IBM z/0S Debugger
Version 14.2.3

Reference and Messages

.||I

Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 523.

Fourth Edition (June 2020)

This edition applies to IBM® z/OS°® Debugger, Version 14.2.3 (Program Number 5724-T07 with the PTF for PH23106),
which supports the following compilers:

AD/Cycle C/370 Version 1 Release 2 (Program Number 5688-216)

C/C++ for MVS/ESA Version 3 (Program Number 5655-121)

C/C++ feature of 0S/390° (Program Number 5647-A01)

C/C++ feature of z/OS Version 1 (Program Number 5694-A01)

C/C++ feature of z/OS Version 2 (Program Number 5650-Z0S)

0OS/VS COBOL, Version 1 Release 2.4 (5740-CB1) - with limitations

VS COBOL II Version 1 Release 3 and Version 1 Release 4 (Program Numbers 5668-958, 5688-023) - with limitations
COBOL/370 Version 1 Release 1 (Program Number 5688-197)

COBOL for MVS™ & VM Version 1 Release 2 (Program Number 5688-197)

COBOL for 0S/390 & VM Version 2 (Program Number 5648-A25)

Enterprise COBOL for z/OS and 0S/390 Version 3 (Program Number 5655-G53)

Enterprise COBOL for z/OS Version 4 (Program Number 5655-571)

Enterprise COBOL for z/OS Version 5 (Program Number 5655-W32)

Enterprise COBOL for z/OS Version 6 Release 1, Release 2, and Release 3 (Program Number 5655-EC6)

High Level Assembler for MVS & VM & VSE Version 1 Release 4, Version 1 Release 5, Version 1 Release 6 (Program
Number 5696-234)

OS PL/I Version 2 Release 1, Version 2 Release 2, Version 2 Release 3 (Program Numbers 5668-909, 5668-910) - with
limitations

PL/I for MVS & VM Version 1 Release 1 (Program Number 5688-235)

VisualAge® PL/I for 0S/390 Version 2 Release 2 (Program Number 5655-B22)

Enterprise PL/I for z/OS and 0S/390 Version 3 (Program Number 5655-H31)

Enterprise PL/I for z/OS Version 4 (Program Number 5655-W67)

Enterprise PL/I for z/OS Version 5 Release 1, Release 2, and Release 3 (Program Number 5655-PL5)

This edition also applies to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters.

You can access publications online at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can find out more about IBM z/0S Debugger by visiting the following IBM Web sites:

IBM Debug for z/OS: https://www.ibm.com/us-en/marketplace/debug-for-z-systems

IBM Developer for z/OS: https://www.ibm.com/us-en/marketplace/developer-for-z-systems

IBM Wazi for Red Hat CodeReady Workspaces: https://www.ibm.com/products/wazi-for-red-hat-codeready-
workspaces

IBM Z Open Development: https://www.ibm.com/us-en/marketplace/z-open-development

IBM Z Open Unit Test: https://www.ibm.com/us-en/marketplace/z-open-unit-test

© Copyright International Business Machines Corporation 1992, 2020.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/us-en/marketplace/debug-for-z-systems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces
https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces
https://www.ibm.com/us-en/marketplace/z-open-development
https://www.ibm.com/us-en/marketplace/z-open-unit-test

Contents

ADOUL this dOCUMENT......c.ueeiieiiiiiiiriiieterieeereseasesessesesessesesessesessssesessssessssasessssnsessnse Xl

Who might Use this dOCUMENT......cccuiieeeeeee et e e e e e e e e e b e e e eaae e esee e e naeesnes Xi
Accessing z/0OS licensed documents on the INtErNet.......cccvii e iccii e e Xi
How this dOCUMENt IS OFZANIZEM....cccuuiiieiieeciee ettt et et e e te e s rteeeeateeeenteesentaesesteesenteeenes xii
Terms used in thisS dOCUMENT....c.cuiiiiiieeteeteete ettt ettt s e e s be e saa e sbe e sbaesabeesbaesasesbaesanesnsenn xii
HOW 10 read SYNtaX QIagIamS.....cciccuieieiieieiieeeieeeeteeeeteeeetee e tee e e te e e e tee e s tae e sataeesasaeessseeesateeesnseesansnesnnsens Xiv
)Y 2] 0o =SSP Xiv
YY1 2 D =T 1 0 =TRSO Xiv
)Y 2 Dy = L T o1 L3 Xiv
HOW 10 Provide YOUI COMMENTS...ccccuiiiciie ettt ettt eete e et e e te e e e tee e e tee e s tee s eabaeeenteeeenteeennseeensseeannees XVi

SuMMary of Changes......cccieiiiiieiiiiiiiiiiiieiieiieiienieiecsecsessestsssessasssssasssssssssssses XVil
Overview of IBM z/0S Debugger.......ccccciiuiiniiniiniiniieiieiecencnncieciesiesiessessasssssascsncses XXI

Chapter 1. z/0S Debugger runtime options......c.ccccecieuiiniiniiniiniieiieiieniecececncnennennes 1

Non-Language Environment positional Parameter.......cuiccuieieiieieiiieeeiie ettt e e e e aee e aee s 1
COUNTRY FUNTIME OPTION.ccietiiieiieeciieecite ettt ee e e e rtee e e rte e e e te e e e bte e e sae e e saee e saeeensesessseessseeenssaeessesenens 2
N N N L U] 4T g =N o] o4 o] o TS 2
NONLESP rUNTIME OPLION...ciiiiieicciieecciie ettt eee e e tee e e tee e e tee e etaeeetaeeebaeeesbaeeensaeesnseesasseeeansaesnsseeennses 2
TEST FUNTIME OPLION..eiiiiiiie ettt et e e et e e s rtee e s bee e s bee e s baeeesbaeesabaeesasaeesssaeesssaesanseaesnseesnnses 2

Syntax of the TEST rUNtime OPtioN.....ee ettt rre e e ree e e bee e e bae e e aee e e rae e eaneas 3
LAY AN T 4T g TN o] o1 L] o TS 9

Chapter 2. Common syntax elements in z/0S Debugger commands..........cccceeeeeee. 11

AAAINESS e eeteeee ettt e eettte e e e eebb e e e e et b et e ee et b e e e e et ba et e e et bt b reeeabaaaeeeaaabaateeeabbaeeeeaartareeeearraeeeeants 11
o] FoTod Gl a =11 4 L= TR 11
0] 1o =Y oYY oS 12
CONAITION . 1tete ettt ettt ceetee e eerbe e e e eebaeeeeeesbaeeeeeaabaseeseesaaaeeeeassaeseeeassbaseesssssassesennsasseeeensseseesensrenes 12
(oto] 0] o1 LY U VA T U o 1T TR 13
CU_SPIECuuutttteeeeeeeeearaaiurrttreeteeeeeseesssassssssaeaeeeesesssssssssssssssssesesesssssssssssssseaeseesessssssssssssssssseseeesesssssssssssssnseneees 13
L oL T[] PR 14
(oY= Yo I 1 e Te LU 1 F=TN 1 T=1 0 21T 14
[=T =Y o1 o3 15
oL LY Y o 1= o ORI 15
O I EINICES . uvvei ettt ceett e e e eertbe e e e e e tba e e e e eeabareeeseba e b e e eeaabareeeeeabaaeeesebaaaeeseaabareeeenrbereeearaes 15
[=X =T 1= 0L e SRR 16
statement_id_range and StMt_id_SPEC......iiuiiiiciiiieiiiecieeeee et e e e e aae s 16

Specifying a range Of STAatEMENTS.......iii it te e e rte e et e e s raeeenes 17
[= =T A LA E= o 1] PN 17
(L= o1 (=T a T= 1 £ L= R 18

Chapter 3. Syntax for assembler and disassembly expressions.........ccccceeenienceneee.. 19

COMMON SYNTAX BLEMENTS ... uiiiiiiie ettt ettt eetre e e te e e tte e s bte e sebeeesbteesseeessteesssessseeesnsanennns 19
(0] 127 71 (] =TT OO PO PPPPPPPRRN 20
Operators that can be used in any EXPreSSION.......iicciii ettt eeree e e e reeesre e e abeeseabeeseaneeens 20
Operators that can be used only in conditional eXPressSioNS........cveeceeeeceeeecie e 22
Arithmetic eXpression EVAlUALION......cc.iic ettt e et e e eare e e b e e e sbee s aaeesnaee s ssnesnnsaeans 22

Chapter 4. Syntax for LangX COBOL eXPresSions.....ccccccreerecresrnianacancaecsecsessecsense 23

Restrictions on LangX COBOL EXPIrESSIONS.ciccuieiirieerriteerrteeeireeesiseeessseeessseesssseessssessssssesssssessssaessssassse 23
COMMON SYNTAX ELEMENTS. .. utiiiieeeciiee ettt et e e e eerrr e e e e et e e e sesbeeeesesssaeeeesanssasessassesessssnssneenannnes 24
(0] 011 -1 (0] = SUPRPR 24
Operators that can be used iN ANy EXPreSSION.....cciii ittt e et e e s eearre e e e ebaee e e eeaseeees 24
Operators that can be used only in conditional EXPreSSIONS.......ccccciieeeeeciieee e e eerrre e 25

Chapter 5. z/0S Debugger commands.......cccceeereireniniiniiniincnccncsessecressecsescascascsscse 27

Faele] 1210 F= 12 [FO USSR 31
ALLOCATE COMMANG..ciiiiiiiiiiiiiitiiiiieeeee e eeeeciitrrreeeeeeeeeeeeeessssbasaeeseeeeeesesesssssssseasasseesesseessssssssssessseeessensaes 31
ANALYZE COMMANT (PL/I) ettt et eeeeeeeittet ettt et e e seseeseassssaeteeeesesssesssssssssssssaeseessessessssssssssseseneees 32
Assignment command (assembler and diSaSSEMDBLY)....c.uieciiecirerircieeieeceeee e 33
ASSIGNMENT FULES.c..tiiiieeieeeeie ettt sttt e s st e e s st e s be e s sateesssbee e sbaessssaesassaeesssaesssseeensseessnsees 34
Assignment command (LaNGX COBOL).....uiiiireriieieeeteereesteeteeseeeteesseeseessseessessseesseesssesssesssesssesssesenses 35
PN = (o T=Ta N ot gl o F=TaTo IN (o I TS 36
JAN I edo] a2 T a4 F=1 [FE USRS RTTRTS 37
EVEIY_ClAUSE SYNTAX.c.uiiiiitiieeitiieeetee et e ettt e ettt e eetteeeettee e sseeeesseeeesseeeassaeeasseeesseesassaeeassasesseesasseesanseenns 40
AT ALLOCATE (PL/I) COMMANG.uutttiiiiiiiiieiiiiiiieiiieereeeeeeeeetessesssisssseteeeessesssssessssssssssesesssssssssssssssssssseses 40
AT APPEARANCE COMMANG..iiiiiiiiiiiiiiiiiiiiiiiieieee e e e eeeeeserrreeeeeeeeeeeeeeeasssssssesseesessessesssssssssssesseesesesesanns 41
AT CALL COMMANG. ..ttt ettt e e e e et e eeeeeeeabareeeeeeeeeeeeeesssssssseaseeseaeeesesessssssssassreeeeeeeesennnns 43
AT CHANGE command (full screen mode, line mode, batch mode)..........coovveveievcvereiieceeeeeeeeeeen 45
AT CHANGE command (remote debug MOE)......ccceieeieciirieeiecee ettt e s eees 50
AT CURSOR command (fUll-SCre@n MOE)........ueiiieeueiiiiiireeeeeeeteeee e eeetee e eerteee s eeareeeeeesnseeeeesenseeneeean 52
AT DATE COMMANA (COBOL).cuuiiiiiitieiei ettt s et e s eeeavae e e s e eaae e e e seaseeessesbeeeesssnseneesssnsrnnens 53
AT DELETE COMMANG..ciiiiiiiiiiiiiiiiiie ettt e e e et eeseesaasbaaeeeseeeeeeeesasssssssesseeaesssesensnsssssssrerseeeens 53
AT ENTRY COMMANG....cciiiiiitiiiiiiiieeeeeceeeecciittee e e ee et eeseeseabraaeeeeeeeeeeeesessssssssaseereseeesseseasssssssesserseeeeees 54
AT EXIT COMMEANG....iiiiiiiiiiiiieieeeeeeecerreeeeee et eeeeeeesesabaeaeereeeeeeseseasssssssssseseeseeesesssssssssssesseeeessesenssssenes 57
AT GLOBAL COMMANG..uttiiiiiiiiiiiiiiiiiiiiiieeeeee e eeeeeerrarreeeeeeeeeeeeeesssssseaseeseeaesssesssssssssssssseseeseesenssssssserns 58
AT GLOBAL LABEL command (remote debug mode).......ccceeceeeierceeneecieeceecee e 60
AT LABEL COMMANG...ititiiiiiiiiiiiiieccitieee et e eeeeerrree e e e e e e e e eeeesssbaseaeeeeeeseeesessssssssasaesseseeeseessssssssrnnns 60
AT LABEL command (remote debug MOdE).......ccueeieeeieriieciecieeee ettt 62
AT LINE COMMEANG. ..ttt e et e e e eeeabbeae e e e e e eeeeeesessssssseseeeseseeesessssssssbsereeeeeeesesanns 63
AT LOAD COMIMANT....utttiiiiiiiieeeiieieiiiiiitereeeeeeeeeeeeesssssraeseereeseeesessasssssssssseeeseesssesssssssssssssseseessensnsssssres 63
AT OCCURRENCE COMMANT.....iiiitiiiiiieieeieieeeciiritreeeeeeeeeeeeseeasstseeeeeseeeeesesessssssssseesseeeessessssssssssssssees 65
AT OFFSET command (diSaSSEMBLY)..c.uiiiecieeeciie ettt ettt etee e tee e e e e e ree e e bee e ebee e e neaeenneas 68
AT PATH COMMEANG.iiiiiiiiiiiiiiiiiiieeeeee e eeeecerree e e e e e e e eeseeeesabataeeeeeeeeeeeseasassssssaseseeeesesesassssssrseasreeeeses 69
AT Prefix command (fULl-SCre@n MOTE).....cccuuueeiiieieeei ettt e e e eeare e e e s e saae e e s enareeeesenns 70
AT STATEMENT COMMANG..iiiiiiiiiiiiiiiiiiiiiiirieeeeeee et eeeeeietarterereeseeeseeesesssssrseseeeseesessesesssssssssssseseessessennnns 70
AT TERMINATION COMMANG...utitiiiiiiiiiiiiiiieiiiiiiieeeeeeeeeeeeeeeeseassrareeeeeeeeeeesessssssssssesseseessssssessssssssssessees 73
BEGIN COMMEANTG. ...ttt ettt e e et et eeeeeeeaaatareeeeeeeseeesessassssssaraeeeseesessseasssssssssesrseseesseesasssssrnens 74
(o] oYl 1ot aaTant=Ta Lo I (OR=Ta Yo [O 2 TR 75
(oY gt ote] naTa =Y aTe I (OR=TaTc I 08 TR 75
CALL COMIMANT...iitititiiiiiiieeieeeeeeeicitteeee e e et e e eesesasaaseareeseeeeessessasssssraeeseeseesesssaasssssasssssaesesesesasssssssssrneseeees 76
CALL Y6CEBR COMMANT....uttiiiiiiiiiieiiiieiiciiiriiteeeeeeeeeeeeesesraraeeeeeseeeeeseesssssssssesssesesseesssssssssssssesreeeesssennn 77
CALL Y6CECT COMMEANT....uuttitiiiiiiieeeeiiiieiiiiirreteeeeeeeeeeeessessraraeeeeeseeeeesesssssssssssesssesesseesesssssssssssesreesesseennn 77
CALL Z5DUMP COMMANG...uutiiiiiiiiieiiiiiiiiiiiirireeeeeeeeeeeeeesessrseeeeeeeeeeeseeeesssssssssesssesesssessnssssssssssseseeessssenns 77
CALL Y0FA COMMANG...iiiiiiiiiiiiireiieeeee ettt e e e e e e eese e e bbbaareeeeeeeeeeesessnsssssasreeseeeeeeeesaasnsssssraeeeseens 82
CALL Y6FM COMMANG.utttiiiiiiiiiiiiiiiiiiiteieeeeeeeeeeeeeseitrareeeeeeeeeeeesessssssssssesseseeeseessssssssssesssesesesesennsssnssssnnes 82
CALL Z0HOGAN COMMANG....ciiiiiiiiiriiiiieeeceeceeecccirrtee e e e e e e e e eeseeeasssreeeeeseeeeeeeessssssssssesrseeesssesessssssssssseenes 82
CALL Z0VER COMMANG..uitiiiiiiiiiiiieiiiiiiiiteeeeeeeeeeeeeeessateeeeeeeeeeeeeeessssssassessseeeessesssssssssssssseseesessenssssssssnnes 83
CALL entry_name command (COBOL)......uiiiiieeiee ettt et eetteeeette e e tre e s taeeseaaeessteesseeesseaanans 83
CALL procedure COMMANG.......ciiiieciieieeecieee e cecttee e e eetrre e e esateee e seabteeeseenssaeesesssaneessanssesesssnsssnessssnssnnes 84
(0103 o] 1212 4= [FEU U URSSPTTTTO 84
CHKSTGY COMMEANG..ciiiiiiiiiiiiiiiieieeee e e eeeeecirrree e e e e et e eeeesesssssaaeeeeeeeeeeesassssssssssessaseeesesesassssraesseeeeesessesnnns 85
(Of I =YY & oo] 121 2 F=1 2 [FE RSP 86

CLEAR prefix (FUll-SCre@N MOGE)...c.uuiieeieeecieeeceee ettt ete et e et e et e e ae e et e e e abeeeenbeeeeareeeeasaaennnes 92

CLEAR AT command (remote debug MOGE).....cccuieieriireieeieerie et eseeete et e eeeesreesaeereesreesreesraesseenseeas 93

(0101171171 =\ I eo] a g Va0 F=1 2 [IO USRS OR R 93
COMPUTE cOMMANT (COBOL)...cciiiutieiieieiteieececteee e ceetiee e e eetveeseesessteressesaseessesssseeessesseesssesssesessssssseeesssnnns 93
CURSOR command (FULl=SCrEEN MOAE)........ueeiiiieieeeeeeeiieeeecereee e ceeteee e e eeiree e e s esabeeeessenseeressenseneessesssreeeeens 95
Declarations (assembler, disassembly, and LangX COBOL)......cccceevuerceereerieeneeeieesieeseeeeeeseeeeeesveeenns 95
DYoo = AT a1 (O VgL O TSR 96
[BLYol E= T =N AT g T (G101 =T] TR 99
(D] (O WY =] = oTeYa] 0 g = Vo o [(ad IV A) TR 101
DESCRIBE COMMEANG.ciiiiiiiiiiiiiiiiiitititieeeeeeeeeeeecirateeereeeeeeeeeeessssssseseeeseeeessesassssssssassaesseesessessssssssrsnenseeeens 102
DISABLE COMMEANT....uuttiiiiiiiiieiiiiieiiiiiiiirireeeeeeeeeeeeeeeebbereereeeeeeeeesessassssrasseseeeeseesesssssssrssssssseseeeseesnnsssssnes 107
DISABLE prefix (full-SCre@n MOE)......ccuvii ettt e etee e e etee e e etee e ebae e sbaeeebaeesareeeenns 109
DO command (assembler, disassembly, LangX COBOL, and COBOL).......cecveererrrierneerieereeneeeseeesenens 109
Lo fo Y ATVl Y1t oTeYa 0T 0 a b= Va Lo I (OR=T T J 0% = R 110
[DIO N oTeYanTnat=UaTe I (ud VA) T 110
ENABLE COMMANT....uiitiiiiiiiiieeeeieieccciiirttee e e e e et e eeeeeeassreeeeeeeeeeeesessssssssasesseeeeseesssassssssssssssseseeeseesnsssssrnnes 113
ENABLE prefix (fUll-SCre@n MOAE)......cccuuii ettt ettt et eette e ette e e raeeeeateeeeseeeeeseeesneaanans 114
EVALUATE cOMMANT (COBOL).....uutiiiiieiieee e cecteeee ettt e et e e e eeaeee e s sebaeeessesaeesessenstesessenssanessessnsressesnnes 114
Expression cOmMMANd (C and CH+4) .. ciee et et eee e eetee e eeate e e etee e eeteeesbeeeeseeesseeasaseeeenseaesnseeeensens 116
FIND COMMANG.ciiiiiiiiiiiiiiiiiiiitireeee e eeeeeeecrrrrre e e e e e et eeeeesessbsaaearseaeeseeseeesssssssssesseeseeseesesassssrassesseeeesseennns 117
FINDBP COMMEANG.....ciiiiiiiriiiiiiieeeeeeeeeeccittrree e e e e eeeeeeeeesbasaeseeseeeeeeseeeaassssssasseesseseeesesssssssssssssreseeseessnnnnns 121
(oY grelo] aalnat=UaTe I (OR=T oL IO TR 123
[= = efo T a a1 1 4 F=1 2 [FE RSO PTPT 124
GO COMMIANG.ttiiiiiiiiiieiiiieccrrere et e et e eeeeee b ararereeeeeeeeeeeesassssaraeasaeaeeeessesaaassssssaaaseseeeeassesassssssrsssssaeeeesessanes 124
GOTO COMMEANG.ciiiiiiiiiiiieiiiiiiteee e e e eeeeerrreeereeeeeeeeseeesssssbaaaeeseeeeeseesaassssssssssasseseessesesasssssanssaeeeseessennnes 125
GOTO LABEL COMMANG..ciiiiiiiiiiiiiiiiiieeeee ettt e e e e e e eeeeeeaaabseaeereeeeessesesssssssasseeseeeeessesssssssssenrseeeens 127
%IF command (programming language NEULIAL)......ccueeceeecerceeeieeeeeee et see e e ee e e sae e eeeenee s 129
IF command (assembler, disassembly, and LangX COBOL)......ccvevuirreerireieesieeseeseeeeseeeseeeeeeseeeseeens 129
1 foTe paYan=YaTe I (ORF=Ya Ve [08 T TR 130
oo Taa] at=1a e (0] =10) 131
Allowable comparisons for the IF command (COBOL)......c.ueeicuiieeciieeciee e ccreeeecieeeecteeeecteeeeevae e 132
IF COMIMANT (PLII) ettt ettt ettt e e e e e e e e sasaaa et teeeeeeessssasssssasteeeesesssessssassssssesesesesessssssnssnsnns 134
IMMEDIATE command (fUll=SCre@N MOTE).....ccuuueeiiieieiee ettt et ee e e s e s eaare e e s e eareeeeean 134
INPUT command (C, C++, @aNd COBOL)...ccoiueiiiiieeeeieeeeteeee e eeiteee s eeatee e e sessaaeeeeessseeeeesensvesessensreeesssenneneeas 135
JUMPTO COMMANG...uitiiiiiiiiiieiieiieeiiiiiiteeee e et e et eeeeesiabaraeeeeeeeeeeesessassssssssasseeeeeeesseesassssssssssseeeessesssssssssssssees 136
JUMPTO LABEL COMMANG..uittiiiiiiiiiiiiiiiiiiiiiiieeeeee e e e eeeeciirtreeeeeseeeeeeeeessssssssesseeseessesesssssssssssesseeeesesesannnns 137
(I ESY I elo 10 2132 T=YaTc OO OPTURRN 139
[SN I (o] =101 9 I oo] 2T aa T Un T R 140
LIST AT COMMANTG....iiiiiiiiiiiieeeeeeeeeeccirirrreeeeeeeeeeesesababaearereeeeeeseesassssssraesseeseeeessesssssssrsssssreeeeesensnnnnes 140
LIST AT command (remote debug MOE)......cccuiieieriiicieeieeee et ee e seeeve e ste e e s e eaeeenee s 143
LIST CALLS COMMANT...iitiiiiiiiiiiiiiiieiiiiittreeeeeeeeeeeeeeibarareeeeeeeeeeeeesessssssaesseeseseeesesassssssssssreeseeesssennnns 143
LIST CC COMMANG..iiiiiiiiiiiiiiiriiieieeeee e eeeeeetrareeeeeeeeeeeeeeesasssaeaeeeeeeeeessesaasssssasasesseeeeessessnsssssssenreenees 144
LIST CONTAINER COMMANG.ciiiiiiiiiiiiiiiiiiiiiiiiereeeeeeeeeeeeiiarereeeeseeeeeseesssssssssessseseessesesssssssssssesseeeeeseenns 146
LIST CURSOR command (fUll=SCre@N MOTE)........uueeiiieereeeeieeereeee ettt eeitee e eesaaee e e e eeseee e s senreeeeeens 147
LIST DTCN OF CADP COMMANG..iiiiiiiiiiiiiiiiiiiiritieeeeeeeeeeeeeeearsrreereeeeeeeeseeesssssssssesseeesssessessssssssssesseeees 148
LIST eXPresSion COMMANG........uiiiiiciieieeeeiiieeeeeiireeeeeerereeseesseeeseessseeeasasnseseessanssesessanssesessasssnesnennes 148
LIST FREQUENCY COMMANG..ciiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeitntreeeeeeeeeeeesesessssssseseseseeseessssssssssssssssseeeessennns 154
LIST LAST COMMEANT...utttiiiiiiiiiiiiiieeiiiiittteeeeeeeeeeeeeeeessssreeeeeeeeeeeseseassssssssessesseseeesesessssssssssreseeesessennsses 154
LIST LDD COMMANT...utttiiiiiiiiiiieiiiiieiiiititieeeeeeeeeeeeeeessrsraeeeeeeeeeeesesssssssssssasseeeesseessassssssssssesseseeesesenssssnes 155
LIST LINE NUMBERS COMMANG....uutiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeiissaseeeeeseeeeessessssssssssesssesessssssssssssssanes 156
LIST LINES COMMANT...uutitiiiiiiiiiieiiiiieeiiiitiiereeeeeeeeeeeeesabareeeeeeeeeeeesessssssssaseeseseessessssssssssesseesesseesnnnnes 156
LIST MONITOR COMMANG...cciiiiiiiiiiiiiiiieieee e e eeecciriteeee e eeeeeeeeeeassseereereeeesssesasssssssssseeseeseesenssssssnsnens 156
LIST NAMES COMMANT....utttitiiiiiiiieeeieieeiiiirtreeeeeeeeeeeeesesararaeeeeeeeeeeesesssssssesseeseeeessesssasssssssessseseeseesanns 157
LIST NAMES LABELS command (remote debug Mode).......ccceevueiceinierciieniecieesee e 159
LIST ON (PL/I) COMMEABNG.utttiiiiiiiiiiiiiiiiiiitireeteeeeeeesseseesssssseeeseseessssssssssssssssseesessesssssssssssssssssesssssssssssans 159
LIST PROCEDURES COMMANG..ciiiiiiiiiiiitiiiiiieieeeeeeeeeecintirneeeeeeeeeeesesessssssseesseseessesssssnsssssssssssessessennnns 159
LIST REGISTERS COMMAN.....cciiiuitriiiiiieeeeeeeieeeinrirreeeeeeeeeeeseeeassseereeeeeeeeeeesssssssssseseseseeseesesnsnsnsranes 160
LIST STATEMENT NUMBERS COMMANG......iiiiiiiiiiieeeieieecciiitreeeeeeeeeeeeeeensarsereeeeeeeeesesesssssssseenesseens 161
LIST STATEMENTS COMMANG...ciiiiiiiiiiiiiiiiieeeee e eecctrter e e e e e e e e ee e absraereeeseeeeeseesnssssassereeeeeessesennnns 161

vi

LIST STORAGE COMMEANG ettt s e e s s e e e e e e e e e aeeeseee s e s s asssas s s sas s seseeeas 162

LIST TRACE LOAD COMMANTG.....uiiiiiriiiiiiieieeeieieieiiitreeeeeeeeeeeeseeesssssssseesseseesseessssssssssssessseseessesssssssssssses 164
LOAD COMMEANG.ciitiiiiiiiiiiiiiiiitiiteee et e et eeeeeeeiraraeeeeeeeeeeeseesaassssstaeareeeeeseesesasssssssssesseeseessesessssssrrssseerseeeeseenns 165
LOADDEBUGDATA COMMEANG...iiiiiiiiiiiiiiiiiiiiiirrieeieeeeeeeeeeeeessrseeeeeeeeeeeeeeessssssssssessseseessessssssssssssesseesssssenns 166

Using LDD for assembler or LangX COBOL COMPIlE UNItS..ccciiiiiiiiiriiiieniiieiieesieeeniee e e ssvee s 166

Using LDD for high-level language compile units in explicit debug mode......cccccevvvieiirieiiniennnnen. 167
MEMORY COMMANG.....ciiiiiiiiiiiiiiieee e eceeecrrree e et e et e e eeeeessaraeareeeeeeeeseesssssssssasareseeseessessssssssrbesereeseesesnanns 169
MONITOR COMMEABNG.ciiiiiiiiiiiiiiiiitiiieiee e eeeeeeerrrrreeeeeeeeeeeeeessssraeereeeeeseesessssssssssresseeeeeseessassssssesseeseesensns 170

M Prefix (Full-SCrE@N MOAE)ei ettt e et e et e e e b e e e abee e abeeeensee e nreeeennes 172
MOVE cOMMANT (COBOL)....uuveeiiiieieeee ettt e et e e ettt e s et e e s eesaaae e e eessaaeeeesesaseseessnseneessasaeeessensenneseens 174

Allowable moves for the MOVE command (COBOL).....ccivoueiiiiiireieeceeeeeeee ettt e eeraee e eenveeeas 176
NAMES COMMANG. ...ttt eeeecrrrrre e ettt e e eeeee s babaeareeseeeeeseeeaasssssassssaseeeeeesesassssssssrssreseeseeesennnes 178

NAMES DISPLAY COMMANG....ciiiiiiriiiiiiieeeeieieiiiiirreeeeeeeeeeeeeseeessssseeeseeeeeeeeseessssssssssseseseeseesenssssssssssnes 178

NAMES EXCLUDE COMMANG..iiiiiiiiiiiiiiiiiiiiitieeeieeeeeeeeeeeiinreeeeeeeeeeeesesesssssssesseeseessssssssssssssssssssesessennns 178

NAMES INCLUDE COMMANG...uutttiiiiiiiiiiiiiieeiiiittieeeeeeeeeeeeeesiareeeeeeseeeeesessssssssssssssessessessesssssssssssessess 179
N[0 | o] g T a 4= T FO RSO UO U UTPRRN 180
(0] I edo T aaYnat=1aTe I od 10 2) T 180
PANEL command (fUll-SCrEEN MOTE).....ciiieeeiiiiieeeeeee ettt e e eare e e s seabe e e s sensaaeeesennaneeas 182
PERFORM COMMANT (COBOL)..uuuiiiiiteiieeeeceteeeeeeetteee e cetttee e ceeateeeeeetaeeeessnbeesessesseaeessessssesessssrenessennreneens 184
PLAYBACK COMMANGAS...tttiiiiiiiiiieiiiirerreeeeeeeeeeeeeeeistreeeeereeeeeeeessssssssasssesseeessssessassssssssssseseesessensssssssssnnns 186

PLAYBACK ENABLE COMMANG...iiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeccitrereeeeeeeeeeeeseseansesaseeeeseseessesssnssssssnssseseesens 187

PLAYBACK START COMMANG...ciiiiiiiiiiiiiriiiiiieeeeeeeeeeecirtreeereeeeeeeeeeesssssssssseeesesesesesesssssssssssssseeeesssenanns 188

PLAYBACK FORWARD COMMANT....cciiiiiriiiiiieeeeeeeeeiiiiireeeeeeeeeeeeseeesssssseeeeseseesesesssssssssssesssessessessnnnes 189

PLAYBACK BACKWARD COMMANG.....cciiiiiiitiiiiiiieeeeeeeecciirteeee e eeeeeeeeeanssseseeeseeeeeseesssnsssssesssesesseenns 189

PLAYBACK STOP COMMANG..ciiiiiiiiiiiiiiiiiitiiieieeee e eeeeeeiraeereeeeeeeeeeeeessssssseseesseseessesesssssssssssseseeessssanns 189

PLAYBACK DISABLE COMMANG..ciiiiiiiiiiiiiiiiiiiieeee e eeeeeeirereeeeeeeeeeeesenasssseseeeseeesessessnssssssseseseeessennns 190
POPUP COMMANT.. ittt e et e e e eeeeeessabraaeeeeeeeeeeeesessssssssaresseseesseesaassssssssserseeesssensasssssssnnns 190
POSITION COMMEANTG. . .uitiiriiiiiiieeeeeeieeeeiiitreeeee et e eeeeeeeeesraraerreeeeeeeesesesssssrsssseseeeeessesesssssssssssesseeeesseesannnns 190
Prefix commands (fUll-SCrEEN MOTE).....ciiiueeiiiieieeee ettt e e et e e s enree e e s senbaeeesseseeeeas 190
PROCEDURE COMMANG...iiiiiiiiiiiiiiiiiiiieee ettt ee e e e e e e eeeeababaeereeeeeeeesesssssssassessaeaesesesesssssssenneesenas 192
QUALIFY RESET COMMANG..iiiiiiiiiiiiiiiitiiiiie e e ceeeecsibtreereeeee et eeseesassssssseeseeeesssesessnssssssssesseseessensssssssssnnns 192
QUERY COMMANG....ciiiiiiiriiiiiieeee e eeeeceirtiree e et e e et eeeeeessaraeereeseeeeeseeeasssssssaesseeeeseeesessssssssssssrseeeessenenssssrssnnns 192

QUERY prefix (fUll-SCre@N MOUE)....cccvieeiie ettt ee et ee e et e e ate e e abeeeeaseeeesseeeesseseensesannseeas 198
QUIT COMMANT...uiiitiiiiiiiiiieeeeieeeeiirrtreee e e et et eeeeesssstraeereeeeeeeesessassssssseasseseseseesaasssssssssesseesesssesnasssssrssensesees 198
(01010) i Ireo] 22121 =12 o FESSSRR TSROSO 199
RESTORE COMMEANT....uttiiiiiiiiiiieeiiiieiiiiirtreeeeeeee et eeseesssssrreereereeeeeseeseessssssssssesseeeessenesasssssssssesseeeesseennasnnes 200
RETRIEVE command (fUull-SCre@n MOTE)........eiiieeeieiiieieeeee ettt e e et eeenveee e eeenvaeeeesenrees 201
RUN COMMEANG. ...ttt ee e e eeeeeeb bbb eeeeeeeeesessesssbsraeeseeeeeeeesessssssssasessaeseessesnsssssssassneees 202
RUNTO COMMANG....uitiiiiiiiiiiiieeeieeecciciiiree e et e eeeeeeseeesssbeereeseeeeeesesasssssasssasasseseesssessassssssssssseseseessensansssssnes 202

RUNTO prefix command (FUll-SCreen MOAE).....c.ueiiciieeiiieeeiee et ettt ettt e e e e reeenaeeeas 203
SCROLL command (fUll-SCreeN MOAE).......eiiiieueeiiiieieeeee ettt eeree e e e e s eebre e e s sesaeeeseesnseeeessenns 203
SELECT COMMEANT (PL/I) ccttieiieeteeeeieeee et eeeeeatete et e e e e e e e e sesesaassaaeeeeeeeeessesssssssssssaessssesssssssssssssssssseseeseess 206
SET COMMANG. i iiiiiitrititeee et e e et e et e e e babaerereeeeeeesesaasssssssaraaseesesssessasssssasssseeeeseesennsssnssssnees 207

SET ASSEMBLER ON/OFF COMMEANG....ciiiiiiiiiiiiiiiieceeeeeee e eee e e eeeeeeeeeeeeeeeeesasssssssana s sssseessesasaaennes 210

SET ASSEMBLER STEPOVER COMMANG....ittttiiiieceeeeee ettt s e s s e e e e e s e saeseeeneees 210

SET AUTOMONITOR COMMANG.uitiiiiiiiiiiiiiiiiiiriireeeeeeeeeeeeesissrrreeeeeseeeeesesssssssssssessessesssesesssssssssssessesees 211

SET CHANGE COMMANT....utitiiiiiiiiiieieeiieieiiitreeee et eeeeeeeeeesaassrereeeeeeeeeeeseessssssssraeseseesseesessssssssesserseeees 214

SET COLOR command (full-screen and liN€ MOAE)......ccuuueiiieereeeiiieieee et e 214

SET COUNTRY COMMANT....uuitiiiiiiiiiiieeeiiiiieiiiiitereeeeeeeeeeeeeeassstseeeseeeeseeeeessssssssseeseeeesssessssssssssssssseeees 217

SET DBCS COMMEANG...iiiiiiiiiiiiiiiiiieie e e eeeeecirtreeeeeee et eeeeesesssrtaeaeseeeessesesssssssrseseeseeseessesssssssresnnrneseens 217

SET DEFAULT DBG COMMANG..uittiiiiiiiiiiiiiiiiiiiiireeeeeeeeeeeeeeesarseeeeeeeeeeessessssssssssseeeseesesssessssssssssssssees 218

SET DEFAULT LISTINGS COMMANT....uuttiiiiiiiiiieeieiieiiiiiiireeereeeeeeeeeeessssnsrsseeseessesseesesssssssssssssssesesseesenns 219

SET DEFAULT MDBG COMMANG.ciiiiiiiiiiiiiiiiiiirieieeeeeeeeeeeeecisrrtreeeeeeeeeeeesessssssssssssseseessessesssssssssssessess 220

SET DEFAULT SCROLL command (full-SCreen Mode).........ooucveeeiiiciieieeieeeeee et 222

SET DEFAULT VIEW COMMANG..uiiiiiiiiiiiiiiiiiiiiiiiirieeeeeeeeeeeeecisrrrreeeeeeeeseesesssssssssssesseessessesssssssssssssessees 222

SET DEFAULT WINDOW command (full-SCreen Mode)......cccueeeeieeeveeeiieieeee et eeveeee e 223

SET DISASSEMBLY COMMANG.uiiiiiiiiiiiiiiiiiiiiiiiiieeeeee et eeeeeiirrrereeeeeeeeeeeeesssssssssesesseesseesesssssssssssesseseeses 223

SET DYNDEBUG COMMANT....ututtiiiiiiiiieeiiiieiiiiiirreeeeeeeeeeeeeeeissssseseeeseseeesesssssssssssssseesesseesesssssssssssessens 224

1] = I =1 S 1O I oo 1211 2 =12 o RN RTRRRRRTT 226

SET EQUATE COMMEANT...uutiiiiiiiiiiiieiieiiiiiiiireeeeeee e et eeseseisssstaeeeseeeeseeseesssssssssessseseessesessssssssssseseeseessenns 226
SET EXECUTE COMMEANT....uutiiiiiiiiiiiieeiieieiiiiirttreeeeeeeeeeesessssssssssesseseeessesesssssssssssesseeessssessssssssssessessees 227
SET EXPLICITDEBUG COMMANG....ciiiiiiiiiiriiiieieeeeeeeeeeciirtreeeeeeeeeeeeeeessssseseseseeeeseesessssnsssssseeseesesseennn 228
SET FIND BOUNDS COMMANG...iiiiiiiiiiiiiiiiiiiieieee e eeeeeeiiirreereeeeeeeeeeeeesssssssesseeseeeeesessssssssssessseeeseennns 229
SET FREQUENCY COMMANG..iiiiiiiiiiiiiiiiiiiirtiieeeeeeeeeeeeecensstreeeeeseeeeeeeesssssssssessseeeeseesessssssssssesseesesssennn 229
SET HISTORY COMMANG.ciiiiiiiiiiiiiiiiiiiitiiieeeeeeeeeeeeeeeirarreeeeeeeeeeeseeessssssssaeeseeseeesesessssssssssssseeeesssesennnns 230
SET IGNORELINK COMMEANT...uitiiiiiiiiiiiiiiiiiiiiiiieee e e e eeeeeirvreeeeeseeeeeeeesssssssesesseesesssesssssssssssssseseeees 231
SET INTERCEPT cOmMMaNd (C and CH)uuueeiiiecieeeeceeiieeeeceeteeee e eeieee e e e eaveeeeeseasaeeessensresessesssseesessnnes 232
SET INTERCEPT command (COBOL, full-screen mode, line mode, batch mode).......ccccuvveeennen... 232
SET INTERCEPT command (COBOL, remote debug mode).......cccceeveerierceesiecieesie e eee e 233
SET KEYS command (fUll-SCre@N MOTE).....uiiiieeiiiiieeeeee ettt eeveee e e eeavee e e eabe e e s seraeeeseennnes 234
SET LDD COMMANT...uittiiiiiiiiiieeiiieieeiiitiitreeeeeeeeeeeeesisssraeeeeeeeeseesessassssssssassesaesseeseassssssssssssseeeesseennssssses 234
SET LIST BY SUBSCRIPT commMand (COBOL).....iiiiiiiiieieiiiteeeeeeeee e eeeeeeieeeeeeeeeeeessessssssssseeseeseess 235
SET LIST BY SUBSCRIPT command (Enterprise PL/I, full-screen mode only)......cccceeeeveeeereeennenn. 237
SET LIST TABULAR COMMANTG...uitiiiiiiiiiiiiiiieiiiiiieeeee e e e eeeeeecrsrtreeeeeseeeeesesenssssssesssesesesessssnsssssssseees 238
SET LOG COMMIANG.ciiiiiiiiiiiiiiiiiiciiiiiieeeeeeeeeeeeeeesisasseeseeseeeeeseeeaassssssessesseseeessessasssssssssssesesseessassssssssnnes 238
SET LOG NUMBERS command (full-SCreen MOde)......cccuveeiiieereeeiieeeeeee ettt e snaaee e 240
SET LONGCUNAME COMMANG.....ciiiiiiiiiiiiieieeee e ceeecciiirteeee e e e e e e eeeeeassraeeeeeeeeeeesesesssssssssseeseeeesssennnns 240
SET MDBG COMMEANG..uitiiiiiiiiiiiiiiiiiiriteieeeee e e e eeeeeiiaraereereeeeeeeesessssssssseseeseeeesssessassssssssssseseessessnesnsssres 241
SET MONITOR COMMANG....ciiiiiiiiiiiiiiiieieee et ee e e et et e eeeeaabrereeeeeeeeeeesesssssssssaseeseesessensnssssssseens 243
SET MSGID COMMANG....ciiiiiiitiiiiieieeee e eeeceitrrer e e e e e e eeeeseeassrtaeeeeeeeeseeeeeasssssssseeseeeessseseasssssseseseeeeees 244
SET NATIONAL LANGUAGE COMMANG...ittttitiiieieiee ettt s e e s s e e s e e e e s e e e aeeseeseesenees 244
SET PACE COMMANT.....iiiiiiiiiieiee ettt e e e e eeeeseseeassbaeeeeeeeeeeeeessssssssseseseseeeessesesassssssssseeseeseessnnnn 246
SET PFKEY COMMANG...cciiiiiiiiiiitiiieieee e eeecctrrtree et e ee e e eeseeeasbaeareeseeeeeesessassssssssssesseeeeessessnnsssssenseees 246
SET POPUP COMMANTG...tiitiiiiiiiiiiiiieiiiiiiieee e e e e eeeeeecsrreeeeeeeeeeseeeeessssssssseeeseseessesssssssssssssseesesseesennsnses 247
SET PROGRAMMING LANGUAGE COMMANG....ciiiiiiiiiieieeeiitteeeeeee e ee e e e e e e e e e e eeeeeeee e sassssssasaaasans 247
SET PROMPT command (FUll-SCre@N MOAE).......uueeiiiieueiiiiieiteeee et eearee e e eveeee s eeraeeeseenees 248
SET QUALIFY COMMANG....ciiiiiiiiiiiiiiiieeee e eeeeeeiitrteeeeeeeeeeeeeeeeeassssseseeeseeeeessessasssssssssssesesssesssssssssnssnnes 249
SET REFRESH command (full-SCreen MOdE)........cooveveeiiiieieeee ettt e sevaee e e enees 251
SET RESTORE COMMANT...iiiiiiiiiiiiiiiiiiiiiiiriieeeee e e eeeeeintseeeeeeeeeeeeeeesssssssseseseseesessesssssssssssesseesessessanns 252
SET REWRITE command (full-SCre@n MOE)........ueeiieeueireiiiieeee et ee et e e e eevree e e s eaveeeeesnnns 253
SET REWRITE command (remote debug MOdE)......ccuecueeieeriieiiesiecieesreeieeseeeteeseee e esveesseeeeeas 254
SET SAVE COMMANG. ..ottt ettt e e eeeeeebbbbre e e e e eeeeesesesssssaseaeeeeeeeeessesssssssaseerreeeeeees 254
SET SCREEN command (fUll-SCre&N MOTE).....eiiiieeeieiiieeeee ettt e e e e s eaaeeee s 257
SET SCROLL DISPLAY command (full-Screen mMode)..........coocveeiiieeeeeeeieeieeeee e eevvee e 258
SET SEQUENCE COMMANT (PL/I)uiiiiiiieiieeeeeteiee et ettt e et e e e eeavte e e s sensaeeessensaaesssensanesessnnnenesenn 258
SET SOURCE COMMEANG...ciiiiiiiiiiiiiiiiieeeeee e eeeecrtteee e e e et e e eeseesssbseeaeeseseeseeessssssssssssseseseessenssssssssrnnes 258
SET SUFFIX command (FUll=SCre@n MOAE)........uueeiiieueeiiiieeeeee ettt e e e ebaee s s earee e e s enree s 261
SET TEST COMMANTG. . .iiiiiiiiiiiiiieeee ettt e e e e eeeeseabrbeereeeeeeeeeeesesssssssseaeasseaeessesasssssssssseraeeeesessannn 261
SET WARNING command (C, C++, COBOL, @Nd PL/I)uuuuuuueriiiiiieiiiiieeeeeeieeeeeeeee et eeeeeeesssveneeeeeeeesseeas 262
o] =l oo] nalaat= UaTe I (0101 =10 1 TR 265
Allowable moves for the z/OS Debugger SET COMMANd.......ccceviviiiiiriieiiiieeiiee et e e 266
SHOW prefix command (FUll-SCrEEN MOGE).......uiiicuiieeciie ettt eete e e etee e e eree e e rae e sneeesreeeeans 268
STEP COMMANT..uiiiiiiiiiiiiiiiieeiccitteee e eeeeecrrre e e e e e e eeee e ababaeaeeseeeeeesessassssbsseeseesaeeseesassssssssasnesaeseessnnnn 268
STORAGE COMMEANG...iiiiiiiiiiitiiiiieeee ettt e e et e e eee b be e e e e e eeeeesessssssseareeeeseeeseeesassssbasareeseesassanns 270
Y0 (e a I o) n el aat= Voo I (O=aTo 0% 2 o R 272
SYSTEM COMMEANT (Z/OS) uuuuttiiiiiiieeiiieeeeiiireeteeeeeteesesesssasereteeeeeeessssssssssssseseesessssssssssssssssssesessssssssssnssnssns 274
TRACE COMMANG. ..ttt ettt e et e et e esestbeareeeeeeeeeeesesssssssseasesseeeeeseeesasssssssssssseeeseesensnsssssses 275
TRIGGER COMMANG...iiiiiiiiiiiiiiiiiiiiiiitteee e ee e eeeeeeirarereeeeeeeeeesesesssssssaeaeeeseesesesaasssssseseeeseseeeeesanssssssenneeses 275
S O oToYa 0] 00 t=Ta o [C4L 0) T 279
USE COMMEANG. ...ttt e et e e ee e e ebabatereeeeeeeeseeesssssssssareeseeeeeseessasssssssssseseeeeesensassssssnnnns 279
WHIle COMMEANT (C AN CHH)uueiiiieiieieececieeee ettt eerte e e s esbee e e s eebrereesesssseeeeessreeessessreressesssseeessensrensessnnes 280
WINDOW command (fUll-SCrEEN MOTE).....ueiiiieeiieiieeeeee ettt eeare e e s eavae e e s eebaee e e senreeeeean 281
WINDOW CLOSE COMMANG.....ciiiiiiiiiiiiiiieeei e eeeceirtteee et e e e eeeeeeeeasssraeeeeeeeeeeeesessssssssseesseseeesesssnssssnes 281
WINDOW OPEN COMMANT....uttitiiiiiiiiiiiiiiiiiiiiitieeee e e e e eeeeeirarreereeseeeeeeeessssssssesesseseeessesessssssssssseeseeees 282
WINDOW SIZE COMMANTG....uitiiiiiiiiiiieeeiiieieiiiiirtreeeeeeeeeeeeeessssrreseeeeeeeeesessssssssssssssesessseesessssssssssssssesees 283
WINDOW SWAP COMMANG.....iiiiiiiiiiiiiiiiiieeeeeeeeeciitiireeereeeeeeeesesessssssesseeseseeesessessssssssssssseeeeesesnssssssases 283

vii

viii

WINDOW ZOOM COMMEANT...ciiiiiiiiiiiiiiiiiieeeeeeeee s e ee e e e e e eeeeeeeeeeeeesessessss s a——————aassesseesesseseseeeereesssssssens 284

Chapter 6. EQAOPTS COMMANCS.....cccieiruieiierieianiecatestecentessecessosssessocasssssssassasans 287
Format of the EQAOPTS COMMANG.....cccoiiiiiiiiiiiieeeee ettt e e e eeeeeesrrbreeeeeeeeeeesesessnssssasseeeeeeeessenns 294
EQAOPTS commands that have equivalent z/OS Debugger commands........ccceevveerrieernieeenieessieesnnnes 295
Providing EQAOPTS commands at FUN tiME.....ciiiiiiiiieeiiieecriec et e este st e e e ssiee e ssiee s s saee e ssaee e sneeessneas 295
Creating EQAOPTS L0ad MOQULE.....oiiuiiiiiieeieeete ettt ettt s e s abe e s sbe e s s beesnaseessanas 296
Descriptions of EQAOPTS COMMANGS......uuiiiiiiiiieeeeeiiee e eeciteeeseettreeseeareeeeeesnseeeesesnsesesssessssnssessnssnsessanns 296

ALTDISP. ettt ettt e ettt e e et e e e e bt e e e e b et e e e e nb et e e se bt e e e e e n bt e e e e e nre e e e e e neteeeeenraeeeean 296
BROWSE. ..ttt ettt ettt e e et e e s et e e e e a bt e e e e s nbee e e e e nneeeeesanneeee e e nnseaeeeeanneaaennan 297
CACHENUM. ettt ettt e e et e e e et e e e e st e e e e s asee e e e e neeeeesanneeeee e nseteeaaannnaeesann 297
COOUTPUTDSN. ..ttt ettt ettt ettt e sttt e e s et e e e e s st eeeeesnre e e e e s nnee e e e s nnseeeeeaauseeeesaennseeessenseaeesesannaeens 297
CCOUTPUTDSNALLOC. ... ettt ettt ettt ettt sttt e e sttt e e sttt e e s e se e e e s eeansteeessanreeeeeenneeeeaesnneaeeanan 298
CCPROGSELECTDSN. ...t euteteeteettete ettt sttt sttt sttt e e s b et sae e besatesbe st e sbeebesaeebeeutesbesabesaeesenas 299
CEEREACTAFTERQDBG ... uitttetieittee ettt ettt e ettt e e sttt e e et e e e s e asee e e s seanbeaeseesasaeeesesanneeeeannneens 299
CODEPAGE..... ettt h et s h et e e st e st e s bt e b e e bt et e e at e beeat e bt et e sheebeeae e beeaeenbeeaee 300
COMMANDSDSN. ...ttt ettt ettt ettt b e et e s bt et e s at e besaeesbeeatesheaabesae e b e eateebeeutesbeeaeesseaseentenbeas 302
DEFAULTVIEW. ...ttt ettt e e e e e e e ettt e e e e e e e e s e rae e et e eeeeaeses e nnnnereeeeeeaesens 303
DISABLERLIM. .ttt ettt ettt e ettt e e e et e e s s nb et e e e e asee e e e e seeeeesenseteeaenreeeeeasnreeeeennne 303
DLAYDBG. . etteeeeeittte ettt e ettt e e e et e e s e et e e e e e e bt te e s e bt e e e e e e s bt e e e e e nrt e e e e e sttt e e e e nbete e e reeeeeeenreaeeaan 303
DOPTACBDSN. ...ttt ittt ettt ettt e e sttt e e ettt e e e e et e e e e e et eesee b e teeeessseeeeesnneeeeesannbeaesaanseaeesaanneeeas 306
DTCNDELETEDEADPROF ..ottt ettt ettt ettt e e e ettt e e sttt e s sttt e e s e e see e e s s nneeessenseaeeeenanneeens 306
DTCNFORCEXXXX.c.utterueeerntteriteeseetesitte s e seiste st e st e st e s s e s sseesesreesanseesanreesearee s s seeseneessneessanens 307
DYNDEBUG ettt ettt ettt ettt ettt e sttt e e sttt e e s e s et e e s e s s st e e e e s nre e e e s e nneeeeeeansaeeesaanseeeeeaanneeaenns 308
B QA PP ettt st ettt et be et e h et e e h e e bt ea e e bt et e eh e et e sheebeeatenbeetenreeas 308
EXPLICITDEBUG.etteiiettee ettt ettt ettt ettt e e sttt e e s et e e s e e et e e e s e st eeesesusaeeeeesnseeeeasnneeeeennne 308
GPFDSN. ettt ettt st b et h et s h e et e e at e bt et e s bt et e bt et e sat e beeat e bt et e eheebeeat e bt et e sheeeens 309
HOSTPORTS. ..ttt ettt ettt ettt ettt e s bt et esa e bt st e s bt et e sbesabesat et e eat e b e e atesbeeabeeaeenbesatenbeeatesbeeneens 310
TGN OREODOLIMIT ..t iitteeieeitee ettt ettt e e sttt e e s e ae e e e e s e st eeeseeseteeeesnreeeeesanneeeeesannreaeesanseaeesannnes 310
IMSISOORIGPSB....c ettt ettt ettt ettt e e e ettt e e ettt e e e e ase e e e e s euneeeessenbetes s asaeeeeesanseeeeeaanneeas 311
LOGDSN. ettt ettt ettt ettt et e ettt e e s ettt e e e e bt e e e e e ab e e e e e e au st e e e e e e b e e et e e e nbeeeeee bt teeeeenreeeeeanneeeeenn 311
LOGDSNALLOC ...ttt ettt ettt ettt et sttt e b et e bt et e sbe et e s bt et e eaeenbeeatesaeenbesseeneesat e besaeenee 312
MAXTRANUSER. ...ttt ettt ettt e e e e et e e e st e e s b et e e s e s asb e e e e e sanneeee e e st eeeeeanseeeesaanneaeessanns 313
MDBG..c ettt ettt ettt ettt e e e ettt e e e et e e e e bt e e e e e e s bt e e e e s nne e e e e e netee e et tee e e e nbaeeeeenraeeeeennrreeeeennren 313
MULTIPROGCESS. ...ttt ettt ettt et et e sttt e e s bt e e e s e asat e e e e s nsteeeeenneeeeeeannseaeeaaanneeaensanns 314
N AMES . ettt e ettt e e et e e e s b et e e e s e b et e e s e s b ee e e e e nre e e e e e netee e e e nreeeeeeaneeeeens 315
INODISPLAY .ttt ettt ettt et e e et e e e s st e e e e s a bt e e e e s nneeee e e nsbee e e e sateeeeennseeessannseeeeaannnneaeeanan 315
PREFERENCESDSN..... ettt ettt ettt ettt e e sttt e e sttt e e s e set e e e e sane e e e e eaneeeeeesnseeeeseanneeeenaanns 316
SAVEBPDSN, SAVESETDSN. ... ettt ettt ettt e et e e sttt e s s se e e e s e nee e e e seaneeee s e nseeeeesnneeeenns 317
SAVESETDSNALLOC, SAVEBPDSNALLOC. ... ettt eeetteeee ettt e et te e eeete e s et e e s s enseteeseneeeeeesnnee 317
SESSIONTIMEQOUTcitiitiettee ettt ettt e e ettt e e sttt e e s e s et e e s e sse e e s eeanreeeesenneeeeeesnseeeeeanreeeeesanneaaenns 319
STARTSTOPMS ...ttt ettt e ettt e e ettt e e e sttt e e sttt e e s abeteesesneteeeeenseeeesenneeeeeananneeeas 319
SUB Y Sttt sttt b e et b ettt e e be et e bt et e eh e e bt eat e bt et e ehe e besat e be et e bt et e saeeans 321
SVECSCREEN. ...ttt ettt ettt s h et et e s b et e s bt et e e bt et e eat e b e s at e bt eateebeeabeshe e beeatenbeeatesbeeaee 321
TCOPIPDATADSN. ..ttt ettt ettt e ettt e e e ettt e e s e seee e e e s nee e e e sauneete e s e nseeeesaausseeessenseteesennnneeesenannes 324
THREADTERMUECOND..... ..ttt ettt ettt e et e e e sttt e e sttt e e s e se e e e seeuseeeeseenseeeeseaasneeeeesanseeeesanne 325
TIMACB. ettt et et e ettt e e ettt e e e e et e e e e e s ab e e e e e e ne e e e e s e b et e e e e sbte e e e nreeee e e nneteeeeaanraeeeean 325
N U PP PPPRTPRRORE 326

Chapter 7. z/0S Debugger built-in functions.........ccccccevireiiniiniiniiniincinccnccncrnneene 327
%CHAR (assembler, disassembly, and LAngX COBOL)....c.ccvrvieererrieeieereeeieesreeseeesveeseresveesaesseeseeens 327
%DEC (assembler, disassembly, and LangX COBOL)......ccccueeuerrerrieriieeniesieeseesseeseeeseessseesssessessseenns 327
YOGENERATION (PL/I)cutteitieeiteeiteeieesteesteesteestteeteesseessessseessseessaesssessseessessssesssessnseessessssesssessssesnseessenans 328
OHEX ettt ettt ettt h et h et e h e e be st be et e bt et e e he et e ea e e bt et e e bt e beehe e bt eat e be et e sbe et e saeetenas 328
YINSTANCES (C, C44, N PL/T)ciitiiiieeieetteeeestteete et es e e teesveesteesveessae e seesraeensaesseesnseesseesnsesnsessseenns 329
YRECURSION (C, CH4, @Nd PL/D)uictiiiieeceeeieeeeete et eseesteesaeesteesseeseeesseesssessseesssesnseesssesnsessssessennseeans 330
%WHERE (assembler, disassembly, and LangX COBOL)......cceccirreeerierieeeieceeseeeeeesreesaeesveesseesseenns 331

Chapter 8. z/0S Debugger variables.......ccciciiuiiniiiiiiiiiieiieiiniiniinciccnee 333

BADDRESS. ..o e e e e e e e e e e e e et e e ae e e e e a————araeeeeeeeeeaaaaarataraeeeaeeeeeeaanaanrnres 335
QBAMONDE.... . ettt e e e e e e e e e e e e e e e e e ee e a—————raeeeeeaeaeaaaa————tteaeeeeaeeeaaaanraratanaeeeeeeeeeaaaan 335
POBLOCK ...eteeieeteeteete st ete st e e e e e s e et e s teeste s s e estesstasbeessessaessesssanseesseaseessesssenseesaanseentesteantesseenteeneestenntenraans 335
OCAAADDRESS. ... ettt e e e e e e e e e e — e e e e e e eeee e e a—————araeeeaeeeeaaaaararataraeaeeeeeeeeaaaannrnres 336
%CC (assembler and disasSEMDBLY ONLY)....cccuiie ittt et e et e e are e e b e e e re e e areeeenreeeenneas 336
B 0L 1111 5) K]\ PPN 336
B 0L 18 1N N I (SRR 336
2 01 U TSR 336
] =1 2 VPP 336
%EPRN or %EPRHN (%EPRHN assembler and disassembly Only).....ccceeeecueeeeieeeciieeciee et 336
%EPRBN (assembler and disassembBly ONLY)....cueeeiieeeiei ettt ettt e e e e as 337
%EPRDnN (assembler and disassembLly ONLY)....ccccueieccieeeiieeeceeeecee ettt et e e e et e 337
%FPRn or %FPRHN (%FPRHnN assembler and disassembly only)........ccceecuieeciieeciieecieeeceeeecree e, 337
%FPRBn (assembler and disassembBbly ONLY)......oeocuiieecieeeeecee ettt et et re e e e re e e erea e 338
%FPRDn (assembler and disassembBLy ONLY)....cc.uie ettt ettt e e et e eear e e aae e e anee s 338
L C T d o P TSRS 338
B 1€ d 2 P TR 339
L€ d = [PSR 339
DOHARDWIARE. ... ettt ettt e e e et re e e e e e e e s e s s e e e b e eaeeeeeeeeesessa s nssaraeaaeaeeesassnsnannssseennnnaeeeens 340
OLINE OF J0STATEMENT ...ttt ettt e e e e e e s e e e e s ree e e e e e e e eeeeses e nnasssaaaaaeeesaseeeesannsnssnannnaeaess 340
10 2 B T USSP 340
%LPRn or %LPRHnN (%LPRHn assembler and disassembly only)......ccccoeeeeiieeciiecciiieeeeee e 340
%LPRBnN (assembler and disasS@MDBLY)......eeccuiiieciiiceieeecee ettt ettt e e re e e re e e e raeeeans 341
%LPRDN (assembler and diSASSEMDBLY)....cccuiicciiiiccieeeciie ettt ectee e ectee e eetee e e ste e e e teeeebeeesbaeesseaeens 341
DONLANGUAGE.....ceeeeeei ettt e e e e e s e e e e s e aaaar e e e eeeeeseesasa s sssataaaaaeasessesaaanssssnannnaeeesaeanann 341
D] g AN 5 (L 1 1 SRR 341
QOPLANGUARGE......ccc i i ettt e et e e e e e e s e e e e s s e aae e e e e aeeeeeeesesssnssssanaaaeeeeesesasassnsseannanaeeeesasanans 341
%PROGMASK (assembler and disassembly ONLY)......coccuiieeiieieiieeeeeeeiee et e et e e 341
D] O 1T ¥ N PPN 342
%PSW (assembler and disassembBLy ONLY)....cc.uii ettt e e e e 342
Y LTSS 342
ORSTDSETS. .. ieeteeieetes et e s e e te st et e st et e et e st e e atesbeestesbeestessa e seastesteansesbeestesseesteassenseessenseensesseansessaensenneans 342
DORUNMONDE...... .. ettt re e e e e e s e e st e e e e e e e e e e e s e s sa s e e e aeaeeesesessasnssesaaaaaaeeesassesaannsssennannaeens 342
Y L P TS ORSR 342
IS 1= N Y I =1 R UPRPRRNE 343
B 1 I =1 TSRS 343
Attributes of z/OS Debugger variables in different languages......ccocuevrvieiriieiniienneeeree et 343
Chapter 9. 2/0S Debugger MeSSAZeS....ccccereiieiiniininirecresrestestestassasssssessessessessens 345
Chapter 10. Debug Manager MesSSages.....ccctuiteiteiiniaireisecsesressessestassassasssscasssese 467
Chapter 11. Non-Language Environment IMS messages.....cccceturreiairecnecnecsennennes 471
Chapter 12. Load Module Analyzer MeSSages......ccccueieininecnecrecrestessestacascanssecsens 475
Chapter 13. z/0S Debugger Language Environment user exit messages.............. 477
Chapter 14. z/0S Debugger Terminal Interface Manager messages........ccceeevernnes 479
Chapter 15. IBM z/0S Debugger Utilities messages.......ccovererrnininecnecnecnecrennennes 483
Appendix A. z/0S Debugger commands supported in remote debug mode........... 505
Specifying z/OS Debugger commands in launch configuration........ccecveeevieiniienniieinieceeecee e 507

Specifying the location of source, listing, or separate debug file in remote debug mode by using

ENVIFONMENT VATTADLES . .iiiiiiiiieiciee ettt s ee e st e s st e e s bee e s bee e sbeeesbeeesaseeesasens 510
Appendix B. Changes in behavior of some commands........ccccceveiiniinincncnecnecnenns 511
Changes in the behavior introduced with Debug Tool for z/0OS, Version 13.1......ccccoccevvvveerrieerrcieennnne 511
Changes in the behavior introduced with Debug Tool for z/OS, Version 12.1, with the PTF for
APAR PM85967 for Enterprise COBOL for z/OS Version 5.1 ...uuciieeeeecieee e eeveee e eecveee e 511
Changes in behavior introduced with Debug Tool for z/OS, Version 11.1......cccccevvieiriieenieeenieeenieeeens 512
Changes in behavior introduced with Debug Tool for z/OS, Version 10.1.......ccccovvieeriiernceeensiieenieeeens 512
Changes in behavior introduced with Debug Tool for z/OS, Version 9.1, with the PTF for APAR
e N R BT oo 1Y RS 513
Appendix C. Support resources and problem solving information........c.cccceceneeaes 515
SearChing KNOWLEAZE DASES...cccuviiiiieiciie ettt s s ee e s eate e s ate e ssateesasteesneeesneaesans 515
Searching IBM KNOWLEAZE CONTOT...cccuiiiiiieiiieieitesrieesste st ree st e s sbee s st e s sbee e s bee e ssbeeesseessnneas 515
Searching product SUPPOIT dOCUMENTS.....ciiiiiiiiiierriee ettt e e s s e s ae e s sbe e s sbeessbeessasaes 515
GOTEIN G FTXES et itit ittt ettt te e st e e st e e sbee e sebee e s bteesabeeesbeeesabeeesabee e s beeesbee e s beeesreeeenres 516
SUDSCIIDING t0 SUPPOIT UPAATES...iiiiiiiiiieiiiectee ettt sttt e s e s be e s be e s s abeessabeessabaessnseens 516
RSS feeds and social media SUDSCIPTIONS.......uiiiiieciiieieccieee et cerree et e e et e e e e e e e e e e raeee s 516
LY T 41 [ot= o o 1= USSR 516
(0fo] a1 r- TordTaY =g =1 I U] o] o Yo o PP 517
Define the problem and determine the severity of the problem.........cccceeeciieiiecceecccee e, 518
Gather diagnostiC INFOrMAtION.....ciiciiiiciee ettt e e sbee e s sbte e sbee e sbeeesbeeessneesans 518
Submit the problem 10 IBM SUPPOI.... ..ttt eertre e et e e e e are e e e s e snbe e e e s e baeeeseennaeeeas 519
Appendix D. AccesSibility....cccciriieiiniiiieiiieiieiiiieiiiiiieniieitesiteiiececestecastessecassanans 521
USING aSSISTIVE tECHNOLOZIES. ...ciiiiiiiiieteete e s e s s e e e s e e e s bee e sbeeesneas 521
Keyboard navigation of the USer INTEIrTaCE. ...t 521
Accessibility Of thiS dOCUMENT......oii e e e e s e e e e s ree e e e e e nsee e e e enanreeas 521
o o= RN 523
(00T o)V a7 =1 a1 B L Tol=Y o T =T PO PP SPRRPPPRRPPROS 523
Programming interface iINfOrmMation ..o sbee e s 523
Trademarks and SEIVICE MATKS......cueiicieeriiee ittt rcieesete e sttt eseteessreeessrteessseeessseeesaseessaseeesaseessaseeessseessnn 524
GlOSSANY . cuiuuiuiinienieietereecasrenatassecastessssassessssassssassesssssssssasssssssassssassassssassassssassasas 525
=11 FT0 Y= ¥ o] 1 7R 527
IBM Zz/OS Debugger PUBLICATIONS.....uiiiiiiiieieeicieecciee sttt sttt e s e seaee e s see e ssteesereeesseeesnneaesans 527
High level language PUDLICATIONS.......ii ittt ettt e s sb e e s sbe e s sbeessaraeenns 527
1 F= Y (Yo [0 TU] o] L Tox= Y o] 1TSS 529

About this document

z/0S Debugger combines the richness of the z/OS environment with the power of Language Environment®
to provide a debugger for programmers to isolate and fix their program bugs and test their applications.
z/0OS Debugger gives you the capability of testing programs in batch, using a nonprogrammable terminal
in full-screen mode, or using a workstation interface to remotely debug your programs.

This document contains descriptions of the commands, functions, and variables available through z/OS
Debugger, as well as the messages that you might see as you use z/0OS Debugger. Many z/OS Debugger
commands are similar to statements from the supported high-level languages (HLLs). This document also
describes the TEST runtime option, syntax elements that are common for all commands, and syntax
elements for expressions written in assembler, disassembly, and LangX COBOL.

Who might use this document

This document is intended for programmers using z/OS Debugger to debug high-level languages (HLLs)
with Language Environment and assembler programs either with or without Language Environment.
Throughout this document, the HLLs are referred to as C, C++, COBOL, and PL/I.

z/0OS Debugger runs on the z/OS operating system and supports the following subsystems:
. CICS®

« Db2°

- IMS

« JES batch

- TSO

« UNIX System Services in remote debug mode or full-screen mode using the Terminal Interface Manager
only

To use this document and debug a program written in one of the supported languages, you need to know
how to write, compile, and run such a program.

Accessing z/0S licensed documents on the Internet

z/0S licensed documentation is available on the Internet in PDF format at the IBM Resource Link® Web
site at:

http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to these documents
requires an IBM Resource Link user ID and password, and a key code. With your z/OS order you received
a Memo to Licensees, (GI10-8928), that includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:

http://www.ibm.com/sexrvers/resourcelink

To register for access to the z/0OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/0S licensed documents unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

Printed licensed documents are not available from IBM.

© Copyright IBM Corp. 1992, 2020 xi

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

You can use the PDF format on either z/0S Licensed Product Library CD-ROM or IBM Resource Link to
print licensed documents.

How this document is organized

This document is divided into areas of similar information for easy retrieval of appropriate information.
The following list describes how the information is grouped:

« Chapter 1 describes the syntax of the TEST runtime option.

« Chapters 2, 3, 4, and 5 describe the complete syntax of the z/OS Debugger commands.
« Chapter 6 describes the complete syntax of the EQAOPTS commands.

- Chapters 7 and 8 describe the syntax of z/OS Debugger built-in functions and variables.

« Chapters 9,10, 11, 12, 13, 14, and 15 lists all the messages that z/OS Debugger and other tools
shipped with z/OS Debugger might display.

« Appendix A, “z/OS Debugger commands supported in remote debug mode,” on page 505 has a list of
commands that are supported in remote debug mode. This topic also contains instructions on how you
can enter these commands.

« Appendix B, “Changes in behavior of some commands,” on page 511 describes changes to default
behavior, including a comparison of the previous behavior and the new behavior, and with which version
and release of z/OS Debugger the change was introduced.

« Appendix C, “Support resources and problem solving information,” on page 515 describes the
resources available to help you solve any problems you might have with z/OS Debugger.

« Appendix D, “Accessibility,” on page 521 describes the features and tools available to people with
physical disabilities that help them use z/OS Debugger and z/OS Debugger documents.

The last several topics list notices, glossary of terms, and bibliography.

Terms used in this document

Because of differing terminology among the various programming languages supported by z/0S
Debugger, as well as differing terminology between platforms, a group of common terms has been
established. The table below lists these terms and their equivalency in each language.

z/0S Debugger Cand C++ COBOL or LangX PL/I equivalent assembler
term equivalent COBOL equivalent
Compile unit Cand C++ source Program . Program CSECT

file

« PL/I source file
for Enterprise
PL/I

» A package
statement or the
name of the main
procedure for
Enterprise PL/I1

Block Function or Program, nested Block CSECT
compound program, method
statement or PERFORM group

of statements

Label Label Paragraph name or Label Label
section name

Note:

1. The PL/I program must be compiled with and run in one of the following environments:

xii IBM z/0S Debugger: Reference and Messages

« Compiled with Enterprise PL/I for z/OS, Version 3.6 or later, and run with the following versions of
Language Environment:

— Language Environment Version 1.9, or later

— Language Environment Version 1.6, Version 1.7, or Version 1.8, with the PTF for APAR PK33738
applied
« Compiled with Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs PK35230 and PK35489
applied and run with the following versions of Language Environment:

— Language Environment Version 1.9, or later

— Language Environment Version 1.6, Version 1.7, or Version 1.8, with the PTF for APAR PK33738
applied

z/OS Debugger provides facilities that apply only to programs compiled with specific levels of compilers.
Because of this, IBM z/0S Debugger Reference and Messages uses the following terms:

assembler
Refers to assembler programs with debug information assembled by using the High Level Assembler
(HLASM).

COBOL
Refers to the all COBOL compilers supported by z/OS Debugger except the COBOL compilers
described in the term LangX COBOL.

disassembly or disassembled
Refers to high-level language programs compiled without debug information or assembler programs
without debug information. The debugging support z/OS Debugger provides for these programs is
through the disassembly view.

Enterprise PL/I
Refers to the Enterprise PL/I for z/OS and 0S/390 and the VisualAge PL/I for 0S/390 compilers.

LangX COBOL
Refers to any of the following COBOL programs supported through use of the EQALANGX (or
IDILANGX) debug file:

» Programs compiled using the IBM 0OS/VS COBOL compiler.

« Programs compiled using the VS COBOL II compiler with the NOTEST compiler option.

« Programs compiled using the Enterprise COBOL V3 and V4 compiler with the NOTEST compiler
option.

As you read through the information in this document, remember that OS/VS COBOL programs are
non-Language Environment programs, even though you might have used Language Environment
libraries to link and run your program.

VS COBOL II programs are non-Language Environment programs when you link them with the non-
Language Environment library. VS COBOL II programs are Language Environment programs when you
link them with the Language Environment library.

Enterprise COBOL programs are always Language Environment programs. Note that COBOL DLL's
cannot be debugged as LangX COBOL programs.

Read the information regarding non-Language Environment programs for instructions on how to start
z/0S Debugger and debug non-Language Environment COBOL programs, unless information specific
to LangX COBOL is provided.

PL/I
Refers to all levels of PL/I compilers. Exceptions will be noted in the text that describe which specific
PL/I compiler is being referenced.

About this document xiii

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that may
be contained within the diagrams (keywords, variables, delimiters, operators, fragment references,
operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a
command statement. They are read from left to right and from top to bottom, following the main path of
the horizontal line.

Symbols
The following symbols may be displayed in syntax diagrams:
Symbol
Definition
Indicates the beginning of the syntax diagram.
Indicates that the syntax diagram is continued to the next line.
Indicates that the syntax is continued from the previous line.

.

Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

- Keywords - a command name or any other literal information.

« Variables - variables are italicized, appear in lowercase and represent the name of values you can
supply.

- Delimiters - delimiters indicate the start or end of keywords, variables, or operators. For example, a left
parenthesis is a delimiter.

« Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other
mathematical operations that may need to be performed.

- Fragment references - a part of a syntax diagram, separated from the diagram to show greater detail.

- Separators - a separator separates keywords, variables or operators. For example, a comma (,) is a
separator.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments,
separators, and delimiters may be displayed as required or optional.

Item type
Definition
Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples

The following table provides syntax examples.

xiv IBM z/0S Debugger: Reference and Messages

Table 1. Syntax examples

Item

Syntax example

Required item.

Required items appear on the main path of the
horizontal line. You must specify these items.

»— KEYWORD — required_item -»«

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line.
You must choose one of the items in the stack.

»— KEYWORD T required_choicel j—N
required_choice2

Optional item.

Optional items appear below the main path of the
horizontal line.

»d

»— KEYWORD L _J >
optional_item

Optional choice.

An optional choice (two or more items) appears in a
vertical stack below the main path of the horizontal
line. You may choose one of the items in the stack.

»— KEYWORD >«

optional_choicel

optional_choice2

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or
optional) appear on (required) or below (optional) the

main path of the horizontal line. The following example

displays a default with optional items.

f_ default_choicel
»— KEYWORD t >«

optional_choice2 j

optional_choice3

Variable.

Variables appear in lowercase italics. They represent
names or values.

»w— KEYWORD — variable —»«

Repeatable item.

An arrow returning to the left above the main path of
the horizontal line indicates an item that can be
repeated.

A character within the arrow means you must separate

repeated items with that character.

An arrow returning to the left above a group of
repeatable items indicates that one of the items can
be selected, or a single item can be repeated.

A

»— KEYWORD L repeatable_item ln
»— KEYWORD L repeatable_item lu

Fragment.

The — fragment |—symbol indicates that a labelled
group is described below the main syntax diagram.
Syntax is occasionally broken into fragments if the

inclusion of the fragment would overly complicate the

main syntax diagram.

»— KEYWORD

fragment

» , — required_choicel J »<

f_ , — default_choice j
, — required_choice2

, — optional_choice

About this document xv

How to provide your comments

Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this document or any other z/OS Debugger documentation, you can leave a comment in
IBM Knowledge Center:

- IBM Developer for z/0OS, IBM Debug for z/OS, and IBM Developer for z/OS Enterprise Edition: https://
www.ibm.com/support/knowledgecenter/SSQ2R2

« IBM Wazi for Red Hat CodeReady Workspaces: https://www.ibm.com/support/knowledgecenter/
SSCH39

« IBM Z Open Development: https://www.ibm.com/support/knowledgecenter/SSUFAU
« IBM Z Open Unit Test: https://www.ibm.com/support/knowledgecenter/SSZHNR

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

xvi IBM z/0S Debugger: Reference and Messages

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter/SSQ2R2
https://www.ibm.com/support/knowledgecenter/SSQ2R2
https://www.ibm.com/support/knowledgecenter/SSCH39
https://www.ibm.com/support/knowledgecenter/SSCH39
https://www.ibm.com/support/knowledgecenter/SSUFAU
https://www.ibm.com/support/knowledgecenter/SSZHNR

Summary of changes

The Eclipse interface updates since Version 14.2.2 are not available in IBM Wazi for Red Hat CodeReady
Workspaces and IBM Z Open Development.

Version 14.2.3
- IBM Wazi for Red Hat CodeReady Workspaces

— z/0S Debugger is included as part of the new product IBM Wazi for Red Hat CodeReady Workspaces
and provides debug functions with the following clients:

- IBM Z Open Development Eclipse client
- Wazi Development, a set of Visual Studio Code extensions including IBM Z Open Debug

- IBM Developer for z/0S Enterprise Edition

— Starting from V14.2.3, IBM Developer for z/OS Enterprise Edition also offers Wazi Development, a set
of Visual Studio Code extensions including IBM Z Open Debug.

For a comparison of features provided in different products and clients, see Overview of IBM z/0S
Debugger.

The following updates are delivered with the Eclipse interface:
- z/0S Debugger Profiles view

— You can now export debug profiles in an export file, and import from a debug profile export file or a
workspace that was created with an older version of the product.

— Asearch field is added to display only the profiles that match your search text.

— More columns are now available. You can hide or display a column, modify the width of a column, and
reorder the columns.

— You can now return to the default order of the profiles by clicking the column header.
— You can now activate a non-CICS debug profile for code coverage.

— If Debug Manager is not available and the debug daemon is configured with a secured port, when you
activate a profile, the secured port is automatically detected.

For more information, see the "Managing debug profiles with the z/OS Debugger Profiles view" section
in IBM Knowledge Center.

- 2/0S batch applications launches

— You can now view the batch job in the Remote Systems view.

— You can now select more than one step in the existing JCL to be augmented with debug or code
coverage options.

For more information, see the "Launching a debug session for z/OS Batch applications" section in IBM
Knowledge Center.

- Debug preferences

— IBM z/0S Debugger preferences: You can now specify to inactivate the remote profiles when the
Remote System Explorer connection associated with the profiles disconnects so that the debugger
will not be triggered accidentally when you run applications that match the active profiles.

— Debug Daemon preferences: Instructions are added to set up a secure daemon connection.

For more information, see the "Setting debug preferences" topic in IBM Knowledge Center.

The following features are delivered with the z/OS Debugger host component:

« CICS support

© Copyright IBM Corp. 1992, 2020 xvii

https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

— Support is added for CICS Transaction Server for z/OS Version 5 Release 6.
« Compiler support

— In Debug Tool compatibility mode, support is added for TEST (SEPARATE (DSNAME) , SOURCE) in
Enterprise COBOL for z/OS Version 6 Release 2 with APAR PH04485 installed or later. Specify
TEST (SEPARATE (DSNAME) , SOURCE) to store the separate debug file name, which is the SYSDEBUG
DD data set name, in the program object. You will not need to specify the separate debug file location
if it is not moved after compilation. For more information, see the "Choosing TEST or NOTEST
compiler suboptions for COBOL programs" topic in IBM z/0S Debugger User's Guide.

Version 14.2.2

The following changes were added for IBM z/0S Debugger Version 14.2.2.
The following updates are delivered with the Eclipse interface:

- z/0S Debugger Profiles view

— The z/0S Debugger Profiles view is added to create and manage CICS and non-CICS debug profiles.
The following profiles and launch configurations are migrated to this new view:

- DTCN profiles from the DTCN Local Profile view. The DTCN profiles are now called CICS profiles in
the client.

- DTSP profiles from the DTSP Local Profile view. The DTSP profiles are now called non-CICS profiles
in the client.

- Remote CICS Application launch configurations
- Remote Db2 Application launch configurations
- Remote IMS Application launch configurations

Edit the profiles to provide additional information that is required before you activate any profiles. For
more information, see the following topics in IBM Knowledge Center: Working with the z/OS
Debugger Profiles view, Creating a debug profile for a CICS application, and Creating a debug profile
for a non-CICS application.

To use this view, system programmers need to configure the following services:

- Remote System Explorer from z/OS Explorer is required for z/OS connections.

- To enable all the features in the view for the best user experience, see the "Adding support for
Debug Profile Service and APIs" section in IBM z/0S Debugger Customization Guide. Use z/0S
Explorer host V3.1.1.23 or later with Debug Profile Service.

- For CICS users, also see the "Adding support for the DTCN profiles and APIs" section in IBM z/0S
Debugger Customization Guide.

— The DTCN and DTSP plug-ins are deprecated and will be removed in a future release.
- 2/0S batch applications launches

— MVS Batch Application launch configurations are replaced with z/OS Batch Application using property
groups and z/0S Batch Application using existing JCL launch configurations to simplify debugging and
running code coverage on batch applications on IBM Z. Any MVS Batch Application launch
configurations are automatically migrated to the appropriate new configuration types. You can use
debug profiles with z/OS Batch Application using existing JCL launch configurations.

For more information, see the "Launching a debug session for z/OS Batch applications" topic in IBM
Knowledge Center.

z/0S Batch Application launch configurations require the Remote System Explorer from z/0S
Explorer.

The following features are delivered with the z/OS Debugger host component:

« TEST runtime option

xviii IBM z/0OS Debugger: Reference and Messages

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

— A simple TEST runtime option now starts z/OS Debugger in delay debug mode under most conditions
for non-CICS tasks if the Debug Profile Service AP is started. This option simplifies the debug setup
for batch jobs, IMS MPP regions, and WLM address spaces for Db2 stored procedures. For more
information, see the "Simple TEST options" topic in IBM z/0S Debugger User's Guide.

« Compiler support

— In Debug Tool compatibility mode, support is added for debugging COBOL programs that contain
dynamic length elementary items and compiled with Enterprise COBOL for z/OS Version 6 Release 3.
Dynamic length elementary items are not supported in standard mode.

« Documentation only updates

— Instructions are added for debugging non-Language Environment programs under IMS Batch
Terminal Simulator. For more information, see the "Debugging non-Language Environment IMS BTS
programs" topic in IBM z/0S Debugger User's Guide.

— Chapter 7, "Debug Manager (DBGMGR)" and Chapter 17, "Adding support for remote debug users"
are combined into Chapter 7, "Adding support for remote debug users" in IBM z/0S Debugger
Customization Guide.

Version 14.2.1
The following changes were added for IBM z/OS Debugger Version 14.2.1.
« Compiler support

— In Debug Tool compatibility mode, support is added for debugging COBOL programs that contain
fixed-length UTF-8 data items and compiled with Enterprise COBOL for z/OS Version 6 Release 3.
UTF-8 data items are not supported in standard mode.

« Debug Manager

— Debug Manager and Remote System Explorer can use different chain certificates. If the different
certificates are of the same CA root, the Debug Manager certificate is regarded as trusted and
automatically accepted. Otherwise, the certificate is not regarded as trusted. In Debug Tool
compatibility mode, a window appears to ask you to import the certificate for Debug Manager.

- Terminal Interface Manager

— Terminal Interface Manager now supports MFA-generated tokens and password phrases.

Version 14.2.0
The following changes were added for IBM z/OS Debugger Version 14.2.0.
* New support
— z/0S Version 2 Release 4
— Enterprise COBOL for z/OS Version 6 Release 3
— Enterprise PL/I for z/OS Version 5 Release 3
 Product renaming

IBM Application Delivery Foundation for z Systems® is renamed as Application Delivery Foundation
for z/OS.

IBM Developer for z Systems Enterprise Edition is renamed as IBM Developer for z/OS Enterprise
Edition.

IBM Developer for z Systems is renamed as IBM Developer for z/0S.
IBM Debug for Systems is renamed as IBM Debug for z/OS.
- IBM Debug for z/0S client installation

— In addition to using IBM Installation Manager, you can now install the IBM Debug for z/OS client with
Eclipse p2. For more information, see the "Installing the IBM Debug for z/OS client" topic in IBM
Knowledge Center.

Summary of changes xix

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

« Debug Profile Service

— Debug Profile Service is a REST API that uses the HTTP protocol to provide RESTful access to a set of
resources related to debug profiles. You can use this service to create, retrieve, update and delete
debug profiles.

For more information about host configuration, see the "Adding support for Debug Profile Service and
APIs" section in IBM z/0S Debugger Customization Guide.

For more details about the API, see the "z/OS Debug Profile Service API" documentation in IBM
Knowledge Center.

« Section breakpoint support

— When you edit COBOL with the COBOL Editor or the z Systems LPEX Editor, a Toggle Section
Breakpoint action is available in the left ruler context menu of the editor and the context menu for
sections in the outline view. For more information, see the "Source entry breakpoints" topic in IBM
Knowledge Center.

- IMS Transaction Isolation facility

— IMS Transaction Isolation facility no longer accesses IMS ACB libraries. It has a simplified setup and
is compatible with ACB management by IMS Catalog. The setting of IMSISOORIGPSB in EQAOPTS no
longer has any effect and the original PSB is always preserved. For more information, see the
"Scenario F: Enabling the Transaction Isolation Facility" topic in IBM z/0S Debugger Customization
Guide.

— Instructions for using the IMS PSTOP command are added to end the wait state of the IMS region
when PWFI is used, so that you can continue with the program. For more information, see the "Using
IMS pseudo wait-for-input (PWFI) with IMS Transaction Isolation" topic in IBM z/0S Debugger User's
Guide.

xx IBM z/0S Debugger: Reference and Messages

https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter
https://www.ibm.com/support/knowledgecenter

Overview of IBM z/0S Debugger

IBM z/OS Debugger is the next iteration of IBM debug technology on IBM Z and consolidates the IBM
Integrated Debugger and IBM Debug Tool engines into one unified technology. IBM z/0OS Debugger is
progressing towards one remote debug mode based on Debug Tool compatibility mode. In support of this
direction, Debug Tool compatibility mode, when available in the user interface, is selected by default for
V14.1.2 or later.

IBM z/0S Debugger is a host component that supports various debug interfaces, like the Eclipse and
Visual Studio Code clients. z/OS Debugger and the supported debug interfaces are provided with the
following products:

IBM Developer for z/OS Enterprise Edition
This product is included in IBM Application Delivery Foundation for z/OS. IBM Developer for z/0OS
Enterprise Edition provides all the debug features.

Starting from V14.2.3, IBM Developer for z/OS Enterprise Edition also offers Wazi Development, a set
of Visual Studio Code extensions including IBM Z Open Debug. See Table 3 on page xxiv for the debug
features supported in Eclipse and Visual Studio Code clients.

IBM Developer for z/0S
IBM Developer for z/OS is a subset of IBM Developer for z/OS Enterprise Edition. IBM Developer for
z/0S, previously known as IBM Developer for z Systems or IBM Rational® Developer for z Systems, is
an Eclipse-based integrated development environment for creating and maintaining z/OS applications
efficiently.

IBM Developer for z/OS includes all enhancements in IBM Developer for z/OS Enterprise Edition
except for the debug features noted in Table 2 on page xxii.

IBM Debug for z/0S
IBM Debug for z/OS is a subset of IBM Developer for z/OS Enterprise Edition. IBM Debug for z/0OS

focuses on debugging solutions for z/OS application developers. See Table 2 on page xxii for the
debug features supported.

IBM Debug for z/OS does not provide advanced developer features that are available in IBM
Developer for z/OS Enterprise Edition.

For information about how to install the IBM Debug for z/OS client, see Installation of IBM Developer
for z Systems and IBM Debug for z Systems (https://developer.ibm.com/mainframe/2016/12/02/
installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/).

IBM Wazi for Red Hat CodeReady Workspaces
IBM Wazi for Red Hat CodeReady Workspaces is a single integrated solution, which delivers a cloud-
native developer experience for z/0S. It enables application developers to develop and test z/OS
application components in a virtual z/OS environment on an OpenShift-powered hybrid multicloud
platform, and to use an industry standard integrated development environment (IDE) of their choice.

IBM Wazi for Red Hat CodeReady Workspaces currently provides debug functions in the following
clients:

« IBM Z Open Development Eclipse client
- Wazi Development, a set of Visual Studio Code extensions including IBM Z Open Debug

See Table 2 on page xxii and Table 3 on page xxiv for the debug features supported in the product
and different clients.

IBM Z Open Development
IBM Z Open Development is an Eclipse-based integrated development environment that offers an
entry level toolset with the core capabilities needed to link z/OS development seamlessly with an
established, open DevOps toolchain. IBM Z Open Development provides remote debug support for
high level compiled languages. See Table 2 on page xxii for the debug features supported.

© Copyright IBM Corp. 1992, 2020 XXi

https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/products/app-delivery-foundation-on-zsystems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/us-en/marketplace/debug-for-z-systems
https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/
https://developer.ibm.com/mainframe/2016/12/02/installation-of-ibm-developer-for-z-systems-and-ibm-debug-for-z-systems/
https://www.ibm.com/products/wazi-for-red-hat-codeready-workspaces
https://www.ibm.com/us-en/marketplace/z-open-development

IBM Z Open Unit Test, extending IBM Z Open Development

IBM Z Open Unit Test is an automated unit testing tool for batch and CICS programs. It helps
minimize the time taken to unit test traditional z/OS applications, and helps businesses respond and
deliver with speed.

IBM Z Open Unit Test provides code coverage support for high level compiled languages via IBM z/0S
Debugger. It can only be used with the IBM Z Open Development offering and extends IBM Z Open
Development to help ensure that no untested code is delivered. See Table 2 on page xxii for the
debug features supported for the combination.

Table 2 on page xxii maps out the features that differ in products. Not all the available features are listed.

To find the features available in different remote clients, see Table 3 on page xxiv.

Table 2. Debug feature comparison

IBM Z Open
Developmen
t

IBM Z Open
Unit Test,
extending
IBM Z Open
Developmen
t

IBM Debug
for z/0S

IBM
Developer
for z/0S

IBM
Developer
for z/0S
Enterprise
Edition

IBM Wazi
for Red Hat
CodeReady
Workspaces

Main features

z/0S
Debugger
3270
interface,
including
z/0S
Debugger
Utilities

z/0S
Debugger
remote
Eclipse
client, see
Table 3 on
page xxiv for
feature
details.

z/0S
Debugger
remote
Visual Studio
Code client,
see Table 3
on page xxiv
for feature
details.

Code Coverage features

Compiled
Code
Coverage

Headless
Code

Coverage

xxii IBM z/0S Debugger: Reference and Messages

https://www.ibm.com/us-en/marketplace/z-open-unit-test
https://www.ibm.com/us-en/marketplace/z-open-development

Table 2. Debug feature comparison (continued)

IBM Z Open
Developmen
t

IBM Z Open
Unit Test,
extending
IBM Z Open
Developmen
t

IBM Debug
for z/0S

IBM
Developer
for z/0S

IBM
Developer
for z/0S
Enterprise
Edition

IBM Wazi
for Red Hat
CodeReady
Workspaces

Java™ Code
Coverage

v

v

z/0S
Debugger
Code
Coverage
(3270 and
remote
interfaces) 4

3270 features

z/0S
Debugger full
screen,

batch or line
mode

IMS Isolation
support

Compiler support features

Assembler
support:
Create
EQALANGX
files

Assembler
support:
Debugging >

LANGX
COBOL
support @

Support for
Automatic
Binary
Optimizer
(ABO)

IBM COBOL
and CICS
Command
Level
Conversion
Aid for
0S/390 &
MVS & VM

Overview of IBM z/0S Debugger xxiii

Table 2. Debug feature comparison (continued)
IBM Z Open
Unit Test, IBM
extending Developer IBM Wazi
IBM Z Open |IBM Z Open IBM for z/0S for Red Hat
Developmen | Developmen | IBM Debug | Developer Enterprise | CodeReady
t t for z/0S for z/0S Edition Workspaces
Load Module v v
Analyzer
Notes:

1. IBM Debug for z/OS includes z/OS Debugger remote debug and compiled code coverage GUI interface,
but does not include Headless Code Coverage and Java Code Coverage.

2. IBM Developer for z/OS includes z/OS Debugger remote debug and compiled code coverage GUI
interface, but does not include z/OS Debugger Code Coverage.

3. The following features are only supported in standard mode:
 Support for 64 bit Enterprise PL/I for z/OS Version 5
» Support for 64 bit C/C++ feature of z/OS
= Source view for COBOL V6.2 and later
4. z/0S Debugger Code Coverage can only be enabled in the 3270 interface.

5. Debugging assembler requires that you have EQALANGKX files that have been created via ADFz
Common Components or a product that ships the ADFz Common Components.

6. LANGX COBOL refers to any of the following programs:
« A program compiled with the IBM OS/VS COBOL compiler.
« A program compiled with the IBM VS COBOL II compiler with the NOTEST compiler option.

« A program compiled with the IBM Enterprise COBOL for z/OS Version 3 or Version 4 compiler with
the NOTEST compiler option.

7. This feature is only available with the Eclipse client.

Table 3. Remote client debug feature comparison

Feature Eclipse Visual Studio Code
Debug Tool compatibility mode v Vv
Standard mode V2

Integration with Language

« COBOL Editor® « Z Open Editor

Fditors « PL/I Editor®
« Remote C/C++ Editorl 2
« System z LPEX Editor® 2
Visual Debug vi
Debug profile management V2 v
IMS Isolation UI V3

Integration with CICS Explorer
views

Integration with property groups |vi

Team Debug support vi 2

xxiv IBM z/0OS Debugger: Reference and Messages

Table 3. Remote client debug feature comparison (continued)

Feature

Eclipse

Visual Studio Code

Integrated launch

« z/OS UNIX Application launch
configuration

- z/OS Batch Application using
existing JCL

- z/OS Batch Application using a
property group?

Debug Tool Plug-ins

\/2’ 4

Modules

v

Memory

v

Program navigation

Step over/Next

Step into/Step in

Step return/Step out

Jump to location

Run to location/Run to cursor

Resume/Continue

Terminate

Animated step

Playback

LS IE S I IR I RS RS RIS

Breakpoints

Line/statement breakpoints

Entry breakpoints

Source entry breakpoints

Event breakpoint

Address breakpoint

Watch breakpoint

< <L << <1< 1<

Variables & Registers

Variables

<

Registers

Modifying variable and register
values

Setting variable filter

Changing variable representation

Dereferencing variables

Displaying in memory view

L <L < <

Monitors

Overview of IBM z/0S Debugger xxv

Table 3. Remote client debug feature comparison (continued)

Feature Eclipse Visual Studio Code

Displaying monitor v Vv

Modifying monitor value

v
Changing variable representation |V
v

Dereferencing variables

Debug Console

Evaluating variables and v
expressions

z/0S Debugger commands v

Notes:

1. This feature is not available in IBM Debug for z/OS.

2. This feature is not available in IBM Z Open Development and IBM Wazi for Red Hat CodeReady
Workspaces.

3. This feature is only available in IBM Developer for z/OS Enterprise Edition.

4. IBM Developer for z/OS includes Debug Tool plug-ins, but does not include Load Module Analyzer and
z/0OS Debugger Code Coverage.

5. Registers are available in the Variables view.

xxvi IBM z/0OS Debugger: Reference and Messages

Chapter 1. z/0S Debugger runtime options

This topic describes the runtime options that you can use to control the operation of z/OS Debugger.

"Table 10" in the IBM z/0S Debugger User's Guide describes most of the methods you can use to specify
the TEST runtime options. Use that table with the information in the topic "Planning your debug session"
in IBM z/0S Debugger User's Guide to select the method that works best for your site.

Some methods use the standard Language Environment runtime options. Other methods use z/0S
Debugger keyword options with the same syntax and semantics as the corresponding Language
Environment option. In all cases, you can omit these options if the default values are acceptable.

When you specify runtime options for a Language Environment program, they are handled by Language
Environment and the following rules apply:

« You can mix them with other Language Environment runtime options in any order.
« Separate them with either blanks or commas.
 Separate all runtime options from user-program options with a slash ('/").

« The placement of these options (before or after the slash) depends on the programming language of the
MAIN routine.

When you specify runtime options for a non-Language Environment program by using EQANMDBG under
z/0S batch or TSO, z/OS Debugger processes the options and the following rules apply:

« You must specify the name of the program to be debugged as the first parameter; this is a positional
parameter.

« Specify the runtime options in any order following the name of the program to be debugged.
» Separate all options with commas.

« Separate the runtime options from user-program options with a slash ('/"). If you do not specify any
runtime options, the slash follows the name of the program.

« Specify any parameters to the user-program after the slash.
- If no user-program parameters are required, you can omit the slash.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Planning your debug session" in IBM z/0S Debugger User's Guide

Related references
z/0S Language Environment Programming Reference

Non-Language Environment positional parameter

If you use EQANMDBG to start z/OS Debugger to debug MVS batch or TSO programs that do not run in
Language Environment, the first positional parameter must be the name of the program you want to
debug. This name must be immediately followed by one of the following options:

- one or more of the z/OS Debugger keyword runtime options described in the following sections of this
chapter and then a slash ('/") and any user-program parameters

« aslash ('/) and any user-program parameters
If no user-program parameters are required, the slash is optional.
Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Planning your debug session" in IBM z/0S Debugger User's Guide.

© Copyright IBM Corp. 1992, 2020 1

COUNTRY runtime option
Use the COUNTRY option to specify the country code to be used by z/OS Debugger. The default is always
us.

The syntax for this option is:

»— COUNTRY — (— country_code —) -»«

country_code
A valid country code, one of:

us
United States of America

JP
Japan

NATLANG runtime option

Use the NATLANG option to specify the desired national language for z/OS Debugger. This determines the
language that is used to display z/OS Debugger output, such as messages. If you do not specify NATLANG,
the installation default is used.

The syntax for this option is:

»— NATLANG — (— language Id —) >«

language_Id
A valid national language identifier, one of:

ENU
English

UEN
Upper-case English

JPN
Japanese

KOR
Korean

If you set NATLANG to JPN or KOR and you are using full-screen mode, enter the SET DBCS ON
command so that z/OS Debugger displays messages in the correct format.

NONLESP runtime option

Use the NONLESP option to direct z/OS Debugger to use a different storage subpool for its storage, in
cases where the program being debugged does a FREEMAIN of subpool 1 (where z/OS Debugger places

its data by default).

The syntax for this option is:
»— NONLESP — (— n —) >«

n
An integer with a value between 2 and 127

TEST runtime option
The TEST runtime option gives control of your program to z/OS Debugger.

2 IBM z/0S Debugger: Reference and Messages

This topic describes the TEST runtime option and its suboptions. The suboptions of the TEST runtime
option control how, when, and where z/OS Debugger gains control of your program. For a description of
how to specify the TEST runtime option, refer to "Planning your debug session" in the IBM z/0OS Debugger
User's Guide.

Syntax of the TEST runtime option

For examples of using the TEST runtime option to illustrate runtime options available for your programs,
see the "Example: TEST runtime options" topic in IBM z/0S Debugger User's Guide.

You can combine any of the suboptions for the TEST runtime option but only in the order specified by the
TEST syntax. Any option or suboption referred to as "default" is the IBM-supplied default, and might have
been changed by your system administrator during installation.

The syntax for this option is:

NOTEST T
»L TEST >
L () 3 _J

l)) J
prompt_level 1—{ preferences_file }—J

test_level

»
»

ALL

ERROR
NONE

commands_file

[e

i

¥

M—— NULLFILE ——

M— commands_file_designator —

~—— VADSCP nnnnn ———

prompt_level

ﬁ PROMPT ﬁ

>4

¥

M———— NOPROMPT ———

*
— " gm:ndl w_J

preferences_file

Chapter 1. z/OS Debugger runtime options 3

% terminal_id

L network_identifier — —J

— %

VIAM_LU id —

¥
v

VTAM% user id :

f_ %8001
DIRECT& ——— tcpip_id

L %port_id

]

TCPIP& LR

1
— VADTCPIP& —

DBM L J : o
L DBMDT J %user_id
ﬁ INSPPREF ﬁ

M———— NULLFILE ——

A 4

M— preferences_file_designator —

. * J

Notes:
1 Specifies remote debug mode.
The following list explains what actions are taken by each option and suboption.

NOTEST
Specifies that z/OS Debugger is not started at program initialization. However, Starting z/OS Debugger
is still possible through the use of CEETEST, PLITEST, or the __ctest () function. In such a case,
the suboptions specified with NOTEST are used when z/OS Debugger is started.

TEST
Specifies that z/OS Debugger is given control according to the specified suboptions. The TEST
suboptions supplied are used if z/OS Debugger is started with CEETEST, PLITEST, or __ctest().

If z/OS Debugger is started by using CALL CEETEST (or an equivalent entry), you cannot debug
higher-level non-Language Environment programs or intercept non-Language Environment events
that occur in higher-level programs after you return from the program that started z/OS Debugger.

test_level:

ALL (or blank)
Specifies that the occurrence of an attention interrupt, ABEND of a program, or any program or
Language Environment condition of Severity 1 and above causes z/OS Debugger to gain control,
regardless of whether a breakpoint is defined for that condition.

When a FINISH, CEE066 or CEEO67 thread termination condition is raised by Language Environment,
z/0OS Debugger can be prevented from stopping at this condition by specifying the EQAOPTS
THREADTERMCOND command. You or your system administrator can specify this command by creating
an EQAOPTS load module or providing the command at run time.

If a condition occurs and a breakpoint exists for the condition, the commands specified in the
breakpoint are executed. If a condition occurs and a breakpoint does not exist for that condition, or if
an attention interrupt occurs, z/OS Debugger does the following:

« In full-screen mode, z/OS Debugger reads commands from a commands file (if it exists and is
available) or prompts you for commands.

4 IBM z/0OS Debugger: Reference and Messages

 In batch mode, z/OS Debugger reads commands from the commands file. If none is available, the
program runs uninterrupted.

ERROR
Specifies that only the following conditions cause z/OS Debugger to gain control without a user-
defined breakpoint.

« For Cand C++:

An attention interrupt

Program termination

A predefined Language Environment condition of Severity 2 or above
Any C and C++ condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.
- For COBOL:

— An attention interrupt

— Program termination

— A predefined Language Environment condition of Severity 2 or above.
« For PL/I:

— An attention interrupt
— Program termination
— A predefined Language Environment condition of Severity 2 or above.

If a breakpoint exists for one of the above conditions, commands specified in the breakpoint are
executed. If no commands are specified, z/OS Debugger reads commands from a commands file or
prompts you for them in interactive mode.

NONE
Specifies that z/OS Debugger gains control from a condition only if a breakpoint is defined for that
condition. If a breakpoint exists for the condition, the commands specified in the breakpoint are
executed. An attention interrupt does not cause z/OS Debugger to gain control unless z/OS Debugger
was started. To change the TEST level after you start your debug session, use the SET TEST
command.

commands_file:

* (or blank)
Indicates that you did not supply a commands file.

In the following situation, z/OS Debugger reads commands from a default user commands file:

 You or your site specify a default naming pattern, through the EQAOPTS COMMANDSDSN command,
identifying a user commands file.

« The user commands file exists.
« The user commands file contains a member with a name that matches the initial load module name
of the first enclave.

If you or your site do not specify the name of a default user commands file or that file does not exist,
and you are debugging in line mode, z/OS Debugger reads commands from the terminal.

To learn how to supply the EQAOPTS COMMANDSDSN command, see Chapter 6, “EQAOPTS
commands,” on page 287.

NULLFILE
Indicates that you did not supply a commands file and z/OS Debugger ignores any specification of the
EQAOPTS COMMANDSDSN command. If you are debugging in line mode, z/OS Debugger reads
commands from the terminal.

commands_file_designator
Valid designation for the primary commands file. A commands file is used instead of the terminal as
the initial source of commands, and only after the preferences file, if specified, is processed.

Chapter 1. z/OS Debugger runtime options 5

If the designation contains non-alphanumeric characters (for example, a parenthesis), the
designation must be enclosed in either quotation marks (") or apostrophes ('). However, when a data
set name is enclosed in quotation marks or apostrophes, z/OS Debugger still considers the data set
name a partially-qualified data set name and prefixes the user ID to form the fully-qualified data set
name.

The commands_file_designator has a maximum length of 80 characters.

If the specified DD name is longer than eight characters, it is automatically truncated. No error
message is issued.

The primary commands file is required when you debug in batch mode. z/OS Debugger reads and
executes commands listed in the commands file until the file runs out of commands or the program
finishes running. You can use a log file from one z/OS Debugger session as the commands file for a
subsequent z/OS Debugger session.

The primary commands file is shared across multiple enclaves.

VADSCPnnnnn
Specifies a CCSID (Coded Character Set Identifiers) to use when you are debugging programs in
remote debug mode and the source or compiler use a code page other than 037.

If your C/C++ source contains square brackets or other special characters, you might need to specify
the VADSCPnnnnn suboption to override the z/OS Debugger default code page (037). Consult with
your system programmer to determine if he implemented the CODEPAGE option to specify a code
page of 1047. If not, check the code page specified when you compiled your source. The C/C++
compiler uses a default code page of 1047 if you do not explicitly specify one. If the code page used is
1047 or a code page other than 037, you need to specify the VADSCPnnnnn suboption specifying that
code page.

The following examples show how to use VADSCPnnnnn:
« For Japanese EBCDIC CCSID 930

TEST(ALL,VADSCP930, , TCPIP&9.10.11.12%8001:*)
« For Japanese EBCDIC CCSID 939

TEST(ALL,VADSCP939, , TCPIP&9.10.11.12%8001:*)
» For German EBCDIC CCSID 1141

TEST(ALL,VADSCP1141, , TCPIP&9.10.11.12%8001:*)
 For Korean EBCDIC CCSID 933

TEST (ALL,VADSCP933, , TCPIP&9.10.11.129%8001: %)

If a CODEPAGE option exists, the code page specified in the CODEPAGE option overrides the CCSID
specified in VADSCPnnnnn.

If neither the CODEPAGE option or the VADSCPnnnnn option are specified, the default code page is US
code page (037).

prompt_level:

PROMPT (or ; or blank)
Indicates that you want z/OS Debugger started immediately after Language Environment initialization.
Commands are read from the preferences file and then any designated primary commands file. If
neither file exists, commands are read from your terminal or workstation.

NOPROMPT (or *)
Indicates that you do not want z/OS Debugger started immediately after Language Environment
initialization. Instead, your application begins running. When z/OS Debugger is running without the

6 IBM z/0S Debugger: Reference and Messages

Language Environment run time (started by using EQANMDBG), the NOPROMPT option is ignored;
PROMPT is always in effect.

If you specify the NOPROMPT suboption, you cannot debug higher-level non-Language Environment
programs or intercept non-Language Environment events that occur in higher-level programs after
you return from the program that started z/OS Debugger.

command
One or more valid z/OS Debugger commands. z/OS Debugger is started immediately after program
initialization, and then the command (or command string) is executed. The command string can have
a maximum length of 250 characters, and must be enclosed in quotation marks ("). Multiple
commands must be separated by a semicolon.

If you include a STEP command or GO command in your command string, none of the subsequent
commands are processed.

The use of a command in prompt_level is not supported in remote debug mode.
preferences_file:

MFI (Main Frame Interface)
Specifies z/OS Debugger should be started in full-screen mode for your debug sessions.

terminal_id (CICS only)
Specifies up to a four-character terminal id to receive z/OS Debugger screen output during dual
terminal session. The corresponding terminal should be in service and acquired, ready to receive z/0S
Debugger-related I/0.

network_identifier (full-screen mode using a dedicated terminal without Terminal Interface Manager

only)

Specifies an optional 1-8 character network name that identifies the network in which the partner LU,
identified by the VTAM_LU_Id parameter, resides.

VTAM_LU_id (full-screen mode using a dedicated terminal without Terminal Interface Manager only)
Specifies up to an eight-character VTAM® logical unit (LU) identifier for a terminal used in full-screen
mode using a dedicated terminal without Terminal Interface Manager. The VTAM_LU_id parameter
cannot be used to debug CICS applications. Contact your system programmer to determine how to
access this type of terminal LU at your site.

VTAM (full-screen mode using the Terminal Interface Manager only)
Specifies z/OS Debugger should be started in full-screen mode using the Terminal Interface Manager
for your debug sessions and that you have used the z/OS Debugger Terminal Interface Manager.

user_id (full-screen mode using the Terminal Interface Manager only)
Specifies the user ID that you used to log on to the z/OS Debugger Terminal Interface Manager.
Contact your system programmer to determine how to access this type of terminal at your site.

INSPPREF (or blank)
The default DD name, supplied by z/OS Debugger, for the preferences file.

In the following situation, z/OS Debugger reads commands from a default user preferences file:

» You specify INSPPREF or leave it blank, but do not allocate the DD name.

 You or your site specify a default naming pattern, through the EQAOPTS PREFERENCESDSN
command, identifying a user preferences file.

- The user preferences file exists.

Any preferences file you or your site specifies to z/OS Debugger becomes the first source of z/0OS
Debugger commands after z/OS Debugger is started. Use preferences files to set up the z/OS
Debugger environment; for example, PF key assignments or screen layout.

preferences_file_designator
A valid DD name or data set designation specifying the preferences file to use.

This file is read the first time z/OS Debugger is started and must contain a sequence of z/OS Debugger
commands to be processed.

Chapter 1. z/OS Debugger runtime options 7

The designation can be either a DD name or a data set name. z/OS Debugger uses the following
procedure to determine if the designation is a DD name or data set name:

« If the designation does not contain periods (.), z/OS Debugger considers it a DD name.

« Otherwise, if you are running under CICS, z/OS Debugger considers it a fully-qualified data set
name.

« Otherwise, z/OS Debugger considers it a partially-qualified data set name and prefixes it with the
user ID to form the fully-qualified data set name. If you want z/OS Debugger to interpret the data
set name as a fully-qualified name, put a minus sign (-) in front of the name. In this case, z/0S
Debugger does not append the user ID to the data set name.

If the designation contains non-alphanumeric characters (for example, a parenthesis), the
designation must be enclosed in either quotation marks (") or apostrophes ('). However, when a data
set name is enclosed in quotation marks or apostrophes, z/OS Debugger still considers the data set
name a partially-qualified data set name and prefixes the user ID to form the fully-qualified data set
name.

Specifies that you did not supply a preferences file.

If you or your site specifies a naming pattern, through the EQAOPTS PREFERENCESDSN command,
identifying a user preferences file, z/OS Debugger reads commands from that file.

To learn how to supply the EQAOPTS PREFERENCESDSN command, see Chapter 6, “EQAOPTS
commands,” on page 287.

NULLFILE
Indicates that you did not supply a preferences file and z/OS Debugger ignores any specification of
the EQAOPTS PREFERENCESDSN command.

The following TEST suboptions are for remote debug mode and code coverage:

DIRECT&, TCPIP&, or VADTCPIP&
Specifies that z/OS Debugger starts in remote debug mode with a client.

Use DIRECT& to start the debugger in standard mode. Use TCPIP& or VADTCPIP& to start the
debugger in Debug Tool compatibility mode.

Notes:

1. IBM Wazi for Red Hat CodeReady Workspaces, IBM Z Open Development and IBM Z Open Unit
Test can only be used in Debug Tool compatibility mode.

2. Standard mode does not support commands files or preferences files. If they are specified, they
are ignored.

tepip_id
TCP/IP name or address where the remote debug daemon is running, in one of the following formats:
IPv4

You can specify the address as a symbolic address, such as some.name. com, or a numeric
address, such as 9.112.26.333.

IPv6
You must specify the address as a numeric address, such as 1080:0:FF::0970:1A21.
%port_id
Specifies a unique TCP/IP port on your workstation that is used by the remote debug daemon. The
default port number is 8001.

If you changed the default TCP/IP port settings used by the remote debugger client, you must specify
the new number as the port ID in your TEST runtime options string. For example, if you changed the
default TCP/IP port to 8003, your TEST runtime options string would be

TEST(ALL, '+«',PROMPT, 'TCPIP&9.112.26.333%8003:").

8 IBM z/0S Debugger: Reference and Messages

DBM and DBMDT
Specifies that z/OS Debugger uses the Debug Manager to automatically determine the client IP and
port number to connect to when you start remote debug mode with one of the remote debuggers
listed previously under DIRECT&, TCPIP& or VADTCPIPS.

Use DBM to start the debugger in standard mode. Use DBMDT to start the debugger in Debug Tool
compatibility mode.

Notes:

- DBM and DBMDT are only supported with Eclipse clients.

« Standard mode does not support commands files or preferences files. If they are specified, they are
ignored.

« Standard mode is not supported in IBM Wazi for Red Hat CodeReady Workspaces, IBM Z Open
Development or IBM Z Open Unit Test.

Before you start z/OS Debugger with DBM or DBMDT TEST runtime parameters, you must log on to the
host via the Remote System Explorer (RSE) in IBM Explorer for z/0S.

You can start a debug session only when Debug Manager and RSE both run in secured mode or
unsecured mode. To establish a secured connection between Debug Manager and RSE, they need to
use the same certificates or different chained certificates of the same CA root. Otherwise, you need to
import the certificates that are regarded as untrusted. For more information, see the "Encrypted
communication with Debug Manager" topic in IBM Knowledge Center.

user_id
Optionally specifies a user ID for routing the debug session. By default the same user ID as the job
launching or running the debug session is assumed.

Usage notes

- If the code page is not specified correctly or the conversion images are not available in the system, the
default code page (00037) is used for the debug session.

- If the code page is specified correctly and the conversion images are available in the system, but the
string conversion is not successful, default code page (00037) is used for this conversion.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
z/0S Language Environment Debugging Guide

Related tasks
IBM z/0S Debugger User's Guide

TRAP runtime option
Use the TRAP option to specify how z/OS Debugger handles ABENDs and program interrupts.

The syntax for this option is:

ON
- TRAP — (J_OFFT) -><

ON
Enable z/OS Debugger to trap ABENDs.

OFF
Prevent z/OS Debugger from trapping ABENDs; an ABEND causes abnormal termination of both z/0S
Debugger and the program under test.

Chapter 1. z/OS Debugger runtime options 9

https://www.ibm.com/support/knowledgecenter

10 IBM z/OS Debugger: Reference and Messages

Chapter 2. Common syntax elements in z/0S
Debugger commands

Several syntax elements are used in multiple z/OS Debugger commands. These elements are described in
the following topics. Some of these syntax elements are generic and do not require a syntax diagram.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“block_name” on page 11
“block_spec” on page 12
“compile_unit_name” on page 13
“cu_spec” on page 13
“expression” on page 14
“load_module_name” on page 14
“load_spec” on page 15
“offset_spec” on page 15
“references” on page 15
“statement_id” on page 16
“statement_id_range and stmt_id_spec” on page 16
“statement_label” on page 17

address

A hexadecimal address for a location in memory. An address can contain up to 16 hexadecimal digits. If
address contains more than 8 significant hexadecimal digits, z/OS Debugger assumes that address
references 64-bit addressable storage. If address contains 7 or 8 significant hexadecimal digits, z/OS
Debugger assumes that address references 31-bit addressable storage. Otherwise, z/OS Debugger
assumes address references 24-bit addressable storage.

References to code (instructions) and save areas can contain no more than 8 significant hexadecimal
digits.

address must have one of the following formats:

« Forall programming languages, x or X followed by apostrophes (') surrounding the hexadecimal value.
 For C, Ox preceding the hexadecimal value.

« For COBOL, H followed by apostrophes (') or quotation marks (") surrounding the hexadecimal value.

For COBOL or LangX COBOL, X followed by apostrophes (') or quotation marks (") surrounding the
hexadecimal value.

« For PL/I, the hexadecimal value surrounded by apostrophes (') or quotation marks ("), followed by PX.
« For assembler or disassembly, X followed by apostrophes (') or quotation marks (") surrounding the

hexadecimal value.
block_name
A block_name identifies:

« A Cand C++ function or a block statement
« A COBOL nested program or method contained within a complete COBOL program
« A PL/I block

The current block qualification can be changed by using the SET QUALIFY BLOCK command.

© Copyright IBM Corp. 1992, 2020 11

« For C++ only:

Include full declaration in block qualification.
- For COBOL only:

Enclose the block name in quotation marks (") or apostrophes (') if it is case sensitive. If the name is
not inside quotation marks or apostrophes, z/OS Debugger will convert the name to uppercase.

If a name contains an internal quotation mark ("), you should enclose the name in apostrophes (').
Similarly, if the name contains an internal apostrophe ('), you should enclose the name in quotation
marks (").

You can use block_name only for blocks known in the current enclave.

block_spec
A block_spec identifies a block in the program being debugged.

<

{ ‘ j
»d
L)

block_name L _J
%BLOCK _J :> — block_name

cu_spec L > — block_name

block_name

Name of the block. See “block_name” on page 11.
%BLOCK

Represents the currently qualified block. See Chapter 8, “z/0OS Debugger variables,” on page 333.
cu_spec

A valid compile unit specification; see “cu_spec” on page 13.

You can use block_name only for blocks known in the current enclave.
« For C++ only:
— Block_spec must include the formal parameters for the function. The correct block qualification is:

int function(int, int) is function(int, int)

— Use Describe CUS to determine correct block_spec for blocks known in the current enclave.
Refer to the following topics for more information related to the material discussed in this topic.

Related references

“block_name” on page 11

Chapter 8, “z/0S Debugger variables,” on page 333
“cu_spec” on page 13

condition

A simple relational condition. Particular rules for forming the relational condition depend on the current
programming language setting.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Allowable comparisons for the IF command (COBOL)” on page 132

12 IBM z/OS Debugger: Reference and Messages

compile_unit_name
A compile_unit_name identifies any of the following items:
« An assembler CSECT name
« A Cor C++ source file
« A LangX COBOL program
« A COBOL program
« The external procedure name of a PL/I for MVS program

« The package statement or the name of the main procedure, for an Enterprise PL/I program compiled
with one of the following compilers and running in the following environment:

— Enterprise PL/I for z/OS, Version 3.6 or later
— Enterprise PL/I for z/0S, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied
— Language Environment Version 1.6 through 1.8 with the PTF for APAR PK33738 applied, or later

« The name of the source file, for an Enterprise PL/I program compiled with a compiler earlier than
Enterprise PL/I for z/OS, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied.

« For C and C++ only:

— The compile unit name must always be enclosed in quotation marks ("). For example, the following
statement is ambiguous because the compile unit and a function in that compile unit have the same
name:

LIST CU2:>CU2:>varl

To avoid the ambiguity, use the following statement to list the value of the variable varl correctly
scoped to the function CU2:

LIST "CU2":>CU2:>varl
— Escape sequences in compile unit names that are specified as strings are not processed if the string

is part of a qualification statement.
« For COBOL only:

Enclose the compile unit name in quotation marks (") or apostrophes () if it is case sensitive. If the
name is not inside quotation marks (") or apostrophes ('), z/OS Debugger converts the name to
uppercase.

« For Enterprise PL/I only:

— The compile unit name must be enclosed in quotation marks (") or apostrophes ('). If your program
was compiled with one of the following compilers and is running in the following environment, you do
not need to enclose the compile unit name in quotation marks (") or apostrophes (*):

- Enterprise PL/I for z/OS, Version 3.6 or later
- Enterprise PL/I for z/OS, Version 3.5, with the PTFs for APARs PK35230 and PK35489 applied
- Language Environment Version 1.6 through 1.8 with the PTF for APAR PK33738 applied, or later

If the compile unit name is not a valid identifier in the current programming language, it must be entered
as a character string constant in the current programming language.

The current compile unit qualification can be changed using the SET QUALIFY CUcommand.

cu_spec

A cu_spec identifies a compile unit in the application being debugged. In PL/I, the compile unit name is
the same as the outermost procedure name in the program.

Chapter 2. Common syntax elements in z/OS Debugger commands 13

¥

L J compile_unit_name —»«
load_spec — ::>

%CU

- %PROGRAM 4

If cu_spec is omitted, the current load module qualification is used.

compile_unit_name
The name of the compile unit, depending on the programming language. See “compile_unit_name” on

page 13.
load_spec

The name of the load module. See “load_spec” on page 15.
%CU

Represents the currently qualified compile unit. %CU is equivalent to 8PROGRAM.
%PROGRAM

Is equivalent to %CU.

You can use cu_spec to specify compile units only in an enclave that is currently running. Therefore, you
can qualify only variable names, function names, labels, and statement_ids to blocks within compile units
in the current enclave.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“load_spec” on page 15

“compile_unit_name” on page 13

Chapter 8, “z/0S Debugger variables,” on page 333

expression

An expression is a combination of references and operators that result in a value. For example, it can be a
single constant, a program, session, or z/OS Debugger variable, a built-in function reference, or a
combination of constants, variables, and built-in function references, or operators and punctuation (such
as parentheses).

Particular rules for forming an expression depend on the current programming language setting and what
release level of the language run-time library under which z/OS Debugger is running. For example, if you
upgrade your version of the HLL compiler without upgrading your version of z/OS Debugger, certain
application programming interface inconsistencies might exist.

You can use expressions for only variables contained in the current enclave.
Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15

load_module_name

A load_module_name is the name of a file, object, or dynamic link library (DLL) that has been loaded by a
supported HLL load service or a subsystem. For example, an enclave can contain load modules, which in
turn contain compile units.

For C, escape sequences in load module names that are specified as strings are not processed if the string
is part of a qualification statement.

If the load_module_name is omitted from a name that allows it as a qualifier, the current load module
qualification is assumed. The load_module_name can be changed by using the SET QUALIFY LOAD
command.

14 IBM z/OS Debugger: Reference and Messages

If two enclaves contain duplicate modules, references to compile units in the modules will be ambiguous,
and will be flagged as errors. However, if the compile unit is in the currently executing load module, that
load module is assumed and no check for ambiguity will be performed. Therefore, for z/OS Debugger,
load module names must be unique.

load_spec
A load_spec identifies a load module in the program being debugged.
»ﬂmodule_namej—w
%LOAD
The load_spec can be specified as a string constant in the current programming language, for example, a
string literal in C or a character literal in COBOL. If not specified as such, it must be a valid identifier in the
current programming language.

load_module_name

Name of a file, object, or Dynamic Link Library (DLL) that has been loaded by a supported HLL load
service, or a subsystem. See “load_module_name” on page 14.

%LOAD
Represents the currently qualified load module.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“load_module_name” on page 14
Chapter 8, “z/0OS Debugger variables,” on page 333

offset_spec

An offset_spec identifies an offset specification.

»- X' offset ' >«
%lock_spec j— D> J
cu_spec
offset
A hexadecimal offset in the disassembly view as displayed in the Source window prefix area.

Refer to the following topics for more information related to the material discussed in this topic.
Related references
“block_spec” on page 12
“cu_spec” on page 13

references

A reference is a subset of an expression that resolves to an area of storage, that is, a possible target of an
assignment statement. For example, it can be a program, session, or z/OS Debugger variable, an array or
array element, or a structure or structure element, and any of these can be pointer-qualified (in
programming languages that allow it). Any identifying name in a reference can be optionally qualified by
containing structure names and names of blocks where the item is visible. It is optionally followed by
subscript and substring modifiers, following the rules of the current programming language.

The specification of a qualified reference includes all containing structures and blocks as qualifiers, and
can optionally begin with a load module name qualifier. For example, when the current programming
language setting is C, mod: : >cu:>proc:>strucl.struc2.array[23]. However, in assembler,
disassembly, and LangX COBOL, variable names cannot be qualified with load module, compile unit, or
block names.

Chapter 2. Common syntax elements in z/OS Debugger commands 15

When the current programming language setting is C and C++, the term 1value is used in place of
reference.

If you are debugging a program that was compiled with a version earlier than Enterprise PL/I Version 3.5
with the PTFs for APARs PK35230 and PK35489 applied, z/OS Debugger does not support the use of a
qualified reference that includes block_spec, cu_spec, or load_spec.

If you are debugging a program compiled with one of the following compilers and running in the following
environment, z/OS Debugger does support the use of a qualified reference that includes block_spec,
cu_spec, or load_spec:

« Enterprise PL/I for z/OS, Version 3.6 or later

« Enterprise PL/I for z/OS, Version 3.5 with the PTFs for APARs PK35230 and PK35489 applied

- Language Environment Version 1.6 through 1.8 with the PTF for APAR PK33738 applied, or later

If you are debugging a program that was compiled with an Enterprise PL/I compiler and z/OS Debugger is
at an entry to a block, you cannot list or reference any variable or expression that includes variables
declared in the block being entered.

A COBOL reference can be a data name, which can be any of the following, according to the rules of the
COBOL language:

« qualified

« subscripted

- indexed

- reference modified

A COBOL reference can be to any special register, except for the following special registers:
« ADDRESS-OF

« LENGTH-OF

« WHEN-COMPILED
Particular rules for forming a reference depend on the current programming language setting and what
release level of the language run-time library z/OS Debugger is running under. For example, if you

upgrade your version of the HLL compiler without upgrading your version of z/OS Debugger, certain
application programming interface inconsistencies might exist.

statement_id

A statement_id identifies an executable statement in a manner appropriate for the current programming
language. This can be a statement number, sequence number, or source line number. The statement id is
an integer or integer.integer (where the first integer is the line number and the second integer is the
relative statement number). For example, you can specify 3, 3.0, or 3.1 to signify the first relative
statement on line 3. C, C++, COBOL, and PL/I allow multiple statements or verbs within a source line.

You can only use statement identifiers for statements that are known in the current enclave.

statement_id_range and stmt_id_spec

A statement_id_range identifies a source statement id or range of statement ids. Stmt_id_spec identifies a
statement id specification.

»—| stmt_id_spec L
-

—— statement_id —— ;J

%LINE

~— %STATEMENT —

stmt_id_spec

16 IBM z/OS Debugger: Reference and Messages

¥

statement_id —»«
%Iock_spec J— D> J
cu_spec

%LINE

~ %STATEMENT 7

block_spec
A valid block specification. The default is the currently qualified block. For the currently supported
programming languages, block qualification is extraneous because statement identifiers are unique
within a compile unit. Therefore, block qualification is ignored.

cu_spec
A valid compile unit specification; see “cu_spec” on page 13. The default is the currently qualified
compile unit.

statement_id
A valid statement identifier number; see “statement_id” on page 16.

%LINE
Represents the currently suspended source statement or line. See Chapter 8, “z/0S Debugger
variables,” on page 333. %LINE is equivalent to %$STATEMENT.

%STATEMENT
Is equivalent to %LINE.

Specifying a range of statements

A range of statements can be identified by specifying a beginning and ending statement id, separated by a
hyphen (-). When the current programming language setting is COBOL, blanks are required around the
hyphen (-). Blanks are optional for C and C++ and PL/I. Both statement ids must be in the same block, the
second statement cannot occur before the first in the source program, and they cannot be equal.

A single statement id is also an acceptable statement id range and is considered to begin and end at the
same statement. A single statement id range consists of only one statement or verb even in a
multistatement line.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“block_spec” on page 12

“cu_spec” on page 13

“statement_id” on page 16

Chapter 8, “z/0S Debugger variables,” on page 333

statement_label

A statement_label identifies a statement using its source label. The specification of a qualified statement
label includes all containing compile unit names or block names, and can optionally begin with a load
module name qualifier. For example:

mod: :>procl:>proc2:>blockl:>start

The form of a label depends on the current programming language:

« In C and C++, labels must be valid identifiers.
« In COBOL, labels must be valid identifiers and can be qualified with the section name.
« In PL/I, labels must be valid identifiers, which can include a label variable.

You can only use statement labels for labels that are known in the current enclave.

Chapter 2. Common syntax elements in z/OS Debugger commands 17

variable_name

A contiguous text string that represents a changeable value. You can create a variable_name that can be
used in several different programming languages. The variable_name must comply with the following
syntax rules:

« all uppercase

starts with one of the characters A through Z
- characters A through Z

decimal O through 9

* no spaces

z/0S Debugger also supports the creation of a variable_name that is written to programming language-
specific syntax rules. However, if you create a variable_name that is written to a specific programming
language syntax, you cannot use that variable_name in programs written in a different programming
language. For example, in COBOL a variable name can contain the dash character (-). If you create a
variable_name that contains a dash, you cannot use that variable_name in a PL/I or C/C++ program.

18 IBM z/0OS Debugger: Reference and Messages

Chapter 3. Syntax for assembler and disassembly
expressions

Use the syntax defined in this section to write expressions for z/OS Debugger commands while you debug
an assembler or disassembly program.

Assembler expressions can be written in the following forms:

« A standard assembler expression with an implied length. The following are three examples:
- X
- 133
- X+15

« Astandard assembler expression without an implied length. Expressions can be written in this form
only if the length can be specified or derived from an operand. For example: R3->+X"'2C"

« A conditional assembler expression which is written with conditional operators and can be used only as
the operand of an IF command. For example: X+1=Y & Z=4

Common syntax elements

You can use the following syntax elements to write an assembler expression:

ddd
A decimal constant, where ddd are valid decimal digits. For example: 145

ddd.ddd, dd.dEdd, ddEdd, dd.dE+dd, ddE+dd, dd.dE-dd, ddE-dd
A floating-point constant, where d is one or more decimal digits and E is the letter "E". Examples:
1.23,0.22,12E+10, or 2.456E-5.

X'zxxx' or X"xxaa"
A hexadecimal constant, where xxxx are valid hexadecimal digits. Examples: X'1FAC' or X"1F4C"

If this constant is from 1 to 4 bytes in length, it can be used in arithmetic or string contexts.
Otherwise, it can only be used in string contexts.

C'cccc', 'cccc',or"cccc"
A character constant. For example: C'F$3' or "F$3"

If this constant is from 1 to 4 bytes in length, it can be used in arithmetic or string contexts.
Otherwise, it can only be used in string contexts.

symbol
A valid symbol used in the assembler source program. Examples: lastName, UserVar8

If a symbol is defined by using the EQU instruction and the first usage of the symbol is as a register,
the symbol is associated with that register. If you define a symbol with the intent to use the symbol as
a register but you never reference the symbol or the first reference to the symbol is not as a register,
z/0S Debugger defines the symbol as a constant, not as a register. For example, if you define the
symbol R7 by using the instruction R7 EQU 7 and you never reference R7 or the first reference is not
as a register, z/OS Debugger defines the symbol R7 as the constant 7, not as register R7.

z/0S Debugger implicitly defines the following symbols in all disassembly compilation units and in any
assembler compilation units where the symbol is not already defined:

« RO, R1, R2,R3, R4, R5,R6,R7,R8, R9, R10, R11, R12, R13, R14, R15. These symbols are implicitly
defined as z/OS Debugger 32-bit basic general purpose registers. For example, RO is defined as
%RO. If you are debugging an assembler compilation unit that defines the symbol RO and RO is not
used as a register, you can use the %R0 variable to reference 32-bit General Purpose Register RO.
These are the low-order 32 bits of the 64 bit General Purpose Register.

© Copyright IBM Corp. 1992, 2020 19

« RHO, RH1, RH2, RH3, RH4, RH5, RH6, RH7, RH8, RH9, RH10, RH11, RH12, RH13, RH14, RH15.
These symbols are implicitly defined as z/OS Debugger 32-bit high general purpose registers. For
example, RHO is defined as %GPRHO. If you are debugging an assembler compilation unit that
defines the symbol RHO and RHO is not used as a register, you can use the %GPRHO variable to
reference 32-bit high General Purpose Register RHO. These are the high-order 32 bits of the 64 bit
General Purpose Register.

« RGO, RG1, RG2, RG3, RG4, RG5, RG6, RG7, RG8, RG9, RG10, RG11, RG12, RG13, RG14, RG15.
These symbols are implicitly defined as z/OS Debugger 64-bit General Purpose Registers. For
example, RGO is defined as %GPRGO. If you are debugging an assembler compilation unit that
defines the symbol RGO and RGO is not used as a register, you can use the %$GPRGO variable to
reference 64-bit General Purpose Register RO. These symbols are available only when 64-bit
General Purpose Registers are available.

e _STORAGE. This symbol is implicitly defined as a symbol representing all of main memory. You can
reference any area of memory by using the _STORAGE symbol with the following syntax:

»— STORAGE — (— address — ::— length —) >«

For example, _STORAGE (X'1FF3C"': :4) references the four bytes of storage at address X'1FF3C'.
A length of zero might be specified in which case no bytes of storage are accessed. This form is used
primarily by the AUTOMONITOR command when displaying an operand of an instruction such as LA
that computes an effective address but references no data at that address.

%symbol
A valid z/OS Debugger variable. For example: %ADDRESS
Operators
You can use the operators defined in this section to write assembler expression and conditional
assembler expressions.
Operators that can be used in any expression

Use the operators defined in this section to write assembler expressions.

+
Addition
Subtraction or prefix minus
*
Multiplication
/
Division
/i
Remainder
I
Concatenation (C and X-type operands only)
&
Bitwise AND
I
Bitwise OR
(...)

Parenthesis to control the order of operation, specify the subscript of an array, or select a substring.

symbol(subscript)
Parenthesis to specify a subscript for an array. For example, if an array is defined by the
instruction X DS 5F, you can specify the first word in the array as X (1).

20 IBM z/OS Debugger: Reference and Messages

symbol(substring)
Parenthesis to select a substring of a single byte from a character or hexadecimal variable

symbol(substrstart:substrend)
Parenthesis to select a substring of the bytes from substrstart to substrend from a character or
hexadecimal variable

symbol(substrstart::substrlen)
Parenthesis to select a substring of substrlen bytes beginning at substrstart from a character or
hexadecimal variable

For an array of character or hexadecimal strings, these forms can be combined by using
symbol(subscript,substring), symbol(subscript,substrstart:substrend), or
symbol(subscript,substrstart::substrlen).

=>,=>,%>,0r==
Indirection operator. You can use an indirection operator as follows:

operandi<indirection_operator>operand2
Use the contents of operandl as the base address of the DSECT which contains operand?2. For
example, R1->DCBDDNAME instructs z/OS Debugger to use the contents of register 1 as the base
address of the DSECT which contains DCBDDNAME.

operandi<indirection_operator> or operand2<indirection_operator>+operand2
If the <indirection_operator> is followed by a plus sign (+), use operand? as an offset. For
example, X-> instructs z/OS Debugger to use the contents of X as the address of the storage. For
a second example, R3->+X"'22" instructs z/OS Debugger to use the contents of register 3 and
add hexadecimal 22 (the offset) to determine the address of storage.

If the indirection operator is not followed by a symbol, no length is implied. This form is most
commonly used where the length can be determined by another operand. For example, the
command STORAGE (R10->,4) =22 provides the length in the second operand of the STORAGE
command. If you use this form in a situation where a length is required but not provided by
another operand, the length defaults to four.

The following indirection operators indicate which address specification to use:
->
Use the current Amode specification.
==>
Use a 64—bit address specification.
=>
Use a 31-bit address specification.
%>
Use a 24-bit address specification.
(.)
Dot operator (period). You can use a dot operator to qualify a name in a DSECT by the name on a

labeled USING statement. The dot operator must be immediately preceded by a label from a previous
labeled USING statement and must be immediately followed by a name defined in a DSECT.

ADDR'
Returns the address of a symbol. If the operand of ADDR' is a symbol that is known in the current CU
but resides in another CSECT, the ADDR' function returns 0. For example, ADDR ' ABC returns the
address of symbol ABC.

If the address of the symbol is a 64-bit address, then ADDR' returns an 8-byte value. Otherwise,
ADDR' returns a 4-byte value.

Returns the length of a symbol. For example, L ' ABC returns the length of the symbol ABC.

Chapter 3. Syntax for assembler and disassembly expressions 21

Operators that can be used only in conditional expressions

The following operators can be used only in conditional expressions (for example, the IF command):

Compare the two operands for equality.

Compare the two operands for inequality.

<

Determines whether the left operand is less than the right operand.
>

Determines whether the left operand is greater than the right operand.
<=

Determines whether the left operand is less than or equal to the right operand.
>=

Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.
Logical "or" operation.

Arithmetic expression evaluation

Assembler and disassembly expressions are evaluated in 32-bit precision until a 64-bit operand is
encountered. At that point, the precision of both operands is converted to 64-bit and all subsequent
operators in the expression are evaluated in 64-bit precision. If you want the entire expression evaluated
in 64-bit precision, you can use parentheses to alter the order of operations so that the first operand
evaluated has at least one 64-bit operand.

If you are running your program on hardware that does not support 64-bit instructions, z/OS Debugger
evaluates the 64-bit arithmetic expressions but you cannot access the 64-bit General Purpose Registers.

22 IBM z/0OS Debugger: Reference and Messages

Chapter 4. Syntax for LangX COBOL expressions

Note: This chapter is not applicable to IBM Wazi for Red Hat CodeReady Workspaces, IBM Z Open
Development, or IBM Z Open Unit Test.

You can use the syntax defined in this section to write expressions for z/OS Debugger commands while
you debug LangX COBOL programs.

In general, whenever you enter a LangX COBOL expression as part of a command (for example, as the
operand of the LIST expression command, an assignment command, or the IF command), you must
enclose the LangX COBOL expression in apostrophes (*). The following example shows the appropriate
use of apostrophes:

LIST 'A-B IN C';
IAI = IBI;
IF 'A = 22' THEN...

There are some z/0OS Debugger commands that can be used for debugging LangX COBOL programs that
use the assembler syntax. A note to this effect is found in the section describing each of these
commands. For example, while debugging a LangX COBOL program you might use the following
command:

STORAGE (X"1B4C0",3) = X"0102FC";

Restrictions on LangX COBOL expressions

In addition to the requirement that LangX COBOL expressions be enclosed in apostrophes ('), the
following restrictions apply to LangX COBOL expressions:

« The following operators are supported by z/OS Debugger in LangX COBOL expressions:
— INor OF

Subscript / index

LENGTH OF

+ - *

y oy

/] (remainder)

|| (concatenation)
-0

« Inasubscript or index list, the subscript or index expressions must be separated by a comma. A space
is not sufficient for separating subscript or index expressions.

- Lower-case letters are accepted in contexts other that non-numeric literals as a substitute for (and
equivalent to) upper case letters.

« z/OS Debugger does not support the use of COBOL special registers (for example, DAY, DATE, and
TIME) in LangX COBOL expressions.

« All non-numeric literals must be enclosed in quotation marks (). Apostrophes (') cannot be used.
 You cannot list or alter level-88 variables in LangX COBOL.

= Only the following subset of figurative constants are supported in z/OS Debugger LangX COBOL
expressions:

HIGH-VALUE, HIGH-VALUES
LOW-VALUE, LOW-VALUES
QUOTE, QUOTES

SPACE, SPACES

© Copyright IBM Corp. 1992, 2020 23

- ZERO, ZEROES, ZEROS

Common syntax elements

You can use the following syntax elements to write a LangX COBOL expression:

ddd or ddd.ddd

A decimal constant, where ddd are valid decimal digits. For example: 145 or 12.72.
X"xxxxx"

A hexadecimal constant, where xxxx are valid hexadecimal digits. For example:

X"1F4C"

Ilccccll
A non-numeric literal. For example:

" F$3 "

symbol
A valid symbol used in the LangX COBOL source program. Examples:

LASTNAME
USERVARS8
12CENTS

z/0S Debugger implicitly defines the _STORAGE symbol in all LangX COBOL programs as a symbol
representing all of main memory. You can reference any area of memory by using the _STORAGE
symbol with the substring notation defined in “Operators that can be used in any expression” on page
24. For example, _STORAGE(X"1FF3C"::4) references the four bytes of storage at address X"1FF3C".
The substring notation used by the _STORAGE symbol specifies an actual address; therefore, to
reference the first byte of storage, use a 0 instead of a 1 in the substring notation.

%symbol
A valid z/OS Debugger variable or built-in function. For example:

%ADDRESS
%HEX (expression)

Operators

You can use the operators defined in this section to write LangX COBOL expressions and conditional
LangX COBOL expressions.

Operators that can be used in any expression

Use the operators defined in this section to write LangX COBOL expressions.

+
Addition
Subtraction or prefix minus
*
Multiplication
/
Division
V4
Remainder

Concatenation (non-arithmetic operands only)

24 1BM z/0OS Debugger: Reference and Messages

(...)
Parenthesis to control the order of operation, specify the subscript of an array, or select a substring.
symbol(subscript,subscript,...)
Parenthesis to specify a subscript or index for an array. Note that commas are required between
subscript or index values. Blanks alone are not acceptable.

symbol(substrstart:substrend)
Parenthesis to select a substring of the bytes from substrstart to substrend from a character
variable.

symbol(substrstart::substrlen)
Parenthesis to select a substring of substrlen bytes beginning at substrstart from a character
variable.

For an array of character strings, these forms can be combined by using
symbol(subscript,substrstart:substrend), or symbol(subscript,substrstart::substrlen).

LENGTH OF
Returns the length of a symbol. For example, LENGTH OF ABC returns the length of the symbol ABC.

Operators that can be used only in conditional expressions

The following operators can be used only in conditional expressions (for example, the IF command):

Compare the two operands for equality.

Compare the two operands for inequality.

<
Determines whether the left operand is less than the right operand.
>
Determines whether the left operand is greater than the right operand.
<=
Determines whether the left operand is less than or equal to the right operand.
>=
Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.

Logical "or" operation.

Chapter 4. Syntax for LangX COBOL expressions 25

26 IBM z/OS Debugger: Reference and Messages

Chapter 5. z/0S Debugger commands

Commands and keywords can be abbreviated. The abbreviations shown with some commands are the
minimum abbreviations. However, you can use a minimum abbreviation or any string from the minimum
to completely spelling out the keyword; all are valid. This is true of all keywords for commands.

If you are debugging in full-screen mode, you can get help with z/OS Debugger command syntax by either
pressing PF1 or entering a question mark (?) on the command line. This lists all z/OS Debugger

commands in the Log window.

To get a list of options for a command, enter a partial command followed by a question mark.

Remote debug mode only accepts these commands (if indicated) if you run it in Debug Tool compatibility

mode.

The table below summarizes the z/OS Debugger commands.

“? command” on page 31

Displays all z/OS Debugger commands in the Log window.

“ALLOCATE command” on page 31

Allocates a file to an existing data set, a concatenation of
existing data sets, or a temporary data set.

“ANALYZE command (PL/I)” on page
32

Displays the process of evaluating an expression and the data
attributes of any intermediate results.

“Assignment command (assembler and
disassembly)” on page 33

Assigns the value of an expression to a specified storage
location or register.

“Assignment command (LangX COBOL)”
on page 35

Assigns the value of an expression to a specified reference.

“Assignment command (PL/I)” on page
36

Assigns the value of an expression to a specified reference.

“AT command” on page 37

Defines a breakpoint (gives control of your program to z/0S
Debugger under the specified circumstances).

“BEGIN command” on page 74

BEGIN and END delimit a sequence of one or more
commands to form one longer command.

“block command (C and C++)” on page
75

Allows you to group any number of z/OS Debugger commands
into one command.

“break command (C and C++)” on page
75

Allows you to terminate and exit a loop (that is, do, for, and
while) or switch command from any point other than the
logical end.

“CALL command” on page 76

The CALL command calls either a procedure, entry name, or
program name, or it requests that a utility function be run.

“CC command” on page 84

Controls whether code coverage data is collected.

“CLEAR command” on page 86

Removes the actions of previously issued z/OS Debugger
commands (such as breakpoints).

“COMMENT command” on page 93

Used to insert commentary into the session log.

“COMPUTE command (COBOL)” on page
93

Assigns the value of an arithmetic expression to a specified
reference.

“CURSOR command (full-screen mode)”
on page 95

Moves the cursor between the last saved position on the z/0S
Debugger session panel (excluding the header fields) and the
command line.

© Copyright IBM Corp. 1992, 2020

27

“Declarations (assembler, disassembly,
and LangX COBOL)” on page 95

Declares session variables that are effective during a z/0OS
Debugger session.

“Declarations (C and C++)” on page 96

Declares session variables and tags that are effective during a
z/0S Debugger session.

“Declarations (COBOL)” on page 99

Declares session variables that are effective during a z/OS
Debugger session.

“DECLARE command (PL/I)” on page
101

Declares session variables that are effective during a z/OS
Debugger session.

“DESCRIBE command” on page 102

Displays the attributes of references, compile units, and the
execution environment.

“DISABLE command” on page 107

Makes the AT breakpoint inoperative, but does not clear it;
you can ENABLE it later without typing the entire command
again.

“do/while command (C and C++)” on
page 110

Performs a command before evaluating the test expression.

“DO command (PL/I)” on page 110

Allows one or more commands to be collected into a group
which can (optionally) be run repeatedly.

“ENABLE command” on page 113

Makes AT breakpoints operative after they have been
disabled by the DISABLE command.

“EVALUATE command (COBOL)” on
page 114

Provides a shorthand notation for a series of nested IF
statements.

“Expression command (C and C++)” on
page 116

Evaluates the given expression which can be used to either
assign a value to a variable or to call a function.

“FIND command” on page 117

Provides full-screen and line mode searching of source and
listing files, and full-screen searching of Log and Monitor
windows.

“FINDBP command” on page 121

Provides full-screen searching of the source for line,
statement, and offset breakpoints.

“for command (C and C++)” on page 123

Provides iterative looping.

“FREE command” on page 124

Frees (deallocates) an allocated file.

“GO command” on page 124

Causes z/0S Debugger to start or resume running your
program.

“GOTO command” on page 125

Causes z/0S Debugger to resume program execution at the
specified statement id.

“GOTO LABEL command” on page 127

Causes z/0S Debugger to resume running program at the
specified statement label.

“%IF command (programming language
neutral)” on page 129

Lets you conditionally perform a command; use this syntax if
you are constructing a command that might run in different
programming languages.

“IF command (assembler, disassembly,
and LangX COBOL)” on page 129

Lets you conditionally perform a command.

“if command (C and C++)” on page 130

Lets you conditionally perform a command.

“IF command (COBOL)” on page 131

Lets you conditionally perform a command.

“IF command (PL/I)” on page 134

Lets you conditionally perform a command.

28 IBM z/0OS Debugger: Reference and Messages

“IMMEDIATE command (full-screen
mode)” on page 134

Causes a command within a command list to be performed
immediately. For use with commands assigned to a PF key.

“INPUT command (C, C++, and COBOL)”
on page 135

Provides input for an intercepted read and is valid only when
there is a read pending for an intercepted file.

“JUMPTO command” on page 136

Jumps to the specified statement and then stops the program
at that statement.

“LIST command” on page 139

Displays information about your z/OS Debugger session.

“LOAD command” on page 165

Specifies that the named module should be loaded for
debugging purposes.

“LOADDEBUGDATA command” on page
166

Specifies that a compile unit (CU) as an assembler CU and
loads debug data.

“MEMORY command” on page 169

Identifies an address in memory to display in the Memory
window.

“MONITOR command” on page 170

Defines or redefines a command whose output is displayed in
the Monitor window (full-screen mode), terminal output (line
mode), or log file (batch mode).

“MOVE command (COBOL)” on page
174

Transfers data from one area of storage to another.

“NAMES command” on page 178

Specify names of load modules or compile units to debug or
ignore, and display the current setting of the NAMES
command.

“Null command” on page 180

A semicolon written where a command is expected.

“ON command (PL/I)” on page 180

Establishes the actions to be executed when the specified
PL/I condition is raised.

“PANEL command (full-screen mode)”
on page 182

Displays special panels (for example, to customize your full-
screen session).

“PERFORM command (COBOL)” on page
184

Identifies a series of commands to be run. The series of
commands can be run repeatedly, if you use the UNTIL
keyword of the command.

“PLAYBACK commands” on page 186

Commands to start and stop recording application execution
states and replay the recorded execution states.

“POPUP command” on page 190

Displays the Command pop-up window, where you type in
commands.

“POSITION command” on page 190

Positions the cursor to a specific line in the specified window.

2

“Prefix commands (full-screen mode)
on page 190

Apply only to source listing lines and are typed into the
Source window.

“PROCEDURE command” on page 192

Allows the definition of a group of commands that can be
accessed using the CALL procedure command.

“QUALIFY RESET command” on page
192

Resets qualification to the block of the suspended program
and scrolls the Source window to display the current
statement line.

“QUERY command” on page 192

Displays the current value of z/OS Debugger settings (such as
the current location in the suspended program).

“QUIT command” on page 198

Ends a z/OS Debugger session (with a return code, if
specified).

Chapter 5. z/OS Debugger commands 29

“QQUIT command” on page 199

Ends a z/OS Debugger session (without additional prompting)

“RETRIEVE command (full-screen
mode)” on page 201

Displays the last command entered on the command line.

“RESTORE command” on page 200

Enables explicit restoring of settings, breakpoints, and
monitor specifications.

“RUN command” on page 202

Causes z/0S Debugger to start or resume running your
program.

“RUNTO command” on page 202

Causes z/0S Debugger to run your program to a specific point
(without setting a breakpoint)

“SCROLL command (full-screen mode)”
on page 203

Provides horizontal and vertical scrolling in full-screen mode.

“SELECT command (PL/I)” on page 206

Chooses one of a set of alternate commands.

“SET command” on page 207

Controls various z/OS Debugger settings.

“SET command (COBOL)” on page 265

Assigns a value to a COBOL reference.

“SHOW prefix command (full-screen
mode)” on page 268

Specifies what relative statement (for C) or relative verb (for
COBOL) within the line is to have its frequency count
temporarily shown in the suffix area.

“STEP command” on page 268

Causes z/0OS Debugger to dynamically step through a
program, running one or more program statements.

“STORAGE command” on page 270

Enables you to alter up to eight bytes of storage.

“switch command (C and C++)” on page
272

Enables you to transfer control to different commands within
the switch body, depending on the value of the switch
expression.

“SYSTEM command (z/0S)” on page 274

Lets you issue TSO commands during a z/OS Debugger
session.

“TRIGGER command” on page 275

Raises the specified AT condition in z/OS Debugger, or raises
the specified programming language condition in your
program.

“TSO command (z/0S)” on page 279

Lets you issue TSO commands during a z/OS Debugger
session (this command is valid only in a TSO environment).

“USE command” on page 279

Causes the z/OS Debugger commands in the specified file or
data set to be either performed or syntax checked.

“while command (C and C++)” on page
280

Enables you to repeatedly perform the body of a loop until the
specified condition is no longer met or evaluates to false

“WINDOW command (full-screen
mode)” on page 281

Opens, close, resizes, or expands to full screen (zooms) the
specified window on the z/OS Debugger session panel.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0OS Debugger User's Guide

Related references

Chapter 7, “z/0S Debugger built-in functions,” on page 327

Chapter 8, “z/0S Debugger variables,” on page 333

30 IBM z/OS Debugger: Reference and Messages

? command

The ? command displays a list of z/OS Debugger commands in the Log window.
»—?— ;>

Usage note
In the following cases, z/OS Debugger does not display the syntax help after you enter the ? command:

« The z/OS Debugger SYSTEM and TSO commands followed by the ? command do not display the syntax
help; instead the ? is sent to the host as part of the system command.

« The COMMENT command followed by the ? command does not display the syntax help.

« The SET PFx command accepts a ? as the "command" operand and, in this case, does not display
syntax help.

ALLOCATE command

The ALLOCATE command allocates a file to an existing data set, a concatenation of existing data sets, or a
temporary data set.

»— ALLOCATE — FILE — ddname attributes ; P

attributes
oLD

[
td

oLD
M—— DSNAME — (dsn) J_ T
L SHR J

»——— DSNAME — dsn

“— TEMP — TRACKS — (— primspc — ,— secspc —) —/
FILE ddname

The DD name of the file.
DSNAME dsn

The name of an existing data set.

DSNAME (dsn,dsn,...)
The names of the existing data sets that need to be concatenated.

TEMP
A temporary data set is allocated.

TRACKS (primspc,secspc,...)
The number of tracks for the primary space (primspc) and secondary space (secspc) to allocate for the
temporary data set.

oLD
Set the disposition of the data set to OLD.

SHR
Set the disposition of the data set to SHR.

MOD
Set the disposition of the data set to MOD.

Usage note

This command is not available under CICS.

Chapter 5. z/OS Debugger commands 31

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“FREE command” on page 124
“DESCRIBE command” on page 102

ANALYZE command (PL/I)

The ANALYZE command displays the process of evaluating an expression and the data attributes of any
intermediate results. To display the results of the expression, use the LIST command.

»— ANALYZE — EXPRESSION — (— expression —) — ;-»<

EXPRESSION
Requests that the accompanying expression be evaluated from the following points of view:

« What are the attributes of each element during the evaluation of the expression?
« What are the dimensions and bounds of the elements of the expression, if applicable?

« What are the attributes of any intermediate results that will be created during the processing of the
expression?

expression
A valid z/OS Debugger PL/I expression.

Usage notes

« If SET SCREEN ON is in effect, and you want to issue ANALYZE EXPRESSION for an expression in your
program, you can bring the expression from the Source window up to the command line by typing over
any character in the line that contains the expression. Then, edit the command line to form the desired
ANALYZE EXPRESSION command.

« If SET WARNING ONis in effect, z/OS Debugger displays messages about PL/I computational
conditions that might be raised when evaluating the expression.

« Although the PL/I compiler supports the concatenation of GRAPHIC strings, z/OS Debugger does not.
« The ANALYZE command cannot be used to debug Enterprise PL/I programs.

« The ANALYZE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

« The ANALYZE command cannot be used while you debug a disassembled program.
Example

This example is based on the following program segment:

DECLARE lo_point FIXED BINARY(31,5);

DECLARE hi_point FIXED BINARY(31,3);

DECLARE offset FIXED DECIMAL(12,2);

DECLARE percent CHARACTER(12);

lo_point = 5.4; hi_point = 28.13; offset = -6.77;
percent = '18';

The following is an example of the information prepared by issuing ANALYZE EXPRESSION. Specifically,
the following shows the effect that mixed precisions and scales have on intermediate and final results of
an expression:

ANALYZE EXPRESSION ((hi_point - lo_point) + offset / pezxcent)
>>> Expression Analysis <<<
(HI_POINT - LO_POINT) + OFFSET / PERCENT

HI_POINT - LO_POINT

| HI_POINT

| FIXED BINARY(31,3) REAL

| LO_POINT

| FIXED BINARY(31,5) REAL

FIXED BINARY(31,5) REAL

OFFSET / PERCENT

|
|
|
|
|
|
| | OFFSET

32 IBM z/OS Debugger: Reference and Messages

[FIXED DECIMAL(12,2) REAL
[PERCENT

[CHARACTER(12)

| FIXED DECIMAL(15,5) REAL
FIXED BINARY(31,17) REAL

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“SET WARNING command (C, C++, COBOL, and PL/I)” on page 262
“PLAYBACK commands” on page 186

Assignment command (assembler and disassembly)

The Assignment command assigns the value of an expression to a specified memory location or register.

»— receiver 1 [= — sourceexpr — ;>4
< >

L receiverlen J

receiver
A valid z/OS Debugger assembler reference or expression.

receiverlen
A valid z/OS Debugger assembler reference or expression enclosed in opening and closing brackets
(<, >). The value of this reference is used as the length of the receiver.

sourceexpr
A valid z/OS Debugger assembler expression.

Usage notes

« When the receiver expression does not have an implicit length, you must specify a length override and
enclose it in angle brackets (<>). For example %R1->+10 <4> = 20; requires an explicit length
expression because the receiver expression has no implicit length. However, X=X+1; (where X is
defined as X DS F) would not normally have an explicit length specification.

« The Assignment command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

« Assign the value 6 to variable x.

 Assign to R5 the address of name_table.

%R5 = addr'name_table ;

Assign to the prg_name variable the value of the character string 'MYPROG'.

prg_name = 'MYPROG' ;

Assign the value of X to the 4 bytes at offset 8 from the contents of R8.
%R8->+8 <1'x> = x;

« Move a string of 14 bytes pointed to by the contents of R8 (where R8 was an equated register used in
the program) to 6 bytes past the location pointed to by R2.

%R2->+6 <14> = R8->+0;

Chapter 5. z/OS Debugger commands 33

» Set 32 bytes pointed to by R6 to zero.
%R6->+0 <X'20'> = X'00"';
Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“PLAYBACK commands” on page 186

Assignment rules
An assembler assignment is an arithmetic assighment, a bit assignment, or a character assignment.

« Arithmetic assignments are padded (usually with zeros) and truncated on the left. If the source has a
type of F or H, the arithmetic statement is padded with sign bits.

- Bit assignments are padded (with zeros) and truncated on the right.
« Character assignments are padded (with blanks) and truncated on the right.

The following table shows how the assignment type is determined from the source and receiver data
types. In this table, the following definitions are used:

e d

Indicates an unknown type, for example, R1->+2.
*

Indicates any type or length.
Arithmetic

Indicates an arithmetic assignment. Padding is on left with sign bits.
Bit

Indicates a string assignment padded with zeros.
Character

Indicates a string assignment padded with blanks.
Hex Float

Hexadecimal floating point assignment.

String assignment
The number of bytes that correspond to the Min(receiver length, source length) are
moved from the source to the receiver. If the receiver length is larger, it is padded. If the source
length is larger, it is truncated. All padding and truncation is done on the right.

Move
The number of bytes that correspond to the receiver length are moved directly into the receiver
location.

Error
Statement that is flagged as not valid.

Table 4. Assignment rules depending on the source and receiver type

Receiver Source Assignment Pad or
type Truncate
Type Length Type Length yp
* 1-* ? ? Move None

34 IBM z/0OS Debugger: Reference and Messages

Table 4. Assignment rules depending on the source and receiver type (continued)
Receiver Source Assignment Pad or
Type Length Type Length type Truncate
F,HAY 1-4 F,HAY, X, B, [1-4 Arithmetic Left
C
E,D,L 4,8,16 Hex Float Right - 0
P,Z 1-* Arithmetic
X,B,C >4 Error
Other Other Error
X 1-4 F,HAY 1-4 Arithmetic Left
P,Z 1-* Arithmetic
1-* X, B 1-* Bit Right - 0
C Bit Right - 0
Other Error
C 1-4 F,HAY 1-4 Arithmetic Left
P, Z 1-* Arithmetic
1-* X, B 1-* Bit Right - 0
C Character Right — blank
Other Error
Pz 1-* P,Z 1-* Packed
F,HAY,X,B, [1-4 Packed
C
E,D, L 4,8,16 Hex Float Right - 0
E,D, L 4,8,16 X = Move None
E,D,L 4,8,16 Hex Float Right - 0
F,HAY 1-4 Hex Float Right - 0
P,Z 1-* Hex Float Right - 0
? 1-4 F,HAY 1-4 Arithmetic Left
1-* X,B,C 1-* Bit Right -0
All others Error

Assignment command (LangX COBOL)

The Assignment command assigns the value of an expression to a specified reference. It is the
equivalent of the COBOL COMPUTE statement.

»w— '— receiver — '— = — '— sourceexpr — '— ;-»«

receiver
A valid z/OS Debugger LangX COBOL reference enclosed in apostrophes (').

Chapter 5. z/OS Debugger commands 35

sourceexpr
A valid z/OS Debugger LangX COBOL expression enclosed in apostrophes (").

Usage notes

- When receiver is an arithmetic variable, then sourceexpr can be a hexadecimal string of the same length
as receiver. z/OS Debugger assumes that the correct internal representation is used and the
hexadecimal value is moved directly into receiver.

« When receiver is a non-numeric string, then sourceexpr can be a hexadecimal string of any length. If the
length of sourceexpr is less than the length of receiver, then receiver is padded on the right with binary
zeros.

« When receiver is a COBOL INDEX variable, then z/OS Debugger assumes that sourceexpr is a subscript
value and converts it to the proper offset before storing the value into receiver.

« The Assignment command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

« Assign the value 6 to variable x.

« Increment the value of X by 5.
IXI = IX 4y 5I ;
Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“PLAYBACK commands” on page 186

Assignment command (PL/I)

The Assignment command assigns the value of an expression to a specified reference.

»»— reference — = — expression — ;-»<
reference

A valid z/OS Debugger PL/I reference.
expression

A valid z/OS Debugger PL/I expression.
Usage notes
« The PL/I repetition factor is not supported by z/OS Debugger.

For example, the following is not valid: tx = (16) '01'B;

- If z/OS Debugger was started because of a computational condition or an attention interrupt, using an
assignment to set a variable might not give the expected results. This is because z/OS Debugger cannot
determine variable values within statements, only at statement boundaries.

- The PL/I assignment statement option BY NAME is not valid in the z/OS Debugger.

- If you are debugging a Enterprise PL/I program, the target of an assighment command cannot be the
variables %EPRn, %FPRn, %GPRn, or %LPRn.

« The Assignment command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

36 IBM z/0OS Debugger: Reference and Messages

- Assign the value 6 to variable x.
X = 6;

- Assign to the z/OS Debugger variable %GPR5 the address of name_table.
%GPR5 = ADDR (name_table);

« Assign to the prg_name variable the value of z/OS Debugger variable %PROGRAM.
prg_name = 9%PROGRAM;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“references” on page 15
“PLAYBACK commands” on page 186

AT command

The AT command defines a breakpoint or a set of breakpoints. By defining breakpoints, you can
temporarily suspend program execution and use z/OS Debugger to perform other tasks. By specifying an
AT-condition in the AT command, you instruct z/OS Debugger when to gain control. You can also specify
in the AT command what action z/OS Debugger should take when the AT-condition occurs.

A breakpoint for the specified AT-condition remains established until either another AT command
establishes a new action for the same AT-condition or a CLEAR command removes the established
breakpoint. An informational message is issued when the first case occurs. Some breakpoints might
become obsolete during a debug session and will be cleared automatically by z/OS Debugger.

For MVS batch, TSO, and CICS programs, the SET SAVE and SET RESTORE commands can be used to
automatically save and restore breakpoints between z/OS Debugger sessions. For all other programs, the
SET SAVE and RESTORE commands can be used to automatically save and manually restore breakpoints
between sessions.

For CICS only: If you do not use the SET SAVE and SET RESTORE commands to control the saving and
restoring of breakpoints or monitor specifications and you use a DTCN profile to start a full-screen mode
debugging session, z/OS Debugger preserves the following breakpoints for that session until the DTCN
profile is deleted:

« APPEARANCE breakpoints

« CALL breakpoints

« DELETE breakpoints

« ENTRY breakpoints

« EXIT breakpoints

« GLOBAL APPEARANCE breakpoints
« GLOBAL CALL breakpoints

« GLOBAL DELETE breakpoints

« GLOBAL ENTRY breakpoints

« GLOBAL EXIT breakpoints

« GLOBAL LABEL breakpoints

» GLOBAL LOAD breakpoints

« GLOBAL STATEMENT/LINE breakpoints
« LABEL breakpoints

« LOAD breakpoints

* OCCURRENCE breakpoints

Chapter 5. z/OS Debugger commands 37

« STATEMENT/LINE breakpoints

« TERMINATION breakpoint

If a deferred AT ENTRY breakpoint has not been encountered, it is not saved nor restored.

For optimized COBOL programs: The order in which breakpoints are encountered in optimized programs
is generally the same as in unoptimized programs. There might be differences due to the effects of

optimization.

The following table summarizes the forms of the AT command.

“AT ALLOCATE (PL/I)
command” on page 40

Gives z/0S Debugger control when storage for a named controlled
variable or aggregate is dynamically allocated by PL/I.

“AT APPEARANCE
command” on page 41

Gives z/0S Debugger control:

« For C and PL/I, when the specified compile unit is found in storage
« For COBOL, the first time the specified compile unit is called

“AT CALL command” on
page 43

Gives z/OS Debugger control on an attempt to call the specified entry
point.

“AT CHANGE command
(full screen mode,
line mode, batch

mode)” on page 45

Gives z/0OS Debugger control when either the specified variable value or
storage location is changed.

“AT CHANGE command
(remote debug mode)”

on page 50

Gives z/0S Debugger control when the specified variable value is
changed.

“AT CURSOR command
(full-screen mode)” on

page 52

Defines a statement breakpoint by cursor pointing.

“AT DATE command
(COBOL)" on page 53

For COBOL, gives z/OS Debugger control for each date processing
statement within the specified block.

“AT DELETE command” on

page 53

Gives z/OS Debugger control when a load module is deleted.

“AT ENTRY command” on
page 54 or “AT ENTRY
command (remote debug
mode)"” on page 56

Defines a breakpoint at the specified entry point.

“AT EXIT command” on
page 57

Defines a breakpoint at the specified exit point

“AT GLOBAL command” on

page 58

Gives z/0S Debugger control for every instance of the specified AT-
condition.

“AT LABEL command” on
page 60

Gives z/0S Debugger control at the specified statement label.

“AT LINE command” on
page 63

Gives z/OS Debugger control at the specified line.

“AT LOAD command” on
page 63 or “AT LOAD
command (remote debug
mode)"” on page 65

Gives z/OS Debugger control when the specified load module is loaded.

38 IBM z/0OS Debugger: Reference and Messages

“AT OCCURRENCE Gives z/0S Debugger control on a language or Language Environment

command” on page 65 condition or exception.

“AT OFFSET command Gives z/0S Debugger control at the specified offset in the disassembly
(disassembly)” on page |view.

68

“AT PATH command” on Gives z/0OS Debugger control at a path point.

page 69

“AT Prefix command Defines a statement breakpoint through the Source window prefix area.

(full-screen mode)” on

page 70

“AT STATEMENT command” |Gives z/OS Debugger control at the specified statement.

on page 70or “AT

STATEMENT command

(remote debug mode)”

on page 73
“AT TERMINATION Gives z/OS Debugger control when the application program is
command” on page 73 terminated.

Usage notes

To set breakpoints at specific locations in a program, z/OS Debugger depends on that program being
loaded into storage. If you issue an AT command for a specific EXIT, LABEL, LINE, or STATEMENT
breakpoint and the program is not known by z/OS Debugger, a warning message is issued and the
breakpoint is not set. For ENTRY, the breakpoint becomes a deferred breakpoint.

To set a global breakpoint, you can specify an asterisk (*) with the AT command or you can specify an
AT GLOBAL command. For example, if you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY x;

or

AT GLOBAL ENTRY;
AT CHANGE, AT EXIT, AT LABEL, AT LINE, or AT STATEMENT breakpoints (when entered for a

specific block, label, line, or statement) are automatically cleared when the containing compile unit is
removed from storage. AT ENTRY breakpoints are converted to deferred AT ENTRY breakpoints.

AT CHANGE breakpoints are usually automatically cleared when the containing blocks are no longer
active or if the relevant variables are in dynamic storage that is freed by a language construct in the
program (for example, a C call to free ()). However, such breakpoints are not cleared when storage in
an assembler or disassembly program is freed via a STORAGE RELEASE macro.

Clearing of a breakpoint is independent of whether the breakpoint is enabled by using the ENABLE
command or disable by using the DISABLE command.

When multiple AT conditions are raised at the same statement or line, z/OS Debugger processes them
in the following order:

1. Any global breakpoints other than PATH.
2. Any PATH breakpoints.

3. Any statement breakpoints.

4. Any CHANGE breakpoints

If you want breakpoints to stop your program only under certain conditions, you can use a combination
of the AT and IF command or the AT command with a WHEN condition to establish a conditional
breakpoint.

The AT commands cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Chapter 5. z/OS Debugger commands 39

Related tasks
IBM z/0S Debugger User's Guide

Related references
“LIST command” on page 139

every_clause syntax

Most forms of the AT command contain an optional every_clause that controls whether the specified
action is taken based on the number of times a situation has occurred. For example, you might want an
action to occur only every 10th time a breakpoint is reached.

The syntax for every_clause is:

»d

- 1 L EVERY — integer J L FROM — integer —J L TO — integer —J J h

EVERY

EVERY integer
Specifies how frequently the breakpoint is taken. For example, EVERY 5 means that z/OS Debugger is
started every fifth time the AT-condition is met. The default is EVERY 1.

FROM integer
Specifies when z/0S Debugger invocations are to begin. For example, FROM 8 means that z/0OS
Debugger is not started until the eighth time the AT-condition is met. If the FROM value is not
specified, its value is equal to the EVERY value.

TO integer
Specifies when z/0OS Debugger invocations are to end. For example, TO 20 means that after the 20th
time this AT-condition is met, it should no longer start z/OS Debugger. If the TO value is not specified,
the every_clause continues indefinitely.

Usage notes

« FROM integer cannot exceed TO integer and all integers must be > 1.

« EVERY by itself is the same as EVERY 1 FROM 1.

« The EVERY, FROM, and TO clauses can be specified in any order.

Examples

 Break every third time statement 50 is reached, beginning with the 48th time and ending after the 59th
time. The breakpoint action is performed the 48th, 51st, 54th, and 57th time statement 50 is reached.

AT EVERY 3 FROM 48 TO 59 STATEMENT 50;

« At the fifth change of structure field member of the structure named mystzruct, print a message saying
that it has changed and list its new value. In addition, clear the CHANGE breakpoint. The current
programming language setting is C.

AT FROM 5 CHANGE mystruct.member {
LIST ("mystruct.member has changed.
It is now", mystruct.member);
CLEAR AT CHANGE mystruct.member;

AT ALLOCATE (PL/I) command

AT ALLOCATE gives z/OS Debugger control when storage for a named controlled variable or aggregate is
dynamically allocated by PL/I. When the AT ALLOCATE breakpoint occurs, the allocated storage has not
yet been initialized; initialization, if any, occurs when control is returned to the program.

40 IBM z/OS Debugger: Reference and Messages

»— AT ALLOCATE identifier command —»
L every_clause J f ,41
(identifier)
*

— ;<

identifier
The name of a PL/I controlled variable whose allocation causes an invocation of z/OS Debugger. If the
variable is the name of a structure, only the major structure name can be specified.

Sets a breakpoint at every ALLOCATE.

command
A valid z/OS Debugger command.

Usage notes

« The AT ALLOCATE command is not available to debug Enterprise PL/I programs.

« The AT ALLOCATE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

« When the major structure area_name is allocated, display the address of the storage that was
obtained.

AT ALLOCATE area_name LIST ADDR (area_name);
- List the changes to temp where the storage for temp has been allocated.

DECLARE temp CHAR(80) CONTROLLED INITIAL('abc');
AT ALLOCATE temp;

BEGIN;
AT CHANGE temp;
BEGIN;
LIST (temp);
END;
GO;
END;
GO;
temp = 'The first time.';
temp = 'The second time.';
temp = 'The second time.';

When temp is allocated the value of temp has not yet been initialized. When it is initialized to 'abc' by
the INITIAL phrase, the first AT CHANGE is recognized and 'abc' is listed. The three assignments to
temp cause the value to be set again but the third assignment doesn't change the value. This example
results in one ALLOCATE breakpoint and three CHANGE breakpoints.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40
“PLAYBACK commands” on page 186

AT APPEARANCE command

Gives z/OS Debugger control when the specified compile unit is found in storage. This is usually the result
of a new load module being loaded. However, for modules with the main compile unit in COBOL, the
breakpoint does not occur until the compile unit is first entered after being loaded.

Chapter 5. z/OS Debugger commands 41

»w— AT L _J APPEARANCE cu_spec
every clause f , 41
(cu_spec)
*

»— command — ; >«
*
Sets a breakpoint at every APPEARANCE of any compile unit.
command

A valid z/OS Debugger command.
Usage notes

- If this breakpoint is set in a parent enclave it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

« If the compile unit is qualified with a load module name, the AT APPEARANCE breakpoint will only be
recognized for the compile unit that is contained in the specified load module. For example, if a compile
unit cux that is in load module 1oady appears, the breakpoint AT APPEARANCE loadx::>cux will
not be triggered.

« If the compile unit is not qualified with a load module name, the current load module qualification is not
used.

« z/0S Debugger gains control when the specified compile unit is first recognized by z/OS Debugger. This
can occur when a program is reached that contains a reference to that compile unit. This occurs late
enough that the program can be operated on (setting breakpoints, for example), but early enough that
the program has not yet been executed. In addition, for C, static variables can also be referenced.

« The AT APPEARANCE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

- AT APPEARANCE is helpful when setting breakpoints in unknown compile units. You can set
breakpoints at locations currently unknown to z/OS Debugger by using the proper qualification and
embedding the breakpoints in the command list associated with an APPEARANCE breakpoint. However,
there can be only one APPEARANCE breakpoint set at any time for a given compile unit and you must
include all breakpoints for that unknown compile unit in a single APPEARANCE breakpoint.

« For a non-CICS application, the AT APPEARANCE breakpoint is cleared at the end of a process.

« Before you enter the AT APPEARANCE command while you debug an assembler or disassembled
program, enter the SET ASSEMBLER ON or SET DISASSEMBLY ON command.

« For C, C++, and Enterprise COBOL for z/0S Version 5 only: AT APPEARANCE is not triggered for
compile units that reside in a loaded module because the compile units are known at the time of the
load.

« For C, C++, Enterprise COBOL for z/0S Version 5, and PL/I only: An APPEARANCE breakpoint is
triggered when z/0OS Debugger finds the specified compile unit in storage. To be triggered, however, the
APPEARANCE breakpoint must be set before the compile unit is loaded.

- For Enterprise COBOL for z/0S Version 4 or earlier: An APPEARANCE breakpoint is triggered when
z/0S Debugger finds the specified compile unit in storage. To be triggered, however, the APPEARANCE
breakpoint must be set before the compile unit is called.

At the time the APPEARANCE breakpoint is triggered, the compile unit you are monitoring has not
become the currently-running compile unit. The compile unit that is current when the new compile unit
appears in storage, triggering the APPEARANCE breakpoint, remains the current compile unit until
execution passes to the new compile unit.

» For CICS only: The AT APPEARANCE breakpoint is cleared at the end of the last process in the
application.

42 IBM z/OS Debugger: Reference and Messages

Examples

- Establish an entry breakpoint when compile unit cu is found in storage. The current programming
language setting is C.

AT APPEARANCE cu {
AT ENTRY a;
GO;

b

« Deferthe AT EXIT and AT LABEL breakpoints until compile unit cuy is first entered after being loaded
into storage. The current programming language setting is COBOL.

AT APPEARANCE cuy PERFORM
AT EXIT cuy:>blocky LIST ('Exiting blocky.');
AT LABEL cuy:>labl QUERY LOCATION;
END-PERFORM;

If cuy is later deleted from storage, the breakpoints that are dependent on cuy are automatically
cleared. However, if cuy is then loaded again, the APPEARANCE breakpoint for cuy is triggered and the
AT EXIT and AT LABEL breakpoints are redefined.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“cu_spec” on page 13

“PLAYBACK commands” on page 186

AT CALL command

Gives z/0S Debugger control when the application code attempts to call the specified entry point. Using
CALL breakpoints, you can simulate the execution of unfinished subroutines, create dummy or stub
programs, or set variables to mimic resultant values, allowing you to test sections of code before the
whole is complete.

»— AT L J CALL entry_name command —»
every_clause

(fmtry_n:a)

— ; >«

entry_name
A valid external entry point name constant or zero (0); however, 0 can only be specified if the current
programming language setting is C or PL/I.

Sets a breakpoint at every CALL of any entry point.

command
A valid z/OS Debugger command.

Usage notes

« AT CALL intercepts the call itself, not the subroutine entry point. C, COBOL, and PL/I programs
compiled with the PATH suboption of the TEST or DEBUG compiler option identify call targets even if
they are unresolved.

« A breakpoint set with AT CALL for a call to a C, C++, or PL/I built-in function is never triggered.

« AT CALL intercepts calls to entry points known to z/OS Debugger at compile time. Calls to entry
variables are not intercepted, except when the current programming language setting is either C or
COBOL (compiled with the TEST run-time option).

Chapter 5. z/OS Debugger commands 43

« AT CALL Ointercepts calls to unresolved entry points when the current programming language setting
is C or PL/I (compiled with the TEST run-time option).

« AT CALL allows you to intercept or bypass the target program by using GO BYPASS or GOTO. If
resumed by a normal GO or STEP, execution resumes by performing the call.

- If you set a breakpoint in a parent enclave, the breakpoint can be triggered and operated on with
breakpoint commands while the application is in a child enclave.

« While debugging a CICS application, the breakpoint is cleared at the end of the last process in the CICS
application. While debugging a non-CICS application, the breakpoint is cleared at the end of a process.

« The AT CALL command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

« You cannot use the AT CALL command while you debug a disassembly program.

 z/OS Debugger does not support the AT CALL command while you debug a LangX COBOL or any VS
COBOL IT program.

« For C and C++ only: The following usage notes apply:

— If your C and C++ program has unresolved entry points or entry variables, enter the command AT
CALL o.

— To be able to set breakpoints in a C program using the AT CALL command, you must compile your
program in one of the following ways:

- With either the PATH or ALL suboption of the TEST compiler option.
- With either the PATH or ALL suboption of the DEBUG compiler option.

— To be able to set breakpoints in a C++ program using the AT CALL command, you must compile your
program in one of the following ways:

- With the TEST compiler option.
- With either the PATH or ALL suboption of the DEBUG compiler option.
- For COBOL only: The following usage notes apply:
— entry_name can refer to a method as well as a procedure.
— If entry_name is case sensitive, enclose it in quotation marks (") or apostrophes ().

— To be able to set breakpoints in a COBOL program by using the AT CALL command, you must
compile your program with the correct TEST compiler suboptions. The following list describes the
TEST compiler suboptions to use for the corresponding version of the COBOL compiler:

- Specify the HOOK or NOHOOK suboption of the TEST compiler option for Enterprise COBOL for z/OS,
Version 4

- Specify the PATH, ALL, or NONE suboption of the TEST compiler option for the following compilers:
» Enterprise COBOL for z/OS and 0S/390, Version 3
« COBOL for 0S/390 & VM, Version 2

If you compile your program with one of the following compilers and suboptions, you cannot use the
AT CALL entry_name command:

- Itis not supported for Enterprise COBOL for z/OS Version 5.
- NOHOOK suboption of the TEST compiler option for Enterprise COBOL for z/OS, Version 4.
- NONE suboption of the TEST compiler option for the following compilers:
« Enterprise COBOL for z/OS and 0S/390, Version 3.
« COBOL for 0S/390 & VM, Version 2.
Instead, use AT CALL =*.

— AT CALL 0is not supported for use with COBOL programs. However, COBOL is able to identify CALL
targets even if they are unresolved, and also identify entry variables and intercept them. Therefore,
not all external references need be resolved for COBOL programs.

44 1BM z/0OS Debugger: Reference and Messages

 For PL/I only: The following usage notes apply:

— To be able to set CALL breakpoints in PL/I, you must compile your program with either the PATH or
ALL suboptions of the TEST compiler option. AT CALL 0 is supported and is called for unresolved
external references.

— CALL statements within an INITIAL attribute on a PL/I variable declaration will not trigger AT CALL
breakpoints.

« For assembler only: A CALL statement can be a call to an internal or external routine. A CALL
statement is defined to be one of the following opcodes: BALR, BASR, BASSM, BAL, BAS, BRASL, SVC,
or PC. You can use the command AT CALL MVS to give z/OS Debugger control at any SVC or PC
instruction.

Examples

« Intercept all calls and request input from the terminal.
AT CALL *;

« If the program starts function badsubz, intercept the call, set variable varbl to 50, and then bypass
the target function. The current programming language setting is C.

AT CALL badsubr {
varbl = 50;
GO BYPASS;

b

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Related references
“every_clause syntax” on page 40
“PLAYBACK commands” on page 186

AT CHANGE command (full screen mode, line mode, batch mode)

Gives z/0S Debugger control when either the program or z/OS Debugger command changes the specified
variable value or storage location.

Chapter 5. z/OS Debugger commands 45

ﬁ GLOBAL ﬁ
CHANGE >
L LOCAL %CU J
L cu_spec —J

»— AT
L every_clause —J

v

reference

M——>/"F'— reference —'
L WHEN — condition J

“— %STORAGE — (— address
L ,— length J

—({ reference] y

A 4

)_J

'— reference —

— %STORAGE — (— address L _J
,— length

»— command — ;-»<

)_J

GLOBAL
Specifies that the AT CHANGE breakpoint is global. The AT CHANGE breakpoint is not limited to a
specific compile unit; it spans the entire application. This is the default.
LOCAL
Specifies that the AT CHANGE breakpoint is limited to a specific compile unit.
cu_spec
A valid compile unit specification. Specifies that the AT CHANGE breakpoint is limited to this
compile unit.

condition
A valid, simple z/OS Debugger conditional expression. Simple means that you use only one operator;
for example, a < b.

reference
A valid z/OS Debugger reference in the current programming language.

'reference’
A valid z/OS Debugger reference when the current programming language is LangX COBOL.

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE subject.
address
The starting address of storage to be watched for changes.

length
The number of bytes of storage being watched for changes. This must be a positive integer
constant. The default value is 1.

command
A valid z/OS Debugger command. If you are using remote debug mode, you can specify only
commands that are supported in remote debug mode.

Usage notes

« To use the AT CHANGE command for a COBOL level-88 variable, the PTF for Language Environment
APAR PK12834 must be installed on z/OS Version 1 Release 6 and Version 1 Release 7.

« Ifan AT CHANGE breakpoint is set on a file record of a BLOCKED QSAM file that is open OUTPUT or
EXTEND, the breakpoint might not occur as expected when the WRITE statement is used. The

46 IBM z/OS Debugger: Reference and Messages

breakpoint behavior in this case is not predictable because the file record is mapped onto the data
management buffer.

To get predictable AT CHANGE behavior in this case, set up the file to use a SAME RECORD AREA
clause.

Data is watched only in storage; hence a value that is being kept in a register because of compiler
optimization cannot be watched. In addition, the z/OS Debugger variables %GPRn, %Rn, %FPRn, %LPRn,
%EPRN, and any assembler or disassembly symbols representing registers cannot be watched.

Only entire bytes are watched; bits or bit strings within a byte cannot be singled out.

Because AT CHANGE breakpoints are identified by storage address and length, it is not possible to have
two AT CHANGE breakpoints for the same area (address and length) of storage. That is, an AT CHANGE
command replaces a previous AT CHANGE command if the storage address and length are the same.
However, any other overlap is ignored and the breakpoints are considered to be for two separate
variables. For example, if the storage address is the same, but the length is different, the AT CHANGE
command does not replace the previous AT CHANGE.

When more than one AT CHANGE breakpoint is triggered at a time, AT CHANGE breakpoints are
triggered in the order that they were entered. However, if the triggering of one breakpoint causes a
variable watched by a different breakpoint to change, the ordering of the triggers will not necessarily be
according to when they were originally entered. For example,

AT CHANGE y LIST vy;
AT CHANGE x y = 4;
GO;

If the next statement to be executed in your program causes the value of x to change, the CHANGE x
breakpoint is triggered when z/0S Debugger gains control. Processing of CHANGE x causes the value of
y to change. If you type GO; after being informed that CHANGE x was triggered, z/OS Debugger triggers
the CHANGE vy breakpoint (before returning control to your program).

In this case, the CHANGE vy breakpoint was entered first, but the CHANGE x breakpoint was triggered
first (because it caused the CHANGE vy breakpoint to be triggered).

%STORAGE is a z/OS Debugger built-in function that is available only with the AT CHANGE command.

For a CICS application on z/OS Debugger, the CHANGE 9%STORAGE breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on z/OS Debugger, it is cleared at the end
of a process.

The referenced variables must exist when the AT CHANGE breakpoint is defined. One way to ensure this
is to embed the AT CHANGE in an AT ENTRY.

An AT CHANGE breakpoint gets removed automatically when the specified variable is no longer defined.
AT CHANGEs for C static variables are removed when the module defining the variable is removed from
storage. For C storage that is allocated using malloc () or calloc (), this occurs when the dynamic
storage is freed using free ().

Changes are not detected immediately, but only at the completion of any command that has the
potential of changing storage, variable values, or the logical condition. If you specify a single reference,
you can restrict the circumstances under which the CHANGE condition is raised by specifying a WHEN
condition. If you enter a z/OS Debugger command that modifies a variable being watched, the CHANGE
condition is raised immediately if no WHEN condition is specified. If a WHEN condition is specified, the
CHANGE condition is only raised if the variable is modified and the WHEN condition is true. You can force
more or less frequent checking by using the SET CHANGE command.

C and C++ AT CHANGE breakpoint requirements

— The variable must be an lvalue or an array.

— The variable must be declared in an active block if the variable is a parameter or has a storage class
of auto.

— A CHANGE breakpoint defined for a static variable is automatically removed when the file in which the
variable was declared is no longer active. A CHANGE breakpoint defined for an external variable is
automatically removed when the module where the variable was declared is no longer active.

Chapter 5. z/OS Debugger commands 47

— If reference is a pointer, z/OS Debugger stops when the contents of storage at the address given by
that pointer changes.

« COBOL AT CHANGE breakpoint requirements

— AT CHANGE using a storage address should not reference a data item that follows a variable-size
element or subgroup within a group. COBOL dynamically remaps the group when a variable-size
element changes size.

— Be careful when examining a variable whose allocated storage follows that of a variable-size

element. COBOL dynamically remaps the storage for the element any time it changes size. This could
alter the address of the variable you want to examine.

— You cannot set a CHANGE breakpoint for a COBOL file record before the file is opened.
— The variable, when in the local storage section, must be declared in an active block.
« PL/I AT CHANGE breakpoint requirements

— CHANGE breakpoint is removed for based or controlled variables when they are FREEd and for
parameters and AUTOMATIC variables when the block in which they are declared is no longer active.

— CHANGE monitors only structures with single scalar elements. Structures containing more than one
scalar element are not supported.

— The variable must be a valid reference for the current block.
— The breakpoint is automatically removed after the referenced variable ceases to exist.

— A CHANGE breakpoint monitors the storage allocated to the current generation of a controlled
variable. If you subsequently allocate new generations, they are not monitored.

« For PL/I and C/C++, when you specify a reference, z/OS Debugger calculates the address of the
reference only once, when it runs the AT CHANGE command the first time. Thereafter, z/OS Debugger
monitors the storage location indicated by that address.

For the following items, z/OS Debugger recalculates the address of reference each time it monitors the
storage location. If the address of reference changes, z/OS Debugger uses the new storage location as
the address to monitor:

— COBOL variables whose address can change

— Assembler DSECT items that are in the range of an active USING when you enter the AT CHANGE
command

— Assembler absolute locations that are in the range of an active USING when you enter the AT
CHANGE command

« When you free storage with the STORAGE RELEASE macro in an assembler or disassembly program, it
is not possible to detect when the storage is freed. If you set an AT CHANGE breakpoint on storage
freed by a STORAGE RELEASE macro, unexpected results might occur, such as the triggering of the
breakpoint at unexpected times.

« The AT CHANGE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

 For optimized COBOL programs, the specified variable cannot be a variable that was discarded due to
compiler optimization.

« When you use a COBOL level-88 variable on an AT CHANGE command, the current setting of the value
is saved. z/OS Debugger stops at the breakpoint only if the setting of the COBOL level-88 variable
changes from the saved value to a different value. For example, if the saved value was TRUE and the
new value is FALSE, z/OS Debugger stops at the breakpoint. Note that level-88 variables cannot be
listed in LangX COBOL.

« To use a COBOL level-88 variable with the AT CHANGE command, you (through a z/OS Debugger
command) or the program must have previously set the variable to one of the values specified in the
variable's declaration. If you do not do this, z/OS Debugger behavior becomes unpredictable.

« When you use a condition, the variables used in the condition or the condition are not evaluated at the
time the breakpoint is set but when the location associated with the AT CHANGE command changes.

48 IBM z/0OS Debugger: Reference and Messages

= Only the following conditional operators can be used in a condition:

Compare the two operands for equality.

-=

Compare the two operands for inequality.

<
Determines whether the left operand is less than the right operand.
>
Determines whether the left operand is greater than the right operand.
<=
Determines whether the left operand is less than or equal to the right operand.
>=
Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.

Logical "or" operation.

« If you use the AT CHANGE command with a WHEN condition, every time the variable changes the
condition is evaluated. If the condition evaluates to true, z/OS Debugger stops and runs the command
associated with the breakpoint.

« When z/0S Debugger evaluates the condition and the condition is invalid, z/OS Debugger does one of
the following actions:

— If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the condition. You need to enter a command to indicate what action you want z/OS Debugger to take.

— If SET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the condition. z/OS Debugger continues running the program.

- If you specify address with more than 8 significant digits or if reference references 64-bit addressable
storage, z/OS Debugger assumes that the storage location is 64-bit addressable storage. Otherwise,
z/0S Debugger assumes that the storage location is 31-bit addressable storage.

Examples

- Identify the current location each time variable varbll or varbl2 is found to have a changed value.
The current programming language setting is COBOL.

AT CHANGE (varbll, varbl2) PERFORM
QUERY LOCATION;
GO;

END-PERFORM;

- When storage at the hex address 22222 changes, print a message in the log. Eight bytes of storage are
to be watched. The current programming language setting is C.

AT CHANGE %STORAGE (0x00022222, 8)
LIST "Storage has changed at hex address 22222";

« Set two breakpoints when storage at the hex address 1000 changes. The variable x is defined at hex
address 1000 and is 20 bytes in length. In the first breakpoint, 20 bytes of storage are to be watched.
In the second breakpoint, 50 bytes of storage are to be watched. The current programming language
setting is C.

AT CHANGE %STORAGE (0x00001000, 20) /* Breakpoint 1 set x/
AT CHANGE %STORAGE (0x00001000, 50) /* Breakpoint 2 set x/
AT CHANGE x /* Replaces breakpoint 1, since x is at =*/

/* hex address 1000 and is 20 bytes long */

« Stop when a variable reaches a value that is greater than 200.

Chapter 5. z/OS Debugger commands 49

AT CHANGE MYVAR WHEN MYVAR > 200 ;

MYVAR > 200 is a condition. Every time the value of MYVAR changes, the condition MYVAR > 200 is
evaluated. Changes to MYVAR do not trigger the AT CHANGE breakpoint. Only when MYVAR changes and
the condition MYVAR > 200 becomes true is the AT CHANGE breakpoint triggered.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
“Controlling how z/0OS Debugger handles invalid comparisons" in the IBM z/0S Debugger User's Guide

Related references

“address” on page 11

“every_clause syntax” on page 40

“references” on page 15

“PLAYBACK commands” on page 186

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

AT CHANGE command (remote debug mode)

Gives z/OS Debugger control when the program changes the specified variable value.

»— AT — CHANGE "— reference — "j— ; >

' — reference

' reference' or "reference"
A valid z/OS Debugger reference in the current programming language.

Usage notes

« When you enter an AT CHANGE command, the breakpoint is set relative to the location the program is
stopped, which might not be the program displayed in the source view. For example, your program is
stopped at program SUBZ1, which was called by program MAINZ, and the source view displays the
source for program SUBZ1. Then, you click on MAIN1 in the Debug view so that the source view displays
the source for MAIN1. If you enter the command AT CHANGE "Varl", a breakpoint is set to monitor
any changes to a variable called "Varl" in SUBZ, not a variable called "Varl" in MAIN1.

« Touse the AT CHANGE command for a COBOL level-88 variable, the PTF for Language Environment
APAR PK12834 must be installed on z/OS Version 1 Release 6 and Version 1 Release 7.

« Ifan AT CHANGE breakpoint is set on a file record of a BLOCKED QSAM file that is open OUTPUT or
EXTEND, the breakpoint might not occur as expected when the WRITE statement is used. The
breakpoint behavior in this case is not predictable because the file record is mapped onto the data
management buffer.

To get predictable AT CHANGE behavior in this case, set up the file to use a SAME RECORD AREA
clause.

- Data is watched only in storage; hence a value that is being kept in a register because of compiler
optimization cannot be watched. In addition, the z/OS Debugger variables $GPRn, %Rn, %FPRn, %LPRn,
%EPRN, and any assembler or disassembly symbols representing registers cannot be watched.

« Only entire bytes are watched; bits or bit strings within a byte cannot be singled out.

« Because AT CHANGE breakpoints are identified by storage address and length, it is not possible to have
two AT CHANGE breakpoints for the same area (address and length) of storage. That is, an AT CHANGE
command replaces a previous AT CHANGE command if the storage address and length are the same.
However, any other overlap is ignored and the breakpoints are considered to be for two separate

variables. For example, if the storage address is the same, but the length is different, the AT CHANGE
command does not replace the previous AT CHANGE.

« When more than one AT CHANGE breakpoint is triggered at a time, AT CHANGE breakpoints are
triggered in the order that they were entered. However, if the triggering of one breakpoint causes a

50 IBM z/OS Debugger: Reference and Messages

variable watched by a different breakpoint to change, the ordering of the triggers will not necessarily be
according to when they were originally entered. For example,

AT CHANGE y LIST vy;
AT CHANGE x y = 4;
GO;

If the next statement to be executed in your program causes the value of x to change, the CHANGE x
breakpoint is triggered when z/0OS Debugger gains control. Processing of CHANGE x causes the value of
y to change. If you type GO; after being informed that CHANGE x was triggered, z/OS Debugger triggers
the CHANGE vy breakpoint (before returning control to your program).

In this case, the CHANGE y breakpoint was entered first, but the CHANGE x breakpoint was triggered
first (because it caused the CHANGE y breakpoint to be triggered).
The referenced variable must exist when the AT CHANGE breakpoint is defined.

An AT CHANGE breakpoint gets removed automatically when the specified variable is no longer defined.
AT CHANGEs for C static variables are removed when the module defining the variable is removed from
storage. For C storage that is allocated using malloc () or calloc (), this occurs when the dynamic
storage is freed using free ().

Changes are not detected immediately, but only at the completion of any command that has the
potential of changing storage or variable values.

C and C++ AT CHANGE breakpoint requirements

— The variable must be an lvalue or an array.

— The variable must be declared in an active block if the variable is a parameter or has a storage class
of auto.

— A CHANGE breakpoint defined for a static variable is automatically removed when the file in which the
variable was declared is no longer active. A CHANGE breakpoint defined for an external variable is
automatically removed when the module where the variable was declared is no longer active.

— If reference is a pointer, z/OS Debugger stops when the contents of storage at the address given by
that pointer changes.

COBOL AT CHANGE breakpoint requirements

— AT CHANGE using a storage address should not reference a data item that follows a variable-size
element or subgroup within a group. COBOL dynamically remaps the group when a variable-size
element changes size.

— Be careful when examining a variable whose allocated storage follows that of a variable-size
element. COBOL dynamically remaps the storage for the element any time it changes size. This could
alter the address of the variable you want to examine.

— You cannot set a CHANGE breakpoint for a COBOL file record before the file is opened.
— The variable, when in the local storage section, must be declared in an active block.
PL/I AT CHANGE breakpoint requirements

— CHANGE breakpoint is removed for based or controlled variables when they are FREEd and for
parameters and AUTOMATIC variables when the block in which they are declared is no longer active.

— CHANGE monitors only structures with single scalar elements. Structures containing more than one
scalar element are not supported.

— The variable must be a valid reference for the current block.
— The breakpoint is automatically removed after the referenced variable ceases to exist.

— A CHANGE breakpoint monitors the storage allocated to the current generation of a controlled
variable. If you subsequently allocate new generations, they are not monitored.

When you free storage with the STORAGE RELEASE macro in an assembler or disassembly program, it
is not possible to detect when the storage is freed. If you set an AT CHANGE breakpoint on storage
freed by a STORAGE RELEASE macro, unexpected results might occur, such as the triggering of the
breakpoint at unexpected times.

Chapter 5. z/OS Debugger commands 51

 For optimized COBOL programs, the specified variable cannot be a variable that was discarded due to
compiler optimization.

« When you use a COBOL level-88 variable on an AT CHANGE command, the current setting of the value
is saved. z/OS Debugger stops at the breakpoint only if the setting of the COBOL level-88 variable
changes from the saved value to a different value. For example, if the saved value was TRUE and the
new value is FALSE, z/OS Debugger stops at the breakpoint.

« To use a COBOL level-88 variable with the AT CHANGE command, you (through a z/OS Debugger
command) or the program must have previously set the variable to one of the values specified in the
variable's declaration. If you do not do this, z/OS Debugger behavior becomes unpredictable.

- If reference references 64-bit addressable storage, z/OS Debugger assumes that the storage location is
64-bit addressable storage. Otherwise, z/OS Debugger assumes that the storage location is 31-bit
addressable storage.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“references” on page 15

“AT CHANGE command (full screen mode, line mode, batch mode)” on page 45
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

AT CURSOR command (full-screen mode)

Provides a cursor controlled method for setting a statement breakpoint. It is most useful when assigned
to a PF key.

CURSOR
[1.

»— AT
L TOGGLE J

TOGGLE
Specifies that if the cursor-selected statement already has an associated statement breakpoint then
the breakpoint is removed rather than replaced.

Usage notes

« AT CURSOR does not allow specification of an every_clause or a command.
« Do not use a semicolon.

« The cursor must be in the Source window and positioned on a line where an executable statement
begins. An AT STATEMENT command for the first executable statement in the line is generated and
executed (or cleared if one is already defined and TOGGLE is specified). For optimized COBOL programs,
the first statement on the line might have been discarded due to optimization effects. Therefore, the
first executable statement might be the second statement or later.

« The AT CURSOR command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Example

Define a PF key to toggle the breakpoint setting at the cursor position.

SET PF10 = AT TOGGLE CURSOR;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 186

52 IBM z/0OS Debugger: Reference and Messages

AT DATE command (COBOL)

Gives z/0S Debugger control for each date processing statement within the specified block. A date
processing statement is a statement that references a date field, or an EVALUATE or SEARCH statement
WHEN phrase that references a date field.

»— AT L J DATE block_spec command — ;-»«
every_clause

(g_;l)

Sets a breakpoint at every date processing statement.
command
A valid z/OS Debugger command.
Usage notes
« When you use AT DATE, execution is halted only for COBOL compile units compiled with the DATEPROC
compiler option.
« The AT DATE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.
Examples

- Each time a date processing statement is encountered in the nested subprogram subrx, display the
location of the statement.

AT DATE subrx QUERY LOCATION;

- Each time a date processing statement is encountered in the compile unit, display the name of the
compile unit.

AT DATE = LIST %CU;

- Each time a date processing statement is encountered in the compile unit, display the location of the
statement, list a specific variable, and resume running the program.

AT DATE % PERFORM
QUERY LOCATION;
LIST DATE-FIELD
GO;

END-PERFORM;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“block_spec” on page 12
“PLAYBACK commands” on page 186

AT DELETE command

Gives z/OS Debugger control when a load module is removed from storage by a Language Environment,
MVS, or CICS delete service, such as on completion of a successful C release (), COBOL CANCEL, PL/I
RELEASE, assembler DELETE macro, or EXEC CICS RELEASE.

Chapter 5. z/OS Debugger commands 53

»— AT L J DELETE load_spec command —»
every_clause

(£ load_spec l)

*

— ;>
*
Sets a breakpoint at every DELETE of any load module.
command

A valid z/OS Debugger command.
Usage notes

- z/0OS Debugger gains control for deletes that are affected by the Language Environment delete service,
MVS delete service, or EXEC CICS RELEASE. If the Dynamic Debug facility is deactivated (by entering
the SET DYNDEBUG OFF command) or SVC screening is disabled, z/OS Debugger is not notified of
deletes affected by the MVS delete service. Refer to IBM z/0S Debugger Customization Guide for
instructions on how to control SVC screening.

« AT DELETE cannot specify the initial load module.

- If this breakpoint is set in a parent enclave, it can be triggered and operated on with commands while
the application is in a child enclave.

« Fora CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

- The AT DELETE command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

« Each time a load module is deleted, request input from the terminal.

AT DELETE x;
 Stop watching variable varl:>x when load module mymod is deleted.

AT DELETE mymod CLEAR AT CHANGE (varl:>x);

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“load_spec” on page 15

“PLAYBACK commands” on page 186

AT ENTRY command

Defines a breakpoint at the specified entry point in the specified block.

54 IBM z/0OS Debugger: Reference and Messages

»— AT
L every_clause J

ENTRY block_spec

(g_;l)

> L J command — ;-»«
WHEN — condition

Sets a breakpoint at every ENTRY of any block.

command

A valid z/OS Debugger command. If you are using remote debug mode, you can specify only
commands that are supported in remote debug mode.

condition

A valid z/OS Debugger conditional expression.

Usage notes

For VS COBOL II programs, z/OS Debugger supports only the AT ENTRY * command.

To specify an AT ENTRY breakpoint for a program that is not currently known to z/OS Debugger, you
must do one of the following:

— If the name of the program is the same as the block_spec, you do not need to qualify the block_spec
with the name of the program.

— If the name of the program is not the same as the block_spec, you need to qualify the block_spec with
a program name. When z/0S Debugger detects a program name that matches the one you specified,
it sets the breakpoint.

An ENTRY breakpoint set for a compile unit that becomes nonactive (one that is not in the current
enclave), is suspended until the compile unit becomes active. An ENTRY breakpoint set for a compile
unit that is deleted from storage is suspended until the compile unit is reloaded. A suspended
breakpoint cannot be triggered until it is reactivated.

For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

ENTRY breakpoints for blocks in a fetched or loaded program are converted to deferred breakpoints
when that program is released.

The AT ENTRY command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

You cannot use the AT ENTRY command to stop at the entry to a Language Environment MAIN routine
for an enclave other than the first enclave if you do not have debug data available for the containing
compile unit.

You can restrict the circumstances under which the AT ENTRY break point is raised by specifying a
WHEN condition. If a WHEN condition is specified, z/OS Debugger stops at the AT ENTRY break point if
the specified entry point matches the current entry point and the WHEN condition is true.

The following conditional operators can be used in a condition:

Compare the two operands for equality.

-=

Compare the two operands for inequality.

Determines whether the left operand is less than the right operand.

Chapter 5. z/OS Debugger commands 55

Determines whether the left operand is greater than the right operand.

{=

Determines whether the left operand is less than or equal to the right operand.
>=

Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.

Logical "or" operation.

- If you use the AT ENTRY command with a WHEN condition, every time z/OS Debugger reaches the entry,
it evaluates the condition. If the condition evaluates to true, z/OS Debugger stops and runs the
command associated with the breakpoint.

« When z/0S Debugger evaluates the condition and the condition is invalid, z/OS Debugger does one of
the following actions:

— If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the condition. You need to enter a command to indicate what action you want z/OS Debugger to take.

— If SET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the condition. z/OS Debugger continues running the program.

« A deferred AT ENTRY command creates an implicit NAMES INCLUDE for the target of the deferred AT
ENTRY.

« You cannot use the AT ENTRY command to stop at the entry of a nested block in a C or C++ program. A
nested block is a group of statements delimited by { and }. The compiler assigns a name to these blocks
using the following pattern: %BLOCKn, where n is a sequentially-assigned number.

Examples

« At the entry of program subzxx, initialize variable ix and continue program execution. The current
programming language setting is COBOL.

AT ENTRY subrx PERFORM
SET ix TO 5;
GO;

END-PERFORM;

At the entry of program myprog with parameter mypazrm, to stop at the entry point to myprog only
when myparm equals 100, enter the following command:

AT ENTRY myprog WHEN myparm=100;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40

“condition” on page 12

“block_spec” on page 12

“AT APPEARANCE command” on page 41

“PLAYBACK commands” on page 186

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

AT ENTRY command (remote debug mode)
Defines a breakpoint at the entry point of the specified block.

»w— AT — ENTRY — block_spec — ;»«

Refer to the following topics for more information related to the material discussed in this topic.

56 IBM z/OS Debugger: Reference and Messages

Related references

“block_spec” on page 12

“AT ENTRY command” on page 54

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

AT EXIT command
Defines a breakpoint at the specified exit point in the specified block.
»w— AT L _J EXIT block_spec command — ;-»<
every clause f 41
(block_spec)
*

Sets a breakpoint at every EXIT of any block.

command

A valid z/OS Debugger command.

Usage notes

For VS COBOL II programs, z/OS Debugger supports only the AT EXIT *command.

An AT EXIT breakpoint can only be set for programs that are currently fetched or loaded. To set an exit
breakpoint for a currently unknown compile unit, use the AT APPEARANCE command.

An EXIT breakpoint set for a compile unit that becomes nonactive (one that is not in the current
enclave), is suspended until the compile unit becomes active. An EXIT breakpoint set for a compile unit
that is deleted from storage is suspended until the compile unit is reloaded. A suspended breakpoint
cannot be triggered until it is reactivated.

For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

EXIT breakpoints for blocks in a fetched or loaded program are removed when that program is
released.

The AT EXIT command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

You cannot use the AT EXIT command when you are in a disassembly compile unit.
You cannot use the AT EXIT command when you are in a LangX COBOL compile unit.

For assembler only: AT EXIT gains control on exit from internal or external routines. An EXIT is
defined to be one of the following opcodes:

- BR
— BALR, BASR, or BASSM when it is not followed by a valid instruction

You cannot use the AT EXIT command to stop at the exit of a nested block in a C or C++ program. A
nested block is a group of statements delimited by { and }. The compiler assigns a name to these blocks
using the following pattern: %BLOCKn, where n is a sequentially-assigned number.

Example

At exit of main, print a message and TRIGGER the SIGUSR1 condition. The current programming
language setting is C.

AT EXIT main {
puts("At exit of the program");
TRIGGER SIGUSR1;
GO;

3

Chapter 5. z/OS Debugger commands 57

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“block_spec” on page 12
“PLAYBACK commands” on page 186

AT GLOBAL command

Gives z/0OS Debugger control for every instance of the specified AT-condition. These breakpoints are
independent of their nonglobal counterparts (except for AT PATH, which is identical to AT GLOBAL
PATH). Global breakpoints are always performed before their specific counterparts.

»w— AT L _J GLOBAL —»
every_clause

ALLOCATE command — ;-»«

A 4

APPEARANCE

CALL
DATE
DELETE

L WHEN — condition —J

EXIT

M——— ENTRY

LABEL

LINE
LOAD

———————— OCCURRENCE
PATH

L WHEN — condition J

~— STATEMENT

command
A valid z/OS Debugger command.

You should use GLOBAL breakpoints where you don't have specific information of where to set your
breakpoint. For example, you want to halt at entry to block Abcdefg_Unknwn but cannot remember the
name, you can issue AT GLOBAL ENTRY and z/OS Debugger will halt every time a block is being entered.
If you want to halt at every function call, you can issue AT GLOBAL CALL.

Usage notes

« z/0OS Debugger does not support the AT CALL, AT LABEL and AT PATH commands for disassembled
or VS COBOL IT programs.

« z/OS Debugger does not support the AT CALL command for LangX COBOL programs.

« To set a global breakpoint, you can specify an asterisk (*) with the AT command or you can specify an
AT GLOBAL command.

« Although you can define GLOBAL breakpoints to coexist with singular breakpoints of the same type at
the same location or event, COBOL does not allow you to define two or more single breakpoints of the
same type for the same location or event. The last breakpoint you define replaces any previous
breakpoint.

« The AT GLOBAL command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

58 IBM z/0OS Debugger: Reference and Messages

« The AT GLOBAL OCCURRENCE breakpoint takes precedence over an AT OCCURRENCE condition
breakpoint.

« The AT GLOBAL OCCURRENCE command takes precedence over the test_level setting of the TEST
runtime option. For example, if your test_level setting is ALL, a condition is raised, and you set an AT
GLOBAL OCCURRENCE breakpoint, then z/OS Debugger stops only for the breakpoint. z/OS Debugger
does not stop twice (once for the AT GLOBAL OCCURRENCE and once for the test_level setting of ALL).

« You cannot use the AT GLOBAL ENTRY, AT GLOBAL EXIT, and AT GLOBAL PATH commands to stop
at the entry or exit of a nested block in a C or C++ program. A nested block is a group of statements
delimited by { and }. The compiler assigns a name to these blocks using the following pattern:
%BLOCKn, where n is a sequentially-assigned number.

Examples
- If you want to set a global AT ENTRY breakpoint, specify:
AT ENTRY x;

or
AT GLOBAL ENTRY;

At every statement or line, display a message identifying the statement or line. The current
programming language setting is COBOL.

AT GLOBAL STATEMENT LIST ('At Statement:', %STATEMENT);

If you enter (for COBOL):

AT EXIT tablel PERFORM
LIST TITLED (age, pay);
GO;

END-PERFORM;

then enter:

AT EXIT tablel PERFORM

LIST TITLED (benefits, scale);
GO;

END-PERFORM;

only benefits and scale are listed when your program reaches the exit point of block tablel. The
second AT EXIT replaces the first because the breakpoints are defined for the same location.
However, if you define the following GLOBAL breakpoint with the first EXIT breakpoint, when your
program reaches the exit from tablel, all four variables (age, pay, benefits, and scale) are listed
with their values, because the GLOBAL EXIT breakpoint can coexist with the EXIT breakpoint set for
tablel:

AT GLOBAL EXIT PERFORM
LIST TITLED (benefits, scale);

GO;
END-PERFORM;
- To set a GLOBAL DATE breakpoint, specify:
AT DATE *;
or
AT GLOBAL DATE;
« To combine a global breakpoint with other z/OS Debugger commands, specify:
AT GLOBAL DATE QUERY LOCATION;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“every_clause syntax” on page 40

Chapter 5. z/OS Debugger commands 59

“PLAYBACK commands” on page 186

AT GLOBAL LABEL command (remote debug mode)
Gives z/0OS Debugger control for every instance of the specified AT-Label condition. Global breakpoints

are always performed for all Compile Units that are known to z/OS Debugger.

»— AT — GLOBAL — LABEL — ; >«

Use AT GLOBAL LABEL breakpoints if you do not have specific information of where to set your
breakpoint. For example, if you want to halt at a label that you do not know the name of, enter AT
GLOBAL LABEL command to halt z/OS Debugger when it encounters a label.

Usage note

To set a global breakpoint, specify an asterisk (*) with the AT command, or enter the AT GLOBAL
command.

Example

If you want to set a global AT LABEL breakpoint, specify one of the following commands:
AT LABEL =*;

or

AT GLOBAL LABEL;

AT LABEL command

Gives z/0S Debugger control when execution has reached the specified statement label or group of
labels. For C and PL/I, if there are multiple labels associated with a single statement, you can specify
several labels and z/OS Debugger gains control at each label. For COBOL and LangX COBOL, AT LABEL
lets you specify several labels, but for any group of labels that are associated with a single statement,
z/0OS Debugger gains control for that statement only once.

LABEL

»— AT
L every clause —J

»— command — ;-»«

Sets a breakpoint at every LABEL.
LOCAL

~———

statement_label

'statement _label'

_—

L

<
» €

statement _label

J,_

e

—__ *

<
» €

'statement _label'

1,

J

L LOCAL

%CU J

L cu_spec J

v

Specifies that the AT LABEL breakpoint is limited to all labels in the specified compile unit.

cu_spec

A valid compile unit specification.

command
A valid z/OS Debugger command.

60 IBM z/OS Debugger: Reference and Messages

Usage notes

Use the syntax of statement_label enclosed in apostrophes (') only for LangX COBOL programs. It is not
supported in any other programming language.

z/0S Debugger does not support the AT LABEL command with VS COBOL II programs.
A COBOL statement_label can have either of the following forms:

- name

This form can be used in COBOL for reference to a section name or for a COBOL paragraph name that
is not within a section or is in only one section of the block.

— namel OF name2 or namel IN nameZ2

This form must be used for any reference to a COBOL paragraph (namel) that is within a section
(name?2), if the same name also exists in other sections in the same block. You can specify either OF
or IN, but z/OS Debugger always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load module qualifiers.

For C, C++ or PL/I, you can set a LABEL breakpoint at each label located at a statement. This is the only
circumstance where you can set more than one breakpoint at the same location.

A LABEL breakpoint set for a nonactive compile unit (one that is not in the current enclave) is
suspended until the compile unit becomes active. A LABEL breakpoint set for a compile unit that is
deleted from storage is suspended until the compile unit is reloaded. A suspended breakpoint cannot
be triggered until it is reactivated.

For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

You cannot set LABEL breakpoints at PL/I label variables.

LABEL breakpoints for label constants in a fetched, loaded program or DLL are removed when that
program is released.

To be able to set LABEL breakpoints in PL/I, you must compile your program with either the PATH and
SYM suboptions or the ALL suboption of the TEST compiler option.

For C, to be able to set LABEL breakpoints, you must compile your program in one of the following
ways:

— With either the PATH and SYM suboptions or ALL suboption of the TEST compiler option.

— With either the PATH and SYM suboptions or ALL suboption of the DEBUG compiler option.

For C++, to be able to set LABEL breakpoints, you must compile your program in one of the following
ways:

— With the TEST compiler option.

— With either the PATH and SYM suboptions or ALL suboption of the DEBUG compiler option.

You can set breakpoints for more than one label at the same location. z/OS Debugger is entered for
each specified label.

To be able to set LABEL breakpoints in COBOL programs, you must compile your program with one of
the following compilers and TEST compiler suboptions:

— Specify the HOOK suboption with Enterprise COBOL for z/0S, Version 4

— Specify the STMT, PATH, or ALL suboption and the SYM suboption with one of the following compilers:
- any release of the Enterprise COBOL for z/OS and 0S/390, Version 3, compiler
- any release of the COBOL for 0S/390 and VM, Version 2, compiler

When defining specific LABEL breakpoints z/OS Debugger sets a breakpoint for each label specified,
unless there are several labels on the same statement. In this case, only the last LABEL breakpoint
defined is set.

For COBOL, a reference to a label or a label constant can take either of the following forms:

Chapter 5. z/OS Debugger commands 61

- name

This form is used to refer to a section name or the name of a paragraph contained in not more than
one section of the block.

— namel OF name2 or namel IN name2

This form is used to refer to a paragraph contained within a section if the paragraph name exists in
other sections in the same block. You can use either OF or IN, but z/OS Debugger only uses OF for
output to the log file.

« For PL/I users:

— If you are running any version of VisualAge PL/I or Enterprise PL/I Version 3 Release 1 through
Version 3 Release 3 programs, you cannot use the AT LABEL command.

— If you are running Enterprise PL/I for z/OS, Version 3.4, or later, programs and you comply with the
following requirements, you can use the AT LABEL command to set breakpoints (except at a label
variable):

- If you are running z/OS Version 1 Release 6, apply the Language Environment PTF for APAR
PQ99039.

- If you are compiling with Enterprise PL/I Version 3 Release 4, apply PTFs for APARs PK00118 and
PK00339.

« You cannot use the AT LABEL command while you use the disassembly view.

- The AT LABEL command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

« Set a breakpoint at label create in the currently qualified block.
AT LABEL create;

« At program label para OF sectl display variable names x and y and their values, and continue
program execution. The current programming language setting is COBOL.

AT LABEL para OF sectl PERFORM
LIST TITLED (x, y);
GO;

END-PERFORM;

 Set a breakpoint at labels 1abell and 1abel2, even though both labels are associated to the same
statement. The current programming language setting is C.

AT LABEL labell LIST 'Stopped at labell'; /*x Labell is first =/
AT LABEL label2 LIST 'Stopped at label2'; /x Label2 is second */

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“statement_label” on page 17
“PLAYBACK commands” on page 186

AT LABEL command (remote debug mode)

Gives z/0S Debugger control when execution reaches the statement label that you specify. For C and PL/I
programs, if multiple labels are associated with a single statement, z/OS Debugger gains control at each
label that you set an AT LABEL breakpoint for. For COBOL programs, you can issue AT LABEL
commands for multiple labels on the same statement, but for any group of labels that are associated with
a single statement, z/OS Debugger gains control for that statement only once.

62 IBM z/0OS Debugger: Reference and Messages

»— AT LABEL T statement_label T ; >
*

*

Sets a breakpoint at every LABEL
Usage notes

« If you set a breakpoint for a specific label (for example, AT LABEL MYLABEL), and AT GLOBAL LABEL
command is also set, the remote debugger stops only one time.

z/0S Debugger does not support the AT LABEL command for VS COBOL II programs.

A COBOL statement_label can have only the form of — name.

A LABEL breakpoint in remote mode is limited to labels in the currently executing compile unit.

- For more information about restrictions for the AT LABEL command, see Usage notes on “AT LABEL
command” on page 60

Example
Set a breakpoint at Label create in the currently qualified block.
AT LABEL create;

AT LINE command
Gives z/OS Debugger control at the specified line.
The AT LINE command is synonymous to the AT STATEMENT command.

You cannot use the AT LINE while you debug a disassembled program. Instead, use the AT OFFSET
command.

The AT LINE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“AT OFFSET command (disassembly)” on page 68
“PLAYBACK commands” on page 186

“AT STATEMENT command” on page 70

AT LOAD command

Gives z/OS Debugger control when the specified load module is brought into storage. For example, z/0OS
Debugger gains control on completion of a successful C fetch (), a PL/I FETCH, during a COBOL dynamic
CALL, MVS LOAD service, or EXEC CICS LOAD. To stop at a compile unit or program in a COBOL DLL, use
AT APPEARANCE. Once the breakpoint is raised for the specified load module, it is not raised again unless
either the load module is released and fetched again or another load module with the specified name is
fetched.

You can set LOAD breakpoints regardless of what compiler options are in effect.

Chapter 5. z/OS Debugger commands 63

LOAD module_name

»— AT
L every_clause J <

(L module_name l)

load_spec command — ;>4

(f[oad_s:l)

*

Sets a breakpoint at every LOAD of any load module.

command

A valid z/OS Debugger command.

Usage notes

z/0S Debugger gains control for loads that are affected by the Language Environment load service, the
MVS LOAD service, or EXEC CICS LOAD. A LOAD breakpoint is triggered when a new enclave is
entered. If the Dynamic Debug facility is deactivated (by entering the SET DYNDEBUG OFF command)
or SVC screening is disabled, z/OS Debugger is not notified of any loads that are affected by the MVS
LOAD service. Refer to IBM z/0S Debugger Customization Guide for instructions on how to control SVC
screening.

AT LOAD can be used to detect the loading of specific language library load modules; however, the
loading of language library load modules does not trigger an AT GLOBAL LOAD or AT LOAD =.

AT LOAD cannot specify the initial load module because it is already loaded when z/OS Debugger is
started.

If this breakpoint is set in a parent enclave, it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

AT LOAD on an implicitly or explicitly loaded DLL is not supported by z/OS Debugger.

Depending on the version of the C or C++ compiler used, z/OS Debugger might recognize a compile unit
in a DLL only after it has had a function in it called. For example, if a DLL contains a function £nlin CU
filel and it contains a function £n2 in CU £ile2, a call to £n1 will not enable z/OS Debugger to
recognize £ile2, only filel. Similarly, a call to £n2 will not enable z/OS Debugger to recognize
filel.

At the triggering of a LOAD breakpoint for C, C++, and PL/I, z/OS Debugger has enough information
about the loaded module to set breakpoints and examine variables of static and extern storage classes.

At the triggering of a LOAD breakpoint for COBOL, C, and C++ DLL's, z/OS Debugger does not have
enough information about the loaded module to set breakpoints in blocks contained within the module.
At the triggering of an APPEARANCE breakpoint, however, you can set such breakpoints.

The AT LOAD command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

Print a message when load module mymod is loaded. The current programming language setting is
either C, C++, or COBOL.

AT LOAD mymod LIST ("Load module mymod has been loaded");

64 IBM z/0OS Debugger: Reference and Messages

« Establish an entry breakpoint when load module a is fetched and then resume execution. The current
programming language setting is C.
AT LOAD a {
AT ENTRY a;

GO;
b

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40
“load_spec” on page 15

“PLAYBACK commands” on page 186

AT LOAD command (remote debug mode)

Gives z/0OS Debugger control when the specified load module is brought into storage. For example, z/0S
Debugger gains control on completion of a successful C fetch (), a PL/I FETCH, during a COBOL dynamic
CALL, MVS LOAD service, or EXEC CICS LOAD. Once the breakpoint is raised for the specified load
modaule, it is not raised again unless either the load module is released and fetched again or another load
module with the specified name is fetched.

You can set LOAD breakpoints regardless of what compiler options are in effect.

»w— AT — LOAD — module_name — ;-»«

Related references
“AT LOAD command” on page 63
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

AT OCCURRENCE command

Gives z/0S Debugger control on a language or Language Environment condition or exception or an MVS or
CICS ABEND.

»— AT
L every_clause —J

OCCURRENCE condition

(Qﬁt;nl)

»— command — ;-»«

condition
A valid condition or exception. This can be one of the following codes or conditions:

A Language Environment symbolic feedback code.
« Alanguage-oriented keyword or code, depending on the current programming language setting.

« An MVS System or User ABEND code Sxxx or Uxxx, where xxx is three hexadecimal digits
corresponding to the desired ABEND code. These codes are valid only when you are running without
the Language Environment run time.

 Any four-character string representing a CICS ABEND code. This code is valid only when you are
running without the Language Environment run time.

Following are the C and C++ condition constants; they must be uppercase and not abbreviated:

Chapter 5. z/OS Debugger commands 65

SIGABND SIGILL SIGTERM

SIGABRT SIGINT SIGUSR1
SIGFPE SIGIOERR SIGUSR2
SIGSEGV THROWOBJ

When a C++ user specifies AT CONDITION THROWOBJ, z/OS Debugger transfers control to the user
at the point of the throw in C++ code.

PL/I condition constants can be used. For conditions associated with file handling, the file reference
can be a wildcard.

There are no COBOL condition constants. Instead, an Language Environment symbolic feedback code
must be used, for example, CEE347.

The TRAP (ON) run-time option must be used to stop on Language Environment conditions or MVS or
CICS Abends.

command
A valid z/OS Debugger command.

Program conditions and condition handling vary from language to language. The methods the
OCCURRENCE breakpoint uses to adapt to each language are described below.

For C and C++:

When a C and C++ or an Language Environment condition occurs during your session, the following series
of events takes place:

1. z/OS Debugger is started before any C or C++ signal handler.

2. If you set an OCCURRENCE breakpoint for that condition, z/OS Debugger processes that breakpoint and
executes any commands you have specified. If you did not set an OCCURRENCE breakpoint for that
condition, and:

- If the current test-level setting is ALL, z/OS Debugger prompts you for commands or reads them
from a commands file.

- If the current test-level setting is ERROR, and the condition has an error severity level (that is,
anything but SIGUSR1, SIGUSR2, SIGINT, or SIGTERM), z/OS Debugger gets commands by
prompting you or by reading from a commands file.

« If the current test-level setting is NONE, z/OS Debugger ignores the condition and returns control to
the program.

You can set 0OCCURRENCE breakpoints for equivalent C and C++ signals and Language Environment
conditions. For example, you can set AT OCCURRENCE CEE345and AT OCCURRENCE SIGSEGV during
the same debug session. Both indicate an addressing exception and, if you set both breakpoints, no error
occurs. However, if you set OCCURRENCE breakpoints for a condition using both its C, C++, and Language
Environment designations, the Language Environment breakpoint is the only breakpoint triggered. Any
command list associated with the C condition is not executed.

You can use OCCURRENCE breakpoints to control your program's response to errors.
Usage notes

- If the application program also has established an exception handler for the condition then that handler
is entered when z/0S Debugger releases control, unless return is by use of GO BYPASS or GOTO or a
specific statement.

* OCCURRENCE breakpoints for COBOL IGZ conditions can only be set after a COBOL run-time module
has been initialized.

« For C, C++, and PL/I, certain Language Environment conditions map to C and C++ SIGxxx values and
PL/I condition constants. It is possible to enter two AT OCCURRENCE breakpoints for the same
condition. For example, one could be entered with the Language Environment condition name and the
other could be entered with the C and C++ SIGxxx condition constant. In this case, the AT

66 IBM z/0OS Debugger: Reference and Messages

OCCURRENCE breakpoint for the Language Environment condition name is triggered and the AT
OCCURRENCE breakpoint for the C or C++ condition constant is not. However, if an AT OCCURRENCE
breakpoint for the Language Environment condition name is not defined, the corresponding mapped C,
C++, or PL/I condition constant is triggered.

If this breakpoint is set in a parent enclave it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

For COBOL and LangX COBOL, z/OS Debugger detects Language Environment conditions. If a Language
Environment condition occurs during your session, the following series of events takes place:
1. z/OS Debugger is started before any condition handler.

2. If you set an OCCURRENCE breakpoint for that condition, z/OS Debugger processes that breakpoint
and executes any commands you have specified. If you have not set an OCCURRENCE breakpoint for
that condition, and:

— If the current test-level setting is ALL, z/OS Debugger prompts you for commands or reads them
from a commands file.

— If the current test-level setting is ERROR, and the condition has a severity level of 2 or higher, z/0OS
Debugger gets commands by prompting you or by reading from a commands file.

— If the current test-level setting is NONE, z/OS Debugger ignores the condition and returns control
to the program.
You can use OCCURRENCE breakpoints to control your program's response to errors.

For PL/I, z/OS Debugger detects Language Environment and PL/I conditions. If a condition occurs, z/0OS
Debugger is started before any condition handler. If you have issued an ON command or set an
OCCURRENCE breakpoint for the specified condition, z/OS Debugger runs the associated commands.

If there is no AT OCCURRENCE or ON set, then:

— If the current test-level setting is ALL, z/OS Debugger prompts you for commands or reads them
from a commands file.

— If the current test-level setting is ERROR, and the condition has an error severity level of 2 or higher,
z/0S Debugger gets commands by prompting you or by reading from a commands file.

— If the current test-level setting is NONE, z/OS Debugger ignores the condition and returns control to
the program.

Once z/0S Debugger returns control to the program, any relevant PL/I ON-unit is run.

If you are debugging a program that uses SPIE or ESPIE, while SPIE or ESPIE is active, the program
behaves as if TRAP (OFF) was specified for all program checks except for a program check that might
arise from the use of the CALL command.

If you are debugging a program that uses ESTAE or ESTAEX, while ESTAE or ESTAEX is active, the
program behaves as if TRAP (OFF) was specified for all abends except program checks. z/OS Debugger
does not handle any conditions. The ESTAE or ESTAEX exit handles any abends except for program
checks.

The AT OCCURRENCE command cannot be used while you replay recorded statements using the
PLAYBACK commands.

Examples

- When a data exception occurs, query the current location. The current programming language setting is
either C or COBOL.

AT OCCURRENCE CEE347 QUERY LOCATION;

Chapter 5. z/OS Debugger commands 67

- When you are running in MVS without the Language Environment run time, that is under EQANMDBG,
when a System 0C1 ABEND occurs, list information about the current CUs with the following command:

AT OCCURRENCE SOC1 DESCRIBE CUS;

- When the SIGSEGV condition is raised, set an error flag and call a user termination routine. The current
programming language setting is C.

AT OCCURRENCE SIGSEGV {
error = 1;
terminate (error);

3

« Suppose SIGFPE maps to CEE347 and the following breakpoints are defined. The current programming
language setting is C.

AT OCCURRENCE SIGFPE LIST "SIGFPE condition";
AT OCCURRENCE CEE347 LIST "CEE347 condition";

If the Language Environment condition CEE347 is raised, the CEE347 breakpoint is triggered.

However, if a breakpoint had not been defined for CEE347 and the CEE347 condition is raised, the
SIGFPE breakpoint is triggered (because it is mapped to CEE347).

- Stop for every file where ENDFILE condition occurs. The current programming language is PL/I.

AT OCCURRENCE ENDFILE (%) ;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“every_clause syntax” on page 40

“ON command (PL/I)” on page 180

“PLAYBACK commands” on page 186

z/0S Language Environment Programming Guide
z/0S Language Environment Debugging Guide
PL/I for MVS and VM Language Reference

AT OFFSET command (disassembly)

Gives z/0S Debugger control at the specified offset in the disassembly view.

»w— AT — OFFSET offset_spec command — ;-»<
(g_;l)
command

A valid z/OS Debugger command.
Usage note

The AT OFFSET command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

« Set a breakpoint at offset '2A" in the current block:
AT OFFSET X'2A';
« Set a breakpoint at offsets '2A"' and '30' in the current block:

AT OFFSET (X'2A',X'30');

68 IBM z/0OS Debugger: Reference and Messages

» Set a breakpoint in the block MYPROG at offset '3A":

AT OFFSET MYPROG:>X'3A';

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 186
“offset_spec” on page 15

AT PATH command

Gives z/0S Debugger control when the flow of control changes (at a path point). AT PATH is identical to
AT GLOBAL PATH.

»— AT L J PATH — command — ;-»«
every clause

command
A valid z/OS Debugger command.

Usage notes

- For Enterprise COBOL for z/OS Version 5, when z/OS Debugger stops at an AFTER CALL Path point
because of an AT PATH breakpoint, the location where z/OS Debugger stops is the statement after the
CALL statement.

 For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

« For C, to be able to set PATH breakpoints, you must compile your program in one of the following ways:

— With either the PATH or ALL suboption of the TEST compiler option.
— With either the PATH or ALL suboption of the DEBUG compiler option.
« For C++, to be able to set PATH breakpoints, you must compile your program in one of the following
ways:
— With the TEST compiler option.
— With either the PATH or ALL suboption of the DEBUG compiler option.

« For COBOL programs compiled with the following compilers, compile your program with the NONE,
PATH, or ALL suboption of the TEST compiler option to be able to set PATH breakpoints:

— Enterprise COBOL for z/OS and 0S/390, Version 3
— COBOL for 0S/390 and VM, Version 2

« For PL/I, to be able to set PATH breakpoints, you must compile your program with the PATH or ALL
suboption of the TEST compiler option.

« You cannot use the AT PATH command while you replay recorded statements by using the PLAYBACK
commands.

« z/OS Debugger does not support the AT PATH command while you debug a disassembled program or a
VS COBOL IT program.

« You cannot use the AT PATH command to stop at the entry or exit of a nested block ina C or C++
program. A nested block is a group of statements delimited by { and }. The compiler assigns a name to
these blocks using the following pattern: %BLOCKn, where n is a sequentially-assigned number.

Examples

« Whenever a path point has been reached, display the five most recently processed breakpoints and
conditions.

AT PATH LIST LAST 5 HISTORY;

Chapter 5. z/OS Debugger commands 69

- Whenever a path point has been reached, display a message and query the current location. The current
programming language setting is COBOL.

AT PATH PERFORM
LIST "Path point reached";
QUERY LOCATION;
GO;

END-PERFORM;

« Whenever a path point has been reached, the value of XPATHCODE contains the code representing the
type of path point stopped at. If the program is stopped at the entry to a block, display the %$PATHCODE.

AT PATH LIST 9%PATHCODE;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0OS Debugger User's Guide

Related references

“every_clause syntax” on page 40
“%PATHCODE” on page 341
“PLAYBACK commands” on page 186

AT Prefix command (full-screen mode)

Sets a statement breakpoint when you issue this command through the Source window prefix area. When
one or more breakpoints have been set on a line, the prefix area for that line is highlighted.

»— AT 1__ _-I ;>
integer

integer
Selects a relative statement (for C, C++, and PL/I) or a relative verb (for COBOL) within the line. The
default value is 1. For optimized COBOL programs, the default value is the first executable statement
on the line, which was not discarded due to optimization effects.

Usage note

The AT Prefix command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Example

Set a breakpoint at the third statement or verb in the line (typed in the prefix area of the line where the
statement is found).

AT 3

No space is heeded as a delimiter between the keyword and the integer; hence, AT 3 is equivalent to
AT3.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 186

AT STATEMENT command

Gives z/0S Debugger control at each specified statement or line within the given set of ranges.

70 IBM z/OS Debugger: Reference and Messages

»w— AT L J
every_clause LINE

v

~— STATEMENT —/

statement_id_range >
, < L WHEN — condition J
(L statement_id_range l)
»— command — ;<

*

Sets a breakpoint at every STATEMENT or LINE.
command

A valid z/OS Debugger command. If you are using remote debug mode, you can specify only

commands that are supported in remote debug mode.
condition

A valid z/OS Debugger conditional expression.

Usage notes

With Enterprise COBOL for z/OS Version 5, you cannot set AT STATEMENT breakpoints for statements
that are inside a declarative section.

With Enterprise COBOL for z/OS Version 5, you can set AT STATEMENT breakpoints for the WHEN and
EVALUATE statements.

You cannot use the AT STATEMENT command (except for the AT STATEMENT * form) while you debug
a disassembled program. Instead, use the AT OFFSET command.

A STATEMENT breakpoint set for a nonactive compile unit (one that is not in the current enclave), is
suspended until the compile unit becomes active. A STATEMENT breakpoint set for a compile unit that is
deleted from storage is suspended until the compile unit is reloaded. A suspended breakpoint cannot
be triggered until it is reactivated.

For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

You can specify the first relative statement on each line in any one of three ways. If, for example, you
want to set a STATEMENT breakpoint at the first relative statement on line three, you can enter AT 3,
AT 3.0,o0r AT 3.1.However, z/OS Debugger logs them differently according to the current
programming language as follows:

— ForCand C++

The first relative statement on a line is specified with "0". All of the above breakpoints are logged as
AT 3.0.

— For COBOL or PL/I
The first relative statement on a line is specified with "1". All of the above breakpoints are logged as

AT 3.1. For optimized COBOL programs, the first relative statement is the first executable
statement. This might not be the first statement if the optimizer discarded the first statement.

When the STORAGE run-time option is in effect, the AT STATEMENT command cannot be used to set a
breakpoint in the prologue of an assembler compile unit between the first BALR 14,15 instruction and
the following LR 13,x instruction.

The AT STATEMENT command cannot be used while you replay recorded statements by using the
PLAYBACK command.

Chapter 5. z/OS Debugger commands 71

 You can restrict the circumstances under which the AT STATEMENT break point is raised by specifying
a WHEN condition. If a WHEN condition is specified, z/OS Debugger stops at the AT STATEMENT break
point if the specified statement matches the current statement and the WHEN condition is true.

« The following conditional operators can be used in a condition:

Compare the two operands for equality.

Compare the two operands for inequality.

) Determines whether the left operand is less than the right operand.

’ Determines whether the left operand is greater than the right operand.

= Determines whether the left operand is less than or equal to the right operand.

. Determines whether the left operand is greater than or equal to the right operand.
&

Logical "and" operation.

Logical "or" operation.

« If you use the AT STATEMENT command with a WHEN condition, every time z/OS Debugger reaches the
statement, it evaluates the condition. If the condition evaluates to true, z/OS Debugger stops and runs
the command associated with the breakpoint.

- z/OS Debugger evaluates references in a WHEN condition before it runs a statement.

« When z/0S Debugger evaluates the condition and the condition is invalid, z/OS Debugger does one of
the following actions:

— If SET WARNING is set to ON, z/OS Debugger stops and displays a message that it could not evaluate
the condition. You need to enter a command to indicate what action you want z/OS Debugger to take.

— IfSET WARNING is set to OFF, z/OS Debugger does not stop nor display a message that it could not
evaluate the condition. z/OS Debugger continues running the program.

Examples

« Set a breakpoint at statement or line number 23. The current programming language setting is COBOL.
AT 23 LIST 'About to close the file';

« Set breakpoints at statements 5 through 9 of compile unit mycu. The current programming language
setting is C.

AT STATEMENT "mycu":>5 - 9;
« Set breakpoints at lines 19 through 23 and at statements 27 and 31.
AT LINE (19 - 23, 27, 31);
or
AT LINE (27, 31, 19 - 23);

« To set a breakpoint at statement or line 100 that is raised only when the value of myvar is equal to 100,
enter the following command:

AT 100 WHEN myvar=100;

Refer to the following topics for more information related to the material discussed in this topic.

72 IBM z/OS Debugger: Reference and Messages

Related references

“every_clause syntax” on page 40

“statement_id_range and stmt_id_spec” on page 16

“AT OFFSET command (disassembly)” on page 68

“PLAYBACK commands” on page 186

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

AT STATEMENT command (remote debug mode)

Gives z/0OS Debugger control at the specified statement or line.

»— AT statement_id — ;-»«
LINE

~— STATEMENT —/

Usage note

When you enter an AT STATEMENT command, the breakpoint is set relative to the location the program is
stopped, which might not be the program displayed in the source view. For example, your program is
stopped at program SUB1, which was called by program MAIN1, and the source view displays the source
for program SUBZ1. Then, you click on MAIN1 in the Debug view so that the source view displays the
source for MAIN1. If you enter the command AT STATEMENT 13, a breakpoint is set at statement 13 in
SUB1, not statement 13 in MAIN1.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“statement_id” on page 16

“AT STATEMENT command” on page 70

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

AT TERMINATION command

Gives z/0S Debugger control when the application program is terminated.

»— AT — TERMINATION — command — ;-»«

command
A valid z/OS Debugger command.

Usage notes

- The setting of the current programming language when the application program terminates might be
unpredictable.

« AT TERMINATION does not allow specification of an every_clause because termination can only occur
once.

« If this breakpoint is set in a parent enclave, it can be triggered and operated on with breakpoint
commands while the application is in a child enclave.

- When z/0S Debugger gains control, normal execution of the program is complete; however, a CALL or
function invocation from z/OS Debugger can continue to perform program code. When the AT
TERMINATION breakpoint gives control to z/OS Debugger:

— Fetched load modules have not been released
— Files have not been closed
— Language-specific termination has been started yet no action has been taken

In C, the user atexit () lists have already been called.
In PL/I, the FINISH condition was already raised.

Chapter 5. z/OS Debugger commands 73

 You are allowed to enter any command with AT TERMINATION. However, normal error messages are
issued for any command that cannot be completed successfully because of lack of information about
your program.

« You can enter DISABLE AT TERMINATION; or CLEAR AT TERMINATION; at any time to disable or
clear the breakpoint. It remains disabled or cleared until you reenable or reset it.

« For a CICS application on z/OS Debugger, this breakpoint is cleared at the end of the last process in the
application. For a non-CICS application on z/OS Debugger, it is cleared at the end of a process.

- The AT TERMINATION command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

- When the program ends, check the z/OS Debugger environment to see what files have not been closed.
AT TERMINATION DESCRIBE ENVIRONMENT;

« When the program ends, display the message "Program has ended" and end the z/OS Debugger
session. The current programming language setting is C.

AT TERMINATION {
LIST "Program has ended";
QUIT;

¥

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 186

BEGIN command

BEGIN and END delimit a sequence of one or more commands to form one longer command. The BEGIN
and END keywords cannot be abbreviated.

»— BEGIN —;m END — ; >«

command
A valid z/OS Debugger command.

Usage notes

« The BEGIN command is most helpful when used in AT or PROCEDURE commands.

« The BEGIN command is helpful when you use it as a programming language neutral command. For
example, if you create a commands file that might be used by an application created with several
different programming languages, the BEGIN command works for all supported programming
languages.

« For Enterprise PL/I, the BEGIN command is helpful when used in IF or ON commands.
« The BEGIN command does not imply a new block or name scope. It is equivalent to a PL/I simple DO.

 You cannot use the BEGIN command while you replay recorded statements by using the PLAYBACK
commands.

Examples

- Set a breakpoint at statement 320 listing the value of variable x and assigning the value of 2 to variable
a.

AT 320 BEGIN;
LIST (x);

74 1BM z/OS Debugger: Reference and Messages

a = 2;
END;

« When the PL/I condition FIXEDOVERFLOW is raised (that is, when the length of the result of a fixed-
point arithmetic operation exceeds the maximum length allowed) list the value of variable x and assign
the value of 2 to variable a. The current programming language setting is PL/I.

ON FIXEDOVERFLOW BEGIN; LIST (x); a=2; END;

block command (C and C++)

The block command allows you to group any number of z/OS Debugger commands into one command.
When you enclose z/0S Debugger commands within a single set of braces ({}), everything within the
braces is treated as a single command. You can place a block anywhere a command is allowed.

»— { }— <

command
command
A valid z/OS Debugger command.
Usage notes

« Declarations are not allowed within a nested block.

« The C block command does not end with a semicolon. A semicolon after the closing brace is treated as
a Null command.

« You cannot use the block command while you replay recorded statements by using the PLAYBACK
commands.

Example

Establish an entry breakpoint when load module a is fetched.

AT LOAD a %
AT ENTRY a;
GO;

3

break command (C and C++)

The break command allows you to terminate and exit a loop (that is, do, for, and while) or switch
command from any point other than the logical end. You can place a break command only in the body of
a looping command or in the body of a switch command. The break keyword must be lowercase and
cannot be abbreviated.

»— break — ; >«

In a looping statement, the break command ends the loop and moves control to the next command
outside the loop. Within nested statements, the break command ends only the smallest enclosing do,
for, switch, orwhile commands.

In a switch body, the break command ends the execution of the switch body and gives control to the
next command outside the switch body.

Usage notes

« You cannot use the break command while you replay recorded statements by using the PLAYBACK
commands.

Examples

Chapter 5. z/OS Debugger commands 75

« The following example shows a break command in the action part of a for command. If the i-th

element of the array stringis equalto '

for (i = 0; 1 < 5; i++) §

if (stringl[i] == '\0')
break;
length++;

\O', the break command causes the for command to end.

- The following switch command contains several case clauses and one default clause. Each clause
contains a function call and a bxreak command. The break commands prevent control from passing
down through subsequent commands in the switch body.

char key;

keyzl_l;

AT LINE 15 switch (key)

1
case '+':
add() ;
break;

case '-':
subtract();
break;

default:
printf("Invalid key\n");
break;

CALL command

The CALL command calls either a procedure, entry name, or program name, or it requests that a utility
function be run. The C and C++ equivalent for CALL is a function reference. PL/I subroutines or functions
cannot be called dynamically during a z/OS Debugger session. The CALL keyword cannot be abbreviated.

In C++, calls can be made to any user function provided that the function is declared with the following

syntax:

extern "C"

In COBOL, the CALL command cannot be issued when z/OS Debugger is at initialization.

The following table summarizes the forms of the CALL command.

“CALL 9%CEBR command” on page Starts the CICS Temporary Storage Browser Program.

77

“CALL 9%CECI command” on page Starts the CICS Command Level Interpreter Program.

77

“CALL 9%DUMP command” on page Calls a dump service to obtain a formatted dump.

77

“CALL %FA command” on page 82 [Calls IBM Fault Analyzer to provide a formatted dump of the
current machine state.

“CALL 9%HOGAN command” on page |[Starts Computer Sciences Corporation's KORE-HOGAN

82 application.

“CALL 9%VER command” on page Adds a line to the log describing the maintenance level of

83 z/0S Debugger that you have installed on your system.

“CALL entry_name command Calls an entry name in the application program (COBOL).

(COBOL)"” on page 83

“CALL procedure command” on Calls a procedure that has been defined with the PROCEDURE

page 84 command.

76 IBM z/OS Debugger: Reference and Messages

CALL %CEBR command

Starts the CICS Temporary Storage Browser Program.

»— CALL — %CEBR — ; »«

Usage notes

« z/OS Debugger performs an EXEC CICS LINK to the CICS browser program. When CEBR processing is
complete, control is returned to z/OS Debugger through an EXEC CICS return.

 You can use this command only when you debug CICS programs in single-terminal mode in full-screen
mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Supplied Transactions
CICS Application Programming Guide

CALL %CECI command

Starts the CICS Command Level Interpreter Program.

»— CALL — %CECI — ; >«

Usage notes

« z/0S Debugger performs an EXEC CICS LINK to the CICS command level interpreter program. When
CECI processing is complete, control is returned to z/OS Debugger through an EXEC CICS return.

« You can use this command only when you debug CICS programs in single-terminal mode in full-screen
mode.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Supplied Transactions
CICS Application Programming Guide

CALL %DUMP command

Calls a dump service to obtain a formatted dump.

L options st g
— options_string)
L , — title —J

»— CALL — %DUMP

title
Specifies the identification printed at the top of each page of the dump. It must be a fixed-length
character string. It must conform to the syntax rules for a character string constant enclosed in
qguotation marks (") or apostrophes (') for the current programming language. The string length cannot
exceed 80 bytes.

options_string
A fixed-length character string that specifies the type, format, and destination of dump information.
The string must conform to the syntax rules for a character string constant enclosed in quotation
marks (") or apostrophes (') for the current programming language. The string length cannot exceed
247 bytes.

Options are declared as a string of keywords separated by blanks or commas. Some options have
suboptions that follow the option keyword and are contained in parentheses. The options can be

Chapter 5. z/OS Debugger commands 77

specified in any order, but the last option declaration is honored if there is a conflict between it and
any preceding options.

The options_string can include the following:

THREAD (ALL | CURRENT)
Dumps the current thread or all threads associated with the current enclave. The default is to
dump only the current thread. Only one thread is supported. For enclaves that consist of a single
thread, THREAD (ALL) and THREAD (CURRENT) are equivalent.

THREAD can be abbreviated as THR.
CURRENT can be abbreviated as CUR.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

TRACEBACK
Requests a traceback of active procedures, blocks, condition handlers, and library modules on the
call chain. The traceback shows transfers of control from either calls or exceptions. The traceback
extends backward to the main program of the current thread.

TRACEBACK can be abbreviated as TRACE.

NOTRACEBACK
Suppresses traceback.

NOTRACEBACK can be abbreviated as NOTRACE.

FILES
Requests a complete set of attributes of all files that are open and the contents of the buffers
used by the files.

FILES can be abbreviated as FILE.

NOFILES
Suppresses file attributes of files that are open.

NOFILES can be abbreviated as NOFILE.

VARIABLES
Requests a symbolic dump of all variables, arguments, and registers.

Variables include arrays and structures. Register values are those saved in the stack frame at the
time of call. There is no way to print a subset of this information.

Variables and arguments are printed only if the symbol tables are available. A symbol table is
generated if a program is compiled using the compile options shown below for each language:

Language Compiler option

C TEST(SYM)

C++ TEST

COBOL TEST or TEST (h,SYM)
PL/I TEST(,SYM)

The variables, arguments, and registers are dumped starting with z/OS Debugger. The dump
proceeds up the chain for the number of routines specified by the STACKFRAME option.

VARIABLES can be abbreviated as VAR.

NOVARIABLES
Suppresses dump of variables, arguments, and registers.

NOVARIABLES can be abbreviated as NOVAR.

78 IBM z/OS Debugger: Reference and Messages

BLOCKS
Produces a separate hexadecimal dump of control blocks.

Global control blocks and control blocks associated with routines on the call chain are printed.
Control blocks are printed for z/OS Debugger. The dump proceeds up the call chain for the number
of routines specified by the STACKFRAME option.

If FILES is specified, this is used to produce a separate hexadecimal dump of control blocks used
in the file analysis.

BLOCKS can be abbreviated as BLOCK.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

NOBLOCKS
Suppresses the hexadecimal dump of control blocks.

NOBLOCKS can be abbreviated as NOBLOCK.

STORAGE
Dumps the storage used by the program.

The storage is displayed in hexadecimal and character format. Global storage and storage
associated with each routine on the call chain is printed. Storage is dumped for z/OS Debugger.
The dump proceeds up the call chain for the number of routines specified by the STACKFRAME
option. Storage for all file buffers is also dumped if the FILES option is specified. When the
Dynamic Debug facility is activated, some of the original application instructions are not displayed
because they are replaced by 'OA91' x instructions.

STORAGE can be abbreviated as STOR.

NOSTORAGE
Suppresses storage dumps.

NOSTORAGE can be abbreviated as NOSTOR.

STACKFRAME (n|ALL)
Specifies the number of stack frames dumped from the call chain.

If STACKFRAME (ALL) is specified, all stack frames are dumped. No stack frame storage is
dumped if STACKFRAME (0) is specified.

The particular information dumped for each stack frame depends on the VARIABLE, BLOCK, and
STORAGE option declarations specified. The first stack frame dumped is the one associated with
z/0S Debugger, followed by its caller, and proceeding backward up the call chain.

STACKFRAME can be abbreviated to SF.

PAGESIZE (n)
Specifies the number of lines on each page of the dump.

This value must be greater than 9. A value of zero (0) indicates that there should be no page
breaks in the dump.

PAGESIZE can be abbreviated to PAGE.

FNAME (s)
Specifies the ddname of the file where the dump report is written.

The default ddname CEEDUMP is used if this option is not specified.

CONDITION
Specifies that for each condition active on the call chain, the following information is dumped from
the Condition Information Block (CIB):

- The address of the CIB
« The message associated with the current condition token

Chapter 5. z/OS Debugger commands 79

The message associated with the original condition token, if different from the current one
 The location of the error

- The machine state at the time the condition manager was started

« The ABEND code and REASON code, if the condition occurred because of an ABEND.

The particular information that is dumped depends on the condition that caused the condition
manager to be started. The machine state is included only if a hardware condition or ABEND
occurred. The ABEND and REASON codes are included only if an ABEND occurred.

CONDITION can be abbreviated as COND.

NOCONDITION
Suppresses dump condition information for active conditions on the call chain.

NOCONDITION can be abbreviated as NOCOND.

ENTRY
Includes in the dump a description of the z/OS Debugger routine that called the dump service and
the contents of the registers at the point of the call. For the currently supported programming
languages, ENTRY is extraneous and will be ignored.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

NOENTRY
Suppresses the description of the z/OS Debugger routine that called the dump service and the
contents of the registers at the point of the call.

CICS: This option is not supported when you are running under CICS without Language
Environment, where z/OS Debugger issues an EXEC CICS DUMP TRANSACTION.

The defaults for the preceding options are:

CONDITION

FILES

FNAME (CEEDUMP)
NOBLOCKS
NOENTRY
NOSTORAGE
PAGESIZE (60)
STACKFRAME (ALL)
THREAD (CURRENT)
TRACEBACK
VARIABLES

Usage notes

« Ifincorrect options are used, a default dump is written.
« The service used to format the dump is determined by the following conditions:

Language Environment is active
Language Environment dump service: z/OS Debugger does not analyze any of the CALL %DUMP
options, but just passes them to the Language Environment dump service. Some of these options
might not be appropriate, because the call is being made from z/OS Debugger rather than from your
program.

Language Environment not active and you are running under CICS
The command: EXEC CICS DUMP TRANSACTION DUMPCODE('DT') COMPLETE

Language Environment not active and you are not running under CICS
The MVS SNAP dump service

« When you use CALL %DUMP, one of the following DD names must be allocated for you to receive a
formatted dump:

80 IBM z/0OS Debugger: Reference and Messages

— CEEDUMP (default)
— SYSPRINT.

Control might not be returned to z/OS Debugger after the dump is produced, depending on the option

string specified.

CICS: You do not need this allocation when you are running without Language Environment under CICS.
Under those conditions, EXEC CICS DUMP TRANSACTION is issued, and a transaction dump with a
code of DT is written to the CICS dump data set.

« COBOL does not do anything if the FILES option is specified; the BLOCKS option gives the file

information instead.

 Using a small n (like 1 or 2) with the STACKFRAME option will not produce useful results because only
the z/OS Debugger stack frames appear in your dump. Larger values of n or ALL should be used to
ensure that application stack frames are shown.

« When you use the CALL %DUMP command and the Language Environment run time is not active, the
MVS SNAP macro or the EXEC CICS DUMP command is used to generate the dump. When you are not
running under CICS, the following restrictions apply:

— The specified or default ddname must be allocated to a data set with these attributes: RECFM=VBA,
LRECL=125, and BLKSIZE=1632

— The previously described options are mapped into SNAP options as shown in the following table:

Table 5. %DUMP options mapping to SNAP options

%DUMP option SNAP option
THREAD ignored
TRACEBACK SDATA=(PCDATA) ,PDATA=(SA,SAH)
FILES SDATA=(DM, I0)
VARIABLES SDATA=(CB)
BLOCKS SDATA=(SQA, LSAQ, SWA)
STORAGE PDATA=(LPA, JPA,SPLS)
STACKFRAME ignored
PAGESIZE ignored
FNAME ddname for dump
CONDITION SDATA=(Q,TRT,ERR)
ENTRY PDATA=(SUBTASKS)
« The CALL %DUMP command cannot be used while you replay recorded statements by using the
PLAYBACK commands.
Examples

« Request a formatted dump that traces active procedures, blocks, condition handlers, and library
modules. Identify the dump as "Dump after read".

CALL %DUMP ("TRACEBACK",

"Dump after read");

« Call the dump service to obtain a formatted dump including traceback information, file attributes, and

buffers.

CALL %DUMP ("TRACEBACK FILES");

Refer to the following topics for more information related to the material discussed in this topic.

Chapter 5. z/OS Debugger commands 81

Related references

“PLAYBACK commands” on page 186

z/0S Language Environment Programming Guide
z/0S Language Environment Debugging Guide

CALL %FA command

Starts and instructs IBM Fault Analyzer to provide a formatted dump of the current machine state.

»— CALL — %FA — ; >«

Usage notes

- If you are replaying recorded statements by using the PLAYBACK commands, CALL 9%FA provides a
formatted dump of the machine state when you entered PLAYBACK START.

« You can use this command in remote debug mode.
Refer to the following topics for more information related to the material discussed in this topic.

« Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

CALL %FM command
Starts IBM File Manager for z/0S.

; >
L userID J L BACKGROUND J

»w— CALL — %FM

userID
The ID of an MVS user. If you do not specify a userID, then File Manager takes one of the following
options:

« If you sign on using CESN and File Manager has been installed with either xDEFAULT=SIGNON or
*PASSWORD=REMEMBER, then userID is assigned the user ID used to sign on.

« If you have not signed on, then File Manager prompts you for a user ID before it displays the logon
panel.

BACKGROUND
Specifies that all non-terminal processing be routed to a background task.

Usage notes

« You can use this command only when you debug CICS programs.
 You need to have IBM File Manager for z/OS V9R1 installed in the CICS region.

CALL %HOGAN command

Starts Computer Sciences Corporation's KORE-HOGAN application, also known as SMART (System
Memory Access Retrieval Tool).

»— CALL — %HOGAN — ; >«

Usage notes

« You can use this command only when you debug CICS programs in single-terminal mode in full-screen
mode.

« If you do not have the KORE-HOGAN application, do not use this command. If you do use this
command, a Program not loadable error occurs, which raises an AEI0 exception.

82 IBM z/0OS Debugger: Reference and Messages

CALL %VER command

Adds a line to the log describing the maintenance level of z/OS Debugger that you have installed on your
system.

»— CALL — %VER — ; »«

Usage note
You can use this command in remote debug mode.
Example

You have z/OS Debugger, Version 14.2, installed on your system. Enter the CALL %VER command to
display the following information in the Log window:

IBM z/0S Debugger Version 14 Release 2 Mod m
08/14/2019 08:01:00 AM Level: V14R2Mm PHnnnnn
5724-T07: Copyright IBM Corp. 1992, 2019

The time stamp that is shown is the product build date and time.
Refer to the following topics for more information related to the material discussed in this topic.

« Appendix A, “z/0OS Debugger commands supported in remote debug mode,” on page 505

CALL entry_name command (COBOL)

Calls an entry name in the application program. The entry name must be a valid external entry point name
(that is, callable from other compile units).

»— CALL identifier

; >
literal —J L <
USING identifier_clause

identifier_clause

- ﬁ REFERENCE J L ADDRESS — OF J
BY

<

identifier

CONTENT { identifier
BY tADDRESS — OF j
LENGTH — OF
literal
identifier
A valid z/OS Debugger COBOL identifier.
literal

A valid COBOL literal.
Usage notes

« If you have a COBOL entry point name that is the same as a z/OS Debugger procedure name, the
procedure name takes precedence when using the CALL command. If you want the entry name to take
precedence over the z/OS Debugger procedure name, you must qualify the entry name when using the
CALL command.

Chapter 5. z/OS Debugger commands 83

« You can use the CALL entry_name command to change program flow dynamically. You can pass
parameters to the called module.

« The CALL follows the same rules as calls within the COBOL language.

« The COBOLON OVERFLOWand ON EXCEPTION phrases are not supported, so END-CALL is not
supported.

 Only calls to separately compiled programs are supported; nested programs are not callable by this
z/0S Debugger command (they can of course be started by GOTO or STEP to a compiled-in CALL).

« All calls are dynamic, that is, the called program (whether specified as a literal or as an identifier) is
loaded when it is called.

 See Enterprise COBOL for z/0S Language Reference for an explanation of the following COBOL keywords:
ADDRESS, BY, CONTENT, LENGTH, OF, REFERENCE, USING.

« An entry_name cannot refer to a method.
« A windowed date field cannot be specified as the identifier containing the entry name.

« The CALL entry_name command cannot be used while you replay recorded statements by using the
PLAYBACK commands by using the PLAYBACK command.

Example

Call the entry name subl passing the variables a, b, and c.

CALL "subl" USING a b c;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“PLAYBACK commands” on page 186
Enterprise COBOL for z/OS Language Reference

CALL procedure command
Calls a procedure that has been defined with the PROCEDURE command.

»— CALL — procedure_name — ;-»«

procedure_name
The name given to a sequence of z/OS Debugger commands delimited by a PROCEDURE command and
a corresponding END command.

Usage notes

« Because the z/OS Debugger procedure names are always uppercase, the procedure name is converted
to uppercase even for programming languages that have mixed-case symbols.

- The CALL keyword is required even for programming languages that do not use CALL for subroutine
invocations.

« The CALL command is restricted to calling procedures in the currently executing enclave.
Example

Create and call the procedure named proci.

procl: PROCEDURE;
LIST (z, c);

END;

AT 54 CALL procl;

CC command

Controls whether code coverage data is collected.

84 IBM z/0OS Debugger: Reference and Messages

STOP
Usage notes

« The CC START command collects data for the following compile unit or programs:

— The currently qualified z/OS Debugger compile unit from the point in the program where the
command is entered.

— Programs that are run after the CC START command is issued and that are selected by a user-
specified action. This action can be stepping into a compile unit, setting a breakpoint in a compile
unit, or defining a compile unit in the DTCN or CADP profile.

« CC STOP deletes all code coverage data.

« To view the code coverage information generated by CC START, issue LIST CC before entering CC
STOP.

 The collection of code coverage data can add a substantial amount of overhead. Therefore, it is a good
practice to issue the CC START command only when you want to gather this data. Do not routinely
issue the CC START command in debug sessions in which you do not want to gather this data.

Examples

« Specify that code coverage data be collected.
CC START;
« List the code coverage data.
LIST CC;
« Specify that code coverage stop and the data be deleted.

CC STOP;

Related references
“LIST CC command” on page 144

CHKSTGV command

Checks whether the CICS storage check zone of a user-storage element has been overlaid.

»— CHKSTGV — ; >«

Usage notes
« This command applies only to CICS applications.
« You can use this command in remote debug mode.

« Do not use this command to replace the practices described in CICS Problem Determination Guide in the
section Dealing with storage violations.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
CICS Problem Determination Guide
Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

Related tasks
"Detecting CICS storage violations early" in the IBM z/0OS Debugger User's Guide

Chapter 5. z/OS Debugger commands 85

CLEAR command

The CLEAR command removes the actions of previously entered z/OS Debugger commands. Some
breakpoints are removed automatically when z/OS Debugger determines that they are no longer

meaningful. For example, if you set a breakpoint in a fetched or loaded compile unit, the breakpoint is
discarded when the compile unit is released.

86 IBM z/0OS Debugger: Reference and Messages

»— CLEAR

AT

M—— DECLARE

M——-EQUATE

% AT_command ﬂ
generic_ AT_command

M——— identifier ——

NM————— identifier ——

LDD
M———— number ——
“—— Idd_number_range
LOAD module_name

L Lmodule name i

——-— MONITOR

ON

MEMORY

M——— number ————

_(fnumb:j—)~

NM— monitor_number_range —

L CURSOR —J

M pli condition ———

h(g_cond:ﬁoni)—*

M PROCEDURE

——— VARIABLES

M procedure_name

— (L procedure_name i)—

M identifier ———

Removes all breakpoints, including GLOBAL breakpoints, set by previously entered AT commands,

except for AT TERMINATION and suspended breakpoints.

Chapter 5. z/OS Debugger commands 87

AT_command
A valid AT command that includes at least one operand. The AT command must be complete
except that the every_clause and command are omitted.

genexric_AT_command
A valid AT command without operands. It can be one of the following: ALLOCATE, APPEARANCE,
CALL, CHANGE, CURSOR, DATE, DELETE, ENTRY, EXIT, LABEL, LOAD, OFFSET, OCCURRENCE,
PATH, STATEMENT (the LINE keyword can be used in place of STATEMENTS), or TERMINATION.

DECLARE
Removes previously defined variables and tags. If no identifier follows DECLARE, all session variables
and tags are cleared. DECLARE is equivalent to VARIABLES.
identifier
The name of a session variable or tag declared during the z/OS Debugger session. This operand
must follow the rules for the current programming language.

EQUATE
Removes previously defined symbolic references. If no identifier follows EQUATE, all existing SET
EQUATE synonyms are cleared.
identifier
The name of a previously defined reference synonym declared during the z/OS Debugger session
using SET EQUATE. This operand must follow the rules for the current programming language.

LDD
Removes one or more LOADDEBUGDATA (LDD) commands known to z/OS Debugger. The LDD
command's sub-parameter must be one of those listed in the output of the LIST LDD command. It is
recommended that you enter the LIST LDD command before each CLEAR LDD command because
the LDD entry numbers are affected by previous CLEAR LDD commands. This command has the
following sub-parameters:
*

Removes all LDD commands known to z/OS Debugger across all enclaves.

number
A positive integer that refers to the output of the LIST LDD command. If a list of integers is
specified, all commands that are represented by the specified list are cleared.
ldd_number_range
Identifies the first and last number as seen in the LIST LDD command's output, separated by a
hyphen (-), that you want to clear. When the current programming language setting is COBOL,
blanks are required around the hyphen (-). Blanks are optional for other programming languages.
However, in remote debug mode, blanks are required around the hyphen (-) for all programming
languages.

Usage note
You can use the CLEAR LDD command in remote debug mode.

LOAD
Removes the load module. This command has the following sub-parameter:

module_name
The name of one or more load modules that were loaded by z/OS Debugger using the LOAD
command.

LOG
Erases the log file and clears out the data being retained for scrolling. In line mode, CLEAR LOG clears
only the log file.

If the log file is directed to a SYSOUT type file, CLEAR LOG will not clear the log contents in the file.

MEMORY
Clears the Memory window including the memory currently being displayed, the base address, and
the history area.

88 IBM z/0OS Debugger: Reference and Messages

MONITOR
Clears the commands defined for MONITOR. If no number follows MONITOR, the entire list of
commands affecting the monitor window is cleared; the monitor window is empty.

number
A positive integer that refers to a monitored command. If a list of integers is specified, all
commands represented by the specified list are cleared.

monitor_number_range
Identifies the first and last monitor number in a range of monitors, separated by a hyphen (-), that
you want to delete. When the current programming language setting is COBOL, blanks are
required around the hyphen (-). Blanks are optional for other programming languages.

CURSOR
Indicates that you want to delete the variable identified by the cursor’s current location. The
cursor can be placed only in the Monitor window.
ON (PL/I)
Removes the effect of an earlier ON command. If no pli_condition follows ON, all existing ON
commands are cleared.
pli_condition
Identifies an exception condition for which there is an ON command defined.
PROCEDURE

Clears previously defined z/OS Debugger procedures. If no procedure_name follows PROCEDURE, all
inactive procedures are cleared.

procedure_name
The name given to a sequence of z/OS Debugger commands delimited by a PROCEDURE command
and a corresponding END command. The procedure must be currently in storage and not active.

VARIABLES
Removes previously defined variables and tags. If no identifier follows VARIABLES, all session
variables and tags are cleared. VARIABLES is equivalent to DECLARE.

identifier
The name of a session variable or tag declared during the z/OS Debugger session. This operand
must follow the rules for the current programming language.

Usage notes

» You can use the CLEAR AT command to clear either active or suspended breakpoints. However, you
cannot use it to clear suspended label breakpoints.

« If you want to clear a suspended breakpoint, you must specify both the load module and CU name.
« You can use the CLEAR LOAD command in remote debug mode.

- In some environments, a loaded module cannot be removed from storage. In this case the command
fails and the load module remains in storage.

» You can enter CL in the prefix area of the monitor window to clear the selected line in the Monitor
window. You can enter CC prefix commands to clear a selected block of lines from the Monitor window.

« You can use the CLEAR MONITOR n command to clear an automonitor entry in the Monitor window.
e Onlyan AT LINE or AT STATEMENT breakpoint can be cleared with a CLEAR AT CURSOR command.

« To clear every single breakpoint in the z/OS Debugger session, issue CLEAR AT followed by CLEAR AT
TERMINATION.

« To clear a global breakpoint, you can specify an asterisk (*) with the CLEAR AT command or you can
specify a CLEAR AT GLOBAL command.
If you have only a global breakpoint set and you specify CLEAR AT ENTRY without the asterisk (*) or
GLOBAL keyword, you get a message saying there are no such breakpoints.

« The CLEAR AT, CLEAR DECLARE, CLEAR LDD, CLEAR ON, and CLEAR VARIABLES commands cannot
be used while you replay recorded statements by using the PLAYBACK commands.

Chapter 5. z/OS Debugger commands 89

« To use the cursor to indicate which variable in the Monitor window to remove, do one of the following
methods:

— Assign the CLEAR MONITOR CURSOR to a PF key. Move the cursor to a variable in the Monitor
window and press the PF key. This method is more convenient.

— Type the CLEAR MONITOR command on the command line, then move the cursor to a variable in the
Monitor window. Press Enter.

- Based on the application flow and structure, the CLEAR LDD command might not take effect until the
next z/OS Debugger session is started.

e The CLEAR LDD * command removes all LDD commands known to z/OS Debugger across all enclaves.

« Because the SAVEBPS data set is updated during each enclave exit, if at any time the CLEAR LDD
command is issued afterwards, the LDD commands will have already been saved in the SAVEBPS data
set and thus will be restored during the next debug session.

« The SET EXPLICITDEBUG ON command takes precedence over the CLEAR LDD command. As a
result, even though the CLEAR LDD command is processed, it will not undo the already processed LDD
command.

Examples

« Remove the LABEL breakpoint set in the program at label create.
CLEAR AT LABEL create;

« Remove previously defined variables x, y, and z.
CLEAR DECLARE (x, y, z);

- Remove the effect of the ninth command defined for MONITOR.
CLEAR MONITOR 9;

« Remove the structure type definition tagone (assuming all variables declared interactively using the
structure tag have been cleared). The current programming language setting is C.

CLEAR VARIABLES struct tagone;

« Establish some breakpoints with the AT command and then remove them with the CLEAR command
(checking the results with the LIST command).

AT 50;

AT 56;

AT 55 LIST (r, c);
LIST AT;

CLEAR AT 50;

LIST AT;

CLEAR AT;

LIST AT;

« If you want to clear an AT ENTRY % breakpoint, specify:

CLEAR AT ENTRY =*;
or
CLEAR AT GLOBAL ENTRY;

« If you want to remove the DATE breakpoint for block MYBLOCK, specify:
CLEAR AT DATE MYBLOCK;

- If you want to remove a generic DATE breakpoint, specify:
CLEAR AT DATE *;

« The following examples show how to display the LDD commands known to z/OS Debugger and how to
use the CLEAR LDD command:

90 IBM z/0OS Debugger: Reference and Messages

— To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD TBNDOO3::>TBNDOO3A;
2. LDD MYPROG;

3. LDD MYPROG3;

4. LDD PROG4::>PROG5;

To remove all the LDD commands, specify:

CLEAR LDD =*;

If you then enter the following command:
LIST LDD;
You will get the following result:
There are no LDD commands established.
— To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD 1A::>1AB;
2. LDD PGM1C;

To remove the LDD 1A: : >1AB command, specify:
CLEAR LDD 1;
— To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

1. LDD TBNDOOS5::>TBNDOOS5A;
2. LDD MYPROG;

3. LDD MYPROG5;

4. LDD PROG5::>PROG5Y;

If you then enter the CLEAR LDD 5 command, you will get the following output:
No LDD command was established for LDD 5.
— To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

LDD TBNDGO3::>TBNDOO3A;
LDD MYPROG;

LDD MYPROG3;

LDD PROG3::>PROG3C;

[ENYOSH O o

If you then enter the CLEAR LDD (1,4) command, you will get the following output:

Removes LDD TBNDOO3::>TBNDOO3A and LDD PROG3::>PROG3C

Chapter 5. z/OS Debugger commands 91

— To display the LDD commands known to z/OS Debugger, specify:

LIST LDD;

Suppose that you get the following output:

il LDD TBNDGO3::>TBNDOO3A;
2. LDD MYPROG;

S LDD MYPROG3;

4. LDD PROG6: :>PROG6F;

If you then enter the CLEAR LDD 4 - 5command (for COBOL or all languages in remote debug
mode), you will get the following output:

No LDD command was established for LDD 5.

However, z/OS Debugger removes the LDD PROG6: : >PROG6F command.
Refer to the following topics for more information related to the material discussed in this topic.

Related references

“CLEAR prefix (full-screen mode)” on page 92

“AT command” on page 37

“LIST command” on page 139

“PLAYBACK commands” on page 186

“Prefix commands (full-screen mode)” on page 190

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

CLEAR prefix (full-screen mode)

Clears a breakpoint when you enter this command through the Source window prefix area or clears a
selected member of the current set of MONITOR commands when you enter this command through the
Monitor window prefix area.

;>
1——integ'er ——j

»— CLEAR

integer
Selects a relative statement (for C and PL/I) or a relative verb (for COBOL) within the line to remove
the breakpoint if there are multiple statements on that line. The default value is 1. For optimized
COBOL programs, the first relative statements is the first executable statement, which was not
discarded by the optimizer.

Usage notes

« The CLEAR prefix command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

« Use CL in the Monitor window prefix area to clear a member of Monitor window.
« Use CC in the Monitor window prefix area to clear a selected block of lines from the Monitor window.

Examples

« In the Source window, clear a breakpoint at the third statement or verb in the line (typed in the prefix
area of the line where the statement is found).

CLEAR 3

No space is needed as a delimiter between the keyword and the integer; hence, CLEAR 3 is equivalent
to CLEAR3.

« In the Monitor window, type CL in the prefix area to on the line that displays the entry you want to
remove, then press Enter.

92 IBM z/0OS Debugger: Reference and Messages

CLEAR AT command (remote debug mode)

You can use the CLEAR AT command to remove actions that were completed by using the AT GLOBAL
LABEL or the AT LABEL commands.

»— CLEAR AT T GLOBAL — LABEL ﬁ— ;e
LABEL

} statement _label {
*

To clear a global breakpoint, specify an asterisk (*) with the CLEAR AT LABEL command, or specify a
CLEAR AT GLOBAL LABEL command.

Usage note

COMMENT command

The COMMENT command can be used to insert commentary in to the session log. The COMMENT keyword
cannot be abbreviated.

L J ;>
commentary

»— COMMENT

commentary
Commentary text not including a semicolon. An embedded semicolon is not allowed; text after a
semicolon is treated as another z/OS Debugger command. DBCS characters can be used within the
commentary.

Examples

« Comment that varblxx seems to have the wrong value.
COMMENT At this point varblxx seems to have the wrong value;
« Combine a commentary with valid z/OS Debugger commands.

COMMENT Entering subroutine testrun; LIST (x); GO;

The COMMENT command can be used as an executable command, but it is treated as a Null command
and no output is produced. For example, there will be no output of the COMMENT command in the
following cases:

- When it is specified as a command to be executed as an action of another command. For example:
AT 10 COMMENT xxx;

« When it is used inside of any command that allows one to specify a sequence of commands such as DO/
END, BEGIN/END, or PERFORM/END-PERFORM.

* When it is used inside of a PROCEDURE command.

To get output in these cases, use the LIST command instead of the COMMENT command. For example:

AT 10 LIST 'xxx';

COMPUTE command (COBOL)

The COMPUTE command assigns the value of an arithmetic expression to a specified reference. The
COMPUTE keyword cannot be abbreviated.

»— COMPUTE — reference — = — expression — ;-»<«

Chapter 5. z/OS Debugger commands 93

reference
A valid z/OS Debugger COBOL numeric reference.

expression
A valid z/OS Debugger COBOL numeric expression.

Usage notes

« If you are debugging an optimized COBOL program, you can use the COMPUTE command to assign a
value to a program variable only if you first enter the SET WARNING OFF command.

« If you are debugging an optimized COBOL program and you specify an expression, you can reference
program variables that were not discarded by the optimizer.

- If z/OS Debugger was started because of a computational condition or an attention interrupt, using an
assignment to set a variable might not give expected results. This is due to the uncertainty of variable
values within statements as opposed to their values at statement boundaries.

« COMPUTE assigns a value only to a single receiver; unlike COBOL, multiple receiver variables are not
supported.

« The COBOL EQUAL keyword is not supported ("=" must be used).
« The COBOL ROUNDED and SIZE ERROR phrases are not supported, so END-COMPUTE is not supported.

« COMPUTE cannot be used to perform a computation with a windowed date field if the expression
consists of more than one operand.

- Any expanded date field specified as an operand in the expression is treated as a nondate field.
« The result of the evaluation of the expression is always considered to be a nondate field.

- If the expression consists of a single numeric operand, the COMPUTE will be treated as a MOVE and
therefore subject to the same rules as the MOVE command.

« If the DATA parameter of the PLAYBACK ENABLE command is in effect for the current compile unit, the
COMPUTE command can be used while you replay recorded statements by using the PLAYBACK
commands. The target of the COMPUTE command must be a session variable.

- The value assigned to a variable is always assigned to the storage for that variable. In an optimized
program, a variable can be temporarily assigned to a register, and a new value assigned to that variable
does not necessarily alter the value used by the program.

Examples

« Assign to variable x the value of a + 6.
COMPUTE x = a + 6;

- Assign to the variable mycode the value of the z/OS Debugger variable $PATHCODE + 1.
COMPUTE mycode = %PATHCODE + 1;

« Assign to variable xx the result of the expression (a + e(1)) / c % 2.

COMPUTE xx = (a + e(1)) / c * 2;

You can also use table elements in such assignments as shown in the following example.

COMPUTE itm-2(1,2) = (a + 10) / e(2);

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“MOVE command (COBOL)” on page 174

“PLAYBACK commands” on page 186

“SET WARNING command (C, C++, COBOL, and PL/I)” on page 262

94 IBM z/0OS Debugger: Reference and Messages

CURSOR command (full-screen mode)

The CURSOR command moves the cursor between the last saved position on the z/OS Debugger session
panel (excluding the header fields) and the command line.

»— CURSOR — ; »«

Usage notes

« The cursor position can be saved by typing the CURSOR command on the command line and moving the
cursor before pressing Enter, or by moving the cursor and pressing a PF key with the CURSOR command
assigned to it.

« If the CURSOR command precedes any command on the command line, the cursor is moved before the
other command is performed. This behavior can be useful in saving cursor movement for commands
that are performed repeatedly in one of the windows.

« The CURSOR command is not logged.

Example

Move the cursor between the last saved position on the z/OS Debugger session panel and the command
line.

CURSOR;

Declarations (assembler, disassembly, and LangX COBOL)

Use declarations to declare session variables that are effective during a z/OS Debugger session. Session
variables remain in effect for the entire debug session, or process in which they were declared. Variables
declared with declarations can be used in other z/OS Debugger commands as if they were declared to the
compiler. Declared variables are removed when your z/OS Debugger session ends or when the CLEAR
command is used to remove them.

»— identifier — DS ——— F ——»«
— FL7 —
X —
— XL n —
—— C —
— CLn —
— H—
— HLn —
— A —
— AL n —
—— B —
M BLn —
P —
M PLn —
7 —
M ZL n —]
— E —

—D —

;L_}

Chapter 5. z/OS Debugger commands 95

identifier
A valid assembler identifier.

F, FLn, X, XLn, C, CLn, H, HLn, A, ALn, B, BLn, P, PLn, Z, ZLn, E, D, L
Type codes that correspond to the types used in the assembler DC instruction. See the High Level
Assembler for MVS & VM & VSE: Language Reference for details about the meaning of these type
codes.

Usage note

The range of valid n values depends on the type specifier as follows:
« Cand X: 1to 65525

« F,H andA:1to4

B:1to 256

e PandZ:1to 16

Declarations (C and C++)

Use declarations to declare session variables and tags that are effective during a z/OS Debugger
session. Session variables remain in effect for the entire debug session, or process in which they were
declared. Variables and tags declared with declarations can be used in other z/OS Debugger
commands as if they were declared to the compiler. Declared variables and tags are removed when your
z/0OS Debugger session ends or when the CLEAR command is used to remove them. The keywords must
be the correct case and cannot be abbreviated.

You can also declare enum, struct, and union data types. The syntax is identical to C except that enum
members can only be initialized to an optionally signed integer constant.

scalar_def declarator

enum_def

. struct_def '

scalar_def

’

96 IBM z/0OS Debugger: Reference and Messages

»r— char

»d

M————— double

unsigned
L long —J

float 1

int
unsigned short

long

.

M— long
k signed ﬂ L int J
unsigned
double
short
signed ﬂ L int J
unsigned
M signed
long ﬂ L int J
short
char
M unsigned
long ﬂ L int J
short
char
N void — * 4
declarator
» identifier »<
M——— (— identifier —)——
. <
“— identifier L [— integer —]i/
enum_def

»— enum L J
identifier

struct_def

{ { identifier

J,.

L = — constant_expr J

Chapter 5. z/OS Debugger commands 97

Z identifier

. &
» €

» struct
L_Packed _J L identifier —J

H.'
=iy
Z identifier

» union
L_Packed —J L identifier —J ;€

m
==y

]

union_def

A Cindirect operator.
identifier
Avalid C identifier.

integer
A valid C array bound integer constant.

constant_expr
A valid C integer constant.

Usage notes

« As in C and C++, the keywords can be specified in any order. For example, unsigned long int is
equivalent to int unsigned long. Some permutations are shown in the syntax diagram to make sure that
every keyword is shown at least once in the initial position.

« Asin C and C++, the identifiers are case-sensitive; that is, "X" and "x" are different names.
« A structuzre definition must have either an identifier, a declarator, or both specified.
« Initialization is not supported.

« A declaration cannot be used in a command list; for example, as the subject of an if command or case
clause.

« Declarations of the form struct tag identifier must have the tag previously declared
interactively.

- See the C and C++ Language References for an explanation of the following keywords:

char short
double signed
enum struct
float union
int unsigned
long void
_Packed (1)

(1) _Packed is not supported in C++.

98 IBM z/0OS Debugger: Reference and Messages

« You cannot use the declarations command while you replay recorded statements by using the
PLAYBACK commands by using the PLAYBACK command.

Examples
- Define two C integers.
int myvar, hisvar;

« Define an enumeration variable status that represents the following values:

Enumeration Constant Integer Representation
run 0
create 1
delete 5
suspend 6

enum statustag {run, create, delete=5, suspend} status;
« Define avariable in a struct declaration.

struct atag $
char foo;
int vari;

t avar;

« Interactively declare variables using structure tags.
struct tagone {int a; int b;% c;
then specify:
struct tagone d;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Declarations (COBOL)

Use declarations to declare session variables that are effective during a z/OS Debugger session. Session
variables remain in effect for the entire debug session, or process in which they were declared. Variables
declared with declarations can be used in other z/OS Debugger commands as if they were declared to the
compiler. Declared variables are removed when your z/OS Debugger session ends or when the CLEAR
command is used to remove them. The keywords cannot be abbreviated.

»L level — identifier

e
attribute
»TPIC J L J picture
PICTURE IS

usage_attribute

Chapter 5. z/OS Debugger commands 99

POINTER

» L _——
USAGE ﬁ—j — BINARY
IS

M——— COMP

M—— COMPUTATIONAL —

M———- COMP-1
M COMPUTATIONAL-1 —
M—— COMP-2

“— COMPUTATIONAL-2 —/

level
1or77.

identifier
A valid COBOL data name (including DBCS data names).

picture
A sequence of characters from the set: S X 9 (replication factor is optional).

If picture is not X (%), the COBOL USAGE clause is required.
Usage notes

« For Enterprise COBOL for z/OS Version 5, if you declare a session variable by using the attribute
UNSIGNED BINARY, it can be used only when the current qualification is an Enterprise COBOL for z/OS
Version 5 program.

 For Enterprise COBOL for z/OS Version 5, it enforces COBOL rules for variable names when session
variables are declared. Version 4 allows some invalid names to be used. Some examples are as follows:

— For Version 5, it does not allow the name "4-44"; however, the name is allowed in Version 4. The
name is invalid because COBOL requires at least one alphabetical character in a variable name.

— For Version 5, it does not allow the name "SV12#"; however, the name is allowed in Version 4. The
name is invalid because '#'is not allowed. Only '-','_', and alphanumerical characters are allowed in
a COBOL variable name.

— For Version 5, it does not allow the name "_SV12"; however, the name is allowed in Version 4. The
name is invalid because '_' cannot be used as the first character in a variable name.

« For Enterprise COBOL for z/OS Version 5, COMP-4 and COMPUTATIONAL -4 are also accepted.

« A declaration cannot be used in a command list; for example, as the subject of an IF command or WHEN
clause.

« BINARY and COMP are equivalent.

« Use BINARY or COMP for COMPUTATIONAL-A4.

« COMP-1 is short floating point (4 bytes).

« COMP-2 is long floating point (8 bytes).

« Only COBOL PICTURE and USAGE clauses are supported.
« Short forms of COMPUTATIONAL (COMP) are supported.

Examples

« Define a variable named f£loattmp to hold a floating-point number.
01 floattmp USAGE COMP-1;
- Define an integer variable name temp.

77 temp PIC S9(9) USAGE COMP;

Refer to the following topics for more information related to the material discussed in this topic.

100 IBM z/OS Debugger: Reference and Messages

Related tasks

IBM z/0S Debugger User's Guide

Related references

Enterprise COBOL for z/OS Language Reference

DECLARE command (PL/I)

The DECLARE command declares session variables that are effective during a z/OS Debugger session.
Variables declared this way can be used in other z/OS Debugger commands as if they were declared to
the compiler. They are removed with the CLEAR command or when your z/OS Debugger session ends. The

keywords cannot be abbreviated.

<

»T DCL jiT{ major_structure ; e
DECLARE scalar
major_structure
»L level — name] >«
attribute
scalar
name] <

(Z name :) J £ attribute l

level

An unsigned positive integer. Level 1 must be specified for major structure names.

name

A valid PL/I identifier. The name must be unique within a particular structure level.

When name conflicts occur, z/OS Debugger uses session variables before using other variables of the
same name that appear in the running programs. Use qualification to refer to the program variable

during a z/OS Debugger session. For example,

to display the variable a declared with the DECLARE

command as well as the variable a in the program, issue the LIST command as follows:

LIST (a, %BLOCK:a);

If a name conflict occurs because the variable was declared earlier with a DECLARE command, the

new declaration overrides the previous one.

attribute
A PL/I data or storage attribute.

Acceptable PL/I data attributes include:

BINARY CPLX FIXED LABEL PTR

BIT DECIMAL FLOAT OFFSET REAL
CHARACTERS EVENT GRAPHIC POINTER VARYING
COMPLEX

Acceptable PL/I storage attributes include:

Chapter 5. z/OS Debugger commands 101

BASED ALIGNED UNALIGNED

Pointers cannot be specified with the BASED option.

Only simple factoring of attributes is allowed. DECLAREs such as the following are not allowed:

DCL (a(2), b) PTR;
DCL (x REAL, y CPLX) FIXED BIN(31);

Also, the precision attribute and scale factor as well as the bounds of a dimension can be specified. If
a session variable has dimensions and bounds, these must be declared following PL/I language rules.

Usage notes

« DECLARE is not valid as a subcommand. That is, it cannot be used as part of a DO/END or BEGIN/END
block.

« Initialization is not supported.
« Program DEFAULT statements do not affect the DECLARE command.

- If you are debugging a Enterprise PL/I program, you cannot declare arrays, structures, factor attributes,
or multiple session variables in one command line.

« The DECLARE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

- Declare x, y, and z as variables that can be used as pointers.
DECLARE (x, y, z) POINTER;

« Declare a as a variable that can represent binary, fixed-point data items of 15 bits.
DECLARE a FIXED BIN(15);

« Declare d0O3 as a variable that can represent binary, floating-point, complex data items.
DECLARE d03 FLOAT BIN COMPLEX;

This dO3 will have the attribute of FLOAT BINARY (21).

« Declare x as a pointer, and setx as a major structure with structure elements a and b as fixed-point
data items.

DECLARE x POINTER, 1 setx, 2 a FIXED, 2 b FIXED;
This a and b will have the attributes of FIXED DECIMAL (5).

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

Refer to the following topics for more information related to the material discussed in this topic.

Related references
Enterprise PL/I for z/OS Language Reference

DESCRIBE command

The DESCRIBE command displays the file allocations or attributes of references, compile units, known
load modules, the run-time environment, and CICS channels and containers.

102 IBM z/OS Debugger: Reference and Messages

. CURSOR N

(— USER j

»— DESCRIBE ALLOCATIONS ALL e

M—— SYSTEM —
M— LINKLIST —
M— LPALIST —
M— APFLIST —
M CATALOG —
M— PARMLIB —

~—— PROCLIB —~
M ATTRIBUTES

reference
M '—reference —'—— ——
<
, <
M (reference) —
'— reference —'
4 * J

CHANNEL

*

M channel_name —

- SOAP 7

cus
LPROGRAMS —J I cu_spec ——

§ * J

ENVIRONMENT

~—————— LOADMODS g

*

M load spec ———

e
CURSOR (Full-Screen Mode only)

Provides a cursor-controlled method for describing variables, structures, and arrays. If you have
assigned DESCRIBE to a PF key, you can display the attributes of a selected variable by positioning
the cursor at that variable and pressing the assigned PF key.

ALLOCATIONS
Lists the current file allocations.
USER
Indicates that files allocated in the user's address space are to be described.

ALL
Indicates that both USER and SYSTEM allocations are to be described.

Chapter 5. z/OS Debugger commands 103

SYSTEM
Indicates that all of the following allocations are to be described.

LINKLIST
Indicates that the current LINKLIB, JOBLIB, STEPLIB, and TASKLIB allocations are to be
described.

LPALIST
Indicates that the current LPA list is to be described.

APFLIST
Indicates that the current list of APF authorized data sets is to be described.

CATALOG
Indicates that the current list of active catalogs is to be described.

PARMLIB
Indicates that the current PARMLIB concatenation is to be described.

PROCLIB
Indicates that the current PROCLIB concatenation is to be described.

ATTRIBUTES
Displays the attributes of a specified variable or, in C and C++, an expression. The attributes are
ordinarily those that appeared in the declaration of a variable or are assumed because of the
defaulting rules. DESCRIBE ATTRIBUTES works only for variables accessible to the current
programming language. All variables in the currently qualified block are described if no operand is
specified.
reference

A valid z/OS Debugger reference in the current programming language. Note the following points:

In C and C++, this can be a valid expression. For a C and C++ expression, the type is the only
attribute displayed. For a C and C++ structure or class, DESCRIBE ATTRIBUTES displays only the
attributes of the structure or class. To display the attributes of a data object within a structure or
data member in a class, use DESCRIBE ATTRIBUTES for the specific data object or member.

In COBOL, this can be any user-defined name appearing in the DATA DIVISION. Names can be
subscripted or substringed per their definitions (that is, if they are defined as alphanumeric data
or as arrays).

In PL/I, if the variable is in a structure, it can have inherited dimensions from a higher level parent.
The inherited dimensions appear as if they have been part of the declaration of the variable.

In optimized COBOL programs, if reference refers to a variable that was discarded by the
optimizer, the address information is replaced with a message.

'reference’
A valid z/OS Debugger LangX COBOL reference. This form must be used for LangX COBOL. It can
contain a simple variable or a variable with IN or OF qualifications.

Describes all variables in the compile unit. The % is not supported for assembler, disassembly,
PL/I, or LangX COBOL programs.

CHANNEL
Describes CICS channels and containers, including containers that hold Web services state data. You
can specify one of the following suboptions:

channel_name
Describe all containers in the channel channel_name.
*
Describe all the containers in all the channels in the current scope.

SOAP
Describe all SOAP containers. SOAP is a synonym for DFHNODE.

If you do not specify a suboption, z/OS Debugger lists all of the containers in the current channel.

104 IBM z/OS Debugger: Reference and Messages

Ccus
Describes the attributes of compile units, including such things as the compiler options and list of
internal blocks. The information returned is dependent on the HLL that the compile unit was compiled
under. CUS is equivalent to PROGRAMS.

cu_spec
The name of the compile unit whose attributes you want to list.

*
Describes all compile units.

PROGRAMS
Is equivalent to CUS.

ENVIRONMENT
The information returned includes a list of the currently opened files. Names of files that have been
opened but are currently closed are excluded from the list. COBOL, LangX COBOL, assembler, and
disassembly do not provide any information for DESCRIBE ENVIRONMENT.

LOADMODS
This command displays information about load modules known to z/OS Debugger and the known or
potential CUs in these load modules.

If no operand is specified, the currently active load module is assumed.

*
Displays a list of all load modules known to z/OS Debugger along with the address, length, entry
point, and the dataset from which the module was loaded.

load_spec

Display information about the specified load module or load modules and all known and potential
CUs in these load modules. This CU information consists of CSECT name, address, length, and
programming language.

Usage notes

« For Enterprise COBOL for z/OS Version 5, the output of DESCRIBE ATTRUBUTES for RENAMES data
items shows PIC Xinstead of AN-GR.

« For Enterprise COBOL for z/OS Version 5, If two or more level 01 or 77 data items have the same name,
DESCRIBE ATTRIBUTES with no operand displays an error message when you attempt to show the
attributes of those data items.

 For Enterprise COBOL for z/OS Version 5, the output of DESCRIBE ATTRIBUTES for a level 88 variable
does not show an address.

« If you use the DESCRIBE ATTRIBUTES command without specifying any data item, it shows the
attributes of all data items defined in the currently qualified block. The output of this command is
changed for Enterprise COBOL for z/OS Version 5 in the following ways:

— For records, the output shows only the high-level attributes of the record, such as length and
address. The output does not show the attributes of each subordinate group or data item defined
within the record. This reduces the amount of the output produced. For Enterprise COBOL for z/OS
Version 4, it also shows the attributes of all subordinate data items within each record or group, that
is, the entire data hierarchy. To see this level of detail in Enterprise COBOL for z/OS Version 5, you
can specify a particular data item on the DESCRIBE ATTRIBUTES command. If the dataitemis a
record or group, it shows the attributes of all subordinate data items within that record or group.

— For data items that are not records, which are scalar data items, the type of the data item is no longer
displayed on a separate line in the output as it was in Enterprise COBOL for z/OS Version 4, but
instead it is shown after the data item name on the line that includes "ATTRIBUTES for". This further
reduces the number of lines of the output produced, and makes the output for scalar data items more
consistent with the output for records.

« You can use the DESCRIBE CUS, DESCRIBE CHANNEL, and DESCRIBE LOADMODS commands in
remote debug mode.

« The DESCRIBE ALLOCATIONS command is not available under CICS.

Chapter 5. z/OS Debugger commands 105

« Cursor pointing can be used by typing the DESCRIBE CURSOR command on the command line and
moving the cursor to a variable in the Source window before pressing Enter, or by moving the cursor and
pressing a PF key with the DESCRIBE CURSOR command assigned to it.

« When using the DESCRIBE CURSOR command for a variable that is located by the cursor position, the
variable's name cannot be split across different lines of the source listing.

« In C, C++, and COBOL, expressions containing parentheses () must be enclosed in another set of
parentheses when used with the DESCRIBE ATTRIBUTES command. For example, DESCRIBE
ATTRIBUTES ((x + vy) ./ z);.

« For COBOL, if DESCRIBE ATTRIBUTES = is specified and your compile unit is large, you might receive
an out of storage error message.

« For PL/I, DESCRIBE ATTRIBUTES returns only the top-level names for structures. DESCRIBE
ATTRIBUTES = is not supported for PL/I. To get more detail, specify the structure name as the
reference.

In order to use DESCRIBE ATTRIBUTES in an Enterprise PL/I program, the PTF for Language
Environment APAR PK30522 must be installed on z/OS Version 1 Release 6, Version 1 Release 7, and
Version 1 Release 8.

« For Enterprise COBOL for z/OS Version 5, the PIC definition and other attributes of a variable are
displayed as declared in the program.

 For Enterprise COBOL for z/OS Version 5, the result of issuing DESCRIBE ATTRIBUTES for a z/OS
Debugger variable that represents a register does not include an address. For example, DESCRIBE
ATTRIBUTES %GPR15.

 For Enterprise COBOL for z/OS Version 5, the output of DESCRIBE ATTRIBUTES for a record or a group
variable is displayed with the levels as declared in the program.

- LangX COBOL PIC attributes might not match the original PIC specification in the following situations:

— A COMP-3 variable always has an odd number of digits in its PIC value.
— All non-numerical strings have a PIC value of X's.

- If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, the
DESCRIBE ATTRIBUTES and DESCRIBE CURSOR commands can be used while you replay recorded
statements by using the PLAYBACK commands.

« The DESCRIBE ENVIRONMENT command cannot be used while you replay recorded statements by
using the PLAYBACK commands.

« The DESCRIBE LOADMODS command does not display information about load modules or compile units
provided by operating system, subsystem, or runtime software (for example: MVS, CICS, Db2, IMS, and
Language Environment) because z/OS Debugger ignores these modules.

« The DESCRIBE LOADMODS command cannot display the DSNAME of load modules loaded by LPA, LLA,
AOS loader, or an unknown provider because the DSNAME for these providers is not available.

e CU information displayed by DESCRIBE LOADMODS includes information about the following types of
CUs:

— Known CUs (CUs that appearin LIST NAMES CUS output)

— Hidden disassembly CUs (If SET DISASSEMBLY OFF is in effect these are the names of the CUs that
would be created if you SET DISASSEMBLY ON)

— Hidden COBOL CUs (COBOL CUs that have not yet been entered)

— A CU name shown as a load module name followed by ">" indicates the entry point CU for a load
module that is the target of an AT LOAD command.

« You can use the DESCRIBE CHANNEL command only if your application program runs on CICS
Transaction Server Version 3.1 or later.

« For PL/I, COBOL, LangX COBOL, assembler, and disassembly, if a channel name is mixed case, you must
enclose it in quotation marks (") or apostrophes (). If you do not enclose it in quotation marks or
apostrophes, z/OS Debugger converts it to all upper case.

106 IBM z/OS Debugger: Reference and Messages

« For C and C++, all channels names are case sensitive. The following table compares how the same
command must be typed differently, depending on the programming language you are debugging:

Table 6. Comparison of the same command used in different programming languages

If the If the programming language is PL/I,

container COBOL, LangX COBOL, assembler or If the programming language is C or C+

name is... disassembly, type in... +, type in...

chname DESCRIBE CHANNEL ‘chname' DESCRIBE CHANNEL chname

conNAME DESCRIBE CHANNEL 'conNAME' DESCRIBE CHANNEL conNAME
Examples

« Describe the attributes of argc, argv, boolean, i, 1d, and structure.
DESCRIBE ATTRIBUTES (argc, argv, boolean, i, 1ld, structure);

« Describe the current environment.
DESCRIBE ENVIRONMENT;

« Display information describing program myprog.
DESCRIBE PROGRAMS myprog;

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“references” on page 15

“cu_spec” on page 13

“LIST CONTAINER command” on page 146

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

DISABLE command

The DISABLE command makes an AT or pattern-match breakpoint inoperative. However, the breakpoint
is not cleared. Later, you can make the breakpoint operative by using the ENABLE command.

»— DISABLE —»

\ 4

AT_command

v

M CADP *
1 J

L PROGRAM tprog_id L Cu Lcu_id_J J
* *

* j J
L LOADMOD T loadmod_id 7—j L cu T cu_idj—j
* *
AT_command

An enabled AT command. The AT command must be complete except that the every_clause and
command are omitted. Valid forms are the same as those allowed with CLEAR AT.

— DTCN 1

—

Chapter 5. z/OS Debugger commands 107

DTCN LOADMOD, DTCN CU, CADP PROGRAM, or CADP CU
Prevents z/OS Debugger from being started by a program, load module, or compile unit specified in
prog_id, loadmod_id, or cu_id that matches a program or compile unit specified in a DTCN or CADP
profile. The following comparisons are made:

« For DTCN, z/OS Debugger compares loadmod_id with the value in the LoadMod field and cu_id with
the value in the CU field.

» For CADP, prog_id is compared to what is specified in the Program field and cu_id is compared to
what is specified in the Compile Unit field.

You can specify a specific name (for example, PROG1) or a partial name with the wild card character
(for example, EMPL¥).

Usage notes

« You can use the DISABLE CADP and DISABLE DTCN commands in remote debug mode.

« You can use the DISABLE command to disable either active or suspended breakpoints. However, you
cannot use it to disable suspended label breakpoints.

« If you want to disable a suspended breakpoint, you must specify both the load module and CU name.
« To reenable a disabled AT command, use the ENABLE command.

« Disabling an AT command does not affect its replacement by a new (enabled) version if an overlapping
AT command is later specified. It also does not prevent removal by a CLEAR AT command.

« Breakpoints already disabled within the range(s) specified in the specific AT command are unaffected;
however, a warning message is issued for any specified range found to contain no enabled breakpoints.

« The DISABLE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

« For pseudo-conversational applications running under CICS, the DISABLE CADP or DISABLE DTCN
commands apply only to the current CICS pseudo-conversational task.

« For PL/I, COBOL, LangX COBOL, assembler and disassembly, if the cu_id is mixed case or case
sensitive, you must enclose the name in quotation marks (") or apostrophes (').

« For C and C++, z/OS Debugger always treats the cu_id as case sensitive, even if it is not enclosed in
quotation marks (").

Examples

« Disable the breakpoint that was set by the command AT ENTRY myprog CALL procl;.
DISABLE AT ENTRY mypzrog;
- If statement 25 is in a loop and you set the following breakpoint:
AT EVERY 5 FROM 1 TO 100 STATEMENT 25 LIST x;
to disable it, enter:
DISABLE AT STATEMENT 25;
You do not need to reenter the every_clause or the command list. To restore the breakpoint, enter:
ENABLE AT STATEMENT 25;

« z/OS Debugger starts every time PROGA runs because you have a DTCN profile that specifies an asterisk
(*) in the LoadMod field and PROGA in the CU field. field. If you do not want z/OS Debugger to start
every time PROGA runs, enter one of the following commands:

— DISABLE DTCN LOADMOD = CU PROGA;
— DISABLE DTCN CU PROGA;

108 IBM z/OS Debugger: Reference and Messages

« You have a CADP profile that specifies PROG1 in the Program field and CU1 in the Compile Unit field. If
you do not want z/OS Debugger to start every time this program and compile unit are run, enter the
following command:

DISABLE CADP PROGRAM PROG1 CU CU1;

« You have a CADP profile that specifies CU1 in the Compile Unit field. If you do not want z/OS Debugger
to start every time the compile unit is run, enter one of the following commands:

DISABLE CADP PROGRAM * CU CUZ1;
DISABLE CADP CU CU1;
« You have several CADP profiles and z/OS Debugger is started every time a program matches one of

these profiles. If you do not want z/OS Debugger to be started every time a program matches any of
these profiles, enter the following command:

DISABLE CADP =*;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Controlling pattern-match breakpoints with the ENABLE and DISABLE commands" in the IBM z/0S
Debugger User's Guide

Related references

“ENABLE command” on page 113

“DISABLE prefix (full-screen mode)” on page 109

“LIST DTCN or CADP command” on page 148

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

DISABLE prefix (full-screen mode)

Disables a statement breakpoint or offset breakpoint when you issue this command through the Source
window prefix area.

»— DISABLE ; P
L integer —J

integer
Selects a relative statement (for C and C++ or PL/I) or a relative verb (for COBOL) within the line. The
default value is 1.

Example

Disable the breakpoint at the third statement or verb in the line by entering the following command in the
prefix area of the line where the statement is found.

DIS 3
You do not need to enter a space between the keyword and the integer: DIS 3 is equivalent to DIS3.

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0S Debugger User's Guide

DO command (assembler, disassembly, LangX COBOL, and COBOL)

The DO command performs one or more commands that are collected into a group. The DO and END
keywords delimit a group of commands called a DO group. The keywords cannot be abbreviated.

Chapter 5. z/OS Debugger commands 109

»- DO —; END — ; >«

command

command
A valid z/OS Debugger command.

do/while command (C and C++)

The do/while command performs a command before evaluating the test expression. Due to this order of
execution, the command is performed at least once. The do and while keywords must be lowercase and
cannot be abbreviated.

»— do — command — while — (— expression —) — ; >«

command
A valid z/OS Debugger command.

expression
A valid z/OS Debugger C and C++ expression.

The body of the loop is performed before the while clause (the controlling part) is evaluated. Further
execution of the do,while command depends on the value of the while clause. If the while clause
does not evaluate to false, the command is performed again. Otherwise, execution of the command ends.

A break command can cause the execution of a do,/while command to end, even when the while
clause does not evaluate to false.

Usage note

The do/while command cannot be used while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

Example

The following command prompts you to enter a 1. If you enter a 1, the command ends execution.
Otherwise, the command displays another prompt.
int replyl;
do {
printf("Enter a 1.\n");

scanf ("%d", &replyl);
t while (replyl != 1);

DO command (PL/I)

The DO command allows one or more commands to be collected into a group that can (optionally) be
repeatedly executed. The DO and END keywords delimit a group of commands collectively called a DO
group. The keywords cannot be abbreviated.

Simple

»—- DO —; END — ; >«

command

command
A valid z/OS Debugger command.

Repeating

110 IBM z/OS Debugger: Reference and Messages

»— DO T WHILE — (— expression —) L J ;—>
UNTIL — (— expression —) J

UNTIL — (— expression —)
L WHILE — (— expression —) J

END — ; »«

\ 4

command

WHILE
Specifies that expression is evaluated before each execution of the command list. If the expression
evaluates to true, the commands are executed and the DO group begins another cycle; if it evaluates
to false, execution of the DO group ends.

expression
A valid z/OS Debugger PL/I Boolean expression.

UNTIL
Specifies that expression is evaluated after each execution of the command list. If the expression
evaluates to false, the commands are executed and the DO group begins another cycle; if it evaluates
to true, execution of the DO group ends.

command
A valid z/OS Debugger command.

Iterative

»w— DO — reference — = % : ; END — ; >«
command

iteration

»— expression

v

M BY — expression

L TO — expression J
L BY — expression J

——— REPEAT — expression

M TO — expression

A 4

»g
G

WHILE — (— expression —)
L UNTIL — (— expression —) —J

UNTIL — (— expression —) J
L WHILE — (— expression —) J

reference
A valid z/OS Debugger PL/I reference.

expression
A valid z/OS Debugger PL/I expression.

Chapter 5. z/OS Debugger commands 111

BY
Specifies that expression is evaluated at entry to the DO specification and saved. This saved value
specifies the increment to be added to the control variable after each execution of the DO group.

If BY expression is omitted from a DO specification and if TO expression is specified, expression
defaults to the value of 1.

If BY O is specified, the execution of the DO group continues indefinitely unless it is halted by a WHILE
or UNTIL option, or control is transferred to a point outside the DO group.

The BY option allows you to vary the control variable in fixed positive or negative increments.

TO
Specifies that expression is evaluated at entry of the DO specification and saved. This saved value
specifies the terminating value of the control variable.

If TO expression is omitted from a DO specification and if BY expression is specified, repetitive
execution continues until it is terminated by the WHILE or UNTIL option, or until some statement
transfers control to a point outside the DO group.

The TO option allows you to vary the control variable in fixed positive or negative increments.

REPEAT
Specifies that expression is evaluated and assigned to the control variable after each execution of the
DO group. Repetitive execution continues until it is terminated by the WHILE or UNTIL option, or until
some statement transfers control to a point outside the DO group.

The REPEAT option allows you to vary the control variable nonlinearly. This option can also be used
for nonarithmetic control variables, such as pointers.

WHILE
Specifies that expression is evaluated before each execution of the command list. If the expression
evaluates to true, the commands are executed and the DO group begins another cycle; if it evaluates
to false, execution of the DO group ends.

UNTIL
Specifies that expression is evaluated after each execution of the command list. If the expression
evaluates to false, the commands are executed and the DO group begins another cycle; if it evaluates
to true, execution of the DO group ends.

command
A valid z/OS Debugger command.

Usage note

You cannot use the DO command while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

Examples

« At statement 25, initialize variable a and display the values of variables x, y, and z.
AT 25 DO; %BLOCK:>a = O; LIST (x, y, z); END;
« Execute the DO group until ctzr is greater than 4 or less than 0.
DO UNTIL (ctr > 4) WHILE (ctr >= 0); END;
« Execute the DO group with i having the values 1, 2, 4, 8, 16, 32, 64,128, and 256.
DO i = 1 REPEAT 2xi UNTIL (i = 256); END;
- Repeat execution of the DO group with j having values 1 through 20, but only if k has the value 1.

DO j = 1 TO 20 BY 1 WHILE (k = 1); END;

112 IBM z/OS Debugger: Reference and Messages

ENABLE command

The ENABLE command activates an AT or pattern-match breakpoint after it was disabled with the
DISABLE command.

»— ENABLE —»

A 4

AT_command

v

M—— CADP 1 *

L PROGRAM tprog_id cu_id J
* l * J

* j J
L LOADMOD T loadmod_id Tj L Ccu T cu_idj—j
* *
AT_command

A disabled AT command. The AT command must be complete except that the every_clause and
command are omitted. Valid forms are the same as those allowed with CLEAR AT.

DTCN LOADMOD, DTCN CU, CADP PROGRAM, or CADP CU
Re-enable a CADP or DTCN profile that was previously disabled by the DISABLE command. The
names you specify for loadmod_id, prog_id, or cu_id must match the loadmod_id, prog_id, or cu_id
you specified in the DISABLE command.

J

LCU

“— DTCN

1

— ;>

If you do not specify a loadmod_id, prog_id, or cu_id, z/OS Debugger enables all previously disabled
DTCN or CADP profiles. If you try to specify a loadmod_id, prog_id, or cu_id for a profile that was not
disabled, z/OS Debugger displays an error message.

Usage notes

« You can use the ENABLE CADP and ENABLE DTCN commands in remote debug mode.

» You can use the ENABLE command to enable either active or suspended breakpoints. However, you
cannot use it to enable suspended label breakpoints.

« If you want to enable a suspended breakpoint, you must specify both the load module and CU name.
« To disable an AT command, use the DISABLE command.

» Breakpoints already enabled within the range(s) specified in the specific AT command are unaffected;
however, a warning message is issued for any specified range found to contain no disabled breakpoints.

« The ENABLE command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

 For pseudo-conversational applications running under CICS, the ENABLE CADP or ENABLE DTCN
commands apply only to the current CICS pseudo-conversational task.

« For PL/I, COBOL, LangX COBOL, assembler and disassembly, if the cu_id is mixed case or case
sensitive, you must enclose the name in quotation marks (") or apostrophes (').

« For C and C++, z/OS Debugger always treats the cu_id as case sensitive, even if it is not enclosed in
quotation marks (").

Examples

« Reenable the previously disabled command AT ENTRY mysub CALL procl;.

ENABLE AT ENTRY mysub;

Chapter 5. z/OS Debugger commands 113

« Allow DTCN to start z/OS Debugger every time PROGA runs, which was previously prevented with the
command DISABLE DTCN CU PROGA;, by entering the following command:

ENABLE DTCN CU PROGA;

« Allow CADP to start z/OS Debugger every time a program that matches any of the CADP profiles is run.
This was previously prevented with the command DISABLE CADP *;.

ENABLE CADP *;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
"Controlling pattern-match breakpoints with the ENABLE and DISABLE commands" in the IBM z/0S
Debugger User's Guide

Related references

“DISABLE prefix (full-screen mode)” on page 109

“ENABLE prefix (full-screen mode)” on page 114

“LIST DTCN or CADP command” on page 148

Appendix A, “z/0S Debugger commands supported in remote debug mode,” on page 505

ENABLE prefix (full-screen mode)

Enables a disabled statement breakpoint or a disabled offset breakpoint when you issue this command
through the Source window prefix area.

»— ENABLE L J ;>
integer

integer
Selects a relative statement (for C and C++ or PL/I) or a relative verb (for COBOL) within the line. The
default value is 1. For optimized COBOL programs, the default value is the first executable statement
which was not discarded by the optimizer.

Example

Enable the breakpoint at the third statement or verb in the line (typed in the prefix area of the line where
the statement is found).

ENABLE 3

No space is needed as a delimiter between the keyword and the integer; hence, ENABLE 3 is equivalent
to ENABLES3.

EVALUATE command (COBOL)

The EVALUATE command provides a shorthand notation for a series of nested IF statements. The
keywords cannot be abbreviated.

114 IBM z/OS Debugger: Reference and Messages

A

»w— EVALUATE ——~—— constant —— WHEN command

M expression —

M reference —

TRUE
—— FALSE —
> END-EVALUATE — ;»«
WHEN — OTHER command

any_clause
» ANY <

M condition —]

M TRUE —

—— FALSE —~

L J constant
NOT L reference _J ﬁH ROUGH
THRU

constant
A valid z/OS Debugger COBOL constant.

expression
A valid z/OS Debugger COBOL arithmetic expression.

reference
A valid z/OS Debugger COBOL reference.

condition
A simple relation condition.

command
A valid z/OS Debugger command.

Usage notes

« Only a single subject is supported.

j—t constant
reference

j_I

« Consecutive WHENs without associated commands are not supported.

« THROUGH,”THRU ranges can be specified as constants or references.

« See Enterprise COBOL for z/0S Language Reference for an explanation of the following COBOL keywords:

ANY
FALSE
NOT
OTHER
THROUGH
THRU
TRUE
WHEN

« z/0S Debugger implements the EVALUATE command as a series of IF commands.

Chapter 5. z/OS Debugger commands 115

« If the DATA option of the PLAYBACK ENABLE command is in effect for the current compile unit, the
EVALUATE command can be used while you replay recorded statements by using the PLAYBACK
commands.

« For optimized COBOL programs, the value of reference cannot refer to any variables discarded by the
optimizer.

- If a COBOL variable is defined as National and it is an operand in a relation condition with an alphabetic,
alphanumeric operand, or National numeric, the operand that is not National is converted to Unicode
before that comparison is done, except for Group items. See Enterprise COBOL for z/OS Language
Reference for more information about using COBOL variables in conditional expressions.

Example

The following example shows an EVALUATE command and the equivalent coding for an IF command:

EVALUATE menu-input
WHEN "O"
CALL init-proc
WHEN "1" THRU "9"
CALL process-proc
WHEN "R"
CALL read-parms
WHEN "X"
CALL cleanup-proc
WHEN OTHER
CALL error-proc
END-EVALUATE;

The equivalent IF command:

IF (menu-input = "0") THEN
CALL init-pzroc
ELSE
IF (menu-input >= "1") AND (menu-input <= "9") THEN
CALL process-proc
ELSE
IF (menu-input = "R") THEN
CALL read-parms
ELSE
IF (menu-input = "X") THEN
CALL cleanup-pzroc
ELSE
CALL error-proc
END-IF;
END-IF;
END-IF;
END-IF;

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“Allowable comparisons for the IF command (COBOL)” on page 132
Enterprise COBOL for z/OS Language Reference

Expression command (C and C++)
The Expression command evaluates the given expression. The expression can be used to either assign
a value to a variable or to call a function.

»— expression — ;-»d

expression
A valid z/OS Debugger C and C++ expression. Assignment is affected by including one of the C and C+
+ assignment operators in the expression. No use is made of the value resulting from a stand-alone
expression.

Usage notes

116 IBM z/OS Debugger: Reference and Messages

« Function invocations in expressions are restricted to functions contained in the currently executing
enclave.

« The Expression command cannot be used while you replay recorded statements by using the
PLAYBACK commands.

Examples

« Initialize the variables x, y, z. You can use functions to provide values for variables.

X

3 + 4,5;
y .
z

7:
8 x func(x, y);

« Increment y and assign the remainder of the integer division of omega by 4 to alpha.
alpha = (y++, omega % 4);
- To list and assign a new value to R1 in the disassembly view:
LIST(R1);
R1 = OX0001FAFO;
FIND command

The FIND command provides full-screen and line mode search capability in the source object, and full-
screen searching of the log and monitor objects.

»— FIND —

1 string J
l * J L leftcolumn J FIRST M— CURSOR —

} rightcolumn { LAST LOG
* NEXT M MONITOR —

PREV ~— SOURCE —~

»
| 2

v

— ;>

string
The string you want to find, which conforms to the syntax for a character string constant of the current
programming language. The string must comply with the following restrictions:

« The length of the string cannot exceed 128 bytes.

« If the string contains spaces, or is an asterisk (*), a question mark (?) or a semicolon (;) it must be
enclosed in quotation marks (") or apostrophes (') as described in the following rules:

— For C and C++, use quotation marks ().

— For COBOL, LangX COBOL, assembler, disassembly, or PL/I, use quotation marks (") or
apostrophes (').

Table 7. Examples of how to specify quotation marks (") and apostrophes (') for strings in a FIND
command.
COBOL or LangX | Assembler or
Cc C++ coBOL disassembly PL/I
"ABC" "IntLink::*" "A5" or 'A5' '‘ABC' or "ABC" or |'ABC' or "ABC"
C'ABC!

Chapter 5. z/OS Debugger commands 117

« If the string contains a quotation mark (") or apostrophe ('), you might have to specify the string with
an even number of quotation marks or apostrophes (also known as balance). Use the following rules
to determine how to balance the string:

— For PL/I, if the string has an apostrophe, you must add an apostrophe immediately following that
apostrophe. If the string contains a space, surround the entire string with apostrophes.

— For C and C++, if the string has a quotation mark, you must add a quotation mark immediately
following that quotation mark. If the string contains a space, surround the entire string with
quotation marks.

— For assembler, COBOL, LangX COBOL, or disassembly, if the string contains an apostrophe and it
is delimited by apostrophes, you must add an apostrophe immediately after the apostrophe that
is in the string. If the string contains a quotation mark and it is delimited by quotation marks, you
must add a quotation mark immediately after the quotation mark that is in the string. If the string
contains a space, you do not have to balance the quotation marks; however you must surround
the entire string with a quotation marks or apostrophes.

If no operands are specified, a repeat FIND is performed. The usage notes and IBM z/0S Debugger
User's Guide describes repeat FIND.

*
Use the string from the previous FIND command.
leftcolumn
A positive integer that specifies the leftmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows. If rightcolumn and
are omitted, then the string must start in leftcolumn.
rightcolumn
A positive integer that specifies the rightmost column for the search. This is supported only in the
Source window and in line mode. It is ignored in the Log and Monitor windows.
*
Specifies that the length of each source record is used as the right column for the search. This is
supported only in the Source window and in line mode. It is ignored in the Log and Monitor windows.
FIRST
Starts at the beginning of the object and searches forward to find the first occurrence of the string.
LAST
Starts at the end of the object and searches backward to find the last occurrence of the string.
NEXT
Starts at the first position after the current cursor location and searches forward to find the next
occurrence of the string.
PREV
Starts at the current cursor location and searches backward to find the previous occurrence of the
string.

CURSOR (Full-Screen Mode)
Specifies that the current cursor position selects the object searched.

LOG (Full-Screen Mode)
Selects the object in the session log window.

MONITOR (Full-Screen Mode)
Selects the object in the monitor window.

SOURCE (Full-Screen Mode)
Selects the object in the source listing window.

Usage notes
« If no operands are specified, a repeat FIND is performed. A repeat FIND behaves in the following ways:

— The string from the previous FIND that you entered is used.
— If no FIND string has been previously specified, z/OS Debugger displays an error message.

118 IBM z/OS Debugger: Reference and Messages

— If the previous FIND command that you entered specified or implied the FIRST or NEXT parameter,
z/0S Debugger uses the NEXT parameter.

— If the previous FIND command that you entered specified the LAST or PREV parameter, z/OS
Debugger uses the PREV parameter.

— If the previous FIND command that you entered specified a leftcolumn parameter, z/OS Debugger
uses that leftcolumn parameter.

— If the previous FIND command that you entered specified a rightcolumn parameter, z/OS Debugger
uses that rightcolumn parameter.

— If arepeat FIND immediately follows an unsuccessful FIND or repeat FIND, z/OS Debugger continues
searching, wrapping from the last line to the first line. If the original direction of the FIND was
backward to the beginning of the object, z/OS Debugger wraps from the first line to the last line.

— If the cursoris not in a window, z/OS Debugger uses the same window that was used for the previous
FIND command.

« Infull-screen mode, z/OS Debugger chooses the window it searches through in the following ways:

— If you specify a string and you do not place the cursor in a window nor specify an object on the
command, z/OS Debugger searches the object in the window specified by the SET DEFAULT
WINDOW command or the Default window entry in your Profile Settings panel.

— If you place the cursor in a window and do not specify a different window on the command, z/0S
Debugger searches the object in the window where you placed the cursor.

« If you specify a string without a direction keyword, forward is the default direction.
« FIND can be made immediately effective in full-screen mode with the IMMEDIATE command.

« If the current programming language setting is C or C++, the search is case-sensitive. Otherwise, the
search is not case-sensitive.

« Infull-screen mode, searches show the following behavior:

— If you specify FIRST, the search begins at the beginning of the first line of the object.
— If you specify LAST, the search begins at the end of the last line of the object.

— If you specify NEXT or the command defaults to NEXT and the cursor is within the window for the
object being searched, the search begins at the first position after the current cursor location.

— If you specify NEXT or the command defaults to NEXT and the cursor is outside the window for the
object being searched, the search begins at the beginning of the first line displayed in the window.

— If you specify PREV or the command defaults to PREV and the cursor is within the window for the
object being searched, the search begins at the current cursor location.

— If you specify PREV or the command defaults to PREV and the cursor is outside the window for the
object being searched, the search begins at the end of the line preceding the first line displayed in the
window of the object being searched. If the beginning of the object is displayed, z/OS Debugger
wraps to the end of the object and continues from the end of the last line in the object.

— If z/OS Debugger finds the string, the window for the object being searched is scrolled until the string
is visible. If the string is DBCS, it is displayed without alteration. If the string is not DBCS, the string is
highlighted as specified by the SET COLOR command and the cursor is placed at the beginning of the
string. The highlighted string is protected from overtyping. If you need to overtype the string, press
enter and place the cursor where you want to type and proceed with the overtype.

— If z/OS Debugger does not find the string, the screen does not change and the cursor is not moved. If
you specified NEXT or PREV or the command defaults to NEXT or PREV and z/OS Debugger searched
only part of the object, then z/OS Debugger displays the message 'Bottom of data reached' or 'Top of
data reached', as appropriate. If z/OS Debugger searched through the entire object, then it displays
the message 'Search target not found'.

« In line mode, searches show the following behavior:

— If you specify FIRST, the search begins at the beginning of the first line of the source.
— If you specify LAST, the search begins at the end of the last line of the source.

Chapter 5. z/OS Debugger commands 119

— If you specify NEXT or the command defaults to NEXT, z/OS Debugger begins searching at the first
character of the first line of the source or, if a previous FIND command was done in the same compile
unit, at the location after the last string that was successfully found by a FIND command.

— If you specify PREV or the command defaults to PREV, z/OS Debugger begins searching at the last
character of the last line of the source, or if a previous FIND command was done in the same compile
unit, at the location before the last string that was successfully found by a FIND command.

— If you specify NEXT or PREV or the command defaults to NEXT or PREV and z/OS Debugger searched
only part of the source and did not find the string, then z/OS Debugger displays the message 'Bottom
of data is reached' or 'Top of data is reached', as appropriate. If z/OS Debugger searched through the
entire source without finding the string, then it displays the message 'Search target not found".

— If z/OS Debugger finds the string, the line that contains the string is displayed and marked with a
vertical bar character (|) beneath the string.

« The search in the Source window and in line mode can be limited to certain columns by choosing one of
the following methods:

— If you enter a pair of column numbers indicating the first and last columns to be searched, the string
is found if it is completely contained within the specified columns.

— If a single column is specified, the string must start in the specified column.
— If the second column specified is larger than the record size, the record size is used.

— If the columns are not specified, the columns to be searched default to the columns defined by the
SET FIND BOUNDS command. If you have not entered the SET FIND BOUNDS command, the
columns default to 1 *.

The column alignment of the source might not match the original source code. The leftcolumn and
rightcolumn specifications are related to the scale shown in the Source window, not the original source.

The full-screen FIND command is not logged; however, the FIND command is logged in line mode.

- If you are searching for strings with trigraphs in them when debugging C or C++ code, the trigraphs or
their equivalents can be used as input, and z/OS Debugger matches them to trigraphs or their
equivalents. An exception is that column specifications other than 1 * are not allowed in FIND or SET
FIND BOUNDS if you search source code and trigraphs are found.

- If you are searching in the monitor window and SET MONITOR WRAP OFF is in effect, z/OS Debugger
will search all of the scrolled data.

« You cannot use the FIND command in the Memory window.
Examples

« Indicate that you want to search the monitor window for the name myvar.
FIND myvar MONITOR;

- If you want to search the Source window for the next occurrence of varl, just enter:
FIND

You do not need to provide the variable name, because the z/OS Debugger remembers the string you
last searched for. Again, the Source window is scrolled forward, vax1l is highlighted, and the cursor
points to the variable.

« If you want to find a question mark (?) in the Source window and you are debugging a PL/I program,
enter the following command:

FIND '?' ;

- If you want to find the string Usex ' s in the Source window and you are debugging a PL/I program, enter
the following command:

FIND User''s ;

120 IBM z/OS Debugger: Reference and Messages

- If you want to find the string Usex ' s in the Source window and you are debugging a C program, enter
the following command:

FIND Usexr's ;

« If you want to find the string User's Guide in the Source window and you are debugging a PL/I
program, enter the following command:

FIND 'User''s Guide' ;

« If you want to find the string User's Guide in the Source window and you are debugging a C program,
enter the following command:

FIND "User's Guide" ;

« If you entered the command FIND xyz LAST; or FIND xyz PREV; and the cursoris on the found
string ("xyz"), then press the PF key assigned to the FIND command to repeat the search. z/0OS
Debugger runs the command FIND xyz PREV;.

- If you entered the command FIND xyz;, z/OS Debugger searches in the forward direction. To find the
string "xyz" in the backward direction, enter the command FIND * PREV;.

- If you want to find a COBOL paragraph definition named paraa that starts in column 8 in COBOL’s Area
A, enter the following command:

FIND paraa 8 ;

- If you want to find a reference to a COBOL paragraph named paraa in COBOL’s Area B, then enter one
of the following commands:

— FIND paraa 12 72;

— SET FIND BOUNDS 12 72;
FIND paraa;

FINDBP command

The FINDBP command provides full-screen search capability for line, statement and offset breakpoints in
the source object. The FINDBP keyword cannot be abbreviated.

»— FINDBP ;>
\— FIRST —| |— ENABLED —

M— LAST — “— DISABLED —~
M NEXT —

~— PREV —

FIRST
Starts at the beginning of the source object and searches forward to find the first line, statement, or
offset breakpoint.

LAST
Starts at the end of the source object and searches backward to find the last line, statement, or offset
breakpoint.

NEXT
Starts at the next line after the current cursor location in the Source window and searches forward to
find the next line, statement, or offset breakpoint

PREV
Starts at the previous line before the current cursor location in the Source window and searches
backward to find the previous line, statement, or offset breakpoint

Chapter 5. z/OS Debugger commands 121

ENABLED
Restricts the searching to enabled breakpoints. The default is to list both enabled and disabled
breakpoints.

DISABLED

Restricts the searching to disabled breakpoints. The default is to list both enabled and disabled
breakpoints.

Usage notes

« If no operands are specified, a repeat FINDBP is performed. A repeat FINDBP behaves in the following
ways:

— If the previous FINDBP command that you entered specified or implied the FIRST or NEXT
parameter, z/OS Debugger uses the NEXT parameter.

— If the previous FINDBP command that you entered specified or implied the LAST or PREV parameter,
z/OS Debugger uses the PREV parameter.

— If arepeat FINDBP immediately follows an unsuccessful FINDBP or repeat FINDBP, z/OS Debugger
continues searching, wrapping from the last line to the first line. If the original direction of the
FINDBP was backward to the beginning of the source object, z/OS Debugger wraps from the first line
to the last line.

— If the previous FINDBP command that you entered specified or implied the ENABLED or DISABLED
parameter, z/OS Debugger uses the ENABLED or DISABLED parameter, respectively.

— If you want to frequently use a repeat FINDBP, set a PF key (for example, PF17 or shift PF5) to
FINDBP. For instructions on assigning a command to a PF key, see “SET PFKEY command” on page
246.

 Searches show the following behavior:

— If you specify FIRST, the search begins at the first line of the source object.
— If you specify LAST, the search begins at the last line of the source object.

— If you specify NEXT or the command defaults to NEXT and the cursor is on a source line or in its prefix
or suffix area, the search begins at the line after the line the cursor is on.

— If you specify NEXT or the command defaults to NEXT and the cursor is not on a source line or in its
prefix or suffix area, the search begins at the first line in the Source window.

— If you specify PREV or the command defaults to PREV and the cursor is on a source line or in its prefix
or suffix area, the search begins at the line before the line the cursor is on.

— If you specify PREV or the command defaults to PREV and the cursor is not on a source line orin its
prefix or suffix area, the search begins at the line before the first line in the Source window. If the first
line of the source object is displayed, z/OS Debugger wraps to the end of the source object and
continues with the last source line.

— If z/OS Debugger finds the breakpoint, z/OS Debugger scrolls the Source window so that you can see
the breakpoint. z/OS Debugger places the cursor at the beginning of the prefix area for the source line
that contains the breakpoint.

— If z/OS Debugger does not find the breakpoint, the screen does not change and the cursor is not
moved. If you specified NEXT or PREV or the command defaults to NEXT or PREV and z/OS Debugger
searched only part of the source object, then z/OS Debugger displays the message "Bottom of data
reached" or "Top of data reached", as appropriate. If z/OS Debugger searched through the entire
source object, then it displays the message "No line, statement or offset breakpoints were found".

« If multiple line or statement breakpoints exist on the same source line, the FINDBP command finds only
one of them.

« The FINDBP command does not find AT STATEMENT * breakpoints.

« The FINDBP command searches only through the currently qualified compile unit, which is the compile
unit visible in the Source window.

- z/0OS Debugger does not log the FINDBP command.

122 IBM z/OS Debugger: Reference and Messages

- If you know the line number or statement number of the breakpoint you are looking for, the quickest
way to find it is to use the SCROLL TO nnnnn or POSITION nnnnn command, which scrolls the
Source window so that the line containing nnnnn in the prefix area is the first line in the Source window.

Examples

« Search for the next line in the Source window that contains a line, statement, or offset breakpoint.
FINDBP

« Search for the first line in the source object that contains a line, statement, or offset breakpoint. Then
search for the next two breakpoints.

FINDBP FIRST
FINDBP
FINDBP

Related references

Related references

“AT LINE command” on page 63

“AT OFFSET command (disassembly)” on page 68

“AT STATEMENT command” on page 70

“LIST AT command” on page 140, with the LINE, OFFSET, or STATEMENT options
“POSITION command” on page 190

“SCROLL command (full-screen mode)” on page 203, with the TO option

“SET PFKEY command” on page 246

for command (C and C++)

The for command provides iterative looping similar to the C and C++ for statement. It enables you to do
the following:

« Evaluate an expression before the first iteration of the command (“initialization").

« Specify an expression to determine whether the command should be performed again ("controlling
part").

« Evaluate an expression after each iteration of the command.
« Perform the command, or block, if the controlling part does not evaluate to false.

The for keyword must be lowercase and cannot be abbreviated.

»w— for — (; ;)—
L expression J L expression J L expression J

»— command — ;-»<

expression
A valid z/OS Debugger C and C++ expression.

command
A valid z/OS Debugger command.

z/0OS Debugger evaluates the first expression only before the command is performed for the first time. You
can use this expression to initialize a variable. If you do not want to evaluate an expression before the first
iteration of the command, you can omit this expression.

z/OS Debugger evaluates the second expression before each execution of the command. If this
expression evaluates to false, the command does not run and control moves to the command following
the for command. Otherwise, the command is performed. If you omit the second expression, it is as if
the expression has been replaced by a nonzero constant and the for command is not terminated by
failure of this expression.

Chapter 5. z/OS Debugger commands 123

z/0OS Debugger evaluates the third expression after each execution of the command. You might use this
expression to increase, decrease, or reinitialize a variable. If you do not want to evaluate an expression
after each iteration of the command, you can omit this expression.

A break command can cause the execution of a for command to end, even when the second expression
does not evaluate to false. If you omit the second expression, you must use a break command to stop
the execution of the for command.

Usage notes

« The for command cannot be used while you replay recorded statements by using the PLAYBACK
commands.

Examples

 The following for command lists the value of count 20 times. The for command initially sets the
value of count to 1. After each execution of the command, count is incremented.

for (count = 1; count <= 20; count++)
LIST TITLED count;

Alternatively, the preceding example can be written with the following sequence of commands to
accomplish the same task.

count = 1;

while (count <= 20) $
printf("count = %d\n", count);
count++;

3
« The following for command does not contain an initialization expression.

for (; index > 10; --index) £
varlist[index] = varl + var2;
printf("varlist[%d] = %d\n", index, varlist[index]);

FREE command

The FREE command frees a file that is currently allocated.

»— FREE — FILE — ddname — ;-»«

ddname
Name of the file to free.

GO command

The GO command causes z/OS Debugger to start or resume running your program.

;>
1—— BYPASS ——J

»— GO

BYPASS

Bypasses the user or system action for the condition that caused the breakpoint. It is valid only when
z/0OS Debugger is entered for an:

AT CALL Breakpoint
HLL or Language Environment condition

Condition that is raised by an MVS or CICS ABEND when running without the Language
Environment run time

Usage notes

124 IBM z/OS Debugger: Reference and Messages

« For CICS only: The ABEND is reported whether BYPASS is or is not specified. When there is a HANDLE
ABEND, control is passed to the abend handler, and the GO BYPASS command is ignored.

« If GO is specified in a command list (for example, as the subject of an IF command or WHEN clause), all
subsequent commands in the list are ignored.

- If GO is specified within the body of a loop, it causes the execution of the loop to end.
« To suppress the logging of GO commands, use the SET ECHO command.

« GO with no operand specified does not actually resume the program if there are additional AT-
conditions that have not yet been processed.

« The GO command cannot be used while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

« You can use the GO command in remote debug mode only by entering it in the Action field, which is in
the Optional Parameters section of the Add a Breakpoint task.

« When a COBOL IGZ condition of severity 2 or higher occurs, GO BYPASS will bypass the condition.
When the IGZ condition is raised by a COBOL program (for example the subscript out of range message
IGZ0006S), GO BYPASS will bypass the condition and resume control back into the COBOL program.
However, be aware that control might not return to the next statement of the program that raised the
condition, since the compiler might have rearranged the statements.

Examples

« Resume execution.
GO;

« Resume execution and bypass user and system actions for the condition that caused the breakpoint.
GO BYPASS;

« Your application has abended with a protection exception, so an 0CCURRENCE breakpoint has been
triggered. Correct the results of the instruction that caused the exception and issue GO BYPASS; to
continue processing as if the abend had not occurred.

Refer to the following topics for more information related to the material discussed in this topic.

Related references
“AT command” on page 37

GOTO command

The GOTO command causes z/OS Debugger to resume program execution at the specified statement id.
The GOTO keyword cannot be abbreviated. If you want z/OS Debugger to return control to you at a target
location, make sure there is a breakpoint at that location.

T GOTO j— statement_id — ;-»«
GO —TO

Usage notes

« Fora COBOL program compiled without hooks being inserted by the compiler and with optimization, if
you compiled with the NOEJPD suboptions of the TEST compiler option, you can use the GOTO
command if the SET WARNING is set to OFF and the runtime level allows GOTO without compiler
enablement. The use of GOTO in this case might cause unpredictable behaviors, including abends,
when the GOTO command is executed or followed. You can get the best behavior of GOTO command in
programs that are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

— When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).
— When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.

Chapter 5. z/OS Debugger commands 125

You can get the best behavior especially if the statements are targets of COBOL statements PERFORM
or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)” on page
262.

« You cannot use the GOTO command while you debug a disassembled program.

« If GOTO is specified in a command list (for example, as the subject of an IF command or WHEN clause),
all subsequent commands in the list are ignored.

- Statement GOTO's are not restricted if the program is compiled with minimum optimization.

« The GOTO command cannot be used while you replay recorded statements by using the PLAYBACK
command.

« For C, C++, and PL/I, statements can be removed by the compiler during optimization, specify a
reference or statement with the GOTO command that can be reached during program execution. You
canissue the LIST STATEMENT NUMBERS command to determine the reachable statements.

« PL/I allows GOTO in a command list on a call to PLITEST or CEETEST.
« In PL/I, out-of-block GOTOs are allowed. However, qualification might be needed.

« For COBOL, the GOTO command follows the COBOL language rules for the GOTO statement. You can use
the GOTO command in the following situations:

— A COBOL program compiled with hooks inserted by the compiler. If you are using Enterprise COBOL
for z/0OS, Version 4, compile your program with the HOOK suboption of the TEST compiler option. If
you are using any of the following compilers, compile your program with either PATH or ALL
suboption and the SYM suboption of the TEST compiler option:

- Enterprise COBOL for z/OS and 0S/390, Version 3
- COBOL for 0S/390 & VM, Version 2

— A COBOL program compiled without hooks inserted by the compiler and without optimization. If you
are using Enterprise COBOL for z/OS, Version 4, compile your program with the NOHOOK suboption of
the TEST compiler option. If you are using any of the following compilers, compile your program with
the NONE suboption of the TEST compiler option:

Enterprise COBOL for z/OS and 0S/390, Version 3 Release 2 or later

- Enterprise COBOL for z/OS and 0S/390, Version 3 Release 1, with APAR PQ63235 installed
- COBOL for 0S/390 & VM, Version 2 Release 2

- COBOL for 0S5/390 & VM, Version 2 Release 1, with APAR PQ63234 installed

— A COBOL program compiled without hooks inserted by the compiler and with optimization. You must
compile your program with Enterprise COBOL for z/0S, Version 4, and specify the EJPD and NOHOOK
suboption of the TEST compiler option. Specifying the EJPD suboption might cause some loss of
optimization.

— For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compiler option, it is recommended to use the EJPD suboption of the TEST compiler option.

Examples

« Resume execution at statement 23, where statement 23 is in a currently active block.
GOTO 23;

If there's no breakpoint at statement 23, z/OS Debugger will run from statement 23 until a breakpoint is
hit.
« Resume execution at statement 45, where statement 45 is in a currently active block.

AT 45
GOTO 45

Refer to the following topics for more information related to the material discussed in this topic.

126 IBM z/OS Debugger: Reference and Messages

Related tasks
IBM z/0S Debugger User's Guide

Related references
“statement_id” on page 16

GOTO LABEL command

The GOTO LABEL command causes z/OS Debugger to resume program execution at the specified
statement label. The specified label must be in the same block. If you want z/OS Debugger to return
control to you at the target location, make sure there is a breakpoint at that location.

T GOTO L J statement_label ; >
GO—TOJ LABEL L. o I

— statement _label

statement_label

A valid statement label within the currently executing program or, in PL/I, a label variable.

Usage notes

For COBOL, ifaGOTO LABEL command is issued and the specified label contains an EXIT statement,
the results might be unpredictable such as an ABEND because the EXIT statement might not be
specified with a return location.

For a COBOL program compiled without hooks being inserted by the compiler and with optimization, if
you compiled with the NOEJPD suboptions of the TEST compiler option, you can use the GOTO
command if the SET WARNING is set to OFF and the runtime level allows GOTO without compiler
enablement. The use of GOTO in this case might cause unpredictable behaviors, including abends,
when the GOTO command is executed or followed. You can get the best behavior of GOTO in programs
that are compiled with OPT and TEST(NOEJPD) options in either of the following situations:

— When the target of the GOTO or JUMPTO command is a paragraph name or a section name (label).

— When the target of the GOTO or JUMPTO command is the first statement in the paragraph or section.
You can get the best behavior especially if these statements are targets of COBOL statements
PERFORM or GOTO in the COBOL program. See “SET WARNING command (C, C++, COBOL, and PL/I)”
on page 262.

Use the syntax of statement_label enclosed in apostrophes (') only for LangX COBOL programs. It is not
supported in any other programming language.

In PL/I, out-of-block GOTOs are allowed. However, qualification might be needed.

The LABEL keyword is optional when either the target statement_label is nonnumeric or if it is qualified
(whether the actual label was nonnumeric or not).

A COBOL statement_label can have either of the following forms:
— name

This form can be used in COBOL for reference to a section name or for a COBOL paragraph name that
is not within a section or is in only one section of the block.

— namel OF name2 or namel IN name2

This form must be used for any reference to a COBOL paragraph (namel) that is within a section
(name2), if the same name also exists in other sections in the same block. You can specify either OF
or IN, but z/OS Debugger always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load module qualifiers.

For C, to be able to use the GOTO LABEL command, you must compile your program in one of the
following ways:

— With either the PATH or ALL suboption and the SYM suboption of the TEST compiler option.

Chapter 5. z/OS Debugger commands 127

— With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.

There are no restrictions on using labels with the GOTO LABEL command.

« For C++, to be able to use the GOTO LABEL command, you must compile your program in one of the
following ways:

— With the TEST compiler option.
— With either the PATH or ALL suboption and the SYM suboption of the DEBUG compiler option.
There are no restrictions on using labels with the GOTO LABEL command.

« For COBOL programs, you can use GOTO LABEL command if you compile your program with the
following suboptions and compilers:

— The HOOK suboption of the TEST compiler option with Enterprise COBOL for z/OS, Version 4

— The PATH or ALL suboption and the SYM suboption of the TEST compiler option with the following
compilers:

- Enterprise COBOL for z/OS and 0S/390, Version 3
- COBOL for 0S/390 & VM, Version 2

— For Enterprise COBOL for z/OS Version 5, programs are always compiled without hooks inserted by
the compiler. If you are using the TEST compiler option in combination with any level of the OPT
compiler option, it is recommended to use the EJPD suboption of the TEST compiler option.

The label can take one of the following forms:

— name, where name is a section name, or the name of a paragraph not within a section or in only one
section of the block.

— namel OF name2or namel IN name2, where namel is duplicated by one or more other
paragraphs in one or more other sections in the block. You can use either OF or IN, but z/OS
Debugger always displays OF in the log.

e For PL/I, you can use GOTO LABEL only if you compiled your program with either the PATH or ALL
suboption and the SYM suboption of the TEST compiler option. There are no restrictions on using labels
with GOTO LABEL and label variables are supported.

- GOTO LABEL is not available while debugging Enterprise PL/I programs.

« You cannot use the GOTO LABEL command while you are replaying recorded steps by using the
PLAYBACK commands.

« You cannot use the GOTO LABEL command while you debug an optimized COBOL program.
Examples

« Go to the label constant 1aba in block suba in program progl.
GOTO progl:>suba:>laba;

- Go to the label constant para OF sectl. The current programming language setting is COBOL.
GOTO LABEL para OF sectl;

Refer to the following topics for more information related to the material discussed in this topic.

Related tasks
IBM z/0OS Debugger User's Guide

Related references
“statement_label” on page 17

128 IBM z/OS Debugger: Reference and Messages

%IF command (programming language neutral)
The %IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the %$IF command. If the test expression evaluates to false and the ELSE clause exists, the command
associated with the ELSE clause is performed. The keywords cannot be abbreviated.

; P
L ELSE — command J

»w— %IF — condition — THEN — command

condition
A simple relation condition valid for all supported programming languages.
command

A valid z/OS Debugger command or a BEGIN-END group containing one or more valid z/OS Debugger
commands. The z/OS Debugger commands must be valid for all supported programming languages.

When %IF commands are nested and ELSE clauses are present, a given ELSE is associated with the
closest preceding %IF clause within the same block.

Usage notes

« The IF commands that are specific to a programming language might contain restrictions or usage
notes. Those restrictions and usage notes also apply to the %IF command.

« The variable names used in condition must be syntactically valid for all supported programming
languages.

- If you want to nest ¥IF commands, you cannot mix them with programming language-specific IF
commands.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

“BEGIN command” on page 74

“IF command (assembler, disassembly, and LangX COBOL)” on page 129
“if command (C and C++)” on page 130

“IF command (COBOL)” on page 131

“IF command (PL/I)” on page 134

IF command (assembler, disassembly, and LangX COBOL)

The IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the IF command. If the test expression evaluates to false and the ELSE clause exists, the command
associated with the ELSE clause is performed. The IF and ELSE keywords cannot be abbreviated.

»— IF condition THEN — command L _J ; >
E '— condition — 'j ELSE — command

condition
An assembler conditional expression.

'condition’
A LangX COBOL conditional expression enclosed in apostrophes ().

command

A valid z/OS Debugger command or a DO group containing one or more valid z/OS Debugger
Commands.

When IF commands are nested and ELSE clauses are present, a given ELSE is associated with the
closest preceding IF clause within the same block.

Usage note

Chapter 5. z/OS Debugger commands 129

You cannot use the IF command while you replay recorded statements by using the PLAYBACK
command.

Examples

- If the value of register 1 is 0, then assign 0 to variable XYZ by using the following command:
IF %R1 = O THEN STORAGE(XYZ)=0;

- If the value of variable XYZ is equal to 22, set a breakpoint at statement 52 by using the following
command:

IF XYZ=22 THEN AT 52;

- If the value of the LangX COBOL variable XYZ is 2, assign O to variable XYZ by using the following
command:

IF 'XYZ = 2' THEN 'XYZ' = '0';

if command (C and C++)

The if command lets you conditionally perform a command. You can optionally specify an else clause
on the if command. If the test expression evaluates to false and an else clause exists, the command
associated with the else clause is performed. The if and else keywords must be lowercase and cannot
be abbreviated.

»— if — (— expression —) — command L _J ; >
else — command

expression
A valid z/OS Debugger C and C++ expression.

command
A valid z/OS Debugger command.

When if commands are nested and else clauses are present, a given else is associated with the
closest preceding if clause within the same block.

Usage notes

« An else clause should always be included if the if clause causes z/OS Debugger to get more input (for
example, an 1f containing USE or other commands that cause z/OS Debugger to be restarted because
an AT-condition occurs).

« The if command cannot be used while you replay recorded statements by using the PLAYBACK
commands by using the PLAYBACK command.

Examples

« The following example causes grade to receive the value "A" if the value of scoxre is greater than or
equal to 90.

if (score >= 90)
grade = "A";

« The following example shows a nested if command.

if (paygrade ==)
if (level >= 0 && level <= 8)
salary %= 1.05;
else
salary *= 1.04;

else
salary *= 1.06;

130 IBM z/OS Debugger: Reference and Messages

IF command (COBOL)

The IF command lets you conditionally perform a command. You can optionally specify an ELSE clause
on the IF command. If the test expression evaluates to false and an ELSE clause exists, the command
associated with the ELSE clause is performed. The keywords cannot be abbreviated.

»— IF— condition command >
L THEN J
ELSE command
»— END-IF — ; >«
condition

A simple relation condition with the following form: Item-1 operator Item-2.Item-1 and Item-2
can be a data-item or a literal. The operator can be one of the following operations:

- >
e <

« NOT <
« NOT >

command
A valid z/OS Debugger command.

When IF commands are nested and ELSE clauses are present, a given ELSE or END-IF is associated with
the closest preceding IF clause within the same block.

Unlike COBOL, z/OS Debugger requires terminating punctuation (;) after commands. The END-IF keyword
is required.

Usage notes

« An ELSE clause should always be included if the IF clause causes z/OS Debugger to get more input (for
example, an IF containing USE or other commands that cause z/OS Debugger to be restarted because
an AT-condition occurs).

« The COBOL NEXT SENTENCE phrase is not supported.
« Comparison combinations with windowed date fields are not supported.
« Comparisons between expanded date fields with different DATE FORMAT clauses are not supported.

« If the DATA option of the PLAYBACK ENABLE command is in effect, the IF command can be used while
you replay recorded statements by using the PLAYBACK commands.

 For optimized COBOL programs, the IF clause cannot reference any variables discarded by the
optimizer.

« If a COBOL variable is defined as National and it is an operand in a relation condition with an alphabetic,
alphanumeric operand, or National numeric, the operand that is not National is converted to Unicode
before that comparison is done, except for Group items. See Enterprise COBOL for z/OS Language
Reference for more information about using COBOL variables in conditional expressions.

Refer to the following topics for more information related to the material discussed in this topic.

Related references

Chapter 5. z/OS Debugger commands 131

“Allowable comparisons for the IF command (COBOL)” on page 132

Allowable comparisons for the IF command (COBOL)

The following table shows the allowable comparisons for the z/OS Debugger IF command. A description
of the codes follows the table.

For Enterprise COBOL for z/OS Version 5, z/OS Debugger supports all the same comparisons that are
supported in the COBOL language, so the following table does not apply. See the Enterprise COBOL for
z/0S Language Reference for more information.

OPERAND GR AL AN ED BI NE ANE | NDI NN ID IN IDI PTR | @ IF EF D1
DI

Group (GR) NN NN | NN NN NN NN NN (ISIN:L NN NN NN NN

Alphabetic (AL) NN NN NN

Alpha numeric NN NN NN

(AN)8

External Decimal NN NU

(ED)8

Binary NN NU NU4

Numeric Edited NN NN

(NE)

Alphanumeric NN NN NN

Edited (ANE)

FIGCON ZERO7 NN NU NU NN NU NU NU

FIGCONL,7 NN |NN | NN NN [NN9 | NU

National Data NNL | NN | NN NN | NN

Ttem (NDI) 0

National Numeric NN

Data Item (NNDI)

Numeric Literal”? | NN NU [NU NN |NU | NU4 NU [NU

Alphanumeric NN NN | NN NN NN NN

Literalz,'7 3

Alphanumeric hex | NN NN | NN NN NN

literal11

Internal Decimal NN NU

(D)8

Index Name (IN) | NN NU4 104 [NU

Index Data Item NN NU v

(IDI)

Pointer Data Item NUS | NUS

(PTR)

Address of (@) NUS [NUS

Floating Point X NU NU

Literal

Internal Floating NN NU | NU

Point (IF)

External Floating | NN NU | NU

Point (EF)

DBCS data item NN

(D1)

132 IBM z/OS Debugger: Reference and Messages

OPERAND

GR AL | AN ED BI NE ANE |NDI |yn |ID IN IDI |PTR | @ IF EF D1
DI

DBCS Literal” NN

Address hex NUS | NUS

Literal®

National Literal NN NN

National Hex gNl NN

Literal

Notes:

1.
2.

o O AW

10.
11.

12.

FIGCON includes all figurative constants except ZERO and ALL.

A alphanumeric literal must be enclosed in quotation marks (") or apostrophes ('). A quotation mark
or apostrophe embedded in the string must be followed by another quotation mark or apostrophe
when it is used as the opening delimiter.

. Must contain only alphabetic characters.

. Index name converted to subscript value before compare.

. Only comparison for equal and not equal can be made.

. Must be hexadecimal characters only, delimited by either quotation m