
Platform MPI
Version 9 Release 1

User's Guide

SC27-5319-00

���





Platform MPI
Version 9 Release 1

User's Guide

SC27-5319-00

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 243.

First edition

This edition applies to version 9, release 1 of Platform MPI (product number 5725-G83) and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1994, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About This Guide . . . . . . . . . . 1
Platforms supported . . . . . . . . . . . . 2
Documentation resources . . . . . . . . . . 4
Credits . . . . . . . . . . . . . . . . 5

Introduction . . . . . . . . . . . . . 7
The message passing model . . . . . . . . . 7
MPI concepts . . . . . . . . . . . . . . 7

Getting Started . . . . . . . . . . . 19
Getting started using Linux . . . . . . . . . 19
Getting started using Windows . . . . . . . . 26

Understanding Platform MPI . . . . . 39
Compilation wrapper script utilities . . . . . . 39
C++ bindings (for Linux) . . . . . . . . . . 43
Autodouble functionality . . . . . . . . . . 44
MPI functions . . . . . . . . . . . . . 45
64-bit support . . . . . . . . . . . . . 45
Thread-compliant library . . . . . . . . . . 46
CPU affinity . . . . . . . . . . . . . . 46
MPICH object compatibility for Linux . . . . . 51
MPICH2 compatibility. . . . . . . . . . . 53
Examples of building on Linux . . . . . . . . 53
Running applications on Linux . . . . . . . . 53
Running applications on Windows . . . . . . 76
mpirun options . . . . . . . . . . . . . 91
Runtime environment variables . . . . . . . 100
List of runtime environment variables . . . . . 104
Scalability . . . . . . . . . . . . . . 127
Dynamic processes . . . . . . . . . . . 130
Singleton launching . . . . . . . . . . . 131
License release/regain on suspend/resume . . . 131
Signal propagation (Linux only) . . . . . . . 131
MPI-2 name publishing support . . . . . . . 132
Native language support . . . . . . . . . 133

Profiling . . . . . . . . . . . . . 135
Using counter instrumentation . . . . . . . 135
Using the profiling interface . . . . . . . . 138
Viewing MPI messaging using MPE . . . . . . 139

Tuning . . . . . . . . . . . . . . 141
Tunable parameters . . . . . . . . . . . 141
Message latency and bandwidth . . . . . . . 142
Multiple network interfaces . . . . . . . . 143
Processor subscription . . . . . . . . . . 143
Processor locality . . . . . . . . . . . . 144
MPI routine selection . . . . . . . . . . . 144

Debugging and Troubleshooting . . . 149
Debugging Platform MPI applications . . . . . 149
Troubleshooting Platform MPI applications . . . 152

Example Applications . . . . . . . . 163
send_receive.f . . . . . . . . . . . . . 164
ping_pong.c . . . . . . . . . . . . . . 166
ping_pong_ring.c (Linux) . . . . . . . . . 168
ping_pong_ring.c (Windows) . . . . . . . . 173
compute_pi.f . . . . . . . . . . . . . 177
master_worker.f90 . . . . . . . . . . . . 179
cart.C . . . . . . . . . . . . . . . . 180
communicator.c. . . . . . . . . . . . . 183
multi_par.f . . . . . . . . . . . . . . 184
io.c . . . . . . . . . . . . . . . . . 191
thread_safe.c . . . . . . . . . . . . . 193
sort.C . . . . . . . . . . . . . . . . 195
compute_pi_spawn.f . . . . . . . . . . . 201

High availability applications. . . . . 203
Failure recovery (-ha:recover) . . . . . . . . 204
Network high availability (-ha:net) . . . . . . 205
Failure detection (-ha:detect) . . . . . . . . 205
Clarification of the functionality of completion
routines in high availability mode . . . . . . 206

Large message APIs . . . . . . . . 207

Standard Flexibility in Platform MPI 217
Platform MPI implementation of standard
flexibility . . . . . . . . . . . . . . . 217

mpirun Using Implied prun or srun 219
Implied prun . . . . . . . . . . . . . 219
Implied srun . . . . . . . . . . . . . 220

Frequently Asked Questions . . . . . 225
General . . . . . . . . . . . . . . . 225
Installation and setup . . . . . . . . . . 226
Building applications . . . . . . . . . . . 227
Performance problems . . . . . . . . . . 228
Network specific . . . . . . . . . . . . 229
Windows specific . . . . . . . . . . . . 230

Glossary . . . . . . . . . . . . . 235

Notices . . . . . . . . . . . . . . 243
Trademarks . . . . . . . . . . . . . . 245

© Copyright IBM Corp. 1994, 2012 iii



iv Platform MPI: User's Guide



About This Guide

This guide describes IBM Platform MPI (Platform MPI), which is the IBM
implementation of the Message Passing Interface (MPI) standard. This guide helps
you use Platform MPI to develop and run parallel applications.

You should have experience developing applications on the supported platforms.
You should also understand the basic concepts behind parallel processing, be
familiar with MPI, and with the MPI 1.2 and MPI-2 standards (MPI: A
Message-Passing Interface Standard and MPI-2: Extensions to the Message-Passing
Interface, respectively).

You can access HTML versions of the MPI 1.2 and 2 standards at
http://www.mpi-forum.org. This guide supplements the material in the MPI
standards andMPI: The Complete Reference.

Some sections in this book contain command-line examples to demonstrate
Platform MPI concepts. These examples use the /bin/csh syntax.

“Platforms supported” on page 2
“Documentation resources” on page 4
“Credits” on page 5

© Copyright IBM Corp. 1994, 2012 1

http://www.mpi-forum.org


Platforms supported
Table 1. Supported platforms, interconnects, and operating systems

Platform Interconnect Operating System

Intel IA 32 TCP/IP on various hardware Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, 2003, 2008, XP, Vista,
and 7; WinOF 2.0 and 2.1.

Myrinet cards using GM-2 and MX Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, 2003, 2008, XP, Vista,
and 7; WinOF 2.0 and 2.1.

InfiniBand cards using IBV/uDAPL
with OFED 1.0-1.5

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, 2003, 2008, XP, Vista,
and 7; WinOF 2.0 and 2.1.

iWARP cards using uDAPL with
OFED 1.0-1.5

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, 2003, 2008, XP, Vista,
and 7; WinOF 2.0 and 2.1.

QLogic InfiniBand cards QHT7140
and QLR7140 using PSM with driver
1.0, 2.2.1, and 2.2

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, 2003, 2008, XP, Vista,
and 7; WinOF 2.0 and 2.1.

2 Platform MPI: User's Guide



Table 1. Supported platforms, interconnects, and operating systems (continued)

Platform Interconnect Operating System

Intel Itanium-based TCP/IP on various hardware Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

Myrinet cards using GM-2 and MX Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

InfiniBand cards using IBV/uDAPL
with OFED 1.0-1.5

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

iWARP cards using uDAPL with
OFED 1.0-1.5

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

QLogic InfiniBand cards QHT7140
and QLR7140 using PSM with driver
1.0, 2.2.1, and 2.2

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

AMD Opteron-based TCP/IP on various hardware Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

Myrinet cards using GM-2 and MX Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

InfiniBand cards using IBV/uDAPL
with OFED 1.0-1.5

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

iWARP cards using uDAPL with
OFED 1.0-1.5

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

QLogic InfiniBand cards QHT7140
and QLR7140 using PSM with driver
1.0, 2.2.1, and 2.2

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

About This Guide 3



Table 1. Supported platforms, interconnects, and operating systems (continued)

Platform Interconnect Operating System

Intel 64 TCP/IP on various hardware Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

Myrinet cards using GM-2 and MX Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

InfiniBand cards using IBV/uDAPL
with OFED 1.0-1.5

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

iWARP cards using uDAPL with
OFED 1.0-1.5

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

QLogic InfiniBand cards QHT7140
and QLR7140 using PSM with driver
1.0, 2.2.1, and 2.2

Red Hat Enterprise Linux AS 4 and 5;
SuSE Linux Enterprise Server 9, 10,
and 11; CentOS 5; Windows
Server 2008, HPC, 2003, 2008, XP,
Vista, and 7; WinOF 2.0 and 2.1.

Note:

The last release of HP-MPI for HP-UX was version 2.2.5.1, which is supported.
This document is for Platform MPI 9.1, which is only being released on Linux and
Windows.

Documentation resources
Documentation resources include:
1. Platform MPI product information available at http://www.platform.com/

cluster-computing/platform-mpi
2. MPI: The Complete Reference (2 volume set), MIT Press
3. MPI 1.2 and 2.2 standards available at http://www.mpi-forum.org:

a. MPI: A Message-Passing Interface Standard

b. MPI-2: Extensions to the Message-Passing Interface

4. TotalView documents available at http://www.totalviewtech.com:
a. TotalView Command Line Interface Guide

b. TotalView User's Guide

c. TotalView Installation Guide

5. Platform MPI release notes available at http://my.platform.com.
6. Argonne National Laboratory's implementation of MPI I/O at

http://www-unix.mcs.anl.gov/romio

4 Platform MPI: User's Guide

http://www.platform.com/cluster-computing/platform-mpi
http://www.platform.com/cluster-computing/platform-mpi
http://www.mpi-forum.org
http://www.totalviewtech.com
http://my.platform.com
http://www-unix.mcs.anl.gov/romio


7. University of Notre Dame's LAM implementation of MPI at
http://www.lam-mpi.org/

8. Intel Trace Collector/Analyzer product information (formally known as
Vampir) at http://www.intel.com/software/products/cluster/tcollector/
index.htmand http://www.intel.com/software/products/cluster/tanalyzer/
index.htm

9. LSF product information at http://www.platform.com
10. HP Windows HPC Server 2008 product information at http://

www.microsoft.com/hpc/

Credits
Platform MPI is based on MPICH from Argonne National Laboratory and LAM
from the University of Notre Dame and Ohio Supercomputer Center.

Platform MPI includes ROMIO, a portable implementation of MPI I/O and MPE, a
logging library developed at the Argonne National Laboratory.

About This Guide 5

http://www.lam-mpi.org/
http://www.intel.com/software/products/cluster/tcollector/index.htm
http://www.intel.com/software/products/cluster/tcollector/index.htm
http://www.intel.com/software/products/cluster/tanalyzer/index.htm
http://www.intel.com/software/products/cluster/tanalyzer/index.htm
http://www.platform.com
http://www.microsoft.com/hpc/
http://www.microsoft.com/hpc/


6 Platform MPI: User's Guide



Introduction
“The message passing model”
“MPI concepts”

The message passing model
Programming models are generally categorized by how memory is used. In the
shared memory model, each process accesses a shared address space, but in the
message passing model, an application runs as a collection of autonomous
processes, each with its own local memory.

In the message passing model, processes communicate with other processes by
sending and receiving messages. When data is passed in a message, the sending
and receiving processes must work to transfer the data from the local memory of
one to the local memory of the other.

Message passing is used widely on parallel computers with distributed memory
and on clusters of servers.

The advantages of using message passing include:
v Portability: Message passing is implemented on most parallel platforms.
v Universality: The model makes minimal assumptions about underlying parallel

hardware. Message-passing libraries exist on computers linked by networks and
on shared and distributed memory multiprocessors.

v Simplicity: The model supports explicit control of memory references for easier
debugging.

However, creating message-passing applications can require more effort than
letting a parallelizing compiler produce parallel applications.

In 1994, representatives from the computer industry, government labs, and
academe developed a standard specification for interfaces to a library of
message-passing routines. This standard is known as MPI 1.0 (MPI: A
Message-Passing Interface Standard). After this initial standard, versions 1.1 (June
1995), 1.2 (July 1997), 1.3 (May 2008), 2.0 (July 1997), 2.1 (July 2008), and 2.2
(September 2009) have been produced. Versions 1.1 and 1.2 correct errors and
minor omissions of MPI 1.0. MPI-2 (MPI-2: Extensions to the Message-Passing
Interface) adds new functionality to MPI 1.2. You can find both standards in HTML
format at http://www.mpi-forum.org.

MPI-1 compliance means compliance with MPI 1.2. MPI-2 compliance means
compliance with MPI 2.2. Forward compatibility is preserved in the standard. That
is, a valid MPI 1.0 program is a valid MPI 1.2 program and a valid MPI-2 program.

MPI concepts
The primary goals of MPI are efficient communication and portability.

Although several message-passing libraries exist on different systems, MPI is
popular for the following reasons:

© Copyright IBM Corp. 1994, 2012 7

http://www.mpi-forum.org


v Support for full asynchronous communication: Process communication can
overlap process computation.

v Group membership: Processes can be grouped based on context.
v Synchronization variables that protect process messaging: When sending and

receiving messages, synchronization is enforced by source and destination
information, message labeling, and context information.

v Portability: All implementations are based on a published standard that specifies
the semantics for usage.

An MPI program consists of a set of processes and a logical communication
medium connecting those processes. An MPI process cannot directly access
memory in another MPI process. Interprocess communication requires calling MPI
routines in both processes. MPI defines a library of routines that MPI processes
communicate through.

The MPI library routines provide a set of functions that support the following:
v Point-to-point communications
v Collective operations
v Process groups
v Communication contexts
v Process topologies
v Datatype manipulation

Although the MPI library contains a large number of routines, you can design a
large number of applications by using the following six routines:

Table 2. Six commonly used MPI routines

MPI routine Description

MPI_Init Initializes the MPI environment

MPI_Finalize Terminates the MPI environment

MPI_Comm_rank Determines the rank of the calling process within a
group

MPI_Comm_size Determines the size of the group

MPI_Send Sends messages

MPI_Recv Receives messages

You must call MPI_Finalize in your application to conform to the MPI Standard.
Platform MPI issues a warning when a process exits without calling MPI_Finalize.

As your application grows in complexity, you can introduce other routines from
the library. For example, MPI_Bcast is an often-used routine for sending or
broadcasting data from one process to other processes in a single operation.

Use broadcast transfers to get better performance than with point-to-point
transfers. The latter use MPI_Send to send data from each sending process and
MPI_Recv to receive it at each receiving process.

8 Platform MPI: User's Guide



The following sections briefly introduce the concepts underlying MPI library
routines. For more detailed information see MPI: A Message-Passing Interface
Standard.

“Point-to-point communication”
“Collective operations” on page 13
“MPI data types and packing” on page 16
“Multilevel parallelism” on page 17
“Advanced topics” on page 18

Point-to-point communication
Point-to-point communication involves sending and receiving messages between
two processes. This is the simplest form of data transfer in a message-passing
model and is described in Chapter 3, Point-to-Point Communication in the MPI 1.0
standard.

The performance of point-to-point communication is measured in terms of total
transfer time. The total transfer time is defined as

total_transfer_time = latency + (message_size/bandwidth)

where

latency

Specifies the time between the initiation of the data transfer in the sending
process and the arrival of the first byte in the receiving process.

message_size

Specifies the size of the message in MB.

bandwidth

Denotes the reciprocal of the time needed to transfer a byte. Bandwidth is
normally expressed in MB per second.

Low latencies and high bandwidths lead to better performance.
“Communicators”
“Sending and receiving messages” on page 10

Communicators
A communicator is an object that represents a group of processes and their
communication medium or context. These processes exchange messages to transfer
data. Communicators encapsulate a group of processes so communication is
restricted to processes in that group.

The default communicators provided by MPI are MPI_COMM_WORLD and
MPI_COMM_SELF. MPI_COMM_WORLD contains all processes that are running
when an application begins execution. Each process is the single member of its
own MPI_COMM_SELF communicator.

Communicators that allow processes in a group to exchange data are termed
intracommunicators. Communicators that allow processes in two different groups
to exchange data are called intercommunicators.

Introduction 9



Many MPI applications depend on knowing the number of processes and the
process rank in a given communicator. There are several communication
management functions; two of the more widely used are MPI_Comm_size and
MPI_Comm_rank.

The process rank is a unique number assigned to each member process from the
sequence 0 through (size-1), where size is the total number of processes in the
communicator.

To determine the number of processes in a communicator, use the following
syntax:

MPI_Comm_size (MPI_Comm comm, int *size);

where

comm

Represents the communicator handle.

size

Represents the number of processes in the group of comm.

To determine the rank of each process in comm, use

MPI_Comm_rank (MPI_Comm comm, int *rank);

where

comm

Represents the communicator handle.

rank

Represents an integer between zero and (size - 1).

A communicator is an argument used by all communication routines. The C code
example displays the use of MPI_Comm_dup, one of the communicator constructor
functions, and MPI_Comm_free, the function that marks a communication object for
deallocation.

Sending and receiving messages
There are two methods for sending and receiving data: blocking and nonblocking.

In blocking communications, the sending process does not return until the send
buffer is available for reuse.

In nonblocking communications, the sending process returns immediately, and
might have started the message transfer operation, but not necessarily completed
it. The application might not safely reuse the message buffer after a nonblocking
routine returns until MPI_Wait indicates that the message transfer has completed.

In nonblocking communications, the following sequence of events occurs:
1. The sending routine begins the message transfer and returns immediately.
2. The application does some computation.
3. The application calls a completion routine (for example, MPI_Test or MPI_Wait)

to test or wait for completion of the send operation.

10 Platform MPI: User's Guide



Blocking communication

Blocking communication consists of four send modes and one receive mode.

The four send modes are:

Standard (MPI_Send)

The sending process returns when the system can buffer the message or when
the message is received and the buffer is ready for reuse.

Buffered (MPI_Bsend)

The sending process returns when the message is buffered in an
application-supplied buffer.

Avoid using the MPI_Bsend mode. It forces an additional copy operation.

Synchronous (MPI_Ssend)

The sending process returns only if a matching receive is posted and the
receiving process has started to receive the message.

Ready (MPI_Rsend)

The message is sent as soon as possible.

You can invoke any mode by using the correct routine name and passing the
argument list. Arguments are the same for all modes.

For example, to code a standard blocking send, use

MPI_Send (void *buf, int count, MPI_Datatype dtype, int dest, int tag,
MPI_Comm comm);

where

buf

Specifies the starting address of the buffer.

count

Indicates the number of buffer elements.

dtype

Denotes the data type of the buffer elements.

dest

Specifies the rank of the destination process in the group associated with the
communicator comm.

tag

Denotes the message label.

comm

Designates the communication context that identifies a group of processes.

To code a blocking receive, use

MPI_Recv (void *buf, int count, MPI_datatype dtype, int source, int tag,
MPI_Comm comm, MPI_Status *status);

Introduction 11



where

buf

Specifies the starting address of the buffer.

count

Indicates the number of buffer elements.

dtype

Denotes the data type of the buffer elements.

source

Specifies the rank of the source process in the group associated with the
communicator comm.

tag

Denotes the message label.

comm

Designates the communication context that identifies a group of processes.

status

Returns information about the received message. Status information is useful
when wildcards are used or the received message is smaller than expected.
Status may also contain error codes.

The send_receive.f, ping_pong.c, and master_worker.f90 examples all illustrate
the use of standard blocking sends and receives.

Note:

You should not assume message buffering between processes because the MPI
standard does not mandate a buffering strategy. Platform MPI sometimes uses
buffering for MPI_Send and MPI_Rsend, but it is dependent on message size.
Deadlock situations can occur when your code uses standard send operations and
assumes buffering behavior for standard communication mode.

Nonblocking communication

MPI provides nonblocking counterparts for each of the four blocking send routines
and for the receive routine. The following table lists blocking and nonblocking
routine calls:

Table 3. MPI blocking and nonblocking calls

Blocking Mode Nonblocking Mode

MPI_Send MPI_Isend

MPI_Bsend MPI_Ibsend

MPI_Ssend MPI_Issend

MPI_Rsend MPI_Irsend

MPI_Recv MPI_Irecv

12 Platform MPI: User's Guide



Nonblocking calls have the same arguments, with the same meaning as their
blocking counterparts, plus an additional argument for a request.

To code a standard nonblocking send, use

MPI_Isend(void *buf, int count, MPI_datatype dtype, intdest, int tag,
MPI_Comm comm, MPI_Request *req);

where

req

Specifies the request used by a completion routine when called by the
application to complete the send operation.

To complete nonblocking sends and receives, you can use MPI_Wait or MPI_Test.
The completion of a send indicates that the sending process is free to access the
send buffer. The completion of a receive indicates that the receive buffer contains
the message, the receiving process is free to access it, and the status object that
returns information about the received message, is set.

Collective operations
Applications may require coordinated operations among multiple processes. For
example, all processes must cooperate to sum sets of numbers distributed among
them.

MPI provides a set of collective operations to coordinate operations among
processes. These operations are implemented so that all processes call the same
operation with the same arguments. Thus, when sending and receiving messages,
one collective operation can replace multiple sends and receives, resulting in lower
overhead and higher performance.

Collective operations consist of routines for communication, computation, and
synchronization. These routines all specify a communicator argument that defines
the group of participating processes and the context of the operation.

Collective operations are valid only for intracommunicators. Intercommunicators
are not allowed as arguments.

“Communication”
“Computation” on page 15
“Synchronization” on page 16

Communication
Collective communication involves the exchange of data among processes in a
group. The communication can be one-to-many, many-to-one, or many-to-many.

The single originating process in the one-to-many routines or the single receiving
process in the many-to-one routines is called the root.

Collective communications have three basic patterns:

Broadcast and Scatter

Root sends data to all processes, including itself.

Gather

Root receives data from all processes, including itself.

Introduction 13



Allgather and Alltoall

Each process communicates with each process, including itself.

The syntax of the MPI collective functions is designed to be consistent with
point-to-point communications, but collective functions are more restrictive than
point-to-point functions. Important restrictions to keep in mind are:
v The amount of data sent must exactly match the amount of data specified by the

receiver.
v Collective functions come in blocking versions only.
v Collective functions do not use a tag argument, meaning that collective calls are

matched strictly according to the order of execution.
v Collective functions come in standard mode only.

For detailed discussions of collective communications see Chapter 4, Collective
Communication in the MPI 1.0 standard.

The following examples demonstrate the syntax to code two collective operations;
a broadcast and a scatter:

To code a broadcast, use

MPI_Bcast(void *buf, int count, MPI_Datatype dtype, int root, MPI_Comm
comm);

where

buf

Specifies the starting address of the buffer.

count

Indicates the number of buffer entries.

dtype

Denotes the datatype of the buffer entries.

root

Specifies the rank of the root.

comm

Designates the communication context that identifies a group of processes.

For example, compute_pi.f uses MPI_BCAST to broadcast one integer from process
0 to every process in MPI_COMM_WORLD.

To code a scatter, use

MPI_Scatter (void* sendbuf, int sendcount, MPI_Datatype sendtype, void*
recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm);

where

sendbuf

Specifies the starting address of the send buffer.

14 Platform MPI: User's Guide



sendcount

Specifies the number of elements sent to each process.

sendtype

Denotes the datatype of the send buffer.

recvbuf

Specifies the address of the receive buffer.

recvcount

Indicates the number of elements in the receive buffer.

recvtype

Indicates the datatype of the receive buffer elements.

root

Denotes the rank of the sending process.

comm

Designates the communication context that identifies a group of processes.

Computation
Computational operations perform global reduction operations, such as sum, max,
min, product, or user-defined functions across members of a group. Global
reduction functions include:

Reduce

Returns the result of a reduction at one node.

All-reduce

Returns the result of a reduction at all nodes.

Reduce-Scatter

Combines the functionality of reduce and scatter operations.

Scan

Performs a prefix reduction on data distributed across a group.

Section 4.9, Global Reduction Operations in the MPI 1.0 standard describes each
function in detail.

Reduction operations are binary and are only valid on numeric data. Reductions
are always associative but might or might not be commutative.

You can select a reduction operation from a defined list (see section 4.9.2 in the
MPI 1.0 standard) or you can define your own operation. The operations are
invoked by placing the operation name, for example MPI_SUM or MPI_PROD, in
op, as described in the MPI_Reducesyntax below.

To implement a reduction, use

MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype dtype,
MPI_Op op, int root, MPI_Comm comm);

where

Introduction 15



sendbuf

Specifies the address of the send buffer.

recvbuf

Denotes the address of the receive buffer.

count

Indicates the number of elements in the send buffer.

dtype

Specifies the datatype of the send and receive buffers.

op

Specifies the reduction operation.

root

Indicates the rank of the root process.

comm

Designates the communication context that identifies a group of processes.

For example compute_pi.f uses MPI_REDUCE to sum the elements provided in the
input buffer of each process in MPI_COMM_WORLD, using MPI_SUM, and
returns the summed value in the output buffer of the root process (in this case,
process 0).

Synchronization
Collective routines return as soon as their participation in a communication is
complete. However, the return of the calling process does not guarantee that the
receiving processes have completed or even started the operation.

To synchronize the execution of processes, call MPI_Barrier. MPI_Barrier blocks the
calling process until all processes in the communicator have called it. This is a
useful approach for separating two stages of a computation so messages from each
stage do not overlap.

To implement a barrier, use

MPI_Barrier(MPI_Comm comm);

where

comm

Identifies a group of processes and a communication context.

For example, cart.C uses MPI_Barrier to synchronize data before printing.

MPI data types and packing
You can use predefined datatypes (for example, MPI_INT in C) to transfer data
between two processes using point-to-point communication. This transfer is based
on the assumption that the data transferred is stored in contiguous memory (for
example, sending an array in a C or Fortran application).

16 Platform MPI: User's Guide



To transfer data that is not homogeneous, such as a structure, or to transfer data
that is not contiguous in memory, such as an array section, you can use derived
datatypes or packing and unpacking functions:

Derived datatypes

Specifies a sequence of basic datatypes and integer displacements describing
the data layout in memory. You can use user-defined datatypes or predefined
datatypes in MPI communication functions.

Packing and unpacking functions

Provides MPI_Pack and MPI_Unpack functions so a sending process can pack
noncontiguous data into a contiguous buffer and a receiving process can
unpack data received in a contiguous buffer and store it in noncontiguous
locations.

Using derived datatypes is more efficient than using MPI_Pack and MPI_Unpack.
However, derived datatypes cannot handle the case where the data layout varies
and is unknown by the receiver (for example, messages that embed their own
layout description).

Section 3.12, Derived Datatypes in the MPI 1.0 standard describes the construction
and use of derived datatypes. The following is a summary of the types of
constructor functions available in MPI:
v Contiguous (MPI_Type_contiguous): Allows replication of a datatype into

contiguous locations.
v Vector (MPI_Type_vector): Allows replication of a datatype into locations that

consist of equally spaced blocks.
v Indexed (MPI_Type_indexed): Allows replication of a datatype into a sequence of

blocks where each block can contain a different number of copies and have a
different displacement.

v Structure (MPI_Type_struct): Allows replication of a datatype into a sequence of
blocks so each block consists of replications of different datatypes, copies, and
displacements.

After you create a derived datatype, you must commit it by calling
MPI_Type_commit.

Platform MPI optimizes collection and communication of derived datatypes.

Section 3.13, Pack and unpack in the MPI 1.0 standard describes the details of the
pack and unpack functions for MPI. Used together, these routines allow you to
transfer heterogeneous data in a single message, thus amortizing the fixed
overhead of sending and receiving a message over the transmittal of many
elements.

For a discussion of this topic and examples of construction of derived datatypes
from the basic datatypes using the MPI constructor functions, see Chapter 3,
User-Defined Datatypes and Packing in MPI: The Complete Reference.

Multilevel parallelism
By default, processes in an MPI application can only do one task at a time. Such
processes are single-threaded processes. This means that each process has an
address space with a single program counter, a set of registers, and a stack.

Introduction 17



A process with multiple threads has one address space, but each process thread
has its own counter, registers, and stack.

Multilevel parallelism refers to MPI processes that have multiple threads. Processes
become multithreaded through calls to multithreaded libraries, parallel directives
and pragmas, or auto-compiler parallelism.

Multilevel parallelism is beneficial for problems you can decompose into logical
parts for parallel execution (for example, a looping construct that spawns multiple
threads to do a computation and joins after the computation is complete).

The multi_par.f example program is an example of multilevel parallelism.

Advanced topics
This chapter provides a brief introduction to basic MPI concepts. Advanced MPI
topics include:
v Error handling
v Process topologies
v User-defined data types
v Process grouping
v Communicator attribute caching
v The MPI profiling interface

To learn more about the basic concepts discussed in this chapter and advanced
MPI topics see MPI: The Complete Reference and MPI: A Message-Passing Interface
Standard.

18 Platform MPI: User's Guide



Getting Started

This chapter describes how to get started quickly using Platform MPI. The
semantics of building and running a simple MPI program are described, for single
and multiple hosts. You learn how to configure your environment before running
your program. You become familiar with the file structure in your Platform MPI
directory. The Platform MPI licensing policy is explained.

The goal of this chapter is to demonstrate the basics to getting started using
Platform MPI. It is separated into two major sections: Getting Started Using Linux,
and Getting Started Using Windows.

“Getting started using Linux”
“Getting started using Windows” on page 26

Getting started using Linux
“Configuring your environment”
“Compiling and running your first application” on page 20
“Directory structure for Linux” on page 22
“Linux man pages” on page 22
“Licensing policy for Linux” on page 23
“Version identification” on page 26

Configuring your environment
“Setting PATH”
“Setting up remote shell”

Setting PATH
If you move the Platform MPI installation directory from its default location in
/opt/platform_mpi for Linux:
v Set the MPI_ROOT environment variable to point to the location where MPI is

installed.
v Add $MPI_ROOT/bin to PATH.
v Add $MPI_ROOT/share/man to MANPATH.

MPI must be installed in the same directory on every execution host.

Setting up remote shell
By default, Platform MPI attempts to use ssh on Linux. We recommend that ssh
users set StrictHostKeyChecking=no in their ~/.ssh/config.

To use a different command such as "rsh" for remote shells, set the MPI_REMSH
environment variable to the desired command. The variable is used by mpirun
when launching jobs, as well as by the mpijob and mpiclean utilities. Set it directly
in the environment by using a command such as:

% setenv MPI_REMSH "ssh -x"

© Copyright IBM Corp. 1994, 2012 19



The tool specified with MPI_REMSH must support a command-line interface
similar to the standard utilities rsh, remsh, and ssh. The -n option is one of the
arguments mpirun passes to the remote shell command.

If the remote shell does not support the command-line syntax Platform MPI uses,
write a wrapper script such as /path/to/myremsh to change the arguments and set
the MPI_REMSH variable to that script.

Platform MPI supports setting MPI_REMSH using the -e option to mpirun:

% $MPI_ROOT/bin/mpirun -e MPI_REMSH=ssh <options> -f <appfile>

Platform MPI also supports setting MPI_REMSH to a command that includes
additional arguments (for example "ssh -x". But, if this is passed to mpirun with -e
MPI_REMSH= then the parser in Platform MPI V2.2.5.1 requires additional quoting for
the value to be correctly received by mpirun:

% $MPI_ROOT/bin/mpirun -e MPI_REMSH="ssh -x" <options> -f <appfile>

When using ssh, be sure it is possible to use ssh from the host where mpirun is
executed to other nodes without ssh requiring interaction from the user. Also
ensure ssh functions between the worker-nodes because the ssh calls used to
launch the job are not necessarily all started by mpirun directly (a tree of ssh calls
is used for improved scalability).

Compiling and running your first application
To quickly become familiar with compiling and running Platform MPI programs,
start with the C version of a familiar hello_world program. The source file for this
program is called hello_world.c. The program prints out the text string "Hello
world! I'm r of son host" where r is a process's rank, s is the size of the
communicator, and host is the host where the program is run. The processor name
is the host name for this implementation. Platform MPI returns the host name for
MPI_Get_processor_name.

The source code for hello_world.c is stored in $MPI_ROOT/help and is shown
below.
#include <stdio.h>
#include "mpi.h"
void main(argc, argv)
int argc;
char *argv[];
{

int rank, size, len;
char name[MPI_MAX_PROCESSOR_NAME];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Get_processor_name(name, &len);
printf("Hello world!I’m %d of %d on %s\n", rank, size, name);
MPI_Finalize();
exit(0);

}

“Building and running on a single host” on page 21
“Building and running on a Linux cluster using appfiles” on page 21
“Building and running on a SLURM cluster using srun” on page 21

20 Platform MPI: User's Guide



Building and running on a single host
This example teaches you the basic compilation and run steps to execute
hello_world.c on your local host with four-way parallelism. To build and run
hello_world.c on a local host named jawbone:
1. Change to a writable directory.
2. Compile the hello_world executable file:

% $MPI_ROOT/bin/mpicc -o hello_world $MPI_ROOT/help/hello_world.c

3. Run the hello_world executable file:
% $MPI_ROOT/bin/mpirun -np 4 hello_world

where
-np 4 specifies 4 as the number of rocesses to run.

4. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
nondeterministic order. The following is an example of the output:
Hello world! I’m 1 of 4 on jawbone
Hello world! I’m 3 of 4 on jawbone
Hello world! I’m 0 of 4 on jawbone
Hello world! I’m 2 of 4 on jawbone

Building and running on a Linux cluster using appfiles
The following is an example of basic compilation and run steps to execute
hello_world.c on a cluster with 4-way parallelism. To build and run
hello_world.c on a cluster using an appfile:
1. Change to a writable directory.
2. Compile the hello_world executable file:

% $MPI_ROOT/bin/mpicc -o hello_world $MPI_ROOT/help/hello_world.c

3. Create the file appfile for running on nodes n01 and n02 containing the
following:
-h n01 -np 2 /path/to/hello_world
-h n02 -np 2 /path/to/hello_world

4. Run the hello_world executable file:
% $MPI_ROOT/bin/mpirun -f appfile

By default, mpirun will ssh to the remote machines n01 and n02. If desired, the
environment variable MPI_REMSH can be used to specify a different command,
such as /usr/bin/rsh or "ssh -x".

5. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
nondeterministic order. The following is an example of the output:
Hello world! I’m 1 of 4 n01
Hello world! I’m 3 of 4 n02
Hello world! I’m 0 of 4 n01
Hello world! I’m 2 of 4 n02

Building and running on a SLURM cluster using srun
The following is an example of basic compilation and run steps to execute
hello_world.c on a SLURM cluster with 4-way parallelism. To build and run
hello_world.c on a SLURM cluster:
1. Change to a writable directory.
2. Compile the hello_world executable file:

% $MPI_ROOT/bin/mpicc -o hello_world $MPI_ROOT/help/hello_world.c

3. Run the hello_world executable file:

Getting Started 21



% $MPI_ROOT/bin/mpirun -srun -n4 hello_world

where
-n4 specifies 4 as the number of processes to run from SLURM.

4. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
nondeterministic order. The following is an example of the output:
I’m 1 of 4 n01 Hello world!
I’m 3 of 4 n02 Hello world!
I’m 0 of 4 n01 Hello world!
I’m 2 of 4 n02 Hello world!

Directory structure for Linux
Platform MPI files are stored in the /opt/platform_mpi directory for Linux.

If you move the Platform MPI installation directory from its default location in
/opt/platform_mpi, set the MPI_ROOT environment variable to point to the new
location. The directory structure is organized as follows:

Table 4. Directory structure for Linux

Subdirectory Contents

bin Command files for the Platform MPI utilities gather_info
script

etc Configuration files (for example, pmpi.conf)

help Source files for the example programs

include Header files

lib/javalib Java files supporting the jumpshot tool from MPE

lib/linux_ia32 Platform MPI Linux 32-bit libraries

lib/linux_ia64 Platform MPI Linux 64-bit libraries for Itanium

lib/linux_amd64 Platform MPI Linux 64-bit libraries for Opteron and
Intel64

modulefiles OS kernel module files

MPICH1.2/ MPICH 1.2 compatibility wrapper libraries

MPICH2.0/ MPICH 2.0 compatibility wrapper libraries

newconfig/ Configuration files and release notes

sbin Internal Platform MPI utilities

share/man/man1* manpages for Platform MPI utilities

share/man/man3* manpages for Platform MPI library

doc Release notes
licenses License files

Linux man pages
The manpages are in the $MPI_ROOT/share/man/man1* subdirectory for Linux. They
can be grouped into three categories: general, compilation, and run-time. One
general manpage, MPI.1 is an overview describing general features of Platform
MPI. The compilation and run-time manpages describe Platform MPI utilities.

22 Platform MPI: User's Guide



The following table describes the three categories of manpages in the man1
subdirectory that comprise manpages for Platform MPI utilities:

Table 5. Linux man page categories

Category manpages Description

General MPI.1
Describes the general features of
Platform MPI.

Compilation

v mpicc.1

v mpiCC.1

v mpif77.1

v mpif90.1

Describes the available compilation
utilities.

Runtime

v 1sided.1

v autodbl.1

v mpiclean.1

v mpidebug.1

v mpienv.1

v mpiexec.1

v mpijob.1

v mpimtsafe.1

v mpirun.1

v mpistdio.1

v system_check.1

Describes run-time utilities,
environment variables, debugging,
thread-safe, and diagnostic libraries.

Licensing policy for Linux
Platform MPI for Windows uses FlexNet Publishing (formerly FLEXlm) licensing
technology. A license is required to use Platform MPI, which is licensed per rank.
On any run of the product, one license is consumed for each rank that is launched.
Licenses can be acquired from your sales representative.

The Platform MPI license file should be named mpi.lic. The license file must be
placed in the installation directory (/opt/platform_mpi/licenses by default) on all
runtime systems.

Platform MPI uses three types of licenses: counted (or permanent) licenses,
uncounted (or demo) licenses, and ISV-licensed:
v Counted license keys are locked to a single license server or to a redundant triad

of license servers. These licenses may be used to launch jobs on any compute
nodes.

v Uncounted license keys are not associated with a license server. The license file
will only include a FEATURE (or INCREMENT) line. Uncounted license keys cannot
be used with a license server.

v The Independent Software Vendor (ISV) license program allows participating
ISVs to freely bundle Platform MPI with their applications. When the application
is part of the Platform MPI ISV program, there is no licensing requirement for
the user. The ISV provides a licensed copy of Platform MPI. Contact your
application vendor to find out if they participate in the Platform MPI ISV
program. The copy of Platform MPI distributed with a participating ISV works
with that application. The Platform MPI license is still required for all other
applications.

Getting Started 23



“Licensing for Linux”
“Installing a demo license”
“Installing counted license files” on page 25
“Test licenses on Linux” on page 25

Licensing for Linux
Platform MPI now supports redundant license servers using the FLEXnet Publisher
licensing software. Three servers can create a redundant license server triad. For a
license checkout request to be successful, at least two servers must be running and
able to communicate with each other. This avoids a single-license server failure
which would prevent new Platform MPI jobs from starting. With three-server
redundant licensing, the full number of Platform MPI licenses can be used by a
single job.

When selecting redundant license servers, use stable nodes that are not rebooted or
shut down frequently. The redundant license servers exchange heartbeats.
Disruptions to that communication can cause the license servers to stop serving
licenses.

The redundant license servers must be on the same subnet as the Platform MPI
compute nodes. They do not have to be running the same version of operating
system as the Platform MPI compute nodes, but it is recommended. Each server in
the redundant network must be listed in the Platform MPI license key by
hostname and host ID. The host IDis the MAC address of the eth0 network
interface. The eth0 MAC address is used even if that network interface is not
configured. The host ID can be obtained by typing the following command if
Platform MPI is installed on the system:

% /opt/platform_mpi/bin/licensing/arch/lmutil lmhostid

The eth0 MAC address can be found using the following command:

% /sbin/ifconfig | egrep "^eth0" | awk '{print $5}' | sed s/://g

The hostname can be obtained by entering the command hostname. To request a
three server redundant license key for Platform MPI for Linux, contact your sales
representative. For more information, see your license certificate.

Installing a demo license
Demo (or uncounted) license keys have special handling in FlexNet. Uncounted
license keys do not need (and will not work with) a license server. The only
relevant (that is, non-commented) line in a demo license key text is the following:
FEATURE platform_mpi lsf_ld 8.000 30-DEC-2010 0 AAAABBBBCCCCDDDDEEEE "Platform" DEMO

The FEATURE line should be on a single line in the mpi.lic file, with no line breaks.
Demo license keys should not include a SERVER line or VENDOR line. The quantity of
licenses is the sixth field of the FEATURE line. A demo license will always have a
quantity of "0" or "uncounted". A demo license will always have a finite expiration
date (the fifth field on the FEATURE line).

The contents of the license should be placed in the $MPI_ROOT/licenses/mpi.lic
file. If the $MPI_ROOT location is shared (such as NFS), the license can be in that
single location. However, if the $MPI_ROOT location is local to each compute node, a
copy of the mpi.lic file will need to be on every node.

24 Platform MPI: User's Guide



Installing counted license files
Counted license keys must include a SERVER, DAEMON, and FEATURE (or INCREMENT)
line. The expiration date of a license is the fifth field of the FEATURE or INCREMENT
line. The expiration date can be unlimited with the permanent or jan-01-0000 date,
or can have a finite expiration date. A counted license file will have a format
similar to this:
SERVER myserver 001122334455 2700
DAEMON lsf_ld
INCREMENT platform_mpi lsf_ld 8.0 permanent 8 AAAAAAAAAAAA \
NOTICE="License Number = AAAABBBB1111" SIGN=AAAABBBBCCCC

To install a counted license key, create a file called mpi.lic with that text, and copy
that file to $MPI_ROOT/licenses/mpi.lic.

On the license server, the following directories and files must be accessible:
v $MPI_ROOT/bin/licensing/*

v $MPI_ROOT/licenses/mpi.lic

Run the following command to start the license server:

$MPI_ROOT/bin/licensing/arch/lmgrd -c $MPI_ROOT/licenses/mpi.lic

On the compute nodes, the license file needs to exist in every instance of
$MPI_ROOT. Only the SERVER and VENDOR lines are required. The FEATURE lines are
optional on instances of the license file on the $MPI_ROOT that is accessible to the
compute nodes. If the $MPI_ROOT location is shared (such as in NFS), the license can
be in that single location. However, if the $MPI_ROOT location is local to each
compute node, a copy of the mpi.lic file will need to be on every node.

Test licenses on Linux
FlexNet will archive the last successful license checkout to a hidden file in the
user’s home directory (that is, ~/.flexlmrc). This can make testing a license
upgrade difficult, as false positives are common. To ensure an accurate result when
testing the Platform MPI license installation, use the following process to test
licenses. This process will work with a counted, uncounted, or ISV licensed
application.
1. Remove the ~/.flexlmrc file from your home directory.

FlexNet writes this file on a successful connection to a license server. The
values can sometimes get out of sync after changes are made to the license
server. This file will be recreated automatically.

2. Copy the license key to the $MPI_ROOT/licenses/mpi.lic file.
Only the SERVER and DAEMON lines are required in the $MPI_ROOT/licenses/
mpi.lic file; however, there are no side effects to having the FEATURE lines as
well.

3. Export the MPI_ROOT variable in the environment.
export MPI_ROOT=/opt/platform_mpi

4. Test the license checkouts on the nodes in the host file.
$MPI_ROOT/bin/licensing/amd64_re3/lichk.x

This command will attempt to check out a license from the server, and will
report either SUCCESS or an error. Save any error output when obtaining
technical support. For more information, contact your sales representative.
If the test was successful, the license is correctly installed.

Getting Started 25



Version identification
To determine the version of the Platform MPI installation, use the mpirun or rpm
command on Linux.

For example:

% mpirun -version

or

% rpm -qa | grep platform_mpi

Getting started using Windows
“Configuring your environment”
“Compiling and running your first application” on page 27
“Command-line basics” on page 27
“Fortran command-line basics” on page 29
“Building and running on a single host” on page 30
“Building and running multihost on Windows HPCS clusters” on page 31
“Building and running MPMD applications on Windows HPCS” on page 32
“Building an MPI application on Windows with Visual Studio and using the
property pages” on page 33
“Building and running on a Windows cluster using appfiles” on page 34
“Running with an appfile using HPCS” on page 34
“Directory structure for Windows” on page 35
“Windows man pages” on page 35
“Licensing policy for Windows” on page 36

Configuring your environment
The default install directory location for Platform MPI for Windows is one of the
following directories:

On 64-bit Windows

C:\Program Files (x86)\Platform Computing\Platform-MPI

On 32-bit Windows

C:\Program Files\Platform Computing\Platform-MPI

The default install defines the system environment variable MPI_ROOT, but does
not put "%MPI_ROOT%\bin" in the system path or your user path.

If you choose to move the Platform MPI installation directory from its default
location:
1. Change the system environment variable MPI_ROOT to reflect the new

location.
2. You may need to add "%MPI_ROOT%\bin\mpirun.exe", "%MPI_ROOT%\bin\

mpid.exe", "%MPI_ROOT%\bin\mpidiag.exe", and "%MPI_ROOT%\bin\
mpisrvutil.exe" to the firewall exceptions depending on how your system is
configured.

Platform MPI must be installed in the same directory on every execution host.

26 Platform MPI: User's Guide



To determine the version of the Platform MPI installation, use the -version flag
with the mpirun command:

"%MPI_ROOT%\bin\mpirun" -version

Setting environment variables

Environment variables can be used to control and customize the behavior of the
Platform MPI application. The environment variables that affect the behavior of
Platform MPI at run time are described in the mpienv(1) manpage.

In all run modes, Platform MPI enables environment variables to be set on the
command line with the -e option. For example:

"%MPI_ROOT%\bin\mpirun" -e MPI_FLAGS=y40 -f appfile

See the Platform MPI User’s Guide for more information on setting environment
variables globally using the command line.

On Windows 2008 HPCS, environment variables can be set from the GUI or on the
command line.

From the GUI, select New Job > Task List (from the left menu list) and select an
existing task. Set the environment variable in the Task Properties window at the
bottom.

Note:

Set these environment variables on the mpirun task.

Environment variables can also be set using the flag /env. For example:

job add JOBID /numprocessors:1 /env:"MPI_ROOT=\\shared\alternate\location"
...

Compiling and running your first application
To quickly become familiar with compiling and running Platform MPI programs,
start with the C version of the familiar hello_world program. This program is
called hello_world.c and prints out the text string "Hello world! I'm r of s on host"
where r is a process's rank, s is the size of the communicator, and host is the host
where the program is run.

The source code for hello_world.c is stored in %MPI_ROOT%\help.

Command-line basics
The utility "%MPI_ROOT%\bin\mpicc" is included to aid in command line
compilation. To compile with this utility, set MPI_CC to the path of the command
line compiler you want to use. Specify -mpi32 or -mpi64 to indicate if you are
compiling a 32- or 64-bit application. Specify the command line options that you
normally pass to the compiler on the mpicc command line. The mpicc utility adds
additional command line options for Platform MPI include directories and
libraries. The -show option can be specified to mpicc to display the command
generated without executing the compilation command. See the manpage mpicc(1)
for more information.

Getting Started 27



To construct the desired compilation command, the mpicc utility needs to know
what command line compiler is to be used, the bitness of the executable that
compiler will produce, and the syntax accepted by the compiler. These can be
controlled by environment variables or from the command line.

Table 6. mpicc Utility

Environment Variable Value Command Line

MPI_CC desired compiler (default cl) -mpicc <value>

MPI_BITNESS 32 or 64 (no default) -mpi32 or -mpi64

MPI_WRAPPER_SYNTAX windows or unix (default windows) -mpisyntax <value>

For example, to compile hello_world.c using a 64-bit 'cl' contained in your PATH
could be done with the following command since 'cl' and the 'Windows' syntax are
defaults:

"%MPI_ROOT%\bin\mpicc" -mpi64 hello_world.c /link /out:hello_world_cl64.exe

Or, use the following example to compile using the PGI compiler which uses a
more UNIX-like syntax:

"%MPI_ROOT%\bin\mpicc" -mpicc pgcc -mpisyntax unix -mpi32 hello_world.c -o
hello_world_pgi32.exe

To compile C code and link against Platform MPI without utilizing the mpicc tool,
start a command prompt that has the appropriate environment settings loaded for
your compiler, and use it with the compiler option:

/I"%MPI_ROOT%\include\<32|64>"

and the linker options:

/libpath:"%MPI_ROOT%\lib" /subsystem:console <libpcmpi64.lib|libpcmpi32.lib>

The above assumes the environment variable MPI_ROOT is set.

For example, to compile hello_world.c from the Help directory using Visual
Studio (from a Visual Studio command prompt window):

cl hello_world.c /I"%MPI_ROOT%\include\64" /link /out:hello_world.exe
/libpath:"%MPI_ROOT%\lib" /subsystem:console libpcmpi64.lib

The PGI compiler uses a more UNIX-like syntax. From a PGI command prompt:

pgcc hello_world.c -I"%MPI_ROOT%\include\64" -o hello_world.exe
-L"%MPI_ROOT%\lib" -lpcmpi64

mpicc.bat

The mpicc.bat script links by default using the static run-time libraries /MT. This
behavior allows the application to be copied without any side effects or additional
link steps to embed the manifest library.

28 Platform MPI: User's Guide



When linking with /MD (dynamic libraries), you must copy the generated
<filename>.exe.manifest along with the .exe/.dll file or the following run-time
error will display:

This application has failed to start because MSVCR90.dll was not found.
Re-installing the application may fix this problem.

To embed the manifest file into .exe/.dll, use the mt tool. For more information,
see the Microsoft/Visual Studio mt.exe tool.

The following example shows how to embed a .manifest file into an application:

"%MPI_ROOT%\bin\mpicc.bat" -mpi64 /MD hello_world.c

mt -manifest hello_world.exe.manifest -outputresource:hello_world.exe;1

Fortran command-line basics
The utility "%MPI_ROOT%\bin\mpif90" is included to aid in command line
compilation. To compile with this utility, set MPI_F90 to the path of the command
line compiler you want to use. Specify -mpi32 or -mpi64 to indicate if you are
compiling a 32- or 64-bit application. Specify the command line options that you
normally pass to the compiler on the mpif90 command line. The mpif90 utility
adds additional command line options for Platform MPI include directories and
libraries. The -show option can be specified to mpif90 to display the command
generated without executing the compilation command. See the manpage
mpif90(1) for more information.

To construct the desired compilation command, the mpif90 utility needs to know
what command line compiler is to be used, the bitness of the executable that
compiler will produce, and the syntax accepted by the compiler. These can be
controlled by environment variables or from the command line.

Table 7. mpif90 utility

Environment Variable Value Command Line

MPI_F90 desired compiler (default ifort) -mpif90 <value>

MPI_BITNESS 32 or 64 (no default) -mpi32 or -mpi64

MPI_WRAPPER_SYNTAX windows or unix (default windows) -mpisyntax <value>

For example, to compile compute_pi.f using a 64-bit 'ifort' contained in your PATH
could be done with the following command since 'ifort' and the 'Windows' syntax
are defaults:

"%MPI_ROOT%\bin\mpif90" -mpi64 compute_pi.f /link /out:compute_pi_ifort.exe

Or, use the following example to compile using the PGI compiler which uses a
more UNIX-like syntax:

"%MPI_ROOT%\bin\mpif90" -mpif90 pgf90 -mpisyntax unix -mpi32 compute_pi.f
-o compute_pi_pgi32.exe

To compile compute_pi.f using Intel Fortran without utilizing the mpif90 tool
(from a command prompt that has the appropriate environment settings loaded for
your Fortran compiler):

Getting Started 29



ifort compute_pi.f /I"%MPI_ROOT%\include\64" /link /out:compute_pi.exe
/libpath:"%MPI_ROOT%\lib" /subsystem:console libpcmpi64.lib

Note:

Intel compilers often link against the Intel run-time libraries. When running an
MPI application built with the Intel Fortran or C/C++ compilers, you might need
to install the Intel run-time libraries on every node of your cluster. We recommend
that you install the version of the Intel run-time libraries that correspond to the
version of the compiler used on the MPI application.

Autodouble (automatic promotion)

Platform MPI supports automatic promotion of Fortran datatypes using any of the
following arguments (some of which are not supported on all Fortran compilers).
1. /integer_size:64

2. /4I8

3. -i8

4. /real_size:64

5. /4R8

6. /Qautodouble

7. -r8

If these flags are given to the mpif90.bat script at link time, then the application
will be linked enabling Platform MPI to interpret the datatype MPI_REAL as 8
bytes (etc. as appropriate) at runtime.

However, if your application is written to explicitly handle the autodoubled
datatypes (for example, if a variable is declared real and the code is compiled -r8
and corresponding MPI calls are given MPI_DOUBLE for the datatype), then the
autodouble related command line arguments should not be passed to mpif90.bat
at link time (because that would cause the datatypes to be automatically changed).

Note:

Platform MPI does not support compiling with +autodblpad.

Building and running on a single host
The following example describes the basic compilation and run steps to execute
hello_world.c on your local host with 4-way parallelism. To build and run
hello_world.c on a local host named banach1:
1. Change to a writable directory, and copy hello_world.c from the help

directory:
copy "%MPI_ROOT%\help\hello_world.c" .

2. Compile the hello_world executable file.
In a proper compiler command window (for example, Visual Studio command
window), use mpicc to compile your program:
"%MPI_ROOT%\bin\mpicc" -mpi64 hello_world.c

Note:

30 Platform MPI: User's Guide



Specify the bitness using -mpi64 or -mpi32 for mpicc to link in the correct
libraries. Verify you are in the correct 'bitness' compiler window. Using -mpi64
in a Visual Studio 32-bit command window does not work.

3. Run the hello_world executable file:
"%MPI_ROOT%\bin\mpirun" -np 4 hello_world.exe

where -np 4 specifies 4 as the number of processors to run.
4. Analyze hello_world output.

Platform MPI prints the output from running the hello_world executable in
non-deterministic order. The following is an example of the output:
Hello world! I’m 1 of 4 on banach1
Hello world! I’m 3 of 4 on banach1
Hello world! I’m 0 of 4 on banach1
Hello world! I’m 2 of 4 on banach1

Building and running multihost on Windows HPCS clusters
The following is an example of basic compilation and run steps to execute
hello_world.c on a cluster with 16-way parallelism. To build and run hello_world.c
on an HPCS cluster:
1. Change to a writable directory on a mapped drive. The mapped drive should

be to a shared folder for the cluster.
2. Open a Visual Studio command window. (This example uses a 64-bit version,

so a Visual Studio x64 command window opens.)
3. Compile the hello_world executable file:

X:\Demo> "%MPI_ROOT%\bin\mpicc" -mpi64 "%MPI_ROOT%\help\hello_world.c"

Microsoft C/C++ Optimizing Compiler Version 14.00.50727.42 for x64
Copyright Microsoft Corporation. All rights reserved.

hello_world.c
Microsoft Incremental Linker Version 8.00.50727.42
Copyright Microsoft Corporation. All rights reserved.

/out:hello_world.exe
"/libpath:C:\Program Files (x86)\Platform-MPI\lib"
/subsystem:console
libpcmpi64.lib
libmpio64.lib
hello_world.obj

4. Create a job requesting the number of CPUs to use. Resources are not yet
allocated, but the job is given a JOBID number that is printed to stdout:
> job new /numprocessors:16

Job queued, ID: 4288

5. Add a single-CPU mpirun task to the newly created job. mpirun creates more
tasks filling the rest of the resources with the compute ranks, resulting in a
total of 16 compute ranks for this example:
> job add 4288 /numprocessors:1 /stdout:\\node\path\to\a\shared\file.out
/stderr:\\node\path\to\a\shared\file.err "%MPI_ROOT%\bin\mpirun" -ccp
\\node\path\to\hello_world.exe

6. Submit the job. The machine resources are allocated and the job is run.
> job submit /id:4288

Getting Started 31



Building and running MPMD applications on Windows HPCS
To run Multiple-Program Multiple-Data (MPMD) applications or other more
complex configurations that require further control over the application layout or
environment, use an appfile to submit the Platform MPI job through the HPCS
scheduler.

Create the appfile indicating the node for the ranks using the -h <node flag and the
rank count for the given node using the -n X flag. Ranks are laid out in the order
they appear in the appfile. Submit the job using mpirun -ccp -f <appfile>. For this
example, the hello_world.c program is copied to simulate a server and client
program in an MPMD application. The print statement for each is modified to
indicate server or client program so the MPMD application can be demonstrated:
1. Change to a writable directory on a mapped drive. The mapped drive should

be to a shared folder for the cluster.
2. Open a Visual Studio command window. This example uses a 64-bit version, so

a Visual Studio x64 command window is opened.
3. Copy the hello_world.c source to server.c and client.c. Then edit each file to

change the print statement and include server and client in each:
X:\Demo> copy "%MPI_ROOT\help\hello_world.c" .\server.c

X:\Demo> copy "%MPI_ROOT\help\hello_world.c" .\server.c

Edit each to modify the print statement for both .c files to include server or
client in the print so the executable being run is visible.

4. Compile the server.c and client.c programs:
X:\Demo> "%MPI_ROOT%\bin\mpicc" /mpi64 server.c

Microsoft (R) C/C++ Optimizing Compiler Version 14.00.50727.762 for x64
Copyright (C) Microsoft Corporation. All rights reserved.
server.c
Microsoft (R) Incremental Linker Version 8.00.50727.762
Copyright (C) Microsoft Corporation. All rights reserved.
/out:server.exe
"/libpath:C:\Program Files (x86)\Platform-MPI\lib"
/subsystem:console
libhpcmpi64.lib
libmpio64.lib
server.obj

X:\Demo> "%MPI_ROOT%\bin\mpicc" /mpi64 client.c

Microsoft (R) C/C++ Optimizing Compiler Version 14.00.50727.762 for x64
Copyright (C) Microsoft Corporation. All rights reserved.client.c
Microsoft (R) Incremental Linker Version 8.00.50727.762
Copyright (C) Microsoft Corporation. All rights reserved./out:client.exe
"/libpath:C:\Program Files (x86)\Platform-MPI\lib"
/subsystem:console
libpcmpi64.lib
libmpio64.lib
client.obj

5. Create an appfile that uses your executables.
For example, create the following appfile, appfile.txt:
-np 1 -h node1 server.exe
-np 1 -h node1 client.exe
-np 2 -h node2 client.exe
-np 2 -h node3 client.exe

This appfile runs one server rank on node1, and 5 client ranks: one on node1,
two on node2, and two on node3.

6. Submit the job using appfile mode:
X:\work> "%MPI_ROOT%\bin\mpirun" -hpc -f appfile.txt

32 Platform MPI: User's Guide



This submits the job to the scheduler, allocating the nodes indicated in the
appfile. Output and error files defaults to appfile-<JOBID>-<TASKID>.out and
appfile-<JOBID>-<TASKID>.err respectively. These file names can be altered
using the -wmout and -wmerr flags.

Note:

You could also have submitted this command using the HPC job commands
(job new ..., job add ..., job submit ID), similar to the last example.
However, when using the job commands, you must request the matching
resources in the appfile.txt appfile on the job new command. If the HPC job
allocation resources do not match the appfile hosts, the job will fail.

By letting mpirun schedule the job, mpirun will automatically request the
matching resources.

7. Check your results. Assuming the job submitted was job ID 98, the file
appfile-98.1.out was created. The file content is:
X:\Demo> type appfile-98.1.out

Hello world (Client)! I’m 2 of 6 on node2
Hello world (Client)! I’m 1 of 6 on node1
Hello world (Server)! I’m 0 of 6 on node1
Hello world (Client)! I’m 4 of 6 on node3
Hello world (Client)! I’m 5 of 6 on node3
Hello world (Client)! I’m 3 of 6 on node2

Building an MPI application on Windows with Visual Studio
and using the property pages

To build an MPI application on Windows in C or C++ with VS2008, use the
property pages provided by Platform MPI to help link applications.

Two pages are included with Platform MPI and are located at the installation
location (MPI_ROOT) in help\PCMPI.vsprops and PCMPI64.vsprops.

Go to VS Project > View > Property Manager. Expand the project. This shows
configurations and platforms set up for builds. Include the correct property page
(PCMPI.vsprops for 32-bit apps, PCMPI64.vsprops for 64-bit apps) in the
Configuration/Platform section.

Select this page by double-clicking the page or by right-clicking on the page and
selecting Properties. Go to the User Macros section. Set MPI_ROOT to the desired
location (i.e., the installation location of Platform MPI). This should be set to the
default installation location:

%ProgramFiles(x86)%\Platform-MPI

Tip:

This is the default location on 64-bit machines. The location for 32-bit machines is
%ProgramFiles%\Platform-MPI

The MPI application can now be built with Platform MPI.

The property page sets the following fields automatically, but they can be set
manually if the property page provided is not used:
v C/C++: Additional Include Directories

Getting Started 33



Set to "\%MPI_ROOT%\include\[32|64]"

v Linker: Additional Dependencies
Set to libpcmpi32.lib or libpcmpi64.lib depending on the application.

v Additional Library Directories
Set to "%MPI_ROOT%\lib"

Building and running on a Windows cluster using appfiles
The following example only works on hosts running Windows 2003, 2008, XP,
Vista, or 7.

The example teaches you the basic compilation and run steps to execute
hello_world.c on a cluster with 4-way parallelism.

Note:

Specify the bitness using -mpi64 or -mpi32 for mpicc to link in the correct libraries.
Verify you are in the correct bitness compiler window. Using -mpi64 in a Visual
Studio 32-bit command window does not work.
1. Create a file "appfile" for running on nodes n01 and n02 as:

-h n01 -np 2 \\node01\share\path\to\hello_world.exe

-h n02 -np 2 \\node01\share\path\to\hello_world.exe

2. For the first run of the hello_world executable, use -cache to cache your
password:
"%MPI_ROOT%\bin\mpirun" -cache -f appfile

Password for MPI runs:

When typing, the password is not echoed to the screen.
The Platform MPI Remote Launch service must be registered and started on the
remote nodes. mpirun will authenticated with the service and create processes
using your encrypted password to obtain network resources.
If you do not provide a password, the password is incorrect, or you use
-nopass, remote processes are created but do not have access to network shares.
In the following example, the hello_world.exe file cannot be read.

3. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
non-deterministic order. The following is an example of the output:
Hello world! I’m 1 of 4 on n01
Hello world! I’m 3 of 4 on n02
Hello world! I’m 0 of 4 on n01
Hello world! I’m 2 of 4 on n02

Running with an appfile using HPCS
Using an appfile with HPCS has been greatly simplified in this release of Platform
MPI. The previous method of writing a submission script that uses mpi_nodes.exe
to dynamically generate an appfile based on the HPCS allocation is still supported.
However, the preferred method is to allow mpirun.exe to determine which nodes
are required for the job (by reading the user-supplied appfile), request those nodes
from the HPCS scheduler, then submit the job to HPCS when the requested nodes
have been allocated. Users write a brief appfile calling out the exact nodes and
rank counts needed for the job. For example:
1. Change to a writable directory.
2. Compile the hello_world executable file:

34 Platform MPI: User's Guide



% $MPI_ROOT/bin/mpicc -o hello_world $MPI_ROOT/help/hello_world.c

3. Create an appfile for running on nodes n01 and n02 as:
-h n01 -np 2 hello_world.exe

-h n02 -np 2 hello_world.exe

4. Submit the job to HPCS with the following command:
X:\demo> mpirun -hpc -f appfile

5. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
non-deterministic order. The following is an example of the output.
Hello world! I’m 2 of 4 on n02
Hello world! I’m 1 of 4 on n01
Hello world! I’m 0 of 4 on n01
Hello world! I’m 3 of 4 on n02

More information about using appfiles is available in Chapter 3 of the Platform
MPI User's Guide.

Directory structure for Windows
All Platform MPI for Windows files are stored in the directory specified at
installation. The default directory is C:\Program Files (x86)\Platform-MPI. If you
move the Platform MPI installation directory from its default location, set the
MPI_ROOT environment variable to point to the new location. The directory
structure is organized as follows:

Table 8. Directory structure for Windows

Subdirectory Contents

bin Command files for Platform MPI utilities

help Source files for example programs and Visual Studio
Property pages

include\32 32-bit header files

include\64 64-bit header files

lib Platform MPI libraries

man Platform MPI manpages in HTML format

sbin Windows Platform MPI services

licenses Repository for Platform MPI license file

doc Release notes and the Debugging with Platform MPI
Tutorial

Windows man pages
The manpages are located in the "%MPI_ROOT%\man\" subdirectory for Windows.
They can be grouped into three categories: general, compilation, and run-time. One
general manpage, MPI.1, is an overview describing general features of Platform
MPI. The compilation and run-time manpages describe Platform MPI utilities.

The following table describes the three categories of manpages in the man1
subdirectory that comprise manpages for Platform MPI utilities:

Getting Started 35



Table 9. Windows man page categories

Category manpages Description

General v MPI.1
Describes the general features of
Platform MPI.

Compilation
v mpicc.1

v mpicxx.1

v mpif90.1

Describes the available compilation
utilities.

Run time

v 1sided.1

v autodbl.1

v mpidebug.1

v mpienv.1

v mpimtsafe.1

v mpirun.1

v mpistdio.1

v system_check.1

Describes run-time utilities,
environment variables, debugging,
thread-safe, and diagnostic libraries.

Licensing policy for Windows
Platform MPI for Windows uses FlexNet Publishing (formerly FLEXlm) licensing
technology. A license is required to use Platform MPI for Windows. Licenses can be
acquired from IBM. Platform MPI is licensed per rank. On any run of the product,
one license is consumed for each rank that is launched.

The Platform MPI license file should be named mpi.lic. The license file must be
placed in the installation directory (C:\Program Files (x86)\Platform-MPI\
licenses by default) on all run-time systems.

Platform MPI uses three types of licenses: counted (or permanent) licenses,
uncounted (or demo) licenses, and ISV-licensed:
v Counted license keys are locked to a single license server or to a redundant triad

of license servers. These licenses may be used to launch jobs on any compute
nodes.

v Uncounted license keys are not associated with a license server. The license file
will only include a FEATURE (or INCREMENT) line. Uncounted license keys cannot
be used with a license server.

v The Independent Software Vendor (ISV) license program allows participating
ISVs to freely bundle Platform MPI with their applications. When the application
is part of the Platform MPI ISV program, there is no licensing requirement for
the user. The ISV provides a licensed copy of Platform MPI. Contact your
application vendor to find out if they participate in the Platform MPI ISV
program. The copy of Platform MPI distributed with a participating ISV works
with that application. The Platform MPI license is still required for all other
applications.

Licensing for Windows
Platform MPI now supports redundant license servers using the FLEXnet Publisher
licensing software. Three servers can create a redundant license server triad. For a
license checkout request to be successful, at least two servers must be running and
able to communicate with each other. This avoids a single-license server failure

36 Platform MPI: User's Guide



which would prevent new Platform MPI jobs from starting. With three-server
redundant licensing, the full number of Platform MPI licenses can be used by a
single job.

When selecting redundant license servers, use stable nodes that are not rebooted or
shut down frequently. The redundant license servers exchange heartbeats.
Disruptions to that communication can cause the license servers to stop serving
licenses.

The redundant license servers must be on the same subnet as the Platform MPI
compute nodes. They do not have to be running the same version of operating
system as the Platform MPI compute nodes, but it is recommended. Each server in
the redundant network must be listed in the Platform MPI license key by
hostname and host ID. The host ID is the MAC address of the eth0 network
interface. The eth0 MAC address is used even if that network interface is not
configured. The host IDcan be obtained by typing the following command if
Platform MPI is installed on the system:

%MPI_ROOT%\bin\licensing\i86_n3\lmutil lmhostid

To obtain the host name, use the control panel by selecting Control Panel >
System > Computer Name.

To request a three server redundant license key for Platform MPI for Windows,
contact IBM. For more information, see your license certificate.

Installing a demo license
Demo (or uncounted) license keys have special handling in FlexNet. Uncounted
license keys do not need (and will not work with) a license server. The only
relevant (that is, non-commented) line in a demo license key text is the following:
FEATURE platform_mpi lsf_ld 8.000 30-DEC-2010 0 AAAABBBBCCCCDDDDEEEE "Platform" DEMO

The FEATURE line should be on a single line in the mpi.lic file, with no line breaks.
Demo license keys should not include a SERVER line or VENDOR line. The quantity of
licenses is the sixth field of the FEATURE line. A demo license will always have a
quantity of "0" or "uncounted". A demo license will always have a finite expiration
date (the fifth field on the FEATURE line).

The contents of the license should be placed in the %MPI_ROOT%\licenses\mpi.lic
file. If the %MPI_ROOT% location is shared (such as NFS), the license can be in that
single location. However, if the %MPI_ROOT% location is local to each compute node,
a copy of the mpi.lic file will need to be on every node.

Installing counted license files
Counted license keys must include a SERVER, DAEMON, and FEATURE (or INCREMENT)
line. The expiration date of a license is the fifth field of the FEATURE or INCREMENT
line. The expiration date can be unlimited with the permanent or jan-01-0000 date,
or can have a finite expiration date. A counted license file will have a format
similar to this:
SERVER myserver 001122334455 2700
DAEMON lsf_ld
INCREMENT platform_mpi lsf_ld 8.0 permanent 8 AAAAAAAAAAAA \
NOTICE="License Number = AAAABBBB1111" SIGN=AAAABBBBCCCC

To install a counted license key, create a file called mpi.lic with that text, and copy
that file to %MPI_ROOT%\licenses\mpi.lic.

Getting Started 37



On the license server, the following directories and files must be accessible:
v %MPI_ROOT%\bin\licensing\i86_n3\*

v %MPI_ROOT%\licenses\mpi.lic

Run the following command to start the license server:

"%MPI_ROOT%\bin\licensing\i86_n3\lmgrd" -c mpi.lic

On the compute nodes, the license file needs to exist in every instance of
%MPI_ROOT%. Only the SERVER and VENDOR lines are required. The FEATURE lines are
optional on instances of the license file on the %MPI_ROOT% that is accessible to the
compute nodes. If the %MPI_ROOT% location is shared (such as in NFS), the license
can be in that single location. However, if the %MPI_ROOT% location is local to each
compute node, a copy of the mpi.lic file will need to be on every node.

Test licenses on Windows
To ensure an accurate result when testing the Platform MPI license installation, use
the following process to test licenses. This process will work with a counted,
uncounted, or ISV licensed application.
1. Copy the license key to the %MPI_ROOT%\licenses\mpi.lic file.
2. Test the license checkouts on the nodes in the host file.

%MPI_ROOT%\bin\licensing\i86_n3/lichk.exe

This command will attempt to check out a license from the server, and will
report either SUCCESS or an error. Save any error output when obtaining
technical support. For more information, contact your sales representative.
If the test was successful, the license is correctly installed.

38 Platform MPI: User's Guide



Understanding Platform MPI

This chapter provides information about the Platform MPI implementation of MPI.
“Compilation wrapper script utilities”
“C++ bindings (for Linux)” on page 43
“Autodouble functionality” on page 44
“MPI functions” on page 45
“64-bit support” on page 45
“Thread-compliant library” on page 46
“CPU affinity” on page 46
“MPICH object compatibility for Linux” on page 51
“MPICH2 compatibility” on page 53
“Examples of building on Linux” on page 53
“Running applications on Linux” on page 53
“Running applications on Windows” on page 76
“mpirun options” on page 91
“Runtime environment variables” on page 100
“List of runtime environment variables” on page 104
“Scalability” on page 127
“Dynamic processes” on page 130
“Singleton launching” on page 131
“License release/regain on suspend/resume” on page 131
“Signal propagation (Linux only)” on page 131
“MPI-2 name publishing support” on page 132
“Native language support” on page 133

Compilation wrapper script utilities
Platform MPI provides compilation utilities for the languages shown in the
following table. In general, if a specific compiler is needed, set the related
environment variable, such as MPI_CC. Without such a setting, the utility script
searches the PATH and a few default locations for possible compilers. Although in
many environments this search produces the desired results, explicitly setting the
environment variable is safer. Command-line options take precedence over
environment variables.

Table 10. Compiler selection

Language Wrapper Script Environment Variable Command Line

C mpicc MPI_CC -mpicc <compiler>

C++ mpiCC MPI_CXX -mpicxx <compiler>

Fortran 77 mpif77 MPI_F77 -mpif77 <compiler>

Fortran 90 mpif90 MPI_F90 -mpif90 <compiler>

“Compiling applications” on page 40

© Copyright IBM Corp. 1994, 2012 39



Compiling applications
The compiler you use to build Platform MPI applications depends on the
programming language you use. Platform MPI compiler utilities are shell scripts
that invoke the correct native compiler. You can pass the pathname of the MPI
header files using the -I option and link an MPI library (for example, the
diagnostic or thread-compliant library) using the -Wl, -L or -l option.

Platform MPI offers a -show option to compiler wrappers. When compiling by
hand, run mpicc -show and a line prints showing what the job would do (and
skipping the build).

“C for Linux”
“Fortran 90 for Linux”
“C command-line basics for Windows” on page 41
“Fortran command-line basics for Windows” on page 42

C for Linux
The compiler wrapper $MPI_ROOT/bin/mpicc is included to aid in command-line
compilation of C programs. By default, the current PATH environment variable will
be searched for available C compilers. A specific compiler can be specified by
setting the MPI_CC environment variable to the path (absolute or relative) of the
compiler:

export MPI_ROOT=/opt/platform_mpi

$MPI_ROOT/bin/mpicc -o hello_world.x $MPI_ROOT/help/hello_world.c

Fortran 90 for Linux
To use the 'mpi' Fortran 90 module, you must create the module file by compiling
the module.F file in /opt/platform_mpi/include/64/module.F for 64-bit compilers.
For 32-bit compilers, compile the module.F file in /opt/platform_mpi/include/32/
module.F.

Note:

Each vendor (e.g., PGI, Qlogic/Pathscale, Intel, Gfortran, etc.) has a different
module file format. Because compiler implementations vary in their representation
of a module file, a PGI module file is not usable with Intel and so on. Additionally,
forward compatibility might not be the case from older to newer versions of a
specific vendor's compiler. Because of compiler version compatibility and format
issues, we do not build module files.

In each case, you must build (just once) the module that corresponds to 'mpi' with
the compiler you intend to use.

For example, with platform_mpi/bin and pgi/bin in path:
pgf90 -c /opt/platform_mpi/include/64/module.F
cat >hello_f90.f90 program main

use mpi
implicit none
integer :: ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, "Hello, world, I am ", rank, " of ", size
call MPI_FINALIZE(ierr)

End

40 Platform MPI: User's Guide



mpif90 -mpif90 pgf90 hello_f90.f90
hello_f90.f90:
mpirun ./a.out
Hello, world, I am 0 of 1

C command-line basics for Windows
The utility "%MPI_ROOT%\bin\mpicc" is included to aid in command-line
compilation. To compile with this utility, set the MPI_CC environment variable to
the path of the command-line compiler you want to use. Specify -mpi32 or -mpi64
to indicate if you are compiling a 32-bit or 64-bit application. Specify the
command-line options that you would normally pass to the compiler on the mpicc
command line. The mpicc utility adds command-line options for Platform MPI
include directories and libraries. You can specify the -show option to indicate that
mpicc should display the command generated without executing the compilation
command. For more information, see the mpicc manpage .

To construct the compilation command, the mpicc utility must know what
command-line compiler is to be used, the bitness of the executable that compiler
will produce, and the syntax accepted by the compiler. These can be controlled by
environment variables or from the command line.

Table 11. mpicc utility

Environment Variable Value Command Line

MPI_CC desired compiler (default cl) -mpicc <value>

MPI_BITNESS 32 or 64 (no default) -mpi32 or -mpi64

MPI_WRAPPER_SYNTAX windows or unix (default windows) -mpisyntax <value>

For example, to compile hello_world.c with a 64-bit 'cl' contained in your PATH
use the following command because 'cl' and the 'Windows' syntax are defaults:

"%MPI_ROOT%\bin\mpicc" /mpi64 hello_world.c /link /out:hello_world_cl64.exe

Or, use the following example to compile using the PGI compiler, which uses a
more UNIX-like syntax:

"%MPI_ROOT%\bin\mpicc" -mpicc pgcc -mpisyntax unix -mpi32 hello_world.c -o
hello_world_pgi32.exe

To compile C code and link with Platform MPI without using the mpicc tool, start
a command prompt that has the relevant environment settings loaded for your
compiler, and use it with the compiler option:

/I"%MPI_ROOT%\include\[32|64]"

and the linker options:

/libpath:"%MPI_ROOT%\lib" /subsystem:console
[libpcmpi64.lib|libpcmpi32.lib]

Specify bitness where indicated. The above assumes the environment variable
MPI_ROOT is set.

For example, to compile hello_world.c from the %MPI_ROOT%\help directory using
Visual Studio (from a Visual Studio command prompt window):

Understanding Platform MPI 41



cl hello_world.c /I"%MPI_ROOT%\include\64" /link /out:hello_world.exe ^

/libpath:"%MPI_ROOT%\lib" /subsystem:console libpcmpi64.lib

The PGI compiler uses a more UNIX-like syntax. From a PGI command prompt:

pgcc hello_world.c -I"%MPI_ROOT%\include\64" -o hello_world.exe ^

-L"%MPI_ROOT%\lib" -lpcmpi64

Fortran command-line basics for Windows
The utility "%MPI_ROOT%\bin\mpif90" is included to aid in command-line
compilation. To compile with this utility, set the MPI_F90 environment variable to
the path of the command-line compiler you want to use. Specify -mpi32 or -mpi64
to indicate if you are compiling a 32-bit or 64-bit application. Specify the
command-line options that you would normally pass to the compiler on the mpif90
command line. The mpif90 utility adds additional command-line options for
Platform MPI include directories and libraries. You can specify the -show option to
indicate that mpif90 should display the command generated without executing the
compilation command. For more information, see the mpif90 manpage.

To construct the compilation command, the mpif90 utility must know what
command-line compiler is to be used, the bitness of the executable that compiler
will produce, and the syntax accepted by the compiler. These can be controlled by
environment variables or from the command line.

Table 12. mpif90 utility

Environment Variable Value Command Line

MPI_F90 desired compiler (default ifort) -mpif90 <value>

MPI_BITNESS 32 or 64 (no default) -mpi32 or -mpi64

MPI_WRAPPER_SYNTAX windows or unix (default windows) -mpisyntax <value>

For example, to compile compute_pi.f with a 64-bit ifort contained in your PATH
use the following command because ifort and the Windows syntax are defaults:

"%MPI_ROOT%\bin\mpif90" /mpi64 compute_pi.f /link /out:compute_pi_ifort.exe

Or, use the following example to compile using the PGI compiler, which uses a
more UNIX-like syntax:

"%MPI_ROOT%\bin\mpif90" -mpif90 pgf90 -mpisyntax unix -mpi32 compute_pi.f ^

-o compute_pi_pgi32.exe

To compile compute_pi.f using Intel Fortran without using the mpif90 tool (from a
command prompt that has the relevant environment settings loaded for your
Fortran compiler):

ifort compute_pi.f /I"%MPI_ROOT%\include\64" /link /out:compute_pi.exe ^

/libpath:"%MPI_ROOT%\lib" /subsystem:console libpcmpi64.lib

Note:

42 Platform MPI: User's Guide



Compilers often link against runtime libraries. When running an MPI application
built with the Intel Fortran or C/C++ compilers, you might need to install the
run-time libraries on every node of your cluster. We recommend that you install
the version of the run-time libraries that correspond to the version of the compiler
used on the MPI application.

C++ bindings (for Linux)
Platform MPI supports C++ bindings as described in the MPI-2 Standard. If you
compile and link with the mpiCC command, no additional work is needed to
include and use the bindings. You can include mpi.h or mpiCC.h in your C++
source files.

The bindings provided by Platform MPI are an interface class, calling the
equivalent C bindings. To profile your application, you should profile the
equivalent C bindings.

If you build without the mpiCC command, include -lmpiCC to resolve C++
references.

To use an alternate libmpiCC.a with mpiCC, use the -mpiCClib <LIBRARY> option.
A 'default' g++ ABI-compatible library is provided for each architecture except
Alpha.

Note:

The MPI 2.0 standard deprecated C++ bindings. Platform MPI 9.1 continues to
support the use of C++ bindings as described in the MPI Standard. In some future
release, support for C++ bindings will be removed, and the C++ APIs may also be
removed from the product. The development of new applications using the C++
bindings is strongly discouraged.

“Non-g++ ABI compatible C++ compilers”

Non-g++ ABI compatible C++ compilers
The C++ library provided by Platform MPI, libmpiCC.a, was built with g++. If you
are using a C++ compiler that is not g++ ABI compatible (e.g., Portland Group
Compiler), you must build your own libmpiCC.a and include this in your build
command. The sources and Makefiles to build an appropriate library are located in
/opt/platform_mpi/lib/ARCH/mpiCCsrc.

To build a version of libmpiCC.a and include it in the builds using mpiCC, do the
following:

Note:

This example assumes your Platform MPI installation directory is
/opt/platform_mpi. It also assumes that the pgCC compiler is in your path and
working properly.
1. Copy the file needed to build libmpiCC.a into a working location.

% setenv MPI_ROOT /opt/platform_mpi

% cp -r $MPI_ROOT/lib/linux_amd64/mpiCCsrc ~

% cd ~/mpiCCsrc

2. Compile and create the libmpiCC.a library.
% make CXX=pgCC MPI_ROOT=$MPI_ROOT

Understanding Platform MPI 43



pgCC -c intercepts.cc -I/opt/platform_mpi/include
-DHPMP_BUILD_CXXBINDING PGCC-W-0155-Nova_start() seen (intercepts.cc:33)
PGCC/x86 Linux/x86-64 6.2-3: compilation completed with warnings pgCC -c
mpicxx.cc - I/opt/platform_mpi/include -DHPMP_BUILD_CXXBINDING ar rcs
libmpiCC.a intercepts.o mpicxx.o

3. Using a test case, verify that the library works as expected.
% mkdir test ; cd test

% cp $MPI_ROOT/help/sort.C .

% $MPI_ROOT/bin/mpiCC HPMPI_CC=pgCC sort.C -mpiCClib \ ../libmpiCC.a

sort.C:

% $MPI_ROOT/bin/mpirun -np 2 ./a.out

Rank 0
-980
-980

.

.

.
965
965

Autodouble functionality
Platform MPI supports Fortran programs compiled 64-bit with any of the following
options (some of which are not supported on all Fortran compilers):

For Linux:
v -i8

Set default KIND of integer variables is 8.
v -r8

Set default size of REAL to 8 bytes.
v -r16

Set default size of REAL to 16 bytes.
v -autodouble

Same as -r8.

The decision of how Fortran arguments are interpreted by the MPI library is made
at link time.

If the mpif90 compiler wrapper is supplied with one of the above options at link
time, the necessary object files automatically link, informing MPI how to interpret
the Fortran arguments.

Note:

This autodouble feature is supported in the regular and multithreaded MPI
libraries, but not in the diagnostic library.

For Windows:
v /integer_size:64

v /4I8

v -i8

v /real_size:64

44 Platform MPI: User's Guide



v /4R8

v /Qautodouble

v -r8

If these flags are given to the mpif90.bat script at link time, the application is
linked, enabling Platform MPI to interpret the data type MPI_REAL as 8 bytes (etc.
as appropriate) at run time.

However, if your application is written to explicitly handle autodoubled datatypes
(e.g., if a variable is declared real, the code is compiled -r8, and corresponding
MPI calls are given MPI_DOUBLE for the datatype), then the autodouble related
command-line arguments should not be passed to mpif90.bat at link time (because
that causes the datatypes to be automatically changed).

MPI functions
The following MPI functions accept user-defined functions and require special
treatment when autodouble is used:
v MPI_Op_create()

v MPI_Errhandler_create()

v MPI_Keyval_create()

v MPI_Comm_create_errhandler()

v MPI_Comm_create_keyval()

v MPI_Win_create_errhandler()

v MPI_Win_create_keyval()

The user-defined callback passed to these functions should accept normal-sized
arguments. These functions are called internally by the library where
normally-sized data types are passed to them.

64-bit support
Platform MPI provides support for 64-bit libraries as shown below. More
information about Linux and Windows systems is provided in the following
sections.

Table 13. 32-bit and 64-bit support

OS/Architecture Supported Libraries Default Notes

Linux IA-32 32-bit 32-bit

Linux Itanium2 64-bit 64-bit

Linux Opteron & Intel64 32-bit and 64-bit 64-bit Use -mpi32 and appropriate
compiler flag. For 32-bit
flag, see the compiler
manpage.

Windows 32-bit and 64-bit N/A

“Linux” on page 46
“Windows” on page 46

Understanding Platform MPI 45



Linux
Platform MPI supports 32-bit and 64-bit versions running Linux on AMD Opteron
or Intel64 systems. 32-bit and 64-bit versions of the library are shipped with these
systems; however, you cannot mix 32-bit and 64-bit executables in the same
application.

Platform MPI includes -mpi32 and -mpi64 options for the compiler wrapper script
on Opteron and Intel64 systems. Use these options to indicate the bitness of the
application to be invoked so that the availability of interconnect libraries can be
properly determined by the Platform MPI utilities mpirun and mpid. The default is
-mpi64.

Windows
Platform MPI supports 32-bit and 64-bit versions running Windows on AMD
Opteron or Intel64. 32-bit and 64-bit versions of the library are shipped with these
systems; however you cannot mix 32-bit and 64-bit executables in the same
application.

Platform MPI includes -mpi32 and -mpi64 options for the compiler wrapper script
on Opteron and Intel64 systems. These options are only necessary for the wrapper
scripts so the correct libpcmpi32.dll or libpcmpi64.dll file is linked with the
application. It is not necessary when invoking the application.

Thread-compliant library
Platform MPI provides a thread-compliant library. By default, the non
thread-compliant library (libmpi) is used when running Platform MPI jobs. Linking
to the thread-compliant library is required only for applications that have multiple
threads making MPI calls simultaneously. In previous releases, linking to the
thread-compliant library was required for multithreaded applications even if only
one thread was making a MPI call at a time.

To link with the thread-compliant library on Linux systems, specify the -mtmpi
option to the build scripts when compiling the application.

To link with the thread-compliant library on Windows systems, specify the -lmtmpi
option to the build scripts when compiling the application.

Application types that no longer require linking to the thread-compliant library
include:
v Implicit compiler-generated parallelism.
v OpenMP applications.
v pthreads (if the application meets the MPI_MT_FLAGS definition of "single",

"funneled", or "serial").

CPU affinity
Platform MPI supports CPU affinity for mpirun with two options: -cpu_bind and
-aff.

“CPU affinity mode (-aff)” on page 47
“CPU binding (-cpu_bind)” on page 48

46 Platform MPI: User's Guide



CPU affinity mode (-aff)
The mpirun option -aff allows the setting of the CPU affinity mode:

-aff=mode[:policy[:granularity]] or -aff=manual:string

mode can be one of the following:
v default: mode selected by Platform MPI (automatic at this time).
v none: no limitation is placed on process affinity, and processes are allowed to run

on all sockets and all cores.
v skip: disables CPU affinity (Platform MPI does not change the process's affinity).

This differs slightly from none in that none explicitly sets the affinity to use all
cores and might override affinity settings that were applied through some other
mechanism.

v automatic: specifies that the policy will be one of several keywords for which
Platform MPI will select the details of the placement.

v manual: allows explicit placement of the ranks by specifying a mask of core IDs
(hyperthread IDs) for each rank.
An example showing the syntax is as follows:
-aff=manual:0x1:0x2:0x4:0x8:0x10:0x20:0x40:0x80

If a machine had core numbers 0,2,4,6 on one socket and core numbers 1,3,5,7 on
another socket, the masks for the cores on those sockets would be
0x1,0x4,0x10,0x40 and 0x2,0x8,0x20,0x80.
So the above manual mapping would alternate the ranks between the two
sockets. If the specified manual string has fewer entries than the global number
of ranks, the ranks round-robin through the list to find their core assignments.

policy can be one of the following:
v default: mode selected by Platform MPI (bandwidth at this time).
v bandwidth: alternates rank placement between sockets.
v latency: places ranks on sockets in blocks so adjacent ranks will tend to be on

the same socket more often.
v leastload: processes will run on the least loaded socket, core, or hyper thread.

granularity can be one of the following:
v default: granularity selected by Platform MPI (core at this time).
v socket: this setting allows the process to run on all the execution units (cores

and hyper-threads) within a socket.
v core: this setting allows the process to run on all execution units within a core.
v execunit: this is the smallest processing unit and represents a hyper-thread. This

setting specifies that processes will be assigned to individual execution units.

-affopt=[[load,][noload,]v]
v v turns on verbose mode.
v noload turns off the product's attempt at balancing its choice of CPUs to bind to.

If a user had multiple MPI jobs on the same set of machines, none of which
were fully using the machines, then the default option would be desirable.
However it is also somewhat error-prone if the system being run on is not in a
completely clean state. In that case setting noload will avoid making layout
decisions based on irrelevant load data. This is the default behavior.

Understanding Platform MPI 47



v load turns on the product's attempt at balancing its choice of CPUs to bind to as
described above.

-e MPI_AFF_SKIP_GRANK=rank1, [rank2, ...]

-e MPI_AFF_SKIP_LRANK=rank1, [rank2, ...]

These two options both allow a subset of the ranks to decline participation in the
CPU affinity activities. This can be useful in applications which have one or more
"extra" relatively inactive ranks alongside the primary worker ranks. In both the
above variables a comma-separated list of ranks is given to identify the ranks that
will be ignored for CPU affinity purposes. In the MPI_AFF_SKIP_GRANK variable, the
ranks' global IDs are used, in the MPI_AFF_SKIP_LRANK variable, the ranks' host-local
ID is used. This feature not only allows the inactive rank to be unbound, but also
allows the worker ranks to be bound logically to the existing cores without the
inactive rank throwing off the distribution.

In verbose mode, the output shows the layout of the ranks across the execution
units and also has the execution units grouped within brackets based on which
socket they are on. An example output follows which has 16 ranks on two 8-core
machines, the first machine with hyper-threadding on, the second with
hyper-threading off:
> Host 0 -- ip 10.0.0.1 -- [0,8 2,10 4,12 6,14] [1,9 3,11 5,13 7,15]
> - R0: [11 00 00 00] [00 00 00 00] -- 0x101
> - R1: [00 00 00 00] [11 00 00 00] -- 0x202
> - R2: [00 11 00 00] [00 00 00 00] -- 0x404
> - R3: [00 00 00 00] [00 11 00 00] -- 0x808
> - R4: [00 00 11 00] [00 00 00 00] -- 0x1010
> - R5: [00 00 00 00] [00 00 11 00] -- 0x2020
> - R6: [00 00 00 11] [00 00 00 00] -- 0x4040
> - R7: [00 00 00 00] [00 00 00 11] -- 0x8080
> Host 8 -- ip 10.0.0.2 -- [0 2 4 6] [1 3 5 7]
> - R8: [1 0 0 0] [0 0 0 0] -- 0x1
> - R9: [0 0 0 0] [1 0 0 0] -- 0x2
> - R10: [0 1 0 0] [0 0 0 0] -- 0x4
> - R11: [0 0 0 0] [0 1 0 0] -- 0x8
> - R12: [0 0 1 0] [0 0 0 0] -- 0x10
> - R13: [0 0 0 0] [0 0 1 0] -- 0x20
> - R14: [0 0 0 1] [0 0 0 0] -- 0x40
> - R15: [0 0 0 0] [0 0 0 1] -- 0x80

In this example, the first machine is displaying its hardware layout as
"[0,8 2,10 4,12 6,14] [1,9 3,11 5,13 7,15]". This means it has two sockets each
with four cores, and each of those cores has two execution units. Each execution
unit has a number as listed. The second machine identifies its hardware as
"[0 2 4 6] [1 3 5 7]" which is very similar except each core has a single
execution unit. After that, the lines such as
"R0: [11 00 00 00] [00 00 00 00] -- 0x101" show the specific binding of each
rank onto the hardware. In this example, rank 0 is bound to the first core on the
first socket (runnable by either execution unit on that core). The bitmask of
execution units ("0x101" in this case) is also shown.

CPU binding (-cpu_bind)
The mpirun option -cpu_bind binds a rank to a logical processor to prevent a
process from moving to a different logical processor after start-up. The binding
occurs before the MPI application is executed.

48 Platform MPI: User's Guide



To accomplish this, a shared library is loaded at start-up that does the following
for each rank:
v Spins for a short time in a tight loop to let the operating system distribute

processes to CPUs evenly. This duration can be changed by setting the
MPI_CPU_SPIN environment variable which controls the number of spins in the
initial loop. Default is 3 seconds.

v Determines the current CPU and logical processor.
v Checks with other ranks in the MPI job on the host for oversubscription by

using a "shm" segment created by mpirun and a lock to communicate with other
ranks. If no oversubscription occurs on the current CPU, lock the process to the
logical processor of that CPU. If a rank is reserved on the current CPU, find a
new CPU based on least loaded free CPUs and lock the process to the logical
processor of that CPU.

Similar results can be accomplished using "mpsched" but the procedure outlined
above is a more load-based distribution and works well in psets and across
multiple machines.

Platform MPI supports CPU binding with a variety of binding strategies (see
below). The option -cpu_bind is supported in appfile, command-line, and srun
modes.

% mpirun -cpu_bind[_mt]=[v,][option][,v] -np \ 4 a.out

Where _mt implies thread aware CPU binding; v, and ,v request verbose
information on threads binding to CPUs; and [option] is one of:

rank : Schedule ranks on CPUs according to packed rank ID.

map_cpu : Schedule ranks on CPUs in cyclic distribution through MAP variable.

mask_cpu : Schedule ranks on CPU masks in cyclic distribution through MAP
variable.

ll : least loaded (ll) Bind each rank to the CPU it is running on.

For NUMA-based systems, the following options are also available:

ldom : Schedule ranks on logical processors according to packed rank ID.

cyclic : Cyclic dist on each logical processor according to packed rank ID.

block : Block dist on each logical processor according to packed rank ID.

rr : round robin (rr) Same as cyclic, but consider logical processor load average.

fill : Same as block, but consider logical processor load average.

packed : Bind all ranks to same logical processor as lowest rank.

slurm : slurm binding.

ll : least loaded (ll) Bind each rank to logical processors it is running on.

Understanding Platform MPI 49



map_ldom : Schedule ranks on logical processors in cyclic distribution through MAP
variable.

To generate the current supported options:

% mpirun -cpu_bind=help ./a.out

Environment variables for CPU binding:

Note:

These two environment variables only apply if -cpu_bind is used
v MPI_BIND_MAP allows specification of the integer CPU numbers, logical

processor numbers, or CPU masks. These are a list of integers separated by
commas (,).

v MPI_CPU_AFFINITY is an alternative method to using -cpu_bind on the
command line for specifying binding strategy. The possible settings are LL,
RANK, MAP_CPU, MASK_CPU, LDOM, CYCLIC, BLOCK, RR, FILL, PACKED,
SLURM, AND MAP_LDOM.

v MPI_CPU_SPIN allows selection of spin value. The default is 2 seconds. This
value is used to let busy processes spin so that the operating system schedules
processes to processors. The processes bind themselves to the relevant processor,
core, or logical processor.
For example, the following selects a 4-second spin period to allow 32 MPI ranks
(processes) to settle into place and then bind to the appropriate processor, core,
or logical processor.
% mpirun -e MPI_CPU_SPIN=4 -cpu_bind -np\ 32 ./linpack

v MPI_FLUSH_FCACHE can be set to a threshold percent of memory (0-100)
which, if the file cache currently in use meets or exceeds, initiates a flush
attempt after binding and essentially before the user's MPI program starts.

v MPI_THREAD_AFFINITY controls thread affinity. Possible values are:
none : Schedule threads to run on all cores or logical processors. This is the
default.
cyclic : Schedule threads on logical processors in cyclic manner starting after
parent.
cyclic_cpu : Schedule threads on cores in cyclic manner starting after parent.
block : Schedule threads on logical processors in block manner starting after
parent.
packed : Schedule threads on same logical processor as parent.
empty : No changes to thread affinity are made.

v MPI_THREAD_IGNSELF when set to yes, does not include the parent in
scheduling consideration of threads across remaining cores or logical processors.
This method of thread control can be used for explicit pthreads or OpenMP
threads.

Three -cpu_bind options require the specification of a map/mask description. This
allows for explicit binding of ranks to processors. The three options are map_ldom,
map_cpu, and mask_cpu.

Syntax:

50 Platform MPI: User's Guide



-cpu_bind=[map_ldom,map_cpu,mask_cpu] [:<settings>, =<settings>, -e
MPI_BIND_MAP=<settings>]

Examples:

-cpu_bind=MAP_LDOM -e MPI_BIND_MAP=0,2,1,3

# map rank 0 to logical processor 0, rank 1 to logical processor 2, rank 2 to logical
processor 1 and rank 3 to logical processor 3.

-cpu_bind=MAP_LDOM=0,2,3,1

# map rank 0 to logical processor 0, rank 1 to logical processor 2, rank 2 to logical
processor 3 and rank 3 to logical processor 1.

-cpu_bind=MAP_CPU:0,6,5

# map rank 0 to cpu 0, rank 1 to cpu 6, rank 2 to cpu 5.

-cpu_bind=MASK_CPU:1,4,6

# map rank 0 to cpu 0 (0001), rank 1 to cpu 2 (0100), rank 2 to cpu 1 or 2 (0110).

A rank binding on a clustered system uses the number of ranks and the number of
nodes combined with the rank count to determine CPU binding. Cyclic or blocked
launch is taken into account.

On a cell-based system with multiple users, the LL strategy is recommended rather
than RANK. LL allows the operating system to schedule computational ranks.
Then the -cpu_bind capability locks the ranks to the CPU as selected by the
operating system scheduler.

MPICH object compatibility for Linux
The MPI standard specifies the function prototypes for MPI functions but does not
specify types of MPI opaque objects like communicators or the values of MPI
constants. As a result, an object file compiled using one vendor's MPI generally
does not function if linked to another vendor's MPI library.

There are some cases where such compatibility would be desirable. For instance a
third-party tool such as Intel trace/collector might only be available using the
MPICH interface.

To allow such compatibility, Platform MPI includes a layer of MPICH wrappers.
This provides an interface identical to MPICH 1.2.5, and translates these calls into
the corresponding Platform MPI interface. This MPICH compatibility interface is
only provided for functions defined in MPICH 1.2.5 and cannot be used by an
application that calls functions outside the scope of MPICH 1.2.5.

Platform MPI can be used in MPICH mode by compiling using mpicc.mpich and
running using mpirun.mpich. The compiler script mpicc.mpich uses an include file
that defines the interfaces the same as MPICH 1.2.5, and at link time it links
against libmpich.so which is the set of wrappers defining MPICH 1.2.5 compatible
entry points for the MPI functions. The mpirun.mpich takes the same arguments as
the traditional Platform MPI mpirun, but sets LD_LIBRARY_PATH so that
libmpich.so is found.

Understanding Platform MPI 51



An example of using a program with Intel Trace Collector:

% export MPI_ROOT=/opt/platform_mpi

% $MPI_ROOT/bin/mpicc.mpich -o prog.x $MPI_ROOT/help/communicator.c
-L/path/to/itc/lib -lVT -lvtunwind -ldwarf -lnsl -lm -lelf -lpthread

% $MPI_ROOT/bin/mpirun.mpich -np 2 ./prog.x

Here, the program communicator.c is compiled with MPICH compatible interfaces
and is linked to Intel's Trace Collector libVT.a first from the command-line option,
followed by Platform MPI's libmpich.so and then libmpi.so which are added by
the mpicc.mpich compiler wrapper script. Thus libVT.a sees only the MPICH
compatible interface to Platform MPI.

In general, object files built with Platform MPI's MPICH mode can be used in an
MPICH application, and conversely object files built under MPICH can be linked
into the Platform MPI application using MPICH mode. However, using MPICH
compatibility mode to produce a single executable to run under MPICH and
Platform MPI can be problematic and is not advised.

You can compile communicator.c under Platform MPI MPICH compatibility mode
as:

% export MPI_ROOT=/opt/platform_mpi

% $MPI_ROOT/bin/mpicc.mpich -o prog.x\$MPI_ROOT/help/communicator.c

and run the resulting prog.x under MPICH. However, some problems will occur.
First, the MPICH installation must be built to include shared libraries and a soft
link must be created for libmpich.so, because their libraries might be named
differently.

Next an appropriate LD_LIBRARY_PATH setting must be added manually because
MPICH expects the library path to be hard-coded into the executable at link time
via -rpath.

Finally, although the resulting executable can run over any supported interconnect
under Platform MPI, it will not under MPICH due to not being linked to
libgm/libelan etc.

Similar problems would be encountered if linking under MPICH and running
under Platform MPI's MPICH compatibility. MPICH's use of -rpath to hard-code
the library path at link time keeps the executable from being able to find the
Platform MPI MPICH compatibility library via Platform MPI's LD_LIBRARY_PATH
setting.

C++ bindings are not supported with MPICH compatibility mode.

MPICH compatibility mode is not supported on Platform MPI for Windows.

52 Platform MPI: User's Guide



MPICH2 compatibility
MPICH compatibility mode supports applications and libraries that use the
MPICH2 implementation. MPICH2 is not a standard, but rather a specific
implementation of the MPI-2.1 standard. Platform MPI provides MPICH2
compatibility with the following wrappers:

Table 14. MPICH wrappers

MPICH1 MPICH2

mpirun.mpich mpirun.mpich2

mpicc.mpich mpicc.mpich2

mpif77.mpich mpif77.mpich2

mpif90.mpich mpif90.mpich2

Object files built with Platform MPI MPICH compiler wrappers can be used by an
application that uses the MPICH implementation. You must relink applications
built using MPICH compliant libraries to use Platform MPI in MPICH
compatibility mode.

Note:

Do not use MPICH compatibility mode to produce a single executable to run
under both MPICH and Platform MPI.

Examples of building on Linux
This example shows how to build hello_world.c prior to running.
1. Change to a writable directory that is visible from all hosts the job will run on.
2. Compile the hello_world executable file.

% $MPI_ROOT/bin/mpicc -o hello_world $MPI_ROOT/help/hello_world.c

This example uses shared libraries, which is recommended.
Platform MPI also includes archive libraries that can be used by specifying the
correct compiler option.

Note:

Platform MPI uses the dynamic loader to interface with interconnect libraries.
Therefore, dynamic linking is required when building applications that use
Platform MPI.

Running applications on Linux
This section introduces the methods to run your Platform MPI application on
Linux. Using an mpirun method is required. The examples below demonstrate
different basic methods. For all the mpirun command-line options, refer to the
mpirun documentation.

Platform MPI includes —mpi32 and —mpi64 options for the launch utility mpirun on
Opteron and Intel64. Use these options to indicate the bitness of the application to
be invoked so that the availability of interconnect libraries can be correctly
determined by the Platform MPI utilities mpirun and mpid. The default is —mpi64.

Understanding Platform MPI 53



You can use one of the following methods to start your application, depending on
what the system you are using:
v Use mpirun with the —np# option and the name of your program. For example,

$MPI_ROOT/bin/mpirun —np 4 hello_world

starts an executable file named hello_world with four processes. This is the
recommended method to run applications on a single host with a single
executable file.

v Use mpirun with an appfile. For example:
$MPI_ROOT/bin/mpirun —f appfile

where —f appfile specifies a text file (appfile) that is parsed by mpirun and
contains process counts and a list of programs. Although you can use an appfile
when you run a single executable file on a single host, it is best used when a job
is to be run across a cluster of machines that does not have a dedicated
launching method such as srun or prun (described below), or when using
multiple executables.

v Use mpirun with —srun on SLURM clusters. For example:
$MPI_ROOT/bin/mpirun <mpirun options> —srun <srun options> <program>
<args>

Some features like mpirun —stdio processing are unavailable.
The —np option is not allowed with —srun. The following options are allowed
with —srun:
$MPI_ROOT/bin/mpirun [-help] [-version] [-jv] [-i <spec>]
[-universe_size=#] [-sp <paths>] [-T] [-prot] [-spawn] [-tv] [–1sided]
[-e var[=val]] —srun <srun options> <program> [<args>]

For more information on srun usage:
man srun

The following examples assume the system has SLURM configured, and the
system is a collection of 2-CPU nodes.
$MPI_ROOT/bin/mpirun —srun —N4 ./a.out

will run a.outwith 4 ranks, one per node. Ranks are cyclically allocated.
n00 rank1
n01 rank2
n02 rank3
n03 rank4

$MPI_ROOT/bin/mpirun —srun —n4 ./a.out

will run a.out with 4 ranks, 2 ranks per node, ranks are block allocated. Two are
nodes used.
Other forms of usage include allocating the nodes you want to use, which
creates a subshell. Then jobsteps can be launched within that subshell until the
subshell is exited.
srun —A —n4

This allocates 2 nodes with 2 ranks each and creates a subshell.
$MPI_ROOT/bin/mpirun —srun ./a.out

This runs on the previously allocated 2 nodes cyclically.
n00 rank1
n01 rank2
n02 rank3
n03 rank4

v Use IBM LSF with SLURM and Platform MPI

54 Platform MPI: User's Guide



Platform MPI jobs can be submitted using IBM LSF. IBM LSF uses the SLURM
srun launching mechanism. Because of this, Platform MPI jobs must specify the
—srun option whether IBM LSF is used or srun is used.
bsub —I —n2 $MPI_ROOT/bin/mpirun —srun ./a.out

IBM LSF creates an allocation of 2 processors and srun attaches to it.
bsub —I —n12 $MPI_ROOT/bin/mpirun —srun —n6 —N6 ./a.out

IBM LSF creates an allocation of 12 processors and srun uses 1 CPU per node (6
nodes). Here, we assume 2 CPUs per node.
IBM LSF jobs can be submitted without the —I (interactive) option.
An alternative mechanism for achieving the one rank per node which uses the
—ext option to IBM LSF:
bsub —I —n3 —ext "SLURM[nodes=3]" $MPI_ROOT/bin/mpirun —srun ./a.out

The —ext option can also be used to specifically request a node. The command
line would look something like the following:
bsub —I —n2 —ext "SLURM[nodelist=n10]" mpirun —srun ./hello_world

Job <1883> is submitted to default queue <interactive>.
<<Waiting for dispatch ...>>
<<Starting on lsfhost.localdomain>>
Hello world! I’m 0 of 2 on n10
Hello world! I’m 1 of 2 on n10

Including and excluding specific nodes can be accomplished by passing
arguments to SLURM as well. For example, to make sure a job includes a
specific node and excludes others, use something like the following. In this case,
n9 is a required node and n10 is specifically excluded:
bsub —I —n8 —ext "SLURM[nodelist=n9;exclude=n10]" mpirun —srun
./hello_world

Job <1892> is submitted to default queue <interactive>.
<<Waiting for dispatch ...>>
<<Starting on lsfhost.localdomain>>
Hello world! I’m 0 of 8 on n8
Hello world! I’m 1 of 8 on n8
Hello world! I’m 6 of 8 on n12
Hello world! I’m 2 of 8 on n9
Hello world! I’m 4 of 8 on n11
Hello world! I’m 7 of 8 on n12
Hello world! I’m 3 of 8 on n9
Hello world! I’m 5 of 8 on n11

In addition to displaying interconnect selection information, the mpirun —prot
option can be used to verify that application ranks have been allocated in the
required manner:
bsub —I —n12 $MPI_ROOT/bin/mpirun —prot —srun —n6 —N6 ./a.out

Job <1472> is submitted to default queue <interactive>.
<<Waiting for dispatch ...>>
<<Starting on lsfhost.localdomain>>
Host 0 -- ip 172.20.0.8 -- ranks 0
Host 1 -- ip 172.20.0.9 -- ranks 1
Host 2 -- ip 172.20.0.10 -- ranks 2
Host 3 -- ip 172.20.0.11 -- ranks 3
Host 4 -- ip 172.20.0.12 -- ranks 4
Host 5 -- ip 172.20.0.13 -- ranks 5
host | 0 1 2 3 4 5
======|===============================
0 : SHM VAPI VAPI VAPI VAPI VAPI
1 : VAPI SHM VAPI VAPI VAPI VAPI
2 : VAPI VAPI SHM VAPI VAPI VAPI
3 : VAPI VAPI VAPI SHM VAPI VAPI
4 : VAPI VAPI VAPI VAPI SHM VAPI

Understanding Platform MPI 55



5 : VAPI VAPI VAPI VAPI VAPI SHM
Hello world! I’m 0 of 6 on n8
Hello world! I’m 3 of 6 on n11
Hello world! I’m 5 of 6 on n13
Hello world! I’m 4 of 6 on n12
Hello world! I’m 2 of 6 on n10
Hello world! I’m 1 of 6 on n9

v Use IBM LSF with bsub and Platform MPI
To invoke Platform MPI using IBM LSF, create the IBM LSF job and include the
—lsf flag with the mpirun command. The MPI application will create a job
matching the IBM LSF job resources as listed in the $LSB_MCPU_HOSTS
environment variable.
bsub <lsf_options> mpirun —lsf <mpirun_options> program <args>

When using the —lsf flag, Platform MPI will read the $LSB_MCPU_HOSTS
environment variable set by IBM LSF and use this information to start an equal
number of ranks as allocated slots. The IBM LSF blaunch command starts the
remote execution of ranks and administrative processes instead of ssh.
For example:
bsub —n 16 $MPI_ROOT/bin/mpirun —lsf compute_pi

requests 16 slots from IBM LSF and runs the compute_pi application with 16
ranks on the allocated hosts and slots indicated by $LSB_MCPU_HOSTS.
IBM LSF allocates hosts to run an MPI job. In general, IBM LSF improves
resource usage for MPI jobs that run in multihost environments. IBM LSF
handles the job scheduling and the allocation of the necessary hosts and
Platform MPI handles the task of starting the application's processes on the hosts
selected by IBM LSF.

v Use IBM LSF with autosubmit and Platform MPI
To invoke Platform MPI using IBM LSF, and having Platform MPI create the
correct job allocation for you, you can use the autosubmit feature of Platform
MPI. In this mode, Platform MPI will request the correct number of necessary
slots based on the desired number of ranks specified using the —np parameter.
For example:
$MPI_ROOT/bin/mpirun —np 8 —lsf compute_pi

In this example, mpirun will construct the proper bsub command to request a job
with eight allocated slots, and the proper mpirun command to start the MPI job
within the allocated job.
If other mpirun parameters are used indicating more specific resources (for
example, —hostlist, —hostfile or —f appfile), mpirun will request a job allocation
using the specifically requested resources.
For example:
$MPI_ROOT/bin/mpirun —lsf —f appfile.txt

where appfile.txt contains the following text:
-h voyager -np 10 send_receive
-h enterprise -np 8 compute_pi

mpirun will request the voyager and enterprise nodes for a job allocation, and
schedule an MPI job within that allocation which will execute the first ten ranks
on voyager, and the second eight ranks on enterprise.
When requesting a host from IBM LSF, be sure that the path to your executable
file is accessible to all specified machines.

v Use IBM LSF with —wlmwait and Platform MPI

56 Platform MPI: User's Guide



To invoke Platform MPI using IBM LSF, and have Platform MPI wait until the
job is finished before returning to the command prompt, create the IBM LSF job
and include the —wlmwait flag with the mpirun command. This implies the bsub
—I command for IBM LSF.
For example:
$MPI_ROOT/bin/mpirun —lsf —wlmwait —prot —np 4 —hostlist hostA:2,hostB:2
./x64

Job <1248> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>
<<Job is finished>>

When requesting a host from IBM LSF, be sure that the path to your executable
file is accessible to all specified machines.
The output of this particular job is in the app_name-jobID.out file. For example:
cat x64-1248.out

Sender: LSF System <pmpibot@hostB>
Subject: Job 1248: <x64> Done

Job <x64> was submitted from host <hostB> by user <UserX> in cluster <lsf8pmpi>.
Job was executed on host(s) <8*hostB>, in queue <normal>, as user <UserX>
in cluster <lsf8pmpi>.

<8*hostA>
...
...
Hello World: Rank 0 of 4 on hostB
Hello World: Rank 3 of 4 on hostB
Hello World: Rank 1 of 4 on hostB
Hello World: Rank 2 of 4 on hostB

Similarly, the error output of this job is in the app_name-jobID.err file. For
example, x64-1248.out.

v Use IBM LSF with —wlmsave and Platform MPI
To invoke Platform MPI using IBM LSF, and have Platform MPI configure the
scheduled job to the scheduler without submitting the job, create the IBM LSF
job and include the —wlmsave flag with the mpirun command. Submit the job at a
later time by using the bresume command for IBM LSF.
For example:
$MPI_ROOT/bin/mpirun —lsf —wlmsave —prot —np 4 —hostlist hostA:2,hostB:2
./x64

Job <1249> is submitted to default queue <normal>.
mpirun: INFO(-wlmsave): Job has been submitted but suspended by LSF.
mpirun: Please resume the job for execution.

bresume 1249

Job <1249> is being resumed

bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
1249 UserX RUN normal hostB hostA x64 Sep 27 12:04

hostA
hostA
hostA
hostA
hostA
hostA
hostA
hostB
hostB
hostB
hostB
hostB

Understanding Platform MPI 57



hostB
hostB
hostB

When requesting a host from IBM LSF, be sure that the path to your executable
file is accessible to all specified machines.
The output of this particular job is in the app_name-jobID.out file. For example:
cat x64-1249.out

Sender: LSF System <pmpibot@hostB>
Subject: Job 1249: <x64> Done

Job <x64> was submitted from host <hostB> by user <UserX> in cluster <lsf8pmpi>.
Job was executed on host(s) <8*hostB>, in queue <normal>, as user <UserX> in cluster <lsf8pmpi>.

<8*hostA>
...
...
Hello World: Rank 0 of 4 on hostB
Hello World: Rank 3 of 4 on hostB
Hello World: Rank 1 of 4 on hostB
Hello World: Rank 2 of 4 on hostB

Similarly, the error output of this job is in the app_name-jobID.err file. For
example, x64-1249.err.

v Use IBM LSF with —wlmout and Platform MPI
To invoke Platform MPI using IBM LSF, and have Platform MPI use a specified
stdout file for the job, create the IBM LSF job and include the —wlmout flag with
the mpirun command.
For example:
$MPI_ROOT/bin/mpirun —lsf —wlmout myjob.out —prot —np 4
—hostlist hostA:2,hostB:2 ./x64

Job <1252> is submitted to default queue <normal>.

When requesting a host from IBM LSF, be sure that the path to your executable
file is accessible to all specified machines.
The output of this particular job is in specified file, not the app_name-jobID.out
file. For example:
cat x64-1252.out

cat: x64-1252.out: No such file or directory

cat myjob.out

Sender: LSF System <pmpibot@hostA>
Subject: Job 1252: <x64> Done

Job <x64> was submitted from host <hostB> by user <UserX> in cluster <lsf8pmpi>.
Job was executed on host(s) <8*hostA>, in queue <normal>, as user <UserX> in cluster <lsf8pmpi>.

<8*hostB>
</home/UserX> was used as the home directory.
</pmpi/work/UserX/test.hello_world.1> was used as the working directory.
...
...

Hello World: Rank 2 of 4 on hostA
Hello World: Rank 1 of 4 on hostA
Hello World: Rank 3 of 4 on hostA
Hello World: Rank 0 of 4 on hostA

The error output of this job is in the app_name-jobID.err file. For example:
cat x64-1252.err

mpid: CHeck for has_ic_ibv
x64: Rank 0:0: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
x64: Rank 0:2: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
x64: Rank 0:1: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions

58 Platform MPI: User's Guide



x64: Rank 0:3: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
mpid: world 0 commd 0 child rank 2 exit status 0
mpid: world 0 commd 0 child rank 0 exit status 0
mpid: world 0 commd 0 child rank 3 exit status 0
mpid: world 0 commd 0 child rank 1 exit status 0

“More information about appfile runs”
“Running MPMD applications” on page 60
“Modules on Linux” on page 60
“Run-time utility commands” on page 61
“Interconnect support” on page 70

More information about appfile runs
This example teaches you how to run the hello_world.c application that you built
on HP and Linux (above) using two hosts to achieve four-way parallelism. For this
example, the local host is named jawbone and a remote host is named wizard. To
run hello_world.c on two hosts, use the following procedure, replacing jawbone
and wizard with the names of your machines.
1. Configure passwordless remote shell access on all machines.

By default, Platform MPI uses ssh for remote shell access.
2. Be sure the executable is accessible from each host by placing it in a shared

directory or by copying it to a local directory on each host.
3. Create an appfile.

An appfile is a text file that contains process counts and a list of programs. In
this example, create an appfile named my_appfile containing the following
lines:
-h jawbone -np 2 /path/to/hello_world
-h wizard -np 2 /path/to/hello_world

The appfile file should contain a separate line for each host. Each line specifies
the name of the executable file and the number of processes to run on the host.
The -h option is followed by the name of the host where the specified
processes must be run. Instead of using the host name, you can use its IP
address.

4. Run the hello_world executable file:
% $MPI_ROOT/bin/mpirun -f my_appfile

The -f option specifies the file name that follows it is an appfile. mpirun parses
the appfile, line by line, for the information to run the program.
In this example, mpirun runs the hello_world program with two processes on
the local machine, jawbone, and two processes on the remote machine, wizard,
as dictated by the -np 2 option on each line of the appfile.

5. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
nondeterministic order.
The following is an example of the output:
Hello world! I'm 2 of 4 on wizard
Hello world! I'm 0 of 4 on jawbone
Hello world! I'm 3 of 4 on wizard
Hello world! I'm 1 of 4 on jawbone

Processes 0 and 1 run on jawbone, the local host, while processes 2 and 3 run
on wizard. Platform MPI guarantees that the ranks of the processes in
MPI_COMM_WORLD are assigned and sequentially ordered according to the

Understanding Platform MPI 59



order the programs appear in the appfile. The appfile in this example,
my_appfile, describes the local host on the first line and the remote host on the
second line.

Running MPMD applications
A multiple program multiple data (MPMD) application uses two or more programs
to functionally decompose a problem. This style can be used to simplify the
application source and reduce the size of spawned processes. Each process can
execute a different program.

MPMD with appfiles

To run an MPMD application, the mpirun command must reference an appfile that
contains the list of programs to be run and the number of processes to be created
for each program.

A simple invocation of an MPMD application looks like this:

% $MPI_ROOT/bin/mpirun -f appfile

where appfile is the text file parsed by mpirun and contains a list of programs and
process counts.

Suppose you decompose the poisson application into two source files:
poisson_master (uses a single master process) and poisson_child (uses four child
processes).

The appfile for the example application contains the two lines shown below:

-np 1 poisson_master

-np 4 poisson_child

To build and run the example application, use the following command sequence:

% $MPI_ROOT/bin/mpicc -o poisson_master poisson_master.c

% $MPI_ROOT/bin/mpicc -o poisson_child poisson_child.c

% $MPI_ROOT/bin/mpirun -f appfile

MPMD with srun

MPMD is not directly supported with srun. However, users can write custom
wrapper scripts to their application to emulate this functionality. This can be
accomplished by using the environment variables SLURM_PROCID and
SLURM_NPROCS as keys to selecting the correct executable.

Modules on Linux
Modules are a convenient tool for managing environment settings for packages.
Platform MPI for Linux provides the Platform MPI module at
/opt/platform_mpi/modulefiles/platform-mpi, which sets MPI_ROOT and adds to
PATH and MANPATH. To use it, copy the file to a system-wide module directory,
or append /opt/platform_mpi/modulefiles/platform-mpi to the MODULEPATH
environment variable.

60 Platform MPI: User's Guide



Some useful module-related commands are:

module avail

Lists modules that can be loaded

module load platform-mpi

Loads the Platform MPI module

module list

Lists loaded modules

module unload platform-mpi

Unloads the Platform MPI module

Modules are only supported on Linux.

Run-time utility commands
Platform MPI provides a set of utility commands to supplement MPI library
routines.

“mpirun”
“mpiexec” on page 67
“mpijob” on page 68
“mpiclean” on page 69

mpirun
This section includes a discussion of mpirun syntax formats, mpirun options,
appfiles, the multipurpose daemon process, and generating multihost
instrumentation profiles.

The Platform MPI start-up mpirun requires that MPI be installed in the same
directory on every execution host. The default is the location where mpirun is
executed. This can be overridden with the MPI_ROOT environment variable. Set
the MPI_ROOT environment variable prior to starting mpirun.

mpirun syntax has the following formats:
v Single host execution
v Appfile execution
v IBM LSF with bsub execution
v IBM LSF with autosubmit execution
v srun execution

Single host execution
v To run on a single host, you can use the -np option to mpirun.

For example:
% $MPI_ROOT/bin/mpirun -np 4 ./a.out

will run 4 ranks on the local host.

Appfile execution
v For applications that consist of multiple programs or that run on multiple hosts,

here is a list of common options. For a complete list, see the mpirun manpage:
% mpirun [-help] [-version] [-djpv] [-ck] [-t spec] [-i spec] [-commd]
[-tv] -f appfile [--extra_args_for_appfile]

Understanding Platform MPI 61



Where --extra_args_for_appfile specifies extra arguments to be applied to the
programs listed in the appfile. This is a space-separated list of arguments. Use
this option at the end of a command line to append extra arguments to each line
of your appfile. These extra arguments also apply to spawned applications if
specified on the mpirun command line.
In this case, each program in the application is listed in a file called an appfile.
For example:
% $MPI_ROOT/bin/mpirun -f my_appfile

runs using an appfile named my_appfile, that might have contents such as:
-h hostA -np 2 /path/to/a.out

-h hostB -np 2 /path/to/a.out

which specify that two ranks are to run on host A and two on host B.

IBM LSF with bsub execution

Platform MPI jobs can be submitted using IBM LSF and bsub. Platform MPI jobs
must specify the -lsf option as an mpirun parameter. The bsub command is used
to request the IBM LSF allocation, and the -lsf parameter on the mpirun
command.

For example:

bsub -n6 $MPI_ROOT/bin/mpirun -lsf ./a.out

Note:

You can use the -lsb_mcpu_hosts flag instead of -lsf, although the -lsf flag is
now the preferred method.

IBM LSF with autosubmit execution

Platform MPI jobs can be submitted using IBM LSF and mpirun -lsf. Platform
MPI will peform the job allocation step automatically, creating the necessary job
allocation to properly run the MPI application with the specified ranks.

For example, the following command requests a 12-slot IBM LSF allocation and
starts 12 a.out ranks on the allocation:

$MPI_ROOT/bin/mpirun -lsf -np 12 ./a.out

The following command requests a IBM LSF allocation containing the nodes node1
and node2, then it will start an eight rank application in the IBM LSF allocation
(four ranks on node1 and four ranks on node2):

$MPI_ROOT/bin/mpirun -lsf -hostlist node1:4,node2:4 a.out

Windows HPC using autosubmit execution (Windows only)

Platform MPI jobs can be submitted using the Windows HPC scheduler and
mpirun -hpc. Platform MPI will peform the job allocation step automatically,
creating the necessary job allocation to properly run the MPI application with the
specified ranks.

62 Platform MPI: User's Guide



For example, the following command requests a 12-core Windows HPC allocation
and starts 12 a.out ranks on the allocation:

%MPI_ROOT%\bin\mpirun -hpc -np 12 .\a.out

The following command requests a Windows HPC allocation containing the nodes
node1 and node2, then it will start an eight rank application in the HPC allocation
(four ranks on node1 and four ranks on node2):

%MPI_ROOT%\bin\mpirun -hpc -hostlist node1:4,node2:4 a.out

srun execution
v Applications that run on SLURM clusters require the -srun option. start-up

directly from srun is not supported. When using this option, mpirun sets
environment variables and invokes srun utilities.
The -srun argument to mpirun specifies that the srun command is to be used for
launching. All arguments following -srun are passed unmodified to the srun
command.
% $MPI_ROOT/bin/mpirun <mpirun options> -srun <srun options>

The -np option is not allowed with srun. Some features like mpirun -stdio
processing are unavailable.
% $MPI_ROOT/bin/mpirun -srun -n 2 ./a.out

launches a.out on two processors.
% $MPI_ROOT/bin/mpirun -prot -srun -n 6 -N 6 ./a.out

turns on the print protocol option (-prot is an mpirun option, and therefore is
listed before -srun) and runs on 6 machines, one CPU per node.
Platform MPI also provides implied srun mode. The implied srun mode allows
the user to omit the -srun argument from the mpirun command line with the use
of the environment variable MPI_USESRUN.

Appfiles:
An appfile is a text file that contains process counts and a list of programs. When
you invoke mpirun with the name of the appfile, mpirun parses the appfile to get
information for the run.

Creating an appfile

The format of entries in an appfile is line oriented. Lines that end with the
backslash (\) character are continued on the next line, forming a single logical line.
A logical line starting with the pound (#) character is treated as a comment. Each
program, along with its arguments, is listed on a separate logical line.

The general form of an appfile entry is:

[-h remote_host] [-e var[=val] [...]] [-sp paths] [-np #] program [args]

where

-h remote_host

Specifies the remote host where a remote executable file is stored. The default
is to search the local host. remote_host is a host name or an IP address.

-e var=val

Understanding Platform MPI 63



Sets the environment variable var for the program and gives it the value val.
The default is not to set environment variables. When you use -e with the -h
option, the environment variable is set to val on the remote host.

-sp paths

Sets the target shell PATH environment variable to paths. Search paths are
separated by a colon. Both -sp path and -e PATH=path do the same thing. If
both are specified, the -e PATH=path setting is used.

-np #

Specifies the number of processes to run. The default value for # is 1.

program

Specifies the name of the executable to run. mpirun searches for the executable
in the paths defined in the PATH environment variable.

args

Specifies command-line arguments to the program. Options following a
program name in your appfile are treated as program arguments and are not
processed by mpirun.

Adding program arguments to your appfile

When you invoke mpirun using an appfile, arguments for your program are
supplied on each line of your appfile. Platform MPI also provides an option on
your mpirun command line to provide additional program arguments to those in
your appfile. This is useful if you want to specify extra arguments for each
program listed in your appfile, but do not want to edit your appfile.

To use an appfile when you invoke mpirun, use the following:

mpirun [mpirun_options] -f appfile [--extra_args_for_appfile]

The -- extra_args_for_appfile option is placed at the end of your command line,
after appfile, to add options to each line of your appfile.

CAUTION:

Arguments placed after the two hyphens (--) are treated as program arguments,
and are not processed by mpirun. Use this option when you want to specify
program arguments for each line of the appfile, but want to avoid editing the
appfile.

For example, suppose your appfile contains
-h voyager -np 10 send_receive arg1 arg2
-h enterprise -np 8 compute_pi

If you invoke mpirun using the following command line:

mpirun -f appfile -- arg3 - arg4 arg5

v The send_receive command line for machine voyager becomes:
send_receive arg1 arg2 arg3 -arg4 arg5

v The compute_pi command line for machine enterprise becomes:
compute_pi arg3 -arg4 arg5

64 Platform MPI: User's Guide



When you use the -- extra_args_for_appfile option, it must be specified at the end of
the mpirun command line.

Setting remote environment variables

To set environment variables on remote hosts use the -e option in the appfile. For
example, to set the variable MPI_FLAGS:

-h remote_host -e MPI_FLAGS=val [-np #] program [args]

Assigning ranks and improving communication

The ranks of the processes in MPI_COMM_WORLD are assigned and sequentially
ordered according to the order the programs appear in the appfile.

For example, if your appfile contains
-h voyager -np 10 send_receive
-h enterprise -np 8 compute_pi

Platform MPI assigns ranks 0 through 9 to the 10 processes running send_receive
and ranks 10 through 17 to the 8 processes running compute_pi.

You can use this sequential ordering of process ranks to your advantage when you
optimize for performance on multihost systems. You can split process groups
according to communication patterns to reduce or remove interhost communication
hot spots.

For example, if you have the following:
v A multihost run of four processes
v Two processes per host on two hosts
v Higher communication traffic between ranks 0: 2 and 1: 3

You could use an appfile that contains the following:
-h hosta -np 2 program1
-h hostb -np 2 program2

However, this places processes 0 and 1 on host a and processes 2 and 3 on host b,
resulting in interhost communication between the ranks identified as having slow
communication.

Understanding Platform MPI 65



A more optimal appfile for this example would be:
-h hosta -np 1 program1
-h hostb -np 1 program2
-h hosta -np 1 program1
-h hostb -np 1 program2

This places ranks 0 and 2 on host a and ranks 1 and 3 on host b. This placement
allows intrahost communication between ranks that are identified as
communication hot spots. Intrahost communication yields better performance than
interhost communication.

Multipurpose daemon process:
Platform MPI incorporates a multipurpose daemon process that provides start-up,
communication, and termination services. The daemon operation is transparent.
Platform MPI sets up one daemon per host (or appfile entry) for communication.

Generating multihost instrumentation profiles:

66 Platform MPI: User's Guide



When you enable instrumentation for multihost runs, and invoke mpirun on a host
where at least one MPI process is running, or on a host remote from MPI
processes, Platform MPI writes the instrumentation output file (prefix.instr) to the
working directory on the host that is running rank 0 (when instrumentation for
multihost runs is enabled). When using -ha, the output file is located on the host
that is running the lowest existing rank number at the time the instrumentation
data is gathered during MPI_FINALIZE()

mpiexec
The MPI-2 standard defines mpiexec as a simple method to start MPI applications.
It supports fewer features than mpirun, but it is portable. mpiexec syntax has three
formats:
v mpiexec offers arguments similar to a MPI_Comm_spawn call, with arguments as

shown in the following form:
mpiexec [-n maxprocs] [-soft ranges] [-host host] [-arch arch]
[-wdir dir] [-path dirs] [-file file] command-args

For example:
% $MPI_ROOT/bin/mpiexec -n 8 ./myprog.x 1 2 3

creates an 8 rank MPI job on the local host consisting of 8 copies of the program
myprog.x, each with the command-line arguments 1, 2, and 3.

v It also allows arguments like a MPI_Comm_spawn_multiple call, with a
colon-separated list of arguments, where each component is like the form above.
For example:
% $MPI_ROOT/bin/mpiexec -n 4 ./myprog.x : -host host2 -n 4
/path/to/myprog.x

creates a MPI job with 4 ranks on the local host and 4 on host 2.
v Finally, the third form allows the user to specify a file containing lines of data

like the arguments in the first form.
mpiexec [-configfile file]

For example:
% $MPI_ROOT/bin/mpiexec -configfile cfile

gives the same results as in the second example, but using the -configfile
option (assuming the file cfile contains -n 4 ./myprog.x -host host2 -n 4 -wdir
/some/path ./myprog.x)

where mpiexec options are:

-n maxprocs

Creates maxprocs MPI ranks on the specified host.

-soft range-list

Ignored in Platform MPI.

-host host

Specifies the host on which to start the ranks.

-arch arch

Ignored in Platform MPI.

-wdir dir

Specifies the working directory for the created ranks.

-path dirs

Understanding Platform MPI 67



Specifies the PATH environment variable for the created ranks.

-file file

Ignored in Platform MPI.

This last option is used separately from the options above.

-configfile file

Specify a file of lines containing the above options.

mpiexec does not support prun or srun start-up.

mpijob
mpijob lists the Platform MPI jobs running on the system. mpijob can only be used
for jobs started in appfile mode. Invoke mpijob on the same host as you initiated
mpirun. The mpijob syntax is:

mpijob [-help] [-a] [-u] [-j id] [id id ...]]

where

-help

Prints usage information for the utility.

-a

Lists jobs for all users.

-u

Sorts jobs by user name.

-j id

Provides process status for the specified job ID. You can list a number of job
IDs in a space-separated list.

When you invoke mpijob, it reports the following information for each job:

JOB

Platform MPI job identifier.

USER

User name of the owner.

NPROCS

Number of processes.

PROGNAME

Program names used in the Platform MPI application.

By default, your jobs are listed by job ID in increasing order. However, you can
specify the -a and -u options to change the default behavior.

An mpijob output using the -a and -u options is shown below, listing jobs for all
users and sorting them by user name.

68 Platform MPI: User's Guide



JOB USER NPROCS PROGNAME
22623 charlie 12 /home/watts
22573 keith 14 /home/richards
22617 mick 100 /home/jagger
22677 ron 4 /home/wood

When you specify the -j option, mpijob reports the following for each job:

RANK

Rank for each process in the job.

HOST

Host where the job is running.

PID

Process identifier for each process in the job.

LIVE

Whether the process is running (an x is used) or has been terminated.

PROGNAME

Program names used in the Platform MPI application.

mpijob does not support prun or srun start-up.

mpijob is not available on Platform MPI V1.0 for Windows.

mpiclean
mpiclean kills processes in Platform MPI applications started in appfile mode.
Invoke mpiclean on the host where you initiated mpirun.The MPI library checks
for abnormal termination of processes while your application is running. In some
cases, application bugs can cause processes to deadlock and linger in the system.
When this occurs, you can use mpijob to identify hung jobs and mpiclean to kill all
processes in the hung application.

mpiclean syntax has two forms:
1. mpiclean [-help] [-v] -j id [id id ....]

2. mpiclean [-help] [-v] -m

where

-help

Prints usage information for the utility.

-v

Turns on verbose mode.

-m

Cleans up shared-memory segments.

-j id

Kills the processes of job number ID. You can specify multiple job IDs in a
space-separated list. Obtain the job ID using the -j option when you invoke
mpirun.

You can only kill jobs that are your own.

Understanding Platform MPI 69



The second syntax is used when an application aborts during MPI_Init, and the
termination of processes does not destroy the allocated shared-memory segments.

mpiclean does not support prun or srun start-up.

mpiclean is not available on Platform MPI V1.0 for Windows.

Interconnect support
Platform MPI supports a variety of high-speed interconnects. Platform MPI
attempts to identify and use the fastest available high-speed interconnect by
default.

The search order for the interconnect is determined by the environment variable
MPI_IC_ORDER (which is a colon-separated list of interconnect names), and by
command-line options which take higher precedence.

Table 15. Interconnect command-line options

Command-Line Option Protocol Specified OS

-ibv / -IBV Linux

-udapl / -UDAPL uDAPL: InfiniBand and some others Linux

-psm / -PSM PSM: QLogic InfiniBand Linux

-mx / -MX MX: Myrinet v Linux

v Windows

-gm / -GM GM: Myrinet Linux

-ibal / -IBAL IBAL: Windows IB Access Layer Windows

-TCP TCP/IP All

The interconnect names used in MPI_IC_ORDER are like the command-line
options above, but without the dash. On Linux, the default value of
MPI_IC_ORDER is

psm:ibv:udapl:mx:gm:tcp

If command-line options from the above table are used, the effect is that the
specified setting is implicitly prepended to the MPI_IC_ORDER list, taking higher
precedence in the search.

The availability of an interconnect is determined based on whether the relevant
libraries can use dlopen / shl_load, and on whether a recognized module is
loaded in Linux. If either condition is not met, the interconnect is determined to be
unavailable.

Interconnects specified in the command line or in the MPI_IC_ORDER variable can
be lower case or upper case. Lower case means the interconnect is used if
available. Upper case options are handled slightly differently between Linux and
Windows. On Linux, the upper case option instructs Platform MPI to abort if the
specified interconnect is determined to be unavailable by the interconnect detection
process. On Windows, the upper case option instructs Platform MPI to ignore the
results of interconnect detection and simply try to run using the specified
interconnect irrespective of whether it appears to be available or not.

70 Platform MPI: User's Guide



On Linux, the names and locations of the libraries to be opened, and the names of
the recognized interconnect module names are specified by a collection of
environment variables that are in $MPI_ROOT/etc/pmpi.conf.

The pmpi.conf file can be used for any environment variables, but arguably its
most important use is to consolidate environment variables related to interconnect
selection.

The default value of MPI_IC_ORDER is specified there, along with a collection of
variables of the form:

MPI_ICLIB_XXX__YYY

MPI_ICMOD_XXX__YYY

where XXX is one of the interconnects (IBV, UDAPL, etc.) and YYY is an arbitrary
suffix. The MPI_ICLIB_* variables specify names of libraries to be called by dlopen.
The MPI_ICMOD_* variables specify regular expressions for names of modules to
search for.

An example is the following two pairs of variables for IBV:

MPI_ICLIB_IBV__IBV_MAIN = libibverbs.so

MPI_ICMOD_IBV__IBV_MAIN="^ib_core "

and

MPI_ICLIB_IBV__IBV_MAIN2 = libibverbs.so.1

MPI_ICMOD_IBV__IBV_MAIN2="^ib_core

The suffixes IBV_MAIN and IBV_MAIN2 are arbitrary and represent two attempts
that are made when determining if the IBV interconnect is available.

The list of suffixes is in the MPI_IC_SUFFIXES variable, which is also set in the
pcmpi.conf file.

So, when Platform MPI is determining the availability of the PSM interconnect, it
first looks at:

MPI_ICLIB_IBV__IBV_MAIN

MPI_ICMOD_IBV__IBV_MAIN

for the library to use dlopen and the module name to look for. Then, if that fails, it
continues on to the next pair:

MPI_ICLIB_IBV__IBV_MAIN2

MPI_ICMOD_IBV__IBV_MAIN2

which, in this case, includes a specific version of the IBV library.

Understanding Platform MPI 71



The MPI_ICMOD_* variables allow relatively complex values to specify the
module names to be considered as evidence that the specified interconnect is
available. Consider the example:

MPI_ICMOD_UDAPL__UDAPL_MAIN="^mod_vapi " || "^ccil " || \

"^udapl_module " || "^mod_vip " || "^ib_core "

This means any of those three names will be accepted as evidence that UDAPL is
available. Each of those strings is searched for individually in the output from
/sbin/lsmod. The carrot in the search pattern is used to signify the beginning of a
line, but the rest of regular expression syntax is not supported.

In many cases, if a system has a high-speed interconnect that is not found by
Platform MPI due to changes in library names and locations or module names, the
problem can be fixed by simple edits to the pcmpi.conf file. Contacting Platform
MPI Support for assistance is encouraged.

“Protocol-specific options and information”
“Interconnect selection examples” on page 74

Protocol-specific options and information
This section briefly describes the available interconnects and illustrates some of the
more frequently used interconnects options.

TCP/IP

TCP/IP is supported on many types of cards. Machines often have more than one
IP address, and a user can specify the interface to be used to get the best
performance.

Platform MPI does not inherently know which IP address corresponds to the
fastest available interconnect card. By default IP addresses are selected based on
the list returned by gethostbyname(). The mpirun option -netaddr can be used to
gain more explicit control over which interface is used.

IBAL

IBAL is only supported on Windows. Lazy deregistration is not supported with
IBAL.

IBV:
Platform MPI supports OpenFabrics Enterprise Distribution (OFED) through V1.5.
Platform MPI can use either the verbs 1.0 or 1.1 interface.

To use OFED on Linux, the memory size for locking must be specified (see below).
It is controlled by the /etc/security/limits.conf file for Red Hat and the
/etc/syscntl.conf file for SuSE.

* soft memlock 4194303

* hard memlock 4194304

The example above uses the maximum locked-in-memory address space in KB
units. The recommendation is to set the value to half of the physical memory on

72 Platform MPI: User's Guide



the machine. Platform MPI tries to pin up to 20% of the machine’s memory (see
MPI_PHYSICAL_MEMORY and MPI_PIN_PERCENTAGE) and fails if it is unable to pin the
desired amount of memory.

Machines can have multiple InfiniBand cards. By default each Platform MPI rank
selects one card for its communication and the ranks cycle through the available
cards on the system, so the first rank uses the first card, the second rank uses the
second card, etc.

The environment variable MPI_IB_CARD_ORDER can be used to control which
card the ranks select. Or, for increased potential bandwidth and greater traffic
balance between cards, each rank can be instructed to use multiple cards by using
the variable MPI_IB_MULTIRAIL.

Lazy deregistration is a performance enhancement used by Platform MPI on
several high speed interconnects (such as InfiniBand and Myrinet) on Linux. This
option is turned on by default and results in Platform MPI intercepting mmap,
munmap, mremap, and madvise to gain visibility into memory deallocation as well as
instructing malloc not to perform a negative sbrk() via mallopt() options. These
are not known to be intrusive to applications.

Use the following environment variable assignments to disable this behavior:

MPI_USE_MMAP_PATCHING=0

MPI_USE_MALLOPT_SBRK_PROTECTION=0

If either of these two environment variables are used, turn off lazy deregistration
by using the -ndd option.

InfiniBand card failover

When InfiniBand has multiple paths or connections to the same node, Platform
MPI supports InfiniBand card failover. This functionality is always enabled. An
InfiniBand connection is setup between every card-pair. During normal operation,
short messages are alternated among the connections in round-robin manner. Long
messages are striped over all the connections. When one of the connections is
broken, a warning is issued, but Platform MPI continues to use the rest of the
healthy connections to transfer messages. If all the connections are broken,
Platform MPI issues an error message.

InfiniBand port failover

A multi-port InfiniBand channel adapter can use automatic path migration (APM)
to provide network high availability. APM is defined by the InfiniBand
Architecture Specification, and enables Platform MPI to recover from network
failures by specifying and using the alternate paths in the network. The InfiniBand
subnet manager defines one of the server's links as primary and one as
redundant/alternate. When the primary link fails, the channel adapter
automatically redirects traffic to the redundant path when a link failure is detected.
This support is provided by the InfiniBand driver available in OFED 1.2 and later
releases. Redirection and reissued communications are performed transparently to
applications running on the cluster.

The user has to explicitly enable APM by setting the -ha:net option, as in the
following example:

Understanding Platform MPI 73



/opt/platform_mpi/bin/mpirun -np 4 -prot -ha:net
-hostlist nodea,nodeb,nodec,noded /my/dir/hello_world

When the -ha:net environment variable is set, Platform MPI identifies and
specifies the primary and the alternate paths (if available) when it sets up the
communication channels between the ranks. It also requests the InfiniBand driver
to load the alternate path for a potential path migration if a network failure occurs.
When a network failure occurs, the InfiniBand driver automatically transitions to
the alternate path, notifies Platform MPI of the path migration, and continues the
network communication on the alternate path. At this point, Platform MPI also
reloads the original primary path as the new alternate path. If this new alternate
path is restored, this will allow for the InfiniBand driver to automatically migrate
to it in case of future failures on the new primary path. However, if the new
alternate path is not restored, or if alternate paths are unavailable on the same
card, future failures will force Platform MPI to try to failover to alternate cards if
available. All of these operations are performed transparent to the application that
uses Platform MPI.

If the environment has multiple cards, with multiple ports per card, and has APM
enabled, Platform MPI gives InfinBand port failover priority over card failover.

InfiniBand with MPI_Comm_connect() and MPI_Comm_accept()

Platform MPI supports MPI_Comm_connect() and MPI_Comm_accept() over
InfiniBand processes using the IBV protocol. Both sides must have InfiniBand
support enabled and use the same InfiniBand parameter settings.

MPI_Comm_connect() and MPI_Comm_accept() need a port name, which is the IP and
port at the root process of the accept side. First, a TCP connection is established
between the root process of both sides. Next, TCP connections are setup among all
the processes. Finally, IBV InfiniBand connections are established among all
process-pairs and the TCP connections are closed.

uDAPL:
The -ndd option described above for IBV applies to uDAPL.

GM:
The -ndd option described above for IBV applies to GM.

Interconnect selection examples
The default MPI_IC_ORDER generally results in the fastest available protocol being
used. The following example uses the default ordering and supplies a -netaddr
setting, in case TCP/IP is the only interconnect available.

% echo $MPI_IC_ORDER

psm:ibv:udapl:mx:gm:tcp

% export MPIRUN_SYSTEM_OPTIONS="-netaddr 192.168.1.0/24"

% export MPIRUN_OPTIONS="-prot"

% $MPI_ROOT/bin/mpirun -hostlist hostA:8,hostB:8 ./a.out

74 Platform MPI: User's Guide



The command line for the above appears to mpirun as $MPI_ROOT/bin/mpirun
-netaddr 192.168.1.0/24 -prot -srun -n4 ./a.out and the interconnect decision
looks for PSM, then IBV, then uDAPL, and so on down to TCP/IP. If TCP/IP is
chosen, it uses the 192.168.1.* subnet.

If TCP/IP is needed on a machine where other protocols are available, the -TCP
option can be used.

This example is like the previous, except TCP is searched for and found first. (TCP
should always be available.) So TCP/IP is used instead of PSM, IBV, and so on.

% $MPI_ROOT/bin/mpirun -TCP -srun -n4 ./a.out

The following example output shows three runs on an Infiniband system, first
using IBV as the protocol, then TCP/IP over GigE, then using TCP/IP over the
Infiniband card.
v This runs using IBV

$MPI_ROOT/bin/mpirun -prot -hostlist hostA:2,hostB:2,hostC:2 ./hw.x
Host 0 -- ip 172.25.239.151 -- ranks 0 - 1
Host 1 -- ip 172.25.239.152 -- ranks 2 - 3
Host 2 -- ip 172.25.239.153 -- ranks 4 - 5

host | 0 1 2
======|================

0 : SHM IBV IBV
1 : IBV SHM IBV
2 : IBV IBV SHM

Prot - All Intra-node communication is: SHM
Prot - All Inter-node communication is: IBV

Hello world! I’m 0 of 6 on hostA
Hello world! I’m 1 of 6 on hostA
Hello world! I’m 4 of 6 on hostC
Hello world! I’m 2 of 6 on hostB
Hello world! I’m 5 of 6 on hostC
Hello world! I’m 3 of 6 on hostB

v This runs using TCP/IP over the GigE network (172.25.x.x here)
$MPI_ROOT/bin/mpirun -prot -TCP -hostlist hostA:2,hostB:2,hostC:2 ~/hw.x
Host 0 -- ip 172.25.239.151 -- ranks 0 - 1
Host 1 -- ip 172.25.239.152 -- ranks 2 - 3
Host 2 -- ip 172.25.239.153 -- ranks 4 - 5

host | 0 1 2
======|================

0 : SHM TCP TCP
1 : TCP SHM TCP
2 : TCP TCP SHM

Prot - All Intra-node communication is: SHM
Prot - All Inter-node communication is: TCP

Hello world! I’m 4 of 6 on hostC
Hello world! I’m 0 of 6 on hostA
Hello world! I’m 1 of 6 on hostA
Hello world! I’m 2 of 6 on hostB
Hello world! I’m 5 of 6 on hostC
Hello world! I’m 3 of 6 on hostB

v This uses TCP/IP over the Infiniband cards by using -netaddr to specify the
desired subnet

Understanding Platform MPI 75



Note:

If the launching host where mpirun resides does not have access to the same
subnet that the worker nodes will be using, you can use the
-netaddr rank:10.2.1.0 option. That will still cause the traffic between ranks to
use 10.2.1.* but will leave the traffic between the ranks and mpirun over the
default network (very little traffic would goes over the network to mpirun,
mainly traffic such as the ranks' standard output).
$MPI_ROOT/bin/mpirun -prot -TCP -netaddr 10.2.1.0 -hostlist hostA:2,hostB:2,hostC:2 ~/hw.x
Host 0 -- ip 10.2.1.11 -- ranks 0 - 1
Host 1 -- ip 10.2.1.12 -- ranks 2 - 3
Host 2 -- ip 10.2.1.13 -- ranks 4 - 5

host | 0 1 2
======|================

0 : SHM TCP TCP
1 : TCP SHM TCP
2 : TCP TCP SHM

Prot - All Intra-node communication is: SHM
Prot - All Inter-node communication is: TCP

Hello world! I’m 0 of 6 on hostA
Hello world! I’m 5 of 6 on hostC
Hello world! I’m 1 of 6 on hostA
Hello world! I’m 3 of 6 on hostB
Hello world! I’m 4 of 6 on hostC
Hello world! I’m 2 of 6 on hostB

v Available TCP/IP networks can be seen using the /sbin/ifconfig command.

Running applications on Windows
“Building and running multihost on Windows HPCS clusters”
“Run multiple-program multiple-data (MPMD) applications” on page 79
“Building an MPI application with Visual Studio and using the property pages”
on page 80
“Building and running on a Windows 2008 cluster using appfiles” on page 80
“Running with an appfile using HPCS” on page 81
“Building and running on a Windows 2008 cluster using -hostlist” on page 81
“Running with a hostfile using HPCS” on page 82
“Running with a hostlist using HPCS” on page 82
“Performing multi-HPC runs with the same resources” on page 83
“Remote launch service for Windows” on page 84
“Run-time utility commands” on page 85

Building and running multihost on Windows HPCS clusters
The following is an example of basic compilation and run steps to execute
hello_world.c on a cluster with 16-way parallelism. To build and run
hello_world.c on a HPCS cluster:
1. Change to a writable directory on a mapped drive. Share the mapped drive to

a folder for the cluster.
2. Open a Visual Studio command window. (This example uses a 64-bit version,

so a Visual Studio 64-bit command window is opened.)
3. Compile the hello_world executable file:

X:\demo> set MPI_CC=cl

76 Platform MPI: User's Guide



X:\demo> "%MPI_ROOT%\bin\mpicc" -mpi64 "%MPI_ROOT%\help\hello_world.c"

Microsoft® C/C++ Optimizing Compiler Version 14.00.50727.42 for 64-bit
Copyright© Microsoft Corporation. All rights reserved.

hello_world.c
Microsoft® Incremental Linker Version 8.00.50727.42
Copyright© Microsoft Corporation. All rights reserved.

/out:hello_world.exe
"/libpath:C:\Program Files (x86)\Platform Computing\Platform-MPI\lib"
/subsystem:console
libpcmpi64.lib
libmpio64.lib
hello_world.obj

4. Create a new job requesting the number of CPUs to use. Resources are not yet
allocated, but the job is given a JOBID number which is printed to stdout:
C:\> job new /numprocessors:16 /exclusive:true

Job queued, ID: 4288

5. Add a single-CPU mpirun task to the newly created job. The mpirun job creates
more tasks filling the rest of the resources with the compute ranks, resulting in
a total of 16 compute ranks for this example:
C:\> job add 4288 /numprocessors:1 /exclusive:true /stdout:\\node\path\
to\a\shared\file.out ^

/stderr:\\node\path\to\a\shared\file.err "%MPI_ROOT%\bin\mpirun" ^

-hpc \\node\path\to\hello_world.exe

6. Submit the job.
The machine resources are allocated and the job is run.
C:\> job submit /id:4288

Running applications using IBM LSF with HPC scheduling
Use mpirun with the WLM options to run Platform MPI applications using
IBM LSF with HPC scheduling. You can use one of the following methods to start
your application:
v Use -wlmpriority to assign a priority to a job

To have Platform MPI assign a priority to the job, create the IBM LSF job and
include the -wlmpriority flag with the mpirun command:
-wlmpriority lowest | belowNormal | normal | aboveNormal | Highest

For example:
%MPI_ROOT%"\bin\mpirun -hpc -wlmpriority Highest -hostlist
hostC:2,hostD:2 x64.exe

Enter the password for ’DOMAIN\user’ to connect to ’cluster1’:
Remember this password? (Y/N)y
mpirun: PMPI Job 2218 submitted to cluster cluster1.

When requesting a host from IBM LSF, be sure that the path to your executable
file is accessible to all specified machines.
The output of this particular job is in the app_name-jobID.out file. For example:
type x64-2218.out

Hello world! I’m 2 of 4 on hostD
Hello world! I’m 0 of 4 on hostC
Hello world! I’m 1 of 4 on hostC
Hello world! I’m 3 of 4 on hostD

Similarly, the error output of this job is in the app_name-jobID.err file.
v Use -wlmwait to wait until the job is finished

Understanding Platform MPI 77



To invoke Platform MPI using IBM LSF, and have Platform MPI wait until the
job is finished before returning to the command prompt, create the IBM LSF job
and include the -wlmwait flag with the mpirun command. This implies the bsub
-I command for IBM LSF.
For example:
"%MPI_ROOT%"\bin\mpirun -hpc -wlmwait -hostlist hostC:2,hostD:2 x64.exe

mpirun: PMPI Job 2221 submitted to cluster cluster1.
mpirun: Waiting for PMPI Job 2221 to finish...
mpirun: PMPI Job 2221 finished.

When requesting a host from IBM LSF, be sure that the path to your executable
file is accessible to all specified machines.
The output of this particular job is in the app_name-jobID.out file. For example:
type x64-2221.out

Hello world! I’m 2 of 4 on hostD
Hello world! I’m 3 of 4 on hostD
Hello world! I’m 0 of 4 on hostC
Hello world! I’m 1 of 4 on hostC

Similarly, the error output of this job is in the app_name-jobID.err file.
v Use -wlmsave to configure a job without submitting it

To invoke Platform MPI using IBM LSF, and have Platform MPI configure the
scheduled job to the scheduler without submitting the job, create the IBM LSF
job and include the -wlmsave flag with the mpirun command. Submit the job at a
later time by using the bresume command for IBM LSF.
For example:
"%MPI_ROOT%"\bin\mpirun -hpc -wlmsave -hostlist hostC:2,hostD:2 x64.exe

mpirun: PMPI Job 2222 submitted to cluster cluster1.
mpirun: INFO(-wlmsave): Job has been scheduled but not submitted.
mpirun: Please submit the job for execution.

Use the Job Manager GUI to submit this job.
When requesting a host from IBM LSF, be sure that the path to your executable
file is accessible to all specified machines.
The output of this particular job is in the app_name-jobID.out file. For example:
type x64-2222.out

Hello world! I’m 2 of 4 on hostD
Hello world! I’m 3 of 4 on hostD
Hello world! I’m 0 of 4 on hostC
Hello world! I’m 1 of 4 on hostC

Similarly, the error output of this job is in the app_name-jobID.err file.
v Use -wlmout to specify a custom stdout file for the job

To invoke Platform MPI using IBM LSF, and have Platform MPI use a specified
stdout file for the job, create the IBM LSF job and include the -wlmout flag with
the mpirun command.
For example:
"%MPI_ROOT%"\bin\mpirun -hpc -wlmout myjob.out -hostlist hostC:2,hostD:2
x64.exe

mpirun: PMPI Job 2223 submitted to cluster hb07b01.

When requesting a host from IBM LSF, be sure that the path to your executable
file is accessible to all specified machines.
The output of this particular job is in specified file, not the app_name-jobID.out
file. For example:
type x64-1252.out

78 Platform MPI: User's Guide



The system cannot find the file specified.

type myjob.out

Hello world! I’m 2 of 4 on hostD
Hello world! I’m 0 of 4 on hostC
Hello world! I’m 1 of 4 on hostC
Hello world! I’m 3 of 4 on hostD

The error output of this job is in the x64-jobID.err file. For example:

Run multiple-program multiple-data (MPMD) applications
To run Multiple-Program Multiple-Data (MPMD) applications or other more
complex configurations that require further control over the application layout or
environment, dynamically create an appfile within the job using the utility
"%MPI_ROOT%\bin\mpi_nodes.exe" as in the following example. The environment
variable %CCP_NODES% cannot be used for this purpose because it only contains
the single CPU resource used for the task that executes the mpirun command. To
create the executable, perform Steps 1 through 3 from the previous section. Then
continue with:
1. Create a new job.

C:\> job new /numprocessors:16 /exclusive:true

Job queued, ID: 4288

2. Submit a script. Verify MPI_ROOT is set in the environment.
C:\> job add 4288 /numprocessors:1 /env:MPI_ROOT="%MPI_ROOT%"
/exclusive:true ^

/stdout:\\node\path\to\a\shared\file.out /stderr:\\node\path\to\a\shared\
file.err ^

path\submission_script.vbs

Where submission_script.vbs contains code such as:
Option Explicit

Dim sh, oJob, JobNewOut, appfile, Rsrc, I, fs
Set sh = WScript.CreateObject(“WScript.Shell”)
Set fs = CreateObject(“Scripting.FileSystemObject”)
Set oJob = sh.exec(“%MPI_ROOT%\bin\mpi_nodes.exe”)
JobNewOut = oJob.StdOut.Readall

Set appfile = fs.CreateTextFile(“<path>\appfile”, True)

Rsrc = Split(JobNewOut, “ “)

For I = LBound(Rsrc) + 1 to UBound(Rsrc) Step 2
appfile.WriteLine(“-h” + Rsrc(I) + “-np” + Rsrc(I+1) + _

“ ““<path>\foo.exe”” “)
Next

appfile.Close

Set oJob = sh.exec(“““%MPI_ROOT%\bin\mpirun.exe”” -TCP -f _
““<path>\appfile”” “)

wscript.Echo oJob.StdOut.Readall

3. Submit the job as in the previous example:C:\> job submit /id:4288

The above example using submission_script.vbs is only an example. Other
scripting languages can be used to convert the output ofmpi_nodes.exe into an
appropriate appfile.

Understanding Platform MPI 79



Building an MPI application with Visual Studio and using the
property pages

To build an MPI application in C or C++ with Visual Studio 2005 or later, use the
property pages provided by Platform MPI to help link applications.

Two pages are included with Platform MPI, and are located at the installation
location in %MPI_ROOT%\help\PCMPI.vsprops and %MPI_ROOT%\help\PCMPI64.vsprops.
1. Go to VS Project > View > Property Manager and expand the project.

This displays the different configurations and platforms set up for builds.
Include the appropriate property page (PCMPI.vsprops for 32-bit applications,
PCMPI64.vsprops for 64-bit applications) in Configuration > Platform.

2. Select this page by either double-clicking the page or by right-clicking on the
page and selecting Properties. Go to the User Macros section. Set MPI_ROOT to
the desired location (for example, the installation location of Platform MPI).
This should be set to the default installation location:
%ProgramFiles(x86)%\Platform Computing\Platform-MPI.

Note:

This is the default location on 64-bit machines. The location for 32-bit machines
is %ProgramFiles%\Platform Computing\Platform-MPI

3. The MPI application can now be built with Platform MPI.
The property page sets the following fields automatically, but can also be set
manually if the property page provided is not used:
a. C/C++ –— Additional Include Directories

Set to "%MPI_ROOT%\include\[32|64]"
b. Linker — Additional Dependencies

Set to libpcmpi32.lib or libpcmpi64.lib depending on the application.
c. Additional Library Directories

Set to "%MPI_ROOT%\lib"

Building and running on a Windows 2008 cluster using
appfiles

The example teaches you the basic compilation and run steps to execute
hello_world.c on a cluster with 4-way parallelism. To build and run
hello_world.c on a cluster using an appfile, Perform Steps 1 and 2 from Building
and Running on a Single Host.

Note:

Specify the bitness using -mpi64 or -mpi32 for mpicc to link in the correct libraries.
Verify you are in the correct bitness compiler window. Using -mpi64 in a Visual
Studio 32-bit command window does not work.
1. Create a file "appfile" for running on nodes n01 and n02 as:

C:\> -h n01 -np 2 \\node01\share\path\to\hello_world.exe ^

-h n02 -np 2 \\node01\share\path\to\hello_world.exe

2. For the first run of the hello_world executable, use -cache to cache your
password:
C:\> "%MPI_ROOT%\bin\mpirun" -cache -f appfile
Password for MPI runs:

80 Platform MPI: User's Guide



When typing, the password is not echoed to the screen.
The Platform MPI Remote Launch service must be registered and started on the
remote nodes. mpirun will authenticated with the service and create processes
using your encrypted password to obtain network resources.
If you do not provide a password, the password is incorrect, or you use
-nopass, remote processes are created but do not have access to network shares.
In the following example, the hello_world.exe file cannot be read.

3. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
non-deterministic order. The following is an example of the output:
Hello world! I’m 1 of 4 on n01
Hello world! I’m 3 of 4 on n02
Hello world! I’m 0 of 4 on n01
Hello world! I’m 2 of 4 on n02

Running with an appfile using HPCS
Using an appfile with HPCS has been greatly simplified in this release of Platform
MPI. The previous method of writing a submission script that uses mpi_nodes.exe
to dynamically generate an appfile based on the HPCS allocation is still supported.
However, the preferred method is to allow mpirun.exe to determine which nodes
are required for the job (by reading the user-supplied appfile), request those nodes
from the HPCS scheduler, then submit the job to HPCS when the requested nodes
have been allocated. The user writes a brief appfile calling out the exact nodes and
rank counts needed for the job. For example:

Perform Steps 1 and 2 from Building and Running on a Single Host.
1. Create an appfile for running on nodes n01 and n02 as:

-h n01 -np 2 hello_world.exe
-h n02 -np 2 hello_world.exe

2. Submit the job to HPCS with the following command:
X:\demo> mpirun -hpc -f appfile

3. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
non-deterministic order. The following is an example of the output.
Hello world! I’m 2 of 4 on n02
Hello world! I’m 1 of 4 on n01
Hello world! I’m 0 of 4 on n01
Hello world! I’m 3 of 4 on n02

Building and running on a Windows 2008 cluster using
-hostlist

Perform Steps 1 and 2 from the previous section Building and Running on a Single
Host.
1. Run the -cache password if this is your first run of Platform MPI on the node

and in this user account.
X:\demo> "%MPI_ROOT%\bin\mpirun" -cache -hostlist n01:2,n02:2 hello_world.exe
Password for MPI runs:

Use the -hostlist flag to indicate which hosts to run:
This example uses the -hostlist flag to indicate which nodes to run on. Also
note that the MPI_WORKDIR is set to your current directory. If this is not a

Understanding Platform MPI 81



network mapped drive, Platform MPI is unable to convert this to a Universal
Naming Convention (UNC) path, and you must specify the full UNC path for
hello_world.exe.

2. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
non-deterministic order. The following is an example of the output:
Hello world! I’m 1 of 4 on n01
Hello world! I’m 3 of 4 on n02
Hello world! I’m 0 of 4 on n01
Hello world! I’m 2 of 4 on n02

3. Any future Platform MPI runs can now use the cached password.
Any additional runs of ANY Platform MPI application from the same node and
same user account will not require a password:
X:\demo> "%MPI_ROOT%\bin\mpirun" -hostlist n01:2,n02:2 hello_world.exe
Hello world! I’m 1 of 4 on n01
Hello world! I’m 3 of 4 on n02
Hello world! I’m 0 of 4 on n01
Hello world! I’m 2 of 4 on n02

Running with a hostfile using HPCS
1. Perform Steps 1 and 2 from Building and Running on a Single Host.
2. Change to a writable directory on a mapped drive. The mapped drive must be

to a shared folder for the cluster.
3. Create a file "hostfile" containing the list of nodes on which to run:

n01
n02
n03
n04

4. Submit the job to HPCS.
X:\demo> "%MPI_ROOT%\bin\mpirun" -hpc -hostfile hfname -np 8
hello_world.exe

Nodes are allocated in the order that they appear in the hostfile. Nodes are
scheduled cyclically, so if you have requested more ranks than there are nodes
in the hostfile, nodes are used multiple times.

5. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
non-deterministic order. The following is an example of the output:
Hello world! I’m 5 of 8 on n02
Hello world! I’m 0 of 8 on n01
Hello world! I’m 2 of 8 on n03
Hello world! I’m 6 of 8 on n03
Hello world! I’m 1 of 8 on n02
Hello world! I’m 3 of 8 on n04
Hello world! I’m 4 of 8 on n01
Hello world! I’m 7 of 8 on n04

Running with a hostlist using HPCS
Perform Steps 1 and 2 from Building and Running on a Single Host.
1. Change to a writable directory on a mapped drive. The mapped drive should

be to a shared folder for the cluster.
2. Submit the job to HPCS, including the list of nodes on the command line.

X:\demo> "%MPI_ROOT%\bin\mpirun" -hpc -hostlist n01,n02,n03,n04 -np 8
hello_world.exe

82 Platform MPI: User's Guide



Nodes are allocated in the order that they appear in the hostlist. Nodes are
scheduled cyclically, so if you have requested more ranks than there are nodes
in the hostlist, nodes are used multiple times.

3. Analyze hello_world output.
Platform MPI prints the output from running the hello_world executable in
non-deterministic order. The following is an example of the output:
Hello world! I’m 5 of 8 on n02
Hello world! I’m 0 of 8 on n01
Hello world! I’m 2 of 8 on n03
Hello world! I’m 6 of 8 on n03
Hello world! I’m 1 of 8 on n02
Hello world! I’m 3 of 8 on n04
Hello world! I’m 4 of 8 on n01
Hello world! I’m 7 of 8 on n04

Performing multi-HPC runs with the same resources
In some instances, such as when running performance benchmarks, it is necessary
to perform multiple application runs using the same set of HPC nodes. The
following example is one method of accomplishing this.
1. Compile the hello_world executable file.

a. Change to a writable directory, and copy hello_world.c from the help
directory:
C:\> copy "%MPI_ROOT%\help\hello_world.c" .

b. Compile the hello_world executable file.
In a proper compiler command window (for example, Visual Studio
command window), use mpicc to compile your program:
C:\> "%MPI_ROOT%\bin\mpicc" -mpi64 hello_world.c

Note:

Specify the bitness using -mpi64 or -mpi32 for mpicc to link in the correct
libraries. Verify you are in the correct 'bitness' compiler window. Using
-mpi64 in a Visual Studio 32-bit command window does not work.

2. Request a HPC allocation of sufficient size to run the required application(s).
Add the /rununtilcanceled option to have HPC maintain the allocation until it
is explicitly canceled.
> job new /numcores:8 /rununtilcanceled:true
Job queued, ID: 4288

3. Submit the job to HPC without adding tasks.
> job submit /id:4288
Job 4288 has been submitted.

4. Run the applications as a task in the allocation, optionally waiting for each to
finish before starting the following one.
> "%MPI_ROOT%\bin\mpirun" -hpc -hpcwait -jobid 4288 \\node\share\hello_world.exe
mpirun: Submitting job to hpc scheduler on this node
mpirun: PCMPI Job 4288 submitted to cluster mpiccp1
mpirun: Waiting for PCMPI Job 4288 to finish...
mpirun: PCMPI Job 4288 finished.

Note:

Platform MPI automatic job submittal converts the mapped drive to a UNC
path, which is necessary for the compute nodes to access files correctly. Because
this example uses HPCS commands for submitting the job, the user must

Understanding Platform MPI 83



explicitly indicate a UNC path for the MPI application (i.e., hello_world.exe)
or include the /workdir flag to set the shared directory as the working
directory.

5. Repeat Step 4 until all required runs are complete.
6. Explicitly cancel the job, freeing the allocated nodes.

> job cancel 4288

Remote launch service for Windows
Remote Launch service is available for Windows 2003/XP/Vista/2008/Windows 7
system

The Platform MPI Remote Launch service is located in "%MPI_ROOT%\sbin\
PCMPIWin32Service.exe". MPI_ROOT must be located on a local disk or the service
does not run properly.

To run the service manually, you must register and start the service. To register the
service manually, run the service executable with the -i option. To start the service
manually, run the service after it is installed with the -start option. The service
executable is located at "%MPI_ROOT%\sbin\PCMPIWin32Service.exe".

For example:
C:\> "%MPI_ROOT%\sbin\PCMPIWin32Service.exe" -i
Creating Event Log Key
’PCMPI’...Installing service ’Platform-MPI SMPID’...
OpenSCManager OK
CreateService Succeeded
Service installed.

C:\> "%MPI_ROOT%\sbin\PCMPIWin32Service.exe" -start
Service started...

The Platform MPI Remote Launch service runs continually as a Windows service,
listening on a port for Platform MPI requests from remote mpirun.exe jobs. This
port must be the same port on all machines, and is established when the service
starts. The default TCP port is 8636.

If this port is not available or to change the port, include a port number as a
parameter to -i. As an example, to install the service with port number 5004:

C:\> "%MPI_ROOT%\sbin\PCMPIWin32Service.exe" -i 5004

Or, you can stop the service, then set the port key, and start the service again. For
example, using port 5004:
C:\> "%MPI_ROOT%\sbin\PCMPIWin32Service.exe" -stop
Service stopped...
C:\> "%MPI_ROOT%\sbin\PCMPIWin32Service.exe" -setportkey 5004
Setting Default Port key...’PCMPI’...
Port Key set to 5004
C:\> "%MPI_ROOT%\sbin\PCMPIWin32Service.exe" -start
Service started...

For additional Platform MPI Remote Launch service options, use -help.

Usage: pcmpiwin32service.exe [cmd [pm]]

where cmd can be one of the following commands:

-? | -h | -help

84 Platform MPI: User's Guide



show command usage

-s | -status

show service status

-k | -removeeventkey

remove service event log key

-r | -removeportkey

remove default port key

-t | -setportkey <port>

remove default port key

-i | -install [<port>]

remove default port key

-start

start an installed service

-stop

stop an installed service

-restart

restart an installed service

Note:

All remote services must use the same port. If you are not using the default port,
make sure you select a port that is available on all remote nodes.

Run-time utility commands
Platform MPI provides a set of utility commands to supplement MPI library
routines.

“mpidiag tool for Windows 2003/XP and Platform MPI Remote Launch
Service”
“mpidiag tool for Windows 2008 and Platform MPI Remote Launch Service” on
page 88
“mpiexec” on page 89

mpidiag tool for Windows 2003/XP and Platform MPI Remote
Launch Service
Platform MPI for Windows 2003/XP includes the mpidiag diagnostic tool. It is
located in %MPI_ROOT%\bin\mpidaig.exe.

This tool is useful to diagnose remote service access without running mpirun. To
use the tool, run mpidiag with -s <remote-node> <options>, where options include:

-help

Show the options to mpidiag.

-s <remote-node>

Connect to and diagnose this node's remote service.

-at

Understanding Platform MPI 85



Authenticates with the remote service and returns the remote authenticated
user's name.

-st

Authenticates with remote service and returns service status.

-et <echo-string>

Authenticates with the remote service and performs a simple echo test,
returning the string.

-sys

Authenticates with the remote service and returns remote system information,
including node name, CPU count, and username.

-ps [username]

Authenticates with the remote service, and lists processes running on the
remote system. If a username is included, only that user's processes are listed.

-dir <path>

Authenticates with the remote service and lists the files for the given path.
This is a useful tool to determine if access to network shares are available to
the authenticated user.

-sdir <path>

Same as -dir, but lists a single file. No directory contents are listed. Only the
directory is listed if accessible.

-kill <pid>

Authenticates with remote service and terminates the remote process indicated
by the pid. The process is terminated as the authenticated user. If the user does
not have permission to terminate the indicated process, the process is not
terminated.

mpidiag authentication options are the same as mpirun authentication options.
These include: -pass, -cache, -clearcache, -iscached, -token/-tg, -package/-pk.
For detailed descriptions of these options, refer to these options in the mpirun
documentation.

The mpidiag tool can be very helpful in debugging issues with remote launch and
access to remote systems through the Platform MPI Remote Launch service. To use
the tool, you must always supply a 'server' with the -s option. Then you can use
various commands to test access to the remote service, and verify a limited
number of remote machine resources.

For example, to test if machine 'winbl16' Platform MPI remote launch service is
running, use the -at flag:
X:\Demo> "%MPI_ROOT%\bin\mpidiag" -s winbl16 -at
connect() failed: 10061
Cannot establish connection with server.
SendCmd(): send() sent a different number of bytes than expected: 10057

The machine cannot connect to the service on the remote machine. After checking
(and finding the service was not started), the service is restarted and the command
is run again:
X:\Demo> "%MPI_ROOT%\bin\mpidiag" -s winbl16 -at
Message received from Service: user1

86 Platform MPI: User's Guide



Now the service responds and authenticates correctly.

To verify what processes are running on a remote machine, use the -ps command:
X:\Demo> "%MPI_ROOT%\bin\mpidiag" -s winbl16 -ps
Process List:
ProcessName Username PID CPU Time Memory
rdpclip.exe user1 2952 0.046875 5488
explorer.exe user1 1468 1.640625 17532
reader_sl.exe user1 2856 0.078125 3912
cmd.exe user1 516 0.031250 2112
ccApp.exe user1 2912 0.187500 7580
mpid.exe user1 3048 0.125000 5828
Pallas.exe user1 604 0.421875 13308

CMD Finished successfully.

The processes by the current user 'user1' runs on 'winbl16'. Two of the processes
are MPI jobs: mpid.exe and Pallas.exe. If these are not supposed to be running,
use mpidiag to kill the remote process:
X:\Demo> "%MPI_ROOT%\bin\mpidiag" -s winbl16 -kill 604
CMD Finished successfully.
X:\Demo> "%MPI_ROOT%\bin\mpidiag" -s winbl16 -ps
Process List:
ProcessName Username PID CPU Time Memory
rdpclip.exe user1 2952 0.046875 5488
explorer.exe user1 1468 1.640625 17532
reader_sl.exe user1 2856 0.078125 3912
cmd.exe user1 516 0.031250 2112
ccApp.exe user1 2912 0.187500 7580
CMD Finished successfully.

Pallas.exe was killed, and Platform MPI cleaned up the remaining Platform MPI
processes.

Another useful command is a short 'system info' command, indicating the machine
name, system directories, CPU count and memory:
X:\Demo> "%MPI_ROOT%\bin\mpidiag" -s winbl16 -sys
SystemInfo:
Computer name : WINBL16
User name : user1
System Directory : C:\WINDOWS\system32
Windows Directory : C:\WINDOWS
CPUs : 2
TotalMemory : 2146869248
Small selection of Environment Variables: OS = Windows_NT

PATH = C:\Perl\bin\;C:\WINDOWS\system32;
C:\WINDOWS;C:\WINDOWS\System32\Wbem

HOMEPATH = %HOMEPATH%
TEMP = C:\WINDOWS\TEMP

CMD Finished successfully.

You can view directories accessible from the remote machine when authenticated
by the user:
X:\Demo> "%MPI_ROOT%\bin\mpidiag" -s winbl16 -dir \\mpiccp1\scratch\user1
Directory/File list:
Searching for path: \\mpiccp1\scratch\user1
Directory: \\mpiccp1\scratch\user1
..
BaseRel
Beta-PCMPI
BuildTests
DDR2-Testing

Understanding Platform MPI 87



dir.pl
exportedpath.reg
FileList.txt
h1.xml
HelloWorld-HP64-2960.1.err
HelloWorld-HP64-2960.1.out
HelloWorld-HP64-2961.1.err
HelloWorld-HP64-2961.1.out

mpidiag tool for Windows 2008 and Platform MPI Remote Launch
Service
Platform MPI for Windows 2008 includes the mpidiag diagnostic tool.

It is located in %MPI_ROOT%\bin\mpidaig.exe.

This tool is useful to diagnose remote service access without running mpirun. To
use the tool, run mpidiag with -s <remote-node> <options>, where options include:

-help

Show the options to mpidiag.

-s <remote-node>

Connect to and diagnose the remote service of this node.

-at

Authenticates with the remote service and returns the remote authenticated
user’s name.

-st

Authenticates with remote service and returns service status.

-et <echo-string>

Authenticates with the remote service and performs a simple echo test,
returning the string.

-sys

Authenticates with the remote service and returns remote system information,
including node name, CPU count, and username.

-ps [username]

Authenticates with the remote service and lists processes running on the
remote system. If a username is included, only that user’s processes are listed.

-dir <path>

Authenticates with the remote service and lists the files for the given path.
This is a useful tool to determine if access to network shares are available to
the authenticated user.

-sdir <path>

Same as -dir, but lists a single file. No directory contents are listed. Only the
directory is listed if accessible.

-kill <pid>

Authenticates with remote service and terminates the remote process indicated
by the pid. The process is terminated as the authenticated user. So, if the user
does not have permission to terminate the indicated process, the process will
not be terminated.

88 Platform MPI: User's Guide



Note:

mpidiag authentication options are the same as mpirun authentication options.
These include: -pass, -cache, -clearcache, -iscached, -token/-tg, -package/-pk.

mpiexec
The MPI-2 standard defines mpiexec as a simple method to start MPI applications.
It supports fewer features than mpirun, but it is portable. mpiexec syntax has three
formats:
v mpiexec offers arguments similar to a MPI_Comm_spawn call, with arguments as

shown in the following form:
mpiexec mpiexec-options command command-args

For example:
%MPI_ROOT%\bin\mpiexec /cores 8 myprog.x 1 2 3

creates an 8 rank MPI job on the local host consisting of 8 copies of the program
myprog.x, each with the command-line arguments 1, 2, and 3.

v It also allows arguments like a MPI_Comm_spawn_multiple call, with a
colon-separated list of arguments, where each component is like the form above.
For example:
%MPI_ROOT%\bin\mpiexec /cores 4 myprog.x : /host host2 /cores 4
\path\to\myprog.x

creates a MPI job with 4 ranks on the local host and 4 on host 2.
v Finally, the third form allows the user to specify a file containing lines of data

like the arguments in the first form.
mpiexec [/configfile file]

For example:
%MPI_ROOT%\bin\mpiexec /configfile cfile

gives the same results as in the second example, but using the /configfile
option (assuming the cfile file contains /cores 4 myprog.x /host host2
/cores 4 /wdir /some/path myprog.x)

The following mpiexec options are those whose contexts affect the whole command
line:

/cores number

Ranks-per-host to use if not specified elsewhere. This applies when processing
the /ghosts, /gmachinefile, /hosts, and /machinefile options.

/affinity

Enables Platform MPI’s -cpu_bind option.

/gpath path[;path1 ...]

Prepends file paths to the PATH environment variable.

/lines

Enables Platform MPI’s -stdio=p option.

/genv variable value or -genv variable value

Uses Platform MPI’s -e variable=value option.

/genvlist var1[,var2 ...]

This option is similar to /genv, but uses mpirun’s current environment for the
variable values.

Understanding Platform MPI 89



/gdir directory or -dir directory

Uses Platform MPI’s -e MPI_WORKDIR=directory option.

/gwdir directory or -wdir directory

Uses Platform MPI’s -e MPI_WORKDIR=directory option.

/ghost host_name

Each portion of the command line where a host (or hosts) are not explicitly
specified is run under the "default context". /ghost host_name sets this default
context to host_name with np=1.

/ghosts num hostA numA hostB numB ...

This option is similar to /ghost, but sets the default context to the specified list
of hosts and np settings. Unspecified np settings are either 1, or whatever was
specified in /cores number, if used.

/gmachinefile file

This option is similar to /ghosts, but the hostx numx settings are read from the
specified file.

The following options are those whose contexts only affect the current portion of
the command line:

/np number

Specifies the number of ranks to launch onto whatever hosts are represented
by the current context.

/host host_name

Sets the current context to host_name with np=1.

/hosts num hostA numA hostB numB ...

This option is similar to /ghosts, and sets the current context.

/machinefile file

This option is similar to /hosts, but the hostx numx settings are read from the
specified file.

/wdir dir

The local-context version of /gdir.

/env variable value

The local-context version of /genv.

/envlist var1[,var2 ...]

The local-context version of /genvlist.

/path path[;path1 ...]

The local-context version of /gpath.

The following are additional options for MPI:

/quiet_hpmpi

By default, Platform MPI displays a detailed account of the types of MPI
commands that are translated to assist in determining if the result is correct.
This command disables these messages.

90 Platform MPI: User's Guide



mpiexec does not support prun or srun start-up.

mpirun options
This section describes options included in <mpirun_options> for all of the preceding
examples. They are listed by category:
v Interconnect selection
v Launching specifications
v Debugging and informational
v RDMA control
v MPI-2 functionality
v Environment control
v Special Platform MPI mode
v Windows CCP
v Windows 2003/XP

“Interconnect selection options”
“Launching specifications options” on page 93
“Debugging and informational options” on page 95
“RDMA control options” on page 96
“MPI-2 functionality options” on page 97
“Environment control options” on page 97
“Special Platform MPI mode option” on page 97
“Windows HPC” on page 98
“Windows remote service password authentication” on page 99

Interconnect selection options
Network selection

-ibv/-IBV

Explicit command-line interconnect selection to use OFED InfiniBand. The
lowercase option is taken as advisory and indicates that the interconnect
should be used if it is available. The uppercase option bypasses all interconnect
detection and instructs Platform MPI to abort if the interconnect is unavailable.

-udapl/-UDAPL

Explicit command-line interconnect selection to use uDAPL. The lowercase and
uppercase options are analogous to the IBV options.

Dynamic linking is required with uDAPL. Do not link -static.

-psm/-PSM

Explicit command-line interconnect selection to use QLogic InfiniBand. The
lowercase and uppercase options are analogous to the IBV options.

-mx/-MX

Explicit command-line interconnect selection to use Myrinet MX. The lowercase
and uppercase options are analogous to the IBV options.

-gm/-GM

Explicit command-line interconnect selection to use Myrinet GM. The
lowercase and uppercase options are analogous to the IBV options.

Understanding Platform MPI 91



-ibal/-IBAL

Explicit command-line interconnect selection to use the Windows IB Access
Layer. The lowercase and uppercase options are analogous to the IBV options.

Platform MPI for Windows supports automatic interconnect selection. If a valid
InfiniBand network is found, IBAL is selected automatically. It is no longer
necessary to explicitly specify -ibal/-IBAL.

-TCP

Specifies that TCP/IP should be used instead of another high-speed
interconnect. If you have multiple TCP/IP interconnects, use -netaddr to
specify which interconnect to use. Use -prot to see which interconnect was
selected. Example:

$MPI_ROOT/bin/mpirun TCP -hostlist "host1:4,host2:4" -np 8 ./a.out

-commd

Routes all off-host communication through daemons rather than between
processes. (Not recommended for high-performance solutions.)

Local host communication method

-intra=mix

Use shared memory for small messages. The default is 256 KB, or what is set
by MPI_RDMA_INTRALEN. For larger messages, the interconnect is used for
better bandwidth. This same functionality is available through the environment
variable MPI_INTRA which can be set to shm, nic, or mix.

This option does not work with TCP, Elan, MX, or PSM.

-intra=nic

Use the interconnect for all intrahost data transfers. (Not recommended for
high performance solutions.)

-intra=shm

Use shared memory for all intrahost data transfers. This is the default.

TCP interface selection

-netaddr

Platform MPI uses a TCP/IP connection for communication between mpirun
and the mpid daemons. If TCP/IP is selected as the interconnect or -commd is
specified, the ranks or daemons communicate among themselves in a separate
set of connections.

The -netaddr option can be used to specify a single IP/mask to use for both
purposes, or specify them individually. The latter might be needed if mpirun
happens to be run on a remote machine that doesn't have access to the same
Ethernet network as the rest of the cluster. To specify both, the syntax is
-netaddr IP-specification[/mask]. To specify them individually, the syntax is
-netaddr mpirun:spec,rank:spec. The string launch: can be used in place of
mpirun:.

The IP specification can be a numeric IP address like 172.20.0.1 or it can be a
host name. If a host name is used, the value is the first IP address returned by
gethostbyname(). The optional mask can be specified as a dotted quad, or as a
number representing how many bits are to be matched. For example, a mask
of "11" is equivalent to a mask of "255.224.0.0".

92 Platform MPI: User's Guide



If an IP and mask are given, then it is expected that one and only one IP will
match at each lookup. An error or warning is printed as appropriate if there
are no matches, or too many. If no mask is specified, then the IP matching will
simply be done by the longest matching prefix.

This functionality can also be accessed using the environment variable
MPI_NETADDR.

Launching specifications options
Job launcher/scheduler

These options launch ranks as found in appfile mode on the hosts specified in the
environment variable.

-lsf

Launches the same executable across multiple hosts. Uses the list of hosts in
the environment variable $LSB_MCPU_HOSTS and sets MPI_REMSH to use LSF’s
ssh replacement, blaunch .

Note:

blaunch requires LSF 7.0.6 and up.

Platform MPI integrates features for jobs scheduled and launched through
Platform LSF. These features require Platform LSF 7.0.6 or later. Platform LSF
7.0.6 introduced the blaunch command as an ssh-like remote shell for
launching jobs on nodes allocated by LSF. Using blaunch to start remote
processes allows for better job accounting and job monitoring through LSF.
When submitting an mpirun job to LSF bsub, either add the -lsf mpirun
command line option or set the variable -e MPI_USELSF=y in the job submission
environment. These two options are equivalent. Setting either of the options
automatically sets both the -lsb_mcpu_hosts mpirun command line option and
the MPI_REMSH=blaunch environment variable in the mpirun environment when
the job is executed.

Example:
bsub -I -n 4 $MPI_ROOT/bin/mpirun -TCP -netaddr 123.456.0.0 -lsf ./hello_world
Job <189> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>
<<Starting on example.platform.com>>
Hello world! I’m 0 of 4 on n01
Hello world! I’m 2 of 4 on n01
Hello world! I’m 1 of 4 on n01
Hello world! I’m 3 of 4 on n01

-lsb_hosts

Launches the same executable across multiple hosts. Uses the list of hosts in
the environment variable $LSB_HOSTS. Can be used with the -np option.

-lsb_mcpu_hosts

Launches the same executable across multiple hosts. Uses the list of hosts in
the environment variable $LSB_MCPU_HOSTS. Can be used with the -np
option.

-srun

Enables start-up on SLURM clusters. Some features like mpirun -stdio
processing are unavailable. The -np option is not allowed with -srun.

Understanding Platform MPI 93



Arguments on the mpirun command line that follow -srun are passed to the
srun command. Start-up directly from the srun command is not supported.

Remote shell launching

-f appfile

Specifies the appfile that mpirun parses to get program and process count
information for the run.

-hostfile <filename>

Launches the same executable across multiple hosts. File name is a text file
with host names separated by spaces or new lines.

-hostlist <list>

Launches the same executable across multiple hosts. Can be used with the -np
option. This host list can be delimited with spaces or commas. Hosts can be
followed with an optional rank count, which is delimited from the host name
with a space or colon. If spaces are used as delimiters in the host list, it might
be necessary to place the entire host list inside quotes to prevent the command
shell from interpreting it as multiple options.

-np #

Specifies the number of processes to run.

-stdio=[options]

Specifies standard IO options. This does not work with srun.

Process placement

-cpu_bind

Binds a rank to a logical processor to prevent a process from moving to a
different logical processor after start-up. For more information, refer to “CPU
binding (-cpu_bind)” on page 48.

-aff

Allows the setting of CPU affinity modes. This is an alternative binding
method to -cpu_bind. For more information, refer to “CPU affinity mode (-aff)”
on page 47.

Application bitness specification

-mpi32

Option for running on Opteron and Intel64. Should be used to indicate the
bitness of the application to be invoked so that the availability of interconnect
libraries can be properly determined by the Platform MPI utilities mpirun and
mpid. The default is -mpi64.

-mpi64

Option for running on Opteron and Intel64. Should be used to indicate the
bitness of the application to be invoked so that the availability of interconnect
libraries can be properly determined by the Platform MPI utilities mpirun and
mpid. The default is -mpi64.

94 Platform MPI: User's Guide



Debugging and informational options
-help

Prints usage information for mpirun.

-version

Prints the major and minor version numbers.

-prot

Prints the communication protocol between each host (e.g., TCP/IP or shared
memory). The exact format and content presented by this option is subject to
change as new interconnects and communication protocols are added to
Platform MPI.

-ck

Behaves like the -p option, but supports two additional checks of your MPI
application; it checks if the specified host machines and programs are
available, and also checks for access or permission problems. This option is
only supported when using appfile mode.

-d

Debug mode. Prints additional information about application launch.

-j

Prints the Platform MPI job ID.

-p

Turns on pretend mode. The system starts the Platform MPI application but
does not create processes. This is useful for debugging and checking whether
the appfile is set up correctly. This option is for appfiles only.

-v

Turns on verbose mode.

-i spec

Enables run time instrumentation profiling for all processes. spec specifies
options used when profiling. The options are the same as those for the
environment variable MPI_INSTR. For example, the following is valid:

% $MPI_ROOT/bin/mpirun -i mytrace:l:nc -f appfile

Lightweight instrumentation can be turned on by using either the -i option to
mpirun or by setting the environment variable MPI_INSTR.

Instrumentation data includes some information on messages sent to other MPI
worlds formed using MPI_Comm_accept(), MPI_Comm_connect(), or
MPI_Comm_join(). All off-world message data is accounted together using the
designation offw regardless of which off-world rank was involved in the
communication.

Platform MPI provides an API that enables users to access the lightweight
instrumentation data on a per-process basis before the application calling
MPI_Finalize(). The following declaration in C is necessary to access this
functionality:

extern int hpmp_instrument_runtime(int reset)

A call to hpmp_instrument_runtime(0) populates the output file specified by
the -i option to mpirun or the MPI_INSTR environment variable with the

Understanding Platform MPI 95



statistics available at the time of the call. Subsequent calls to
hpmp_instrument_runtime() or MPI_Finalize() will overwrite the contents of
the specified file. A call to hpmp_instrument_runtime(1) populates the file in
the same way, but also resets the statistics. If instrumentation is not being used,
the call to hpmp_instrument_runtime() has no effect.

For an explanation of -i options, refer to the mpirun documentation.

For more information on the MPI_INSTR environment variable, refer to the
MPI_INSTR section in “Diagnostic/debug environment variables” on page 111.

-T

Prints user and system times for each MPI rank.

-dbgspin

Causes each rank of the MPI application to spin in MPI_INIT(), allowing time
for the user to log in to each node running the MPI application and attach a
debugger to each process. Setting the global variable mpi_debug_cont to a
non-zero value in the debugger will allow that process to continue. This is
similar to the debugging methods described in the mpidebug(1) manpage,
except that -dbgspin requires the user to launch and attach the debuggers
manually.

-tv

Specifies that the application runs with the TotalView debugger. For more
information, refer to the TOTALVIEW section in “Diagnostic/debug
environment variables” on page 111.

RDMA control options
-dd

Uses deferred deregistration when registering and deregistering memory for
RDMA message transfers. Note that specifying this option also produces a
statistical summary of the deferred deregistration activity when MPI_Finalize is
called. The option is ignored if the underlying interconnect does not use an
RDMA transfer mechanism, or if the deferred deregistration is managed
directly by the interconnect library.

Occasionally deferred deregistration is incompatible with an application or
negatively impacts performance. Use -ndd to disable this feature.

The default is to use deferred deregistration.

Deferred deregistration of memory on RDMA networks is not supported on
Platform MPI for Windows.

-ndd

Disables the use of deferred deregistration. For more information, see the -dd
option.

-rdma

Specifies the use of envelope pairs for short message transfer. The prepinned
memory increases proportionally to the number of off-host ranks in the job.

-srq

Specifies use of the shared receiving queue protocol when OFED, Myrinet GM,
or uDAPL V1.2 interfaces are used. This protocol uses less prepinned memory
for short message transfers than using -rdma.

96 Platform MPI: User's Guide



-xrc

Extended Reliable Connection (XRC) is a feature on ConnectX InfiniBand
adapters. Depending on the number of application ranks that are allocated to
each host, XRC can significantly reduce the amount of pinned memory that is
used by the InfiniBand driver. Without XRC, the memory amount is
proportional to the number of ranks in the job. With XRC, the memory amount
is proportional to the number of hosts on which the job is being run.

The -xrc option is equivalent to -srq -e MPI_IBV_XRC=1.

OFED version 1.3 or later is required to use XRC.

MPI-2 functionality options
-1sided

Enables one-sided communication. Extends the communication mechanism of
Platform MPI by allowing one process to specify all communication
parameters, for the sending side and the receiving side.

The best performance is achieved if an RDMA-enabled interconnect, like
InfiniBand, is used. With this interconnect, the memory for the one-sided
windows can come from MPI_Alloc_mem or from malloc. If TCP/IP is used, the
performance will be lower, and the memory for the one-sided windows must
come from MPI_Alloc_mem.

-spawn

Enables dynamic processes. This option must be specified for applications that
call MPI_Comm_spawn() or MPI_Comm_spawn_multiple().

Environment control options
-e var [=val]

Sets the environment variable var for the program and gives it the value val if
provided. Environment variable substitutions (for example, $FOO) are
supported in the val argument. To append settings to a variable, %VAR can be
used.

-envlist var[,val ...]

Requests that mpirun read each of the specified comma-separated variables
from its environment and transfer those values to the ranks before execution.

-sp paths

Sets the target shell PATH environment variable to paths. Search paths are
separated by a colon.

Special Platform MPI mode option
-ha

Eliminates an MPI teardown when ranks exit abnormally. Further
communications involved with ranks that are unreachable return error class
MPI_ERR_EXITED, but the communications do not force the application to
teardown, if the MPI_Errhandler is set to MPI_ERRORS_RETURN.

This mode never uses shared memory for inter-process communication.

Platform MPI high availability mode is accessed by using the -ha option to
mpirun.

Understanding Platform MPI 97



To allow users to select the correct level of high availability features for an
application, the -ha option accepts a number of additional colon-separated
options which may be appended to the -ha command line option. For example:

mpirun -ha[:option1][:option2][...]

Table 16. High availability options
Options Descriptions

-ha Basic high availability protection. When specified with no
options, -ha is equivalent to -ha:noteardown:detect.

-ha -i Use of lightweight instrumentation with -ha.
-ha:infra High availability for infrastructure (mpirun, mpid).
-ha:detect Detection of failed communication connections.
-ha:recover Recovery of communication connections after failures.
-ha:net Enables Automatic Port Migration.
-ha:noteardown mpirun and mpid exist, they should not tear down an

application in which some ranks have exited after
MPI_Init, but before MPI_Finalize. If -ha:infra is
specified, this option is ignored.

-ha:all -ha:all is equivalent to
-ha:infra:noteardown:recover:detect:net, which is
equivalent to -ha:infra:recover:net.

Note:

If a process uses -ha:detect, then all processes it communicates with must also
use -ha:detect. Likewise, if a process uses -ha:recover then all processes it
communicates with must also use -ha:recover.

For additional high availability mode options, refer to “High availability
applications” on page 203.

Windows HPC
The following are specific mpirun command-line options for Windows HPC users:

-hpc

Indicates that the job is being submitted through the Windows HPC job
scheduler/launcher. This is the recommended method for launching jobs and is
required for all HPC jobs.

-wlmerr file_name

Assigns the job's standard error file to the specified file name when starting a
job through the Windows HPC automatic job scheduler/launcher feature of
Platform MPI. This flag has no effect if used for an existing HPC job.

-wlmin file_name

Assigns the job's standard input file to the specified file name when starting a
job through the Windows HPC automatic job scheduler/launcher feature of
Platform MPI. This flag has no effect if used for an existing HPC job.

-wlmout file_name

Assigns the job's standard output file to the specified file name when starting a
job through the Windows HPC automatic job scheduler/launcher feature of
Platform MPI. This flag has no effect if used for an existing HPC job.

-wlmwait

98 Platform MPI: User's Guide



Causes the mpirun command to wait for the HPC job to finish before returning
to the command prompt when starting a job through the automatic job
submittal feature of Platform MPI. By default, mpirun automatic jobs will not
wait. This flag has no effect if used for an existing HPC job.

-wlmblock

Uses block scheduling to place ranks on allocated nodes. Nodes are processed
in the order they were allocated by the scheduler, with each node being fully
populated up to the total number of CPUs before moving on to the next node.

-wlmcluster headnode_name

Specifies the head node of the HPC cluster that should be used to run the job.
If this option not specified, the default value is the local host.

-wlmcyclic

Uses cyclic scheduling to place ranks on allocated nodes. Nodes are processed
in the order they were allocated by the scheduler, with one rank allocated per
node on each cycle through the node list. The node list is traversed as many
times as necessary to reach the total rank count requested.

-headnode headnode_name

Specifies the head node to which to submit the mpirun job on Windows HPC.
If this option is not specified, the default value is the local host is used. This
option can only be used as a command-line option when using the mpirun
automatic submittal functionality.

-jobid job_id

Schedules the Platform MPI job as a task to an existing job on Windows HPC.
It submits the command as a single CPU mpirun task to the existing job
indicated by the specified job ID. This option can only be used as a
command-line option when using the mpirun automatic submittal functionality.

-wlmunit core | socket | node

When used with -hpc, indicates the schedulable unit. One rank is scheduled
per allocated unit. For example, to run ranks node exclusively, use
-wlmunit node.

Windows remote service password authentication
The following are specific mpirun command-line options for Windows remote
service password authentication.

-pwcheck

Validates the cached user password by obtaining a login token locally and
verifying the password. A pass/fail message is returned before exiting.

To check password and authentication on remote nodes, use the -at flag with
mpidiag.

Note:

The mpirun -pwcheck option, along with other Platform MPI password options,
run with Platform MPI Remote Launch Service, and do not refer to Windows
HPC user passwords. When running through Windows HPC scheduler (with
-hpc), you might need to cache a password through the Windows HPC
scheduler. For more information, see the Windows HPC job command.

Understanding Platform MPI 99



-package <package-name> and -pk <package-name>

When Platform MPI authenticates with the Platform MPI Remote Launch
service, it authenticates using an installed Windows security package (for
example Kerberos, NTLM, Negotiate, and more). By default, Platform MPI
negotiates the package to use with the service, and no interaction or package
specification is required. If a specific installed Windows security package is
preferred, use this flag to indicate that security package on the client. This flag
is rarely necessary as the client (mpirun) and the server (Platform MPI Remote
Launch service) negotiates the security package to be used for authentication.

-token <token-name> and -tg <token-name>

Authenticates to this token with the Platform MPI Remote Launch service.
Some authentication packages require a token name. The default is no token.

-pass

Prompts for a domain account password. Used to authenticate and create
remote processes. A password is required to allow the remote process to access
network resources (such as file shares). The password provided is encrypted
using SSPI for authentication. The password is not cached when using this
option.

-cache

Prompts for a domain account password. Used to authenticate and create
remote processes. A password is required to allow the remote process to access
network resources (such as file shares). The password provided is encrypted
using SSPI for authentication. The password is cached so that future mpirun
commands uses the cached password. Passwords are cached in encrypted
form, using Windows Encryption APIs.

-nopass

Executes the mpirun command with no password. If a password is cached, it is
not accessed and no password is used to create the remote processes. Using no
password results in the remote processes not having access to network
resources. Use this option if you are running locally. This option also
suppresses the "no password cached" warning. This is useful when no
password is desired for SMP jobs.

-iscached

Indicates if a password is stored in the user password cache and stops
execution. The MPI application does not launch if this option is included on
the command line.

-clearcache

Clears the password cache and stops. The MPI application does not launch if
this option is included on the command line.

Runtime environment variables
Environment variables are used to alter the way Platform MPI executes an
application. The variable settings determine how an application behaves and how
an application allocates internal resources at run time.

100 Platform MPI: User's Guide



Many applications run without setting environment variables. However,
applications that use a large number of nonblocking messaging requests, require
debugging support, or must control process placement might need a more
customized configuration.

Launching methods influence how environment variables are propagated. To
ensure propagating environment variables to remote hosts, specify each variable in
an appfile using the -e option.

Setting environment variables on the command line for Linux

Environment variables can be set globally on the mpirun command line.
Command-line options take precedence over environment variables. For example,
on Linux:

% $MPI_ROOT/bin/mpirun -e MPI_FLAGS=y40 -f appfile

In the above example, if an MPI_FLAGS setting was specified in the appfile, then
the global setting on the command line would override the setting in the appfile.
To add to an environment variable rather than replacing it, use %VAR as in the
following command:

$ $MPI_ROOT/bin/mpirun -e MPI_FLAGS=%MPI_FLAGS,y -f appfile

In the above example, if the appfile specified MPI_FLAGS=z, then the resulting
MPI_FLAGS seen by the application would be z, y.

$ $MPI_ROOT/bin/mpirun -e LD_LIBRARY_PATH=%LD_LIBRARY_PATH:/path/to/third/
party/lib -f appfile

In the above example, the user is prepending to LD_LIBRARY_PATH.

Passing environment variables from mpirun to the ranks

Environment variables that are already set in the mpirun environment can be
passed along to the rank’s environment using several methods. Users may refer to
the mpirun environment through the normal shell environment variable
interpretation:

% $MPI_ROOT/bin/mpirun -e MPI_FLAGS=$MPI_FLAGS -f appfile

You may also specify a list of environment variables that mpirun should pass out
of its environment and forward along to the rank’s environment via the -envlist
option:

% MPI_ROOT/bin/mpirun -envlist MPI_FLAGS -f appfile

Setting environment variables in a pmpi.conf file

Platform MPI supports setting environment variables in a pmpi.conf file. These
variables are read by mpirun and exported globally, as if they had been included on
the mpirun command line as "-e VAR=VAL" settings. The pmpi.conf file search is
performed in three places and each one is parsed, which allows the last one parsed
to overwrite values set by the previous files. The locations are:
v $MPI_ROOT/etc/pmpi.conf

Understanding Platform MPI 101



v /etc/pmpi.conf

v $HOME/.pmpi.conf

This feature can be used for any environment variable, and is most useful for
interconnect specifications. A collection of variables is available that tells Platform
MPI which interconnects to search for and which libraries and modules to look for
with each interconnect. These environment variables are the primary use of
pmpi.conf.

Syntactically, single and double quotes in pmpi.conf can be used to create values
containing spaces. If a value containing a quote is needed, two adjacent quotes are
interpreted as a quote to be included in the value. When not contained in quotes,
spaces are interpreted as element separators in a list, and are stored as tabs.

Setting environment variables on Windows for HPC jobs

For Windows HPC jobs, environment variables can be set from the GUI or on the
command line.

From the GUI, use the Task Properties window, Environment tab to set an
environment variable.

102 Platform MPI: User's Guide



Note:

These environment variables should be set on the mpirun task.

Environment variables can also be set by adding the /env flag to the job add
command. For example:

job add JOBID /numprocessors:1 /env:"MPI_ROOT=\\shared\alternate\location"
...

Understanding Platform MPI 103



List of runtime environment variables
The environment variables that affect the behavior of Platform MPI at run time are
described in the following sections categorized by the following functions:
v General
v CPU bind
v Miscellaneous
v Interconnect
v InfiniBand
v Memory usage
v Connection related
v RDMA
v prun/srun
v TCP
v Elan
v Rank ID

“General environment variables”
“CPU bind environment variables” on page 110
“Miscellaneous environment variables” on page 111
“Diagnostic/debug environment variables” on page 111
“Interconnect selection environment variables” on page 114
“InfiniBand environment variables” on page 115
“Memory usage environment variables” on page 119
“Connection related environment variables” on page 122
“RDMA tunable environment variables” on page 124
“Protocol reporting (prot) environment variables” on page 125
“srun environment variables” on page 126
“TCP environment variables” on page 126
“Windows HPC environment variables” on page 126
“Rank identification environment variables” on page 127

General environment variables
MPIRUN_OPTIONS

MPIRUN_OPTIONS is a mechanism for specifying additional command-line
arguments to mpirun. If this environment variable is set, the mpirun command
behaves as if the arguments in MPIRUN_OPTIONS had been specified on the
mpirun command line. For example:

% export MPIRUN_OPTIONS="-v -prot"

% $MPI_ROOT/bin/mpirun -np 2 /path/to/program.x

is equivalent to running:

% $MPI_ROOT/bin/mpirun -v -prot -np 2 /path/to/program.x

When settings are supplied on the command line, in the MPIRUN_OPTIONS
variable, and in an pmpi.conf file, the resulting command functions as if the

104 Platform MPI: User's Guide



pmpi.conf settings had appeared first, followed by the MPIRUN_OPTIONS,
followed by the command line. Because the settings are parsed left to right, this
means the later settings have higher precedence than the earlier ones.

MPI_FLAGS

MPI_FLAGS modifies the general behavior of Platform MPI. The MPI_FLAGS syntax is
a comma-separated list as follows:

[edde,][exdb,][egdb,][eadb,][ewdb,][l,][f,][i,]
[s[a|p][#],][y[#],][o,][+E2,][C,][D,][E,][T,][z]

The following is a description of each flag:

edde

Starts the application under the dde debugger. The debugger must be in the
command search path.

exdb

Starts the application under the xdb debugger. The debugger must be in the
command search path.

egdb

Starts the application under the gdb debugger. The debugger must be in the
command search path. When using this option, it is often necessary to either
enable X11 ssh forwarding, to set the DISPLAY environment variable to your
local X11 display, or to do both. For more information, see “Debugging and
Troubleshooting” on page 149.

eadb

Starts the application under adb: the absolute debugger. The debugger must be
in the command search path.

ewdb

Starts the application under the wdb debugger. The debugger must be in the
command search path.

epathdb

Starts the application under the path debugger. The debugger must be in the
command search path.

l

Reports memory leaks caused by not freeing memory allocated when the
Platform MPI job is run. For example, when you create a communicator or
user-defined datatype after you call MPI_Init, you must free the memory
allocated to these objects before you call MPI_Finalize. In C, this is analogous
to making calls to malloc() and free() for each object created during program
execution.

Setting the l option can decrease application performance.

f

Forces MPI errors to be fatal. Using the f option sets the
MPI_ERRORS_ARE_FATAL error handler, overriding the programmer's choice
of error handlers. This option can help you detect nondeterministic error
problems in your code.

Understanding Platform MPI 105



If your code has a customized error handler that does not report that an MPI
call failed, you will not know that a failure occurred. Thus your application
could be catching an error with a user-written error handler (or with
MPI_ERRORS_RETURN) that masks a problem.

If no customer error handlers are provided, MPI_ERRORS_ARE_FINAL is the
default.

i

Turns on language interoperability for the MPI_BOTTOM constant.

MPI_BOTTOM Language Interoperability : Previous versions of Platform MPI
were not compliant with Section 4.12.6.1 of the MPI-2 Standard which requires
that sends/receives based at MPI_BOTTOM on a data type created with
absolute addresses must access the same data regardless of the language in
which the data type was created. For compliance with the standard, set
MPI_FLAGS=i to turn on language interoperability for the MPI_BOTTOM
constant. Compliance with the standard can break source compatibility with
some MPICH code.

s[a|p][#]

Selects signal and maximum time delay for guaranteed message progression.
The sa option selects SIGALRM. The sp option selects SIGPROF. The # option is
the number of seconds to wait before issuing a signal to trigger message
progression. The default value for the MPI library is sp0, which never issues a
progression related signal. If the application uses both signals for its own
purposes, you cannot enable the heartbeat signals.

This mechanism can be used to guarantee message progression in applications
that use nonblocking messaging requests followed by prolonged periods of
time in which Platform MPI routines are not called.

Generating a UNIX signal introduces a performance penalty every time the
application processes are interrupted. As a result, some applications might
benefit from it, others might experience a decrease in performance. As part of
tuning the performance of an application, you can control the behavior of the
heartbeat signals by changing their time period or by turning them off. This is
accomplished by setting the time period of the s option in the MPI_FLAGS
environment variable (for example: s10). Time is in seconds.

You can use the s[a][p]# option with the thread-compliant library as well as
the standard non thread-compliant library. Setting s[a][p]# for the
thread-compliant library has the same effect as setting MPI_MT_FLAGS=ct
when you use a value greater than 0 for #. The default value for the
thread-compliant library is sp0. MPI_MT_FLAGS=ct takes priority over the
default MPI_FLAGS=sp0.

Set MPI_FLAGS=sa1 to guarantee that MPI_Cancel works for canceling sends.

These options are ignored on Platform MPI for Windows.

y[#]

Enables spin-yield logic. # is the spin value and is an integer between zero and
10,000. The spin value specifies the number of milliseconds a process should
block waiting for a message before yielding the CPU to another process.

How you apply spin-yield logic depends on how well synchronized your
processes are. For example, if you have a process that wastes CPU time
blocked, waiting for messages, you can use spin-yield to ensure that the

106 Platform MPI: User's Guide



process relinquishes the CPU to other processes. Do this in your appfile, by
setting y[#] to y0 for the process in question. This specifies zero milliseconds
of spin (that is, immediate yield).

If you are running an application stand-alone on a dedicated system, the
default setting MPI_FLAGS=y allows MPI to busy spin, improving latency. To
avoid unnecessary CPU consumption when using more ranks than cores,
consider using a setting such as MPI_FLAGS=y40.

Specifying y without a spin value is equivalent to MPI_FLAGS=y10000, which
is the default.

Note:

Except when using srun or prun to launch, if the ranks under a single mpid
exceed the number of CPUs on the node and a value of MPI_FLAGS=y is not
specified, the default is changed to MPI_FLAGS=y0.

If the time a process is blocked waiting for messages is short, you can possibly
improve performance by setting a spin value (between 0 and 10,000) that
ensures the process does not relinquish the CPU until after the message is
received, thereby reducing latency.

The system treats a nonzero spin value as a recommendation only. It does not
guarantee that the value you specify is used.

o

Writes an optimization report to stdout. MPI_Cart_create and
MPI_Graph_create optimize the mapping of processes onto the virtual topology
only if rank reordering is enabled (set reorder=1).

In the declaration statement below, see reorder=1

int numtasks, rank, source, dest, outbuf, i, tag=1,
inbuf[4]={MPI_PROC_NULL,MPI_PROC_NULL,MPI_PROC_NULL,MPI_PROC_NULL,},
nbrs[4], dims[2]={4,4}, periods[2]={0,0}, reorder=1, coords[2];

For example:
/opt/platform_mpi/bin/mpirun -np 16 -e MPI_FLAGS=o ./a.out
Reordering ranks for the call
MPI_Cart_create(comm(size=16), ndims=2,

dims=[4 4], periods=[false false],
reorder=true)
Default mapping of processes would result communication paths

between hosts : 0
between subcomplexes : 0
between hypernodes : 0
between CPUs within a hypernode/SMP: 24

Reordered mapping results communication paths
between hosts : 0
between subcomplexes : 0
between hypernodes : 0
between CPUs within a hypernode/SMP: 24

Reordering will not reduce overall communication cost.
Void the optimization and adopted unreordered mapping.
rank= 2 coords= 0 2 neighbors(u,d,l,r)= -1 6 1 3
rank= 0 coords= 0 0 neighbors(u,d,l,r)= -1 4 -1 1
rank= 1 coords= 0 1 neighbors(u,d,l,r)= -1 5 0 2
rank= 10 coords= 2 2 neighbors(u,d,l,r)= 6 14 9 11
rank= 2 inbuf(u,d,l,r)= -1 6 1 3
rank= 6 coords= 1 2 neighbors(u,d,l,r)= 2 10 5 7
rank= 7 coords= 1 3 neighbors(u,d,l,r)= 3 11 6 -1
rank= 4 coords= 1 0 neighbors(u,d,l,r)= 0 8 -1 5

Understanding Platform MPI 107



rank= 0 inbuf(u,d,l,r)= -1 4 -1 1
rank= 5 coords= 1 1 neighbors(u,d,l,r)= 1 9 4 6
rank= 11 coords= 2 3 neighbors(u,d,l,r)= 7 15 10 -1
rank= 1 inbuf(u,d,l,r)= -1 5 0 2
rank= 14 coords= 3 2 neighbors(u,d,l,r)= 10 -1 13 15
rank= 9 coords= 2 1 neighbors(u,d,l,r)= 5 13 8 10
rank= 13 coords= 3 1 neighbors(u,d,l,r)= 9 -1 12 14
rank= 15 coords= 3 3 neighbors(u,d,l,r)= 11 -1 14 -1
rank= 10 inbuf(u,d,l,r)= 6 14 9 11
rank= 12 coords= 3 0 neighbors(u,d,l,r)= 8 -1 -1 13
rank= 8 coords= 2 0 neighbors(u,d,l,r)= 4 12 -1 9
rank= 3 coords= 0 3 neighbors(u,d,l,r)= -1 7 2 -1
rank= 6 inbuf(u,d,l,r)= 2 10 5 7
rank= 7 inbuf(u,d,l,r)= 3 11 6 -1
rank= 4 inbuf(u,d,l,r)= 0 8 -1 5
rank= 5 inbuf(u,d,l,r)= 1 9 4 6
rank= 11 inbuf(u,d,l,r)= 7 15 10 -1
rank= 14 inbuf(u,d,l,r)= 10 -1 13 15
rank= 9 inbuf(u,d,l,r)= 5 13 8 10
rank= 13 inbuf(u,d,l,r)= 9 -1 12 14
rank= 15 inbuf(u,d,l,r)= 11 -1 14 -1
rank= 8 inbuf(u,d,l,r)= 4 12 -1 9
rank= 12 inbuf(u,d,l,r)= 8 -1 -1 13
rank= 3 inbuf(u,d,l,r)= -1 7 2 -

+E2

Sets -1 as the value of .TRUE. and 0 as the value for .FALSE. when returning
logical values from Platform MPI routines called within Fortran 77
applications.

C

Disables ccNUMA support. Allows you to treat the system as a symmetric
multiprocessor. (SMP)

D

Prints shared memory configuration information. Use this option to get shared
memory values that are useful when you want to set the MPI_SHMEMCNTL
flag.

E[on|off]

Turns function parameter error checking on or off. Checking can be turned on
by the setting MPI_FLAGS=Eon. Turn this on when developing new MPI
applications.

The default value is off.

T

Prints the user and system times for each MPI rank.

z

Enables zero-buffering mode. Set this flag to convert MPI_Send and MPI_Rsend
calls in your code to MPI_Ssend without rewriting your code. This option can
help uncover non-portable code in your MPI application.

Deadlock situations can occur when your code uses standard send operations
and assumes buffering behavior for the standard communication mode. In
compliance with the MPI Standard, buffering may occur for MPI_Send and
MPI_Rsend, depending on the message size, and at the discretion of the MPI
implementation.

108 Platform MPI: User's Guide



Use the z option to quickly determine whether the problem is due to your
code being dependent on buffering. MPI_Ssend guarantees a synchronous send,
that is, a send can be started whether or not a matching receive is posted.
However, the send completes successfully only if a matching receive is posted
and the receive operation has started to receive the message sent by the
synchronous send. If your application still hangs after you convert MPI_Send
and MPI_Rsend calls to MPI_Ssend, you know that your code is written to
depend on buffering. You should rewrite it so that MPI_Send and MPI_Rsend do
not depend on buffering. Alternatively, use non-blocking communication calls
to initiate send operations. A non-blocking send-start call returns before the
message is copied out of the send buffer, but a separate send-complete call is
needed to complete the operation.

MPI_MT_FLAGS

MPI_MT_FLAGS controls run-time options when you use the thread-compliant
version of Platform MPI. The MPI_MT_FLAGS syntax is a comma-separated list as
follows:

[ct,][single,][fun,][serial,][mult]

The following is a description of each flag:

ct

Creates a hidden communication thread for each rank in the job. When you
enable this option, do not oversubscribe your system. For example, if you
enable ct for a 16-process application running on a 16-way machine, the result
is a 32-way job.

single

Asserts that only one thread executes.

fun

Asserts that a process can be multithreaded, but only the main thread makes
MPI calls (that is, all calls are funneled to the main thread).

serial

Asserts that a process can be multithreaded, and multiple threads can make
MPI calls, but calls are serialized (that is, only one call is made at a time).

mult

Asserts that multiple threads can call MPI at any time with no restrictions.

Setting MPI_MT_FLAGS=ct has the same effect as setting MPI_FLAGS=s[a][p]#,
when the value of # that is greater than 0. MPI_MT_FLAGS=ct takes priority over
the default MPI_FLAGS=sp0 setting.

The single, fun, serial, and mult options are mutually exclusive. For example, if
you specify the serial and mult options in MPI_MT_FLAGS, only the last option
specified is processed (in this case, the mult option). If no run-time option is
specified, the default is mult. When not using the mult option, applications can
safely use the single-thread library. If using single, fun, serial, and mult options,
consider linking with the non-threaded library.

Understanding Platform MPI 109



MPI_ROOT

MPI_ROOT indicates the location of the Platform MPI tree. If you move the
Platform MPI installation directory from its default location in /opt/platform_mpi
for Linux, set the MPI_ROOT environment variable to point to the new location. If
no MPI_ROOT variable is specified, mpirun will select an MPI_ROOT based on its
installation path.

MPI_WORKDIR

MPI_WORKDIRchanges the execution directory. This variable is ignored when srun
or prun is used.

CPU bind environment variables
MPI_BIND_MAP

MPI_BIND_MAP allows specification of the integer CPU numbers, logical
processor numbers, or CPU masks. These are a list of integers separated by
commas (,).

MPI_CPU_AFFINITY

MPI_CPU_AFFINITY is an alternative method to using -cpu_bind on the command
line for specifying binding strategy. The possible settings are LL, RANK,
MAP_CPU, MASK_CPU, LDOM, CYCLIC, BLOCK, RR, FILL, PACKED, SLURM,
and MAP_LDOM.

MPI_CPU_SPIN

When using MPI_CPU_AFFINITY=LL (leaf-loaded), MPI_CPU_SPIN specifies the
number of seconds to allow the process to spin until determining where the
operating system chooses to schedule them and bending them to the CPU on
which they are running. The default is 2 seconds.

MPI_FLUSH_FCACHE

MPI_FLUSH_FCACHE clears the file-cache (buffer-cache). If you add -e
MPI_FLUSH_FCACHE[=x] to the mpirun command line, the file-cache is flushed before
the code starts (where =x is an optional percent of memory at which to flush). If
the memory in the file-cache is greater than x, the memory is flushed. The default
value is 0 (in which case a flush is always performed). Only the lowest rank # on
each host flushes the file-cache; limited to one flush per host/job.

Setting this environment variable saves time if, for example, the file-cache is
currently using 8% of the memory and =x is set to 10. In this case, no flush is
performed.

Example output:

MPI_FLUSH_FCACHE set to 0, fcache pct = 22, attempting to flush fcache on
host opteron2

MPI_FLUSH_FCACHE set to 10, fcache pct = 3, no fcache flush required on
host opteron2

110 Platform MPI: User's Guide



Memory is allocated with mmap, then it is deallocated with munmap afterwards.

Miscellaneous environment variables
MPI_2BCOPY

Point-to-point bcopy() is disabled by setting MPI_2BCOPY to 1. Valid on Windows
only.

MPI_MAX_WINDOW

MPI_MAX_WINDOW is used for one-sided applications. It specifies the maximum
number of windows a rank can have at the same time. It tells Platform MPI to
allocate enough table entries. The default is 5.

export MPI_MAX_WINDOW=10

The above example allows 10 windows to be established for one-sided
communication.

Diagnostic/debug environment variables
MPI_DLIB_FLAGS

MPI_DLIB_FLAGS controls run-time options when you use the diagnostics library.
The MPI_DLIB_FLAGS syntax is a comma-separated list as follows:

[ns,][h,][strict,][nmsg,][nwarn,][dump:prefix,][dumpf:prefix][xNUM]

where

ns

Disables message signature analysis.

h

Disables default behavior in the diagnostic library that ignores user-specified
error handlers. The default considers all errors to be fatal.

strict

Enables MPI object-space corruption detection. Setting this option for
applications that make calls to routines in the MPI-2 standard can produce
false error messages.

nmsg

Disables detection of multiple buffer writes during receive operations and
detection of send buffer corruptions.

nwarn

Disables the warning messages that the diagnostic library generates by default
when it identifies a receive that expected more bytes than were sent.

dump:prefix

Dumps (unformatted) sent and received messages to prefix.msgs.rank where
rank is the rank of a specific process.

dumpf:prefix

Understanding Platform MPI 111



Dumps (formatted) sent and received messages to prefix.msgs.rank where rank
is the rank of a specific process.

xNUM

Defines a type-signature packing size. NUM is an unsigned integer that
specifies the number of signature leaf elements. For programs with diverse
derived datatypes the default value may be too small. If NUM is too small, the
diagnostic library issues a warning during the MPI_Finalize operation.

MPI_ERROR_LEVEL

Controls diagnostic output and abnormal exit processing for application debugging
where

0

Standard rank label text and abnormal exit processing. (Default)

1

Adds hostname and process id to rank label.

2

Adds hostname and process id to rank label. Also attempts to generate core
file on abnormal exit.

MPI_INSTR

MPI_INSTR enables counter instrumentation for profiling Platform MPI
applications. The MPI_INSTR syntax is a colon-separated list (no spaces between
options) as follows:

prefix[:l][:nc][:off][:api]

where

prefix

Specifies the instrumentation output file prefix. The rank zero process writes
the application's measurement data to prefix.instr in ASCII. If the prefix does
not represent an absolute pathname, the instrumentation output file is opened
in the working directory of the rank zero process when MPI_Init is called.

l

Locks ranks to CPUs and uses the CPU's cycle counter for less invasive timing.
If used with gang scheduling, the :l is ignored.

nc

Specifies no clobber. If the instrumentation output file exists, MPI_Init aborts.

off

Specifies that counter instrumentation is initially turned off and only begins
after all processes collectively call MPIHP_Trace_on.

api

The api option to MPI_INSTR collects and prints detailed information about
the MPI Application Programming Interface (API). This option prints a new
section in the instrumentation output file for each MPI routine called by each
rank. It contains the MPI datatype and operation requested, along with

112 Platform MPI: User's Guide



message size, call counts, and timing information. Each line of the extra api
output is postpended by the characters "api" to allow for easy filtering.

The following is sample output from -i <file>:api on the example
compute_pi.f:

######################################################## api
## ## api
## Detailed MPI_Reduce routine information ## api
## ## api
######################################################## api
api
--------------------------------------------------------------------------------- api
Rank MPI_Op MPI_Datatype Num Calls Contig Non-Contig Message Sizes Total Bytes api
--------------------------------------------------------------------------------- api
R: 0 sum fortran double-precision 1 1 0 (8 - 8) 8 api
api
Num Calls Message Sizes Total Bytes Time(ms) Bytes / Time(s) api
----------- ------------------ ------------ --------------- ---------------- api
1 [0..64] 8 1 0.008 api
api
api
--------------------------------------------------------------------------------- api
Rank MPI_Op MPI_Datatype Num Calls Contig Non-Contig Message Sizes Total Bytes api
--------------------------------------------------------------------------------- api
R: 1 sum fortran double-precision 1 1 0 (8 - 8) 8 api
api
Num Calls Message Sizes Total Bytes Time(ms) Bytes / Time(s) api
----------- ------------------ ------------ --------------- ---------------- api
1 [0..64] 8 0 0.308 api
api

Lightweight instrumentation can be turned on by using either the -i option to
mpirun or by setting the environment variable MPI_INSTR.

Instrumentation data includes some information on messages sent to other MPI
worlds formed using MPI_Comm_accept(), MPI_Comm_connect(), or MPI_Comm_join().
All off-world message data is accounted together using the designation offw
regardless of which off-world rank was involved in the communication.

Platform MPI provides an API that enables users to access the lightweight
instrumentation data on a per-process basis before the application calling
MPI_Finalize(). The following declaration in C is necessary to access this
functionality:

extern int hpmp_instrument_runtime(int reset)

A call to hpmp_instrument_runtime(0) populates the output file specified by the -i
option to mpirun or the MPI_INSTR environment variable with the statistics
available at the time of the call. Subsequent calls to hpmp_instrument_runtime() or
MPI_Finalize() will overwrite the contents of the specified file. A call to
hpmp_instrument_runtime(1) populates the file in the same way, but also resets the
statistics. If instrumentation is not being used, the call to
hpmp_instrument_runtime() has no effect.

Even though you can specify profiling options through the MPI_INSTR
environment variable, the recommended approach is to use the mpirun command
with the -i option instead. Using mpirun to specify profiling options guarantees
that multihost applications do profiling in a consistent manner.

Understanding Platform MPI 113



Counter instrumentation and trace-file generation are mutually exclusive profiling
techniques.

Note:

When you enable instrumentation for multihost runs, and invoke mpirun on a host
where an MPI process is running, or on a host remote from all MPI processes,
Platform MPI writes the instrumentation output file (prefix.instr) to the working
directory on the host that is running rank 0 or the lowest rank remaining if -ha is
used.

TOTALVIEW

When you use the TotallView debugger, Platform MPI uses your PATH variable to
find TotalView. You can also set the absolute path and TotalView options in the
TOTALVIEW environment variable. This environment variable is used by mpirun.

setenv TOTALVIEW /opt/totalview/bin/totalview

In some environments, Totalview can not correctly launch the MPI application. If
your application is hanging during launch under Totalview, try restarting your
application after setting the TOTALVIEW environment variable to the
$MPI_ROOT/bin/tv_launch script. Ensure that the totalview executable is in your
PATH on the host running mpirun, and on all compute hosts. This approach
launches the application through mpirun as normal, and causes totalview to attach
to the ranks once they have all entered MPI_Init().

Interconnect selection environment variables
MPI_IC_ORDER

MPI_IC_ORDER is an environment variable whose default contents are
"ibv:udapl:psm:mx:gm:TCP" and instructs Platform MPI to search in a specific order
for the presence of an interconnect. Lowercase selections imply use if detected;
otherwise, keep searching. An uppercase option demands that the interconnect
option be used. if it cannot be selected the application terminates with an error. For
example:

export MPI_IC_ORDER="psm:ibv:udapl:mx:gm:tcp"

export MPIRUN_OPTIONS="-prot"

$MPI_ROOT/bin/mpirun -srun -n4 ./a.out

The command line for the above appears to mpirun as $MPI_ROOT/bin/mpirun -
prot -srun -n4 ./a.out and the interconnect decision looks for the presence of
Elan and uses it if found. Otherwise, interconnects are tried in the order specified
by MPI_IC_ORDER.

The following is an example of using TCP over GigE, assuming GigE is installed
and 192.168.1.1 corresponds to the Ethernet interface with GigE. The implicit use of
-netaddr 192.168.1.1 is required to effectively get TCP over the proper subnet.

export MPI_IC_ORDER="psm:ibv:udapl:mx:gm:tcp"

export MPIRUN_SYSTEM_OPTIONS="-netaddr 192.168.1.1"

114 Platform MPI: User's Guide



$MPI_ROOT/bin/mpirun -prot -TCP -srun -n4 ./a.out

MPI_COMMD

MPI_COMMD routes all off-host communication through the mpid daemon rather
TCP network than between processes. The MPI_COMMD syntax is as follows:

out_frags,in_frags

where

out_frags

Specifies the number of 16 KB fragments available in shared memory for
outbound messages. Outbound messages are sent from processes on a given
host to processes on other hosts using the communication daemon.

The default value for out_frags is 64. Increasing the number of fragments for
applications with a large number of processes improves system throughput.

in_frags

Specifies the number of 16 KB fragments available in shared memory for
inbound messages. Inbound messages are sent from processes on hosts to
processes on a given host using the communication daemon.

The default value for in_frags is 64. Increasing the number of fragments for
applications with a large number of processes improves system throughput.

When -commd is used, MPI_COMMD specifies daemon communication fragments.

Remember:

Using MPI_COMMD will cause significant performance penalties.

InfiniBand environment variables
MPI_IB_MULTIRAIL

Supports multi-rail on OpenFabric. This environment variable is ignored by all
other interconnects. In multi-rail mode, a rank can use all the node cards, but only
if its peer rank uses the same number of cards. Messages are striped among all the
cards to improve bandwidth.

By default, multi-card message striping is off. Specify -e MPI_IB_MULTIRAIL=N,
where N is the number of cards used by a rank. If N <= 1, then message striping is
not used. If N is greater than the maximum number of cards M on that node, then
all M cards are used. If 1 < N <= M, message striping is used on N cards or less.

On a host, all ranks select all the cards in a series. For example, if there are 4 cards,
and 4 ranks on that host; rank 0 uses cards 0, 1, 2, 3; rank 1 uses 1, 2, 3, 0; rank 2
uses 2, 3, 0, 1; rank 3 uses 3, 0, 1, 2. The order is important in SRQ mode because
only the first card is used for short messages. But in short RDMA mode, all the
cards are used in a balanced way.

MPI_IB_PORT_GID

If a cluster has multiple InfiniBand cards in each node, connected physically to
separated fabrics, Platform MPI requires that each fabric has its own subnet ID.

Understanding Platform MPI 115



When the subnet IDs are the same, Platform MPI cannot identify which ports are
on the same fabric, and the connection setup is likely to be less than desirable.

If all the fabrics have a unique subnet ID, by default Platform MPI assumes that
the ports are connected based on the ibv_devinfo output port order on each node.
All the port 1s are assumed to be connected to fabric 1, and all the port 2s are
assumed to be connected to fabric 2. If all the nodes in the cluster have the first
InfiniBand port connected to the same fabric with the same subnet ID, Platform
MPI can run without any additional fabric topology hints.

If the physical fabric connections do not follow the convention described above,
then the fabric topology information must be supplied to Platform MPI. The
ibv_devinfo -v utility can be used on each node within the cluster to get the port
GID. If all the nodes in the cluster are connected in the same way and each fabric
has a unique subnet ID, the ibv_devinfo command only needs to be done on one
node.

The MPI_IB_PORT_GID environment variable is used to specify which InfiniBand
fabric subnet should be used by Platform MPI to make the initial InfiniBand
connection between the nodes.

For example, if the user runs Platform MPI on two nodes with the following
ibv_devinfo -v output, on the first node:
$ ibv_devinfo -v
hca_id: mthca0
fw_ver: 4.7.0
node_guid: 0008:f104:0396:62b4
....
max_pkeys: 64
local_ca_ack_delay: 15
port: 1
state: PORT_ACTIVE (4)
max_mtu: 2048 (4)
....
phys_state: LINK_UP (5)
GID[ 0]: fe80:0000:0000:0000:0008:f104:0396:62b5
port: 2
state: PORT_ACTIVE (4)
max_mtu: 2048 (4)
....
phys_state: LINK_UP (5)
GID[ 0]: fe80:0000:0000:0001:0008:f104:0396:62b6

The following is the second node configuration:
$ ibv_devinfo -v
hca_id: mthca0
fw_ver: 4.7.0
node_guid: 0008:f104:0396:a56c
....
max_pkeys: 64
local_ca_ack_delay: 15
port: 1
state: PORT_ACTIVE (4)
max_mtu: 2048 (4)
....
phys_state: LINK_UP (5)
GID[ 0]: fe80:0000:0000:0000:0008:f104:0396:a56d
port: 2
state: PORT_ACTIVE (4)
max_mtu: 2048 (4)

116 Platform MPI: User's Guide



....
phys_state: LINK_UP (5)
GID[ 0]: fe80:0000:0000:0001:0008:f104:0396:a56e

The subnet ID is contained in the first 16 digits of the GID. The second 16 digits of
the GID are the interface ID. In this example, port 1 on both nodes is on the same
subnet and has the subnet prefix fe80:0000:0000:0000. By default, Platform MPI
makes connections between nodes using the port 1. This port selection is only for
the initial InfiniBand connection setup.

In this second example, the default connection cannot be made. The following is
the first node configuration:
$ ibv_devinfo -v
hca_id: mthca0
fw_ver: 4.7.0
node_guid: 0008:f104:0396:62b4
....
max_pkeys: 64
local_ca_ack_delay: 15
port: 1
state: PORT_ACTIVE (4)
max_mtu: 2048 (4)
....
phys_state: LINK_UP (5)
GID[ 0]: fe80:0000:0000:0001:0008:f104:0396:62b5
port: 2
state: PORT_ACTIVE (4)
max_mtu: 2048 (4)
....
phys_state: LINK_UP (5)
GID[ 0]: fe80:0000:0000:0000:0008:f104:0396:62b6

The following is the second node configuration:
$ ibv_devinfo -v
hca_id: mthca0

fw_ver: 4.7.0
node_guid: 0008:f104:0396:6270

....
max_pkeys: 64
local_ca_ack_delay: 15
port: 1
state: PORT_ACTIVE (4)
max_mtu: 2048 (4)
....
phys_state: LINK_UP (5)
GID[ 0]: fe80:0000:0000:0000:0008:f104:0396:6271
port: 2
state: PORT_ACTIVE (4)
max_mtu: 2048 (4)
....
phys_state: LINK_UP (5)
GID[ 0]: fe80:0000:0000:0001:0008:f104:0396:6272

In this case, the subnet with prefix fe80:0000:0000:0001 includes port 1 on the first
node and port 2 on the second node. The second subnet with prefix
fe80:0000:0000:0000 includes port 2 on the first node and port 1 on the second.

To make the connection using the fe80:0000:0000:0001 subnet, pass this option ot
mpirun:

-e MPI_IB_PORT_GID=fe80:0000:0000:0001

Understanding Platform MPI 117



If the MPI_IB_PORT_GID environment variable is not supplied to mpirun, Platform
MPI checks the subnet prefix for the first port it chooses, determines that the
subnet prefixes do not match, prints the following message, and exits:

pp.x: Rank 0:1: MPI_Init: The IB ports chosen for IB connection setup do not
have the same subnet_prefix. Please provide a port GID
that all nodes have IB path to it by MPI_IB_PORT_GID

pp.x: Rank 0:1: MPI_Init: You can get port GID using ’ibv_devinfo -v’

MPI_IB_CARD_ORDER

Defines mapping of ranks to ports on IB cards for hosts that have either multi-port
IB cards, or multiple IB cards, or both.

% setenv MPI_IB_CARD_ORDER <card#>[:port#]

where

card#

Ranges from 0 to N-1

port#

Ranges from 0 to N-1

Card:port can be a comma-separated list that drives the assignment of ranks to
cards and ports in the cards.

Platform MPI numbers the ports on a card from 0 to N-1; whereas utilities such as
vstat display ports numbered 1 to N.

Examples:

To use the second IB card:

% mpirun -e MPI_IB_CARD_ORDER=1 ...

To use the second port of the second card:

% mpirun -e MPI_IB_CARD_ORDER=1:1 ...

To use the first IB card:

% mpirun -e MPI_IB_CARD_ORDER=0 ...

To assign ranks to multiple cards:

% mpirun -e MPI_IB_CARD_ORDER=0,1,2

This assigns the local ranks per node in order to each card.

% mpirun -hostlist "host0 4 host1 4"

Assuming two hosts, each with three IB cards, this creates ranks 0-3 on host 0 and
ranks 4-7 on host 1. It assigns rank 0 to card 0, rank 1 to card 1, rank 2 to card 2,
rank 3 to card 0 all on host 0. It also assigns rank 4 to card 0, rank 5 to card 1,
rank 6 to card 2, rank 7 to card 0 all on host 1.

118 Platform MPI: User's Guide



% mpirun -hostlist -np 8 "host0 host1"

Assuming two hosts, each with three IB cards, this creates ranks 0 through 7
alternating on host 0, host 1, host 0, host 1, etc. It assigns rank 0 to card 0, rank 2
to card 1, rank 4 to card 2, rank 6 to card 0 all on host 0. It assigns rank 1 to card
0, rank 3 to card 1, rank 5 to card 2, rank 7 to card 0 all on host 1.

MPI_IB_PKEY

Platform MPI supports IB partitioning via OFED Verbs API.

By default, Platform MPI searches the unique full membership partition key from
the port partition key table used. If no such pkey is found, an error is issued. If
multiple pkeys are found, all related pkeys are printed and an error message is
issued.

If the environment variable MPI_IB_PKEY has been set to a value, in hex or
decimal, the value is treated as the pkey and the pkey table is searched for the
same pkey. If the pkey is not found, an error message is issued.

When a rank selects a pkey to use, a verification is made to make sure all ranks
are using the same pkey. If ranks are not using the same pkey, and error message
is issued.

MPI_IBV_QPPARAMS

MPI_IBV_QPPARAMS=a,b,c,d,e

Specifies QP settings for IBV where:

a

Time-out value for IBV retry if there is no response from target. Minimum is 1.
Maximum is 31. Default is 18.

b

The retry count after a time-out before an error is issued. Minimum is 0.
Maximum is 7. Default is 7.

c

The minimum Receiver Not Ready (RNR) NAK timer. After this time, an RNR
NAK is sent back to the sender. Values: 1(0.01ms) - 31(491.52ms); 0(655.36ms).
The default is 24(40.96ms).

d

RNR retry count before an error is issued. Minimum is 0. Maximum is 7.
Default is 7 (infinite).

e

The max inline data size. Default is 128 bytes.

Memory usage environment variables
MPI_GLOBMEMSIZE

MPI_GLOBMEMSIZE=e

Understanding Platform MPI 119



Where e is the total bytes of shared memory of the job. If the job size is N, each
rank has e/N bytes of shared memory. 12.5% is used as generic. 87.5% is used as
fragments. The only way to change this ratio is to use MPI_SHMEMCNTL.

MPI_MALLOPT_MMAP_MAX

Instructs Platform MPI to call mallopt() to set M_MMAP_MAX to the specified
value. By default, Platform MPI calls mallopt() to set M_MMAP_MAX to 8 for
improved performance. This value is not required for correctness and can be set to
any desired value.

MPI_MALLOPT_MMAP_THRESHOLD

Instructs Platform MPI to call mallopt() to set M_MMAP_THRESHOLD to the
specified value, in bytes. By default, Platform MPI calls mallopt() to set
M_MMAP_THRESHOLD to a large value (typically 16 MB) for improved
performance. This value is not required for correctness and can be set to any
desired value.

MPI_PAGE_ALIGN_MEM

MPI_PAGE_ALIGN_MEM causes the Platform MPI library to page align and page
pad memory requests larger than 16 KB. This is for multithreaded InfiniBand
support.

% export MPI_PAGE_ALIGN_MEM=1

MPI_PHYSICAL_MEMORY

MPI_PHYSICAL_MEMORY allows the user to specify the amount of physical
memory in MB available on the system. MPI normally attempts to determine the
amount of physical memory for the purpose of determining how much memory to
pin for RDMA message transfers on InfiniBand and Myrinet GM. The value
determined by Platform MPI can be displayed using the -dd option. If Platform
MPI specifies an incorrect value for physical memory, this environment variable
can be used to specify the value explicitly:

% export MPI_PHYSICAL_MEMORY=1024

The above example specifies that the system has 1 GB of physical memory.

MPI_PIN_PERCENTAGE and MPI_PHYSICAL_MEMORY are ignored unless
InfiniBand or Myrinet GM is in use.

MPI_PIN_PERCENTAGE

MPI_PIN_PERCENTAGE communicates the maximum percentage of physical
memory (see MPI_PHYSICAL_MEMORY) that can be pinned at any time. The
default is 20%.

% export MPI_PIN_PERCENTAGE=30

The above example permits the Platform MPI library to pin (lock in memory) up to
30% of physical memory. The pinned memory is shared between ranks of the host
that were started as part of the same mpirun invocation. Running multiple MPI
applications on the same host can cumulatively cause more than one application's

120 Platform MPI: User's Guide



MPI_PIN_PERCENTAGE to be pinned. Increasing MPI_PIN_PERCENTAGE can
improve communication performance for communication-intensive applications in
which nodes send and receive multiple large messages at a time, which is common
with collective operations. Increasing MPI_PIN_PERCENTAGE allows more large
messages to be progressed in parallel using RDMA transfers; however, pinning too
much physical memory can negatively impact computation performance.
MPI_PIN_PERCENTAGE and MPI_PHYSICAL_MEMORY are ignored unless
InfiniBand or Myrinet GM is in use.

MPI_RANKMEMSIZE

MPI_RANKMEMSIZE=d

Where d is the total bytes of shared memory of the rank. Specifies the shared
memory for each rank. 12.5% is used as generic. 87.5% is used as fragments. The
only way to change this ratio is to use MPI_SHMEMCNTL. MPI_RANKMEMSIZE
differs from MPI_GLOBMEMSIZE, which is the total shared memory across all
ranks on the host. MPI_RANKMEMSIZE takes precedence over
MPI_GLOBMEMSIZE if both are set. MPI_RANKMEMSIZE and
MPI_GLOBMEMSIZE are mutually exclusive to MPI_SHMEMCNTL. If
MPI_SHMEMCNTL is set, the user cannot set the other two, and vice versa.

MPI_SHMEMCNTL

MPI_SHMEMCNTL controls the subdivision of each process's shared memory for
point-to-point and collective communications. It cannot be used with
MPI_GLOBMEMSIZE. The MPI_SHMEMCNTL syntax is a comma-separated list as
follows:

nenv,frag,generic

where

nenv

Specifies the number of envelopes per process pair. The default is 8.

frag

Denotes the size in bytes of the message-passing fragments region. The default
is 87.5% of shared memory after mailbox and envelope allocation.

generic

Specifies the size in bytes of the generic-shared memory region. The default is
12.5% of shared memory after mailbox and envelope allocation. The generic
region is typically used for collective communication.

MPI_SHMEMCNTL=a,b,c

where

a

The number of envelopes for shared memory communication. The default is 8.

b

The bytes of shared memory to be used as fragments for messages.

c

Understanding Platform MPI 121



The bytes of shared memory for other generic use, such as MPI_Alloc_mem()
call.

MPI_USE_MALLOPT_MMAP_MAX

If set to 0, Platform MPI does not explicitly call mallopt() with any
M_MMAP_MAX setting, thus using the system default.

MPI_USE_MALLOPT_MMAP_THRESHOLD

If set to 0, Platform MPI does not explicitly call mallopt() with any
M_MMAP_THRESHOLD setting, thus using the system default.

MPI_USE_MMAP_PATCHING

Instructs Platform MPI to intercept mmap, munmap, mremap, and madvise, which is
needed to support lazy deregistration on InfiniBand and related interconnects.

If set to 0, this disables Platform MPI’s interception of mmap, munmap, mremap, and
madvise. If a high speed interconnect such as InfiniBand is used, the -ndd option
must be set in addition to disabling this variable to disable lazy deregistration.
This variable is enabled by default.

Connection related environment variables
MPI_LOCALIP

MPI_LOCALIP specifies the host IP address assigned throughout a session.
Ordinarily, mpirun determines the IP address of the host it is running on by calling
gethostbyaddr. However, when a host uses SLIP or PPP, the host's IP address is
dynamically assigned only when the network connection is established. In this
case, gethostbyaddr might not return the correct IP address.

The MPI_LOCALIP syntax is as follows:

xxx.xxx.xxx.xxx

MPI_MAX_REMSH

MPI_MAX_REMSH=N

Platform MPI includes a start-up scalability enhancement when using the -f option
to mpirun. This enhancement allows a large number of Platform MPI daemons
(mpid) to be created without requiring mpirun to maintain a large number of
remote shell connections.

When running with a very large number of nodes, the number of remote shells
normally required to start all daemons can exhaust available file descriptors. To
create the necessary daemons, mpirun uses the remote shell specified with
MPI_REMSH to create up to 20 daemons only, by default. This number can be
changed using the environment variable MPI_MAX_REMSH. When the number of
daemons required is greater than MPI_MAX_REMSH, mpirun creates only
MPI_MAX_REMSH number of remote daemons directly. The directly created
daemons then create the remaining daemons using an n-ary tree, where n is the
value of MPI_MAX_REMSH. Although this process is generally transparent to the
user, the new start-up requires that each node in the cluster can use the specified

122 Platform MPI: User's Guide



MPI_REMSH command (e.g., rsh, ssh) to each node in the cluster without a
password. The value of MPI_MAX_REMSH is used on a per-world basis.
Therefore, applications that spawn a large number of worlds might need to use a
small value for MPI_MAX_REMSH. MPI_MAX_REMSH is only relevant when
using the -f option to mpirun. The default value is 20.

MPI_NETADDR

Allows control of the selection process for TCP/IP connections. The same
functionality can be accessed by using the -netaddr option to mpirun. For more
information, refer to the mpirun documentation.

MPI_REMSH

By default, Platform MPI attempts to use ssh on Linux. We recommend that ssh
users set StrictHostKeyChecking=no in their ~/.ssh/config.

To use rsh on Linux instead, run the following script as root on each node in the
cluster:

/opt/platform_mpi/etc/mpi.remsh.default

Or, to use rsh on Linux, use the alternative method of manually populating the
files /etc/profile.d/pcmpi.csh and /etc/profile.d/pcmpi.sh with the following
settings respectively:

setenv MPI_REMSH rsh

export MPI_REMSH=rsh

On Linux, MPI_REMSH specifies a command other than the default remsh to start
remote processes. The mpirun, mpijob, and mpiclean utilities support MPI_REMSH.
For example, you can set the environment variable to use a secure shell:

% setenv MPI_REMSH /bin/ssh

Platform MPI allows users to specify the remote execution tool to use when
Platform MPI must start processes on remote hosts. The tool must have a call
interface similar to that of the standard utilities: rsh, remsh and ssh. An alternate
remote execution tool, such as ssh, can be used on Linux by setting the
environment variable MPI_REMSH to the name or full path of the tool to use:

export MPI_REMSH=ssh

$MPI_ROOT/bin/mpirun <options> -f <appfile>

Platform MPI also supports setting MPI_REMSH using the -e option to mpirun:

$MPI_ROOT/bin/mpirun -e MPI_REMSH=ssh <options> -f <appfile>

Platform MPI also supports setting MPI_REMSH to a command that includes
additional arguments:

$MPI_ROOT/bin/mpirun -e 'MPI_REMSH="ssh -x"' <options> -f <appfile>

Understanding Platform MPI 123



When using ssh, be sure that it is possible to use ssh from the host where mpirun
is executed without ssh requiring interaction from the user.

MPI_REMSH_LOCAL

If this environment variable is set, mpirun will use MPI_REMSH to spawn the
mpids local to the host where mpirun is executing.

RDMA tunable environment variables
MPI_RDMA_INTRALEN

-e MPI_RDMA_INTRALEN=262144

Specifies the size (in bytes) of the transition from shared memory to interconnect
when -intra=mix is used. For messages less than or equal to the specified size,
shared memory is used. For messages greater than that size, the interconnect is
used. TCP/IP, Elan, MX, and PSM do not have mixed mode.

The default is 262144 bytes.

MPI_RDMA_MSGSIZE

MPI_RDMA_MSGSIZE=a,b,c

Specifies message protocol length where:

a

Short message protocol threshold. If the message length is bigger than this
value, middle or long message protocol is used. The default is 16384 bytes.

b

Middle message protocol. If the message length is less than or equal to b,
consecutive short messages are used to send the whole message. By default, b
is set to 16384 bytes, the same as a, to effectively turn off middle message
protocol. On IBAL, the default is 131072 bytes.

c

Long message fragment size. If the message is greater than b, the message is
fragmented into pieces up to c in length (or actual length if less than c) and the
corresponding piece of the user's buffer is pinned directly. The default is
4194304 bytes, but on Myrinet GM and IBAL the default is 1048576 bytes.

When deferred deregistration is used, pinning memory is fast. Therefore, the
default setting for MPI_RDMA_MSGSIZE is 16384, 16384, 4194304 which means
any message over 16384 bytes is pinned for direct use in RDMA operations.

However, if deferred deregistration is not used (-ndd), then pinning memory is
expensive. In that case, the default setting for MPI_RDMA_MSGSIZE is 16384,
262144, 4194304 which means messages larger than 16384 and smaller than or
equal to 262144 bytes are copied into pre-pinned memory using Platform MPI
middle message protocol rather than being pinned and used in RDMA operations
directly.

The middle message protocol performs better than the long message protocol if
deferred deregistration is not used.

124 Platform MPI: User's Guide



For more information, see the MPI_RDMA_MSGSIZE section of the mpienv
manpage.

MPI_RDMA_NENVELOPE

MPI_RDMA_NENVELOPE=N

Specifies the number of short message envelope pairs for each connection if RDMA
protocol is used, where N is the number of envelope pairs. The default is from 8 to
128 depending on the number of ranks.

MPI_RDMA_NFRAGMENT

MPI_RDMA_NFRAGMENT=N

Specifies the number of long message fragments that can be concurrently pinned
down for each process, sending or receiving. The maximum number of fragments
that can be pinned down for a process is 2*N. The default value of N is 128.

MPI_RDMA_NSRQRECV

MPI_RDMA_NSRQRECV=K

Specifies the number of receiving buffers used when the shared receiving queue is
used, where K is the number of receiving buffers. If N is the number of off host
connections from a rank, the default value is calculated as the smaller of the values
Nx8 and 2048.

In the above example, the number of receiving buffers is calculated as 8 times the
number of off host connections. If this number is greater than 2048, the maximum
number used is 2048.

Protocol reporting (prot) environment variables
MPI_PROT_BRIEF

Disables the printing of the host name or IP address, and the rank mappings when
-prot is specified in the mpirun command line.

In normal cases, that is, when all of the on-node and off-node ranks communicate
using the same protocol, only two lines are displayed, otherwise, the entire matrix
displays. This allows you to see when abnormal or unexpected protocols are being
used.

MPI_PROT_MAX

Specifies the maximum number of columns and rows displayed in the -prot
output table. This number corresponds to the number of mpids that the job uses,
which is typically the number of hosts when block scheduling is used, but can be
up to the number of ranks if cyclic scheduling is used.

Regardless of size, the -prot output table is always displayed when not all of the
inter-node or intra-node communications use the same communication protocol.

Understanding Platform MPI 125



srun environment variables
MPI_SPAWN_SRUNOPTIONS

Allows srun options to be implicitly added to the launch command when SPAWN
functionality is used to create new ranks with srun.

MPI_SRUNOPTIONS

Allows additional srun options to be specified such as --label.

setenv MPI_SRUNOPTIONS <option>

MPI_USESRUN

Enabling MPI_USESRUN allows mpirun to launch its ranks remotely using
SLURM's srun command. When this environment variable is specified, options to
srun must be specified via the MPI_SRUNOPTIONS environment variable.

MPI_USESRUN_IGNORE_ARGS

Provides an easy way to modify the arguments contained in an appfile by
supplying a list of space-separated arguments that mpirun should ignore.

setenv MPI_USESRUN_IGNORE_ARGS <option>

TCP environment variables
MPI_TCP_CORECVLIMIT

The integer value indicates the number of simultaneous messages larger than 16
KB that can be transmitted to a single rank at once via TCP/IP. Setting this
variable to a larger value can allow Platform MPI to use more parallelism during
its low-level message transfers, but can greatly reduce performance by causing
switch congestion. Setting MPI_TCP_CORECVLIMIT to zero does not limit the
number of simultaneous messages a rank can receive at once. The default value is
0.

MPI_SOCKBUFSIZE

Specifies, in bytes, the amount of system buffer space to allocate for sockets when
using TCP/IP for communication. Setting MPI_SOCKBUFSIZE results in calls to
setsockopt (..., SOL_SOCKET, SO_SNDBUF, ...) and setsockopt (..., SOL_SOCKET,
SO_RCVBUF, ...). If unspecified, the system default (which on many systems is
87380 bytes) is used.

Windows HPC environment variables
MPI_SAVE_TASK_OUTPUT

Saves the output of the scheduled HPCCPService task to a file unique for each node.
This option is useful for debugging startup issues. This option is not set by default.

MPI_FAIL_ON_TASK_FAILURE

Sets the scheduled job to fail if any task fails. The job will stop execution and
report as failed if a task fails. The default is set to true (1). To turn off, set to 0.

126 Platform MPI: User's Guide



MPI_COPY_LIBHPC

Controls when mpirun copies libhpc.dll to the first node of HPC job allocation.
Due to security defaults in early versions of Windows .NET, it was not possible for
a process to dynamically load a .NET library from a network share. To avoid this
issue, Platform MPI copies libHPC.dll to the first node of an allocation before
dynamically loading it. If your .NET security is set up to allow dynamically
loading a library over a network share, you may wish to avoid this unnecessary
copying during job startup. Values:
v 0 – Don't copy.
v 1 (default) – Use cached libhpc on compute node.
v 2 – Copy and overwrite cached version on compute nodes.

Rank identification environment variables
Platform MPI sets several environment variables to let the user access information
about the MPI rank layout prior to calling MPI_Init. These variables differ from the
others in this section in that the user doesn't set these to provide instructions to
Platform MPI. Platform MPI sets them to give information to the user's application.

PCMPI=1

This is set so that an application can conveniently tell if it is running under
Platform MPI.

Note:

This environment variable replaces the deprecated environment variable
HPMPI=1. To support legacy applications, HPMPI=1 is still set in the ranks
environment.

MPI_NRANKS

This is set to the number of ranks in the MPI job.

MPI_RANKID

This is set to the rank number of the current process.

MPI_LOCALNRANKS

This is set to the number of ranks on the local host.

MPI_LOCALRANKID

This is set to the rank number of the current process relative to the local host
(0.. MPI_LOCALNRANKS-1).

These settings are not available when running under srun or prun. However,
similar information can be gathered from variables set by those systems, such
as SLURM_NPROCS and SLURM_PROCID.

Scalability
Interconnect support of MPI-2 functionality

Platform MPI has been tested on InfiniBand clusters with more than 16K ranks
using the IBV protocol. Most Platform MPI features function in a scalable manner.
However, the following are still subject to significant resource growth as the job
size grows.

Understanding Platform MPI 127



Table 17. Scalability

Feature Affected Interconnect/Protocol Scalability Impact

spawn All Forces use of pairwise socket
connections between all mpid's
(typically one mpid per machine).

one-sided shared lock/unlock All except IBV Only IBV provides low-level calls to
efficiently implement shared
lock/unlock. All other interconnects
require mpid's to satisfy this feature.

one-sided exclusive lock/unlock All except IBV IBV provides low-level calls that
allow Platform MPI to efficiently
implement exclusive lock/unlock. All
other interconnects require mpid's to
satisfy this feature.

one-sided other TCP/IP All interconnects other than TCP/IP
allow Platform MPI to efficiently
implement the remainder of the
one-sided functionality. Only when
using TCP/IP are mpid's required to
satisfy this feature.

Resource usage of TCP/IP communication

Platform MPI has been tested on large Linux TCP/IP clusters with as many as
2048 ranks. Because each Platform MPI rank creates a socket connection to each
other remote rank, the number of socket descriptors required increases with the
number of ranks. On many Linux systems, this requires increasing the operating
system limit on per-process and system-wide file descriptors.

The number of sockets used by Platform MPI can be reduced on some systems at
the cost of performance by using daemon communication. In this case, the
processes on a host use shared memory to send messages to and receive messages
from the daemon. The daemon, in turn, uses a socket connection to communicate
with daemons on other hosts. Using this option, the maximum number of sockets
opened by any Platform MPI process grows with the number of hosts used by the
MPI job rather than the number of total ranks.

128 Platform MPI: User's Guide



To use daemon communication, specify the -commd option in the mpirun command.
After you set the -commd option, you can use the MPI_COMMD environment
variable to specify the number of shared-memory fragments used for inbound and
outbound messages. Daemon communication can result in lower application
performance. Therefore, it should only be used to scale an application to a large
number of ranks when it is not possible to increase the operating system file
descriptor limits to the required values.

Resource usage of RDMA communication modes

When using InfiniBand or GM, some memory is pinned, which means it is locked
to physical memory and cannot be paged out. The amount of prepinned memory
Platform MPI uses can be adjusted using several tunables, such as
MPI_RDMA_MSGSIZE, MPI_RDMA_NENVELOPE, MPI_RDMA_NSRQRECV, and
MPI_RDMA_NFRAGMENT.

By default when the number of ranks is less than or equal to 512, each rank
prepins 256 Kb per remote rank; thus making each rank pin up to 128 Mb. If the
number of ranks is above 512 but less than or equal to 1024, then each rank only
prepins 96 Kb per remote rank; thus making each rank pin up to 96 Mb. If the
number of ranks is over 1024, then the 'shared receiving queue' option is used
which reduces the amount of prepinned memory used for each rank to a fixed 64
Mb regardless of how many ranks are used.

Platform MPI also has safeguard variables MPI_PHYSICAL_MEMORY and
MPI_PIN_PERCENTAGE which set an upper bound on the total amount of
memory the Platform MPI job will pin. An error is reported during start-up if this
total is not large enough to accommodate the prepinned memory.

Understanding Platform MPI 129



Dynamic processes
Platform MPI provides support for dynamic process management, specifically the
spawning, joining, and connecting of new processes. MPI_Comm_spawn() starts MPI
processes and establishes communication with them, returning an
intercommunicator.

MPI_Comm_spawn_multiple() starts several binaries (or the same binary with
different arguments), placing them in the same comm_world and returning an
intercommunicator. The MPI_Comm_spawn() and MPI_Comm_spawn_multiple() routines
provide an interface between MPI and the runtime environment of an MPI
application.

MPI_Comm_accept() and MPI_Comm_connect() along with MPI_Open_port() and
MPI_Close_port() allow two independently run MPI applications to connect to each
other and combine their ranks into a single communicator.

MPI_Comm_join() allows two ranks in independently run MPI applications to
connect to each other and form an intercommunicator given a socket connection
between them.

Processes that are not part of the same MPI world, but are introduced through
calls to MPI_Comm_connect(), MPI_Comm_accept(), MPI_Comm_spawn(), or
MPI_Comm_spawn_multiple() attempt to use InfiniBand for communication. Both
sides need to have InfiniBand support enabled and use the same InfiniBand
parameter settings, otherwise TCP will be used for the connection. Only OFED IBV
protocol is supported for these connections. When the connection is established
through one of these MPI calls, a TCP connection is first established between the
root process of both sides. TCP connections are set up among all the processes.
Finally, IBV InfiniBand connections are established among all process pairs, and the
TCP connections are closed.

Spawn functions supported in Platform MPI:
v MPI_Comm_get_parent()
v MPI_Comm_spawn()
v MPI_Comm_spawn_multiple()
v MPI_Comm_accept()
v MPI_Comm_connect()
v MPI_Open_port()
v MPI_Close_port()
v MPI_Comm_join()

Keys interpreted in the info argument to the spawn calls:
v host : We accept standard host.domain strings and start the ranks on the

specified host. Without this key, the default is to start on the same host as the
root of the spawn call.

v wdir : We accept /some/directory strings.
v path : We accept /some/directory:/some/other/directory.

A mechanism for setting arbitrary environment variables for the spawned ranks is
not provided.

130 Platform MPI: User's Guide



Singleton launching
Platform MPI supports the creation of a single rank without the use of mpirun,
called singleton launching. It is only valid to launch an MPI_COMM_WORLD of
size one using this approach. The single rank created in this way is executed as if
it were created with mpirun -np 1 <executable>. Platform MPI environment
variables can influence the behavior of the rank. Interconnect selection can be
controlled using the environment variable MPI_IC_ORDER. Many command-line
options that would normally be passed to mpirun cannot be used with singletons.
Examples include, but are not limited to, -cpu_bind, -d, -prot, -ndd, -srq, and -T.
Some options, such as -i, are accessible through environment variables
(MPI_INSTR) and can still be used by setting the appropriate environment variable
before creating the process.

Creating a singleton using fork() and exec() from another MPI process has the
same limitations that OFED places on fork() and exec().

License release/regain on suspend/resume
Platform MPI supports the release and regain of license keys when a job is
suspended and resumed by a job scheduler. This feature is recommended for use
only with a batch job scheduler. To enable this feature, add
-e PCMPI_ALLOW_LICENSE_RELEASE=1 to the mpirun command line. When mpirun
receives a SIGTSTP, the licenses that are used for that job are released back to the
license server. Those released licenses can run another Platform MPI job while the
first job remains suspended. When a suspended mpirun job receives a SIGCONT, the
licenses are reacquired and the job continues. If the licenses cannot be reacquired
from the license server, the job exits.

When a job is suspended in Linux, any memory that is pinned is not swapped to
disk, and is not handled by the operating system virtual memory subsystem.
Platform MPI pins memory that is associated with RDMA message transfers. By
default, up to 20% of the system memory can be pinned by Platform MPI at any
one time. The amount of memory that is pinned can be changed by two
environment variables: MPI_PHYSICAL_MEMORY and MPI_PIN_PERCENTAGE
(default 20%). The -dd option to mpirun displays the amount of physical memory
that is detected by Platform MPI. If the detection is wrong, the correct amount of
physical memory should be set with MPI_PHYSICAL_MEMORY in bytes. This
memory is only returned to the operating system for use by other processes after
the job resumes and exits.

Signal propagation (Linux only)
Platform MPI supports the propagation of signals from mpirun to application ranks.
The mpirun executable traps the following signals and propagates them to the
following ranks:
v SIGINT

v SIGTERM

v SIGABRT

v SIGALRM

v SIGFPE

v SIGHUP

v SIGILL

v SIGPIPE

Understanding Platform MPI 131



v SIGQUIT

v SIGSEGV

v SIGUSR1

v SIGUSR2

v SIGBUS

v SIGPROF

v SIGSYS

v SIGTRAP

v SIGURG

v SIGVTALRM

v SIGPOLL

v SIGCONT

v SIGTSTP

When using an appfile, Platform MPI propagates these signals to remote Platform
MPI daemons (mpid) and local ranks. Each daemon propagates the signal to the
ranks it created. An exception is the treatment of SIGTSTP. When a daemon
receives an SIGTSTP signal, it propagates SIGSTOP to the ranks it created and then
raises SIGSTOP on itself. This allows all processes related to the Platform MPI
execution to be suspended and resumed using SIGTSTP and SIGCONT.

The Platform MPI library also changes the default signal-handling properties of the
application in a few specific cases. When using the -ha option to mpirun, SIGPIPE
is ignored. When using MPI_FLAGS=U, an MPI signal handler for printing
outstanding message status is established for SIGUSR1. When using
MPI_FLAGS=sa, an MPI signal handler used for message propagation is
established for SIGALRM. When using MPI_FLAGS=sp, an MPI signal handler
used for message propagation is established for SIGPROF.

In general, Platform MPI relies on applications terminating when they are sent
SIGTERM. In any abnormal exit situation, Platform MPI will send all remaining
ranks SIGTERM. Applications that catch SIGTERM are responsible to ensure that
they terminate.

If srun is used for launching the application, then mpirun sends the signal to the
responsible launcher and relies on the signal propagation capabilities of the
launcher to ensure that the signal is propagated to the ranks.

In some cases, a user or resource manager may try to signal all of the processes of
a job simultaneously using their own methods. In some cases when mpirun, the
mpids and the ranks of a job are all signaled outside of mpirun's normal signal
propagation channels, the job can hang or cause defunct processes. To avoid this,
signal only the mpirun process to deliver job wide signal, or signal the individual
ranks for specific rank signaling.

MPI-2 name publishing support
Platform MPI supports the MPI-2 dynamic process functionality MPI_Publish_name,
MPI_Unpublish_name, MPI_Lookup_name, with the restriction that a separate
nameserver must be started up on a server.

The service can be started as:

132 Platform MPI: User's Guide



$MPI_ROOT/bin/nameserver

and prints out an IP and port. When running mpirun, the extra option -nameserver
with an IP address and port must be provided:

$MPI_ROOT/bin/mpirun -spawn -nameserver <IP:port> ...

The scope over which names are published and retrieved consists of all mpirun
commands that are started using the same IP:port for the nameserver.

Native language support
By default, diagnostic messages and other feedback from Platform MPI are
provided in English. Support for other languages is available through the use of
the Native Language Support (NLS) catalog and the internationalization
environment variable NLSPATH.

The default NLS search path for Platform MPI is $NLSPATH. For NLSPATH usage,
see the environ(5) manpage.

When an MPI language catalog is available, it represents Platform MPI messages in
two languages. The messages are paired so that the first in the pair is always the
English version of a message and the second in the pair is the corresponding
translation to the language of choice.

For more information about Native Language Support, see the hpnls (5), environ
(5), and lang (5) manpages.

Understanding Platform MPI 133



134 Platform MPI: User's Guide



Profiling

This chapter provides information about utilities you can use to analyze Platform
MPI applications.

“Using counter instrumentation”
“Using the profiling interface” on page 138
“Viewing MPI messaging using MPE” on page 139

Using counter instrumentation
Counter instrumentation is a lightweight method for generating cumulative
run-time statistics for MPI applications. When you create an instrumentation
profile, Platform MPI creates an output file in ASCII format.

You can create instrumentation profiles for applications linked with the standard
Platform MPI library. For applications linked with Platform MPI, you can also
create profiles for applications linked with the thread-compliant library (-lmtmpi).
Instrumentation is not supported for applications linked with the diagnostic library
(-ldmpi) or dynamically wrapped using -entry=dmpi.

Creating an instrumentation profile
Counter instrumentation is a lightweight method for generating cumulative
run-time statistics for MPI applications. When you create an instrumentation
profile, Platform MPI creates an ASCII format file containing statistics about the
execution.

Instrumentation is not supported for applications linked with the diagnostic library
(-ldmpi) or dynamically-wrapped using -entry=dmpi.

The syntax for creating an instrumentation profile is:

mpirun -i prefix[:l][:nc][:off][:cpu][:mp][:api]

where

prefix

Specifies the instrumentation output file prefix. The rank zero process writes
the application's measurement data to prefix.instr in ASCII. If the prefix does
not represent an absolute pathname, the instrumentation output file is opened
in the working directory of the rank zero process when MPI_Init is called.

l

Locks ranks to CPUs and uses the CPU's cycle counter for less invasive timing.
If used with gang scheduling, the :l is ignored.

nc

Specifies no clobber. If the instrumentation output file exists, MPI_Init aborts.

off

Specifies that counter instrumentation is initially turned off and only begins
after all processes collectively call MPIHP_Trace_on.

© Copyright IBM Corp. 1994, 2012 135



cpu

Enables display of the CPU Usage column of the "Routine Summary by Rank"
instrumentation output. Disabled by default.

nb

Disables display of the Overhead/Blocking time columns of the "Routine
Summary by Rank" instrumentation output. Enabled by default.

api

Collects and displays detailed information regarding the MPI application
programming interface. This option prints a new section in the instrumentation
output file for each MPI routine called by each rank, displaying which MPI
datatype and operation was requested, along with message size, call counts,
and timing information. This feature is only available on HP Hardware.

For example, to create an instrumentation profile for an executable called
compute_pi:

$MPI_ROOT/bin/mpirun -i compute_pi -np 2 compute_pi

This invocation creates an ASCII file named compute_pi.instr containing
instrumentation profiling.

Platform MPI also supports specifying instrumentation options by setting the
MPI_INSTR environment variable, which takes the same arguments as mpirun's -i
flag. Specifications you make using mpirun -i override specifications you make
using the MPI_INSTR environment variable.

MPIHP_Trace_on and MPIHP_Trace_off

By default, the entire application is profiled from MPI_Init to MPI_Finalize.
However, Platform MPI provides the nonstandard MPIHP_Trace_on and
MPIHP_Trace_off routines to collect profile information for selected code sections
only.

To use this functionality:
1. Insert the MPIHP_Trace_on and MPIHP_Trace_off pair around code that you want

to profile.
2. Build the application and invoke mpirun with the -i <prefix> off; option. -i

<index> off; specifies that counter instrumentation is enabled but initially
turned off. Data collection begins after all processes collectively call
MPIHP_Trace_on. Platform MPI collects profiling information only for code
between MPIHP_Trace_on and MPIHP_Trace_off

Viewing ASCII instrumentation data
The ASCII instrumentation profile is a text file with the .instr extension. For
example, to view the instrumentation file for the compute_pi.f application, you can
print the prefix.instr file. If you defined prefix for the file as compute_pi, you would
print compute_pi.instr.

Whether mpirun is invoked on a host where at least one MPI process is running or
on a host remote from all MPI processes, Platform MPI writes the instrumentation
output file prefix.instr to the working directory on the host that is running rank
0 (when instrumentation for multihost runs is enabled). When using -ha, the

136 Platform MPI: User's Guide



output file is located on the host that is running the lowest existing rank number
at the time the instrumentation data is gathered during MPI_Finalize().

The ASCII instrumentation profile provides the version, the date your application
ran, and summarizes information according to application, rank, and routines.

The information available in the prefix.instr file includes:
v Overhead time : The time a process or routine spends inside MPI (for example,

the time a process spends doing message packing or spinning waiting for
message arrival).

v Blocking time : The time a process or routine is blocked waiting for a message to
arrive before resuming execution.

Note:

Overhead and blocking times are most useful when using -e MPI_FLAGS=y0.
v Communication hot spots : The processes in your application for which the

largest amount of time is spent in communication.
v Message bin : The range of message sizes in bytes. The instrumentation profile

reports the number of messages according to message length.

The following displays the contents of the example report compute_pi.instr.

ASCII Instrumentation Profile
Version: Platform MPI 09.10.00.00 B6060BA
Date: Mon Apr 01 15:59:10 2010
Processes: 2
User time: 6.57%
MPI time : 93.43% [Overhead:93.43% Blocking:0.00%]
-----------------------------------------------------------------
-------------------- Instrumentation Data --------------------
-----------------------------------------------------------------
Application Summary by Rank (second):
Rank Proc CPU Time User Portion System Portion
-----------------------------------------------------------------
0 0.040000 0.010000( 25.00%) 0.030000( 75.00%)
1 0.030000 0.010000( 33.33%) 0.020000( 66.67%)
-----------------------------------------------------------------
Rank Proc Wall Time User MPI
----------------------------------------------------------------
0 0.126335 0.008332( 6.60%) 0.118003( 93.40%)
1 0.126355 0.008260( 6.54%) 0.118095( 93.46%)
-----------------------------------------------------------------
Rank Proc MPI Time Overhead Blocking
-----------------------------------------------------------------
0 0.118003 0.118003(100.00%) 0.000000( 0.00%)
1 0.118095 0.118095(100.00%) 0.000000( 0.00%)
-----------------------------------------------------------------
Routine Summary by Rank:
Rank Routine Statistic Calls Overhead(ms) Blocking(ms)
--------------------------------------------------------------
0
MPI_Bcast 1 5.397081 0.000000
MPI_Finalize 1 1.238942 0.000000
MPI_Init 1 107.195973 0.000000
MPI_Reduce 1 4.171014 0.000000
--------------------------------------------------------------
1
MPI_Bcast 1 5.388021 0.000000
MPI_Finalize 1 1.325965 0.000000
MPI_Init 1 107.228994 0.000000

Profiling 137



MPI_Reduce 1 4.152060 0.000000
--------------------------------------------------------------
Message Summary by Rank Pair:
SRank DRank Messages (minsize,maxsize)/[bin] Totalbytes
--------------------------------------------------------------
0

1 1 (4, 4) 4
1 [0..64] 4

--------------------------------------------------------------
1

0 1 (8, 8) 8
1 [0..64] 8

--------------------------------------------------------------

Using the profiling interface
The MPI profiling interface provides a mechanism by which implementors of
profiling tools can collect performance information without access to the
underlying MPI implementation source code.

The profiling interface allows you to intercept calls made by the user program to
the MPI library. For example, you might want to measure the time spent in each
call to a specific library routine or to create a log file. You can collect information
of interest and then call the underlying MPI implementation through an alternate
entry point as described below.

Routines in the Platform MPI library begin with the MPI_ prefix. Consistent with
the Profiling Interface section of the MPI 1.2 standard, routines are also accessible
using the PMPI_ prefix (for example, MPI_Send and PMPI_Send access the same
routine).

To use the profiling interface, write wrapper versions of the MPI library routines
you want the linker to intercept. These wrapper routines collect data for some
statistic or perform some other action. The wrapper then calls the MPI library
routine using the PMPI_ prefix.

Because Platform MPI provides several options for profiling your applications, you
might not need the profiling interface to write your routines. Platform MPI makes
use of MPI profiling interface mechanisms to provide the diagnostic library for
debugging. In addition, Platform MPI provides tracing and lightweight counter
instrumentation.

Platform MPI provides a runtime argument to mpirun, -entry=library, which
allows MPI to dynamically wrap an application's MPI calls with calls into the
library written using the profiling interface, rather than requiring the application to
be relinked with the profiling library. For more information, refer to the Dynamic
library interface section of “MPI routine selection” on page 144.

Fortran profiling interface

When writing profiling routines, do not call Fortran entry points from C profiling
routines, and visa versa. To profile Fortran routines, separate wrappers must be
written.

For example:
#include <stdio.h>
#include <mpi.h>
int MPI_Send(void *buf, int count, MPI_Datatype type,

138 Platform MPI: User's Guide



int to, int tag, MPI_Comm comm)
{
printf("Calling C MPI_Send to %d\n", to);
return PMPI_Send(buf, count, type, to, tag, comm);
}
#pragma weak (mpi_send mpi_send)
void mpi_send(void *buf, int *count, int *type, int *to,
int *tag, int *comm, int *ierr)
{

printf("Calling Fortran MPI_Send to %d\n", *to);
pmpi_send(buf, count, type, to, tag, comm, ierr);

C++ profiling interface

The Platform MPI C++ bindings are wrappers to C calls. No profiling library exists
for C++ bindings. To profile the C++ interface, write the equivalent C wrapper
version of the MPI library routines you want to profile. For details on profiling the
C MPI libraries, see the section above.

Viewing MPI messaging using MPE
Platform MPI ships with a prebuilt MPE (MPI Parallel Environment) profiling tool,
which is a popular profiling wrapper. Using MPE along with jumpshot (a graphical
viewing tool), you can view the MPI messaging of your own MPI application.

The -entry option provides runtime access to the MPE interface wrappers via the
mpirun command line without relinking the application.

For example:

mpirun -np 2 -entry=mpe ./ping_pong.x

The result of this command would be a single file in the working directory of rank
0 named ping_pong.x.clog2. Use the jumpshot command to convert this log file to
different formats and to view the results.

Using MPE requires the addition of a runtime flag to mpirun — no recompile or
relink is required. For more documentation related to MPE, refer to
http://www.mcs.anl.gov/research/projects/perfvis/download/index.htm#MPE.

You can use the jumpshot command to convert the log file to different formats and
to view the results.

Use MPE with jumpshot to view MPI messaging as follows:
1. Build an application as normal, or use an existing application that is already

built.
2. Run the application using the -entry=mpe option.

For example
mpirun -entry=mpe -hostlist node1,node2,node3,node4 rank.out

3. Set the JVM environment variable to point to the Java executable.
For example,
setenv JVM /user/java/jre1.6.0_18/bin/java

4. Run jumpshot.
$MPI_ROOT/bin/jumpshot Unknown.clog2

5. Click Convert to convert the instrumentation file and click OK.

Profiling 139

http://www.mcs.anl.gov/research/projects/perfvis/download/index.htm#MPE


6. View the jumpshot data.

When viewing the MPE timings using jumpshot, several windows pop up on your
desktop. A key window indicating the MPI calls by color in the main jumpshot
windows and the main window are the two important windows.

Time spent in the various MPI calls is displayed in different colors, and messages
are shown as arrows. You can right-click on both the calls and the messages for
more information.

140 Platform MPI: User's Guide



Tuning

This chapter provides information about tuning Platform MPI applications to
improve performance.

The tuning information in this chapter improves application performance in most
but not all cases. Use this information together with the output from counter
instrumentation to determine which tuning changes are appropriate to improve
your application's performance.

When you develop Platform MPI applications, several factors can affect
performance. These factors are outlined in this chapter.

“Tunable parameters”
“Message latency and bandwidth” on page 142
“Multiple network interfaces” on page 143
“Processor subscription” on page 143
“Processor locality” on page 144
“MPI routine selection” on page 144

Tunable parameters
Platform MPI provides a mix of command-line options and environment variables
that can be used to influence the behavior and performance of the library. The
options and variables of interest to performance tuning include the following:

MPI_FLAGS=y

This option can be used to control the behavior of the Platform MPI library
when waiting for an event to occur, such as the arrival of a message.

MPI_TCP_CORECVLIMIT

Setting this variable to a larger value can allow Platform MPI to use more
parallelism during its low-level message transfers, but it can greatly reduce
performance by causing switch congestion.

MPI_SOCKBUFSIZE

Increasing this value has shown performance gains for some applications
running on TCP networks.

-cpu_bind, MPI_BIND_MAP, MPI_CPU_AFFINITY, MPI_CPU_SPIN

The -cpu_bind command-line option and associated environment variables can
improve the performance of many applications by binding a process to a
specific CPU.

Platform MPI provides multiple ways to bind a rank to a subset of a host's
CPUs. For more information, refer to “CPU affinity mode (-aff)” on page 47.

-intra

The -intra command-line option controls how messages are transferred to
local processes and can impact performance when multiple ranks execute on a
host.

MPI_RDMA_INTRALEN, MPI_RDMA_MSGSIZE, MPI_RDMA_NENVELOPE

© Copyright IBM Corp. 1994, 2012 141



These environment variables control aspects of the way message traffic is
handled on RDMA networks. The default settings have been carefully selected
for most applications. However, some applications might benefit from
adjusting these values depending on their communication patterns. For more
information, see the corresponding manpages.

MPI_USE_LIBELAN_SUB

Setting this environment variable may provide some performance benefits on
the ELAN interconnect. However, some applications may experience resource
problems.

Message latency and bandwidth
Latency is the time between the initiation of the data transfer in the sending
process and the arrival of the first byte in the receiving process.

Latency often depends on the length of messages being sent. An application's
messaging behavior can vary greatly based on whether a large number of small
messages or a few large messages are sent.

Message bandwidth is the reciprocal of the time needed to transfer a byte.
Bandwidth is normally expressed in megabytes per second. Bandwidth becomes
important when message sizes are large.

To improve latency, bandwidth, or both:
v Reduce the number of process communications by designing applications that

have coarse-grained parallelism.
v Use derived, contiguous data types for dense data structures to eliminate

unnecessary byte-copy operations in some cases. Use derived data types instead
of MPI_Pack and MPI_Unpack if possible. Platform MPI optimizes noncontiguous
transfers of derived data types.

v Use collective operations when possible. This eliminates the overhead of using
MPI_Send and MPI_Recv when one process communicates with others. Also, use
the Platform MPI collectives rather than customizing your own.

v Specify the source process rank when possible when calling MPI routines. Using
MPI_ANY_SOURCE can increase latency.

v Double-word align data buffers if possible. This improves byte-copy
performance between sending and receiving processes because of double-word
loads and stores.

v Use MPI_Recv_init and MPI_Startall instead of a loop of MPI_Irecv calls in
cases where requests might not complete immediately. For example, suppose
you write an application with the following code section:
j = 0
for (i=0; i<size; i++) {

if (i==rank) continue;
MPI_Irecv(buf[i], count, dtype, i, 0, comm, &requests[j++]);

}
MPI_Waitall(size-1, requests, statuses);

Suppose that one of the iterations through MPI_Irecv does not complete before
the next iteration of the loop. In this case, Platform MPI tries to progress both
requests. This progression effort could continue to grow if succeeding iterations
also do not complete immediately, resulting in a higher latency.
However, you could rewrite the code section as follows:

142 Platform MPI: User's Guide



j = 0
for (i=0; i<size; i++) {

if (i==rank) continue;
MPI_Recv_init(buf[i], count, dtype, i, 0, comm,

&requests[j++]);
}
MPI_Startall(size-1, requests);
MPI_Waitall(size-1, requests, statuses);

In this case, all iterations through MPI_Recv_init are progressed just once when
MPI_Startall is called. This approach avoids the additional progression
overhead when using MPI_Irecv and can reduce application latency.

Multiple network interfaces
You can use multiple network interfaces for interhost communication while still
having intrahost exchanges. In this case, the intrahost exchanges use shared
memory between processes mapped to different same-host IP addresses.

To use multiple network interfaces, you must specify which MPI processes are
associated with each IP address in your appfile.

For example, when you have two hosts, host 0 and host 1, each communicating
using two Ethernet cards, ethernet 0 and ethernet 1, you have four host names as
follows:
v host0-ethernet0
v host0-ethernet1
v host1-ethernet0
v host1-ethernet1

If your executable is called work.exe and uses 64 processes, your appfile should
contain the following entries:
-h host0-ethernet0 -np 16 work.exe
-h host0-ethernet1 -np 16 work.exe
-h host1-ethernet0 -np 16 work.exe
-h host1-ethernet1 -np 16 work.exe

Now, when the appfile is run, 32 processes run on host 0 and 32 processes run on
host 1.

Host 0 processes with rank 0 - 15 communicate with processes with rank 16 - 31
through shared memory (shmem). Host 0 processes also communicate through the
host 0-ethernet 0 and the host 0-ethernet 1 network interfaces with host 1
processes.

Processor subscription
Subscription refers to the match of processors and active processes on a host. The
following table lists possible subscription types:

Table 18. Subscription types

Subscription type Description

Under-subscribed More processors than active processes

Fully subscribed Equal number of processors and active processes

Over-subscribed More active processes than processors

Tuning 143



When a host is over-subscribed, application performance decreases because of
increased context switching.

Context switching can degrade application performance by slowing the
computation phase, increasing message latency, and lowering message bandwidth.
Simulations that use timing-sensitive algorithms can produce unexpected or
erroneous results when run on an over-subscribed system.

Note:

When running a job over-subscribed (running more ranks on a node than there are
cores, not including hyper threads) it is recommended that you set MPI_FLAGS=y0
to request that each MPI process yields the CPU as frequently as possible to allow
other MPI processes to proceed.

Processor locality
The mpirun option -cpu_bind binds a rank to a logical processor to prevent a
process from moving to a different logical processor after start-up. The binding
occurs before the MPI application is executed.

Similar results can be accomplished using mpsched but this has the advantage of
being a more load-based distribution, and works well in psets and across multiple
machines.

Binding ranks to logical processors (-cpu_bind)

On SMP systems, performance is often negatively affected if MPI processes migrate
during the run. Processes can be bound in a variety of ways using the -aff or
-cpu_bind options on mpirun.

MPI routine selection
To achieve the lowest message latencies and highest message bandwidths for
point-to-point synchronous communications, use the MPI blocking routines
MPI_Send and MPI_Recv. For asynchronous communications, use the MPI
nonblocking routines MPI_Isend and MPI_Irecv.

When using blocking routines, avoid pending requests. MPI must advance
nonblocking messages, so calls to blocking receives must advance pending
requests, occasionally resulting in lower application performance.

For tasks that require collective operations, use the relevant MPI collective routine.
Platform MPI takes advantage of shared memory to perform efficient data
movement and maximize your application's communication performance.

Multilevel parallelism

Consider the following to improve the performance of applications that use
multilevel parallelism:
v Use the MPI library to provide coarse-grained parallelism and a parallelizing

compiler to provide fine-grained (that is, thread-based) parallelism. A mix of
coarse- and fine-grained parallelism provides better overall performance.

144 Platform MPI: User's Guide



v Assign only one multithreaded process per host when placing application
processes. This ensures that enough processors are available as different process
threads become active.

Coding considerations

The following are suggestions and items to consider when coding your MPI
applications to improve performance:
v Use Platform MPI collective routines instead of coding your own with

point-to-point routines because Platform MPI's collective routines are optimized
to use shared memory where possible for performance.

v Use commutative MPI reduction operations.
– Use the MPI predefined reduction operations whenever possible because they

are optimized.
– When defining reduction operations, make them commutative. Commutative

operations give MPI more options when ordering operations, allowing it to
select an order that leads to best performance.

v Use MPI derived data types when you exchange several small size messages
that have no dependencies.

v Minimize your use of MPI_Test() polling schemes to reduce polling overhead.
v Code your applications to avoid unnecessary synchronization. Avoid

MPI_Barrier calls. Typically an application can be modified to achieve the same
result using targeted synchronization instead of collective calls. For example, in
many cases a token-passing ring can be used to achieve the same coordination
as a loop of barrier calls.

System Check benchmarking option

System Check can now run an optional benchmark of selected internal collective
algorithms. This benchmarking allows the selection of internal collective algorithms
during the actual application runtime to be tailored to the specific runtime cluster
environment.

The benchmarking environment should be as close as practical to the application
runtime environment, including the total number of ranks, rank-to-node mapping,
CPU binding, RDMA memory and buffer options, interconnect, and other mpirun
options. If two applications use different runtime environments, you need to run
separate benchmarking tests for each application.

The time required to complete a benchmark varies significantly with the runtime
environment. The benchmark runs a total of nine tests, and each test prints a
progress message to stdout when it is complete. It is recommended that the rank
count during benchmarking be limited to 256 with IBV/IBAL, 128 with TCP over
IPoIB, and 64 with TCP over GigE. Above those rank counts, there is no benefit for
better algorithm selection and the time for the benchmarking tests is significantly
increased. The benchmarking tests can be run at larger rank counts; however, the
benchmarking tests will automatically stop at 1024 ranks.

To run the System Check benchmark, compile the System Check example:

# $MPI_ROOT/bin/mpicc -o syscheck.x $MPI_ROOT/help/system_check.c

To create a benchmarking data file, set the $PCMPI_SYSTEM_CHECK environment
variable to "BM" (benchmark). The default output file name is

Tuning 145



pmpi800_coll_selection.dat, and will be written into the $MPI_WORKDIR directory.
The default output file name can be specified with the $MPI_COLL_OUTPUT_FILE
environment variable by setting it to the desired output file name (relative or
absolute path). Alternatively, the output file name can be specified as an argument
to the system_check.c program:
# $MPI_ROOT/bin/mpirun -e PCMPI_SYSTEM_CHECK=BM \
[other_options] ./syscheck.x [-o output_file]

To use a benchmarking file in an application run, set the $PCMPI_COLL_BIN_FILE
environment variable to the filename (relative or absolute path) of the
benchmarking file. The file will need to be accessible to all the ranks in the job,
and can be on a shared file system or local to each node. The file must be the same
for all ranks.
# $MPI_ROOT/bin/mpirun -e PCMPI_COLL_BIN_FILE=file_path \
[other_options] ./a.out

Dynamic library interface

Platform MPI 9.1 allows runtime selection of which MPI library interface to use
(regular, multi-threaded, or diagnostic) as well as runtime access to multiple layers
of PMPI interface wrapper libraries as long as they are shared libraries.

The main MPI libraries for Linux are as follows:
v regular: libmpi.so.1
v multi-threaded: libmtmpi.so.1
v diagnostic: libdmpi.so.1

The -entry option allows dynamic selection between the above libraries and also
includes a copy of the open source MPE logging library from Argonne National
Labs, version mpe2-1.1.1, which uses the PMPI interface to provide graphical
profiles of MPI traffic for performance analysis.

The syntax for the -entry option is as follows:

-entry=[manual:][verbose:] list

where list is a comma-separated list of the following items:
v reg (refers to libmpi.so.1)
v mtlib (refers to libmtmpi.so.1)
v dlib (refers to libdmpi.so.1)
v mtdlib (refers to dlib:mtlib)
v mpio (refers to libmpio.so.1)
v mpe (means libmpe.so)

If you precede the list with the verbose: mode, a few informational messages are
printed so you can see what libraries are being dlopened.

If you precede the list with the manual: mode, the given library list is used exactly
as specified.

This option is best explained by first discussing the traditional non-dynamic
interface. An MPI application contains calls to functions like MPI_Send and
MPI_File_open, and is linked against the MPI libraries which define these symbols,
in this case, libmpio.so.1 and libmpi.so.1. These libraries define both the MPI

146 Platform MPI: User's Guide



entrypoints (like MPI_Send) and a PMPI interface (like PMPI_Send) which is a
secondary interface into the same function. In this model a user can write a set of
MPI function wrappers where a new library libmpiwrappers.so defines MPI_Send
and calls PMPI_Send, and if the application is relinked against libmpiwrappers.so
along with libmpio.so.1 and libmpi.so.1, the application's calls into MPI_Send will
go into libmpiwrappers.so and then into libmpi.so.1 for the underlying
PMPI_Send.

The traditional model requires the application to be relinked to access the
wrappers, and also does not allow layering of multiple interface wrappers
intercepting the same calls. The new -entry option allows both runtime control
over the MPI/PMPI call sequence without relinking and the ability to layer
numerous wrapper libraries if desired.

The -entry option specifies a list of shared libraries, always ending with
libmpio.so.1 and libmpi.so.1. A call from the application into a function like
MPI_Send will be directed into the first library in the list which defines that
function. When a library in the list makes a call into another MPI_* function that
call is searched for in that library and down, and when a library in the list makes a
call into PMPI_* that call is searched for strictly below the current library in the list.
That way the libraries can be layered, each defining a set of MPI_* entrypoints and
calling into a combination of MPI_* and PMPI_* routines.

When using -entry without the manual: mode, libmpio.so.1 and libmpi.so.1 will
be added to the library list automatically. In manual mode, the complete library list
must be provided. It is recommended that any higher level libraries like MPE or
wrappers written by users occur at the start of the list, and the lower-level
Platform MPI libraries occur at the end of the list (libdmpi, then libmpio, then
libmpi).

Example 1:

The traditional method to use the Platform MPI diagnostic library is to relink the
application against libdmpi.so.1 so that a call into MPI_Send would resolve to
MPI_Send library libdmpi.so.1 which would call PMPI_Send which would resolve to
PMPI_Send in libmpi.so.1. The new method requires no relink, simply the runtime
option -entry=dlib (which is equivalent to -entry=dlib,mpio,reg because those
base libraries are added automatically when manual mode is not used). The
resulting call sequence when the app calls MPI_Send is the same: the app calls
MPI_Send which goes into MPI_Send in libdmpi.so.1 first then when that library
calls PMPI_Send, that call is directed into the MPI_Send call in libmpi.so.1
(libmpio.so.1 was skipped over because that library doesn't define an MPI_Send).

Example 2:

The traditional method to use the MPE logging wrappers from Argonne National
Labs is to relink against liblmpe.so and a few other MPE components. With the
new method the runtime option -entry=mpe has the same effect (our build actually
combined those MPE components into a single libmpe.so but functionally the
behavior is the same).

For example,

-entry=verbose:mpe

-entry=manual:mpe,mpio,reg

Tuning 147



-entry=dlib

Performance notes: If the -entry option is used, some overhead is involved in
providing the above flexibility. Although the extra function call overhead involved
is modest it could be visible in applications which call tight loops of MPI_Test or
MPI_Iprobe for example. If -entry is not specified on the mpirun command line the
dynamic interface described above is not active and has no effect on performance.

Limitations: This option is currently only available on Linux. It is also not
compatible with the mpich compatibility modes.

148 Platform MPI: User's Guide



Debugging and Troubleshooting

This chapter describes debugging and troubleshooting Platform MPI applications.
“Debugging Platform MPI applications”
“Troubleshooting Platform MPI applications” on page 152

Debugging Platform MPI applications
Platform MPI allows you to use single-process debuggers to debug applications.
The available debuggers are ADB, DDE, XDB, WDB, GDB, and PATHDB. To access
these debuggers, set options in the MPI_FLAGS environment variable. Platform
MPI also supports the multithread multiprocess debugger, TotalView on Linux.

In addition to the use of debuggers, Platform MPI provides a diagnostic library
(DLIB) for advanced error checking and debugging. Platform MPI also provides
options to the environment variable MPI_FLAGS that report memory leaks (l),
force MPI errors to be fatal (f), print the MPI job ID (j), and other functionality.

This section discusses single- and multi-process debuggers and the diagnostic
library.

“Using a single-process debugger”
“Using a multiprocess debugger” on page 150
“Using the diagnostics library” on page 151
“Enhanced debugging output” on page 152
“Debugging tutorial for Windows” on page 152

Using a single-process debugger
Because Platform MPI creates multiple processes and ADB, DDE, XDB, WDB, GDB,
and PATHDB only handle single processes, Platform MPI starts one debugger
session per process. Platform MPI creates processes in MPI_Init, and each process
instantiates a debugger session. Each debugger session in turn attaches to the
process that created it. Platform MPI provides MPI_DEBUG_CONT to control the
point at which debugger attachment occurs. By default, each rank will stop just
before returnging from the MPI_Init function call. MPI_DEBUG_CONT is a
variable that Platform MPI uses to temporarily halt debugger progress beyond
MPI_Init. By default, MPI_DEBUG_CONT is set to 0 and you must set it equal to 1
to allow the debug session to continue past MPI_Init.

Complete the following when you use a single-process debugger:
1. Set the eadb, exdb, edde, ewdb, egdb, or epathdb option in the MPI_FLAGS

environment variable to use the ADB, XDB, DDE, WDB, GDB, or PATHDB
debugger respectively.

2. On remote hosts, set DISPLAY to point to your console. In addition, use xhost
to allow remote hosts to redirect their windows to your console.

3. Run your application.
When your application enters MPI_Init, Platform MPI starts one debugger
session per process and each debugger session attaches to its process.

4. (Optional) Set a breakpoint anywhere following MPI_Init in each session.

© Copyright IBM Corp. 1994, 2012 149



5. Set the global variable MPI_DEBUG_CONT to 1 using each session's
command-line interface or graphical user interface. The syntax for setting the
global variable depends upon which debugger you use:
(adb) mpi_debug_cont/w 1

(dde) set mpi_debug_cont = 1

(xdb) print *MPI_DEBUG_CONT = 1

(wdb) set MPI_DEBUG_CONT = 1

(gdb) set MPI_DEBUG_CONT = 1

6. Issue the relevant debugger command in each session to continue program
execution.
Each process runs and stops at the breakpoint you set after MPI_Init.

7. Continue to debug each process using the relevant commands for your
debugger.
If you wish to attach a debugger manually, rather than having it automatically
launched for you, specify -dbgspin on the mpirun command line. After you
attach the debugger to each of the ranks of the job, you must still set the
MPI_DEBUG_CONT variable to a non-zero value to continue past MPI_INIT().

Using a multiprocess debugger
Platform MPI supports the TotalView debugger on Linux. The preferred method
when you run TotalView with Platform MPI applications is to use the mpirun
run-time utility command.

For example,

$MPI_ROOT/bin/mpicc myprogram.c -g

$MPI_ROOT/bin/mpirun -tv -np 2 a.out

In this example, myprogram.c is compiled using the Platform MPI compiler utility
for C programs. The executable file is compiled with source line information and
then mpirun runs the a.out MPI program.

By default, mpirun searches for TotalView in your PATH. You can also define the
absolute path to TotalView using the TOTALVIEW environment variable:

setenv TOTALVIEW/opt/totalview/bin/totalview [totalview-options]

The TOTALVIEW environment variable is used by mpirun.

Note:

When attaching to a running MPI application that was started using appfiles,
attach to the MPI daemon process to enable debugging of all the MPI ranks in the
application. You can identify the daemon process as the one at the top of a
hierarchy of MPI jobs (the daemon also usually has the lowest PID among the MPI
jobs).

Limitations

The following limitations apply to using TotalView with Platform MPI applications:
v All executable files in your multihost MPI application must reside on your local

machine, that is, the machine on which you start TotalView.

150 Platform MPI: User's Guide



TotalView multihost example

The following example demonstrates how to debug a typical Platform MPI
multihost application using TotalView, including requirements for directory
structure and file locations.

The MPI application is represented by an appfile, named my_appfile, which
contains the following two lines:

-h local_host -np 2 /path/to/program1 -h remote_host -np 2
/path/to/program2

my_appfile resides on the local machine (local_host) in the /work/mpiapps/total
directory.

To debug this application using TotalView do the following. In this example,
TotalView is invoked from the local machine.
1. Place your binary files in accessible locations.

v /path/to/program1 exists on local_host
v /path/to/program2 exists on remote_host

To run the application under TotalView, the directory layout on your local
machine, with regard to the MPI executable files, must mirror the directory
layout on each remote machine. Therefore, in this case, your setup must meet
the following additional requirement:

v /path/to/program2 exists on local_host
2. In the /work/mpiapps/total directory on local_host, invoke TotalView by

passing the -tv option to mpirun:
$MPI_ROOT/bin/mpirun -tv -f my_appfile

Working around TotalView launching issues

In some environments, TotalView cannot correctly launch the MPI application. If
your application is hanging during an application launch under Totalview, try
restarting your application after setting the TOTALVIEW environment variable to
the $MPI_ROOT/bin/tv_launch script. Ensure that the totalview executable is in
your PATH on the host running mpirun, and on all compute hosts. This approach
launches the application through mpirun as normal, and causes totalview to attach
to the ranks once they have all entered MPI_Init().

Using the diagnostics library
Platform MPI provides a diagnostics library (DLIB) for advanced run-time error
checking and analysis. DLIB provides the following checks:
v Message signature analysis : Detects type mismatches in MPI calls. For example,

in the two calls below, the send operation sends an integer, but the matching
receive operation receives a floating-point number.
if (rank == 1) then
MPI_Send(&buf1, 1, MPI_INT, 2, 17, MPI_COMM_WORLD);
else if (rank == 2)
MPI_Recv(&buf2, 1, MPI_FLOAT, 1, 17, MPI_COMM_WORLD, &status);

v MPI object-space corruption : Detects attempts to write into objects such as
MPI_Comm, MPI_Datatype, MPI_Request, MPI_Group, and MPI_Errhandler.

v Multiple buffer writes : Detects whether the data type specified in a receive or
gather operation causes MPI to write to a user buffer more than once.

Debugging and Troubleshooting 151



To disable these checks or enable formatted or unformatted printing of message
data to a file, set the MPI_DLIB_FLAGS environment variable options
appropriately.

To use the diagnostics library, either link your application with the -ldmpi flag to
your compilation scripts, or specify -entry=dmpi in your mpirun command to load
the diagnostics library at runtime rather than linking it in at link time. -entry is
only supported on Linux.

Note:

Using DLIB reduces application performance. Also, you cannot use DLIB with
instrumentation.

Enhanced debugging output
Platform MPI provides the stdio option to allow improved readability and
usefulness of MPI processes stdout and stderr. Options have been added for
handling standard input:
v Directed: Input is directed to a specific MPI process.
v Broadcast: Input is copied to the stdin of all processes.
v Ignore: Input is ignored.

The default behavior when using stdio is to ignore standard input.

Additional options are available to avoid confusing interleaving of output:
v Line buffering, block buffering, or no buffering
v Prepending of processes ranks to stdout and stderr
v Simplification of redundant output

This functionality is not provided when using -srun or -prun. Refer to the --label
option of srun for similar functionality.

Debugging tutorial for Windows
A browser-based tutorial is provided that contains information on how to debug
applications that use Platform MPI in the Windows environment. The tutorial
provides step-by-step procedures for performing common debugging tasks using
Visual Studio.

The tutorial is located in the %MPI_ROOT%\help subdirectory.

Troubleshooting Platform MPI applications
This section describes limitations in Platform MPI, common difficulties, and hints
to help you overcome those difficulties and get the best performance from your
Platform MPI applications. Check this information first when you troubleshoot
problems. The topics covered are organized by development task and also include
answers to frequently asked questions:

To get information about the version of Platform MPI installed, use the mpirun
-version command. The following is an example of the command and its output:

$MPI_ROOT/bin/mpirun -version

Platform MPI 09.10.01.00 [9051]Linux x86-64

152 Platform MPI: User's Guide



This command returns the Platform MPI version number, the release date, Platform
MPI product numbers, and the operating system version.

For Linux systems, use

rpm -qa | grep pcmpi

For Windows systems, use

"%MPI_ROOT%\bin\mprun" -version

mpirun: Platform MPI 09.10.00.00W [8985] Windows 32
Compatible Platform-MPI Remote Launch Service version V02.00.00

Building on Linux

You can solve most build-time problems by referring to the documentation for the
compiler you are using.

If you use your own build script, specify all necessary input libraries. To determine
what libraries are needed, check the contents of the compilation utilities stored in
the Platform MPI $MPI_ROOT/bin subdirectory.

Platform MPI supports a 64-bit version of the MPI library on 64-bit platforms. Both
32-bit and 64-bit versions of the library are shipped on 64-bit platforms. You cannot
mix 32-bit and 64-bit executables in the same application.

Building on Windows

Make sure you are running the build wrappers (i.e., mpicc, mpif90) in a compiler
command window. This window is usually an option on the Start > All Programs
menu. Each compiler vendor provides a command window option that includes all
necessary paths for compiler and libraries.

On Windows, the Platform MPI libraries include the bitness in the library name.
Platform MPI provides support for 32-bit and 64-bit libraries. The .lib files are
located in %MPI_ROOT%\lib.

Starting on Linux

When starting multihost applications using an appfile, make sure that:
v Ensure that you are able to ssh or remsh (depending on the value of

MPI_REMSH, ssh by default) to each compute node (without user interaction
such as a password or passphrase) from each compute node. The mpirun
command has the -ck option, which you can use to determine whether the hosts
and programs specified in your MPI application are available, and whether there
are access or permission problems.

v Application binaries are available on the necessary remote hosts and are
executable on those machines.

v The -sp option is passed to mpirun to set the target shell PATH environment
variable. You can set this option in your appfile.

v The .cshrc file does not contain tty commands such as stty if you are using a
/bin/csh-based shell.

Debugging and Troubleshooting 153



Starting on Windows

When starting multihost applications using Windows HPCS:
v You must specify -hpc in the mpirun command.
v Use UNC paths for your file names. Drives are usually not mapped on remote

nodes.
v If using the AutoSubmit feature, make sure you are running from a mapped

network drive and don't specify file paths for binaries. Platform MPI converts
the mapped drive to a UNC path and set MPI_WORKDIR to your current
directory. If you are running on a local drive, Platform MPI cannot map this to a
UNC path.

v Don't submit scripts or commands that require a command window. These
commands usually fail when trying to 'change directory' to a UNC path.

v Don't forget to use quotation marks for file names or commands with paths that
have spaces. The default Platform MPI installation location includes spaces:
"C:\Program Files (x86)\Platform Computing\Platform-MPI\bin\mpirun"

or
"%MPI_ROOT%\bin\mpirun"

v Include the use of the -netaddr IP-subnet flag, selecting the best Ethernet
subnet in your cluster.

When starting multihost applications using appfiles on Windows 2003/XP, verify
the following:
v Platform MPI Remote Launch service is registered and started on all remote

nodes. Check this by accessing the list of Windows services through
Administrator Tools > Services. Look for the 'Platform MPI Remote Launch'
service.

v Platform MPI is installed in the same location on all remote nodes. All Platform
MPI libraries and binaries must be in the same MPI_ROOT.

v Application binaries are accessible from remote nodes. If the binaries are located
on a file share, use the UNC path (i.e., \\node\share\path) to refer to the binary,
because these might not be properly mapped to a drive letter by the
authenticated logon token.

v If a password is not already cached, use the -cache option for your first run, or
use the -pass option on all runs so the remote service can authenticate with
network resources. Without these options (or using -nopass), remote processes
cannot access network shares.

v If problems occur when trying to launch remote processes, use the mpidiag tool
to verify remote authentication and access. Also view the event logs to see if the
service is issuing errors.

v Don't forget to use quotation marks for file names or commands with paths that
have spaces. The default Platform MPI installation location includes spaces:
"C:\Program Files (x86)\Platform Computing\Platform-MPI\bin\mpirun"

or
"%MPI_ROOT%\bin\mpirun"

v Include the use of the -netaddr IP-subnet flag, selecting the best Ethernet
subnet in your cluster.

Note:

154 Platform MPI: User's Guide



When running on a Windows cluster (HPC or non-HPC) it is recommended that
you include the use of -netaddr in the mpirun command. This specifies the IP
subnet for your TCP MPI traffic. If using InfiniBand (-ibal), this does not mean
your MPI application messaging will occur on the TCP network. Only the
administrative traffic will run on the TCP/IP subnet. If not using InfiniBand, both
your administrative traffic and the MPI application messaging will occur on this
TCP/IP subnet.

The reason using -netaddr is recommended is the way Windows applications
select the IP subnet to use to communicate with other nodes. Windows TCP traffic
will select the "first correct" TCP/IP subnet as specified by the network adaptor
binding order in the node. This order can be set so all nodes are consistent. But
any time a network driver is updated, the operating system changes the binding
order, and may cause an inconsistent binding order across the nodes in your
cluster. When the MPI ranks attempt to make initial connections, different binding
orders may cause two different ranks to try to talk on two different subnets. This
can cause connection errors or hangs as the two may never make the initial
connection.

Running complex MPI jobs on Linux and Windows
Run-time problems originate from many sources and may include the following:

Shared memory

When an MPI application starts, each MPI daemon attempts to allocate a section of
shared memory. This allocation can fail if the system-imposed limit on the
maximum number of allowed shared-memory identifiers is exceeded or if the
amount of available physical memory is not sufficient to fill the request. After
shared-memory allocation is done, every MPI process attempts to attach to the
shared-memory region of every other process residing on the same host. This
shared memory allocation can fail if the system is not configured with enough
available shared memory. Consult with your system administrator to change
system settings. Also, MPI_GLOBMEMSIZE is available to control how much
shared memory Platform MPI tries to allocate.

Message buffering

According to the MPI standard, message buffering may or may not occur when
processes communicate with each other using MPI_Send. MPI_Send buffering is at
the discretion of the MPI implementation. Therefore, take care when coding
communications that depend upon buffering to work correctly.

For example, when two processes use MPI_Send to simultaneously send a message
to each other and use MPI_Recv to receive messages, the results are unpredictable.
If the messages are buffered, communication works correctly. However, if the
messages are not buffered, each process hangs in MPI_Send waiting for MPI_Recv to
take the message. For example, a sequence of operations (labeled "Deadlock") as
illustrated in the following table would result in such a deadlock. This table also
illustrates the sequence of operations that would avoid code deadlock:

Table 19. Non-buffered messages and deadlock

Deadlock No Deadlock

Process 1 Process 2 Process 1 Process 2

MPI_Send(,...2,....) MPI_Send(,...1,....) MPI_Send(,...2,....) MPI_Recv(,...1,....)

Debugging and Troubleshooting 155



Table 19. Non-buffered messages and deadlock (continued)

Deadlock No Deadlock

Process 1 Process 2 Process 1 Process 2

MPI_Recv(,...2,....) MPI_Recv(,...1,....) MPI_Recv(,...2,....) MPI_Send(,...1,....)

Propagation of environment variables

When working with applications that run on multiple hosts using an appfile, if
you want an environment variable to be visible by all application ranks you must
use the -e option with an appfile or as an argument to mpirun.

One way to accomplish this is to set the -e option in the appfile:

-h remote_host -e var=val [-np#] program [args]

On SLURM systems, the environment variables are automatically propagated by
srun. Environment variables are established with setenv or export and passed to
MPI processes by the SLURM srun utility. Thus, on SLURM systems, it is not
necessary to use the "-e name=value" approach to passing environment variables.
Although the "-e name=value" also works on SLURM systems using SLURM's
srun.

Fortran 90 programming features

The MPI 1.1 standard defines bindings for Fortran 77 but not Fortran 90.

Although most Fortran 90 MPI applications work using the Fortran 77 MPI
bindings, some Fortran 90 features can cause unexpected behavior when used with
Platform MPI.

In Fortran 90, an array is not always stored in contiguous memory. When
noncontiguous array data is passed to the Platform MPI subroutine, Fortran 90
copies the data into temporary storage, passes it to the Platform MPI subroutine,
and copies it back when the subroutine returns. As a result, Platform MPI is given
the address of the copy but not of the original data.

In some cases, this copy-in and copy-out operation can cause a problem. For a
nonblocking Platform MPI call, the subroutine returns immediately and the
temporary storage is deallocated. When Platform MPI tries to access the already
invalid memory, the behavior is unknown. Moreover, Platform MPI operates close
to the system level and must know the address of the original data. However, even
if the address is known, Platform MPI does not know if the data is contiguous or
not.

UNIX open file descriptors

UNIX imposes a limit to the number of file descriptors that application processes
can have open at one time. When running a multihost application, each local
process opens a socket to each remote process. The Platform MPI application with
a large amount of off-host processes can quickly reach the file descriptor limit. Ask
your system administrator to increase the limit if your applications frequently
exceed the maximum.

156 Platform MPI: User's Guide



External input and output

You can use stdin, stdout, and stderr in applications to read and write data. By
default, Platform MPI does not perform processing on stdin or stdout. The
controlling tty determines stdio behavior in this case.

This functionality is not provided when using -srun.

If your application depends on the mpirun option -stdio=I to broadcast input to all
ranks, and you are using srun on a SLURM system, then a reasonable substitute is
--stdin=all. For example:

% mpirun -srun --stdin-all ...

For similar functionality, refer to the --label option of srun.

Platform MPI does provide optional stdio processing features. stdin can be targeted
to a specific process, or can be broadcast to every process. stdout processing
includes buffer control, prepending MPI rank numbers, and combining repeated
output.

Platform MPI standard IO options can be set by using the following options to
mpirun:

mpirun -stdio=[bline[#>0] | bnone[#>0] | b[#>0], [p], [r[#>1]], [i[#]],
files, none

where

i

Broadcasts standard input to all MPI processes.

i[#]

Directs standard input to the process with the global rank #.

The following modes are available for buffering:

b[#>0]

Specifies that the output of a single MPI process is placed to the standard out
of mpirun after # bytes of output have been accumulated.

bnone[#>0]

The same as b[#] except that the buffer is flushed when it is full and when it is
found to contain data. Essentially provides no buffering from the user's
perspective.

bline[#>0]

Displays the output of a process after a line feed is encountered, or if the #
byte buffer is full.

The default value of # in all cases is 10 KB

The following option is available for prepending:

p

Debugging and Troubleshooting 157



Enables prepending. The global rank of the originating process is prepended to
stdout and stderr output. Although this mode can be combined with any
buffering mode, prepending makes the most sense with the modes b and
bline.

The following option is available for combining repeated output:

r[#>1]

Combines repeated identical output from the same process by prepending a
multiplier to the beginning of the output. At most, # maximum repeated
outputs are accumulated without display. This option is used only with bline.
The default value of # is infinity.

The following options are available for using file settings:

files

Specifies that the standard input, output and error of each rank is to be taken
from the files specified by the environment variables MPI_STDIO_INFILE,
MPI_STDIO_OUTFILE and MPI_STDIO_ERRFILE. If these environment
variables are not set, /dev/null or NUL is used. In addition, these file
specifications can include the substrings %%, %h, %p, and %r, which are
expanded to %, hostname, process id, and rank number in
MPI_COMM_WORLD. The files option causes the stdio options p, r, and I to
be ignored.

none

This option is equivalent to setting -stdio=files with MPI_STDIO_INFILE,
MPI_STDIO_OUTFILE and MPI_STDIO_ERRFILE all set to /dev/null or NUL.

Completing
In Platform MPI, MPI_Finalize is a barrier-like collective routine that waits until all
application processes have called it before returning. If your application exits
without calling MPI_Finalize, pending requests might not complete.

When running an application, mpirun waits until all processes have exited. If an
application detects an MPI error that leads to program termination, it calls
MPI_Abort instead.

You might want to code your error conditions using MPI_Abort, which will clean
up the application. However, no MPI functions can be safely called from inside a
signal handler. Calling MPI_Abort from within a signal handler may cause the
application to hang, if the signal interrupted another MPI function call.

Each Platform MPI application is identified by a job ID, unique on the server
where mpirun is invoked. If you use the -j option, mpirun prints the job ID of the
application that it runs. Then you can invoke mpijob with the job ID to display the
status of your application.

If your application hangs or terminates abnormally, you can use mpiclean to kill
lingering processes and shared-memory segments. mpiclean uses the job ID from
mpirun -j to specify the application to terminate.

158 Platform MPI: User's Guide



Testing the network on Linux
Often, clusters might have Ethernet and some form of higher speed interconnect
such as InfiniBand. This section describes how to use the ping_pong_ring.c
example program to confirm that you can run using the desired interconnect.

Running a test like this, especially on a new cluster, is useful to ensure that the
relevant network drivers are installed and that the network hardware is
functioning. If any machine has defective network cards or cables, this test can also
be useful at identifying which machine has the problem.

To compile the program, set the MPI_ROOT environment variable (not required,
but recommended) to a value such as /opt/platform_mpi (for Linux) and then run

export MPI_CC=gcc (using whatever compiler you want)

$MPI_ROOT/bin/mpicc -o pp.x $MPI_ROOT/help/ping_pong_ring.c

Although mpicc performs a search for the compiler to use if you don't specify
MPI_CC, it is preferable to be explicit.

If you have a shared file system, it is easiest to put the resulting pp.x executable
there, otherwise you must explicitly copy it to each machine in your cluster.

Use the start-up relevant for your cluster. Your situation should resemble one of
the following:
v If no job scheduler (such as srun, prun, or LSF) is available, run a command like

this:
$MPI_ROOT/bin/mpirun -prot -hostlist hostA,hostB,...hostZ pp.x

You might need to specify the remote shell command to use (the default is ssh)
by setting the MPI_REMSH environment variable. For example:
export MPI_REMSH="rsh -x" (optional)

v If LSF is being used, create an appfile such as this:
-h hostA -np 1 /path/to/pp.x
-h hostB -np 1 /path/to/pp.x
-h hostC -np 1 /path/to/pp.x
...
-h hostZ -np 1 /path/to/pp.x

Then run one of the following commands:
bsub -I -n 16 $MPI_ROOT/bin/mpirun -prot -f appfile

bsub -I -n 16 $MPI_ROOT/bin/mpirun -prot -f appfile -- 1000000

When using LSF, the host names in the appfile are ignored.
v If the srun command is available, run a command like this:

$MPI_ROOT/bin/mpirun -prot -srun -N 8 -n 8 path/to/pp.x

$MPI_ROOT/bin/mpirun -prot -srun -N 8 -n 8 path/to/pp.x 1000000

Replacing "8" with the number of hosts.
Or if LSF is being used, then the command to run might be this:
bsub -I -n 16 $MPI_ROOT/bin/mpirun -prot /path/to/pp.x

bsub -I -n 16 $MPI_ROOT/bin/mpirun -prot /path/to/pp.x 1000000

v If the prun command is available, use the same commands as above for srun,
replacing srun with prun.

Debugging and Troubleshooting 159



In each case above, the first mpirun command uses 0 bytes per message and
verifies latency. The second mpirun command uses 1000000 bytes per message and
verifies bandwidth.

Example output might look like:
Host 0 -- ip 192.168.9.10 -- ranks 0
Host 1 -- ip 192.168.9.11 -- ranks 1
Host 2 -- ip 192.168.9.12 -- ranks 2
Host 3 -- ip 192.168.9.13 -- ranks 3

host | 0 1 2 3
======|=====================

0 : SHM VAPI VAPI VAPI
1 : VAPI SHM VAPI VAPI
2 : VAPI VAPI SHM VAPI
3 : VAPI VAPI VAPI SHM

[0:hostA] ping-pong 0 bytes ...
0 bytes: 4.24 usec/msg
[1:hostB] ping-pong 0 bytes ...
0 bytes: 4.26 usec/msg
[2:hostC] ping-pong 0 bytes ...
0 bytes: 4.26 usec/msg
[3:hostD] ping-pong 0 bytes ...
0 bytes: 4.24 usec/msg

The table showing SHM/VAPI is printed because of the -prot option (print
protocol) specified in the mpirun command. It could show any of the following
settings:
v VAPI: VAPI on InfiniBand
v UDAPL: uDAPL on InfiniBand
v IBV: IBV on InfiniBand
v PSM: PSM on InfiniBand
v MX: Myrinet MX
v IBAL: on InfiniBand (for Windows only)
v IT: IT-API on InfiniBand
v GM: Myrinet GM2
v ELAN: Quadrics Elan4
v TCP: TCP/IP
v MPID: daemon communication mode
v SHM: shared memory (intra host only)

If the table shows TCP for hosts when another interconnect is expected, the host
might not have correct network drivers installed. Try forcing the interconnect you
expect with the capital interconnect name, such as -IBV or -MX.

If a host shows considerably worse performance than another, it can often indicate
a bad card or cable.

Other possible reasons for failure could be:
v A connection on the switch is running in 1X mode instead of 4X mode.
v A switch has degraded a port to SDR (assumes DDR switch, cards).
v A degraded SDR port could be due to using a non-DDR cable.

160 Platform MPI: User's Guide



If the run aborts with an error message, Platform MPI might have incorrectly
determined what interconnect was available. One common way to encounter this
problem is to run a 32-bit application on a 64-bit machine like an Opteron or
Intel64. It's not uncommon for some network vendors to provide only 64-bit
libraries.

Platform MPI determines which interconnect to use before it knows the
application's bitness. To have proper network selection in that case, specify if the
application is 32-bit when running on Opteron/Intel64 machines.

$MPI_ROOT/bin/mpirun -mpi32 ...

Testing the network on Windows
Often, clusters might have Ethernet and some form of higher-speed interconnect
such as InfiniBand. This section describes how to use the ping_pong_ring.c
example program to confirm that you can run using the desired interconnect.

Running a test like this, especially on a new cluster, is useful to ensure that
relevant network drivers are installed and that the network hardware is
functioning. If any machine has defective network cards or cables, this test can also
be useful for identifying which machine has the problem.

To compile the program, set the MPI_ROOT environment variable to the location
of Platform MPI. The default is "C:\Program Files (x86)\IBM\Platform MPI" for
64-bit systems, and "C:\Program Files\IBM\Platform MPI" for 32-bit systems. This
may already be set by the Platform MPI installation.

Open a command window for the compiler you plan on using. This includes all
libraries and compilers in the path, and compiles the program using the mpicc
wrappers:

"%MPI_ROOT%\bin\mpicc" -mpi64 out:pp.exe %MPI_ROOT%\help\ping_ping_ring.c"

Use the start-up for your cluster. Your situation should resemble one of the
following:
v If running on Windows 2003/XP:

Use -hostlist to indicate the nodes you wish run to test your interconnect
connections. The ranks will be scheduled in the order of the hosts in the hostlist.
Submit the command to the scheduler using automatic scheduling from a
mapped share drive:
"%MPI_ROOT%\bin\mpirun" -hostlist hostA,hostB,hostC -prot -f appfile

"%MPI_ROOT%\bin\mpirun" -hostlist hostA,hostB,hostC -prot -f appfile --
1000000

v If running on IBM LSF for Windows:
Autosubmit using the -lsf flag. Use -hostlist to indicate the nodes you wish
run to test your interconnect connections. The ranks will be scheduled in the
order of the hosts in the hostlist. Submit the command to the scheduler using
automatic scheduling from a mapped share drive:
"%MPI_ROOT%\bin\mpirun" -lsf -hostlist hostA,hostB,hostC -prot -f appfile

"%MPI_ROOT%\bin\mpirun" -lsf -hostlist hostA,hostB,hostC -prot -f appfile
-- 1000000

v If running on Windows HPCS:

Debugging and Troubleshooting 161



Autosubmit using the -hpc flag. Use -hostlist to indicate the nodes you wish
run to test your interconnect connections. The ranks will be scheduled in the
order of the hosts in the hostlist. Submit the command to the scheduler using
automatic scheduling from a mapped share drive:
"%MPI_ROOT%\bin\mpirun" -hpc -hostlist hostA,hostB,hostC -prot -f appfile

"%MPI_ROOT%\bin\mpirun" -hpc -hostlist hostA,hostB,hostC -prot -f appfile
-- 1000000

v If running on Windows HPCS using node exclusive:
Autosubmit using the -hpc flag. To test several nodes selected nodes exclusively,
running one rank per node, use the -wlmunit flag along with -np number to
request your allocation. Submit the command to the scheduler using automatic
scheduling from a mapped share drive:
"%MPI_ROOT%\bin\mpirun" -hpc -wlmunit node -np 3 -prot ping_ping_ring.exe

"%MPI_ROOT%\bin\mpirun" -hpc -wlmunit node -np 3 -prot ping_ping_ring.exe
1000000

In both cases, three nodes are selected exclusively and a single rank is run on
each node.

In each case above, the first mpirun command uses 0 bytes per message and
verifies latency. The second mpirun command uses 1000000 bytes per messageand
verifies bandwidth.

Example output might look like:
Host 0 -- ip 172.16.159.3 -- ranks 0
Host 1 -- ip 172.16.150.23 -- ranks 1
Host 2 -- ip 172.16.150.24 -- ranks 2
host | 0 1 2
=====|================

0 : SHM IBAL IBAL
1 : IBAL SHM IBAL
2 : IBAL IBAL SHM

[0:mpiccp3] ping-pong 1000000 bytes ...
1000000 bytes: 1089.29 usec/msg
1000000 bytes: 918.03 MB/sec
[1:mpiccp4] ping-pong 1000000 bytes ...
1000000 bytes: 1091.99 usec/msg
1000000 bytes: 915.76 MB/sec
[2:mpiccp5] ping-pong 1000000 bytes ...
1000000 bytes: 1084.63 usec/msg
1000000 bytes: 921.97 MB/sec

The table showing SHM/IBAL is printed because of the -prot option (print
protocol) specified in the mpirun command.

It could show any of the following settings:
v IBAL: IBAL on InfiniBand
v MX: Myrinet Express
v TCP: TCP/IP
v SHM: shared memory (intra host only)

If one or more hosts show considerably worse performance than another, it can
often indicate a bad card or cable.

If the run aborts with some kind of error message, it is possible that Platform MPI
incorrectly determined which interconnect was available.

162 Platform MPI: User's Guide



Example Applications

This appendix provides example applications that supplement the conceptual
information in this book about MPI in general and Platform MPI in particular. The
example codes are also included in the $MPI_ROOT/help subdirectory of your
Platform MPI product.

Table 20. Example applications shipped with Platform MPI

Name Language Description -np Argument

send_receive.f Fortran 77 Illustrates a simple send
and receive operation.

-np >= 2

ping_pong.c C Measures the time it takes
to send and receive data
between two processes.

-np = 2

ping_pong_ring.c Confirms that an
application can run using
the specified interconnect.

-np >= 2

compute_pi.f Fortran 77 Computes pi by integrating
f(x)=4/(1+x*x).

-np >= 1

master_worker.f90 Fortran 90 Distributes sections of an
array and does
computation on all sections
in parallel.

-np >= 2

cart.C C++ Generates a virtual
topology.

-np = 4

communicator.c C Copies the default
communicator
MPI_COMM_WORLD.

-np = 2

multi_par.f Fortran 77 Uses the alternating
direction iterative (ADI)
method on a
two-dimensional compute
region.

-np >= 1

io.c C Writes data for each process
to a separate file called
iodatax, wherex represents
each process rank in turn.
Then the data in iodatax is
read back.

-np >= 1

thread_safe.c C Tracks the number of client
requests handled and prints
a log of the requests to
stdout.

-np >= 2

sort.C C++ Generates an array of
random integers and sorts
it.

-np >= 1

© Copyright IBM Corp. 1994, 2012 163



Table 20. Example applications shipped with Platform MPI (continued)

Name Language Description -np Argument

compute_pi_spawn.f Fortran 77 A single initial rank spawns
3 new ranks that all
perform the same
computation as in
compute_pi.f.

-np >= 1

ping_pong_clustertest.c C Identifies slower than
average links in your
high-speed interconnect.

-np >2

hello_world.c C Prints host name and rank. -np >=1

These examples and the makefile are located in the $MPI_ROOT/help subdirectory.
The examples are presented for illustration purposes only. They might not
necessarily represent the most efficient way to solve a problem.

To build and run the examples, use the following procedure:
1. Change to a writable directory.
2. Copy all files from the help directory to the current writable directory:

% cp $MPI_ROOT/help/* .

3. Compile all examples or a single example.
To compile and run all examples in the /help directory, at the prompt enter:
% make

To compile and run the thread_safe.c program only, at the prompt enter:
% make thread_safe

“send_receive.f”
“ping_pong.c” on page 166
“ping_pong_ring.c (Linux)” on page 168
“ping_pong_ring.c (Windows)” on page 173
“compute_pi.f” on page 177
“master_worker.f90” on page 179
“cart.C” on page 180
“communicator.c” on page 183
“multi_par.f” on page 184
“io.c” on page 191
“thread_safe.c” on page 193
“sort.C” on page 195
“compute_pi_spawn.f” on page 201

send_receive.f
In this Fortran 77 example, process 0 sends an array to other processes in the
default communicator MPI_COMM_WORLD.

C
C Copyright (c) 1997-2008 Platform Computing Corporation
C All Rights Reserved.
C
C Function:- example: send/receive
C

164 Platform MPI: User's Guide



C $Revision: 8986 $
C

program mainprog
include ’mpif.h’
integer rank, size, to, from, tag, count, i, ierr
integer src, dest
integer st_source, st_tag, st_count
integer status(MPI_STATUS_SIZE)
double precision data(100)
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
if (size .eq. 1) then

print *, ’must have at least 2 processes’
call MPI_Finalize(ierr)
stop

endif
print *, ’Process ’, rank, ’ of ’, size, ’ is alive’
dest = size - 1
src = 0
if (rank .eq. src) then

to = dest
count = 10
tag = 2001
do i=1, 10

data(i) = 1
enddo
call MPI_Send(data, count, MPI_DOUBLE_PRECISION,

+ to, tag, MPI_COMM_WORLD, ierr)
endif
if (rank .eq. dest) then

tag = MPI_ANY_TAG
count = 10
from = MPI_ANY_SOURCE
call MPI_Recv(data, count, MPI_DOUBLE_PRECISION,

+ from, tag, MPI_COMM_WORLD, status, ierr)
call MPI_Get_Count(status, MPI_DOUBLE_PRECISION,

+ st_count, ierr)
st_source = status(MPI_SOURCE)
st_tag = status(MPI_TAG)
print *, ’Status info: source = ’, st_source,

+ ’ tag = ’, st_tag, ’ count = ’, st_count
print *, rank, ’ received’, (data(i),i=1,10)

endif
call MPI_Finalize(ierr)
stop
end

Compiling send_receive

Run the following commands to compile the send_receive executable.

/opt/platform_mpi/bin/mpif90 -c send_receive.f

/opt/platform_mpi/bin/mpif90 -o send_receive send_receive.o

send_receive output

The output from running the send_receive executable is shown below. The
application was run with -np=4.

/opt/platform_mpi/bin/mpirun -np 4 ./send_receive # at least 2 processes
Process 0 of 4 is alive
Process 3 of 4 is alive
Process 1 of 4 is alive

Example Applications 165



Process 2 of 4 is alive
Status info: source = 0 tag = 2001 count = 10

3 received 1.00000000000000 1.00000000000000
1.00000000000000 1.00000000000000
1.00000000000000 1.00000000000000
1.00000000000000 1.00000000000000
1.00000000000000 1.00000000000000

ping_pong.c
This C example is used as a performance benchmark tomeasure the amount of
time it takes to send and receive data betweentwo processes. The buffers are
aligned and offset from each other toavoid cache conflicts caused by direct
process-to-process byte-copyoperations

To run this example:
1. Define the CHECK macro to check data integrity.
2. Increase the number of bytes to at least twice the cache size to obtain

representative bandwidth measurements.
/*
* Copyright (c) 1997-2010 Platform Computing Corporation
* All Rights Reserved.
*
* Function: - example: ping-pong benchmark
*
* Usage: mpirun -np 2 ping_pong [nbytes]
*
* Notes: - Define CHECK macro to check data integrity.
* - The previous ping_pong example timed each
* iteration. The resolution of MPI_Wtime() is
* not sufficient to provide accurate measurements
* when nbytes is small. This version times the
* entire run and reports average time to avoid
* this issue.
* - To avoid cache conflicts due to direct
* process-to-process bcopy, the buffers are
* aligned and offset from each other.
* - Use of direct process-to-process bcopy coupled
* with the fact that the data is never touched
* results in inflated bandwidth numbers when
* nbytes <= cache size. To obtain a more
* representative bandwidth measurement, increase
* nbytes to at least 2*cache size (2MB).
*
* $Revision: 8986 $
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#define NLOOPS 1000
#define ALIGN 4096
int
main(int argc, char *argv[])
{

int i;
#ifdef CHECK

int j;
#endif

double start, stop;
int nbytes = 0;
int rank, size;
MPI_Status status;

166 Platform MPI: User's Guide



char *buf;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (size != 2) {

if ( ! rank) printf("ping_pong: must have two processes\n");
MPI_Finalize();
exit(0);

}
nbytes = (argc > 1) ? atoi(argv[1]) : 0;
if (nbytes < 0) nbytes = 0;

/*
* Page-align buffers and displace them in the cache to avoid collisions.
*/

buf = (char *) malloc(nbytes + 524288 + (ALIGN - 1));
if (buf == 0) {

MPI_Abort(MPI_COMM_WORLD, MPI_ERR_BUFFER);
exit(1);

}
buf = (char *) ((((unsigned long) buf) + (ALIGN - 1)) & ~(ALIGN - 1));
if (rank == 1) buf += 524288;
memset(buf, 0, nbytes);

/*
* Ping-pong.
*/

if (rank == 0) {
printf("ping-pong %d bytes ...\n", nbytes);

/*
* warm-up loop
*/
for (i = 0; i < 5; i++) {
MPI_Send(buf, nbytes, MPI_CHAR, 1, 1, MPI_COMM_WORLD);
MPI_Recv(buf, nbytes, MPI_CHAR,
1, 1, MPI_COMM_WORLD, &status);
}
/*
* timing loop
*/

start = MPI_Wtime();
for (i = 0; i < NLOOPS; i++) {

#ifdef CHECK
for (j = 0; j < nbytes; j++) buf[j] = (char) (j + i);

#endif
MPI_Send(buf, nbytes, MPI_CHAR,

1, 1000 + i, MPI_COMM_WORLD);
#ifdef CHECK

memset(buf, 0, nbytes);
#endif

MPI_Recv(buf, nbytes, MPI_CHAR,
1, 2000 + i, MPI_COMM_WORLD, &status);

#ifdef CHECK
for (j = 0; j < nbytes; j++) {

if (buf[j] != (char) (j + i)) {
printf("error: buf[%d] = %d, not %d\n",

j, buf[j], j + i);
break;

}
}

#endif
}
stop = MPI_Wtime();
printf("%d bytes: %.2f usec/msg\n",

nbytes, (stop - start) / NLOOPS / 2 * 1000000);
if (nbytes > 0) {

printf("%d bytes: %.2f MB/sec\n", nbytes,
nbytes / 1000000. /
((stop - start) / NLOOPS / 2));

Example Applications 167



}
}
else {

/*
* warm-up loop
*/

for (i = 0; i < 5; i++) {
MPI_Recv(buf, nbytes, MPI_CHAR,

0, 1, MPI_COMM_WORLD, &status);
MPI_Send(buf, nbytes, MPI_CHAR, 0, 1, MPI_COMM_WORLD);

}
for (i = 0; i < NLOOPS; i++) {

MPI_Recv(buf, nbytes, MPI_CHAR,
0, 1000 + i, MPI_COMM_WORLD, &status);

MPI_Send(buf, nbytes, MPI_CHAR,
0, 2000 + i, MPI_COMM_WORLD);

}
}
MPI_Finalize();
exit(0);

}

ping_pong output

The output from running the ping_pong executable is shown below. The
application was run with -np2.
ping-pong 0 bytes ...
0 bytes: 1.03 usec/msg

ping_pong_ring.c (Linux)
Often a cluster might have regular Ethernet and some form of higher-speed
interconnect such as InfiniBand. This section describes how to use the
ping_pong_ring.c example program to confirm that you can run using the desired
interconnect.

Running a test like this, especially on a new cluster, is useful to ensure that the
relevant network drivers are installed and that the network hardware is
functioning. If any machine has defective network cards or cables, this test can also
be useful to identify which machine has the problem.

To compile the program, set the MPI_ROOT environment variable (not required,
but recommended) to a value such as /opt/platform_mpi (Linux) and then run:

% export MPI_CC=gcc (whatever compiler you want)

% $MPI_ROOT/bin/mpicc -o pp.x $MPI_ROOT/help/ping_pong_ring.c

Although mpicc will perform a search for what compiler to use if you don't specify
MPI_CC, it is preferable to be explicit.

If you have a shared filesystem, it is easiest to put the resulting pp.x executable
there, otherwise you must explicitly copy it to each machine in your cluster.

There are a variety of supported start-up methods, and you must know which is
relevant for your cluster. Your situation should resemble one of the following:
1. No srun or HPCS job scheduler command is available.

For this case you can create an appfile with the following:

168 Platform MPI: User's Guide



-h hostA -np 1 /path/to/pp.x
-h hostB -np 1 /path/to/pp.x
-h hostC -np 1 /path/to/pp.x
...
-h hostZ -np 1 /path/to/pp.x

And you can specify what remote shell command to use (Linux default is ssh)
in the MPI_REMSH environment variable.
For example you might use:
% export MPI_REMSH="rsh -x"(optional)
Then run:
% $MPI_ROOT/bin/mpirun -prot -f appfile

% $MPI_ROOT/bin/mpirun -prot -f appfile -- 1000000

If LSF is being used, the host names in the appfile wouldn't matter, and the
command to run would be:
% bsub -mpi $MPI_ROOT/bin/mpirun -lsf -prot -f appfile

% bsub -mpi $MPI_ROOT/bin/mpirun -lsf -prot -f appfile -- 1000000

2. The srun command is available.
For this case then you would run a command like this:
% $MPI_ROOT/bin/mpirun -prot -srun -N 8 -n 8 /path/to/pp.x

% $MPI_ROOT/bin/mpirun -prot -srun -N 8 -n 8 /path/to/pp.x 1000000

Replacing "8" with the number of hosts.
If LSF is being used, the command to run might be this:
% bsub $MPI_ROOT/bin/mpirun -lsf -np 16 -prot -srun /path/to/pp.x

% bsub $MPI_ROOT/bin/mpirun -lsf -np 16 -prot -srun /path/to/pp.x
1000000

In each case above, the first mpirun uses 0-bytes of data per message and is for
checking latency. The second mpirun uses 1000000 bytes per message and is for
checking bandwidth.

/*
* Copyright (c) 1997-2010 Platform Computing Corporation
* All Rights Reserved.
*
* Function: - example: ping-pong benchmark
*
* Usage: mpirun -np 2 ping_pong [nbytes]
*
* Notes: - Define CHECK macro to check data integrity.
* - The previous ping_pong example timed each
* iteration. The resolution of MPI_Wtime() is
* not sufficient to provide accurate measurements
* when nbytes is small. This version times the
* entire run and reports average time to avoid
* this issue.
* - To avoid cache conflicts due to direct
* process-to-process bcopy, the buffers are
* aligned and offset from each other.
* - Use of direct process-to-process bcopy coupled
* with the fact that the data is never touched
* results in inflated bandwidth numbers when
* nbytes <= cache size. To obtain a more
* representative bandwidth measurement, increase
* nbytes to at least 2*cache size (2MB).
*
* $Revision: 8986 $
*/
#include <stdio.h>

Example Applications 169



#include <stdlib.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string.h>
#include <math.h>
#include <mpi.h>
#define NLOOPS 1000
#define ALIGN 4096
#define SEND(t) MPI_Send(buf, nbytes, MPI_CHAR, partner, (t), \

MPI_COMM_WORLD)
#define RECV(t) MPI_Recv(buf, nbytes, MPI_CHAR, partner, (t), \

MPI_COMM_WORLD, &status)
#ifdef CHECK
# define SETBUF() for (j=0; j<nbytes; j++) { \

buf[j] = (char) (j + i); \
}

# define CLRBUF() memset(buf, 0, nbytes)
# define CHKBUF() for (j = 0; j < nbytes; j++) { \

if (buf[j] != (char) (j + i)) { \
printf("error: buf[%d] = %d, " \

"not %d\n", \
j, buf[j], j + i); \

break; \
} \

}
#else
# define SETBUF()
# define CLRBUF()
# define CHKBUF()
#endif
int
main(int argc, char *argv[])
{

int i;
#ifdef CHECK

int j;
#endif

double start, stop;
int nbytes = 0;
int rank, size;
int root;
int partner;
MPI_Status status;
char *buf, *obuf;
char myhost[MPI_MAX_PROCESSOR_NAME];
int len;
char str[1024];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Get_processor_name(myhost, &len);
if (size < 2) {

if ( ! rank) printf("rping: must have two+ processes\n");
MPI_Finalize();
exit(0);

}
nbytes = (argc > 1) ? atoi(argv[1]) : 0;
if (nbytes < 0) nbytes = 0;

/*
* Page-align buffers and displace them in the cache to avoid collisions.
*/

buf = (char *) malloc(nbytes + 524288 + (ALIGN - 1));
obuf = buf;
if (buf == 0) {

MPI_Abort(MPI_COMM_WORLD, MPI_ERR_BUFFER);
exit(1);

170 Platform MPI: User's Guide



}
buf = (char *) ((((unsigned long) buf) + (ALIGN - 1)) & ~(ALIGN - 1));
if (rank > 0) buf += 524288;
memset(buf, 0, nbytes);

/*
* Ping-pong.
*/

for (root=0; root<size; root++) {
if (rank == root) {

partner = (root + 1) % size;
sprintf(str, "[%d:%s] ping-pong %d bytes ...\n",

root, myhost, nbytes);
/*
* warm-up loop
*/

for (i = 0; i < 5; i++) {
SEND(1);
RECV(1);

}
/*
* timing loop
*/

start = MPI_Wtime();
for (i = 0; i < NLOOPS; i++) {

SETBUF();
SEND(1000 + i);
CLRBUF();
RECV(2000 + i);
CHKBUF();

}
stop = MPI_Wtime();
sprintf(&str[strlen(str)],

"%d bytes: %.2f usec/msg\n", nbytes,
(stop - start) / NLOOPS / 2 * 1024 * 1024);

if (nbytes > 0) {
sprintf(&str[strlen(str)],

"%d bytes: %.2f MB/sec\n", nbytes,
nbytes / (1024. * 1024.) /
((stop - start) / NLOOPS / 2));

}
fflush(stdout);

} else if (rank == (root+1)%size) {
/*
* warm-up loop
*/

partner = root;
for (i = 0; i < 5; i++) {

RECV(1);
SEND(1);

}
for (i = 0; i < NLOOPS; i++) {

CLRBUF();
RECV(1000 + i);
CHKBUF();
SETBUF();
SEND(2000 + i);

}
}
MPI_Bcast(str, 1024, MPI_CHAR, root, MPI_COMM_WORLD);
if (rank == 0) {

printf("%s", str);
}

}
free(obuf);
MPI_Finalize();
exit(0);

}

Example Applications 171



Compiling ping_pong_ring

Run the following commands to compile the ping_pong_ring executable.

/opt/platform_mpi/bin/mpicc -c ping_pong_ring.c

/opt/platform_mpi/bin/mpicc -o ping_pong_ring ping_pong_ring.o

ping_pong_ring.c output

The output from running the ping_pong_ring executable is shown below. The
application was run with -np = 4.

/opt/platform_mpi/bin/mpirun -prot -np 4 -hostlist hostA:2,hostB:2 ./ping_pong_ring 0
mpirun path /opt/platform_mpi
mpid: CHeck for has_ic_ibv
mpid: CHeck for has_ic_ibv
ping_pong_ring: Rank 0:3: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
ping_pong_ring: Rank 0:2: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
ping_pong_ring: Rank 0:1: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
ping_pong_ring: Rank 0:0: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
Host 0 -- ip 172.25.239.151 -- ranks 0 - 1
Host 1 -- ip 172.25.239.152 -- ranks 2 - 3
host | 0 1

======|===========
0 : SHM IBV
1 : IBV SHM

Prot - All Intra-node communication is: SHM
Prot - All Inter-node communication is: IBV

[0:hostA] ping-pong 0 bytes ...
0 bytes: 0.25 usec/msg
[1:hostA] ping-pong 0 bytes ...
0 bytes: 2.44 usec/msg
[2:hostB] ping-pong 0 bytes ...
0 bytes: 0.25 usec/msg
[3:hostB] ping-pong 0 bytes ...
0 bytes: 2.46 usec/msg
mpid: world 0 commd 0 child rank 0 exit status 0
mpid: world 0 commd 0 child rank 1 exit status 0
mpid: world 0 commd 1 child rank 2 exit status 0
mpid: world 0 commd 1 child rank 3 exit status 0

The table showing SHM/VAPI is printed because of the -prot option (print
protocol) specified in the mpirun command. In general, it could show any of the
following settings:
v UDAPL: InfiniBand
v IBV: InfiniBand
v PSM: InfiniBand
v MX: Myrinet MX
v IBAL: InfiniBand (on Windows only)
v GM: Myrinet GM2
v TCP: TCP/IP
v MPID: commd
v SHM: Shared Memory (intra host only)

If the table shows TCP/IP for hosts, the host might not have the correct network
drivers installed.

172 Platform MPI: User's Guide



If a host shows considerably worse performance than another, it can often indicate
a bad card or cable.

If the run aborts with an error message, Platform MPI might have determined
incorrectly which interconnect was available. One common way to encounter this
problem is to run a 32-bit application on a 64-bit machine like an Opteron or
Intel64. It is not uncommon for network vendors for InfiniBand and others to only
provide 64-bit libraries for their network.

Platform MPI makes its decision about what interconnect to use before it knows
the application's bitness. To have proper network selection in that case, specify if
the application is 32-bit when running on Opteron and Intel64 machines:

% $MPI_ROOT/bin/mpirun -mpi32 ...

ping_pong_ring.c (Windows)
Often, clusters might have Ethernet and some form of higher-speed interconnect
such as InfiniBand. This section describes how to use the ping_pong_ring.c
example program to confirm that you can run using the interconnect.

Running a test like this, especially on a new cluster, is useful to ensure that the
correct network drivers are installed and that network hardware is functioning
properly. If any machine has defective network cards or cables, this test can also be
useful for identifying which machine has the problem.

To compile the program, set the MPI_ROOTenvironment variable to the location of
Platform MPI. The default is "C:\Program Files (x86)\Platform-MPI" for 64-bit
systems, and "C:\Program Files\Platform-MPI" for 32-bit systems. This might
already be set by the Platform MPI installation.

Open a command window for the compiler you plan on using. This includes all
libraries and compilers in path, and compile the program using the mpicc
wrappers:

>"%MPI_ROOT%\bin\mpicc" -mpi64 /out:pp.exe "%MPI_ROOT%\help\
ping_ping_ring.c"

Use the start-up for your cluster. Your situation should resemble one of the
following:
1. If running on Windows HPCS using automatic scheduling:

Submit the command to the scheduler, but include the total number of
processes needed on the nodes as the -np command. This is not the rank count
when used in this fashion. Also include the -nodexflag to indicate only one
rank/node.
Assume 4 CPUs/nodes in this cluster. The command would be:
> "%MPI_ROOT%\bin\mpirun" -hpc -np 12 -IBAL -nodex -prot
ping_ping_ring.exe

> "%MPI_ROOT%\bin\mpirun" -hpc -np 12 -IBAL -nodex -prot
ping_ping_ring.exe 10000

In each case above, the first mpirun command uses 0 bytes per message and
verifies latency. The second mpirun command uses 1000000 bytes per message
and verifies bandwidth.

Example Applications 173



/*
* Copyright (c) 1997-2010 Platform Computing Corporation
* All Rights Reserved.
*
* Function: - example: ping-pong benchmark
*
* Usage: mpirun -np 2 ping_pong [nbytes]
*
* Notes: - Define CHECK macro to check data integrity.
* - The previous ping_pong example timed each
* iteration. The resolution of MPI_Wtime() is
* not sufficient to provide accurate measurements
* when nbytes is small. This version times the
* entire run and reports average time to avoid
* this issue.
* - To avoid cache conflicts due to direct
* process-to-process bcopy, the buffers are
* aligned and offset from each other.
* - Use of direct process-to-process bcopy coupled
* with the fact that the data is never touched
* results in inflated bandwidth numbers when
* nbytes <= cache size. To obtain a more
* representative bandwidth measurement, increase
* nbytes to at least 2*cache size (2MB).
*
* $Revision: 8986 $
*/
#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string.h>
#include <math.h>
#include <mpi.h>
#define NLOOPS 1000
#define ALIGN 4096
#define SEND(t) MPI_Send(buf, nbytes, MPI_CHAR, partner, (t), \

MPI_COMM_WORLD)
#define RECV(t) MPI_Recv(buf, nbytes, MPI_CHAR, partner, (t), \

MPI_COMM_WORLD, &status)
#ifdef CHECK
# define SETBUF() for (j=0; j<nbytes; j++) { \

buf[j] = (char) (j + i); \
}

# define CLRBUF() memset(buf, 0, nbytes)
# define CHKBUF() for (j = 0; j < nbytes; j++) { \

if (buf[j] != (char) (j + i)) { \
printf("error: buf[%d] = %d, " \

"not %d\n", \
j, buf[j], j + i); \

break; \
} \

}
#else
# define SETBUF()
# define CLRBUF()
# define CHKBUF()
#endif
int
main(int argc, char *argv[])
{

int i;
#ifdef CHECK

int j;
#endif

double start, stop;

174 Platform MPI: User's Guide



int nbytes = 0;
int rank, size;
int root;
int partner;
MPI_Status status;
char *buf, *obuf;
char myhost[MPI_MAX_PROCESSOR_NAME];
int len;
char str[1024];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Get_processor_name(myhost, &len);
if (size < 2) {

if ( ! rank) printf("rping: must have two+ processes\n");
MPI_Finalize();
exit(0);

}
nbytes = (argc > 1) ? atoi(argv[1]) : 0;
if (nbytes < 0) nbytes = 0;

/*
* Page-align buffers and displace them in the cache to avoid collisions.
*/

buf = (char *) malloc(nbytes + 524288 + (ALIGN - 1));
obuf = buf;
if (buf == 0) {

MPI_Abort(MPI_COMM_WORLD, MPI_ERR_BUFFER);
exit(1);

}
buf = (char *) ((((unsigned long) buf) + (ALIGN - 1)) & ~(ALIGN - 1));
if (rank > 0) buf += 524288;
memset(buf, 0, nbytes);

/*
* Ping-pong.
*/

for (root=0; root<size; root++) {
if (rank == root) {

partner = (root + 1) % size;
sprintf(str, "[%d:%s] ping-pong %d bytes ...\n",

root, myhost, nbytes);
/*
* warm-up loop
*/

for (i = 0; i < 5; i++) {
SEND(1);
RECV(1);

}
/*
* timing loop
*/

start = MPI_Wtime();
for (i = 0; i < NLOOPS; i++) {

SETBUF();
SEND(1000 + i);
CLRBUF();
RECV(2000 + i);
CHKBUF();

}
stop = MPI_Wtime();
sprintf(&str[strlen(str)],

"%d bytes: %.2f usec/msg\n", nbytes,
(stop - start) / NLOOPS / 2 * 1024 * 1024);

if (nbytes > 0) {
sprintf(&str[strlen(str)],

"%d bytes: %.2f MB/sec\n", nbytes,
nbytes / (1024. * 1024.) /
((stop - start) / NLOOPS / 2));

Example Applications 175



}
fflush(stdout);

} else if (rank == (root+1)%size) {
/*
* warm-up loop
*/

partner = root;
for (i = 0; i < 5; i++) {

RECV(1);
SEND(1);

}
for (i = 0; i < NLOOPS; i++) {

CLRBUF();
RECV(1000 + i);
CHKBUF();
SETBUF();
SEND(2000 + i);

}
}
MPI_Bcast(str, 1024, MPI_CHAR, root, MPI_COMM_WORLD);
if (rank == 0) {

printf("%s", str);
}

}
free(obuf);
MPI_Finalize();
exit(0);

}

ping_pong_ring.c output

The output from running the ping_pong_ring executable is shown below. The
application was run with -np = 4.

%MPI_ROOT%\bin\mpirun -prot -np 4 -hostlist hostA:2,hostB:2 .\ping_pong_ring.exe 0
mpid: CHeck for has_ic_ibv
mpid: CHeck for has_ic_ibv
ping_pong_ring: Rank 0:3: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
ping_pong_ring: Rank 0:2: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
ping_pong_ring: Rank 0:1: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
ping_pong_ring: Rank 0:0: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
Host 0 -- ip 172.25.239.151 -- ranks 0 - 1
Host 1 -- ip 172.25.239.152 -- ranks 2 - 3
host | 0 1

======|===========
0 : SHM IBV
1 : IBV SHM

Prot - All Intra-node communication is: SHM
Prot - All Inter-node communication is: IBV

[0:hostA] ping-pong 0 bytes ...
0 bytes: 0.25 usec/msg
[1:hostAhostA] ping-pong 0 bytes ...
0 bytes: 2.44 usec/msg
[2:hostB] ping-pong 0 bytes ...
0 bytes: 0.25 usec/msg
[3:hostB] ping-pong 0 bytes ...
0 bytes: 2.46 usec/msg
mpid: world 0 commd 0 child rank 0 exit status 0
mpid: world 0 commd 0 child rank 1 exit status 0
mpid: world 0 commd 1 child rank 2 exit status 0
mpid: world 0 commd 1 child rank 3 exit status 0

The table showing SHM/IBAL is printed because of the -prot option (print
protocol) specified in the mpirun command.

It could show any of the following settings:

176 Platform MPI: User's Guide



v IBAL: IBAL on InfiniBand
v MX: Myrinet Express
v TCP: TCP/IP
v MPID: daemon communication mode
v SHM: shared memory (intra host only)

If a host shows considerably worse performance than another, it can often indicate
a bad card or cable.

If the run aborts with an error message, Platform MPI might have incorrectly
determined which interconnect was available.

compute_pi.f
This Fortran 77 example computes pi by integrating f(x) = 4/(1 + x*x). Each
process:
1. Receives the number of intervals used in the approximation
2. Calculates the areas of its rectangles
3. Synchronizes for a global summation

Process 0 prints the result of the calculation.
C
C Copyright (c) 1997-2008 Platform Computing Corporation
C All Rights Reserved.
C
C Function: - example: compute pi by integrating
C f(x) = 4/(1 + x**2)
C - each process:
C - receives the # intervals used
C - calculates the areas of its rectangles
C - synchronizes for a global summation
C - process 0 prints the result and the time it took
C
C $Revision: 8175 $
C

program mainprog
include ’mpif.h’
double precision PI25DT
parameter(PI25DT = 3.141592653589793238462643d0)
double precision mypi, pi, h, sum, x, f, a
integer n, myid, numprocs, i, ierr

C
C Function to integrate
C

f(a) = 4.d0 / (1.d0 + a*a)
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
print *, "Process ", myid, " of ", numprocs, " is alive"
sizetype = 1
sumtype = 2

if (myid .eq. 0) then
n = 100

endif

call MPI_BCAST(n, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
C
C Calculate the interval size.
C h = 1.0d0 / n

Example Applications 177



sum = 0.0d0
do 20 i = myid + 1, n, numprocs

x = h * (dble(i) - 0.5d0)
sum = sum + f(x)

20 continue
mypi = h * sum

C
C Collect all the partial sums.
C

call MPI_REDUCE(mypi, pi, 1, MPI_DOUBLE_PRECISION,
+ MPI_SUM, 0, MPI_COMM_WORLD, ierr)

C
C Process 0 prints the result.
C

if (myid .eq. 0) then
write(6, 97) pi, abs(pi - PI25DT)

97 format(’ pi is approximately: ’, F18.16,
+ ’ Error is: ’, F18.16)
endif
call MPI_FINALIZE(ierr)
stop
end

program main
include ’mpif.h’
double precision PI25DT
parameter(PI25DT = 3.141592653589793238462643d0)
double precision mypi, pi, h, sum, x, f, a
integer n, myid, numprocs, i, ierr
C
C Function to integrate
C
f(a) = 4.d0 / (1.d0 + a*a)
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
print *, "Process ", myid, " of ", numprocs, " is alive"
sizetype = 1
sumtype = 2
if (myid .eq. 0) then
n = 100
endif
call MPI_BCAST(n, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
C
C Calculate the interval size.
C
h = 1.0d0 / n
sum = 0.0d0
do 20 i = myid + 1, n, numprocs
x = h * (dble(i) - 0.5d0)
sum = sum + f(x)
20 continue
mypi = h * sum
C
C Collect all the partial sums.
C
call MPI_REDUCE(mypi, pi, 1, MPI_DOUBLE_PRECISION,
+ MPI_SUM, 0, MPI_COMM_WORLD, ierr)
C
C Process 0 prints the result.
C
if (myid .eq. 0) then
write(6, 97) pi, abs(pi - PI25DT)
97 format(’ pi is approximately: ’, F18.16,
+ ’ Error is: ’, F18.16)

178 Platform MPI: User's Guide



endif
call MPI_FINALIZE(ierr)
stop
end

Compiling compute_pi

Run the following commands to compile the compute_pi executable.

/opt/platform_mpi/bin/mpif90 -c compute_pi.f

/opt/platform_mpi/bin/mpif90 -o compute_pi compute_pi.o

compute_pi output

The output from running the compute_pi executable is shown below. The
application was run with -np=4.

/opt/platform_mpi/bin/mpirun -np 4 ./compute_pi # any number of processes
Process 0 of 4 is alive
Process 2 of 4 is alive
Process 3 of 4 is alive
Process 1 of 4 is alive
pi is approximately: 3.1416009869231249 Error is: 0.0000083333333318

master_worker.f90
In this Fortran 90 example, a master task initiates (numtasks - 1) number of worker
tasks. The master distributes an equal portion of an array to each worker task.
Each worker task receives its portion of the array and sets the value of each
element to (the element's index + 1). Each worker task then sends its portion of the
modified array back to the master.

program array_manipulation
include ’mpif.h’

integer (kind=4) :: status(MPI_STATUS_SIZE)
integer (kind=4), parameter :: ARRAYSIZE = 10000, MASTER = 0
integer (kind=4) :: numtasks, numworkers, taskid, dest, index, i
integer (kind=4) :: arraymsg, indexmsg, source, chunksize, int4, real4
real (kind=4) :: data(ARRAYSIZE), result(ARRAYSIZE)
integer (kind=4) :: numfail, ierr

call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, taskid, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, numtasks, ierr)
numworkers = numtasks - 1
chunksize = (ARRAYSIZE / numworkers)
arraymsg = 1
indexmsg = 2
int4 = 4
real4 = 4
numfail = 0

! ******************************** Master task ******************************
if (taskid .eq. MASTER) then
data = 0.0
index = 1
do dest = 1, numworkers
call MPI_Send(index, 1, MPI_INTEGER, dest, 0, MPI_COMM_WORLD, ierr)
call MPI_Send(data(index), chunksize, MPI_REAL, dest, 0, &
MPI_COMM_WORLD, ierr)
index = index + chunksize
end do

Example Applications 179



do i = 1, numworkers
source = i
call MPI_Recv(index, 1, MPI_INTEGER, source, 1, MPI_COMM_WORLD, &
status, ierr)
call MPI_Recv(result(index), chunksize, MPI_REAL, source, 1, &
MPI_COMM_WORLD, status, ierr)
end do

do i = 1, numworkers*chunksize
if (result(i) .ne. (i+1)) then
print *, ’element ’, i, ’ expecting ’, (i+1), ’ actual is ’, result(i)
numfail = numfail + 1
endif
enddo

if (numfail .ne. 0) then
print *, ’out of ’, ARRAYSIZE, ’ elements, ’, numfail, ’ wrong answers’
else
print *, ’correct results!’
endif
end if

! ******************************* Worker task *******************************
if (taskid .gt. MASTER) then
call MPI_Recv(index, 1, MPI_INTEGER, MASTER, 0, MPI_COMM_WORLD, &
status, ierr)
call MPI_Recv(result(index), chunksize, MPI_REAL, MASTER, 0, &
MPI_COMM_WORLD, status, ierr)

do i = index, index + chunksize - 1
result(i) = i + 1
end do

call MPI_Send(index, 1, MPI_INTEGER, MASTER, 1, MPI_COMM_WORLD, ierr)
call MPI_Send(result(index), chunksize, MPI_REAL, MASTER, 1, &
MPI_COMM_WORLD, ierr)
end if

call MPI_Finalize(ierr)

end program array_manipulation

Compiling master_worker

Run the following command to compile the master_worker executable.

/opt/platform_mpi/bin/mpif90 -o master_worker master_worker.f90

master_worker output

The output from running the master_worker executable is shown below. The
application was run with -np=4.

/opt/platform_mpi/bin/mpirun -np 4 ./master_worker # at least 2 processes
correct results!

cart.C
This C++ program generates a virtual topology. The class Node represents a node
in a 2-D torus. Each process is assigned a node or nothing. Each node holds
integer data, and the shift operation exchanges the data with its neighbors. Thus,
north-east-south-west shifting returns the initial data.

180 Platform MPI: User's Guide



//
// Copyright (c) 1997-2008 Platform Computing Corporation
// All Rights Reserved.
//
//
// An example of using MPI in C++
//
// $Revision: 8175 $
//
// This program composes a virtual topology with processes
// participating in the execution. The class Node represents
// a node in 2-D torus. Each process is assigned a node or
// nothing. Each node holds an integer data and the shift
// operation exchanges the data with its neighbors. Thus,
// north-east-south-west shifting gets back the initial data.
//
#include <stdio.h>
#include <mpi.h>
#define NDIMS 2
typedef enum { NORTH, SOUTH, EAST, WEST } Direction;
// A node in 2-D torus
class Node {
private:

MPI_Comm comm;
int dims[NDIMS], coords[NDIMS];
int grank, lrank;
int data;

public:
Node(void);
~Node(void);
void profile(void);
void print(void);
void shift(Direction);

};
// A constructor
Node::Node(void)
{

int i, nnodes, periods[NDIMS];
// Create a balanced distribution
MPI_Comm_size(MPI_COMM_WORLD, &nnodes);
for (i = 0; i < NDIMS; i++) { dims[i] = 0; }
MPI_Dims_create(nnodes, NDIMS, dims);
// Establish a cartesian topology communicator
for (i = 0; i < NDIMS; i++) { periods[i] = 1; }
MPI_Cart_create(MPI_COMM_WORLD, NDIMS, dims, periods, 1, &comm);
// Initialize the data
MPI_Comm_rank(MPI_COMM_WORLD, &grank);
if (comm == MPI_COMM_NULL) {

lrank = MPI_PROC_NULL;
data = -1;

} else {
MPI_Comm_rank(comm, &lrank);
data = lrank;
MPI_Cart_coords(comm, lrank, NDIMS, coords);

}
}
// A destructor
Node::~Node(void)
{

if (comm != MPI_COMM_NULL) {
MPI_Comm_free(&comm);

}
}
// Shift function
void Node::shift(Direction dir)
{

if (comm == MPI_COMM_NULL) { return; }

Example Applications 181



int direction, disp, src, dest;
if (dir == NORTH) {

direction = 0; disp = -1;
} else if (dir == SOUTH) {

direction = 0; disp = 1;
} else if (dir == EAST) {

direction = 1; disp = 1;
} else {

direction = 1; disp = -1;
}
MPI_Cart_shift(comm, direction, disp, &src, &dest);
MPI_Status stat;
MPI_Sendrecv_replace(&data, 1, MPI_INT, dest, 0, src, 0, comm, &stat);

}
// Synchronize and print the data being held
void Node::print(void)
{

if (comm != MPI_COMM_NULL) {
MPI_Barrier(comm);
if (lrank == 0) { puts(""); } // line feed
MPI_Barrier(comm);
printf("(%d, %d) holds %d\n", coords[0], coords[1], data);

}
}
// Print object’s profile
void Node::profile(void)
{

// Non-member does nothing
if (comm == MPI_COMM_NULL) { return; }

// Print "Dimensions" at first
if (lrank == 0) {

printf("Dimensions: (%d, %d)\n", dims[0], dims[1]);
}
MPI_Barrier(comm);
// Each process prints its profile
printf("global rank %d: cartesian rank %d, coordinate (%d, %d)\n",

grank, lrank, coords[0], coords[1]);
}
// Program body
//
// Define a torus topology and demonstrate shift operations.
//
void body(void)
{

Node node;
node.profile();

node.print();
node.shift(NORTH);
node.print();
node.shift(EAST);
node.print();
node.shift(SOUTH);
node.print();
node.shift(WEST);
node.print();

}
//
// Main program---it is probably a good programming practice to call
// MPI_Init() and MPI_Finalize() here.
//
int main(int argc, char **argv)
{

182 Platform MPI: User's Guide



MPI_Init(&argc, &argv);
body();
MPI_Finalize();

}

Compiling cart

Run the following commands to compile the compute_pi executable.

/opt/platform_mpi/bin/mpiCC -I. -c cart.C

/opt/platform_mpi/bin/mpiCC -o cart cart.o

cart output

The output from running the cart executable is shown below. The application was
run with -np=4.
Dimensions: (2, 2)
global rank 0: cartesian rank 0, coordinate (0, 0)
global rank 2: cartesian rank 2, coordinate (1, 0)
global rank 3: cartesian rank 3, coordinate (1, 1)
global rank 1: cartesian rank 1, coordinate (0, 1)
(0, 0) holds 0
(1, 0) holds 2
(1, 1) holds 3
(0, 1) holds 1
(0, 0) holds 2
(1, 1) holds 1
(1, 0) holds 0
(0, 1) holds 3
(0, 0) holds 3
(1, 0) holds 1
(1, 1) holds 0
(0, 1) holds 2
(0, 0) holds 1
(1, 1) holds 2
(1, 0) holds 3
(0, 1) holds 0
(0, 0) holds 0
(0, 1) holds 1
(1, 1) holds 3(1, 0) holds 2

communicator.c
This C example shows how to make a copy of the default communicator
MPI_COMM_WORLD using MPI_Comm_dup.

/*
* Copyright (c) 1997-2010 Platform Computing Corporation
* All Rights Reserved.
*
* Function: - example: safety of communicator context
*
* $Revision: 8986 $
*/
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
int
main(int argc, char *argv[])
{

int rank, size, data;
MPI_Status status;
MPI_Comm libcomm;

Example Applications 183



MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (size != 2) {

if ( ! rank) printf("communicator: must have two processes\n");
MPI_Finalize();
exit(0);

}
MPI_Comm_dup(MPI_COMM_WORLD, &libcomm);
if (rank == 0) {

data = 12345;
MPI_Send(&data, 1, MPI_INT, 1, 5, MPI_COMM_WORLD);
data = 6789;
MPI_Send(&data, 1, MPI_INT, 1, 5, libcomm);

} else {
MPI_Recv(&data, 1, MPI_INT, 0, 5, libcomm, &status);
printf("received libcomm data = %d\n", data);
MPI_Recv(&data, 1, MPI_INT, 0, 5, MPI_COMM_WORLD, &status);
printf("received data = %d\n", data);

}
MPI_Comm_free(&libcomm);
MPI_Finalize();
return(0);

}

Compiling communicator

Run the following commands to compile the communicator executable.

/opt/platform_mpi/bin/mpicc -c communicator.c

/opt/platform_mpi/bin/mpicc -o communicator communicator.o

communicator output

The output from running the communicator executable is shown below. The
application was run with -np=2.

/opt/platform_mpi/bin/mpirun -np 2 ./communicator # must be 2 processes
received libcomm data = 6789
received data = 12345

multi_par.f
The Alternating Direction Iterative (ADI) method is often used to solve differential
equations. In this example, multi_par.f, a compiler that supports OPENMP
directives is required in order to achieve multi-level parallelism. multi_par.f
implements the following logic for a 2-dimensional compute region:

DO J=1,JMAX
DO I=2,IMAX

A(I,J)=A(I,J)+A(I-1,J)
ENDDO

ENDDO
DO J=2,JMAX

DO I=1,IMAX
A(I,J)=A(I,J)+A(I,J-1)

ENDDO
ENDDO

There are loop carried dependencies on the first dimension (array's row) in the first
innermost DO loop and the second dimension (array's column) in the second
outermost DO loop.

184 Platform MPI: User's Guide



A simple method for parallelizing the fist outer-loop implies a partitioning of the
array in column blocks, while another for the second outer-loop implies a
partitioning of the array in row blocks.

With message-passing programming, such a method requires massive data
exchange among processes because of the partitioning change. "Twisted data
layout" partitioning is better in this case because the partitioning used for the
parallelization of the first outer-loop can accommodate the other of the second
outer-loop. The partitioning of the array is shown as follows:

In this sample program, the rank n process is assigned to the partition n at
distribution initialization. Because these partitions are not contiguous-memory
regions, MPI's derived datatype is used to define the partition layout to the MPI
system.

Each process starts with computing summations in row-wise fashion. For example,
the rank 2 process starts with the block that is on the 0th-row block and
2nd-column block (denoted as [0,2]).

The block computed in the second step is [1,3]. Computing the first row elements
in this block requires the last row elements in the [0,3] block (computed in the first
step in the rank 3 process). Thus, the rank 2 process receives the data from the
rank 3 process at the beginning of the second step. The rank 2 process also sends
the last row elements of the [0,2] block to the rank 1 process that computes [1,2] in
the second step. By repeating these steps, all processes finish summations in
row-wise fashion (the first outer-loop in the illustrated program).

The second outer-loop (the summations in column-wise fashion) is done in the
same manner. For example, at the beginning of the second step for the
column-wise summations, the rank 2 process receives data from the rank 1 process
that computed the [3,0] block. The rank 2 process also sends the last column of the
[2,0] block to the rank 3 process. Each process keeps the same blocks for both of
the outer-loop computations.

This approach is good for distributed memory architectures where repartitioning
requires massive data communications that are expensive. However, on shared

Figure 1. Array partitioning

Example Applications 185



memory architectures, the partitioning of the compute region does not imply data
distribution. The row- and column-block partitioning method requires just one
synchronization at the end of each outer loop.

For distributed shared-memory architectures, the mix of the two methods can be
effective. The sample program implements the twisted-data layout method with
MPI and the row- and column-block partitioning method with OPENMP thread
directives. In the first case, the data dependency is easily satisfied because each
thread computes down a different set of columns. In the second case we still want
to compute down the columns for cache reasons, but to satisfy the data
dependency, each thread computes a different portion of the same column and the
threads work left to right across the rows together.

c
c Copyright (c) 1997-2008 Platform Computing Corporation
c All Rights Reserved.
c
c Function: - example: multi-level parallelism
c
c $Revision: 8175 $
c
c
c
c**********************************************************************
c

implicit none
include ’mpif.h’
integer nrow ! # of rows
integer ncol ! # of columns
parameter(nrow=1000,ncol=1000)
double precision array(nrow,ncol) ! compute region
integer blk ! block iteration counter
integer rb ! row block number
integer cb ! column block number
integer nrb ! next row block number
integer ncb ! next column block number
integer rbs(:) ! row block start subscripts
integer rbe(:) ! row block end subscripts
integer cbs(:) ! column block start subscripts
integer cbe(:) ! column block end subscripts
integer rdtype(:) ! row block communication datatypes
integer cdtype(:) ! column block communication datatypes
integer twdtype(:) ! twisted distribution datatypes
integer ablen(:) ! array of block lengths
integer adisp(:) ! array of displacements
integer adtype(:) ! array of datatypes
allocatable rbs,rbe,cbs,cbe,rdtype,cdtype,twdtype,ablen,adisp,
* adtype
integer rank ! rank iteration counter
integer comm_size ! number of MPI processes
integer comm_rank ! sequential ID of MPI process
integer ierr ! MPI error code
integer mstat(mpi_status_size) ! MPI function status
integer src ! source rank
integer dest ! destination rank
integer dsize ! size of double precision in bytes
double precision startt,endt,elapsed ! time keepers
external compcolumn,comprow ! subroutines execute in threads

c
c MPI initialization
c

call mpi_init(ierr)
call mpi_comm_size(mpi_comm_world,comm_size,ierr)
call mpi_comm_rank(mpi_comm_world,comm_rank,ierr)

c

186 Platform MPI: User's Guide



c Data initialization and start up
c if (comm_rank.eq.0) then

write(6,*) ’Initializing’,nrow,’ x’,ncol,’ array...’
call getdata(nrow,ncol,array)
write(6,*) ’Start computation’

endif
call mpi_barrier(MPI_COMM_WORLD,ierr)
startt=mpi_wtime()

c
c Compose MPI datatypes for row/column send-receive
c

allocate(rbs(0:comm_size-1),rbe(0:comm_size-1),cbs(0:comm_size-1),
* cbe(0:comm_size-1),rdtype(0:comm_size-1),
* cdtype(0:comm_size-1),twdtype(0:comm_size-1))
do blk=0,comm_size-1

call blockasgn(1,nrow,comm_size,blk,rbs(blk),rbe(blk))
call mpi_type_contiguous(rbe(blk)-rbs(blk)+1,

* mpi_double_precision,rdtype(blk),ierr)
call mpi_type_commit(rdtype(blk),ierr)
call blockasgn(1,ncol,comm_size,blk,cbs(blk),cbe(blk))
call mpi_type_vector(cbe(blk)-cbs(blk)+1,1,nrow,

* mpi_double_precision,cdtype(blk),ierr)
call mpi_type_commit(cdtype(blk),ierr)

enddo
c
c Compose MPI datatypes for gather/scatter
c
c Each block of the partitioning is defined as a set of fixed length
c vectors. Each process’es partition is defined as a struct of such
c blocks.
c

allocate(adtype(0:comm_size-1),adisp(0:comm_size-1),
* ablen(0:comm_size-1))
call mpi_type_extent(mpi_double_precision,dsize,ierr)
do rank=0,comm_size-1

do rb=0,comm_size-1
cb=mod(rb+rank,comm_size)
call mpi_type_vector(cbe(cb)-cbs(cb)+1,rbe(rb)-rbs(rb)+1,

* nrow,mpi_double_precision,adtype(rb),ierr)
call mpi_type_commit(adtype(rb),ierr)
adisp(rb)=((rbs(rb)-1)+(cbs(cb)-1)*nrow)*dsize
ablen(rb)=1

enddo
call mpi_type_struct(comm_size,ablen,adisp,adtype,

* twdtype(rank),ierr)
call mpi_type_commit(twdtype(rank),ierr)
do rb=0,comm_size-1

call mpi_type_free(adtype(rb),ierr)
enddo

enddo
deallocate(adtype,adisp,ablen)

c
c Scatter initial data with using derived datatypes defined above
c for the partitioning. MPI_send() and MPI_recv() will find out the
c layout of the data from those datatypes. This saves application
c programs to manually pack/unpack the data, and more importantly,
c gives opportunities to the MPI system for optimal communication
c strategies.
c

if (comm_rank.eq.0) then
do dest=1,comm_size-1

call mpi_send(array,1,twdtype(dest),dest,0,mpi_comm_world,
* ierr)

enddo
else

call mpi_recv(array,1,twdtype(comm_rank),0,0,mpi_comm_world,
* mstat,ierr)

Example Applications 187



endif
c
c Computation
c
c Sum up in each column.
c Each MPI process, or a rank, computes blocks that it is assigned.
c The column block number is assigned in the variable ’cb’. The
c starting and ending subscripts of the column block ’cb’ are
c stored in ’cbs(cb)’ and ’cbe(cb)’, respectively. The row block
c number is assigned in the variable ’rb’. The starting and ending
c subscripts of the row block ’rb’ are stored in ’rbs(rb)’ and
c ’rbe(rb)’, respectively, as well.
c

src=mod(comm_rank+1,comm_size)
dest=mod(comm_rank-1+comm_size,comm_size)
ncb=comm_rank
do rb=0,comm_size-1

cb=ncb
c
c Compute a block. The function will go thread-parallel if the
c compiler supports OPENMP directives.
c

call compcolumn(nrow,ncol,array,
* rbs(rb),rbe(rb),cbs(cb),cbe(cb))

if (rb.lt.comm_size-1) then
c
c Send the last row of the block to the rank that is to compute the
c block next to the computed block. Receive the last row of the
c block that the next block being computed depends on.
c

nrb=rb+1
ncb=mod(nrb+comm_rank,comm_size)
call mpi_sendrecv(array(rbe(rb),cbs(cb)),1,cdtype(cb),dest,

* 0,array(rbs(nrb)-1,cbs(ncb)),1,cdtype(ncb),src,0,
* mpi_comm_world,mstat,ierr)

endif
enddo

c
c Sum up in each row.
c The same logic as the loop above except rows and columns arec switched.
c

src=mod(comm_rank-1+comm_size,comm_size)
dest=mod(comm_rank+1,comm_size)
do cb=0,comm_size-1

rb=mod(cb-comm_rank+comm_size,comm_size)
call comprow(nrow,ncol,array,

* rbs(rb),rbe(rb),cbs(cb),cbe(cb))
if (cb.lt.comm_size-1) then

ncb=cb+1
nrb=mod(ncb-comm_rank+comm_size,comm_size)
call mpi_sendrecv(array(rbs(rb),cbe(cb)),1,rdtype(rb),dest,

* 0,array(rbs(nrb),cbs(ncb)-1),1,rdtype(nrb),src,0,
* mpi_comm_world,mstat,ierr)

endif
enddo

c
c Gather computation results
c

call mpi_barrier(MPI_COMM_WORLD,ierr)
endt=mpi_wtime()
if (comm_rank.eq.0) then

do src=1,comm_size-1
call mpi_recv(array,1,twdtype(src),src,0,mpi_comm_world,

* mstat,ierr)
enddo
elapsed=endt-startt
write(6,*) ’Computation took’,elapsed,’ seconds’

188 Platform MPI: User's Guide



else
call mpi_send(array,1,twdtype(comm_rank),0,0,mpi_comm_world,

* ierr)
endif

c
c Dump to a file
c
c if (comm_rank.eq.0) then
c print*,’Dumping to adi.out...’
c open(8,file=’adi.out’)
c write(8,*) array
c close(8,status=’keep’)
c endif
c
c Free the resources
c

do rank=0,comm_size-1
call mpi_type_free(twdtype(rank),ierr)

enddo
do blk=0,comm_size-1

call mpi_type_free(rdtype(blk),ierr)
call mpi_type_free(cdtype(blk),ierr)

enddo
deallocate(rbs,rbe,cbs,cbe,rdtype,cdtype,twdtype)

c
c Finalize the MPI system
c

call mpi_finalize(ierr)
end

c
c
c**********************************************************************

subroutine blockasgn(subs,sube,blockcnt,nth,blocks,blocke)
c
c This subroutine:
c is given a range of subscript and the total number of blocks in
c which the range is to be divided, assigns a subrange to the caller
c that is n-th member of the blocks.
c

implicit none
integer subs ! (in) subscript start
integer sube ! (in) subscript end
integer blockcnt ! (in) block count
integer nth ! (in) my block (begin from 0)
integer blocks ! (out) assigned block start subscript
integer blocke ! (out) assigned block end subscript

c
integer d1,m1

c
d1=(sube-subs+1)/blockcnt
m1=mod(sube-subs+1,blockcnt)
blocks=nth*d1+subs+min(nth,m1)
blocke=blocks+d1-1
if(m1.gt.nth)blocke=blocke+1
end

c
c
c**********************************************************************

subroutine compcolumn(nrow,ncol,array,rbs,rbe,cbs,cbe)
c
c This subroutine:
c does summations of columns in a thread.
c

implicit none
integer nrow ! # of rows
integer ncol ! # of columns
double precision array(nrow,ncol) ! compute region

Example Applications 189



integer rbs ! row block start subscript
integer rbe ! row block end subscript
integer cbs ! column block start subscript
integer cbe ! column block end subscript

c
c Local variables
c

integer i,j
c
c The OPENMP directive below allows the compiler to split the
c values for "j" between a number of threads. By making i and j
c private, each thread works on its own range of columns "j",
c and works down each column at its own pace "i".
c
c Note no data dependency problems arise by having the threads all
c working on different columns simultaneously.
c
C$OMP PARALLEL DO PRIVATE(i,j)

do j=cbs,cbe
do i=max(2,rbs),rbe

array(i,j)=array(i-1,j)+array(i,j)
enddo

enddo
C$OMP END PARALLEL DO

end
c
c
c**********************************************************************

subroutine comprow(nrow,ncol,array,rbs,rbe,cbs,cbe)
c
c This subroutine:
c does summations of rows in a thread.
c

implicit none
integer nrow ! # of rows
integer ncol ! # of columns
double precision array(nrow,ncol) ! compute region
integer rbs ! row block start subscript
integer rbe ! row block end subscript
integer cbs ! column block start subscript
integer cbe ! column block end subscript

c
c Local variables
c

integer i,j
c
c The OPENMP directives below allow the compiler to split the
c values for "i" between a number of threads, while "j" moves
c forward lock-step between the threads. By making j shared
c and i private, all the threads work on the same column "j" at
c any given time, but they each work on a different portion "i"
c of that column.
c
c This is not as efficient as found in the compcolumn subroutine,
c but is necessary due to data dependencies.
c
C$OMP PARALLEL PRIVATE(i)

do j=max(2,cbs),cbe
C$OMP DO

do i=rbs,rbe
array(i,j)=array(i,j-1)+array(i,j)

enddo
C$OMP END DO

enddo
C$OMP END PARALLEL

end
c

190 Platform MPI: User's Guide



c
c**********************************************************************

subroutine getdata(nrow,ncol,array)
c
c Enter dummy data
c

integer nrow,ncol
double precision array(nrow,ncol)

c
do j=1,ncol

do i=1,nrow
array(i,j)=(j-1.0)*ncol+i

enddo
enddo
end

multi_par output

The output from running the multi_par executable is shown below. The
application was run with -np=4.

/opt/platform_mpi/bin/mpirun -prot -np 4 -hostlist hostA:2,hostB:2 ./multi_par
g: MPI_ROOT /pmpi/build/pmpi8_0_1/Linux/exports/linux_amd64_gcc_dbg !=
mpirun path /opt/platform_mpi
mpid: CHeck for has_ic_ibv
mpid: CHeck for has_ic_ibv
multi_par: Rank 0:2: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
multi_par: Rank 0:3: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
multi_par: Rank 0:1: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
multi_par: Rank 0:0: MPI_Init: IBV: Resolving to IBVERBS_1.1 definitions
Host 0 -- ip 172.25.239.151 -- ranks 0 - 1
Host 1 -- ip 172.25.239.152 -- ranks 2 - 3
host | 0 1
======|===========

0 : SHM IBV
1 : IBV SHM

Prot - All Intra-node communication is: SHM
Prot - All Inter-node communication is: IBV
mpid: world 0 commd 1 child rank 2 exit status 0
mpid: world 0 commd 1 child rank 3 exit status 0
Initializing 1000 x 1000 array...
Start computation
Computation took 0.181217908859253 seconds
mpid: world 0 commd 0 child rank 0 exit status 0
mpid: world 0 commd 0 child rank 1 exit status 0

io.c
In this C example, each process writes to a separate file called iodatax, wherex
represents each process rank in turn. Then, the data in iodatax is read back.

/*
* Copyright (c) 1997-2010 Platform Computing Corporation
* All Rights Reserved.
*
* Function: - example: MPI-I/O
*
* $Revision: 8986 $
*/
#include <stdio.h>#include <string.h>
#include <stdlib.h>
#include <mpi.h>
#define SIZE (65536)
#define FILENAME "iodata"
/* Each process writes to separate files and reads them back.

The file name is "iodata" and the process rank is appended to it.

Example Applications 191



*/
int
main(int argc, char *argv[])
{

int *buf, i, rank, nints, len, flag;
char *filename;
MPI_File fh;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
buf = (int *) malloc(SIZE);
nints = SIZE/sizeof(int);
for (i=0; i<nints; i++) buf[i] = rank*100000 + i;
/* each process opens a separate file called FILENAME.’myrank’ */
filename = (char *) malloc(strlen(FILENAME) + 10);
sprintf(filename, "%s.%d", FILENAME, rank);
MPI_File_open(MPI_COMM_SELF, filename,

MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, (MPI_Offset)0, MPI_INT, MPI_INT, "native",

MPI_INFO_NULL);
MPI_File_write(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);
/* reopen the file and read the data back */
for (i=0; i<nints; i++) buf[i] = 0;
MPI_File_open(MPI_COMM_SELF, filename,

MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, (MPI_Offset)0, MPI_INT, MPI_INT, "native",

MPI_INFO_NULL);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);
/* check if the data read is correct */
flag = 0;
for (i=0; i<nints; i++)

if (buf[i] != (rank*100000 + i)) {
printf("Process %d: error, read %d, should be %d\n",

rank, buf[i], rank*100000+i);
flag = 1;

}
if (!flag) {

printf("Process %d: data read back is correct\n", rank);
MPI_File_delete(filename, MPI_INFO_NULL);

}
free(buf);
free(filename);
MPI_Finalize();
exit(0);

}

Compiling io

Run the following commands to compile the io executable.

/opt/platform_mpi/bin/mpicc -c io.c

/opt/platform_mpi/bin/mpicc -o io io.o

io Output

The output from running the io executable is shown below. The applicat,ion was
run with -np=4.

192 Platform MPI: User's Guide



/opt/platform_mpi/bin/mpirun -np 4 ./io # any number of processes
Process 3: data read back is correct
Process 1: data read back is correct
Process 2: data read back is correct
Process 0: data read back is correct

thread_safe.c
In this C example, N clients loop MAX_WORK times. As part of a single work
item, a client must request service from one of Nservers at random. Each server
keeps a count of the requests handled and prints a log of the requests to stdout.
After all clients finish, the servers are shut down.

/*
* Copyright (c) 1997-2010 Platform Computing Corporation
* All Rights Reserved.
*
* $Revision: 8986 $
*
* Function: - example: thread-safe MPI
*
#include <stdlib.h>
#include <stdio.h>
#include <mpi.h>
#include <pthread.h>
#define MAX_WORK 40
#define SERVER_TAG 88
#define CLIENT_TAG 99
#define REQ_SHUTDOWN -1
static int service_cnt = 0;
int
process_request(int request)
{

if (request != REQ_SHUTDOWN) service_cnt++;
return request;

}
void*
server(void *args)
{

int rank, request;
MPI_Status status;
rank = *((int*)args);
while (1) {

MPI_Recv(&request, 1, MPI_INT, MPI_ANY_SOURCE,
SERVER_TAG, MPI_COMM_WORLD, &status);

if (process_request(request) == REQ_SHUTDOWN)
break;

MPI_Send(&rank, 1, MPI_INT, status.MPI_SOURCE,
CLIENT_TAG, MPI_COMM_WORLD);

printf("server [%d]: processed request %d for client %d\n",
rank, request, status.MPI_SOURCE);

}
printf("server [%d]: total service requests: %d\n", rank, service_cnt);
return (void*) 0;

}
void
client(int rank, int size)
{

int w, server, ack;
MPI_Status status;
for (w = 0; w < MAX_WORK; w++) {

server = rand()%size;
MPI_Sendrecv(&rank, 1, MPI_INT, server, SERVER_TAG,

&ack, 1, MPI_INT, server, CLIENT_TAG,
MPI_COMM_WORLD, &status);

if (ack != server) {

Example Applications 193



printf("server failed to process my request\n");
MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);

}
}

}
void
shutdown_servers(int rank)
{

int request_shutdown = REQ_SHUTDOWN;
MPI_Barrier(MPI_COMM_WORLD);
MPI_Send(&request_shutdown, 1, MPI_INT,

rank, SERVER_TAG, MPI_COMM_WORLD);
}
int
main(int argc, char *argv[])
{

int rank, size, rtn;
pthread_t mtid;
MPI_Status status;
int my_value, his_value;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

rtn = pthread_create(&mtid, 0, server, (void*)&rank);
if (rtn != 0) {

printf("pthread_create failed\n");
MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);

}
client(rank, size);
shutdown_servers(rank);

rtn = pthread_join(mtid, 0);
if (rtn != 0) {

printf("pthread_join failed\n");
MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);

}
MPI_Finalize();
exit(0);

}

thread_safe output

The output from running the thread_safe executable is shown below. The
application was run with -np=2.
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 0 for client 0

194 Platform MPI: User's Guide



server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 1 for client 1
server [0]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 0 for client 0
server [0]: processed request 0 for client 0
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [1]: processed request 1 for client 1
server [0]: processed request 1 for client 1
server [0]: total service requests: 38
server [1]: total service requests: 42

sort.C
This program does a simple integer sort in parallel. The sort input is built using
the "rand" random number generator. The program is self-checking and can run
with any number of ranks.

Example Applications 195



//
// Copyright (c) 1997-2008 Platform Computing Corporation
// All Rights Reserved.
//
// $Revision: 8175 $
//
// This program does a simple integer sort in parallel.
// The sort input is built using the "rand" ramdom number
// generator. The program is self-checking and can run
// with any number of ranks.
//
#define NUM_OF_ENTRIES_PER_RANK 100
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <mpi.h>
#include <limits.h>
#include <iostream.h>
#include <fstream.h>
//
// Class declarations.
//
class Entry {
private:

int value;
public:

Entry()
{ value = 0; }

Entry(int x)
{ value = x; }

Entry(const Entry &e)
{ value = e.getValue(); }

Entry& operator= (const Entry &e)
{ value = e.getValue(); return (*this); }

int getValue() const { return value; }
int operator> (const Entry &e) const

{ return (value > e.getValue()); }
};
class BlockOfEntries {
private:

Entry **entries;
int numOfEntries;

public:
BlockOfEntries(int *numOfEntries_p, int offset);
~BlockOfEntries();
int getnumOfEntries()

{ return numOfEntries; }
void setLeftShadow(const Entry &e)

{ *(entries[0]) = e; }
void setRightShadow(const Entry &e)

{ *(entries[numOfEntries-1]) = e; }
const Entry& getLeftEnd()

{ return *(entries[1]); }
const Entry& getRightEnd()

{ return *(entries[numOfEntries-2]); }
void singleStepOddEntries();
void singleStepEvenEntries();
void verifyEntries(int myRank, int baseLine);
void printEntries(int myRank);

};
//
// Class member definitions.
//
const Entry MAXENTRY(INT_MAX);
const Entry MINENTRY(INT_MIN);
//
// BlockOfEntries::BlockOfEntries

196 Platform MPI: User's Guide



//
// Function: - create the block of entries.
//
BlockOfEntries::BlockOfEntries(int *numOfEntries_p, int myRank)
{
//
// Initialize the random number generator’s seed based on the caller’s rank;
// thus, each rank should (but might not) get different random values.
//

srand((unsigned int) myRank);
numOfEntries = NUM_OF_ENTRIES_PER_RANK;
*numOfEntries_p = numOfEntries;

//
// Add in the left and right shadow entries.
//

numOfEntries += 2;
//
// Allocate space for the entries and use rand to initialize the values.
//

entries = new Entry *[numOfEntries];
for(int i = 1; i < numOfEntries-1; i++) {

entries[i] = new Entry;
*(entries[i]) = (rand()%1000) * ((rand()%2 == 0)? 1 : -1);

}

//
// Initialize the shadow entries.
//

entries[0] = new Entry(MINENTRY);
entries[numOfEntries-1] = new Entry(MAXENTRY);

}
//
// BlockOfEntries::~BlockOfEntries
//
// Function: - delete the block of entries.
//
BlockOfEntries::~BlockOfEntries()
{

for(int i = 1; i < numOfEntries-1; i++) {
delete entries[i];

}
delete entries[0];
delete entries[numOfEntries-1];
delete [] entries;

}
//
// BlockOfEntries::singleStepOddEntries
//
// Function: - Adjust the odd entries.
//
void
BlockOfEntries::singleStepOddEntries()
{

for(int i = 0; i < numOfEntries-1; i += 2) {
if (*(entries[i]) > *(entries[i+1]) ) {

Entry *temp = entries[i+1];
entries[i+1] = entries[i];
entries[i] = temp;

}
}

}
//
// BlockOfEntries::singleStepEvenEntries
//
// Function: - Adjust the even entries.
//
void

Example Applications 197



BlockOfEntries::singleStepEvenEntries()
{

for(int i = 1; i < numOfEntries-2; i += 2) {
if (*(entries[i]) > *(entries[i+1]) ) {

Entry *temp = entries[i+1];
entries[i+1] = entries[i];
entries[i] = temp;

}
}

}
//
// BlockOfEntries::verifyEntries
//
// Function: - Verify that the block of entries for rank myRank
// is sorted and each entry value is greater than
// or equal to argument baseLine.
//
void
BlockOfEntries::verifyEntries(int myRank, int baseLine)
{

for(int i = 1; i < numOfEntries-2; i++) {
if (entries[i]->getValue() < baseLine) {

cout << "Rank " << myRank
<< " wrong answer i=" << i
<< " baseLine=" << baseLine
<< " value=" << entries[i]->getValue()
<< endl;

MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);
}

if (*(entries[i]) > *(entries[i+1]) ) {
cout << "Rank " << myRank

<< " wrong answer i=" << i
<< " value[i]="
<< entries[i]->getValue()
<< " value[i+1]="
<< entries[i+1]->getValue()
<< endl;

MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);
}

}
}
//
// BlockOfEntries::printEntries
//
// Function: - Print myRank’s entries to stdout.
//
void
BlockOfEntries::printEntries(int myRank)
{

cout << endl;
cout << "Rank " << myRank << endl;
for(int i = 1; i < numOfEntries-1; i++)

cout << entries[i]->getValue() << endl;
}
int
main(int argc, char **argv)
{

int myRank, numRanks;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);

//
// Have each rank build its block of entries for the global sort.
//

int numEntries;
BlockOfEntries *aBlock = new BlockOfEntries(&numEntries, myRank);

//

198 Platform MPI: User's Guide



// Compute the total number of entries and sort them.
//

numEntries *= numRanks;
for(int j = 0; j < numEntries / 2; j++) {

//
// Synchronize and then update the shadow entries.
//

MPI_Barrier(MPI_COMM_WORLD);
int recvVal, sendVal;
MPI_Request sortRequest;
MPI_Status status;

//
// Everyone except numRanks-1 posts a receive for the right’s rightShadow.
//

if (myRank != (numRanks-1)) {
MPI_Irecv(&recvVal, 1, MPI_INT, myRank+1,

MPI_ANY_TAG, MPI_COMM_WORLD,
&sortRequest);

}

//
// Everyone except 0 sends its leftEnd to the left.
//

if (myRank != 0) {
sendVal = aBlock->getLeftEnd().getValue();
MPI_Send(&sendVal, 1, MPI_INT,

myRank-1, 1, MPI_COMM_WORLD);
}
if (myRank != (numRanks-1)) {

MPI_Wait(&sortRequest, &status);
aBlock->setRightShadow(Entry(recvVal));

}
//
// Everyone except 0 posts for the left’s leftShadow.
//

if (myRank != 0) {
MPI_Irecv(&recvVal, 1, MPI_INT, myRank-1,

MPI_ANY_TAG, MPI_COMM_WORLD,
&sortRequest);

}
//
// Everyone except numRanks-1 sends its rightEnd right.
//

if (myRank != (numRanks-1)) {
sendVal = aBlock->getRightEnd().getValue();
MPI_Send(&sendVal, 1, MPI_INT,

myRank+1, 1, MPI_COMM_WORLD);
}
if (myRank != 0) {

MPI_Wait(&sortRequest, &status);
aBlock->setLeftShadow(Entry(recvVal));

}
//

// Have each rank fix up its entries.
//

aBlock->singleStepOddEntries();
aBlock->singleStepEvenEntries();

}
//
// Print and verify the result.
//

if (myRank == 0) {
int sendVal;
aBlock->printEntries(myRank);
aBlock->verifyEntries(myRank, INT_MIN);
sendVal = aBlock->getRightEnd().getValue();
if (numRanks > 1)

Example Applications 199



MPI_Send(&sendVal, 1, MPI_INT, 1, 2, MPI_COMM_WORLD);
} else {

int recvVal;
MPI_Status Status;
MPI_Recv(&recvVal, 1, MPI_INT, myRank-1, 2,

MPI_COMM_WORLD, &Status);
aBlock->printEntries(myRank);
aBlock->verifyEntries(myRank, recvVal);
if (myRank != numRanks-1) {

recvVal = aBlock->getRightEnd().getValue();
MPI_Send(&recvVal, 1, MPI_INT, myRank+1, 2,

MPI_COMM_WORLD);
}

}
delete aBlock;
MPI_Finalize();
exit(0);

}

sort.C output

The output from running the sort executable is shown below. The application was
run with -np4.
Rank 0
-998
-996
-996
-993

...
-567
-563
-544
-543

Rank 1
-535
-528
-528

...
-90
-90
-84
-84

Rank 2
-78
-70
-69
-69

...
383
383
386
386

Rank 3
386
393
393
397

...

200 Platform MPI: User's Guide



950
965
987
987

compute_pi_spawn.f
This example computes pi by integrating f(x) = 4/(1 + x**2) using MPI_Spawn. It
starts with one process and spawns a new world that does the computation along
with the original process. Each newly spawned process receives the # of intervals
used, calculates the areas of its rectangles, and synchronizes for a global
summation. The original process 0 prints the result and the time it took.

C
C (C) Copyright 2010 Platform Computing Corporation
C
C Function: - example: compute pi by integrating
C f(x) = 4/(1 + x**2)
C using MPI_Spawn.
C
C - start with one process who spawns a new
C world which along with does the computation
C along with the original process.
C - each newly spawned process:
C - receives the # intervals used
C - calculates the areas of its rectangles
C - synchronizes for a global summation
C - the original process 0 prints the result
C and the time it took
C
C $Revision: 8403 $
C

program mainprog
include ’mpif.h’
double precision PI25DT
parameter(PI25DT = 3.141592653589793238462643d0)
double precision mypi, pi, h, sum, x, f, a
integer n, myid, numprocs, i, ierr
integer parenticomm, spawnicomm, mergedcomm, high

C
C Function to integrate
C

f(a) = 4.d0 / (1.d0 + a*a)
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
call MPI_COMM_GET_PARENT(parenticomm, ierr)
if (parenticomm .eq. MPI_COMM_NULL) then

print *, "Original Process ", myid, " of ", numprocs,
+ " is alive"

call MPI_COMM_SPAWN("./compute_pi_spawn", MPI_ARGV_NULL, 3,
+ MPI_INFO_NULL, 0, MPI_COMM_WORLD, spawnicomm,
+ MPI_ERRCODES_IGNORE, ierr)

call MPI_INTERCOMM_MERGE(spawnicomm, 0, mergedcomm, ierr)
call MPI_COMM_FREE(spawnicomm, ierr)

else
print *, "Spawned Process ", myid, " of ", numprocs,

+ " is alive"
call MPI_INTERCOMM_MERGE(parenticomm, 1, mergedcomm, ierr)
call MPI_COMM_FREE(parenticomm, ierr)

endif
call MPI_COMM_RANK(mergedcomm, myid, ierr)
call MPI_COMM_SIZE(mergedcomm, numprocs, ierr)
print *, "Process ", myid, " of ", numprocs,
+ " in merged comm is alive"
sizetype = 1

Example Applications 201



sumtype = 2

if (myid .eq. 0) then
n = 100

endif

call MPI_BCAST(n, 1, MPI_INTEGER, 0, mergedcomm, ierr)
C
C Calculate the interval size.
C

h = 1.0d0 / n
sum = 0.0d0
do 20 i = myid + 1, n, numprocs

x = h * (dble(i) - 0.5d0)
sum = sum + f(x)

20 continue
mypi = h * sum

C
C Collect all the partial sums.
C

call MPI_REDUCE(mypi, pi, 1, MPI_DOUBLE_PRECISION,
+ MPI_SUM, 0, mergedcomm, ierr)

C
C Process 0 prints the result.
C

if (myid .eq. 0) then
write(6, 97) pi, abs(pi - PI25DT)

97 format(’ pi is approximately: ’, F18.16,
+ ’ Error is: ’, F18.16)
endif
call MPI_COMM_FREE(mergedcomm, ierr)
call MPI_FINALIZE(ierr)
stop
end

compute_pi_spawn.f output

The output from running the compute_pi_spawn executable is shown below. The
application was run with -np1 and with the -spawn option.
Original Process 0 of 1 is alive
Spawned Process 0 of 3 is alive
Spawned Process 2 of 3 is alive
Spawned Process 1 of 3 is alive
Process 0 of 4 in merged comm is alive
Process 2 of 4 in merged comm is alive
Process 3 of 4 in merged comm is alive
Process 1 of 4 in merged comm is alive
pi is approximately: 3.1416009869231254
Error is: 0.0000083333333323

202 Platform MPI: User's Guide



High availability applications

Platform MPI provides support for high availability applications by using the -ha
option for mpirun. The following are additional options for the high availability
mode.

Support for high availability on InfiniBand Verbs

You can use the -ha option with the -IBV option. When using -ha, automatic
network selection is restricted to TCP and IBV. Be aware that -ha no longer forces
the use of TCP.

If TCP is desired on a system that has both TCP and IBV available, it is necessary
to explicitly specify -TCP on the mpirun command line. All high availability features
are available on both TCP and IBV interconnects.

Highly available infrastructure (-ha:infra)

The -ha option allows MPI ranks to be more tolerant of system failures. However,
failures can still affect the mpirun and mpid processes used to support Platform MPI
applications.

When the mpirun/mpid infrastructure is affected by failures, it can affect the
application ranks and the services provided to those ranks. Using -ha:infra
indicates that the mpirun and mpid processes normally used to support the
application ranks are terminated after all ranks have called MPI_Init().

This option implies -stdio=none. To record stdout and stderr, consider using the
-stdio=files option when using -ha:infra.

Because the mpirun and mpid processes do not persist for the length of the
application run, some features are not supported with -ha:infra. These include
-spawn, -commd, -1sided.

Using -ha:infra does not allow a convenient way to terminate all ranks associated
with the application. It is the responsibility of the user to have a mechanism for
application teardown.

Using MPI_Comm_connect and MPI_Comm_accept

MPI_Comm_connect and MPI_Comm_accept can be used without the -spawn option to
mpirun. This allows applications launched using the -ha:infra option to call these
routines. When using high availability mode, these routines do not deadlock even
if the remote process exits before, during, or after the call.

Using MPI_Comm_disconnect

In high availability mode, MPI_Comm_disconnect is collective only across the local
group of the calling process. This enables a process group to independently break a
connection to the remote group in an intercommunicator without synchronizing
with those processes. Unreceived messages on the remote side are buffered and
might be received until the remote side calls MPI_Comm_disconnect.

© Copyright IBM Corp. 1994, 2012 203



Receive calls that cannot be satisfied by a buffered message fail on the remote
processes after the local processes have called MPI_Comm_disconnect. Send calls on
either side of the intercommunicator fail after either side has called
MPI_Comm_disconnect.

Instrumentation and high availability mode

Platform MPI lightweight instrumentation is supported when using -ha and
singletons. In the event that some ranks terminate during or before
MPI_Finalize(), then the lowest rank id in MPI_COMM_WORLD produces the
instrumentation output file on behalf of the application and instrumentation data
for the exited ranks is not included.

Failure recovery (-ha:recover)
Fault-tolerant MPI_Comm_dup() that excludes failed ranks.

When using -ha:recover, the functionality of MPI_Comm_dup() enables an
application to recover from errors.

Important:

The MPI_Comm_dup() function in the -ha:recover mode is not standard compliant
because a call to MPI_Comm_dup() always terminates all outstanding
communications with failures on the communicator regardless of the presence or
absence of errors.

When one or more pairs of ranks within a communicator are unable to
communicate because a rank has exited or the communication layers have returned
errors, a call to MPI_Comm_dup attempts to return the largest communicator
containing ranks that were fully interconnected at some point during the
MPI_Comm_dup call. Because new errors can occur at any time, the returned
communicator might not be completely error free. However, the two ranks in the
original communicator that were unable to communicate before the call are not
included in a communicator generated by MPI_Comm_dup.

Communication failures can partition ranks into two groups, A and B, so that no
rank in group A can communicate to any rank in group B and vice versa. A call to
MPI_Comm_dup() can behave similarly to a call to MPI_Comm_split(), returning
different legal communicators to different callers. When a larger communicator
exists than the largest communicator the rank can join, it returns
MPI_COMM_NULL. However, extensive communication failures, such as a failed
switch, can make such knowledge unattainable to a rank and result in splitting the
communicator.

If the communicator returned by rank A contains rank B, then either the
communicator return by ranks A and B will be identical or rank B will return
MPI_COMM_NULL and any attempt by rank A to communicate with rank B
immediately returns MPI_ERR_EXITED. Therefore, any legal use of communicator
return by MPI_Comm_dup() should not result in a deadlock. Members of the
resulting communicator either agree to membership or are unreachable to all
members. Any attempt to communicate with unreachable members results in a
failure.

204 Platform MPI: User's Guide



Interruptible collectives

When a failure (host, process, or interconnect) that affects a collective operation
occurs, at least one rank calling the collective returns with an error. The application
must initiate a recovery from those ranks by calling MPI_Comm_dup() on the
communicator used by the failed collective. This ensures that all other ranks within
the collective also exit the collective. Some ranks might exit successfully from a
collective call while other ranks do not. Ranks which exit with MPI_SUCCESS will
have successfully completed their role in the operation, and any output buffers will
be correctly set. The return value of MPI_SUCCESS does not indicate that all ranks
have successfully completed their role in the operation.

After a failure, one or more ranks must call MPI_Comm_dup(). All future
communication on that communicator results in failure for all ranks until each
rank has called MPI_Comm_dup() on the communicator. After all ranks have called
MPI_Comm_dup(), the parent communicator can be used for point-to-point
communication. MPI_Comm_dup() can be called successfully even after a failure.
Because the results of a collective call can vary by rank, ensure that an application
is written to avoid deadlocks. For example, using multiple communicators can be
very difficult as the following code demonstrates:

... err = MPI_Bcast(buffer, len, type, root, commA); if (err) {
MPI_Error_class(err, &class);

if (class == MPI_ERR_EXITED) {
err = MPI_Comm_dup(commA, &new_commA);
if (err != MPI_SUCCESS) {

cleanup_and_exit();
}
MPI_Comm_free(commA);
commA = new_commA;

} } err = MPI_Sendrecv_replace(buffer2, len2, type2, src, tag1, dest, tag2, commB, &status);
if (err) {
.... ...

In this case, some ranks exit successfully from the MPI_Bcast() and move onto the
MPI_Sendrecv_replace() operation on a different communicator. The ranks that call
MPI_Comm_dup() only cause operations on commA to fail. Some ranks cannot return
from the MPI_Sendrecv_replace() call on commB if their partners are also
members of commA and are in the call to MPI_Comm_dup() call on commA. This
demonstrates the importance of using care when dealing with multiple
communicators. In this example, if the intersection of commA and commB is
MPI_COMM_SELF, it is simpler to write an application that does not deadlock
during failure.

Network high availability (-ha:net)
The net option to -ha turns on any network high availability. Network high
availability attempts to insulate an application from errors in the network. In this
release, -ha:net is only significant on IBV for OFED 1.2 or later, where Automatic
Path Migration is used. This option has no effect on TCP connections.

Failure detection (-ha:detect)
When using the -ha:detect option, a communication failure is detected and
prevents interference with the application's ability to communicate with other
processes that have not been affected by the failure. In addition to specifying
-ha:detect, MPI_Errhandler must be set to MPI_ERRORS_RETURN using the
MPI_Comm_set_errhandler function. When an error is detected in a communication,

High availability applications 205



the error class MPI_ERR_EXITED is returned for the affected communication.
Shared memory is not used for communication between processes.

Only IBV and TCP are supported. This mode cannot be used with the diagnostic
library.

Clarification of the functionality of completion routines in high
availability mode

Requests that cannot be completed because of network or process failures result in
the creation or completion functions returning with the error code
MPI_ERR_EXITED. When waiting or testing multiple requests using
MPI_Testany(), MPI_Testsome(), MPI_Waitany() or MPI_Waitsome(), a request that
cannot be completed because of network or process failures is considered a
completed request and these routines return with the flag or outcount argument
set to non-zero. If some requests completed successfully and some requests
completed because of network or process failure, the return value of the routine is
MPI_ERR_IN_STATUS. The status array elements contain MPI_ERR_EXITED for
those requests that completed because of network or process failure.

Important:

When waiting on a receive request that uses MPI_ANY_SOURCE on an
intracommunicator, the request is never considered complete due to rank or
interconnect failures because the rank that created the receive request can legally
match it. For intercommunicators, after all processes in the remote group are
unavailable, the request is considered complete and, the MPI_ERROR field of the
MPI_Status() structure indicates MPI_ERR_EXITED.

MPI_Waitall() waits until all requests are complete, even if an error occurs with
some requests. If some requests fail, MPI_IN_STATUS is returned. Otherwise,
MPI_SUCCESS is returned. In the case of an error, the error code is returned in the
status array.

206 Platform MPI: User's Guide



Large message APIs

The current MPI standard allows the data transferred using standard API calls to
be greater than 2 GB. For example, if you call MPI_Send()that contains a count of
1024 elements that each have a size of 2049 KB, the resulting message size in bytes
is greater than what could be stored in a signed 32-bit integer.

Additionally, some users working with extremely large data sets on 64-bit
architectures need to explicitly pass a count that is greater than the size of a 32-bit
integer. The current MPI-2.1 standard does not accommodate this option. Until the
standards committee releases a new API that does, Platform MPI provides new
APIs to handle large message counts. These new APIs are extensions to the
MPI-2.1 standard and will not be portable across other MPI implementations.
These new APIs contain a trailing L. For example, to pass a 10 GB count to an MPI
send operation, MPI_SendL()must be called, not MPI_Send().

Important:

These interfaces will be deprecated when official APIs are included in the MPI
standard.

The other API through which large integer counts can be passed into Platform MPI
calls is the Fortran autodouble -i8interface (which is also nonstandard). This
interface has been supported in previous Platform MPI releases, but historically
had the limitation that the values passed in must still fit in 32-bit integers because
the large integer input arguments were cast down to 32-bit values. For Platform
MPI, that restriction is removed.

To enable Platform MPI support for these extensions to the MPI-2.1 standard,
-non-standard-ext must be added to the command line of the Platform MPI
compiler wrappers (mpiCC, mpicc, mpif90, mpif77), as in the following example:

% /opt/platform_mpi/bin/mpicc -non-standard-ext large_count_test.c

The -non-standard-ext flag must be passed to the compiler wrapper during the
link step of building an executable.

The following is a complete list of large message interfaces supported.

Point-to-point communication
int MPI_BsendL(void *buf, MPI_Aint count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)
IN buf initial address of send buffer
IN count number of elements in send buffer
IN datatype datatype of each send buffer element
IN dest rank of destination
IN tag message tag
IN comm communicator

int MPI_Bsend_initL(void *buf, MPI_Aint count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

IN buf initial address of send buffer (choice)
IN count number of elements sent (non-negative integer)
IN datatype type of each element (handle)
IN dest rank of destination (integer)

© Copyright IBM Corp. 1994, 2012 207



IN tag message tag (integer)
IN comm communicator (handle)
OUT request communication request (handle)

int MPI_Buffer_attachL(void *buf, MPI_Aint size)

IN buffer initial buffer address (choice)
IN size buffer size in bytes

int MPI_Buffer_detachL(void *buf_address, MPI_Aint *size)

OUT buffer_addr initial buffer address (choice)
OUT size buffer size in bytes

int MPI_IbsendL(void* buf, MPI_Aint count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination
IN tag message tag IN comm communicator (handle)
OUT request communication request (handle)

int MPI_IrecvL(void* buf, MPI_Aint count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer
IN datatype datatype of each receive buffer element (handle)
IN source rank of source
IN tag message tag
IN comm communicator (handle)
OUT request communication request (handle)

int MPI_IrsendL(void* buf, MPI_Aint count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination
IN tag message tag
IN comm communicator (handle)
OUT request communication request (handle)

int MPI_IsendL(void* buf, MPI_Aint count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination
IN tag message tag
IN comm communicator
OUT request communication request

int MPI_RecvL(void* buf, MPI_Aint count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer
IN datatype datatype of each receive buffer element (handle)
IN source rank of source
IN tag message tag
IN comm communicator (handle)
OUT status status object (Status)

int MPI_Recv_initL(void* buf, MPI_Aint count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request)

OUT buf initial address of receive buffer (choice)
IN count number of elements received (non-negative integer)
IN datatype type of each element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)

208 Platform MPI: User's Guide



IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT request communication request (handle)

int MPI_RsendL(void* buf, MPI_Aint count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination
IN tag message tag
IN comm communicator (handle)

int MPI_Rsend_initL(void* buf, MPI_Aint count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

IN buf initial address of send buffer (choice)
IN count number of elements sent
IN datatype type of each element (handle)
IN dest rank of destination
IN tag message tag
IN comm communicator (handle)
OUT request communication request (handle)

int MPI_SendL(void* buf, MPI_Aint count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination
IN tag message tag
IN comm communicator (handle)

int MPI_Send_initL(void* buf, MPI_Aint count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

IN buf initial address of send buffer (choice)
IN count number of elements sent
IN datatype type of each element (handle)
IN dest rank of destination
IN tag message tag
IN comm communicator (handle)
OUT request communication request (handle)

int MPI_SendrecvL(void *sendbuf, MPI_Aint sendcount, MPI_Datatype sendtype,
int dest, int sendtag, void *recvbuf, MPI_Aint recvcount,
MPI_Datatype recvtype, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

IN sendbuf initial address of send buffer (choice)
IN sendcount number of elements in send buffer
IN sendtype type of elements in send buffer (handle)
IN dest rank of destination
IN sendtag send tag
OUT recvbuf initial address of receive buffer (choice)
IN recvcount number of elements in receive buffer
IN recvtype type of elements in receive buffer (handle)
IN source rank of source
IN recvtag receive tag
IN comm communicator (handle)
OUT status status object (status)

int MPI_Sendrecv_replaceL(void* buf, MPI_Aint count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

INOUT buf initial address of send and receive buffer (choice)
IN count number of elements in send and receive buffer
IN datatype type of elements in send and receive buffer (handle)
IN dest rank of destination
IN sendtag send message tag

Large message APIs 209



IN source rank of source
IN recvtag receive message tag
IN comm communicator (handle)
OUT status status object (status)

int MPI_SsendL(void* buf, MPI_Aint count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination
IN tag message tag
IN comm communicator (handle)

int MPI_Ssend_initL(void* buf, MPI_Aint count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

IN buf initial address of send buffer (choice)
IN count number of elements sent
IN datatype type of each element (handle)
IN dest rank of destination
IN tag message tag
IN comm communicator (handle)
OUT request communication request (handle)

Collective communication
int MPI_AllgatherL(void* sendbuf, MPI_Aint sendcount, MPI_Datatype sendtype,

void* recvbuf, MPI_Aint recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements received from any process
IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)

int MPI_AllgathervL(void* sendbuf, MPI_Aint sendcount, MPI_Datatype sendtype,
void* recvbuf, MPI_Aint *recvcounts, int *displs, MPI_Datatype
recvtype, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcounts Array containing the number of elements that are received from each process
IN displs Array of displacements relative to recvbuf
IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)

int MPI_AllreduceL(void* sendbuf, void* recvbuf, MPI_Aint count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN count number of elements in send buffer
IN datatype data type of elements of send buffer (handle)
IN op operation (handle)
IN comm communicator (handle)

int MPI_AlltoallL(void* sendbuf, MPI_Aint sendcount, MPI_Datatype sendtype,
void* recvbuf, MPI_Aint recvcount, MPI_Datatype recvtype, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements sent to each process
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements received from any process
IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)

210 Platform MPI: User's Guide



int MPI_AlltoallvL(void* sendbuf, MPI_Aint *sendcounts, MPI_Aint *sdispls,
MPI_Datatype sendtype, void* recvbuf, MPI_Aint *recvcounts,
MPI_Aint *rdispls, MPI_Datatype recvtype, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
IN endcounts array equal to the group size specifying the number of elements

to send to each rank
IN sdispls array of displacements relative to sendbuf
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcounts array equal to the group size specifying the number of elements

that can be received from each rank
IN rdispls array of displacements relative to recvbuf
IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)

int MPI_AlltoallwL(void *sendbuf, MPI_Aint sendcounts[], MPI_Aint sdispls[],
MPI_Datatype sendtypes[], void *recvbuf, MPI_Aint recvcounts[],
MPI_Aint rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
IN sendcounts array equal to the group size specifying the number of elements

to send to each rank
IN sdispls array of displacements relative to sendbuf
IN sendtypes array of datatypes, with entry j specifying the type of data

to send to process j
OUT recvbuf address of receive buffer (choice)
IN recvcounts array equal to the group size specifying the number of elements

that can be received from each rank
IN rdispls array of displacements relative to recvbuf
IN recvtypes array of datatypes, with entry j specifying the type of data

recieved from process j
IN comm communicator (handle)

int MPI_BcastL(void* buffer, MPI_Aint count, MPI_Datatype datatype,
int root, MPI_Comm comm )

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer
IN datatype data type of buffer (handle)
IN root rank of broadcast root
IN comm communicator (handle)

int MPI_GatherL(void* sendbuf, MPI_Aint sendcount, MPI_Datatype sendtype,
void* recvbuf, MPI_Aint recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN recvcount number of elements for any single receive (significant only at root)
IN recvtype data type of recv buffer elements (significant only at root) (handle)
IN root rank of receiving process (integer)
IN comm communicator (handle)

int MPI_GathervL(void* sendbuf, MPI_Aint sendcount, MPI_Datatype sendtype,
void* recvbuf, MPI_Aint *recvcounts, MPI_Aint *displs,
MPI_Datatype recvtype, int root, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements
IN send buffer (non-negative integer)
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN recvcounts array equal to the group size specifying the number of elements

that can be received from each rank
IN displs array of displacements relative to recvbuf
IN recvtype data type of recv buffer elements (significant only at root) (handle)
IN root rank of receiving process (integer)
IN comm communicator (handle)

Large message APIs 211



int MPI_ReduceL(void* sendbuf, void* recvbuf, MPI_Aint count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

IN sendbuf address of send buffer (choice)
OUT recvbuf address of receive buffer (choice, significant only at root)
IN count number of elements in send buffer
IN datatype data type of elements of send buffer (handle)
IN op reduce operation (handle)
IN root rank of root process
IN comm communicator (handle)

int MPI_Reduce_scatterL(void* sendbuf, void* recvbuf, MPI_Aint *recvcounts,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN recvcounts array specifying the number of elements in result distributed

to each process.
IN datatype data type of elements of input buffer (handle)
IN op operation (handle)
IN comm communicator (handle)

int MPI_ScanL(void* sendbuf, void* recvbuf, MPI_Aint count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm )

IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN count number of elements in input buffer
IN datatype data type of elements of input buffer (handle)
IN op operation (handle)
IN comm communicator (handle)

int MPI_ExscanL(void *sendbuf, void *recvbuf, MPI_Aint count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

IN sendbuf starting address of send buffer (choice)
OUT recvbuf starting address of receive buffer (choice)
IN count number of elements in input buffer
IN datatype data type of elements of input buffer (handle)
IN op operation (handle)
IN comm intracommunicator (handle)

int MPI_ScatterL(void* sendbuf, MPI_Aint sendcount, MPI_Datatype sendtype,
void* recvbuf, MPI_Aint recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

IN sendbuf address of send buffer (choice, significant only at root)
IN sendcount number of elements sent to each process (significant only at root)
IN sendtype data type of send buffer elements (significant only at root) (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements in receive buffer
IN recvtype data type of receive buffer elements (handle)
IN root rank of sending process
IN comm communicator (handle)

int MPI_ScattervL(void* sendbuf, MPI_Aint *sendcounts, MPI_Aint *displs,
MPI_Datatype sendtype, void* recvbuf, MPI_Aint recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

IN sendbuf address of send buffer (choice, significant only at root)
IN sendcounts array specifying the number of elements to send to each processor
IN displs Array of displacements relative to sendbuf
IN sendtype data type of send buffer elements (handle)
OUT recvbuf address of receive buffer (choice)
IN recvcount number of elements in receive buffer
IN recvtype data type of receive buffer elements (handle)
IN root rank of sending process
IN comm communicator (handle)

Data types communication
int MPI_Get_countL(MPI_Status *status, MPI_Datatype datatype, MPI_Aint *count)

212 Platform MPI: User's Guide



IN status return status of receive operation (status)
IN datatype datatype of each receive buffer entry (handle)
OUT count number of received entries (integer)

int MPI_Get_elementsL(MPI_Status *status, MPI_Datatype datatype,
MPI_Aint *count)

IN status return status of receive operation (status)
IN datatype datatype used by receive operation (handle)
OUT count number of received basic elements (integer)

int MPI_PackL(void* inbuf, MPI_Aint incount, MPI_Datatype datatype,
void *outbuf, MPI_Aint outsize, MPI_Aint *position, MPI_Comm
comm)

IN inbuf input buffer start (choice)
IN incount number of input data items
IN datatype datatype of each input data item (handle)
OUT outbuf output buffer start (choice)
IN outsize output buffer size, in bytes
INOUT position current position in buffer in bytes
IN comm communicator for packed message (handle)

int MPI_Pack_externalL(char *datarep, void *inbuf, MPI_Aint incount,
MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,
MPI_Aint *position)

IN datarep data representation (string)
IN inbuf input buffer start (choice)
IN incount number of input data items
IN datatype datatype of each input data item (handle)
OUT outbuf output buffer start (choice)
IN outsize output buffer size, in bytes
INOUT position current position in buffer, in bytes

int MPI_Pack_sizeL(MPI_Aint incount, MPI_Datatype datatype, MPI_Comm comm,
MPI_Aint *size)

IN incount count argument to packing call
IN datatype datatype argument to packing call (handle)
IN comm communicator argument to packing call (handle)
OUT size upper bound on size of packed message, in bytes

int MPI_Pack_external_sizeL(char *datarep, MPI_Aint incount,
MPI_Datatype datatype, MPI_Aint *size)

IN datarep data representation (string)
IN incount number of input data items
IN datatype datatype of each input data item (handle)
OUT size output buffer size, in bytes

int MPI_Type_indexedL(MPI_Aint count, MPI_Aint *array_of_blocklengths,
MPI_Aint *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

IN count number of blocks
IN array_of_blocklengths number of elements per block
IN array_of_displacements displacement for each block, in

multiples of oldtype extent
IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

int MPI_Type_sizeL(MPI_Datatype datatype, MPI_Aint *size)

IN datatype datatype (handle)
OUT size datatype size

int MPI_Type_structL(MPI_Aint count, MPI_Aint *array_of_blocklengths,
MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types, MPI_Datatype *newtype)

IN count number of blocks (integer)
IN array_of_blocklength number of elements in each block
IN array_of_displacements byte displacement of each block
IN array_of_types type of elements in each block (array of handles

to datatype objects)
OUT newtype new datatype (handle)

Large message APIs 213



int MPI_Type_vectorL(MPI_Aint count, MPI_Aint blocklength, MPI_Aint
stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

IN count number of blocks (nonnegative integer)
IN block length number of elements in each block
IN stride number of elements between start of each block
IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

int MPI_UnpackL(void* inbuf, MPI_Aint insize, MPI_Aint *position, void *outbuf,
MPI_Aint outcount, MPI_Datatype datatype, MPI_Comm comm)

IN inbuf input buffer start (choice)
IN insize size of input buffer, in bytes
INOUT position current position in bytes
OUT outbuf output buffer start (choice)
IN outcount number of items to be unpacked
IN datatype datatype of each output data item (handle)
IN comm communicator for packed message (handle)

int MPI_Unpack_externalL(char *datarep, void *inbuf, MPI_Aint insize,
MPI_Aint *position, void *outbuf, MPI_Aint outcount,
MPI_Datatype datatype)

IN datarep data representation (string
IN inbuf input buffer start (choice)
IN insize input buffer size, in bytes
INOUT position current position in buffer, in bytes
OUT outbuf output buffer start (choice)
IN outcount number of output data items
IN datatype datatype of output data item (handle)

int MPI_Type_contiguousL(MPI_Aint count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

IN count replication count
IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

int MPI_Type_create_hindexedL(MPI_Aint count, MPI_Aint array_of_blocklengths[],
MPI_Aint array_of_displacements[],
MPI_Datatype oldtype, MPI_Datatype *newtype)

IN count number of blocks
IN array_of_blocklengths number of elements in each block
IN array_of_displacements byte displacement of each block
IN oldtype old datatype
OUT newtype new datatype

int MPI_Type_create_hvectorL(MPI_Aint count, MPI_Aint blocklength,
MPI_Aint stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)

IN count number of blocks
IN blocklength number of elements in each block
IN stride number of bytes between start of each block
IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

int MPI_Type_create_indexed_blockL(MPI_Aint count, MPI_Aint blocklength,
MPI_Aint array_of_displacements[],
MPI_Datatype oldtype,
MPI_Datatype *newtype)

IN count length of array of displacements
IN blocklength size of block in array_of_displacements

array of displacements
IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

int MPI_Type_create_structL(MPI_Aint count, MPI_Aint array_of_blocklengths[],
MPI_Aint array_of_displacements[],
MPI_Datatype array_of_types[], MPI_Datatype *newtype)

214 Platform MPI: User's Guide



IN count number of blocks
IN array_of_blocklength number of elements in each block
IN array_of_displacements byte displacement of each block
IN array_of_types type of elements in each block

(array of handles to datatype objects)
OUT newtype new datatype (handle)

int MPI_Type_hindexedL(MPI_Aint count, MPI_Aint *array_of_blocklengths,
MPI_Aint *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

IN count number of blocks
IN array_of_blocklengths number of elements in each block
IN array_of_displacements byte displacement of each block
IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

int MPI_Type_hvectorL(MPI_Aint count, MPI_Aint blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

IN count number of blocks
IN blocklength number of elements in each block
IN stride number of bytes between start of each block
IN oldtype old datatype (handle)
OUT newtype new datatype (handle)

One-sided communication
int MPI_Win_createL(void *base, MPI_Aint size, MPI_Aint disp_unit,

MPI_Info info, MPI_Comm comm, MPI_WIN *win)

IN base initial address of window (choice)
IN size size of window in bytes
IN disp_unit local unit size for displacements, in bytes
IN info info argument (handle)
IN comm communicator (handle)
OUT win window object returned by the call (handle)

int MPI_GetL(void *origin_addr, MPI_Aint origin_count,
MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,
MPI_Aint target_count, MPI_Datatype target_datatype, MPI_WIN win)

OUT origin_addr initial address of origin buffer (choice)
IN origin_count number of entries in origin buffer
IN origin_datatype datatype of each entry in origin buffer

(handle)
IN target_rank rank of target (nonnegative integer)
IN target_disp displacement from window start to the

beginning of the target buffer
IN target_count number of entries in target buffer
IN target_datatype datatype of each entry in target buffer (handle)
IN win window object used for communication (handle)

int MPI_PutL(void *origin_addr, MPI_Aint origin_count,
MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,
MPI_Aint target_count, MPI_Datatype target_datatype, MPI_WIN win)

IN origin_addr initial address of origin buffer (choice)
IN origin_count number of entries in origin buffer
IN origin_datatype datatype of each entry in origin buffer (handle)
IN target_rank rank of target
IN target_disp displacement from start of window to target buffer
IN target_count number of entries in target buffer
IN target_datatype datatype of each entry in target buffer (handle)
IN win window object used for communication (handle)

int MPI_AccumulateL(void *origin_addr, MPI_Aint origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, MPI_Aint target_count,
MPI_Datatype target_datatype, MPI_Op op, MPI_WIN win)

IN origin_addr initial address of buffer (choice)
IN origin_count number of entries in buffer
IN origin_datatype datatype of each buffer entry (handle)

Large message APIs 215



IN target_rank rank of target
IN target_disp displacement from start of window to beginning of target

buffer
IN target_count number of entries in target buffer
IN target_datatype datatype of each entry in target buffer (handle)
IN op reduce operation (handle)
IN win window object (handle)

216 Platform MPI: User's Guide



Standard Flexibility in Platform MPI
“Platform MPI implementation of standard flexibility”

Platform MPI implementation of standard flexibility
Platform MPI contains a full MPI-2 standard implementation. There are items in
the MPI standard for which the standard allows flexibility in implementation. This
appendix identifies the Platform MPI implementation of many of these
standard-flexible issues.

The following table displays references to sections in the MPI standard that
identify flexibility in the implementation of an issue. Accompanying each reference
is the Platform MPI implementation of that issue.

Table 21. Platform MPI implementation of standard-flexible issues

Reference in MPI Standard The Platform MPI Implementation

MPI implementations are required to define the behavior
of MPI_Abort (at least for a comm of
MPI_COMM_WORLD). MPI implementations can ignore
the comm argument and act as if comm was
MPI_COMM_WORLD. See MPI-1.2 Section 7.5.

MPI_Abortkills the application. comm is ignored, and uses
MPI_COMM_WORLD.

An implementation must document the implementation
of different language bindings of the MPI interface if
they are layered on top of each other. See MPI-1.2 Section
8.1.

Although internally, Fortran is layered on top of C, the
profiling interface is separate for the two language
bindings. Re-defining the MPI routines for C does not
cause the Fortran bindings to see or use the new MPI
entrypoints.

MPI does not mandate what an MPI process is. MPI does
not specify the execution model for each process; a
process can be sequential or multithreaded. See MPI-1.2
Section 2.6.

MPI processes are UNIX or Win32 console processes and
can be multithreaded.

MPI does not provide mechanisms to specify the initial
allocation of processes to an MPI computation and their
initial binding to physical processes. See MPI-1.2 Section
2.6.

Platform MPI provides the mpirun -np # utility and
appfiles as well as start-up integrated with other job
schedulers and launchers. See the relevant sections in
this guide.

MPI does not mandate that an I/O service be provided,
but does suggest behavior to ensure portability if it is
provided. See MPI-1.2 Section 2.8.

Each process in Platform MPI applications can read and
write input and output data to an external drive.

The value returned for MPI_HOST gets the rank of the
host process in the group associated with
MPI_COMM_WORLD. MPI_PROC_NULL is returned if
there is no host. MPI does not specify what it means for
a process to be a host, nor does it specify that a HOST
exists.

Platform MPI sets the value of MPI_HOST to
MPI_PROC_NULL.

MPI provides MPI_GET_PROCESSOR_NAME to return
the name of the processor on which it was called at the
moment of the call. See MPI-1.2 Section 7.1.1.

If you do not specify a host name to use, the host name
returned is that of gethostname. If you specify a host
name using the -h option to mpirun, Platform MPI
returns that host name.

© Copyright IBM Corp. 1994, 2012 217



Table 21. Platform MPI implementation of standard-flexible issues (continued)

Reference in MPI Standard The Platform MPI Implementation

The current MPI definition does not require messages to
carry data type information. Type information might be
added to messages to allow the system to detect
mismatches. See MPI-1.2 Section 3.3.2.

The default Platform MPI library does not carry this
information due to overload, but the Platform MPI
diagnostic library (DLIB) does. To link with the
diagnostic library, use -ldmpi on the link line.

Vendors can write optimized collective routines matched
to their architectures or a complete library of collective
communication routines can be written using MPI
point-to-point routines and a few auxiliary functions. See
MPI-1.2 Section 4.1.

Use the Platform MPI collective routines instead of
implementing your own with point-to-point routines.
The Platform MPI collective routines are optimized to
use shared memory where possible for performance.

Error handlers in MPI take as arguments the
communicator in use and the error code to be returned
by the MPI routine that raised the error. An error handler
can also take stdargs arguments whose number and
meaning is implementation dependent. See MPI-1.2
Section 7.2 and MPI-2.0 Section 4.12.6.

To ensure portability, the Platform MPI implementation
does not take stdargs. For example in C, the user routine
should be a C function of type MPI_handler_function,
defined as:void (MPI_Handler_function) (MPI_Comm *, int
*);

MPI implementors can place a barrier inside
MPI_FINALIZE. See MPI-2.0 Section 3.2.2.

The Platform MPI MPI_FINALIZE behaves as a barrier
function so that the return from MPI_FINALIZE is
delayed until all potential future cancellations are
processed.

MPI defines minimal requirements for thread-compliant
MPI implementations and MPI can be implemented in
environments where threads are not supported. See
MPI-2.0 Section 8.7.

Platform MPI provides a thread-compliant library
(lmtmpi), which only needs to be used for applications
where multiple threads make MPI calls simultaneously
(MPI_THREAD_MULTIPLE). Use -lmtmpi on the link
line to use the libmtmpi.

The format for specifying the file name in
MPI_FILE_OPEN is implementation dependent. An
implementation might require that file name include a
string specifying additional information about the file.
See MPI-2.0 Section 9.2.1.

Platform MPI I/O supports a subset of the MPI-2
standard using ROMIO, a portable implementation
developed at Argonne National Laboratory. No
additional file information is necessary in your file name
string.

218 Platform MPI: User's Guide



mpirun Using Implied prun or srun
“Implied prun”
“Implied srun” on page 220

Implied prun
Platform MPI provides an implied prun mode. The implied prun mode allows the
user to omit the -prun argument from the mpiruncommand line with the use of the
environment variable MPI_USEPRUN.

Set the environment variable:

% setenv MPI_USEPRUN 1

Platform MPI will insert the -prun argument.

The following arguments are considered to be prun arguments:
v -n -N -m -w -x

v -e MPI_WORKDIR=/path will be translated to the prun argument --chdir=/path
v any argument that starts with -- and is not followed by a space
v -np will be translated to -n

v -prun will be accepted without warning.

The implied prun mode allows the use of Platform MPI appfiles. Currently, an
appfile must be homogenous in its arguments except for -h and -np. The -h and
-np arguments in the appfile are discarded. All other arguments are promoted to
the mpirun command line. Additionally, arguments following -- are also processed.

Additional environment variables provided:
v MPI_PRUNOPTIONS

Allows additional prun options to be specified, such as --label.
% setenv MPI_PRUNOPTIONS <option>

v MPI_USEPRUN_IGNORE_ARGS

Provides an easy way to modify the arguments in an appfile by supplying a list
of space-separated arguments that mpirun should ignore.
% setenv MPI_USEPRUN_IGNORE_ARGS <option>

prun arguments:
v -n, --ntasks=ntasks

Specify the number of processes to run.
v -N, --nodes=nnodes

Request that nnodes nodes be allocated to this job.
v -m, --distribution=(block|cyclic)

Specify an alternate distribution method for remote processes.
v -w, --nodelist=host1,host2,... or file_name

Request a specific list of hosts.
v -x, --exclude=host1,host2,... or file_name

© Copyright IBM Corp. 1994, 2012 219



Request that a specific list of hosts not be included in the resources allocated to
this job.

v -l, --label
Prepend task number to lines of stdout/err.

For more information on prun arguments, see the prun manpage.

Using the -prun argument from the mpirun command line is still supported.

Implied srun
Platform MPI provides an implied srun mode. The implied srun mode allows the
user to omit the -srun argument from the mpiruncommand line with the use of the
environment variable MPI_USESRUN.

Set the environment variable:

% setenv MPI_USESRUN 1

Platform MPI inserts the -srun argument.

The following arguments are considered to be srun arguments:
v -n -N -m -w -x

v any argument that starts with -- and is not followed by a space
v -np is translated to -n

v -srun is accepted without warning

The implied srun mode allows the use of Platform MPI appfiles. Currently, an
appfile must be homogenous in its arguments except for -h and -np. The -h and
-nparguments in the appfile are discarded. All other arguments are promoted to
the mpirun command line. Additionally, arguments following -- are also processed.

Additional environment variables provided:
v MPI_SRUNOPTIONS

Allows additional srun options to be specified such as --label.
% setenv MPI_SRUNOPTIONS <option>

v MPI_USESRUN_IGNORE_ARGS

Provides an easy way to modify arguments in an appfile by supplying a list of
space-separated arguments that mpirun should ignore.
% setenv MPI_USESRUN_IGNORE_ARGS <option>

In the example below, the appfile contains a reference to -stdio=bnone, which is
filtered out because it is set in the ignore list.
% setenv MPI_USESRUN_VERBOSE 1

% setenv MPI_USESRUN_IGNORE_ARGS -stdio=bnone

% setenv MPI_USESRUN 1

% setenv MPI_SRUNOPTION --label

% bsub -I -n4 -ext "SLURM[nodes=4]" $MPI_ROOT/bin/mpirun -stdio=bnone -f
appfile -- pingpong

Job <369848> is submitted to default queue <normal>.

<<Waiting for dispatch ...>>

<<Starting on lsfhost.localdomain>>

220 Platform MPI: User's Guide



/opt/platform_mpi/bin/mpirun

unset

MPI_USESRUN;/opt/platform_mpi/bin/mpirun-srun ./pallas.x -npmin 4
pingpong

srun arguments:
v -n, --ntasks=ntasks

Specify the number of processes to run.
v -N, --nodes=nnodes

Request that nnodes nodes be allocated to this job.
v -m, --distribution=(block|cyclic)

Specify an alternate distribution method for remote processes.
v -w, --nodelist=host1,host2,... or filename

Request a specific list of hosts.
v -x, --exclude=host1,host2,... or filename

Request that a specific list of hosts not be included in the resources allocated to
this job.

v -l, --label
Prepend task number to lines of stdout/err.

For more information on srun arguments, see the srunmanpage.

The following is an example using the implied srun mode. The contents of the
appfile are passed along except for -np and -hwhich are discarded. Some
arguments are pulled from the appfile and others after the --.

Here is the appfile:

-np 1 -h foo -e MPI_FLAGS=T ./pallas.x -npmin 4

% setenv MPI_SRUNOPTION "--label"

These are required to use the new feature:

% setenv MPI_USESRUN 1

% bsub -I -n4 $MPI_ROOT/bin/mpirun -f appfile -- sendrecv

Job <2547> is submitted to default queue <normal>.

<<Waiting for dispatch ...>>

<<Starting on localhost>>

0: #---------------------------------------------------

0: # PALLAS MPI Benchmark Suite V2.2, MPI-1 part

0: #---------------------------------------------------

0: # Date : Thu Feb 24 14:24:56 2005

mpirun Using Implied prun or srun 221



0: # Machine : ia64# System : Linux

0: # Release : 2.4.21-15.11hp.XCsmp

0: # Version : #1 SMP Mon Oct 25 02:21:29 EDT 2004

0:

0: #

0: # Minimum message length in bytes: 0

0: # Maximum message length in bytes: 8388608

0: #

0: # MPI_Datatype : MPI_BYTE

0: # MPI_Datatype for reductions : MPI_FLOAT

0: # MPI_Op : MPI_SUM

0: #

0: #

0:

0: # List of Benchmarks to run:

0:

0: # Sendrecv

0:

0: #-------------------------------------------------------------

0: # Benchmarking Sendrecv

0: # ( #processes = 4 )

0: #-------------------------------------------------------------

0: #bytes #repetitions t_min t_max t_avg Mbytes/sec

0: 0 1000 35.28 35.40 35.34 0.00

0: 1 1000 42.40 42.43 42.41 0.04

0: 2 1000 41.60 41.69 41.64 0.09

0: 4 1000 41.82 41.91 41.86 0.18

0: 8 1000 41.46 41.49 41.48 0.37

222 Platform MPI: User's Guide



0: 16 1000 41.19 41.27 41.21 0.74

0: 32 1000 41.44 41.54 41.51 1.47

0: 64 1000 42.08 42.17 42.12 2.89

0: 128 1000 42.60 42.70 42.64 5.72

0: 256 1000 45.05 45.08 45.07 10.83

0: 512 1000 47.74 47.84 47.79 20.41

0: 1024 1000 53.47 53.57 53.54 36.46

0: 2048 1000 74.50 74.59 74.55 52.37

0: 4096 1000 101.24 101.46 101.37 77.00

0: 8192 1000 165.85 166.11 166.00 94.06

0: 16384 1000 293.30 293.64 293.49 106.42

0: 32768 1000 714.84 715.38 715.05 87.37

0: 65536 640 1215.00 1216.45 1215.55 102.76

0: 131072 320 2397.04 2401.92 2399.05 104.08

0: 262144 160 4805.58 4826.59 4815.46 103.59

0: 524288 80 9978.35 10017.87 9996.31 99.82

0: 1048576 40 19612.90 19748.18 19680.29 101.28

0: 2097152 20 36719.25 37786.09 37253.01 105.86

0: 4194304 10 67806.51 67920.30 67873.05 117.79

0: 8388608 5 135050.20 135244.61 135159.04 118.30

0: #=====================================================

0: #

0: # Thanks for using PMB2.2

0: #

0: # The Pallas team kindly requests that you

0: # give us as much feedback for PMB as possible.

0: #

0: # It would be very helpful when you sent the

mpirun Using Implied prun or srun 223



0: # output tables of your run(s) of PMB to:

0: #

0: # pmb@pallas.com

0: #

0: # You might also add

0: #

0: # - personal information (institution, motivation

0: # for using PMB)

0: # - basic information about the machine you used

0: # (number of CPUs, processor type e.t.c.)

0: #

0: #=====================================================

0: MPI Rank User (seconds) System (seconds)

0: 0 4.95 2.36

0: 1 5.16 1.17

0: 2 4.82 2.43

0: 3 5.20 1.18

0: ---------------- ----------------

0: Total: 20.12 7.13

srun is supported on SLURM systems.

Using the -srun argument from the mpirun command line is still supported.

224 Platform MPI: User's Guide



Frequently Asked Questions

General
QUESTION: Where can I get the latest version of Platform MPI?

ANSWER: Customers can go to my.platform.com.

QUESTION: Can I use Platform MPI in my C++ application?

ANSWER: Yes, Platform MPI provides C++ classes for MPI bindings.The classes
provided are an inlined interface class to MPI C bindings. Although most classes
are inlined, a small portion is a prebuilt library. This library is g++ ABI compatible.
Because some C++ compilers are not g++ ABI compatible, we provide the source
files and instructions on how to build this library with your C++ compiler if
necessary. For more information, see “C++ bindings (for Linux)” on page 43.

QUESTION: How can I tell what version of Platform MPI I'm using?

ANSWER: Try one of the following:
1. % mpirun -version

2. (on Linux) % rpm -qa|grep "platform_mpi"

For Windows, see the Windows FAQ section.

QUESTION: What Linux distributions does Platform MPI support?

ANSWER: See the release note for your product for this information. Generally, we
test with the current distributions of RedHat and SuSE. Other versions might
work, but are not tested and are not officially supported.

QUESTION: What is MPI_ROOT that I see referenced in the documentation?

ANSWER: MPI_ROOT is an environment variable that Platform MPI (mpirun) uses
to determine where Platform MPI is installed and therefore which executables and
libraries to use. It is especially helpful when you have multiple versions of
Platform MPI installed on a system. A typical invocation of Platform MPI on
systems with multiple MPI_ROOTs installed is:

% setenv MPI_ROOT /scratch/test-platform-mpi-2.2.5/

% $MPI_ROOT/bin/mpirun ...

Or

% export MPI_ROOT=/scratch/test-platform-mpi-2.2.5

% $MPI_ROOT/bin/mpirun ...

If you only have one copy of Platform MPI installed on the system and it is in
/opt/platform_mpi or /opt/mpi, you do not need to set MPI_ROOT.

For Windows, see the Windows FAQ section.

© Copyright IBM Corp. 1994, 2012 225

my.platform.com


QUESTION: Can you confirm that Platform MPI is include-file-compatible with
MPICH?

ANSWER: Platform MPI can be used in what we refer to as MPICH compatibility
mode. In general, object files built with the Platform MPI MPICH mode can be
used in an MPICH application, and conversely object files built under MPICH can
be linked into the Platform MPI application using MPICH mode. However, using
MPICH compatibility mode to produce a single executable to run under both
MPICH and Platform MPI is more problematic and is not recommended.

Installation and setup
QUESTION: How are ranks launched? (Or, why do I get the message "remshd:
Login incorrect" or "Permission denied"?)

ANSWER: There are a number of ways that Platform MPI can launch ranks, but
some way must be made available:
1. Allow passwordless rsh access by setting up hosts.equiv and/or .rhost files

to allow the mpirun machine to use rsh to access the execution nodes.
2. Allow passwordless ssh access from the mpirun machine to the execution nodes

and set the environment variable MPI_REMSH to the full path of ssh.
3. Use SLURM (srun) by using the -srun option with mpirun.
4. Under Quadrics, use RMS ( prun) by using the -prun option with mpirun.

For Windows, see the Windows FAQ section.

QUESTION: How can I verify that Platform MPI is installed and functioning
optimally on my system?

ANSWER: A simple hello_world test is available in $MPI_ROOT/help/hello_world.c
that can validate basic launching and connectivity. Other more involved tests are
there as well, including a simple ping_pong_ring.c test to ensure that you are
getting the bandwidth and latency you expect.

The Platform MPI for Linux library includes a lightweight system check API that
does not require a separate license to use. This functionality allows customers to
test the basic installation and setup of Platform MPI without the prerequisite of a
license.

The $MPI_ROOT/help/system_check.cfile contains an example of how this API can
be used. This test can be built and run as follows:

% $MPI_ROOT/bin/mpicc -o system_check.x $MPI_ROOT/help/system_check.c

% $MPI_ROOT/bin/mpirun ... system_check.x [ppr_message_size]

Any valid options can be listed on the mpiruncommand line.

During the system check, the following tests are run:
1. hello_world

2. ping_pong_ring

These tests are similar to the code found in $MPI_ROOT/help/hello_world.c and
$MPI_ROOT/help/ping_pong_ring.c. The ping_pong_ring test in system_check.c

226 Platform MPI: User's Guide



defaults to a message size of 4096 bytes. An optional argument to the system check
application can be used to specify an alternate message size. The environment
variable HPMPI_SYSTEM_CHECK can be set to run a single test. Valid values of
HPMPI_SYSTEM_CHECK are:
1. all: Runs both tests (the default value)
2. hw: Runs the hello_world test
3. ppr: Runs the ping_pong_ring test

If the HPMPI_SYSTEM_CHECK variable is set during an application run, that
application runs normally until MPI_Init is called. Before returning from MPI_Init,
the application runs the system check tests. When the system checks are
completed, the application exits. This allows the normal application launch
procedure to be used during the test, including any job schedulers, wrapper
scripts, and local environment settings.

By default, the HPMPI_SYSTEM_CHECK API cannot be used if MPI_Init has
already been called, and the API will call MPI_Finalize before returning.

QUESTION: Can I have multiple versions of Platform MPI installed and how can I
switch between them?

ANSWER: You can install multiple Platform MPI's and they can be installed
anywhere, as long as they are in the same place on each host you plan to run on.
You can switch between them by setting MPI_ROOT. For more information on
MPI_ROOT, refer to “General” on page 225.

QUESTION: How do I install in a non-standard location?

ANSWER: Two possibilities are:

% rpm --prefix=/wherever/you/want -ivh pcmpi-XXXXX.XXX.rpm

Or, you can basically use untar for an rpm using:

% rpm2cpio pcmpi-XXXXX.XXX.rpm|cpio -id

For Windows, see the Windows FAQ section.

QUESTION: How do I install a permanent license for Platform MPI?

ANSWER: You can install the permanent license on the server it was generated for
by running lmgrd -c <full path to license file>.

Building applications
QUESTION: Which compilers does Platform MPI work with?

ANSWER: Platform MPI works well with all compilers. We explicitly test with gcc,
Intel, PathScale, and Portland. Platform MPI strives not to introduce compiler
dependencies.

For Windows, see the Windows FAQ section.

QUESTION: What MPI libraries do I need to link with when I build?

Frequently Asked Questions 227



ANSWER: We recommend using the mpicc, mpif90, and mpi77 scripts in
$MPI_ROOT/bin to build. If you do not want to build with these scripts, we
recommend using them with the -show option to see what they are doing and use
that as a starting point for doing your build. The -showoption prints out the
command it uses to build with. Because these scripts are readable, you can
examine them to understand what gets linked in and when.

For Windows, see the Windows FAQ section.

QUESTION: How do I build a 32-bit application on a 64-bit architecture?

ANSWER: On Linux, Platform MPI contains additional libraries in a 32-bit
directory for 32-bit builds.

% $MPI_ROOT/lib/linux_ia32

Use the -mpi32 flag with mpicc to ensure that the 32-bit libraries are used. Your
specific compiler might require a flag to indicate a 32-bit compilation.

For example:

On an Opteron system using gcc, you must instruct gcc to generate 32-bit via the
flag -m32. The -mpi32 is used to ensure 32-bit libraries are selected.

% setenv MPI_ROOT /opt/platform_mpi

% setenv MPI_CC gcc

% $MPI_ROOT/bin/mpicc hello_world.c -mpi32 -m32

% file a.out

a.out: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU/Linux 2.2, dynamically linked (uses shared libraries),
not stripped

For more information on running 32-bit applications, see “Network specific” on
page 229.

For Windows, see the Windows FAQ section.

Performance problems
QUESTION: How does Platform MPI clean up when something goes wrong?

ANSWER: Platform MPI uses several mechanisms to clean up job files. All
processes in your application must call MPI_Finalize.
1. When a correct Platform MPI program (that is, one that calls MPI_Finalize)

exits successfully, the root host deletes the job file.
2. If you use mpirun, it deletes the job file when the application terminates,

whether successfully or not.
3. When an application calls MPI_Abort, MPI_Abort deletes the job file.
4. If you use mpijob -j to get more information on a job, and the processes of

that job have exited, mpijob issues a warning that the job has completed, and
deletes the job file.

228 Platform MPI: User's Guide



QUESTION: My MPI application hangs at MPI_Send. Why?

ANSWER: Deadlock situations can occur when your code uses standard send
operations and assumes buffering behavior for standard communication mode. Do
not assume message buffering between processes because the MPI standard does
not mandate a buffering strategy. Platform MPI sometimes uses buffering for
MPI_Send and MPI_Rsend, but it depends on message size and is at the discretion of
the implementation.

QUESTION: How can I tell if the deadlock is because my code depends on
buffering?

ANSWER: To quickly determine whether the problem is due to your code being
dependent on buffering, set the z option for MPI_FLAGS. MPI_FLAGSmodifies the
general behavior of Platform MPI, and in this case converts MPI_Send and
MPI_Rsend calls in your code to MPI_Ssend, without you needing to rewrite your
code. MPI_Ssend guarantees synchronous send semantics, that is, a send can be
started whether or not a matching receive is posted. However, the send completes
successfully only if a matching receive is posted and the receive operation has
begun receiving the message sent by the synchronous send.

If your application still hangs after you convert MPI_Send and MPI_Rsendcalls to
MPI_Ssend, you know that your code is written to depend on buffering. Rewrite it
so that MPI_Send and MPI_Rsend do not depend on buffering.

Alternatively, use non-blocking communication calls to initiate send operations. A
non-blocking send-start call returns before the message is copied out of the send
buffer, but a separate send-complete call is needed to complete the operation. For
information about blocking and non-blocking communication, see “Sending and
receiving messages” on page 10. For information about MPI_FLAGS options, see
“General environment variables” on page 104.

QUESTION: How do I turn on MPI collection of message lengths? I want an
overview of MPI message lengths being sent within the application.

ANSWER: The information is available through Platform MPI's instrumentation
feature. Basically, including -i <filename> on the mpirun command line will create
<filename> with a report that includes number and sizes of messages sent between
ranks.

Network specific
QUESTION: I get an error when I run my 32-bit executable on my AMD64 or
Intel(R)64 system.
dlopen for MPI_ICLIB_IBV__IBV_MAIN could not open libs in list libibverbs.so:
libibverbs.so: cannot open shared object file: No such file or directory
x: Rank 0:0: MPI_Init: ibv_resolve_entrypoints() failed
x: Rank 0:0: MPI_Init: Can’t initialize RDMA device
x: Rank 0:0: MPI_Init: MPI BUG: Cannot initialize RDMA protocol dlopen for
MPI_ICLIB_IBV__IBV_MAIN could not open libs in list libibverbs.so:
libibverbs.so: cannot open shared object file: No such file or directory
x: Rank 0:1: MPI_Init: ibv_resolve_entrypoints() failed
x: Rank 0:1: MPI_Init: Can’t initialize RDMA device
x: Rank 0:1: MPI_Init: MPI BUG: Cannot initialize RDMA protocol
MPI Application rank 0 exited before MPI_Init() with status 1
MPI Application rank 1 exited before MPI_Init() with status 1

Frequently Asked Questions 229



ANSWER: Not all messages that say "Can't initialize RDMA device" are caused by
this problem. This message can show up when running a 32-bit executable on a
64-bit Linux machine. The 64-bit daemon used by Platform MPI cannot determine
the bitness of the executable and thereby uses incomplete information to determine
the availability of high performance interconnects. To work around the problem,
use flags (-TCP, -VAPI, etc.) to explicitly specify the network to use. Or, with
Platform MPI 2.1.1 and later, use the -mpi32 flag to mpirun.

QUESTION: Where does Platform MPI look for the shared libraries for the
high-performance networks it supports?

ANSWER: For information on high-performance networks, see “Interconnect
support” on page 70.

QUESTION: How can I control which interconnect is used for running my
application?

ANSWER: The environment variable MPI_IC_ORDER instructs Platform MPI to
search in a specific order for the presence of an interconnect. The contents are a
colon-separated list. For a list of default contents, see “Interconnect support” on
page 70.

Or, mpirun command-line options can be used that take higher precedence than
MPI_IC_ORDER. Lowercase selections imply to use if detected, otherwise keep
searching. Uppercase selections demand the interconnect option be used, and if it
cannot be selected the application terminates with an error. For a list of
command-line options, see “Interconnect support” on page 70.

An additional issue is how to select a subnet when TCP/IP is used and multiple
TCP/IP subnets are available between the nodes. This can be controlled by using
the -netaddroption to mpirun. For example:

% mpirun -TCP -netaddr 192.168.1.1 -f appfile

This causes TCP/IP to be used over the subnet associated with the network
interface with IP address 192.168.1.1.

For more detailed information and examples, see “Interconnect support” on page
70.

For Windows, see the Windows FAQ section.

Windows specific
QUESTION: What versions of Windows does Platform MPI support?

ANSWER: Platform MPI for Windows V1.0 supports Windows HPC. Platform MPI
for Windows V1.1 supports Windows 2003 and Windows XP multinode runs with
the Platform MPI Remote Launch service running on the nodes. This service is
provided with V1.1. The service is not required to run in an SMP mode.

QUESTION: What is MPI_ROOT that I see referenced in the documentation?

ANSWER: MPI_ROOT is an environment variable that Platform MPI (mpirun) uses
to determine where Platform MPI is installed and therefore which executables and
libraries to use. It is especially helpful when you have multiple versions of

230 Platform MPI: User's Guide



Platform MPI installed on a system. A typical invocation of Platform MPI on
systems with multiple MPI_ROOT variables installed is:

> set MPI_ROOT=\\nodex\share\test-platform-mpi-2.2.5

> "%MPI_ROOT%\bin\mpirun" ...

When Platform MPI is installed in Windows, it sets MPI_ROOT for the system to
the default location. The default installation location differs between 32-bit and
64-bit Windows.

For 32-bit Windows, the default is:

C:\Program Files \Platform-MPI

For 64-bit Windows, the default is:

C:\Program Files (x86)\Platform-MPI

QUESTION: How are ranks launched on Windows?

ANSWER: On Windows HPC, ranks are launched by scheduling Platform MPI
tasks to the existing job. These tasks are used to launch the remote ranks. Because
CPUs must be available to schedule these tasks, the initial mpirun task submitted
must only use a single task in the job allocation.

For additional options, see the release note for your specific version.

QUESTION: How do I install in a non-standard location on Windows?

ANSWER: To install Platform MPI on Windows, double-click setup.exe, and follow
the instructions. One of the initial windows is the Select Directory window, which
indicates where to install Platform MPI.

If you are installing using command-line flags, use /DIR="<path>" to change the
default location.

QUESTION: Which compilers does Platform MPI for Windows work with?

ANSWER: Platform MPI works well with all compilers. We explicitly test with
Visual Studio, Intel, and Portland compilers. Platform MPI strives not to introduce
compiler dependencies.

QUESTION: What libraries do I need to link with when I build?

ANSWER: We recommend using the mpicc and mpif90 scripts in %MPI_ROOT%\bin to
build. If you do not want to build with these scripts, use them with the -show
option to see what they are doing and use that as a starting point for doing your
build.

The -show option prints out the command to be used for the build and not execute.
Because these scripts are readable, you can examine them to understand what gets
linked in and when.

If you are building a project using Visual Studio IDE, we recommend adding the
provided PMPI.vsprops (for 32-bit applications) or PMPI64.vsprops (for 64-bit

Frequently Asked Questions 231



applications) to the property pages by using Visual Studio's Property Manager.
Add this property page for each MPI project in your solution.

QUESTION: How do I specifically build a 32-bit application on a 64-bit
architecture?

ANSWER: On Windows, open the appropriate compiler command window to get
the correct 32-bit or 64-bit compilers. When using mpicc or mpif90 scripts, include
the -mpi32 or -mpi64 flag to link in the correct MPI libraries.

QUESTION: How can I control which interconnect is used for running my
application?

ANSWER: The default protocol on Windows is TCP. Windows does not have
automatic interconnect selection. To use InfiniBand, you have two choices: WSD or
IBAL.

WSD uses the same protocol as TCP. You must select the relevant IP subnet,
specifically the IPoIB subnet for InfiniBand drivers.

To select a subnet, use the -netaddr flag. For example:

R:\>mpirun -TCP -netaddr 192.168.1.1 -ccp -np 12 rank.exe

This forces TCP/IP to be used over the subnet associated with the network
interface with the IP address 192.168.1.1.

To use the low-level InfiniBand protocol, use the -IBAL flag instead of -TCP. For
example:

R:\> mpirun -IBAL -netaddr 192.168.1.1 -ccp -np 12 rank.exe

The use of -netaddr is not required when using -IBAL, but Platform MPI still uses
this subnet for administration traffic. By default, it uses the TCP subnet available
first in the binding order. This can be found and changed by going to the Network
Connections > Advanced Settings windows.

IBAL is the desired protocol when using InfiniBand. IBAL performance for latency
and bandwidth is considerably better than WSD.

For more information, see “Interconnect support” on page 70.

QUESTION: When I use 'mpirun -ccp -np 2 -nodex rank.exe' I only get one node,
not two. Why?

ANSWER: When using the automatic job submittal feature of mpirun, -np X is used
to request the number of CPUs for the scheduled job. This is usually equal to the
number of ranks.

However, when using -nodex to indicate only one rank/node, the number of CPUs
for the job is greater than the number of ranks. Because compute nodes can have
different CPUs on each node, and mpirun cannot determine the number of CPUs
required until the nodes are allocated to the job, the user must provide the total
number of CPUs desired for the job. Then the -nodex flag limits the number of
ranks scheduled to just one/node.

232 Platform MPI: User's Guide



In other words, -np X is the number of CPUs for the job, and -nodex is telling
mpirun to only use one CPU/node.

QUESTION: What is a UNC path?

ANSWER: A Universal Naming Convention (UNC) path is a path that is visible as
a network share on all nodes. The basic format is:

\\node-name\exported-share-folder\paths

UNC paths are usually required because mapped drives might not be consistent
from node to node, and many times don't get established for all logon tokens.

QUESTION: I am using mpirun automatic job submittal to schedule my job while
in C:\tmp, but the job won't run. Why?

ANSWER: The automatic job submittal sets the current working directory for the
job to the current directory (equivalent to using -e MPI_WORKDIR=<path>). Because
the remote compute nodes cannot access local disks, they need a UNC path for the
current directory.

Platform MPI can convert the local drive to a UNC path if the local drive is a
mapped network drive. So running from the mapped drive instead of the local
disk allows Platform MPI to set a working directory to a visible UNC path on
remote nodes.

QUESTION: I run a batch script before my MPI job, but it fails. Why?

ANSWER: Batch files run in a command window. When the batch file starts,
Windows first starts a command window and tries to set the directory to the
'working directory' indicated by the job. This is usually a UNC path so all remote
nodes can see this directory. But command windows cannot change a directory to a
UNC path.

One option is to use VBScript instead of .bat files for scripting tasks.

Frequently Asked Questions 233



234 Platform MPI: User's Guide



Glossary
application

In the context of Platform MPI, an application is one or more executable
programs that communicate with each other via MPI calls.

asynchronous

Communication in which sending and receiving processes place no constraints
on each other in terms of completion. The communication operation between
the two processes may also overlap with computation.

bandwidth

Data transmission capacity of a communications channel. The greater a
channel's bandwidth, the more information it can carry per unit of time.

barrier

Collective operation used to synchronize the execution of processes.
MPI_Barrier blocks the calling process until all receiving processes have called
it. This is a useful approach for separating two stages of a computation so
messages from each stage are not overlapped.

blocking receive

Communication in which the receiving process does not return until its data
buffer contains the data transferred by the sending process.

blocking send

Communication in which the sending process does not return until its
associated data buffer is available for reuse. The data transferred can be copied
directly into the matching receive buffer or a temporary system buffer.

broadcast

One-to-many collective operation where the root process sends a message to all
other processes in the communicator including itself.

buffered send mode

Form of blocking send where the sending process returns when the message is
buffered in application-supplied space or when the message is received.

buffering

Amount or act of copying that a system uses to avoid deadlocks. A large
amount of buffering can adversely affect performance and make MPI
applications less portable and predictable.

cluster

Group of computers linked together with an interconnect and software that
functions collectively as a parallel machine.

collective communication

Communication that involves sending or receiving messages among a group of
processes at the same time. The communication can be one-to-many,
many-to-one, or many-to-many. The main collective routines are MPI_Bcast,
MPI_Gather, and MPI_Scatter.

communicator

© Copyright IBM Corp. 1994, 2012 235



Global object that groups application processes together. Processes in a
communicator can communicate with each other or with processes in another
group. Conceptually, communicators define a communication context and a
static group of processes within that context.

context

Internal abstraction used to define a safe communication space for processes.
Within a communicator, context separates point-to-point and collective
communications.

data-parallel model

Design model where data is partitioned and distributed to each process in an
application. Operations are performed on each set of data in parallel and
intermediate results are exchanged between processes until a problem is
solved.

derived data types

User-defined structures that specify a sequence of basic data types and integer
displacements for noncontiguous data. You create derived data types through
the use of type-constructor functions that describe the layout of sets of
primitive types in memory. Derived types may contain arrays as well as
combinations of other primitive data types.

determinism

A behavior describing repeatability in observed parameters. The order of a set
of events does not vary from run to run.

domain decomposition

Breaking down an MPI application's computational space into regular data
structures such that all computation on these structures is identical and
performed in parallel.

executable

A binary file containing a program (in machine language) which is ready to be
executed (run).

explicit parallelism

Programming style that requires you to specify parallel constructs directly.
Using the MPI library is an example of explicit parallelism.

functional decomposition

Breaking down an MPI application's computational space into separate tasks
such that all computation on these tasks is performed in parallel.

gather

Many-to-one collective operation where each process (including the root) sends
the contents of its send buffer to the root.

granularity

Measure of the work done between synchronization points. Fine-grained
applications focus on execution at the instruction level of a program. Such
applications are load balanced but suffer from a low computation/
communication ratio. Coarse-grained applications focus on execution at the
program level where multiple programs may be executed in parallel.

group

236 Platform MPI: User's Guide



Set of tasks that can be used to organize MPI applications. Multiple groups are
useful for solving problems in linear algebra and domain decomposition.

intercommunicators

Communicators that allow only processes in two different groups to exchange
data.

intracommunicators

Communicators that allow processes within the same group to exchange data.

instrumentation

Cumulative statistical information collected and stored in ASCII format.
Instrumentation is the recommended method for collecting profiling data.

latency

Time between the initiation of the data transfer in the sending process and the
arrival of the first byte in the receiving process.

load balancing

Measure of how evenly the work load is distributed among an application's
processes. When an application is perfectly balanced, all processes share the
total work load and complete at the same time.

locality

Degree to which computations performed by a processor depend only upon
local data. Locality is measured in several ways including the ratio of local to
nonlocal data accesses.

logical processor

Consists of a related collection of processors, memory, and peripheral resources
that compose a fundamental building block of the system. All processors and
peripheral devices in a given logical processor have equal latency to the
memory contained within that logical processor.

mapped drive

In a network, drive mappings reference remote drives, and you have the
option of assigning the letter of your choice. For example, on your local
machine you might map S: to refer to drive C: on a server. Each time S: is
referenced on the local machine, the drive on the server is substituted behind
the scenes. The mapping may also be set up to refer only to a specific folder
on the remote machine, not the entire drive.

message bin

A message bin stores messages according to message length. You can define a
message bin by defining the byte range of the message to be stored in the bin:
use the MPI_INSTR environment variable.

message-passing model

Model in which processes communicate with each other by sending and
receiving messages. Applications based on message passing are
nondeterministic by default. However, when one process sends two or more
messages to another, the transfer is deterministic as the messages are always
received in the order sent.

MIMD

Glossary 237



Multiple instruction multiple data. Category of applications in which many
instruction streams are applied concurrently to multiple data sets.

MPI

Message-passing interface. Set of library routines used to design scalable
parallel applications. These routines provide a wide range of operations that
include computation, communication, and synchronization. MPI-2 is the
current standard supported by major vendors.

MPMD

Multiple data multiple program. Implementations of Platform MPI that use
two or more separate executables to construct an application. This design style
can be used to simplify the application source and reduce the size of spawned
processes. Each process may run a different executable.

multilevel parallelism

Refers to multithreaded processes that call MPI routines to perform
computations. This approach is beneficial for problems that can be
decomposed into logical parts for parallel execution (for example, a looping
construct that spawns multiple threads to perform a computation and then
joins after the computation is complete).

multihost

A mode of operation for an MPI application where a cluster is used to carry
out a parallel application run.

nonblocking receive

Communication in which the receiving process returns before a message is
stored in the receive buffer. Nonblocking receives are useful when
communication and computation can be effectively overlapped in an MPI
application. Use of nonblocking receives may also avoid system buffering and
memory-to-memory copying.

nonblocking send

Communication in which the sending process returns before a message is
stored in the send buffer. Nonblocking sends are useful when communication
and computation can be effectively overlapped in an MPI application.

non-determinism

A behavior describing non-repeatable parameters. A property of computations
which may have more than one result. The order of a set of events depends on
run-time conditions and so varies from run to run.

OpenFabrics Alliance (OFA)

A not-for-profit organization dedicated to expanding and accelerating the
adoption of Remote Direct Memory Access (RDMA) technologies for server
and storage connectivity.

OpenFabrics Enterprise Distribution (OFED)

The open-source software stack developed by OFA that provides a unified
solution for the two major RDMA fabric technologies: InfiniBand and iWARP
(also known as RDMA over Ethernet).

over-subscription

When a host is over-subscribed, application performance decreases because of
increased context switching.

238 Platform MPI: User's Guide



Context switching can degrade application performance by slowing the
computation phase, increasing message latency, and lowering message
bandwidth. Simulations that use timing-sensitive algorithms can produce
unexpected or erroneous results when run on an over-subscribed system.

parallel efficiency

An increase in speed in the execution of a parallel application.

point-to-point communication

Communication where data transfer involves sending and receiving messages
between two processes. This is the simplest form of data transfer in a
message-passing model.

polling

Mechanism to handle asynchronous events by actively checking to determine if
an event has occurred.

process

Address space together with a program counter, a set of registers, and a stack.
Processes can be single threaded or multithreaded. Single-threaded processes
can only perform one task at a time. Multithreaded processes can perform
multiple tasks concurrently as when overlapping computation and
communication.

race condition

Situation in which multiple processes vie for the same resource and receive it
in an unpredictable manner. Race conditions can lead to cases where
applications do not run correctly from one invocation to the next.

rank

Integer between zero and (number of processes - 1) that defines the order of a
process in a communicator. Determining the rank of a process is important
when solving problems where a master process partitions and distributes work
to slave processes. The slaves perform some computation and return the result
to the master as the solution.

ready send mode

Form of blocking send where the sending process cannot start until a matching
receive is posted. The sending process returns immediately.

reduction

Binary operations (such as addition and multiplication) applied globally to all
processes in a communicator. These operations are only valid on numeric data
and are always associative but may or may not be commutative.

scalable

Ability to deliver an increase in application performance proportional to an
increase in hardware resources (normally, adding more processors).

scatter

One-to-many operation where the root's send buffer is partitioned into n
segments and distributed to all processes such that the ith process receives the
ith segment. n represents the total number of processes in the communicator.

Security Support Provider Interface (SSPI)

Glossary 239



A common interface between transport-level applications such as Microsoft
Remote Procedure Call (RPC), and security providers such as Windows
Distributed Security. SSPI allows a transport application to call one of several
security providers to obtain an authenticated connection. These calls do not
require extensive knowledge of the security protocol's details.

send modes

Point-to-point communication in which messages are passed using one of four
different types of blocking sends. The four send modes include standard mode
(MPI_Send), buffered mode (MPI_Bsend), synchronous mode (MPI_Ssend), and
ready mode (MPI_Rsend). The modes are all invoked in a similar manner and
all pass the same arguments.

shared memory model

Model in which each process can access a shared address space. Concurrent
accesses to shared memory are controlled by synchronization primitives.

SIMD

Single instruction multiple data. Category of applications in which
homogeneous processes execute the same instructions on their own data.

SMP

Symmetric multiprocessor. A multiprocess computer in which all the processors
have equal access to all machine resources. Symmetric multiprocessors have no
manager or worker processes.

spin-yield

Refers to the Platform MPI facility that allows you to specify the number of
milliseconds a process should block (spin) waiting for a message before
yielding the CPU to another process. Specify a spin-yield value in the
MPI_FLAGS environment variable.

SPMD

Single program multiple data. Implementations of Platform MPI where an
application is completely contained in a single executable. SPMD applications
begin with the invocation of a single process called the master. The master
then spawns some number of identical child processes. The master and the
children all run the same executable.

standard send mode

Form of blocking send where the sending process returns when the system can
buffer the message or when the message is received.

stride

Constant amount of memory space between data elements where the elements
are stored noncontiguously. Strided data are sent and received using derived
data types.

subscription

Subscription refers to the match of processors and active processes on a host.
The following lists possible subscription types:

Under-subscribed

More processors than active processes

Fully subscribed

240 Platform MPI: User's Guide



Equal number of processors and active processes

Over-subscribed

More active processes than processors

For further details on oversubscription, refer to the over-subscription entry in
this glossary.

synchronization

Bringing multiple processes to the same point in their execution before any can
continue. For example, MPI_Barrier is a collective routine that blocks the
calling process until all receiving processes have called it. This is a useful
approach for separating two stages of a computation so messages from each
stage are not overlapped.

synchronous send mode

Form of blocking send where the sending process returns only if a matching
receive is posted and the receiving process has started to receive the message.

tag

Integer label assigned to a message when it is sent. Message tags are one of the
synchronization variables used to ensure that a message is delivered to the
correct receiving process.

task

Uniquely addressable thread of execution.

thread

Smallest notion of execution in a process. All MPI processes have one or more
threads. Multithreaded processes have one address space but each process
thread contains its own counter, registers, and stack. This allows rapid context
switching because threads require little or no memory management.

thread-compliant

An implementation where an MPI process may be multithreaded. If it is, each
thread can issue MPI calls. However, the threads themselves are not separately
addressable.

trace

Information collected during program execution that you can use to analyze
your application. You can collect trace information and store it in a file for later
use or analyze it directly when running your application interactively.

UNC

A Universal Naming Convention (UNC) path is a path that is visible as a
network share on all nodes. The basic format is \\node-name\exported-share-
folder\paths. UNC paths are usually required because mapped drives may not
be consistent from node to node, and many times don't get established for all
logon tokens.

yield

See spin-yield.

Glossary 241



242 Platform MPI: User's Guide



Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1994, 2012 243



sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Intellectual Property Law
Mail Station P300
2455 South Road,
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application

244 Platform MPI: User's Guide



programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at "Copyright and trademark information"
at http://www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Java™ and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

LSF®, Platform, and Platform Computing are trademarks or registered trademarks
of International Business Machines Corp., registered in many jurisdictions
worldwide.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 245

http://www.ibm.com/legal/copytrade.shtml


246 Platform MPI: User's Guide





����

Printed in USA

SC27-5319-00


	Contents
	About This Guide
	Platforms supported
	Documentation resources
	Credits

	Introduction
	The message passing model
	MPI concepts
	Point-to-point communication
	Collective operations
	MPI data types and packing
	Multilevel parallelism
	Advanced topics


	Getting Started
	Getting started using Linux
	Configuring your environment
	Compiling and running your first application
	Directory structure for Linux
	Linux man pages
	Licensing policy for Linux
	Version identification

	Getting started using Windows
	Configuring your environment
	Compiling and running your first application
	Command-line basics
	Fortran command-line basics
	Building and running on a single host
	Building and running multihost on Windows HPCS clusters
	Building and running MPMD applications on Windows HPCS
	Building an MPI application on Windows with Visual Studio and using the property pages
	Building and running on a Windows cluster using appfiles
	Running with an appfile using HPCS
	Directory structure for Windows
	Windows man pages
	Licensing policy for Windows


	Understanding Platform MPI
	Compilation wrapper script utilities
	Compiling applications

	C++ bindings (for Linux)
	Non-g++ ABI compatible C++ compilers

	Autodouble functionality
	MPI functions
	64-bit support
	Linux
	Windows

	Thread-compliant library
	CPU affinity
	CPU affinity mode (-aff)
	CPU binding (-cpu_bind)

	MPICH object compatibility for Linux
	MPICH2 compatibility
	Examples of building on Linux
	Running applications on Linux
	More information about appfile runs
	Running MPMD applications
	Modules on Linux
	Run-time utility commands
	Interconnect support

	Running applications on Windows
	Building and running multihost on Windows HPCS clusters
	Run multiple-program multiple-data (MPMD) applications
	Building an MPI application with Visual Studio and using the property pages
	Building and running on a Windows 2008 cluster using appfiles
	Running with an appfile using HPCS
	Building and running on a Windows 2008 cluster using -hostlist
	Running with a hostfile using HPCS
	Running with a hostlist using HPCS
	Performing multi-HPC runs with the same resources
	Remote launch service for Windows
	Run-time utility commands

	mpirun options
	Interconnect selection options
	Launching specifications options
	Debugging and informational options
	RDMA control options
	MPI-2 functionality options
	Environment control options
	Special Platform MPI mode option
	Windows HPC
	Windows remote service password authentication

	Runtime environment variables
	List of runtime environment variables
	General environment variables
	CPU bind environment variables
	Miscellaneous environment variables
	Diagnostic/debug environment variables
	Interconnect selection environment variables
	InfiniBand environment variables
	Memory usage environment variables
	Connection related environment variables
	RDMA tunable environment variables
	Protocol reporting (prot) environment variables
	srun environment variables
	TCP environment variables
	Windows HPC environment variables
	Rank identification environment variables

	Scalability
	Dynamic processes
	Singleton launching
	License release/regain on suspend/resume
	Signal propagation (Linux only)
	MPI-2 name publishing support
	Native language support

	Profiling
	Using counter instrumentation
	Creating an instrumentation profile
	Viewing ASCII instrumentation data

	Using the profiling interface
	Viewing MPI messaging using MPE

	Tuning
	Tunable parameters
	Message latency and bandwidth
	Multiple network interfaces
	Processor subscription
	Processor locality
	MPI routine selection

	Debugging and Troubleshooting
	Debugging Platform MPI applications
	Using a single-process debugger
	Using a multiprocess debugger
	Using the diagnostics library
	Enhanced debugging output
	Debugging tutorial for Windows

	Troubleshooting Platform MPI applications
	Running complex MPI jobs on Linux and Windows
	Completing
	Testing the network on Linux
	Testing the network on Windows


	Example Applications
	send_receive.f
	ping_pong.c
	ping_pong_ring.c (Linux)
	ping_pong_ring.c (Windows)
	compute_pi.f
	master_worker.f90
	cart.C
	communicator.c
	multi_par.f
	io.c
	thread_safe.c
	sort.C
	compute_pi_spawn.f

	High availability applications
	Failure recovery (-ha:recover)
	Network high availability (-ha:net)
	Failure detection (-ha:detect)
	Clarification of the functionality of completion routines in high availability mode

	Large message APIs
	Standard Flexibility in Platform MPI
	Platform MPI implementation of standard flexibility

	mpirun Using Implied prun or srun
	Implied prun
	Implied srun

	Frequently Asked Questions
	General
	Installation and setup
	Building applications
	Performance problems
	Network specific
	Windows specific

	Glossary
	Notices
	Trademarks


