A. TSO/3270 Passthrough Mode 253

*response_ptr = (__tso3270_response_t *)(void *) inbuff;

/**/
/** prototypes **/
/**/
void route (int);
void signal_SIGWINCH_handler (int);
void signal_SIG_TTIO_handler (int);
void signal_SIGCONT_handler (int);
int set_signal ();
int send_request ();
int receive_response ();
int TGET_line ();
int TPUT_request ();
int STFSMODE_request ();

/**/
/************** MAIN **/
/**/

main (argcnt, arglst)

int argcnt; /* argument count */
char *arglst[]; /* argument list */

{
/***/
/** local data **/
/***/
int i; /* variation index */
int open_options = /* open options */

O_RDWR; /* blocking read / write */

struct termios org_termios; /* original termios */
struct termios new_termios; /* changed termios */

FILE *stream1, /* stream for redirected stdout*/
stream2; / stream for redirected stderr*/

printf ("\n\n ********* Use PA1 to stop ******** \n\n\n");

/***/
/** redirect STDOUT to a log file to prevent the **/
/** CRTL from writing error messages **/
/***/
printf ("\n STDERR and STDOUT being redirected to i3t3270a.std\n");

stream1 = freopen ("i3t3270a.std", "a+", stdout);
if (stream1 == NULL)

{
printf ("\n redirecting STDOUT failed."

"\n stdout=%d"
"\n errno=%d errnojr=%08x ",
stdout,
errno,
__errno2());

exit(100);
}

/***/
/** redirect STDERR to a log file to prevent the **/
/** CRTL from writing error messages **/
/***/
stream2 = freopen ("i3t3270a.std","a+", stderr);

254 z/OS V1R1.0 UNIX System Services Programming Tools

if (stream2 == NULL)
{
printf ("\n redirecting STDERR failed."

"\n errno=%d errnojr=%08x ",
errno,
__errno2());

exit(101);
}

/***/
/** get the controlling terminal pathname **/
/***/
if (ctermid (terminal_pathname) == NULL)

{
printf ("\n Could not get controlling terminal pathname."

"ctermid failed. \n errno=%d errnojr=%08x ",
errno,
__errno2());

exit(102);
}

/***/
/** open the terminal for read/write, non-blocking **/
/***/
if ((terminal_fd = open (terminal_pathname, open_options)) < 0)

{
printf ("\n open terminal failed."

"\n errno=%d errnojr=%08x ",
errno,
__errno2());

exit(103);
}

/***/
/** isatty (terminal_fd) to verify there is a TTY that started **/
/** the application. If not, close and exit **/
/***/
if (! isatty (terminal_fd))

{
printf ("\n not started by a terminal. isatty returned 0."

"\n errno=%d errnojr=%08x ",
errno,
__errno2());

close (terminal_fd);
exit(104);
}

/***/
/** tcgetattr (terminal_fd) to get current TTY attributes **/
/***/
if (tcgetattr (terminal_fd, &org-termios) != 0)

{
printf ("\n could not get terminal attributes. tcgetattr failed."

"\n errno=%d errnojr=%08x ",
errno,
__errno2());

close (terminal_fd);
exit(105);
}

/***/
/** if 3270 TM packet mode is not enabled, then close and exit **/
/***/
if ((org_termios.c_cflag & PKT3270) != PKT3270)

{
printf ("\n 3270 TM packet mode is not enabled.");
close (terminal_fd);

Appendix A. TSO/3270 Passthrough Mode 255

exit(106);
}

/***/
/** tcsetattr (terminal_fd) to turn on TSO3270 pass through **/
/** mode and turn on TOSTOP to force SIGTTOU or SIGTTIN **/
/** signals during write | read. Also specify tcsaflush to **/
/** remove all pending I/O. **/
/***/
new_termios = org_termios; /* save settings */
new_termios.c_cflag = new_termios.c_cflag | PTU3270;
new_termios.c_lflag = new_termios.c_lflag | TOSTOP;

if (tcsetattr (terminal_fd, TCSAFLUSH, &new_termios) != 0)
{
printf ("\n could not set terminal attributes. tcsetattr failed."

"\n cflag=%08x, lflag=%08x, "
"\n errno=%d errnojr=%08x ",
new_termios.c_cflag,
new_termios.c_lflag,
errno,
__errno2());

close (terminal_fd);
exit(107);
}

/***/
/** set up signal handlers for : **/
/** SIGWINCH - error occurred or END3270 key pressed **/
/** SIGTTOU - background interrupted a write request **/
/** SIGTTIN - background interrupted a read request **/
/** SIGCONT - this process has been put back in foreground **/
/***/
if ((rc = set_signal()) == -1)

{
close (terminal_fd);
exit(108);
}

/***/
/** chmod (term_filedes, mode) to turn off permission bits **/
/** for group users. This prevents overwrite of the TTY by **/
/** another user, but does not block the super user. **/
/***/
if (stat (terminal_pathname, &status-info) != 0)

{
if (tcsetattr (terminal_fd, TCSAFLUSH, &org-termios) != 0)

{
printf("\n could not reset terminal attributes. tcsetattr failed."

"\n cflag=%08x, errno=%d errnojr=%08x ",
org_termios.c_cflag,
errno,
__errno2());

}

printf ("\n could not get status. stat failed."
"\n errno=%d errnojr=%08x ",
errno,
__errno2());

close (terminal_fd);
exit(109);
}

new_mode = status_info.st_mode;
if ((status_info.st_mode & 077) != 0) /* need to change? */

{

256 z/OS V1R1.0 UNIX System Services Programming Tools

new_mode = status_info.st_mode & 0700;
if (chmod (terminal_pathname, new_mode) != 0)

{
printf ("\n could not change mode. chmod failed."

"\n super user is required to do this. "
"The test case is continuing anyway. "
"\n errno=%d errnojr=%08x ",
errno,
__errno2());

}
}

/***/
/** Route to the proper variation. **/
/***/
var_result = VAR_SUCCESS;

/* perform all variations
unless a failure occurs */

for (i=1; (var_result == VAR_SUCCESS) &&; (i <= NUMVARS); i++)
{
route (i);
}

/***/
/** turn off TSO3270 pass through mode by resetting original **/
/** attributes **/
/***/
if (tcsetattr (terminal_fd, TCSAFLUSH, &org-termios) != 0)

{
printf ("\n could not reset terminal attributes. tcsetattr failed."

"\n cflag=%08x, errno=%d errnojr=%08x ",
org_termios.c_cflag,
errno,
__errno2());

}

/***/
/** reset permissions to original settings **/
/** It may be more robust to get the current permissions, since **/
/** they may have changed, but it is unlikely. **/
/***/
if ((status_info.st_mode & 077) != 0) /* need to change? */

{
if (chmod (terminal_pathname, status_info.st_mode) != 0)

{
printf ("\n could not reset mode. chmod failed."

"\n super user is required to do this. "
"The test case is continuing anyway. "
"\n errno=%d errnojr=%08x ",
errno,
__errno2());

}
}

/***/
/** close all files **/
/***/
printf ("\n i3t3270x finished \n\n");
close (terminal_fd);

/***/
/** end of main **/
/***/
exit(var_result);

} /* end of main program */

Appendix A. TSO/3270 Passthrough Mode 257

/**/
/******* SUB PROCEDURES **/
/**/

/***
* Route - Execute the requested variation.
*
* Input: variation - variation number requested
* Output: execution is logged
*
* Return codes: none
**/
void route (int variation)
{

/***/
/** local data **/
/***/

/**/
/* 3270 datastream examples */
/* 27 =introducer */
/* F140 =write no erase */
/* F540 =erase write */
/* 7E40 =erase write alt */
/* 13 =insert cursor */
/* 114040 =position cursor row 1 column 1 */
/* 11C150 =position cursor row 2 column 1 */
/* 11C1D9 =position cursor row 2 column 10 */
/* 2841F2 =set attributes, reverse video */
/* 2842F5 =set attributes, color, turquoise */
/* 2842F1 =set attributes, color, blue */
/* 2842F2 =set attributes, color, red */
/* 2842F7 =set attributes, color, white */
/**/

char screen_2[] =
"\x27\xF5\x40"

/* row 1 */ "\x11\x40\x40\x28\x41\xF2"
"\x28\x42\xF1"
" * * * * * * * * * * "
"\x28\x42\xF2"
" "

/* row 2 */ "\x11\xC1\x50\x28\x42\xF1"
" * * * * * * * * * * "
"\x28\x42\xF7"
" "

/* row 3 */ "\x11\xC2\x60\x28\x42\xF1"
" * * * * * * * * * * "
"\x28\x42\xF2"
" "

/* row 4 */ "\x11\xC3\xF0\x28\x42\xF1"
" * * * * * * * * * * "
"\x28\x42\xF7"
" "

/* row 5 */ "\x11\xC5\x40\x28\x42\xF1"
" * * * * * * * * * * "
"\x28\x42\xF2"
" "

/* row 6 */ "\x11\xC6\x50\x28\x42\xF7"
" "

/* row 7 */ "\x11\xC7\x60\x28\x42\xF2"

258 z/OS V1R1.0 UNIX System Services Programming Tools

" "
/* row 8 */ "\x11\xC8\xF0\x28\x42\xF7"

" "
/* row 9 */ "\x11\x4A\x40\x28\x42\xF2"

" "
/* row 10*/ "\x11\x4B\x50\x28\x42\xF7"

" "
"\x13"
;

int i;
int temp_result; /* hold var_result */

/***/
switch (variation)

{ /* variation switch */

/***
*
* Test TPUT and TGET 3270 TM line mode interfaces
*
* Purpose:
* Write a line to the screen via TPUT.
* Read a line from the screen via TGET.
* Repeat until PA1 keyed in.
* If EINTR occurs, try the write / read again
*
**/
case 2:
{

/***/
/** Repeat the TPUT and TGET until PA1 keyed in **/
/** or an error occurs **/
/** **/
/** The first TPUT will display instructions, and consequent **/
/** TPUTs will repeat what was keyed in. **/
/** **/
/** If EINTR occurs, start over by displaying the first line **/
/***/
for (

request_ptr->__p1 = 0,
request_ptr->__l = sizeof (a_line),
strcpy (request_ptr->__d, a_line),
keep_going = 1
;
var_result == 0 &&; keep_going
;)

{
if ((var_result = TPUT_request()) == 0)

if ((var_result = TGET_line()) == EINTR_RECEIVED)
{
var_result = 0;
request_ptr->__p1 = 0;
request_ptr->__l = sizeof (a_line);
strcpy (request_ptr->__d, a_line);
}

}
break;
} /* end case 2 */

/***
*

Appendix A. TSO/3270 Passthrough Mode 259

* Test STFSMODE & TPUT full screen mode 3270 TM interface
*
* Purpose:
* Set the mode to full screen via STFSMODE.
* Write a message via TPUT.
* Read until ATTN | PA1 via TGET.
* Reset to line mode via STFSMODE.
*
**/
case 1:

{

/***/
/** Set the screen mode to full via STFSMODE, **/
/** TPUT a message, **/
/** and wait for PA1 to terminate (via TGET line). **/
/** **/
/** If EINTR occurs, keep going by setting the mode **/
/** again and TPUTing the message. **/
/** **/
/** Reset line mode via STFSMODE. **/
/***/
request_ptr->__p1 = _TSO3270_STFSMODE_ON; /* full screen */
if ((var_result = STFSMODE_request()) == 0)

{
request_ptr->__p1 = _TSO3270_TPUT_FULLSCR;
request_ptr->__l = sizeof (screen_2);
strcpy (request_ptr->__d, screen_2);
var_result = TPUT_request();

for (keep_going=1; var_result == 0 &&; keep_going;)
{
if ((var_result = TGET_line()) == EINTR_RECEIVED)

{
request_ptr->__p1 = _TSO3270_STFSMODE_ON;
if ((var_result = STFSMODE_request()) == 0)

{
request_ptr->__p1 = _TSO3270_TPUT_FULLSCR;
request_ptr->__l = sizeof (screen_2);
strcpy (request_ptr->__d, screen_2);
var_result = TPUT_request();
}

}
}

if (var_result == 0)
{ /* reset line mode */
request_ptr->__p1 = _TSO3270_STFSMODE_OFF;
var_result = STFSMODE_request();
}

}

break;
} /* end case 1 */

/***/
/** invalid variation number **/
/***/
default:

{ /* test application in error */
printf("\n invalid variation number specified");
var_result = VAR_INVALID;
} /* test application in error */

260 z/OS V1R1.0 UNIX System Services Programming Tools

} /* variation switch */
return;

} /* end of route subroutine */

/**/
/** signal handler for SIGWINCH **/
/** **/
/** Indicates an error occurred or END3270 key was pressed **/
/** **/
/** Reset tty permission bits and close all files. **/
/** Exit to end the program. **/
/** **/
/** Note that it is not necessary to reset 3270 pass through mode **/
/** bit because OMVS does this while issuing SIGWINCH, but **/
/** another process could send SIGWINCH. So, a truly robust **/
/** application should reset the 3270 pass through mode bit. **/
/** **/
/**/
void signal_SIGWINCH_handler (int signal_value)
{

printf ("\n SIGWINCH occurred");
if (status_info.st_mode != new_mode) /* mode ever changed? */

{
printf ("\n resetting permission bits");
if (chmod (terminal_pathname, status_info.st_mode) != 0)

{
printf ("\n chmod failed in signal_SIGWINCH_handler."

"\n errno=%d errnojr=%08x ",
errno,
__errno2());

}
}

close (terminal_fd);

exit(7);
}

/**/
/** signal handler for SIGTTOU and SIGTTIN **/
/** **/
/** Indicates background has interrupted a write() or read(). **/
/** **/
/** Simply return and wait for the SIGCONT to occur **/
/** **/
/**/
void signal_SIG_TTIO_handler (int signal_value)
{

printf ("\n SIGTTOU or SIGTTIN occurred. value = %d", signal_value);
return;

}

/**/
/** signal handler for SIGCONT **/
/** **/
/** Indicates the application process has been placed back in **/
/** foreground mode after being interrupted by SIGTTOU or SIGTTIN.**/
/** **/

Appendix A. TSO/3270 Passthrough Mode 261

/** Restart 3270 tm mode by getting attributes, setting TSO3270 **/
/** pass through mode on, and return, so the application resumes **/
/** at the failing write() or read() with EINTR. **/
/** **/
/** When an error occurs here, the terminal_fd is closed, so **/
/** consequent write() or read() will fail and the application **/
/** will go through normal termination, which includes resetting **/
/** tty permission bits and appropriate Roast calls. **/
/** **/
/**/
void signal_SIGCONT_handler (int signal_value)
{

struct termios sig_termios; /* attributes */

printf ("\n SIGCONT occurred");

/***/
/** tcgetattr (terminal_fd) to get current TTY attributes **/
/***/
if (tcgetattr (terminal_fd, &sig-termios) != 0)

{
printf ("\n tcgetattr failed in signal_SIGCONT_handler."

"\n errno=%d errnojr=%08x ",
errno,
__errno2());

close (terminal_fd);
return;
}

/***/
/** tcsetattr (terminal_fd) to turn on TSO3270 pass through **/
/** mode and turn on TOSTOP to force SIGTTOU or SIGTTIN **/
/** signals during write | read. Also specify tcsaflush to **/
/** remove all pending I/O. **/
/***/
if ((sig_termios.c_cflag & PTU3270) == PTU3270)

{
printf ("\n PTU3270 still set in signal_SIGNCONT_handler");
return;
}

sig_termios.c_cflag = sig_termios.c_cflag | PTU3270;
sig_termios.c_lflag = sig_termios.c_lflag | TOSTOP;

if (tcsetattr (terminal_fd, TCSAFLUSH, &sig-termios) != 0)
{
printf ("\n tcsetattr failed in signal_SIGCONT_handler."

"\n cflag=%08x, lflag=%08x, "
"\n errno=%d errnojr=%08x ",
sig_termios.c_cflag,
sig_termios.c_lflag,
errno,
__errno2());

close (terminal_fd);
return;
}

/***/
printf ("\n attributes reset after SIGCONT");
return;

}

/**/
/** set signal handler **/
/** **/

262 z/OS V1R1.0 UNIX System Services Programming Tools

/** sigaction() to set the signal handler for the specified signal**/
/** No signals are masked. **/
/** Log any error **/
/** **/
/**/
int set_signal ()
{

struct sigaction sigact; /* sigaction interface */
int ret_code;
int i;
int signal_value[] = /* signals to handle */

{ SIGWINCH,
SIGTTOU,
SIGTTIN,
SIGCONT };

for (i=0, ret_code=0; i<4 &&; ret_code==0; i++)
{
sigemptyset (&(sigact;sa_mask)); /* no signals masked */
sigact.sa_flags = 0;
switch (i)
{
case 0:

{ sigact.sa_handler = &signal-SIGWINCH-handler; break;}
case 1:

{ sigact.sa_handler = &signal-SIG-TTIO-handler; break;}
case 2:

{ sigact.sa_handler = &signal-SIG-TTIO-handler; break;}
default:

{ sigact.sa_handler = &signal-SIGCONT-handler; }
}

if ((ret_code = sigaction (signal_value[i], &sigact, NULL)) == -1)
{
printf ("\n sigaction() for signal value %d failed."

"\n errno=%d errnojr=%08x ",
signal_value[i],
errno,
__errno2());

}
}

return (ret_code);
}

/**/
/** **/
/** send_request **/
/** Sends a TSO request to OMVS via write() **/
/** Logs any errors **/
/** **/
/** input: **/
/** outbuff - buffer to be written **/
/** write_length - amount of bytes in outbuff to be written **/
/** terminal_fd - terminal's file descripter **/
/** **/
/** return values: **/
/** 0 - success **/
/** 2 - write() failed **/
/** 3 - write() did not write all requested data **/
/** 99 - EINTR occurred, repeat request if desired **/
/** **/
/**/
int send_request ()
{

Appendix A. TSO/3270 Passthrough Mode 263

ssize_t wrote_length; /* amount written */
int send_rc;

/***/
/** send request via write() **/
/***/
send_rc = 0;
if ((wrote_length = write (terminal_fd, outbuff, write_length)

) == -1)
{
/***/
/** if EINTR, then try the write again. **/
/** This indicates that the application was put in **/
/** background and then returned to foreground **/
/** (SIGTTOU occurred followed by a SIGCONT) **/
/***/
if (errno == EINTR)

{
printf ("\n EINTR occurred during write");
send_rc = EINTR_RECEIVED;
}

else
/***/
/** else error - stop the variation **/
/***/
{
printf ("\n write failed. \n output buffer = %s"

"\n write length = %d"
"\n errno=%d errnojr=%08x ",
outbuff, write_length,
errno,
__errno2());

send_rc = WRITE_FAILED;
}

}
else
/***/
/** check for all data written **/
/***/
{
if (wrote_length != write_length)

{
printf ("\n all data not written. %d of %d bytes written."

"\n outbuff = %s",
wrote_length, write_length, outbuff);

send_rc = WRITE_LENGTH_FAILURE;
}

}

return (send_rc);
}

/**/
/** **/
/** receive_response **/
/** Reads a TSO response from OMVS via read() **/
/** Logs any errors **/
/** **/
/** input: **/
/** inbuff - buffer to be written to **/
/** terminal_fd - terminal's file descripter **/
/** **/
/** return values: **/

264 z/OS V1R1.0 UNIX System Services Programming Tools

/** 0 - success **/
/** 4 - read() failed **/
/** 99 - EINTR occurred, repeat request if desired **/
/** **/
/**/
int receive_response ()
{

int receive_rc;

/***/
/** read response **/
/***/
receive_rc = 0;
if ((read_length = read (terminal_fd, inbuff, sizeof (inbuff)))

== -1)
{
/***/
/** if EINTR, then try the write again. **/
/** This indicates that the application was put in **/
/** background and then returned to foreground **/
/** (SIGTTIN occurred followed by a SIGCONT) **/
/***/
if (errno == EINTR)

{
printf ("\n EINTR occurred during read");
receive_rc = EINTR_RECEIVED;
}

else
/***/
/** else error - stop the variation **/
/***/
{
printf ("\n read response failed."

"\n errno=%d errnojr=%08x ",
errno,
__errno2());

receive_rc = READ_FAILED;
}

}
return (receive_rc);

}

/**/
/** **/
/** TGET_line **/
/** read a line from the terminal via TGET **/
/** send the request and receive the response **/
/** validate the response **/
/** **/
/** input: **/
/** request_ptr **/
/** response_ptr **/
/** tget_asis - 0 = do TGET EDIT **/
/** 1 = do TGET ASIS **/
/** **/
/** output: **/
/** keep_going !0 = user entered more data, keep writing & **/
/** reading lines **/
/** 0 = user entered PA1 to stop **/
/** **/
/** return values: **/
/** 0 - successful TGET **/
/** 2 - write() failed **/

Appendix A. TSO/3270 Passthrough Mode 265

/** 3 - write() did not write all requested data **/
/** 4 - read() failed **/
/** 5 - invalid TGET response **/
/** 99 - EINTR occurred, repeat request if desired **/
/** **/
/**/
int TGET_line ()
{

int tget_rc;

/**/
/** read a line from the terminal via TGET **/
/** encode TGET request using fomth32p structure **/
/** use defaults unless ASIS specified **/
/**/
request_ptr->__ff = _TSO3270_FF;
request_ptr->__fcn = _TSO3270_TGET;
request_ptr->__p1 = 0;
if (tget_asis)

request_ptr->__p1 = _TSO3270_TGET_ASIS;
else

request_ptr->__p1 = 0;
request_ptr->__p2 = 0;
request_ptr->__p3 = sizeof (inbuff) - _TSO3270_REQH_L;
request_ptr->__l = 0;
write_length = _TSO3270_REQH_L;

/**/
/** send the TGET request to read a line **/
/**/
tget_rc = send_request();
if (tget_rc == 0)

{
/**/
/** successful send - read the response **/
/**/
printf ("\n successful TGET line request sent");

tget_rc = receive_response();
if (tget_rc == 0)

{
/**/
/** successful receive - verify response **/
/**/
if (read_length < _TSO3270_RSPH_L

|| response_ptr->__fe != _TSO3270_FE
|| response_ptr->__fcn != _TSO3270_TGET
|| response_ptr->__error != 0
|| response_ptr->__r0 != 0
|| response_ptr->__rc != 0
)

{
/**/
/** if ATTN key pressed, then finished **/
/** else bad response **/
/**/
if (response_ptr->__rc == _TSO3270_TGET_RC_ATTN)

{
printf ("\n ATTN key received.");
keep_going = 0; /* stop writing and reading */
tget_rc = 0;
}

else
{
printf ("\n TGET response is incorrect."

"\n read length = %d"

266 z/OS V1R1.0 UNIX System Services Programming Tools

" fe=%x fc=%x error=%x"
" r0=%x rc=%x l=%d",
read_length,
response_ptr->__fe,
response_ptr->__fcn,
response_ptr->__error,
response_ptr->__r0,
response_ptr->__rc,
response_ptr->__l);

tget_rc = INVALID_TGET_RESPONSE;
}

}
else

{
/**/
/** good response **/
/** if no data was returned, **/
/** then write initial line again **/
/** else write the same data back to the **/
/** terminal **/
/**/
printf ("\n successful TGET line response received"

" %d bytes of data", response_ptr->__l);

if (response_ptr->__l == 0)
{
request_ptr->__l = sizeof (a_line);
strcpy (request_ptr->__d, a_line);

}
else

{
request_ptr->__l = response_ptr->__l;
if (request_ptr->__l >

(sizeof (outbuff) - _TSO3270_REQH_L))
request_ptr->__l =

(sizeof (outbuff) - _TSO3270_REQH_L);

strncpy (request_ptr->__d, response_ptr->__d,
request_ptr->__l);

}

}
}

}
return (tget_rc);

}

/**/
/** **/
/** TPUT_request **/
/** write a line to the terminal via TPUT **/
/** send the request and receive the response **/
/** validate the response **/
/** **/
/** input: **/
/** response_ptr pointing to input buffer **/
/** request_ptr pointing to the output buffer **/
/** request_ptr->__p1= mode required (EDIT | FULLSCREEN | etc.) **/
/** request_ptr->__l = length of data to be sent **/
/** request_ptr->__d = data to be sent **/
/** Note: when full screen mode is specified, the data **/
/** must be in 3270 datastream format **/
/** **/
/** return values: **/

Appendix A. TSO/3270 Passthrough Mode 267

/** 0 - successful TPUT **/
/** 2 - write() failed **/
/** 3 - write() did not write all requested data **/
/** 4 - read() failed **/
/** 6 - invalid TPUT response **/
/** 99 - EINTR occurred, repeat request if desired **/
/** **/
/**/
int TPUT_request ()
{

int tput_rc;

/***/
/** encode TPUT request using fomth32p structure **/
/***/
request_ptr->__ff = _TSO3270_FF;
request_ptr->__fcn = _TSO3270_TPUT;
request_ptr->__p2 = 0;
request_ptr->__p3 = 0;
write_length = _TSO3270_REQH_L + request_ptr->__l;

/***/
/** send TPUT request to write a line or screen **/
/***/
tput_rc = send_request();
if (tput_rc == 0)

{
/**/
/** successful send - receive the response **/
/**/
printf ("\n successful TPUT request sent");

tput_rc = receive_response();
if (tput_rc == 0)

{
/***/
/** succesfull receive - verify response **/
/***/
if (read_length < _TSO3270_RSPH_L

|| response_ptr->__fe != _TSO3270_FE
|| response_ptr->__fcn != _TSO3270_TPUT
|| response_ptr->__error != 0
|| response_ptr->__r0 != 0
|| response_ptr->__rc != 0
|| response_ptr->__l != 0
)

{
printf ("\n TPUT response is incorrect."

"\n read length = %d"
"\n fe=%x fc=%x error=%x"
"\n r0=%x rc=%x l=%d",
read_length,
response_ptr->__fe,
response_ptr->__fcn,
response_ptr->__error,
response_ptr->__r0,
response_ptr->__rc,
response_ptr->__l);

tput_rc = INVALID_TPUT_RESPONSE;
}

else
printf ("\n successful TPUT response received"

" %d bytes of data", response_ptr->__l);
}

}
return (tput_rc);

268 z/OS V1R1.0 UNIX System Services Programming Tools

}

/**/
/** **/
/** STFSMODE request **/
/** send the STFSMODE request **/
/** receive the response **/
/** validate the response **/
/** **/
/** input: **/
/** request_ptr pointing to the output buffer **/
/** request_ptr->p1 = _TSO3270_STFSMODE_ON | _TSO3270_STFSMODE_OFF**/
/** **/
/** return values: **/
/** 14 - invalid STFSMODE response **/
/** **/
/**/
int STFSMODE_request()
{

int stfsmode_rc;

stfsmode_rc = VAR_SUCCESS;
/***/
/** build the STFSMODE request **/
/***/
request_ptr->__ff = _TSO3270_FF;
request_ptr->__fcn = _TSO3270_STFSMODE;
request_ptr->__p2 = 0;
request_ptr->__p3 = 0;
request_ptr->__l = 0;
write_length = _TSO3270_REQH_L;

/***/
/** send the STFSMODE request **/
/***/
stfsmode_rc = send_request();
if (stfsmode_rc == 0)

{
/**/
/** successful send - read the response **/
/**/
printf ("\n successful STFSMODE request sent");

stfsmode_rc = receive_response();
if (stfsmode_rc == 0)

{
/**/
/** successful receive - verify response **/
/**/
if (read_length < _TSO3270_RSPH_L

|| response_ptr->__fe != _TSO3270_FE
|| response_ptr->__fcn != _TSO3270_STFSMODE
|| response_ptr->__error != 0
|| response_ptr->__r0 != 0
|| response_ptr->__rc != 0
|| response_ptr->__l != 0
)
{
printf ("\n STFSMODE response is invalid."

"\n read length = %d"
"\n fe=%x fc=%x error=%x"
"\n r0=%x rc=%x l=%d",

Appendix A. TSO/3270 Passthrough Mode 269

read_length,
response_ptr->__fe,
response_ptr->__fcn,
response_ptr->__error,
response_ptr->__r0,
response_ptr->__rc,
response_ptr->__l);

stfsmode_rc = INVALID_STFSMODE_RESPONSE;
}

else
{
printf ("\n successful STFSMODE response received");
}

}
}

return (stfsmode_rc);
}

[END]

270 z/OS V1R1.0 UNIX System Services Programming Tools

Appendix B. Message Facility Overview

To facilitate translation of messages into various languages and make them
available to a program based on a user’s locale, it is necessary to keep messages
separate from the program by putting them in message catalogs that the program
can access at run time. z/OS UNIX provides commands and subroutines for this
purpose.

The programmer uses these tools to create message source files that contain
application program messages, and convert those files to message catalogs. The
application uses these catalogs to retrieve and display messages as needed. Thus
it is not necessary to change and recompile a program to translate message source
files into other languages.

Creating a Message Source File
z/OS UNIX provides commands and subroutines to retrieve and display program
messages located in externalized message catalogs. The gencat command is used
to convert a message source file containing application messages into a message
catalog. The mkcatdefs command can be used to preprocess a message source
file into a format that can be passed to the gencat command. mkcatdefs
processing is only needed if you wish to use symbolic names for messages. To
create a message-text source file, open a file using any text editor. Enter a
message identification number or symbolic identifier. Then enter the message text
as shown below:

1 message-text
2 message-text
OUTMSG message-text
4 message-text

The following usage rules apply:

v There must be one blank character between the message ID number or identifier
and the message text.

v A symbolic identifier must begin with an alphabetic character and can contain
only alphanumeric characters (letters of the alphabet, decimal digits, and
underscores).

v The first character of a symbolic identifier cannot be a digit.

v The maximum length of a symbolic identifier is 255 bytes.

v Message ID numbers must be assigned in ascending order within a single
message set, but need not be contiguous. 0 (zero) is not a valid message ID
number. Message IDs in a gencat input file can be in the range 1 -
NL_MSGMAX.

v Message ID numbers must be assigned as if intervening symbolic identifiers are
also numbered. If the lines in the previous example had been numbered 1, 2,
OUTMSG, and 3, this would be an error. This is because the mkcatdefs
command also assigns numbers to symbolic identifiers and would have assigned
3 to the OUTMSG symbolic identifier.

© Copyright IBM Corp. 1996, 2001 271

Continuing Messages on the Next Line
All text following the blank after the message number is included as message text,
up to the end of the line. Use the escape character \ (backslash) to continue
message text to the following line. The backslash must be the last character on the
line, as in the following example:

5 This is the text associated with \
message number 5

Special Characters in the Message Text
The \ (backslash) can be used to insert the following special characters in the
message text:

\n New-line

\t Horizontal tab

\v Vertical tab

\b Backspace

\r Carriage return

\f Form feed

\\ Backslash (\)

\ddd Single-byte character associated with the octal value represented. One,
two, or three octal digits may be specified. However, you must include a
leading zero if the characters following the octal digits are also valid octal
digits. For example, the octal value for $ (dollar sign) is 44. To display
$5.00, specify \0445.00, not \445.00, or the 5 is parsed as part of the octal
value. In general, when you are porting a message catalog (either to or
from z/OS UNIX) you should:

v Run iconv to convert it to the code page of the system you will run it on.

v Look for and change any octal or hex codes in the catalog.

Defining a Character to Delimit Message Text
You can use the $quote directive in a message source file to define a character for
delimiting message text. The format is:
$quote [character] [comment]

Use the specified character before and after the message text as shown. In this
example, the $quote directive sets the quote character to _ (underscore) and then
disables it before the last message, which contains the quote character.
$quote _ Use an underscore to delimit message text
$set MSFAC Message facility - symbolic identifiers
SYM_FORM _Symbolic identifiers can contain alphanumeric \
characters or the _ (underscore character) \n_
5 _You can mix symbolic identifiers and numbers \n_
$quote
MSG_H Remember to include the _msg_h_ file in your program\n

The last $quote directive in the previous example disables the underscore
character.

272 z/OS V1R1.0 UNIX System Services Programming Tools

In the following example, the $quote directive defines " (double quotation marks) as
the quote character. The quote character must be the first nonblank character
following the message number. Any text following the next occurrence of the quote
character is ignored.
$quote " Use a double quote to delimit message text
$set 10 Message facility - quote command messages
1 "Use the $quote directive to define a character \
for delimiting message text\n"
2 "You can include the \"quote\" character in \
a message by placing a \\ in front of it\n"
$quote
3 You can disable the "quote" mechanism by \
using the $quote directive without a character \
after it\n

This example illustrates two ways the quote character can be included in message
text:

v Place a \ (backslash) in front of the quote character.

v Disable the quote mechanism by using the $quote directive without a character
after it. Define the message, then define the quote character again.

This example also shows the following:

v A \ (backslash) is still required to split a quoted message across lines.

v To display a \ (backslash) in a message, place another \ in front of it.

v You can format a message with a newline character by using \n.

v Using the $quote directive with no character argument disables the quote
mechanism.

Assigning Message Set Numbers and Message ID Numbers
All message sets require a set number or symbolic identifier. Use the $set directive
in a source file to assign a number or identifier to a group of messages:
$set n [comment]

The message set number is specified by the value of n, a number between 1 and
NL_SETMAX. Instead of a number, you can use a symbolic identifier. All messages
following the $set directive are assigned to that set number until the next
occurrence of a $set directive. The default set number is 1. Set numbers must be
assigned in ascending order but need not be in series. Empty sets are created for
skipped numbers. However, large gaps in the number sequence decrease efficiency
and performance.

You can also include a comment in the $set directive, as follows:
$set 10 Communication error messages

$set OUTMSGS Output error messages

Creating a Message Catalog
To create a message catalog, use the mkcatdefs command or the gencat
command to process your completed message source file:

v Use the gencat command to process a message source file containing set
numbers, message ID numbers, and message text. Message source files
containing symbolic identifiers cannot be processed by the gencat command.

v Use the mkcatdefs command to preprocess a message source file containing
symbolic identifiers. The resulting file can then be used as input to the gencat

Appendix B. Message Facility Overview 273

command. The mkcatdefs command produces a SymbolName.h file containing
definition statements. These statements equate symbolic identifiers with set
numbers and message ID numbers assigned by the mkcatdefs command. The
SymbolName.h file should be included in programs that use these symbolic
identifiers.

v Use the runcat command to automatically process a source file containing
symbolic identifiers. The runcat command invokes the mkcatdefs command and
pipes its output to the gencat command.

If a message catalog with the name specified by the CatalogFile parameter exists,
the gencat command modifies the catalog according to the statements in the
message source files. If a message catalog does not exist, the gencat command
creates a catalog file with the name specified by the CatalogFile parameter.

You can specify any number of message text source files. Multiple files are
processed in the sequence specified. Each successive source file modifies the
catalog. If you do not specify a source file, the gencat command accepts message
source data from standard input.

Catalog Sizing
A message catalog can be virtually any size. The maximum number of sets in a
catalog, messages in a catalog, and bytes in a message are defined in the limits.h
file by the following macros:

NL_SETMAX

Specifies the maximum number of set numbers (up to 255) that can be
specified by the $set directive. If the NL_SETMAX limit is exceeded, the
gencat command issues an error message and does not create or update
the message catalog.

NL_MSGMAX

Specifies the maximum number of message ID numbers (up to 32767)
allowed by the system. If the NL_MSGMAX limit is exceeded, the gencat
command issues an error message and does not create or update the
message catalog.

NL_TEXTMAX

Specifies the maximum number of bytes (up to 2048) that a message can
contain. If the NL_TEXTMAX limit is exceeded, the gencat command
issues an error message and does not create or update the message
catalog.

Removing Messages from a Catalog
The $delset directive removes all the messages of a specified set from an existing
catalog:
$delset n [comment]

The message set is specified by n. The $delset directive must be placed in the
proper set-number order with respect to any $set directives in the same source file.
You can also include a comment in the $delset directive.

274 z/OS V1R1.0 UNIX System Services Programming Tools

Examples
This example shows how to create a message catalog from a source file that
contains message identification numbers. The following is the text of the hello.msg
message source file:

$ file: hello.msg
$set 1 prompts
1 Please enter your name
2 Hello, %s \n
$ end of file: hello.msg

To create the hello.cat message catalog from the hello.msg source file, enter:

gencat hello.cat hello.msg

The following example shows how to create a message catalog from a source file
with symbolic references. The following is the text of the hello.msg message
source file that contains symbolic references to the message set and the messages:

$ file: hello.msg
$quote "
$set PROMPTS
PLEASE "Please enter your name"
HELLO "Hello, %s \n"
$ end of file: hello.msg

The following is the text of the msgerrs.msg message source file that contains
error messages that can be referenced by their symbolic IDs:

$ file: msgerr.msg
$quote "
$set CAT_ERRORS
MAXOPEN "Cannot open message catalog %s \n \
Maximum number of catalogs already open"
NOT_EX "File %s not executable \n"
$set MSG_ERRORS
NOT_FOUND "Message %1$d, Set %2$d not found \n"
$ end of file: msgerr.msg

To process the hello.msg and msgerrs message source files, enter:

runcat hello hello.msg
runcat msgerrs msgerrs.msg /usr/lib/nls/msg/$LANG/msgerrs.cat

The runcat command invokes the mkcatdefs and gencat commands. The first call
to the runcat command takes the hello.msg source file and uses the second
parameter, hello, to produce the hello.cat message catalog and the hello.h
definition file.

The hello.h definition file contains symbolic names for the message catalog and
symbolic IDs for the messages and sets. The symbolic name for the hello.cat
message catalog is MF_HELLO. The name is produced automatically by the
mkcatdefs command.

The second call to the runcat command takes the msgerrs.msg source file and
uses the first parameter, msgerrs, to produce the msgerrs.h definition file.
Because the third parameter, usr/lib/nls/msg/$LANG/msgerrs.cat, is present, the

Appendix B. Message Facility Overview 275

runcat command uses this parameter for the catalog file name. This parameter is
an absolute path name that specifies exactly where the runcat command must put
the file. The symbolic name for the msgerrs.cat catalog is MF_MSGERRS.

Displaying Messages with an Application Program
You must include the following items to retrieve messages in your application
program:

v The catalog file.h definition file created by the mkcatdefs or runcat command if
you used symbolic identifiers in the message source file, or the limits.h and
nl_types.h files if you did not use symbolic identifiers.

v A call to initialize the locale environment.

v A call to open a catalog.

v A call to read a message.

v A call to display a message.

v A call to close the catalog.

The following run-time library functions provide the services necessary to display
program messages:

setlocale
Sets the locale. Specify the LC_ALL or LC_MESSAGES environment
variable in the call to the setlocale subroutine for the preferred message
catalog language.

catopen
Opens a specified message catalog and returns a catalog descriptor, which
you use to retrieve messages from a catalog.

catgets
Retrieves a message from a catalog after a successful call to the catopen
subroutine.

printf Converts, formats, and writes to the standard output stream.

catclose
Closes a specified message catalog.

The following C program, hello, illustrates opening the hello.cat catalog with the
catopen subroutine, retrieving messages from the catalog with the catgets
subroutine, displaying the messages with the printf subroutine, and closing the
catalog with the catclose subroutine.

/* program: hello */
#include <nl_types.h>
#include <locale.h>
nl_catd catd;
main()
{
/* initialize the locale */
setlocale (LC_ALL, "");
/* open the catalog */
catd=catopen("hello.cat",0);
printf(catgets(catd,1,1,"Hello, World!"));
catclose(catd); /* close the catalog */
exit(0);
}

276 z/OS V1R1.0 UNIX System Services Programming Tools

In the previous example, the catopen subroutine refers to the hello.cat message
catalog only by file name. Therefore, you must make sure that the NLSPATH
environment variable is set correctly. If the message catalog is successfully opened
by the catopen subroutine, the catgets subroutine returns a pointer to the specified
message in the hello.cat catalog. If the message catalog is not found or the
message does not exist in the catalog, the catgets subroutine returns the "Hello
World" default string.

Understanding the NLSPATH Environment Variable
The NLSPATH environment variable specifies the directories to search for message
catalogs. The catopen subroutine searches these directories in the order specified
when called to locate and open a message catalog. If it cannot find the catalog
while searching the directories in NLSPATH, catopen uses a system default value
of /usr/lib/nls/msg/%L/%N. This NLSPATH value is always searched after any
user-specified NLSPATH value. If the message catalog is not found, catgets
returns the program-supplied default message.

The %L and %N special variables are defined as follows:

%L Holds the locale-specific directory containing message catalogs. Depending
on how you coded the catopen() call, the current value of the LANG or
LC_MESSAGES environment variable is used.

%N Holds the name of the message catalog to be opened. This is the name
passed as the first parameter of the catopen() call.

References
Refer to z/OS UNIX System Services Command Reference for descriptions of the
following commands and subroutines:

v dspcat command

v dspmsg command

v gencat command

v mkcatdefs command

v runcat command

The following functions are described in z/OS C/C++ Run-Time Library Reference:

v catgets subroutine

v catclose subroutine

v catopen subroutine

v printf subroutine

Appendix B. Message Facility Overview 277

278 z/OS V1R1.0 UNIX System Services Programming Tools

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2001 279

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

BookManager OpenEdition
C/MVS OS/390
C/370 RACF
CICS Resource Link
IBM S/390
IBMLink SP
Language Environment VTAM
Library Reader z/OS
MVS zSeries

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

POSIX and IEEE are trademarks of Institute of Electrical and Electronics Engineers.

MKS and Interopen are trademarks of Mortice Kerns Systems Inc.

Acknowledgments
lex, yacc, and make are InterOpen source code products licensed from Mortice
Kern Systems (MKS) Inc. of Waterloo, Ontario, Canada. These utilities complement
the InterOpen/POSIX Shell and Utilities source code product providing POSIX.2
functionality to the z/OS UNIX services.

280 z/OS V1R1.0 UNIX System Services Programming Tools

Source Code Policy
The source code created by MKS LEX and YACC may be freely distributed,
provided that the copyright notices are not removed. The source code for the library
routines used by MKS LEX and YACC is similarly protected. The user is free to sell
or distribute programs that were created using MKS LEX and YACC, provided that
this procedure is followed.

The z/OS UNIX lex utility is based on a similar program written by Charles Forsyth
at the University of Waterloo (in Ontario, Canada) and described in an unpublished
paper, “A Lexical Analyzer Generator” (1978). The implementation is loosely based
on the description and suggestions in the book Compilers, Principles, Techniques,
and Tools, by A. V. Aho, Ravi Sethi, and J. D. Ullman (Addison-Wesley, 1986).

This lex utility was inspired by a processor of the same name at Bell Labs, which
also runs under z/OS UNIX, and, more distantly, on AED-0. z/OS UNIX lex is
described in the paper “Lex — A Lexical Analyser Generator”, by M. E. Lesk,
Computer Science Technical Report 39, Bell Labs (October 1975). AED-0 is
described in “Automatic Generation of Efficient Lexical Analysers using Finite State
Techniques”, by W. L. Johnson, appearing in the Communications of the ACM 11
(no. 12, 1968): 805–13.

z/OS UNIX yacc is input compatible with UNIX YACC (Yet Another
Compiler-Compiler), written by S. C. Johnson of Bell Telephone Laboratories,
Murray Hill, N.J. The LALR(1) version of MKS YACC was written by K. W. Lalonde
of the Software Development Group of the University of Waterloo, Ontario, Canada.

The parsing algorithm used by yacc is derived from the article “Methods for
Computing LALR(k) Look-ahead” by B. B. Kristensen and O. L. Madsen, ACM
Transactions on Programming Languages and Systems 3 (no. 1, January 1981):
60–82. Those interested in reading this article should first have a good grasp of
parsing theory principles.

The information contained in the glossary section and tagged by the word [POSIX]
is copyrighted information of the Institute of Electrical and Electronics Engineers,
Inc., extracted from IEEE Std 1003.1-1990, IEEE P1003.0, and IEEE P1003.2. This
information was written within the context of these documents in their entirety. The
IEEE takes no responsibility or liability for and will assume no liability for any
damages resulting from the reader’s misinterpretation of said information resulting
from the placement and context in this publication. Information is reproduced with
the permission of the IEEE.

Appendix C. Notices 281

282 z/OS V1R1.0 UNIX System Services Programming Tools

Index

Special Characters
:

in filenames 99
rule operator 98, 127

?
operator 7, 36

/
operator 47

*
operator 6

#
character 126

+
operator 6

=
assignment operator 129

:-
rule operator 127

::
rule operator 100, 127

:!
rule operator 127

:=
assignment operator 130

$$
yacc notation 14, 69, 70, 80, 92

+=
assignment operator 130

%%
divider 37, 56

$$_>
macro 141, 142

\- in
recipes 117

%_{
yacc directive 60, 65

%_}
yacc directive 60, 65

$_>
macro 141

$_<
macro 106, 109, 112, 141

@ in
recipes 117, 129

$-1
yacc notation 88

$-2
yacc notation 88

%a
lex directive 38

:|
rule operator 127

%e
lex directive 38

- in
recipes 129

+ in
recipes 117, 129

%k
lex directive 38

%left
yacc directive 13, 59, 82

%n
lex directive 38

%nonassoc
yacc directive 59, 82

%o
lex directive 38

%p
lex directive 38

%prec
yacc directive 88

%prec yacc directive 63
%prefix

yacc declaration 55
%right

yacc directive 13, 59, 82
%s

lex start condition 48
%S

lex start condition 48
%start

yacc directive 64
%Start

lex start condition 48
%T

lex translation table 53
%token

yacc directive 11, 40, 57, 65, 75, 80
%type

yacc directive 25, 80
%union

yacc directive 22, 40, 80
:|

rule operator 128
%x

lex start condition 50
$0

yacc notation 88
$1

yacc notation 14, 69, 80, 88
$2

yacc notation 80
$accept 67, 76
:b

macro modifier 106
.BRACEEXPAND

target 136
:d

macro modifier 106
.DEFAULT

target 136
#define 58

directive 42

© Copyright IBM Corp. 1996, 2001 283

.ELSE 146
$end 64, 76, 78
.END 146
.EPILOG

attribute 119, 134, 136
.ERROR

target 113, 136
.EVERYTHING 115

prerequisite 137
.EXPORT

target 115, 136
:f

macro modifier 106
.GROUPEPILOG

target 119
.GROUPPROLOG

target 119, 136
.IF 146
.IGNORE

attribute 112, 114, 115, 134, 137
.IMPORT

target 115, 136
#include 65, 76
.INCLUDE

target 114, 137, 147
.INCLUDEDIRS

target 114, 137
.LIBRARY

attribute 120, 134
.LIBRARYM

attribute 120, 143
.LIBRARYM attribute 135
.MAKEFILES

target 137
.NULL

suffix 143
.PRECIOUS

attribute 113, 134, 138
.PROLOG

attribute 119, 134
target 136

.REMOVE
target 138

:s
macro modifier 107

.SETDIR
attribute 135

.SILENT
attribute 113, 118, 135

.SOURCE
target 138, 143

.SOURCE.ext
target 142

.SOURCE.x
target 138

.SYMBOL
attribute 135, 143

#undef
directive 42

|
operator 7, 36

A
accept 67, 68
action 8, 14, 37
alternation operator 36
ambiguity resolution 46, 81
assigned token value 66
associativity 58
attribute 134

macros 116
AUGMAKE 131, 147

B
backslash 100, 126
BEGIN 48

lex statement 43
binding 58

rules 12
targets 142

block structure 73
BRACEEXPAND target 136
breakpoints

deleting for dbx 194
setting for dbx 194

BSD 147
buffer overflow 45
built-in rules 124

C
C definitions 12
C escape sequences 4
C identifiers 39
C typedef 80
character

class 34
string 4, 34

circumflex operator 34
colon in filenames 99
command interpreter 99, 115, 118, 119, 129, 139
command line

macro definition 104
options 123

comments 57, 126
concatenation operator 36
condition variable

defined 174
displaying information 178
internal name 178
nodebug option 154
status of individual 179
subcommand 174

conditionals 146
conflict resolution 79
conflicts table 84
context operator 47
continuation lines 100, 126
control macros 138, 140
current thread 154

284 z/OS V1R1.0 UNIX System Services Programming Tools

D
data sets

debugging as source files with the dbx utility 159,
166

dbx utility 151, 152
alias subcommand 185
assign subcommand 171
breakpoints, setting and deleting 161
catch subcommand 170
changing print output 173
changing the current file or procedure 167
changing the source directory path 166

for MVS data set source 159, 166
cont subcommand 163
continuing a stopped program under 163
controlling program execution

single-stepping 163
using breakpoints 161

converting the case of symbols 173
customizing 184

creating subcommand aliases 185
defining a new dbx prompt 184
using the .dbxinit file 186

dbx environment variables 187
dbx external program usage 187
dbxinit file 186
debugging at machine level 182
debugging environment control, subcommands

for 196
debugging programs involving multiple

processes 168
deleting trace events 166
displaying a stack trace 170
displaying and manipulating the source file 166

MVS data set source 159, 166
displaying and modifying variables 171
displaying the current file 166
displaying the source file, subcommands for 196
down subcommand 170
editing source files while debugging 168
ending program execution, subcommand for 197
examining memory addresses 182
examining program data 169
gotoi subcommand 183
handling signals 169
ignore subcommand 170
machine-level debugging 183, 194, 197
modifying variables, expressions, and types 194
multproc subcommand 168
next subcommand 163
nexti subcommand 183
operators allowed in expressions 166
print subcommand 171
printing and modifying variables, expressions, and

types 197
printing variables, expressions, and types 194
procedure calling 194, 198
prompt subcommand 184
registers subcommand 182
rerun subcommand 163
resolving names 171

dbx utility 151, 152 (continued)
run subcommand 163
running 157
running a program at machine level 183
running a program under 163, 194
running shell commands from 161
running subcommands from a file 186
running your program from dbx, subcommands

for 198
scoping of names 171
search (/) subcommand 167
set subcommand 173
setting and deleting breakpoints 194
setting and deleting breakpoints, subcommands

for 199
signal handling 163, 170, 194

subcommands for 199
stack trace 170
starting a program under 163
step subcommand 163
stepi subcommand 183
stop subcommand 161
stopi subcommand 183
subcommands 194

shell 161
trace subcommand 164
tracei subcommand 183
tracing execution 164, 194

subcommands for 199
understanding operators and modifiers allowed in

expressions 171
understanding type checking in expressions 172
unset subcommand 173
up subcommand 170
using machine registers 182
whatis subcommand 172
where subcommand 170
whereis subcommand 171
which subcommand 171

debugging 46, 50, 92

customizing the dbx utility 186
dbx environment variables 187
dbx external program usage 187
dbx utility

changing print output with special debugging
variables 173

changing the current file or procedure 167
changing the source directory path 166
continuing a program under 163
controlling program execution 166
converting the case of symbols 173
customizing 184
debugging programs involving multiple

processes 168
deleting trace events 166
displaying a stack trace 170
displaying and manipulating the source file 166
displaying and modifying variables 171
displaying the current file 166
dynamic scope 171
editing source files from 168

Index 285

debugging 46, 50, 92 (continued)
examining memory addresses 182
examining program data 169
handling signals 169
machine-level 194
modifying variables, expressions, types 194
operators allowed in expressions 166
printing variables, expressions, types 194
procedure calling 194
programs in read-only storage 164
running a program at machine level 183
running a program under 163, 194
running subcommands from a file 186
scoping of names 171
setting and deleting breakpoints 161
signal handling 163, 170, 194
starting a program under 163
starting a second shell session for multiprocess

debugging 168
static scope 171
subcommands 194
tracing program execution 164, 194
understanding expression operators and

modifiers 171
understanding program control 161
understanding type checking in expressions 172
using breakpoints 194

machine level 182
running 157
using 161
using dbx 151, 152
using machine registers 182

declarations 9, 11, 12, 13, 57
declarations section 39
default

action 81, 95
rules 111, 112, 119, 120, 121, 123, 125, 127, 136,

138, 139
DEFAULT

target 136
define directive 42
definition sections 37
DFA 38

space 38
directives 38
directory path

changing with the dbx utility for source file
searching 166

discard lookahead 74
displaying

program source file with dbx 166, 195
double colon rule operator 100
dummy

rules 87
symbols 85

dynamic prerequisites 106, 141

E
ECHO lex statement 43
ELSE 146
end

marker 64

END 146
end-of-file 40
EPILOG attribute 119, 134, 136
error 68, 70

condition 71
handling 71
state 21
symbol 71

ERROR
target 136

error processing 20
error symbol 19
escape character 34
EVERYTHING prerequisite 137
excluded character class 34
exclusive start condition 50
EXPORT target 136
expressions 34

printing and modifying for dbx debugging 194
program

displaying and modifying 171
understanding operators and modifiers allowed

for 171
understanding type checking in 172

external state number 92

F
free function 95
function 57
function section 11, 16, 37, 65

G
goto 68, 70, 77
grammar 11

complexity 79
constructs 13
rules 57, 60

group recipe 119, 129
GROUPEPILOG target 119
grouping 7
GROUPPROLOG target 119, 136

H
header file 3

I
iend

alternatives 7
anchored patterns 5
attribute 113
attribute macros 140
error detection 46
error handling 21
error recovery 46
lex definitions 8
lexical analyzer 33
libraries 121

286 z/OS V1R1.0 UNIX System Services Programming Tools

iend (continued)
macros 109, 131
makefile 97
multiple action 86
optional expressions 7
regular expressions 7
repetitions 7
rule operator 129
rules 16, 100
runtime macros 142
scanner 33
selection preference 88
special macros 142
special targets 115, 138
string macros 140
translation 10
YYDEBUG macro 92
YYERROR macro 94

IGNORE attribute 134, 137
IMPORT target 136
include 137
INCLUDE

target 137, 147
INCLUDEDIRS target 137
inference rules 110, 141, 144, 145
infinite recursion 89
initial state table 50
input function 44
input stream 33
installation 111, 112
interior action 16
internal state number 92
istart

alternatives 7
anchored patterns 5
attribute 112
attribute macros 140
character class 5
control macros 115
error

detection 45
recovery 45

error handling 17
lex definitions 7
lexical analyzer 33
libraries 119
macros 101, 129
makefile 97
metarules 109
multiple action 85
optional expressions 7
regular expressions 4
repetitions 6
rule operator 127
rules 13, 98
runtime macros 141
scanner 33
selection preference 86
special macros 138
special targets 113, 135
string macros 139

istart (continued)
translation 8
YYDEBUG macro 91
YYERROR macro 93

J
jobs command 149

K
kernel items 79
kill command 150
killing processes 150
Kleene closure 36

L
left

associative 12, 59
recursion 61, 90
yacc directive 59, 82

lex 1, 4, 33
errors 17

libraries 138
LIBRARY attribute 134
LIBRARYM

attribute 143
LIBRARYM attribute 135
lists 88
local blocks 39
longjmp() function 95
lookahead 47, 67

operator 47
token 86, 96

M
machine-level debugging using dbx 194
macro

definition 129
expansion 130
modifier 106, 130

main 3
make command 100
make utility 97

improving performance 148
makefile 124
MAKEFILES target 137
malloc function 95
manipulating program source file with dbx 166
memory addresses

examining for debugging 182
message facility 271
message source file

commands and subroutines used in 277
creating 271

continuing messages on next line 272
delimiter characters, defining 272
message ID numbers, assigning 273
message set numbers, assigning 273

Index 287

message source file (continued)
special characters in message text 272

displaying messages 276
examples of 275
message catalog

creating 273
removing messages from 274
sizing 274

role of NLSPATH variable in 277
metarules 128, 144
minimal DFA 50
modifying variables, expressions, and types while using

dbx 194
multiple

action 87, 88
matches 46

multithread program, controlling execution 180
multithreaded applications, using dbx with 154
mutex

defined 174
displaying information 177
internal names 177
locked 177, 180
nodebug option 154
status of individual 178
subcommand 174

N
nested macros 132
newline character 4, 5, 10, 11, 15, 34, 35, 42, 52, 53,

57, 73
NFA 38, 50
nonassoc yacc directive 59, 82
nonterminal symbol 14, 60, 88
not enough space 74
Notices 279
null strings 88
number of transitions 38

O
operator priority 36
optional operator 36
output array size 38

P
packed character classes 38
parentheses for grouping 7
parser

description 76
stack overflow 74
statistics 78
using multiple 55

Pascal 47
path, directory

changing with the dbx utility for source file
searching 166

patterns 34
portability 2

potential error 74
prec, yacc directive 88
prec yacc directive 63
precedence 58, 63, 82

order 13
rules 12

PRECIOUS attribute 134, 138
prefix 55

yacc declaration 55
prerequisites 98, 126
printing variables, expressions, and types while using

dbx 194
procedures

calling through dbx while debugging 194
processes

dbx debugging 151, 152
multiple processes 168

killing 150
obtaining the status of 149

processes, multiple, debugging with dbx 168
programs

debugging
examining program data 169

debugging at machine level 182
debugging with dbx 151, 152
expressions

displaying and modifying 171
understanding operators and modifiers allowed

for 171
understanding type checking in 172

running from the dbx utility 194
symbols, converting case when debugging 173
tracing execution of from dbx 194
variables

displaying and modifying 171
PROLOG

attribute 119, 134
target 136

ps command 149
publications

on CD-ROM xi
softcopy xi

R
read/write lock objects

status of individual 180
Read/Write Lock Objects

displaying information 179
recipes 98, 118
recognition action 61
recursive 61
reduce 67, 77, 92

action 69, 79, 84, 92
popularity 95
precedence 82

reduce-reduce 79, 82
reentrant 95
referencing components of definition 14
registers, floating-point

using in debugging 182

288 z/OS V1R1.0 UNIX System Services Programming Tools

registers, general-purpose
using in debugging 182

regular expressions 4, 33, 34
dbx support of 167

REJECT
lex statement 43
macro 52

REMOVE target 138
repetition operator 36
restart 71
returning value 39
right

associative 12, 59
recursion 61, 90
yacc directive 59, 82

rule number 77
rules 126
runtime macros 105

S
search rules 135, 137
SETDIR attribute 135
shell 140

starting another shell session 160
shift 67, 68, 76

precedence 82
shift-reduce 79, 82, 86, 95
signals

debugging
delivery of signals during a dbx session 169
handling delivered signals during a dbx

session 169
delivery debugging 169
handling

by dbx during debugging 163, 169, 170, 194
silent

recipe lines 117
SILENT

attribute 118, 135
source

declarations 13
SOURCE

target 142, 143
source files, editing while debugging with dbx 168
SOURCE target 138
special macros 105
stack machine 30
stack trace, dbx utility, displaying 170
standard I/O library 41
star operator 36
start

condition 48
symbol 15, 64

startup file 111, 112, 120, 123, 125, 139
state

actions 67
description 76, 91, 92
parser 66
stack 69, 88, 92, 96
tables 50

stderr 42, 45, 46

stdout 45
strings 4
substitution modifier 107
suffix 103
symbol

program
converting the case of when debugging 173

values 62
SYMBOL

attribute 135, 143
syntax error 74

T
tab character 98, 129
targets 98, 126

on command line 100
tart yacc directive 64
temporary

files 119
temporary files 119, 133, 134
termina symbol 60
text diversion 133
thread 154

breakpoints 181
defined 174
displaying information 176
displaying status 175
holding and releasing 181
internal names 175
nodebug option 154
status of individual 176
subcommand 174
switching 176
unexpected debugging behavior 181

token 4, 60
number 33, 39, 40
type 80
value 33, 39
yacc directive 57, 75, 80

token directives 57
tokenization 108
tracing 50
translation 38

section 37, 38
table 53

tree
branch 25
leaf 25
nodes 25

TSO/3270 passthrough mode 201
data stream for 210
documentation of 244
ENDPASSTHROUGH key, use of 240
Overview 201
programming notes for 238
Requests, processing of 204
sample programs for 245

complex 252
simple 245

setting 239
Supported functions 202

Index 289

TSO/3270 passthrough mode 201 (continued)
usage scenario for 244
Use of 202

type yacc directive 80
types 80

printing and modifying for dbx debugging 194

U
undef directive 42
union yacc directive 80

V
value stack 69, 96
variables

dbx environment variables 187
printing and modifying for dbx debugging 194

variables, program, displaying and modifying 171

W
white space 100, 127, 130
word count program 10

X
XPLINK 182

Y
yacc utility 1, 40

%left 83
%nonassoc 83
%right 83
grammar 55
parsing input 55
precedence 83
reduce 83
reduce-reduce 83
removing ambiguity 82
shift 83
shift-reduce 83
symbol names 55

YY_DEBUG 46
yy prefix 2
YYABORT routine 75
YYACCEPT routine 75
yyact variable 79
YYALLOC macro 95, 96
yychar variable 95
yycomment function 44
yydef table 79
yyerrflag variable 95
yyerrok() macro 74
yygetc() macro 43
yygo variable 79
yyleng variable 43
yylex return values 56
yylineno variable 43
YYLMAX macro 42

yylval variable 95
yymapch function 44
yymore function 44
yynerrs variable 95
yyout variable 45
yyparse()

making it reentrant 95
return values 55
using multiple 55

yypvt variable 95
YYRETURN routine 75
YYSTATIC macro 96
YYSYNC macro 96
yytext array 43

Z
z/OS UNIX System Services

publications
on CD-ROM xi
softcopy xi

290 z/OS V1R1.0 UNIX System Services Programming Tools

Readers’ Comments — We’d Like to Hear from You

z/OS
UNIX System Services
Programming Tools

Publication No. SA22-7805-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7805-00

SA22-7805-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7805-00

	Contents
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information
	Softcopy Publications
	Accessing licensed books on the Web
	Using LookAt to look up message explanations
	IBM Systems Center Publications
	z/OS UNIX Porting Information
	z/OS UNIX Courses
	z/OS UNIX Home Page
	z/OS UNIX Customization Assistant
	Discussion List

	Chapter 1. Tutorial on Using lex and yacc
	Uses for the lex and yacc Utilities
	Code Produced by lex and yacc
	lex Output
	yacc Output
	Defining Tokens
	Calling the Code
	Using the lex and yacc Commands

	Tokenizing with lex
	Characters and Regular Expressions
	Character Strings
	Anchoring Patterns
	Character Classes
	Repetitions
	Optional Expressions
	Alternatives
	Grouping

	Definitions
	Translations
	Declarations
	lex Input for Simple Desk Calculator

	yacc Grammars
	The Declarations Section
	Creating Token Definition Files
	Precedence Rules
	Code Declarations

	The Grammar Rules Section
	Actions
	Compressing Rules
	Start Symbols
	Interior Actions
	Explicit Internal Source Code Declarations

	The Functions Section
	The Simple Desk Calculator

	Error Handling
	Error Handling in lex
	Other Errors in lex

	lex Input for the Improved Desk Calculator
	Error Handling in yacc
	The Error Construct
	Using yyerror()
	The yyerrok Function
	Other Error Handling Facilities

	A Sophisticated Example
	Multiple Values for yylval
	lex Input
	The Bare Grammar
	Expression Trees
	Compilation

	Chapter 2. Generating a Lexical Analyzer Using lex
	Introduction to the lex Utility
	The lex Input Language
	Language Fundamentals
	Characters
	Strings
	Character Classes

	Putting Things Together
	lex Programs
	Definitions
	Translations
	Token String and Length
	Numbers and Values

	Declarations

	Using lex
	Using yylex()
	Generating a Table File
	Compiling the Table File
	The lex Library Routines
	Typedefs
	Constants
	Variables
	Macros
	Functions
	Library Routines

	Error Detection and Recovery
	Ambiguity and Lookahead
	Lookahead
	Left Context Sensitivity and Start Conditions
	Tracing a lex Program
	The REJECT Action
	Character Set

	Chapter 3. Generating a Parser Using yacc
	How yacc Works
	yyparse() and yylex()
	Grammar Rules

	Input to yacc
	Declarations Section
	Token Declarations
	Precedence and Associativity
	Variable and Function Declarations
	Summary

	Grammar Rules Section
	Recognition Actions
	Token and Symbol Values
	Precedence in the Grammar Rules
	Start Symbol
	End Marker
	Declarations in yyparse()

	Function Section
	Lexical Analyzer

	Internal Structures
	States
	Diagramming States
	State Actions
	Accept
	Shift
	Reduce
	Goto
	Error

	Error Handling
	The Error Symbol
	The Error Condition
	Examples
	Error Recognition Actions
	The yyclearin Macro
	The yyerror Function
	The yyerrok Macro
	Other Error Support Routines

	yacc Output
	Rules Summary
	State Descriptions
	Parser Statistics

	Types
	The Default Action

	Ambiguities
	Resolving Conflicts by Precedence
	Rules to Help Remove Ambiguities
	Conflicts in yacc Output

	Advanced yacc Topics
	Rules with Multiple Actions
	Selection Preference for Rules
	Using Nonpositive Numbers in $N Constructs
	Using Lists and Handling Null Strings
	Right Recursion versus Left Recursion
	Using YYDEBUG to Generate Debugging Information
	Important Symbols Used for Debugging
	Using the YYERROR Macro
	Rules Controlling the Default Action
	Errors and Shift-Reduce Conflicts
	Making yyparse() Reentrant
	Miscellaneous Points

	Chapter 4. Tutorial on Using make
	Basic Concepts
	The Makefile
	Writing a Rule
	Filenames Containing a Colon
	White Space
	Continuation Lines

	Targets with More Than One Recipe
	Comments
	Running make

	Macros
	Naming Macros
	Macro Examples
	Command-Line Macros
	Variations
	Special Runtime Macros
	Dynamic Prerequisites

	Modified Expansions
	Substitution Modifiers
	Tokenization
	Prefix and Suffix Operations

	Inference Rules
	Metarules
	Suffix Rules
	The Default Rules File

	Controlling the Behavior of make
	Some Important Attributes
	Some Important Special Targets
	The .ERROR Target
	Including Other Makefiles
	Environment Variables

	Some Important Control Macros
	Information Macros
	Attribute Macros
	Other Control Macros

	Recipes
	Recipe Lines
	Executing Regular Recipes

	Group Recipes
	Special Group Recipe Constructs
	Executing Group Recipes

	Libraries
	Metarules for Library Support

	Chapter 5. More Information on make
	Command-Line Options
	Finding the Makefile
	Makefile Input
	Comments
	Rules
	Rule Operators
	Recipes
	Missing Recipes

	Macros
	Modified Macro Expansions
	Pattern Substitution
	Tokenization
	Prefix and Suffix Operations
	Nested Macros

	Text Diversion

	Using Attributes to Control Updates
	Special Target Directives
	Special Macros
	Control Macros
	String-Valued Macros
	Attribute Macros

	Runtime Macros
	Dynamic Prerequisites

	Binding Targets
	Using Inference Rules
	Metarules
	Suffix Rules

	Compatibility Considerations
	Conditionals
	BSD UNIX make

	System V AUGMAKE
	Improving make Performance

	Chapter 6. Debugging z/OS C/C++ Programs
	Controlling Processes
	Obtaining the Status of z/OS UNIX Application Program Processes
	Killing a Runaway Process

	Introduction to the z/OS Debugger
	Using the z/OS UNIX Debugger to Debug Your Application
	Using the z/OS UNIX Debugger with Multithreaded Applications
	z/OS UNIX Debugger Restrictions and Debugging Limitations
	The Debugger has the following restrictions
	Debugging limitations of z/OS UNIX dbx
	Restrictions on dbx for C++

	Debugging from the Shell with the dbx Utility
	Running the dbx Utility
	Examples of Using the dbx Utility
	Running Shell Commands from dbx

	Controlling Program Execution
	Setting and Deleting Breakpoints to Step through a Program
	Running a Program
	Continuing a Stopped Program
	Tracing Execution

	Displaying and Manipulating the Source File
	Changing the Source Directory Path
	Displaying the Current File
	Changing the Current File or Procedure
	Editing Source Files While Debugging a Program

	Debugging Programs Involving Multiple Processes
	Using _BPX_PTRACE_ATTACH to Load Programs into UserModifiable Storage

	Examining Program Data
	Handling Signals
	Displaying a Stack Traceback
	Displaying and Modifying Variables
	Scoping of Names
	Understanding Operators and Modifiers Allowed in Expressions
	Understanding Type Checking in Expressions
	Converting Symbols to Lowercase and Uppercase
	Changing Print Output with Special Debugging Variables

	Debugging Application Programs Involving Threads
	Examining Multithread Program Status
	Controlling Multithread Program Execution

	Debugging at the Machine Level
	Using Machine Registers
	Examining Memory Addresses
	Running a Program at the Machine Level

	Customizing the dbx Debugging Environment
	Defining a New dbx Prompt
	Creating dbx Subcommand Aliases
	Using the .dbxinit. File
	Reading dbx Subcommands from a File
	dbx Environment Variables
	dbx External Program Usage

	Debugging MVS dumps
	Ananlyzing dump initialization problems
	Maximizing source level debug of in production C/C++ programdumps

	Debugging Considerations/Setup On MVS
	Setting up CEEEVDBG for ptrace/dbx's use
	Attach (-a) considerations
	Programs with DLL's
	Programs that run fine only under dbx
	Multiprocess debugging
	Programs started via JCL/daemons
	Programs that exist in MVS data sets rather than the HFS
	Performance considerations (symbolics reading)
	Performance considerations (program execution)

	List of dbx Subcommands
	Debugging Environment Control
	Debugging Threads
	Displaying the Source File
	Ending Program Execution
	Machine-Level Debugging
	Multiprocess Debugging
	Printing and Modifying Variables, Expressions, and Types
	Procedure Calling
	Running Your Program
	Setting and Deleting Breakpoints
	Signal Handling
	Tracing Program Execution

	Appendix A. TSO/3270 Passthrough Mode
	Overview
	Supported TSO Functions
	Using the TSO/3270 Passthrough Data Stream
	Preliminary Processing of TSO/3270 Passthrough Mode Requests
	Processing of Return Codes from Invoked TSO Services
	TSO/3270 Passthrough Mode Data Stream
	Miscellaneous Programming Notes
	The ENDPASSTHROUGH Key
	ENDPASSTHROUGH Specification Results
	Other Documentation
	Usage Scenario
	Sample Programs

	Appendix B. Message Facility Overview
	Creating a Message Source File
	Continuing Messages on the Next Line
	Special Characters in the Message Text
	Defining a Character to Delimit Message Text
	Assigning Message Set Numbers and Message ID Numbers

	Creating a Message Catalog
	Catalog Sizing
	Removing Messages from a Catalog

	Examples
	Displaying Messages with an Application Program
	Understanding the NLSPATH Environment Variable
	References

	Appendix C. Notices
	Trademarks
	Acknowledgments
	Source Code Policy

	Index
	Readers’ Comments — We'd Like to Hear from You

