
IBM FileNet Business Process Framework
Version 4.1

Developer Guide

GC31-5514-02

����

IBM FileNet Business Process Framework
Version 4.1

Developer Guide

GC31-5514-02

����

Note
Before using this information and the product it supports, read the information in “Notices” on page 87.

This edition applies to version 4.1.0 of IBM FileNet Business Process Framework (product number 5724-R75) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2002, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Contents .. 5
Revision Log ... 7
Introduction ... 9
Customization areas ... 9
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces 10

Definition.. 10
Raising an Event ... 13
Event Sequence .. 14

Scenario A ... 15
Scenario B ... 16
Scenario C ... 17
Scenario D ... 18
Scenario E ... 19
Scenario F.. 20
Scenario G ... 21
Scenario H ... 21
Event raised ... 22

Supported objects.. 23
HTML Body element .. 23
Case... 24
Case object .. 25
Expando object .. 26
AuditLogItem object ... 26
Inbasket object... 26
Filter object .. 26
Tab object .. 26
User object... 27
Profile object .. 27
ToolBarItem object... 27

Tool event handler interface.. 29
Definition.. 29
Raising a tool event ... 30
Tool event sequence ... 31
Supported tools ... 31
Sample ToolEventHandler.js ... 31

Table Tab event handler interface .. 32
Definition.. 32
Raising a Table Tab event .. 33

Web custom Java language Case event handler interface (Java plug-ins).. 34
Definition.. 34
Class Hierarchy ... 35
OpenCaseEventHandler configuration.. 37
CommitCaseEventHandler configuration .. 38
Sample OnOpen.java .. 39
Sample OnCommit.java... 40

Web custom tool development procedure .. 41
General introduction .. 41
Step 1: Create code... 42
Step 2: Deploy code .. 43
Step 3: Register tool .. 43
Step 4: Expose tool ... 45
Sample my_tool code.. 46

Web custom tab development procedure ... 47

IBM FileNet Business Process Framework Developer Guide
Contents

Introduction.. 47
Step 1: Create code... 47
Step 2: Bundle code .. 47
Step 3: Register Tab.. 49
Step 4: Expose tab .. 50
Sample my_tab code... 51

Lookup extensions interface ... 52
Introduction.. 52
Writing the Code.. 60
Deploying the Code... 61
Configuration ... 62
Sample code.. 63

Customizing BPF Date/Time handling capabilities ... 64
Introduction.. 64

Overview .. 64
Implementation .. 66
Customization .. 66

User Preferences .. 69
Introduction.. 69

Overview .. 69
Preferences access ... 69
Configuration file format description .. 70
User Preferences Sample Code .. 70

Implement multiple Case Tabs ... 80
General customizations... 83

XSL Stylesheet modifications.. 83
Notices .. 87

Trademarks ... 88

© Copyright IBM Corp. 2002, 2009 6

IBM FileNet Business Process Framework Developer Guide
Revision Log

Revision Log
Date Revision
8/31/2009 Removed samples for JBOSS/SQL Server from this guide and from the

CODE_SAMPLES.zip file. Business Process Framework 4.1 does not
support the JBoss Application Server.

Modified the guide to correspond to changes in the code samples, which
were revised to remove calls to unpublished core methods, and so on.

Added information about using the Bp8CustomStyles.css file.

8/27/2008 Added documentation for APAR PJ34443 (BPF-4.1.0-001), describing
how it is now possible to configure multiple case tabs in Business Process
Framework by implementing custom code in the revised
eventHandlers.onCaseDisplay method of EventHandlers.js (on BPF-
4.1.0-001 and above only).

11/30/2007 Initial document posting

© Copyright IBM Corp. 2002, 2009 7

IBM FileNet Business Process Framework Developer Guide
Revision Log

© Copyright IBM Corp. 2002, 2009 8

IBM FileNet Business Process Framework Developer Guide
Introduction

© Copyright IBM Corp. 2002, 2009 9

Introduction
This IBM® FileNet® Business Process Framework (BPF) Developer Guide is intended to be used in close
conjunction with both the CODE_SAMPLES.zip file that accompanies it and with the actual files from your
installed instance of Business Process Framework. To avoid having outdated code in either this
document or in the CODE_SAMPLES.zip, reference will be made wherever possible to actual files from
your installed instance of Business Process Framework (which you yourself will then need to pull up and
examine in a text editor or the in conjunction with what is said here).

Customization areas
Business Process Framework exposes a number of customization areas for custom code extensions.
Sample code for most of these is provided in the CODE_SAMPLES.zip that accompanies this guide. The
sections of this guide correspond to these various customization areas. The description of each of them,
in turn, draws examples directly from the CODE_SAMPLES.zip wherever possible.

In general terms, these customization areas fall under three broad categories:

• Client-side JavaScript™ EventHandlers

• Server-side JSP/Java™ plugins

• Cosmetic changes to .CSS and .GIF files

The client-side JavaScript EventHandlers are defined in three template files that are installed with the
BPF Web Application:

• <bpf_web_root>\plugins\custom\EventHandlers.js.template

• <bpf_web_root>\plugins\custom\ToolEventHandler.js.template

• <bpf_web_root>\plugins\custom\TableTabEventHandler.js.template

The server-side JSP/Java plugins consist of such features as compiled Java classes configured to fire
when a case is opened or dispatched from a designated inbasket (or with a designated action/response
from a designated inbasket), custom tools and tabs (mostly using JSP), and (in most implementations)
lookups (mostly using JSP) and custom preferences.

For further details, please consult the document below in conjunction with the CODE_SAMPLES.zip.

The .GIF files most likely to be subjected to customization are the files found in <bpf_web_root>\img.

You can further modify the appearance of the BPF Web Application by creating a new CSS file named
Bp8CustomStyles.css and placing it in the <web_root>\css\ directory. The BPF Web Application will
automatically load and use this file if you create it with this name and deploy it in this location.

NOTE You should not make any changes to the <web_root>\css\Bp8Styles.css file!

Lastly, there is the option to customize the look and feel of the BPF Web Application by modifying the
base XSL files used by BPF.

NOTE Please note, however, that unlike the other customization areas documented here, custom
changes to these XSL files will be lost completely during any upgrade of BPF and will need to be merged
back into the replaced XSL files after the upgrade.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 10

BPF Web Application custom JavaScript
EventHandlers and BusinessObjects interfaces
NOTE Please note the following points before proceeding.

• All path information provided is relative to the BPF <web_root> directory unless otherwise noted.

• The following descriptions and code snippets might possibly be out-of-date due to changes made
in subsequent patches. For the latest and up-to-date information, always consult the comments
and sample code in the .template files provided in the \samples\components\bpf\custom directory
(relative to the <install_root> directory) of whatever build/release of BPF you happen to be
working with.

• Values displayed for a given action/response in the Action menu may vary depending upon
regional settings. Nevertheless, at present, the value of the actionName parameter passed in to
the onBeforeAction() and onAfterAction() methods of the EventHandlers.js file is not localized.
These values will be whatever they are configured to be in BPF Explorer.

Definition
The JavaScript EventHandlers interface for BPF provides the ability to implement custom code that will be
run on the browser client workstation in response to a variety of events that may occur as the user
interacts with BPF. This interface is defined by the EventHandlers.js.template file that is installed in the
\plugins\custom directory.

As initially installed, this file is merely a blank template, whose method stubs contain nothing more than a
return true statement. Nevertheless, each method defined there is introduced by extensive
Javadoc™-style comments explaining in great detail what the method and its parameters do.

NOTE Please consult the EventHandlers.js.SAMPLE provided with this guide (in the
CODE_SAMPLES.zip file) to learn more about how to implement this interface. This sample version of
the file is probably where most developers will want to start becoming familiar with this interface and the
kinds of functionality that it supports. In contrast to the .template file, the .SAMPLE file contains few
explanatory comments and extensive code samples (commented out by default) and is intended to be the
mirror image of the EventHandlers.js.template file – which contains no actual code but extensive
comments. The two files are thus intended to complement one another and should be studied together.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 11

Please consult the EventHandlers.js.template file in your own installed BPF environment to get an
accurate description of this interface as it currently exists there. The following list (from the BPF-4.1.0-
002 version of this file) is provided solely to give some idea of the kinds of events that are exposed by this
interface.

eventHandlers.onBeforeResponseBulk = function(functionID, choiceRequired, functionName) {
 return true;
}

eventHandlers.onResponseBulkChoicesComplete = function(functionID, choiceRequired, functionName,
oChoiceResultXML) {
 return true;
}

eventHandlers.onResponseBulkCaseXmlComplete = function(functionID, choiceRequired, functionName,
oChoiceResultXML, oPropsXML) {
 return true;
}

eventHandlers.onAfterResponseBulk = function(functionID, choiceRequired, functionName,
oChoiceResultXML, oPropsXML) {
 return true;
}

eventHandlers.onPageLoad = function(sPageName) {
 return true;
}

eventHandlers.onCaseLoad = function() {
 return true;
}

eventHandlers.onCaseDisplay = function(tabContent) {
 return true;
}

eventHandlers.onBeforeHideDetail = function() {
 return true;
}

eventHandlers.onAfterHideDetail = function() {
 return true;
}

eventHandlers.onBeforeSave = function(oAuditLogItem) {
 return true;
}

eventHandlers.onAfterSave = function(oAuditLogItem) {
 return true;
}

eventHandlers.onBeforeClose = function() {
 return true;
}

eventHandlers.onAfterClose = function() {
 return true;
}

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 12

eventHandlers.onBeforeAction = function(responseName, responseId) {
 return true;
}

eventHandlers.onActionChoicesComplete = function(responseName, responseId, oChoiceResultXML) {
 return true;
}

eventHandlers.onActionCaseXMLComplete = function(responseName, responseId, oChoiceResultXML,
oPropsXML) {
 return true;
}

eventHandlers.onAfterAction = function(responseName, responseId, oChoiceResultXML, oPropsXML) {
 return true;
}

eventHandlers.onBeforeToggleExpando = function(oExpando) {
 return true;
}

eventHandlers.onAfterToggleExpando = function(oExpando) {
 return true;
}

eventHandlers.onFieldBlur = function(fieldElement) {
 return true;
}

eventHandlers.onAfterFieldBlur = function(fieldElement) {
 return true;
}

eventHandlers.onFieldChange = function(fieldElement) {
 return true;
}

eventHandlers.onFieldKeyPress = function(fieldElement) {
 return true;
}

eventHandlers.onKeyDown = function() {
 return true;
}

eventHandlers.onBeforePluginTabLoad = function (tab) {
 return true;
}

eventHandlers.onBeforeDoLookupSearch = function (lookupField, lookupButton) {
 return true;
}

eventHandlers.onBeforeProcessLookupItem = function (lookupButton, valueList) {
 return true;
}

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 13

eventHandlers.onAfterProcessLookupItem = function (lookupButton) {
 return true;
}

eventHandlers.onBeforeInbasketLoad = function() {
 return true;
}

eventHandlers.onAfterInbasketLoad = function() {
 return true;
}

These empty stubs can be fleshed out with custom implementation code that will be called at the
appropriate times in response to various actions performed by users in the BPF Web Application.

NOTE The EventHandlers.js.template file provided with the BPF install package must, of course, be
renamed EventHandlers.js before any of the code it contains will actually be executed.

Raising an Event
The methods defined in the EventHandlers.js.template are called through the raiseEvent method defined
in \js\Bp8InitMain.js. If you examine the BPF JavaScript files, you will find calls to this method, raising
the various events defined in the EventHandlers.js.template file at the proper times.

A typical call to this method, also taken from \js\Bp8InitMain.js would look like this:

 if (!raiseEvent("onBeforeSave", oAuditLogItem)) {
 return;
 }

Please consult the JavaScript files in your installed BPF environment for more details.

NOTES

• The fact that the event handler methods are defined to allow for a boolean return value in turn
allows client code to react dynamically and then to cause the operation in BPF that triggered the
event either to fail or to proceed normally depending on the value returned from the event handler
method by the custom code.

• It is possible to add custom events to BPF by extending the EventHandlers.js file with new
methods and then calling them from code in \js\Bp8InitMain.js and the other baseline
JavaScript include files. Such custom additions to BPF would not, however, be supported under
normal circumstances and will be lost (overwritten) whenever subsequent BPF patches are
applied.

• Any and all changes of general use and applicability to code in \js\Bp8InitMain.js and the other
baseline JavaScript included files should be requested through the normal support channels
using whatever formal change-control process happens to be currently in force. Only in this way
can proper support and upgradeability be insured.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 14

Event Sequence
The following is a short list of typical use cases, listing some of the event handlers that get called when
users do various common actions in BPF and showing what source they are called from and in what
order. Each of these is then followed by some brief suggestions as to what could be done at each point
by inserting custom JavaScript into the body of the appropriate event handler method.

NOTES

• The suggestions that follow are very rudimentary for the most part. To get a better idea of what
can be done through this interface, consult the list and discussion of the JavaScript interfaces
provided by the various supported business objects that follows this section.

• For displaying custom messages to the user, you are not confined to JavaScript alert calls.
Consider using the voluntaryShowMessage method defined in Bp8Errors.js to present the user with
more elegantly formatted messages that you would like to display from your custom code, as in
the following code snippet:

var strDescription = "Something bad happened...";

var strMessage = "Houston, we have a problem...";

voluntaryShowMessage(strDescription, strMessage);

There are also a number of other message functions defined in the same file as well if you need
more specialized behavior. See the following screen capture for example results.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 15

Scenario A
A user logs on to BPF and is presented with a browse list view of their default inbasket

Event raised

eventHandlers.onBeforeHideDetail();
Called from

Bp8InitMain.js::hideDetail (which is in turn called from Bp8InitMain.js::openInbasket and
Bp8InitMain.js::closeCase)

What can you do?

onBeforeHideDetail is fired whenever the central area of the BPF user interface is hidden from view in the
browser. This may occur whenever one inbasket's browse list is being closed so that another inbasket's
browse list can be displayed – or when a case is being closed. This method is not fired when a case is
being opened (for which use onCaseLoad and onCaseDisplay instead). If a case is being closed, you will
still have access to both the HTML and the XML for the case that is closing here for the purposes of
validation or manipulation.

Event raised
eventHandlers.onAfterHideDetail();

Called from

Bp8InitMain.js::hideDetail (which is in turn called from Bp8InitMain.js::openInbasket and
Bp8InitMain.js::closeCase)

What can you do?

onAfterHideDetail is fired whenever the central area of the BPF user interface is hidden from view in the
browser. This may occur whenever one inbasket's browse list is being closed so that another inbasket's
browse list can be displayed – or when a case is being closed. This method is not fired when a Case is
being opened (for which use onCaseLoad and onCaseDisplay instead). The currentCase object will be null at
this point, so you will have no access to the CaseProps XML DOM for the case that has been closed. But
you will still have access to the HTML DOM at this time.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 16

Scenario B
A user clicks on a case in their inbasket browse list to open it.

Event raised:
eventHandlers.onCaseLoad();

Called from
Bp8InitMain.js::loadProps

What can you do?

Using the currentCase.objCase object (about which see below in the following section on supported
business objects), you can do such things as:

• Auto-calculate a field value based on the value(s) of other fields

• Make a field disabled based on certain criteria

• Execute a call to an external URL and use the return values to populate fields as a kind of lookup

NOTES

• All of the above-noted things you can do here will be executed prior to the case being displayed.

• Returning false from this method prevents the case from loading.

Event raised
eventHandlers.onCaseDisplay();

Called from
Bp8InitMain.js:: loadDetail
Bp8InitMain.js:: td_tab_onclick

What can you do?

The case fields have already been rendered as HTML at this point, but it is possible to manipulate the
HTML elements themselves.

NOTE Returning false from this method has no effect. It is not possible to prevent a case from displaying
by returning false from this method.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 17

Scenario C
A user tabs or clicks away from whatever field has focus.

Event raised
eventHandlers.onFieldBlur(fieldElement);

Called from
Bp8InitMain.js::fieldBlur

What can you do?

This is the primary method for performing edits and validation at the field level against the HTML DOM. It
is possible to validate what the user has entered and, if it fails validation in some way, zero-out the field,
display a message to the user, and reset the focus on the field.

NOTE It is possible to return a boolean value of false from this method, causing focus to be returned to
the field. In this case, the validateField method will not be called from within Bp8InitMain.js::fieldBlur.

Event raised
eventHandlers.onAfterFieldBlur(fieldElement);

Called from
Bp8InitMain.js::fieldBlur

What can you do?

This is the primary method for performing XML edits and validation at the field level against the
CaseProps XML DOM. At this point, the validateField method has been called and the CaseProps XML
DOM has been updated. But it is possible at this point to validate what the user has entered and, if it fails
validation in some way, zero-out the field, display a message to the user, and reset the focus on the field.

NOTE It is possible to return a boolean value of false from this method, causing focus to be returned to
the field.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 18

Scenario D
A user hits a character key to enter text into a field.

Event raised
eventHandlers.onKeyDown();

Called from
 Bp8InitMain.js::doBodyKeyDown

What can you do?

This is more of a side-effect than anything else. Since this method does not take into account the HTML
element in which the keystroke occurred (other than the containing BODY element as a whole), it is better
suited to the implementation of hot keys and the like – using the interfaces supplied by the various
supported business objects described below to invoke custom behavior in response to various
combinations of key strokes.. For keystroke-level edits on specific fields and other HTML elements, use
the eventHandlers.onFieldKeyPress(fieldElement) method described just below.

NOTE It is possible to return a boolean value of false from this method, which will cause the
Bp8InitMain.js::doBodyKeyDown method to return immediately upon being invoked – without executing the
remainder of the code it contains.

Event raised
 eventHandlers.onFieldKeyPress(fieldElement);

Called from
 Bp8InitMain.js::fieldKeyPress

What can you do?

This is the primary method to use for keystroke-level edits and validation on specific fields. It would be
possible, for example, to use the event.keyCode property to simply cancel the entry of alpha characters
into a numeric field, etc.

NOTE It is possible to return a boolean value of false from this method, causing the fieldKeyPress
method to return immediately. In this case, the validateField method will not be called.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 19

Scenario E
A user clicks the Close button.

Event raised
 eventHandlers.onBeforeClose();

Called from
 Bp8InitMain.js:: closeCase

What can you do?

At this point it is still possible to cancel the close operation altogether or even to change field values
conditionally.

NOTE It is possible to return a boolean value of false from this method, which will cause the
Bp8InitMain.js::closeCase method itself to return false immediately without executing the remainder of
the code it contains.

Event raised
 eventHandlers.onBeforeHideDetail();

Called from
 Bp8InitMain.js::hideDetail

What can you do?

onBeforeHideDetail is fired before the case detail view of the currently opened case is hidden from view in
the browser. You will still have access, for the purposes of validation or manipulation, to both the HTML
and the XML for the case that is closing here.

Event raised
 eventHandlers.onAfterHideDetail();

Called from
 Bp8InitMain.js::hideDetail

What can you do?

onAfterHideDetail is fired after the Case Detail view of the currently opened case is hidden from view in
the browser. The currentCase object will be null at this point, so no access to the CaseProps XML DOM
for the case that has been closed will be available. But you will still have access to the HTML DOM at this
time.

Event raised
 eventHandlers.onAfterClose();

Called from
 Bp8InitMain.js:: closeCase

What can you do?

At this point it is no longer possible to cancel the close operation altogether or to change field values
conditionally.

NOTE It is possible to return a boolean value of false from this method, but this will have no real effect
since the body of Bp8InitMain.js:: closeCase has already executed.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 20

Scenario F
A user clicks the Save button.

Event raised
 eventHandlers.onBeforeSave(oAuditLogItem);

Called from
 Bp8InitMain.js::applyProps

What can you do?

At this point it is still possible to cancel the save operation altogether (prior to the case being saved), or to
change field values conditionally. In addition, you can programmatically modify the action, reason,
description and/or eventCategory properties of the oAuditLogItem parameter that will be written to the audit
log using the AuditLogItem object interface defined in Bp8BusinessObjects.js.

NOTE It is possible to return a boolean value of false from this method, which will cause the
Bp8InitMain.js::applyProps method to return false immediately without executing the remainder of the
code it contains.

Event raised
 eventHandlers.onAfterSave(oAuditLogItem);

Called from
 Bp8InitMain.js:: applyProps

What can you do?

This method is called at the very end of the save operation. But code in the body of this method would still
have access to some of the other business objects exposed by the business objects interfaces described
below. In particular, changing the values of the oAuditLogItem parameter will have no effect on the actual
audit log entry, but these values might be useful for logging or notification purposes.

NOTE It is possible to return a boolean value of false from this method here, but doing so will have no
effect.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 21

Scenario G
A user selects a response from the Action menu.

Event raised
 eventHandlers.onBeforeAction(responseName==IndexPend, responseId==211);

Called from
 Bp8InitMain.js::doFunction

What can you do?

This method can be used to prevent the dispatch of the current case, in spite of the fact that a user has
chosen a response from the Action menu, if, for example, certain fields do not have values that are valid
for this response. In this case, a message can be displayed to the user and the display returned to Case
Details view, allowing the user either to correct the values of the required fields or to choose another
action.

NOTE It is possible to return a boolean value of false from this method here, which will effectively cancel
the response.

Scenario H
A user is presented with Reason- and Comment popup window if reasons are configured for the action
chosen.

Event raised
eventHandlers.onActionChoicesComplete(responseName==IndexPend, responseId==211,
choiceResult==<ChoiceResults><Reason><ValueId>1</ValueId><ValueDesc>Invalid
Amount</ValueDesc><ValueInput>This amount is
invalid.</ValueInput></Reason></ChoiceResults>);

Called from
 Bp8InitMain.js::doFunction

What can you do?

This method can be used to prevent the dispatch of the current case, in spite of the fact that a user has
chosen a response from the Action menu, if, for example, certain fields do not have values that are valid
for the reason and/or comment values (if any) that the user entered for this action. In this case, a
message can be displayed to the user and the display returned to Case Details view, allowing the user
either to correct the values of the required fields, to choose another action, or to choose the same action
but with more appropriate reason and/or comment values.

NOTE It is possible to return a boolean value of false from this method here, which will effectively cancel
the action.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 22

Event raised
eventHandlers.onActionCaseXMLComplete(responseName==IndexPend, responseId==211,
choiceResult==<ChoiceResults><Reason><ValueId>1</ValueId><ValueDesc>Invalid
Amount</ValueDesc><ValueInput>This amount is
invalid.</ValueInput></Reason></ChoiceResults>, xmlProps== <CaseProps CaseId="67277"
CaseTypeID="3" GUID="{8CAFA318-606E-47C4-94AD-66CF3CEB62F9}"
WOBNum="3D256791B7B1754CB5786CE58F5C07C7" WorkobjectId="1300004.0"><Prop
Name="ContractAmount" Type="7"><Value>1</Value></Prop></CaseProps>);

Called from
 Bp8InitMain.js::doFunction

What can you do?

This method can be used to prevent the dispatch of the current case, in spite of the fact that a user has
chosen an action from the Action menu and the xmlProps parameter has been built for the fields whose
values have been changed by the current user (so-called “dirty” fields), if, for example, certain fields do
not have values that are valid for the reason and/or comment values (if any) that the user entered for this
action. The presence of the xmlProps parameter also makes it very easy to see which fields the user
changed and to do validation against these in isolation, rejecting the current action if any of the new
values of the fields are inappropriate to the action, reason, and/or comment selected by the user. In this
case, a message can be displayed to the user and the display returned to Case Details view, allowing the
user either to correct the values of the required fields, to choose another action, or to choose the same
action but with more appropriate reason and/or comment values.

NOTE It is possible to return a boolean value of false from this method here, which will effectively cancel
the action.

Event raised
eventHandlers.onAfterAction(responseName==IndexPend, responseId==211,
choiceResult==<ChoiceResults><Reason><ValueId>1</ValueId><ValueDesc>Invalid
Amount</ValueDesc><ValueInput>This amount is
invalid.</ValueInput></Reason></ChoiceResults>, xmlProps== <CaseProps CaseId="67277"
CaseTypeID="3" GUID="{8CAFA318-606E-47C4-94AD-66CF3CEB62F9}"
WOBNum="3D256791B7B1754CB5786CE58F5C07C7" WorkobjectId="1300004.0"><Prop
Name="ContractAmount" Type="7"><Value>1</Value></Prop></CaseProps>);

Called from
 Bp8InitMain.js::doFunction

What can you do?

Not much at this point, since the case has already been saved, closed, and dispatched. But this method
might be very useful for logging purposes.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 23

Event raised
eventHandlers.onBeforeHideDetail();

Called from
Bp8InitMain.js::hideDetail

What can you do?

onBeforeHideDetail is fired before the Case Detail view of the currently opened case is hidden from view
in the browser. You will still have access to both the HTML and the XML for the case that is closing here,
for the purposes of validation or manipulation.

Event raised
 eventHandlers.onAfterHideDetail();

Called from
 Bp8InitMain.js::hideDetail

What can you do?

onAfterHideDetail is fired after the Case Detail view of the currently opened case is hidden from view in
the browser. The currentCase object will be null at this point, so you will have no access to the CaseProps
XML DOM for the Case that has been closed. But you will still have access to the HTML DOM at this
time.

Supported objects
JavaScript objects available for use in custom code in the JavaScript EventHandlers.js interface include
the Case (currentCase) and Case object (currentCase.objCase), along with the Expando object (through
the onBeforeToggleExpando and onAfterToggleExpando methods) and the custom plugin tab object (through
the onBeforePluginTabLoad method). Each of these JavaScript objects/interfaces is defined in the
Bp8BusinessObjects.js file in the \js directory of the BPF web root. In addition, the JavaScript
EventHandlers.js interface also includes methods for lookup buttons (through the
onBeforeProcessLookupItem and onAfterProcessLookupItem methods), though these are actual HTML
objects rather than JavaScript objects defined in the Bp8BusinessObjects.js file. Some of these objects
have their own event handler methods. But it is also possible to manipulate these objects in response to
events raised by other objects (including Case, Case object, and various other BPF business objects,
such as inbasket, tab, panel, tool, and user – all defined in the Bp8BusinessObjects.js file in the \js
directory of the BPF web root) so as to achieve considerable complexity of behavior.

HTML Body element
The onKeyDown event handler defined in EventHandlers.js is fired through the BODY element containing the
HTML for the entire screen. It is specific neither to a Case nor to any Case field.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 24

Case
Probably the first thing that developers need to know when writing custom code within the
EventHandlers.js interface is that it is possible to access the currently opened Case using the
currentCase global variable (declared \UI-INF\jsp\modules\apps\Bp8MainModuleJSP.jsp).

NOTE Like the other BPF business objects described in this section, Case is a JavaScript object defined
in the \js\Bp8BusinessObjects.js file. Although it is not the first object defined in that file, it will be handled
here first and in greater detail than the others because of its relative importance.

As defined in the \js\Bp8BusinessObjects.js file, the Case object exposes simple caseId, workobjectId,
and workobjectNumber properties as well as a complex objCase property containing the CaseProps XML in
the form of an HTML DOM object.
function Case(caseId, workobjectNumber, workobjectId, caseGuid, caseNode, caseTypeId) {
 this.caseId = caseId;
 this.workobjectId = workobjectId;
 this.workobjectNumber = workobjectNumber;
 this.caseGuid = caseGuid;
 this.objCase = caseNode;

//************************** Multiple Object Store Support ***********************************
 this.caseTypeId = caseTypeId;
//************************** Multiple Object Store Support ***********************************

 this.currentField = undefined;
 this.dirty=false;
 function Case.prototype.isOpened() {
 return (this.objCase != undefined);
 }
}

Likewise, calling currentCase.isOpened() can be used to determine whether the current case is open
(has CaseProps XML) or not.

NOTE The BPF Case object is virtual and is exposed as an HTML DOM object through the objCase
property or Case object described below.

The events supported on the Case level are:

• onBeforeHideDetail

• onAfterHideDetail

• onCaseLoad

• onCaseDisplay

• onBeforeClose

• onAfterClose

• onBeforeSave

• onAfterSave

• onBeforeAction

• onActionChoicesComplete

• onActionCaseXMLComplete

• onAfterAction

NOTE Please see the extensive comments in the EventHandlers.js.template that installs with BPF in the
<bpf_webroot>\plugins\custom directory for up-to-date information on each of these methods.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 25

Case object
This term is used to refer specifically to the objCase property of the currentCase object, which exposes the
Case fields as HTML DOM objects.

Reading a Case field value
Because the BPF Case object is virtual and exposes its fields in the form of an HTML DOM object, the
currentCase.objCase object/property can be accessed using standard syntax, as in the following example
in which the value of the Effective Date case field is extracted from currentCase.objCase and loaded into a
local variable.

var root = currentCase.objCase;

var property = root.selectSingleNode("Prop[@Name='EffectiveDate']");

var effectiveDate = property.selectSingleNode("Value").text;

Setting a Case field value: Using the Dirty flag
This can be tricky because just setting the Value attribute of an HTML element will not result in the new
value being persisted back to the Case object in Content Engine (CE) and/or the case work item in
Process Engine (PE). Instead, the Dirty flag needs to be set on the relevant element by setting the
NewValue attribute instead.

var root = currentCase.objCase;

var property = root.selectSingleNode("Prop[@Name='ContractAmount']");

property.setAttribute("NewValue", 99);

Appearance control
Using the syntax demonstrated above, one can use code such as the following to affect the appearance
and functionality of the browser interface:

var oCompanyNameNoEdit = root.selectSingleNode("Prop[@Name='CompanyName']/NoEdit");

oCompanyNameNoEdit.firstChild.nodeValue = 1; // disabled, readOnly

oCompanyNameNoEdit.firstChild.nodeValue = 0; // enabled, writeable

Runtime field value control
Runtime field values are controlled via the following HTML DOM events: onblur, onchange, onclick,
onfocus, onkeydown, and onkeypress.

The BPF-specific events currently supported on the field level by EventHandlers.js are:

• onFieldBlur

• onAfterFieldBlur

• onFieldKeyPress

Typical usage for this kind of event handler would be to provide custom inline field validation.

NOTE Please see the extensive comments in the EventHandlers.js.template that installs with BPF in the
<bpf_webroot>\plugins\custom directory for up-to-date information on each of these methods.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 26

Expando object
This object is defined by the following method in Bp8BusinessObjects.js.

function Expando(id) {
 ...
}

It exposes such properties as the Expando's ID and current state (expanded/collapsed) as well as expand
and collapse methods for forcing either of these behaviors.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

AuditLogItem object
This object is defined by the following method in Bp8BusinessObjects.js.

function AuditLogItem(action, reason, description, eventCategory) {
 ...
}

It exposes such properties as the AuditLogItem's action, reason, description, and eventCategory
values, along with methods for serializing and deserializing such an object to and from XML.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

Inbasket object
This object is defined by the following method in Bp8BusinessObjects.js.

function Inbasket(inbasketNode, inbasketNumber) {
 ...
}

It exposes such properties as the Inbasket's ID, name, number, type, visible, caseCount and the like. It
also exposes properties that can be used to determine whether a given Inbasket has Save and Close
buttons. In addition, it exposes collections of the tabs, panels, and tools currently configured for the
Inbasket, each in the form of a nodeList object.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

Filter object
This object is defined by the following method in Bp8BusinessObjects.js.
function Filter(id,name,type,value) {
 ...
}

It exposes such properties as the Filter’s ID, name, type, value, visible, and the like.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

Tab object
This object is defined by the following method in Bp8BusinessObjects.js.

function Tab(tabNode, tabIndex) {
 ...
}

It exposes such properties as the tab's ID, tabId, name, title, content, type, visible, path, and
loaded property.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 27

Panel object
This object is defined by the following method in Bp8BusinessObjects.js.

function Panel(panelNode) {
 ...
}

It exposes such properties as the panel's name, visible, enabled, and loaded property.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

Tool object
This object is defined by the following method in Bp8BusinessObjects.js.

function Tool(toolNode) {
 ...
}

It exposes such properties as the tool's name, visible, and enabled property, etc.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

User object
This object is defined by the following method in Bp8BusinessObjects.js.

function User(userNode) {
 ...
}

It exposes such properties as the current user's ID, name, fullName, email, profile and preferences.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

Profile object
This object is defined by the following method in Bp8BusinessObjects.js.

function Profile(userNode) {
 ...
}

It exposes such properties as the profile's name,ID, defaultTabId, and displayInbasketCaseCount.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

CurrentContext object
This object is defined by the following method in Bp8BusinessObjects.js.

function CurrentContext(user, profile) {
 ...
}

It exposes many useful global variables pertinent to the current context as readOnly properties.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

ToolBarItem object
This object is defined by the following method in Bp8BusinessObjects.js.

function ToolbarItem(itemNode, itemList, parentItem) {
 ...
}

IBM FileNet Business Process Framework Developer Guide
BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces

© Copyright IBM Corp. 2002, 2009 28

It exposes properties and methods useful for the programmatic manipulation of toolbar items using
custom JavaScript.

See the Bp8BusinessObjects.js file itself for more comments and implementation details.

IBM FileNet Business Process Framework Developer Guide
Tool event handler interface

© Copyright IBM Corp. 2002, 2009 29

Tool event handler interface
Definition
The JavaScript ToolEventHandler interface for BPF provides the ability for various tools (that are so
written) to fire events that allow custom code to be executed during the course of executing the tool
without having to modify the base code for the tool itself.

NOTE Tools need to be so written as to take advantage of this feature or it will not be available.

The interface is defined by the ToolEventHandler.js.template file that is installed in the \plugins\custom
directory. As initially installed, this file is merely a blank template whose method stubs are all commented
out.

NOTE A sample ToolEventHandler.js.SAMPLE is provided along with this guide, but since the
implementation of the methods in this interface is specific to individual tools, no sample implementations
have been provided beyond a bare minimum of debug statements that illustrate what information is
available in each method call. As such, this sample file will provide most developers with their initial point
of entry in becoming familiar with this interface.

As installed, the bare interface exposed by ToolEventHandler.js is as follows:

eventHandlers.onBeforeToolLoad = function(toolName) {
 return true;
}

eventHandlers.onAfterToolLoad = function(toolName, toolFields) {
 return true;
}

eventHandlers.onBeforeToolFieldBlur = function(toolName, fieldElement) {
 return true;
}

eventHandlers.onAfterToolFieldBlur = function(toolName, fieldElement) {
 return true;
}

eventHandlers.onBeforeToolAction = function(toolName, toolFields, toolAction) {
 return true;
}

eventHandlers.onAfterToolAction = function(toolName, toolFields, toolAction, toolObjectId) {
 return true;
}

eventHandlers.onToolKeyDown = function(toolName, keyCode) {
 return true;
}

These stubs can then be fleshed out with custom implementation code and called from JavaScript
elsewhere in the web application by raising an event and specifying the name of the event handler
method to be called.

IBM FileNet Business Process Framework Developer Guide
Tool event handler interface

© Copyright IBM Corp. 2002, 2009 30

Raising a tool event

These methods are called through the raiseToolEvent method defined in \js\Tools.js.

A sample call to this method from the \js\CreateCase.js file would look like this:

 if (!raiseToolEvent("onBeforeToolLoad", toolName)) {

 return;

 }

NOTES

• The fact that all of the tool event handler methods are defined to allow for a boolean return value
in turn allows client code to react to the results of the code executed within the tool event handler
method and either fail or proceed normally depending on the value returned.

• It is possible to add custom events to BPF by extending the ToolEventHandler.js file with new
methods and then calling them from code in the source files for individual custom tools. Since the
toolname is always passed in as a parameter, it would be possible to have each event handler
method react differently for each tool that makes use of it. At present, this interface is used by the
CreateCase and AddDocument tools only.

• Any and all changes to code in the baseline BPF tools and the other baseline JavaScript included
files should be requested through the BPF Core team using whatever formal change-control
process happens to be currently in force. Only in this way can proper support and upgradability
be insured.

IBM FileNet Business Process Framework Developer Guide
Tool event handler interface

© Copyright IBM Corp. 2002, 2009 31

Tool event sequence
This remains fairly self-explanatory at present. The ToolEventHandler.js.template that installs with BPF
and the ToolEventHandler.js.SAMPLE provided with this guide both come with extensive comments that
should be consulted as the first line of documentation.

Supported tools
At present, only the CreateCase and AddDocument tools support this new ToolEventHandler interface, but
the intention to have all BPF tools support it going forward.

Sample ToolEventHandler.js
Please consult the CODE_SAMPLES.zip file that accompanies this BPF Developer Guide for a copy of the
current ToolEventHandler.js.SAMPLE file.

In order to install and test the SAMPLE files provided, copy them to your <bpf_webroot>\plugins\custom
directory, remove the .SAMPLE extension, uncomment various blocks of code you would like to test, clear
your browser cache, and try firing the corresponding events by performing the required actions in the BPF
web application.

IBM FileNet Business Process Framework Developer Guide
Table Tab event handler interface

© Copyright IBM Corp. 2002, 2009 32

Table Tab event handler interface
Definition
The JavaScript TableTabEventHandler interface for BPF provides the ability for custom implementations of
the BPF Table Tab interface to fire events that allow custom code to be executed during the course of
working with the Table Tab without having to modify the base code for the Table Tab itself.

The interface is defined by the TableTabEventHandler.js.template file that is installed in the
\plugins\custom directory. As initially installed, this file is merely a blank template whose method stubs
are all commented out.

NOTE A sample TableTabEventHandler.js.SAMPLE is provided along with this guide, but since the
implementation of the methods in this interface is specific to individual implementations of the Table Tab,
no sample implementations have been provided beyond a bare minimum of debug statements that
illustrate what information is available in each method call. As such, this sample file will provide most
developers with their initial point of entry in becoming familiar with this interface.

As installed, the bare interface exposed by TableTabEventHandler.js is as follows:

eventHandlers.onBeforeTableRowClick = function(rowId , layoutName) {
 return true;
};

eventHandlers.onAfterTableRowClick = function(rowId , layoutName) {
 return true;
};

eventHandlers.onBeforeTableRowDblClick = function(rowId , layoutName) {
 return true;
};

eventHandlers.onAfterTableRowDblClick = function(rowId , layoutName) {
 return true;
};

eventHandlers.onTableInit = function(layoutName) {
 return true;
}

eventHandlers.onBeforeTableRowAdd = function(rowId , layoutName) {
 return true;
}

eventHandlers.onBeforeTableRowDelete = function(rowId , layoutName) {
 return true;
};

eventHandlers.onAfterTableRowAdd = function(rowId , layoutName) {
 return true;
};

eventHandlers.onAfterTableRowDelete = function(rowId , layoutName) {
 return true;
};

IBM FileNet Business Process Framework Developer Guide
Table Tab event handler interface

© Copyright IBM Corp. 2002, 2009 33

eventHandlers.onTableFieldChange = function(element , rowId , layoutName) {
 return true;
};

eventHandlers.onTableFieldKeyPress = function(element , rowId , layoutName) {
 return true;
};

eventHandlers.onTableFieldBlur = function(element , rowId , layoutName) {
 return true;
};

eventHandlers.onTableButtonClick = function(layoutName) {
 return true;
};

These stubs can then be fleshed out with custom implementation code and called from JavaScript
elsewhere in the web application by raising an event and specifying the name of the event handler
method to be called.

Raising a Table Tab event

These methods are called through the raiseToolEvent method defined in \plugins\tabs\table.js.

A typical call to this method from the \plugins\tabs\grid.htc file would look like this:

 if(!raiseEvent("onTableInit", getLayoutName())) {return;}

NOTES

• The fact that all of the Table Tab event handler methods are defined to allow for a boolean return
value in turn allows client code to react to the results of the code executed within the tool event
handler method and either fail or proceed normally depending on the value returned.

• It is possible to add custom events to BPF by extending the table.js file with new methods and
then calling them from code in the source files for individual custom tools.

• Any and all changes to code in the baseline BPF tools and the other baseline JavaScript included
files should be requested through the BPF Core team using whatever formal change-control
process happens to be currently in force. Only in this way can proper support and upgradability
be insured.

IBM FileNet Business Process Framework Developer Guide
Web custom Java language Case event handler interface (Java plug-ins)

© Copyright IBM Corp. 2002, 2009 34

Web custom Java language Case event handler
interface (Java plug-ins)
Following is a list of known problems, issues, and bugs relating to this feature.

• There is an almost complete lack of JavaDoc documentation for the Java classes involved in this
interface. For now, the documentation provided here is the state-of-the-art reference for this
feature.

• The strange variable name handlerParemters in the CaseEventHandler.java still needs to be
corrected.

• There is currently no getParameters method defined on the CaseEventHandler interface to
correspond to the setParameters method defined there. This means that the parameters class
variable has to be accessed directly through code like the following:

if ((super.parameters != null) && (super.parameters.length > 0)) {

 for (int i = 0; i < super.parameters.length; i++) {

 logger.debug("super.parameters[" + i + "]==" + super.parameters[i]);

 }

}

The same is true of the setCaseDOM method on the same interface. There is no corresponding getCaseDOM
method defined.

Definition
The Custom Java Language Case Event Handler Interface is defined by a small hierarchy of Java
classes that reside in the \com\filenet\bp8\api\ext directory (and thus belong to the
com.filenet.bp8.api.ext package) of the internal path of the \<web_root>\WEB-INF\lib\bpfCM.jar JAR
file. As such, this interface is completely distinct from the custom JavaScript EventHandlers and
BusinessObjects interfaces documented in the previous section.

The main difference between the two interfaces is that, while the custom JavaScript EventHandlers and
BusinessObjects interfaces provide the ability to implement custom code that will be run on the browser
client workstation, the custom Java Language Case Event Handler interface provides the ability to
implement custom code that will be run on the web server itself.

One advantage the custom Java Language Case Event Handler interface has over the custom JavaScript
EventHandlers and BusinessObjects interfaces is that the Java interface offers the full power of the Java
programming language – especially in terms of strong data typing and a wide range of prepackaged
classes and functionality. It is also possible to perform database lookups using JDBC and/or interact with
third party applications on the web server for the purposes of validation or update from within code loaded
through this interface.

By contrast, one disadvantage is that, while the custom JavaScript EventHandlers and BusinessObjects
interfaces support a number of different events, the custom Java Language Case Event Handler interface
only supports two: OpenCase and CommitCase (the latter of which can be configured to run either before or
after the normal field validation that occurs when a case is dispatched).

IBM FileNet Business Process Framework Developer Guide
Web custom Java language Case event handler interface (Java plug-ins)

© Copyright IBM Corp. 2002, 2009 35

A further disadvantage is that, while the custom JavaScript EventHandlers and BusinessObjects interfaces
consist of ASCII text files (with a .js extension) that can be easily edited and redeployed, the custom
Java Language Case Event Handler interface consists of compiled Java code, which means that changes
to your Java source files that use this interface must be implemented by editing your files, recompiling,
rebuilding your JAR file (unless you are deploying unbundled .class files), and then redeploying the web
application after your newly recompiled code file is installed.

Class Hierarchy
All classes involved in this interface belong to the com.filenet.bp8.api.ext package.

• For a typical custom OpenCaseEventHandler class, such as the sample OnOpen.java provided in the
code samples, the class hierarchy would be:

public interface CaseEventHandler {
public abstract class AbstractCaseEventHandler implements CaseEventHandler {
abstract public class OpenCaseEventHandler extends AbstractCaseEventHandler {
public class OnOpen extends OpenCaseEventHandler {

• For a typical custom CommitCaseEventHandler class, such as the sample OnCommit.java provided

in the code samples, the class hierarchy would be:

public interface CaseEventHandler {
public abstract class AbstractCaseEventHandler implements CaseEventHandler {
abstract public class CommitCaseEventHandler extends AbstractCaseEventHandler {
public class OnCommit extends CommitCaseEventHandler {

NOTE The same Java class cannot be used for both the OpenCase and CommitCase events, since classes
used for one or the other type of event should extend either OpenCaseEventHandler or
CommitCaseEventHandler, respectively. It is especially important to note that OpenCaseEventHandler and
CommitCaseEventHandler provide different implementations of the getPropValue and setPropValue methods
defined in the AbstractCaseEventHandler class. The two are not interchangeable.

Specifically, the getPropValue and setPropValue methods defined in OpenCaseEventHandler differ from
those defined in CommitCaseEventHandler in that the former simply sets the values of nodes in the caseDOM
object with Java string values provided in the code. No validation takes place prior to the display of these
values in the browser. By contrast, the methods provided by the OpenCaseEventHandler need to take into
account two different DOM objects: the caseDOMOriginal and the caseDOM containing Dirty fields. It is also
possible, depending on whether it is configured to run Pre or Post validation, that the normal validation
procedures either will or will not have been run on the values involved for CommitCaseEventHandler
classes.

NOTE This seems to be felt most acutely when using the setPropValue methods on DateTime fields,
where the OpenCaseEventHandler version allows various string representations of the Date, whereas the
OpenCaseEventHandler requires a long integer value for the same purpose.

IBM FileNet Business Process Framework Developer Guide
Web custom Java language Case event handler interface (Java plug-ins)

© Copyright IBM Corp. 2002, 2009 36

For example, the call setPropValue("ReceivedDate", "3/2/2009 5:26:13 PM"); will work fine in an
OpenCaseEventHandler, but will fail in a CommitCaseEventHandler, which would require something like
setPropValue("ReceivedDate", "1109721600000"); or setPropValue("EffectiveDate", ("" + new
Date().getTime())); (both of which pass long integer values in string form). Neither form of call will work
for the other class.

NOTES

• The date format actually used in calls to OpenCaseEventHandler.setPropValue (as seen in the
example above) will depend upon the date format specified on the web server where this
component is running. The example above shows a standard US formatted date, but the format
required where other locales are specified may vary accordingly.

• At runtime, the event handler classes are actually loaded and run by the code defined in the
com.filenet.bp8.api.impl.Bp8CaseManagerImpl class
(\com\filenet\bp8\api\impl\Bp8CaseManagerImpl.java) which has access to the configuration
information entered into the BPF Explorer related to Java event handlers as described in the
following section. The com.filenet.bp8.api.impl.Bp8CaseManagerImpl class in turn makes use of
the functionality defined and implemented in the
com.filenet.bp8.api.ext.CaseEventHandlerManager class
(\com\filenet\bp8\api\ext\CaseEventHandlerManager.java) in determining how and when to run
the Java plugins configured.

IBM FileNet Business Process Framework Developer Guide
Web custom Java language Case event handler interface (Java plug-ins)

© Copyright IBM Corp. 2002, 2009 37

OpenCaseEventHandler configuration
OpenCaseEventHandler classes are configured at the Inbasket level through two input boxes on the
General tab of the inbasket configuration dialog. Only one such class can be configured for each
inbasket, and the fully qualified Java class name must be provided (as in the example provided below) so
that the application server in which BPF is running can find and load your code.

The following screenshot provides an example of how the sample OnOpen Java class might be configured
on an inbasket named Index.

IBM FileNet Business Process Framework Developer Guide
Web custom Java language Case event handler interface (Java plug-ins)

© Copyright IBM Corp. 2002, 2009 38

Parameters are an important feature of this interface. It is possible to pass a comma-delimited string of
parameters to both OpenCaseEventHandler and CommitCaseEventHandler classes, but in each case this
parameter string is configured differently. For OpenCaseEventHandler classes, a separate input field is
provided for the parameter string. The sample provided here ("72,Index,Supervisor") represents the
Inbasket ID, the Inbasket Name, and the Security Profile Name, which the custom code in OnOpen.java
could be configured to recognize on the basis of their positions in the resulting String[] array and then
load into local variables for use in decision logic and for other purposes. Alternatively, this information
could be passed in as key=value pairs.

NOTE The fields in the Bp8Metastore database (COM_NAME and COM_PARAMS on the
INBASKET_CONFIG table) that contain the Class name and parameters fields here are both defined as
varchar(724), which should provide enough space.

Once these configuration settings are cached, the OnOpen Java class will be run each time a Case is
opened from this Inbasket.

CommitCaseEventHandler configuration
CommitCaseEventHandler classes are configured at the inbasket-response level, using the Java Class field
of the selected grid display on the Responses tab of the inbasket configuration dialog. Only one such
class can be configured for each response, and the fully qualified Java class name must be provided (as
in the example provided below for the IndexPend response).

The following screenshot provides an example of how the sample OnCommit Java class might be
configured for the IndexPend response on an Inbasket named Index.

IBM FileNet Business Process Framework Developer Guide
Web custom Java language Case event handler interface (Java plug-ins)

© Copyright IBM Corp. 2002, 2009 39

Make sure you understand the syntax of the complex delimited string used to configure the
CommitCaseEventHandler for each response:
 "Pre|a.b.c.OnCommit:72,index"

In particular, note that the fully qualified class name is preceded by the prefix Pre, followed by the
delimiter (|). The other possible value for this substring prefix is Post. The default here is “Pre” if neither is
specified.

NOTE This prefix is evaluated in a case-sensitive manner. Values like "pre", "PRE", "post", and "POST" will
simply not work.

The significance of specifying Pre or Post is to determine whether the Java class is run before or after the
normal field validation that occurs when a case is dispatched after a user selects an Action/Response
from the Action menu. It does not refer to the actual dispatch of the case, which always occurs afterwards
regardless of whether Pre or Post is specified.

NOTE This means that it is possible to prevent the actual dispatch by raising an exception within your
custom Java class regardless of whether Pre or Post is specified.

NOTE A comma-delimited parameters list, preceded by its own (:) delimiter, can optionally follow the fully
qualified name of the CommitCaseEventHandler class. The sample parameter string provided here
("72,Index") represents the Inbasket ID and the Inbasket name, which the custom code in OnCommit.java
could be configured to recognize on the basis of their position in the resulting String[] array and then
load into local variables for use in decision logic and for other purposes. Alternatively, this information
could be passed in as key=value.

NOTE The field in the Bp8Metastore database (COM_NAME on the INBASKET_FUNCTIONS table) that
contains the class name and parameters fields here is defined as varchar(724), which should provide
enough space.

To summarize the preceding, the format of the single complex delimited string used to configure a
CommitCaseEventHandler class for a response is as follows:

"{Pre | Post}" "|" "com.filenet.bp8.api.ext.MyCommitCaseEventHandler" [":"
"param_1[,param_2[,...param_n]]]"

Sample OnOpen.java
The code in this file is designed to demonstrate some of the available hooks and show how it is possible,
in the context of such a class, to do such things as obtain a string representation of any case field value
using the getPropValue method, and then perform conditional logic or custom validation either directly
against the resulting strings or after having converted them to their appropriate Java language data types.

The sample code also demonstrates some of the formatting issues involved in updating the values of
case fields from this context.

Specifically, it is possible to:

• Reset fields that currently contain inappropriate or outdated values (as the result of an external
database or web service call, for example).

• Reset fields to new values based on the values of other fields.

• Raise either a warning or an exception if certain conditions are found. NOTE Raising a warning
allows a custom message to be displayed to the user, who can then either continue or cancel,
whereas raising an exception prevents the case from being opened by the user at all.

IBM FileNet Business Process Framework Developer Guide
Web custom Java language Case event handler interface (Java plug-ins)

© Copyright IBM Corp. 2002, 2009 40

• Reuse the same Java class on many different inbaskets, configuring different parameters on
each inbasket and then checking for these values in the Java code so that the same class can act
differently on different inbaskets.

All of this logic will all be executed before the user sees the case loaded in the Case Details view.

A simple use case for this kind of functionality would be a situation in which a case field for
ExpirationDate is to be updated with a value from a database lookup and then compared with the current
system date. If the ExpirationDate still lies in the future, the case can be displayed normally after the field
is updated. If it lies in the past, a warning can be displayed before the case is displayed. If the database
lookup fails because the database server is currently down, an exception can be raised, displaying a
message to that effect, and the user will not be able to open the case until the database server is up and
running again.

Consult the \src\Java CaseEventHandlers Samples folder in the code samples for more details.

Sample OnCommit.java
The code in this file is designed to demonstrate some of the available hooks and show how it is possible,
in the context of such a class, to do such things as obtain a string representation of any case field value
using the getPropValue method, and then perform conditional logic or custom validation either directly
against the resulting strings or after having converted them to their appropriate Java language data types.

The sample code also demonstrates some of the formatting issues involved in updating the values of
case fields from this context.

Specifically, it is possible to:

• Reset fields that currently contain inappropriate or outdated values (as the result of an external
database or web service call, for example).

• Reset fields to new values based on the values of other fields.

• Raise either a warning or an exception if certain conditions are found. NOTE Raising a warning
allows a custom message to be displayed to the user, who can then either continue or cancel,
raising an exception prevents the case from being dispatched by the user.

• Reuse the same Java class on many different responses on many different inbaskets, configuring
different parameters on each response and then checking for these values in the Java code so
that the same class can act differently on different responses on different inbaskets.

All of this logic will all be executed after the user chooses a response, for which this class is configured,
from the Action menu. Depending on whether Pre or Post is specified, the logic will be executed either
before or after the normal case field validation is performed.

A simple use case for this kind of functionality would be a situation in which a certain response requires
certain case fields to be populated with specific values. A Java class of this type could be used to ensure
that the state of all of the values of all of the relevant case fields was correct for this type of response,
displaying either a warning (which would optionally allow the user to continue) or raising an exception
(which would prevent the user from completing the case altogether).

Consult the \src\Java CaseEventHandlers Samples folder in the code samples for more details.

IBM FileNet Business Process Framework Developer Guide
Web custom tool development procedure

© Copyright IBM Corp. 2002, 2009 41

Web custom tool development procedure
General introduction

BPF comes equipped with a number of tools designed for such things as creating a new case, attaching
or adding documents to an existing case, checking queue depth (i.e. how many cases are in an inbasket)
and the like. In addition to the tools provided, it is also possible to create custom tools. Custom tools use
the same interface as the one used by the core tools provided with the BPF installation package. This
means that any of the core tools can be used as a sample and a starting point for custom development.

In general, the BPF tools interface allows configuring and exposing a set of actions that extend BPF case
functionality or provide additional features and functionality not provided with the core application.

Once developed and deployed (see below), a custom tool is configured in the BPF Explorer in two places:

1. A new tool node needs to be added and configured as described below under the Register Tool step.

2. Once the tool is configured at an application-wide level in this manner, it can then be configured on
individual inbaskets in just the same manner as is done for core tools (described below under the
Expose Tool step).

NOTE The new custom tool will only appear on those inbaskets for which it has been
configured/exposed.

Developers can build their own tools and expose them on the Web Application UI to extend case
functionality or provide interfaces to external systems. BPF allows configuring a URL that is executed
whenever a user clicks the tool’s link and provides management for the window displayed.

There are several tools provided with the source code that can be used as examples:
/samples/components/bpf/tools/add_attach
/samples/components/bpf/tools/add_document
/samples/components/bpf/tools/create_case

In addition, the sample code for the my_tool tool featured in the following screenshots is also provided in
the code samples that accompany this guide.

The following sections are presented as a series of steps in order to make the logical process easier to
follow. But in fact developing a custom tool is an iterative process that will require a number of passes
through most or all of these steps before the tool is ready to deliver to the customer. To begin with, it is
probably best to make a copy of the folder containing one of the existing core tools (or the my_tool
sample) change the file, folder and other names to match those you would like to use with the tool you will
be developing, bundle it, register it, and expose it on an Inbasket so that you can test and adjust your
code from that inbasket within the web application as the development process progresses.

IBM FileNet Business Process Framework Developer Guide
Web custom tool development procedure

© Copyright IBM Corp. 2002, 2009 42

Step 1: Create code
The initial Handler URL for your tool can be either a servlet or a JSP page. JSP is usually a better choice
here, because the user interface elements involved will probably require extensive adjustment and it is
much easier to redeploy a JSP than a compiled Java Servlet.

Tools that simply display information (such as queue_depth) may consist of just a single source file. Other
tools that allow the user to enter some information before performing some action will typically consist of an
initial JSP page that then posts to a servlet when the user clicks the tool's OK button. The sample my_tool
tool provided with this guide follows the first pattern.

As noted above, you will probably want to begin by picking the existing tool that most closely matches the
one you would like to develop, make a copy of the relevant folders and files, and then at least get this
copy installed, configured, and working from an Inbasket in the web application before you begin making
changes to implement the custom functionality you are trying to achieve.

As you develop your code, remember to keep in mind the following useful points.

• The tool interface offers access to the following three sources of information.

o As the screenshot of the my_tool user interface shown below demonstrates, tools are initially
passed four querystring parameters:

 Inbasket

 ToolName

 caseID

 workobjectNumber

o In addition, it is possible to use the reference to the main/parent BPF application window
passed in through the dialogArguments variable as a way of obtaining access to all of the
global JavaScript variables that are available to the rest of the web application.

The sample my_tool tool provided with this guide is designed to illustrate these features.

• Building a custom tool involves two main tasks:

o The first is to make sure that you can obtain all of the information you need to perform
whatever operations the tool will attempt to perform.

o The second is to design and implement the user interface you would like your tool to have
and to present to the user for display and/or interaction.

Once you have your code developed to a point where you would like to test, you will need to deploy and
configure it. Please consult the \src\Tool Samples folder in the code samples for more details.

NOTE As delivered with the code samples, the sample my_tool tool does not actually do anything. It is
written for demonstration purposes only.

IBM FileNet Business Process Framework Developer Guide
Web custom tool development procedure

© Copyright IBM Corp. 2002, 2009 43

Nevertheless, using the sample code provided, it should be possible to modify and add to the code
contained in the sample my_tool tool so as to do virtually anything that might be required through this
interface.

Step 2: Deploy code
Consult the \src\Tool Samples folder in the code samples for more details on how to deploy a simple JSP
tool in BPF. If your tool uses a Java servlet as well, you will need to compile the source code and deploy
it in a JAR or as a single .class file within the classpath for the deployed BPF Web Application so that the
application server can find and load your code.

Step 3: Register tool
Register the tool in BPF Explorer using Tools > Right-Click > New.

Item Description
Case type This is applicable only if you will be retrieving case field

configuration exposed for this tool and allows having different sets
of case fields for each case type.

Tool name Name should match the name of the folder under /plugins/tools
in which you deployed your tool.

Display label Tool name label that you would like to display on the Web user
interface.

Handler URL Fully qualified or relative path to the tool JSP page.

For example, if the JSP is external to BPF (deployed in another
application), the URL would look something like this:

http://<someotherserver>:<port>/app/PageName.jsp

If it is deployed in the root folder of the BPF Web Application, it
would look like this:

/PageName.jsp

And if it is deployed in the standard deployment folder (in a <Tool
name> folder under /plugins/tools), it would look like this:

PageName.jsp

Window width The desired/required window width for your tool.

Resizable Determines whether the tool window can be resized.

Modal Determines whether the tool window is locked and prevents
access to other computer elements while the tool window is open.

Visibility Determines whether the tool is visible in Case mode, Browse
mode, or both.

IBM FileNet Business Process Framework Developer Guide
Web custom tool development procedure

© Copyright IBM Corp. 2002, 2009 44

See the following screenshot for an example of how this would look using the sample my_tool tool
provided with this guide.

IBM FileNet Business Process Framework Developer Guide
Web custom tool development procedure

© Copyright IBM Corp. 2002, 2009 45

Step 4: Expose tool
Expose your custom tool in BPF Explorer, using the Inbasket configuration Toolbar tab to expose the tool
and configure its properties for this Inbasket.

See the following screenshot for an example of how this would look using the sample my_tool tool
provided with this guide.

The result of these configuration settings can be seen in the following screenshot. As this screenshot
demonstrates, tools are displayed as HTML links in the toolbar and are configured to be displayed or
hidden on the individual Inbasket-level. Tools can be configured to display in either the Case or Browse
mode or both.

IBM FileNet Business Process Framework Developer Guide
Web custom tool development procedure

© Copyright IBM Corp. 2002, 2009 46

Once these steps have been completed, you should be able to launch the tool from the Inbasket on which
you configured/exposed it, as seen in the following screenshot.

Sample my_tool code
Consult the \src\ Tool Samples folder in the code samples for more details on how to implement the
custom tool sample.

IBM FileNet Business Process Framework Developer Guide
Web custom tab development procedure

© Copyright IBM Corp. 2002, 2009 47

Web custom tab development procedure
Introduction
BPF case data is presented to users in a tabbed interface. By default, the BPF Web Application presents
each case in the form of two tabs: Case and Audit. Like all tabs, these two default tabs are configured for
each inbasket using the BPF Explorer. But, unlike the other (custom) tabs discussed here, the Case and
Audit tabs are integral to BPF and do not implement the custom tab interface discussed in this document.

In contrast to these default tabs, the ability to extend the BPF interface with custom tabs is exemplified by
the Attachments and Table tabs that are also provided with the install package. The Attachments tab is
used to display Case attachments in the form of an HTML table and the Table tab is designed to provide
an easily customizable framework for presenting data in a tabular form within the BPF UI.

In addition, this guide comes with the sample code for a very simple, generic tab called My Tab, which is
used as an example in what follows here.

NOTES

• Unlike the Attachments tab, whose JSP pages make use of compiled Java classes developed
especially for BPF, the My Tab sample provided here consists of nothing more than a simple
custom JSP page (see the \src\Tab Samples directory in the code samples) that displays a simple
message and loads some JavaScript (commented out by default) for demonstrating just what
information is available to client-side JavaScript on a custom tab.

• It is possible to have a tab point to an external URL by entering the fully qualified absolute URL
into the TAB_CONTENT column of the TABS table (see below under Step 3: Register Tab).
However, security limitations with IFrame will result in Access Denied errors if the external URL
belongs to a different domain.

• In order to facilitate the HotKeys functionality associated with BPF Actions during the time the
user has your custom tab displayed, it will be necessary for you to include the Bp8InitMain.js file
using code like the following

 <script type="text/javascript" src="js/Bp8InitMain.js"></script>

to the UI JSP (or equivalent) of your custom tab and then include an

 onkeydown="doBodyKeyDown()"

event in the BODY tag of the UI JSP (or equivalent) for your custom tab as well. Refer to the UI
TableTab.jsp for an example of this. Failure to do so will result in an absence of HotKeys
functionality for BPF Actions while your custom tab is displayed.

Step 1: Create code
Create your JSP page, Java Servlet, hard-coded HTML page, external website or other source of HTML
for display in your custom tab.

Step 2: Bundle code
Assuming your tab is a simple JSP page along the lines of the Bp8MyTab.jsp sample, create a new
subdirectory under <bpf_web_root>\plugins\tabs, such as, for example, \my_tab. Note that, when you
register your tab in the TABS table in the Bp8Metastore database, the name of this new subdirectory for
your tab must be entered in the TAB_NAME column. The TAB_NAME column value for your tool is the name
of this subdirectory under <bpf_web_root>\plugins\tabs where your JSP page (whose name and

IBM FileNet Business Process Framework Developer Guide
Web custom tab development procedure

© Copyright IBM Corp. 2002, 2009 48

querystring are defined in the TAB_CONTENT column) will reside. At runtime, BPF will concatenate the URL
as follows and look for your tab in the following location:

<bpf_web_root>/plugins/tabs/ + TAB_NAME + / + TAB_CONTENT

As is noted again below under Step 3, failure to appreciate this fact will lead to HTTP 404 errors in the
browser when BPF cannot find the page for your custom tab.

IBM FileNet Business Process Framework Developer Guide
Web custom tab development procedure

© Copyright IBM Corp. 2002, 2009 49

Step 3: Register Tab
Register tab in the TABS table in Bp8Metastore:

TAB_ID <next available>

TAB_NAME The name of the subdirectory under <bpf_web_root>\plugins\tabs where
you have deployed your JSP or the equivalent.

TOOL_TIP Tab name label that you would like to display on the Web user interface.

HELP_CTX <NULL>

TAB_CONTENT <jsp_page_name>?<querystring parameters and values>

NOTE Refer to the documentation for the <bpf_help_root>\bpfwa_help\integration\tab_interface.htm
and <bpf_help_root>\bpfwa_help\plug-ins\tab_table.htm files for examples and information.

When you are done, the row for your new tab in the TABS table should look something like the following
example.

*

IBM FileNet Business Process Framework Developer Guide
Web custom tab development procedure

© Copyright IBM Corp. 2002, 2009 50

NOTES

• The TAB_NAME value is actually the name of the physical directory inside the
<web_root>\plugins\tabs directory where the JSP files for this tab reside. There is no other way
to configure this path. If the names do not match, opening the new tab will result in a 404 error in
the browser.

• The TOOL_TIP value is in fact the string that will appear in the Web Application user interface for
the link that opens this tab.

Step 4: Expose tab
Expose your tab using BPF Explorer. Use the inbasket configuration Tabs tab to expose the tab and
configure the order in which it and the other tabs configured for this inbasket will appear.

IBM FileNet Business Process Framework Developer Guide
Web custom tab development procedure

© Copyright IBM Corp. 2002, 2009 51

The end result of installing and configuring the My Tab sample tab can be seen in the following
screenshot of the tab when it is opened:

Sample my_tab code
Consult the \src\ Tab Samples folder in the code samples for more details on how to implement the
custom tab sample.

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 52

Lookup extensions interface
Introduction
BPF provides a Lookup Extensions interface that allows custom lookup capability to be provided for
individual Case fields in such a way that one of three possible results will always occur for a correctly
configured lookup.

• If more than one matching record is found, a popup will be displayed showing the fields and
values for each record in a tabular form. When the user clicks on one of the rows in this popup
table, the configured case field(s) will be updated with the selected value(s).

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 53

If only one matching record is found, the configured Case field(s) will automatically be updated
with the value(s) returned and no list of options will be presented as for multiple matches.

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 54

• If no matching records are found, an alert will be presented indicating this fact.

This functionality is typically (but not necessarily) provided by a custom JSP page that needs to be written
and configured as the Lookup Service URL for individual Case fields. Other options might include a
servlet or a specially written web service. Such JSP pages (for example) must return XML, rather than
HTML, and specifically they must build XML according to the following schema (with the following
example using some of the same values as those found in the DesignatedRepLookup.jsp.SIMPLE file
contained in the sample code for this feature):

<Response>
 <Items LimitExceeded="0">
 <Header>
 <Value>Representative</Value>
 <Value>Account #</Value>
 <Value>Date</Value>
 </Header>
 <Item>
 <Value Field="DesignatedRep" Name="Mr. A.B. Rhett">Mr. A.B. Rhett</Value>
 <Value Field="AccountNumber" Name="000001">000001</Value>
 <Value Field="EffectiveDate" Name="2/2/2002">2/2/2002</Value>
 </Item>
 <Item>
 <Value Field="DesignatedRep" Name="Ms. Sally Brown">Ms. Sally Brown</Value>
 <Value Field="AccountNumber" Name="000002">000002</Value>
 <Value Field="EffectiveDate" Name="000002">5/5/2005</Value>
 </Item>
 </Items>
</Response>

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 55

The XML from the sample code above illustrates a normal, error-free result containing two possible
matches based on the submitted.

It is also possible to return error or exception information instead of items by passing a Response element
with an Exception node instead of an Items node, as in the following example (from
DesignatedRepLookup.jsp.SIMPLE:

<Response>
 <Exception>
 <Header key="lookupException" mode="info">
 <Value>No matching items found.</Value>
 </Header>
 <Description>
 <Value>
To get any matching items returned with this code sample, enter only 1 character (which
must be 'M') while the CompanyName value is either 'ABC Corp.' or 'XYZ Corp.'.
Otherwise, no matching items will be returned. NOTE: This is just a sample and not a
fully working lookup.
 </Value>
 </Description>
 </Exception>
</Response>

For example, if the custom code attempts to make a call to a stored procedure and fails due to the fact
that the name of the store procedure has been misspelled in the custom code or the stored procedure
does not exist in the database, it is possible to return this information to the client by using the Exception
node to produce the following display:

Assuming the custom code for the lookup is in Java, this would be done by building the Exception node
inside a catch block and putting all of the relevant code the handles the normal processing of the lookup
inside a corresponding try block (see below under Writing the Code).

Note that BPF itself will use this feature to display XML parsing error information if the XML Response
from the custom code contains invalid XML. This is illustrated by the following examples.

• If there is any compilation error in the custom page, the BPF Web Application displays a
compilation error message:

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 56

• When the Response object that is returned by the custom code is not well-formed, the BPF Web

Application displays an appropriate message:

• When the Response object that is returned is constructed with no Items and no Exception node
in the below format (in other words, just and empty “<Response></Response>”), the BPF Web
Application displays the following message:

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 57

• If the Value subnode is missing inside the Header node of the Exception tag, the BPF Web
Application displays the following message:

• If the Value node value is empty inside the Header node of the Exception tag, the BPF Web
Application displays the following message:

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 58

• If there is no Header node inside the Exception tag, the BPF Web Application displays the
following message:

In short, every valid XML Response element must therefore contain either (1) an Items node with at least
one Header and a corresponding Item or (2) an Exception node with a Header and Description, according
to the following patterns: In other words, the Response XML should return either
<Response>
 <Items LimitExceeded="0">
 <Header>
 <Value>Description</Value>
 </Header>
 <Item>
 <Value Field="CaseField" Name="Sample">Sample</Value>
 </Item>
 </Items>
</Response>

or
<Response>
 <Exception>
 <Header key="localization key">
 <Value>Default Value</Value>
 </Header>
 <Description>
 <Value>Error Description | Stack Trace</Value>
 </Description>
 </Exception>
</Response>

But it should not return both.

As long as the JSP page configured as the Lookup Service URL for a given case field returns an XML
stream matching this schema, it can draw the information itself from virtually any source, whether by
redirecting to a web service, calling a servlet, or making a direct database query using JDBC.

The values of the Value children of the Header tag will appear as column headers in the results popup
returned by the lookup (assuming more than one match is found).

The values of the Value children of the Item tags are used to indicate the values returned by the lookup for
each field, the name of the CaseField to be updated with the Item’s value being indicated by the Field
attribute for each record (Item). In this way, a single lookup based on a single case field can update
multiple fields in the BPF user interface.

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 59

By the same token, it is possible to configure the Lookup Service URL for a single case field's lookup in
such a way that the values of multiple BPF case fields are passed into the lookup search as dynamic
parameters. The notation used for this is simply the name of the BPF Case field surrounded by
percentage (%) signs, as in the following example:

plugins/custom/lookups/DesignatedRepLookup.jsp?designatedRep=%DesignatedRep%&companyName=%Com
panyName%

This configuration string will automatically pass the current values of the DesignatedRep and
CompanyName case fields as JSP parameters named designatedRep and companyName, respectively.

In implementing your custom lookup JSP page it may be useful to limit the number of records that can be
presented to the browser client (for performance reasons) while at the same time notifying the user that
more records were returned by the actual lookup query. This can be done by returning only a fixed
number of records and setting the <Items LimitExceeded=0> tag's LimitExceeded value to 1. The
immediate effect of this (using one of the sample DesignatedRepLookup.jsp pages provided) is seen in the
following screenshot, where the warning, "There were more than 3 records returned", is automatically
displayed to the user.

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 60

Lastly, if your lookup query returns more records or columns than can be presented in the popup window
seen in the screenshots above, vertical and/or horizontal scrollbars are automatically provided - as in the
screenshot below:

Writing the Code
Since the only real requirement here is for whatever code pointed to by the Lookup Service URL to
produce an XML stream that conforms to the schema specified above, it is hard to give any hard and fast
guidelines for how this code should be written other than to point to code samples. So please consult the
\src\Lookup Samples folder in the code samples for more details on how to implement custom lookups.

Points to Keep in Mind
Nevertheless, especially in regard to making sure that problems your code encounters can be accurately
displayed by the BPF Web Application, there are some specific points to be remembered while building,
for example, a custom JSP page to handle the lookup functionality exposed by BPF as documented
above.

• All validation needs to be done within a try-catch block, so that the custom code can build an
Exception node in the catch block and send a valid response to the BPF web application
indicating what went wrong.

• If JSP is used, the Page directive "errorPage" should not be defined in the custom page. This is
because better diagnostic information can be obtained when an “errorPage” directive is not used.
When a JSP fails, almost all JSP engines will display the error and the complete stack trace. This
identifies the JSP methods that were called. Some configurations also identify the line where the

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 61

code failed. This is very useful for debugging purposes. Note that the function of the Description
subnode of the Exception node can vary from containing a stack trace of the Exception object (for
debugging) to a detailed and localized message for end users once development is complete. It
was primarily designed for the latter purpose, so as to allow BPF to present a user friendly error
message and description when the custom page fails for any reason.

• Page comments need to be proprietary to the language used. For instance, if the custom page is
developed in JSP, then JSP page comments need to be used.

• The JSP try-catch statement allows you to test a block of code for errors. The try block contains
the code to be run, and the catch block contains the code to be executed if an error occurs.
These blocks can be used to capture any runtime exception in the custom page. When an
Exception is thrown, the reason for the error can be sent as a message to the catch block for
constructing Exception sub node in the Response DOM object.

• All code validations need to be present inside the JSP try-catch block if you are using JSP. For
example, any exceptions thrown by the custom code in response to unexpected results need to
be thrown within the try block.

• Assuming the custom code is a JSP page, the BPF Web Application will display an appropriate
message if there are any compilation errors.

Localization & Globalization
The BPF Web Application will localize the Exception labels based on the key attributes provided.
However, if a Value node is present in the Exception sub node, the BPF Web Application will show the
message being defined in the Value node. But the 'key' attribute value would take the precedence in
displaying the localized message, if the key=value pair is present in the resource bundle.

The following format needs to be used when defining keys in the resource bundle for lookup module:
bp8.client."Key"=localized value

Deploying the Code
Since the JSP page (or servlet, web service, or other data source) that will be configured as a Lookup
Service URL might well be located on another Web server entirely in some remote location, there are no
hard and fast rules as to how this code should be deployed except that it should be accessible to the BPF
Web Application via HTTP.

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 62

Configuration
As mentioned in the Introduction to this section, little more is required here than specifying a valid URL
that points to your lookup JSP page (or Servlet, etc.), passing whatever parameters are required, as well
as remembering that the current values of case fields can be passed dynamically by using the
%caseFieldName% syntax mentioned earlier, as in the following example (repeated here from the sample
code):

plugins/custom/lookups/DesignatedRepLookup.jsp?designatedRep=%DesignatedRep%&companyName=%Com
panyName%

The following screen shot shows a partial view (the end of the URL string) of how the configuration
screen actually looks within BPF Explorer.

IBM FileNet Business Process Framework Developer Guide
Lookup extensions interface

© Copyright IBM Corp. 2002, 2009 63

Sample code
Consult the \src\Lookup Samples folder in the code samples for more details on how to implement custom
lookups.

IBM FileNet Business Process Framework Developer Guide
Customizing BPF Date/Time handling capabilities

© Copyright IBM Corp. 2002, 2009 64

Customizing BPF Date/Time handling capabilities
Introduction

Overview

NOTE The changes discussed here involve the modification of BPF core files like Bp8Main.jsp or
Bp8Util.vbs. Any changes you make to BPF core files in the course of implementing a custom solution
like this will have to be backed up and reapplied each time you upgrade BPF or apply a new patch, since
they may be overwritten otherwise.

The display and formatting of Date/Time values in the BPF Web Application is determined for each
individual by two distinct settings.

• The first of these is the user's individual default language preference setting for Internet Explorer
as determined through Tools > Internet Options... > Languages... (as in the screenshot below):

IBM FileNet Business Process Framework Developer Guide
Customizing BPF Date/Time handling capabilities

© Copyright IBM Corp. 2002, 2009 65

• The second of these is the user's individual Regional Options settings (on their individual PC
where Internet Explorer is running) for the formatting of Time and Date for the specific language
setting that is at the top of the list of Languages in Internet Explorer as described above under
item 1. For example, the following screenshot shows that the format for Date has been set a
certain way specifically for English (United States).

As long as the user also has their Internet Explorer default Language set to English (United
States) as well, this will be the format of the Date values that they will see in the BPF Web
Application.

IBM FileNet Business Process Framework Developer Guide
Customizing BPF Date/Time handling capabilities

© Copyright IBM Corp. 2002, 2009 66

Implementation
The basic Date/Time handling capabilities of BPF are implemented in the Bp8Util.vbs file that resides in
the \vbs directory of BPF <web_root> directory. The reason to use VBScript (rather than JavaScript) to
implement this functionality has to do with the superior versatility of some core VBScript functions when
running in Microsoft® environments such as those that BPF supports. Ultimately, this functionality lies
almost entirely with a combination of the Microsoft VBScript CDate, FormatDateTime, and DatePart
functions:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vsfctcdate.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vsfctformatdatetime.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vsfctdatepart.asp

These functions automatically reference and take into account the Regional Settings language, time
zone, and Date/Time formatting options on the Windows machine where they are executed (in this case,
the end user's browser client PC), and handle Date/Time values accordingly.

Customization
Nevertheless, it may well happen that individual implementations will wish to make use of these VBScript
functions for customization purposes in ways that the methods exposed by Bp8Util.vbs do not address.

For example, it might be necessary to implement script from EventHandlers.js to parse Date values
entered by the user (prior to the normal BPF validation routines) into their correct date parts and perform
custom validation on them (by passing them to a JavaScript function that references calendar information

IBM FileNet Business Process Framework Developer Guide
Customizing BPF Date/Time handling capabilities

© Copyright IBM Corp. 2002, 2009 67

to determine whether the date entered falls on a weekend, for example), but in a portable fashion that will
automatically take the user's individual language and formatting options into account.

To achieve this, the recommended approach would be as follows.

1. Add to the end of Bp8Util.vbs, or place in another, custom .vbs include file in the \vbs directory, a
new VBScript function patterned after the following sample code. If you create a new .vbs include file,
make sure to include it by adding it to the \UI-INF\jsp\ui\Bp8Main.jsp file under the entry for the
existing Bp8Util.vbs:

 <script type="text/vbscript" src="vbs/Bp8Util.vbs"></script>
<script type="text/vbscript" src="vbs/MY_NEW_FILE.vbs"></script>

NOTE Again, you will need to modify the code here, at the end of this function, so as to have it build
the correctly formatted string for your own custom Weekend checker JavaScript function (whatever
that happens to be). The "d.m.yyyy" format is just used as an example.

'===

'VBScript

Function CustomParseDate(psValue)

 Const LOCATION_HERE = "CustomParseDate"

 Dim ldtDate 'As Date

 Dim liDayDatePart 'As Integer

 Dim liMonthDatePart 'As Integer

 Dim liYearDatePart 'As Integer

 Dim lsStringToPassToMyWeekendCheckerFunction

On Error Resume Next

 ldtDate = CDate(psValue)

 If (Err.Number <> 0) Then

 CustomParseDate = "ERROR:[" & LOCATION_HERE & "]" & Err.Number & " " & Err.Description

 Exit Function

 End If

 liDayDatePart = DatePart("d", ldtDate)

 liMonthDatePart = DatePart("m", ldtDate)

 liYearDatePart = DatePart("yyyy", ldtDate)

 lsStringToPassToMyWeekendCheckerFunction = liDayDatePart & "." & liMonthDatePart & "." &
liYearDatePart

 CustomParseDate = lsStringToPassToMyWeekendCheckerFunction

End Function

'===

IBM FileNet Business Process Framework Developer Guide
Customizing BPF Date/Time handling capabilities

© Copyright IBM Corp. 2002, 2009 68

2. Add the following code to the onFieldBlur method of your EventHandlers.js file.

eventHandlers.onFieldBlur = function(fieldElement) {

//==

 //var FIELDTYPE_DATETIME = '3'; // Already declared in Bp8InitHead.jsp.

 //alert("fieldElement.datatype==" + fieldElement.datatype);

 //alert("fieldElement.tagName==" + fieldElement.tagName);

 // Only do this for date fields.

 if ((fieldElement.tagName == 'INPUT') && (fieldElement.datatype== FIELDTYPE_DATETIME)) {

 //alert("fieldElement.value==" + fieldElement.value);

 //alert("fieldElement.name==" + fieldElement.name);

 var sFieldElementValue = fieldElement.value;

 var oRootXmlDOM = currentCase.objCase;

 var sFieldNameParameter = "Prop[@Name='" + fieldElement.name + "']/Value";

 var sOriginalValue = oRootXmlDOM.selectSingleNode(sFieldNameParameter).nodeTypedValue;

 //alert("sOriginalValue==" + sOriginalValue);

 var sCustomParseDate = CustomParseDate(sFieldElementValue);

 if (sCustomParseDate.indexOf("ERROR") >= 0) {

 //alert("\""sFieldElementValue + "\" is an invalid date.")

 voluntaryShowMessage("Invalid Date!", "\"" + sFieldElementValue + "\" is an invalid date.");

 fieldElement.value = sOriginalValue;

 fieldElement.focus();

 return false;

 }

 else {

 alert("sCustomParseDate==" + sCustomParseDate);

 // Call your custom WeekendChecker Function here with the value returned above.

 }

 }

 //===

 return true;

}

This simplistic example should at least provide some indication of the approach to take.

NOTE It is perfectly possible to call VBScript from JavaScript and vice versa.

NOTE Any changes you make to BPF core files like Bp8Main.jsp or Bp8Util.vbs in the course of
implementing a custom solution like this will have to be backed up and reapplied each time you upgrade
BPF or apply a new patch, since they may be overwritten otherwise.

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 69

User Preferences
Introduction

Overview
The BPF user preferences interface allows the BPF system administrator to define a preferences
structure and have BPF store its values for each user. By default, this structure is defined in the user-
preferences.xml file, which resides stand-alone, in the <web_root>\WEB-INF directory. The actual
preference values for each user are stored in XML files that reside in the CE Object Store, with document
title values like the following:
User preferences for Administrator(83) on Case Management

The current version of User Preferences supports following attribute types: String, Integer, Boolean, and
Option.

Preferences access
There are two ways to access and modify preferences data through custom code – either directly (without
caching) or by using the UserPreferencesManager class (with caching). The first of these effectively
bypasses the default functionality described above in the Overview. The second of these exposes the
default functionality described above in the Overview for customization purposes.

In the first case you have to initialize your own instance of the Preferences class by performing the
following operations manually in your custom Java code:

String configFileId = "user-preferences.xml";

InputStream stream =
Thread.currentThread().getContextClassLoader().getResourceAsStream(configFileId);

PreferencesTree preferencesTree = new PreferencesTreeImpl(stream);

Preferences preferences = new PreferencesImpl(<some stream with stored user preferences>,
preferencesTree);

After preferences are initialized you can access and modify them:

preferences.getIntValue('id of attribute');

preferences.setIntValue('id of attribute', 123);

Finally you have to save all your changes:

preferences.save(<some output stream>);

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 70

In the second case you can use UserPreferencesManager helper-class to simplify preferences access. It
initializes itself from the predefined configuration file user-preferences.xml and can load and store
preferences for the specific user in CE. This implementation uses the PreferencesDocument CE document
class with version support to store user preferences data.

UserPreferencesManager preferencesManager = UserPreferencesManager.getInstance();

PreferencesTree preferencesTree = preferencesManager.getPreferencesTree();

Preferences preferences = preferencesManager.getPreferences(<Bp8User reference>,
<Bp8TxDataStore reference>);

Access and modification of the values are handled in the same manner as for the previous case:

preferences.getIntValue('id of attribute');

preferences.setIntValue('id of attribute', 123);

Finally you can save changes for the specific user to CE:

preferencesManager.save(<Bp8User reference>, <Bp8TxDataStore reference>);

In both cases you can use an alternate approach for preferences access:

preferences.getAttributeValue(<Attribute reference>);

preferences.setAttributeValue(<Attribute reference>, <PersitentValue reference>);

It is recommended that you use this approach for unified access to attributes of different types. In
addition, you can define new attribute type (multi option value for example) and handle it in this manner.
No interface modification is required in this case.

Configuration file format description
BPF reads a PreferencesTree structure from the XML configuration file to create the user preferences list.
Here you will find description of all of the important elements of this file.

See the current <web_root>\WEB-INF\preferences.xsd file in your deployed BPF Web Application for
further information.

User Preferences Sample Code
The following instructions apply to the sample code in the \src\User Preference Samples folder in the BPF
code samples that accompany this guide. For ease of reference, the following steps assume your code
samples have been installed to (unzipped in) the following folder: “C:\bpf_code_samples\CODE_SAMPLES“

1. Back up your

<bpf>\WEB-INF\user-preferences.xml

file by making a copy of it and adding an “.org” extension to the copy.

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 71

2. Open your <bpf>\WEB-INF\user-preferences.xml file and modify it by pasting the first of the

two sections in your C:\bpf_code_samples\CODE_SAMPLES\src\User Preference
Samples\paste_me_into_user-preferences.xml.txt into the location seen in red in the
following screenshot:

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 72

Then further modify your <bpf>\WEB-INF\user-preferences.xml file and by pasting the
second of the two sections in your C:\bpf_code_samples\CODE_SAMPLES\src\User
Preference Samples\paste_me_into_user-preferences.xml.txt into the location seen in
red in the following screenshot:

3. Examine your modified

<bpf>\WEB-INF\user-preferences.xml

- especially the two sections bracketed by “<!-- SAMPLE CODE START-->” and “<!--
SAMPLE CODE END-->” comments. The additions enclosed by these brackets will show up as a
new “Default Company” user preference in the BPF Web Application after you redeploy it.

4. Restart your application server to see your changes to take effect.

5. Use the New button (create_case tool) to create a new case, and be sure to specify “ABC” as the
value for the CompanyName field. If you like, you can also create other cases with CompanyName
values of “CDE”, “UVW”, and “XYZ” at this time.

6. Open your

C:\bpf_code_samples\CODE_SAMPLES\src\User Preference

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 73

Samples\paste_me_into_EventHandlers.js.txt

and examine it before pasting its contents into your

<bpf>\plugins\custom\ EventHandlers.js

file, making sure to comment out or delete the existing eventHandlers.onBeforeInbasketLoad method
there.

NOTE You will need to copy the EventHandlers.js.template file in this directory and rename it as
EventHandlers.js if you do not already have a file by this name.

7. Now open BPF Explorer and, under

Miscellaneous > Pick Lists

configure a new pick list called “Company-List” as detailed in the following screenshot:

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 74

8. Now, configure a new case field called “Company-List” with a PE field mapping associating it with the
pre-existing CompanyName PE field, as detailed in the following screenshot:

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 75

9. Now , under

Miscellaneous > Inbasket Filters

create a new inbasket filter for this field and mapped to use the pick list you created earlier, as
detailed in the following screenshot (and be sure to put single-quotes around the %PARAM1% variable in
the expression, since this is a String field):

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 76

10. Now configure your Index (Supervisor) inbasket to use this new inbasket filter, as detailed in the
following screenshot:

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 77

11. Now log on as an Administrator and you should see something like the following:

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 78

12. Now click on the Preferences button and change the value of the Default Company user preference
from “ABC” to “XYZ” and click OK as detailed in the following screenshot:

IBM FileNet Business Process Framework Developer Guide
User Preferences

© Copyright IBM Corp. 2002, 2009 79

13. Sign out and log back in to see your new preference take effect, as follows:

Consult the \src\User Preference Samples folder in the code samples for more details.

IBM FileNet Business Process Framework Developer Guide
Implement multiple Case Tabs

© Copyright IBM Corp. 2002, 2009 80

Implement multiple Case Tabs
With BPF-4.1.0-001 and above, it is possible to configure multiple Case Tabs and spread your inbasket
case fields among them. Nevertheless, some configuration and custom coding (in the
EventHandlers.js::onCaseDisplay method) is required.

The steps required are as follows.

1. Add a new row (e.g. “CaseProps_1”) into the TABS table of the Bp8Metastore database (and be sure
to set TAB_TYPE to 0) per the screenshot below:

Adding a row to the TABS table in the Bp8Metastore is one of the few configuration options that
cannot be done through the BPF Explorer, so you will have to do this using your database
administration utility (such as DB2 Control Center, Oracle Enterprise Manager, or MSSQL Enterprise
Manager), just as you would do when adding a custom tab.

2. Switching now to BPF Explorer, add your new Tab to the Tabs tab of the Index (Supervisor) Inbasket
(or whatever inbasket you want to try this with) as follows:

IBM FileNet Business Process Framework Developer Guide
Implement multiple Case Tabs

© Copyright IBM Corp. 2002, 2009 81

3. Now edit your EventHandlers.js file (located in the

 \plugins\custom

directory of your deployed BPF web application folder or, if you have not yet done so, rename a copy
of the EventHandlers.js.template file that you will find in that location to “EventHandlers.js”. Then edit
your EventHandlers.js file by adding code along the lines of the following sample:

eventHandlers.onCaseDisplay = function(tabContent) {

 /*--*/
 /*--
 If you have configured a second case tab (say "CaseProps_1") in the TABS table
 of your Bp8Metastore and added it to the Tabs tab of one or more of your
 inbaskets in BPF Explorer, then, by default, ALL case fields will appear on
 BOTH case tabs.

 So code needs to be added here to hide/show individual fields selectively
 depending on which tab is being displayed.

 For example...
 --*/

 if(tabContent == 'CaseProps') {
 // If this is the original Case Tab, hide the AccountNumber field
 // and display the CompanyName field.
 var accElement = document.getElementsByName("AccountNumber")[0];
 accElement.parentElement.parentElement.style.display = "none";

 var comElement = document.getElementsByName("CompanyName")[0];

IBM FileNet Business Process Framework Developer Guide
Implement multiple Case Tabs

© Copyright IBM Corp. 2002, 2009 82

 comElement.parentElement.parentElement.style.display = "";
 }
 else if (tabContent == 'CaseProps_1'){
 // If this is the new case tab (CaseProps_1), then show the
 // AccountNumber field and hide the CompanyName field.
 var comElement = document.getElementsByName("CompanyName")[0];
 comElement.parentElement.parentElement.style.display = "none";

 var accElement = document.getElementsByName("AccountNumber")[0];
 accElement.parentElement.parentElement.style.display = "";
 }
 /*--*/

 return true;
}

4. Clear your IE browser cache (so that the revised EventHandlers.js file will be picked up), restart the

app server (so that your configuration changes will be picked up), and try opening a case from your
Index (Supervisor) Inbasket (or whatever inbasket you used) to see if the new “CaseProps_1” tab
appears and is functional. Verify that the fields whose show/hide behavior you modified with your
custom Jscript behave as expected on your various case tabs (e.g. if you used the example above,
make sure that your CompanyName field appears only on the Case Tab and the AccountNumber
field appears only on the new CaseProps_1/My_Case tab).

IBM FileNet Business Process Framework Developer Guide
General customizations

© Copyright IBM Corp. 2002, 2009 83

General customizations
One of the most common customizations to the BPF Web Application is the replacement of the default
GIF files found in the <web_root>\img directory with customer-specific GIF files of the same exact
dimensions (and having the same exact names as the default BPF files). The customer-specific GIF files
are then loaded by the BPF Web Application without any code changes being made whatsoever.

XSL Stylesheet modifications
There is also the option to customize the look and feel of the BPF UI by modifying the base XSL files in
the

<bpf_web_root>\xsl

and
<bpf_web_root>WEB-INF\xsl

directories.

Please note, however, that unlike most of the other customization areas documented here, custom
changes to these XSL files will be lost completely during any upgrade of BPF and will need to be merged
back into the replaced XSL files after the upgrade.

With this warning in mind, it is possible to make extensive changes to the HTML displayed in the BPF UI
by following the procedures illustrated in the following example. They, show how to modify the
background and text color of the cells in the Inbasket Browse list HTML table based on the text values of
the cells (Browse List fields) themselves.

The HTML displayed by the BPF UI is the result of XSLT transformations performed upon XML
messages, passed from the server to the client, using XSL stylesheet files located on the web server.
Because of this, you will want to turn on XML Message Logging (temporarily) using the following
Application Settings values in your BPF Explorer and then restart the web server:

IBM FileNet Business Process Framework Developer Guide
General customizations

© Copyright IBM Corp. 2002, 2009 84

(Please consult the documentation in the IBM FileNet Business Process Framework Explorer Handbook
for more information on this feature.)

Turning on XML Message Logging will result in the creation of XML files in your
<bpf_web_root>WEB-INF\logs

directory containing the actual XML that is being returned by the web server in response to requests from
the client.

Depending on what screen within BPF you are trying to modify, you will need to look at different XML logs
to see the XML that the XSL file you modify will be working with. In general, it is a good practice to
navigate to the screen you want to modify and stop working, then look at the most recent XML logs
created.

As with determining which XSL file to modify, some trial and error may be required in determining which
XML you are dealing with on the screen you want to change. Adding some extra characters to likely
candidates among the XSL files in places where they will be displayed in the UI (such as adding ZZZ
immediately after a TD in a likely XSL file) and then bringing up the screen in BPF again to see if your
change appears will tell you for certain if you are in the right place or not.

NOTE Changes to the XSL files take effect immediately and do not require restarting anything.
Examining the XSL files themselves along with the JavaScript files from which the XSLT transform calls
are made should also assist you in determining which XSL file you will want to change.

As an example, if we want to modify the color scheme used on the Inbasket Browse list, we will look for
an XML log file named “*_GetCases_Response_*“ (for example
“Administrator_GetCases_Response_1157575259671.xml“ or <user_name> + <action_name> + “Request” or
“Response” + <timestamp> + “.xml).

Determining the XML you are working with will also help you determine which XSL file you need to modify
because the XSL will typically reference the same tag names as occur in the XML that it is working with.

In the case of our example, we can, using the methods described above, determine that the XML in our
<bpf_web_root>\WEB-INF\logs\Administrator_GetCases_Response_1157575259671.xml

file is being transformed using the
<bpf_web_root>\xsl\Bp8Cases.xsl

file. Opening this XSL file, you will see that it contains XSL to create both the Headers row of the
Inbasket Browse HTML table and the subsequent data rows for individual Cases. Since we want to try
changing the color scheme of the cells in the data rows containing individual Cases, we will focus on the
following section of Bp8Cases.xsl, changing it from
<xsl:for-each select="Value[@Visible='1']"<td class="tblData" valign="top" align="left"
nowrap="true">

to
<xsl:for-each select="Value[@Visible='1']">
 <td class="tblData" valign="top" align="left" nowrap="true">
 <xsl:choose>
 <xsl:when test=".[.='High']">
 <xsl:attribute name="bgcolor">red</xsl:attribute>
 <xsl:attribute name="style">font-weight:bold</xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="bgcolor">blue</xsl:attribute>
 <xsl:attribute name="style">text-
decoration:underline</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>

to achieve the following effect:

IBM FileNet Business Process Framework Developer Guide
General customizations

© Copyright IBM Corp. 2002, 2009 85

or to

<xsl:for-each select="Value[@Visible='1']">
 <td valign="top" align="left" nowrap="true">
 <xsl:choose>
 <xsl:when test=".[.='High']">
 <xsl:attribute name="class">my_custom_class1</xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="class">my_custom_class2</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>

to reference custom CSS style classes that would/could be defined in Bp8CustomStyles.css as follows

<style type="text/css">

body {
 /*---*/
}

.my_custom_class1 {
 font-size: 24pt;
 color: lime;
 background-color: black;
}

.my_custom_class2 {
 font-size: 8pt;
 color: purple;
 background-color: red;
}
</style>

IBM FileNet Business Process Framework Developer Guide
General customizations

© Copyright IBM Corp. 2002, 2009 86

to produce the following effect:

Of course, you may run into problems where it is not possible to achieve what you have in mind by
changing the XSL alone without also changing the XML itself. This cannot be done through
customization.

IBM FileNet Business Process Framework Developer Guide
Notices

© Copyright IBM Corp. 2002, 2009 87

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

IBM FileNet Business Process Framework Developer Guide
Notices

© Copyright IBM Corp. 2002, 2009 88

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A
current list of IBM trademarks is available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft is a trademark of Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

http://www.ibm.com/legal/copytrade.shtml

����

Program Number: 5724-R75

Printed in USA

GC31-5514-02

	Contents
	Revision Log
	Introduction
	Customization areas
	BPF Web Application custom JavaScript EventHandlers and BusinessObjects interfaces
	Definition
	Raising an Event
	Event Sequence
	Scenario A
	Scenario B
	Scenario C
	Scenario D
	Scenario E
	Scenario F
	Scenario G
	Scenario H
	Event raised

	Supported objects
	HTML Body element
	Case
	Case object
	Expando object
	AuditLogItem object
	Inbasket object
	Filter object
	Tab object
	User object
	Profile object
	ToolBarItem object

	Tool event handler interface
	Definition
	Raising a tool event
	Tool event sequence
	Supported tools
	Sample ToolEventHandler.js

	Table Tab event handler interface
	Definition
	Raising a Table Tab event

	Web custom Java language Case event handler interface (Java plug-ins)
	Definition
	Class Hierarchy
	OpenCaseEventHandler configuration
	CommitCaseEventHandler configuration
	Sample OnOpen.java
	Sample OnCommit.java

	Web custom tool development procedure
	General introduction
	Step 1: Create code
	Step 2: Deploy code
	Step 3: Register tool
	Step 4: Expose tool
	Sample my_tool code

	Web custom tab development procedure
	Introduction
	Step 1: Create code
	Step 2: Bundle code
	Step 3: Register Tab
	Step 4: Expose tab
	Sample my_tab code

	Lookup extensions interface
	Introduction
	Writing the Code
	Deploying the Code
	Configuration
	Sample code

	Customizing BPF Date/Time handling capabilities
	Introduction
	Overview
	Implementation
	Customization

	User Preferences
	Introduction
	Overview
	Preferences access
	Configuration file format description
	User Preferences Sample Code

	Implement multiple Case Tabs
	General customizations
	XSL Stylesheet modifications

	Notices
	Trademarks

