
IMS

IMS Connector for Java 2.2 and 9.1.0.1

Online Documentation for WebSphere

Studio Application Developer Integration

Edition 5.1.1

SC09-7869-04

���

IMS

IMS Connector for Java 2.2 and 9.1.0.1

Online Documentation for WebSphere

Studio Application Developer Integration

Edition 5.1.1

SC09-7869-04

���

Note

Before using this information and the product it supports, read the information in Notices at the end of this book.

(Second Edition 2005)

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. What is the IMS resource

adapter? 1

Prerequisites for using the IMS resource adapter . . 3

Platform configurations and communication protocol

considerations 5

Preparing to use the IMS resource adapter 6

Chapter 2. Developing your application 7

Overview of the Common Client Interface (CCI)

record helper class 7

Chapter 3. Configuring your application 9

Execution timeout 9

Valid execution timeout values 9

Setting execution timeout values 11

Socket timeout 12

Setting the Socket Timeout Value 13

Connection properties 14

Operation binding properties 17

Chapter 4. Security 27

IMS resource adapter security 27

Component-managed EIS sign-on 28

Configuring component-managed EIS sign-on . . . 29

Container-managed EIS sign-on 30

Configuring container-managed EIS sign-on . . . 31

Overview of secure socket layer (SSL) 32

Using secure socket layer (SSL) support 34

Chapter 5. Commit mode processing 39

Overview of commit mode processing 39

SYNC_SEND_RECEIVE programming model . . . 44

Retrieving asynchronous output 46

Displaying output message counts 48

SYNC_SEND programming model 49

Creating an application to run a Commit mode 0

transaction 51

Displaying output message counts 55

Chapter 6. Transaction processing . . . 59

Global transaction support with two-phase commit 59

Two-phase commit prerequisites 62

Using global transaction support in your application 63

Two-phase commit environment considerations . . 64

Chapter 7. Diagnosing problems 65

Diagnosing problems when using the IMS resource

adapter 65

Logging and tracing with the IMS resource adapter 66

J2CA0056I, WLTC0017E, HWSP1445E, and

HWSSL00E Error Messages 67

IMS resource adapter messages and exceptions . . 69

Chapter 8. Migration and coexistence 95

Migration and coexistence considerations for the

IMS resource adapter 95

Compatibility of existing applications with IMS

Connector for Java Version 2.2.1 95

Chapter 9. Samples 99

Sample: Creating an enterprise service for an IMS

transaction 99

Sample: Deploying an IMS enterprise service to a

production server 121

Sample: Running an enterprise service for an IMS

transaction 126

Sample: Building a service that submits commands

to IMS 131

Sample: Building container-managed and

component-managed transactional EJBs to run IMS

transactions 138

Sample: Building input and output records using

the CCI record helper class 165

Sample: Creating an Enterprise Java Bean to

communicate with a conversational IMS

application 182

Sample: Building an Application to Process

Variable Length and Multiple Segment IMS

Transaction Output Messages 199

Sample: Building an Application to Process IMS

Transaction Input and Output Messages

Containing Arrays 208

Notices 219

© Copyright IBM Corp. 2000, 2005 iii

iv IMS Connector for Java 2.2 and 9.1.0.1

Chapter 1. What is the IMS resource adapter?

WebSphere® Studio Application Developer Integration Edition is a service-based

development environment and the IMS resource adapter is one of the service

providers included in it. The IMS resource adapter is used by Java™ applications to

access IMS™ transactions running on host IMS systems and is used during

development and at runtime. The IMS resource adapter is also called IMS

Connector for Java.

The process of building a Java application that runs an IMS transaction is

summarized by the following steps:

1. In the Business Integration perspective, import C, COBOL, or MFS definitions

of the IMS transaction input and output messages.

2. Generate an enterprise service and Java application using the imported

definitions.

3. Test the service-based Java application using the WebSphere Test Environment.

4. When the Java application is tested, export it as an Enterprise Application

Archive (EAR) file, to be deployed in WebSphere Application Server.

The following figure illustrates the use of the IMS resource adapter during

development:

At run time, the IMS resource adapter is used with IBM WebSphere Application

Server. When a Java application runs, it submits a transaction request to IMS

through the host product, IMS Connect. The IMS resource adapter communicates

with IMS Connect using TCP/IP or Local Option. IMS Connect then sends the

transaction request to IMS OTMA using XCF (Cross-system Coupling Facility), and

the transaction runs in IMS. The response is returned to the Java application using

the same path. The following figure illustrates the run-time process:

© Copyright IBM Corp. 2000, 2005 1

There are two versions of the IMS resource adapter included in WebSphere Studio.

Both are based on Version 1.0 of the Java 2 Platform, Enterprise Edition (J2EE)

Connector (J2C) architecture. This information does not describe the J2EE

Connector architecture in general. For information on the J2C architecture and its

concepts, see the J2EE Connector Architecture Specification at

http://java.sun.com/j2ee/download.html.

IMS Connector for Java V2.2.x is a Data Management tool offering shipped as a

component of IMS Connect V2.2. IMS Connector for Java V9.1.0.1.x is a

repackaging of IMS Connector for Java V2.2.x in IMS V9.1 and is functionally

equivalent to IMS Connector for Java V2.2.x. A license for IMS V9.1 is required to

run an application that uses IMS Connector for Java V9.1.0.1.x.

The IMS resource adapter:

v Provides global transaction and two-phase-commit support

v Provides run as thread identity support

v Supports component-managed and container-managed security

v Supports pooling and reuse of connections

v Supports SSL communication between IMS Connector for Java and IMS Connect

v Supports both commit mode 1 and commit mode 0 IMS transactions

v Supports the retrieval of output messages queued as the result of a failed

commit mode 0 interaction or by insertion to an alternate PCB

v Supports conversational processing

v Provides control of whether undelivered output for commit mode 0 interactions

on shareable persistent socket connections is queued or discarded. This function

is controlled by the purgeAsyncOutput property.

v Supports specification of the name of a destination for undelivered output for

commit mode 0 interactions on shareable persistent socket connections. This

function is controlled by the reRoute flag and reRouteName properties.

v Provides enhanced control of the retrieval of undelivered output with the

introduction of two new interaction verbs:

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT.

v Supports the use of RACF keyrings as SSL keystores and truststores.

See IMS resource adapter APIs for additional information on the IMS resource

adapter’s J2C classes and interfaces.

The IMS resource adapter is included in WebSphere Studio for use in the

development of service-based Java applications that access IMS transactions. The

run-time component of the IMS resource adapter is packaged as a component of

2 IMS Connector for Java 2.2 and 9.1.0.1

http://java.sun.com/j2ee/download.html

IMS Connect V2.2 (5655-K52). The run-time component of the IMS resource

adapter V9.1.0.1.x is part of IMS Connect V9.1 (5655-J38). Both are deployed as

Resource Adapter Archive (RAR) files to WebSphere Application Server and can be

used to run service-based Java applications developed using WebSphere Studio.

The IMS resource adapter is primarily intended for use by services that submit

transactions to IMS. However, the IMS resource adapter can also be used by

services that submit IMS commands to IMS.

IMS resource adapter and MFS formatting

WebSphere Studio, in conjunction with the IMS resource adapter, can be used to

create service definitions for both MFS and non-MFS based IMS transactions. For

MFS IMS transactions, the IMS resource adapter formats transaction input and

output messages based on MFS source files. For non-MFS based IMS transactions,

the IMS resource adapter formats transaction input and output messages based on

IMS application program data structures (such as copybooks). In both cases, MFS

online processing is bypassed because the transaction input and output messages

are provided to IMS using OTMA.

For more information on MFS-based transactions, see What is MFS?

Prerequisites for using the IMS resource adapter

This topic describes the prerequisites for using the IMS resource adapter as well as

the supported software configurations.

WebSphere Studio Application Developer Integration Edition, Version 5.1.1

includes the following IMS resource adapters:

v IMS Connector for Java Version 2.2.x

This version of the IMS resource adapter is based on Version 1.0 of the J2EE

Connector Architecture (JCA 1.0). This version of IMS Connector for Java runs

with WebSphere Application Server Version 5.0.2 and above for distributed and

z/OS platforms.

v IMS Connector for Java Version 9.1.0.1.x

This version of the IMS resource adapter is based on Version 1.0 of the J2EE

Connector Architecture (JCA 1.0). This version of IMS Connector for Java runs

with WebSphere Application Server Version 5.0.2 and above for distributed and

z/OS platforms.

The following new function is included in Versions 2.2.4 and 9.1.0.1.2 of the IMS

resource adapter:

v The control of whether undelivered output for commit mode 0 interactions on

shareable persistent socket connections is queued or discarded. This function is

controlled by the purgeAsyncOutput property.

v The option to provide the name of a destination for undelivered output for

commit mode 0 interactions on shareable persistent socket connections. This

function is controlled by the reRoute flag and reRouteName properties.

v Enhanced control of the retrieval of undelivered output with the introduction of

two new interaction verbs: SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT

and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT.

v Support for use of RACF keyrings as SSL keystores and truststores.

Chapter 1. What is the IMS resource adapter? 3

Version 2.2.1 of the IMS resource adapter was included with WebSphere Studio

Application Developer Integration Edition, Version 5.1; and Version 2.1.0.4 of the

IMS resource adapter is included with WebSphere Studio Application Developer

Integration Edition, Version 5.0. The prerequisites depend on which version of the

IMS resource adapter that your application uses. These prerequisites apply to

running an application using a WebSphere test environment inside Integration

Edition and to running an application in a stand-alone WebSphere Application

Server.

Note: Version 2.2.0 of the IMS resource adapter is English-only and was replaced

by Version 2.2.1 which is the National Language version.

Version 2.1.0 added the following functions:

v Support for Secure Sockets Layer (SSL) connections between IMS Connector for

Java and IMS Connect

v Support for SYNC_SEND_RECEIVE and SYNC_RECEIVE_ASYNCOUTPUT

Commit Mode 0 interactions on a transaction socket

v Global transaction support using TCP/IP communication between IMS

Connector for Java and IMS Connect

v Support for IMS services that use the Message Format Services (MFS) support of

the IMS resource adapter

The prerequisites for new Version 2.1.0 functions are:

v IMS Connect Version 2.1

v IMS Version 8.1 or later releases

If your application does not use any of the new functions, earlier versions of the

IMS resource adapter can be used and the prerequisites are:

v IMS Connect Version 1.2 or later releases

v IMS Version 7.1 or later releases

Version 2.2.1 added the following functions:

v Support for commit mode 0 interactions on dedicated and shareable persistent

socket connections

v Support for Socket Timeout

v A CCI record helper class

v Support for IMS conversational transactions, including a sample application

The prerequisites for Version 2.2.1, regardless of the functions your application is

using, are:

v IMS Connect Version 2.1 and an APAR or PTF

v IMS, Version 8.1 and an APAR or PTF, or later releases

v An APAR or PTF to WebSphere Application Server and the WebSphere Test

Environment of Integration Edition

Version 2.2.2 added the following functions:

v Send Only support

The prerequisites for Version 2.2.2, regardless of the functions your applications are

using, are:

v IMS Connect Version 2.1 and APARs or PTFs or,

4 IMS Connector for Java 2.2 and 9.1.0.1

v IMS Connect Version 2.2 and APARs or PTFs

v IMS, Version 8.1, or later releases

See the IMS Connector for Java web site (www.ibm.com/ims) for specific

information about the PTFs and APARs required for IMS Connect and IMS. APAR

numbers can be found in the README.html files for each release, as appropriate.

See the IMS Connect Guide and Reference for information about which versions of

OS/390® and z/OS® are required. Note: The SSL support included in the IMS

Connect, Version 2.1.0 and higher requires z/OS, Version 1.4 or higher.

For information regarding deployment of existing applications for use with IMS

Connector for Java Version 2.2.1, see Compatibility of Existing Applications with

IMS Connector for Java Version 2.2.1. For information regarding deployment of

existing MFS applications, see Migration considerations for MFS-based

applications.

If you use SSL, you might want to use a tool for key management. A key tool

enables you to add or delete certificates to a keystore. IMS Connector for Java does

not require specific key management tools for SSL support. Any tool that can

manage ’JKS’ keystores and X.509 certificates can be used. Some of the commonly

used tools are Keytool (shipped with JDK1.4) and IKEYMAN (IBM’s key

management tool).

Platform configurations and communication protocol considerations

The communication protocol you use depends on the platform configuration of

WebSphere Application Server and IMS. The IMS resource adapter can be deployed

to WebSphere Application Server for distributed platforms (AIX®, HP_UX, Linux,

Linux for z/OS, Solaris, or Windows®) and to WebSphere Application Server for

z/OS. The IMS resource adapter, deployed in WebSphere Application Server, can

communicate with IMS Connect using either the TCP/IP or Local Option

communication protocol. Where TCP/IP uses sockets, Local Option provides

non-socket access (an MVS™ program call) to IMS Connect from WebSphere

Application Server for z/OS.

v If WebSphere Application Server is running on a distributed platform, you must

use TCP/IP to connect to IMS Connect.

– If you use global transaction (two-phase-commit) support with TCP/IP, RRS

is required. Also, IMS Connect, IMS, and RRS must reside in the same MVS

image.
v If WebSphere Application Server is running on z/OS, you can use either TCP/IP

or Local Option to connect to IMS Connect depending on your configuration.

For example:

– If WebSphere Application Server and IMS Connect are on the same MVS

image, you can use Local Option or TCP/IP; however Local Option is

recommended.

– If WebSphere Application Server and IMS Connect are on different MVS

images, you must use TCP/IP.

– If you want to use global transaction support and your IMS and WebSphere

Application Server are on the same MVS image, the Local Option

communication protocol is recommended. If you are using global transaction

support with Local Option protocol, RRS, IMS, IMS Connect, and WebSphere

Application Server must be in the same MVS image.

Chapter 1. What is the IMS resource adapter? 5

– If you want to use global transaction support and your IMS and WebSphere

Application Server are on different MVS images, you must use TCP/IP as

your communication protocol. If you are using global transaction support

with TCP/IP protocol, RRS, IMS, and IMS Connect must reside in the same

MVS image.

The following table describes the relationship between the different platform

configurations, communication protocols, and global transaction support:

 Platform of WebSphere

Application Server with

IMS resource adapter

Supported communication

protocol

Global transaction

(two-phase-commit) support

AIX TCP/IP Yes*

HP_UX TCP/IP Yes*

Linux TCP/IP Yes*

Linux for zSeries® and

S/390®

TCP/IP Yes*

Solaris TCP/IP Yes*

Windows TCP/IP Yes*

z/OS, OS/390 TCP/IP

Local Option

Yes*

Yes

* Global transaction support with TCP/IP requires IMS Connect 2.1 or later.

Preparing to use the IMS resource adapter

The IMS resource adapters, IMS Connector for Java Versions 2.2.4 packaged in

ims224.rar and 9.1.0.1.2 packaged in ims91012.rar are provided as part of the J2C

feature of WebSphere Application Developer Integration Edition 5.1.1. IMS

Connector for Java Version 2.2.4 and 9.1.0.1.2 are based on Version 1.0 of the J2EE

Connector Architecture and provide equivalent function.

The version of the IMS resource adapter that you use depends on which version of

IMS Connect you use. IMS Connector for Java Version 2.2.4 is intended for use

with IMS Connect 2.2 while IMS Connector for Java Version 9.1.0.1.2 is targeted to

IMS Connect 9.1.

If you are planning to develop a Java application that runs an IMS transaction, you

must import the IMS resource adapter into your workbench (for example, into the

Business Integration perspective). For information about how to do so, see

Importing a resource adapter.

For information on how to deploy the IMS resource adapter on WebSphere

Application Server, see the appropriate README.html file that is available on the

IMS Connector for Java Downloads page.

6 IMS Connector for Java 2.2 and 9.1.0.1

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=imscjd

Chapter 2. Developing your application

There are a couple of ways to develop an application. One way to develop your

application is to use the tooling provided in WebSphere Studio Application

Developer Integration Edition. Another way is to use the J2C Common Client

Interface (CCI) provided by the IMS resource adapter.

We recommend that you use WebSphere Studio Application Developer Integration

Edition to generate code because the tooling provides the following benefits:

v Helps optimize and simplify building, testing, integrating, and deploying J2EE

applications

v Assists large-scale application development

v Provides real-time application flexibility with WebSphere Application Server

If you choose to use CCI to develop your application, the IMS resource adapter

provides a CCI helper class to help you create the transaction input and output

messages for your application.

Overview of the Common Client Interface (CCI) record helper class

Note: The class IMSCCIRecord is deprecated as of IMS Connector for Java Version

9.1.0.1.2 and IMS Connector for Java Version 2.2.4. The functions provided

by this class are now available in the development environments WebSphere

Studio Application Developer Integration Edition and Rational Application

Developer. For more information, see:

v “Building a Java application that uses the J2EE Connector Architecture

Common Client Interface” on the IMS Examples Exchange at

http://www.ibm.com/software/data/ims/examples/exHome.html

v “Using IMS data bindings in a CCI application” in the online help for the

IMS resource adapter in Rational Application Developer

The Common Client Interface (CCI) API, a part of the Jave 2 Enterprise Edition

(J2EE) connector architecture, provides access from J2EE clients, such as enterprise

beans, JavaServer Pages (JSP) technology, and servlets, to an underlying Enterprise

Information System (EIS), such as IMS. You can use WebSphere Studio Application

Developer Integration Edition to build applications that access IMS transactions or

you can write applications using CCI.

The tooling in WebSphere Studio Application Developer parses the cobol copybook

for you and generates the classes needed to communicate with the IMS resource

adapter using WebSphere invocation framework (WSIF). These classes create the

input byte array to be sent to IMS and extract the fields from the output byte array

from IMS and make it available to the client application. If you write your own

application using CCI, you must provide your own conversion routines and create

the input byte array for IMS.

To simplify the process of writing applications using the CCI, the IMS resource

adapter provides a CCI record helper class, IMSCCIRecord, that can be used with

any J2EE-compliant application server. IMSCCIRecord is an external, stand-alone

helper class that incorporates routines to take care of the data conversion and

create the byte array for IMS. You can use the CCI record helper class to extend

© Copyright IBM Corp. 2000, 2005 7

http://www.ibm.com/software/data/ims/examples/exHome.html

your input and output records. The CCIRecord helper class contains two APIs,

field-specific and type-specific. These two APIs provide you with some flexibility

in using the helper class.

Type-Specific API

In this API, the input and output records are very simple. You need only specify

the message format of the input and output record classes. The setter and getter

methods for the fields are implemented in the IMSCCIRecord. The setter method

format is setTypeName(); for example, setString(). To use this API, the client

application needs the type of the field of the set and get methods in order to call

the appropriate method. Also, the type-specific API does not require any setter or

getter methods in the input and output record helper classes. Rather, you need to

provide the DLITypeInfo. This model is similar to the one used in IMS Java.

Field-Specific API

In this API, you code the specific methods that you want to call and the associated

parameters. When you want to customize setter and getter methods for each field,

you should use the field-specific API. Specifying each function for each method

takes more code to write, but it is customized exactly to your application and need

only be written once. In addition, it is easier to write the classes because you can

call a single method to set and get fields of any type. The setter method format is

set_FieldName(); for example, set_InLast1() where InLast1 is a field of the

transaction. WebSphere Studio Application Developer Integration Edition uses this

format for naming methods in some of its generated classes.

8 IMS Connector for Java 2.2 and 9.1.0.1

Chapter 3. Configuring your application

The topics in this section describe how to configure your application for your

service. The topics included are:

Execution timeout

The execution timeout value for the IMS resource adapter is defined as the maximum

amount of time allowed for IMS Connect to send a message to IMS and receive a

response from IMS. For details about the execution timeout value, see Setting

execution timeout values and Valid execution timeout values.

Before the introduction of the executionTimeout property, you were limited to

setting a timeout value on a global level, which was specified in the IMS Connect

configuration file. Every interaction between IMS Connect had the same timeout

value.

With the executionTimeout property, you can set individual timeout values on a

per interaction basis rather than on a global basis. If an interaction isn’t complete

before timeout occurs, IMS Connect returns an error message to the IMS resource

adapter. The IMS resource adapter returns an exception indicating that the

duration of time for IMS to respond to IMS Connect has exceeded the execution

timeout value.

Note: Because the connection between the IMS resource adapter and IMS Connect

is persistent, when execution timeout occurs, the socket is not closed. Instead, the

socket is available for reuse for subsequent interactions..

Execution timeout in conversational transactions

In a conversational transaction, the execution timeout value applies to each

iteration of that conversation. An iteration consists of one input message sent to

IMS and one output message received from IMS. If one iteration of the

conversation times out, the entire conversation ends.

Execution timeout exceptions

If a valid execution timeout value is specified for a particular interaction and

execution timeout occurs, the Java application submitting the interaction receives

the exception javax.resource.spi.EISSystemException. If you specify an invalid

execution timeout value, the exception javax.resource.NotSupportedException is

thrown when execution timeout occurs.

Valid execution timeout values

The execution timeout value is represented in milliseconds and must be a decimal

integer in the range of 1 to 3600000, inclusively. That is, the executionTimeout

value must be greater than zero and less than or equal to one hour. The execution

timeout value can also be -1 if you want an interaction to run without a time limit.

The execution timeout value cannot contain non-numeric characters.

© Copyright IBM Corp. 2000, 2005 9

If you do not specify an execution timeout value or if the value that you specify is

invalid:

v For SYNC_SEND_RECEIVE interactions, the timeout value in the IMS Connect

configuration member is used and the interaction continues to run.

v For SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions, IMS Connect

will set the timeout value to two seconds and the interaction continues to run.

Additionally, if you specify an invalid value, the exception

javax.resource.NotSupportedException is thrown when timeout occurs for that

interaction.

Tip: The host system administrator determines the global timeout value in the IMS

Connect configuration member. To display this value, issue the VIEWHWS

command on the MVS console. See the IMS Connect User’s Guide and Reference

(SC27-0946-03) for more information on the VIEWHWS command.

If a valid execution timeout value is set, this value is converted into a value that

IMS Connect can use. The following table describes how the values you specify are

converted to the values that IMS Connect uses:

 Range of user-specified values Conversion rule

1 - 250 If the user-specified value is not divisible by

10, it is converted to the next greater

increment of 10.

251 - 1000 If the user-specified value is not divisible by

50, it is converted to the next greater

increment of 50.

1001 - 60000 The user-specified value is converted to the

nearest increment of 1000. Values that are

exactly between increments of 1000 are

converted to the next greater increment of

1000.

60001 - 3600000 The user-specified value is converted to the

nearest increment of 60000. Values that are

exactly between increments of 60000 are

converted to the next greater increment of

60000.

For example, if you specify a value of 1, this value is converted to 10 (because 1 is

not divisible by 10 and 10 is the next increment that is greater than 1). The

following examples illustrate how the conversion works for each range of values:

 User-specified value (milliseconds) Converted value (milliseconds)

1 10

11 20

251 300

401 450

1499 1000

1500 2000

60000 60000

10 IMS Connector for Java 2.2 and 9.1.0.1

User-specified value (milliseconds) Converted value (milliseconds)

89999 60000

3600000 3600000

3750000 3600000

Setting execution timeout values

executionTimeout is a property of the IMSInteractionSpec class. The execution

timeout value that you set is converted to a value that IMS Connect uses. This

conversion occurs to meet the requirements of IMS Connect. Important: Other

timeout values can affect your interactions. If other timeout values are less than the

execution timeout value you set for your IMS interaction, these other timeout

values can cause the interaction to expire. Other timeout values include:

v Connection timeout property of J2C connection factories

v EJB transaction timeout value

v Browser timeout value

v Servlet HTTP session or EJB session timeout values

For example, when WebSphere Application Server is running on the z/OS

platform, the server consists of two parts, a controller and a set of one or more

servants. Application work is dispatched into servant regions. Application work

is, by default, timed. In general, when an application in dispatch reaches its

timeout, the servant region where it is dispatched is abended and restarted. The

server stays up and continues taking work. For this reason, you should use care

when choosing execution timeout values that are greater than WebSphere

Application Server timeout values, or when choosing the execution timeout value

of -1 (wait forever). In addition, if you are planning on disabling WebSphere

Application Server timeouts, you should check the server documentation in order

to better understand the implications of doing this.

Another example is if you configure the execution timeout value to be greater than

the timeout value specified for a browser response, then the execution timeout

value is never used because the browser timeout value is exceeded first.

You can provide a value for the executionTimeout property of an

IMSInteractionSpec class in one of two ways:

v Using WebSphere Studio Application Developer Integration Edition

v Using the setExecutionTimeout method

With the first method, using WebSphere Studio Application Developer Integration

Edition, you can set the execution timeout value when you initially define the

operation binding properties for an IMS service. To see an example that includes

defining the operation binding properties for an IMS service, follow the steps in

Sample: Creating an enterprise service for an IMS transaction.

To edit the operation binding properties that are already defined for an IMS

service, complete the following steps:

1. Open the appropriate IMS binding WSDL file using the WSDL Editor.

2. In the Bindings container of the Graph view, expand the IMS binding WSDL

file and expand the appropriate binding operation file.

Chapter 3. Configuring your application 11

3. Select the operation extensibility element (for example, ims:operation) and

edit the values of the properties in the property table.

4. Select the operation extensibility element again to indicate that changes have

been made.

5. Close the editor and click Yes to save your changes.

Note: You can also code individual timeout values for different interactions using

the method described below in Exposing the excutionTimeout property of the

IMSInteractionSpec and Using the setExecutionTimeout method. If you code an

execution timeout value in your Java client application code, that value overrides

any execution timeout value that you set in WebSphere Studio.

You can use the procedure outlined in InteractionSpec and ConnectionSpec

properties as data to gain access to the executionTimeout property of the

IMSInteractionSpec. Once you have done this, you can set the value of the

executionTimeout property from within your application. This enables you to set

separate executionTimeout values for each application. For specific information

about exposing the IMSInteractionSpec and IMSConnectionSpec, see Creating an

application to run a commit mode 0 transaction.

With the second method, you can use the setExecutionTimeout method to set an

execution timeout value. If you are creating a CCI application, you will have access

to the setExecutionTimeout method of the IMSInteractionSpec. To use the

setExecutionTimeout method, you need to instantiate a new IMSInteractionSpec or

obtain the IMSInteractionSpec from your specific interaction. Then, set the

executionTimeout value for the IMSInteractionSpec by using the

setExecutionTimeout method provided by the IMSInteractionSpec class. For

example:

interactionSpec.setExecutionTimeout(timeoutValue);

After you set the executionTimeout value for the IMSInteractionSpec, assign this

interactionSpec to the specific interaction.

Socket timeout

Socket timeout is the maximum amount of time IMS Connector for Java will wait

for a response from IMS Connect before disconnecting the socket and returning an

exception to the client application.

If there are network problems or routing failures, the socketTimeout property

prevents a hang in the system where the client using the IMS resource adapter is

waiting indefinitely for a response from IMS Connect. Because the socketTimeout

property is based on the TCP/IP sockets with which IMS Connect and the IMS

resource adapter use to communicate, the socketTimeout property is not applicable

with Local Option.

With the socketTimeout property, you can set individual timeout values for a

particular interaction using a socket. The value, in milliseconds, can be set on the

socketTimeout property in IMSInteractionSpec. If the socketTimeout property is not

specified for an interaction or it is set to zero milliseconds, this means there is no

socket timeout and the connection will wait indefinitely. The default socket timeout

value is zero.

When determining the Socket Timeout value, other existing timeout values should

be taken into account. For example, browser session timeout value, Execution

12 IMS Connector for Java 2.2 and 9.1.0.1

Timeout, EJB transaction timeout value, WebSphere Application Server connection

timeout value, and HTTP session timeout value used by servlets and stateful

session beans.

If a valid socket timeout value is specified for a particular interaction and socket

timeout occurs, a java.io.IOInterruptedException is thrown and the J2EE JCA

exception, javax.resource.spi.CommException is raised. The J2EE JCA exception

message indicates that the client has spent more time than was allocated by the

socketTimeout value to communicate with IMS Connect.

Setting the Socket Timeout Value

When setting the socketTimeout value, you need to consider the executionTimeout

value. The executionTimeout property is the maximum amount of time allowed for

IMS Connect to send a message to IMS and receive a response from IMS. The

socketTimeout value encapsulates the executionTimeout value. Therefore, the

socketTimeout value should be greater than the executionTimeout property because

the socket may time out unnecessarily if its value is set to less than the

executionTimeout value. The following table lists suggested values for

socketTimeout based on executionTimeout values.

 Execution Timeout Value

(milliseconds)

Execution Timeout Behavior Suggested Socket Timeout

Value

0 (or no value) The default value from the

IMS Connect configuration

file is used.

The socket timeout value

should be greater than the

execution timeout default

value specified in the IMS

Connect configuration file.

1 - 3,6000,000 The wait response times out

after the specified

millisecond value.

The socket timeout value

should be greater than the

execution timeout value.

-1 The wait response is

indefinite.

Set the socket timeout value

to 0 so that the connection

waits indefinitely.

There are two ways to set the socket timeout value. You can either write an

application using the JCA Common Client Interface (CCI) to access the getter and

setter methods provided with the IMSInteractionSpec or use the tooling provided

by WebSphere Studio Application Developer Integration Edition.

Using the CCI application to set a socket timeout value

If you are creating a CCI application, you will have access to the setSocketTimeout

method of the IMSInteractionSpec. To use the setSocketTimeout method, you need

to instantiate a new IMSInteractionSpec or obtain the IMSInteractionSpec from

your specific interaction. Then set the socketTimeout value for the

IMSInteractionSpec by using the setSocketTimeout method provided by the

IMSInteractionSpec class. For example:

interactionSpec.setSocketTimeout(timeoutValue1);

interaction.execute(interactionSpec,input,output);

interactionSpec.setSocketTimeout(timeoutValue2);

interaction.execute(interactionSpec,input,output);

Chapter 3. Configuring your application 13

Using WebSphere Studio Application Developer Integrated Edition to set a

socket timeout value

You can use WebSphere Studio Application Developer Integrated Edition to set the

socket timeout value when you initially define the operation binding properties for

an IMS service. To edit the operation binding properties that are already defined

for an IMS service, complete the following steps:

1. Open the appropriate IMS binding WSDL file using the WSDL Editor.

2. In the Bindings container of the Graph view, expand the IMS binding WSDL

file and expand the appropriate binding operation file.

3. Select the operation extensibility element (for example, ims:operation) and

edit the values of the properties in the property table.

4. Select the operation extensibility element again to indicate that changes have

been made.

5. Close the editor and click Yes to save your changes.

Connection properties

When you create an IMS service definition or define an IMS connection factory to

WebSphere Application Server, you must provide values for certain properties of

the connection between IMS Connector for Java and IMS Connect. The following

list describes these connection properties:

Host name

Mandatory for TCP/ IP connections: The IP address or host name of the

machine running the target IMS Connect. You must replace the value

″myHostNm ″ with a value that is valid for your IMS environment.

Port number

Mandatory for TCP/IP connections: The number of a port used by the

target IMS Connect for TCP/IP connections. Multiple sockets can be open

on a single TCP/ IP port. See ″Configuring IMS Connect″ in the IMS

Connect Guide and Reference (SC27-0946-03) for additional information about

the PortNumber property. You must replace the value of ″0″ with a value

that is valid for your IMS environment.

CM0Dedicated

The default is false. A value of FALSE indicates the connection factory will

generate shareable persistent socket connections and IMS Connector for

Java will generate a clientID to identify the socket connection. These

connections can be used by commit mode 0 and commit mode 1

interactions. A value of TRUE indicates the connection factory will generate

dedicated persistent socket connections, which require user-specified

clientIDs to identify the socket connections. A dedicated persistent socket

connection is reserved for a particular clientID and only commit mode 0

interactions are allowed. This property applies to TCP/IP connections only.

SSL Enabled

The default is false. This property is only valid for TCP/IP connections. A

value of true indicates that IMS Connector for Java will create an SSL

socket connection to IMS Connect using the HostName and PortNumber

specified in these connection properties. This port must be configured as

an SSL port by IMS Connect. A value of false indicates that SSL sockets

will not be used for connecting to the port specified in the Port Number

property.

14 IMS Connector for Java 2.2 and 9.1.0.1

KeyStore Name

For non-z/OS platforms, specify the fully-qualified path name of your JKS

keystore file. For z/OS, specify the name of your JKS keystore file as

above, or a special string that provides the information needed to access

your RACF keyring.

 Private keys and their associated public key certificates are stored in

password-protected databases called keystores. For convenience, trusted

certificates can also be stored in the keystore and then the Truststore Name

property can either be empty or could point to the keystore file. If the

TrustStore Name/TrustStore Password property is left empty, an

informational message is generated in the server log.

 The keystore name can be used to specify either a JKS keystore or a RACF

keyring when running on z/OS. An example of a fully-qualified path name

of your JKS keystore file is c:\keystore\MyKeystore.ks. A RACF keyring is

specified as: keystore_type:keyring_name:racfid. The keystore_type must be

either JCERACFKS when software encryption is used for SSL or

JCE4758RACFKS if hardware encryption is used. Replace keyring_name

with the name of the RACF keyring that you are using as your keystore

and racfid with a RACF ID that is authorized to access the specified

keyring. Examples of RACF keyring specifications are

″JCERACFKS:myKeyring:kruser01″ or JCE4758RACFKS:myKeyring:kruser01″.

When running in z/OS, if the keystore name matches the above RACF

keyring format, IMS Connector for Java will use the specified RACF

keyring as its keystore. If the keystore type specified is anything other than

JCERACFKS or JCE4758RACFKS, IMS Connector for Java attempts to

interpret the keystore name specified as the name of a JKS keystore file.

 Note: The JKS file can have other file extensions; it does not have to have

to be .ks.

KeyStore Password

Specify the password for the keystore. Private keys and their associated

public key certificates are stored in password-protected databases called

keystores.

TrustStore Name

For non-z/OS platforms, specify the fully-qualified path name of your JKS

truststore file. For z/OS, specify the JKS name or the RACF keyring of the

truststore. The same format is used for the values of the Keystore Name

and Truststore Name properties. See the description of the Keystore Name

property for a discussion of this format.

 A truststore file is a key database file (keystore) intended to contain public

keys or certificates. For convenience, private keys can also be stored in the

Truststore and then the Keystore Name property can either be empty or

could point to the truststore file. If the KeyStore Name/KeyStore Password

property is left empty, an informational message will be generated in the

server log.

 Note: The JKS file can have other file extensions; it does not have to have

to be .ks.

TrustStore Password

Specify the password for the truststore. A truststore file is a key database

file that contains public keys.

Encryption Type

Select the encryption type. Strong and weak are related to the strength of

Chapter 3. Configuring your application 15

the ciphers, that is, the key length. All those ciphers that can be used for

export come under the weak category and the rest go into the strong

category. By default, the encryption type is set to weak.

IMS Connect name

Mandatory for Local Option connections: The job name of the target IMS

Connect. If the IMS Connect name is specified, it overrides the Host name,

Port number, and SSL-related properties.

Default user name

Optional: The default security authorization facility (SAF) user name that

will be used for connections created by this connection factory if no

UserName property is provided by the application component.

Default password

Optional: The password that will be used for connections created by this

connection factory if the default user name is used.

Default group name

Optional: The IMS group name that will be used for all connections created

by this connection factory if the default user name is used.

Note: The GroupName property can only be provided in a

component-managed environment.

Data store name

Mandatory: The name of the target IMS datastore. It must match the ID

parameter of the Datastore statement that is specified in the IMS Connect

configuration member. It also serves as the XCF member name for IMS

during internal XCF communications between IMS Connect and IMS

OTMA. You must replace the default value ″myDStrNm″ with a value that

is valid for your IMS environment.

Trace level

Optional: The level of information to be traced. For additional information

on trace level, see Logging and tracing with the IMS resource adapter.

TransactionResourceRegistration

Optional: The type of transaction resource registration (enlistment). Valid

values are either ″static″ (immediate) or ″dynamic″ (deferred). If this

property is set to ″dynamic″, the enlistment of the resource to the

transaction scope will be deferred until the resource is used for an

interaction for the first time.

MFS XMI Repository ID

A resource property of a defined J2C Connection Factory, which is

accessible on the J2C options page of the server configuration. This field

contains a unique name for identifying the repository location. This ID

must match the repository field defined in the generated format handler of

your application. The default for this field is ″default″.

MFS XMI Repository URI

A resource property of a defined J2C Connection Factory, which is

accessible on the J2C options page of the server configuration. This field

specifies the physical location of the XMI repository. Valid formats for this

field include:

v file://path_to_xmi, where path_to_xmi is a directory on the local file

system containing the xmi files, for example file://c:/xmi.

16 IMS Connector for Java 2.2 and 9.1.0.1

v http://url_to_xmi, where url_to_xmi is a valid url that resolves to a

directory containing the xmi files, for example

http://sampleserver.com/xmi.

v hfs://path_to_xmi where path_to_xmi is the HFS directory on the host

z/OS. This format is only supported for WebSphere Application Server

for z/OS.

Operation binding properties

When you define an operation for an IMS service, you must provide values for

certain operation binding properties of the interaction with IMS. These properties

are all part of the IMSInteractionSpec. The following list describes all of the

operation binding properties of the IMSInteractionSpec, including those that are

not set by the application component:

asyncOutputAvailable

This is an output only property. It can be used by a Java application to

determine if there is queued output for the TPIPE associated with the

connection used for a commitMode 0 interaction. For dedicated persistent

socket connections, this is the value in the clientID property of

IMSConnectionSpec. For shareable persistent socket connections, this is

value generated by IMS Connector for Java. The value of

asyncOutputAvailable is true if there are messages in the queue. The

asyncOutputAvailable property is not set on input by the application

component. Note: If your Java application uses this property, it must be

exposed as an output property of IMSInteractionSpec. See Creating an

application to run a Commit mode 0 transaction for information on

exposing the properties of IMSInteractionSpec.

convEnded

This is an output only property. It can be used by a Java application to

determine if a conversation has ended (true). The convEnded property is

not set on input by the application component. Note: If your Java

application uses this property, it must be exposed as an output property of

IMSInteractionSpec. See Creating an application to run a commit mode 0

transaction for information on exposing the properties of

IMSInteractionSpec.

commitMode

Used by the IMS resource adapter to indicate the type of commit mode

processing to be performed for an IMS transaction. See Overview of

commit mode processing for more information. The commitMode property

can be set to 0 or 1 when interactionVerb is set to SYNC_SEND_RECEIVE.

When interactionVerb is set to SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT, or SYNC_SEND, IMS

Connector for Java uses commitMode 0. commitMode 1 is required when

interactionVerb is set to SYNC_END_CONVERSATION.

 If commitMode is 0 and a shareable persistent socket is used for the

interaction, the clientID must not be specified. If commitMode 0 is

specified for an interaction on a shareable persistent socket, the output

message from a transaction can be purged or rerouted. The undelivered

secondary output from a program to program switch can also be purged or

rerouted.

 If a dedicated persistent socket connection is used for an interaction, the

commitMode must be 0 and the clientID property of the

Chapter 3. Configuring your application 17

IMSConnectionSpec used for the connection must be provided. If a

dedicated persistent socket is used for a commitMode 0 interaction,

undelivered output messages are always recoverable and cannot be purged

or rerouted.

socketTimeout

The maximum amount of time IMS Connector for Java will wait for a

response from IMS Connect before disconnecting the socket and returning

an exception to the client application. The socketTimeout value is

represented in milliseconds. To use socket timeout, the value must be

greater than zero. If a socket timeout is not specified for an interaction or it

is supplied with a socket timeout value of zero milliseconds, this will

result in no socket timeout or an infinite wait. For more information see

Socket timeout and Setting socket timeout values.

executionTimeout

The maximum amount of time allowed for IMS Connect to send a message

to IMS and receive a response. The executionTimeout value is represented

in milliseconds and must be a decimal integer that is either -1 or between 1

and 3,600,000, inclusively. That is, the executionTimeout value must be

greater than zero and less than or equal to one hour. If a -1 value is set for

this property, the interaction will run without a time limit. For more

information, see Execution timeout, Setting execution timeout values, and

Valid execution timeout values.

imsRequestType

Indicates the type of IMS request and determines how output from the

request is handled by the IMS resource adapter. Integer values are:

Value

Named constant in

IMSInteractionSpecProperties Description

1 IMS_REQUEST_TYPE_IMS_

TRANSACTION

The request is an IMS transaction.

Normal transaction output

returned by IMS is used to

populate the application’s output

message. If IMS returns a ″DFS″

message, the IMS resource adapter

throws an

IMSDFSMessageException

containing the “DFS” message.

This value for imsRequestType is

used for applications that are not

generated using WebSphere Studio

MFS support.

2 IMS_REQUEST_TYPE_IMS_COMMAND The request is an IMS command.

Command output returned by

IMS, including ″DFS″ messages, is

used to populate the application’s

output message. The

IMSDFSMessageException is not

thrown.

This value for imsRequestType is

used for applications that submit

IMS commands.

18 IMS Connector for Java 2.2 and 9.1.0.1

Value

Named constant in

IMSInteractionSpecProperties Description

3 IMS_REQUEST_TYPE_MFS_

TRANSACTION

This value for imsRequestType is

reserved for applications that are

generated using WebSphere Studio

MFS support.

Normal transaction output

returned by IMS, as well as ″DFS″

messages, are used to populate the

application’s output message. The

IMSDFSMessageException is not

thrown.

interactionVerb

The mode of interaction between the Java application and IMS. The values

currently supported by the IMS resource adapter are:

Value

Named constant in

IMSInteractionSpecProperties Description

0 SYNC_SEND The IMS resource adapter sends the

client request to IMS through IMS

Connect and does not expect a response

from IMS. With a SYNC_SEND

interaction, the client does not need to

synchronously receive a response from

IMS. SYNC_SEND is supported on both

shareable and dedicated persistent socket

connections and is only allowed with

commitMode 0 interactions. If the

interactionVerb is set to SYNC_SEND,

execution timeout and socket timeout

values are ignored. Note: imsRequest

type 2 is not allowed with SYNC_SEND

and will generate an exception.

Chapter 3. Configuring your application 19

Value

Named constant in

IMSInteractionSpecProperties Description

1 SYNC_SEND_RECEIVE The execution of an IMS Interaction

sends a request to IMS and receives a

response synchronously. A typical

SYNC_SEND_RECEIVE interaction is the

running of a non-conversational IMS

transaction in which an input record (the

IMS transaction input message) is sent to

IMS and an output record (the IMS

transaction output message) is returned

by IMS. SYNC_SEND_RECEIVE

interactions are also used for the

iterations of a conversational IMS

transaction. A conversational transaction

requires commitMode 1. A

non-conversational transaction can run

using either commitMode 1 or

commitMode 0. If commitMode 0 is used

on a dedicated persistent socket, a value

for the clientID property of

IMSConnectionSpec must be provided. If

commitMode 0 is used on a shareable

persistent socket, a value for the clientID

property of IMSConnectionSpec must not

be provided.

3 SYNC_END_CONVERSATION If the application executes an interaction

with interactionVerb set to

SYNC_END_CONVERSATION, the IMS

resource adapter sends a message to

force the end of an IMS conversational

transaction.

The IMSInteractionSpec property,

commitMode, and the

IMSConnectionSpec property, clientID, do

not apply when

SYNC_END_CONVERSATION is

provided for interactionVerb.

20 IMS Connector for Java 2.2 and 9.1.0.1

Value

Named constant in

IMSInteractionSpecProperties Description

4 SYNC_RECEIVE_ASYNCOUTPUT interactionVerb

SYNC_RECEIVE_ASYNCOUTPUT is

valid on both shareable persistent and

dedicated persistent socket connections.

SYNC_RECEIVE_ASYNCOUTPUT is

used to retrieve asynchronous output

that was not delivered. When

SYNC_RECEIVE_ASYNCOUTPUT is

used on a dedicated persistent socket, a

value must be provided for the clientID

property of IMSConnectionSpec.

A SYNC_RECEIVE_ASYNCOUTPUT

interaction on a shareable persistent

socket connection must be in the same

application as the original SYNC_SEND

or SYNC_SEND_RECEIVE interaction

and must use the same shareable

persistent connection. This primarily

occurs following execution timeout.

With this type of interaction, the Java

client can only receive a single message.

If there are no messages in the IMS

OTMA Asynchronous Queue for the

clientID when the request is made, no

further attempts are made to retreive the

message. No message is returned and a

timeout will occur after the length of

time specified in the executionTimeout

property of the

SYNC_RECEIVE_ASYNCOUTPUT

interaction.

Chapter 3. Configuring your application 21

Value

Named constant in

IMSInteractionSpecProperties Description

5 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

interactionVerb

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

is valid on both shareable and dedicated

persistent socket connections. It is used

to retrieve asynchronous output.

A

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

interaction on a shareable persistent

socket connection must be in the same

application as the original SYNC_SEND

or SYNC_SEND_RECEIVE interaction

and must use the same shareable

persistent connection. This primarily

occurs following execution timeout.

With this type of interaction, the Java

client can only receive one single

message. If there are no messages in the

IMS OTMA Asynchronous Queue for the

clientID when the request is made, no

further attempts will be made to retrieve

the message. No message will be

returned and a timeout will occur after

the length of time specified in the

executionTimeout property of the

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

interaction.

Note: The interactionVerbs,

SYNC_RECEIVE_ASYNCOUTPUT and

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

, perform the same function. However, it

is recommended to use

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_NOWAIT

with WebSphere Application Developer

Integrated Edition 5.1.1 with the IMS

resource adapter 9.1.0.1.2 or 2.2.4.

22 IMS Connector for Java 2.2 and 9.1.0.1

Value

Named constant in

IMSInteractionSpecProperties Description

6 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_WAIT

interactionVerb

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_WAIT

is used to retrieve asynchronous output.

It is valid on both shareable and

dedicated persistent socket connections.

A

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_WAIT

interaction on a shareable persistent

socket connection must be in the same

application as the original SYNC_SEND

or SYNC_SEND_RECEIVE interaction

and must use the same shareable

persistent connection. This primarily

occurs following execution timeout.

With this type of interaction, the Java

client can only receive one single

message. If there are no messages in the

IMS OTMA Asynchronous Queue for the

clientID when the request is made, IMS

Connect waits for OTMA to return a

message. IMS Connect waits the length of

time specified in the executionTimeout

property of the

 SYNC_RECEIVE_ASYNCOUTPUT_

SINGLE_WAIT

interaction before returning an exception.

The J2EE Connection Architecture (JCA) values SYNC_RECEIVE (2) is not

currently supported.

ltermName

The LTERM name used to override the value in the LTERM field of the

IMS application program’s I/O PCB. See the IMS Connect User’s Guide and

Reference (SC27-0946-23) for a description of how to use the LTERM

override.

 The value of this property can be set if the client application wants to

provide an LTERM override name. This name will be in the IMS

application program’s I/O PCB, with the intent that the IMS application

will make logic decisions based on this override value.

mapName

The mapName field typically contains the name of a Message Format

Service (MFS) control block. MFS is the component of IMS that performs

online formatting of transaction input and output messages. Since IMS

Connect uses IMS OTMA to access IMS, MFS online formatting is

bypassed. However, the mapName field can still be used by a Java

application to input the name of an MFS control block to an IMS

Chapter 3. Configuring your application 23

application program or to retrieve the name of an MFS control block

provided by an IMS application program.

 On input, typically the value of the mapName property is the name of an

MFS Message Output Descriptor, or ″MOD″. The MOD name will be

provided to the IMS application program in the I/O PCB.

 On output, the value of the mapName property is the name of an MFS

Message Output Descriptor, or ″MOD″. This is the MOD name that the

IMS application program specified when inserting the transaction output

message to the I/O PCB.

 Note: The mapName field should not be used by Java applications that use

an enterprise service whose input and output messages are generated by

WebSphere Studio MFS support.

purgeAsyncOutput

This is an input property. This property determines whether or not IMS

Connect purges undelivered output.

 This property is only valid for interactions on shareable persistent socket

connections that use IMS interaction verb SYNC_SEND_RECEIVE. It is not

valid for any interactions on dedicated persistent socket connections. It

applies to commit mode 0 interactions. It does not apply to commit mode 1

interactions. However, if a commit mode 1 interaction executes a

program-to-program switch, the spawned program will run commit mode

0 and therefore the property will apply.

 If the purgeAsyncOutput property is not specified on a

SYNC_SEND_RECEIVE interaction on a shareable persistent socket

connection, the default is TRUE and the following output messages are

purged:

v Undelivered output message inserted to the I/O PCB by the primary

IMS application program.

v Output messages inserted to the I/O PCB by secondary IMS application

programs invoked by a program to program switch.

reRoute

This is an input property.

 This property is only valid for interactions on shareable persistent socket

connections that use IMS interaction verb SYNC_SEND_RECEIVE. It is not

valid for any interactions on dedicated persistent socket connections. It

applies to commit mode 0 interactions. It does not apply to commit mode 1

interactions. However, if a commit mode 1 interaction executes a

program-to-program switch, the spawned program will run commit mode

0 and therefore the property will apply. This property determines if

undelivered output is to be rerouted to a named destination specified in

the reRouteName field. If reRoute is TRUE, the asynchronous output is not

queued to the TPIPE of the generated clientID. Instead, the asynchronous

output is queued to the destination specified in the reRouteName field.

The default value for reRoute is FALSE.

 If both reRoute and purgeAsyncOutput are set to TRUE, an exception is

thrown.

reRouteName

This property provides the name of the destination to which asynchronous

output is queued. If reRoute is TRUE, this property provides the named

destination. If reRoute is FALSE, the reRouteName property is ignored.

24 IMS Connector for Java 2.2 and 9.1.0.1

If the reRoute property is set to TRUE, and no reRouteName is provided,

the value for the reRouteName property is:

1. The value specified in the IMS Connect configuration file.

2. If no value is specified in the IMS Connect configuration file, the value

″HWS$DEF″ is used.

Valid values for the reRouteName property:

v Must be a string of 1 to 8 alphanumeric (A-Z, 0-9) or special (@,#,$)

characters.

v Must not start with the character string, “HWS”.

v Must not be an IMS Connect port number.

v If lowercase letters are provided, the letters will be changed to

uppercase.

The property, reRouteName, is only valid for SYNC_SEND_RECEIVE

interactions on shareable persistent socket connections. It is not valid for

any interactions on dedicated persistent socket connections.

required

Leave this field empty.

Chapter 3. Configuring your application 25

26 IMS Connector for Java 2.2 and 9.1.0.1

Chapter 4. Security

The topics in this section describe security issues for the IMS resource adapter. The

topics included are:

IMS resource adapter security

Information in an Enterprise Information System (EIS) such as IMS must be

protected from unauthorized access. The J2EE Connector Architecture (J2C)

specifies that the application server and the EIS must collaborate to ensure that

only authenticated users are able to access an EIS. The J2C security architecture

extends the end-to-end security model for J2EE-based applications to include

integration with EISs.

EIS sign-on

The J2C security architecture supports a user ID and password authentication

mechanism specific to an EIS. For more information, see Java 2 Connector security

in the WebSphere Application Server documentation.

The user ID and password for the target EIS is supplied either by the application

component (component-managed sign-on) or by the application server

(container-managed sign-on).

For IMS Connector for Java, IMS is the target EIS. The security information is

passed to the IMS resource adapter, which then passes it to IMS Connect. IMS

Connect uses this information to perform user authentication and passes it on to

IMS OTMA which also uses this information to verify authorization to access IMS.

In a typical environment, the IMS resource adapter passes on the security

information (user ID, password, and optional group name) that it receives to IMS

Connect in an IMS OTMA message. Depending on its security configuration, IMS

Connect may then call the host’s Security Authorization Facility (SAF).

v For WebSphere Application Server on distributed platforms or z/OS with

TCP/IP, using either component-managed or container-managed sign-on:

– If RACF=Y is set in the IMS Connect configuration member or if the IMS

Connect command SETRACF ON has been issued, IMS Connect calls the SAF to

perform authentication using the user ID and password passed by IMS

Connector for Java in the OTMA message. If authentication succeeds, the user

ID, groupname, and UTOKEN returned from the IMS Connect call to the SAF

are passed to IMS OTMA for use in verifying authorization to access IMS.

– IF RACF=N is set in the IMS Connect configuration member or if the IMS

Connect command SETRACF OFF has been issued, IMS Connect does not call

the SAF. However, the user ID and groupname are still passed to IMS OTMA

for use in verifying authorization to access IMS.
v For WebSphere Application Server on z/OS with Local Option, using either

component-managed or container-managed sign-on:

– Regardless of the RACF® setting in the IMS Connect configuration member or

in the SETRACF command, IMS Connect does not call the SAF, because

authentication has already been performed by WebSphere Application Server

© Copyright IBM Corp. 2000, 2005 27

for z/OS. The UTOKEN generated when WebSphere Application Server for

z/OS calls RACF is passed to IMS for use in verifying authorization to access

IMS.

– WebSphere Application Server for z/OS can be configured to use the user

identity associated with the thread of execution to authenticate a user. The

application server creates and passes the UTOKEN representing the user

identity to the IMS resource adapter. The IMS resource adapter then passes

the token to IMS Connect for sign-on to IMS. For information about the

RunAs Identity support in WAS, consult the security documentation for

WebSphere Application Server z/OS.

The level of authorization checking performed by IMS is controlled by the IMS

command, /SECURE OTMA. See the IMS OTMA Guide and Reference for more

information about this command.

Java2 Security Manager

The IMS resource adapter works with the WebSphere Application Server Java2

Security Manager. Components such as resource adapters must be authorized to

perform protected tasks, such as making socket calls. The IMS resource adapter is

already authorized to perform these tasks. No action is required by the application

component.

See the Managing secured applications in the WebSphere Application Server

documentation for more information about the Java2 Security Manager.

Component-managed EIS sign-on

When you specify <res-auth>Application</res-auth> in the deployment

descriptor of your application, component-managed EIS sign-on is used. Your

application (the component) should provide the security information (user ID,

password, and optional group name) used for EIS sign-on:

v If your application uses the J2EE Connector Architecture Common Client

Interface (CCI), it performs component-managed sign-on by first populating an

IMSConnectionSpec object with the security information. Then, when the

application establishes a connection to IMS, it passes the IMSConnectionSpec

object as a parameter of the IMSConnectionFactory.getConnection method. The

IMS resource adapter uses this security information for the sign-on to IMS.

v If your application is a service-based application built by WebSphere Studio, the

security information is passed as application input data. For information about

exposing the InteractionSpec and ConnectionSpec, see InteractionSpec and

ConnectionSpec properties as data. For specific information about how to pass

the IMSConnectionSpec properties user ID, password, and group name as

application input data for the IMS resource adapter, see Creating an application

to run a commit mode 0 transaction.

If your application does not use one of the above methods to provide security

information, WebSphere Application Server will obtain the security information

from the J2C connection factory’s custom properties. Note: If you specified a

component-managed JAAS Authentication alias while setting up your connection

factory, the user ID and password in the alias will override the userName and

password values in the connection factory custom properties during the start-up of

the WebSphere Application Server.

28 IMS Connector for Java 2.2 and 9.1.0.1

Configuring component-managed EIS sign-on

The following steps explain how to configure component-managed EIS sign-on for

an EJB.

1. Set the <res-auth> directive to Application.

a. In WebSphere Studio, open your EJB module with the Deployment

Descriptor Editor.

b. Click the References tab and select Application in the Authentication field,

which maps to the <res-auth> directive.

c. When you close the EJB Deployment Descriptor Editor and click Yes to save

your changes, the following code is added to the deployment descriptor of

your EJB:

<res-auth>Application</res-auth>

2. Typically, component-managed sign-on does not require further configuration

because the security information is provided by the application in the

IMSConnectionSpec object. However, if your application does not provide an

IMSConnectionSpec object, or the user ID is not specified in the

IMSConnectionSpec object that is provided, the IMS resource adapter will

obtain default security values from the connection factory used by your

application.

The default security values for a connection factory can be provided in two

ways:

a. When you use a component-managed authentication alias.

v To use a component-managed authentication alias, you must define a

JAAS authentication alias.

1) In the Server Configuration view, open the editor for your server and

select the Security tab.

2) Select the Add button beside the JAAS Authentication Entries list.

3) Enter an alias name, your user ID, password, and optional

description. Select OK.

4) Save your changes and close the editor.
v Select the JAAS authentication alias for the Component-managed

authentication alias property of the J2C Connection Factory used by your

application. You can do this when you first create the connection factory

or later by editing the connection factory. To edit the connection factory:

1) Open the editor for your server and select the J2C tab.

2) On the J2C Options page, select the connection factory and the

associated Edit button.

3) Select the alias from the drop-down list of the Component-managed

authentication alias field.

4) Select OK.

The user ID and password associated with the component-managed

authentication alias will be used to set (over override if applicable) the

default values in the custom properties of the associated connection

factory during application server startup.
b. When you create a connection factory.

v If you do not assign a valid JAAS authentication alias to the

component-managed authentication alias field of your J2C connection

factory, you can assign values for the userName, password, and

groupName fields on the J2C options page of your J2C connection factory.

Chapter 4. Security 29

v For instructions on creating a connection factory, see Adding a J2C

connection factory and Connection Properties. Using a

component-managed authentication alias is preferred over specifying

values in the custom properties of your J2C connection factory because

the component-managed authentication alias provides greater security for

the user ID and password.

Note: The process for configuring component-managed sign-on in WebSphere

Application Server is similar to the process for WebSphere Studio. For information

on this topic as it relates to WebSphere Application Server, see:

v Managing J2C authentication data entries

v Java 2 Connector authentication data entry settings

v Configuring J2C connection factories in the administrative console

v J2C connection factory settings

Container-managed EIS sign-on

When <res-auth>Container</res-auth> is specified in the deployment descriptor

of the application, container-managed EIS sign-on will be used. When

container-managed sign-on is used, your application does not programmatically

provide the security information. Instead, the application server (the container)

provides the security information (user ID and password). One way to accomplish

this when using DefaultPrincipalMapping, is to provide values for the user ID and

password to be used by the application server as follows:

v Define a JAAS Authentication alias, associating the user ID and password you

wish to use for EIS sign-on with the alias

v Associate this alias with the J2C connection factory used by your application

For TCP/ IP, the application server passes the security information in the alias to

the IMS resource adapter. The IMS resource adapter passes the security

information to IMS Connect for authentication. IMS Connect authenticates the user

and passes the security information for sign-on to IMS. If IMS Connect cannot

authenticate the user, a security failure is returned to the IMS resource adapter

which, in turn, passes an exception back to the application.

For Local Option, a z/OS-only feature in which both the server and WebSphere

Application Server are running in the same MVS image, the application server

authenticates the user based on the security information defined in the

container-managed alias. The application server creates and passes a UTOKEN

representing the authenticated user to the IMS resource adapter. The IMS resource

adapter then passes the UTOKEN to IMS Connect which in turn passes it on to

IMS OTMA for use in signing on to IMS.

Alternatively, when using Local Option communications, you can specify in the

application server configuration that the user identity associated with the current

thread of execution is to be used by the application server when performing user

authentication. In this case, you do not specify a JAAS container-managed

authentication alias in the J2C connection factory used by your application. This

option is only available if you are using Local Option communications.

Note: When using container-managed sign-on, if your application does pass

security information to the IMS resource adapter using the userName, password or

groupName properties of IMSConnectionSpec, it is ignored. However, if you pass

30 IMS Connector for Java 2.2 and 9.1.0.1

other information in the IMSConnectionSpec object, such as clientID used with

commit mode 0 interactions, this information will be used by the IMS resource

adapter.

Configuring container-managed EIS sign-on

The following steps explain how to configure container-managed EIS sign-on for

an EJB.

1. Set the <res-auth> directive to Container.

a. In WebSphere Studio, open your EJB module with the Deployment

Descriptor Editor.

b. Click the References tab. Select Container in the Authentication field,

which maps to the <res-auth> directive.

c. When you close the EJB Deployment Descriptor Editor and click Yes to save

your changes, the following code is added to the deployment descriptor of

your EJB:

<res-auth>Container</res-auth>

2. Specify a method of providing the user ID and password that you want the

application server. To use a JAAS authentication alias to provide the user ID

and password that you can use for EIS sign-on, complete the following steps:

a. In the Server Configuration view, open the editor for your server. Select the

Security tab.

b. Select the Add button beside the JAAS Authentication Entries list.

c. Enter an alias name, your user ID, password, and optional description.

Select OK.

d. Save your changes and close the editor.
3. Select the JAAS authentication alias for the Container-managed authentication

alias property of the J2C connection factory used by your application. You can

do this when you first create the connection factory or later by editing the

connection factory. To edit the connection factory:

a. Open the editor for your server and select the J2C tab.

b. On the J2C Options page, select the connection factory and the associated

Edit button.

c. Select the alias from the drop-down list of the Container-managed

authentication alias field.

If you do not specify a method to the application server for providing

sign-on information such as using the user ID associated with the thread of

execution or assigning a JAAS authentication alias to the container-managed

authentication alias property of your J2C connection factory on the J2C

options page of your server, you will receive an exception if you attempt to

execute a container-managed interaction using that connection factory.

d. Select OK.

For instructions on creating a connection factory, see Adding a J2C connection

factory and Connection Properties.

Note: The process for configuring container-managed sign-on in WebSphere

Application Server is similar to the process for WebSphere Studio. For information

on this topic as it relates to WebSphere Application Server, see:

v Managing J2C authentication data entries

v Java 2 Connector authentication data entry settings

Chapter 4. Security 31

v Configuring J2C connection factories in the administrative console

v J2C connection factory settings

Overview of secure socket layer (SSL)

With the evolution of e-business, data security has become very important for

Internet users. The Secure Socket Layer (SSL) protocol ensures that the transfer of

sensitive information over the Internet is secure. SSL protects information from:

v Internet eavesdropping

v Data theft

v Traffic analysis

v Data modification

v Trojan horse browser /server

One way IMS Connector for Java communicates with IMS Connect is through

TCP/ IP sockets. If IMS Connector for Java uses TCP/ IP, SSL can be used to

secure the TCP/ IP communication between the two entities. The SSL support

provided by IMS Connector for Java, along with the support provided by IMS

Connect, uses a combination of public and private keys along with symmetric key

encryption schemes to achieve client and server authentication, data confidentiality,

and integrity. SSL rests on top of TCP/ IP communication protocol and allows an

SSL-enabled server to authenticate itself to an SSL-enabled client and vice versa.

Once authentication is complete, the server and client can establish an encrypted

connection that also preserves the integrity of the data.

For SSL support when running in a WebSphere environment, IMS Connector for

Java uses the IBM® implementation of Java Secure Socket Extension (IBM JSSE).

The SSL library is included in WebSphere Studio Application Developer Integration

Edition and in WebSphere Application Server.

SSL concepts

Certificate

A digital certificate is a digital document that validates the identity of the

certificate’s owner. A digital certificate contains information about the individual,

such as their name, company, and public key. The certificate is signed with a

digital signature by the Certificate Authority (CA), which is a trustworthy

authority.

Certificate authority

A Certificate Authority (CA) is a trusted party that creates and issues digital

certificates to users and systems. The CA, as a valid credential, establishes the

foundation of trust in the certificates.

Certificate management

Certificates and private keys are stored in files called keystores. A keystore is a

database of key material. Keystore information can be grouped into two categories:

key entries and trusted certificate entries. The two entries can be stored separately

for security purposes.

32 IMS Connector for Java 2.2 and 9.1.0.1

Keystore

A keystore holds key entries, such as the private key of the user, IMS

Connector for Java

Truststore

A truststore is a keystore that holds only certificates that the user trusts. An

entry should be added to a truststore only if the user makes a decision to

trust that entity. An example of a truststore entry would be the certificate

for the target IMS Connect.

For convenience, IMS Connector for Java allows the user to store key entries and

trusted certificate entries in either the keystore or the truststore. The user may still

choose to store them separately. IMS Connector for Java supports only the keystore

type ″JKS″ and X.509 certificates.

SSL process

The SSL protocol consists of server authentication, client authentication (optional)

followed by an encrypted conversation. The following scenario steps through the

SSL process.

Server authentication

A customer, Alice, wants to send sensitive information to her bank. She needs

confirmation that the server to which she is sending her personal information is

really her bank. SSL-server authentication allows a client to confirm a server’s

identity. SSL-enabled client software uses standard techniques of public-key

cryptography to ensure that a server’s certificate and public ID is valid and that

the certificate and ID was issued from one of the client’s list of trusted certificate

authorities (CA).

Client authentication

Likewise, the bank needs confirmation that it is really Alice who is sending

information. SSL-client authentication allows a server to confirm a client’s identity.

Using the same techniques used for server authentication, SSL-enabled server

software verifies that a client’s certificate and public ID is valid and that the

certificate and ID was issued by one of the server’s list of trusted certificate

authorities (CA).

SSL handshake

Both Alice and the bank store their certificates and private keys in keystores. The

actual SSL session between Alice and the bank is established by following a

handshake sequence between client and server. The sequence may vary depending

on whether the server is configured to provide a server certificate or to request a

client certificate, and which cipher suites are being used. A cipher is an encryption

algorithm. The SSL protocol determines how the client and server negotiate the

cipher suites to authenticate one another, to transmit certificates, and to establish

session keys. Some of the algorithms used in cipher suites include:

v DES - Data Encryption Standard

v DSA - Digital Signature Algorithm

v KEA - Key Exchange Algorithm

v MD5 - Message Digest algorithm

v RC2 and RC4 - Rivest encryption ciphers

Chapter 4. Security 33

v RSA - A public key algorithm for both encryption and authentication

v RSA key exchange - A key-exchange for SSL based on the RSA algorithm

v SHA-1 - Secure Hash Algorithm

v SKIPJACK - A classified symmetric-key algorithm implemented in

FORTEZZA-compliant hardware

v Triple-DES - DES applied three times.

SSL 2.0 and SSL 3.0 protocols support overlapping sets of cipher suites.

Administrators can enable or disable any of the supported cipher suites for both

clients and servers. When a particular client and server exchange information

during the SSL handshake, the client and server identify the strongest enabled

cipher suites that they have in common and use them for the SSL session.

Transport Layer Security, Version 1 (TLS V1) is the successor to SSL 3.0 protocol.

IMS Connector for Java only supports TLS V1. There are no backward

compatibility issues.

Using secure socket layer (SSL) support

The following table provides a high level description of how IMS Connector for

Java and IMS Connect SSL support is set up and configured. Follow the steps in

the order outlined below:

 SSL Client (IMS Connector for Java) SSL Server (IMS Connect)

1. Decide if client authentication is required.

If client authentication is not required, skip

to Step 5.

2. If client authentication is required, obtain

signed certificates and private key.

3. If client authentication is required, create a

keystore and insert the client’s private key

and certificate. For more detail, see the

description below.

4. If client authentication is required, insert

the client’s public key certificate into the

keyring. See IMS Connect User’s Guide

(SC27-0946-03) for more information.

5. Create a truststore (another keystore) and

insert the Server’s public key certificate.

6. Decide which IMS Connect SSL port to

use. Set up the IMS Connect and SSL

Configuration members with the appropriate

values. For more information about setting

up the configuration file, see IMS Connect

User’s Guide (SC27-0946).

7. Obtain the IMS Connect SSL port number.

8. Set up the connection factory with the

appropriate SSL parameters. For more detail,

see the description below.

9. Bind the application to the SSL connection

factory.

34 IMS Connector for Java 2.2 and 9.1.0.1

Creating the keystore or truststore for the client

For the client and server to authenticate one another, you must provide a JKS

keystore with valid X.509 certificates at both the client and server end. If client

authentication by the server is not required, it is not necessary to create the client

certificate and add it to the server’s keyring. There are several tools available for

managing the keystore. To provide a JKS keystore at both the client and server

end, you must perform the following steps:

v To set up the Client, create a certificate and have it signed by a Certificate

Authority (for example, VeriSign), or create your own CA using software such as

OpenSSL to sign your own certificate.

v To create a keystore, use a key management tool such as Ikeyman or Keytool.

After the keystore is created, import the client certificate (if one is available) into

the keystore.

v To create a truststore, create another keystore and import the server certificate.

Note: If you want to create only one keystore, import the server certificate into

the same keystore as the client certificate.

SSL configuration

The SSL properties are used to create a secure SSL connection between a Java client

application and IMS Connect. See Connection properties for a description of the

values that have to be provided to IMS Connector for Java.

There are two ways to set up SSL properties:

1. You can use the tooling in WebSphere Studio Application Developer Integration

Edition (development environment). WebSphere Studio Application Developer

Integration Edition maps or binds the connection factory resource reference in

the Java client application, which is installed on WebSphere Application Server,

to the SSL-configured connection factory by providing the JNDI name of the

connection factory. The following figure displays the IMS connection properties

interface:

Chapter 4. Security 35

2. You can use the property sheet in WebSphere Application Server (runtime

environment).

The connection factory created by the client is used during the runtime

environment to set up a secure socket connection. The following figure displays

the SSL connection factory property sheet:

36 IMS Connector for Java 2.2 and 9.1.0.1

Note: Informational messages and warnings can be found in the trace.log file

generated by the server.

At runtime, when the Java client application executes an interaction with IMS, the

interaction flows on a secure (SSL) connection to IMS Connect. The following steps

are transparent to the Java client application. The IMS resource adapter interacts

with IMS Connect using the SSL protocol as follows:

v IMS Connector for Java initiates a connection by sending a client hello. The

server replies with a server hello and its certificate.

v If the server does not require client authentication, the client authenticates the

server’s certificate using the server’s public key from its trustore. If

authentication is successful, the SSL handshake is completed. A session key has

been established at both ends.

v If the server does require client authentication, the client authenticates the

server’s certificate using the server’s public key from its trustore. If this

authentication is successful, a client certificate is sent from the client’s keystore.

If this certificate is authenticated successfully by the serverl, the SSL handshake

is completed. A session key has been established at both ends.

v The client and server are then ready to send and receive encrypted data.

Chapter 4. Security 37

38 IMS Connector for Java 2.2 and 9.1.0.1

Chapter 5. Commit mode processing

The topics in this section describe some of the different processing models that a

Java client can use with the IMS resource adapter. The topics included are:

Overview of commit mode processing

Commit mode refers to the type of commit processing performed by IMS. The Java

client specifies the commit mode protocol to be used when it submits a transaction

request to IMS. There are two types of commit mode processing supported by IMS

Connect and IMS: commit mode 0 (commit-then-send) where IMS commits the IMS

database changes and then sends the output to the client and commit mode 1

(send-then-commit) where IMS sends the output to the client and then commits the

database changes.

Associated with the commit mode protocols, IMS Connect and IMS also support

three synchronization levels (synch levels): NONE, CONFIRM, and SYNCPT. All

three synch levels can be used with commit mode 1. Only CONFIRM can be used

with commit mode 0. However, IMS Connector for Java does not currently support

commit mode 1, synch level CONFIRM.

Currently, the synchronization level is not set by the Java client. IMS Connector for

Java automatically provides the synchronization level when communicating with

IMS Connect.

IMS Connector for Java supports the following combinations:

v Commit mode 1 with synch level NONE

This combination is used for non-transactional interactions. For

non-conversational applications, use the SYNC_SEND_RECEIVE interaction. For

conversational applications, use SYNC_SEND_RECEIVE or optionally,

SYNC_END_CONVERSATION interaction.

v Commit mode 1 with synch level SYNCPT

This combination is used by IMS Connector for Java when participating in

two-phase commit processing with IMS. For more information, see Global

transaction support with two-phase commit.

v Commit mode 0 with synch level CONFIRM

This combination is used by IMS Connector for Java for non-transactional

SYNC_SEND_RECEIVE, SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions.

Note: Commit mode 0 is only supported for non-conversational applications

running on TCP/IP connections.

The synchronization level is not set by the Java client. IMS Connector for Java

automatically provides the synchronization level when communicating with IMS

Connect.

If the Java client submits a transaction request with commit mode 1 synch level

NONE, IMS Connector for Java passes the request through IMS Connect to IMS.

IMS processes this transaction and attempts to send the output message to the Java

client. The Java client may receive the output message from the transaction or may

© Copyright IBM Corp. 2000, 2005 39

receive an exception. In either case, IMS will have already committed the changes

to the database and discarded the output message of the IMS transaction.

Similarly, if the Java client sends a transaction with commit mode 0 synch level

CONFIRM, the Java client may receive the output message from the transaction or

may receive an exception. However, if the Java client receives an exception when

commit mode 0 is used, the output may or may not be queued for later retrieval.

Whether or not the output message that was not delivered to a Java client will be

queued depends on the type of socket connection the Java client uses for the

commit mode 0 interaction.

The type of exception also determines whether or not an output message is

available for retrieval. For example, if the Java client receives an

IMSDFSMessageException indicating that the transaction is stopped, the

application was not run; therefore, there is no output message available for

retrieval. However, if the transaction runs but the executionTimeout value expires

before the output message is returned to IMS Connect, the Java client will receive

an EISSystemException that an execution timeout has occurred. In this case, the

output message will be queued to the appropriate IMS OTMA Asynchronous

Output Queue or TPIPE for later retrieval.

Note: In IMS/OTMA terminology, a transaction pipe (TPIPE) is a logical

connection between a client (IMS Connect) and the server (IMS/OTMA). For

commit mode 0 interactions, the TPIPE is identified by the clientID used for the

interaction. Each clientID used for a commit mode 0 transaction will have its own

TPIPE. For commit mode 1 interactions, the TPIPE is identified by the IMS

Connect port number used for the interaction. Therefore, each port will have a

TPIPE which will be used for all clients running commit mode 1 interactions on

that port.

Regardless of whether your Java client is running an IMS transaction with commit

mode 1 or commit mode 0, the Java client specifies a value for the interactionVerb

property of IMSInteractionSpec. If a commit mode 0 interaction is specified, the

Java client may also have to provide a value for the clientID property of

IMSConnectionSpec. clientID is a property of IMSConnectionSpec and identifies

the IMS OTMA Asynchronous Output Queue or TPIPE where the recoverable

output messages are placed. Whether or not a Java client provides a clientID for a

commit mode 0 interaction depends on the type of socket connection being used

by the Java client.

To retrieve output messages from a TPIPE, the Java client submits a request in

which it specifies one of the values SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT for the interactionVerb property

of IMSInteractionSpec and a value for the clientID property of IMSConnectionSpec.

For more information about asynchronous output support, see Chapter 9: Protocols

in IMS Connect Guide and Reference.

In general, the SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions can be used to

retrieve output messages queued for any clientID, regardless of how those

messages were queued to the associated clientID - either as a result of a failed

commit mode 0 transaction or from an IMS application that issued an insert to an

ALTPCB (Alternate Program Communication Block). In the case of retrieving an

output message from a failed commit mode 0 transaction, the clientID provided in

40 IMS Connector for Java 2.2 and 9.1.0.1

the IMSConnectionSpec for retrieval request must match the clientID that was

specified on the failed commit mode 0 transaction.

If there is nothing in the OTMA Asynchronous Output Queue for that particular

clientID, you will receive an execution timeout exception. The timeout exception

can mean either that there are no messages in the queue or that the timeout value

did not provide enough time for IMS Connect to retrieve the message from the

queue. For both SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT, as well as

SYNC_SEND_RECEIVE interactions, executionTimeout is the length of time IMS

Connect will wait for a response from IMS. If you do not specify an execution

timeout value for a retrieval request, the default execution timeout value will be

used. The default timeout value is the IMS Connect configuration member

TIMEOUT value. The user may need to experiment with the execution timeout

value, to ensure that output messages are returned for all types of interactions.

Commit mode processing and socket connections

All socket connections created by the IMS resource adapter are persistent. In other

words, the same socket connection between IMS Connector for Java and IMS

Connect can be serially reused for multiple interactions with IMS Connect. The

socket connection will not be closed and reopened between interactions. There are

two types of persistent sockets; shareable and dedicated.

Shareable Persistent Socket

The shareable persistent socket can be shared (serially reused) by multiple

applications executing either commit mode 1 or commit mode 0 interactions. For

an application executing a commit mode 0 interaction on a shareable persistent

socket, the IMS resource adapter automatically generates a clientID with the prefix

″HWS″. This clientID represents and identifies the socket connection as well as the

associated OTMA TPIPE. For this type of socket, only clientIDs generated by the

IMS resource adapter are allowed. A user-specified clientID is not allowed with

shareable persistent socket support.

Note: IMS application programs that insert messages to an alternate PCB must not

use names beginning with ″HWS″ for the alternate PCBs.

Any output message that cannot be delivered to a Java client executing a commit

mode 0 interaction on a shareable persistent socket can be queued for later

retrieval. Also, any commit mode 1 or commit mode 0 interaction on a shareable

persistent socket that spawns a program-to-program switch which invokes another

commit mode 0 interaction resulting in secondary output, can be requeued for later

retrieval. SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions are supported on

shareable persistent sockets. To retrieve undelivered output messages that are

queued in the IMS OTMA Asynchronous Hold Queue or TPIPE, the interaction

verbs must be invoked within the same client application, because the same

generated client ID that identifies the shareable socket connection and the

associated OTMA TPIPE must be used.

On shareable persistent sockets, the undelivered output messages can be handled

in more than one way. One way is to purge the undelivered output. To purge

undelivered output messages, you must ensure the IMSInteractionSpec property

Chapter 5. Commit mode processing 41

purgeAsyncOutput is TRUE. This input property determines if IMS Connect

purges the undelivered I/O PCB output. The purgeAsyncOutput property is only

valid with the SYNC_SEND_RECEIVE interaction verb. If the property is not

specified on SYNC_SEND_RECEIVE, the default is TRUE.

Another option of handling undelivered output messages on shareable persistent

sockets is rerouting the messages to another destination. You can reroute the

undelivered output message to a different destination by setting the

IMSInteractionSpec property, reRoute, to TRUE. This property is only valid for the

SYNC_SEND_RECEIVE interaction verb. If reRoute is set to TRUE, the undelivered

output message is queued to a named destination provided by the client

application, which is specified on the reRouteName IMSInteractionSpec property. If

the reRoute property is set to TRUE and no reRouteName is provided, the value of

the reRouteName property is the value specified in the IMS Connect configuration

file. If no value is specified in the IMS Connect configuration file, the default value

HWS$DEF is used.

Shareable persistent socket connections are created by an IMS Connection Factory

with values for at least the following custom properties:

v Host name = TCP/IP host name of machine running IMS Connect

v Port number = associated port number

v Datastore name = name of target IMS

v CM0Dedicated = FALSE

FALSE is the default value for the endCM0Dedicated property and ensures that the

connection factory will create shareable persistent socket connections.

Dedicated persistent socket

A dedicated persistent socket is used for Java applications executing commit mode

0 interactions only. It can be shared (serially reused) by multiple applications with

the same user-specified clientID. For this type of socket, only interactions with

user-specified clientIDs are allowed. A valid user-specified clientID:

v Must be a string of 1 to 8 alphanumeric (A-Z, 0-9) or special (@,#,$) characters.

v Must not start with the character string, ″HWS″.

v Must not be an IMS Connect port number.

v If lowercase letters are provided, the letters will be changed to uppercase

A dedicated persistent socket means the socket connection is assigned to a specific

clientID and will remain dedicated to that particular clientID until it is

disconnected. SYNC_SEND_RECEIVE, SYNC_SEND,

SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions are supported on

dedicated persistent sockets.

SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions on dedicated

persistent sockets enable client applications to retrieve messages that were placed

on an IMS OTMA Asynchronous Output Queue as a result of a failed commit

mode 0 interaction, from an IMS application that issued an insert to an ALTPCB

(Alternate Program Communication Block), or from the reroute of the output from

a transaction that was executed on a shareable connection factory. To retrieve the

42 IMS Connector for Java 2.2 and 9.1.0.1

messages, the client application must provide the clientID, which represents the

TPIPE that has asynchronous output messages queued. Interactions on dedicated

persistent sockets that have undelivered output messages cannot be rerouted or

purged.

Dedicated persistent socket connections are created by an IMS Connection Factory

with values for at least the following custom properties:

v Host name = TCP/IP host name of machine running IMS Connect

v Port number = associated port number

v Datastore name = name of target IMS

v CM0Dedicated = TRUE

A value of TRUE for the endCM0Dedicated property ensures that the connection

factory will create dedicated persistent socket connections.

Note: If you have more than one connection factory configured to create dedicated

persistent sockets to the same IMS Connect instance, only one connection factory

can dedicate a socket to a particular clientID at one time. For example, if the first

connection factory successfully creates a socket connection dedicated to clientID,

CLIENT01; the second connection factory will receive the following exception if it

tries to create a socket connection dedicated to CLIENT01 while the socket

connection created by the first connection factory is still connected to IMS Connect:

javax.resource.spi.EISSystemException: ICO0001E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@23766050.processOutputOTMAMsg

(byte [], InteractionSpec,Record) error. IMS Connect returned error: RETCODE=[8],

REASONCODE=[DUPECLNT].

Duplicate client ID was used; the client ID is currently in use.

Releasing Persistent Sockets

A TCP/IP connection between IMS Connector for Java and IMS Connect is

persistent; in other words it remains open as long as IMS Connector for Java or

IMS Connect does not disconnect it due to an error. This is the case for both a

shareable persistent socket connection and a dedicated persistent socket

connection. However, in the case of a dedicated persistent socket connection, the

socket connection can only be used by interactions that have the same clientID that

was used to establish the connection. The number of socket connections will

increase as new clientIDs are used for interactions on dedicated persistent socket

connections.

If you have the Max connections property set to a non-zero value and you also

have a non-zero value for the Connection timeout property, when the

MaxConnections is reached and all the connections are in use, the application will

get a ConnectionWaitTimeoutException after the seconds specified in Connection

timeout have elapsed. This is standard behavior for WebSphere Application Server.

The ConnectionWaitTimeoutException applies to both dedicated persistent sockets

and shareable persistent sockets.

However, if MaxConnections has been reached and one of the persistent socket

connections is currently not in use, then WebSphere Application Server will

disconnect that socket in order to respond to the request to create a new persistent

socket connection. This also is standard behavior for the WebSphere Application

Server and applies to both dedicated and shareable persistent sockets.

Chapter 5. Commit mode processing 43

SYNC_SEND_RECEIVE programming model

To run a transaction in IMS, your Java application executes a

SYNC_SEND_RECEIVE interaction. Your application provides a value of

SYNC_SEND_RECEIVE for the interactionVerb property and a value of 0 or 1 for

the commitMode property of the IMSInteractionSpec object used by the execute

method. However, the SYNC_SEND_RECEIVE interaction processing is different

for shareable and dedicated persistent socket connections.

Shareable persistent socket processing model

The following scenarios describe the SYNC_SEND_RECEIVE interaction on a

shareable persistent socket during normal processing, error processing, and

execution timeout. These steps apply for both commit mode 1 and commit mode 0.

v Normal processing scenario

The IMS resource adapter, with the application server, obtains either an available

connection from the connection pool or creates a new connection. The IMS

resource adapter, as part of initalizing a new connection generates a clientID for

the connection. The generated clientID identifies the socket connection, and in

the case of commit mode 0 interactions, the TPIPE and associated OTMA

Asynchronous Hold Queue.

The IMS resource adapter ensures that a socket is associated with the connection

and sends the request with input data to IMS Connect using that socket. IMS

Connect then sends the message to IMS, where IMS runs the transaction and

returns the output message.

For commit mode 0 interactions, on receiving the output message, the IMS

resource adapter internally sends an ACK message to IMS which signals IMS to

discard the output from the IMS queue. When the client application closes the

connection or terminates, the connection is returned to the connection pool for

reuse by other commit mode 0 or commit mode 1 interactions.

v Error processing scenario

All errors result in a resource exception being thrown to the client application. In

addition, some errors result in the socket being disconnected by IMS Connect. In

the case of commit mode 0 interactions, an exception means the output message

cannot be delivered to the client application. However, following exceptions

undelivered output messages for commit mode 0 interactions on shareable

persistent socket connections can be retrieved if the SYNC_SEND_RECEIVE

interaction specified that undelivered output should be rerouted to a specific

destination. To have an undelivered output message rerouted to a specific

destination, the following additional properties must be specified in the

IMSInteractionSpec object passed on the SYNC_SEND_RECEIVE interaction:

– The purgeAsyncOutput property must be set to FALSE so that undelivered

output is not purged

– The reRoute property must be set to TRUE and a reroute destination specified

in the RouteName property

To retrieve undelivered output from a reroute destination, a separate client

application issues a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction on a dedicated

persistent socket connection, providing the reroute destination as the clientID of

the interaction.

Note: The default value of the purgeAsyncOutput property is TRUE.

When purgeAsyncOutput is TRUE, the following output messages are purged:

44 IMS Connector for Java 2.2 and 9.1.0.1

– Undelivered output message inserted to the I/O PCB by the primary IMS

application program.

– Output messages inserted to the I/O PBC by secondary IMS application

programs invoked by program to program switch.

A value of FALSE for the PurgeAsyncOutput property should only be used if

the reroute destination is specified.

v ExecutionTimeout scenario

If an execution timeout occurs, the socket connection remains open but the

output message is not delivered to the client application. However, following an

execution timeout exception, undelivered output messages for commit mode 0

interactions on shareable persistent socket connections can be retrieved in either

of the following two ways:

– The same client application that issued the SYNC_SEND_RECEIVE interaction

can issue a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction.

– The undelivered output message can be rerouted to a specific destination as

described in the error processing scenario above.

When the client application closes the connection or terminates, the connection is

returned to the connection pool so it can be reused by other commit mode 0 or

commit mode 1 interactions.

Dedicated persistent socket processing model

Dedicated persistent socket connections can only be used for commit mode 0

interactions. The following scenarios describe the commit mode 0

SYNC_SEND_RECEIVE interaction on a dedicated persistent socket during normal

processing, error processing, and execution timeout.

v Normal processing scenario

Under normal circumstances, when a commit mode 0 SYNC_SEND_RECEIVE

interaction is executed by a client application, the application server returns an

existing connection with the user-specified clientID, or creates a new connection

with the user-specified clientID. The user-specified clientID identifies the socket

connection and the TPIPE and associated OTMA Asynchronous Hold Queue.

The IMS resource adapter ensures that a socket is associated with the connection

and sends the request with input data to IMS Connect using that socket. IMS

Connect then sends the message to IMS, where IMS runs the transaction and

returns the output message. On receiving the output message, the IMS resource

adapter internally sends an ACK to IMS which signals to discard the output

from the IMS queue. When the connection is closed or the application

terminated, the connection is returned to the connection pool for reuse by

another application that is running a commit mode 0 interaction with the same

user-specified clientID.

v Error processing scenario

All errors result in a resource exception being thrown to the client application. In

addition, some errors result in the socket being disconnected by IMS Connect. In

the case of commit mode 0 interactions, this means the output message cannot

be delivered to the client application. The undelivered output is queued to the

TPIPE associated with the user-specified clientID.

The properties, purgeAsyncOutput and reRoute are not applicable to dedicated

persistent sockets. You can not purge or reroute undelivered output messages on

a dedicated persistent socket.

v ExecutionTimeout scenario

Chapter 5. Commit mode processing 45

If an execution timeout occurs, the socket remains open and the output of the

commit mode 0 interaction is queued to the TPIPE associated with the

user-specified clientID for later retrieval. When the connection is closed or the

application terminated, the IMSManagedConnection object is returned to the

connection pool for reuse by another application that is running a commit mode

0 interaction with the same user-specified clientID.

Retrieving asynchronous output

There are two types of socket connections, shareable persistent socket and

dedicated persistent socket, that can be used to retrieve asynchronous output. The

way to retrieve asynchronous output messages is different depending on the type

of socket connection used. The interactionVerb property values that can be used to

retrieve asynchronous output are:

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT (along with the older

SYNC_RECEIVE_ASYNCOUTPUT).

Note: There is no difference in function between

SYNC_RECEIVE_ASYNCOUTPUT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT. However, it is

recommended that you use the new name

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT with V9.1.0.1 and

later deliverables of the IMS resource adapter. Only the new name,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, will be used in the

rest of this document.

The difference between SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT determines how IMS Connect

checks for output on the IMS OTMA Asynchronous Hold Queue. For

SYNC_RECEIVE_ASYNCOUTPUT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interactions, if there is no

asynchronous output in the IMS OTMA Asynchronous Hold Queue when the

retrieve request is made, IMS Connect will return an execution timeout notification

as soon as the execution timeout value specified by the client application has

passed. For this reason, the shortest possible execution timeout value, 10, is

recommended for SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT

interactions.

For a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction, if there is no

asynchronous output in the IMS OTMA Asynchronous Hold Queue when the

retrieve request is made, IMS Connect will wait up to the length of time specified

in the executionTimeout property of the interaction for OTMA to return a message.

If there is still no asynchronous output in the hold queue when the execution

timeout has passed, IMS Connect will return an execution timeout error. For a

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction, you should select

an appropriate execution timeout value, rather than the shortest possible value.

All three interactionVerb property values require commit mode 0 and can be used

on both shareable persistent socket and dedicated persistent socket connections. In

addition, IMSInteractionSpec properties purgeAsycOutput, reRoute and

reRouteName do not apply to interactions which use these three interactionVerbs

and are ignored by IMS Connector for Java. The way that interactionVerb

properties are invoked on dedicated and shareable persistent socket connections is

different.

46 IMS Connector for Java 2.2 and 9.1.0.1

Retrieving asynchronous output on dedicated persistent socket connections

To retrieve the queued output message on a dedicated persistent socket, the client

application must execute a commit mode 0 interaction with the interactionVerb

property of IMSInteractionSpec set to

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT.

In addition to executing a commit mode 0 interaction on a dedicated persistent

socket connection with the appropriate interactionVerb property of

IMSInteractionSpec, the client application must also provide a value for the

clientID property of IMSConnectionSpec. The clientID is required because it

determines the TPIPE from which the asynchronous output will be retrieved. To

retrieve output messages from a commit mode 0 interaction on a dedicated

persistent socket, the clientID specified on the

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT/NOWAIT interaction must

match the value specified for the original commit mode 0 interaction. To retrieve

output messages sent to an alternate PCB, the clientID specified on the

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT/NOWAIT interaction must

match the name of the alternate PCB. To retrieve output messages which were

rerouted to a reRouteName destination, the clientID on the

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT/NOWAIT interaction must be

set to that reRouteName property destination.

Retrieving asynchronous output on shareable persistent socket connection

To retrieve an undelivered output message resulting from an interaction on a

shareable persistent for which the reRoute flag has not been set to TRUE, the client

application must execute a SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT

or SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction on the same

shareable persistent socket connection in the same application that invoked the

interaction that led to the asynchronous output being queued. The reason that the

two interactions must be invoked within the same client application is that the IMS

resource adapter automatically generates a client-ID for shareable persistent socket

connections. This generated clientID identifies the socket connection as well as the

associated OTMA TPIPE to which the asynchronous output is queued. A new

client-ID is generated when a new connection is established. On shareable

persistent socket connections, the clientID is generated by IMS Connector for Java

and is unique for each connection. Therefore, to retrieve asynchronous output for a

specific generated clientID, a connection with the same clientID must be used. This

means that, for shareable persistent socket connections (which always have unique

generated clientIDs) the same connection must be used. The only way to guarantee

that the same connection will be used is to execute both interactions (the original

interaction as well as the SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT interactions) within the

same client application.

The following situations can result in an output message being queued on an IMS

OTMA Asynchronous Hold Queue:

1. An IMS application program inserts an output message to an alternate PCB.

2. The output from a commit mode 0 interaction on a shareable or dedicated

persistent socket cannot be delivered to the client application.

3. An interaction spawns a program-to-program switch for which the secondary

output is not delivered to the client application. Secondary output is always

commit mode 0 output.

Chapter 5. Commit mode processing 47

Do not specify a value for the clientID property of IMSConnectionSpec for

interactions on shareable persistent socket connections. On shareable persistent

socket connections a user specified clientID is not allowed since IMS Connector for

Java automatically generates the clientID.

Displaying output message counts

Using IMS Connect commands, you can choose to display output message counts.

This topic describes how to display those message counts.

In IMS and OTMA terminology, a transaction pipe (TPIPE) is a logical connection

between a client, such as IMS Connect, and the server, such as IMS OTMA. For

commit mode 0 interactions, the TPIPE name is the clientID used for the

interaction. For commit mode 0 interactions the IMS OTMA Asynchronous Hold

Queue associated with the TPIPE has the same name as the clientID.

For commit mode 1 interactions, the TPIPE name is the IMS Connect port number

used for the interaction, or in the case of Local Option the TPIPE name is the

word, LOCAL. Therefore, each port will have a TPIPE which will be used for all

clients running commit mode 1 interactions on that port.

You can use the IMS Connect command /DISPLAY TMEMBER IMSConnect_Name TPIPE

ALL to view counts of the output messages sent to IMS Connector for Java, as well

as messages inserted to ALTPCBS (Alternate Program Communication Blocks). The

following sample output is from a /DISPLAY TMEMBER HWS1 TPIPE ALL command. A

brief description of the types of TPIPEs and counts for the command output is also

provided.

DFS000I MEMBER/TPIPE ENQCT DEQCT QCT STATUS IMS1

DFS000I HWS1 IMS1

DFS000I -9999 0 0 0 IMS1

DFS000I -HWSMIJRC 2 2 0 IMS1

DFS000I -CLIENT01 3 2 1 IMS1

DFS000I -ALTPCB1 2 1 1 IMS1

DFS000I -HWS$DEF 1 0 1 IMS1

DFS000I -RRNAME 1 0 1 IMS1

Commit Mode 1 interactions on a shareable persistent socket

v The TPIPE name is the port number used for the interaction. For example, 9999.

v The enqueue count (ENQCT) and dequeue count (DEQCT) will be equal and the

queue count (QCT) will be 0, because undelivered output messages are not

recoverable for commit mode 1 transactions.

Commit Mode 0 interactions on a shareable persistent socket

v The TPIPE name is generated by IMS Connector for Java and will have a prefix

of ″HWS″. For example, HWSMIJRC.

v The enqueue count (ENQCT) and dequeue count (DEQCT) will be equal and the

queue count (QCT) will be 0 if all messages are delivered to IMS Connector for

Java.

v If output messages are not delivered to IMS Connector for Java on

SYNC_SEND_RECEIVE interactions and the default values of reRoute FALSE

and purgeAsyncOutput TRUE are used, the enqueue count (ENQCT) and

dequeue count (DEQCT) will be equal and the queue count (QCT) will be 0. All

undelivered output messages are discarded.

v If output messages are not delivered to IMS Connector for Java on

SYNC_SEND_RECEIVE interactions and reRoute is set to TRUE and

48 IMS Connector for Java 2.2 and 9.1.0.1

purgeAsyncOutput is set to FALSE, then the enqueue count (ENQCT) will be

greater than the dequeue count (DEQCT) and the queue count (QCT) will be the

number of messages that were not delivered to IMS Connector for Java. The

TPIPE name is the value specified for the reRouteName property; for example,

RRNAME, or a default value; for example, HWS$DEF.

v For SYNC_SEND interactions, output is not expected, so undelivered output

does not apply. If SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions are unsuccessful,

the queue count does not change.

Commit Mode 0 interactions on a dedicated persistent socket

v Typically, the TPIPE name is provided by the Java application and will not have

a prefix of ″HWS″. For example, CLIENT01. However, you may occasionally see

a TPIPE name of ″HWS$DEF″. This is the default value for the reRouteName

property.

v The enqueue count (ENQCT) and dequeue count (DEQCT) will be equal and the

queue count (QCT) will be 0 if all messages are delivered to IMS Connector for

Java, and no undelivered messages were rerouted from interactions on shareable

persistent socket connections.

v If output messages are not delivered to IMS Connector for Java or rerouted from

interactions on shareable persistent socket connections, the enqueue count

(ENQCT) will be greater than the dequeue count (DEQCT) and the queue count

(QCT) will be the number of messages that were not delivered. The TPIPE name

is the user specified clientID name, for example, CLIENT01.

Output messages inserted to ALTPCBs (Alternate Program Communication

Blocks)

v The TPIPE name is the name of the Alternate PCB. For example, ALTPCB1.

SYNC_SEND programming model

If your Java client application issues a SYNC_SEND interaction, the IMS resource

adapter sends the request to IMS through IMS Connect and does not expect a

response from IMS. Because the IMS resource adapter performs a ″send only″

interaction with IMS, a SYNC_SEND interaction is typically used with a

non-response mode transaction.

To use a SYNC_SEND interation to run a transaction, your application must

provide a value of SYNC_SEND for the interactionVerb property and a value of 0

for the commitMode property of the IMSInteractionSpec object used by the execute

method. SYNC_SEND interaction processing varies depending on the type of

pesistent socket used (shareable or dedicated) and the type of IMS transaction that

is run.

Note: IMSInteractionSpec properties purgeAsycOutput, reRoute and reRouteName

do not apply to SYNC_SEND interactions and are ignored by IMS

Connector for Java.

Shareable persistent socket processing model

The following scenarios describe a SYNC_SEND interaction on a shareable

persistent socket connection for different type of transactions.

v Non-response mode transaction

Chapter 5. Commit mode processing 49

An IMS application program associated with a transaction defined to IMS as

non-response mode typically does not require an output message to the I/O

PCB, therefore no output message is created and nothing is queued on the

TPIPE.

v Response mode transaction

The IMS application program associated with a transaction defined to IMS as

non-response mode typically will insert an output message to the I/O PCB.

Because the IMS resource adapter does not expect a response from a

SYNC_SEND interaction, the output message, if inserted, is queued on the

TPIPE with the name of the generated clientID. However, interactions

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT can be used to retrieve the

response, if performed following the SYNC_SEND interaction and in the same

application and on the same connection.

v Non-response mode or response mode transactions that invoke an IMS

application program that inserts to an alternate PCB

A message inserted to an alternate PCB can be retrieved by executing an

interaction on a dedicated persistent socket connection. This can be done by the

following ways:

1. Ensuring that the connectionFactory used by the interaction is configured

with a value of TRUE for the CM0Dedicated property.

2. Providing the following values for the interaction:

– IMSInteractionSpec property

interactionVerb=SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT

– IMSInteractionSpec property commitMode=0

– IMSConnectionSpec property clientID= the name of the alternate PCB

Dedicated persistent socket processing model

The following scenarios describe a SYNC_SEND interaction on a dedicated

persistent socket connection for different types of transactions. SYNC_SEND

interactions use commitMode0 and dedicated persistent socket connections can

only be used for commitMode 0 interactions.

v Non-response mode transaction

The IMS application program associated with a transaction defined to IMS as

non-response mode typically does not insert an output message to the I/O PCB,

therefore no output message is created and nothing is queued on a TPIPE.

v Response mode transaction

The IMS application program associated with a transaction defined to IMS as

non-response mode typically will insert an output message to the I/O PCB.

Because the IMS resource adapter does not expect a response from a

SYNC_SEND interaction, the output message, if inserted, is queued on the

TPIPE with the name provided for the clientID of the interaction. Messages

queued to this type of TPIPE can be retrieved by issuing a

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions. The TPIPE name

is the clientID specified for the SYNC_SEND interaction. clientID is required for

interactions that use a dedicated persistent socket connection.

v Non-response mode or response mode transactions that invoke an IMS

application that inserts to an alternate PCB

50 IMS Connector for Java 2.2 and 9.1.0.1

A message inserted to an alternate PCB can be retrieved by executing an

interaction on a dedicated persistent socket connection. This can be done by the

following ways:

1. Ensuring that the connectionFactory used by the interaction is configured

with a value of TRUE for the CM0Dedicated property.

2. Providing the following values for the interaction:

– IMSInteractionSpec property

interactionVerb=SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT or

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT

– IMSInteractionSpec property commitMode=0

– IMSConnectionSpec property clientID= the name of the alternate PCB

Creating an application to run a Commit mode 0 transaction

To run a commit mode 0 transaction, in addition to providing the transaction input

values for the transaction input message, you need to provide a value for the

clientID property of IMSConnectionSpec, as well as values for properties of

IMSInteractionSpec, such as commitMode. To provide a value for the clientID

property, you must expose the clientID property of IMSConnectionSpec to your

application so your application can set the value. clientID is the name of the IMS

OTMA Asynchronous Hold Queue that will be used to hold the transaction output

message, if it cannot be delivered to the client application. By exposing the

properties of both InteractionSpec and ConnectionSpec as data, your application

can dynamically provide values for all of the properties rather than relying on the

WSDL for some of them. This allows for a more flexible application that uses a

single enterprise service, rather than creating multiple enterprise services with

different values for the properties that are not exposed.

Note: If you wish to use component-managed EIS sign-on to IMS, you must

expose the userName and password properties of IMSConnectionSpec so your

application can provide the values to those properties. If you wish to use

container-managed EIS sign-on to IMS, you do not expose the userName and

password properties of IMSConnectionSpec. However, if you use

container-managed EIS sign-on for a commit mode 0 transaction, you must expose

the clientID property of IMSConnectionSpec.

To expose the properties, you must modify the interface and binding WSDL files of

the IMS service. As a result, the application can provide values for those properties

as input to the IMS service. IMSInteractionSpec input properties can include

commitMode, executionTimeout, imsRequestType, interactionVerb, ltermName, and

mapName. IMSConnectionSpec input properties include userName, password, and

clientID.

The following steps outline how to create a simple Java application to run a

commit mode 0 transaction, as well as how to expose the input properties of

IMSInteractionSpec and IMSConnectionSpec. Exposing properties other than

clientID are for illustration purposes only. These steps are for a non-managed

application that is, an application that is not deployed to WebSphere Application

Server. However, the structure of a deployed application is very similar. (See

Sample: Creating an enterprise service for an IMS transaction, for instructions to

complete the following steps, as necessary.)

1. If necessary, import the IMS resource adapter into your workspace.

2. Create a service project for your IMS service.

Chapter 5. Commit mode processing 51

3. Import the C, COBOL, or MFS file representing the input and output messages

of your IMS transaction.

4. Generate the enterprise service for the IMS transaction. WebSphere Studio

generates three WSDL files to describe a service:

v The abstract service interface definition or interface WSDL file which

contains the port types and messages elements.

v The binding WSDL file, which contains the binding elements that describe

how the service interface is implemented.

v The service WSDL file, which contains the service and port elements that

provide the service location as described by a service provider-specific port

binding.
5. Expose the input properties of IMSInteractionSpec and IMSConnectionSpec. To

do this, you need to modify the interface and binding WSDL files of the IMS

service. To expose the properties, complete the following steps:

a. Adding a part in the input message

1) Double-click on the interface WSDL file for your IMS service. The WSDL

editor will open.

2) Click on the Graph tab and locate the Messages section.

3) Under the heading Messages, ensure that the Request message is

selected. You will be adding parts, in addition to the transaction input

message, to the Request message.

4) Expand the Request message and click on the part you just added and

select Add Child -> Part. A New Part window opens. Type in the name

of the new part. The new part will be used to expose a property of

IMSInteractionSpec or IMSConnectionSpec. The name of the new part

can be anything you choose. For example, if you are exposing the input

property clientID of IMSConnectionSpec, you may want to name the

part, myInClientID.

Note: The name of the part you add to the input message in the

interface WSDL file and the name you use in the input message in the

binding WSDL file must be the same. See InteractionSpec and

ConnectionSpec properties as data for the list of IMSInteractionSpec and

IMSConnectionSpec properties that can be exposed as data.

5) After you add the new part, a Part panel opens. To select the type for

the new part, click on the button next to the Type field. The Specify

Type window opens. Select Select an existing type and then locate the

type of the property from the drop down list. For example, if you are

exposing commitMode of IMSInteractionSpec, choose xsd:int. Click

Finish.

Note: The type you select for the part must match the type of the

IMSInteractionSpec or IMSConnectionSpec property that you want to

expose. See InteractionSpec and ConnectionSpec properties as data for

the list of IMSInteractionSpec and IMSConnectionSpec properties and

their type information.

6) Repeat steps d and e for each property you will expose. Below is a

section of an interface WSDL file before and after modification to expose

the input properties of IMSInteractionSpec and IMSConnectionSpec:

Before:

<message name=’runShareablePBRequest">

<part name="INPUTMSG" type="tns:INPUTMSG"/>

</message>

52 IMS Connector for Java 2.2 and 9.1.0.1

<<message name=’runShareablePBResponse">

<part name="OUTPUTMSGPart" type="tns:OUTPUTMSG"/>

</message>

<message name="runPB2Request">

After:

<message name="runShareablePBRequest">

<part name="INPUTMSG" type="tns:INPUTMSG"/>

<part name="myInCommitMode" type="xsd:int"></part>

<part name="myInExecutionTimeout" type="xsd:int"></part>

<part name="myInImsRequestType" type="xsd:int"></part>

<part name="myInInteractionVerb" type="xsd:int"></part>

<part name="myInLtermName" type="xsd:string"></part>

<part name="myInMapName" type="xsd:string"></part>

<part name="myInUserName" type="xsd:string"></part>

<part name="myInSocketTimeout" type="xsd:int"></part>

<part name="myInClientID" type="xsd:string"></part>

<part name="myInUserName" type="xsd:string"></part>

<part name="myInPassword" type="xsd:string"></part>

<part name="myInGroupName" type="xsd:string"></part>

</message>

<message name="runShareablePBResponse">

<part name="OUTPUTMSGPart" type="tns:OUTPUTMSG"/>

<part name="myOutAsyncOutputAvailable" type="xsd:boolean"></part>

<part name="myOutConvEnded" type="xsd:boolean"></part>

</message>

7) Press Ctrl-S to save the file.
b. Binding the new part(s) for an input message

1) Double-click on the binding WSDL file for your IMS service. The WSDL

editor will open.

2) Click on the Graph tab.

3) Locate the Bindings section and expand the binding operation.

4) Right-click on input under ims:operation, select Add Extensibility

Element, and choose either ims:interactionSpecProperty or

ims:connectionSpecProperty and the panel for either one will open.

5) In the ims:interactionSpecProperty or ims:connectionSpec Property

panel, expand the input binding message and highlight the property.

6) Click the value field of the part property and select from the drop down

menu, the part you added in step d.

7) Click the value field of the propertyName property and select the name

from the drop down menu. Ensure the property name matches the name

of the IMSInteractionSpec or IMSConnectionSpec property.

For example, below is a section of a binding WSDL file before and after

binding the message parts.

Before

 <operation name="runShareablePB">

<ims:operation />

<input name="runShareablePBRequest"/>

<output name="runShareablePBResponse"/>

</operation>

After:

<operation name="runShareablePB">

</ims:operation>

<input name="runShareablePBRequest">

<ims:interactionSpecProperty part="myInCommitMode"

propertyName="commitMode"/>

<ims:interactionSpecProperty part="myInExecutionTimeout"

propertyName="executionTimeout" />

Chapter 5. Commit mode processing 53

<ims:interactionSpecProperty part="myInImsRequestType"

propertyName="imsRequestType" />

<ims:interactionSpecProperty part="myInInteractionVerb"

propertyName="interactionVerb" />

<ims:interactionSpecProperty part="myInLtermName"

propertyName="ltermName"/>

<ims:interactionSpecProperty part="myInMapName"

propertyName="mapName"/>

<ims:interactionSpecProperty part="myInSocketTimeout"

propertyName="socketTimeout"/>

<ims:interactionSpecProperty part="myInCommitMode"

propertyName="commitMode" />

<ims:connectionSpecProperty part="myInClientID"

propertyName="clientID" />

<ims:connectionSpecProperty part="myInUserName"

propertyName="userName" />

<ims:connectionSpecProperty part="myInPassword"

propertyName="password" />

<ims:connectionSpecProperty part="myInGroupName"

propertyName="groupName" />

</input>

<output name="runShareablePBResponse">

<ims:interactionSpecProperty part="myOutAsyncOutputAvailable"

propertyName="asyncOutputAvailable" />

<ims:interactionSpecProperty part="myOutConvEnded"

propertyName="convEnded"/>

</output>

</operation>

8) Press Ctrl-S to save the file.

Note: If you do not expose the IMSInteractionSpec properties, the values

in the WSDL element <ims:operation> will be used.
c. Generate the Java proxy. You generate a Java proxy for the IMS service from

the modified WSDL files.

d. Test the IMS service in a non-managed environment by creating a Java class

to invoke the proxy.

The following steps include code fragments from a Java class that invokes a

Java proxy named ShareablePBProxy. The IMS service that

ShareablePBProxy invokes was defined with a single REQUEST_RESPONSE

operation named runShareablePB. Because the properties of

IMSInteractionSpec and IMSConnectionSpec have been exposed, the

signature of the runShareablePB method contains parameters, in addition to

the transaction input message, that let you provide values for the exposed

properties. At a high level, the logic of the Java class is:

1) Populate the transaction input message with data:

INPUTMSG input = new INPUTMSG();

input.setIn__ll((short)59);

input.setIn__zz((short 0);

input.setIn__trcd("IVTNO");

input.setIn__cmd("DISPLAY");

input.setIn__name1("LAST1");

input.setIn__name2("");

input.setIn__extn("");

input.setIn__zip("");

2) Invoke the method of the proxy that invokes the IMS service, passing

the populated input message and values for the exposed properties:

ShareablePBProxy proxy = new ShareablePBProxy();

 RunShareablePBResponseMessage outM = proxy.runShareablePB(input,

 0, //commitMode

54 IMS Connector for Java 2.2 and 9.1.0.1

10000, //executionTimeout

 1, //imsRequestType

 1, //interactionVerb

 "LLLLNAME", //ltermName

 "MMMMNAME", //mapName

 0, //socketTimeout

 "", //clientID

 "", //userName

 "", //password

 "" //groupName

);

e. Run the Java application to test the service definition.

Programming model for Commit mode 0 applications

The logic for a commit mode 0 application, whether it is a simple Java class

running in a non-managed environment or a deployed EJB is similar.

 try

 {

 // Populate the IMS transaction input message.

 //

 // Invoke the IMS service to run IMS transaction, passing

 // the input message, a value for clientID, and

 interactionVerb

 // set to SYNC_SEND_RECEIVE.

 //

 // Process (e.g., display) the IMS transaction output

 message.

 }

 catch (Exception e)

 {

 // The IMS transaction output message may or may not

 // be available from the OTMA Asynchronous Hold Queue,

 // depending on the cause of the exception.

 }

If the transaction output message cannot be delivered to IMS Connector for Java, it

is queued to the OTMA Asynchronous Hold Queue. To retrieve a message from

the OTMA Asynchronous Hold Queue, you invoke the IMS service again, set the

interactionVerb to SYNC_RECEIVE_ASYNCOUTPUT, and pass a null input

message. Because the messages are retrieved from the IMS OTMA Asynchronous

Hold Queue according to their clientID, you must also specify the correct value for

clientID.

Displaying output message counts

Using IMS Connect commands, you can choose to display output message counts.

This topic describes how to display those message counts.

In IMS and OTMA terminology, a transaction pipe (TPIPE) is a logical connection

between a client, such as IMS Connect, and the server, such as IMS OTMA. For

commit mode 0 interactions, the TPIPE name is the clientID used for the

interaction. For commit mode 0 interactions the IMS OTMA Asynchronous Hold

Queue associated with the TPIPE has the same name as the clientID.

For commit mode 1 interactions, the TPIPE name is the IMS Connect port number

used for the interaction, or in the case of Local Option the TPIPE name is the

word, LOCAL. Therefore, each port will have a TPIPE which will be used for all

clients running commit mode 1 interactions on that port.

Chapter 5. Commit mode processing 55

You can use the IMS Connect command /DISPLAY TMEMBER IMSConnect_Name TPIPE

ALL to view counts of the output messages sent to IMS Connector for Java, as well

as messages inserted to ALTPCBS (Alternate Program Communication Blocks). The

following sample output is from a /DISPLAY TMEMBER HWS1 TPIPE ALL command. A

brief description of the types of TPIPEs and counts for the command output is also

provided.

DFS000I MEMBER/TPIPE ENQCT DEQCT QCT STATUS IMS1

DFS000I HWS1 IMS1

DFS000I -9999 0 0 0 IMS1

DFS000I -HWSMIJRC 2 2 0 IMS1

DFS000I -CLIENT01 3 2 1 IMS1

DFS000I -ALTPCB1 2 1 1 IMS1

DFS000I -HWS$DEF 1 0 1 IMS1

DFS000I -RRNAME 1 0 1 IMS1

Commit Mode 1 interactions on a shareable persistent socket

v The TPIPE name is the port number used for the interaction. For example, 9999.

v The enqueue count (ENQCT) and dequeue count (DEQCT) will be equal and the

queue count (QCT) will be 0, because undelivered output messages are not

recoverable for commit mode 1 transactions.

Commit Mode 0 interactions on a shareable persistent socket

v The TPIPE name is generated by IMS Connector for Java and will have a prefix

of ″HWS″. For example, HWSMIJRC.

v The enqueue count (ENQCT) and dequeue count (DEQCT) will be equal and the

queue count (QCT) will be 0 if all messages are delivered to IMS Connector for

Java.

v If output messages are not delivered to IMS Connector for Java on

SYNC_SEND_RECEIVE interactions and the default values of reRoute FALSE

and purgeAsyncOutput TRUE are used, the enqueue count (ENQCT) and

dequeue count (DEQCT) will be equal and the queue count (QCT) will be 0. All

undelivered output messages are discarded.

v If output messages are not delivered to IMS Connector for Java on

SYNC_SEND_RECEIVE interactions and reRoute is set to TRUE and

purgeAsyncOutput is set to FALSE, then the enqueue count (ENQCT) will be

greater than the dequeue count (DEQCT) and the queue count (QCT) will be the

number of messages that were not delivered to IMS Connector for Java. The

TPIPE name is the value specified for the reRouteName property; for example,

RRNAME, or a default value; for example, HWS$DEF.

v For SYNC_SEND interactions, output is not expected, so undelivered output

does not apply. If SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions are unsuccessful,

the queue count does not change.

Commit Mode 0 interactions on a dedicated persistent socket

v Typically, the TPIPE name is provided by the Java application and will not have

a prefix of ″HWS″. For example, CLIENT01. However, you may occasionally see

a TPIPE name of ″HWS$DEF″. This is the default value for the reRouteName

property.

v The enqueue count (ENQCT) and dequeue count (DEQCT) will be equal and the

queue count (QCT) will be 0 if all messages are delivered to IMS Connector for

Java, and no undelivered messages were rerouted from interactions on shareable

persistent socket connections.

56 IMS Connector for Java 2.2 and 9.1.0.1

v If output messages are not delivered to IMS Connector for Java or rerouted from

interactions on shareable persistent socket connections, the enqueue count

(ENQCT) will be greater than the dequeue count (DEQCT) and the queue count

(QCT) will be the number of messages that were not delivered. The TPIPE name

is the user specified clientID name, for example, CLIENT01.

Output messages inserted to ALTPCBs (Alternate Program Communication

Blocks)

v The TPIPE name is the name of the Alternate PCB. For example, ALTPCB1.

Chapter 5. Commit mode processing 57

58 IMS Connector for Java 2.2 and 9.1.0.1

Chapter 6. Transaction processing

The topics in this section describe how the IMS resource adapter supports global

transaction management and two-phase commit processing so that your

application can run in a J2EE-compliant application server to access IMS

transactions. The topics included are:

Global transaction support with two-phase commit

To protect and maintain the integrity of your critical business resources, IMS

Connector for Java, as a J2EE Connector Architecture resource adapter, supports

global transaction management and two-phase-commit processing. Using this

support, you can build a J2EE application to group a set of changes into one

transaction, or a single unit of work, so that all changes within a transaction are

either fully completed or fully rolled back. This enables your application to run in

a J2EE-compliant application server (for example, WebSphere Application Server)

to access IMS transactions and data in a coordinated manner. Global transaction

management ensures the integrity of the data in IMS.

Example of global transaction support

When you make changes to your protected resources, you want to guarantee that

the changes are made correctly. For example, as a bank customer you want to

transfer money from your savings account to your checking account. You want to

be sure that when the money is deducted from your savings account it is added to

your checking account simultaneously. You would not want this transaction to be

completed only partially with the money deducted from your savings account but

not added to your checking account.

In another example, you need to buy a ticket from San Francisco to Paris but a

direct flight is not available. Unless you can successfully reserve a ticket from San

Francisco to Chicago and another ticket from Chicago to Paris, you will not

commit to your trip to Paris. That is, you will ″roll back″ your decision to go to

Paris because having a confirmed seat for only one part of your trip is not useful

to you.

In both of these examples, several smaller transactions are required in order to

complete one overall transaction. If there is a problem with one of these smaller

transactions, you would not want to commit the overall transaction (such as

transferring money or going to Paris). Instead, you would want to roll back every

step of the transaction so that none of the smaller transactions are committed. To

transfer your money or to go on your trip to Paris successfully, you want the

smaller transactions to be managed and coordinated together to complete the

overall transaction.

To ensure a coordinated transaction process, the J2EE platform (which consists of a

J2EE application server, J2EE application components, and a J2EE connector

architecture resource adapter) provides a distributed transaction processing

environment where transactions are managed transparently and resources are

updated and recovered across multiple platforms in a coordinated manner.

© Copyright IBM Corp. 2000, 2005 59

Global transaction and two-phase commit support process

A J2EE-compliant application server (such as WebSphere Application Server) uses a

Java transaction manager, also known as an external coordinator, to communicate

with the application components (for example, Java servlets or Enterprise Java

Beans) and the resource managers (for example, IMS or DB2®) through the

resource adapters (for example, IMS Connector for Java) to coordinate a

transaction.

If a transaction manager coordinates a transaction, that transaction is considered a

global transaction. If a transaction manager coordinates a transaction with more

than one resource manager, the external coordinator uses two-phase commit

protocol.

In the previous bank example, you want to transfer money from your savings

account to your checking account. If your savings account information resides on a

separate resource manager from your checking account information (for example,

your saving account resides on IMS and your checking account resides on DB2),

the transaction manager in the application server (WebSphere Application Server)

helps the application to coordinate the changes between IMS and DB2

transparently using two-phase commit processing. Specifically, the transaction

manager works with the IMS resource adapter to coordinate the changes in IMS.

IMS Connector for Java is designed to work together with the Java transaction

manager in the J2EE platform, the Resource Recovery Services (RRS) of z/OS, and

IMS Connect to make consistent changes to IMS and other protected resources.

To participate in two-phase commit processing with IMS, IMS Connector for Java

uses the IMS OTMA Synchronization level sync-point protocol. To participate in

global transaction and two-phase commit processing when the changes are

requested from a remote application, IMS uses RRS on z/OS.

RRS, from the point of view of IMS, acts as the ″external coordinator″ or

sync-point manager to coordinate the update and recovery of resources. IMS

Connector for Java and IMS Connect, interact with the Java transaction manager

running in the application server and RRS on z/OS to allow a global transaction

running on a J2EE platform to participate in a coordinated update with IMS

running on the host.

When setting up a J2EE application to participate in a global transaction, you must

select one of the two available communication protocols to be used between IMS

Connector for Java and IMS Connect. The two communication protocols supported

by IMS Connector for Java and IMS Connect are TCP/IP and Local Option.

Global transaction with TCP/IP

In a global transaction scope, your J2EE application component can access an IMS

transaction by establishing a TCP/IP connection with IMS Connect. Underlying,

IMS Connector for Java interacts with the Java transaction manager using the

X/Open (XA) protocol to manage the global transaction and two phase commit

processing. The XA protocol defines a set of interfaces and interactions describing

how the Java transaction manager and the resource managers interact in a

distributed transaction processing environment. IMS Connector for Java, together

with IMS Connect, uses the XA protocol and works with IMS and Resource

Recovery Services (RRS) on z/OS to make consistent changes.

60 IMS Connector for Java 2.2 and 9.1.0.1

Restrictions: You are required to have RRS running on the same MVS system with

IMS Connect.

To set up RRS on IMS Connect, refer to IMS Connect Guide and Reference

(SC27-0946). For more information about TCP/IP communication protocol for

global transaction and two-phase commit processing, see Platform considerations

and communication protocol considerations and Two-phase commit environment

considerations.

Global transaction with Local Option

If your J2EE application component is running on WebSphere Application Server

for z/OS, you can submit IMS transaction messages using Local Option and

participate in global transaction processing. This transaction processing is

coordinated by Resource Recovery Services (RRS) on z/OS and WebSphere

Application Server for z/OS. IMS Connector for Java is RRS-compliant and is

designed specifically to work with RRS so that the Java transaction manager in

WebSphere and IMS, as the resource manager, can work together to make

consistent changes to multiple protected resources. The XA protocol is not used by

IMS Connector for Java when running global transaction with Local Option.

Restriction:

v To run a global transaction with Local Option, WebSphere Application Server for

z/OS, IMS Connect, and IMS must run in the same MVS system.

Recommendation:

v Use Local Option for optimal performance.

v If WebSphere Application Server for z/OS is running on a different MVS than

IMS and IMS Connect, you must use TCP/IP for global transaction.

For information about Local Option communication protocol for global transaction

and two-phase commit processing, see Platform considerations and communication

protocol considerations, Two-phase commit prerequisites, and Two-phase commit

environment considerations.

Additional information on transaction support

Local Transaction

The J2EE Connection Architecture defines the javax.resource.cci.LocalTransaction

interface to allow a resource manager, rather than a transaction manager, to

coordinate a transaction locally. However, IMS Connector for Java only supports

transaction coordination with a transaction manager. Thus, IMS Connector for Java

does not support the javax.resource.cci.LocalTransaction interface. If you call the

IMSConnection.getLocalTransaction() method you will get a

NotSupportedException. To use transaction support with IMS Connector for Java,

you need to either use the JTA transaction interface, or set an appropriate

transaction attribute in the deployment descriptor in your application. See Using

global transaction support in your application for more information.

One-phase commit processing

IMS Connector for Java supports one-phase commit optimization with the

transaction manager. As a result, if all changes inside a transaction scope belong to

the same IMS resource, the transaction manager might perform one-phase-commit

Chapter 6. Transaction processing 61

optimization such that the transaction manager sends the phase two commit

request directly to the resource manager for committing the changes without

sending the phase one prepare request.

Non-global transaction processing

If no global transaction processing is used in the application (for example, when

the transaction attribute is set to TX_NOTSUPPORTED), all non-global transaction

processing uses ″Sync-On-Return″ (OTMA SyncLevel=None). By the time the IMS

transaction is committed, the output has been returned to the client.

Conversational transaction processing in global transaction scope

IMS uses a conversational program to divide processing into a connected series of

client-to-program-to-client interactions (also called iterations). Each iteration is a

type of IMS conversational transaction. Conversational processing is used when

one transaction contains several parts. Each part that comprises one large

transaction is separately committed or rolled back.

You can run a conversational transaction in the global transaction scope if:

v Each iteration is run under the same transaction level. For example, if the first

iteration is processed with a global transaction scope, then all the subsequent

iterations in that IMS conversational transaction must be processed at a global

transaction level. If you issue the second iteration with no transaction scope, IMS

OTMA reports an error.

v Each iteration must be completed with a commit or rollback call before issuing

the next iteration in the IMS conversation. You cannot group multiple iterations

in a single global transaction scope.

For more information about using global transaction support, see the IMS

Connector for Java web page at www.ibm.com/ims and go to Hints and Tips on

the Support page.

Two-phase commit prerequisites

The prerequisites for two-phase commit processing with TCP/IP are:

v IMS Connector for Java 2.1.0 or later

v IMS Connect 2.1 or later

v RRS on z/OS 1.2 or later

v IMS Version 8 or later

v WebSphere Application Server Version for z/OS or distributed platforms 5.0 or

later

The prerequisites for two-phase commit processing with Local Option are:

v IMS Connector for Java 1.2.2 or later

v IMS Connect 1.2 or later

v The RRS level associated with z/OS Version 2 Release 10 or later

v IMS Version 7 or later

v WebSphere Application Server 4.0.1, PTF 4 or later

Note: RRS must be installed and running for two-phase commit processing to

occur. IMS and IMS Connect must also be enabled for RRS processing. (If you are

62 IMS Connector for Java 2.2 and 9.1.0.1

http://www-306.ibm.com/software/data/db2imstools/imstools/imsjavcon.html

using two-phase commit processing with Local Option, IMS Connect does not need

to be enabled for RRS processing.) You can enable RRS processing on IMS Connect

by either issuing the IMS Connect command, SETRRS ON or set RRS=Y in the IMS

Connect configuration file. To ensure IMS is enabled with RRS, check that the RRS

value in the startup parameter within your IMS environment is set to Y. This will

appear in the job logs generated when IMS is brought up.

Additionally, to run two-phase commit IMS, IMS Connect, and RRS must all be in

the same MVS image. For more information about two-phase commit, see

Two-phase commit environment considerations.

Using global transaction support in your application

The J2EE platform allows you to use either a programmatic or a declarative

transaction demarcation approach to manage transactions in your application. The

programmatic approach is the component-managed transaction and the declarative

transaction demarcation approach is the container-managed transaction.

Component-managed (or Bean-managed) transaction

The J2EE application uses the JTA javax.transaction.UserTransaction interface to

demarcate a transaction boundary to a set of changes to the protected resource

programmatically. Component-managed transactions can be used in both the

servlet and the EJB environment. In the case of an EJB, you set the transaction

attribute in its deployment descriptor as TX_BEAN_MANAGED.

A transaction normally begins with a UserTransaction.begin() call. When the

application component is ready to commit the changes, it invokes a

UserTransaction.commit() call to coordinate and commit the changes. If the

application component must roll back the transaction, it invokes

UserTransaction.rollback() and all changes are backed out. For example:

 // Get User Transaction

 javax.transaction.UserTransaction transaction =

 ejbcontext.getUserTransaction();

 // Start transaction

 transaction.begin();

 // Make changes to the protected resources.

 // For example, use the J2EE/CA’s CCI Interaction interface

 // to submit changes to an EIS system(s)

 interaction.execute(interactionSpec, input, output);

 if (/* decide to commit */) {

 // commit the transaction

 transaction.commit();

 } else { /* decide to roll back */

 // rollback the transaction

 transaction.rollback();

 }

Container-managed transaction

Container-managed transactions can be used only in the EJB environment. The EJB

specifies a container-managed transaction declaratively through the transaction

attribute in the deployment descriptor (such as TX_REQUIRED). A

container-managed transaction is managed by the EJB container. The container calls

Chapter 6. Transaction processing 63

the appropriate methods (such as begin, commit, or rollback) on behalf of the EJB

component. This declarative approach simplifies the programming calls in the EJB.

Related Reading: For more information about the J2EE architecture and JTA

specifications, see http://java.sun.com/j2ee/docs.html.

Two-phase commit environment considerations

To run a two-phase commit application, consider the following suggestions:

v It is best to have as many MPP regions as possible running to ensure that

two-phase commit applications do not contend for a region; because a

transaction that is within a two-phase commit application uses an MPP region

for the duration of the entire two-phase commit transaction.

v If a number of IMS transactions are performed within a two-phase commit

transaction, at least that many MPP regions must be available to avoid hanging

the two-phase commit application.

v To safeguard against a transaction that may be waiting for an extensive amount

of time for resources, it is recommended to set an appropriate timeout value for

each interaction taking place within the global transaction.

v Avoid having an excessive number of database interactions performed in one

two-phase commit transaction. If multiple IMS transactions are used within a

two-phase commit transaction, they could possibly contend or lock in an attempt

to update or modify the same data. To avoid this, it’s best to write an

application that will prevent a user from accessing duplicate entries within the

same two-phase commit operation.

v Consider configuring your IRLM or PI locking manager to use a block size that

is as small as the smallest entry to that database. Larger block sizes might have

two transactions contending for entries that may not even be the same and yet

reside close to one another on the hard disk.

v If multiple interactions are performed using the same IMS transaction on the

same IMS database within a global transaction (unit of work), each interaction

with that IMS transaction must run on a separate MPP region. The IMS

transaction must have a SCHDTYP=PARALLEL and a PARLIM=0 value, to

indicate that the IMS transaction can run on multiple MPP regions and that it

will always meet the scheduling requirements (the number of messages will be

greater than zero) to process every interaction on a new MPP region.

v If a region is hung, waiting for RRS-OTMA and no execution timeout value has

been set, you can end the attempt to run a transaction that is hanging the MPP

region. This can be done by issuing a stop region IMS command with the abend

transaction parameter. For example, /STOP REGION reg#ABDUMP tranname. This

will rollback the transaction for that particular interaction and free the MPP

region.

For more information about two-phase commit, including sample applications, see

the IMS Connector for Java Guide and Reference.

64 IMS Connector for Java 2.2 and 9.1.0.1

http://java.sun.com/j2ee/docs.html

Chapter 7. Diagnosing problems

The topics in this section provide information on how to log and trace component

information and diagnose problems, as well as list the messages and exceptions of

the IMS resource adapter and MFS plugin. The topics included are:

Diagnosing problems when using the IMS resource adapter

If you are unable to access IMS from your Java application, consider performing

the following actions to diagnose the problem:

v Verify that you have the correct prerequisites for using the IMS resource adapter.

See Prerequisites for using the IMS resource adapter.

v Verify that IMS Connect is active by ensuring that the outstanding IMS Connect

reply ″HWSC0000I *IMS CONNECT READY* ims_connect_name″ appears on the

system console of the target machine.

v Verify that the PORT and DATASTORE are ACTIVE by entering the IMS

Connect command VIEWHWS at the IMS Connect outstanding reply.

v Verify that IMS is active by ensuring that the outstanding IMS reply ″DFS996I

IMS READY″ appears on the system console of the target machine.

v Verify that the XCF status of both the IMS and IMS Connect members is

ACTIVE by entering the IMS command /DISPLAY OTMA at the outstanding

IMS reply. The display output should be similar to the following:

DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS

SECURITY IMS1

DFS000I XCFGRPNM

 IMS1

DFS000I -IMSNAME ACTIVE SERVER FULL

 IMS1

DFS000I -ICONNAME ACTIVE ACCEPT TRAFFIC

 IMS1

DFS000I *02033/143629* IMS1

v If you’re using TCP/IP to communicate between the Java application and IMS

Connect, verify that you can successfully ″ping″ the target host machine. If you

cannot ping the host machine and you are using a host name rather than an IP

address, ensure that the host name is sufficiently qualified.

If your IMS service is not providing the expected output from the IMS transaction,

ensure that the output message returned by the IMS application program matches

the output COBOL definition used by the service. For a J2EE application, you can

view the IMS OTMA message containing the message returned by the IMS

application program by setting the traceLevel property to 3. See Logging and

tracing with the IMS resource adapter for instructions on how to turn on the IMS

resource adapter trace. For more information on the IMS OTMA message, go to the

IMS web site, http://www.ibm.com/ims and select IMS Connect.

© Copyright IBM Corp. 2000, 2005 65

http://www.ibm.com/ims

Logging and tracing with the IMS resource adapter

The IMS resource adapter, in addition to other J2EE components, provides controls

for logging and tracing component information. When these controls are set for

logging and tracing and you run your Java application using the WebSphere Unit

Test Environment, a trace file is created.

Note: Ensure that only one client is running when the trace is on.

To set controls for logging and tracing, complete the following steps:

 1. In the Server Configuration view, double-click your server configuration to

open the WebSphere Server Configuration editor.

 2. Select the J2C tab in the editor.

 3. On the J2C Options page, select an IMS resource adapter in the J2C Resource

Adapters table.

 4. Scroll down to the J2C Connection Factories table and select the connection

factory for which you want to turn the trace on.

 5. Scroll down to the Resource Properties table and select the TraceLevel

resource property. Specify a non-zero value to enable logging and tracing.

TraceLevel values correspond to constants in the interface

com.ibm.connector2.ims.ico.IMSTraceLevelProperties.

 TraceLevel

Value IMSTraceLevelProperties Description

0 RAS_TRACE_OFF No tracing or logging occurs.

1 RAS_TRACE_ERROR_EXCEPTION Only errors and exceptions are

logged.

2 RAS_TRACE_ENTRY_EXIT Errors and exceptions plus the entry

and exit of important methods are

logged.

3 RAS_TRACE_INTERNAL Errors and exceptions, the entry and

exit of important methods, and the

contents of buffers sent to and

received from IMS Connect are

logged.

 6. After entering the TraceLevel value on the page for the J2C tab, select the

Trace tab.

 7. Ensure that the Enable trace check box is selected. To enable logging and

tracing in the IMS Resource adapter, enter the following in the Trace string

field:

com.ibm.connector2.ims.*=all=enabled

com.ibm.ims.ico.*=all=enabled

Other combinations of trace strings will enable tracing in other components.

For example, with the following trace string:

com.ibm.ejs.j2c.*=all=enabled:com.ibm.connector2.*=all=enabled

the string com.ibm.ejs.j2c.* provides you with logging and tracing of

WebSphere’s implementation of the J2EE Connector Architecture and the

string com.ibm.connector2.* provides you with logging and tracing of all of

the resource adapters, including IMS.

66 IMS Connector for Java 2.2 and 9.1.0.1

8. You can accept the default name and location of the trace output file or you

can modify it. For example, depending on how you set your substitution

variables, the default name and location might be:

your_workspace\.metadata\.plugins\com.ibm.etools.server.core

\tmp0\logs\server1\trace.log

To modify the default name and location, enter a different name and location

of the file in the Trace output file field on the Trace Options page of the

server configuration.

 9. When you are finished making changes, close the editor and select Yes to save

your changes.

10. Check the Status column of the Servers view and restart the server instance, if

necessary. You will most likely have to restart the server instance if you are

using the WebSphere Test Environment.

11. Run your Java application and then examine the trace file.

J2CA0056I, WLTC0017E, HWSP1445E, and HWSSL00E Error Messages

J2CA0056I

When IMS resource adapter throws an exception, it can be caught by a component

other than your Java application. For example, when you run a deployed

application, IMS Connector for Java exceptions are often caught by the WebSphere

Application Server. WebSphere Application Server may then issue its own message,

including in it the message from the IMS resource adapter exception. For example,

when execution timeout occurs, you see the following on the Console:

v J2CA0056I: The Connection Manager received a fatal connection error

from the

Resource Adaptor for resource myConnFactry. The exception which

was received is

ICO0080E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@e59583c.

processOutputOTMAMsg(byte[],IMSInteractionSpec, int) error.

Execution timeout has occurred for this interaction.

The executionTimeout was [0] milliseconds. The IMS Connect TIMEOUT

was used.

J2CA0056I is an informational message from WebSphere Application Server. The

fatal connection error refers to the fact that IMS Connect closes the socket in the

case of an execution timeout, which results in WebSphere Application Server’s

Connection Manager removing the connection object for the socket from the

connection pool.

Another example occurs when a transaction (non-persistent) socket is used for a

commit mode 0 interaction. In this case, you see the following on the Console:

v J2CA0056I: The Connection Manager received a fatal connection error

from the

Resource Adaptor for resource myConnFactry. The exception which

was received is

ICO0089I:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@6db5d83a.call(Connection,

InteractionSpec, Record, Record). Non-persistent socket closed for

Commit Mode 0 IMS transaction.

J2CA0056I is an informational message from WebSphere Application Server. The

fatal connection error refers to the fact that IMS Connect closes the transaction

socket and the IMS resource adapter causes WebSphere Application Server’s

Chapter 7. Diagnosing problems 67

Connection Manager to remove the connection object for the socket from the

connection pool.

WLTC0017E

A local transaction containment (LTC) is used to define the application server

behavior in an unspecified transaction context. For example, if a single method

within a container managed EJB that has a transaction attribute of NotSupported is

called outside of any transaction scope, WebSphere will create a local transaction to

handle resources used during the execution of that method. The message above is

produced by the WebSphere Transaction Monitor to indicate that the resources

enlisted with the LTC were rolled back instead of committed due to

setRollbackOnly() being called on the LTC. This message does not require any

action by the user and is for your information only.

v WLTC0017E: Resources rolled back due to setRollbackOnly() being

called.

Note: The prefix of a WebSphere Application Server message indicates the

component that issued the message. You can find documentation of these

messages, by component, in Integration Edition’s Help using WebSphere

Application Server Enterprise > Quick reference > Messages. All messages are

documented with user/system action and explanation. These messages are also

documented in the WebSphere Application Server Version 5 Information Center.

HWSP1445E

When you provide Connection Properties to the New IMS Service wizard in

Integration Edition or when you configure a Connection Factory for use by your

Java application, you choose whether or not you are using SSL with the

SSLEnabled property. If you are using SSL (SSLEnabled=TRUE), then the port

number you provide must be configured as an SSL port in IMS Connect. If you

accidentally provide a non-SSL port for your Java application, unexpected results

will occur when you run your application.

v IMS Connector for Java will throw an exception indicating a communication

error:

javax.resource.spi.CommException:

ICO0003E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@56503fc6.connect()

error.

Failed to connect to host [CSDMEC13], port [9999].

[java.net.SocketException:

Connection reset by peer: socket closed]

v The following IMS Connect message will be displayed on the MVS console:

HWSP1445E UNKNOWN EXIT NAME SPECIFIED IN MESSAGE PREFIX; MSGID=

 /9 * !hR, M=SDRC

The first step in establishing an SSL connection involves the SSL handshake

protocol, in which the client (IMS Connector for Java) sends the server (IMS

Connect) an SSL ″Hello″ message. In the scenario described above, IMS Connect is

waiting for an incoming message on a non-SSL port. When IMS Connect receives

the handshake message it interprets it as an OTMA message with a valid Exit

name in the prefix and issues message HWSP1445E.

68 IMS Connector for Java 2.2 and 9.1.0.1

HWSSSL00E

The opposite scenario to the one above occurs when you are not using SSL

(SSLEnabled=FALSE), but the port number you provide for your Java application

is configured as an SSL port in IMS Connect. In this case:

v IMS Connector for Java will throw an exception indicating a communication

error:

javax.resource.spi.CommException: ICO0005E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@5bcdcdd4.receive()

error. A communication error occurred while sending or receiving

the IMS message.

[java.net.SocketException: Connection reset by peer: socket closed]

v The following IMS Connect message will be displayed on the MVS console:

HWSSSL00E Unable to initialize the SSL socket:Error while reading

or writing data

IMS Connect’s attempt to initialize the SSL socket fail, since it does not receive the

initial client ″Hello″ message that is part of the SSL handshake protocol.

IMS resource adapter messages and exceptions

While you develop Java programs that use IMS Connector for Java, you might

encounter situations in which your program throws exceptions. Some of these

exceptions are thrown by IMS Connector for Java, while others are thrown by class

libraries used by IMS Connector for Java (such as the Java class libraries). This

topic provides information on exceptions generated by IMS Connector for Java J2C

applications.

The following terms, in italics in the message descriptions that follow, are replaced

by specific values at runtime.

hostname

The TCP/IP host name of the machine that is running IMS Connect.

innermethodname

The name of the method that originally throws this exception. This

exception has been caught by IMS Connector for Java and is being

re-thrown to another exception, according to the Common Connector

Framework specification.

length The length of the data.

libraryFileName

The Local Option native library file name.

llvalue

The value of LL.

maxlength

The maximum valid length of the data.

methodname

The name of the method that is throwing this exception.

mode The type of interaction between IMS Connector for Java and the IMS

Connect component on the host (as defined in the interactionspec).

nativeMethodName

The Local Option native method name.

Chapter 7. Diagnosing problems 69

portnumber

The port number that is assigned to IMS Connect.

propertyname

The name of the property.

propertyvalue

The value of the property.

reasoncode

The reason code that is returned by IMS Connect.

rectype

The type of the record.

returncode

The return code, formatted in decimal, that is returned by IMS Connect.

sensecode

The sense code, formatted in decimal, that is returned from IMS OTMA

socketexception

The socket exception.

source_exception

The exception thrown when the error first occurred in an internal method.

source_methodname

The internal method in which the error first occurred.

state The internal state of IMS Connector for Java.

Related Reading

v For information on exceptions that are thrown from other class libraries, see the

Javadoc information for the specific class library.

v For information on exceptions related to Local Option support, see IBM IMS

Connect User’s Guide and Reference. Some exceptions are thrown based on IMS,

IMS OTMA or IMS Connect errors returned by IMS Connect. For information on

IMS OTMA and IMS Connect errors, see IBM IMS Open Transaction Manager

Access Guide and IBM IMS Connect User’s Guide and Reference, respectively. For

information on IMS errors, see IBM IMS Messages and Codes.

Exceptions generated by IMS Connector for Java J2C

applications

The following exception messages are produced by applications built with the Java

2 Platform, Enterprise Edition (J2EE) Connector Architecture (J2C) class libraries

when an error condition is detected.

ICO0001E

javax.resource.spi.EISSystemException:

ICO0001E: methodname error.

IMS Connect returned error:

RETCODE=[returncode], REASONCODE=[reasoncode].

reasoncode_string.

Explanation: IMS Connect returned an error. The connection in error will not be

reused. reasoncode_string provides a brief description of the reasoncode , if available.

User Action: Check the MVS console for associated IMS Connect error messages.

IMS Connect error messages begin with the characters ″ HWS″. For diagnostic

70 IMS Connector for Java 2.2 and 9.1.0.1

information on the return code (returncode) and reason code (reasoncode) values, as

well as IMS Connect error messages, see the IMS Connect Guide and Reference.

ICO0002E

javax.resource.spi.EISSystemException:

ICO0002E:methodname error.

IMS OTMA returned error:

SENSECODE=[sensecode], REASONCODE=[otmareasoncode].

[source_methodname:source_exception]

Explanation: IMS OTMA returned a NAK error.

User Action: For diagnostic information on the sense code (sensecode) and OTMA

reason code (otmareasoncode) values of the NAK error, see the IMS OTMA Guide and

Reference. Note that IMS Connector for Java displays sensecode and otmareasoncode in

decimal. If the application is running with two-phase commit, you may receive the

following sense code values with the NAK error:

v Sense code = 17 (decimal, 23 Hex)

Your IMS is not enabled with RRS processing. Ensure your IMS has Protected

Conversation processing with RRS enabled. See Two-phase commit prerequisites

for more information.

v Sense code = 46 (decimal, 2E Hex)

RRS and two-phase commit processing is not supported by IMS Connect and

IMS Connector for Java. Make sure that both your IMS Connect and IMS

Connector for Java is at least version 2.1.0 or above.

ICO0003E

javax.resource.spi.CommException:

ICO0003E:methodname error.

Failed to connect to host [hostname],

port [portnumber].

[java_exception]

Explanation: IMS Connector for Java was unable to connect to the host and port

combination. java_exception indicates the reason for the failure to connect. For

additional information see the User Action section below.

User Action: Examine java_exception to determine the reason for the failure to

connect to the host. Some values for java_exception are:

v java.net.UnknownHostException: hostname

The host name you specified when configuring the Connection Factory used by

your application is invalid or your application specified an invalid host name.

Check the spelling of the host name. You may have to use the fully qualified

path for host name or the IP address.

v java.net.ConnectException: Connection refused

Some possible reasons for the exception are:

– The port number is invalid. Ensure that you are using a valid port number

for the IMS Connect indicated by hostname.

– The specified port is stopped. This can be determined using the IMS Connect

command VIEWHWS. If the port is stopped its status will be NOT ACTIVE.

Use the IMS Connect command, OPENPORT dddd, where dddd is the

specified port number, to start the port.

– IMS Connect on the specified host is not running. Start IMS Connect on the

host machine.

Chapter 7. Diagnosing problems 71

– TCP/IP was restarted without canceling and restarting IMS Connect or

issuing STOPPORT followed by OPENPORT on the host.
v java.net.SocketException: connect (code=10051)

Some possible reasons for the exception are:

– The machine with the specified host name is unreachable on the TCP/IP

network. Ensure that the host machine is accessible from the TCP/IP network.

Verify by issuing the ping command to the specified host machine. Enter the

ping command on the machine on which IMS Connector for Java is running.

Start TCPIP on the host, if it is not started.

– TCP/IP was restarted but the status of the port used by the application was

NOT ACTIVE. To correct this situation you can do one of the following:

–

- Use the IMS Connect command OPENPORT dddd, where dddd is the port

number, to activate the port

- Restart IMS Connect

ICO0005E

javax.resource.spi.CommException:

ICO0005E:methodname error.

A communication error occurred while sending or receiving the IMS message.

[java_exception]

Explanation: IMS Connector for Java was unable to successfully complete a send

and receive interaction with the target IMS Connect. java_exception indicates the

reason for the failure to complete the interaction. For additional information see

the User Action section below.

User Action: Examine java_exception to determine the reason for the failure. Some

values for java_exception are:

v java.io.EOFException

Some possible reasons for the exception are:

– The timeout value specified in the IMS Connect configuration file is exceeded

before IMS Connect receives a response from IMS. Exceeding a timeout value

typically occurs when there is no region available in IMS to run the IMS

transaction that processes the client’s request. If this is the case, ensure that an

appropriate region is started and available to process the request. Exceeding a

timeout value can also occur if the IMS application program associated with

the transaction is stopped. If this is the case, use the IMS command /START

PROGRAM to start the IMS application program.

– Note: This is the expected behavior for the following configurations:

- Releases of IMS Connector for Java prior to 1.2.6, running with IMS

Connect 1.2

- IMS Connector for Java 1.2.6 or 2.1.0, running with IMS Connect 1.2 plus

APAR PQ71355
– A Java client tries to use a previously active client (for example, a connection

from the pool) for which an IMS Connect STOPCLNT command has been

issued.
v java.net.SocketException: Connection reset by peer: socket write error

Some possible reasons for the exception are:

– A Java client attempts to use a connection for which the underlying socket is

no longer connected to IMS Connect. This can happen if IMS Connect is

recycled, but the application server is not. After IMS Connect is restarted, the

72 IMS Connector for Java 2.2 and 9.1.0.1

connection pool will contain connections that formerly were successfully

connected to IMS Connect. As clients attempt to reuse each of these

connections, the exception java.net.SocketException is thrown and the

connection object removed from the connection pool. Eventually all these

connections will be removed from the pool and new connections will

successfully be created.

– Note: This behavior can be changed in WebSphere Application Server by

setting the Purge Policy of the connection factory used by the Java

application to Entire Pool.

– TCP/IP on the host is coming down.

ICO0006E

javax.resource.ResourceException:

ICO0006E:methodname error.

The value provided for DataStoreName is null or an empty string.

Explanation: The method indicated in methodname was invoked using an empty

DatastoreName parameter. This error message will appear in the trace log when a

connection factory with an empty DatastoreName parameter is started. This

message will be followed by a J2EE Connector warning,

J2CA0007W: An exception occurred while invoking method setDataStoreName on

com.ibm.connector2.ims.ico.IMSManagedConnectionFactory used by resource

Connection_Factory_JNDI_name.

Processing will then continue leading to other error messages after IMS Connect

sends a response indicating that a datastore with a null name cannot be found. The

underlying message which triggers the other messages is:

javax.resource.spi.EISSystemException: ICO0001E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@.processOutputOTMAMsg(byte[],

InteractionSpec, Record) error. IMS Connect returned error: RETCODE=[4],

REASONCODE=[NFNDDST]. Datastore not found.

When this error occurs, a corresponding HWSS0742W warning message is

displayed on the MVS console of the host machine where IMS Connect is running.

This HWSS0742W message will include a field showing the datastore name that it

attempted to find, in this case all blanks:

DESTID= ;

User Action: Provide a valid name for the DatastoreName parameter. In a

managed environment, the DatastoreName is specified when you are configuring a

Connection Factory to be used by WebSphere Application Server. In a

non-managed environment, the DatastoreName is specified in your Java

application.

ICO0007E

javax.resource.NotSupportedException:

ICO0007E:methodname error.

The [propertyName] property value [propertyValue] is not supported.

Explanation: The value propertyValue specified for the property propertyName is not

supported.

User Action: Provide a supported value for the named property. For example,

certain values of the InteractionVerb property of the InteractionSpec class that are

defined in the J2C architecture are not supported by the IMSInteractionSpec class

Chapter 7. Diagnosing problems 73

in this release of IMS Connector for Java. Also the ReRoute value TRUE is not

supported on dedicated persistent socket connections.

ICO0008E

javax.resource.ResourceException:

ICO0008E:methodname error. The value [propertyValue] of the [propertyName]

property exceeds the maximum allowable length

of [maxPropertyLength].

Explanation: The length of the value propertyValue supplied for property

propertyName exceeds maxPropertyLength, the maximum length allowed for values

of property propertyName.

User Action: Provide a value for the named property which does not exceed

maxPropertyLength.

ICO0009E

javax.resource.ResourceException:

ICO0009E:methodname error.

The [propertyName] property value [propertyValue] is invalid.

Explanation: The value propertyValue specified for the property propertyName is not

valid.

User Action: Provide a value which is valid for the named property. For example,

valid values for the InteractionVerb property of the InteractionSpec class of IMS

Connector for Java are listed in the Javadoc for the IMSInteractionSpec class.

ICO0010E

javax.resource.spi.IllegalStateException:

ICO0010E:methodname error.

Method invoked on invalid IMSConnection instance.

Explanation: The method indicated in methodname was invoked on an invalid

IMSConnection instance. If the methodname is lazyEnlist, an attempt was made to

enlist a connection in the current transaction that could not be enlisted.

User Action: The named method was most likely issued on an IMSConnection

instance that was already closed. Ensure that the IMSConnection instance is not

already closed before you attempt to use it or close it.

ICO0011E

javax.resource.spi.IllegalStateException:

ICO0011E:methodname error.

Method invoked on invalid IMSInteraction instance.

Explanation: The method indicated in methodname was invoked on an invalid

IMSInteraction instance.

User Action: The named method was most likely issued on an IMSInteraction

instance that was already closed. Ensure that the IMSInteraction instance is not

already closed before you attempt to use it or close it.

ICO0012E

javax.resource.ResourceException:

ICO0012E:methodname error.

The value provided for HostName is null or an empty string.

74 IMS Connector for Java 2.2 and 9.1.0.1

Explanation: The method indicated in methodname was invoked using a null or

empty HostName parameter.

User Action: Provide a valid HostName parameter. In a managed environment, the

property value is specified when you are configuring a Connection Factory to be

used by WebSphere Application Server. In a non-managed environment, the

property value is specified in your Java application.

ICO0013E

javax.resource.ResourceException:

ICO0013E:methodname error.

ConnectionManager is null.

Explanation: The method indicated in methodname was invoked. The application

server invoked the createConnectionFactory method of the

IMSManagedConnectionFactory class with a null ConnectionManager object.

User Action: Provide a valid HostName parameter. This form of the

createConnectionFactory method is used in a managed environment. It is not

typically invoked by a client program. Contact the service personnel for your

application server.

ICO0014E

javax.resource.ResourceException:

ICO0014E:methodname error.

Input record contains no data.

Explanation: The method indicated in methodname was invoked with an input

record that contained no data.

User Action: Verify that the input record that you provide is not empty.

ICO0015E

ResourceAdapterInternalException

ICO0015E:methodname error.

Unexpected error encountered while processing the OTMA message.

[java_exception]

Explanation: An unexpected internal error was encountered while processing the

OTMA message.

User Action: Contact your IBM service representative.

ICO0016E

javax.resource.ResourceException:

ICO0016E:methodname error.

The value provided for DataStoreName is null or an empty string.

Explanation: The method indicated in methodname was invoked using an empty

DatastoreName parameter. This error message will appear in the trace log when a

connection factory with an empty DatastoreName parameter is started. This

message will be followed by a J2EE Connector warning,

J2CA0007W: An exception occurred while invoking method setDataStoreName on

com.ibm.connector2.ims.ico.IMSManagedConnectionFactory used by resource

Connection_Factory_JNDI_name.

Chapter 7. Diagnosing problems 75

Processing will then continue leading to other error messages after IMS Connect

sends a response indicating that a datastore with a null name cannot be found. The

underlying message which triggers the other messages is:

javax.resource.spi.EISSystemException: ICO0001E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@.processOutputOTMAMsg(byte [],

 InteractionSpec, Record) error. IMS Connect returned error: RETCODE=[4],

REASONCODE=[NFNDDST]. Datastore not found.

When this error occurs, a corresponding HWSS0742W warning message is

displayed on the MVS console of the host machine where IMS Connect is running.

This HWSS0742W message will include a field showing the datastore name that it

attempted to find, in this case all blanks:

DESTID= ;

User Action: Provide a valid name for the DatastoreName parameter. In a

managed environment, the DatastoreName is specified when you are configuring a

Connection Factory to be used by WebSphere Application Server. In a

non-managed environment, the DatastoreName is specified in your Java

application.

ICO0017E

ResourceAdapterInternalException

ICO0017E:methodname error.

Invalid value provided for TraceLevel.

Explanation: An invalid trace level was specified.

User Action: Specify a valid trace level. Optionally, this exception can be ignored

due to the fact that the default trace level will be used for this connection factory.

In this case, the connection factory is still usable but the trace level will be the

default trace level.

ICO0018E

javax.resource.ResourceException:

ICO0018E:methodname error.

The value provided for PortNumber is null.

Explanation: The method indicated in methodname was invoked using a null

PortNumber.

User Action: Provide a valid PortNumber parameter. In a managed environment,

the property value is specified when you are configuring a Connection Factory to

be used by WebSphere Application Server. In a non-managed environment, the

property value is specified in your Java application.

ICO0024E

javax.resource.ResourceException:

ICO0024E:methodname error.

Invalid segment length (LL) of [llvalue] in input object.[java_exception]

Explanation: The input message provided by the Java program for the IMS

application program contains a value for its segment length which is either

negative, 0, or greater than the number of bytes of data in the message segment.

User Action: Provide the correct value for the segment length of the input

message.

76 IMS Connector for Java 2.2 and 9.1.0.1

ICO0025E

javax.resource.IllegalArgumentException:

ICO0025E:methodname error.

Invalid segment length (LL) of [llvalue] in OTMA message.

Explanation: The output message provided by the IMS application program

contains a value for its segment length which is either negative, 0, or greater than

the number of bytes of data in the message segment. The output message provided

by the IMS application program is contained in the OTMA message.

User Action: Ensure that your IMS application program provides valid lengths for

the segments of its output message.

ICO0026E

javax.resource.ResourceException:

ICO0026E:methodname error.

An error was encountered while processing the IMS message.

[source_methodname:source_exception]

Explanation: An error occurred while processing the IMS transaction input or

output message. source_exception provides additional information regarding the

cause of the error.

User Action: Examine source_exception for additional information regarding the

cause of the error. Some suggested actions to take, based on the value of

source_exception are:

v java.io.IOException

Error preparing input or output record. Ensure that the objects you are

providing to IMS Connector for Java for use as the IMS transaction input and

output are defined properly for the J2C architecture. For example, ensure that

they implement the interfaces javax.resource.cci.Record and

javax.resource.cci.Streamable.

v com.ibm.ims.ico.IMSConnResourceException

The OTMA message containing the IMS transaction output message contained

an invalid length field (i.e., LLLL was <= 0). If this error continues to occur after

verifying that your IMS application program is returning a valid output

message, contact your IBM service representative.

v java.lang.IllegalArgumentException

The output message returned from IMS Connect is invalid. Ensure that the

release levels of IMS Connector for Java and IMS Connect are compatible. For

example, if you built a transactional required EJB application to perform a two

phase commit transaction via TCP/IP by using IMS Connector for Java version

2.1, but at runtime, you are using IMS Connect version 1.2 instead of version 2.1,

you will receive this error message. Hereby, either you update to IMS Connect

version 2.1 or create a none global transactional EJB application.

ICO0030E

javax.resource.spi.ApplicationServerInternalException:

ICO0030E:methodname error.

[source_methodname:source_exception]

Explanation:A runtime error or exception was detected in methodname during the

interaction. source_methodname:source_exception indicates where the error or

exception that was detected in methodname originally occurred and may provide

additional information regarding the cause of the error.

Chapter 7. Diagnosing problems 77

User Action: Examine source_exception for additional information regarding the

cause of the error. The action(s) to be taken depend on the value of

source_methodname:source_exception. Some suggested actions to take, based on the

value of source_methodname:source_exception are:

v java.lang.OutOfMemoryError

This error is thrown when the Java Virtual Machine cannot allocate an object

because it is out of memory, and no more memory could be made available by

the garbage collector. Increase the amount of memory available to the virtual

machine used by WAS.

v java.io.InterruptedIOException

An InterruptedIOException is thrown to indicate that an input or output transfer

has been terminated because the thread performing it was terminated.

Investigate reasons why the thread may have been terminated.

ICO0031E

javax.resource.spi.IllegalStateException:

ICO0031E:methodname error.

Protocol violation. The Interaction Verb [interactionverb] is not allowed for

the current state [state].

[java_exception]

Explanation: The interaction attempted by the application resulted in a protocol

violation. [interactionverb] is the value of the interactionVerb property of the

IMSInteractionSpec object that was used for the interaction. [state] is the current

state of the protocol used for the interactions between IMS Connector for Java and

IMS Connect.

For example, a protocol violation would occur if your Java program is not in

conversation with IMS, but attempted an interaction with IMS using the

SYNC_END_CONVERSATION value for the interactionVerb property.

User Action: Ensure that you are using an appropriate value for the

interactionVerb property of IMSInteractionSpec. Check the IMS Connector for Java

documentation for values of the interactionVerb property that are supported by

IMS Connector for Java. A particular release of IMS Connector for Java may not

support all the values defined by the J2EE Connector Architecture.

ICO0034E

javax.resource.NotSupportedException:

ICO0034E:methodname error.

Auto-commit not supported.

Explanation: Auto-commit is currently not supported by IMS Connector for Java.

User Action: Ensure that your Java application uses classes and methods that are

appropriate for the level of support currently provided by IMS Connector for Java.

ICO0035E

javax.resource.NotSupportedException:

ICO0035E:methodname error.

Local Transaction not supported.

Explanation: Local Transactions are not currently supported by IMS Connector for

Java.

78 IMS Connector for Java 2.2 and 9.1.0.1

User Action: Ensure that your Java application uses classes and methods that are

appropriate for the level of support currently provided by IMS Connector for Java.

ICO0037E

javax.resource.NotSupportedException:

ICO0037E:methodname error.

ResultSet not supported.

Explanation: ResultSets are currently not supported by IMS Connector for Java.

User Action: Ensure that your Java application uses classes and methods that are

appropriate for the level of support currently provided by IMS Connector for Java.

ICO0039E

javax.resource.spi.IllegalStateException:

ICO0039E:methodname error.

Not in CONNECT state.

Explanation: The sequence of interactions between IMS Connector for Java and

IMS Connect is invalid. The current state of the protocol used for the interactions

between IMS Connector for Java and IMS Connect is not CONNECT as it needs to

be at this point in the interactions.

User Action:This is most likely an error in IMS Connector for Java or IMS Connect.

Contact your IBM service representative.

ICO0040E

javax.resource.NotSupportedException:

ICO0040E:methodname error.

IMSConnector does not support this version of execute method.

Explanation: IMS Connector for Java does not support the form of the execute

method that takes two input parameters and returns an object of type

javax.resource.cci.Record.

User Action: Use the supported form of the execute method in class

IMSInteraction. The supported form of the execute method has the following

signature:

boolean execute(InteractionSpec, Record input, Record output)

ICO0041E

javax.resource.ResourceException:

ICO0041E:methodname error.

Invalid interactionSpec specified [interactionSpec].

Explanation: An invalid InteractionSpec object was passed to the execute method

of class com.ibm.connector2.ims.ico.IMSInteraction.

User Action: Ensure that the InteractionSpec object that you pass to the execute

method of class com.ibm.connector2.ims.ico.IMSInteraction is of type

com.ibm.connector2.ims.ico.IMSInteractionSpec.

ICO0042E

javax.resource.ResourceException:

ICO0042E: methodname error.

Input is not of type Streamable.

Chapter 7. Diagnosing problems 79

Explanation: The input object provided to the execute method of

com.ibm.connector2.ims.ico.IMSInteraction for the ″input″ parameter was either

null or did not implement the interface javax.resource.cci.Streamable. This

exception most likely occurs when an application is written to use the J2EE

Connector Architecture Common Client Interface (CCI). This exception should not

occur if WebSphere Studio Application Developer Integration Edition is used to

build the input message.

The execute method allows null input objects for some types of interactions. For

example, interactions with interactionVerb values of

SYNC_END_CONVERSATION and SYNC_RECEIVE_ASYNCOUTPUT allow null

input objects.

User Action: Ensure that you are providing a valid javax.resource.cci.Record object

for the ″input″ parameter to the execute method. For example, ensure that this

object implements the interfaces javax.resource.cci.Record and

javax.resource.cci.Streamable.

ICO0043E

javax.resource.ResourceException:

ICO0043E: methodname error.

Output is not of type Streamable.

Explanation: The output object provided to the execute method of

com.ibm.connector2.ims.ico.IMSInteraction was either null or did not implement

the interface javax.resource.cci.Streamable. This exception most likely occurs when

an application is written to use the J2EE Connector Architecture Common Client

Interface (CCI). This exception should not occur if WebSphere Studio Application

Developer Integration Edition is used to build the output message.

User Action: Ensure that you are providing a valid output object to the execute

method.

ICO0044E

javax.resource.NotSupportedException:

ICO0044E:methodname error.

RecordFactory is not supported by IMS Connector for Java.

Explanation: RecordFactory is currently not supported by IMS Connector for Java.

User Action: Ensure that your Java application uses classes and methods that are

appropriate for the level of support currently provided by IMS Connector for Java.

ICO0045E

javax.resource.NotSupportedException:

ICO0045E: methodname error.

Invalid type of ConnectionRequestInfo.

Explanation: An invalid ConnectionRequestInfo object was passed to an IMS

Connector for Java method.

User Action: This is most likely an error in IMS Connector for Java. Contact your

IBM service representative.

ICO0049E

80 IMS Connector for Java 2.2 and 9.1.0.1

javax.resource.NotSupportedException:

ICO0049E:methodname error.

The security credentials passed to getConnection do not match existing

security credentials.

Explanation: The security credentials in the request do not match the security

credentials of the IMSManagedConnection instance that was being used to process

the request.

User Action: Contact your IBM service representative.

ICO0053E

javax.resource.ResourceException:

ICO0053E: methodname error.

Invalid clientID value. Prefix HWS is reserved by IMS Connector for Java.

Explanation: The value specified for the property clientID is invalid. The prefix

’HWS’ is reserved by IMS Connector for Java.

User Action: Provide a valid value for clientID property. A valid value should

follow the following rules:

v is not a null string;

v does not start with a blank field;

v does not start with IMS Connector for Java reserved prefix ’HWS’;

v is 8 characters long;

v uses valid characters A - Z, 0 - 9, and @, #, $.

ICO0054E

javax.resource.ResourceException:

ICO0054E:methodname error.

Invalid ConnectionSpec.

Explanation: IMS Connector for Java was unable to cast the connectionSpec

provided for this connection to type IMSConnectionSpec. While the Common

Client Interface will accept a connectionSpec object for any supported connector,

IMS Connector for Java will only work with an IMSConnectionSpec or a derivative

of IMSConnectionSpec as its connectionSpec.

User Action: Ensure that the connectionSpec used by your application is an

IMSConnectionSpec or inherits from IMSConnectionSpec.

ICO0055E

javax.resource.ResourceException:

ICO0055E:methodname error.

Failed to cast the connection object to IMSConnection.

Explanation: IMS Connector for Java was unable to cast the connection object

allocated by the ConnectionManager for this connection to type IMSConnection.

IMS Connector for Java will only work with an IMSConnection or a derivative of

IMSConnection as its connection object. This error might be the result of a problem

with the ConnectionManager.

User Action: Please contact your IBM service representative.

ICO0057E

Chapter 7. Diagnosing problems 81

javax.resource.spi.IllegalStateException:

ICO0057E:methodname error.

Invoked with invalid connection handle.

Explanation: The application is in an illegal state: the connection handle

(IMSConnection instance) used for this interaction is not valid. This could occur if

the application attempted to use a connection handle for a previously used

connection or the handle for the wrong connection if the application has more than

one connection open.

User Action: Ensure that the application is using the currently valid

IMSConnection instance for that connection.

ICO0058E

javax.resource.ResourceException:

ICO0058E:methodname error.

Interactions SYNC_SEND_RECEIVE, SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions with Commit Mode 0

are not supported with Local Option.

Explanation: You can use Local Option to communicate with IMS Connect only if

your application using IMS Connector for Java with the selection of Commit Mode

1.

User Action: Ensure that your application using IMS Connector for Java is selected

with Commit Mode 1. If you plan to run your application with Commit Mode 0,

correct your application to use TCP/IP communication.

ICO0059E

javax.resource.ResourceException:

ICO0059E: methodname error.

SYNC_END_CONVERSATION interation with Commit Mode 0 is not supported.

Explanation: Interaction SYNC_END_CONVERSATION with Commit Mode0 is

not supported.

User Action: IMS Connector for Java supports the interaction combination

SYNC_END_CONVERSATION with Commit Mode 1, SYNC_SEND_RECEIVE

with Commit Mode 0, and SYNC_RECEIVE_ASYNCOUTPUT with Commit Mode

0.

ICO0060E

java.lang.UnsatisfiedLinkError:

ICO0060E:methodname error.

Error loading Local Option native library: libname=libraryFileName.

[source_exception].

Explanation: The Local Option native library cannot be found in any of the

directories listed in the libpath.

User Action: Ensure that the Local Option native library exists in one of the

directories in the LIBPATH environment variable. If you are running IMS

Connector for Java in WebSphere Application Server for z/OS and OS/390, ensure

that the full name of the directory that contains the Local Option native library file

is defined in the LIBPATH environment variable for your J2EE server. For more

information, see “Preparing the base operating system” in the WebSphere

Application Server Version 6.0 Information Center .

82 IMS Connector for Java 2.2 and 9.1.0.1

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

ICO0061E

javax.resource.ResourceException:

ICO0061E:methodname error.

Local Option runs only in z/OS and OS/390.

Explanation: You can use Local Option to communicate with IMS Connect only if

your application using IMS Connector for Java is running on the z/OS or OS/390

platform.

User Action: Ensure that your application using IMS Connector for Java is running

on the z/OS or OS/390. Note that it is also required that your application (or more

precisely, the Web server where your application is running) must be running in

the same MVS image as IMS Connect. If this is not the case, for example, if you

plan to run your application on a workstation platform or if the Web server where

you plan to run your application is on z/OS but in a different MVS image than

IMS Connect, ensure that the connection factory used by your application is set up

to use TCP/IP communication.

ICO0062E

javax.resource.ResourceException:

ICO0062E:methodname error.

Error loading Local Option native method: libfilename=libraryFileName,

methodname=nativeMethodName. [source_exception].

Explanation: The Local Option native method cannot be found.

User Action: Verify that you have the correct level of IMS Connector for Java

resource adapter and Local Option native library installed on your system. Always

use the version of the Local Option native library that shipped with the IMS

resource adapter that you installed in your WebSphere Application Server for z/OS

and OS/390 system. See ″Prerequisites for using IMS Connector for Java″ for more

information.

ICO0063E

javax.resource.spi.ResourceAdapterInternalException:

ICO0063E:methodname error.

Exception thrown in native method. [source_exception].

Explanation: An internal error occurred in the Local Option native method.

User Action: Contact your IBM service representative.

ICO0064E

javax.resource.spi.SecurityException:

ICO0064E:methodname error.

Invalid security credential.

Explanation: The subject provided by WebSphere Application Server did not

contain a security credential available that is supported by IMS Connector for Java.

User Action: Ensure that you have the correct level of WebSphere Application

Server for z/OS and OS/390 installed. See the ″ Prerequisites for using IMS

Connector for Java″ section for details. Configure WebSphere Application Server

for z/OS and OS/390 to provide a security credential that is supported by IMS

Connector for Java. IMS Connector for Java supports the PasswordCredential for

TCP/IP connections and the UToken GenericCredential for Local Option

connections.

Chapter 7. Diagnosing problems 83

ICO0065E

javax.resource.spi.SecurityException:

ICO0065E:methodname error.

Error obtaining credential data from the security credential.[source_exception].

Explanation: There was a security related error in obtaining the credential data

from the security credential provided by the application server.

User Action: Ensure that you have correctly set up security for your application

server so that the user associated with the calling program is authorized to extract

the data from a security credential.

ICO0066E

javax.resource.ResourceException:

ICO0066E:methodname error. Error loading WebSphere Application Server

Transaction Manager. [source_exception].

Explanation: An error occurred when accessing the Transaction Manager of the

WebSphere Application Server for processing the transaction request.

User Action: Ensure that you have the correct level of WebSphere Application

Server for z/OS and OS/390 installed. See the ″ Prerequisites for using IMS

Connector for Java″ section for details.

ICO0068E

javax.resource.ResourceException:

ICO0068E:methodname error.

Error obtaining the transaction object. [java_exception]

Explanation: An error occurred while attempting to determine if a transaction has

been started using the WebSphere Application Server Transaction Manager.

User Action: Ensure that you have the correct level of WebSphere Application

Server for z/OS and OS/390 installed. See the ″Prerequisites for using IMS

Connector for Java″ section for details.

ICO0069E

javax.resource.spi.ResourceAllocationException

ICO0069E:methodname error.

Error obtaining RRS transaction context token.

IMSConnResourceException: RRS retcode=[rrs_routinecode].

Explanation: An unexpected internal error occurred while obtaining an RRS

transaction context token for processing the global transaction.

User Action: Check the RRS job log for associated RRS error messages. For

diagnostic information on the RRS return code (rrs_routinecode) see the MVS

Programming: Resource Recovery manual for your release of z/OS or OS/390.

ICO0070E

javax.resource.spi.EISSystemException

ICO0070E:methodname error.

IMS Connect reported an RRS error: IMS Connect Return Code=[returncode],

RRS Routine name=[rrs_routine], RRS Return code=[rrs_routinecode]."

Explanation: IMS Connect returned an error resulting from an RRS failure.

84 IMS Connector for Java 2.2 and 9.1.0.1

User Action: Check the MVS console for associated IMS Connect and RRS error

messages. For diagnostic information on the return code (returncode) value, as well

as IMS Connect error messages, see the IMS Connect Guide and Reference. For

diagnostic information on the RRS return code (rrs_routinecode) locate the RRS

routine name (rrs_routine) within the MVS Programming: Resource Recovery manual

for your release of z/OS or OS/390.

ICO0071E

javax.transaction.xa.XAException

ICO0071E:methodname error.

A communication error occurred when processing the XA

commandtype operation. [java_exception]

Explanation: There are numerous reasons why a communication failure could have

occurred during the processing of a global transaction. A TCP/IP or socket failure

could have taken place or IMS Connect could have been brought down. The

connection in error will not be reused.

User Action: Examine the java_exception to determine the reason for the failure to

connect to the host. Also check the MVS console for associated IMS Connect or

TCP/IP error messages. Validate that machine can be reached through TCP/IP and

that IMS Connect has not been brought down. The command type

(commandtype_string) displayed in the error message refers to the stage at which

this communication failure occurred during the global transaction: prepare,

commit, rollback, recover, or forget.

ICO0072E

javax.transaction.xa.XAException:

ICO0072E:methodname error.

The associated UR for the Xid is not found.

Explanation: During transaction processing a UR that was tied to a specific Xid

was eliminated by manual intervention or an error in IMS Connect or RRS.

User Action: Refer to the WebSphere Application Server InfoCenter Reference Library

for steps on how to acquire transaction information and Xids within the

WebSphere Application Server logs. Refer to the IMS Connect Guide and Reference

for IMS Connect commands that will list out the Xid and their associated UR.

Verify that a UR is listed for that Xid. Verify that the global transaction was not left

in a heuristic state.

ICO0073E

javax.transaction.xa.XAException:

ICO0073E:methodname error.

RRS is not available.

Explanation: RRS has been brought down or communication between RRS and

IMS Connect has ended.

User Action: Check the MVS console for associated IMS Connect and RRS error

messages. Ensure that RRS has not been brought down on your z/OS or OS/390

system. Refer to the IMS Connect Guide and Reference for IMS Connect commands

that can be used to verify that it is RRS enabled.

ICO0074E

javax.transaction.xa.XAException:

ICO0074E: The RRS rrs_routine call returns with a return code [rrs_routinecode].

Chapter 7. Diagnosing problems 85

Explanation: During the processing of your global transaction the following RRS

error message was passed in by IMS Connect.

User Action: Check the MVS console for associated IMS Connect and RRS error

messages. For diagnostic information on the RRS return code (rrs_routinecode)

locate the RRS routine name (rrs_routine) within the MVS Programming: Resource

Recovery manual for your release of z/OS or OS/390.

ICO0075E

javax.transaction.xa.XAException:

ICO0075E:methodname error.

The transaction branch may have been heuristically completed. [rrs_exception]

Explanation: An RRS error has been passed in by IMS Connect that indicates that

the processing of your transaction may have been affected in such a way as to

leave it in a heuristic situation. It reveals a possibility that part of the transaction

committed and part of it encountered an error during the commit phase which

may have prevented it from committing. The rrs_exception is an ICO0074E error

message indicating the RRS routine and return code associated with this issue.

User Action: Refer to the documentation of the ICO0074E error for more

information regarding the RRS error message. Refer to the WebSphere Application

Server InfoCenter Reference Library for steps on how to acquire transaction

information and Xids within the WebSphere Application Server logs. Refer to the

IMS Connect Guide and Reference for IMS Connect commands that will list out the

Xid and their associated UR. Determine the Xid and URs involved and the result

that should have been committed to IMS. Verify values within IMS to ensure that a

heuristic state has occurred. A decision must then be made to take actions to rectify

the data within IMS so that it matches the result that would have been committed

or to rectify the other databases involved to return to a state prior to the execution

of that transaction.

ICO0076E

javax.resource.ResourceException:

ICO0076E:methodname error. An internal error occurred. [rrs_exception]

Explanation: An internal error occurred while trying to extract information about

an RRS error message passed in by IMS Connect. The rrs_exception is an ICO0074E

error message indicating the RRS routine and return code associated with the error.

User Action: Refer to the documentation of the ICO0074E error for more

information regarding the RRS failure that has taken place. Please contact your

IBM service representative.

ICO0077E

javax.resource.ResourceException:

ICO0077E:methodname error. The transaction has already rolled back. [rrs_exception]

Explanation: An RRS error has been passed in by IMS Connect that indicates the

attempt to rollback a transaction has been made a second time upon the same UR.

RRS will prevent the second rollback from taking place and throw an error

indicating that such an action is being attempted. The rrs_exception is an ICO0074E

error message indicating the RRS routine and return code associated with the error.

User Action: No action is needed as the transaction should be rolled back. Refer to

the documentation of the ICO0074E error for more information regarding the RRS

86 IMS Connector for Java 2.2 and 9.1.0.1

failure that has taken place. As a precaution, verify that data prior to the execution

of the transaction has not been lost or modified.

ICO0078E

javax.resource.ResourceException:

ICO0078E: methodname error.

A valid user-specified clientID is required for interactions on a dedicated

persistent connection.

Explanation: A valid, user-specified value is required for the clientID property

when a value of 0 is specified for the commitMode property, and the interaction is

using a dedicated persistent socket connection. This applies to

SYNC_SEND_RECEIVE, SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions.

User Action: Provide a valid value for the clientID property. A valid value should

follow the following rules:

v is not a null string

v does not start with a blank field

v does not start with IMS Connector for Java reserved prefix ’HWS’

v is 8 characters long

v has valid characters A - Z, 0 - 9, and @, #, $

ICO0079E

com.ibm.connector2.ims.ico.IMSDFSMessageException:

ICO0079E:methodname error.

IMS returned DFS message:DFS_message

Explanation: IMS returned the message indicated by DFS_message instead of the

output of the IMS transaction. This exception is thrown if the interaction uses the

value IMS_REQUEST_TYPE_IMS_TRANSACTION for the imsRequestType

property of IMSInteractionSpec.

For example, if the Java application attempts to run an IMS transaction that is

stopped, this exception is thrown and the value of DFS_message is

DFS065 hh:mm:ss TRAN/LTERM STOPPED

User Action: Find the explanation and response that corresponds to DFS_message

in the IMS Messages and Codes documentation, then address the problem in IMS.

ICO0080E

javax.resource.spi.EISSystemException:

ICO0080E:methodname error.

Execution timeout has occurred for this interaction. The executionTimeout

was [executionTimeout_value] milliseconds. The IMS Connect

TIMEOUT was used.

Explanation: The time it took for IMS Connect to send a message to IMS and

receive the response was greater than the IMS Connect TIMEOUT value. The IMS

Connect TIMEOUT value is:

v Specified in the IMS Connect configuration member for SYNC_SEND_RECEIVE

interactions

Chapter 7. Diagnosing problems 87

v Two seconds for SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions

The reason of IMS Connect TIMEOUT value has been used is the

executionTimeout property for this interaction was not specified or has been set to

zero.

User Action: Ensure your application has set a valid executionTimeout value. To

set the executionTimeout values, you can either use WebSphere Studio or use the

setExecutionTimeout method. For detail instruction, please refer to the topic of

Setting execution timeout values in WebSphere Studio Application Developer

Integration Edition 5.0.1 Help.

ICO0081E

javax.resource.spi.EISSystemException:

ICO0081E:methodname error.

Execution timeout has occurred for this interaction. The executionTimeout

value specified was [executionTimeout_value] milliseconds.

The value used by IMS Connect was

[rounded_executionTimeout_value] milliseconds.

Explanation: The time it took for IMS Connect to send a message to IMS and

receive the response was greater than the executionTimeout value that was

rounded to an appropriate execution timeout interval. Once a valid execution

timeout value is set, this value is converted into a value that IMS Connect can use.

User Action: If the rounded execution timeout value is not what you expected,

please verify with the follow table of conversion rules:

 Range of user-specified values Conversion rule

1 - 250 If the user-specified value is not divisible by

10, it is converted to the next greater

increment of 10.

251 - 1000 If the user-specified value is not divisible by

50, it is converted to the next greater

increment of 50.

1001 - 60000 The user-specified value is converted to the

nearest increment of 1000. Values that are

exactly between increments of 1000 are

converted to the next greater increment of

1000.

60001 - 3600000 The user-specified value is converted to the

nearest increment of 60000. Values that are

exactly between increments of 60000 are

converted to the next greater increment of

60000.

For more examples, please refer to the topic of Valid execution timeout values in

WebSphere Studio Application Developer Integration Edition 5.0.1 Help.

ICO0082E

javax.resource.NotSupportedException:

ICO0082E:methodname error.

Execution timeout has occurred for this interaction. The executionTimeout

88 IMS Connector for Java 2.2 and 9.1.0.1

value of [{executionTimeout_value}] milliseconds is not supported.

The valid range is [{executionTimeout_waitforever_flag}, 0 to

{maximum_executionTimeout_value}] milliseconds.

The IMS Connect TIMEOUT was used.

Explanation: The execution timeout value specified for the executionTimeout

property was above or below the minimum or maximum timeout values

respectively.

User Action: Ensure that your application has set a valid value for

executionTimeout property. The execution timeout value is represented in

milliseconds and must be a decimal integer in the range of 1 to 3600000,

inclusively. Also it could be -1 if you want an interaction to run without a time

limit.

ICO0083E

javax.resource.ResourceException::

ICO0083E:methodname error.

SYNC_SEND_RECEIVE, SYNC_SEND, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions with Commit Mode 0

are not valid within the scope of a global transaction.

Explanation: SYNC_SEND_RECEIVE, SYNC_SEND,

SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions with Commit Mode

0 are not valid within the scope of a global transaction. Because currently the

global transaction requires SYNC_LEVEL_SYNCPOINT and

SYNC_LEVEL_SYNCPOINT only valid with Commit Mode 1.

User Action:

v If you want to use Commit Mode 0, ensure that your application is configured

as a ″non-transactional″ application.

v If you want to run your interactions within the scope of a global transaction,

then the commitMode property value must be 1.

ICO0084E

javax.resource.ResourceException:

ICO0084E:methodname error.

An unexpected internal IMS Connector for Java error occurred.

[source_method] [source_exception]

Explanation: A PrivelegedActionException occurred while executing a

[source_method] call in methodname. This exception will occur if Java 2 security is

enabled and the user associated with the calling program, methodname, or any

program in the current call stack is not authorized to execute [source_method].

User Action: Ensure that you have correctly set up security for your application

server so that the user associated with the calling program plus any programs in

the current call stack at the time of the exception is/are authorized to execute

[source_method]. Alternatively, you could turn off Java 2 security checking in the

application server.

ICO0085E

Chapter 7. Diagnosing problems 89

javax.resource.ResourceException:

ICO0085E: methodname error.

Protocol violation. A user-specified clientID is not allowed for interactions

on a shareable persistent socket.

Explanation: The value specified for clientID property is not allowed. Because the

connection factory is configured for shareable persistent socket, a user-specified

clientID is not allowed within this kind of connection factory.

User Action: For shareable persistent socket connection factory, IMS Connector for

Java provides generated clientID. User-specified clientID is not allowed. To

determine if you are using a shareable persistent socket, check for a value of

FALSE for the CM0Dedicated property of the connection factory used by the

interaction.

ICO0086E

javax.resource.ResourceException::

ICO0086E:methodname error.

Invalid value was specified for CommitMode property.

Explanation: The CommitMode value you have specified in the commitMode

property field is invalid.

User Action: Ensure that your application has set a valid value for commitMode

property. Values supported are:

v Value 1 (SEND_THEN_COMMIT), indicates that IMS processes the transaction

and sends a response back before committing the data.

v Value 0 (COMMIT_THEN_SEND), indicates that IMS processes the transaction

and commits the data before sending a response.

ICO0087E

javax.resource.ResourceException:

ICO0087E: methodname error.

Protocol violation. Commit Mode 1 is not allowed for interactions on a

dedicated persistent socket.

Explanation: The value 1 specified for Commit Mode property is invalid. Because

the connection factory is configured for dedicated persistent socket, Commit Mode

1 is not allowed within this kind of connection factory.

User Action: For dedicated persistent socket connection factory, Commit Mode 0

interactions are valid. To determine if you are using a dedicated persistent socket

check for a value of TRUE for the CM0Dedicated property of the connection

factory used by the interaction.

ICO0088E

javax.resource.ResourceException:

ICO0088E: methodname error.

Protocol violation. SYNC_RECEIVE_ASYNCOUTPUT interactions are not allowed

on a shareable persistent sockets.

Explanation: The value SYNC_RECEIVE_ASYNCOUTPUT specified for

interactionVerb property is invalid. Because the connection factory is configured for

shareable persistent socket, SYNC_RECEIVE_ASYNCOUTPUT is not allowed

within this kind of connection factory.

90 IMS Connector for Java 2.2 and 9.1.0.1

User Action: SYNC_SEND_RECEIVE, SYNC_SEND, and

SYNC_END_CONVERSATION are the valid values for the interactionVerb

property for interactions on a shareable persistent connection. To determine if you

are using a shareable persistent connection, check for a value of FALSE for the

CM0Dedicated property of the connection factory used by the interaction.

ICO0089I

javax.resource.ResourceException::

ICO0089I: methodname.

 Non-persistent socket closed for Commit Mode 0 IMS transaction.

Explanation: Running CommitMode 0 with non-persistent socket (transaction

socket), IMS Connector for Java will force removal of managed connection object

from Connection Pool.

User Action: This is not an error message, no action required.

ICO0091E

javax.resource.ResourceException:

ICO0091E: methodname

error.SSL client context could not be created. [{1}]

Explanation: An SSL Context could not be created due to one of the following

reasons:

v The algorithm used to check the integrity of the keystore cannot be found

v The certificates in the keystore could not be loaded

v The key cannot be recovered (e.g. the given password is wrong).

User Action: Ensure the following:

v The algorithm used to create certificates must be one that is supported by

IBMJSSE.

v The passwords for the keystore and truststore are correct.

ICO0096I

javax.resource.ResourceException:

ICO0096I: methodname

Warning. Invalid value provided for SSL parameter.

Explanation:The method indicated in methodname was invoked using a null or

empty SSLKeystoreName, SSLKeystorePassword, SSLTruststoreName or

SSLTruststorePassword parameter. This is an informational message to let the user

know that one of the above-mentioned parameters is a null or an empty string.

This will not terminate the program execution.

User Action: Provide valid values for SSLKeystoreName, SSLKeystorePassword,

SSLTruststoreName and SSLTruststorePassword parameters. For convenience,

private keys and certificates can be stored either in a keystore or a truststore.

Therefore only one set of valid values (either SSLKeystoreName and

SSLKeystorePassword or SSLTruststoreName and SSLTruststorePassword) are

required for proper execution.

ICO0097E

Chapter 7. Diagnosing problems 91

javax.resource.ResourceException:

ICO0097E:methodname error.

{0} error. The given value is invalid for ’SSLEncryptionType’.

The value must be ’STRONG’ for strong encryption or ’WEAK’

for weak encryption.

Explanation: A value other than strong or weak was provided for the

SSLEncryptionType parameter.

User Action: Provide either strong or weak for the SSLEncryptionType parameter.

The value is not case-sensitive.

ICO0111E

javax.resource.ResourceException:

ICO0111E:methodname error.

 SSLEnabled must be set to FALSE when using Local Option.

Explanation: The property IMSConnectName is set to a non-null value and the

property SSLEnabled is set to true. However, SSL is not supported on local option

connections (which is indicated by providing a value for IMSConnectName

parameter).

User Action: Set SSLEnabled to false.

ICO0113E

javax.resource.spi.CommException:

ICO0113E: methodname error.

Socket Timeout has occurred for this interaction. The Socket Timeout value

specified was [socket timeout value] milliseconds.

[source_exception:exception_reason]

Explanation: The time for IMS Connector for Java to receive a response from IMS

Connect is greater than the time specified for Socket Timeout.

User Action: Ensure that the time value of Socket Timeout is sufficient for IMS

Connector for Java to receive a response from IMS Connect. If it is not, increase the

value. If the value of Socket Timeout given is sufficient, it is possible that network

problems are causing delays. Contact your network administrator.

ICO0114E

javax.resource.ResourceException:

ICO0114E: methodname error.

The Socket Timeout Property value of [socket timeout value] is invalid.

[source_exception:exception_reason]

Explanation: The value [socket timeout value] specified for the Socket Timeout

property is not valid.

User Action: Review the exception_reason provided. Ensure a positive numerical

value was given for Socket Timeout.

ICO0115E

javax.resource.spi.CommException:

ICO0115E: methodname error.

A TCP Error occurred.

Explanation: This is an error in the underlying protocol.

92 IMS Connector for Java 2.2 and 9.1.0.1

User Action: Contact your network administrator.

ICO0117E

javax.resource.ResourceException:

ICO0117E: methodname error.

Protocol violation: Commit Mode 1 is not allowed for SYNC_SEND,

SYNC_RECEIVE_ASYNCOUTPUT, SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT

and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions.

Explanation: The IMS resource adapter currently only supports Commit Mode 0

for SYNC_SEND interactions.

User Action: Commit Mode 0 is required for SYNC_SEND,

SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT ,

SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions. Commit Mode 1 is

valid with SYNC_SEND_RECEIVE and SYNC_END_CONVERSATION

interactions.

ICO0118E

javax.resource.ResourceException:

ICO0118E: methodname error.

Protocol violation. IMS request type 2(IMS_REQUEST_TYPE_IMS_COMMAND)

is not allowed for SYNC_SEND, SYNC_END_CONVERSATION, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT

interactions.

Explanation: The value 2(IMS_REQUEST_TYPE_IMS_COMMAND) specified for

imsRequestType property is invalid.

User Action: ImsRequestType 2(IMS_REQUEST_TYPE_IMS_COMMAND) only

valid with SYNC_SEND_RECEIVE interaction. ImsRequestType

1(IMS_REQUEST_TYPE_IMS_TRANSACTION) is required for SYNC_SEND,

SYNC_END_CONVERSATION, SYNC_RECEIVE_ASYNCOUTPUT,

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT and

SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interactions.

ICO0119E

javax.resource.ResourceException:

ICO0119E: methodname error.

A supported SSL provider was not found. [caught_exception]

Explanation: When attempting to initialize a Secure Sockets Layer TCP/IP

connection with IMS Connect, IMS Connector for Java needs to use one of the two

supported providers, com.ibm.jsse.JSSEProvider or sun.security.provider.Sun. This

error indicates that neither of these providers is available.

User Action: com.ibm.jsse.JSSEProvider should be added by default in an IBM

JVM and sun.security.provider.Sun should be added by default in a Sun JVM.

Ensure that you are running IMS Connector for Java in a supported IBM JVM if

running in WebSphere Application Server or a Sun JVM in other application

servers.

ICO0121E

Chapter 7. Diagnosing problems 93

javax.resource.ResourceException:

ICO0121E: methodname error.

Invalid reRoute name value. Prefix HWS is reserved for use by

IMS Connector for Java.

Explanation: The value specified for reRouteName property is invalid. The prefix

’HWS’ is reserved for use by IMS Connector for Java.

User Action: Provide a valid value for reRouteName property. A valid value

should adhere to the following rules:

v Is not a null string

v Does not start with a blank field

v Does not start with the IMS Connector for Java reserved prefix ’HWS’

v Is 8 characters long

v Uses the valid characters A - Z, 0 - 9, @, #, and $

ICO0122E

javax.resource.ResourceException:

ICO0122E: methodname error.

Invalid reRoute value. When purgeAsyncOutput value is true, reRoute

value cannot be true.

Explanation: The value specified for reRoute property is invalid. Because the value

specified for purgeAsyncOutput property is TRUE, or the default value (TRUE) is

used for purgeAsyncOutput property.

User Action: Ensure to set purgeAsyncOutput property to FALSE, if you want to

set reRoute to TRUE.

94 IMS Connector for Java 2.2 and 9.1.0.1

Chapter 8. Migration and coexistence

The topics in this section describe migrating from WebSphere Studio Application

Developer Integration Edition Version 5.0.1 to Version 5.1. This section also

includes compatibility issues between existing applications and different versions

of the IMS resource adapter.

Migration and coexistence considerations for the IMS resource adapter

In WebSphere Studio, there is no traditional migration path for VisualAge® for Java

Enterprise Access Builder (EAB) applications, regardless of whether the

applications are J2EE or CCF. However, you can still work with your EAB

applications in WebSphere Studio using one of several options that employ either

coexistence or reengineering techniques. The options include:

v Working with EAB applications using standard WebSphere Studio Application

Developer tools

v Working with EAB applications using WebSphere Studio Application Developer

Integration Edition tools

v Reengineering EAB applications in WebSphere Studio

If you choose to re-engineer your EAB applications, you can use the information in

Creating an enterprise service for an IMS transaction to help you understand the

service model.

For more information on migration, see Migrating to WebSphere Studio

Application Developer Integration Edition, V5.1, which is also available in the

README located in the root directory of the product distribution CD.

Compatibility of existing applications with IMS Connector for Java

Version 2.2.1

WebSphere Studio Application Developer Integration Edition Version 5.1 corrects a

problem with the code generated for a deployed enterprise service. Applications

generated with WebSphere Studio Application Developer earlier than version 5.1

will fail when run in WebSphere Studio Unit Test Environment and in WebSphere

Application Server that have Version 2.2.1 of the IMS resource adapter deployed.

The symptoms of failure will vary, depending on the type of socket being used for

the interaction because Version 2.2.1 of IMS Connector for Java introduces two

types of TCP/IP socket connections, shareable persistent and dedicated persistent.

v For applications running on a shareable persistent socket:

Starting with Version 2.2.1 of the IMS resource adapter, execution timeout on a

shareable persistent socket does not result in the socket being disconnected by

IMS Connect. The shareable persistent socket on which the execution timeout

occurred will be reused for subsequent interactions.

If the application does not use the new generated code, the shareable persistent

socket on which the execution timeout occurred will not be reused for

subsequent interactions, resulting in an increase in the number of socket

connections to IMS Connect.

© Copyright IBM Corp. 2000, 2005 95

v For applications running on a dedicated persistent socket:

Starting with Version 2.2.1 of the IMS resource adapter, an application that needs

to recover undelivered output messages from a Commit Mode 0 interaction must

run on an dedicated persistent socket. Execution timeout on a dedicated

persistent socket does not result in the socket being disconnected by IMS

Connect. The dedicated persistent socket on which the execution timeout

occurred will be reused for subsequent interactions.

If the application does not use the new generated code, subsequent interactions

on the dedicated persistent socket on which the execution timeout occurred will

result in the following exception:

javax.resource.spi.EISSystemException: ICO0001E:

com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@5c762147.

processOutputOTMAMsg(byte [],InteractionSpec, Record) error.IMS Connect returned

error: RETCODE=[8], REASONCODE=[DUPECLNT].Duplicate client ID was used;

the client ID is currently in use.

Regenerating code for existing applications

Note: This only applies to applications that are generated by releases of WebSphere

Studio prior to Version 5.1.

Part of the deploy code generated by WebSphere Studio is a session bean that

synchronously handles client requests. The generated code changed for this bean.

To regenerate deploy code for an existing application perform the following

steps. These steps show how to regenerate the deploy code for the IMS PhoneBook

Sample provided in WebSphere Studio Application Developer Integration Edition

Version 5.0.1. The EAR for the IMS PhoneBook Sampe Version 5.0.1 can be found

in:

<wsadie_install_dir>\eclipse\plugins\com.ibm.etools.ctc.samples.ims\

IMSPhoneBookServiceEAR501.ear

1. Import the EAR for the application into the Business Perspective of WebSphere

Studio:

a. File -> Import -> EAR file -> Next

b. In the Enterprise Application Import wizard, navigate to the EAR of the

application you wish to regenerate. For the IMS PhoneBook Sample Version

5.0.1, navigate to the IMSPhoneBookServiceEAR501.ear file. Accept the value

in the Project name field and select Next

c. In the Import Defaults wizard, in the Utility JARs section, select the JAR file

for the IMS enterprise service project. For the IMS PhoneBook Sample

Version 5.0.1, select IMSPhoneBookService.jar. Depending on your

Enterprise Application, you may also need to select additional JARs such as

the JAR for a project containing a client application. For the IMS PhoneBook

Sample Version 5.0.1, select IMSClientSample.jar.

d. In the Project Import section, ensure that the Expanded: extract project

contents for development radio button is selected and then click Finish

e. Your workspace will be updated with the IMS enterprise service project, the

EJB project, and other projects in the EAR, such as a Web project. For the

IMS PhoneBook Sample Version 5.0.1, your workspace will contain the IMS

enterprise service project, IMSPhoneBookService; the EJB project,

IMSPhoneBookServiceEJB; the Web project, IMSPhoneBookServiceWeb; and the

client application project, IMSClientSample.

96 IMS Connector for Java 2.2 and 9.1.0.1

f. Note: At this point you may need to update the Java Build Path of the

imported projects. For example, in the Package Explorer view right-click on

the project whose Java Build Path you wish to update and select Properties

> Java Build Path.

For an IMS enterprise service project

1) In the Projects tab, select the project into which you imported the IMS

resource adapter.

2) In the Libraries tab, click Add Library.

3) Select the variable, WAS_EE_V51, and click Extend and add the

following JARs from WAS_EE_V51/lib folder:

v commons-logging-api.jar

v ibmjsse.jar

v j2ee.jar

v marshall.jar

v physicalrep.jar

v qname.jar

v soap.jar

v wsatlib.jar

v wsdl4.jar

v wsif.jar

v wsif-j2c.jar
4) In the Libraries tab, click Add Library and select the variable,

WAS_EE_V51. Click Extend and add the following JAR from the

WAS_EE_V51/java/jre/lib folder: xml.jar.

For an EJB project:

a. In the Libraries tab, click Add Library. Select the variable, WAS_EE_V51

and click Extend. Add the following JARs from the WAS_EE_V51/lib folder:

v commons-logging-api.jar

v marshall.jar

v physicalrep.jar

v quname.jar

v soap.jar

v wsatlib.jar

v wsdl4.jar

v wsif.jar

v wsif-j2c.jar
b. In the Libraries tab, click Add Library. Select the variable WAS_EE_V51,

and click Extend. Add the following JARs from the

WAS_EE_V51/java/jre/lib folder:xml.jar

For a Web project:

a. In the Libraries tab, click Add Library. Select the variable WAS_EE_V51

and click Extend. Add the following JARs from the WAS_EE_V51/lib folder:

v commons-logging-appi.jar

v qname.jar

v soap.jar

v wsadtlib.jar

v wsdl4.jar

Chapter 8. Migration and coexistence 97

v wsif.jar

v wsif-j2c.jar
b. In the Libraries tab, click Add Library. Select the variable WAS_EE_V51

and click Extend. Add the following JARs from the

WAS_EE_V51/java/jre/lib/ext folder:

v activation.jar

v mail.jar

For a project containing a client application:

a. In the Libraries tab, click Add Library. Select the variable WAS_EE_V51

and click Extend. Add the following JARs from the WAS_EE_V51/lib folder:

v qname.jar

v soap.jar

v wsatlib.jar

v wsdl4.jar

v wsif.jar

v wsif-j2c.jar
b. In the Libraries tab, click Add Library. Select the variable WAS_EE_V51

and click Extend. Add the following JAR from the WAS_EE_V51/java/jre/lib

folder: xml.jar

c. In the Libraries tab, click Add Library. Select the variable WAS_EE_V51

and click Extend. Add the following JARs from the

WAS_EE_V51/java/jre/lib/ext folder:

v activation.jar

v mail.jar

Note: The above JARs are provided as sample only. Each application has its

own JAR dependencies.

2. Regenerate the deploy code:

a. Note: You may wish to save the existing files prior to this step.

b. In the Packages view, expand the IMS enterprise service project. For the

IMS PhoneBook Sample Version 5.0.1, expand the project,

IMSPhoneBookService.

c. In the IMS enterprise service project, right-click on the service wsdl file and

select Enterprise Services -> Genenerate Deploy Code. For the IMS

PhoneBook Sample Version 5.0.1, right-click on

PhoneBookIMSService.wsdl.

d. In the Deploy a service wizard, provide the values appropriate to your

application. Select Create a new port and binding.

e. Click Finish. When you select Finish, the Generate Deploy Code message

box will be displayed indicating that the binding and port already exists.

Select OK to indicate that you wish to overwrite their definitions.
3. Optionally test the application in the WebSphere Studio Unit Test Environment

4. Export a new EAR and deploy to WebSphere Application Server

98 IMS Connector for Java 2.2 and 9.1.0.1

Chapter 9. Samples

The topics in this section provide detailed steps on how to generate a sample. The

samples are tutorials that show you how to work with an enterprise service. The

topics included are:

Sample: Creating an enterprise service for an IMS transaction

Objectives

This sample has two main parts. Part 1: Creating the enterprise service

demonstrates how to use WebSphere Studio tools to perform bottom-up

development of an enterprise service. This is where you, the service provider, will:

v Generate an enterprise service from a COBOL representation of the input and

output messages of an IMS transaction.

v Test the service by invoking it through a Java proxy.

v Deploy the service to a test version of WebSphere Application Server, and make

the service available as either a SOAP or EJB service.

Part 2: Creating the client application demonstrates how you, the service consumer,

can:

v Use other WebSphere Studio tools to generate the client-side proxy and build the

client application to access the enterprise service.

v Deploy and test the generated enterprise service.

When you have completed the steps in this sample, you might be interested in

reading the additional information in the What’s next topic at the end of this

document.

Tip: To get additional help on fields or buttons in a wizard, place the focus on a

control and then press the F1 key to view the context-sensitive help.

Time required

Allow 90 minutes. This will give you enough time to create the enterprise service

as well as create the client application that will invoke the service.

Before you begin

In this sample, your client application uses the IMS resource adapter (also called

IMS Connector for Java) to interact with IMS through the host product, IMS

Connect. The sample service runs the PhoneBook IMS transaction on an IMS

system that you specify. Since the PhoneBook IMS transaction is one of the IMS

Installation Verification Programs, it is probably already installed on your IMS

system.

Before running the sample:

v Contact your IMS system programmer to verify that the PhoneBook transaction

is available.

v Ensure that your environment meets the prerequisites for using the IMS resource

adapter.

© Copyright IBM Corp. 2000, 2005 99

v Import the IMS resource adapter, ims.rar. See Importing a resource adapter.

Important: If you want to run your application on a remote server, see Defining a

WebSphere Server for publishing. The unit test environment in WebSphere Studio

does not support running remote WebSphere Application Servers for z/OS.

Description

This sample leads you through detailed steps that describe how to generate an

enterprise service based on a COBOL representation of the input and output

messages of an IMS transaction. Within WebSphere Studio, you will use wizards to

generate code for the service, and then deploy the code to the WebSphere test

environment that is shipped with the WebSphere Studio product. You will also

generate a client proxy to access the service, and you will create a sample client

application. The client application provides input data for the IMS input message,

which the service passes to the IMS system. The IMS transaction runs and returns

an output message, the contents of which are returned to the client by the service.

For this sample, you run all of the server and client applications on the same

machine.

Part 1: Creating the enterprise service

Note: Before you can create the enterprise service, you must import the IMS

resource adapter, ims.rar. See Importing a resource adapter.

In this part of the sample, you will complete the following tasks:

v Step 1: Creating the service project

v Step 2: Importing the COBOL file

v Step 3: Generating the enterprise service

v Step 4: Testing the generated enterprise service

v Step 5: Generating deploy code for the enterprise service

v Step 6: Binding the resource reference

v Step 7: Configuring the server and deploying the EAR project

Step 1: Creating the service project

The service project stores all of the files for your project, including imported source

files and files generated by wizards. You will use the New Service Project wizard

to create the project.

To create a service project, complete the following steps:

1. Open the Business Integration perspective by selecting Window > Open

Perspective > Business Integration or click the Business Integration icon

on

the left-vertical toolbar. You can click this icon at any time to return to the

Business Integration perspective. See Business Integration perspective for more

information on the perspective’s different views.

2. From the toolbar, click the Create a service project icon

. The New Service

Project wizard opens.

3. Type myIMSPhoneBookService for the Project Name.

4. Select Use default to use the default location to store the new project.

100 IMS Connector for Java 2.2 and 9.1.0.1

5. Click Finish to create the project. You do not need to specify Java Build Path

settings or dependent JAR files in subsequent pages of the wizard because

these are automatically set for you.

Step 2: Importing the COBOL file

When you expand Service Projects in the Services view, you see the service

project, myIMSPhoneBookService, which you have just created.

In this step, you import the COBOL copybook file that is needed to create your

service definition. The Ex01.ccp file is located in:

WS_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.ims_5.1.0\

sampleparts

where WS_installdir is the directory where WebSphere Studio is installed. The

Ex01.ccp file defines the structure of the input and output messages of the

PhoneBook IMS transaction.

Before importing the Ex01.ccp file into the workbench, create a Java package to

hold the file:

1. Select the myIMSPhoneBookService service project and click the New Java

Package icon

.

2. On the Java Package page, ensure that the Source Folder is

myIMSPhoneBookService.

3. Type sample.ims for the name of the package and click Finish. The package is

created in the myIMSPhoneBookService project.

Next, you need to import the COBOL copybook file into the sample.ims package:

1. In the Services view, expand the myIMSPhoneBookService service project and

select the sample.ims package.

2. From the menu bar, select File > Import to open the Import wizard.

3. Select File system to import the resources from the local file system. Click

Next.

4. Click Browse beside the directory field to locate the following directory:

WS_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.ims_5.1.1\

sampleparts

where WS_installdir is the directory where WebSphere Studio is installed. Click

OK.

5. On the File system page, select the IMS folder and ensure that the check box is

clear. In the right pane, select the Ex01.ccp check box.

6. Ensure that myIMSPhoneBookService/sample/ims is the name of the destination

folder for the imported resource. Create selected folders only should also be

selected. Click Finish to import the file and close the wizard.

If you are successful in importing the file, the Tasks view will not contain any

errors and the sample.ims package will contain the Ex01.ccp file.

Tip: Many of the steps in the sample ask you to select artifacts before launching a

wizard. As a result, many of the fields in the wizard contain default values based

on the selected artifact. The default values make it much easier and faster for you

to complete your tasks.

Chapter 9. Samples 101

Now that you have imported the Ex01.ccp file, you can generate your enterprise

service.

Step 3: Generating the enterprise service

The service definition is described in Web Services Description Language (WSDL),

which is a standard for describing networked, XML-based services. WSDL

provides a simple way to describe the basic format of system requests regardless of

the underlying run-time implementation. A WSDL document describes where the

service is deployed and what operations the service provides. WebSphere Studio

tools for building enterprise services use WSDL as the model for describing any

kind of service. Instead of generating a single WSDL file, WebSphere Studio

separates the service into the following three WSDL files:

v The abstract service interface definition or interface WSDL file, which contains

the port types and message elements.

v The binding WSDL file, which contains the binding elements that describe how

the service interface is implemented. The tools for enterprise services support

the following service-provider-specific bindings: SOAP, JMS, JCA, JavaBean,

enterprise session beans, message-driven beans, flow, and transform.

v The service WSDL file, which contains the service and port elements that

provide the service location as described by a service-provider-specific port

binding.

For more information on these WSDL files, see “Service programming model” in

the IBM WebSphere Business Integration Information Center .

To generate the enterprise service, complete the following steps:

 1. Expand Service Projects > myIMSPhoneBookService > sample.ims.

 2. Right-click Ex01.ccp and select New > Service built from...

 3. In the Create Service page, select IMS and click Next.

Note: If IMS does not appear in the list of service providers, you need to

import the IMS resource adapter, ims.rar, before proceeding with these steps.

 4. In the Connection Properties page, type the property values appropriate for

your environment. See Connection properties for a description of these

properties. For example:

v In the Host name field, type MYHOST.ABC.XYZ.COM

v In the Port number field, type 9999

v In the Data store name field, type MYDSTOR. Note: This field is case-sensitive.

Click Next.Note: Because the connection properties are not encrypted, you

should remove at minimum the User name and password from the port

definition after you have completed testing.

 5. In the Service Binding page, ensure that the following values are correct:

v The Source folder field contains /myIMSPhoneBookService

v The Package field contains sample.ims

 6. In the Interface file name field, type myPhoneBook. This file contains the

interface that the service uses to send input and get output from the IMS

transaction. In this sample, the service gets the results of the request,

submitted by the client application, to run the PhoneBook transaction. When

you type the interface file name, the wizard automatically enters values for

the remaining fields in the Service Binding page.

102 IMS Connector for Java 2.2 and 9.1.0.1

http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

7. Click Finish to accept all other default names. The wizard generates three

WSDL files for the service:

v The interface file, myPhoneBook.wsdl, which contains the port types and

message elements.

v The binding file, myPhoneBookIMSBinding.wsdl, which stores the operation

and binding information.

v The service file, myPhoneBookIMSService.wsdl, which stores the host

information.
 8. A Next Step Information window opens and asks when the Binding WSDL

file opens in the editor, whether or not to proceed to the binding content.

Select Do not show this dialog again and click OK. A WSDL editor opens

with the bindings of myPhoneBookIMSBinding.wsdl.

 9. In the Bindings container in the Graph view, right-click

myPhoneBookIMSBinding and select Generate Binding Content.

10. The Specify Binding Details page opens. In the Protocol field, select IMS.

11. Click Add next to the Add binding operations field.

12. In the Operation Binding page, you specify a new operation. In the Operation

name field type runPhoneBook. Leave the type of operation as

REQUEST_RESPONSE because there will be two messages, one for the

request to run the IMS transaction and one for the response from the IMS

transaction. Click Next.

13. In the imsConnector Operation Binding Properties page, the properties of the

interaction with the IMS application program are shown. Type the property

values appropriate for your application. See Operation binding properties for

a description of these properties. The PhoneBook application should not

require you to change any of the default values. For example:

v Ensure that the imsRequestType field is set to 1 to indicate that the

interaction with IMS consists of running a transaction.

v Ensure that the interactionVerb field is set to 1 to indicate that the

interaction with IMS involves a send followed by a receive interaction.

Click Next.

14. In the Operation Binding page, you create new input and output messages.

Click Import next to the input message. The File Selection page opens. Import

the Ex01.ccp file to specify the XML schema definition for the input part.

a. Expand myIMSPhoneBookService > sample > ims and select Ex01.ccp.

Click Next.

b. In the COBOL Import Properties page, enter the following values:

If you choose the z/OS platform, the values for all the fields except

TRUNC will be automatically filled as shown in the following table.

Because most IMS programs are compiled with the TRUNC(BIN) option, it

is recommended that you change the value of TRUNC from STD to BIN.

 Platform z/OS

Codepage 037

Floating point format IBM 390 Hexadecimal

Endian Big

Remote integer endian Big

External decimal sign EBCDIC

Chapter 9. Samples 103

QUOTE DOUBLE

TRUNC BIN

NSYMBOL DBCS

Other values in the table above might differ for your environment. For

example, you might need to specify a different value for the Codepage

field if your IMS data is in a code page other than U.S. English (037). The

value for the QUOTE field also might differ, depending on your COBOL

source. Click Next.

c. In the COBOL Importer page, the data structures from the file are

displayed. Select INPUTMSG, which will populate the XSD type name

with INPUTMSG. You can accept the default to overwrite the XSD types.

Click Finish.

Invoking the runPhoneBook method will result in transaction input

information being passed from the application to the input message and

then to the EIS. Then the transaction output would be returned from the

EIS to the output message and then to the application.
15. In the Operation Binding page, click Import next to the output message. The

File Selection page opens. Import the Ex01.ccp file to specify the XML schema

definition for the output part.

a. Expand myIMSPhoneBookService > sample >ims and select Ex01.ccp. In

this sample, both the input and output message definitions are contained

in the same COBOL source file, Ex01.ccp. Click Next.

b. In the COBOL Import Properties page, specify the same values that you

entered in step 12b for input. Click Next.

c. In the COBOL Import window, select OUTPUTMSG in the data structures

list, which will populate the XSD type name with OUTPUTMSG. You can

accept the default to overwrite the XSD types. Click Finish.

d. In the Operation Binding page, click Next.

e. In the Operation Binding summary page, the new operation information is

displayed. Click Finish. The wizard populates WSDL files with the

operation information and saves the information to the sample.ims

package of the myIMSPhoneBookService project.
16. Click Finish on the Binding Wizard page.

17. Press Ctrl-S to save the changes in the myPhoneBookIMSBinding.wsdl file

and then close the editor.

Now you can create a proxy to test the service that you have just created.

Step 4: Testing the generated enterprise service

To test the service, you build a Java service proxy to access the service, and then

you write code to test the proxy. To create and test the proxy, complete the

following tasks:

1. Creating the Java service proxy.

2. Testing the Java service proxy.

Creating the Java service proxy

The Java service proxy provides a remote procedure call interface to the service.

Using the proxy, the application calls a remote method on the service as if the

104 IMS Connector for Java 2.2 and 9.1.0.1

method were a local one. Once the application makes the remote call, the proxy

handles all of the communication details between the application and the service.

To create the Java service proxy, complete the following steps:

1. Expand the myIMSPhoneBookService project and the sample.ims package.

Select the service file myPhoneBookIMSService.wsdl.

2. Right-click the file and select Enterprise Services > Generate Service Proxy.

The Generate Service Proxy wizard opens.

3. In the Proxy selection page, select Web Services Invocation Framework for the

type of proxy to generate. Click Next.

4. Ensure that the service you want to create the proxy for is shown. Because you

selected a file in the first step, most fields are populated with default values.

These default values are generated based on the contents of the selected service

file.

a. Change the class name for the proxy to myPhoneBookIMSProxy.java, if

necessary.

b. Ensure that the package name is sample.ims.

c. Ensure that Generate helper classes is selected. These Java helper classes

are required by your service. Click Next.
5. In the Service Proxy page, specify the style of the proxy and the operations to

expose in the proxy:

a. Select the Client stub proxy style.

b. Select the runPhoneBook check box to select the operations to include in

the proxy.
6. Click Finish. The Java service proxy (myPhoneBookIMSProxy) is generated in

the myIMSPhoneBookService project.

Next, you need to write a Java class to test the proxy.

Testing the Java service proxy

To test the Java service proxy, you need to write client code that executes the

proxy. This code sets parameters for the input message, invokes the proxy, passes

the input message to the proxy, receives an output message back from the proxy,

and then displays the message on the console. You use the service project you

created named myIMSPhoneBookService to store your code.

To write the Java class, complete the following steps:

1. Expand the myIMSPhoneBookService project and then select the sample.ims

package. From the toolbar click the New Java class icon

.

2. Ensure that myIMSPhoneBookService is the source folder and that sample.ims

is the package name.

3. Type myPhoneBookIMSProxyTestApp for the name of the new class.

4. Accept all other defaults and click Finish.

5. Replace the code in the editor with the following Java code:

package sample.ims;

 import com.ibm.connector2.ims.ico.IMSDFSMessageException;

public class myPhoneBookIMSProxyTestApp {

 public static void main(String[] args) {

 try

Chapter 9. Samples 105

{

 INPUTMSG input = new INPUTMSG();

 input.setIn__ll((short) 59);

 input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setIn__cmd("DISPLAY");

 input.setIn__name1("LAST1");

 input.setIn__name2("");

 input.setIn__extn("");

 input.setIn__zip("");

 myPhoneBookIMSProxy proxy = new myPhoneBookIMSProxy();

 OUTPUTMSG output = proxy.runPhoneBook(input);

 System.out.println(

 "\nMessage: "

 + output.getOut__msg()

 + "\nName: "

 + output.getOut__name1()

 + " "

 + output.getOut__name2()

 + "\nExtension: "

 + output.getOut__extn()

 + "\nZipcode: "

 + output.getOut__zip());

 }

 catch (Exception e)

 {

 if (e instanceof org.apache.wsif.WSIFException)

 {

 Throwable ic4jEx = ((org.apache.wsif.WSIFException) e).

 getTargetException();

 if (ic4jEx instanceof IMSDFSMessageException)

 {

 System.out.println(

 "\nIMS returned message: "

 + ((IMSDFSMessageException) ic4jEx).getDFSMessage());

 }

 else

 {

 System.out.println("\nIMS Connector exception is: " + ic4jEx);

 }

 }

 else

 {

 System.out.println("\nCaught exception is: " + e);

 }

 }

 }

}

6. Press Ctrl-S to save the changes and then close the editor. If you see

compilation errors in the code, ensure that you used the correct name when

you generated the proxy.

7. Select myPhoneBookIMSProxyTestApp.java and expand the Run icon

on

the toolbar by selecting the arrow beside it. From the pop-up menu, select Run

As > Java Application.

8. The Java application should run without exceptions, and you should see the

following message on the console:

 Message: ENTRY WAS DISPLAYED

 Name: LAST1 FIRST1

 Extension: 8-111-1111

 Zipcode: D01/R01

Successfully running the application ensures that your core application logic

works correctly.

106 IMS Connector for Java 2.2 and 9.1.0.1

Note that this example assumes that your IMS system has the non-conversational

COBOL version of the IMS INSTALL/IVP program installed and that the

pre-loaded entries in the IVPDB2 database have not been modified during

previous testing.

Now you can generate deploy code for the service that you have tested.

Step 5: Generating deploy code for the enterprise service

You use the Generate Deploy Code wizard to generate the EJB session bean. The

EJB session bean handles the client request to the PhoneBook service. A PhoneBook

request is a request to run the IMS transaction to add, delete, update, or display

information that is stored in the IMS PhoneBook database. In addition to

generating the EJB session bean, this wizard also generates deployed classes that

allow the session bean to operate on an EJB server such as the WebSphere

Application Server.

To generate the EJB session bean, complete the following steps:

 1. In the myIMSPhoneBookService project, expand the sample.ims package and

select the myPhoneBookIMSService.wsdl service file.

 2. Right-click the file and select Enterprise Services > Generate Deploy Code.

The Generate Deploy Code wizard opens.

 3. In the Deployment page, the Service file name, Service name, and Port name

default to values based on the service file that you selected in step 1. The

default values are:

v Service file

name:myIMSPhoneBookService/sample/ims/myPhoneBookIMSService.wsdl

v Service name: myPhoneBookIMSService

v Port name: myPhoneBookIMSPort

 4. Ensure that Create a new port and binding is selected.

 5. Because you might want to create a service that uses SOAP, ensure that SOAP

is selected from the Inbound binding type list. Even if you plan to deploy the

service only as a SOAP service, you still need to create two inbound bindings

(SOAP and EJB) to access the service. The EJB binding is required because the

SOAP binding is built on top of the EJB binding.

 6. Default project names (based on your service project name) are provided for

you in the following fields:

v EAR project: myIMSPhoneBookServiceEAR

v EJB project: myIMSPhoneBookServiceEJB

v Web project: myIMSPhoneBookServiceWeb

These are new projects and they will be created for you. Accept all other

defaults and click Next.

 7. In the Inbound Service Files page, accept the default values. Note that the

name of the service is myPhoneBookService. Click Next.

 8. In the EJB Inbound Service Files page, accept the default values. Click Next.

 9. In the EJB Port page, accept the default value for the JNDI name. Click Next.

10. In the SOAP page, you can accept the default transport, style, action and

encoding for the SOAP binding properties. These properties are all specific to

the SOAP specification. Click Next.

11. In the SOAP Port page, you can specify the SOAP port address or you can

accept the default. Click Finish.

Chapter 9. Samples 107

In the Services view under Deployable Services, the

myIMSPhoneBookServiceWeb project contains the service file

myPhoneBookSOAPService.wsdl and the binding file

myPhoneBookSOAPBinding.wsdl. The myIMSPhoneBookServiceWeb project

also includes a SOAP deployment descriptor that tells the SOAP server about

the service. The deployment descriptor contains servlet initialization and

mapping information, as well as additional settings for running the Web

module within an application server.

Also, under Deployable Services, the myIMSPhoneBookServiceEJB project

contains all of the resources for EJB applications, including the session bean

(MyPhoneBookService), the deployment descriptor, the remote interface, and

the EJB home. The service project (myIMSPhoneBookService) contains the

service definition. This project is zipped as a JAR file and placed in the

enterprise application project (myIMSPhoneBookServiceEAR), which can be

viewed in the J2EE view.

Step 6: Binding the resource reference

After generating the deploy code, you must also bind the resource reference to a

resource. The resource reference includes the Java Naming and Directory Interface

(JNDI) related information. With this information, a factory object can generate a

connection when needed by the application at run time.

To bind the resource reference, complete the following steps:

 1. Click the J2EE Hierarchy tab in the Business Integration perspective and

expand EJB Modules.

 2. Double-click myIMSPhoneBookServiceEJB to open the Deployment

Descriptor Editor. Click the References tab.

 3. Expand MyPhoneBookService and select the ResourceRef element.

 4. Select Application in the Authentication field.

 5. Under WebSphere Bindings, type myIMSTarget for the JNDI name.

 6. Select TRANSACTION_NONE for the Isolation level.

 7. Click the Assembly Descriptor tab. Under Container Transactions, click Add.

 8. The Add Container Transaction wizard opens. Select the

MyPhoneBookService check box and click Next.

 9. In the Container transaction type field, select NotSupported. Expand

MyPhoneBookService and select the MyPhoneBookService check box to

select all of the methods in that bean. Click Finish.

10. Press Ctrl-S to save the changes and then close the editor.

Step 7: Configuring the server and deploying the EAR project

To run a service in this sample, you must deploy the session bean to a server. In

this case, the server runs in the WebSphere Test environment. This means that the

server must be configured and started. For this sample service, you need to create

one server instance and server configuration. A server instance identifies the

run-time environment that you want to use for testing your project resources. A

server configuration contains information that is required to set up and publish to

a server. After you configure the server, you will deploy the EAR project

containing the service. Complete the following steps to configure the server and

deploy the EAR project:

1. Creating and configuring the server instance.

2. Adding a connection factory to the server configuration.

108 IMS Connector for Java 2.2 and 9.1.0.1

3. Adding the EAR project to the server configuration.

Creating and configuring the server instance

To create a server instance and configure it, complete the following steps:

1. In the Business Integration perspective, click the Server Configuration tab to

open the Server Configuration view. Right-click anywhere in the Server

Configuration view. Select New > Server and Server Configuration. The Create

a New Server and Server Configuration wizard opens.

2. Type myIMSServicesServer for the server name. (The default folder name is

Servers.)

3. Expand WebSphere version 5.1 and select Integration Test Environment. Click

Next.

4. Select Use default port numbers. The server port number defaults to 9080. The

port identifies the location of the service. Click Finish. The new server instance

appears in the Server Configuration view and in the Servers view.

You have just created an instance of the WebSphere Application Server that is

emulated by the WebSphere Test Environment running on your local host on port

9080.

Adding a Connection Factory to the server configuration

You need to add an instance of the J2C connection factory to the server

configuration and configure its properties. The connection factory provides

connections to the EIS on demand. You specify all of the information needed by

the resource adapter to connect to a particular instance of the EIS. For the IMS

resource adapter, you must specify at least the HostName, DataStoreName, and

PortNumber properties that determine which IMS to connect to. These values

determine the IMS that will be accessed through all of the connections created by

this instance of the connection factory. You also specify the JNDI lookup name

under which the new connection factory instance will be available to components.

The components can use this lookup name to quickly make a connection to the

EIS.

To add a connection factory, complete the following steps:

1. Click the Server Configuration tab to see the Server Configuration view.

Expand Servers.

2. Double-click the server configuration myIMSServicesServer. An editor opens.

3. Click the J2C tab. Click Add beside the J2C Resource Adapters table.

4. From the Resource Adapter Name list, select the resource adaptor named

ims222Connector. Click OK.

5. In the J2C Resource Adapters table, select the IMS resource adapter, then click

Add beside the J2C Connection Factories table. The application client will look

up this connection factory instance using the JNDI interface. The application

client will then use this connection factory instance to get a connection to the

underlying IMS.

6. In the Create Connection Factory window, type the name ims_cf. Type the

JNDI name myIMSTarget. Click OK.

7. In the Resource Properties table, type the property values appropriate for your

environment. (See Connection properties for a description of these properties.)

You might need to scroll down to see this table. For example:

v In the HostName field, type MYHOST.ABC.XYZ.COM

Chapter 9. Samples 109

v In the PortNumber field, type 9999

v In the DataStoreName field, type MYDSTOR

8. Press Ctrl-S to save the changes and then close the editor.

Adding the EAR project to the server configuration

Next you need to add the EAR project (myIMSPhoneBookServiceEAR) to the

server configuration that you created. To add the project, complete the following

steps:

1. In the Server Configuration view under Servers, right-click

myIMSServicesServer.

2. Select Add and Remove Projects.

3. The Add and Remove Projects page opens. Select

myIMSPhoneBookServiceEAR and click Add. myIMSPhoneBookServiceEAR is

the name of the enterprise application project that you created earlier.

4. Click Finish.

You have now successfully generated an enterprise service from an IMS transaction

and deployed that service to the WebSphere test environment.

Part 2: Creating the client application

Now that you have generated the enterprise service, you will create a client

application that can be used to invoke the enterprise service. Before you build the

client application, launch the New Project wizard to create a service project for the

client side of your service. To do this, complete the following steps:

1. From the toolbar, click the Create a service project icon

. The New Project

wizard opens.

2. Type myIMSPhoneBookServiceClient for the project name.

3. Select Use default to use the default location to store the new project.

4. Click Finish to create the project. You do not have to specify Java Build Path

settings or dependent JARs in subsequent pages of the wizard because these

are automatically set for you.

Next, you build a client application that uses either a SOAP proxy or an EJB proxy

to access the service. The proxy provides a remote procedure call interface to the

service. The client uses the proxy to call a remote method on the service as if the

method were a local one. When the client makes the remote call, the proxy handles

all of the communication details between the application and the service.

v To create a client application that uses an EJB proxy, go to Option 1: Creating a

client application that uses an EJB proxy.

v To create a client application that uses a SOAP proxy, go to Option 2: Creating a

client application that uses a SOAP proxy.

You do not need to create both types of proxies.

Option 1: Creating a client application that uses an EJB proxy

Complete the following steps to build a client application that uses an EJB proxy:

1. Generating an EJB proxy.

2. Creating the client application to access the service.

3. Testing the client application.

110 IMS Connector for Java 2.2 and 9.1.0.1

4. Using the Universal Test Client tool.

Step 1: Generating an EJB proxy

Earlier in this sample, you created the EAR file that includes the EJB inbound

binding type. In fact, you generated the myPhoneBookEJBService.wsdl and binding

file myPhoneBookIMSEJBBinding.wsdl in the myIMSPhoneBookServiceEJB project.

Now you are going to generate an EJB proxy for the client. An EJB proxy hides the

complexity of invoking the session bean from the client side. It functions much the

same as an access bean, except that it uses the Web Services Invocation Framework

(WSIF) to invoke the session bean.

To generate the EJB proxy, complete the following steps:

1. Click the Services tab of the Business Integration perspective. Expand

Deployable Services > myIMSPhoneBookServiceEJB > ejbModule >

sample.ims and select myPhoneBookEJBService.wsdl.

2. Right-click the file and select Enterprise Services > Generate Service Proxy.

The Generate Service Proxy wizard opens.

3. In the Proxy selection page, select Web Services Invocation Framework for the

type of proxy to generate. Click Next.

4. In the Service Proxy page, the fields contain default values that are based on

the service file you selected. You need to change the Source folder field to

place the proxy in the client project. Click Browse and select

myIMSPhoneBookServiceClient or type /myIMSPhoneBookServiceClientfor the

Source folder.

5. Ensure that the package name is sample.ims.client.

6. Change the Class name to myPhoneBookEJBProxy.java. Click Next.

7. In the Service Proxy Style page, select client stub for the Proxy style and then

select the runPhoneBook check box. Click Finish.

8. Resolve any errors that appear in the generated proxy by adding the service

project to the list of required projects on the build path. To add the service

project to the build path:

a. Right-click myIMSPhoneBookServiceClient and click Properties.

b. Select Java Build Path and click the Projects tab. Select the

myIMSPhoneBookService check box and click OK.

The EJB proxy, myPhoneBookEJBProxy, is generated in the

myIMSPhoneBookServiceClient project. The enterprise service WSDL files are also

copied into this service project.

Now you can test the EJB proxy.

Step 2: Creating the client application to access the service

To bind the client to the service and to invoke the service, you must write a client

Java application. Within your Java package, you will create a new class that

includes a main method and contains code to test the EJB proxy. To create a new

class that will test the EJB proxy, complete the following steps:

1. In the Services view, expand myIMSPhoneBookServiceClient and select the

sample.ims.client package.

2. Click the New Java class icon

on the toolbar. The New Java Class wizard

opens.

Chapter 9. Samples 111

3. In the New Java Class wizard, ensure that the Source folder is

myIMSPhoneBookServiceClient and the Package is sample.ims.client.

4. In the Name field, type myPhoneBookEJBProxyTestApp for the name of the class

that you are creating.

5. Accept the other defaults and click Finish. The Java class,

myPhoneBookEJBProxyTestApp.java, is created and is opened in the editor

view.

6. Replace the code in the editor with the following Java code:

package sample.ims.client;

import sample.ims.*;

public class myPhoneBookEJBProxyTestApp

 {

 public static void main(String[] args)

 {

 try

 {

 INPUTMSG input = new INPUTMSG();

 input.setIn__ll((short) 59);

 input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setIn__cmd("DISPLAY");

 input.setIn__name1("LAST2");

 input.setIn__name2("");

 input.setIn__extn("");

 input.setIn__zip("");

 myPhoneBookEJBProxy proxy = new myPhoneBookEJBProxy();

 OUTPUTMSG output = proxy.runPhoneBook(input);

 System.out.println(

 "\nMessage: "

 + output.getOut__msg()

 + "\nName: "

 + output.getOut__name1()

 + " "

 + output.getOut__name2()

 + "\nExtension: "

 + output.getOut__extn()

 + "\nZipcode: "

 + output.getOut__zip());

 }

 catch (Exception e)

 {

 System.out.println("\nCaught exception is: " + e);

 }

 }

}

7. Press Ctrl-S to save the file and then close the

myPhoneBookEJBProxyTestApp.java file.

Step 3: Testing the client application

Next, you can run myPhoneBookEJBProxyTestApp.java by completing the

following steps:

 1. Click the Servers tab and check the status of the server instance. If the status

for the server is stopped, then right-click the server instance and select Start.

Wait until the server is started. The server is started when you see Started

next to the server on the Servers tab.

 2. In the myIMSPhoneBookServiceClient project, select the

myPhoneBookEJBProxyTestApp.java class.

 3. On the toolbar, select the arrow beside the Run icon

to expand it.

112 IMS Connector for Java 2.2 and 9.1.0.1

4. From the pop-up menu, select Run.

 5. Under Launch Configurations, select Java Application and click New.

 6. Click the JRE tab and select WebSphere v5.1 EE JRE from the JRE list.

 7. Click the Classpath tab and deselect the Use default class path check box.

 8. Click Add Projects and select myIMSPhoneBookServiceEJB. Click OK.

 9. Click Add External Jars and browse to select

WS_installdir\runtimes\ee_v51\lib, where WS_installdir is the directory

where WebSphere Studio is installed. Within the lib directory, hold down the

control key and select the following files:

v naming.jar

v namingclient.jar

v namingserver.jar

Click Open.

10. Click Advanced and select Add External Folder. Click OK. Browse to select

WS_installdir\runtimes\ee_v51\properties, where WS_installdir is the

directory where WebSphere Studio is installed. Click OK, and then click

Apply.

11. Click Run.

The application should run without exceptions. In the Console view you will see

the following message, which is returned by the service:

 Message: ENTRY WAS DISPLAYED

 Name: LAST2 FIRST2

 Extension: 8-111-2222

 Zipcode: D01/R02

Note that this example assumes that your IMS system has the non-conversational

COBOL version of the IMS INSTALL/IVP program installed and that the

pre-loaded entries in the IVPDB2 database have not been modified during

previous testing.

Step 4: Using the Universal Test Client tool

Another option to test your client application is using WebSphere Studio’s IBM

Universal Test Client tool. The Universal Test Client (UTC) tool runs in the

application server itself. It allows you to view and invoke methods, objects, and

classes to test the EJB session bean, and you do not need to write any code for the

test. In this test, you will only test the generated stateless session bean,

myIMSPhoneBookServiceEJB.

To test the client application, complete the following steps:

 1. In the Package Explorer view, select myIMSPhoneBookServiceEJB.

Right-click and select Run on Server. The IBM Universal Test Client

Homepage opens.

 2. If the Server Selection page opens, select Use an existing server and select

myIMSServicesServer in the list of servers.

 3. Click Finish. The IBM Universal Test Client Homepage opens.

 4. Click the JNDI Explorer link.

 5. In the JNDI Explorer page, expand the folders sample > ims and click

myPhoneBookServiceHome(sample.ims.MyPhoneBookServiceHome stub).

The References pane is displayed.

Chapter 9. Samples 113

6. In the References pane, expand EJB References > MyPhoneBookService >

MyPhoneBookServiceHome and click MyPhoneBookService create ().

 7. In the Parameters pane, click Invoke. This creates the

MyPhoneBookServiceHome object.

 8. Click Work with Object. This creates the MyPhoneBookService 1 bean, which

is displayed in the References pane.

 9. In the References pane under EJB References, expand MyPhoneBookService 1.

This shows a list of methods that can be executed in the bean. Select the

OUTPUTMSG runPhoneBook(INPUTMSG) method.

10. In the Parameters pane, you can see the input field for the OUTPUTMSG

runPhoneBook() method. This is a complex object that has to be created. In

the Parameter Value table, click the Expand link beside INPUTMSG to

expand the INPUTMSG parameter values.

11. Type the following values in the table:

v in_cmd: DISPLAY

v in_ll: 59

v in_name1: LAST2

v in_trcd: IVTNO

v in_zz: 0 (the default is 0)
12. Click Invoke. You might need to scroll down to see the Work with Object

button.

13. Click Work with Object. In the References pane under Object References, the

objects are displayed. If you expand the objects, a list of methods that can be

performed in the object are displayed.

14. By selecting different get methods, you can retrieve customer information. To

do so, click one of the get methods from the list. Click Invoke to create the

object. The results are displayed. Repeat this for every method you want to

test.

15. When you have finished testing the methods, close the Universal Test Client.

Note: After using the Universal Test Client, you need to stop the server if you

plan to use a test class to perform any additional testing. To stop the server,

click the Servers tab. Right-click the server instance and select Stop. If you do

not restart the server after using the Universal Test Client, you may encounter

errors when you use a test class to test a proxy.

Option 2: Creating a client application that uses a SOAP proxy

Complete the following steps to build a client application that uses a SOAP proxy:

1. Generating the SOAP proxy.

2. Creating JSP files for the client application.

3. Testing the SOAP proxy.

Step 1: Generating the SOAP proxy

Earlier in this sample, you created the EAR file that includes the SOAP inbound

binding type. In fact, you generated the myPhoneBookSOAPService.wsdl and

binding file myPhoneBookSOAPBinding.wsdl in the myIMSPhoneBookServiceWeb

project. Now you are going to generate a SOAP proxy for the client.

To generate the SOAP proxy, complete the following steps:

114 IMS Connector for Java 2.2 and 9.1.0.1

1. Click the Services tab of the Business Integration perspective. Expand

Deployable Services > myIMSPhoneBookServiceWeb > WebContent/wsdl >

sample.ims.

2. Right-click myPhoneBookSOAPService.wsdl and select Enterprise Services >

Generate Service Proxy. The Generate Service Proxy wizard opens.

3. In the Proxy Selection page, select Web Services Invocation Framework for the

type of proxy to generate. Click Next.

4. In the Service Proxy page, the fields contain default values that are based on

the service file you selected. You need to change the Source folder field to

place the proxy in the java source folder. Click Browse or type

/myIMSPhoneBookServiceWeb/JavaSource for the Source folder.

5. Ensure that the package name is sample.ims.client.

6. Ensure that the Generate helper classes check box is selected.

7. Change the Class name to myPhoneBookSOAPProxy.java. Click Next.

8. In the Service Proxy page, select client stub for the Proxy style and then select

the runPhoneBook check box.

9. Click Finish.

The SOAP proxy, myPhoneBookSOAPProxy, is generated in the

/myIMSPhoneBookServiceWeb/JavaSource folder.

Now you can create JSP files for the client application.

Step 2: Creating JSP files for the client application

You write JSP files to bind the client to the service and to invoke the service.

Within your Java package, you will create three new JSP files to test the SOAP

proxy:

v A JSP file for input named Controller.jsp

v A JSP file to display results named Display.jsp

v A JSP file to display errors named error.jsp

To create the JSP files, complete the following steps:

1. Create a JSP file to accept user input.

a. In the Package explorer, right-click myIMSPhoneBookServiceWeb and

select New > Other.

b. Select Web and then select JSP File. Click Next. The New JSP File wizard

opens.

c. Ensure that the folder is /myIMSPhoneBookServiceWeb/WebContent and

type Controller.jsp for the File Name. Click Finish. The controller.jsp file

opens in the editor.

d. Click the Source tab and replace the code in the editor with the following

code for the JSP:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<HTML>

<HEAD>

<%@ page

language="java"

contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"

%>

<META http-equiv="Content-Type" content="text/html;

Chapter 9. Samples 115

charset=ISO-8859-1">

<META name="GENERATOR" content="IBM WebSphere Studio">

<META http-equiv="Content-Style-Type" content="text/css">

<TITLE>Controller.jsp</TITLE>

</HEAD>

<BODY>

<FORM METHOD="POST" ACTION="Display.jsp">

<H1>Query the PhoneBook application!</H1>

<P>To display a phone book entry, type DISPLAY in the

command field and type a last name.

To add or delete an entry, type ADD or DELETE in the command field

and

fill in other fields with the required information. </P>

<TABLE>

 <TR><TD>Command: </TD>

 <TD><INPUT TYPE="TEXT" NAME="Cmd" VALUE="" SIZE="10"

MAXLENGTH="50"></TD>

 </TR>

 <TR><TD>Last name: </TD>

 <TD><INPUT TYPE="TEXT" NAME="Name1" VALUE="" SIZE="10"

MAXLENGTH="50"></TD>

 </TR>

 <TR><TD>First name: </TD>

 <TD><INPUT TYPE="TEXT" NAME="Name2" VALUE="" SIZE="10"

MAXLENGTH="50"></TD>

 </TR>

 <TR><TD>Extension: </TD><TD>

 <INPUT TYPE="TEXT" NAME="Extn" VALUE="" SIZE="10"

MAXLENGTH="50"></TD>

 </TR>

 <TR><TD>Zip code: </TD>

 <TD><INPUT TYPE="TEXT" NAME="Zip" VALUE="" SIZE="10"

MAXLENGTH="50">

 </TD></TR>

 </TABLE>

<INPUT TYPE="SUBMIT" NAME="Submit">

</FORM>

</BODY>

</HTML>

e. Press Ctrl-S to save the file and then close the editor.

Note: You can ignore the broken link message because this problem will be

resolved when you build the next two JSP files.
2. Create a JSP file to display the output.

a. In the Package explorer, right-click myIMSPhoneBookServiceWeb and

select New > Other.

b. Select Web and then select JSP File. Click Next. The New JSP File wizard

opens.

c. Ensure that the folder is /myIMSPhoneBookServiceWeb/WebContent and

type Display.jsp for the File Name. Click Finish. The display.jsp file opens

in the editor.

d. Click the Source tab and replace the code in the editor with the following

code for the JSP:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<HTML>

<HEAD>

<%@ page

language="java"

import="javax.naming.*, sample.ims.*, sample.ims.client.*"

contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"

116 IMS Connector for Java 2.2 and 9.1.0.1

errorPage="error.jsp"

%>

<META HTTP-EQUIV="PRAGMA" CONTENT="NO-CACHE">

<TITLE>Display.jsp</TITLE>

</HEAD>

<BODY>

<%

response.setHeader("Cache-Control","no_store"); //HTTP 1.1

response.setHeader("Cache-Control","must-revalidate"); //HTTP 1.1

response.setHeader("Pragma","no-cache"); //HTTP 1.0

response.setDateHeader ("Expires", 0); //prevents caching at the

proxy server

response.setHeader("Cache-Control","no-store"); //HTTP 1.1

 INPUTMSG input = new INPUTMSG();

 input.setIn__ll((short) 59);

 input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setIn__cmd(request.getParameter("Cmd"));

 input.setIn__name1(request.getParameter("Name1"));

 input.setIn__name2(request.getParameter("Name2"));

 input.setIn__extn(request.getParameter("Extn"));

 input.setIn__zip(request.getParameter("Zip"));

 myPhoneBookSOAPProxy proxy = new myPhoneBookSOAPProxy();

 OUTPUTMSG output = proxy.runPhoneBook(input);

 %>

 <H1>Query Results</H1><hr WIDTH="50%"

ALIGN=LEFT>

<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH="50%">

<TR ALIGN="left" VALIGN="middle">

<TH>Field</TH>

<TH>Value</TH></TR>

<TR ALIGN="left" VALIGN="middle">

<TD>Last name</TD>

<TD>

<%= output.getOut__name1() %>

</TD></TR>

<TR ALIGN="left" VALIGN="middle">

<TD>First name</TD>

<TD>

<%= output.getOut__name2() %>

</TD>

<TR ALIGN="left" VALIGN="middle">

<TD>Extension</TD>

<TD>

<%= output.getOut__extn() %>

</TD></TR>

<TR ALIGN="left" VALIGN="middle">

<TD>Zip code</TD>

<TD>

<%= output.getOut__zip() %>

</TD></TR>

</TABLE>

<hr WIDTH="50%" ALIGN="LEFT">

<P>Status: <%= output.getOut__msg() %></P>

</BODY>

Chapter 9. Samples 117

<HEAD>

 <META HTTP-EQUIV="PRAGMA" CONTENT="NO-CACHE">

</HEAD>

</HTML>

e. Press Ctrl-S to save the file and then close the editor.
3. Create a JSP file to display any errors encountered during the query.

a. In the Package explorer, right-click myIMSPhoneBookServiceWeb and

select New > Other.

b. Select Web and then select JSP File. Click Next. The New JSP File wizard

opens.

c. Ensure that the folder is /myIMSPhoneBookServiceWeb/WebContent and

type error.jsp for the File Name. Click Finish. The error.jsp file opens in

the editor.

d. Click the Source tab and replace the code in the editor with the following

code for the JSP:

<%@ page isErrorPage="true" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<HTML>

<HEAD>

 <title>Error Page</title>

</HEAD>

<BODY text="#000000" bgcolor="#FFFFC0" link="#0000FF"

vlink="#800080" alink="#FF00FF">

<CENTER>

<h2>Error</h2></CENTER>

<P>Application PhoneBook reported the

following error:

<P>

<%=exception.toString()

%>

<P>This problem occurred in the following place:

<P>

<PRE>

<% exception.printStackTrace(new java.io.PrintWriter(out));

%>

</PRE>

</BODY>

</HTML>

e. Press Ctrl-S to save the file and then close the editor.

Now you can use the JSP files to test the SOAP proxy.

Step 3: Testing the SOAP proxy

Next, you test the SOAP proxy by using the input JSP to send requests to the

PhoneBook application. To test the SOAP proxy, complete the following steps:

 1. In the Package explorer, expand myIMSPhoneBookServiceWeb > Web

Content.

 2. Right-click Controller.jsp and click Run on server.

 3. If the Server Selection wizard displays, select Use an existing server and

select the server that you configured for this sample. Click Finish.

The server starts and launches the JSP. You should see the following in the

display:

118 IMS Connector for Java 2.2 and 9.1.0.1

4. Issue a query to display a phone book entry. Type the following values in the

fields on the input JSP:

 Field Value

Command Display

Last name LAST1

 5. Click Submit Query. You should see the following results of the query:

 6. Click the back button in the browser to return to the input JSP.

 7. Issue a query to add a phone book entry. Type the following values in the

fields on the input JSP:

 Field Value

Command Add

Last name Doe

First name Jane

Extension 5-5555

Zip code 55555

 8. Click Submit Query. You should see the following results of the query:

Chapter 9. Samples 119

9. Click the back button in the browser to return to the input JSP.

10. Issue a query to delete the phone book entry that you just created. Type the

following values in the fields on the input JSP:

 Field Value

Command Delete

Last name Doe

11. Click Submit Query. You should see the following results of the query:

What’s next?

Now that you the have successfully completed this sample, what can you do next?

v You can deploy the service to a production version of WebSphere Application

Server by following the tasks described in Deploying an IMS enterprise service

to a production server.

v You might be interested in reading the following documentation, which has

step-by-step instructions on:

– Bottom-up development: Creating an enterprise service

– Top-down development: Creating an enterprise service
v For a general understanding of the WebSphere Studio product and the

programming and development model for enterprise services, read the Product

Overview (also available in PDF).

v You can read the other enterprise services scenarios and samples available in the

product:

– Sample: Deploying an IMS enterprise service to a production server.

– Sample: Building a service that submits commands to IMS.

– Sample: Running an enterprise service for an IMS transaction.

– Sample: Building container-managed and component-managed transactional

EJBs to run IMS transactions.

120 IMS Connector for Java 2.2 and 9.1.0.1

– Auction (Business Integration) scenario

– eMerged Financial Portal scenario

– Travel agency scenario

– Creating an enterprise service from an EJB

– Creating a Java skeleton service

– Other enterprise services scenarios and samples

Sample: Deploying an IMS enterprise service to a production server

Objectives

In this sample, you deploy an IMS service to a WebSphere Application Server

Enterprise Edition production server. Before performing the steps in this sample,

you must complete the steps described in Sample: Creating an enterprise service

for an IMS transaction because you will deploy the same service in this sample.

Time required

Allow 60 minutes. This will give you enough time to deploy the enterprise service

to a production server.

Before you begin

This sample assumes that WebSphere Application Server Enterprise Edition Version

5.1 is installed on your machine and that you are familiar with using the product.

It also assumes that you have installed and configured the IMS resource adapter

(also known as IMS Connector for Java) on the WebSphere Application Server. For

more information about installing and configuring the IMS resource adapter, see

the ″How To″ file that ships with the IMS Connector for Java run-time code.

Important: If you want to run your application on a remote server, see Application

Server Toolkit in the WebSphere Application Server Version 6.0 Information

Center. The unit test environment in WebSphere Studio does not support running

remote WebSphere Application Servers for z/OS.

Description

To deploy the IMS service, complete the following tasks:

1. Within the WebSphere Studio Integration Edition, package the service for the

production server:

v Edit the module dependencies.

v Export the EAR file.
2. Deploy the service to a production server:

v Start the Administrative console.

v Add a J2C connection factory.

v Install the EAR file.
3. Test the service on a production server.

Part 1: Packaging the service for the production server

To package the service for the production server, complete the following steps:

1. Edit the module dependencies.

Chapter 9. Samples 121

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

2. Export the EAR file.

Step 1: Editing the module dependencies

Because you are going to use a SOAP proxy to access the service on the production

server, you must edit the Web module dependencies.

Note: If your production version of WebSphere Application Server Enterprise

Edition has the module visibility set to ″Application″ rather than to the default

value of ″Module″, then you do not need to complete the steps in this section.

To edit the Web module dependencies, complete the following steps:

1. Within WebSphere Studio, click the J2EE Hierarchy tab and expand Web

Modules.

2. Right-click myIMSPhoneBookServiceWeb and select Open With > Jar

Dependency Editor.

3. In the Jar Dependencies page, select the check boxes for

myIMSPhoneBookService.jar, which contains the service interface definition

file, and myIMSPhoneBookServiceEJB.jar, which contains the EJB project

named myIMSPhoneBookServiceEJB.

4. Press Ctrl-S to save your changes and then close the editor.

Step 2: Exporting the EAR file

In this step, you export the EAR file that contains the service. To export the EAR

file, complete the following steps:

1. Select File > Export. The Export wizard opens.

2. Select EAR file and click Next.

3. Select myIMSPhoneBookServiceEAR from the What resources do you want to

export? list.

4. Click Browse beside the Where do you want to export resources to? field and

select the folder where you want to export the resources: for example,

C:\PhoneBook.ear. Click Open.

5. Click Finish.

Part 2: Deploying the service to a production server

To deploy the service to the production server, complete the following tasks:

1. Start the Administrative console.

2. Add a J2C connection factory.

3. Install the EAR file.

4. Start the application.

Note: You must install the IMS resource adapter (also known as IMS Connector for

Java) on the production server before deploying the service.

Step 1: Starting the Administrative console

To start the Administrative console, complete the following steps:

1. From the Windows desktop, click Start > Programs > IBM WebSphere >

Application Server v5.0 > Start the Server. You must start the server before

you start the Administrative Console.

122 IMS Connector for Java 2.2 and 9.1.0.1

2. When the server is started, click Start > Programs > IBM WebSphere >

Application Server v5.0 > Administrative Console.

3. In the WebSphere Administrative Console, enter a valid user ID and password,

if necessary.

Step 2: Adding a J2C connection factory

Before adding the J2C connection factory, ensure that the IMS resource adapter has

been installed and configured with the correct connection properties for your

environment. To view installed resource adapters, complete the following steps:

1. In the left frame of the Administrative Console, expand Resources and click

Resource Adapters.

2. In the Resource Adapters page, look for the name of the IMS resource adapter,

for example IMS Connector for Java. The name of the resource adapter is

defined when you deploy the adapter. If the IMS resource adapter is not

deployed, you need to deploy it before completing the steps described in this

sample. For more information about deploying the IMS resource adapter, see

the ″How To″ file that ships with the IMS Connector for Java run-time code.

3. If the resource adapter appears in the list, click the name of the resource

adapter to view the properties for the adapter.

After verifying that the IMS resource adapter is correctly installed, complete the

following steps to add a J2C connection factory:

1. In the left frame of the Administrative Console, expand Resources and click

Resource Adapters. Click the link for the installed resource adapter. For

example, IMS Connector for Java.

2. Under Additional Properties at the bottom of the page, click J2C Connection

Factories. You might need to scroll down to see this link.

3. Click New to add a new J2C connection factory for this resource adapter.

4. In the Name field, type a display name for the IMS resource adapter, for

example, type ims_cf.

5. In the JNDI name field, type myIMSTarget. Click Apply to apply your changes.

Note: Depending on your security configuration, you might need to select one

of the previously defined authentication aliases. To view or create J2C

authentication data entries, expand Security > JAAS Configuration and click

J2C Authentication Data.

6. Next, under Additional Properties at the bottom of the page, click Custom

Properties and specify the connection properties for the connection factory. See

Connection properties for a description of these properties. For example:

v In the HostName field, type MYHOST.ABC.XYZ.COM

v In the DataStoreName field, type MYDSTOR

v In the PortNumber field, type 9999

Click the link for each property that you need to set and type the value

appropriate for your environment. After setting the value for each property,

click OK.

7. When you are finished typing values for connection properties, click Save in

the Message(s) box at the top of the Custom Properties page. Click Save again

to apply your changes to the master configuration.

Step 3: Installing the EAR file

To install the EAR file, complete the following steps:

Chapter 9. Samples 123

1. From the Administrative console, expand Applications and click Install New

Application.

 2. Click Browse and select the EAR file that you created in the previous step: for

example, C:\PhoneBook.ear. Click Open and then click Next.

 3. In the Preparing for the application installation page, accept the defaults and

click Next.

 4. For Step 1, you can accept all the defaults and click Next. (You may change

any of the defaults.)

 5. For Step 2, accept the defaults and click Next.

 6. For Step 3, accept the defaults. (The JNDI name must match the JNDI name of

the Connection Factory you will be using.) Select the checkbox next to

myIMSPhoneBookServiceEJB and click Apply. Click Next.

 7. For Step 4, accept the defaults and click Next.

 8. For Step 5, accept the defaults and click Next.

 9. For Step 6, accept the defaults and click Next.

10. For Step 7, click Finish.

11. Click Save to Master Configuration and then click Save again to save your

changes.

Now you can start the application server and test the deployed service.

Step 4: Starting the application

To start the application, complete the following steps:

1. In the left frame of the WebSphere Application Server Administrative console,

expand Applications and click Enterprise Applications.

2. Select the check box beside myIMSPhoneBookServiceEAR and click Start.

Part 3: Testing the service on a production server

To test the service on a production server, you use a SOAP proxy, as described in

this section.

Here, you reuse the SOAP proxy you created in Sample: Creating an enterprise

service for an IMS transaction. To test the service on a production server by using

a SOAP proxy, complete the following steps:

1. Launch a browser and type the following URL:

http://host_name:9080/myIMSPhoneBookServiceWeb/Controller.jsp. You should

see the following in the browser window:

124 IMS Connector for Java 2.2 and 9.1.0.1

2. Issue a query to display a phone book entry. Type the following values in the

fields on the input JSP:

 Field Value

Command Display

Last name LAST1

3. Click Submit Query. You should see the following results of the query:

4. Click the back button in the browser to return to the input JSP.

5. Issue a query to add a phone book entry. Type the following values in the

fields on the input JSP:

 Field Value

Command Add

Last name Doe

First name Jane

Extension 5-5555

Zip code 55555

6. Click Submit Query. You should see the following results of the query:

Chapter 9. Samples 125

7. Click the back button in the browser to return to the input JSP.

8. Issue a query to delete the phone book entry that you just created. Type the

following values in the fields on the input JSP:

 Field Value

Command Delete

Last name Doe

9. Click Submit Query. You should see the following results of the query:

What’s next?

Congratulations! You have successfully deployed and tested your service. If you

are interested in learning more about building enterprise services, read other

enterprise services scenarios and samples available in the product.

Sample: Running an enterprise service for an IMS transaction

Objectives

There are two ways to become familiar with the business integration tools used to

build a service that runs an IMS transaction. One way is to use the Samples

Wizard to install the ready-to-run IMS Connector for Java PhoneBook sample in

the WebSphere Studio Integration Edition workspace. This allows you to quickly

execute and become familiar with an IMS service implementation. This document

describes how to use the ready-to-run PhoneBook sample.

Another way to become familiar with the business integration tools is to follow the

detailed steps in the Sample: Creating an enterprise service for an IMS transaction

for developing and running the PhoneBook sample IMS service. This approach

126 IMS Connector for Java 2.2 and 9.1.0.1

provides an in-depth look at how the PhoneBook sample IMS service can be

created from the COBOL data structures, then deployed and executed using the

Integration Edition tools.

To create the PhoneBook sample IMS service yourself, follow the instructions in

Sample: Creating an enterprise service for an IMS transaction. Note that the names

used in the ready-to-run PhoneBook IMS service and those used in the

documentation describing how to develop and run your own PhoneBook IMS

service, differ slightly so that you can have both projects in your workspace

without any naming conflicts.

Time required

Allow 60 minutes. This will give you enough time to run your enterprise service

for an IMS transaction. The 60 minutes does not include time for completing the

actions specified in the Before you begin section.

Before you begin

In this sample, your application uses the IMS resource adapter (also called IMS

Connector for Java) to interact with IMS through IMS Connect. The sample service

runs the PhoneBook IMS transaction on an IMS system you specify. Because the

PhoneBook IMS transaction is one of the IMS Installation Verification Programs, it

is probably already installed on your IMS test system. Before running this sample:

v Contact your IMS system programmer to verify that the IVTNO transaction

which is part of the IMS Installation Verification Program is installed and

working on your target IMS system.

v Ensure that your environment meets the prerequisites for using the IMS resource

adapter. See Prerequisites for using the IMS resource adapter.

v Import the IMS resource adapter, ims.rar file. To import the RAR file, see

Importing a resource adapter.

You may find it convenient to stay in the Business Integration perspective while

installing and running the sample. If you would like to do this and have not

already done so, follow these steps:

1. Select Window > Preferences.

2. In the left-hand column, expand Workbench and select Perspectives.

3. In the Perspective pane, select Never switch under Switch to associated

perspective when creating a new project.

4. Click OK.

Description

The ready-to-run PhoneBook sample is installed in the WebSphere Studio

Application Developer Integration Edition workspace. To run the installed

PhoneBook sample, you can use the Samples Wizard to install the PhoneBook

sample and then run it as a stand-alone Java application or as a deployed service

invoked on an application server through a SOAP proxy by following the detailed

steps in this sample.

Installing the ready-to-run PhoneBook sample

1. In the workbench, select File > New > Other.

2. In the left pane, expand Examples > Business Integration > Services.

Chapter 9. Samples 127

3. In the right pane, select Service for IMS transaction (COBOL) and then click

Next.

4. Accept all the defaults in the Service for IMS transaction (COBOL) window.

(The default EAR Import Project name is IMSPhoneBookEAR.) Click Finish.

Configuring the ready-to-run PhoneBook sample to run as a

stand-alone Java application

After installing the PhoneBook sample IMS service, you must configure the

PhoneBookIMSService.wsdl file for your target IMS system.

1. In the Business Integration perspective Services view, under

IMSPhoneBookService > sample.ims, double-click the

PhoneBookIMSService.wsdl file. This opens the file in the Graph tab in the

WSDL editor.

2. In the Services container, expand PhoneBookIMSService >

PhoneBookIMSPort and select ims:address.

3. In the ims:address section, enter the appropriate property values required for

your IMS test environment in the table. At a minimum, you must enter the

property values for the dataStoreName, hostName and portNumber properties.

Note: After entering the value for any of the properties, you must click

somewhere else in the frame (for example, on the value field of another

property) to move the cursor out of the field in which you have made a

change. This must be done so the change can be recognized. If you do not do

so, the new value for the last change you made will not be saved in the next

step. See Connection Properties for a description of these properties.

4. Press Ctrl-S to save your changes and close the WSDL editor by clicking the X

next to PhoneBookIMSService.wsdl.

Running the ready-to-run PhoneBook sample as a stand-alone

Java application

After installing and configuring the PhoneBook sample IMS service, you can run

the test Java application that is provided as part of the PhoneBook sample. You do

not have to create a new server instance and configuration prior to running the

PhoneBook sample as a Java application.

1. In the Services view, go to the IMSPhoneBookService project and expand the

sample.ims package.

2. Select the PhoneBookIMSProxyTestApp.java file in the Packages view.

3. Expand the Run pulldown menu by selecting the arrow beside the Run icon on

the toolbar.

4. From the pulldown menu, select Run as > Java Application.

5. The stand-alone test java application runs and in the console, you will see the

following message:

Message: ENTRY WAS DISPLAYED

Name: LAST1 FIRST1

Extension: 8-111-1111

Zipcode: D01/R01

Note: This sample assumes that your target IMS system has the

non-conversational COBOL version of the IMS INSTALL/IVP program installed

and that the pre-loaded entries in the IVPDB2 database have not been modified

during previous testing.

128 IMS Connector for Java 2.2 and 9.1.0.1

Running the ready-to-run PhoneBook sample on a server

You can also make this service available by deploying the service to WebSphere

Application Server as a SOAP service. In this case, the server will run within

WebSphere Studio. Following are the steps you need to complete in order to set up

an application server in the WebSphere Test Environment in WebSphere Studio

Application Developer and then deploy the service to that server:

v Configure a server

v Add a Connection Factory to the server configuration

v Add an EAR project to the server configuration and start or restart the server

v Execute the IMS PhoneBook sample IMS service using a SOAP proxy

Configuring a server

Prior to executing the SOAP program provided by the ready-to-run PhoneBook

sample, the server must be configured. Complete the steps in Adding a server

instance and server configuration to do so.

Adding a Connection Factory to the server configuration

To run the ready-to-run PhoneBook sample on a server, you need to add an

instance of the JCA connection factory to the server configuration and configure its

properties. To do so, complete the steps in Adding a Connection Factory to the

server configuration in Sample: Creating an enterprise service for an IMS

transaction.

Adding an EAR project to the server configuration and starting

or restarting the server

Next you need to add the enterprise application project

(IMSPhoneBookServiceEAR) to the server configuration that you created earlier,

which is required to correctly start the server and test your service. To add the

project and then start or restart the server, follow these steps:

1. In the Server Configuration view, expand Server Configurations and right-click

myIMSServicesServer.

2. Select Add and remove projects. Ensure you have IMSPhoneBookServiceEAR

installed.

3. In the Servers view, check the status of myIMSServicesServer. If the server is

in ″Stopped″ status, you will need to start it. However, if the server is in

″Started″ status, you will need to restart it in order to pick up the binding

information and the IMSServicesEAR project. For information about starting or

restarting the server, see Starting or restarting the server.

Executing the IMS PhoneBook sample IMS service using a SOAP

proxy

To execute the ready-made IMS PhoneBook sample IMS service using a SOAP

proxy, execute the following instructions:

 1. Start the server if it is not already started following the instructions in Starting

or restarting the server.

 2. In the Package Explorer view, expand IMSPhoneBookServiceWeb > Web

Content.

 3. Right-click Controller.jsp and click Run on server.

Chapter 9. Samples 129

4. If the Server Selection wizard displays, select Use an existing server and

select the server that you configured for this sample. Click Finish.

The server starts and launches the JSP. You should see the following in the

display:

 5. Issue a query to display a phone book entry. Type the following values in the

fields on the input JSP:

 Field Value

Command Display

Last name LAST1

 6. Click Submit Query. You should see the following results of the query:

 7. Click the back button in the browser to return to the input JSP.

 8. Issue a query to add a phone book entry. Type the following values in the

fields on the input JSP:

 Field Value

Command Add

Last name Doe

First name Jane

Extension 5-5555

Zip code 55555

 9. Click Submit Query. You should see the following results of the query:

130 IMS Connector for Java 2.2 and 9.1.0.1

10. Click the back button in the browser to return to the input JSP.

11. Issue a query to delete the phone book entry that you just created. Type the

following values in the fields on the input JSP:

 Field Value

Command Delete

Last name Doe

12. Click Submit Query. You should see the following results of the query:

What’s next?

If you have successfully executed these ready-to-run sample applications and

would like to take the next step of creating a similar set of applications on your

own, see Creating an enterprise service for an IMS transaction for instructions on

how to do so. It is also possible to create an IMS service that runs an IMS

command. To create an IMS service that runs an IMS command rather than an IMS

transaction, click on this link: Building a service that submits commands to IMS.

For instructions on deploying an IMS service to a production server, click on this

link: Deploying an IMS Enterprise service to a production server.

Good luck and have fun!

Sample: Building a service that submits commands to IMS

The IMS resource adapter (also known as IMS Connector for Java) included with

WebSphere Studio is primarily intended for use in running transactions on a host

IMS system. However, it can also be used by WebSphere Studio applications to

submit certain IMS commands. The IMS resource adapter uses the host product,

IMS Connect, to access IMS. IMS Connect uses the Cross-system Coupling Facility

(XCF) to access IMS through OTMA. IMS allows only certain commands to be

submitted through the IMS OTMA interface. Since the IMS resource adapter

Chapter 9. Samples 131

accesses IMS through OTMA, these are the only commands that can be submitted

to IMS by an application that uses the IMS resource adapter. For a list of these

commands, see the IMS Version 6 publication Operator’s Reference, section

Commands Supported from OTMA.

The output of an IMS command is a message consisting of one or more segments

of data. The output of some IMS commands is a ″DFS″ message. For example, the

output of most /START commands is usually the message ″DFS058I START

COMMAND COMPLETED″. Other IMS commands do not return ″DFS″ messages.

For example, /DISPLAY commands return multiple segments of data representing

lines of display information. In order to treat both types of output the same, you

must set the property imsRequestType of class

com.ibm.connector2.ims.ico.IMSInteractionSpec to 2. This value indicates to the

IMS resource adapter that the interaction is an IMS command and that ″DFS″

messages should be treated as normal output and not as Java exceptions.

This sample illustrates how you can create a standalone Java application to invoke

a service that submits a command to a host IMS system. Other types of Java

applications can also be used. A detailed description of how to create an IMS

service and invoke the service using various types of Java applications can be

found in Sample: Creating an enterprise service for an IMS transaction.

Before running the sample, ensure that your COBOL copybook contains valid

COBOL definitions for the input and output messages:

v The input definition should include an LL field, a ZZ field, and a text field large

enough for the command(s) you wish to submit. For example:

v 01 INMSG.

 02 INLL PICTURE S9(3) COMP.

 02 INZZ PICTURE S9(3) COMP.

 02 INCMD PICTURE X(30).

v The output definition will be used only as a mechanism for retrieving the byte

array containing the command output, so it only requires an LL field, a ZZ field,

and a text field of non-zero size. For example:

v 01 OUTMSG.

 02 OUTLL PICTURE S9(3) COMP VALUE +0.

 02 OUTZZ PICTURE S9(3) COMP VALUE +0.

 02 DATA PICTURE X(30) VALUE SPACES.

Much of the code described below can be found in:

WS_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.ims_5.1.0

\sampleparts

where WS_installdir is the WebSphere Studio installation directory. If you want to

use this code you should follow all of the steps below, using the suggested names.

To build the sample Java application that submits commands to IMS, complete the

following tasks:

132 IMS Connector for Java 2.2 and 9.1.0.1

Step 1. Creating a service project

The service project stores all of the files for your project, including imported source

files and files generated by wizards. To create a service project, complete the

following steps:

1. Ensure you are in the Business Integration perspective.

2. Click the Create a service project icon in the toolbar to create a service project.

The Service Project wizard opens.

3. Type IMSCmdSample for the name of the project. Under Project contents accept

the default and click Finish.

Step 2. Importing a COBOL file

In this step, you import the COBOL copybook file that is needed to create your

service definition. The COBOL file defines the structure of the input and output

messages.

Before importing the COBOL files into the workbench, create a Java package to

hold the file:

1. Create a Java package for the file you are about to import. Select the project

you just created (IMSCmdSample) and click the New Java package icon.

2. In the Java Package page of the wizard, ensure that IMSCmdSample is the name

of the folder.

3. Type sample.ims.imscmd for the name of the package. Click Finish.

Next, you need to import the COBOL file into the sample.ims.imscmd package.

1. Expand the IMSCmdSample project, right-click the package you just created

(sample.ims.imscmd), and select Import to open the Import wizard.

2. Select File system to import the resources from the local file system. Click

Next.

3. Click Browse to locate and select the following directory:

WS_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.ims_5.1.0\

sampleparts

Click OK.

4. In the File system page of the Import wizard, select the IMS folder without

selecting the check box.

5. Select the IMSCmd.ccp check box to import the COBOL copybook.

6. Ensure that IMSCmdSample/sample/ims/imscmd is the name of the

destination folder for the imported resource. Click Finish to import the file and

close the wizard.

7. Look at the Tasks view to see if the import resulted in any errors.

8. Verify that the sample.ims.imscmd package in the Package Explorer view

contains the imported file.

Step 3. Creating a service definition

The service definition is described in Web Services Description Language (WSDL),

which is standard for describing networked, XML-based services. WSDL provides

a simple way to describe the basic format of system requests regardless of the

underlying run-time implementation. A WSDL document describes where the

service is deployed and what operations the service provides. WebSphere Studio

Chapter 9. Samples 133

tools for building enterprise services use WSDL as the model for describing any

kind of service. To create the service definition, complete the following steps:

 1. Select File > New > Other.

 2. In the Select window, select Business Integration and choose Services built

from. Click Next.

 3. In the Create Service page, select IMS and click Next.

 4. In the Connection Properties page, type the property values appropriate for

your environment. See Connection properties for a description of these

properties. For example:

v In the Host name field, type MYHOST.ABC.XYZ.COM

v In the Port number field, type 9999

v In the Data store name field, type MYDSTOR

 5. Click Next. Note: Because the connection properties are not encrypted, you

should remove at minimum the User name and password from the port

definition after you have completed testing.

 6. In the Service Binding page, ensure that the following values are set:

v Source folder name: /IMSCmdSample.

v Package name: sample.ims.imscmd.

v Target namespace: http://imscmd.ims.sample/.

In the Interface file name field, type IMSCmd. The remaining fields are

automatically filled. Ensure that the Port type name is IMSCmd.

 7. Click Finish to accept all other default names. Click OK to proceed to the

page where you will create the binding operations. A WSDL editor opens with

the overview of the IMSCmdIMSBinding.wsdl file.

 8. In the Bindings container of the Graph view, right-click IMSCmdIMSBinding

and select Generate Binding Content.

 9. The Specify Binding Details page opens. In the Protocol field, select IMS.

10. Click Add next to the Add binding operations field.

11. In the Operation Binding page, you create new input and output messages

based on the existing input and output operations. In the Operation name

field, type runIMSCmd. Leave the type of operation as REQUEST_RESPONSE

because there will be two messages, one for the request to run the IMS

transaction and one for the response from the IMS transaction. Click Next.

12. The properties of the interaction with the IMS application program are shown.

See Operation binding properties for a description of these properties. Type

the property values appropriate for your application. For example:

v In the imsRequestType field, type 2.

v Accept all the other defaults.

Click Next.

13. In the Operation Binding page, click Import next to the input message. The

File Selection page opens. Import the IMSCmd.cpp file to create the XML

schema definition for the input part.

a. Expand IMSCmdSample > sample > ims > imscmd and select

IMSCmd.ccp. Click Next.

b. In the COBOL Import Properties page, enter the following values:

Note: If you choose the z/OS platform, the values for all the fields except

TRUNC are automatically filled in as shown in the following table.

Because most IMS programs are compiled with the TRUNC(BIN) option, it

is recommended that you change the value of TRUNC from STD to BIN.

134 IMS Connector for Java 2.2 and 9.1.0.1

Platform z/OS

Codepage 037

Floating point format IBM 390 Hexadecimal

Endian Big

Remote integer endian Big

External decimal sign EBCDIC

QUOTE DOUBLE

TRUNC BIN

NSYMBOL DBCS

Other values in the table above might differ for your environment. For

example, you might need to specify a different value for the Codepage

field if your IMS data is in a code page other than U.S. English (037). The

value for the QUOTE field also might differ, depending on your COBOL

source. Click Next.
14. In the COBOL Importer page, the data structures from the file are displayed.

Select INPUTMSG, which will populate the XSD type name with

INPUTMSG. You can accept the default to overwrite the XSD types. Click

Finish.

15. In the Operation Binding page, click Import next to the output message. The

File Selection page opens. You import the IMSCmd.ccp file to specify the XML

schema definition for the output part.

a. Select the same IMSCmd.ccp from the IMSCmdSample package. In this

sample, both the input and output message definitions are contained in the

same COBOL source file, IMSCmd.ccp. Click Next.

b. In the COBOL Import Properties page, specify the same values that you

entered in step 11b for input. Click Next.

c. In the COBOL Import window, select OUTPUTMSG in the data structures

list, which will populate the XSD type name with OUTPUTMSG. You can

accept the default to overwrite the XSD types. Click Finish to return to the

Operation Binding page.
16. On the Operation Binding page, click Next.

17. In the Operation Binding summary page, the new operation information is

displayed. Click Finish. The wizard populates WSDL files with the operation

information.

18. Press Ctrl-S to save the file and close the editor by clicking the X next to

IMSCmdIMSBinding.wsdl. Note that you must save the changes in order to

successfully proceed with the sample. Also, close the Service Provider page in

the editor. The service interface file IMSCmdIMSBinding.wsdl and the service

binding file IMSCmdIMSService.wsdl are updated in the sample.ims.imscmd

package of the IMSCmdSample project.

Now you can create a proxy to directly access the service you just created.

Step 4: Creating a Java service proxy

The Java service proxy provides a remote procedure call interface to the service.

Using the proxy, the application calls a remote method on the service as if the

Chapter 9. Samples 135

method were a local one. Once the application makes the remote call, the proxy

handles all of the communication details between the application and service.

To create the Java service proxy, complete the following steps:

1. Expand IMSCmdSample > sample.ims.imscmd, right-click the service binding

file IMSCmdIMSService.wsdl, and select Enterprise Services > Generate a

service proxy. The Generate Service Proxy wizard opens.

2. In the Proxy Selection page, ensure Web Services Invocation Framework

(WSIF) is selected and click Next.

3. In the Service Proxy page, verify that the service you want to create the proxy

for is shown. Verify that the proxy class properties are correct. Because you

selected a file in the previous step, most fields are populated with default

values. These default values are generated based on the contents of the selected

service binding file.

a. Generate helper classes is selected by default. Your service will need these

Java helper classes because you are creating a service that includes complex

types.

b. Verify that the source folder is /IMSCmdSample.

c. Verify that the package name is sample.ims.imscmd.

d. Type IMSCmdIMSProxy for the class name.

e. Click Next.
4. In the Service Proxy Style page, specify the style of the proxy and the

operations to expose in the proxy:

a. Select the Command bean proxy style.

b. Select the runIMSCmd method.
5. Click Finish. The Java service proxy IMSCmdIMSProxy is generated in the

IMSCmdSample project.

Next, write a Java class to test the proxy.

Step 5: Testing the Java service proxy

To test the Java service proxy, you need to write client code that executes the

proxy. This code sets parameters for the input message, invokes the proxy, passes

the input message to the proxy, receives an output message back from the proxy,

and then displays the message on the console.

To write the Java class, complete the following steps:

1. Import the file,IMSCommandOutput.java into the package sample.ims.imscmd

from the directory:

WS_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.ims_5.1.0

\sampleparts

where WS_installdir is the directory where you installed WebSphere Application

Developer Integration Edition.

2. Expand the IMSCmdSample project and then select the sample.ims.imscmd

package. From the toolbar, click the New Java class icon. You will create a Java

class that uses the IMS proxy to invoke the IMS service. The service submits a

command to IMS, then returns the output of the command to the application.

3. Type in the new class name: TestIMSCmdIMS.

4. Click the public static void main(String[]args) check box. Accept all other

defaults and click Finish.

136 IMS Connector for Java 2.2 and 9.1.0.1

5. In the editor that opens, replace the code with the following Java code:

6. package sample.ims.imscmd;

 import com.ibm.connector2.ims.ico.*;

 import java.io.*;

 public class TestIMSCmdIMS

 {

 public static void main(String[] args)

 {

 try

 {

 INMSG input = new INMSG();

 input.setInll((short) 34);

 input.setInzz((short) 0);

 input.setIncmd("/START OTMA");

 IMSCmdIMSProxy proxy = new IMSCmdIMSProxy();

 proxy.setINMSG(input);

 // Run the IMS service.

 proxy.execute();

 // Retrieve the command output as a byte array.

 OUTMSG output = proxy.getOUTMSGPart();

 ByteArrayOutputStream outputStream = new

 ByteArrayOutputStream();

 ((org.apache.wsif.providers.jca.WSIFFormatHandler_JCA)

 output._getFormatHandler()).write(outputStream);

 byte[] b = outputStream.toByteArray();

 // Use byte array to populate

 IMSCommandOutput object;.

 IMSCommandOutput cmdOut = new

 IMSCommandOutput(b);

 // Print command output.

 System.out.println(

 "\nCommand output as concatenated string:"

 + cmdOut.getMessage());

 java.util.Enumeration en = (cmdOut.

 getMessageSegments()).elements();

 System.out.println("\nCommand output as segments:");

 while (en.hasMoreElements())

 {

 System.out.println(en.nextElement());

 }

 }

 catch (Exception e)

 {

 if (e instanceof org.apache.wsif.WSIFException)

 {

 Throwable ic4jEx =

 ((org.apache.wsif.WSIFException) e).

 getTargetException();

 System.out.println(

 "\nIMS Connector threw exception: " + ic4jEx);

 }

 else

 {

 System.out.println("\nCaught exception is: " + e);

 }

 }

 }

 }

Chapter 9. Samples 137

7. Close the editor and click Yes to save the changes.

8. Select the TestIMSCmdIMS.java class from the package explorer. Expand the

Run icon on the toolbar by selecting the arrow beside it. From the pop-up

menu, select Run As > Java Application.

In the console view, you will see the following command output:

 Command output as concatenated string:

 DFS058I 17:45:13 START COMMAND COMPLETED

 Command output as segments:

 DFS058I 17:45:13 START COMMAND COMPLETED

Explanation:

v Because the output of IMS commands vary in length and number of

segments, the Java application that invokes the service must contain

additional logic. The output of a service can be retrieved as a byte array. In

the case of an IMS command, the byte array consists of one or more

segments of EBCDIC characters, each segment starting with a two byte

length (LL), followed by two flag bytes. In the sample code, the

_getFormatHandler() method of the class,

com.ibm.wsif.format.jca.WSIFFormatPart_JCA, is used in retrieving the

command output as a byteArrayOutputStream object, which is then

converted to a byte array.

v The byte array is used to populate an IMSCommandOutput object. The

IMSCommandOutput class is provided as a sample class in:

WS_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.ims_5.1.0

\sampleparts

. It provides methods for retrieving the command output as a concatenated

string of all the segments or as individual segments. Since the output of an

IMS command is in U.S. English, the IMSCommandOutput class converts the

byte array from EBCDIC to unicode using code page 037.

Sample: Building container-managed and component-managed

transactional EJBs to run IMS transactions

Objectives

The main objective of this sample is to describe how to build two transactional

EJBs, container-managed and component-managed, that use IMS Connector for

Java to run a single resource global transaction using two-phase commit.

This sample demonstrates how to:

v Create single action container-managed and component-managed transactional

methods (methods that perform one add, delete, update, or display command

against an IMS database).

v Implement multi-action methods bundled within container-managed and

component-managed transactions.

v Create a servlet to call a container-managed or component-managed bean.

v Deploy and run the application using the HTTP server and WebSphere

Application Server for z/OS.

138 IMS Connector for Java 2.2 and 9.1.0.1

Time required

Allow 90 minutes. This will give you enough time to create the enterprise service,

the EJB sessions beans, and the EJB methods, generate web pages from the Java

bean, and run the sample.

Before you begin

This sample assumes that WebSphere Studio Application Developer Integrated

Edition, Version 5.1 is installed on your machine and that you are familiar with

using the product. It also assumes that the IMS resource adapter (also known as

IMS Connector for Java) is correctly installed and configured on the WebSphere

Application Server. See Importing a resource adapter for more information about

importing the IMS resource adapter. Before performing the steps in this sample,

you must have access to Sample: Creating an enterprise service for an IMS

transaction.

Description

This sample simulates a joint-policy insurance customer database (a phone book)

in which the insurance agent stores information about couples and individuals.

The insurance agent uses methods such as addCouple, deleteCouple,

updateCouple, and displayCouple. Each couple in the database consists of a pair of

individual entries and a set of status records that link each individual to the other

individual in the couple. Each method to add, delete, update, or display a couple

is bundled into a single transaction. This means that every aspect of this

transaction must be successful or the entire transaction will be rolled back.

This sample leads you through detailed steps that describe how to generate

transactional EJBs to run an IMS transaction. Within WebSphere Studio, you will

use wizards to generate code for the service, and then deploy the code to the

WebSphere test environment that is shipped with WebSphere Studio. You will also

generate session beans to access the service, and you will add EJB methods to

remote interfaces to be used by client applications. The client application provides

input data for the IMS input message, which the service passes to the IMS system.

The IMS transaction runs and returns an output message, the contents of which are

returned to the client by the service. For this sample, you run all of the server and

client applications on the same machine. The steps in this sample are:

1. Preparing the sample

a. Generating the enterprise service

b. Generating an EJB proxy

c. Creating exception and output classes
2. Creating the sample

a. Creating EJB session beans for container-managed and component-managed

EIS sign-on

b. Creating EJB business methods

c. Adding the EJB methods to the remote interfaces

d. Setting the EJB transaction attributes for the container-managed bean

e. Generating deployed code

f. Creating an error page

g. Generating web pages from a Java bean
3. Configuring the server and deploying the sample

Chapter 9. Samples 139

a. Configuring the server and deploying the EAR project

b. Running the sample

Part 1: Preparing the sample

Before you build container-managed and component-managed EJB beans, you need

to prepare the sample by first creating the enterprise service, then generating an

EJB proxy, and finally creating exception and output classes.

Step 1: Creating the enterprise service

To create an enterprise service, you must complete all of the steps described in Part

1: Creating the enterprise service in the Sample: Creating an enterprise service for an

IMS transaction with one exception. Replace Step 6: Binding the resource reference in

the sample and follow these steps instead:

1. Click the J2EE Hierarchy tab in the Business Integration perspective and

expand EJB Modules.

2. Double-click myIMSPhoneBookServiceEJB to open the Deployment Descriptor

Editor. Click the References tab.

3. In the References page, expand MyPhoneBookService and select the

ResourceRef element.

4. Select Application in the Authentication field.

5. Under WebSphere Bindings, type myIMSTarget for the JNDI name.

6. Click the Assembly Descriptor tab. Under Container Transactions, click Add.

The Add Container Transaction wizard opens.

7. On the Enterprise Bean Selection page, select the check box next to the

MyPhoneBookService bean and click Next.

8. On the Container Transaction Type and Method Elements page, select Required

in the Container transaction type field. Expand MyPhoneBookService and

select the runPhoneBook (sample.ims.INPUTMSG) method. Click Finish.

9. Press Ctrl-S to save your changes and then close the EJB Deployment

Descriptor editor.

Note: Do not complete the entire Creating an enterprise service for an IMS transaction

sample. Complete only Part 1: Creating the enterprise service and replace Step 6:

Binding the resource reference with the steps listed above.

Step 2: Generating an EJB proxy

Now you will create an EJB proxy so that later the EJB proxy can access the

deployed services. The deployed services are then used by the container-managed

and component-managed session beans. To generate an EJB proxy, complete the

following steps:

 1. Click the Services tab of the Business Integration perspective.

 2. Expand Deployable Service > myIMSPhoneBookServiceEJB >ejbModule>

sample.ims and select myPhoneBookEJBService.wsdl.

 3. Right-click the file and select Enterprise Services > Generate Service Proxy.

The Generate Service Proxy wizard opens.

 4. In the Proxy selection page, select Web Services Invocation Framework for

the type of proxy to generate. Click Next.

 5. In the Service Proxy page, the fields contain default values which are based

on the service file you selected.

140 IMS Connector for Java 2.2 and 9.1.0.1

6. Ensure that the Source folder is /myIMSPhoneBookServiceEJB/ejbModule.

 7. Ensure that the Package name is sample.ims.

 8. Change the class name to myPhoneBookEJBProxy.java. Click Next.

 9. In the Service Proxy style page, select Client stub for the Proxy style and then

select the runPhoneBook check box.

10. Click Finish.

The EJB proxy, myPhoneBookEJBProxy, is generated in the

myIMSPhoneBookServiceEJB project. The enterprise service WSDL files are also

copied into this service project.

Step 3: Creating exception and output classes

An exception class is created to handle transactional logic problems, such as when

an attempt is made to add a new couple to the phone book when an individual of

that couple already exists in the database. An output class is created to group

multiple output messages.

To create a new exception type, complete the following steps:

1. In the Package Explorer view, expand myIMSPhoneBookServiceEJB >

ejbModule and select the sample.ims package.

2. Click the Create a Java class icon on the toolbar. The New Java Class wizard

opens.

3. In the New Java Class wizard, ensure that the Source folder is

myIMSPhoneBookServiceEJB/ejbModule and the package is sample.ims.

4. In the Name field, type PhoneBookException for the name of the class that you

are creating.

5. In the Superclass field, type java.lang.Exception.

6. Ensure Constructors from superclass and Inherited abstract methods methods

are selected for which methods to create.

7. Accept the other defaults and click Finish. The java class,

PhoneBookException.java, is created.

To create an output class, complete the following steps:

1. In the Package Explorer view, expand myIMSPhoneBookServiceEJB >

ejbModule and select the sample.ims package.

2. Click the Create a Java class icon on the toolbar. The New Java Class wizard

opens.

3. In the New Java Class wizard, ensure that the Source folder is

myIMSPhoneBookServiceEJB/ejbModule and the package is sample.ims.

4. In the Name field, type CoupleOutput for the name of the class that you are

creating.

5. Click on the Add button next to the Interfaces field. The Implemented

Interfaces Selection window opens. In the Choose Interfaces field, type

serializable and click Ok. Ensure that java.io.Serializable is in the

Interfaces field.

6. Accept all other defaults, and click Finish. The java class, CoupleOutput.java,

is created and is opened in the editor view.

7. Replace the code in the editor with the following Java code:

package sample.ims;

import java.io.Serializable;

Chapter 9. Samples 141

public class CoupleOutput implements Serializable {

 OUTPUTMSG output1;

 OUTPUTMSG output2;

 public CoupleOutput() {

 super();

 }

 public CoupleOutput(OUTPUTMSG initOutput1, OUTPUTMSG initOutput2) {

 super();

 this.output1 = initOutput1;

 this.output2 = initOutput2;

 }

 public OUTPUTMSG getOutput1() {

 return output1;

 }

 public OUTPUTMSG getOutput2() {

 return output2;

 }

 public void setOutput1(OUTPUTMSG output1) {

 this.output1 = output1;

 }

 public void setOutput2(OUTPUTMSG output2) {

 this.output2 = output2;

 }

}

8. Press Ctrl-S to save the file and then close the CoupleOutput.java file.

Part 2: Creating the sample

In this section, you will create two EJB session beans which uses

container-managed EIS sign-on and the other for component-managed EIS sign-on.

Each session bean will have eight business methods. After you create the EJB

session beans, you will create and test methods that perform container-managed or

component-managed transactions and verify the transaction output.

Note: In this sample, you will see the terms container-managed and

component-managed used to describe both EIS sign-on and transactions. It is

important that you read these instructions carefully to avoid confusion over the

use of these terms. For more information about container-managed and

component-managed EIS sign-on, see Container-managed EIS sign-on and

Component-managed EIS sign-on.

Step 1: Creating EJB session beans for container-managed and

component-managed EIS sign-on

To create a container-managed EJB session bean, complete the following steps:

1. In the Business Integration Perspective, click on the Package Explorer tab.

2. Select the myIMSPhoneBookServiceEJB project.

3. Click the Create an Enterprise Bean icon.

4. The New Enterprise Bean wizard opens. Ensure that the EJB project name is

myIMSPhoneBookServiceEJB and click Next.

5. In the Create a 2.0 Enterprise Bean window:

142 IMS Connector for Java 2.2 and 9.1.0.1

a. Ensure that Session bean is selected.

b. In the Bean name field, type ContPhoneBook.

c. Ensure that the Source folder is /ejbModule.

d. Ensure that the Default package name is sample.ims. Click Next.

6. In the Enterprise Bean Details window:

a. For the Session type, select stateless.

b. For the Transaction type, select Container.

c. Accept all other defaults and click Finish.

To create a component-managed EJB session bean, complete the following steps:

1. Repeat steps 1 through 4 that are listed for creating the container-managed

session bean.

2. For steps 5 and 6, follow these steps:

v In the Create a 2.0 Enterprise Bean window:

a. Ensure that Session bean is selected.

b. In the Bean name field type CompPhoneBook.

c. Ensure that the Source folder is /ejbModule.

d. Ensure that the Default package name is sample.ims. Click Next.

v In the Enterprise Bean Details window:

a. For the Session type, select stateless.

b. For the Transaction type, select bean.

c. Accept all other defaults and click Finish.

The ContPhoneBook and CompPhoneBook session beans have been created and

are generated in the sample.ims package under the myIMSPhoneBookServiceEJB

project.

Step 2: Creating EJB business methods

In this section, you will create a total of 16 EJB business methods. Eight business

methods are for container-managed beans and eight business methods are for

component-managed beans. Some of these business methods verify the output

message and some run the EJB proxy to perform a single or multi-action container

or component-managed transaction and verify the transaction output. The business

methods that you will create for each bean are:

v add()

v delete()

v display()

v update()

v addCouple()

v deleteCouple()

v displayCouple()

v updateCouple()

To create the EJB business methods for the component-managed bean, complete the

following steps:

1. In the Package Explorer view, expand myIMSPhoneBookServiceEJB >

ejbModule > sample.ims and double-click the component-managed java bean,

CompPhoneBookBean.java, to open the Deployment Descriptor editor.

Chapter 9. Samples 143

2. In the editor view, replace the code in the editor with the following Java code:

package sample.ims;

import javax.transaction.*;

public class CompPhoneBookBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 public javax.ejb.SessionContext getSessionContext() {

 return mySessionCtx;

 }

 public void setSessionContext(javax.ejb.SessionContext ctx){

 mySessionCtx = ctx;

 }

 public void ejbActivate() {

 }

 public void ejbCreate() throws javax.ejb.CreateException {

 }

 public void ejbPassivate() {

 }

 public void ejbRemove() {

 }

 public void verifyOutput(OUTPUTMSG output, String cmd)

 throws PhoneBookException {

 try {

 if (output == null)

 throw new PhoneBookException("NULL

 OUTPUT");

 String outMsg = output.getOut__msg().trim();

 if (cmd.equals("DISPLAY") ||

 cmd.equals("ADD")) {

 if (!outMsg.equals

 ("ENTRY WAS " + cmd + "ED"))

 throw new

 PhoneBookException

 (output.get

 Out__msg());

 } else {

 if (!outMsg.equals("ENTRY WAS " +

 cmd + "D"))

 throw new

 PhoneBookException

 (output.get

 Out__msg());

 }

 } catch (PhoneBookException pe) {

 throw pe;

 }catch (Exception e) {

 throw new PhoneBookException

 (e.toString());

 }

 }

 public void verifyOutput(OUTPUTMSG output, String cmd,

 String state)

 throws PhoneBookException {

 try {

 if (output == null)

 throw new PhoneBookException("NULL

 OUTPUT");

 String outMsg = output.getOut__msg().trim();

 if (cmd.equals("DISPLAY") ||

 cmd.equals("ADD")) {

 if (!outMsg.equals("ENTRY WAS " +

 cmd + "ED"))

 throw new PhoneBookException(

 output.getOut__msg() +

 ": " + state);

 } else {

144 IMS Connector for Java 2.2 and 9.1.0.1

if (!outMsg.equals("ENTRY WAS " +

 cmd + "D"))

 throw new PhoneBookException(

 output.getOut__msg() +

 ": " + state);

 }

 } catch (PhoneBookException pe) {

 throw pe;

 }catch (Exception e) {

 throw new PhoneBookException(e.toString());

 }

 }

 public OUTPUTMSG phoneBookAction(String lastName,String firstName,

 String zip,String ext,String cmd) throws PhoneBookException {

 UserTransaction transaction = mySessionCtx.

 getUserTransaction();

 try {

 transaction.begin();

 myPhoneBookEJBProxy ejbProxy = new

 myPhoneBookEJBProxy();

 INPUTMSG input = new INPUTMSG();

 input.setIn__ll((short) 59);

 input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setIn__name1(lastName);

 input.setIn__name2(firstName);

 input.setIn__zip(zip);

 input.setIn__extn(ext);

 input.setIn__cmd(cmd);

 OUTPUTMSG output =

 ejbProxy.runPhoneBook(input);

 verifyOutput(output, cmd);

 transaction.commit();

 return output;

 } catch (Exception ex) {

 try {

 transaction.rollback();

 Exception storedEx;

 throw new

 PhoneBookException(ex.toString());

 } catch (SystemException se) {

 throw new PhoneBookException(

 ex.toString() + ": ROLLBACK

 FAILED:

 " + se.toString());

 }

 }

 }

 public OUTPUTMSG phoneBookService(String lastName,String firstName,

 String zip,

 String ext, String cmd, String state) throws Exception {

 myPhoneBookEJBProxy ejbProxy = new

 myPhoneBookEJBProxy();

 INPUTMSG input = new INPUTMSG();

 input.setIn__ll((short) 59);

 input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setIn__name1(lastName);

 input.setIn__name2(firstName);

 input.setIn__zip(zip);

 input.setIn__extn(ext);

 input.setIn__cmd(cmd);

 OUTPUTMSG output = ejbProxy.runPhoneBook(input);

 verifyOutput(output,cmd,state);

 return output;

 }

 public CoupleOutput phoneBookAction(String lastName1,

Chapter 9. Samples 145

String firstName1,String zip1,

 String ext1,String lastName2,String firstName2,String zip2,

 String ext2,String cmd)throws PhoneBookException {

 OUTPUTMSG output1,output2,coupleStatus1,coupleStatus2;

 String hashcode1, hashcode2;

 UserTransaction transaction =

 mySessionCtx.getUserTransaction();

 try {

 transaction.begin();

 output1 = phoneBookService(lastName1,firstName1,

 zip1,ext1,cmd,

 "FIRST INDIVIDUAL");

 lastName1 = lastName1.toUpperCase();

 int h = lastName1.hashCode();

 if (h<0) h=0-h;

 hashcode1 = String.valueOf(h);

 coupleStatus1 = phoneBookService(hashcode1,

 lastName2,zip1,

 ext1,cmd,"FIRST COUPLE STATUS");

 if (cmd.compareTo("DISPLAY")==0)

 lastName2 = coupleStatus1.getOut__name2();

 output2 = phoneBookService(lastName2,firstName2,

 zip2,ext2,cmd,

 "SECOND INDIVIDUAL");

 if (cmd.compareTo("DISPLAY")!=0) {

 lastName2 = lastName2.toUpperCase();

 h = lastName2.hashCode();

 if (h<0) h=0-h;

 hashcode2 = String.valueOf(h);

 coupleStatus2 = phoneBookService(hashcode2,

 lastName1,zip2,ext2,cmd,"SECOND COUPLE

 STATUS");

 }

 transaction.commit();

 return new CoupleOutput(output1,output2);

 } catch (Exception ex) {

 try {

 transaction.rollback();

 System.out.println("EXCEPTION CAUGHT");

 Exception storedEx;

 throw new

 PhoneBookException(ex.toString());

 } catch (SystemException se) {

 throw new PhoneBookException(

 ex.toString() + ": ROLLBACK

 FAILED: "

 + se.toString());

 }

 }

 }

 public OUTPUTMSG display(String lastName, String firstName, String zip,

 String ext) throws PhoneBookException {

 return phoneBookAction(lastName, firstName, zip, ext,

 "DISPLAY");

 }

 public OUTPUTMSG add(String lastName, String firstName, String zip,

 String ext) throws PhoneBookException {

 return phoneBookAction(lastName, firstName, zip, ext,

 "ADD");

 }

 public OUTPUTMSG delete(String lastName, String firstName, String zip,

 String ext) throws PhoneBookException {

 return phoneBookAction(lastName, firstName, zip, ext,

 "DELETE");

 }

 public OUTPUTMSG update(String lastName, String firstName,String zip,

 String ext) throws PhoneBookException {

146 IMS Connector for Java 2.2 and 9.1.0.1

return phoneBookAction(lastName, firstName, zip, ext,

 "UPDATE");

 }

 public CoupleOutput displayCouple(String lastName1,

 String firstName1,String zip1,

 String ext1) throws PhoneBookException {

 return phoneBookAction(lastName1,firstName1,

 zip1,ext1,"","","","","DISPLAY");

 }

 public CoupleOutput addCouple(String lastName1,

 String firstName1,String zip1,

 String ext1,String lastName2,String firstName2,

 String zip2,String ext2)

 throws PhoneBookException {

 return phoneBookAction(lastName1,firstName1,

 zip1,ext1,

 lastName2,

 firstName2,

 zip2,ext2,"ADD");

 }

 public CoupleOutput deleteCouple(String lastName1,

 String firstName1,String zip1,

 String ext1,String lastName2,String firstName2,

 String zip2,String ext2)

 throws PhoneBookException {

 return phoneBookAction(lastName1,firstName1,

 zip1,ext1,

 lastName2,

 firstName2,

 zip2,ext2,"DELETE");

 }

 public CoupleOutput updateCouple(String lastName1,

 String firstName1,String zip1,

 String ext1,String lastName2,String firstName2,

 String zip2,String ext2)

 throws PhoneBookException {

 return phoneBookAction(lastName1,firstName1,

 zip1,ext1,

 lastName2,

 firstName2,

 zip2,ext2,"UPDATE");

 }

}

3. Press Ctrl-S to save the file and then close the CompPhoneBookBean.java file.

To create the EJB business methods for the container-managed bean, complete the

following steps:

1. In the Package Explorer view, expand myIMSPhoneBookServiceEJB >

ejbModule > sample.ims and double-click the container-managed java bean,

ContPhoneBookBean.java, to open the Deployment Descriptor editor.

2. In the editor view, replace the code in the editor with the following Java code:

package sample.ims;

public class ContPhoneBookBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 public javax.ejb.SessionContext getSessionContext() {

 return mySessionCtx;

 }

 public void setSessionContext(javax.ejb.SessionContext ctx){

 mySessionCtx = ctx;

 }

 public void ejbActivate() {

 }

 public void ejbCreate() throws javax.ejb.CreateException {

Chapter 9. Samples 147

}

 public void ejbPassivate() {

 }

 public void ejbRemove() {

 }

 public void verifyOutput(OUTPUTMSG output, String cmd)

 throws PhoneBookException {

 try {

 if (output == null)

 throw new PhoneBookException("NULL

 OUTPUT");

 String outMsg = output.getOut__msg().trim();

 if (cmd.equals("DISPLAY") ||

 cmd.equals("ADD")) {

 if (!outMsg.equals("ENTRY WAS " +

 cmd + "ED"))

 throw new PhoneBookException

 (output.getOut__msg());

 } else {

 if (!outMsg.equals("ENTRY WAS " +

 cmd + "D"))

 throw new PhoneBookException

 (output.getOut__msg());

 }

 } catch (PhoneBookException pe) {

 throw pe;

 } catch (Exception e) {

 throw new PhoneBookException(e.toString());

 }

 }

 public void verifyOutput(OUTPUTMSG output, String cmd, String

 state)

 throws PhoneBookException {

 try {

 if (output == null)

 throw new PhoneBookException("NULL

 OUTPUT");

 String outMsg = output.getOut__msg().trim();

 if (cmd.equals("DISPLAY") ||

 cmd.equals("ADD")) {

 if (!outMsg.equals("ENTRY WAS " +

 cmd + "ED"))

 throw new PhoneBookException(

 output.getOut__msg() +

 ": " + state);

 } else {

 if (!outMsg.equals("ENTRY WAS " + cmd +

 "D"))

 throw new PhoneBookException(

 output.getOut__msg() + ":

 " + state);

 }

 } catch (PhoneBookException pe) {

 throw pe;

 } catch (Exception e) {

 throw new PhoneBookException(e.toString());

 }

 }

 public OUTPUTMSG phoneBookAction(

 String lastName,

 String firstName,

 String zip,

 String ext,

 String cmd)

 throws PhoneBookException {

 try {

 myPhoneBookEJBProxy ejbProxy = new

148 IMS Connector for Java 2.2 and 9.1.0.1

myPhoneBookEJBProxy();

 INPUTMSG input = new INPUTMSG();

 input.setIn__ll((short) 59);

 input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setIn__name1(lastName);

 input.setIn__name2(firstName);

 input.setIn__zip(zip);

 input.setIn__extn(ext);

 input.setIn__cmd(cmd);

 OUTPUTMSG output =

 ejbProxy.runPhoneBook(input);

 verifyOutput(output, cmd);

 return output;

 } catch (Exception ex) {

 mySessionCtx.setRollbackOnly();

 Exception storedEx;

 throw new

 PhoneBookException(ex.toString());

 }

 }

 public OUTPUTMSG phoneBookService(

 String lastName,

 String firstName,

 String zip,

 String ext,

 String cmd,

 String state)

 throws Exception {

 myPhoneBookEJBProxy ejbProxy = new myPhoneBookEJBProxy();

 INPUTMSG input = new INPUTMSG();

 input.setIn__ll((short) 59);

 input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setIn__name1(lastName);

 input.setIn__name2(firstName);

 input.setIn__zip(zip);

 input.setIn__extn(ext);

 input.setIn__cmd(cmd);

 OUTPUTMSG output = ejbProxy.runPhoneBook(input);

 verifyOutput(output, cmd, state);

 return output;

 }

 public CoupleOutput phoneBookAction(

 String lastName1,

 String firstName1,

 String zip1,

 String ext1,

 String lastName2,

 String firstName2,

 String zip2,

 String ext2,

 String cmd)

 throws PhoneBookException {

 OUTPUTMSG output1, output2, coupleStatus1, coupleStatus2;

 String hashcode1, hashcode2;

 try {

 output1 =

 phoneBookService(

 lastName1,

 firstName1,

 zip1,

 ext1,

 cmd,

 "FIRST INDIVIDUAL");

 lastName1 = lastName1.toUpperCase();

 int h = lastName1.hashCode();

Chapter 9. Samples 149

if (h <0)

 h = 0 - h;

 hashcode1 = String.valueOf(h);

 coupleStatus1 =

 phoneBookService(

 hashcode1,

 lastName2,

 zip1,

 ext1,

 cmd,

 "FIRST COUPLE STATUS");

 if (cmd.compareTo("DISPLAY") == 0)

 lastName2 = coupleStatus1.getOut__name2();

 output2 =

 phoneBookService(

 lastName2,

 firstName2,

 zip2,

 ext2,

 cmd,

 "SECOND INDIVIDUAL");

 if (cmd.compareTo("DISPLAY") != 0) {

 lastName2 = lastName2.toUpperCase();

 h = lastName2.hashCode();

 if (h <0)

 h = 0 - h;

 hashcode2 = String.valueOf(h);

 coupleStatus2 =

 phoneBookService(

 hashcode2,

 lastName1,

 zip2,

 ext2,

 cmd,

 "SECOND COUPLE STATUS");

 }

 return new CoupleOutput(output1, output2);

 } catch (Exception ex) {

 mySessionCtx.setRollbackOnly();

 Exception storedEx;

 throw new PhoneBookException(ex.toString());

 }

 }

 public OUTPUTMSG display(

 String lastName,

 String firstName,

 String zip,

 String ext)

 throws PhoneBookException {

 return phoneBookAction(lastName, firstName, zip,

 ext, "DISPLAY");

 }

 public OUTPUTMSG add(

 String lastName,

 String firstName,

 String zip,

 String ext)

 throws PhoneBookException {

 return phoneBookAction(lastName, firstName, zip,

 ext, "ADD");

 }

 public OUTPUTMSG delete(

 String lastName,

 String firstName,

 String zip,

 String ext)

 throws PhoneBookException {

150 IMS Connector for Java 2.2 and 9.1.0.1

return phoneBookAction(lastName, firstName, zip,

 ext, "DELETE");

 }

 public OUTPUTMSG update(

 String lastName,

 String firstName,

 String zip,

 String ext)

 throws PhoneBookException {

 return phoneBookAction(lastName, firstName, zip,

 ext, "UPDATE");

 }

 public CoupleOutput displayCouple(

 String lastName1,

 String firstName1,

 String zip1,

 String ext1)

 throws PhoneBookException {

 return phoneBookAction(

 lastName1,

 firstName1,

 zip1,

 ext1,

 "",

 "",

 "",

 "",

 "DISPLAY");

 }

 public CoupleOutput addCouple(

 String lastName1,

 String firstName1,

 String zip1,

 String ext1,

 String lastName2,

 String firstName2,

 String zip2,

 String ext2)

 throws PhoneBookException {

 return phoneBookAction(

 lastName1,

 firstName1,

 zip1,

 ext1,

 lastName2,

 firstName2,

 zip2,

 ext2,

 "ADD");

 }

 public CoupleOutput deleteCouple(

 String lastName1,

 String firstName1,

 String zip1,

 String ext1,

 String lastName2,

 String firstName2,

 String zip2,

 String ext2)

 throws PhoneBookException {

 return phoneBookAction(

 lastName1,

 firstName1,

 zip1,

 ext1,

 lastName2,

 firstName2,

Chapter 9. Samples 151

zip2,

 ext2,

 "DELETE");

 }

 public CoupleOutput updateCouple(

 String lastName1,

 String firstName1,

 String zip1,

 String ext1,

 String lastName2,

 String firstName2,

 String zip2,

 String ext2)

 throws PhoneBookException {

 return phoneBookAction(

 lastName1,

 firstName1,

 zip1,

 ext1,

 lastName2,

 firstName2,

 zip2,

 ext2,

 "UPDATE");

 }

}

3. Press Ctrl-S to save the file and then close the ContPhoneBookBean.java file.

Step 3: Adding the container-managed and component-managed EJB methods to

the remote interfaces

The remote interfaces specify which business methods of an EJB can be used by

client applications. Generating the EJB automatically builds an empty Remote

Interface and a Home Interface with a default create method. To make the EJB

business methods you created in Part 1, Step 2, accessible to client applications,

add the methods to the Remote Interface by completing the following steps:

1. In the Package Explorer view, expand myIMSPhoneBookServiceEJB >

ejbModule > sample.ims and double-click the CompPhoneBookBean.java file

to open the file in the Deployment Descriptor editor view.

2. In the Outline pane, expand the CompPhoneBookBean.java class. Select the

following methods:

v display()

v add()

v delete()

v update()

v displayCouple()

v addCouple()

v deleteCouple()

v updateCouple()
3. Right-click any of the selected files and select Enterprise Bean > Promote to

Remote Interface. This adds a declaration for each of the selected methods to

the Remote Interface. The Remote Interface declarations you created are stored

in the file, CompPhoneBook.java.

4. Repeat steps 1 through 3 for the ContPhoneBookBean.java file. The Remote

Interface declarations you create are stored in the file, ContPhoneBook.java.

Step 4: Setting the EJB transaction attributes for the container-managed bean

152 IMS Connector for Java 2.2 and 9.1.0.1

Setting the transaction attributes specifies how a container should manage a

specific method or all of the methods within an EJB’s remote interface. To set the

EJB transaction attributes, complete the following steps:

1. Click the J2EE Hierarchy tab in the Business Integration perspective and

expand EJB Modules. Double-click myIMSPhoneBookServiceEJB to open the

Deployment Descriptor editor.

2. Click the Assembly Descriptor tab.

3. Under Container Transactions, click Add. The Add Container Transaction

wizard opens. In the Enterprise Bean Selection page, select the ContPhoneBook

check box and click Next.

4. In the Container Transaction Type and Method Elements page, select Required

for the Container Transaction type.

5. Expand the ContPhoneBook bean and select all of the methods found in the

remote interface. The methods include:

v add()

v addCouple()

v delete()

v deleteCouple()

v display()

v displayCouple()

v update()

v updateCouple()
6. Click Finish.

7. Press Ctrl-S to save the changes and then close the EJB Deployment Descriptor

editor.

Step 5: Generating deployed code

To run the sample, you must first generate the deployed code for the EJB session

beans. The deployed classes allow your beans to run on an EJB server. To generate

the deployed code, follow these steps:

1. Click on the J2EE Hierarchy tab in the Business Integration perspective and

expand EJB Modules.

2. Right-click myIMSPhoneBookServiceEJB, and select Generate > Deployment

and RMIC Code.

3. The Generate Deployment and RMIC Code wizard opens. Select all the

enterprise java beans (CompPhoneBook, ContPhoneBook,

myPhoneBookService) and click Finish.

Step 6: Generating access beans

This step provides instructions on how to create a java bean wrapper type access

bean. The access bean simplifies access to the Home and Remote Interfaces of your

enterprise bean and allows a standard java bean approach to using your EJB. To

generate an access bean, complete the following steps:

1. Click on the J2EE Hierarchy tab of the Business Integration perspective and

expand EJB Modules.

2. Right-click myIMSPhoneBookServiceEJB, and select New > Access Bean. The

Add an Access Bean wizard opens.

3. Select Java bean wrapper for the access bean type and click Next.

Chapter 9. Samples 153

4. Ensure that the EJB project name is myIMSPhoneBookServiceEJB and select the

CompPhoneBook and ContPhoneBook enterprise beans. Click Finish.

5. Click on the Package Explorer tab and right-click

myIMSPhoneBookServiceWeb. Select Properties.

6. In the Properties for myIMSPhoneBookServiceWeb window, select Java Build

Path and click the Projects tab. Accept all the defaults and select the

myIMSPhoneBookServiceEJB check box.

7. Click OK.

Step 7: Creating an error page

Before you can create a servlet, you must create an error page to capture any

exceptions encountered by the servlet. To create an error page, complete the

following steps:

1. Click on the Package Explorer tab and right-click on

myIMSPhoneBookServiceWeb. Select New > Other.

2. The Select page of the New window opens. In the left-pane, select Web and in

the right-pane, select JSP File.

3. Click Next.

4. The New JSP File wizard opens. In the wizard:

v Ensure that the Folder name is /myIMSPhoneBookServiceWeb/WebContent.

v For the JSP File name, type CouplePhoneBookError.

v Ensure that the Mark up Language is HTML.

v Click Finish. The editor opens with your CouplePhoneBookError.jsp file.
5. In the editor view, click the Source tab and replace the code with the following

Java and HTML code:

<%@ page isErrorPage="true" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<html>

<title>Error Page</title>

<body>

<form method="post" action="CouplePhoneBookResultsForm.jsp">

<table border="0" width="600">

<tr>

 <td colspan="5"><h2

align="center">
IMS Connector for Java Joint Insurance

Policy Phonebook
</h2>

</td>

<tr>

 <td colspan="5">RESULT: EXCEPTION WAS THROWN<td>

</tr>

<tr height="10"></tr>

<tr>

 <td colspan="5">Please provide the necessary information for your

command.</td>

</tr>

<tr height="10"></tr>

<tr>

 <th colspan="2" width="280">FIRST INDIVIDUAL</th>

 <td width="40"></td>

 <th colspan="2" width="280">SECOND INDIVIDUAL</th>

</tr>

<tr>

 <td width="100">Last Name</td>

 <td width="180">

 <input type="text" name="FIRST_IN__NAME1" id="FIRST_IN__NAME1"

 size="20" maxlength="20" >

 </td>

154 IMS Connector for Java 2.2 and 9.1.0.1

<td width="50"></td>

 <td width="100">Last name</td>

 <td width="180">

 <input type="text" name="SECOND_IN__NAME1" id="SECOND_IN__NAME1"

 size="20" maxlength="20" >

 </td>

</tr>

<tr>

 <td>First Name</td>

 <td>

 <input type="text" name="FIRST_IN__NAME2" id="FIRST_IN__NAME2"

 size="20" maxlength="20" >

 </td>

 <td width="50"></td>

 <td>First Name</td>

 <td>

 <input type="text" name="SECOND_IN__NAME2" id="SECOND_IN__NAME2"

 size="20" maxlength="20" >

 </td>

</tr>

<tr>

 <td>Extension</td>

 <td>

 <input type="text" name="FIRST_IN__EXTN" id="FIRST_IN__EXTN" size="20"

 maxlength="20" >

 </td>

 <td width="50"></td>

 <td>Extension</td>

 <td>

 <input type="text" name="SECOND_IN__EXTN" id="SECOND_IN__EXTN"

 size="20" maxlength="20" >

 </td>

</tr>

<tr>

 <td>Zip code</td>

 <td>

 <input type="text" name="FIRST_IN__ZIP" id="FIRST_IN__ZIP"

 size="20" maxlength="20" >

 </td>

 <td width="50"></td>

 <td>Zip code</td>

 <td>

 <input type="text" name="SECOND_IN__ZIP" id="SECOND_IN__ZIP"

 size="20" maxlength="20" >

 </td>

</tr>

</table>

<table border="0" width="600">

 <tr>

 <td colspan="4" width="280" valign="center" align="left">Select

a command for one individual:</td>

 <td width="40"></td>

 <td colspan="4" width="280" valign="center" align="left">Select

a command for a couple:</td>

 </tr>

 <tr>

 <td width="40"></td>

 <td width="100"><input type="radio" checked name="CMDBUTTON"

value="DISPLAY">Display</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="ADD">Add</td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="DISPLAY_COUPLE">Display</td>

Chapter 9. Samples 155

<td width="100"><input type="radio" name="CMDBUTTON"

 value="ADD_COUPLE">Add</td>

 <td width="40"></td>

 </tr>

 <tr>

 <td width="40"></td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="DELETE">Delete</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="UPDATE">Update</td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="DELETE_COUPLE">Delete</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="UPDATE_COUPLE">Update</td>

 <td width="40"></td>

 </tr>

 <tr>

 <td colspan="4" width="280" valign="center" align="left">Select

 the type of transaction managment:</td>

 <td width="40"></td>

 <td colspan="4" width="280" valign="center" align="center"></td>

 </tr>

 <tr>

 <td width="40"></td>

 <td width="100"><input type="radio" checked name="MANAGEMENT"

 value="CONTAINER">Container</td>

 <td width="100"><input type="radio" name="MANAGEMENT"

 value="COMPONENT">Component</td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="100"></td>

 <td width="100"></td>

 <td width="40"></td>

 </tr>

</table>

<P>

<input type="submit" name="Submit" id="Submit" VALUE="Submit">

<input type="reset" name="Reset" id="Reset" VALUE="Reset">

</P>

</form>

EXCEPTION:

<PRE><%=exception.toString() %></PRE>

</body>

</html>

6. Press Ctrl-S to save the file and then close the CouplePhoneBookError.jsp file.

Step 8: Generating web pages from a Java bean

To generate a web page from your Java bean, complete the following steps:

 1. Click on the Package Explorer tab and right-click

myIMSPhoneBookServiceWeb. Select New > Other.

 2. The Select page of the New window opens. In the left-pane, select Web and in

the right-pane, select Java Bean Web Pages.

 3. Click Next.

 4. The Java Bean Web Pages wizard opens. In the page:

v Ensure that the Destination folder is

/myIMSPhoneBookServiceWeb/WebContent.

v Ensure that the Java package is sample.ims.

156 IMS Connector for Java 2.2 and 9.1.0.1

v Click Next.
 5. In the Choose Java Bean page, type sample.ims.CompPhoneBookAccessBean in

the Bean field and click Introspect. The bean properties and methods are

displayed.

 6. Select the eight business methods that you created in the EJB, which are:

v add()

v display()

v update()

v delete()

v addCouple()

v displayCouple()

v updateCouple()

v deleteCouple()
 7. Click Next.

 8. On the View Bean Data Page, click the check box, Use Error Page: and type

/CouplePhoneBookError.jsp in the field.

 9. Unselect the Create View Bean(s) to wrapper your data object(s) check box.

Click Next.

10. On the Design the Input Form page, click Next.

11. On the Design the Results Form page, click Next.

12. On the Specify Prefix page, replace the prefix name with CouplePhoneBook and

click Finish.

13. To create the Input Form page in HTML, click on the Package Explorer tab.

Expand myIMSPhoneBookServiceWeb > Web Content and double-click

CouplePhoneBookInputForm.html to open the HTML file in the editor.

14. Replace the code in the editor with the following HTML code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<html>

<title>Input form</title>

<body>

<form method="post" action="CouplePhoneBookResultsForm.jsp">

<table border="0" width="600">

<tr>

 <td colspan="5"><h2 align="center">
IMS Connector for Java Joint

Insurance Policy Phonebook
</h2>

</td>

<tr>

 <td colspan="5">Please provide the necessary information for your

command.</td>

</tr>

<tr height="10"></tr>

<tr>

 <th colspan="2" width="280">FIRST INDIVIDUAL</th>

 <td width="40"></td>

 <th colspan="2" width="280">SECOND INDIVIDUAL</th>

</tr>

<tr>

 <td width="100">Last Name</td>

 <td width="180">

 <input type="text" name="FIRST_IN__NAME1" id="FIRST_IN__NAME1"

 size="20" maxlength="20" >

 </td>

 <td width="50"></td>

 <td width="100">Last Name</td>

 <td width="180">

Chapter 9. Samples 157

<input type="text" name="SECOND_IN__NAME1" id="SECOND_IN__NAME1"

 size="20" maxlength="20" >

 </td>

</tr>

<tr>

 <td>First Name</td>

 <td>

 <input type="text" name="FIRST_IN__NAME2" id="FIRST_IN__NAME2"

size="20" maxlength="20" >

 </td>

 <td width="50"></td>

 <td>First Name</td>

 <td>

 <input type="text" name="SECOND_IN__NAME2" id="SECOND_IN__NAME2"

size="20" maxlength="20" >

 </td>

</tr>

<tr>

 <td>Extension</td>

 <td>

 <input type="text" name="FIRST_IN__EXTN" id="FIRST_IN__EXTN"

size="20" maxlength="20" >

 </td>

 <td width="50"></td>

 <td>Extension</td>

 <td>

 <input type="text" name="SECOND_IN__EXTN" id="SECOND_IN__EXTN"

size="20" maxlength="20" >

 </td>

</tr>

<tr>

 <td>Zip code</td>

 <td>

 <input type="text" name="FIRST_IN__ZIP" id="FIRST_IN__ZIP"

size="20" maxlength="20" >

 </td>

 <td width="50"></td>

 <td>Zip code</td>

 <td>

 <input type="text" name="SECOND_IN__ZIP" id="SECOND_IN__ZIP"

size="20" maxlength="20" >

 </td>

</tr>

</table>

<table border="0" width="600">

 <tr>

 <td colspan="4" width="280" valign="center" align="left">

 Select a command

 for one individual:</td>

 <td width="40"></td>

 <td colspan="4" width="280" valign="center" align="left">

 Select a command for a couple:</td>

 </tr>

 <tr>

 <td width="40"></td>

 <td width="100"><input type="radio" checked name="CMDBUTTON"

 value="DISPLAY">Display</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="ADD">Add</td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="DISPLAY_COUPLE">Display</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="ADD_COUPLE">Add</td>

158 IMS Connector for Java 2.2 and 9.1.0.1

<td width="40"></td>

 </tr>

 <tr>

 <td width="40"></td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="DELETE">Delete</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="UPDATE">Update</td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="DELETE_COUPLE">Delete</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

 value="UPDATE_COUPLE">Update</td>

 <td width="40"></td>

 </tr>

 <tr>

 <td colspan="4" width="280" valign="center" align="left">Select the

 type of transaction managment:</td>

 <td width="40"></td>

 <td colspan="4" width="280" valign="center" align="center"></td>

 </tr>

 <tr>

 <td width="40"></td>

 <td width="100"><input type="radio" checked name="MANAGEMENT"

 value="CONTAINER">Container</td>

 <td width="100"><input type="radio" name="MANAGEMENT"

 value="COMPONENT">Component</td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="100"></td>

 <td width="100"></td>

 <td width="40"></td>

 </tr>

</table>

<P>

<input type="submit" name="Submit" id="Submit" VALUE="Submit">

<input type="reset" name="Reset" id="Reset" VALUE="Reset">

</P>

</form>

</body>

</HTML>

15. Press Ctrl-S to save the file and then close the

CouplePhoneBookInputForm.html file.

16. To create the Results Form page in HTML, click on the Package Explorer tab.

Expand myIMSPhoneBookServiceWeb > Web Content and double-click

CouplePhoneBookResultsForm.jsp to open the file in the editor.

17. Replace the code in the editor with the following HTML code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<%@ page contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1"

errorPage="CouplePhoneBookError.jsp"

%>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<meta name="GENERATOR" content="IBM WebSphere Studio">

<title>Results page</title>

</head>

<body>

Chapter 9. Samples 159

<%

sample.ims.ContPhoneBookAccessBean contAccess;

sample.ims.CompPhoneBookAccessBean compAccess;

String lastName1 = request.getParameter("FIRST_IN__NAME1");

String firstName1 = request.getParameter("FIRST_IN__NAME2");

String extension1 = request.getParameter("FIRST_IN__EXTN");

String zipCode1 = request.getParameter("FIRST_IN__ZIP");

String lastName2 = request.getParameter("SECOND_IN__NAME1");

String firstName2 = request.getParameter("SECOND_IN__NAME2");

String extension2 = request.getParameter("SECOND_IN__EXTN");

String zipCode2 = request.getParameter("SECOND_IN__ZIP");

String command = request.getParameter("CMDBUTTON");

String management = request.getParameter("MANAGEMENT");

sample.ims.OUTPUTMSG blank = new sample.ims.OUTPUTMSG();

blank.setOut__name1("");

blank.setOut__name2("");

blank.setOut__extn("");

blank.setOut__zip("");

blank.setOut__msg("");

sample.ims.CoupleOutput coupleOutput = new

sample.ims.CoupleOutput(blank,blank);

 if (management.equals("CONTAINER")) {

 contAccess = new sample.ims.ContPhoneBookAccessBean();

 if (command.equals("DISPLAY")) {

 coupleOutput.setOutput1(contAccess.display(lastName1,

firstName1,zipCode1,extension1));

 }else if (command.equals("ADD"))

 coupleOutput.setOutput1(contAccess.add(lastName1,firstName1,

zipCode1,extension1));

 else if (command.equals("DELETE"))

 coupleOutput.setOutput1(contAccess.delete(lastName1,firstName1,

zipCode1,extension1));

 else if (command.equals("UPDATE"))

 coupleOutput.setOutput1(contAccess.update(lastName1,firstName1,

zipCode1,extension1));

 else if (command.equals("ADD_COUPLE"))

 coupleOutput = contAccess.addCouple(lastName1,firstName1,

 zipCode1,extension1,lastName2,

 firstName2,zipCode2,extension2);

 else if (command.equals("DELETE_COUPLE"))

 coupleOutput = contAccess.deleteCouple(lastName1,firstName1,

 zipCode1,extension1,

 lastName2,firstName2,

 zipCode2,extension2);

 else if (command.equals("UPDATE_COUPLE"))

 coupleOutput = contAccess.updateCouple(lastName1,firstName1,

 zipCode1,extension1,lastName2,firstName2,

 zipCode2,extension2);

 else if (command.equals("DISPLAY_COUPLE"))

 coupleOutput = contAccess.displayCouple(lastName1,firstName1,

 zipCode1,extension1);

 } else {

 compAccess = new sample.ims.CompPhoneBookAccessBean();

 if (command.equals("DISPLAY"))

 coupleOutput.setOutput1(compAccess.display(lastName1,

 firstName1,zipCode1,extension1));

 else if (command.equals("ADD"))

 coupleOutput.setOutput1(compAccess.add(lastName1,firstName1,

 zipCode1,extension1));

 else if (command.equals("DELETE"))

 coupleOutput.setOutput1(compAccess.delete(lastName1,firstName1,

 zipCode1,extension1));

160 IMS Connector for Java 2.2 and 9.1.0.1

else if (command.equals("UPDATE"))

 coupleOutput.setOutput1(compAccess.update(lastName1,firstName1,

 zipCode1,extension1));

 else if (command.equals("ADD_COUPLE"))

 coupleOutput = compAccess.addCouple(lastName1,firstName1,

 zipCode1,extension1,lastName2,

 firstName2,zipCode2,extension2);

 else if (command.equals("DELETE_COUPLE"))

 coupleOutput = compAccess.deleteCouple(lastName1,firstName1,

 zipCode1,extension1,

 lastName2,firstName2,

 zipCode2,extension2);

 else if (command.equals("UPDATE_COUPLE"))

 coupleOutput = compAccess.updateCouple(lastName1,firstName1,

 zipCode1,extension1,lastName2,firstName2,

 zipCode2,extension2);

 else if (command.equals("DISPLAY_COUPLE"))

 coupleOutput = compAccess.displayCouple(lastName1,firstName1,

 zipCode1,extension1);

 }

%>

<!-- Result Table -->

<form method="post" action="CouplePhoneBookResultsForm.jsp">

<table border="0" width="600">

<tr>

 <td colspan="5"><h2 align="center">
IMS Connector for Java Joint

Insurance Policy Phonebook
</h2>

</td>

<tr>

 <td colspan="5">RESULT:

<%=coupleOutput.getOutput1().getOut__msg() %></td>

</tr>

<tr height="10"></tr>

<tr>

 <td colspan="5">Please provide the necessary information for your

command.</td>

</tr>

<tr height="10"></tr>

<tr>

 <TH colspan="2" width="280">FIRST INDIVIDUAL</TH>

 <td width="40"></td>

 <TH colspan="2" width="280">SECOND INDIVIDUAL</TH>

</tr>

<tr>

 <td width="100">Last Name</td>

 <td width="180">

 <input type="text" name="FIRST_IN__NAME1" id="FIRST_IN__NAME1" size="20"

maxlength="20" value=<%=coupleOutput.getOutput1().getOut__name1() %>>

 </td>

 <td width="50"></td>

 <td width="100">Last Name</td>

 <td width="180">

 <input type="text" name="SECOND_IN__NAME1" id="SECOND_IN__NAME1" size="20"

maxlength="20" value=<%=coupleOutput.getOutput2().getOut__name1() %>>

 </td>

</tr>

<tr>

 <td>First Name</td>

 <td>

 <input type="text" name="FIRST_IN__NAME2" id="FIRST_IN__NAME2" size="20"

 maxlength="20" value=<%=coupleOutput.getOutput1().getOut__name2() %>>

 </td>

 <td width="50"></td>

 <td>First Name</td>

 <td>

 <input type="text" name="SECOND_IN__NAME2" id="SECOND_IN__NAME2" size="20"

maxlength="20" value=<%=coupleOutput.getOutput2().getOut__name2() %>>

Chapter 9. Samples 161

</td>

</tr>

<tr>

 <td>Extension</td>

 <td>

 <input type="text" name="FIRST_IN__EXTN" id="FIRST_IN__EXTN" size="20"

maxlength="20" value=<%=coupleOutput.getOutput1().getOut__extn() %>>

 </td>

 <td width="50"></td>

 <td>Extension</td>

 <td>

 <input type="text" name="SECOND_IN__EXTN" id="SECOND_IN__EXTN" size="20"

maxlength="20" value=<%=coupleOutput.getOutput2().getOut__extn() %>>

 </td>

</tr>

<tr>

 <td>Zip code</td>

 <td>

 <input type="text" name="FIRST_IN__ZIP" id="FIRST_IN__ZIP" size="20"

maxlength="20" value=<%=coupleOutput.getOutput1().getOut__zip() %>>

 </td>

 <td width="50"></td>

 <td>Zip code</td>

 <td>

 <input type="text" name="SECOND_IN__ZIP" id="SECOND_IN__ZIP" size="20"

maxlength="20" value=<%=coupleOutput.getOutput2().getOut__zip() %>>

 </td>

</tr>

</table>

<table border="0" width="600">

 <tr>

 <td colspan="4" width="280" valign="center" align="left">Select a command

for one individual:</td>

 <td width="40"></td>

 <td colspan="4" width="280" valign="center" align="left">Select a

command for a couple:</td>

 </tr>

 <tr>

 <td width="40"></td>

 <td width="100"><input type="radio" checked name="CMDBUTTON"

value="DISPLAY">Display</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

value="ADD">Add</td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="100"><input type="radio" name="CMDBUTTON"

value="DISPLAY_COUPLE">Display</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

value="ADD_COUPLE">Add</td>

 <td width="40"></td>

 </tr>

 <tr>

 <td width="40"></td>

 <td width="100"><input type="radio" name="CMDBUTTON"

value="DELETE">Delete</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

value="UPDATE">Update</td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="100"><input type="radio" name="CMDBUTTON"

value="DELETE_COUPLE">Delete</td>

 <td width="100"><input type="radio" name="CMDBUTTON"

value="UPDATE_COUPLE">Update</td>

 <td width="40"></td>

162 IMS Connector for Java 2.2 and 9.1.0.1

</tr>

 <tr>

 <td colspan="4" width="280" valign="center" align="left">Select

the type of transaction managment:</td>

 <td width="40"></td>

 <td colspan="4" width="280" valign="center" align="center"></td>

 </tr>

 <tr>

 <td width="40"></td>

 <td width="100"><input type="radio" checked name="MANAGEMENT"

value="CONTAINER">Container</td>

 <td width="100"><input type="radio" name="MANAGEMENT"

value="COMPONENT">Component</td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="40"></td>

 <td width="100"></td>

 <td width="100"></td>

 <td width="40"></td>

 </tr>

</table>

<P>

<input type="submit" name="Submit" id="Submit" value="Submit">

<input type="reset" name="Reset" id="Reset" value="Reset">

</P>

</form>

</body>

</html>

18. Press Ctrl-S to save the file and then close the

CouplePhoneBookResultsForm.html file.

Part 3: Configuring the server and deploying the sample

To run a service in this sample, you must deploy the session bean to a server. In

this case, the server runs in the WebSphere Unit Test Environment. This server

must be configured and started. For this sample service, you need to create one

server instance and server configuration. A server instance identifies the run-time

environment that you want to use for testing your project resources. A server

configuration contains information that is required to set up and publish to a

server. After you configure the server, you will deploy the EAR project containing

the service.

Note:

If you already created a server and server configuration, you still need to deploy

the EAR file to the server.

Step 1: Configuring the server and deploying the EAR project

To create a server instance and configuration, complete the following steps:

1. In the Business Integration perspective, click the Server Configuration tab to

open the Server Configuration view. Right-click anywhere in the Server

Configuration view. Select New > Server and Server Configuration. The Create

a New Server and Server Configuration wizard opens.

2. Type myIMSServicesServer for the server name. (The default folder name is

Servers.)

3. Expand WebSphere version 5.1 and select Integration Test Environment. Click

Next.

Chapter 9. Samples 163

4. If necessary, click Yes to create a server project named Servers.

5. The server port number defaults to 9080. The port identifies the location of the

service. Click Finish. The new server instance appears in the Server

Configuration view and in the Servers view.

You have just created an instance of the WebSphere Application Server that is

emulated by the WebSphere Test Environment running on your local host on port

9080.

Next, you must add an instance of the JCA connection factory and configure its

properties. The connection factory, as its name implies, provides connections to the

EIS on demand. You specify all of the information needed by the resource adapter

to connect to a particular instance of the EIS. For the IMS resource adapter, you

must specify at least the HostName, DataStoreName, and PortNumber properties

that determine which IMS to connect to. These values determine the IMS that will

be accessed through all of the connections created by this instance of the

connection factory. You also specify the JNDI lookup name under which the new

connection factory instance will be available to components. The components can

use this lookup name to quickly make a connection to the EIS. To add a connection

factory, complete the following steps:

1. Click the Server Configuration tab to open the Server Configuration view.

Expand Servers.

2. Double-click the server configuration, myIMSServicesServer. An editor opens.

3. Click the J2C tab. Click Add beside the J2C Resource Adapters table.

4. From the Resource Adapter Name list, select the resource adapter named IMS.

Click OK.

5. In the J2C Resource Adapters table, select the IMS resource adapter, then click

Add beside the J2C Connection Factories table. The application client will look

up this connection factory instance using the JNDI interface. The application

client will then use this connection factory instance to get a connection to the

underlying IMS.

6. In the Create Connection Factory window, type the name ims_cf. Type the

JNDI name myIMSTarget. Click OK.

7. In the Resource Properties table, type the property values appropriate for your

environment. You might need to scroll down to see this table. See Connection

properties for a description of these properties. For example:

v In the HostName field, type MYHOST.ABC.XYZ.COM.

v In the DataStoreName field, type MYDSTOR.

v In the PortNumber field, type 9999.
8. Press Ctrl-S to save the changes and then close the editor.

Next you need to add the EAR project (myIMSPhoneBookServiceEAR) to the

server configuration that you created. To add the project, complete the following

steps:

1. In the Server Configuration view under Servers, right-click

myIMSServicesServer.

2. Select Add and Remove Projects > myIMSPhoneBookServiceEAR.

myIMSPhoneBookServiceEAR is the name of the Enterprise Application project

that you created earlier.

3. Click Finish.

164 IMS Connector for Java 2.2 and 9.1.0.1

You have now successfully generated an enterprise service from an IMS transaction

and deployed that service to the WebSphere test environment.

Step 2: Running the sample

To run the sample, complete the following steps:

1. Click the Servers tab and check the status of the server instance. If the status

for the server is stopped, then right-click the server instance and select Start.

Wait until the server is started. The server is started when you see Started next

to the server on the Servers tab.

2. In the Package Explorer view, expand myIMSPhoneBookServiceWeb >

WebContent.

3. Right-click CouplePhoneBookInputForm.html and select Run on Server.

4. The URL is displayed in a web browser:

http://localhost:9080/myIMSPhoneBookServiceWeb/

CouplePhoneBookInputForm.html

5. Type data in the fields provided on the web page. For example, type the

following information for the first individual:

v Last Name: Test1

v First Name: Test1

v Extension: 1-1111

v Zip code: 11111

6. Type the following information for the second individual:

v Last Name: Test2

v First Name: Test2

v Extension: 2-2222

v Zip code: 22222

7. Select the desired function to be performed. For example, select the Add radio

button for a couple heading.

8. Select the type of transaction to be used. For example, select the Container

radio button.

9. Click Submit to submit the data for processing. The transaction should run

without exceptions. The results page appears with the message ″Entry has been

added.″ Note: Be careful when deleting an individual. Make sure that the

individual is not part of a couple. If the individual is part of a couple, delete

the entire couple.

Congratulations! You have now successfully built EJBs using both

container-managed and component-managed EIS sign-on to run an IMS

transaction.

Sample: Building input and output records using the CCI record helper

class

Note: The class IMSCCIRecord is deprecated in IMS Connector for Java Version

9.1.0.1.1 and IMS Connector for Java Version 2.2.3. The functions provided

by this class are now available in the development environments WebSphere

Studio Application Developer Integration Edition and Rational Application

Developer. For more information, see:

Chapter 9. Samples 165

v “Building a Java application that uses the J2EE Connector Architecture

Common Client Interface” on the IMS Examples Exchange at

http://www.ibm.com/software/data/ims/examples/exHome.html

v “Using IMS data bindings in a CCI application” in the online help for the

IMS resource adapter in Rational Application Developer

Objectives

The main objective of this sample is to describe how to build input and output

records using the Common Client Interface (CCI) record helper class provided by

the IMS resource adapter. This sample demonstrates how to:

v Extend the CCI record helper class, IMSCCIRecord

v Use the type-specific API and the field-specific API

v Create input and output records for your application

Time required

Allow 60 minutes. This will give you enough time to extend the CCI record helper

class, create input and output records specific to your application, and run this

sample.

Before you begin

This sample assumes that WebSphere Studio Application Developer Integrated

Edition, Version 5.1 is installed on your machine and that you are familiar with

using the product. It also assumes that the IMS resource adapter (also known as

IMS Connector for Java) is correctly installed and configured on the WebSphere

Application Server.

Description

To access IMS transactions through the IMS resource adapter, you can build

applications with the tooling provided in WebSphere Studio Application Developer

Integration Edition or by using the Common Client Interface (CCI). The CCI API

provides access from J2EE clients, such as enterprise beans, JavaServer Pages (JSP)

technology, and servlets to an enterprise information system (EIS), such as IMS. To

use the Common Client Interface, an input byte array must be created with the

values of the input fields; these fields are extracted from the output byte array,

which is returned by IMS. To simplify this process, the IMS resource adapter

provides a CCI record helper class that can be extended to handle the input and

output byte arrays or records.

The IMSCCIRecord helper class provided by the IMS resource adapter contains

two APIs, type-specific and field-specific. These APIs help create a byte array that

is sent to IMS. This sample leads you through detailed steps that describe how to

extend the CCI record helper class and build input and output records with both

APIs to access IMS transactions. Note: Message Format Service (MFS) is not

supported with the CCI Record Helper class.

This sample is based on the PhoneBook sample and creates simple input and

output records. Note: For conversational transactions, you use the same procedures

for creating the input and output records provided in this sample for creating the

first iteration and the last iteration of a conversation; however, you must also

create as many records necessary for your conversation for the middle iterations.

166 IMS Connector for Java 2.2 and 9.1.0.1

http://www.ibm.com/software/data/ims/examples/exHome.html

The steps in this sample are:

Part 1: Creating your records using field-specific API

1. Creating field-specific input and output records

2. Creating a Java application that uses the CCI API to access your records

3. Tailoring the field-specific input and output records to your transaction

4. Additional options for building input and output records

Part 2: Creating your records using the type-specific API

1. Creating type-specific input and output records

2. Creating a Java application that uses the CCI API to access your records

3. Tailoring the type-specific input and output records to your transaction

4. Additional options for building input and output records

Part 1: Creating your records using field-specific API

To create your records using the field-specific API, you must customize the setter

and getter methods for each field. However, before you create the input and

output records, you must create a Java project and Java package. The Java project

stores all of the files needed by your application. To create a Java project, complete

the following steps:

1. From the menu bar, select File > New > Project to create a Java project.

2. In the New Project page, select Java in the right-hand column, and then select

Java Project in the left-hand column, and click Next

3. In the New Java Project page, type CCIPhoneBookField in the Project Name

field. Click Next.

4. Click the Projects tab and select the project that contains your ims.rar file to

add it to your build path.

5. Click the Libraries tab and select Add External JARs.

6. Browse to locate the directory: WS_installdir\runtimes\ee_v51\lib, where

WS_installdir is the directory where WebSphere Studio is installed, and select

j2ee.jar file. Click Finish.

The new Java project is created. Now, you must create a Java package to hold the

classes. To create a Java package, complete the following steps:

1. In the Package Explorer perspective, right-click the CCIPhoneBookField Java

project that you just created and select New > Package.

2. In the Java Package page, type CCI.field.sample in the Name field. Ensure

your source folder is CCIPhoneBookField. Click Finish. The Java package is

created in the CCIPhoneBookField project.

After creating the Java project and Java package, you can create new input and

output records.

Step 1: Creating field-specific input and output records

The PhoneBookInputRecordField.java and PhoneBookOutputRecordField.java

classes extend the IMSCCIRecord helper class and build the input and output

records. To create the field-specific input record class, complete the following steps:

1. Click the Services tab in the Business Integration perspective and expand

CCIPhoneBookField Java project.

Chapter 9. Samples 167

2. Right-click CCI.field.sample package and select New > Class.

3. In the New Java Class window, ensure the source folder is

CCIPhoneBookField and the package name is CCI.field.sample.

4. In the Name field, type PhoneBookInputRecordField.java.

5. Uncheck all boxes under Which method stubs would you like to create? and

click Finish.

6. An editor window opens. Replace all contents with the following Java code:

 package test.CCIFieldSpecific;

 import com.ibm.ims.base.*;

 import test.CommonClient.*;

 public class PhoneBookInputRecordField extends IMSCCIRecord{

 final static DLITypeInfo[] fieldInfo = {

 new DLITypeInfo("in__cmd",

 DLITypeInfo.CHAR, 1, 8),

 new DLITypeInfo("in__name1",

 DLITypeInfo.CHAR, 9, 10),

 new DLITypeInfo("in__name2",

 DLITypeInfo.CHAR, 19, 10),

 new DLITypeInfo("in__extn",

 DLITypeInfo.CHAR, 29, 10),

 new DLITypeInfo("in__zip",

 DLITypeInfo.CHAR, 39, 7)

 };

 public PhoneBookInputRecordField (String encoding)

{

 super("phoneBookIn", fieldInfo, 45, encoding);

 }

 public short getIn__ll()

 {

 short result = getLL();

 return result;

 }

 public void setIn__ll(short in__ll)

 {

 setLL(in__ll);

 }

 public short getIn__zz()

 {

 short result = getZZ();

 return result;

 }

 public void setIn__zz(short in__zz)

 {

 setZZ(in__zz);

 }

 public String getIn__trcd()

 {

 String result = getTranCode();

 return result;

 }

168 IMS Connector for Java 2.2 and 9.1.0.1

public void setIn__trcd(String in__trcd)

 {

 setTranCode(in__trcd);

 }

 public String getIn__command()

 {

 return (String)basicGet("in__cmd");

 }

 public void setIn__command(String in__cmd)

 {

 basicSet("in__cmd", in__cmd);

 }

 public String getIn__name1()

 {

 return (String)basicGet("in__name1");

 }

 public void setIn__name1(String in__name1)

 {

 basicSet("in__name1", in__name1);

 }

 public String getIn__name2()

 {

 return (String)basicGet("in__name2");

 }

 public void setIn__name2(String in__name2)

 {

 basicSet("in__name2", in__name2);

 }

 public String getIn__extn()

 {

 return (String)basicGet("in__extn");

 }

 public void setIn__extn(String in__extn)

 {

 this.basicSet("in__extn", in__extn);

 }

 public String getIn__zip()

 {

 return (String)this.basicGet("in__zip");

 }

 public void setIn__zip(String in__zip)

 {

 this.basicSet("in__zip", in__zip);

 }

 }

7. Press Ctrl-S to save the changes and then close the editor. The field-specific

input class is created.

Similarly, you create the output record. To create the field-specific output record

class, complete the following steps:

1. Click the Services tab in the Business Integration perspective and expand

CCIPhoneBookField Java project.

2. Right-click CCI.field.sample package and select New > Class.

Chapter 9. Samples 169

3. In the New Java Class window, ensure the source folder is

CCIPhoneBookField and the package name is CCI.field.sample.

4. In the Name field, type PhoneBookOutputRecordField.java.

5. Uncheck all boxes under Which method stubs would you like to create? and

click Finish.

6. An editor window opens. Replace all contents with the following Java code:

 package test.CCIFieldSpecific;

 import com.ibm.ims.base.*;

 import test.CommonClient.*;

 public class PhoneBookOutputRecordField extends IMSCCIRecord {

 final static DLITypeInfo[] fieldInfo = {

 new DLITypeInfo("out__mesg",

 DLITypeInfo.CHAR, 1, 40),

 new DLITypeInfo("command",

 DLITypeInfo.CHAR, 41, 8),

 new DLITypeInfo("out__name1",

 DLITypeInfo.CHAR, 49, 10),

 new DLITypeInfo("out__name2",

 DLITypeInfo.CHAR, 59, 10),

 new DLITypeInfo("out__extn",

 DLITypeInfo.CHAR, 69, 10),

 new DLITypeInfo("out__zip",

 DLITypeInfo.CHAR, 79, 7),

 new DLITypeInfo("out__segno",

 DLITypeInfo.CHAR, 86, 4),

 };

 public PhoneBookOutputRecordField (String encoding) {

 super("phoneBookout", fieldInfo, 89, encoding);

 }

 public short getOut__ll()

 {

 short result = getLL();

 return result;

 }

 public void setOut__ll(short out__ll)

 {

 setLL(out__ll);

 }

 public short getOut__zz()

 {

 short result = getZZ();

 return result;

 }

 public void setOut__zz(short out__zz)

 {

 setZZ(out__zz);

 }

 public String getOut__name1()

 {

 return (String)this.basicGet("out__name1");

 }

170 IMS Connector for Java 2.2 and 9.1.0.1

public void setOut__name1(String out__name1)

 {

 this.basicSet("out__name1", out__name1);

 }

 public String getOut__name2()

 {

 return (String)this.basicGet("out__name2");

 }

 public void setOut__name2(String out__name2)

 {

 this.basicSet("out__name2", out__name2);

 }

 public String getOut__extn()

 {

 return (String)this.basicGet("out__extn");

 }

 public void setOut__extn(String out__extn)

 {

 this.basicSet("out__extn", out__extn);

 }

 public String getOut__zip()

 {

 return (String)this.basicGet("out__zip");

 }

 public void setOut__zip(String out__zip)

 {

 this.basicSet("out__zip", out__zip);

 }

 public String getOut__segno()

 {

 return (String)this.basicGet("out__zip");

 }

 public void setOut__segno(String out__zip)

 {

 this.basicSet("out__zip", out__zip);

 }

 public String getOut__mesg()

 {

 return (String)this.basicGet("out__mesg");

 }

 public void setOut__mesg(String out__mesg)

 {

 this.basicSet("out__mesg", out__mesg);

 }

 }

7. Press Ctrl-S to save the changes and then close the editor. The field-specific

output class is created.

Step 2: Creating a Java application that uses the CCI API to

access your records

In this step, you will create a Java application that uses the Java CCI API to invoke

a transaction in IMS. The Java application calls the input and output classes that

Chapter 9. Samples 171

you created in Step 1: Creating the field-specific input and output records. Note,

instead of a Java application, you can also create an EJB or other J2EE clients to

use the CCI API.

To create the Java application, complete the following steps:

1. Click the Services tab in the Business Integration perspective and expand

CCIPhoneBookField Java project.

2. Right-click CCI.field.sample package and select New > Class.

3. In the New Java Class window, ensure the source folder is

CCIPhoneBookField and the package name is CCI.field.sample.

4. In the Name field, type PhoneBookCCIField.java.

5. Uncheck all boxes under Which method stubs would you like to create? and

click Finish.

6. An editor window opens. Replace all contents with the following Java code:

 package test.CCIFieldSpecific;

 //import test.CommonClient.*;

 import javax.resource.cci.*;

 import javax.naming.*;

 import com.ibm.connector2.ims.ico.*;

 public class PhoneBookCCIField {

 private boolean isManaged = false;

 public PhoneBookCCIField(booleanmanagedFlag) {

 this.isManaged = managedFlag;

 }

 public void execute() {

 try {

 ConnectionFactory cf = null;

 if (this.isManaged) {

 Context ic = newInitialContext();

 cf =(ConnectionFactory) ic.

 lookup("MyIMS");

 } else {

 //Create and set values for a managed connection

factory for ECI IMSManagedConnectionFactory

 mcf = new IMSManagedConnectionFactory();

 mcf.setDataStoreName("IMS1");

 mcf.setHostName("csdmec06.svl.ibm.com");

 mcf.setPortNumber(newInteger(9999));

 //Create a connectionfactory

 cf = (IMSConnectionFactory)mcf.createConnectionFactory();

 }

 Connection connection = cf.getConnection();

 //Create an interaction with IMS to start IMSPROG program

 IMSInteraction interaction = (IMSInteraction)

 connection.createInteraction();

 IMSInteractionSpec ixnSpec = new IMSInteractionSpec();

 ixnSpec.setInteractionVerb(IMSInteractionSpec.SYNC_SEND_RECEIVE);

 //Create a new record for IMS PhoneBookInputRecordField

 input = new PhoneBookInputRecordField("cp037");

 input.setIn__ll((short)59);

172 IMS Connector for Java 2.2 and 9.1.0.1

input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setTranCodeLength(10);

 input.setIn__command("DISPLAY");

 input.setIn__name1("LAST3");

 input.setIn__name2("");

 input.setAllFieldsGiven(false);

 PhoneBookOutputRecordField

 output = new PhoneBookOutputRecordField("cp037");

 interaction.execute(ixnSpec, input, output);

 System.out.println ("Output is: ");

 System.out.println("\nMessage: "

 + output.getOut__mesg()

 + "\nName:"

 + output.getOut__name1()

 + " "

 + output.getOut__name2()

 + "\nExtension: "

 + output.getOut__extn()

 + "\nZipcode: "

 + output.getOut__zip()

);

 //Close both the interaction and the connection

 interaction.close();

 connection.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args) {

 // When running in an unmanaged environment

 (i.e. standalone java app)

 PhoneBookCCIField pb =

 new PhoneBookCCIField(false);

 // When running in a managed environment

 (i.e. J2EE server)

 // PhoneBookCCI pb = new PhoneBookCCI(true);

 pb.execute();

 }

 }

7. Press Ctrl-S to save the changes and then close the editor. The field-specific

java application is created.

Step 3: Tailoring the field-specific input and output records to

your transaction

The input class, output class, and the Java application created in Step 1 and 2 are

specific to the CCI PhoneBook sample. To run your transactions, complete the

following steps to tailor the input and output records created in Step 2. After

changing the records, create a new Java project and package. Ensure the names of

the project and package are consistent with the application you want to run, and

copy the modified records to the new package.

1. Change the input class

a. Replace the DLITypeInfo array to match the fields of your transaction. Each

array element has the following format: name, type, offset, and length.

Ensure you provide information for each field. For example:

Chapter 9. Samples 173

final static DLITypeInfo[] fieldInfo = {

 // new DLITypeInfo("in__cmd", DLITypeInfo.CHAR, 1, 8),

 new DLITypeInfo("in_yourField1",DLITypInfo.FieldType,

 offset, length),

 new DLITypeInfo("in_yourField4",DLITypInfo.FieldType,

 offset(O), length(L))

 };

b. Change the class name. For example:

public class yourApplication extends IMSCCIRecord

Note: Ensure the Java file matches the name in your new package.

c. Change the constructor. For example:

public yourApplication (String encoding) {

 super("yourApplication", fieldInfo, total_length_of_record, encoding);

 }

Note: The total_length_of_record is equivalent to O +L-1.

d. Replace the setter and getter methods to match the fields of your

transaction. We recommend that you follow the set_FieldName() format. For

example:

public void setIn__fieldName(String in__ fieldName)

 {

 this.basicSet("in__ fieldName ", in__ fieldName);

 }

 public String getIn__fieldName()

 {

 return (String)this.basicGet("in__ fieldName ");

 }

Use the basicSet(″fieldname″, value) method to set the value of all the

fields. Use the basicGet(″fieldname″) method to get the value of any field.

The value returned is of type Object and therefore must be typecasted to the

appropriate type before being returned.
2. Change the output class

a. Repeat the same steps for changing the input class and apply the same

changes to the methods in the output record.

b. It is recommended that you use ″in_″ and ″out_″ as a prefix to the field

names to differentiate between input and output fields.
3. Change the CCI API class

a. Set the hostname, portnum, and datastore name. For example:

//Create and set values for a managed connection factory for ECI

 IMSManagedConnectionFactory mcf = new IMSManagedConnectionFactory();

 mcf.setDataStoreName("yourDatastore");

 mcf.setHostName("yourHostName");

 mcf.setPortNumber(new Integer(yourPortNumber));

//Create a connection factory

 cf = (IMSConnectionFactory) mcf.createConnectionFactory();

 }

b. Create an instance of your input and output record class and call the setter

methods for the fields in your transaction. The following methods are

common to most applications (input records generally contain LL, ZZ &

trancode fields). If your application does not use these fields, set

174 IMS Connector for Java 2.2 and 9.1.0.1

setAllFieldsGiven() to true and do not call the methods below. Refer to Step

4: Additional options for building input and output records for a detailed

discussion on the options supported. For example:

//Create a new record for IMS

 yourApplication input = new yourApplication("cp037");

 input.setIn_ll((short) 59);

 input.setIn__zz((short) 0);

 input.setIn__trcd("IVTNO");

 input.setTranCodeLength(10);

 input.setAllFieldsGiven(false);

c. Use the setter methods created in Step 1: Changing the input class, and set

the transaction fields with appropriate values. For example:

input.setIn__fieldName1(value1);

input.setIn__fieldName2(value1);

.....

....

d. Create an instance of the output record and use the getter methods to get

the output values.

yourApplication output = new yourApplication("cp037");

output.getOut_fieldName()

Step 4: Additional options for building input and output records

There are a couple of other options for building the input and output records.

These options include:

v Modifying the setAllFieldsGiven() method to False.

If you modify the setAllFieldsGiven() to False, the IMSCCIRecord helper class

assumes that the input record format is:

 LL ZZ Trancode Data

The IMSCCIRecord helper class will use the values provided through the setter

method to create a record in that format. When setAllFieldsGiven() is set to

false, only specify the Data fields of the input message in the DLITypeInfo array.

Do not add LL, ZZ, and trancode to the DLITypeInfo array because it will create

duplicate LL, ZZ fields in the final message.

In addition, if the LL value is not provided, the IMSCCIRecord helper class will

automatically compute and set it. The IMSCCIRecord helper class will also set

ZZ to 0 if no value is provided for ZZ. The trancode is set only if the trancode

and trancodeLength values are provided. Note: If setTranCode() is called, then

setTranCodeLength(Int) method must also be called.

If you set the setAllFieldsGiven() to False, the IMSCCIRecord helper class

assumes that the output record format is:

 LL ZZ Data

Similarly, LL and ZZ should not be specified in the DLITypeInfo array.

v Modifying the setAllFieldsGiven() method to True.

This option enables you to create records that do not conform to the LL, ZZ,

Trancode, Data format. If you set the setAllFieldsGiven() method to True, the

record is built based on the values in the DLITypeInfo array of the input and

output record. Therefore, the methods listed below cannot be used because LL,

ZZ, and trancode are not elements in the DLITypeInfo array.

– input.setIn_ll((short) 59);

Chapter 9. Samples 175

– input.setIn_zz((short) 0);

– input.setIn_trcd("IVTNO");

– input.setTranCodeLength(10);

The only method allowed with this option is: input.set_fieldName(value);

where fieldname is an element of the DLITypeInfo array..

Part 2: Creating your records using the type-specific API

Use the type-specific API to keep your input and output records small and simple.

You will use the setter and getter methods that are implemented by the

IMSCCIRecord. The setter method format is setTypeName(″fieldname″, value); for

example, setString(″lastName″, ″LAST1″). The getter method format is

getTypeName(″fieldname″); for example, getString(″lastName″). Before you create the

input and output records, you must create a Java project and Java package. The

Java project stores all of the files needed by your application. To create a Java

project, complete the following steps:

1. From menu bar, select File > New > Project to create a Java project.

2. In the New Project page, select Java in the right-hand column, and then select

Java Project in the left-hand column, and click Next

3. In the New Java Project page, type CCIPhoneBookType in the Project name field.

Click Next.

4. Click the Projects tab and select the project that contains your ims.rar file to

add it to your build path.

5. Click the Libraries tab and select Add External JARs.

6. Browse to locate the directory: WS_installdir\runtimes\ee_v5\lib, where

WS_installdir is the directory where WebSphere Studio is installed, and select

j2ee.jar file. Click Finish.

The new Java project is created. Now, you must create a Java package to hold the

classes. To create a Java package, complete the following steps:

1. In the Package Explorer perspective, right-click the CCIPhoneBookType Java

project that you just created and select New > Package.

2. In the Java Package page, type CCI.type.sample in the Name field. Ensure your

source folder is CCIPhoneBookType. Click Finish. The Java package is created

in the CCIPhoneBookType project.

After creating the Java project and Java package, you can create a new input and

output records.

Step 1: Creating type-specific input and output records

The PhoneBookInputRecordType.java and PhoneBookOutputRecordType.java

classes extends the IMSCCIRecord helper class and builds the input and output

records. To create the type-specific input record class, complete the following steps:

1. Click the Services tab in the Business Integration perspective and expand

CCIPhoneBookType Java project.

2. Right-click CCI.type.sample package and select New > Class.

3. In the New Java Class window, ensure the source folder is CCIPhoneBookType

and the package name is CCI.type.sample.

4. In the Name field, type PhoneBookInputRecordType.java.

5. Uncheck all boxes under Which method stubs would you like to create? and

click Finish.

176 IMS Connector for Java 2.2 and 9.1.0.1

6. An editor window opens. Replace all contents with the following Java code:

 package test.CCITypeSpecific;

 import com.ibm.ims.base.*;

 import test.CommonClient.*;

 public class PhoneBookInputRecordType extends IMSCCIRecord {

 final static DLITypeInfo[] fieldInfo = {

 new DLITypeInfo("in__cmd",

 DLITypeInfo.CHAR, 1, 8),

 new DLITypeInfo("in__name1",

 DLITypeInfo.CHAR, 9, 10),

 new DLITypeInfo("in__name2",

 DLITypeInfo.CHAR, 19, 10),

 new DLITypeInfo("in__extn",

 DLITypeInfo.CHAR, 29, 10),

 new DLITypeInfo("in__zip",

 DLITypeInfo.CHAR, 39, 7)

 };

 public PhoneBookInputRecordType (String encoding)

{

 super("phoneBookIn", fieldInfo, 45 ,encoding);

 }

 }

7. Press Ctrl-S to save the changes and then close the editor. The type-specific

input class is created.

Similarly, you can create the output record. To create the type-specific output

record class, complete the following steps:

1. Click the Services tab in the Business Integration perspective and expand

CCIPhoneBookType Java project.

2. Right-click CCI.type.sample package and select New > Class.

3. In the New Java Class window, ensure the source folder is CCIPhoneBookType

and the package name is CCI.type.sample.

4. In the Name field, type PhoneBookOutputRecordType.java.

5. Uncheck all boxes under Which method stubs would you like to create? and

click Finish.

6. An editor window opens. Replace all contents with the following Java code:

 package test.CCITypeSpecific;

 import com.ibm.ims.base.*;

 import test.CommonClient.*;

 public class PhoneBookOutputRecordType extends IMSCCIRecord {

 final static DLITypeInfo[] fieldInfo = {

 new DLITypeInfo("out__mesg",

 DLITypeInfo.CHAR, 1, 40),

 new DLITypeInfo("command",

 DLITypeInfo.CHAR, 41, 8),

 new DLITypeInfo("out__name1",

 DLITypeInfo.CHAR, 49, 10),

 new DLITypeInfo("out__name2",

 DLITypeInfo.CHAR, 59, 10),

Chapter 9. Samples 177

new DLITypeInfo("out__extn",

 DLITypeInfo.CHAR, 69, 10),

 new DLITypeInfo("out__zip",

 DLITypeInfo.CHAR, 79, 7),

 new DLITypeInfo("out__segno",

 DLITypeInfo.CHAR, 86, 4),

 };

 public PhoneBookOutputRecordType (String encoding)

{

 super("phoneBookout", fieldInfo, 89, encoding);

 }

 }

7. Press Ctrl-S to save the changes and then close the editor. The type-specific

output class is created.

Step 2: Creating a Java application that uses the CCI API to

access your records

In this step, you will create a Java application to that uses the Java CCI API to

invoke a transaction in IMS. The Java application calls the input and output classes

that you created in Step 1. In addition to a Java application, you can also create an

EJB or other J2EE clients to use the CCI API.

To create the Java application, complete the following steps:

1. Click the Services tab in the Business Integration perspective and expand

CCIPhoneBookType Java project.

2. Right-click CCI.type.sample package and select New > Class.

3. In the New Java Class window, ensure the source folder is CCIPhoneBookType

and the package name is CCI.type.sample.

4. In the Name field, type PhoneBookCCIType.java.

5. Uncheck all boxes under Which method stubs would you like to create? and

click Finish.

6. An editor window opens. Replace all contents with the following Java code:

 package test.CCITypeSpecific;

 //import test.CommonClient.*;

 import javax.resource.cci.*;

 import javax.naming.*;

 import com.ibm.connector2.ims.ico.*;

 public class PhoneBookCCIType {

 private boolean isManaged = false;

 public PhoneBookCCIType(boolean managedFlag) {

 this.isManaged = managedFlag;

 }

 public void execute() {

 try {

 ConnectionFactory cf = null;

 if (this.isManaged) {

 Context ic = new InitialContext();

 cf = (ConnectionFactory)

178 IMS Connector for Java 2.2 and 9.1.0.1

ic.lookup

 ("MyIMS");

 } else {

 //Create and set values for a

 managed connection factory

 for ECI

 IMSManagedConnectionFactory mcf =

 new IMSManagedConnectionFactory();

 mcf.setDataStoreName("IMS1");

 mcf.setHostName("csdmec06.svl.ibm.com");

 mcf.setPortNumber(new Integer(9999));

 //Create a connection factory

 cf = (IMSConnectionFactory)

 mcf.createConnectionFactory();

 }

 Connection connection = cf.getConnection();

 //Create an interaction with IMS to start

 IMSPROG program

 IMSInteraction interaction = (IMSInteraction)

 connection.createInteraction();

 IMSInteractionSpec ixnSpec = new

 IMSInteractionSpec();

 ixnSpec.setInteractionVerb(IMSInteractionSpec.SYNC_SEND_RECEIVE);

 //Create a new input record for IMS

 PhoneBookInputRecordType input = new

 PhoneBookInputRecordType("cp037");

 input.setLL((short) 59);

 input.setZZ((short) 0);

 input.setTranCode("IVTNO");

 input.setTranCodeLength(10);

 input.setString("in__cmd","DISPLAY");

 input.setString("in__name1","LAST3");

 input.setString("in__name2","FIRST3");

 input.setAllFieldsGiven(false);

 PhoneBookOutputRecordType output = new

 PhoneBookOutputRecordType("cp037");

 interaction.execute(ixnSpec, input, output);

 System.out.println ("Output is: ");

 System.out.println("\nMessage: "

 + output.getString("out__mesg")

 + "\nName:"

 + output.getString("out__name1")

 + " "

 + output.getString("out__name2")

 + "\nExtension: "

 + output.getString("out__extn")

 + "\nZipcode: "

 + output.getString("out__zip")

);

 //Close both the interaction and the connection

 interaction.close();

Chapter 9. Samples 179

connection.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args) {

 // When running in an unmanaged

 environment (i.e.

 standalone java app)

 PhoneBookCCIType pb =

 new PhoneBookCCIType(false);

 // When running in a managed

 environment (i.e.

 J2EE server)

 // PhoneBookCCI pb = new PhoneBookCCI(true);

 pb.execute();

 }

 }

7. Press Ctrl-S to save the changes and then close the editor. The type-specific

CCI API class is created.

Step 3: Tailoring the type-specific input and output records to

your transaction

The input class, output class, and the Java application created in Step 1 and 2 are

specific to the CCI PhoneBook sample. To run your transactions, complete the

following steps to tailor the input and output records created in Step 2. After

changing the records, create a new Java project and package. Ensure the names of

the project and package are consistent with the application you want to run, and

copy the modified records to the new package.

1. Change the input class

a. Replace the DLITypeInfo array to match the fields of your transaction. The

array element has the following format: name, type, offset, and length.

Ensure you provide information for each field. For example:

final static DLITypeInfo[] fieldInfo = {

 // new DLITypeInfo("in__cmd", DLITypeInfo.CHAR, 1, 8),

 new DLITypeInfo("in_yourField1",DLITypInfo.FieldType,

 offset, length),

 new DLITypeInfo("in_yourField4",DLITypInfo.FieldType,

 offset(O), length(L))

 };

b. Change the class name. For example:

public class yourApplication extends IMSCCIRecord

Note:Ensure the Java file matches the name in your new package.

c. Change the constructor. For example:

public yourApplication (String encoding) {

 super("yourAplication", fieldInfo, total_length_of_record, encoding);

 }

Note: The total_length_of_record is equivalent to O + L - 1.
2. Change the Java application calling the CCI API

a. Set the hostname, portnum, and datastore name. For example:

180 IMS Connector for Java 2.2 and 9.1.0.1

//Create and set values for a managed connection factory for ECI

 IMSManagedConnectionFactory mcf = new IMSManagedConnectionFactory();

 mcf.setDataStoreName("yourDatastore");

 mcf.setHostName("yourHostName");

 mcf.setPortNumber(new Integer(yourPortNumber));

//Create a connection factory

 cf = (IMSConnectionFactory) mcf.createConnectionFactory();

}

b. Create an instance of your input and output record class and call the setter

methods for the fields in your transaction. The following methods are

common to most applications (input records generally contain LL, ZZ &

trancode fields). If your application does not use these fields, set

setAllFieldsGiven() to true and do not call the methods below. Refer to Step

4: Additional options for building input and output records for a detailed

discussion on the options supported. For example:

//Create a new record for IMS

 yourApplication input = new yourApplication("cp037");

 input.setLL((short) value);

 input.setZZ((short) value);

 input.setTranCode(" XXXXX ");

 input.setTranCodeLength(value);

c. Use the setter and getter methods provided by IMSCCIRecord class and set

your transaction fields with appropriate values. For example:

input.setfieldtype("field_Name", value);

yourApplication output = new yourApplication("cp037");

output.getfieldType("field_Name")

Step 4: Additional options for building input and output records

There are a couple of other options for building the input and output records.

These options include:

v Modifying the setAllFieldsGiven() method to False.

If you modify the setAllFieldsGiven() to False, the IMSCCIRecord helper class

assumes that the input record format is:

 LL ZZ Trancode Data

The IMSCCIRecord helper class will use the values provided through the setter

method to create a record in that format. When setAllFieldsGiven() is set to

false, only specify the Data fields of the input message in the DLITypeInfo array.

Do not add LL, ZZ, and trancode to the DLITypeInfo array because it will create

duplicate LL, ZZ fields in the final message.

In addition, if the LL value is not provided, the IMSCCIRecord helper class will

automatically compute and set it. The IMSCCIRecord helper class will also set

ZZ to 0 if no value is provided for ZZ. The trancode is set only if the trancode

and trancodeLength values are provided.Note: If setTranCode() is called, then

setTranCodeLength(Int) method must also be called.

If you set the setAllFieldsGiven() to False, the IMSCCIRecord helper class

assumes that the output record format is:

 LL ZZ Data

Similarly, LL and ZZ should not be specified in the DLITypeInfo array.

v Modifying the setAllFieldsGiven() method to True.

Chapter 9. Samples 181

This option enables you to create records that do not conform to the LL, ZZ,

Trancode, Data format. If you set the setAllFieldsGiven() method to True, the

record is built based on the values in the DLITypeInfo array of the input and

output record. Therefore, the methods listed below cannot be used because LL,

ZZ, and trancode are not elements in the DLITypeInfo array.

– input.setLL((short) value);

– input.setZZ((short) value);

– input.setTranCode("XXXXX");

– input.setTranCodeLength(value);

The only method allowed with this option is:

input.setTypeName("name",value); where fieldname is an element of the

DLITypeInfo array.

Sample: Creating an Enterprise Java Bean to communicate with a

conversational IMS application

Objectives

Note: The class IMSConversationalHelper is deprecated in IMS Connector for Java

Version 9.1.0.1.1 and IMS Connector for Java Version 2.2.3. In the future this

will only be available as a sample class. It is recommended that you obtain

“Using an EJB and generated helper classes to run a conversational IMS

transaction” from the IMS Examples Exchange at

http://www.ibm.com/software/data/ims/examples/exHome.html.

Additional versions, using other types of input and output messages, will be

made available over time.

The main objective of this sample is to show how to create an EJB to communicate

with a conversational IMS application. In addition, this sample will show how to

use the EJB in a Java application that communicates with a conversational IMS

application. This sample, which is based on the conversational PhoneBook IMS

Installation Verification Program, has five main parts.

v Part 1: Building input and output records using the CCI record helper class describes

how to extend the IMSCCIRecord helper class, which is provided by the IMS

resource adapter, and shows how to create classes for the input and output

records of the messages of the iterations of the conversational IMS application.

v Part 2: Importing the conversational record classes shows how to import the input

and output record classes created in this sample. These classes were created

using the process shown in Part One.

v Part 3: Creating a conversational EJB describes the step-by-step tasks for extending

the IMSConversationalHelper provided by the IMS resource adapter. The helper

class is used to help create an EJB that communicates with the conversational

PhoneBook IVP application.

v Part 4: Building a conversational application describes how the EJB created in Part

Three can be used in a simple Web application.

v Part 5: Configuring the server and running the sample application shows how to

configure your server so that you can deploy and run your sample.

Time required

Allow 90 minutes. This will give you enough time to import the input and output

record classes, build the stateful session bean (the conversational EJB), and run the

PhoneBook sample.

182 IMS Connector for Java 2.2 and 9.1.0.1

http://www.ibm.com/software/data/ims/examples/exHome.html

Before you begin

This sample assumes that WebSphere Studio Application Developer Integrated

Edition, Version 5.1 is installed on your machine and that you are familiar with

using the product. It also assumes that:

v the conversational IMS verification procedure (IVTCB) is installed on your IMS

system.

v your environment meets the prerequisites for using the IMS resource adapter.

v the IMS resource adapter, ims.rar, has been imported into the WebSphere Studio

workspace you use to develop your conversational application.

v the name of the IMS resource adapter is IMS.

Description

This sample leads you through detailed steps that describe how to build a stateful

session bean to enable a conversation between a client application and an IMS

conversational application program. Through a stateful session bean, the client

application and the IMS application can exchange messages, representing iterations

of the conversation, back and forth for an extended period of time. The

conversation does not end after one message as it typically does for a

non-conversational application program. Instead, the stateful session bean stores

the state of the conversation for the client and allows the client application to

continue communicating with the IMS application.

The client application uses the IMS resource adapter to interact with IMS through

the host product, IMS Connect. To establish a conversation between the client

application and the IMS application, you can build a stateful session bean. The EJB

used by this sample uses the Common Client Interface (CCI) as well as

conversational and CCI record helper classes to communicate with the IMS

resource adapter. The CCI record helper classes are used to assist the client

application to prepare the input and output messages from the iterations of a

conversation. Because the stateful session bean uses IMS Connect to interact with

the IMS application, you must use the same connection (for example, a persistent

socket) for the duration of the conversation. IMS Connect uses the persistent socket

to map to the IMS application.

Within WebSphere Studio, you will use wizards to help you generate the sample,

and then deploy the sample to the WebSphere test environment that is part of

WebSphere Studio. You will also generate a session bean to access the

conversational IMS application program, and you will add EJB methods to remote

interfaces to be used by client applications. You will also customize CCI and

conversational helper classes to help your application prepare the input and output

messages from the iterations of a conversation. For this sample, you run all of the

server and client applications on the same machine.

The steps in this sample are:

Part 1: Building input and output records using the CCI record helper class

Part 2: Importing the conversational record classes

1. Creating a Java project

2. Creating a Java package

3. Importing the record classes

Chapter 9. Samples 183

Part 3: Creating a conversational EJB

1. Creating an Enterprise Application project

2. Creating the EJB session bean

3. Creating the EJB business methods

4. Adding the business methods to the remote interface of the EJB

5. Setting the transaction attributes for the EJB session bean

6. Adding the record classes as a project utility JAR and adding it to the JAR

dependency list

7. Generating the deployed code

Part 4: Building a conversational application

1. Generating access beans

2. Importing the conversational web pages

Part 5: Configuring the server and running the sample application

1. Configuring the server and deploying the EAR project

2. Running the sample

Part 1: Building input and output records using the CCI record

helper class

The CCI record helper class, IMSCCIRecord, is a class that incorporates routines

for data conversion to and from a byte array. IMSCCIRecord is extended to create

classes that represent the input and output messages of an IMS transaction. The

classes that extend IMSCCIRecord define the structure of the message, the data

types associated with each of the fields, as well as the length and offset of each

field. In addition, these record classes also provide setter and getter methods for

the fields in the records, as well as the creation of a byte array that can be sent to

the IMS resource adapter.

To create an EJB for a conversational IMS application, you need to extend the CCI

record helper class, IMSConversationalHelper, provided by the IMS resource

adapter, to create the input and output records of your application. The customized

CCI record helper class must contain a DLITypeInfo array to map DLITypeInfo

fields to the COBOL copybook input record data fields.

To build the input and output records for a conversational sample, see the sample,

Building input and output records using the CCI record helper class for further

information.

Part 2: Importing the conversational record classes

To create an EJB for a conversational IMS application, you must have classes to

represent the input and output messages (records) of each iteration of the

conversation. Part 1 describes how to build the record classes. This sample also

provides already-built record classes. To import the conversational record classes

provided by this conversational PhoneBook sample, you must first create a Java

project and then import the record classes into your Java package.

184 IMS Connector for Java 2.2 and 9.1.0.1

Step 1: Creating a Java project

The Java project stores all of the files for your Java project, including imported

source files and files generated by wizards. You will use the New Project wizard to

create your Java project. To create a Java project, complete the following steps:

1. From menu bar, select File > New > Project to create a Java project.

2. In the New Project page, select Java in the right-hand column, and then select

Java Project in the left-hand column, and click Next

3. In the New Java Project page, type

MyConversationalPhoneBookCCIRecordClasses in the Project Name field. Click

Next.

4. Click the Projects tab and select the project into which you imported the

ims.rar file and add it to the build path of the

MyConversationalPhoneBookCCIRecordClasses project.

5. Click the Libraries tab and select Add External JARs.

6. Browse to locate the directory: WS_installdir\runtimes\ee_v51\lib, where

WS_installdir is the directory where WebSphere Studio is installed, and select

the j2ee.jar file and click Open.

7. Click Finish.

The new Java project is created.

Step 2: Creating a Java package

Before importing the record helper classes, create a Java package to hold the

classes. To create a Java package, complete the following steps:

1. In the Package Explorer perspective, right-click the

MyConversationalPhoneBookCCIRecordClasses Java project that you created

and select New > Package.

2. In the Java Package page, type sample.ims.conv.record in the Name field.

Ensure your source folder is MyConversationalPhoneBookCCIRecordClasses.

Click Finish. The Java package is created in the

MyConversationalPhoneBookCCIClasses project.

Step 3: Importing the conversational record classes

In this step you import the conversational record classes, CPBInputRecord.java,

CPBMiddleInputRecord.java, and CPBOutputRecord.java, which are needed to create

your conversational EJB. The conversational record classes define the structure of

the input and output messages of the PhoneBook sample. To import the record

classes, complete the following steps:

1. Expand MyConversationalPhoneBookCCIRecordClasses project, right-click

sample.ims.conv.record and select Import.

2. Select File System to import the java classes from the file system and click

Next.

3. Click Browse beside the directory field to locate the following directory:

WS_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.

samples.ims_5.1.0\sampleparts

where WS_installdir is the directory where WebSphere Studio is installed.

4. Select the following files:

v CPBInputRecord.java

Chapter 9. Samples 185

v CPBMiddleInputRecord.java

v CPBOutputRecord.java
5. Click Finish.

The sample.ims.conv.record package contains the CCI record classes for the

conversational PhoneBook IVP. These classes are used by the conversational EJB.

Part 3: Creating a conversational EJB

Using the IMSConversationalHelper helper class which is provided by the IMS

resource adapter, you can create a simple conversational EJB for this PhoneBook

sample. Before you generate the EJB, you must first create an Enterprise

Application project to contain parts of your conversational application. The

Enterprise Application project contains an EJB project for the conversational EJB

and a Web project for JSP pages. After you create an Enterprise Application project,

you need to place the projects containing the IMS resource adapter and the

conversational record classes on the build path of the EJB and Web project. Once

the resource adapter and record classes are in your build path, create a stateful

session bean that contains the business methods which access the conversational

IMS application in the EJB project.

After the new EJB has been created, you modify the EJB deployment descriptor

and generate deployment code for the EJB.

The steps in this part are:

Step 1: Creating an Enterprise Application project

Step 2: Creating the EJB session bean

Step 3: Creating the EJB business methods

Step 4: Adding the business methods to the remote interface

Step 5: Setting the transaction attributes for the EJB session bean

Step 6: Adding the record classes to the project utility JARS and the JAR

dependency list

Step 7: Generating the deployed code

Step 8: Generating the access bean

Step 1: Creating an Enterprise Application project

The Enterprise Application project is used to package together EJBs, Web projects,

or client projects into an EAR file that can be deployed on an application server. In

this sample, the Enterprise Application project consists of an EJB project containing

an EJB module and a Web project containing a web module.

1. From the menu bar, select File > New > Project.

2. In the New Project window, select J2EE in the left-hand column and Enterprise

Application Project in the right-hand column. Click Next and the Enterprise

Application Project Creation wizard opens.

3. In the J2EE Specification version page, select Create J2EE 1.3 Enterprise

Application project and click Next.

186 IMS Connector for Java 2.2 and 9.1.0.1

4. In the Enterprise Application Project page, type in the Enterprise application

project name field, MyConversationalPhoneBook and click Next. The New

Enterprise Application Project window opens.

5. In the New Enterprise Application Project window, click New Module and

ensure Create default module projects is selected. Also, ensure that the EJB

Project and Web Project are selected and the other options are deselected. Click

Finish to close and save the settings in the New Enterprise Application Project

window.

6. Click Finish.

The EJB and Web modules are created and stored in the Enterprise Application

project.

Step 2: Creating the EJB session bean

In this step, you will create an EJB session bean. The session bean will have five

business methods. The business methods provide the business logic of the

conversational IMS application.

Before you create the conversational EJB session bean, you must first add the

project into which you imported the ims.rar file and the conversational record

classes to the build path of the EJB project. To add the IMS project, complete the

following steps:

1. In the Business Integration Perspective, click the J2EE Hierarchy tab.

2. Expand EJB Modules and right-click MyConversationalPhoneBookEJB and

select Properties.

3. The Properties for MyConversationalPhoneBookEJB window opens. In the

left-hand column, select Java Build Path and then select the Projects tab.

4. In Required projects on the build path box, select the IMS project and

MyConversationalPhoneBookCCIRecordClasses Java project and click OK.

After you have updated your build path, you can create the conversational session

bean. To create a conversational EJB session bean, complete the following steps:

1. In the Business Integration Perspective, click the J2EE Hierarchy tab.

2. Expand EJB Modules and right-click on the MyConversationalPhoneBookEJB

project. Select New > Enterprise Bean.

3. The Enterprise Bean Creation wizard opens. Ensure that the EJB project name is

MyConversationalPhoneBookEJB and click Next.

4. In the Create a 2.0 Enterprise Bean window:

v Ensure that Session bean is selected.

v In the Bean name field, type MyConversationalPhoneBook

v In the Default package field, type sample.ims.conv. Click Next.
5. In the Enterprise Bean Details window:

v For the Session type, select stateful.

v For the Transaction type, select Container.

v Accept all other defaults, click Next.
6. In the EJB Java Class Details window, specify the IMSConversationalHelper as

the superclass to the bean. To specify the IMSConversationalHelper as the

superclass, click Browse next to the Bean superclass field.

Chapter 9. Samples 187

7. The Type Selection window opens. In the Select a class using field, type

IMSConversationalHelper to bring up the matching type. Select the

IMSConversationalHelper class and click OK. Click Finish.

The conversational EJB session bean is created and generated in the

sample.ims.conv package under the MyConversationalPhoneBookEJB project.

Step 3: Creating the EJB business methods

In this section, you will create a total of five EJB business methods. The first

business method runs the intial iteration, the second business method continues

the conversation. The third business method checks the conversational status, the

fourth business method ends the conversation, and the fifth business method sets

the IMSConnectionSpec property values. The business methods that you will create

for the conversational EJB bean are:

runFirstIteration()

This method is called to begin a conversation with the conversational

PhoneBook IVP application and is used only once per conversation.

runMiddleIteration()

This method can be called more than once to continue the conversation

with the conversational PhoneBook IVP application.

isConvEnded()

This method is called after each iteration of the conversation to verify if

the EJB is still in conversation with the IMS application. For some

conversational applications, for example this conversational PhoneBook

IVP application, the conversation can be terminated by the IMS

application. The conversation is terminated with the END command input

message.

endConversation()

This method is called to force the end of the conversation with the IMS

application from the client side. This method causes the IMS resource

adapter to send a message to IMS through IMS Connect. The method is

similar to entering an /EXIT command from an IMS terminal. When the

IMS resource adapter sends this type of message to IMS Connect it is a

SEND ONLY interaction and the outcome of the interaction cannot be

determined by the application client.

setComponentAuthorization()

This method is used to provide username, password, and groupname

values if component-managed sign-on is used by an application

component.

Note: In this sample, if you begin another conversation before you end the

previous conversation, the conversational EJB will throw an exception indicating

that the previous conversation has ended and the new conversation will not start.

To create the EJB business methods for the conversational EJB bean, complete the

following steps:

1. In the J2EE Hierarchy tab, expand EJB Modules >

MyConversationalPhoneBookEJB > MyConversationalPhoneBook.

2. Double-click MyConversationalPhoneBookBean to open the source editor.

3. In the editor view, add business methods: runFirstIteration(),

runMiddleIteration(), endConversation(), isConvEnded(), and

setComponentAuthorization() and ensure the code matches the following Java

code:

188 IMS Connector for Java 2.2 and 9.1.0.1

package sample.ims.conv;

import javax.ejb.EJBException;

import javax.resource.ResourceException;

import javax.resource.cci.ConnectionFactory;

import sample.ims.conv.record.*;

import com.ibm.connector2.ims.ico.IMSConnectionSpec;

import com.ibm.connector2.ims.ico.IMSManagedConnectionFactory;

/***/

/* */

/* (c) Copyright IBM Corp. 2001, 2002, 2003 */

/* All Rights Reserved */

/* Licensed Materials - Property of IBM */

/* */

/* DISCLAIMER OF WARRANTIES. */

/* */

/* The following code is provided to you solely for the purpose of */

/* assisting you in the development of your applications. */

/* The code is provided "AS IS." IBM MAKES NO WARRANTIES, EXPRESS OR */

/* IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF */

/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING */

/* THE FUNCTION OR PERFORMANCE OF THIS CODE. */

/* IBM shall not be liable for any damages arising out of your use */

/* of the provided code, even if it has been advised of the */

/* possibility of such damages. */

/* */

/* DISTRIBUTION. */

/* */

/* This code can be freely distributed, copied, altered, */

/* and incorporated into other software, provided that: */

/* - It bears the above Copyright notice and DISCLAIMER intact */

/* - The software is not offered for resale */

/* */

/***/

/**

 * Bean implementation class for Enterprise Bean: ConversationalPhoneBook

 */

public class MyConversationalPhoneBookBean

 extends com.ibm.connector2.ims.ico.IMSConversationalHelper

 implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 /* The middleIteration variable is a flag for whether to

 * expect a runMiddleIteration() method call

 */

 private boolean middleIteration = false;

 private int myExecTimout=0;

 private String myLtermName="";

 private String myMapName="";

 private int mySocketTimeout=0;

 public javax.ejb.SessionContext getSessionContext() {

 return mySessionCtx;

 }

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 mySessionCtx = ctx;

 }

 public void ejbCreate() throws javax.ejb.CreateException {

 }

 public void ejbActivate() {

Chapter 9. Samples 189

}

 public void ejbPassivate() {

 }

 public void ejbRemove() {

 try {

 /* When the EJB is removed from the EJB container due to a sesion

 * timeout, ejbRemove() will be called to clean it up. This code will

 * automatically end the converation when the bean is removed, terminating

 * the stranded conversation

 */

 this.endConversation();

 } catch (Exception e) {

 throw new EJBException(e);

 }

 }

 /**

 * Ends the current conversation with the conversational IVP phone book

IMS application

 */

 public void endConversation() {

 try {

 super.endConversation();

 this.middleIteration = false;

 } catch (Exception e) {

 throw new EJBException(e);

 }

 }

 /**

 * Begins a conversation with the conversational IVP phone book

 * IMS application.

 *

 * The provided input record will be used to specify the input

to the IMS

 * application. Make sure that the trancode parameter of the input

record has been

 * set to "IVTCB" to use the conversational IVP application.

 *

 * Do not call this method more than once while in a conversation.

 * If you call it more

 * than once, your conversation will be ended and a RuntimeException

 * will be thrown.

 *

 * @param input the CCI input record to send to IMS

 *

 * @return sample.ims.conv.CPBOutputRecord the output returned by the

 * IMS application.

 *

 * @throws RuntimeException when the runFirstIteration() is called more

 * than once in a conversation

 */

 public CPBOutputRecord runFirstIteration(CPBInputRecord input) {

 try {

 /* Check to see if runFirstIteration() is being called when we’re

 * already in a conversation. If it is, we end the conversation and

 * throw an exception

 */

 if (this.middleIteration) {

 this.endConversation();

throw new RuntimeException("Invalid iteration.Must end conversation before

starting new one.Conversation is force-ended");

 }

 // Instantiate an output record

190 IMS Connector for Java 2.2 and 9.1.0.1

CPBOutputRecord output = new CPBOutputRecord();

 super.setExecutionTimeout(myExecTimout);

 super.setLtermName(myLtermName);

 super.setMapName(myMapName);

 super.setSocketTimeout(mySocketTimeout);

 // Send the input to IMS Connect

 super.execute(input, output);

 /* If the conversation succeded, we set the middleIteration variable

 * to true. It will be used as a flag to catch invalid calls to

 * runFirstIteration()

 */

 if (!this.isConvEnded()) {

 this.middleIteration = true;

 }

 return output;

 } catch (Exception e) {

 throw new EJBException(e);

 }

 }

 /**

 * Continues a conversation previously started with the {@link

 * runFirstIteration} method.

 *

 * The provided input record will be used to specify the input to the IMS

 * application.

 *

 * Do not call this method without first calling {@link runFirstIteration}.

 * If you do, a RuntimeException will be thrown to notify you of the error.

 *

 * @param input the CCI input record to send to IMS

 *

 * @return sample.ims.conv.CPBOutputRecord the output returned by the IMS

 * application.

 *

 * @throws RuntimeException when runMiddleIteration() is called without first

 * calling runFirstIteration()

 */

 public CPBOutputRecord runMiddleIteration(CPBMiddleInputRecord input) {

 try {

 /* Here we check to see what iteration we are currently in. If we haven’t

 * yet run runFirstIteration() we throw a RuntimeException rather than

 * allowing the iteration to fail

 */

 if (!this.middleIteration) {

 throw new RuntimeException("Invalid iteration. Start a conversation

first.");

 }

 // Instantiate the output record

 CPBOutputRecord output = new CPBOutputRecord();

 super.setExecutionTimeout(myExecTimout);

 super.setLtermName(myLtermName);

 super.setMapName(myMapName);

 super.setSocketTimeout(mySocketTimeout);

 // Send it to IMS

 super.execute(input, output);

 /* Check the status of the conversation. If the conversation has ended

 * for some

 * reason, we can perform a runFirstIteration() call again

Chapter 9. Samples 191

*/

 if (this.isConvEnded()) {

 this.middleIteration = false;

 }

 return output;

 } catch (Exception e) {

 throw new EJBException(e);

 }

 }

 /**

 * Returns the current status of the conversation

 *

 * @return boolean true if the conversation has ended, false if it has not

 */

 public boolean isConvEnded() {

 return super.isConvEnded();

 }

 /**

 * Allows the user to specify username, password, and groupname values to

 * override

 * the defaults provided by the ConnectionFactory.

 *

 * Most useful for ComponentAuthorization. A ConnectionSpec will be created

 * and provided to the helper class.

 *

 * @param username the username value to use for the ConnectionSpec

 * @param password the password value to use for the ConnectionSpec

 * @param groupname the groupname value to use for the ConnectionSpec

 */

 public void setConnectionSpec(

 String username,

 String password,

 String groupname) {

 try {

 IMSConnectionSpec connSpec = new IMSConnectionSpec();

 connSpec.setUserName(username);

 connSpec.setPassword(password);

 connSpec.setGroupName(groupname);

 super.setConnectionSpec(connSpec);

 } catch (Exception e) {

 throw new EJBException(e);

 }

 }

 /**

 * Allows the user to specify LTermname, Mapname, Execution Timeout and

 * Socket Timeout values for the conversation.

 *

 * @param anLtermname the LTermname value to use for the InteractionSpec

 * @param aMapname the Mapname value to use for the InteractionSpec

 * @param anExecTimeout the Execution Timeout value (in milliseconds) to

 * use for the InteractionSpec

 * @param aSocketTimeout the Socket Timeout value (in milliseconds) to

 * use for the InteractionSpec

 */

 public void setInteractionSpec(

 String anLtermname,

 String aMapname,

 int anExecTimeout,

 int aSocketTimeout) {

 this.myLtermName=anLtermname;

 this.myMapName=aMapname;

 this.myExecTimout=anExecTimeout;

 this.mySocketTimeout=aSocketTimeout;

192 IMS Connector for Java 2.2 and 9.1.0.1

}

}

4. Press Ctrl-S to save your changes and then close the editor.

Step 4: Adding the business methods to the remote interfaces

The remote interfaces specify which business methods of an EJB can be used by

client applications. Generating the EJB automatically builds an empty Remote

Interface and a Home Interface with a default create method. To make the EJB

business methods you created in Step 3, accessible to client applications, add the

methods to the Remote Interface by completing the following steps:

1. In the J2EE Hierarchy tab, expand EJB Modules >

MyConversationalPhoneBookEJB > MyConversationalPhoneBook.

2. In the Outline pane, expand the MyConversationalPhoneBookBean.java class

and select all of the following methods:

v runFirstInteration()

v runMiddleIteration()

v isConvEnded()

v endConversation()

v setConnectionSpec()

v setInteractionSpec()

3. Right-click any of the selected methods and select Enterprise Bean > Promote

to Remote Interface. This adds a declaration for each of the selected methods

to the Remote Interface. The method declarations are added to the Remote

Interface file, MyConversationalPhoneBook.java.

Step 5: Setting the EJB transaction attributes for the EJB

session bean

In Step 2 where you created a conversational EJB session bean, you specified a

TransactionType of Container. Setting the transaction attributes specifies how a

container should manage a specific method or all of the methods within the remote

interface of an EJB. Because the IMS resource adapter currently only supports

Commit Mode 1 with OTMA SyncLevel None for each iteration of a conversation,

the only transactional attribute of a conversational EJB is Not Supported.

To set the EJB transaction attributes, complete the following steps:

1. Click the J2EE Hierarchy tab in the Business Integration perspective and

expand EJB Modules. Right-click MyConversationalPhoneBookEJB and select

Open With > Deployment Descriptor Editor.

2. Click the Assembly Descriptor tab.

3. Under Container Transactions, click Add. The Add Container Transaction

wizard opens. In the Enterprise Bean Selection page, select the

MyConversationalPhoneBook bean and click Next.

4. Click the Container transaction type field and select Not Supported from the

pulldown list.

5. Under Methods found, click the checkbox for the

MyConversationalPhoneBook bean to select all of its methods. Click Finish.

6. Press Ctrl-S to save your changes and then close the editor.

Chapter 9. Samples 193

Step 6: Adding the record classes as a project utility JAR and

adding the JAR to the JAR dependency list

In this sample, the record classes for the input and out messages are in a separate

project, My ConversationalPhoneBookCCIRecordClasses. To ensure that the

record classes are available to the deployed EAR file, they must be added to the

Enterprise Application project as a utility JAR.

To add the record classes to the project as a utility JAR, complete the following

steps:

1. Click the J2EE Hierarchy tab in the Business Integration perspective and

expand Enterprise Applications.

2. Right-click MyConversationalPhoneBook and select Open With > Deployment

Descriptor Editor.

3. In the Deployment Descriptor editor, select the Module tab. In the Module

page under Project Utility Jars, click Add.

4. The Add Utility Jar window opens. Select

MyConversationalPhoneBookCCIRecordClasses project as a utility JAR. Click

Finish.

5. Press Ctrl-S to save the changes and then close the EJB Deployment Descriptor

editor.

In addition, the utility JAR created above must be added to the JAR dependency

list of the EJB project. To add the utility JAR to the JAR dependency list, complete

the following steps:

1. In the J2EE Hierarchy tab, expand EJB Modules and right-click

MyConversationalPhoneBookEJB. Select Open With > JAR Dependency

Editor.

2. The JAR Dependency editor opens. In the Dependencies section, check the box

next to MyConversationalPhoneBookCCIRecordClasses.jar to add it to the

dependency list.

3. Press Ctrl-S to save the changes and then close the JAR Dependency editor.

Step 7: Generating the deployed code

To use the conversational EJB in a deployed application, you must first generate

the deployment code for the EJB sesion bean. The deployment classes allow your

bean to run on an EJB server. To generate the deployment code, follow these steps:

1. Click on the J2EE Hierarchy tab in the Business Integration perspective and

expand EJB Modules.

2. Right-click MyConversationalPhoneBookEJB and select Generate > Deploy

and RMIC Code.

3. The Generate Deploy and RMIC Code wizard opens. Select the enterprise java

bean by checking the box next to MyConversationalPhoneBook and click

Finish.

Part 4: Building a conversational application

An EJB session bean is a general purpose component that can be used to create

many different types of applications. For example, it can be used to build a SOAP

service, a Java application, or a web application. In this sample, the EJB session

bean is used in a simple web application. To build a simple web application you

need to create JSP web pages in your web project. These JSP web pages are used to

194 IMS Connector for Java 2.2 and 9.1.0.1

execute the iterations of the conversation and provide a mechanism for providing

the input and displaying the output of the iterations. In a complicated

conversation, you may have many web pages. This section shows how to generate

an access bean that can be easily invoked from a web page.

Step 1: Generating the access beans

This step provides instructions on how to generate an access bean. The access bean

simplifies access to the Home and Remote Interfaces of your enterprise bean and

allows a standard Java bean approach to using your EJB. To generate an access

bean, complete the following steps:

1. Click on the J2EE Hierarchy tab in the Business Integration perspective and

expand EJB Modules.

2. Right-click MyConversationalPhoneBookEJB and select New > Access Beans.

The Add an Access Bean wizard opens.

3. Select Java bean wrapper for the access bean type and click Next.

4. Ensure that the EJB project name is MyConversationalPhoneBookEJB and

select the MyConversationalPhoneBook access bean. Click Finish.

5. Click on the Package Explorer tab and right-click

MyConversationalPhoneBookWeb. Select Properties.

6. In the Properties for MyConversationalPhoneBookWeb window, select Java

Build Path and click the Projects tab. Accept all the defaults and select both

projects, MyConversationalPhoneBookCCI RecordClasses and

MyConversationalPhoneBookEJB.

7. Click OK.

Step 2: Importing the conversational web pages

To import the conversational web pages with this sample, complete the following

steps:

1. Click on the Package Explorer tab and expand

MyConversationalPhoneBookWeb > WebContent.

2. Right-click WebContent and the Import Select page opens. Select Import > File

System. Click Next.

3. The Import File System page opens. Click Browse next to the Directory field

and go to

WS_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.

ims_5.1.0\sampleparts

where WS_installdir is the directory where WebSphere Studio is installed.

4. Select the following three files:

v index.html

v results.jsp

v error.jsp

5. Click Finish.

The index.html page is a simple web form that is used to provide input for the

first iteration of the conversation and invoke the results.jsp web page. The

results.jsp web page is the key web page of the application. It is used to invoke the

runFirstIteration() and runMiddleIteration() methods of the access bean,

ConversationalPhoneBookAccessBean, as well as to present the results from the

first iteration and middle iterations of the conversation. The results.jsp page can be

Chapter 9. Samples 195

used repeatedly for the middle iterations of the conversation. The logic contained

in the results.jsp file determines which business methods to call for given inputs,

catches and displays exceptions such as a user’s EJB session time out, and handles

the termination of the conversation. The error.jsp file is used to display exceptions.

Optional: If you want to create your own web pages, you can create them directly

with the tooling provided by WebSphere Studio. To create a JSP page, complete the

following steps:

1. Click on the Package Explorer tab and expand

MyConversationalPhoneBookWeb > WebContent.

2. Right-click WebContent and select New > Other.

3. The Select page of the New wizard opens. In the left-pane, select Web and in

the right-pane select JSP file. Click Next.

4. The New JSP File window opens. In the page:

a. Ensure that the Destination folder is:

/MyConversationalPhoneBookWeb/WebContent.

b. Type the name of your JSP file in the Name field.

c. Ensure the Markup language is HTML.

d. Click Finish.
5. The new JSP file that you created opens in the source editor. Add your code to

the file.

6. Press Ctrl-S to save your changes and then close the editor.

Part 5: Configuring the server and running the sample

To run this sample, you must deploy the Enterprise Application project, in the

form of an EAR file, to a server. In this case, the server runs in the WebSphere Unit

Test Environment. This server must be configured and started. For this sample,

you need to create one server instance and server configuration. A server instance

identifies the run-time environment that you want to use for testing your project

resources. A server configuration contains information that is required to set up

and publish to a server. After you configure the server, you will deploy the EAR

project. Note: If you already created a server and server configuration, you still

need to deploy the EAR file to the server.

Step 1: Configuring the server and deploying the Enterprise

Application (EAR)

To create a server instance and configuration, complete the following steps:

1. In the Business Integration perspective, click the Server Configuration tab to

open the Server Configuration view. Right-click anywhere in the Server

Configuration view. Select New > Server and Server Configuration. The create

a New Server and Server Configuration wizard opens. (Note: If the Server

Configuration tab is not available, you need to open the Server window. From

the file menu select Window > Show View > Server.)

2. Type myIMSServicesServer for the server name. (The default folder name is

Servers.)

3. Expand WebSphere version 5.1 and select Integration Test Environment.

Leave the template set to None and click Next.

4. Click Yes to create a server project named Servers.

196 IMS Connector for Java 2.2 and 9.1.0.1

5. The server port number defaults to 9080. The port identifies the location of the

service. Click Finish. The new server instance appears in the Server

Configuration view and in the Servers view.

You have just created an instance of the WebSphere Application Sever that is

emulated by the WebSphere Test Environment running on your local host on port

9080.

Next you must add an instance of a JCA connection factory and configure its

properties. The connection factory provides connections to the EIS on demand. In

the case of the IMS resource adapter, an instance of an IMSConnectionFactory

provides an application with connections to IMS OTMA through IMS Connect.

You specify all of the information needed by the resource adapter to connect to a

particular instance of the EIS. For the IMS resource adapter, with TCP/IP

connections, you must specify at least the HostName, DataStoreName, and

PortNumber properties. For Local Option connections, you must specify values for

at least the IMSConnectName and DataStoreName properties. These values

determine the IMS that will be accessed through all of the connections created by

this instance of the connection factory.

You also specify a JNDI lookup name under which the new connection factory

instance will be available to an application component. The resource reference of

an application component is mapped to the JNDI lookup name so at runtime the

component can use the connection factory to make connections to the EIS. To

create and configure a connection factory, complete the following steps:

1. Click the Server Configuration tab to open the Server Configuration view.

Expand Servers.

2. Double-click the server configuration, myIMSServicesServer. An editor opens.

3. Click the J2C tab. Click Add beside the J2C Resource Adapters table.

4. From the Resource Adapters name list, select the resource adapter named IMS.

This is the name you chose when you imported the IMS resource adapter into

WebSphere Studio in the section ″Before you begin.″ Click OK.

5. In the J2C Resource Adpaters table, select the IMS resource adapter, then click

Add beside the J2C Connection Factories table. The application client will look

up this connection factory instance using the JNDI interface. The application

component (EJB) will then use the connection factory instance to get a

connection to the underlying IMS.

6. In the Create Connection Factory window, type a name for the new connection

factory. For example, ims_cf. Type a JNDI name for the new connection

factory. For example, MyIMSTarget. Click OK.

7. In the Resource Properties table, type the property values appropriate for your

environment. You might need to scroll down to see this table. See Connection

properties for a description of these properties. For example,

v In the HostName field, type MYHOST.ABC.XYZ.COM.

v In the PortNumber field, type 9999.

v In the DataStoreName field, type MYDSTOR.
8. Press Ctrl-S to save the changes and then close the editor.

Next you need to provide an EJB resource reference to the Connection Factory you

just created. Because the JNDI lookup for your conversational EJB is done by the

IMSConversationalHelper class, the EJB resource reference for your conversational

Chapter 9. Samples 197

EJB must match the resource reference used by the IMSConversationalHelper class.

To provide a resource reference and map it to your new connection factory,

complete the following steps:

 1. Click on the J2EE Hierarchy tab in the Business Integration perspective and

expand EJB Modules.

 2. Right-click MyConversationalPhoneBookEJB and select Open with >

Deployment Descriptor Editor.

 3. Click the References tab and select the MyConversationalPhoneBook bean.

Click Add to add a new resource reference. The Add Reference wizard opens.

 4. In the Reference window, select Resource Reference and click Next.

 5. In the EJB Resource Reference window, type ibm/ims/IMSTarget in the Name

field. The IMSConversationalHelper class uses ibm/ims/IMSTarget to locate

the connection factory. If you wish to use a value other than

ibm/ims/IMSTarget, you can invoke the method setJNDILookupName()

before the first invocation of the execute() method. A possible location for this

call is the ejbCreate() method of your conversational EJB.

 6. In the Type field, select javax.resource.cci.ConnectionFactory from the drop

down box.

 7. In the Authentication field, select Container from the drop down box.

 8. Ensure that the Sharing scope field is set to Unshareable. This guarantees

that the connection to IMS is unique and will not be closed at the end of an

iteration, allowing IMS Connect to maintain the same connection for the

duration of the conversation. If a connection is Shareable it is returned to the

connection pool when the transaction ends. Because the conversational EJB

has a TransactionType of Container, the application server will consider an

iteration to be in the scope of a transaction, even though the container

transaction type for all the methods of the EJB have been designated as Not

Supported.

 9. Click Finish.

10. In the References tab, expand the MyConversationalPhoneBook bean and

select the new ResourceRef you just created, ibm/ims/IMSTarget.

11. Under the WebSphere Bindings section, type the JNDI name you chose for

your connection factory. For example, MyIMSTarget.

12. Press Ctrl-S to save the changes, and then close the Deployment Descriptor

editor.

Because the conversational EJB is a stateful session bean, you can configure the

duration in seconds before the session bean times out. When the timeout value is

reached, the EJB is removed. Removing the EJB will end the conversation. Pick a

timeout value that is appropriate for your conversation.

1. Click the J2EE Hierarchy tab in the Business Integration perspective and

expand, EJB Modules .

2. Right-click MyConversationalPhoneBookEJB and select Open with >

Deployment Descriptor Editor.

3. Click the Beans tab and select the MyConversationalPhoneBook bean. Scroll

down to the Session Timeout section and enter a value for the Timeout integer.

For example, a value of 600 seconds (10 minutes).

4. Press Ctrl-S to save the changes, and the close the Deployment Descriptor

editor.

198 IMS Connector for Java 2.2 and 9.1.0.1

Finally, you need to add the EAR project (MyConversationalPhoneBook) to the

server configuration that you created. To add the project, complete the following

steps:

1. In the Server Configuration view under Servers, right-click

myIMSServicesServer.

2. Select Add > MyConversationalPhoneBook. MyConversationalPhoneBook is

the name of the Enterprise Application Project that you created earlier.

You have now successfully generated an enterprise service from an IMS transaction

and deployed that service to the WebSphere test environment.

Step 2: Running the sample

To run the sample, complete the following steps:

1. In the Package Explorer view, expand MyConversationalPhoneBookWeb >

WebContent.

2. Right-click index.html and select Run on Server.

3. The URL is displayed in a web browser:

http://localhost:9080/MyConversationalPhoneBookWeb/index.html

4. Type data in the fields provided on the web page. For example, type the

following information for Last Name: Last1.

5. Select the command to be performed. For example, select Display and then

click Submit to submit the data for processing. The First Iteration Results page

appears with the status Entry Was Displayed.

6. To continue the conversation, select another command and then click Submit to

submit data for processing. To end the conversation, select either the End or

Force End command option. The End command option sends an input message

containing the END command to the IMS application program and the IMS

application program ends the conversation in response to the input message.

The Force End command option sends a special OTMA message to IMS

Connect, resulting in IMS ending the conversation.

Congratulations! You have now successfully built an Enterprise Java bean to

communicate with a conversational IMS application.

Sample: Building an Application to Process Variable Length and

Multiple Segment IMS Transaction Output Messages

Objective

This sample illustrates how to use WebSphere Studio Application Developer

Integration Edition 5.0 to build a simple Java application that processes an IMS

transaction that returns a multi-segment output message. The methodology used

by this sample can also be used to build an application that processes a variable

length IMS transaction output message.

The steps for building this application are very similar to the steps described in

WebSphere Studio’s online help, Help > Help Contents > WebSphere Studio >

Developing > Enterprise Services > IMS Services > Samples > Creating an

enterprise service for an IMS transaction. For this reason, the multi-segment

sample will provide high level descriptions for some steps. For other steps you can

refer to the online help for more details.

Chapter 9. Samples 199

Before you begin

The IMS transaction that is used in this sample is not one of the IMS Installation

Verification Programs. This sample uses DFSDDLT0, an IMS application program

that issues calls to IMS based on control statement information. The DFSDDLT0

control statements for this sample are provided below. However, to run this sample

you must configure your environment for DFSDDLT0 and provide the necessary

JCL.

DFSDDLT0 control statements

S11 1 1 1 1 TP 1

L GU

E OK

E Z0017 DATA SKS2 M2 SI1M3 SI1

WTO SEGMENT SI1 RECEIVED

L GN

E QD

WTO END OF INPUT SEGMENTS

L ISRT IW06OUT

L Z0012 DATA *******M1SO1

E OK

WTO SEGMENT SO1 INSERTTED

L ISRT

L Z0027 DATA ********M1SO2*********M2SO2

E OK

WTO SEGMENT SO2 INSERTTED

L ISRT

L Z0048 DATA **********M1SO3***********M2SO3************M3SO3

E OK

WTO SEGMENT SO3 INSERTTED

WTO CURRENT PROGRAM STLDDLT2 TERMINATED

L GU

Note: This sample uses SKS2 as the transaction code for the DFSDDLT0

application.

In addition to setting up DFSDDLT0, this sample assumes:

v Your runtime environment meets the prerequisites for using the IMS resource

adapter.

v You have imported the IMS resource adapter into your WebSphere Studio

environment.

Description

This sample uses the COBOL code below to describe the IMS transaction input and

output messages. Note that the output message returned by IMS consists of three

fixed length segments:

v OUTPUT-SEG1 (16 bytes)

v OUTPUT-SEG2 (31 bytes)

v OUTPUT-SEG3 (52 bytes)

The output message returned by this particular IMS application is a fixed size of

99 bytes and is represented by the COBOL 01 structure OUTPUT-MSG.

One way of developing this multi-segment application is to use the COBOL

definition OUTPUT-MSG to define the output of the transaction. A second way is

to create an output message for the output of the transaction. The code provided

with this sample uses the second method, since it can also be used to build an

200 IMS Connector for Java 2.2 and 9.1.0.1

application that processes a variable length output message. The COBOL

definitions for the individual message segments will continue to be used to

simplify access to the data of the individual segments. The COBOL code for this

sample is shown below and is also in file MSOut.ccp:

 01 INPUT-MSG.

 02 IN-LL PICTURE S9(3) COMP.

 02 IN-ZZ PICTURE S9(3) COMP.

 02 IN-TRCD PICTURE X(5).

 02 IN-DATA1 PICTURE X(6).

 02 IN-DATA2 PICTURE X(6).

 01 OUTPUT-MSG.

 02 OUT-ALLSEGS PICTURE X(99) VALUE SPACES.

 01 OUTPUT-SEG1.

 02 OUT-LL PICTURE S9(3) COMP VALUE +0.

 02 OUT-ZZ PICTURE S9(3) COMP VALUE +0.

 02 OUT-DATA1 PICTURE X(12) VALUE SPACES.

 01 OUTPUT-SEG2.

 02 OUT-LL PICTURE S9(3) COMP VALUE +0.

 02 OUT-ZZ PICTURE S9(3) COMP VALUE +0.

 02 OUT-DATA1 PICTURE X(13) VALUE SPACES.

 02 OUT-DATA2 PICTURE X(14) VALUE SPACES.

 01 OUTPUT-SEG3.

 02 OUT-LL PICTURE S9(3) COMP VALUE +0.

 02 OUT-ZZ PICTURE S9(3) COMP VALUE +0.

 02 OUT-DATA1 PICTURE X(15) VALUE SPACES.

 02 OUT-DATA2 PICTURE X(16) VALUE SPACES.

 02 OUT-DATA3 PICTURE X(17) VALUE SPACES.

Step 1: Creating the service project

1. Open the Business Integration perspective.

2. From the toolbar, click the Create a service project icon.

3. The New Project wizard opens. In the Project nameI field, type

MultiSegmentOutput. Click Finish.

Step 2: Importing the COBOL file

1. Select the MultiSegmentOutput service project and click the New Java

package icon.

2. Create a new package named sample.ims. Click Finish.

3. In the Services view, expand the MultiSegmentOutput service project and

right-click the sample.ims package and select Import.

4. In the Import wizard, select File system and click Next.

5. On the File System page, click Browse and import MSOut.ccp, which is the

COBOL source for the IMS transaction input and output message. The

MSOut.ccp file is located in:

ws_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.

ims_5.1.0\sampleparts

where the ws_installdir is the directory where WebSphere Studio is installed.

Step 3: Generating the enterprise service

1. Expand Service Projects > MultiSegmentOutput > sample.ims.

2. Right-click MSOut.ccp and select New > Service built from

3. In the Create Service page, select IMS and click Next.

Chapter 9. Samples 201

4. In the Connection Properties page, enter the property values appropriate for

your environment, then click Next. Note: Because the connection properties are

not encrypted, you should remove at minimum the User name and password

from the port definition after you have completed testing.

5. In the Service Binding page, ensure that the following values are correct:

v The Source folder field contains /MultiSegmentOutput

v The Package field contains sample.ims

v The Target namespace is http://ims.sample/

6. In the Interface file name field, type MSO, then click Finish to accept all other

default names. Click OK.

Define an operation for the first segment of the output message. This step is

primarily for obtaining helper classes for the message segment. The helper classes

for the segment consist of a Java bean with get and set methods for each of the

COBOL fields in the OUTPUT-SEG1 01 data structure and a formatHandler that

can be used to deserialize the COBOL buffer to the Java bean.

 1. Ensure the MSOIMSBinding.wsdl file is open in the WSDL editor. If it is not

open, double-click the file. Optionally, right-click the MSOIMSBinding.wsdl

file and select Open With > WSDL Editor.

 2. In the Bindings container of the Graph view, right-click MSOIMSBinding and

select Generate Binding Content.

 3. In the Specify Binding Details page, ensure IMS is selected for the Protocol

field and click Add to add binding operations.

 4. In the Operation name field of the Operation Binding page type outSegment1

for the name of the operation and select ONE_WAY as the type of operation.

Click Next.

 5. In the imsConnector Operation Binding Properties page, accept the default

values and click Next.

 6. In the Operation Binding page, click Import next to the Input message field.

The File Selection page opens. Import the MSOut.ccp file to specify the XML

schema definition for the input part.

v Expand MultiSegmentOutput > sample > ims and select MSOut.ccp. Click

Next.

v In the COBOL Import Properties page, choose the z/OS platform and click

Next to accept the default values.

v In the COBOL Importer page, the data structures from the MSOut.ccp file

are displayed. Select OUTPUT-SEG1. You can accept the default to

overwrite the XSD types. Click Finish.
 7. On the Operation Binding page, click Finish to complete the operation and

return to the Binding wizard.

 8. Click Finish to close the Binding wizard.

 9. Repeat the steps used for the first segment of the message for the second and

third segments of the message.

10. If you have a COBOL definition for the output message, such as the

OUTPUT-MSG declaration in MSOut.ccp, you can proceed to the next step.

If you do not have a COBOL definition for the output message, or if the

message returned by the IMS transaction is variable length, you will need to

create a message to contain the output of the IMS transaction. To create the

output message, perform the following steps:

202 IMS Connector for Java 2.2 and 9.1.0.1

a. Right-click MSO.wsdl, select Open With > Source editor to view the

source. Locate the <schema></schema> section and add the following

complexType following the last complexType in the section:

 <complexType name="OutMsg">

 <annotation>

 <appinfo source="http://www.wsadie.com/appinfo">

 <messageBuffer>true</messageBuffer>

 </appinfo>

 </annotation>

 </complexType>

Press Ctrl-S to save the file and then close the source editor.

b. Right-click MSO.wsdl and select Open With > WSDL editor.

c. In the Messages Container of the Graph view, right-click on the Messages

title bar and select Add Child > message.

d. The New Message window opens. Type OutMsg for the name of the

message and click OK. The new message appears in the Message

container.

e. Right-click OutMsg and select Add Child > part.

f. In the New Part window, type buffer for the name of the new message

part and click OK. The new part, buffer, appears in the Message container.

g. Right-click the buffer part and select Set Type.

h. In the Specify Type wizard, select the Import type from a file radio

button.

i. In the Workbench files list, select the Browse button and scroll to

MultiSegmentOutput.

j. Expand MultiSegmentOutput > sample > ims and select MSO.wsdl.

k. Select OutMsg from the drop down list and click Finish.

l. Save the changes to MSO.wsdl by pressing Ctrl-S.

m. Open the binding WSDL file, MSOIMSBinding.wsdl, in the source view.

Scroll down and locate the

<format:typeMapping></format:typeMapping> section and add the

following typeMap to the section:

<format:typeMap formatType="MSOIMSBinding" typeName="tns:OutMsg"/>

Adding the above typeMap entry enables a format handler to be created

for the output message.
11. Define an operation to run the IMS transaction:

a. Open the binding WSDL file, MSOIMSBinding.wsdl, in the WSDL editor.

b. In the Bindings container of the Graph view, right-click MSOIMSBinding

and select Generate Binding Content.

c. In the Specify Binding Details page, ensure IMS is in the Protocol field and

click Add to add binding operations.

d. In the Operation name field of the Operation Binding page type

runMultiSegOutput for the name of the operation. Leave the type of

operation as REQUEST_RESPONSE and click Next.

e. In the imsConnector Operation Binding Properties page accept the default

values and click Next.

f. In the Operation Binding page, click Import next to the Input message

field. The File Selection page opens. Import the MSOut.ccp file to specify

the XML schema definition for the input part.

Chapter 9. Samples 203

v Expand MultiSegmentOutput > sample > ims and select MSOut.ccp.

Click Next.

v In the COBOL Import Properties page, choose the z/OS platform and

click Next to accept the default values.

v In the COBOL Importer page, the data structures from the MSOut.ccp

file are displayed. Select INPUT-MSG. You can accept the default to

overwrite the XSD types. Click Finish.
g. In the Operation Binding page, ensure that the Import or use an existing

message radio button is selected.

If you have a COBOL definition for the output message, complete the

following steps:

v Click Import next to the Output message field. The New File Selection

page opens. Import the MSOut.ccp file to specify the XML schema

definition for the output part.

v Expand MultiSegmentOutput > sample > ims and select MSOut.ccp.

Click Next.

v In the COBOL Import Properties page, choose the z/OS platform and

click Next to accept the default values.

v In the COBOL Importer page, the data structures from the MSOut.ccp

file are displayed. Select OUTPUT-MSG and change the name in the

XSD name field to OutMsg. You can accept the default to overwrite the

XSD types. Click Finish.

If you created an output message, complete the following steps:

v Click Browse next to the Output message field. The Select a message

Window opens.

v Expand MultiSegmentOutput > sample.ims and select MSO.wsdl.

v In the Choose a message from a WSDL file drop down list, select

OutMsg from the drop down list and click OK.
h. Click Finish on the Operation Binding page to complete the operation and

return to the Bindings page.

i. Click Finish to close the Binding Wizard.

Step 4: Creating a Java service proxy and helper classes

1. Expand the MultiSegmentOutput project and the sample.ims package. Select

the service file MSOIMSService.wsdl.

2. Right-click the file and select Enterprise Services > Generate Service Proxy.

The Generate Service Proxy wizard opens.

3. The Proxy Selection page opens, ensure the type of proxy you want to generate

is selected and click Next.

4. In the Service Proxy page, ensure that the service you want to create the proxy

for is shown.

a. Change the class name for the proxy to MSOProxy.java, if necessary.

b. Ensure that the package name is sample.ims.

c. Ensure that Generate helper classes is selected. Click Next.
5. In the Service Proxy page, specify the style of the proxy and the operations to

expose in the proxy:

a. Select the Client stub proxy style.

b. Select the MSO check box so all the operations are included in the proxy.

Note: By selecting all the operations, helper classes will be generated for all

the operations, even though only the runMultiSegmentOutput operation

204 IMS Connector for Java 2.2 and 9.1.0.1

will be used in the proxy. This can also be accomplished by only including

the runMultiSegmentOutput operation in the proxy and generating helper

classes for the other operations separately.
6. Click Finish. The Java service proxy, MSOProxy, is generated in the

MultiSegmentOutput project.

Step 5: Using the Java service proxy to test the enterprise

service

1. Expand the MultiSegmentOutput project and then select the sample.ims

package. From the toolbar click the New Java class icon

2. In the Java class page, ensure MultiSegmentOutput is the source folder and

that sample.ims is the package name.

3. Type TestMSOProxy for the name of the new class.

4. Accept all other defaults and click Finish.

5. Replace the code in the editor with the following Java code:

package sample.ims;

import sample.ims.ims.ibmcobol.*;

import sample.ims.ims.ibmcobol.*;

import com.ibm.connector2.ims.ico.*;

import com.ibm.etools.marshall.util.MarshallIntegerUtils;

public class TestMSOProxy

{

 public static void main(String[] args)

 {

 byte[] segBytes = null;

 int srcPos = 0;

 int dstPos = 0;

 int totalLen = 0;

 int remainLen = 0;

 byte[] buff;

 short LL = 0;

 short ZZ = 0;

 try

 {

 // ---

 // Populate the IMS transaction input message with

 // data. Use the input message format handler method

 // getSize() to set the LL field of the input message.

 // ---

 INPUTMSGFormatHandler inFmtHndlr =

 new INPUTMSGFormatHandler();

 INPUTMSG input =

 (INPUTMSG) inFmtHndlr.getObjectPart();

 input.setIn__ll((short) inFmtHndlr.getSize());

 input.setIn__zz((short) 0);

 input.setIn__trcd("SKS2 ");

 input.setIn__data1("M2 SI1");

 input.setIn__data2("M3 SI1");

 // ---

 // Run the IMS transaction. The multi-segment output

 // message is returned.

 // ---

 MSOProxy proxy = new MSOProxy();

 OutMsg output = proxy.runMultiSegOutput(input);

 // ---

 // Retrieve the multi-segment output message as a

 // byte array using the output message format

Chapter 9. Samples 205

// handler method getBytes().

 // ---

 OutMsgFormatHandler outFmtHndlr =

 (OutMsgFormatHandler) output._getFormatHandler();

 segBytes = outFmtHndlr.getBytes();

 // ---

 // Note: At this point, if the IMS application program

 // returned a variable length output message, the

 // application would process the byte array segBytes.

 // ---

 srcPos = 0;

 dstPos = 0;

 totalLen = segBytes.length;

 remainLen = totalLen;

 // ---

 // Populate first segment object from the byte array.

 // ---

 buff = null;

 // Get length of segment.

 LL =

 MarshallIntegerUtils

 .unmarshallTwoByteIntegerFromBuffer(

 segBytes,

 srcPos,

 true,

 MarshallIntegerUtils.SIGN_CODING_TWOS_COMPLEMENT);

 // Put segment in byte array.

 buff = new byte[LL];

 System.arraycopy(segBytes, srcPos, buff, dstPos, LL);

 remainLen -= LL;

 // Create and populate segment object from byte array.

 OUTPUTSEG1FormatHandler outSeg1FH =

 new OUTPUTSEG1FormatHandler();

 outSeg1FH.setBytes(buff);

 OUTPUTSEG1 S1 =

 (OUTPUTSEG1) outSeg1FH.getObjectPart();

 System.out.println(

 "\nOutSeg1 LL is: "

 + S1.getOut__ll()

 + "\nOutSeg1 ZZ is: "

 + S1.getOut__zz()

 + "\nOutSeg1_DATA1 is: "

 + S1.getOut__data1());

 // ---

 // Populate second segment object the byte array..

 // ---

 srcPos += LL;

 buff = null;

 // Get length of segment.

 LL =

 MarshallIntegerUtils

 .unmarshallTwoByteIntegerFromBuffer(

 segBytes,

 srcPos,

 true,

 MarshallIntegerUtils.SIGN_CODING_TWOS_COMPLEMENT);

 // Put segment in byte array.

 buff = new byte[LL];

 System.arraycopy(segBytes, srcPos, buff, dstPos, LL);

 remainLen -= LL;

206 IMS Connector for Java 2.2 and 9.1.0.1

// Create and populate segment object from byte array.

 OUTPUTSEG2FormatHandler outSeg2FH =

 new OUTPUTSEG2FormatHandler();

 outSeg2FH.setBytes(buff);

 OUTPUTSEG2 S2 =

 (OUTPUTSEG2) outSeg2FH.getObjectPart();

 System.out.println(

 "\nOutSeg2 LL is: "

 + S2.getOut__ll()

 + "\nOutSeg2 ZZ is: "

 + S2.getOut__zz()

 + "\nOutSeg2_DATA1 is: "

 + S2.getOut__data1()

 + "\nOutSeg2_DATA2 is: "

 + S2.getOut__data2());

 // ---

 // Populate third segment object the byte array.

 // ---

 srcPos += LL;

 buff = null;

 // Get length of segment.

 LL =

 MarshallIntegerUtils

 .unmarshallTwoByteIntegerFromBuffer(

 segBytes,

 srcPos,

 true,

 MarshallIntegerUtils.SIGN_CODING_TWOS_COMPLEMENT);

 // Put segment in byte array.

 buff = new byte[LL];

 System.arraycopy(segBytes, srcPos, buff, dstPos, LL);

 remainLen -= LL;

 // Create and populate segment object from byte array.

 OUTPUTSEG3FormatHandler outSeg3FH =

 new OUTPUTSEG3FormatHandler();

 outSeg3FH.setBytes(buff);

 OUTPUTSEG3 S3 =

 (OUTPUTSEG3) outSeg3FH.getObjectPart();

 System.out.println(

 "\nOutSeg3 LL is: "

 + S3.getOut__ll()

 + "\nOutSeg3 ZZ is: "

 + S3.getOut__zz()

 + "\nOutSeg3_DATA1 is: "

 + S3.getOut__data1()

 + "\nOutSeg3_DATA2 is: "

 + S3.getOut__data2()

 + "\nOutSeg3_DATA3 is: "

 + S3.getOut__data3());

 }

 catch (Exception e)

 {

 System.out.println("\nCaught exception is: " + e);

 }

 }

}

6. Press Ctrl-S to save the changes and then close the editor.

7. Select TestMSOProxy.java and expand the Run icon on the toolbar by selecting

the arrow beside it. From the pop-up menu, select Run As > Java Application.

8. If you are able to run the DFSDDLT0 script provided with this sample, the Java

application runs and you see the following output on the console:

Chapter 9. Samples 207

OutSeg1 LL is: 16

OutSeg1 ZZ is: 768

OutSeg1_DATA1 is: *******M1SO1

OutSeg2 LL is: 31

OutSeg2 ZZ is: 768

OutSeg2_DATA1 is: ********M1SO2

OutSeg2_DATA2 is: *********M2SO2

OutSeg3 LL is: 52

OutSeg3 ZZ is: 768

OutSeg3_DATA1 is: **********M1SO3

OutSeg3_DATA2 is: ***********M2SO3

OutSeg3_DATA3 is: ************M3SO3

A Note about Processing Variable Length IMS Transaction

Output Messages

For this sample, the IMS application program returns a fixed length multisegment

message in the byte array segBytes. If the IMS application program returns a

variable length message it is also available to the application in the byte array

segBytes. Because the message in segBytes is in the format used by the IMS

application program, it must be converted to a representation appropriate to the

Java application. The application can obtain the length (LL) of the variable message

using the method illustrated above. If the message contains text data, it will be in

the single byte EBCDIC encoding scheme, and should be converted to UNICODE

for use by the Java application.

Sample: Building an Application to Process IMS Transaction Input and

Output Messages Containing Arrays

Objectives

This sample illustrates how to use WebSphere Studio Application Developer

Integration Edition Version 5.0 to build a simple Java application that processes an

IMS transaction input message and output message which contain arrays. For this

sample, the input message and output message of the transaction are identical.

Many applications use arrays with a variable number of elements. For example, an

IMS transaction input message can contain an array that has a maximum of 1000

elements, but for a particular execution of the IMS transaction, the array may only

have three elements. In this case, for best performance, it is appropriate to send a

three element array from the IMS resource adapter to the IMS application program.

This sample illustrates how to ensure that only the necessary number of elements

are included in the input message.

The steps for building this application are very similar to the steps described in the

sample, Creating an enterprise service for an IMS transaction. The sample,

Creating an enterprise service for an IMS transaction, can be found in WebSphere

Studio’s online help, Help > Help Contents > Business integration > Resource

adapters > IMS resource adapter > Samples. Because both samples are similar to

one another, this sample will only provide the high level steps, and refer you to

the online help for more details. The discussion focuses on the how to program the

Java application to ensure only the necessary number of elements are included in

the array sent to the IMS application program.

208 IMS Connector for Java 2.2 and 9.1.0.1

Before you begin

The IMS transaction that is used by this sample is not one of the IMS Installation

Verification Programs. It uses DFSDDLT0, an IMS application program that issues

calls to IMS based on control statement information. The DFSDDLT0 control

statements for this sample are provided below. However, you must configure your

environment for DFSDDLT0 and provide the necessary JCL if you wish to run the

sample.

DFSDDLT0 control statements

S11 1 1 1 1 TP 1

L GU

E OK

E Z0088 DATA SKS2 03CN001Cathy Tang CN002Haley Fung

 X

 CN003Steve Kuo 123456

WTO IC4JINOU: Single segment received from JITOC

L GN

E QD

WTO IC4JINOU: End of input segments from JITOC

L ISRT JITOC53

L Z0113 DATA TRNCD04CN001Cathy T. CN002Haley F.

 X

 CN003Steve K. CN004Kevin F.

65432X

 1

E OK

WTO IC4JINOU: Single segment inserted - 3 elements !!!!!!!!!!!!!

L GU

Note:

This sample uses SKS2 as the transaction code for the DFSDDLT0 application. In

addition to setting up DFSDDLT0, this sample assumes:

v That your runtime environment meets the prerequisites for using the IMS

resource adapter.

v That you have imported the IMS resource adapter into your WebSphere Studio

environment.

Description

This sample uses the COBOL code below to describe the IMS transaction input and

output messages. The input and the output messages are identical and contain an

array of ″customer″ elements, followed by a single field containing a function code.

The array can have a maximum of eight elements, but for this sample only three

elements are input to the IMS application program and only four elements are

returned by the IMS application program. The COBOL code for this sample is

shown below and is also in the file, InEqualsOut.cbl:

Chapter 9. Samples 209

01 IN-OUT-MSG.

 05 WS-LL PIC S9(3) COMP VALUE +0.

 05 WS-ZZ PIC S9(3) COMP VALUE +0.

 02 WS-TRCD PIC X(5).

 05 INDX PIC 99.

 05 WS-CUSTOMER OCCURS 1 TO 8 TIMES

 DEPENDING ON INDX.

 15 WS-CUST-NUMBER PIC X(5).

 15 WS-CUST-NAME PIC X(20).

 05 WS-FUNC-CODE PIC X(6).

Step 1: Creating the service project

1. Open the Business Integration perspective.

2. From the toolbar, click the Create a service project icon.

3. Use the New Service Project wizard to create a service project and name it

InOutArray. Click Finish.

Step 2: Importing the COBOL file

1. Select the InOutArray service project and click the New Java package icon.

2. Create a new package named sample.ims. Click Finish.

3. In the Services view, expand the InOutArray service project and right-click the

sample.ims package and select Import.

4. In the Import wizard, select File system and click Next.

5. On the File System page, click Browse and import InEqualsOut.ccp, which is

the COBOL source for the IMS transaction input and output message. The

MSOut.ccp file is located in:

ws_installdir\wstools\eclipse\plugins\com.ibm.etools.ctc.samples.

ims_5.1.0\sampleparts

where the ws_installdir is the directory where WebSphere Studio is installed.

Step 3: Generating the enterprise service

1. Expand Service Projects > InOutArray > sample.ims.

2. Right-click InEqualsOut.cbl and select New > Service built from.

3. In the Create Service page, select IMS and click Next.

4. In the Connection Properties page, enter the property values appropriate for

your environment, then click Next. Note: Because the connection properties are

not encrypted, you should remove at minimum the User name and password

from the port definition after you have completed testing.

5. In the Service Binding page, ensure that the following values are correct:

v The Source folder field contains /InOutArray

v The Package field contains sample.ims

v The Target namespace is http://ims.sample/

6. In the Interface file name field, type InOut, click Finish to accept all other

default names, and then click OK.

7. Define an operation to run the IMS transaction.

a. The InOutIMSBinding.wsdl file opens in the WSDL editor.

b. In the Bindings container of the Graph view, right-click InOutIMSBinding

and select Generate Binding Content.

c. The Specify Binding Details page opens. Ensure IMS is selected for the

Protocol field and then click Add to add binding operations.

210 IMS Connector for Java 2.2 and 9.1.0.1

d. In the Operation name field of the Operation Binding page type runInOut

for the name of the operation and select REQUEST_RESPONSE as the type

of operation. Click Next.

e. In the imsConnector Operation Binding Properties page, accept the default

values and click Next.

f. In the Operation Binding page, click Import next to the Input message field.

The File Selection page opens. Import the InEqualsOut.cbl file to specify the

XML schema definition for the input part.

v Expand InOutArray > sample > ims and select InEqualsOut.cbl. Click

Next.

v In the COBOL Import Properties page, choose the z/OS platform and click

Next to accept the default values.

v In the COBOL Importer page, the single data structure from the

InEqualsOut.cbl file is displayed. Select IN-OUT-MSG for the input

message. You can accept the default to overwrite the XSD types. Click

Finish

g. In the Operation Binding page, select the check box Use input message for

output and click Finish.

h. In the Specify Binding Details page, click Finish to close the Binding

wizard.

Step 4: Creating a Java service proxy and helper classes

1. Expand the InOutArray project and the sample.ims package. Select the service

file InOutIMSService.wsdl.

2. Right-click the file and select Enterprise Services > Generate Service Proxy.

The Generate Service Proxy wizard opens.

3. In the Proxy selection page, ensure that the service you want to create the

proxy for is shown and click next.

a. Change the class name for the proxy to InOutProxy.java, if necessary.

b. Ensure that the package name is sample.ims.

c. Ensure that Generate helper classes is selected. Click Next.
4. In the Service Proxy page, specify the style of the proxy and the operations to

expose in the proxy:

a. Select the Client stub proxy style.

b. Select the InOut check box. The single operation runInOut will be included

in the proxy.
5. Click Finish. The Java service proxy, InOutProxy, is generated in the

InOutArray project.

Step 5: Using the Java service proxy to test the enterprise

service

 1. Expand the InOutArray project and then select the sample.ims package. From

the toolbar click the New Java class icon

 2. Ensure that InOutArray is the source folder and that sample.ims is the

package name.

 3. Type TestInOutProxy for the name of the new class.

 4. Accept all other defaults and click Finish.

 5. Replace the code in the editor with the following Java code:

 6. package sample.ims;

import com.ibm.connector2.ims.ico.*;

Chapter 9. Samples 211

import sample.ims.ims.ibmcobol.*;

public class TestInOutProxy

{

 public static void main(String[] args)

 {

 try

 {

 // ---

 // Create the formatHandler, then create the input

 // message bean from the formatHandler.

 // ---

 INOUTMSGFormatHandler inoutFmtHndlr = new INOUTMSGFormatHandler();

 INOUTMSG input = (INOUTMSG) inoutFmtHndlr.getObjectPart();

 int sz = inoutFmtHndlr.getSize();

 System.out.println("\nInitial size of input message is: " + sz);

 // ---

 // Don’t set the length (LL) field yet... wait until

 // input message has been adjusted to reflect only

 // the number of array elements actually sent.

 // ---

 input.setWs__zz((short) 0);

 input.setWs__trcd("SKS2 ");

 // ---

 // Construct an array and populate it with the elements

 // to be sent to the IMS application program. In this

 // case three elements are sent.

 // ---

 Inoutmsg_ws__customer[] customers = new Inoutmsg_ws__customer[3];

 Inoutmsg_ws__customer aCustomer1 = new Inoutmsg_ws__customer();

 aCustomer1.setWs__cust__name("Cathy Tang");

 aCustomer1.setWs__cust__number("CN001");

 customers[0] = aCustomer1;

 Inoutmsg_ws__customer aCustomer2 = new Inoutmsg_ws__customer();

 aCustomer2.setWs__cust__name("Haley Fung");

 aCustomer2.setWs__cust__number("CN002");

 customers[1] = aCustomer2;

 Inoutmsg_ws__customer aCustomer3 = new Inoutmsg_ws__customer();

 aCustomer3.setWs__cust__name("Steve Kuo");

 aCustomer3.setWs__cust__number("CN003");

 customers[2] = aCustomer3;

 // ---

 // Set the array on the input message.

 // ---

 input.setWs__customer(customers);

 input.setIndx((short) 3);

 System.out.println("\nInitial value of INDX is: " + input.getIndx());

 // ---

 // Flush contents of the input message bean into the

 // formatHandler.

 // ---

 input.fireElementEvents();

 // ---

 // Reallocate the buffer to the actual size

 // ---

 byte[] bytes = inoutFmtHndlr.getBytes();

 int size = inoutFmtHndlr.getSize();

212 IMS Connector for Java 2.2 and 9.1.0.1

byte[] newBytes = new byte[size];

 System.arraycopy(bytes, 0, newBytes, 0, size);

 // ---

 // Set the bytes back into the format handler and set

 // the length field of the input message, now that

 // we know the actual size.

 // ---

 inoutFmtHndlr.setBytes(newBytes);

 input.setWs__ll((short) size);

 System.out.println("\nAdjusted size of input message is: " + size);

 System.out.println("\nAdjusted size of INDX is: " + input.getIndx());

 // ---

 // Set fields that follow the array after the input

 // message has been adjusted.

 // ---

 input.setWs__func__code("123456");

 InOutProxy proxy = new InOutProxy();

 INOUTMSG output = new sample.ims.INOUTMSG();

 output = proxy.runInOut(input);

 short outndx = output.getIndx();

 System.out.println("\nOutput value of INDX is: " + outndx);

 Inoutmsg_ws__customer outArray[] = output.getWs__customer();

 for (int i = 0; i < outndx; i++)

 {

 System.out.println(

 "\n"

 + outArray[i].getWs__cust__name()

 + outArray[i].getWs__cust__number());

 }

 }

 catch (Exception e)

 {

 if (e instanceof org.apache.wsif.WSIFException)

 {

 Throwable ic4jEx =

 ((org.apache.wsif.WSIFException) e).getTargetException();

 if (ic4jEx instanceof IMSDFSMessageException)

 {

 System.out.println(

 "\nIMS returned message: "

 + ((IMSDFSMessageException) ic4jEx).getDFSMessage());

 }

 else

 {

 System.out.println(

 "\nIMS Connector exception is: " + ic4jEx);

 }

 }

 else

 {

 System.out.println("\nCaught exception is: " + e);

 }

 }

 }

}

 7. Press Ctrl-S to save the changes and then close the editor.

 8. Select TestInOutProxy.java and expand the Run icon on the toolbar by

selecting the arrow beside it. From the pop-up menu, select Run As > Java

Application.

Chapter 9. Samples 213

9. If you are able to run the DFSDDLT0 script provided with this sample, the

Java application runs and you see the following output on the console:

10. Initial size of input message is: 217

Initial value of INDX is: 8

Adjusted size of input message is: 92

Adjusted size of INDX is: 3

Output value of INDX is: 4

Cathy T. CN001

Haley F. CN002

Steve K. CN003

Kevin F. CN004

In addition, a trace of the OTMA message sent to IMS Connect/IMS by the

IMS resource adapter shows that only three elements of the array are

transmitted:

Buffer sent:

 [

 0000024e 001c0000 5cc8e6e2 d1c1e55c |...+...*HWSJAV*| :

16

 00000000 c0000000 c8e6e2f5 e2f5f2e8 |....{...HWS5S52Y| :

32

 ...

 00000000 00000000 00000000 00000000 |................| :

496

 0000005c 0000e2d2 e2f240f0 f3c3d5f0 |...*..SKS2 03CN0| :

512

 f0f1c381 a388a840 e3819587 40404040 |01Cathy Tang | :

528

 40404040 4040c3d5 f0f0f2c8 819385a8 | CN002Haley| :

544

 40c6a495 87404040 40404040 404040c3 | Fung C| :

560

 d5f0f0f3 e2a385a5 8540d2a4 96404040 |N003Steve Kuo | :

576

 40404040 40404040 f1f2f3f4 f5f6 | 123456 |

]

A trace of the OTMA message received by the IMS resource adapter from IMS

Connect/IMS shows that only four elements of the array are transmitted:

Buffer received:

 [

 00000253 5cc8e6e2 d1c1e55c 01800000

|....*HWSJAV*....| : 16

 0000f9f9 f9f94040 4040a0f0 0000003e |..9999

.0....| : 32

 ...

 00000000 00000000 00000000 00000075

|................| : 480

 0300e3d9 d5c3c4f0 f4c3d5f0 f0f1c381 |..TRNCD04CN001Ca| :

496

 a388a840 e34b4040 40404040 40404040 |thy T. | :

512

 4040c3d5 f0f0f2c8 819385a8 40c64b40 | CN002Haley F. | :

528

 40404040 40404040 404040c3 d5f0f0f3 | CN003| :

544

214 IMS Connector for Java 2.2 and 9.1.0.1

e2a385a5 8540d24b 40404040 40404040 |Steve K. | :

560

 40404040 c3d5f0f0 f4d285a5 899540c6 | CN004Kevin F| :

576

 4b404040 40404040 40404040 40f6f5f4 |. 654| :

592

 f3f2f1 |321 |

]

Chapter 9. Samples 215

216 IMS Connector for Java 2.2 and 9.1.0.1

Chapter 10. Adding operations, messages, and bindings from

COBOL source

Use the WSDL editor to add operations including messages and the bindings for

the service. The operation and message definitions can come from existing XMI

files in the workbench, or you can import them from COBOL source files.

Follow these steps after you have generated the skeleton WSDL files to add

operations, messages, and bindings for the service:

1. Open to the Bindings page: If you have just completed the step to generate the

code, the binding file is now open for editing. If the binding file is not open,

double-click the binding WSDL file and ensure the Graph tab is selected.

Before you can specify the bindings for operations, you must first add the

operations to the interface WSDL file. Note: The WSDL editor allows you to

add new operations from the Bindings page of the binding WSDL file, and the

new operations will be added (and saved) to the interface WSDL file. That is,

when you have the binding file open in the WSDL editor, you do not have to

open the interface WSDL file to add the new operations.

2. Add the new operations: To add operations from the binding WSDL file,

complete the following steps:

a. Under the Binding container in the Graph view of the WSDL editor,

right-click the binding file and select Generate Binding Content. The New

Operation Binding Wizard opens.

b. In the Specify Binding Details page, ensure that IMS is selected in the

Protocol field and then click Add to add binding operations.

c. In the Operation Binding page, type a name for the new operation and then

use the table below to help you select the correct type of operation. For

example, if you have a SEND only transaction, select ONE_WAY for the

type of operation.

 InteractionVerb Operation type

SYNC_SEND ONE_WAY or REQUEST_RESPONSE

SYNC_SEND_RECEIVE REQUEST_RESPONSE

SYNC_RECEIVE_ASYNCOUTPUT_* REQUEST_RESPONSE

SYNC_END_CONVERSATION ONE_WAY

Click Next.
3. Specify the input and output messages for the operation: To specify the input

and output messages, complete the following steps:

a. In the Operation Binding page, click Import next to the Input message

field. The File Selection page opens. Expand the folders and import the

COBOL source file to specify the XML schema definition for the input part.

Click Next.

Note: If you have not imported the source file into the workbench

workspace, you will not see the COBOL source file in the Source files

container. In this case, click Import to import the source file into the

workbench. The Import wizard is opened. Follow the instructions in

Importing a COBOL, MFS, or C file to import the source file. When you see

the source file in the Source file container, select it and click Next.

© Copyright IBM Corp. 2000, 2005 217

b. In the imsConnector Operation Binding Properties page, select the default

values and click Next.

c. In the COBOL Import Properties page, choose the z/OS platform and click

Next to accept the default values.

d. In the COBOL Importer page, the single data structure from the COBOL

source file is displayed. Select INPUT-MSG for the input message. You can

accept the default to overwrite the XSD types. Click Finish

e. In the Operation Binding page, click Import next to the output message.

The File Selection page opens. Import the COBOL source file to specify the

XML schema definition for the output part. Click Next.

f. In the imsConnector Operation Binding Properties page, select the default

values and click Next.

g. In the COBOL Import Properties page, specify the values for the output.

Click Next.

h. In the COBOL Import window, select OUTPUT-MSG in the data structures

list, which will populate the XSD type name with OUTPUTMSG. You can

accept the default to overwrite the XSD types. Click Finish to return to the

Operation Binding page.
4. Add the binding for the operation:

a. In the Specify Binding Details page, the Overwrite existing binding

information check box is selected. Click Finish to complete the operation

and return to the Binding wizard.

b. Click Finish to close the Binding wizard. The operation and messages are

added to the interface WSDL file. In the WSDL editor, under the Bindings

container, you should see the new operation you have just added.
5. Save the binding definition to the binding file: Press Ctrl-S to save the

changes to the binding file.

When you have completed these steps, you can generate the deploy code for the

service.

218 IMS Connector for Java 2.2 and 9.1.0.1

Notices

The XDoclet Documentation included in this IBM product is used with permission

and is covered under the following copyright attribution statement: Copyright (c)

2000-2004, XDoclet Team. All rights reserved.

Portions based on Design Patterns: Elements of Reusable Object-Oriented Software, by

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Copyright (c)

1995 by Addison-Wesley Publishing Company, Inc. All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted

by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this

documentation in other countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this documentation. The furnishing of this documentation does not

give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

© Copyright IBM Corp. 2000, 2005 219

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software

IBM Corporation

20 Maguire Road

Lexington, Massachusetts 02421-3112

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this documentation and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

220 IMS Connector for Java 2.2 and 9.1.0.1

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. (C) Copyright IBM Corp. 2000, 2005. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information is intended to help you create application

software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

See http://www.ibm.com/legal/copytrade.shtml.

Notices 221

http://www.ibm.com/legal/copytrade.shtml

222 IMS Connector for Java 2.2 and 9.1.0.1

����

Printed in USA

SC09-7869-04

	Contents
	Chapter 1. What is the IMS resource adapter?
	Prerequisites for using the IMS resource adapter
	Platform configurations and communication protocol considerations
	Preparing to use the IMS resource adapter

	Chapter 2. Developing your application
	Overview of the Common Client Interface (CCI) record helper class

	Chapter 3. Configuring your application
	Execution timeout
	Valid execution timeout values
	Setting execution timeout values
	Socket timeout
	Setting the Socket Timeout Value
	Connection properties
	Operation binding properties

	Chapter 4. Security
	IMS resource adapter security
	Component-managed EIS sign-on
	Configuring component-managed EIS sign-on
	Container-managed EIS sign-on
	Configuring container-managed EIS sign-on
	Overview of secure socket layer (SSL)
	Using secure socket layer (SSL) support

	Chapter 5. Commit mode processing
	Overview of commit mode processing
	SYNC_SEND_RECEIVE programming model
	Retrieving asynchronous output
	Displaying output message counts
	SYNC_SEND programming model
	Creating an application to run a Commit mode 0 transaction
	Displaying output message counts

	Chapter 6. Transaction processing
	Global transaction support with two-phase commit
	Two-phase commit prerequisites
	Using global transaction support in your application
	Two-phase commit environment considerations

	Chapter 7. Diagnosing problems
	Diagnosing problems when using the IMS resource adapter
	Logging and tracing with the IMS resource adapter
	J2CA0056I, WLTC0017E, HWSP1445E, and HWSSL00E Error Messages
	IMS resource adapter messages and exceptions

	Chapter 8. Migration and coexistence
	Migration and coexistence considerations for the IMS resource adapter
	Compatibility of existing applications with IMS Connector for Java Version 2.2.1

	Chapter 9. Samples
	Sample: Creating an enterprise service for an IMS transaction
	Sample: Deploying an IMS enterprise service to a production server
	Sample: Running an enterprise service for an IMS transaction
	Sample: Building a service that submits commands to IMS
	Sample: Building container-managed and component-managed transactional EJBs to run IMS transactions
	Sample: Building input and output records using the CCI record helper class
	Sample: Creating an Enterprise Java Bean to communicate with a conversational IMS application
	Sample: Building an Application to Process Variable Length and Multiple Segment IMS Transaction Output Messages
	Sample: Building an Application to Process IMS Transaction Input and Output Messages Containing Arrays

	Notices

