
CICS Transaction Gateway for Multiplatforms
Version 9 Release 2

Developing Applications

SC34-7339-00

IBM

CICS Transaction Gateway for Multiplatforms
Version 9 Release 2

Developing Applications

SC34-7339-00

IBM

Note
Note: Before you use this information and the product it supports, read the information in Safety and environmental notices
and Notices.

This edition applies to Version 9, Release 2 Modification 0 of CICS TG for Multiplatforms, program number
5724-I81 and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1998, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information vii

Part 1. Developing applications . . . 1

Chapter 1. Application programming
interfaces 3

Chapter 2. Intercept plug-ins 5
CICS Intercept plug-in 5

CICS Intercept plug-in development 6
Java BasicCicsPlugin sample 6

Gateway Intercept plug-in 6

Chapter 3. Client applications 7
JEE applications 8

Chapter 4. External Call Interface (ECI) . 9
List CICS systems 9
The ECI request 9

I/O parameters on ECI calls 9
Program link calls 10
Status information calls 12
Retrieving replies from asynchronous ECI
requests 12

Introduction to channels and containers 13
ECI and CICS transaction IDs 13
Timeout of the ECI request 14

Request timeout 14
Response timeout 14

Security in the ECI 15
IPIC support for ECI 15
ECI performance considerations when using
COMMAREAs 15

Chapter 5. External Presentation
Interface (EPI). 19
List CICS systems 19
EPI concepts 19

Adding and deleting terminals 19
Starting transactions 19
Sending and receiving data 20
Managing CICS conversations 20

Terminal characteristics 21
Timeout of the EPI request 22
Security in the EPI 22

Specifying terminal sign-on capability 23
Automatic transaction initiation (ATI) 24
Restrictions on application design when using EPI 24
3270 data streams for the EPI 25
BMS map conversion utilities 25

Chapter 6. External Security Interface
(ESI) 27
I/O parameters on ESI calls 27
Using ESI to manage passwords 28

Chapter 7. JSON web services 29
Concepts of RESTful JSON web services 31
Creating a Request-Response JSON web service
from high-level language structures 32
Creating a Request-Response JSON web service
from JSON Schemas 33
Creating a RESTful JSON web service 34
The JSON web services assistant 36

Creating a Request-Response WSBind file from a
language structure 37
Creating a Request-Response WSBind file from
JSON Schemas 45
Creating a RESTful WSBind file 51
High-level language and JSON Schema mapping 58

JSON web service restrictions 90
Error responses from JSON web services 91

Chapter 8. Statistics APIs. 93
Statistical data overview 93
API and protocol version control 93
Statistics C API 95

Calling the C API 95
Statistics C API components 95
Statistics C API program structure 96
C API data types 97
Statistics C API trace levels 100
C API functions 101
Correlating results and error checking 108

Statistics Java API 108

Chapter 9. Code page information . . 111

Chapter 10. Programming in Java. . . 113
Overview of the programming interface for Java 113

Writing Java client applications 113
SSL cipher suites in Java Client applications . . 114
JavaGateway security. 115

Making ECI calls from a Java client program . . . 115
Linking to a CICS server program 116
Creating Java channels and containers for ECI
calls 116
Managing an LUW 117
Retrieving replies from asynchronous requests 117

Making EPI calls from a Java Client program . . . 118
EPI support classes 118
EPIRequest 128
EPI security 129

Making ESI calls from a Java client program . . . 129
Compiling and running a Java Client application 129

© Copyright IBM Corp. 1998, 2016 iii

||
||
||
||
||

Setting stack and heap sizes 129
Setting up the CLASSPATH 130

Integration testing Java applications using a
Gateway Intercept plug-in 130

The sample plug-in 131
Plug-in development 131
Enabling a Gateway intercept plug-in in a Java
SE application 131

Problem determination for Java client programs 132
Tracing in Java client programs 132

Security for Java client programs 134
CICS Transaction Gateway security classes . . 134
Using a Java 2 Security Manager 135

Signing Applets and Web Start Applications . . . 136
Using the CICS TG OSGi bundle 137

Chapter 11. Programming using the
JEE Connector Architecture 139
Overview of the JCA programming interface . . . 139

The Common Client Interface (CCI) 139
The programming interface model 139
Record objects 140
ECI resource adapter 140
EPI resource adapter 141
Managed and nonmanaged environments . . . 141

The Common Client Interface 141
Generic CCI Classes 141
CICS-specific classes 142

Using the ECI resource adapter 142
Using the ECI resource adapter with channels
and containers 143
Connection to a CICS server using the ECI
resource adapter 144
Linking to a program on a CICS server. . . . 145
ECI resource adapter CICS-specific records
using the streamable interface 146
Transaction management 146
Samples 148

Using the EPI resource adapter 148
Connecting to a CICS server using the EPI
resource adapter CCI 149
Starting a transaction 149
Sending and receiving data. 150
Writing LogonLogoff classes 152
Samples 154

Using the resource adapters in a nonmanaged
environment. 154

Creating the appropriate ConnectionFactory
object 154
Saving and reusing connection factories . . . 155
Running the JEE resource adapters in a
nonmanaged environment 156

Compiling applications 156
Compiling and running JEE components 156
Integration testing JEE components using an
intercept plug-in 157
Security credentials and the CICS resource
adapters 157
JEE tracing 157

Tracing issues relating to serialized interfaces
and ConnectionFactory objects 158

Resource adapter samples 158
ECI COMMAREA sample 158
EPI sample 160
ECI channels and containers sample 161

Assistance in coding CCI applications 162
JEE Connector Architecture API 162

Chapter 12. Programming in C and
COBOL 165
Overview of the programming interfaces for C and
COBOL 165
Making ECI V1 calls from C and COBOL programs 165

CICS_ExternalCall 166
Program link calls 166
Reply solicitation calls 167
Security credentials in ECI V1 168

Making ECI V2 and ESI V2 calls from C programs 168
Making ECI V2 calls 168
Making ESI V2 calls 169
Establishing a connection to a Gateway daemon 170
Program link calls 171
Reply solicitation calls 173
Using channels and containers in ECI V2
applications 173
Tracing in ECI V2 and ESI V2 applications . . 174
Security credentials in ECI V2 175
Multithreaded ECI V2 and ESI V2 applications 175

Making EPI calls from C and COBOL programs 176
EPI versions 177
EPI Initialization and termination 177
Adding a terminal to CICS 177
Deleting a terminal 177
Starting transactions 178
Sending and receiving data. 178
Managing pseudoconversations 178
Events and callbacks 178
Processing events 179
Automatic transaction initiation (ATI) 180
3270 data streams for the EPI 180

Making ESI V1 calls from C and COBOL programs 183
Verifying a password using ESI 183
Changing a password using ESI 184
Setting default security using ESI. 184

Compiling and linking C and COBOL applications 184
Windows 185
IBM AIX 185
Solaris 186
Linux 187
HP-UX 188

Chapter 13. Programming in C++ . . . 189
Overview of the programming interface for C++ 189

Writing C++ Client applications 189
Making ECI calls from a C++ Client program . . 189

Linking to a CICS server program 189
Managing logical units of work 191
Retrieving replies from synchronous requests 192
Retrieving replies from asynchronous requests 193
Reply solicitation calls 194
ECI security 195

iv CICS TG for Multiplatforms V9.2: Developing Applications

Finding potential servers 196
Monitoring server availability 196
C++ ECI classes 197

Making EPI calls from a C++ Client program. . . 197
Adding a terminal to CICS 198
EPI call synchronization types 198
Sending and receiving data. 200
Converting BMS maps and using the Map class 201
Support for Automatic Transaction Initiation
(ATI) 204
EPI Security 205
C++ EPI classes 206

Compiling and linking a C++ application 206
Problem determination for C++ Client programs 207

Handling Exceptions 207

Chapter 14. Programming using COM 211
Overview of the programming interface for COM 211

Writing COM Client applications 211
Making ECI calls from a COM Client program . . 214

Linking to a CICS server program using Visual
Basic 214
Linking to a CICS server program using
VBScript 215
Managing an LUW 215
Retrieving replies from asynchronous requests 216
ECI security 217
ECI CICS Server Information and Connection
Status 218
ECI COM classes 218

Making EPI calls from a COM Client Program . . 219
Adding a terminal to CICS 219
Sending and receiving data. 220
EPI call synchronization types 221
Converting BMS maps and using the Map class 222
Support for Automatic Transaction Initiation
(ATI) 223
EPI Security 223
EPI CICS Server Information 224
EPI COM classes 224

Problem determination for COM Client programs 225
Handling exceptions 225

Chapter 15. Developing Microsoft
.NET Framework-based applications . 227
Overview of the programming interface 227
Making ECI calls from Microsoft .NET
Framework-based programs 227
Making ESI calls from Microsoft .NET
Framework-based programs 228
Using channels and containers in Microsoft .NET
Framework-based programs 229
Developing ECI and ESI applications based on the
Microsoft .NET Framework. 230
Problem determination for Microsoft .NET
Framework-based client programs 231

Tracing for Microsoft NET Framework-based
client programs. 231

Chapter 16. Request monitoring exits 233
Java request monitoring exits 233

Correlation points available in the exits. . . . 236
Data available by FlowType and RequestEvent 236

ECI and EPI C exits 243
Loading the exits 243
Sample exits and interface definitions 244
Writing your own user exits 244
Diagnostic information 245
EPI user exits 246

Chapter 17. Creating a CICS request
exit 249
Writing a CICS request exit. 249

Chapter 18. Sample programs 251
Sample CICS programs and maps 251
Java client samples 252

Compiled Java samples 252
Running the sample programs. 252
Connecting to CICS Transaction Gateway . . . 253
Java ECI base class samples 253
Java EPI base class samples 256
Java ESI base class samples. 256
Java EPI support class samples 256

JEE samples 257
JEE ECIDateTime sample 257
JEE EPIPlayScript sample 259
JEE EC03Channel sample 261

C remote client samples 262
C ctgecib1 sample 262
C ctgecib2 sample 263
C ctgecib3 sample 264
C ctgesib1 sample 264

C, C++ and COBOL local client samples 265
Building C sample programs 265
Building C++ sample programs 266
Building COBOL sample programs 266
C/C++ ECIB1 sample 267
C/C++ ECII1 sample 267
C/C++ EPIB1 sample. 267
C/C++ EPII1 sample 267
C/C++ EPIA1 sample 268
C/C++ ECIA1 sample 268
C/C++ ESIB1 sample. 268
ECI extensions that are environment-dependent 268

C# and Visual Basic samples based on Microsoft
.NET Framework 272

C# and Visual Basic EciB1 sample based on
Microsoft .NET Framework. 272
C# and Visual Basic EciB3 sample based on
Microsoft .NET Framework. 272
C# and Visual Basic EsiB1 sample based on
Microsoft .NET Framework. 273

User exit samples 273
Java security exit data compression samples . . 273
Java request monitoring exit samples 274
Java CICS request exit samples 275
C ECI and EPI user exit template samples . . . 276
C ECI and EPI user exit samples 276

Contents v

Building C user exit samples 276
C and Java statistics API samples. 277

C ctgstat1 statistics API sample 277
Java Ctgstat1 statistics API sample 278

Java Ctgstat2 statistics recording sample 278

Part 2. Appendixes 279

Glossary 281

Related literature 303

Accessibility 305
Installation 305

Configuration Tool accessibility 305
Starting the Gateway daemon 305
cicsterm 306

Notices 309
Programming interface information 311
Trademarks 311
Terms and conditions for product documentation 311
IBM Online Privacy Statement. 312
Safety and environmental notices 312
Trademarks 312

vi CICS TG for Multiplatforms V9.2: Developing Applications

About this information

This information describes the planning, installation, configuration, and operation
of the IBM® CICS® Transaction Gateway and the IBM CICS Transaction Gateway
Desktop Edition products.

You should be familiar with the operating system on which CICS Transaction
Gateway runs and also with Internet terminology.

This information includes trademarks including Java™, for more information about
Trademarks, see the Trademark information at the back of this publication.

© Copyright IBM Corp. 1998, 2016 vii

viii CICS TG for Multiplatforms V9.2: Developing Applications

Part 1. Developing applications

This section contains information you need to make your applications work with
CICS Transaction Gateway.

The CICS TG Software Development Kit (SDK) enables CICS TG application
development on a different system to where the CICS TG product is installed. For
more information, see .

© Copyright IBM Corp. 1998, 2016 1

2 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 1. Application programming interfaces

The CICS Transaction Gateway supports the integration of CICS servers and client
applications. There is a standard set of functions to allow user applications to call
CICS programs, initiate CICS 3270 transactions or perform password expiry
management (PEM).

Three Application Programming Interfaces (APIs) are available to enable user
applications to access and update CICS facilities and data. These are the External
Call Interface (ECI), the External Presentation Interface (EPI) and the External
Security Interface (ESI). CICS TG can also expose JSON web services which allow
HTTP and HTTPS clients to call CICS programs.

There are also statistical data APIs, which enable a user application to collect
statistical information about a running CICS Transaction Gateway.
Related information:
Chapter 4, “External Call Interface (ECI),” on page 9
The External Call Interface (ECI) enables a client application to call a CICS
program synchronously or asynchronously. It enables the design of new
applications to be optimized for client/server operation, with the business logic on
the server and the presentation logic on the client.
Chapter 5, “External Presentation Interface (EPI),” on page 19
The External Presentation Interface (EPI) enables a user application to install a
virtual IBM 3270 terminal into a CICS server. The EPI also enables a user
application to delete a virtual IBM 3270 terminal from a CICS server.
Chapter 8, “Statistics APIs,” on page 93
The statistics APIs enable user applications to obtain runtime statistics on the
Gateway daemon. To use the statistics APIs, the Gateway daemon must be
configured with a statistics API protocol handler.

© Copyright IBM Corp. 1998, 2016 3

4 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 2. Intercept plug-ins

You can use intercept plug-ins to test applications without requiring a running
CICS server.

There are two intercept plug-ins:

Gateway Intercept plug-in
A Gateway Intercept plug-in intercepts requests before they reach the
Gateway. It can be used to test Java applications without a running CICS
server or Gateway daemon. .

CICS Intercept plug-in
A CICS Intercept plug-in intercepts requests between the Gateway and
CICS servers. You can use a CICS Intercept plug-in and tools such as IBM
Rational® Integration Tester to test applications without requiring a
running CICS server.

Client

Gateway Intercept plug-in

intercepts requests

CICS Intercept plug-in

intercepts requests

CICS

Transaction

Gateway

CICS

Server

CICS Intercept plug-in
You can use a CICS Intercept plug-in to intercept ECI, EPI, and ESI calls from Java,
ECI V2, ESI V2, JSON web service and .NET Framework based applications.

These applications can be tested without the need for a running CICS server. Tools
such as IBM Rational Integration Tester provide a CICS Intercept plug-in.
Alternatively, you can develop your own by writing a Java program which
implements the CicsIntercept interface.

You can use a plug-in to test your application by writing a Java program which
implements the CicsIntercept interface, and enabling this plug-in for the Gateway
daemon.

When enabled, a CICS Intercept plug-in is notified before a request is sent to CICS.
Before a request is sent, the plug-in can change the properties of the request object.
If Return is returned by the plug-in, the Gateway daemon will bypass calling CICS
and return the request object as it stands. If Continue is returned by the plug-in,
the Gateway daemon will continue the normal processing of the request to CICS.

© Copyright IBM Corp. 1998, 2016 5

|

|

|
|

|

|
|
|
|

|
|
|
|
|

|

|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

CICS Intercept plug-in development
The API for implementing a Gateway intercept plug-in is provided in
ctgclient.jar

Plug-in classes must implement the com.ibm.ctg.client.CicsIntercept interface.
For more information, see Interface CicsIntercept

To compile your plug-in class, ctgclient.jar must be available on the class path.

Java BasicCicsPlugin sample
The com.ibm.ctg.samples.intercept.BasicCicsPlugin sample, which is written in
Java, is provided with this feature.

This sample shows the basic use of the CICS Intercept plug-in. The sample
program intercepts requests for the EC01 and EC03 CICS server programs and
returns a simulated response. The sample can be used with all EciB1 and EciB3
samples in remote mode, and with the WSBind file from scenario SC11 for JSON
web services. The BasicCicsPlugin sample is compiled into ctgsamples.jar along
with all other Java samples.

To enable the BasicCicsPlugin sample on the Gateway daemon, set the
cicsintercept value in the configuration file (ctg.ini) to
com.ibm.ctg.samples.intercept.BasicCicsPlugin.

Gateway Intercept plug-in
A Gateway Intercept plug-in intercepts requests before they reach the Gateway.

A Gateway Intercept plug-in can be used to test Java applications without a
running CICS server or Gateway daemon. For more information see “Integration
testing Java applications using a Gateway Intercept plug-in” on page 130

6 CICS TG for Multiplatforms V9.2: Developing Applications

|

|
|

|
|

|

|

|
|

|
|
|
|
|
|

|
|
|

|
|

|

|
|
|

Chapter 3. Client applications

CICS Transaction Gateway supports client applications running in local or remote
mode topologies. Client applications enable access to CICS server transactions and
programs from the host machine.

The following figure shows both Java and non-Java client applications running in
both local and remote mode on a UNIX, Linux or Windows System.

Note:

1. Java client applications use the Gateway classes to communicate with CICS
servers.

2. JCA client applications use the JEE CICS resource adapters to communicate
with CICS servers.

3. C client applications running in remote mode use the ECI V2 and ESI V2 C
language bindings to communicate with CICS servers.

4. C client applications running in local mode use the ECI V1, ESI V1 and EPI C
language bindings to communicate with CICS servers.

ECI

EPI

ESI

CICS
Transaction

Gateway

Client server connection protocols:
TCP/IP, IPIC, or SNA

Gateway daemon

network protocols:
TCP, SSL.

Gateway daemon

network protocols:
TCP

Client applications

in local mode

UNIX, Linux, or Windows

Client
daemon

Gateway
daemon

CICS Servers

Java client applications

in remote mode

ECI

EPI

ESI

C applications in

remote mode

ECI

ESI

Web

service

client

.NET client

applications in

remote mode

ECI

ESI

Gateway daemon

network protocols:
HTTP or HTTPS

Gateway daemon

network protocols:
SSL, TCP

Figure 1. CICS Transaction Gateway for UNIX, Linux, or Windows

© Copyright IBM Corp. 1998, 2016 7

JEE applications
CICS Transaction Gateway implements the JCA by providing JEE resource
adapters.

These resource adapters support the JEE Common Client Interface (CCI) defined
by the JCA and are a middle-tier between JCA-compliant applications and CICS
Transaction Gateway. The JEE application server can run locally on the same
machine as CICS Transaction Gateway, or remotely.

JCA-compliant applications can be developed and deployed in a managed or
nonmanaged environment. In a managed environment, JCA applications can
exploit the quality of service provided by the JEE application server.

WebSphere
Application Server

CICS
Transaction Gateway

Windows, UNIX, or Linux Windows, UNIX, or Linux

Gateway daemon
network protocols:

TCP, SSL.

Remote
EJB

application

Servlet

EJB

CCI

z/OS sysplex

CICS Servers

Browser

Figure 2. Topology with CICS Transaction Gateway and WebSphere Application Server in
remote mode

8 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 4. External Call Interface (ECI)

The External Call Interface (ECI) enables a client application to call a CICS
program synchronously or asynchronously. It enables the design of new
applications to be optimized for client/server operation, with the business logic on
the server and the presentation logic on the client.

The external interfaces allow non-CICS applications to access and update CICS
resources by calling CICS programs. When used in conjunction with CICS
communication, the external interfaces enable non-CICS programs to access and
update resources on any CICS server. This method of using the external interfaces
supports such activities as the development of graphical user interface (GUI) front
ends for CICS applications and it allows the integration of CICS servers and
non-CICS servers.

The application can connect to several CICS servers at the same time and have
several called CICS programs running concurrently. The CICS programs can
transfer information using COMMAREAs or channels.

CICS programs that are invoked by an ECI request must follow the rules for
distributed program link (DPL) requests. For information on DPL requests, refer to
your CICS server documentation.

List CICS systems
To determine which CICS servers requests can be directed to, user applications can
query the CICS Transaction Gateway for a list of CICS systems.

The query returns a list of the CICS servers that have been defined within the
CICS Transaction Gateway. There is no guarantee that communication links exist
between the CICS servers and the CICS Transaction Gateway or that any of the
CICS servers are actually available.

The ECI request
An ECI request can be used to make program link calls, status information calls
and reply solicitation calls.

I/O parameters on ECI calls
Input parameters passed to the CICS server with an ECI call, and output
parameters returned to the user application following an ECI call.

Input parameters
Channel

A communication area used for passing containers to a server program.
COMMAREA

A communication area used for passing input to a server program.
ECI timeout

The maximum wait time for a response to an ECI request.
LUW control

The way in which a Logical Unit of Work (LUW) is started, continued and
ended.

© Copyright IBM Corp. 1998, 2016 9

LUW identifier
A token which identifies the ECI call as part of an LUW.

Message qualifier
For reply solicitation calls, a token that identifies the asynchronous request.

Password
The password or password phrase provided for security checking on an
ECI call.

Program name
The name of a program to be run on a CICS server.

Server name
The name of the CICS server that the ECI call is directed to. This can be a
logical CICS server or an actual CICS server name.

TPNName
The transaction ID of the CICS mirror program.

TranName
The transaction ID seen in the exec interface block (EIB) by the CICS
mirror program.

Userid
The user ID provided for security checking on an ECI call.

Output parameters
Abend code

The code returned when a server program has ended abnormally.
Channel

A communication area that holds containers passed from a server program.
COMMAREA

The communication area that contains output from a server program.
LUW identifier

A token which identifies the ECI call as part of an LUW.
Message qualifier

For asynchronous calls, a token that identifies the asynchronous request
and can be used to retrieve the response.

Program link calls
An ECI request to call a program on a CICS server results in a program link call to
attach the CICS mirror transaction to run the server program.

ECI request program link calls can be synchronous or asynchronous:

Synchronous
Synchronous calls are blocking calls. The user application is suspended
until the called server program has finished and a reply is received from
CICS. The received reply is immediately available.

Asynchronous
Asynchronous calls are nonblocking calls. The user application gets control
back without waiting for the called server program to finish. The reply
from CICS can be retrieved later using one of the reply solicitation calls or
a callback. See “Retrieving replies from asynchronous ECI requests” on
page 12. An asynchronous program link call is outstanding until a reply
solicitation call, or the callback, has retrieved the reply.

Synchronous and asynchronous program link calls can be nonextended or
extended:

Nonextended
The CICS server program, not the user application, controls whether

10 CICS TG for Multiplatforms V9.2: Developing Applications

recoverable resources are committed or backed out. Each program link call
corresponds to one CICS transaction. This is referred to as
SYNCONRETURN.

Extended
The user application controls whether recoverable resources are committed
or rolled back. Multiple calls are possible, allowing a logical unit of work
(LUW) to be extended across successive ECI requests to the same CICS
server. This is known as an extended logical unit of work (extended LUW).

CICS user applications are often concerned with updating recoverable
resources. An LUW is the processing that a CICS server program performs
between sync points. A sync point is the point at which all changes to
recoverable resources that were made by a task since its last sync point are
committed. LUW management is performed by the user application, using
the commit and rollback functions:

Commit
Ends the current LUW and any changes made to recoverable
resources are committed.

Rollback
Terminates the current LUW and backs out (rolls back) any
changes made to recoverable resources since the previous sync
point.

ECI-based communications between the CICS server and the CICS Transaction
Gateway are known as conversations. A nonextended program link ECI call is one
conversation. A series of extended ECI calls followed by a commit or rollback is
one conversation.

Only one transaction can be active at a time in a logical unit of work, so if you are
using asynchronous requests with extended LUWs, there is a restriction that the
reply from one ECI call must be retrieved before making a subsequent ECI call
within the same LUW.

Managing logical units of work
On a successful return from the first of a sequence of extended ECI calls for an
LUW, the user application is returned an LUW identifier corresponding to an
instance of a CICS mirror transaction.

Specifying this LUW identifier in subsequent ECI calls means that these calls will
be processed by the same CICS mirror transaction. All program link calls for the
same LUW are sent to the same server.

When the user application makes an ECI commit or rollback call, the CICS server
attempts to commit or back out changes to recoverable resources. The user
application is advised whether or not the attempt was successful. If an LUW is
outstanding (incomplete), the user application issues an extended ECI commit or
rollback call to the CICS server. If the execution of a user application completes
without committing or rolling back an outstanding LUW, the CICS Transaction
Gateway attempts to back out the LUW.

If an extended ECI call fails, the user application must check if a nonzero LUW
identifier was returned. If so, this indicates that the LUW is still outstanding and
you must commit or rollback the LUW. If you do not, the unit of work remains
outstanding and prevents a normal shutdown of CICS Transaction Gateway.

Chapter 4. External Call Interface (ECI) 11

An ECI user application using an extended LUW might cause other user
applications to be suspended waiting for CICS resources, which are held for the
duration of the LUW.

Status information calls
Status information calls retrieve status information about the connection between
the client and server systems.

The status of connected servers is updated as a result of requests being flowed and
protocol specific events. The status returned is the last known state of connected
servers, which might not be the same as the current state.

ECI request status link calls can be synchronous or asynchronous.

There are three types of status information call:

Immediate
Requests status information to be sent to the user application as soon as it
becomes available.

Change
Requests status information to be sent to the user application when the
status changes from some specified value. Change calls are always
asynchronous.

Cancel
Cancels an earlier change call.

Note: EXCI does not support asynchronous ECI request status link calls for
Immediate, Change, and Cancel types.

Retrieving replies from asynchronous ECI requests
Callbacks and reply solicitation calls can be used to retrieve replies from
asynchronous ECI requests.

Callbacks

Callbacks enable the CICS server to drive specific function provided by the user
application when an asynchronous program link call completes. Callbacks are not
available for all APIs.

Reply solicitation calls

User applications that issue asynchronous calls can have several ECI requests
outstanding at a time. Reply solicitation calls can be used by the calling application
to retrieve the replies for each outstanding request. There are two types of reply
solicitation call:

General
Retrieves all replies for any outstanding ECI request.

Specific
Retrieves a reply for a specific ECI request. A unique message qualifier is
used to identify the reply for that request. Depending on the API that the
application uses, message qualifiers are either automatically generated or a
they have to be manually assigned to each asynchronous call within a
single application.

12 CICS TG for Multiplatforms V9.2: Developing Applications

If no reply is available, reply solicitation calls can either wait for a reply or return
control directly to the user application.

Introduction to channels and containers
Channels and containers provide a method of transferring data between CICS
programs, in amounts that exceed the 32 KB limit that applies to communication
areas (COMMAREAs).

Each container is a named block of binary (BIT) or character (CHAR) data that is
not limited to 32 KB. Containers are grouped together in sets called channels.

The channel and container model has several advantages over the communication
areas (COMMAREAs) used by CICS programs to exchange data:
v Unlike COMMAREAs, channels are not limited in size. Any number of

containers can be added to a channel, and the size of individual containers is
limited only by the amount of storage that you have available. Consider the
amount of storage available to other applications when you create large
containers.

v Because a channel can consist of multiple containers, it can be used to pass data
in a more structured way, allowing you to partition your data into logical
entities. In contrast, a COMMAREA is a monolithic block of data.

v Unlike COMMAREAs, channels do not require the programs that use them to
keep track of the size of the data.

v CICS automatically destroys containers and their storage when they are no
longer required.

When you are using channels and containers in preference to COMMAREAs, note
that:
v A channel can use more storage than a COMMAREA to pass the same data.
v Container data can be held in more than one place.
v COMMAREAs are accessed by pointer, whereas the data in containers is copied

between programs.

For more information about using channels and containers see the following topics:
v Using channels and containers in the JCA framework, see “Using the ECI

resource adapter with channels and containers” on page 143.
v Using channels and containers with ECI calls for Java clients, see “Creating Java

channels and containers for ECI calls” on page 116.
v Using channels and containers with ECI V2 calls for C clients, see “Using

channels and containers in ECI V2 applications” on page 173
v Using channels and containers with ECI calls for NET Framework-based client

applications, see “Using channels and containers in Microsoft .NET
Framework-based programs” on page 229.

ECI and CICS transaction IDs
The transaction ID of the mirror transaction for an ECI call can be controlled
through the parameters TPNName and TranName.

Specify TPNName to change the name of the CICS mirror transaction that the
called program will run under. For example, you can specify TPNName if you
need a transaction definition with different attributes from those defined for the

Chapter 4. External Call Interface (ECI) 13

default mirror transaction. This option is like the TRANSID option on an EXEC
CICS LINK command. The transaction ID is available to the server program in the
EXEC interface block (EIB). You must define a transaction on the CICS server for
this transaction ID that points to the DFHMIRS program. Note that TPNName
takes precedence if both TranName and TPNName are specified. If neither
TPNName nor TranName is specified, the ECI Program Link call is attached to the
default mirror transaction on the server. The default mirror transaction is CPMI.

If TranName is specified, the called program runs under the default mirror
transaction, but is linked to under the TranName transaction ID. This name is
available to the called program in the (EIB) for querying the transaction ID.

Table 1 shows the name of the CICS mirror transaction and the name stored in
EIBTRNID in the EIB according to whether or not TPNName and TranName are
specified.

Table 1. Specifying TPNName and TranName

TPNName specified TranName specified
Mirror transaction
name Name in EIBTRNID

Y Y TPNName TPNName

Y N TPNName TPNName

N Y default TranName

N N default default

Timeout of the ECI request
An ECI timeout is the time that the CICS Transaction Gateway will wait for a
response to an ECI request sent to a CICS server before returning a timeout error
to the Client application.

An ECI timeout can occur either before or after the ECI request has been sent to
the CICS server, so there are two timeout conditions, request timeout and response
timeout.

Request timeout
A request timeout occurs before the request has been forwarded to the CICS server.
The requested program was not called, and no server resources have been
updated.

This can happen for the following reasons:
v The call was intended to start, or be the whole of, a new LUW. The LUW is not

started, and no recoverable resources are updated.
v The call was intended to continue an existing LUW. The LUW continues, but no

recoverable resources are updated, and the LUW is still uncommitted.
v The call was intended to end an existing LUW. The LUW continues, no

recoverable resources are updated, and the LUW is still uncommitted.

Response timeout
A response timeout occurs after the request has been forwarded to the CICS server.
It can happen to a synchronous call, an asynchronous call, or to the reply
solicitation call that retrieves the reply from an asynchronous call.

14 CICS TG for Multiplatforms V9.2: Developing Applications

A response timeout can occur in the following situations:
v The call was intended to be the only call of a new LUW. The LUW was started,

but CICS Transaction Gateway cannot determine whether updates were
performed, and whether they were committed or backed out.

v The call was intended to end an existing LUW. The LUW has ended, but CICS
Transaction Gateway cannot determine whether updates were performed, and
whether they were committed or backed out.

v The call was intended to continue or to end an existing LUW. The LUW persists,
and changes to recoverable resources are still pending.

Note: If you use timeouts in your applications, you must ensure that the
application specifically confirms if resources were committed or backed out
following a timeout.

Security in the ECI
The ECI uses conversation-level security based on the SNA LU 6.2 model.

ECI security involves authentication and authorization. During authentication,
checks are performed to ensure that the user ID and password or password phrase
information associated with an ECI call are valid. During authorization, a check is
performed on the CICS server to ensure that the authenticated user is allowed to
access the requested resource.

The user application can set the user ID and password or password phrase on an
ECI request for a conversation with a specific CICS server. These values override
any default values set for the CICS server connection.

IPIC support for ECI
IPIC connections do not support ECI State calls. If you are using local mode, IPIC
connections are not displayed in the list systems call. This is because the IPIC
information is passed using a URL and is not known in advance of the connection.
However, if you are using remote mode, you define your IPIC servers in the
configuration file (the URL function is not available for remote mode), and the
servers are displayed in the list systems call.

IPIC does not support the following ECI calls:
v ECI_STATE_ASYNC
v ECI_STATE_ASYNC_JAVA
v ECI_STATE_CANCEL
v ECI_STATE_CHANGED
v ECI_STATE_IMMEDIATE
v ECI_STATE_SYNC
v ECI_STATE_SYNC_JAVA (deprecated)

ECI performance considerations when using COMMAREAs
The performance of ECI might be affected by the amount of data transmitted over
the network in the COMMAREA between the client application and the CICS
server.

Chapter 4. External Call Interface (ECI) 15

To reduce the number of bytes transmitted over network protocols between the
Gateway daemon and the CICS server the CICS Transaction Gateway removes
trailing nulls from the COMMAREA before transmission and restores them again
after transmission, this is referred to as null stripping. Null stripping is transparent
to client application programs which always see the full-size COMMAREA.

The CICS server adds trailing nulls to the data received to extend it to the length
specified in Commarea_Length so that the server program always receives a full
COMMAREA. The CICS server also performs null stripping before transmitting the
COMMAREA back over the network.

To reduce the number of bytes transmitted between a Client application and the
Gateway daemon, functions are provided to set the length of data in the
COMMAREA that is to flowed to the CICS server, COMMAREA outbound length,
and to set the length of COMMAREA data returned from the Gateway daemon to
the client application, COMMAREA inbound length.

For JEE applications:
v the outbound COMMAREA length is set automatically by the CICS Transaction

Gateway to remove trailing nulls
v use the setReplyLength and getReplyLength methods of the ECIInteractionSpec

for the inbound COMMAREA length

For Java Client applications use the following methods:
v setCommareaOutboundLength
v setCommareaInboundLength
v getInboundDataLength

For ECI v2 applications use the CTG_ECI_PARMS parameter block fields:
v commarea_outbound_length
v commarea_inbound_length

For NET Framework-based applications use the EciRequest class fields:
v CommareaInboundLength
v CommareaOutboundLength

16 CICS TG for Multiplatforms V9.2: Developing Applications

Client
Application

CICS
TG

CICS
Server

data nulls

data nulls

truncation to
COMMAREA
outbound length

truncation to
COMMAREA
inbound length

COMMAREA
passed to
server application

COMMAREA
returned to
application

COMMAREA
returned from
server application

null
padding

null
padding

COMMAREA

null
stripping

null
stripping

Figure 3. COMMAREA data flow optimizations using IPIC, TCP/IP or SNA

Chapter 4. External Call Interface (ECI) 17

18 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 5. External Presentation Interface (EPI)

The External Presentation Interface (EPI) enables a user application to install a
virtual IBM 3270 terminal into a CICS server. The EPI also enables a user
application to delete a virtual IBM 3270 terminal from a CICS server.

The 3270 terminal definitions used by the EPI are treated by CICS servers as
remote 3270 terminal definitions and therefore support automatic transaction
initiation requests (ATI). For more information on ATI see the CICS Transaction
Server Application Programming GuideCICS Transaction Server Application
Programming Guide.

List CICS systems
To determine which CICS servers requests can be directed to, user applications can
query the CICS Transaction Gateway for a list of CICS systems.

The query returns a list of the CICS servers that have been defined within the
CICS Transaction Gateway. There is no guarantee that communication links exist
between the CICS servers and the CICS Transaction Gateway or that any of the
CICS servers are actually available.

EPI concepts
EPI allows a user application program to access 3270–based transactions on one or
more CICS servers. The user application can establish one or more resources and
act as the operator, starting 3270-based CICS transactions and sending and
receiving data associated with those transactions.

Adding and deleting terminals
EPI functions can be used to add terminals to CICS and delete them when they are
no longer required. The user application that installs a terminal has exclusive use
of that terminal until the terminal is deleted.

Adding a basic terminal to CICS is a synchronous operation. Adding an extended
terminal can be synchronous or asynchronous. If the operation is synchronous,
control is not returned to the user application until the install request has
completed. If the operation is asynchronous, control is returned to the user
application as soon as any parameters have been validated. Basic and extended
terminals are described in “Terminal characteristics” on page 21.

Starting transactions
When a user application has added a terminal to a CICS server, the application can
start a transaction from that terminal. To the CICS server it appears as if an
operator has entered a transaction name at a terminal.

There are four ways in which you can start a transaction and associate data with it:
1. By supplying the transaction identifier and any transaction data.
2. By combining a transaction identifier and transaction data into a 3270 data

stream, and supplying the data stream.

© Copyright IBM Corp. 1998, 2016 19

https://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/developing.html
https://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/developing.html

3. By using Automatic Transaction Initiation (ATI) to start a transaction. Some
programming languages do not support ATI.

4. By specifying the TRANSID option on the EXEC CICS RETURN command in
the CICS server program to indicate the next transaction to run. If you also
specify the IMMEDIATE option, the next transaction is started without any
intervention from the user application and regardless of any outstanding ATI
requests for that terminal.

Sending and receiving data
When a transaction is running on CICS, data is passed between CICS and the user
application.

This might be data produced by the transaction or one or more messages from the
CICS server, for example terminal error messages. If the data is in the form of BMS
map data, CICS also supplies the map name and map set name. If the map is to be
returned to CICS for further processing, the user application must also return the
map name and map set name.

Some programming languages have APIs that provide functions to help process
the data stream.

There are two different programming models for EPI-based applications:
v The screen model allows the user application to handle the 3270 data based on

the structure of the fields in the 3270 data stream. In some languages it is also
possible to import BMS map data to help with this process.

v With the 3270 model, the user application reads the 3270 data stream as a simple
data record and is responsible for parsing the information that it contains.

The user application is responsible for presenting the data received. The
application can present the data by emulating a 3270 terminal, or it might present
a different view. For example:
v A Windows application might use the Windows graphical user interface.
v A Solaris on SPARC application might use Open Look.

Managing CICS conversations
A conversational transaction is one which processes several sets of input from a
terminal before returning control to CICS.

The length of time required for a response from a terminal is much longer than the
time taken to process it, therefore a conversational transaction lasts much longer
than a nonconversational transaction, which processes one set of input before
relinquishing control. While a transaction is running it is using storage and
resources which might be needed by other transactions. For this reason many CICS
transactions operate in pseudoconversational mode.

A pseudoconversational transaction is one in which the conversation between a
terminal and a server is broken up into a number of segments, each of which is a
nonconversational transaction. As each transaction ends, it provides the name of
the transaction to be run to process the next input from the terminal. When a
transaction that has just ended specifies the name of a transaction to process the
next input, this name is passed to the user application. The application must not
attempt to start a different transaction, but must use the returned information to
start the specified transaction and send the data it is expecting.

20 CICS TG for Multiplatforms V9.2: Developing Applications

Terminal characteristics
Most terminal attributes are supplied by the CICS server but some can optionally
be determined by the user application.

Terminals can be either basic or extended. Extended terminals have more attributes
than basic terminals. An extended terminal can be purged while a transaction is
running but basic terminals can only be deleted when they are in the idle state.

You can specify the following attributes as input parameters for both basic and
extended terminals:
Model For autoinstalled terminals this is the name of an existing terminal

definition on the CICS server which is to serve as a model for this
terminal.

Server name
The name of the CICS server where the terminal is to be installed.

Netname
The network name of the terminal.

The following additional attributes can be specified for extended terminals:
Code page

The code page used by the user application for data passed between the
terminal resource and CICS transactions.

Install timeout
The maximum length of time that the CICS Transaction Gateway will wait
for a terminal to be installed on the selected CICS server. If not specified
there is no limit to the wait time. Refer to “Timeout of the EPI request” on
page 22 for more information.

Password
The password that is to be associated with the terminal for security
checking.

Read timeout
The maximum length of time that the CICS Transaction Gateway will wait
for a response from the user application. If not specified there is no limit to
the wait time. Refer to “Timeout of the EPI request” on page 22 for more
information.

Sign-on capability
Whether the terminal is capable of running a CICS sign-on transaction. If
not specified, the terminal has the default sign-on capability of the CICS
server type. Sign-on capability and sign-on incapability are described in
more detail in “Specifying terminal sign-on capability” on page 23.

Userid
The user ID that is to be associated with the terminal for security checking.

The following attributes are returned to the user application by the CICS server
when a terminal is added:
Color Whether the terminal supports color.
Columns

The number of columns supported by the terminal.
Error last line

Whether error messages are displayed on the last line of the terminal.
Error message color

The color used to display error messages on the terminal.
Error message highlight

The highlight value used to display error messages on the terminal.

Chapter 5. External Presentation Interface (EPI) 21

Error message intensity
The intensity with which error messages are displayed on the terminal.

Extended highlight
Whether the terminal supports extended highlighting.

Maximum data
The maximum length of data that can be sent from and received by the
terminal.

Netname
The network name of the terminal.

Rows The number of rows supported by the terminal.
Server name

The name of the CICS server where the terminal is installed.
Sign-on capability

The sign-on capability assigned to the terminal by the server.
Terminal ID

The terminal ID generated by CICS.

Timeout of the EPI request
There are two EPI timeout conditions, install timeout and read timeout.

Install timeout
Install timeout is the maximum length of time that the CICS Transaction
Gateway will wait for a terminal to be installed on a CICS server. If a
response is not received from the server within the specified time, control
is returned to the user application with an appropriate return code. If the
Client daemon is subsequently notified that the terminal has been installed
in the server, the Client daemon deletes the terminal. If no install timeout
value is specified, there is no limit to the wait time.

Read timeout
Read timeout is the maximum length of time that the CICS Transaction
Gateway will wait for a response from the user application. This period of
time starts when a user application has received an EXEC CICS RECEIVE
or CONVERSE command issued by CICS. A read timeout occurs if no data
is returned before the period specified has elapsed. If no read timeout
value is specified, there is no limit to the wait time. When a read timeout
occurs, the transaction on the CICS server is terminated abnormally.

Security in the EPI
A user ID and password might be required for each conversation that takes place
between the CICS Transaction Gateway and the CICS server, depending on how
the CICS Transaction Gateway and the CICS server have been configured.

EPI security involves:

Authentication
The CICS server checks that the user ID and password information
associated with a terminal is valid. The frequency with which the user ID
and password are authenticated by the CICS server depends on whether
the terminal is sign-on capable or sign-on incapable.

Authorization
The CICS server checks that the terminal is allowed access to the requested
resource.

22 CICS TG for Multiplatforms V9.2: Developing Applications

The user ID and password can be set at terminal or connection level. Both types
can be set by the user application. If there are no user ID and password values for
the terminal, the values for the connection are used. For information about how to
set the connection user ID and password, refer to the information about Security in
the CICS Transaction Gateway: UNIX and Linux Administration or the CICS
Transaction Gateway: Windows Administration.

The requirement for a user ID and password depends on the CICS server
configuration.

Specifying terminal sign-on capability
Sign-on capability is one of the attributes that can be specified for extended
terminals.

A request to change sign-on capability is effective only for z/OS® CICS servers. For
other server types and for basic terminals, sign-on capability depends on the
default for the CICS server type. The sign-on capability of a terminal is returned to
the user application in the sign-on capability field of the terminal details. The
following table shows the results of a request to override the default sign-on
capability for different CICS servers.

Table 2. Specifying the sign-on capability attribute for different servers

Request Resulting sign-on capability of terminal Value of sign-on capability in terminal details

CICS
Transaction
Server for
z/OS

CICS
Transaction
Server for
iSeries

TXSeries and
CICS
Transaction
Server for
Windows

CICS
Transaction
Server for
z/OS

CICS
Transaction
Server for
iSeries

TXSeries and
CICS
Transaction
Server for
Windows

sign-on capable sign-on
capable

sign-on
incapable

sign-on
capable

sign-on
capable

sign-on
unknown

sign-on
unknown

sign-on
incapable

sign-on
incapable

sign-on
incapable

sign-on
capable

sign-on
incapable

sign-on
unknown

sign-on
unknown

The following sections describe sign-on incapable and sign-on capable terminals.

Sign-on incapable terminals
Sign-on incapable terminals do not allow sign-on transactions to be run.

When a terminal is sign-on incapable, the user ID and password must be passed to
the CICS server if the connection is configured with ATTACHSEC=IDENTIFY, and
are then authenticated for every transaction started against that terminal. The
transaction is executed in the server with the authorities assigned to the
authenticated user ID.

The user ID and password for an extended terminal can be specified by a user
application when a terminal is added.

The user application can change the security settings of an extended terminal at
any time. The new settings will be used when further transactions are started for
the terminal.

The user application can also set a default user ID and password to be used with a
particular CICS server. For details, refer to the information about Default

Chapter 5. External Presentation Interface (EPI) 23

connection settings in the CICS Transaction Gateway: UNIX and Linux Administration
or the CICS Transaction Gateway: Windows Administration.

Sign-on capable terminals
Sign-on capable terminals allow CICS supplied (CESN), or user-written sign-on
transactions to be run.

When a terminal is sign-on capable it is the responsibility of the user application to
start the sign-on transaction. The user ID and password are determined by the user
application and are embedded in the 3270 data. If the user ID is authenticated,
subsequent transactions started at the terminal are executed in the CICS server
with the authorities assigned to the authenticated user ID. Transactions started
before a sign-on transaction has completed have the authorities granted to the
default user ID defined for the CICS server. A check is also done against the user
ID associated with the connection to see whether the CICS Transaction Gateway
has authority to execute the transaction.

The user application can start a sign-off transaction at the terminal. The user can
also be signed off by the server following a predefined period of inactivity. The
user application should allow for this possibility. In each case, subsequent
transactions started at the terminal are executed with the authorities assigned to
the CICS server default user ID.

For transactions attempting to access resources, security checking is done against
the user ID associated with the connection and the signed-on user's user ID.

Automatic transaction initiation (ATI)
ATI is the CICS process that allows a transaction to be scheduled against a
specified terminal.

An ATI request from an EPI application can start a CICS server transaction on any
EPI installed terminal.

Either the user application or the CICS systems administrator can enable or disable
automatic initiation of transactions for a terminal. The default state is disabled. If
ATI requests are enabled and an ATI request is issued in the CICS server, the
request is started when the terminal is idle. Any ATI requests issued while ATI
requests are disabled are queued, and started when ATI requests are next enabled.
ATI requests for a terminal are queued while a transaction is in progress on that
terminal.

Restrictions on application design when using EPI
A list of actions that cannot be carried out when using an EPI user application.

A CICS transaction that sends data to an EPI user application cannot:
v Use 14- and 16- bit addresses and structured fields, because the CICS

Transaction Gateway supports only the ASCII-7 subset of the 3270 data stream
architecture. Only 12-bit SBA addressing is supported. Consequently, the
maximum screen size for EPI terminals is 27 rows by 132 columns.

v Use the purge function to cancel ATI requests queued against the terminal. If a
CICS transaction uses EXEC CICS START with the DELAY option to schedule
transactions to a terminal resource autoinstalled by a user application, the user
application should ensure that delayed ATI requests are not lost when the

24 CICS TG for Multiplatforms V9.2: Developing Applications

terminal resource is deleted. See your server documentation to determine the
effects of deleting a terminal resource when delayed ATI requests are
outstanding.

An EPI user application cannot:
v Use basic mapping support (BMS) paging.
v Determine the alternative screen size of the terminal resource definition,

although it can determine the default screen size.

An EPI user application communicating with CICS Transaction Server for iSeries
cannot:
v Support languages that use DBCS.
v Support sign-on capable terminals.
v Start the CEDA transaction from a client terminal.
v Use PF1 to get CICS online help from a client terminal.

3270 data streams for the EPI
All data flows for the EPI are in ASCII format, and structured fields are not
supported. The contents of the data buffer might be code-page converted if the
buffer is passed between CICS systems, in which case the data must be limited to
ASCII and EBCDIC characters.

The data streams implemented for the EPI follow those defined in the 3270 Data
Stream Programmer’s Reference. Data flows are defined under the following topics in
the 3270 Data Stream Programmer’s Reference:
v Introduction to the 3270 data stream (excluding structured fields)
v 3270 data stream commands
v Character sets, orders and attributes
v Keyboard and printer operations

If a CICS transaction issues EXEC CICS SEND MAP and EXEC CICS RECEIVE
MAP commands, CICS converts the data from the BMS structure to a 3270 data
stream. In this case, the application receives 3270 data from CICS and returns valid
3270 data to be converted for the transaction.

BMS map conversion utilities
The CICS Transaction Gateway provides utilities to allow CICS BMS map
definitions to be imported, and the resulting information used by EPI-based user
applications to access BMS map data as named fields.

Two separate utilities are provided, one for use with the Java EPI support classes
and the other for the C++ classes.

Chapter 5. External Presentation Interface (EPI) 25

26 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 6. External Security Interface (ESI)

The External Security Interface (ESI) enables user applications to perform
security-related tasks such as the viewing and updating of user IDs and passwords
held by an external security manager (ESM), or the setting of default security
credentials used on CICS server connections.

I/O parameters on ESI calls
Information about the input and output parameters on ESI calls.

Input parameters

New password
The new password or password phrase for the specified user.

Current password
The current password or password phrase for the specified user.

Password
The password or password phrase to be set or verified for the specified
user.

System
The name of a CICS server containing the user whose password or
password phrase is to be set, changed, or verified. If this value is not
specified the default CICS server is selected.

User ID
The ID of the user whose password or password phrase is to be set,
changed, or verified.

Output parameters

Expiry date
The date on which the password or password phrase will expire.

Expiry time
The time at which the password or password phrase will expire.

Invalid count
The number of times an invalid password or password phrase has been
entered for the specified user.

Last access date
The date on which the user ID was last accessed.

Last access time
The time at which the user ID was last accessed.

Last verify date
The date on which the password or password phrase was last verified.

Last verify time
The time at which the password or password phrase was last verified.

© Copyright IBM Corp. 1998, 2016 27

Using ESI to manage passwords
ESI provides a security management API which can be used to manage the user
IDs and passwords that the ECI and EPI use.

The user application can perform the following functions:
v Verify that a password matches the password or password phrase recorded by

the CICS External Security Manager (ESM) for a specified user ID.
v Change the password or password phrase recorded by the CICS ESM for a

specified user ID.
v Determine if a user ID is revoked, or a password or password phrase has

expired.
v Obtain additional information about a verified user such as:

– When the password or password phrase is due to expire
– When the user ID was last accessed
– The date and time of the current verification
– How many unauthorized attempts there have been for this user since the last

valid access

To use the ESI interface, CICS Transaction Gateway must be connected to the CICS
server with SNA or IPIC. An ESM, such as Resource Access Control Facility (IBM
RACF®), which is part of the IBM z/OS Security Server, or an equivalent ESM,
must also be available to the CICS server.

28 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 7. JSON web services

CICS TG can create web services that use JavaScript Object Notation (JSON) for
HTTP request and response payloads.

CICS TG converts the JSON data into a channel or COMMAREA payload, which is
then passed to a CICS program. CICS TG then converts the data returned from
CICS back to JSON.

Web service operation

Web service
client

WSBind filectg.ini file

JSON
CICS TG CICS

program

COMMAREA
or channel

CICS TG supports two types of JSON web service, Request-Response and RESTful:

Request-Response

A Request-Response web service accepts a JSON object as input and produces
another JSON object for output. The web service is implemented by a program in
CICS, and CICS TG is responsible for transforming the incoming JSON object into
application data and calling the program in CICS. The application returns output
data back to CICS TG, and CICS TG transforms the output data into JSON data to
return to the client.

In this scenario, the web service client must call the web service with the HTTP
POST method.

A Request-Response mode JSON web service can be developed in either bottom-up
mode or top-down mode.

In bottom-up mode, an existing CICS program is exposed as a JSON web service.
The JSON web services assistant is used to generate new JSON Schemas that
describe the input and output JSON data of the web service based on existing
high-level language structures.

In top-down mode a new JSON web service can be developed to implement an
interface that is described by existing JSON Schemas. The JSON web services
assistant is used to generate new high-level language structures, that describe the
CICS program payload based on the existing JSON Schemas.

© Copyright IBM Corp. 1998, 2016 29

The Request-Response pattern can be used to build JSON web services that target
either COMMAREA or channel based CICS programs.

RESTful

A RESTful JSON web service implements the architectural principles of the
REpresentational State Transfer (REST) design pattern. This design pattern is
unlikely to be relevant for existing CICS programs, so is available only in
top-down mode.

A JSON web services assistant is used to generate new high-level language
structures that describe the CICS program payload based on the existing JSON
Schema. A CICS program must be written to implement the service and it needs to
behave differently depending on the HTTP method and URI that was used for the
incoming request.

CICS TG implements a pure style of RESTful application, where the data format
for POST (create) GET (inquire) and PUT (replace) are the same. RESTful JSON
web service programs must use a channel-based program interface. Using a
COMMAREA is not supported. This means that RESTful JSON web services can
only be implemented when CICS TG is connected to CICS using the IPIC protocol.

For more information, see “Concepts of RESTful JSON web services” on page 31.

Creating a JSON web service

You can create a JSON web service from high-level language structures
(bottom-up) or from JSON Schemas (top-down). The JSON web services assistant
helps you create a JSON web service by generating a WSBind file, and JSON
Schemas or high-level language structures. The JSON web services assistant is run
using the executable script ctgassist. The assistant is located in the directory
<install_path>/bin or in the CICS TG SDK directory cicstgsdk/webservices/
assistant.

COBOL, C, PL/I
structures

Channel
description
documents

wsbind file

JSON schemas

JSON
web services

assistant

Bottom-up mode

30 CICS TG for Multiplatforms V9.2: Developing Applications

Top-down mode

COBOL, C, PL/I
structures

wsbind file

JSON schemas
JSON

web services
assistant

WSBind files

A web service binding (WSBind) file describes which CICS program is called and
how the data is transformed between JSON data format and CICS program
payload when a JSON web service is started.

JSON Schemas

JSON Schemas are used by JSON web services to describe the JSON data format
for HTTP request and response payloads. For more information on the JSON
Schema specification, see http://json-schema.org/. At the time of writing this is a
draft specification which is making its way through the Internet Engineering Task
Force (IETF) standardization process. The JSON web services assistant supplies a
partial implementation of draft 4 of this emerging specification.

Concepts of RESTful JSON web services
The concepts behind RESTful web services and how they differ from
Request-Response services.

RESTful web services

REpresentational State Transfer, or REST, is a design pattern for interacting with
resources stored in a server. Each resource has an identity, a data type, and
supports a set of actions. The RESTful design pattern is normally used in
combination with HTTP. In this context, the resource's identity is its URI; the data
type is its Media Type; and the actions are made up of the standard HTTP
methods (GET, PUT, POST, and DELETE).

This style of service differs from Request-Response style web services as follows:
v Request-Response services interact with a program, whereas RESTful services

typically interact with data (referred to as “resources”).
v Request-Response services involve application defined “operations”, but RESTful

services avoid application-specific concepts and rely instead on using just the
HTTP methods to specify the operation.

v Request-Response services have different data formats for each message, but
RESTful services typically share a data format across different HTTP methods.

The four major HTTP methods define the four operations that are commonly
implemented by RESTful Services. The HTTP POST method is used for creating a
resource; GET is used to query it; PUT is used to change it; and DELETE is used to
remove it. The most common RESTful architecture involves a shared data model
that is used across these four operations. This data model defines the input to the

Chapter 7. JSON web services 31

http://json-schema.org/

POST method (create), the output for the GET method (inquire) and the input to
the PUT method (replace). This simple design pattern is popular within the
RESTful community, but it is not the only RESTful design pattern. Some RESTful
APIs are designed in other ways.

A fifth HTTP method, called “HEAD”, is sometimes supported by RESTful web
services. This method is equivalent to GET, except that it returns only HTTP
headers, and no body data. It can be used to test the existence of a resource
without returning the resource data itself. Not all RESTful APIs support the use of
the HEAD method.

Traditional CICS applications are unlikely to match the RESTful architectural
pattern. Typical CICS applications implement multiple operations, each of which
have data models for input and output formats. These existing operations are
unlikely to map directly to the four HTTP methods. For this reason, the RESTful
architectural pattern is primarily aimed at new applications in CICS. To expose
existing CICS applications as RESTful web services, you might need to wrap them
with a new interface that conforms to the RESTful principles.

The URI

The identity of a RESTful service is indicated by its URI. A URI can be made up of
several components, including the host name, port number, the path, and an
optional query string. The domain name and port number together target a
configured HTTP or HTTPS protocol handler in CICS TG. The URI path is a
qualifier, and might be sufficient to uniquely identify the service. However, many
RESTful web services use an extra query string to identify the precise resource.
Consider the following examples:
v http://www.example.org:10000/JSONServices/AccountService

v https://www.example.org:10000/JSONServices?Service=Account

In the first example, the URI path is JSONServices/AccountService. In the second
example, the path is JSONServices and there is an extra query string of
Service=Account. Both styles of URI are considered to be acceptable for a JSON
web service implementation.

The URI used to start the web service is defined in the Uri parameter of a CICS
TG web service definition or the WSBind file. This URI can contain a query string.

Creating a Request-Response JSON web service from high-level
language structures

How to create a JSON web service, starting from high-level language structures in
COBOL, C, or PL/I, or channel description documents.

Procedure
1. Create high-level language structures or channel description documents for the

request and response data structure for the CICS program. For existing CICS
programs, you may already have an appropriate file or you may need to create
one to match the program specification.

2. Run the JSON web services assistant to create a WSBind file and JSON
Schemas.

3. Configure CICS Transaction Gateway with an HTTP or HTTPS protocol handler
and a JSON web service using the generated WSBind file.

32 CICS TG for Multiplatforms V9.2: Developing Applications

4. Start CICS TG and test that you can invoke the JSON web service. Generated
JSON Schemas can be used to develop a JSON web services client to invoke the
web service.

Creating a channel description document

If the CICS program uses channels with multiple containers, create a channel
description document that describes how each container appears in the JSON
Schemas. Alternatively, you can use a single container in a channel and not create a
channel description document. For more information, see “Creating a channel
description document” on page 43.

The JSON assistant

Run the CICS TG JSON web services assistant by customizing the CTGLS2JS.txt
sample parameter file using MAPPING-MODE=LS2JS and running ctgassist
<parameter file>. The assistant generates a WSBind file and JSON schemas from
the language structures. CTGLS2JS.txt contains the required parameters for the
LS2JS mapping mode. For more information, see “Creating a Request-Response
WSBind file from a language structure” on page 37.

The ctgassist program and samples are shipped with the CICS TG SDK in the
webservices directory

Creating a Request-Response JSON web service from JSON Schemas
How to create a Request-Response JSON web service, starting from JSON Schemas.

Procedure
1. Create JSON Schemas to describe the format of the request and response JSON

data.
2. Run the JSON web services assistant to create a WSBind file and high-level

language structures.
3. Write a CICS program using the generated high-level language structures that

implements the business logic for the JSON web service.
4. Configure CICS Transaction Gateway with a HTTP or HTTPS protocol handler

and a JSON web service using the generated WSBind file.
5. Start CICS Transaction Gateway and test that you can invoke the JSON web

service.

The JSON assistant

Run the CICS TG JSON web services assistant by customizing the CTGJS2LS.txt
sample parameter file, or creating your own parameter file using
MAPPING-MODE=JS2LS with JSON-SCHEMA-REQUEST and JSON-SCHEMA-RESPONSE and
running ctgassist <parameter file>. The assistant generates WSBind file and
high-level language structures from the JSON Schemas provided. CTGJS2LS.txt
contains the required parameters for creating a Request-Response JSON web
service WSBind file from JSON Schemas. Consider these options when you are
creating a new application for web services:
v Which mechanism will CICS TG use to pass data to the CICS program? You can

use a channel and pass the data in containers or use a COMMAREA. Specify
them with the PGMINT parameter.

Chapter 7. JSON web services 33

v Which language do you want to generate? The assistant can generate COBOL,
C/C++, or PL/I language data structures. Specify the language with the LANG
parameter.

For more information, see “Creating a Request-Response WSBind file from JSON
Schemas” on page 45.

Writing the CICS program

If the program interface is COMMAREA, the CICS program can be written in the same
way as any other COMMAREA-based program. The data that is passed in the
COMMAREA conforms to the language structure generated by the JSON web
services assistant.

If the program interface is channel, the data is passed in a single BIT container,
which is named DFHWS-DATA by default. To use a container with a different name
when you run the JSON web services assistant, specify the CONTID parameter. The
data in the container conforms to the language structure generated by the JSON
web services assistant.

The data is aligned differently depending on the value of TARGET-CICS-
PLATFORM, for more information, see “Creating a Request-Response WSBind file
from JSON Schemas” on page 45.

Creating a RESTful JSON web service
How to create a RESTful JSON web service.

Procedure
1. Create a JSON Schema to describe the format of the RESTful JSON data.
2. Run the JSON web services assistant to create a WSBind file and high-level

language structure.
3. Write a CICS program using the generated high-level language structure that

implements the business logic for the JSON web service.
4. Configure CICS Transaction Gateway with a HTTP or HTTPS protocol handler

and a JSON web service using the generated WSBind file.
5. Start CICS Transaction Gateway and test that you can invoke the JSON web

service.

The JSON assistant

Run the CICS TG JSON web services assistant by customizing CTGJS2R.txt sample
parameter file, or create your own parameter file using MAPPING-MODE=JS2LS with
JSON-SCHEMA-RESTFUL and running ctgassist <parameter file>. The assistant
generates a WSBind file and high-level language structure from the JSON Schemas
provided. Consider these options when you are creating a new application for web
services:
v Which HTTP methods will the web service support? By default, the GET, POST,

PUT, and DELETE methods are all enabled, but you might not want to support
all of these methods, or you might want to also support the HEAD method.
Specify which methods are enabled with the HTTP-METHODS parameter.

v Which language do you want to generate? The assistant can generate COBOL,
C/C++, or PL/I language data structures. Specify the language with the LANG
parameter.

34 CICS TG for Multiplatforms V9.2: Developing Applications

For more information, see “Creating a RESTful WSBind file” on page 51.

Writing the CICS program

For all HTTP methods except DELETE, data is passed to and returned from the
CICS program in a single BIT container, which is named DFHWS-DATA by default. To
use a container with a different name, specify the CONTID parameter when you run
the assistant. The data in the container conforms to the language structure
generated by the assistant.

In addition to the data container, the following CHAR containers are passed to the
CICS program:

Table 3. CHAR containers passed to the CICS program

Container name Description

DFHHTTPMETHOD The HTTP method that is used to call the
web service, such as GET, POST, PUT,
DELETE, or HEAD. The value is padded
with spaces to a length of 8 characters.

DFHWS-URIMAPPATH The URI property of the CICS TG web
service definition that was matched.

DFHWS-URI The path of the URI used to call the web
service.

DFHWS-URI-QUERY The query string of the URI used to call the
web service.

DFHWS-URI-RESID The resource ID of the URI used to call the
web service. The resource ID is the portion
of the URI that was matched by the
wildcard character.

The CICS program can use the following CHAR containers to report errors to the
client application by setting the HTTP status code, and to return non-JSON
responses:

Table 4. CHAR containers received from the CICS program

Container name Description

DFHHTTPSTATUS Specifies the HTTP status code to return to
the web service client. The content of the
container must be the same as the initial
status line of an HTTP response message,
which has the following structure:

HTTP/1.1 nnn tttttttt

where nnn specifies the three-digit decimal
HTTP status code and tttttttt specifies the
human-readable status text that is associated
with the status code.

DFHRESPONSE Specifies the content of the HTTP response
that is returned to the web service client.

Chapter 7. JSON web services 35

Table 4. CHAR containers received from the CICS program (continued)

Container name Description

DFHMEDIATYPE Specifies the content type of the data in the
DFHRESPONSE container. The content of the
container must consist of a type and subtype
that are separated by a slash character. For
example:

text/plain
image/svg+xml

When the GET or HEAD method is used to call the web service, no data is passed
to the CICS program. The program must update the language structure with data
associated with the resource specified in the DFHWS-URI-RESID container, then write
the language structure into the data container. To report an error, the program
must use the DFHHTTPSTATUS container to set the HTTP status code.

When the POST or PUT methods are used to call the web service, data is passed to
the CICS program in the data container. The program must read the language
structure from the data container and use the contents to create a new resource
(POST) or update an existing resource (PUT). To return a response to the client,
such as the identifier or URI of the new resource, the program must use the
DFHRESPONSE and DFHMEDIATYPE containers. To report an error, the program must
use the DFHHTTPSTATUS container to set the HTTP status code. When the DELETE
method is used to call the web service, the data container is not used. The program
deletes the resource that is specified in the DFHWS-URI-RESID container. To report an
error, the program uses the DFHHTTPSTATUS container to set the HTTP status code.

The data is aligned differently depending on the value of TARGET-CICS-
PLATFORM, for more information, see “Creating a Request-Response WSBind file
from JSON Schemas” on page 45.

The JSON web services assistant
The JSON web services assistant creates a mapping between JSON Schemas and
language structures.

Before you create a JSON web service, you must have either:
v copybooks, header files and/or channel description documents which describe

the interface to the CICS program, or
v JSON Schema files describing the interface to the JSON web service.

The JSON web services assistant is a supplied utility that helps you to create the
necessary artifacts for a new JSON web service. These artifacts include WSBind
files, language structures and JSON schemas.

A WSBind file describes which CICS program to call when a JSON web service is
invoked and how JSON is converted to a channel or COMMAREA payload.

The JSON web services assistant is run using the executable script ctgassist. The
assistant is located in the directory <install_path>/bin or in the CICS TG SDK
directory cicstgsdk/webservices/assistant. ctgassist requires Java 7 or later to
be available.

36 CICS TG for Multiplatforms V9.2: Developing Applications

The JSON web services assistant can create a JSON Schema from a high-level
language structure, or a high-level language structure from an existing JSON
Schema. It supports COBOL, C/C++, and PL/I. It also generates information to
enable runtime transformation of the JSON data to containers and COMMAREAs,
and vice versa.

CICS TG is compatible with WSBind files generated by the CICS Transaction
Server or IBM Rational Application Developer for IBM z Systems™ versions of the
JSON web services assistant. See their documentation for guidance on how to use
those interfaces. WSBind files that are generated by the CICS Transaction Gateway
JSON web services assistant are compatible with CICS Transaction Server versions
that support CICS JSON assistant MINIMUM-RUNTIME-LEVEL=4.0. However, if
the CCSID parameter is specified with a non-EBCDIC value, then the WSBind file
cannot be used in CICS Transaction Server.

Creating a Request-Response WSBind file from a language
structure

The JSON web services assistant generates a WSBind file and JSON Schemas from
high-level language data structures when using parameter MAPPING-MODE=LS2JS.

The executable script ctgassist is provided to run the JSON web services
assistant. The script takes a single parameter which is the name of a file containing
<name>=<value> pairs. A sample parameter file, CTGLS2JS.txt is provided in the
<install path>/samples/webservices directory.

CTGLS2JS.txt contains the required parameters for creating a Request-Response
JSON web service WSBind file from high-level language structures.

The temporary workspace

The JSON web services assistant requires a temporary workspace, so it uses the
directory value that is specified in the TMPDIR environment variable. If TMPDIR
is not specified the default /tmp is used. If TMPDIR is specified, it must be the
location of a directory, and the user ID used to run the script must have read and
write permission to this directory.

Note: The JSON web services assistant does not lock access to the files. Therefore,
if two or more instances of JSON web services assistant run concurrently, and use
the same temporary workspace files, nothing prevents one script from overwriting
the workspace files while another script is using them, leading to unpredictable
failures. You should devise a naming convention, and operating procedures, that
avoid this situation.

Parameter use
v LS-REQUEST and LS-RESPONSE must be defined, unless REQUEST-CHANNEL

and RESPONSE-CHANNEL are defined. These pairs are mutually exclusive.
v You can specify the input parameters in any order.
v Each parameter must start on a new line.
v There must be no blanks or other whitespace characters between <name> and

<value>, only the = symbol.
v If a parameter is too long to fit on a single line, use a backslash (\) character at

the end of the line to indicate that the parameter continues on the next line.
Everything, including spaces before the backslash is considered part of the
parameter. For example:

Chapter 7. JSON web services 37

WSBIND=wsbinddir\
/app1

is equivalent to
WSBIND=wsbinddir/app1

Parameter descriptions

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the
application data structure. The default value is EBCDIC CCSID 037 when
TARGET-CICS-PLATFORM is zOS, IBM-i, VSE, or not specified, otherwise it is
ASCII CCSID 437.

If a value is specified, it must be supported by Java. For more information, see
IBM z/OS Unicode Services User's Guide and Reference and CICS Transaction
Gateway: Programming Reference.

If the CICS application program specified on the PGMNAME parameter is defined
in the CICS conversion table DFHCNV, then CCSID should be set to the value
specified on the CLIENTCP parameter in the DFHCNV entry.

CHAR-OCCURS={STRING|ARRAY}
Specifies how character arrays in the language structure are mapped. For
example, PIC X OCCURS 20. This parameter is only for use by COBOL language.

ARRAY
Character arrays are mapped to a JSON array so that every character is
mapped as an individual JSON element.

STRING
Character arrays are mapped to a JSON string so that the entire
COBOL array is mapped as a single JSON element.

CHAR-USAGE=NATIONAL|DBCS
In COBOL, the national data type, PIC N, can be used for UTF-16 or DBCS
data. This setting is controlled by the NSYMBOL compiler option. You must set
the CHAR-USAGE parameter on the assistant to the same value as the
NSYMBOL compiler option to ensure that the data is handled appropriately.
This parameter is typically set to CHAR-USAGE=NATIONAL when you use
UTF-16.

DBCS Data from PIC (n) fields is treated as UTF-16 encoded data.

NATIONAL
Data from PIC (n) fields is treated as DBCS encoded data.

CHAR-VARYING={NO|NULL|COLLAPSE|BINARY}
Specifies how character fields in the language structure are mapped. A
character field in COBOL is a Picture clause of type X, for example PIC(X) 10;
a character field in C/C++ is a character array. You can select these options:

NO Character fields are mapped to a JSON string and are processed as
fixed-length fields. The maximum length of the data is equal to the
length of the field.

This value does not apply to Enterprise and Other PL/I language
structures.

NULL Character fields are mapped to a JSON string and are processed as
null-terminated strings. CICS TG adds a terminating null character
when transforming from a JSON message. The maximum length of the

38 CICS TG for Multiplatforms V9.2: Developing Applications

character string is calculated as one character less than the length
indicated in the language structure. NULL is the default value for the
CHAR-VARYING parameter for C/C++.

This value does not apply to Enterprise and Other PL/I language
structures.

COLLAPSE
Character fields are mapped to a JSON string. Trailing white space in
the field is not included in the JSON message. The inbound JSON
message is parsed to remove all leading, trailing, and embedded white
space. For COBOL and PL/I, the default is COLLAPSE.

BINARY
Character fields are mapped to a JSON string that contains base64
encoded data and are processed as fixed-length fields.

CONTID=value
In a service provider, specifies the name of the container that holds the
top-level data structure that is used to represent a JSON message.

The length of the container that CICS TG passes to the target application
program is the greater of the lengths of the request container and the response
container.

DATA-TRUNCATION={DISABLED|ENABLED}
Specifies if variable length data is tolerated in a fixed-length field structure:

DISABLED
If the data is less than the fixed length that CICS TG is expecting, then
CICS TG rejects the truncated data and issues an error message.

ENABLED
If the data is less than the fixed length that CICS TG is expecting, then
CICS TG tolerates the truncated data and processes the missing data as
null values.

DATETIME={UNUSED|PACKED15}
Specifies if potential ABSTIME fields in the high-level language structure are
mapped as time stamps:

PACKED15
Packed decimal fields of length 15 (8 bytes) are treated as CICS
ABSTIME fields, and mapped as timestamps.

UNUSED
Packed decimal fields of length 15 (8 bytes) are not treated as
timestamps.

JSON-SCHEMA-REQUEST=value
This parameter is mandatory.

The value indicates the filename where the request JSON Schema is stored.

JSON-SCHEMA-RESPONSE=value
This parameter is mandatory.

The value indicates the filename where the response JSON Schema is stored.

LANG=COBOL
Specifies that the programming language of the high-level language structure
is COBOL.

Chapter 7. JSON web services 39

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure
is Enterprise PL/I.

LANG=PLI-OTHER
Specifies that the programming language of the high-level language structure
is a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high-level language structure
is C.

LANG=CPP
Specifies that the programming language of the high-level language structure
is C++.

LOGFILE=value
The fully qualified path of the file into which the JSON web services assistant
writes its activity log and trace information. The JSON web services assistant
creates the file, but not the directory structure, if it does not exist.

Typically, you do not use this file, but it might be requested by the IBM service
organization if you encounter problems with the JSON web services assistant.

LS-CODEPAGE=value
Specifies the code page that is used for the files specified in the LS-REQUEST
and LS-RESPONSE parameters, where value is a CCSID number or a Java code
page number. If this parameter is not specified, the current code page is used.

For example, LS-CODEPAGE=037.

LS-REQUEST=value
Specifies a filename that the JSON web services assistant uses to generate the
names of the files that contain the high-level language structures for the web
service request, which is the input data to the application program.

This is a mandatory parameter, unless you specify REQUEST-CHANNEL and
RESPONSE-CHANNEL.
If you specify LS-REQUEST, you must also specify LS-RESPONSE. The value that is
specified must be different to the value specified on the LS-RESPONSE
parameter.

LS-RESPONSE=value
Specifies a filename that the JSON web services assistant uses to generate the
names of the files that contain the high-level language structures for the web
service response, which is the output data from the application program.

This is a mandatory parameter, unless you specify REQUEST-CHANNEL and
RESPONSE-CHANNEL..
If you specify LS-RESPONSE you must also specify LS-REQUEST. The value that is
specified must not be the same as the value specified on the LS-REQUEST
parameter.

MAPPING-MODE=LS2JS
This parameter is mandatory.

Indicates mapping from language structure to JSON.

PGMINT={CHANNEL|COMMAREA}
For a service provider, specifies how CICS TG passes data to the target
application program:

40 CICS TG for Multiplatforms V9.2: Developing Applications

CHANNEL
CICS TG uses a channel interface to pass data to the target application
program.
v The channel can contain multiple containers. Use the

REQUEST-CHANNEL and RESPONSE-CHANNEL parameters. Do not specify
LS-REQUEST, or LS-RESPONSE.

COMMAREA
CICS TG uses a communication area to pass data to the target
application program.

When the target application program has processed the request, it must use the
same mechanism to return the response. If the request was received in a
communication area, then the response must be returned in the communication
area; if the request was received in a container, the response must be returned
in a container. The length of the communication area or container that CICS
TG passes to the target application program is the greater of the lengths of the
request communication area or container and the response communication area
or container.

PGMNAME=value
Specifies the name of the CICS PROGRAM resource for the target application
program that is exposed as a web service.

REQUEST-CHANNEL=value
This parameter is optional but if you do not specify REQUEST-CHANNEL and
RESPONSE-CHANNEL, then you must specify LS-REQUEST and LS_RESPONSE. If you
do specify REQUEST-CHANNEL and RESPONSE-CHANNEL, then you cannot specify
LS-REQUEST and LS_RESPONSE.

Specifies the name and location of a channel description document. The
channel description describes the containers that the web service provider
application can use in its interface when it receives a JSON message from a
web service requester. The channel description is a JSON document that must
conform to the CICS supplied channel schema.

RESPONSE-CHANNEL=value
This parameter is optional but if you do not specify REQUEST-CHANNEL and
RESPONSE-CHANNEL, then you must specify LS-REQUEST and LS_RESPONSE. If you
do specify REQUEST-CHANNEL and RESPONSE-CHANNEL, then you cannot specify
LS-REQUEST and LS_RESPONSE.

Specifies the name and location of a channel description document. The
channel description describes the containers that the web service provider
application can use in its interface when it sends a JSON response message to
a web service requester. The channel description is a JSON document that must
conform to the CICS supplied channel schema.

STRUCTURE=(request,response)
For C and C++ only, specifies the names of the high-level structures that are
contained in the files that are specified in the LS-REQUEST and LS-RESPONSE
parameters:

request
Specifies the name of the high-level structure that contains the request
when the LS-REQUEST parameter is specified. The default value is
DFHREQUEST.

If you specify a value, the file must contain a high-level structure with the
name that you specify or a structure named LS-RESPONSE if you do not
specify a name.

Chapter 7. JSON web services 41

response
Specifies the name of the high-level structure that contains the response
when the LS-RESPONSE parameter is specified. The default value is
DFHRESPONSE.

If you specify a value, the file must contain a high-level structure with the
name that you specify or a structure named LS-RESPONSE if you do not
specify a name.

SYNCONRETURN={NO|YES}
Specifies whether the remote web service can issue a sync point.

NO The remote web service cannot issue a sync point. This value is the
default. If the remote web service issues a sync point, it fails with an
ADPL abend.

YES The remote web service can issue a sync point. If you select YES, the
remote task is committed as a separate unit of work when control
returns from the remote web service. If the remote web service updates
a recoverable resource and a failure occurs after it returns, the update
to that resource cannot be backed out.

TARGET-CICS-PLATFORM={zOS|AIX|HP-UX|Solaris|IBM-i|VSE|LinuxI|Windows}
Specifies the platform for the CICS server that receives requests from this web
service.

zOS CICS Transaction Server for IBM z/OS

AIX IBM TXSeries® for Multiplatforms on IBM AIX®

HP-UX
IBM TXSeries for Multiplatforms on HP-UX

Solaris
IBM TXSeries for Multiplatforms on Solaris

IBM-i CICS Transaction Server for i

VSE CICS Transaction Server for VSE/ESA

LinuxI
IBM TXSeries for Multiplatforms on Intel Linux

Windows
IBM TXSeries for Multiplatforms on Microsoft Windows

For IBM z/OS, data is aligned on the IBM z/OS default boundaries. For all
other platforms data is aligned on natural boundaries:

Table 5. Natural boundaries

Data type Storage (bytes) Alignment (bytes)

Short 2 2

Int 4 4

Long 8 8

Float 4 4

Double 8 8

TRANSACTION=name
Specifies the 1-4 character name of a transaction identifier that is passed in the
EIBTRNID field of the exec interface block (EIB). If the web service is configured
with the defaultmirror property set to No, the value of this parameter also

42 CICS TG for Multiplatforms V9.2: Developing Applications

specifies the name of the mirror transaction which is attached when the CICS
program is called. The value of this parameter can be overridden by the
transactionid property in the CICS TG configuration file.

If you specify TRANSACTION you must also specify URI.

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

URI=value
Specifies the relative URI that a client uses to access the web service. The value
of this parameter can be overridden by the uri property in the CICS TG
configuration file.

The URI consists of a path and an optional query string. If the URI path ends
with *, the web service matches any request URI that starts with the specified
path. The trailing * character is not considered part of the URI to match. If the
URI contains a query string, the web service matches requests for the URI that
contains all of the specified query string parameters in any order.

USERID=id
Specifies a 1-8 character user ID. The mirror transaction is attached under this
user ID when the CICS program is called if the web service client does not
provide user credentials.

Acceptable characters:

A-Z a-z 0-9 $ @ #

If you specify USERID you must also specify URI.

WSBIND=value
The fully qualified path of the web service binding file. The JSON web services
assistant creates the file, but not the directory structure, if it does not exist. The
file extension is .wsbind.

Creating a channel description document
Create a channel description document when your service provider application
uses a channel interface with many containers.

About this task

Use an XML editor to create the channel description document. The schema for the
channel description is called channel.xsd and is installed in the
<install_path>/docs directory.

Procedure
1. Create an XML document with a <channel> element and the CICS channel

namespace:
<channel name="myChannel" xmlns="http://www.ibm.com/xmlns/prod/CICS/channel">
</channel>

2. Add a <container> element for every container that the application program
interface uses on the channel. You must use name, type and use attributes to
describe each container. The following example shows six containers with
different attribute values:

Chapter 7. JSON web services 43

<container name="cont1" type="char" use="required"/>
<container name="cont2" type="char" use="optional"/>
<container name="cont3" type="bit" use="required"/>
<container name="cont4" type="bit" use="optional"/>
<container name="cont5" type="bit" use="required">

<structure location="/u/userid/code/member.copybook"/>
</container>
<container name="cont6" type="bit" use="optional">

<structure location="/u/userid/code/member2.copybook"/>
</container>

The structure element indicates that the content is defined in a language
structure located in a partitioned data set member.

3. Save the XML document on the local file system.

Channel schema

The channel description document must conform to the following schema:
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com/xmlns/prod/CICS/channel"
xmlns:tns="http://www.ibm.com/xmlns/prod/CICS/channel" elementFormDefault="qualified">
<element name="channel">▌1▐

<complexType>
<sequence>

<element name="container" maxOccurs="unbounded" "unbounded" minOccurs="0">▌2▐
<complexType>

<sequence>
<element name="structure" minOccurs="0">▌3▐
<complexType>

<attribute name="location" type="string" use="required"/>
<attribute name="structure" type="string" use="optional"/>

</complexType>
</element>

</sequence>
<attribute name="name" type="tns:name16Type" use="required"/>
<attribute name="type" type="tns:typeType" use="required"/>
<attribute name="use" type="tns:useType" use="required"/>

</complexType>
</element>

</sequence>
<attribute name="name" type="tns:name16Type" use="optional" />

</complexType>
</element>

<simpleType name="name16Type">
<restriction base="string">

<maxLength value="16"/>
</restriction>

</simpleType>
<simpleType name="typeType">

<restriction base="string">
<enumeration value="char"/>
<enumeration value="bit"/>

</restriction>
</simpleType>
<simpleType name="useType">

<restriction base="string">
<enumeration value="required"/>
<enumeration value="optional"/>

</restriction>
</simpleType>

</schema>

Note:

▌1▐ This element represents a CICS channel.

44 CICS TG for Multiplatforms V9.2: Developing Applications

▌2▐ This element represents a CICS container within the channel.

▌3▐ A structure can only be used with bit mode containers. The location attribute
indicates the location of a file that maps the contents of container. The structure
attribute may be used in C and C++ to indicate the name of structure.

Creating a Request-Response WSBind file from JSON
Schemas

The JSON web services assistant generates a Request-Response WSBind file and
high-level language data structures from JSON Schemas when using parameter
MAPPING-MODE=JS2LS with JSON-SCHEMA-REQUEST and JSON-SCHEMA-RESPONSE.

The executable script ctgassist is provided to run the JSON web services
assistant. The script takes a single parameter which is the name of a file containing
<name>=<value> pairs. There is a sample parameter file: CTGJS2LS.txt in the
<install path>/samples/webservices directory.

The temporary workspace

The JSON web services assistant requires a temporary workspace, so it uses the
directory value that is specified in the TMPDIR environment variable. If TMPDIR
is not specified the default /tmp is used. If TMPDIR is specified, it must be the
location of a directory and the user ID used to run the script must have read and
write permission to this directory.

Note: The JSON web services assistant does not lock access to the IBM z/OS
UNIX System Services files or the data set members. Therefore, if two or more
instances of JSON web services assistant, run concurrently, and use the same
temporary workspace files, nothing prevents one script from overwriting the
workspace files while another script is using them, leading to unpredictable
failures. You should devise a naming convention, and operating procedures, that
avoid this situation.

Parameter use
v You can specify the input parameters in any order.
v Each parameter must start on a new line.
v There must be no blanks or other whitespace characters between <name> and

<value>, only the = symbol.
v If a parameter is too long to fit on a single line, use a backslash (\) character at

the end of the line to indicate that the parameter continues on the next line.
Everything, including spaces before the backslash is considered part of the
parameter. For example:
WSBIND=wsbinddir\
/app1

is equivalent to
WSBIND=wsbinddir/app1

Parameter descriptions

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the

Chapter 7. JSON web services 45

application data structure. The default value is EBCDIC CCSID 037 when
TARGET-CICS-PLATFORM is zOS, IBM-i, VSE, or not specified, otherwise it is
ASCII CCSID 437.

If a value is specified, it must be supported by Java. For more information, see
IBM z/OS Unicode Services User's Guide and Reference and CICS Transaction
Gateway: Programming Reference.

If the CICS application program specified on the PGMNAME parameter is defined
in the CICS conversion table DFHCNV, then set CCSID to the value specified on
the CLIENTCP parameter in the DFHCNV entry.

CHAR-MULTIPLIER={1|value}
Specifies the number of bytes to allow for each character. The value of this
parameter can be a positive integer in the range of 1 - 2,147,483,647. All
nonnumeric character-based mappings, are subject to this multiplier. Binary,
numeric, zoned, and packed decimal fields are not subject to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS
characters where you might opt for a multiplier of 3 to allow space for
potential shift-out and shift-in characters around every double-byte character at
run time.

When you set CCSID=1200 (indicating UTF-16), the only valid values for
CHAR-MULTIPLIER are 2 or 4. When you use UTF-16, the default value is 2. Use
CHAR-MULTIPLIER=2 when you expect application data to contain characters that
require 1 UTF-16 encoding unit. Use CHAR-MULTIPLIER=4 when you expect
application data to contain characters that require 2 UTF-16 encoding units.

Note: Setting CHAR-MULTIPLIER to 1 does not preclude the use of DBCS
characters, and setting it to 2 does not preclude the use of UTF-16 surrogate
pairs. However, if wide characters are routinely used then some valid values
will not fit into the allocated field. If a larger CHAR-MULTIPLIER value is used, it
can be possible to store more characters in the allocated field than are valid in
the XML. Care must be taken to conform to the appropriate range restrictions.

CHAR-VARYING={NO|NULL|YES}
Specifies how variable-length character data is mapped. Variable-length binary
data types are always mapped to either a container or a varying structure. If
you do not specify this parameter, the default mapping depends on the
language specified. You can select these options:

NO Variable-length character data is mapped as fixed-length strings.

NULL Variable-length character data is mapped to null-terminated strings.

YES Variable-length character data is mapped to a CHAR VARYING data
type in PL/I. In the COBOL, C, and C++ languages, variable-length
character data is mapped to an equivalent representation that
comprises two related elements: data-length and the data.

CHAR-VARYING-LIMIT={32767|value}
Specifies the maximum size of binary data and variable-length character data
that is mapped to the language structure. If the character or binary data is
larger than the value specified in this parameter, it is mapped to a container
and the container name is used in the generated language structure. The value
can range from 0 to the default 32,767 bytes.

CONTID=value
In a service provider, specifies the name of the container that holds the
top-level data structure that is used to represent a JSON message.

46 CICS TG for Multiplatforms V9.2: Developing Applications

The length of the container that CICS TG passes to the target application
program is the greater of the lengths of the request container and the response
container.

DATA-TRUNCATION={DISABLED|ENABLED}
Specifies if variable length data is tolerated in a fixed-length field structure:

DISABLED
If the data is less than the fixed length that CICS TG is expecting, then
CICS TG rejects the truncated data and issues an error message.

ENABLED
If the data is less than the fixed length that CICS TG is expecting, then
CICS TG tolerates the truncated data and processes the missing data as
null values.

DATETIME={PACKED15|STRING}
Specifies how JSON date-time elements are mapped to the language structure.

PACKED15
The default is that any JSON date-time element is processed as a time
stamp and is mapped to CICS ABSTIME format.

STRING
The JSON date-time element is processed as text.

DEFAULT-CHAR-MAXLENGTH={255|value}
Specifies the default array length of character data in characters for mappings
where no length is implied in the web service description document. The value
of this parameter can be a positive integer in the range of 1 - 2,147,483,647.

INLINE-MAXOCCURS-LIMIT={1|value}
Specifies whether inline variable repeating content is used based on the
maxItems JSON Schema keyword. Variably repeating content that is mapped
inline is placed in the current container with the rest of the generated language
structure. The variably repeating content is stored in two parts, as a counter
that stores the number of occurrences of the data and as an array that stores
each occurrence of the data. The alternative mapping for variably repeating
content is container-based mapping, which stores the number of occurrences of
the data and the name of the container where the data is placed. Storing the
data in a separate container has performance implications that might make
inline mapping preferable.

The value of INLINE-MAXOCCURS-LIMIT can be a positive integer in the range of
0 - 32,767. A value of 0 indicates that inline mapping is not used. A value of 1
ensures that optional elements are mapped inline. If the value of the maxOccurs
attribute is greater than the value of INLINE-MAXOCCURS-LIMIT, container-based
mapping is used; otherwise inline mapping is used.

When you decide whether you want variably repeating lists to be mapped
inline, consider the length of a single item of recurring data. If few instances of
long length occur, container-based mapping is preferable; if many instances of
short length occur, inline mapping is preferable.

JSON-SCHEMA-REQUEST=value
This is a mandatory parameter.

The value indicates the fully qualified path name for the file where the request
JSON Schema is stored.

JSON-SCHEMA-RESPONSE=value
This is a mandatory parameter.

Chapter 7. JSON web services 47

The value indicates the fully qualified path name for the file where the
response JSON Schema is stored.

LANG=COBOL
Specifies that the programming language of the high-level language structure
is COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure
is Enterprise PL/I.

LANG=PLI-OTHER
Specifies that the programming language of the high-level language structure
is a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high-level language structure
is C.

LANG=CPP
Specifies that the programming language of the high-level language structure
is C++.

LOGFILE=value
The fully qualified path of the file into which the JSON web services assistant
writes its activity log and trace information. If it does not exist, the JSON web
services assistant creates the file, but not the directory structure.

Typically, you do not use this file, but it might be requested by the IBM service
organization if you encounter problems with JS2LS.

LS-CODEPAGE=value
Specifies the code page that is used in the files that are specified in the
LS-REQUEST and LS-RESPONSE parameters, where value is a CCSID number or a
Java code page number. If this parameter is not specified, the current code
page is used. For example, LS-CODEPAGE=037.

LS-REQUEST=value
Specifies the fully qualified path name of the file that contains the high-level
language structures for the web service request that is generated from the
JSON Schema.

This is a mandatory parameter.

If you specify LS-REQUEST you must also specify LS-RESPONSE. The value that is
specified must not be the same as the value specified on the LS-RESPONSE
parameter.

LS-RESPONSE=value
Specifies the fully qualified path name of the file that contains the high-level
language structures for the web service response that is generated from the
JSON Schema.

This parameter is mandatory. If you specify LS-RESPONSE you must also specify
LS-REQUEST.

MAPPING-MODE=JS2LS
This is a mandatory parameter.

Indicates mapping from JSON to the language structure.

MAPPING-OVERRIDES={UNDERSCORES-AS-HYPHENS|LESS-DUP-NAMES}
Specifies whether the default behavior is overridden for the specified mapping
level when you generate language structures.

48 CICS TG for Multiplatforms V9.2: Developing Applications

LESS-DUP-NAMES
This parameter generates non-structural structure field names with
_value at the end of the name to enable direct referencing to the field.
For example, in the following PL/I language structure, when
MAPPING-OVERRIDES=LESS-DUP-NAMES is specified, level 12 field
streetName is suffixed with _value:
09 streetName,

12 streetName CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

The resulting structure is as follows:
09 streetName,

12 streetName_value CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

UNDERSCORES-AS-HYPHENS
For COBOL only. This parameter converts any underscores in the JSON
Schema to hyphens, rather than the character X, to improve the
readability of the generated COBOL language structures. If any field
name clashes occur, the fields are numbered to ensure that they are
unique. For more information, see “JSON Schema to COBOL mapping”
on page 63.

NAME-TRUNCATION={RIGHT|LEFT}
Specifies whether JSON names are truncated from the left or the right. The
JSON web services assistant truncates JSON names to the appropriate length
for the high-level language specified; by default names are truncated from the
right.

PGMINT={CHANNEL|COMMAREA}
For a service provider, specifies how CICS TG passes data to the target
application program:

CHANNEL
CICS TG uses a channel interface to pass data to the target application
program.

COMMAREA
CICS TG uses a communication area to pass data to the target
application program.

When the target application program has processed the request, it must use the
same mechanism to return the response. If the request was received in a
communication area, then the response must be returned in the communication
area; if the request was received in a container, the response must be returned
in a container. The length of the communication area or container that CICS
TG passes to the target application program is the greater of the lengths of the
request communication area or container and the response communication area
or container.

PGMNAME=value
Specifies the name of a CICS PROGRAM resource.

When JS2LS is used to generate a web service binding file that is used in a
service provider, you must supply this parameter. It specifies the resource
name of the application program that is exposed as a web service.

Chapter 7. JSON web services 49

STRUCTURE=(request,response)
For C and C++ only, specifies how the names of the request and response
structures are generated.

The generated request and response structures are given names of request01
and response01.
If one or both names are omitted, request is the value that is specified for the
filename in LS-REQUEST, and response is the value that is specified for the
filename in LS-RESPONSE.

SYNCONRETURN={NO|YES}
Specifies whether the remote web service can issue a sync point.

NO The remote web service cannot issue a sync point. This value is the
default. If the remote web service issues a sync point, it fails with an
ADPL abend.

YES The remote web service can issue a sync point. If you select YES, the
remote task is committed as a separate unit of work when control
returns from the remote web service. If the remote web service updates
a recoverable resource and a failure occurs after it returns, the update
to that resource cannot be backed out.

TARGET-CICS-PLATFORM={zOS|AIX|HP-UX|Solaris|IBM-i|VSE|LinuxI|Windows}
Specifies the platform for the CICS server that receives requests from this web
service.

zOS CICS Transaction Server for IBM z/OS

AIX IBM TXSeries for Multiplatforms on IBM AIX

HP-UX
IBM TXSeries for Multiplatforms on HP-UX

Solaris
IBM TXSeries for Multiplatforms on Solaris

IBM-i CICS Transaction Server for i

VSE CICS Transaction Server for VSE/ESA

LinuxI
IBM TXSeries for Multiplatforms on Intel Linux

Windows
IBM TXSeries for Multiplatforms on Microsoft Windows

For IBM z/OS, data is aligned on the IBM z/OS default boundaries. For all
other platforms data is aligned on natural boundaries:

Table 6. Natural boundaries

Data type Storage (bytes) Alignment (bytes)

Short 2 2

Int 4 4

Long 8 8

Float 4 4

Double 8 8

TRANSACTION=name
Specifies the 1-4 character name of a transaction identifier that is passed in the
EIBTRNID field of the exec interface block (EIB). If the web service is configured

50 CICS TG for Multiplatforms V9.2: Developing Applications

with the defaultmirror property set to No, the value of this parameter also
specifies the name of the mirror transaction which is attached when the CICS
program is called. The value of this parameter can be overridden by the
transactionid property in the CICS TG configuration file.

If you specify TRANSACTION you must also specify URI.

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

URI=value
Specifies the relative URI that a client uses to access the web service. The value
of this parameter can be overridden by the uri property in the CICS TG
configuration file.

The URI consists of a path and an optional query string. If the URI path ends
with *, the web service matches any request URI that starts with the specified
path. The trailing * character is not considered part of the URI to match. If the
URI contains a query string, the web service matches requests for the URI that
contains all of the specified query string parameters in any order.

USERID=id
Specifies a 1-8 character user ID. The mirror transaction is attached under this
user ID when the CICS program is called if the web service client does not
provide user credentials.

If you specify USERID you must also specify URI.

Acceptable characters:

A-Z a-z 0-9 $ @ #

WIDE-COMP3={YES|NO}
For COBOL only. Controls the maximum size of the packed decimal variable
length in the COBOL language structure.

NO JS2LS limits the packed decimal variable length to 18 when you
generate the COBOL language structure type COMP-3. If the packed
decimal size is greater than 18, message DFHPI9022W is issued to
indicate that the specified type is being restricted to a total of 18 digits.

YES JS2LS supports the maximum size of 31 when you generate the
COBOL language structure type COMP-3.

WSBIND=value
The fully qualified path of the web service binding file. The JSON web services
assistant creates the file, but not the directory structure, if it does not exist. The
file extension is .wsbind.

Creating a RESTful WSBind file
The JSON web services assistant generates a RESTful WSBind file and high-level
language data structures from a JSON Schema when using parameter
MAPPING-MODE=JS2LS with JSON-SCHEMA-RESTFUL.

The executable script ctgassist is provided to run the JSON web services
assistant. The script takes a single parameter which is the name of a file containing
<name>=<value> pairs. A sample parameter file: CTGJS2R.txt is provided in the
<install path>/samples/webservices directory.

Chapter 7. JSON web services 51

The temporary workspace

The JSON web services assistant requires a temporary workspace, so it uses the
directory value that is specified in the TMPDIR environment variable. If TMPDIR
is not specified the default /tmp is used. If TMPDIR is specified, it must be the
location of a directory, and the user ID used to run the script must have read and
write permission to this directory.

Note: The JSON web services assistant does not lock access to the files. Therefore,
if two or more instances of JSON web services assistant, run concurrently, and use
the same temporary workspace files, nothing prevents one script from overwriting
the workspace files while another script is using them, leading to unpredictable
failures. You should devise a naming convention, and operating procedures, that
avoid this situation.

Parameter use
v You can specify the input parameters in any order.
v Each parameter must start on a new line.
v There must be no blanks or other whitespace characters between <name> and

<value>, only the = symbol.
v If a parameter is too long to fit on a single line, use a backslash (\) character at

the end of the line to indicate that the parameter continues on the next line.
Everything, including spaces before the backslash is considered part of the
parameter. For example:
WSBIND=wsbinddir\
/app1

is equivalent to
WSBIND=wsbinddir/app1

Parameter descriptions

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the
application data structure. The default value is EBCDIC CCSID 037 when
TARGET-CICS-PLATFORM is zOS, IBM-i, VSE, or not specified, otherwise it is
ASCII CCSID 437.

If a value is specified, it must be supported by Java. For more information, see
IBM z/OS Unicode Services User's Guide and Reference and CICS Transaction
Gateway: Programming Reference.

If the CICS application program specified on the PGMNAME parameter is defined
in the CICS conversion table DFHCNV, then CCSID should be set to the value
specified on the CLIENTCP parameter in the DFHCNV entry.

CHAR-MULTIPLIER={1|value}
Specifies the number of bytes to allow for each character. The value of this
parameter can be a positive integer in the range of 1 - 2,147,483,647. All
nonnumeric character-based mappings, are subject to this multiplier. Binary,
numeric, zoned, and packed decimal fields are not subject to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS
characters where you might opt for a multiplier of 3 to allow space for
potential shift-out and shift-in characters around every double-byte character at
run time.

52 CICS TG for Multiplatforms V9.2: Developing Applications

When you set CCSID=1200 (indicating UTF-16), the only valid values for
CHAR-MULTIPLIER are 2 or 4. When you use UTF-16, the default value is 2. Use
CHAR-MULTIPLIER=2 when you expect application data to contain characters that
require 1 UTF-16 encoding unit. Use CHAR-MULTIPLIER=4 when you expect
application data to contain characters that require 2 UTF-16 encoding units.

Note: Setting CHAR-MULTIPLIER to 1 does not preclude the use of DBCS
characters, and setting it to 2 does not preclude the use of UTF-16 surrogate
pairs. However, if wide characters are routinely used then some valid values
will not fit into the allocated field. If a larger CHAR-MULTIPLIER value is used, it
can be possible to store more characters in the allocated field than are valid in
the XML. Care must be taken to conform to the appropriate range restrictions.

CHAR-VARYING=NO|NULL|YES
Specifies how variable-length character data is mapped. Variable-length binary
data types are always mapped to either a container or a varying structure. If
you do not specify this parameter, the default mapping depends on the
language specified. You can select these options:

NO Variable-length character data is mapped as fixed-length strings.

NULL Variable-length character data is mapped to null-terminated strings.

YES Variable-length character data is mapped to a CHAR VARYING data
type in PL/I. In the COBOL, C, and C++ languages, variable-length
character data is mapped to an equivalent representation that
comprises two related elements: data-length and the data.

CHAR-VARYING-LIMIT=32767|value
Specifies the maximum size of binary data and variable-length character data
that is mapped to the language structure. If the character or binary data is
larger than the value specified in this parameter, it is mapped to a container
and the container name is used in the generated language structure. The value
can range from 0 to the default 32,767 bytes.

CONTID=value
In a service provider, specifies the name of the container that holds the
top-level data structure that is used to represent a JSON message.

The length of the container that CICS TG passes to the target application
program is the greater of the lengths of the request container and the response
container.

DATA-TRUNCATION={DISABLED|ENABLED}
Specifies if variable length data is tolerated in a fixed-length field structure:

DISABLED
If the data is less than the fixed length that CICS TG is expecting, then
CICS TG rejects the truncated data and issues an error message.

ENABLED
If the data is less than the fixed length that CICS TG is expecting, then
CICS TG tolerates the truncated data and processes the missing data as
null values.

DATETIME=PACKED15|STRING
Specifies how JSON date-time elements are mapped to the language structure.

PACKED15
The default is that any JSON date-time element is processed as a time
stamp and is mapped to CICS ABSTIME format.

Chapter 7. JSON web services 53

STRING
The JSON date-time element is processed as text.

DEFAULT-CHAR-MAXLENGTH=255|value
Specifies the default array length of character data in characters for mappings
where no length is implied in the web service description document. The value
of this parameter can be a positive integer in the range of 1 - 2,147,483,647.

HTTP-METHODS={GET|POST|PUT|DELETE|HEAD},{GET|POST|PUT|DELETE|HEAD},*
This is an optional parameter.

The default value is for GET, POST, PUT, and DELETE to be set, which tells
JS2R that the application supports the four main RESTful operations.
If a value is provided, JS2R builds a WSBind file in which only the explicitly
specified HTTP methods are accepted.
If an application wants to implement the HEAD method, it must deliberately
opt-in to doing so. By default JS2R assumes that the application does not
support incoming HTTP HEAD methods.
If a JSON client attempts to use an unsupported HTTP method, CICS TG
responds with an HTTP 405 response.

INLINE-MAXOCCURS-LIMIT=1|value
Specifies whether inline variable repeating content is used based on the
maxItems JSON Schema keyword. Variably repeating content that is mapped
inline is placed in the current container with the rest of the generated language
structure. The variably repeating content is stored in two parts, as a counter
that stores the number of occurrences of the data and as an array that stores
each occurrence of the data. The alternative mapping for variably repeating
content is container-based mapping, which stores the number of occurrences of
the data and the name of the container where the data is placed. Storing the
data in a separate container has performance implications that might make
inline mapping preferable.

The value of INLINE-MAXOCCURS-LIMIT can be a positive integer in the range of
0 - 32,767. A value of 0 indicates that inline mapping is not used. A value of 1
ensures that optional elements are mapped inline. If the value of the maxOccurs
attribute is greater than the value of INLINE-MAXOCCURS-LIMIT, container-based
mapping is used; otherwise inline mapping is used.

When you decide whether you want variably repeating lists to be mapped
inline, consider the length of a single item of recurring data. If few instances of
long length occur, container-based mapping is preferable; if many instances of
short length occur, inline mapping is preferable.

JSON-SCHEMA-RESTFUL=value
This parameter is mandatory.

The value specifies the fully qualified path name for the file where the
response JSON Schema is stored.

LANG=COBOL
Specifies that the programming language of the high-level language structure
is COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure
is Enterprise PL/I.

LANG=PLI-OTHER
Specifies that the programming language of the high-level language structure
is a level of PL/I other than Enterprise PL/I.

54 CICS TG for Multiplatforms V9.2: Developing Applications

LANG=C
Specifies that the programming language of the high-level language structure
is C.

LANG=CPP
Specifies that the programming language of the high-level language structure
is C++.

LOGFILE=value
The fully qualified path of the file into which JSON web services assistant
writes its activity log and trace information. The JSON web services assistant
creates the file, but not the directory structure, if it does not exist.

Typically, you do not use this file, but it might be requested by the IBM service
organization if you encounter problems with the JSON web services assistant.

LS-CODEPAGE=value
Specifies the code page that is used in the files that are specified in the
LS-RESTFUL parameter, where value is a CCSID number or a Java code page
number. If this parameter is not specified, the current code page is used. For
example, you might specify LS-CODEPAGE=037.

LS-RESTFUL
Specifies the fully qualified path name for the file to contain the generated
high-level language structures. For a service provider, the web service request
is the input to the application program.

MAPPING-MODE=JS2LS
This parameter is mandatory.

Indicates mapping from JSON to the language structure.

MAPPING-OVERRIDES={UNDERSCORES-AS-HYPHENS|LESS-DUP-NAMES}
Specifies whether the default behavior is overridden for the specified mapping
level when the assistant generates language structures.

LESS-DUP-NAMES
This parameter generates non-structural structure field names with
_value at the end of the name to enable direct referencing to the field.
For example, in the following PL/I language structure, when
MAPPING-OVERRIDES=LESS-DUP-NAMES is specified, level 12 field
streetName is suffixed with _value:
09 streetName,

12 streetName CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

The resulting structure is as follows:
09 streetName,

12 streetName_value CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

UNDERSCORES-AS-HYPHENS
For COBOL only. This parameter converts any underscores in the JSON
Schema to hyphens, rather than the character X, to improve the
readability of the generated COBOL language structures. If any field
name clashes occur, the fields are numbered to ensure that they are
unique. For more information, see “JSON Schema to COBOL mapping”
on page 63.

Chapter 7. JSON web services 55

NAME-TRUNCATION={RIGHT|LEFT}
Specifies whether JSON names are truncated from the left or the right. The
web services assistant truncates JSON names to the appropriate length for the
high-level language specified; by default names are truncated from the right.

PGMINT=CHANNEL|COMMAREA
For a service provider, specifies how CICS TG passes data to the target
application program:

CHANNEL
CICS TG uses a channel interface to pass data to the target application
program.

COMMAREA
CICS TG uses a communication area to pass data to the target
application program.

When the target application program has processed the request, it must use the
same mechanism to return the response. If the request was received in a
communication area, then the response must be returned in the communication
area; if the request was received in a container, the response must be returned
in a container. The length of the communication area or container that CICS
TG passes to the target application program is the greater of the lengths of the
request communication area or container and the response communication area
or container.

PGMNAME=value
Specifies the name of a CICS PROGRAM resource.

When JS2R is used to generate a web service binding file that is used in a
service provider, you must supply this parameter. It specifies the resource
name of the application program that is exposed as a web service.

STRUCTURE=data
For C and C++ only, specifies how the name of the structure is generated.

The generated structure is given the name of name01.
If the name is omitted, the structure has the same name as the file generated
from the LS_RESTFUL parameter that you specify.

SYNCONRETURN={NO|YES}
Specifies whether the remote web service can issue a sync point.

NO The remote web service cannot issue a sync point. This value is the
default. If the remote web service issues a sync point, it fails with an
ADPL abend.

YES The remote web service can issue a sync point. If you select YES, the
remote task is committed as a separate unit of work when control
returns from the remote web service. If the remote web service updates
a recoverable resource and a failure occurs after it returns, the update
to that resource cannot be backed out.

TARGET-CICS-PLATFORM={zOS|AIX|HP-UX|Solaris|IBM-i|VSE|LinuxI|Windows}
Specifies the platform for the CICS server that receives requests from this web
service.

zOS CICS Transaction Server for IBM z/OS

AIX IBM TXSeries for Multiplatforms on IBM AIX

HP-UX
IBM TXSeries for Multiplatforms on HP-UX

56 CICS TG for Multiplatforms V9.2: Developing Applications

Solaris
IBM TXSeries for Multiplatforms on Solaris

IBM-i CICS Transaction Server for i

VSE CICS Transaction Server for VSE/ESA

LinuxI
IBM TXSeries for Multiplatforms on Intel Linux

Windows
IBM TXSeries for Multiplatforms on Microsoft Windows

For IBM z/OS, data is aligned on the IBM z/OS default boundaries. For all
other platforms data is aligned on natural boundaries:

Table 7. Natural boundaries

Data type Storage (bytes) Alignment (bytes)

Short 2 2

Int 4 4

Long 8 8

Float 4 4

Double 8 8

TRANSACTION=name
Specifies the 1-4 character name of a transaction identifier that is passed in the
EIBTRNID field of the exec interface block (EIB). If the web service is configured
with the defaultmirror property set to No, the value of this parameter also
specifies the name of the mirror transaction, which is attached when the CICS
program is called. The value of this parameter can be overridden by the
transactionid property in the CICS TG configuration file.

If you specify TRANSACTION you must also specify URI.

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

URI=value
Specifies the relative URI that a client uses to access the web service. The value
of this parameter can be overridden by the uri property in the CICS TG
configuration file.

The URI consists of a path and an optional query string. If the URI path ends
with *, the web service matches any request URI that starts with the specified
path. The trailing * character is not considered part of the URI to match. If the
URI contains a query string, the web service matches requests for the URI that
contains all of the specified query string parameters in any order.

USERID=id
Specifies a 1-8 character user ID. The mirror transaction is attached under this
user ID when the CICS program is called if the web service client does not
provide user credentials.

If you specify USERID you must also specify URI.

Acceptable characters:

A-Z a-z 0-9 $ @ #

Chapter 7. JSON web services 57

WIDE-COMP3=YES|NO
For COBOL only. Controls the maximum size of the packed decimal variable
length in the COBOL language structure.

NO JS2R limits the packed decimal variable length to 18 when it generates
the COBOL language structure type COMP-3. If the packed decimal size
is greater than 18, message DFHPI9022W is issued to indicate that the
specified type is being restricted to a total of 18 digits.

YES JS2R supports the maximum size of 31 when it generates the COBOL
language structure type COMP-3.

WSBIND=value
The fully qualified path of the web service binding file. The JSON web services
assistant creates the file, but not the directory structure, if it does not exist. The
file extension defaults to .wsbind.

High-level language and JSON Schema mapping
Use the JSON web services assistant to generate mappings between high-level
language structures and JSON Schemas.

Sample parameter files CTGLS2JS.txt, CTGJS2LS.txt, and CTGJS2R.txt are available
to configure the JSON web services assistant.
v CTGLS2JS.txt maps high-level language structures to JSON Schemas for

request-response services.
v CTGJS2LS.txt maps JSON Schemas to high-level language structures for

request-response services.
v CTGJS2R.txt maps JSON Schemas to high-level language structures for RESTful

services.

The mappings are not symmetrical:
v If you process a language data structure with the JSON web services assistant

using MAPPING-MODE=LS2JS, and then process the resulting JSON Schema with the
JSON web services assistant using MAPPING-MODE=JS2LS, do not expect the final
data structure to be the same as the original.

v If you process a JSON Schema with the JSON web services assistant using
MAPPING-MODE=JS2LS, and then process the resulting language structure with the
JSON web services assistant using MAPPING-MODE=LS2JS, do not expect the final
JSON Schema to be the same as the original.

v In some cases, CTGJS2LS.txt generates language structures that are not
supported by CTGLS2JS.txt.

You must code high-level language structures that are processed by the JSON web
services assistant according to the rules of the language, as implemented in the
language compilers that CICS supports.

COBOL to JSON Schema mapping
The JSON web services assistant with parameters MAPPING-MODE=LS2JS and
LANG=COBOL will map between COBOL data structures and JSON Schema
definitions.

COBOL names are converted to JSON names according to the following rules:
v Duplicate names are made unique by the addition of one or more numeric

digits.

58 CICS TG for Multiplatforms V9.2: Developing Applications

For example, two instances of year become year and year1.
v Hyphens are replaced by underscores. Strings of contiguous hyphens are

replaced by contiguous underscores.
For example, current-user--id becomes current_user__id.

v Segments of names that are delimited by hyphens and that contain only
uppercase characters are converted to lowercase.
For example, CA-REQUEST-ID becomes ca_request_id.

v A leading underscore is added to names that start with a numeric character.
For example, 9A-REQUEST-ID becomes _9a_request_id.

The JSON web services assistant maps COBOL data description elements to
schema elements according to the following table. COBOL data description
elements that are not shown in the table are not supported by LS2JS. The following
restrictions also apply:
v Data description items with level numbers of 66 and 77 are not supported. Data

description items with a level number of 88 are ignored.
v The following clauses on data description entries are not supported:

REDEFINES
RENAMES; that is level 66
DATE FORMAT

v The following clauses on data description items are ignored:
BLANK WHEN ZERO
JUSTIFIED
VALUE

v The SIGN clauses SIGN TRAILING and SIGN LEADING are supported.
v SEPARATE CHARACTER is supported for both SIGN TRAILING and SIGN

LEADING clauses.
v The following phrases on the USAGE clause are not supported:

OBJECT REFERENCE
POINTER
FUNCTION-POINTER
PROCEDURE-POINTER

v The following phrases on the USAGE clause are supported:
COMPUTATIONAL-1
COMPUTATIONAL-2

v The only PICTURE characters that are supported for DISPLAY and
COMPUTATIONAL-5 data description items are 9, S, and Z.

v The PICTURE characters that are supported for PACKED-DECIMAL data
description items are 9, S, V, and Z.

v The only PICTURE characters that are supported for edited numeric data
description items are 9 and Z.

COBOL data description JSON Schema definition

PIC X(n)
PIC A(n)
PIC G(n) DISPLAY-1
PIC N(n)

"type":"string",
"maxLength":n

Chapter 7. JSON web services 59

COBOL data description JSON Schema definition

PIC S9 DISPLAY
PIC S99 DISPLAY
PIC S999 DISPLAY
PIC S9999 DISPLAY
PIC S9(n) DISPLAY
PIC S9(n) COMP
PIC S9(n) COMP-4
PIC S9(n) COMP-5
PIC S9(n) BINARY

"type":"integer",
"minimum":- (n + 1),
"maximum":n

where n is the maximum value that can be represented by the
pattern of '9' characters.

PIC 9 DISPLAY
PIC 99 DISPLAY
PIC 999 DISPLAY
PIC 9999 DISPLAY
PIC 9(n) DISPLAY
PIC 9(n) COMP
PIC 9(n) COMP-4
PIC 9(n) COMP-5
PIC 9(n) BINARY

"type":"integer",
"minimum":0,
"maximum":n

where n is the maximum value that can be represented by the
pattern of '9' characters.

PIC S9(m)V9(n) COMP-3 "type":"number",
"description":"decimal",
"minimum": x,
"maximum": y,
"multipleOf": z

where:

x is the minimum value that can be represented by the pattern
of '9' characters.

y is the maximum value that can be represented by the
pattern of '9' characters.

z is the smallest unit available = 1 / 10n

PIC 9(m)V9(n) COMP-3 "type":"number",
"description":"decimal",
"minimum": 0,
"maximum": y,
"multipleOf": z

where:

y is the maximum value that can be represented by the
pattern of '9' characters.

z is the smallest unit available = 1 / 10n

PIC S9(m) COMP-3

Supported when DATETIME=PACKED15

"type":"string",
"format":"date-time"

The format of the time stamp is defined by RFC3339.

60 CICS TG for Multiplatforms V9.2: Developing Applications

http://tools.ietf.org/html/rfc3339#section-5.6

COBOL data description JSON Schema definition

PIC S9(m)V9(n) DISPLAY "type":"number",
"description":"decimal",
"minimum": x,
"maximum": y,
"multipleOf": z

where:

x is the minimum value that can be represented by the pattern
of '9' characters.

y is the maximum value that can be represented by the
pattern of '9' characters.

z is the smallest unit available = 1 / 10n

COMP-1
Note: The IBM Hexadecimal Floating Point (HFP)
data representation is not exactly the same as the
IEEE-754-1985 representation used for JSON. Some
values might not convert exactly from one
representation to the other.

Some extremely large or small values might not be
valid for float data types. Some values might lose
precision when converted to or from HFP
representation. If precise conversions are important,
consider replacing use of COMP-1 data types with
fixed precision alternatives.

"type":"number",
"description":"float"

COMP-2
Note: The IBM Hexadecimal Floating Point (HFP)
data representation is not exactly the same as the
IEEE-754-1985 representation used for JSON. Some
values might not convert exactly from one
representation to the other.

Some extremely large or small values might not be
valid for double data types. Some values might lose
precision when converted to or from HFP
representation. If precise conversions are important,
consider replacing use of COMP-2 data types with
fixed precision alternatives.

"type":"number",
"description":"double"

Chapter 7. JSON web services 61

COBOL data description JSON Schema definition

data description OCCURS n TIMES For primitives:

"type":"array"
"maxItems":n
"minItems":n
"items":{

"type":"object",
"properties":{

name:{
data description JSON

}
}
"required":[

name
]

}

For data items:

"type":"array"
"maxItems":n
"minItems":n
"items":{

data description JSON
}

Where data description JSON is the JSON Schema
representation of the COBOL data description and name is the
name of the COBOL data description.

data description OCCURS n TO m TIMES
DEPENDING ON t

"field-name":{
"type":"array",

"maxItems":m
"minItems":n
"items":{

...
}

}

The content of the array item depends on the datatype used.

62 CICS TG for Multiplatforms V9.2: Developing Applications

COBOL data description JSON Schema definition

PIC X OCCURS n TIMES
PIC A OCCURS n TIMES
PIC G DISPLAY-1 OCCURS n TIMES
PIC N OCCURS n TIMES

When CHAR-OCCURS=STRING:

"field-name":{
"type":"string",
"maxLength":n

}

This is a string.

When CHAR-OCCURS=ARRAY:

"field-name":{
"maxItems":m,
"minItems":n,
"items":{

"type":"object",
"properties":{
"field-name":{

"type":"string",
"maxLength":1

}
},

"required":[
"field-name"

]
}

}

This is an array of single characters.

PIC X OCCURS n TO m TIMES
DEPENDING ON t

PIC A OCCURS n TO m TIMES
DEPENDING ON t

PIC G DISPLAY-1 OCCURS n TO m TIMES
DEPENDING ON t

PIC N OCCURS n TO m TIMES
DEPENDING ON t

When CHAR-OCCURS=STRING:

"field-name":{
"type":"string",

"maxLength":m
"minLength":n

}

PIC N(n) USAGE NATIONAL

When CHAR-USAGE=NATIONAL: PIC N(n)

"type":"string",
"maxLength":n

At run time, CICS TG populates the application data structure
field with UTF-16 data.

Related reference:
“JSON Schema to COBOL mapping”
The JSON web services assistant with parameters MAPPING-MODE=JS2LS and
LANG=COBOL will map between JSON Schema and COBOL data structures.

JSON Schema to COBOL mapping
The JSON web services assistant with parameters MAPPING-MODE=JS2LS and
LANG=COBOL will map between JSON Schema and COBOL data structures.

The JSON web services assistant generates unique, valid field names for COBOL
variables from the schema element names by using the following rules:
1. COBOL reserved words are prefixed with 'X'.

For example, DISPLAY becomes XDISPLAY.
2. Characters other than A-Z, a-z, 0-9, or hyphen are replaced with 'X'.

For example, monthly_total becomes monthlyXtotal.

Chapter 7. JSON web services 63

3. If the last character is a hyphen, it is replaced with 'X'.
For example, ca-request- becomes ca-requestX.

4. Duplicate names in the same scope are made unique by the addition of one or
two numeric digits to the second and subsequent instances of the name.
For example, three instances of year become year, year1, and year2.

5. A JSON Schema specifies that a variable has varying cardinality if it has a
"type" value of "array", and the keywords "minItems" and "maxItems" are
omitted or have different values. If the schema specifies that the variable has
varying cardinality, then field names are created with suffixes of "_cont" and
"_num".
For more information, see “Variable arrays of elements with
MAPPING-MODE=JS2LS” on page 85.

6. A JSON Schema specifies that a variable is optional if it does not appear in the
"required" keyword array that is associated with the enclosing JSON Schema
"object" type. For optional fields, an additional field is generated with a suffix
of _num added to the element name. At run time this is zero to indicate the
value was absent from the JSON data, and non-zero if the value was present in
the JSON data.

7. Field names are limited to 28 characters. If a generated name, including the
prefix and suffix, exceeds this length, the element name is truncated.

JS2LS maps schema types to COBOL data description elements according to the
following table. Note that if the CHAR-VARYING parameter is set to YES, then
variable-length character data is mapped to two related elements: a length field
and a data field. For example:
"textString": {

"type":"string",
"maxLength":10000,
"minLength":1

}

maps to:
15 textString-length PIC S9999 COMP-5 SYNC
15 textString PIC X(10000)

JSON Schema keyword COBOL data description

All of:

"type":"null"
"type": []
"enum": []
"allOf"
"anyOf"
"noneOf"
"not"
"definitions"

Not supported.

"$schema":"http://json-schema.org/draft-04/schema#" This keyword is ignored, but it is
assumed to be compatible with the draft
04 JSON Schema specification.

"title": "same text"
"description": "more text"

These keywords are ignored.

"format": "<predefined values>" The "format" keyword is used to modify
either the generated structure or runtime
value. See the information later in this
table for the supported use of "format".

64 CICS TG for Multiplatforms V9.2: Developing Applications

JSON Schema keyword COBOL data description

"type": "array",
"items": {<JSON Sub-schema>},
"additionalItems": false,
"maxItems": m,
"minItems": n

The only form of JSON array currently
supported is a repeated number of same
type values. The <JSON Sub-schema> must
define a supported "type", but that
"type" cannot be "array". This is a
restriction on the language structure
generated.

"additionalItems" is assumed to be
false, and no other value is supported.

If both "minItems" and "maxItems" are
present, and they are equal, then the
array is treated as fixed cardinality,
otherwise it is treated as varying
cardinality. See “Variable arrays of
elements with MAPPING-MODE=JS2LS”
on page 85.

"type": "array",
"uniqueItems": true

"uniqueItems" is not supported with
JSON arrays.

"type": "object",
"additionalProperties": false,
"properties": { ["<element name>": {<JSON Sub-schema>} [,]]* }
"required": [["<element name>" [,]]*]

The only form of JSON object that is
currently supported is a fixed set of
named elements.

This generates a structure (or
sub-structure) that uses the element
names.

"additionalProperties" is assumed to be
false, and no other value is supported.

Any element in the "properties" object
is considered"optional" if it is not in the
"required" array or if no "required"
array exists. An "optional" element is
given a variable ordinality of zero to X;
where X is either 1 or the maximum
number of items in the array, where that
item is defined as an array. See “Variable
arrays of elements with
MAPPING-MODE=JS2LS” on page 85.

"type": "object",
"maxProperties": m,
"minProperties": n,
"patternProperties": {},
"dependencies":

None of these keywords are supported
with JSON objects.

"type":"string"
"maxLength":m
"pattern": "regular expression>",
"minLength": l

PIC X(z)

where the value of z is based on m, but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength" keyword
and treated as fixed length string.

"pattern" and "minLength" restrictions
are passed through to the language
structure only as a comment.

Chapter 7. JSON web services 65

JSON Schema keyword COBOL data description

"type":"string"
"maxLength":m

When CCSID=1200:

PIC N(z) USAGE NATIONAL

where the value of z is based on m, but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength" keyword
and treated as fixed length string.

"*name*":{
"type":"string",
"format":"date-time"

}

PIC S9(15) COMP-3

All supported when
DATETIME=PACKED15

Note that "maxLength" and "minLength"
are not supported for this format.

"*name*":{
"type":"string",
"format":"uri"

}

PIC X(m)

where m is based on the "maxLength"
keyword and treated as fixed length
string.

When CCSID=1200:

PIC N(m) USAGE NATIONAL

where m is based on the "maxLength"
keyword and treated as fixed length
string.

"*name*":{
"type":"string",
"format":"base64Binary"

}

PIC X(m)

where m is based on the "maxLength"
keyword

"*name*":{
"type":"string",
"format":"hexBinary"

}

PIC X(m)

where m is based on the "maxLength"
keyword

"*name*":{
"type":"string",
"format":"<predefined>"

}

PIC X(m)

where m is based on the "maxLength"
keyword and treated as fixed length
string, and where <predefined> is one of:
email, hostname, ipv4, or ipv6. A relevant
"pattern" is used and passed to the
comment.

When CCSID=1200:

PIC N(m) USAGE NATIONAL

where m is based on the
"maxLength" keyword and treated as
fixed length string, and
where <predefined> is one
of: email, hostname, ipv4, or ipv6. A
relevant "pattern" is used and passed to
the comment.

66 CICS TG for Multiplatforms V9.2: Developing Applications

JSON Schema keyword COBOL data description

"type":"boolean" PIC X DISPLAY

The value x’00’ implies false, x’01’
implies true.

"type": "integer",
"maxExclusive": true,
"minExclusive": true,
"multipleOf": n

"maxExclusive" and "minExclusive"
restrictions are passed to the language
structure only as a comment.

"multipleOf" is ignored.

"type"="integer",
minimum=0,
maximum=255

PIC 9(z) COMP-5 SYNC

or

PIC 9(z) DISPLAY

where 10(z-1) < m <= 10z

"type":"integer",
minimum:-128,
maximum:127

PIC S9(z) COMP-5 SYNC

or

PIC S9(z) DISPLAY

where 10(z-1) < m <= 10z

"type":"integer",
minimum:0,
maximum;m

PIC 9(z) COMP-5 SYNC

or

PIC 9(z) DISPLAY

where 10(z-1) < m <= 10z

"type":"integer",
minimum:-m,
maximum:m-1

PIC S9(z) COMP-5 SYNC

or

PIC S9(z) DISPLAY

where 10(z-1) < m <= 10z

"type": "number",
"maximum": m,
"minimum": n,
"maxExclusive": true,
"minExclusive": true,
"multipleOf": n

"maximum", "minimum", "maxExclusive"
and "minExclusive" restrictions are
passed to the language structure only as
a comment.

"multipleOf" is ignored.

"type":"number"
"format":"decimal"

PIC 9(p)V9(n) COMP-3

where p and n are default values.

Chapter 7. JSON web services 67

JSON Schema keyword COBOL data description

"type":"number"
"format":"float"

v COMP-1

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
exactly the same as the IEEE-754-1985
representation used for JSON. Some
values might not convert exactly from
one representation to the other.

Some extremely large or small values
might not be valid for float data types.
Some values might lose precision when
converted to or from HFP representation.
If precise conversions are important,
consider replacing use of COMP-1 data
types with fixed precision alternatives.

"type":"number"
"format":"double"

v COMP-2

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
exactly the same as the IEEE-754-1985
representation used for JSON. Some
values might not convert exactly from
one representation to the other.

Some extremely large or small values
might not be valid for double data types.
Some values might lose precision when
converted to or from HFP representation.
If precise conversions are important,
consider replacing use of COMP-2 data
types with fixed precision alternatives.

Note: CICS TG cannot transform integer values greater than the maximum value
for a signed long (2^63 - 1) unless they are enclosed within quotes.

Note: Minimum and maximum values specified in the schema for numeric types
are used only to map to a COBOL datatype. Data is not validated against these
values at run time.

Some of the schema types that are shown in the table map to a COBOL format of
COMP-5 SYNC or of DISPLAY, depending on the values (if any) that are specified
in the minimum and maximum keywords:
v For signed types (short, int, and long), DISPLAY is used when the following

are specified:
"maximum":a
"minimum":-a

where a is a string of '9's.
v For unsigned types (unsignedShort, unsignedInt, and unsignedLong), DISPLAY is

used when the following are specified:
"maximum":a
"minimum":0

where a is a string of '9's.

68 CICS TG for Multiplatforms V9.2: Developing Applications

When any other value is specified, or no value is specified, COMP-5 SYNC is used.
Related reference:
“COBOL to JSON Schema mapping” on page 58
The JSON web services assistant with parameters MAPPING-MODE=LS2JS and
LANG=COBOL will map between COBOL data structures and JSON Schema
definitions.

C and C++ to JSON Schema mapping
The JSON web services assistant with parameters MAPPING-MODE=LS2JS and LANG=C
or LANG=CPP will map between C or C++ data types and JSON Schema definitions.

C and C++ names are converted to JSON names according to the following rules:
1. Characters that are not valid in JSON property names are replaced with 'X'.

For example, monthly-total becomes monthlyXtotal.
2. Duplicate names are made unique by the addition of one or more numeric

digits.
For example, two instances of year become year and year1.

LS2JS maps C and C++ data types to schema elements according to the following
table. C and C++ types that are not shown in the table are not supported by LS2JS.
The _Packed qualifier is supported for structures. These restrictions apply:
v Header files must contain a top level struct instance.
v You cannot declare a structure type that contains itself as a member.
v The following C and C++ data types are not supported:

decimal
long double
wchar_t (C++ only)

v The following are ignored if they are present in the header file.
Storage class specifiers:

auto
register
static
extern
mutable

Qualifiers
const
volatile
_Export (C++ only)

Function specifiers
inline (C++ only)
virtual (C++ only)

Initial values

v The header file must not contain these items:
Unions
Class declarations
Enumeration data types
Pointer type variables
Template declarations
Predefined macros; that is, macros with names that start and end with two
underscore characters (__)
The line continuation sequence (a \ symbol that is immediately followed by
a newline character)

Chapter 7. JSON web services 69

Prototype function declarators
Preprocessor directives
Bit fields
The __cdecl (or _cdecl) keyword (C++ only)

v The application programmer must use a 32-bit compiler to ensure that an int
maps to 4 bytes.

v The following C++ reserved keywords are not supported:
explicit

using

namespace

typename

typeid

C and C++ data type Schema simpleType

char[z] "type":"string"
"maxlength":z

char16_t[n] "type":"string"
"maxlength":n

At run time, CICS TG populates the application data structure field with
UTF-16 data.

char[8]

Supported when DATETIME=PACKED15

"type":"string"
"format":"date-time"

The format of the timestamp is defined by RFC3339.

char
short
int
long
long long

"type":"integer",
"minimum":- (n + 1),
"maximum":n

where n is the maximum value that can be represented by the primitive.

unsigned char
unsigned short
unsigned int
unsigned long
unsigned long long

"type":"integer",
"minimum":0,
"maximum":n

where n is the maximum value that can be represented by the primitive.

bool

(C++ only)

"type":"boolean"

float "type":"number",
"description":"float"

Note: The IBM Hexadecimal Floating Point (HFP) data representation is not
exactly the same as the IEEE-754-1985 representation used for JSON. Some
values may not convert exactly from one representation to the other. Some
extremely large or small values might not be valid for float data types.
Some values may lose precision when converted to or from HFP
representation. If precise conversions are important, consider replacing use
of float data types with fixed precision alternatives.

70 CICS TG for Multiplatforms V9.2: Developing Applications

http://tools.ietf.org/html/rfc3339#section-5.6

C and C++ data type Schema simpleType

double "type":"number",
"description":"double"

Note: The IBM Hexadecimal Floating Point (HFP) data representation is not
exactly the same as the IEEE-754-1985 representation used for JSON. Some
values may not convert exactly from one representation to the other. Some
extremely large or small values might not be valid for double data types.
Some values may lose precision when converted to or from HFP
representation. If precise conversions are important, consider replacing use
of double data types with fixed precision alternatives.

type name[n] For primitives:

"type":"array"
"maxItems":n
"minItems":n
"items":{

"type":"object",
"properties":{

name:{
type JSON

}
}
"required":[

name
]

}

For structs:

"type":"array"
"maxItems":n
"minItems":n
"items":{

type JSON
}

Where type JSON is the JSON Schema representation of the C or C++ type.

Related reference:
“JSON Schema to C and C++ mapping”
The JSON web services assistant with parameters MAPPING-MODE=JS2LS and LANG=C
or LANG=CPP will map between the JSON Schemas and C or C++ data types.

JSON Schema to C and C++ mapping
The JSON web services assistant with parameters MAPPING-MODE=JS2LS and LANG=C
or LANG=CPP will map between the JSON Schemas and C or C++ data types.

The JSON web services assistant generates unique, valid field names for C and
C++ variables from the schema element names using the following rules:
1. Characters other than A-Z, a-z, 0-9, or _ are replaced with 'X'.

For example, monthly-total becomes monthlyXtotal.
2. If the first character is not an alphabetic character, it is replaced by a leading 'X'.

For example, _monthlysummary becomes Xmonthlysummary.
3. Duplicate names in the same scope are made unique by the addition of one or

two numeric digits to the second and subsequent instances of the name.
For example, three instances of year become year, year1, and year2.

4. A JSON Schema specifies that a variable has varying cardinality if it has a
"type" value of "array", and the keywords "minItems" and "maxItems" are

Chapter 7. JSON web services 71

omitted or have different values. If the schema specifies that the variable has
varying cardinality, then field names are created with suffixes of "_cont" and
"_num".
For more information, see “Variable arrays of elements with
MAPPING-MODE=JS2LS” on page 85.

5. A JSON Schema specifies that a variable is optional if it does not appear in the
"required" keyword array that is associated with the enclosing JSON Schema
"object" type. For optional fields, an additional field is generated with a suffix
of _num added to the element name. At run time this is zero to indicate the
value was absent from the JSON data, and non-zero if the value was present in
the JSON data.

6. Field names are limited to 50 characters. If a generated name, including any
prefix and suffix, exceeds this length, the element name is truncated.

JS2LS and JS2R map JSON Schema type values to C and C++ data types according
to the following table. The following rules also apply:

JSON Schema keyword C and C++ data type

All of:

"type":"null"
"type": []
"enum": []
"allOf"
"anyOf"
"noneOf"
"not"
"definitions"

Not supported

"$schema":"http://json-schema.org/draft-04/schema#" This keyword is ignored, but it is
assumed to be compatible with the draft
04 JSON Schema specification.

"title": "same text"
"description": "more text"

These keywords are ignored.

"format": "<predefined values>" The "format" keyword is used to modify
either the generated structure or runtime
value. See the following information for
the supported use of "format".

"type": "array",
"items": {<JSON Sub-schema>},
"additionalItems": false,
"maxItems": m,
"minItems": n

The only form of JSON array currently
supported is a repeated number of same
type values. The <JSON Sub-schema> must
define a supported "type", but that
"type" cannot be "array". This is a
restriction on the language structure
generated.

"additionalItems" is assumed to be
false, and no other value is supported.

If both "minItems" and "maxItems" are
present, and they are equal, then the
array is treated as fixed cardinality,
otherwise it is treated as varying
cardinality. See “Variable arrays of
elements with MAPPING-MODE=JS2LS”
on page 85.

72 CICS TG for Multiplatforms V9.2: Developing Applications

JSON Schema keyword C and C++ data type

"type": "array",
"uniqueItems": true

"uniqueItems" is not supported with
JSON arrays. The <JSON Sub-schema>
must define a supported "type", but that
"type" cannot be "array". This is a
restriction on the language structure
generated.

"type": "object",
"additionalProperties": false,
"properties": { ["<element name>": {<JSON Sub-schema>} [,]]* }
"required": [["<element name>" [,]]*]

The only form of JSON object currently
supported is a fixed set of named
elements.

This will generate a structure (or
sub-structure) using the element names.

"additionalProperties" is assumed to be
false, and no other value is supported.

Any element in the "properties" object
is considered"optional" if it is not in the
"required" array or if no "required"
array exists. An "optional" element is
given a variable ordinality of zero to X;
where X is either 1 or the maximum
number of items in the array, where that
item is defined as an array. See “Variable
arrays of elements with
MAPPING-MODE=JS2LS” on page 85.

"type": "object",
"maxProperties": m,
"minProperties": n,
"patternProperties": {},
"dependencies":

None of these keywords are supported
with JSON objects.

"type":"string"
"maxLength":m
"pattern": "regular expression>",
"minLength": l

char[z]

where the value of z is based on m, but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength" keyword
and treated as fixed length string.

"pattern" and "minLength" restrictions
are passed through to the language
structure only as a comment.

"type":"string"
"maxLength":m

When CCSID=1200:

char16_t[z]

where the value of z is based on m, but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength" keyword
and treated as fixed length string.

"*name*":{
"type":"string",
"format":"date-time"

}

char[8]

All supported when DATETIME=PACKED15

Chapter 7. JSON web services 73

JSON Schema keyword C and C++ data type

"*name*":{
"type":"string",
"format":"uri"

}

char[m]

where m is based on the "maxLength"
keyword and treated as fixed length
string.

When CCSID=1200:

char16_t[m]

where m is based on the "maxLength"
keyword and treated as fixed length
string.

"*name*":{
"type":"string",
"format":"base64Binary"

}

char[m]

where m is based on the "maxLength"
keyword.

"*name*":{
"type":"string",
"format":"hexBinary"

}

char[m]

where m is based on the "maxLength"
keyword.

"*name*":{
"type":"string",
"format":"<predefined>"

}

char[m]

where m is based on the "maxLength"
keyword and treated as fixed length
string, and where <predefined> is one of:
email, hostname, ipv4 or ipv6. A relevant
"pattern" is used and passed to the
comment.

When CCSID=1200:

char16_t[m]

where m is based on the
"maxLength" keyword and treated as
fixed length string, and
where <predefined> is one
of: email, hostname, ipv4, or ipv6. A
relevant "pattern" is used and passed to
the comment.

"type":"boolean" bool (C++ only)
short (C only)

"type": "integer",
"maxExclusive": true,
"minExclusive": true,
"multipleOf": n

"maxExclusive" and "minExclusive"
restrictions are passed to the language
structure only as a comment.

"multipleOf" is ignored.

"type":"integer",
minimum:-128,
maximum:127

signed char

"type":"integer",
minimum:0,
maximum:255

unsigned char

"type":"integer",
minimum:-32768,
maximum:32767

short

74 CICS TG for Multiplatforms V9.2: Developing Applications

JSON Schema keyword C and C++ data type

"type":"integer",
minimum:0,
maximum:65535

unsigned short

"type":"integer",
minimum:-2147483648,
maximum:2147483647

int

"type":"integer",
minimum:0,
maximum:4294967295

unsigned int

"type":"integer",
minimum:-9223372036854775808,
maximum:9223372036854775807

long long

"type":"integer",
minimum:0,
maximum:18446744073709551615

unsigned long long

"type": "number",
"maximum": m,
"minimum": n,
"maxExclusive": true,
"minExclusive": true,
"multipleOf": n

"maximum", "minimum", "maxExclusive"
and "minExclusive" restrictions are
passed to the language structure only as
a comment.

"multipleOf" is ignored.

"type":"number"
"format":"float"

v float(*)

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
exactly the same as the IEEE-754-1985
representation used for JSON. Some
values may not convert exactly from one
representation to the other. Some
extremely large or small values might not
be valid for float data types. Some values
may lose precision when converted to or
from HFP representation. If precise
conversions are important, consider
replacing use of float data types with
fixed precision alternatives.

"type":"number"
"format":"double"

v double(*)

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
exactly the same as the IEEE-754-1985
representation used for JSON. Some
values may not convert exactly from one
representation to the other. Some
extremely large or small values might not
be valid for double data types. Some
values may lose precision when
converted to or from HFP representation.
If precise conversions are important,
consider replacing use of double data
types with fixed precision alternatives.

Note: CICS cannot transform integer values greater than the maximum value for a
signed long (2^63 - 1) unless they are enclosed within quotes.

Chapter 7. JSON web services 75

Note: Minimum and maximum values specified in the schema for numeric types
are used only to map to a C or C++ datatype. Data is not validated against these
values at run time.
Related reference:
“C and C++ to JSON Schema mapping” on page 69
The JSON web services assistant with parameters MAPPING-MODE=LS2JS and LANG=C
or LANG=CPP will map between C or C++ data types and JSON Schema definitions.

PL/I to JSON Schema mapping
The JSON web services assistant with parameters MAPPING-MODE=LS2JS and
LANG=PLI-ENTERPRISE or LANG=PLI-OTHER will map between PL/I data structures
and JSON Schema definitions. Because the Enterprise PL/I compiler and older
PL/I compilers differ, two language options are supported: PLI-ENTERPRISE, and
PLI-OTHER.

PL/I names are converted to JSON names according to the following rules:
1. Characters that are not valid in JSON property names are replaced with 'x'.

For example, monthly$total becomes monthlyxtotal.
2. Duplicate names are made unique by the addition of one or more numeric

digits.
For example, two instances of year become year and year1.

LS2JS maps PL/I data types to schema elements according to the following table.
PL/I types that are not shown in the table are not supported by LS2JS. The
following restrictions also apply:
v Data items with the COMPLEX attribute are not supported.
v Data items with the FLOAT attribute are supported. Enterprise PL/I FLOAT

IEEE is not supported.
v VARYING and VARYINGZ pure DBCS strings are supported.
v Data items that are specified as DECIMAL(p,q) are supported only when p ≥ q.
v Data items that are specified as BINARY(p,q) are supported only when q = 0.
v If the PRECISION attribute is specified for a data item, it is ignored.
v PICTURE strings are not supported.
v ORDINAL data items are treated as FIXED BINARY(7) data types.

LS2JS does not fully implement the padding algorithms of PL/I; therefore, you
must declare padding bytes explicitly in your data structure. LS2JS issues a
message if it detects that padding bytes are missing. Each top-level structure must
start on a doubleword boundary and each byte in the structure must be mapped to
the correct boundary. Consider this code fragment:
3 FIELD1 FIXED BINARY(7),
3 FIELD2 FIXED BINARY(31),
3 FIELD3 FIXED BINARY(63);

In this example:
v FIELD1 is 1 byte long and can be aligned on any boundary.
v FIELD2 is 4 bytes long and must be aligned on a fullword boundary.
v FIELD3 is 8 bytes long and must be aligned on a doubleword boundary.

The Enterprise PL/I compiler aligns the fields in the following order:
1. FIELD3 is aligned first because it has the strongest boundary requirements.
2. FIELD2 is aligned at the fullword boundary immediately before FIELD3.

76 CICS TG for Multiplatforms V9.2: Developing Applications

3. FIELD1 is aligned at the byte boundary immediately before FIELD3.

Finally, so that the entire structure is aligned at a fullword boundary, the compiler
inserts three padding bytes immediately before FIELD1.

Because LS2JS does not insert equivalent padding bytes, you must declare them
explicitly before the structure is processed by LS2JS. For example:

3 PAD1 FIXED BINARY(7),
3 PAD2 FIXED BINARY(7),
3 PAD3 FIXED BINARY(7),
3 FIELD1 FIXED BINARY(7),
3 FIELD2 FIXED BINARY(31),
3 FIELD3 FIXED BINARY(63);

Alternatively, you can change the structure to declare all the fields as unaligned
and recompile the application that uses the structure. For more information about
PL/I structural memory alignment requirements, see Enterprise PL/I Language
Reference.

PL/I data description JSON Schema definition

FIXED BINARY (n) "type":"integer",
"minimum":- (n + 1),
"maximum":n

where n is the maximum value that can be represented by the primitive.

UNSIGNED FIXED BINARY(n)
Restriction: Enterprise PL/I only.

"type":"integer",
"minimum":0,
"maximum":n

where n is the maximum value that can be represented by the primitive.

FIXED DECIMAL(n,m) "type":"number",
"description":"decimal",
"multipleOf":x,
"maximum":y,
"minimum":-z

where:

x is the smallest unit available = 1 / 10m.

y is the maximum value that can be represented by the combination of n
and m.

z is the maximum value that can be represented by the combination of n
and m.

FIXED DECIMAL(15)

Supported when DATETIME=PACKED15.

"type":"string",
"format":"date-time"

The format of the time stamp is defined by RFC3339.

BIT(n)

where n is a multiple of 8. Other
values are not supported.

"type":"string"
"maxLength":m

where m = n/8.

Chapter 7. JSON web services 77

http://tools.ietf.org/html/rfc3339#section-5.6

PL/I data description JSON Schema definition

CHARACTER(n)

VARYING and VARYINGZ are also
supported.
Restriction: VARYINGZ is supported
only by Enterprise PL/I.

"type":"string"
"maxLength":n

GRAPHIC(n)

VARYING and VARYINGZ are also
supported.
Restriction: VARYINGZ is supported
only by Enterprise PL/I.

"type":"string"
"maxLength":n

WIDECHAR(n)
Restriction: Enterprise PL/I only.

"type":"string"
"maxLength":n

CICS TG populates the application data structure field with UTF-16 data:

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxlength value="n"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

ORDINAL
Restriction: Enterprise PL/I only.

"type":"integer",
"minimum":0,
"maximum":255

BINARY FLOAT(n) where n <= 21
Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
the same as the IEEE-754-1985
representation that is used for JSON.
Some values might not convert
exactly from one representation to the
other. Some large or small values
might not be valid for float data
types. Some values might lose
precision when converted to or from
HFP representation. If precise
conversions are important, consider
replacing use of BINARY FLOAT data
types with fixed precision
alternatives.

"type":"number",
"description":"float"

78 CICS TG for Multiplatforms V9.2: Developing Applications

PL/I data description JSON Schema definition

BINARY FLOAT(n) where 21 < n <= 53

Values greater than 53 are not
supported.
Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
the same as the IEEE-754-1985
representation that is used for JSON.
Some values might not convert
exactly from one representation to the
other. Some large or small values
might not be valid for float data
types. Some values might lose
precision when converted to or from
HFP representation. If precise
conversions are important, consider
replacing use of BINARY FLOAT data
types with fixed precision
alternatives.

"type":"number",
"description":"double"

DECIMAL FLOAT(n)where n <= 6
Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
the same as the IEEE-754-1985
representation that is used for JSON.
Some values might not convert
exactly from one representation to the
other. Some large or small values
might not be valid for float data
types. Some values might lose
precision when converted to or from
HFP representation. If precise
conversions are important, consider
replacing use of DECIMAL FLOAT
data types with fixed precision
alternatives.

"type":"number",
"description":"float"

DECIMAL FLOAT(n)where 6 < n <= 16

Values greater than 16 are not
supported.
Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
the same as the IEEE-754-1985
representation that is used for JSON.
Some values might not convert
exactly from one representation to the
other. Some large or small values
might not be valid for float data
types. Some values might lose
precision when converted to or from
HFP representation. If precise
conversions are important, consider
replacing use of DECIMAL FLOAT
data types with fixed precision
alternatives.

"type":"number",
"description":"double"

Chapter 7. JSON web services 79

PL/I data description JSON Schema definition

name (n) data description For primitives:

"type":"array"
"maxItems":n
"minItems":n
"items":{

"type":"object",
"properties":{

name:{
data description JSON

}
}
"required":[
name

]
}

For data declarations:

"type":"array"
"maxItems":n
"minItems":n
"items":{

data description JSON
}

Where data description JSON is the JSON Schema representation of the PL/I
data description.

Related reference:
“JSON Schema to PL/I mapping”
The JSON web services assistant with parameters MAPPING-MODE=JS2LS and
LANG=PLI-ENTERPRISE or LANG=PLI-OTHER will map between JSON Schemas and
PL/I data structures. Because the Enterprise PL/I compiler and older PL/I
compilers differ, two language options are supported: PLI-ENTERPRISE and
PLI-OTHER.

JSON Schema to PL/I mapping
The JSON web services assistant with parameters MAPPING-MODE=JS2LS and
LANG=PLI-ENTERPRISE or LANG=PLI-OTHER will map between JSON Schemas and
PL/I data structures. Because the Enterprise PL/I compiler and older PL/I
compilers differ, two language options are supported: PLI-ENTERPRISE and
PLI-OTHER.

The JSON web services assistant generates unique and valid names for PL/I
variables from the schema element names using the following rules:
1. Characters other than A-Z, a-z, 0-9, @, #, or $ are replaced with 'X'.

For example, monthly_total becomes monthlyXtotal.
2. Duplicate names in the same scope are made unique by the addition of one or

two numeric digits to the second and subsequent instances of the name.
For example, three instances of year become year, year1, and year2.

3. A JSON Schema specifies that a variable has varying cardinality if it has a
"type" value of "array", and the keywords "minItems" and "maxItems" are
omitted or have different values. If the schema specifies that the variable has
varying cardinality, then field names are created with suffixes of "_cont" and
"_num".
For more information, see “Variable arrays of elements with
MAPPING-MODE=JS2LS” on page 85.

80 CICS TG for Multiplatforms V9.2: Developing Applications

4. A JSON Schema specifies that a variable is optional if it does not appear in the
"required" keyword array that is associated with the enclosing JSON Schema
"object" type. For optional fields, an additional field is generated with a suffix
of _num added to the element name. At run time this is zero to indicate the
value was absent from the JSON data, and non-zero if the value was present in
the JSON data.

5. Field names are limited to 31 characters. If a generated name, including any
prefix and suffix, exceeds this length, the element name is truncated.

The total length of the resulting name is 31 characters or less.

JS2LS and JS2R map schema type values to PL/I data types according to the
following table. Also note the following points:

JSON Schema keyword PL/I data description

All of:

"type":"null"
"type": []
"enum": []
"allOf"
"anyOf"
"noneOf"
"not"
"definitions"

Not supported

"$schema":"http://json-schema.org/draft-04/schema#" This keyword is ignored, but it is
assumed to be compatible with the draft
04 JSON Schema specification.

"title": "same text"
"description": "more text"

These keywords are ignored.

"format": "<predefined values>" The "format" keyword is used to modify
either the generated structure or run-time
value. See the following information for
the supported use of "format".

"type": "array",
"items": {<JSON Sub-schema>},
"additionalItems": false,
"maxItems": m,
"minItems": n

The only form of JSON array currently
supported is a repeated number of same
type values. The <JSON Sub-schema> must
define a supported "type", but that
"type" cannot be "array". This is a
restriction on the language structure
generated.

"additionalItems" is assumed to be
false, and no other value is supported.

If both "minItems" and "maxItems" are
present, and they are equal, then the
array is treated as fixed cardinality,
otherwise it is treated as varying
cardinality. See “Variable arrays of
elements with MAPPING-MODE=JS2LS”
on page 85.

"type": "array",
"uniqueItems": true

"uniqueItems" is not supported with
JSON arrays. The <JSON Sub-schema>
must define a supported "type", but that
"type" cannot be "array". This is a
restriction on the language structure
generated.

Chapter 7. JSON web services 81

JSON Schema keyword PL/I data description

"type": "object",
"additionalProperties": false,
"properties": { ["<element name>": {<JSON Sub-schema>} [,]]* }
"required": [["<element name>" [,]]*]

The only form of JSON object currently
supported is a fixed set of named
elements.

This will generate a structure (or
sub-structure) using the element names.

"additionalProperties" is assumed to be
false, and no other value is supported.

Any element in the "properties" object
is considered"optional" if it is not in the
"required" array or if no "required"
array exists. An "optional" element is
given a variable ordinality of zero to X;
where X is either 1 or the maximum
number of items in the array, where that
item is defined as an array. See “Variable
arrays of elements with
MAPPING-MODE=JS2LS” on page 85.

"type": "object",
"maxProperties": m,
"minProperties": n,
"patternProperties": {},
"dependencies":

None of these keywords are supported
with JSON objects.

"type":"string"
"maxLength":m
"pattern": "regular expression>",
"minLength": l

char[z]

where the value of z is based on m, but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength" keyword
and treated as fixed length string.

"pattern" and "minLength" restrictions
are passed through to the language
structure only as a comment.

"type":"string"
"maxLength":m

When CCSID=1200:

WIDECHAR(z)

where the value of z is based on m, but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength" keyword
and treated as fixed length string.

"*name*":{
"type":"string",
"format":"date-time"

}

FIXED DECIMAL (15,0)

All supported when DATETIME=PACKED15

82 CICS TG for Multiplatforms V9.2: Developing Applications

JSON Schema keyword PL/I data description

"*name*":{
"type":"string",
"format":"uri"

}

CHAR(m)

where m is based on the "maxLength"
keyword and treated as fixed length
string.

When CCSID=1200:

WIDECHAR(m)

where m is based on the "maxLength"
keyword and treated as fixed length
string.

"*name*":{
"type":"string",
"format":"base64Binary"

}

CHAR(m)

where m is based on the "maxLength"
keyword.

"*name*":{
"type":"string",
"format":"hexBinary"

}

CHAR(m)

where m is based on the "maxLength"
keyword.

"*name*":{
"type":"string",
"format":"<predefined>"

}

CHAR(m) where m is based on the
"maxLength" keyword and treated as a
fixed length string, and <predefined> is
one of: email, hostname, ipv4 or ipv6. A
relevant "pattern" is passed to the
comment.

When CCSID=1200:

WIDECHAR(m)

where m is based on the
"maxLength" keyword and treated as
fixed length string, and
where <predefined> is one
of: email, hostname, ipv4, or ipv6. A
relevant "pattern" is used and passed to
the comment.

"type":"boolean"
Enterprise PL/I

BIT(7)

BIT(1)

Other PL/I
BIT(7)

BIT(1)

where BIT(7) is provided for alignment
and BIT(1) contains the Boolean mapped
value.

"type": "integer",
"maxExclusive": true,
"minExclusive": true,
"multipleOf": n

"maxExclusive" and "minExclusive"
restrictions are passed to the language
structure only as a comment.

"multipleOf" is ignored.

Chapter 7. JSON web services 83

JSON Schema keyword PL/I data description

"type":"integer",
minimum:-128,
maximum:127

Enterprise PL/I
SIGNED FIXED BINARY (7)

Other PL/I
FIXED BINARY (7)

"type":"integer",
minimum:0,
maximum:255

Enterprise PL/I
UNSIGNED FIXED BINARY (8)

Other PL/I
FIXED BINARY (8)

"type":"integer",
minimum:-32768,
maximum:32767

Enterprise PL/I
SIGNED FIXED BINARY (15)

Other PL/I
FIXED BINARY (15)

"type":"integer",
minimum:0,
maximum:65535

Enterprise PL/I
UNSIGNED FIXED BINARY (16)

Other PL/I
FIXED BINARY (16)

"type":"integer",
minimum:-2147483648,
maximum:2147483647

Enterprise PL/I
SIGNED FIXED BINARY (31)

Other PL/I
FIXED BINARY (31)

"type":"integer",
minimum:0,
maximum:4294967295

Enterprise PL/I
CHAR(y)

where y is a fixed length that is
less than 16 MB.

Other PL/I
BIT(64)

"type":"integer",
minimum:-9223372036854775808,
maximum:9223372036854775807

Enterprise PL/I
CHAR(y)

where y is a fixed length that is
less than 16 MB.

Other PL/I
BIT(64)

"type":"integer",
minimum:0,
maximum:18446744073709551615

Enterprise PL/I
CHAR(y)

where y is a fixed length that is
less than 16 MB.

Other PL/I
BIT(64)

"type":"number"
"description":"decimal"

FIXED DECIMAL(n,m)

84 CICS TG for Multiplatforms V9.2: Developing Applications

JSON Schema keyword PL/I data description

"type":"number"
"description":"float" Enterprise PL/I

DECIMAL FLOAT(6) HEXADEC

Other PL/I
DECIMAL FLOAT(6)

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not the
same as the IEEE-754-1985 representation
that is used for JSON. Some values might
not convert exactly from one
representation to the other. Some large or
small values might not be valid for float
data types. Some values might lose
precision when converted to or from HFP
representation. If precise conversions are
important, consider replacing use of
DECIMAL FLOAT data types with fixed
precision alternatives.

"type":"number"
"description":"double" Enterprise PL/I

DECIMAL FLOAT(16) HEXADEC

Other PL/I
DECIMAL FLOAT(16)

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not the
same as the IEEE-754-1985 representation
that is used for JSON. Some values might
not convert exactly from one
representation to the other. Some large or
small values might not be valid for float
data types. Some values might lose
precision when converted to or from HFP
representation. If precise conversions are
important, consider replacing use of
DECIMAL FLOAT data types with fixed
precision alternatives.

Note: CICS TG cannot transform integer values greater than the maximum value
for a signed long (2^63 - 1) unless they are enclosed within quotes.

Note: Minimum and maximum values specified in the schema for numeric types
are used only to map to a PL/I datatype. Data is not validated against these values
at run time.
Related reference:
“PL/I to JSON Schema mapping” on page 76
The JSON web services assistant with parameters MAPPING-MODE=LS2JS and
LANG=PLI-ENTERPRISE or LANG=PLI-OTHER will map between PL/I data structures
and JSON Schema definitions. Because the Enterprise PL/I compiler and older
PL/I compilers differ, two language options are supported: PLI-ENTERPRISE, and
PLI-OTHER.

Variable arrays of elements with MAPPING-MODE=JS2LS
JSON can contain arrays of varying numbers of elements.

Chapter 7. JSON web services 85

An array with a varying number of elements is represented in the JSON Schema
by using the minItems and maxItems keywords in the schema with "type" value of
"array":
v The minItems keyword specifies the minimum number of times that the element

can occur. It can have a value of 0 or any positive integer. It defaults to the
value 0.

v The maxItems keyword specifies the maximum number of times that the element
can occur. It can have a value of any positive integer greater than or equal to the
value of the minItems keyword.

v If the maxItems keyword is missing it means the array is unbounded.

An optional field can be denoted by a variable array of "maxItems":1. For example,
an optional 8 byte string called "component":
"properties":{

"component": {
"type":"array",
"maxItems":1,
"items": {

"type": "string",
"maxLength": 8

}
}

},
"required": ["component"]

The same effect can be produced by not including the field name in the "required"
keyword value:
"properties":{

"component": {
"type": "string",
"maxLength": 8

}
}

In general, JSON Schemas that contain varying numbers of elements do not map
efficiently into a single high-level language data structure. To handle these cases,
CICS TG uses a series of connected data structures that are passed to the
application program in a series of containers. These structures are used as input
and output from the application:
v When CICS TG transforms JSON data to application data, it populates these

structures with the application data.
v When CICS TG transforms the application data to JSON data, it reads the

application data in the structures that have been populated by the application.

The following examples illustrate the format of these data structures. These
examples use an array of simple 8 byte fields. However, the model supports arrays
of complex data types and arrays of data types that contain other arrays.

Example 1. Fixed number of elements

This example illustrates an element that occurs exactly three times:
"properties":{

"component": {
"type": "array",
"maxItems": 3,
"minItems": 3,
"items": {

"type": "string",

86 CICS TG for Multiplatforms V9.2: Developing Applications

"maxLength": 8
}

}
},
"required": ["component"]

In this example, the number of times that the element occurs is known in advance,
so it can be represented as a fixed-length array in a simple COBOL declaration, or
the equivalent in other languages.
05 component PIC X(8) OCCURS 3 TIMES.

Example 2. Variable number of elements

A JSON array containing a variable number of elements can be mapped using
container-based or inline mapping. This example illustrates a mandatory element
that can occur from one to five times:
"properties":{

"component": {
"type": "array",
"maxItems": 5,
"minItems": 1,
"items": {

"type": "string",
"maxLength": 8

}
}

},
"required": ["component"]

If container-based mapping is used, the main generated data structure contains a
declaration of two fields. At runtime the JSON data is transformed to binary data,
the first field component-num contains the number of times that the element appears
in the JSON data, and the second field, component-cont, contains the name of a
container:
05 component-num PIC S9(9) COMP-5.
05 component-cont PIC X(16).

A second data structure contains the declaration of the element itself:
01 <LS-REQUEST>01-component.
02 component PIC X(8).

To process the data structure the CICS application must examine the value of
component-num, which, in this example, will contain a value in the range 1 to 5, to
find how many times the element occurs. The element contents are in the container
named in component-cont; the container holds an array of elements, where each
element is mapped by the <LS-REQUEST>01-component data structure.

If minItems="0", or is missing, and maxItems="1", the element is optional. In this
case, to process the data structure the CICS application must again examine the
value of component-num:

If it is zero, the JSON data has no component element and the contents of
component-cont is undefined.

If it is one, the component element is in the container named in component-cont.

Note: If the JSON data consists of a single recurring element, the JSON web
services assistant with MAPPING-MODE=JS2LS generates two language structures. The

Chapter 7. JSON web services 87

main language structure contains the number of elements in the array and the
name of a container which holds the array of elements. The second language
structure maps a single instance of the recurring element.

You can use the INLINE-MAXOCCURS-LIMIT parameter in the JSON web services
assistant. The INLINE-MAXOCCURS-LIMIT parameter specifies the way that varying
numbers of elements are handled. The mapping options for varying numbers of
elements are container-based mapping or inline mapping. The value of this
parameter can be a positive integer in the range 0 - 32767:
v The default value of INLINE-MAXOCCURS-LIMIT is 1, which ensures that optional

elements are mapped inline.
v A value of 0 for the INLINE-MAXOCCURS-LIMIT parameter prevents inline mapping.
v If maxItems is less than or equal to the value of INLINE-MAXOCCURS-LIMIT, inline

mapping is used.
v If maxItems is greater than the value of INLINE-MAXOCCURS-LIMIT, container-based

mapping is used.

Mapping varying numbers of elements inline results in the generation of both an
array and a counter. The component-num field indicates how many instances of the
element are present, and these are pointed to by the array. When
INLINE-MAXOCCURS-LIMIT is less than or equal to 5, the generated data structure is
like this:
05 component-num PIC S9(9) COMP-5 SYNC.
05 component OCCURS 5 PIC X(8).

The first field, component-num, is identical to the output for container-based
mapping. The second field contains an array of length 5 which is large enough to
contain the maximum number of elements that can be generated.

Container-based mapping stores the number of occurrences of the element and the
name of the container where the data is placed, in the main language structure.
Inline mapping stores all the data in the current container. Storing the data in the
current container will generally improve performance and make inline mapping
preferable.

Example 3. Nested variable arrays

Complex JSON Schemas can contain variable recurring elements, which in turn
contain variable recurring elements. In this case, the structure described extends
beyond the two levels described in the examples.

This example illustrates an optional element called "component2" that is nested in a
mandatory element called "component1", where the mandatory element can occur
from one to five times:
"properties":{

"component1": {
"type": "array",
"maxItems": 5,
"minItems": 1,
"items": {

"type": "object",
"properties":{

"component2":{
"type": "string",
"maxLength": 8

}
},

88 CICS TG for Multiplatforms V9.2: Developing Applications

"required": ["component2"]
}

},
"required": ["component1"]

The top-level data structure is exactly the same as in the previous examples:
05 component1-num PIC S9(9) COMP-5
05 component1-cont PIC X(16)

However, the second data structure contains these elements:
01 <LS-REQUEST>01-component1

02 component2-num PIC S9(9) COMP-5
02 component2-cont PIC X(16)

A third-level structure contains these elements:
01 <LS-REQUEST>01-component2

02 component2 PIC X(8)

The number of occurrences of the outermost element "component1" is in
component1-num.

The container named in component1-cont contains an array with that number of
instances of the second data structure <LS-REQUEST>01-component1.

Each instance of component2-cont names a different container, each of which
contains the data structure mapped by the third-level structure
<LS-REQUEST>01-component2.

To illustrate this structure, consider the fragment of JSON data that matches the
example:
{"component1":

[
{

"component2": "string1"
},
{

"component2": "string2"
},

]
}

"component1" occurs three times. The first two contain an instance of "component2";
the third instance does not.

In the top-level data structure, component1-num contains a value of 3. The container
named in component1-cont has three instances of <LS-REQUEST>01-component1:
1. In the first, component2-num has a value of 1, and the container named in

component2-cont holds string1.
2. In the second, component2-num has a value of 1, and the container named in

component2-cont holds string2.
3. In the third, component2-num has a value of 0, and the contents of

component2-cont are undefined.

In this instance, the complete data structure is represented by four containers in all:
v The root data structure in container <LS-REQUEST>01-DATA.
v The container named in component1-cont.
v Two containers named in the first two instances of component2-cont.

Chapter 7. JSON web services 89

Optional structures and the required keyword

Data structures are defined by the JSON Schema "type" of "object". The schemas
relate field names to individual types using the object provided by the
"properties" keyword. The requirement for these fields to be part of the JSON
data described by the JSON Schema is controlled by the array provided by the
"required" keyword. This array lists all the field names that must be present in the
JSON data. Optional fields are therefore represented by their absence from this
array, or as the array is not allowed to be empty, the absence of the "required"
keyword. In this case, all fields are optional.

Optional fields are treated as a variable array of 0 or 1 elements. This adds an
additional field with the suffix "-num" appended to the element name. If the total
length is more than 28 characters, the element name is truncated. At run time this
will be non-zero to indicate the value was present in the JSON data and zero if it
was not.

This example shows two fields, one required called "required-structure" and the
other one optional called "optional-structure" :
{

"type": "object",
"properties": {

"required-structure": {
"type":"string",
"maxLength": 8

},
"optional-structure": {

"type":"string",
"maxLength": 8

}
},
"required": [

"required-structure"
]

}

The generated COBOL structure shows both fields, but the second is preceded by
"optional-structure-num" which is an integer count of the elements, with 0
representing none and 1 that it is present. The value is set to indicate whether the
"optional-structure" contains valid data or not.
03 OutputData.

06 required-structure PIC X(8).
06 optional-structure-num PIC S9(9) COMP-5 SYNC.
06 optional-structure PIC X(8).

JSON web service restrictions
Use this reference material to understand capabilities that are not supported by
JSON web services.

The following capabilities are not supported:
v Use of namespaces in JSON data (Badgerfish or Mapped conventions) is not

supported.
v JSON payloads sent to CICS TG must be encoded in UTF-8. No other encoding

is supported. Similarly, JSON sent by CICS TG is always encoded in UTF-8.
v If a JSON payload is missing some of its required content when CICS TG

transforms it, the equivalent fields within the data structures are not initialized
when passed to the application program.

90 CICS TG for Multiplatforms V9.2: Developing Applications

v CICS TG cannot transform integer values greater than the maximum value for a
signed long (2^63 - 1) unless they are enclosed within quotes.

v Use of simple data types or arrays is not supported at the root of a JSON
Schema. The JSON Schema is required to describe a JSON Object, though the
JSON Object can be composed of simple data types and arrays.

Note: Supported characters for JSON property names are: A-Z a-z _ : for the first
character and A-Z a-z 0-9 _ : . - for all subsequent characters.

Error responses from JSON web services
If an error occurs during the execution of a JSON web services request, the HTTP
status code is set to a value that indicates the type of error.

Details of the error are returned in a JSON object with the following format:
{

"Fault":
{

"detail":
{

<additional detail fields>
},
"faultstring": "<Error text>"

}
}

The detail object can contain the following fields:
v Description: A description of the error suitable for display to users.
v CICSServer: The CICS server that the web service request was sent to.
v AbendCode: The abend code if an abend occurs in the CICS program that

implements the web service.
v ExceptionMessage: The exception message if an internal exception occurs within

CICS TG.

A CICS program that uses the channel interface to implement a RESTful web
service, can indicate its own error conditions by setting the HTTP status code in
the DFHHTTPSTATUS container along with a custom error response. For more
information, see “Creating a RESTful JSON web service” on page 34.

Chapter 7. JSON web services 91

92 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 8. Statistics APIs

The statistics APIs enable user applications to obtain runtime statistics on the
Gateway daemon. To use the statistics APIs, the Gateway daemon must be
configured with a statistics API protocol handler.

TCP/IP is used to connect the application to the Gateway daemon. The application
can be local or remote to the Gateway daemon.

Statistical data overview
The statistics APIs provide a single-threaded or multithreaded user application
access to statistical data from one or more running Gateway daemons. TCP/IP
connects the application to the Gateway daemon. The application can be local or
remote to the Gateway daemon.

API functions

The APIs provide functions to:
v Connect to specific Gateway daemons.
v Disconnect from specific Gateway daemons.
v Obtain a set of statistical group IDs from a specific Gateway daemon.
v Obtain statistical IDs associated with one or more statistical group IDs from a

specific Gateway daemon.
v Obtain data for statistical IDs from a particular Gateway daemon.

The functions are grouped into five categories:
v Connection functions
v ID data retrieval functions
v Statistical data retrieval functions
v Result set manipulation functions
v Utility functions

API and protocol version control
The API version represents the programming interface available from the ctgstats
runtime library. The protocol version represents the set of responses that may be
returned by a connected Gateway daemon in response to a statistics API function
call. Comparison of compile time versus runtime values can be made to establish
compatibility.

A statistics API application, and the Gateway daemon providing the statistics,
might be from different versions of the CICS Transaction Gateway. API and
protocol version control helps ensure that a statistics API application can issue
meaningful requests to a CICS Transaction Gateway daemon, and get meaningful
responses in return. API and protocol versions have a format of four digits,
separated by the underscore character. For example: 1_0_0_0

© Copyright IBM Corp. 1998, 2016 93

Note: The API and protocol versions might look like the product version, but they
are not related. The statistics API can only be used to collect statistical data from
Gateway daemons at version 7.0 or higher.

A statistics API application can:
v Find the API version that it was compiled with by using the compile-time string

CTG_STAT_API_VERSION, defined in ctgstats.h.
v Find which API version is used at run time by a CICS Transaction Gateway

daemon, or Java statistics API by using the “getStatsAPIVersion” on page 106
function.

v Find the protocol version that it was compiled with by using the compile-time
string CTG_STAT_PROTOCOL_VER, defined in ctgstdat.h.

v Find which protocol version is used at run time by a CICS Transaction Gateway
daemon, by using the “openGatewayConnection” on page 101 or
“openRemoteGatewayConnection” on page 101 function.

API version

The major version number, first digit, of the statistics API version must match
between the application at compile time and ctgstats runtime library.

For example; if CTG_STAT_API_VERSION is 1_0_0_0 and the runtime function
getStatsAPIVersion returns 1_1_0_0 then the major version (1_x_x_x) matches.
Therefore the application is guaranteed to be runtime compatible with at least
those functions available for version 1_1_0_0.

If the major version numbers differ, runtime compatibility is not guaranteed and
API calls might fail.

Assuming that the major version number matches, then the minor version number
(second digit) of the statistics API version at application compile time must be the
lower than or equal to the ctgstats runtime library.

For example; if CTG_STAT_API_VERSION is 1_0_0_0 and the runtime function
getStatsAPIVersion returns 1_1_0_0 then the major version (1_x_x_x) matches, and
the minor version (x_0_x_x) used by the application is lower than the runtime
library. Therefore, the application is guaranteed to be runtime compatible because
it can only use those functions that are available at runtime version 1_0_0_0.

If the minor version number. second digit, of the statistics API version at
application compile time is greater than the ctgstats runtime library, then some
functions available at compile time will not be available at run time. The 3rd and
4th digits are reserved for IBM service and maintenance usage.

Protocol version

The protocol version adheres to similar rules between compile time and run time
as the API Version. However, the protocol version represents the interface between
the compiled statistics application and the Gateway daemon connected at run time.

The major version number, first digit, of the protocol version must match between
the application at compile time and the connected Gateway daemon.

Assuming that the major version number matches, then the minor version number,
second digit, of the statistics API application at application compile time, must be

94 CICS TG for Multiplatforms V9.2: Developing Applications

the greater than or equal to the minor version number returned by the connected
CICS Transaction Gateway daemon upon connection. If the minor version number
is lower than that of the connected Gateway daemon, then the statistics API
application might be unable to interpret all responses from function calls.

Statistics C API
The statistics C API enables a C client application to request statistics from a
Gateway daemon that has configured and enabled a statistics protocol handler. The
CICS TG Statistics C API supports 32-bit applications.

Calling the C API
This section explains how applications call API functions.

Applications call C API functions defined in “C language header files,” and a
dynamic link library (DLL). Each function call returns an integer result code,
defined in the ctgstdat.h header file. A function that completes normally returns
the code CTG_STAT_OK. A function that needs to report a problem returns a negative
code, detailed in the ctgstdat.h header file.

The statistics C API does not provide logging messages. Runtime operation of the
C API functions can be monitored using trace facilities. Statistics C API tracing can
be enabled programatically with data written to stderr, or a specified file. C API
errors are reported to the calling application using an integer result code.

Statistics C API components
The statistics C API is made available to user applications by two C language
header files and a dynamic link library (DLL).

C language header files

Two platform-independent C language header files are provided for developing
user applications.

ctgstats.h defines the C API function calls and data types required to use the C
API functions.

ctgstdat.h defines the set of query return codes that might be seen by a statistical
user application. The set of query return codes can vary according to the statistics
protocol version provided by the CICS Transaction Gateway daemon.

Runtime DLL

The statistics C API runtime DLL is provided for each of the supported CICS
Transaction Gateway hardware platforms. It is supplied as a platform-specific DLL
or shared library. It must be available during the run time of the statistical user
application.

File names and locations

The runtime DLL and header files are installed by the installer. The details of the
files are provided in the following table.

Chapter 8. Statistics APIs 95

Table 8. File names and locations

Platform Deliverable File name Installation directory

All C Header ctgstats.h include

All C Header ctgstdat.h include

All C Sample ctgstat1.c samples/c/stats

IBM AIX DLL libctgstats.a lib

HP-UX on Itanium DLL libctgstats.so lib

Linux on Intel DLL libctgstats.so lib

Linux on POWER® DLL libctgstats.so lib

Linux on IBM z
Systems

DLL libctgstats.so lib

Solaris on SPARC DLL libctgstats.so lib

UNIX and Linux Sample Makefile samp.mak samples/c/stats

Windows DLL ctgstats.dll lib

Windows Export symbols ctgstats.lib lib

Windows Sample Makefile ctgstat1mak.cmd samples/c/stats

For information about supported compilers, see the information about
development environments in the CICS Transaction Gateway: UNIX and Linux
Administration or the CICS Transaction Gateway: Windows Administration.

Windows platform
At compile time, applications that use the statistics C API need access to
the C API DLL external symbols provided in the ctgstats.lib file.

Unix and Linux platforms
If you change the sample makefile, you might also have to update the
samples/c/env_c.def file.

Sample code

A sample file ctgstat1.c is supplied. This provides a simple example for using the
statistics C API. For further details, see “C and Java statistics API samples” on
page 277.

Statistics C API program structure
Outline of a basic statistics C API program.

A basic statistics C API program typically has an outline similar to the example
later in this section.

Example

This pseudo-code program connects to a CICS Transaction Gateway daemon,
obtains the statistics IDs related to the "GD" resource group, obtains the current
values for the given "GD" related statistical IDs and finally iterates through the
returned values, writing out the details.
/* Create a connection to a local Gateway daemon */
openGatewayConnection(&gwyToken,port,&gwyProtocolVersPtr)

verify connected Gateway protocol level

96 CICS TG for Multiplatforms V9.2: Developing Applications

/* Set the resource group id of interest */
queryString1="GD"

/* Obtain the list of associated statistical IDs */
getStatIdsByStatGroupId(gwyToken, queryString1, &resultSetToken)

/* Extract the returned IDs as a query string */
getIdQuery(resultSetToken,&queryString2)

/* Obtain the live statistical values for the given set IDs */
getStatsByStatId(gwyToken, queryString2, &resultSetToken)

/* Iterate over the result set, outputting */
/* the details of each result set element */

/* Obtain the first statistical result set element */
getFirstStat(resultSetToken, &statDataItem)

do
if statDataItem.queryElementRC == CTGSTATS_SUCCESSFUL_QUERY

/* output details of statDataItem */
endif
/* Obtain the next statistical result set element */
getNextStat(resultSetToken, &statDataItem)

until end-of-resultset

C API data types
Data types defined and used by the statistics API.

This information describes the main data types used by the statistics C API.

Gateway tokens
A Gateway token represents a single connection to a specific Gateway daemon.

When a connection to a Gateway daemon is made, all subsequent C API calls that
retrieve statistical data must include the Gateway token as a parameter.

The statistics C API handler in a Gateway daemon is restricted to five connection
threads. This means that a single Gateway daemon can only deal with five
connected statistics C API programs, or threads, at the same time.

A statistical C API program should avoid holding more than one connection to the
same Gateway daemon at the same time.

A statistical C API program can hold multiple Gateway tokens, but can only use
them on the thread that called the “openGatewayConnection” on page 101 or
“openRemoteGatewayConnection” on page 101 to retrieve the token.

A Gateway token type (CTG_GatewayToken_t) is defined in the “C language header
files” on page 95.

Query strings
A query string is an input parameter, specifying the statistical data to be retrieved.

A query string is an input parameter to statistical C API functions which provide a
result set token pointer. The string is a null-terminated, colon-separated list of IDs.
The IDs can be statistical group IDs, or statistical IDs. An empty query string "" is
interpreted as matching all IDs appropriate to the function call.

Chapter 8. Statistics APIs 97

Query strings are of type (char *), and contain character data in the native
encoding. The null terminator is added implicitly when creating strings in C using
the "" characters.

The user application creates and manages the query string character buffer.

Where an C API function produces a data result set, the function “getIdQuery” on
page 104 can be used to obtain a query string suitable for input to another C API
call.

Example

A pseudo-code example showing the query string used to retrieve the Gateway
daemon status and all connection manager statistics is:
result = getStatsByStatId(gwyTok, "GD_CSTATUS:CM", &rsToken1;

Result set tokens
A result set token is a reference to a set of results from a single statistics C API
function call.

If a statistics C API function calculates a set of data, the function provides a
reference to the result set. This reference is called a result set token. The result set
can contain either:
v ID data, including statistical group IDs or statistical IDs

or:
v Statistical data

A result set token is used to work with result set data. For example, a result set
token enables a user application to browse through the result set, or extract specific
details. The application can use functions such as “getFirstId” on page 104 or
“getNextStat” on page 105 to manipulate the result set data.

An “ID data” on page 100 type is populated by the “getFirstId” on page 104 and
“getNextId” on page 105 functions. A “Statistical data” on page 100 type is
populated by the “getFirstStat” on page 105 and “getNextStat” on page 105
functions. The data types are used to access the data in the result sets, as described
in “Correlating results and error checking” on page 108.

Note: All ID data and statistical data is in character format, using the default
native string encoding.

Result set tokens returned by a statistics C API function are 'owned' by the C API.
The token is freed when either:
v The associated Gateway daemon connection is closed using the

“closeGatewayConnection” on page 102 function.

or
v The function “closeAllGatewayConnections” on page 102 is called.

The result set token returned by the “copyResultSet” on page 105 function is not
'owned' by the C API. The token can only be freed using the “freeResultSet” on
page 106 function.

98 CICS TG for Multiplatforms V9.2: Developing Applications

Result set tokens 'owned' by the C API cannot be 'freed' using the “freeResultSet”
on page 106 function. The tokens must be freed using the
“closeGatewayConnection” on page 102 or “closeAllGatewayConnections” on page
102 functions.

Result sets which are C API-owned can only be manipulated on the thread which
obtained them. Result sets that were not created by C API calls can be manipulated
by any thread.

Working with multiple result sets:

Working with multiple result sets requires special attention.

Calling a statistics C API function produces a result set token. This token identifies
a result set owned by the statistics C API. The result set is also associated with the
Gateway identified by the gateway token used during the function call. This means
that each result set owned by the statistics C API is associated with a specific
Gateway connection. It is helpful to think of the gateway token and the
corresponding result set token as a pair.

Tokens referring to C API-owned result sets can only be used by the thread which
created them. To create a result set token usable by any thread, call the
“copyResultSet” on page 105 function.

For example, an application using the same gateway token to make two separate C
API function calls will be given two logically different result set tokens. Since the
same gateway token was used for both calls, the different result set tokens will
iterate over the same result set. The result set will be the one returned by the last C
API function call.

This means that the result set identified by an result set token is only valid until
another C API call is made, specifying the same gateway token. The most recent C
API call overwrites the existing result set.

Use the “copyResultSet” on page 105 function to make a copy of a result set before
it is overwritten by another C API call. When the application finishes using the
copied result set, free the storage using the “freeResultSet” on page 106 function.

Example

In the following example code, two statistics C API calls are made. The same
Gateway token is used for both calls. Two separate addresses are supplied for the
result set tokens.
getStatsByStatGroupId(gwyTok, "", &rsTok1, "",);
/* Tasks after getStatsByStatGroupId function call. */
getStatsByStatId(gwyTok, "", &rsTok2, "",);
/* Tasks after getStatsByStatId function call. */

Using the same Gateway token both calls means that the result set pointed to by
&rsTok1 will be overwritten when the second C API call is made. The two separate
result set tokens &rsTok1 and &rsTok2 will iterate over the same result set.

If the result set obtained from the first C API call is still required later in the
application, take a copy of the result set by calling the “copyResultSet” on page
105 function.

Chapter 8. Statistics APIs 99

ID data
An ID data structure maps an individual result returned from an ID C API
function.

The data type CTG_IdData_t is defined in the “C language header files” on page 95.
The data provides a name for individual results within statistical groups or
statistics.

Individual results can be accessed using the “getFirstId” on page 104 and
“getNextId” on page 105 functions.

CTG_IdData_t provides two fields, a character pointer and length, to enable access
to individual elements of an ID result set, as described in “Correlating results and
error checking” on page 108.

Statistical data
A statistical data structure maps an individual result returned from a statistics C
API function.

The data type CTG_StatData_t is defined in the “C language header files” on page
95. The statistical data represents individual statistics, or name-value pairs.

Individual results can be accessed using the “getFirstStat” on page 105 and
“getNextStat” on page 105 functions.

CTG_StatData_t provides two fields, a character pointer and length, to enable
access to individual elements of a statistical result set. These elements are the
statistical ID and statistical value data, as described in “Correlating results and
error checking” on page 108.

Statistics C API trace levels
The CICS Transaction Gateway statistics C API provides several levels of
diagnostic trace information.

Trace levels

The CICS Transaction Gateway statistics C API can produce diagnostic trace
information, depending on the trace level setting.

Each level automatically includes all the detail provided by the lower levels. For
example, CTG_STAT_TRACE_LEVEL2 indicates that all events and exceptions will be
traced.

Table 9. Statistics C API Trace Levels

Trace level Output details

CTG_STAT_TRACE_LEVEL0 No trace output.

CTG_STAT_TRACE_LEVEL1 Exceptions only.

CTG_STAT_TRACE_LEVEL2 Events.

CTG_STAT_TRACE_LEVEL3 Entries and exits.

CTG_STAT_TRACE_LEVEL4 Debug information.

The default trace destination is stderr. Use the function “setAPITraceFile” on page
107 to choose a different trace destination.

100 CICS TG for Multiplatforms V9.2: Developing Applications

C API functions
The statistics C API functions.

Many ID functions create a result set. A result set is over-written the next time an
ID function call is made using the same gateway token. This means an application
working with several result sets from the same Gateway connection at the same
time must take a local copy of each result set. To take a local copy of a result set,
use the “copyResultSet” on page 105 function.

For details of the return codes provided by the C API functions, see ctgstats.h in
the “C language header files” on page 95, or see the Statistics APIs.

Gateway daemon connection functions
This information describes the main functions provided in the statistics API for
connections to a Gateway daemon.

openGatewayConnection:

This function establishes a connection to a local Gateway daemon statistics
protocol handler, using the specified port number, a pointer to a gateway token,
and the address of a char pointer for the statistics C API protocol version.

Detail

This function is called with an integer for the target port number, a pointer to a
gateway token, and the address of a char pointer to hold a string describing the
version of the statistics C API protocol provided by the target gateway daemon.

The function creates a connection to a local Gateway daemon statistics protocol
handler using the specified port number.

When the call returns, the gateway token represents the connection to the specified
Gateway daemon. The token is required to interact with that Gateway daemon in
subsequent C API calls.

The char pointer points to a null-terminated character string. The C API owns the
storage for the protocol version character array, and the C API program does not
free this storage.

The user application must check that the version of the statistics C API protocol
provided by the target Gateway daemon is at least the same as major version
number in the compile-time string CTG_STAT_PROTOCOL_VER. This compile-time
string is defined in ctgstdat.h, described in the “C language header files” on page
95 section. The major version number is the first digit in the compile-time string.

openRemoteGatewayConnection:

This function establishes a connection to a remote Gateway daemon statistics
protocol handler, using the specified host name, port number, a pointer to a
gateway token, and the address of a char pointer for the statistics C API protocol
version.

Detail

This function is called with:

Chapter 8. Statistics APIs 101

v A character pointer for the host name. This is a null terminated string containing
the IP address or host name of the machine running the Gateway daemon.

v An integer for the target port number.
v A pointer to a gateway token.
v The address of a char pointer to hold a string describing the version of the

statistics C API protocol provided by the target gateway daemon.

The function creates a connection to a remote Gateway daemon statistics protocol
handler using the specified port number.

When the call returns, the gateway token represents the connection to the specified
Gateway daemon. The token is required to interact with that Gateway daemon in
subsequent C API calls.

The char pointer points to a null-terminated character string. The C API owns the
storage for the protocol version character array, and the C API program does not
free this storage.

The user application must check that the version of the statistics C API protocol
provided by the target Gateway daemon is at least the same as major version
number in the compile-time string CTG_STAT_PROTOCOL_VER. This compile-time
string is defined in ctgstdat.h, described in the “C language header files” on page
95 section. The major version number is the first digit in the compile-time string.

closeGatewayConnection:

This function closes a connection to a local Gateway daemon statistics protocol
handler, using the gateway token provided.

Detail

This function is called with a pointer to a gateway token. The function closes the
connection to the local or remote Gateway daemon statistics protocol handler
identified by the gateway token. Any resources associated with the connection,
including result sets, are freed, and result set tokens obtained with the specified
gateway token are no longer valid.

When the call returns, the gateway token pointer is set to null, showing that it is
no longer valid.

closeAllGatewayConnections:

This function releases all resources owned by the statistics C API, including any
open Gateway daemon connections.

Detail

An application can use this function as part of a typical shutdown. The function
can also be used in the event of a severe error, for example where some form of
controlled shutdown is required but references to gateway tokens have been lost.

Copied result sets are not be freed by this function, because the C API does not
own or maintain a record of copied result sets.

102 CICS TG for Multiplatforms V9.2: Developing Applications

ID functions
This information describes the ID functions provided in the statistics C API.

getResourceGroupIds:

This function returns a result set token, representing the set of resource group IDs
currently available for the specified Gateway daemon.

Detail

This function is called with a gateway token and a result set token pointer. The
result set returned can be parsed with functions “getFirstId” on page 104 and
“getNextId” on page 105, or used to generate a query string with “getIdQuery” on
page 104.

getStatIds:

This function returns a result set token, representing the set of all statistical IDs
currently available for the specified Gateway daemon.

Detail

This function is called with a gateway token and a result set token pointer. The
result set created can be parsed with functions “getFirstId” on page 104 and
“getNextId” on page 105, or used to generate a query string with “getIdQuery” on
page 104.

getStatIdsByStatGroupId:

This function returns a set of statistical IDs associated with the statistical group IDs
supplied in the query string, for the specified Gateway daemon.

Detail

This function is called with a gateway token, a query string of statistical group IDs,
and a result set token pointer. The result set created can be parsed with functions
“getFirstId” on page 104 and “getNextId” on page 105, or used to generate a query
string with “getIdQuery” on page 104.

Retrieving statistical data functions
This information describes the data retrieval functions provided in the statistics C
API.

getStats:

This function creates a result set token representing the set of all available
statistical name-value pairs for the specified Gateway daemon.

Detail

This function is called with a gateway token and a result set token pointer. The
result set created can be parsed with functions “getFirstStat” on page 105 and
“getNextStat” on page 105, or used to generate a query string with “getIdQuery”
on page 104.

Chapter 8. Statistics APIs 103

getStatsByStatId:

This function creates a result set token. The token represents the set of name-value
pairs that is generated when a query string of statistical IDs is applied to the
specified Gateway daemon.

Detail

This function is called with a gateway token, a query string of statistical IDs, and a
result set token pointer. The result set created can be parsed with functions
“getFirstId” and “getNextId” on page 105, or used to generate a query string with
“getIdQuery.”

getStatsByStatGroupId:

This function creates a result set token. The token represents the set of name-value
pairs that is generated when a query string containing statistical group IDs is
applied to the specified Gateway daemon.

Detail

This function is called with a gateway token, a query string of statistical group IDs,
and a result set token pointer. The result set returned can be parsed with functions
“getFirstStat” on page 105 and “getNextStat” on page 105, or used to generate a
query string with “getIdQuery.”

Result set functions
This information describes the result set functions provided in the statistics C API.

getIdQuery:

This function provides a pointer to a character array, containing the ID result set.

Detail

This function is called with a result set token pointer, and the address of a
character pointer. The function sets the pointer to point to a character array. This
character array contains the ID result set, formatted for direct use as a query string.

The storage for the character array is created by the C API. The C API owns the
storage for the character array, and the C API program does not free this storage.

getFirstId:

This function populates a CTG_IdData_t variable with details of the first ID in a
result set.

Detail

This function is called with an ID result set token. The function populates a
CTG_IdData_t variable with details of the first ID in the result set. If there are no
further IDs in the result set, the CTG_IdData_t variable is unchanged.

For more information on the CTG_IdData_t data type, see “ID data” on page 100.

104 CICS TG for Multiplatforms V9.2: Developing Applications

getNextId:

This function populates a CTG_IdData_t variable with details of the next ID in a
result set.

Detail

This function is called with an ID result set token. The function populates a
CTG_IdData_t variable with details of the next ID in the result set. If there are no
further IDs in the result set, the CTG_IdData_t variable is unchanged.

For more information on the CTG_IdData_t data type, see “ID data” on page 100.

getFirstStat:

This function populates a CTG_StatData_t variable with details of the first ID in a
result set.

Detail

This function is called with a statistical result set token. The function populates a
CTG_StatData_t variable with details of the first ID in the result set. If there are no
further IDs in the result set, the CTG_StatData_t variable is unchanged.

For more information on the CTG_StatData_t data type, see “Statistical data” on
page 100.

getNextStat:

This function populates a CTG_StatData_t variable with details of the next ID in a
result set.

Detail

This function is called with a statistical result set token. The function populates a
CTG_StatData_t variable with details of the next ID in the result set. If there are no
further IDs in the result set, the CTG_StatData_t variable is unchanged.

For more information on the CTG_StatData_t data type, see “Statistical data” on
page 100.

copyResultSet:

This function creates a copy of a result set. The copy is owned by the calling
application.

Detail

An application might need to make several C API calls on a result set. This is
useful because some C API calls overwrite an existing result set with new results.
A local copy of the result set is created using this function.

The copyResultSet function takes two result set tokens. The source token refers to
the original result set. The target token refers to a copy of the result set. The copy
is created by this function. The calling application owns the target result set.

Chapter 8. Statistics APIs 105

There is no structural difference between the original and the target result sets.
“Result set functions” on page 104 work with C API-owned result sets or
application-owned result sets.

When the application finishes using the copied result set, free the storage using the
“freeResultSet” function.

freeResultSet:

This function frees the storage used by an application-owned result set.

Detail

When an application finishes using a result set, the storage must be freed. This
function takes a pointer to a result set token, frees the storage, and sets the pointer
to null.

Use this function only for result sets created using the “copyResultSet” on page
105 function. If the result set is owned by the statistics C API, an attempt to free
the result set returns an error.

Utility functions
This information describes the utility functions provided in the statistics C API.

getStatsAPIVersion:

This function provides version information about the statistics C API.

Detail

This function takes the address of a character pointer to be modified. The function
modifies the character pointer to point to a null-terminated character array. The
string represents the version of the active statistics DLL. Version information is
described in “API and protocol version control” on page 93. The C API owns the
storage for the character array, and the C API program does not free this storage.

getAPITraceLevel:

This function provides information about the current trace status of the statistics C
API.

Detail

This function takes a pointer to a local int variable. The function sets the variable
to the current trace level of the statistics C API.

The levels are defined in the “C language header files” on page 95. Valid values
are:
v CTG_STAT_TRACE_LEVEL0

v CTG_STAT_TRACE_LEVEL1

v CTG_STAT_TRACE_LEVEL2

v CTG_STAT_TRACE_LEVEL3

v CTG_STAT_TRACE_LEVEL4

106 CICS TG for Multiplatforms V9.2: Developing Applications

For further information on trace levels, see “Statistics C API trace levels” on page
100.

setAPITraceLevel:

This function sets the trace level of the statistics C API.

Detail

This function takes an int value. The function sets the trace level of the C API to
this value.

The default trace destination is stderr. Use the function “setAPITraceFile” to
choose a different trace destination.

The status values are defined in the “C language header files” on page 95. Valid
values are:
v CTG_STAT_TRACE_LEVEL0

v CTG_STAT_TRACE_LEVEL1

v CTG_STAT_TRACE_LEVEL2

v CTG_STAT_TRACE_LEVEL3

v CTG_STAT_TRACE_LEVEL4

For further information on trace levels, see “Statistics C API trace levels” on page
100.

setAPITraceFile:

This function sets the destination for statistics C API trace details.

Detail

This function takes a character pointer to a null-terminated string. The string is the
file name of the intended trace destination.

If the file name already exists, trace data is appended to the file.

If the file name cannot be opened for writing, trace data is sent to stderr.

Passing a null pointer to this function sets the trace destination back to stderr.

dumpResultSet:

This function outputs a result set in a printable form.

Detail

This function takes a result set token. The function writes the contents of the result
set to the trace destination, regardless of the current trace level. The contents are
written using printable characters.

This function is typically used for debug purposes.
Related reference:

Chapter 8. Statistics APIs 107

“Statistics C API trace levels” on page 100
The CICS Transaction Gateway statistics C API provides several levels of
diagnostic trace information.

dumpState:

This function outputs internal information about the C API.

Detail

This function writes internal information about the C API to the trace destination.

This function is normally used for debug purposes.

Correlating results and error checking
Individual results within a result set from a statistics C API function call can be
correlated back to the original query string data.

ID or statistical results within a result set from an C API call can be correlated back
to the original query string data using the struct elements queryElementPtr and
queryElementLen. The status of the result is given by queryElementRC. These return
codes are defined in the ctgstdat.h header file.

After a call to “getFirstId” on page 104 or “getNextId” on page 105, the
CTG_IdData_t elements query and queryLen represent the specific ID in the query
string associated with the result.

After a call to “getFirstStat” on page 105 or “getNextStat” on page 105, the
CTG_StatData_t elements query and queryLen represent the specific statistic in the
query string associated with the result.

If the specific ID in the query string is in error, the struct element queryElementRC
will have a non-zero value, defined in the ctgstdat.h header file.

Statistics Java API
The statistics Java API enables a Java-based client application to request statistics.

Calling the Java API

Applications can collect statistics from a Gateway daemon using the Java classes in
the com.ibm.ctg.client.stats package. The classes are supplied in a the ctgstats.jar
and can be used with Gateway daemons from V7.1 onwards. A sample file
Ctgstat1.java is supplied that provides a simple example for using the Java
statistics API.

Packaging restrictions with ctgstats.jar

If an application needs to use classes from both the com.ibm.ctg.client.stats
package provided by ctgstats.jar and another API package supplied in ctgclient.jar,
both jar files must be on the class path and must be from the same product version
and release. The implication is that such an application can only connect to a
Gateway daemon at the same version or higher for non-statistical requests.

108 CICS TG for Multiplatforms V9.2: Developing Applications

The ctgstats.jar file can be used in isolation for standalone monitoring
applications. ctgstats.jar is compatible with ctgclient.jar provided both jar
files are from the same version of CICS TG. Mixing ctgstats.jar and
ctgclient.jar that are from different versions of CICS TG is not supported.

Sample code

A sample file Ctgstat1.java is supplied that provides a simple example for using
the statistics API.

Java API classes

The Java API classes are responsible for connecting and making statistical requests
to a statistics port provided by the Gateway daemon. The constructors allow the
destination to be supplied by the application.

The statistic resource groups are available through the getResourceGroupIds method.
An IdResultSet object is returned that contains a collection of IdData objects that
hold the names of the resource groups. You can iterate over the IdResultSet to
search the resource groups available.

If the names of the available statistics are required use the getStatIds method. This
method returns an IdResultSet, functioning the same as getResourceGroupIds.

You can retrieve actual statistic values using the getStats method. This method
returns a StatResultSet object that contains a collection of StatData objects. These
StatData objects contain both the statistic names, and their current values. You can
iterate over the StatResultSet to search the statistics available from the request.

If a result set returned has the return code set you can map this to the reason
using the getReturnString method of the ResponseData class.

Tracing

You can enable statistics API tracing programmatically using the Java tracing
options, see “Tracing in Java client programs” on page 132. Java API errors are
reported to the calling application.
Related information:
Package com.ibm.ctg.client.stats

Chapter 8. Statistics APIs 109

110 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 9. Code page information

When using the application programming interfaces of the CICS Transaction
Gateway to start CICS programs, data conversion is an important consideration.

If the code page of the user application is different from the code page of the CICS
server, or the byte order of binary data is in a different format, you might need to
convert the data in a COMMAREA or container. For COMMAREA data, you can
do this conversion by using CICS supplied data conversion capabilities on the
CICS server, provided by the DFHCCNV program and controlled by the DFHCNV
macro definitions. In this case all data conversion is performed on the CICS server.
Alternatively, you can use the data marshalling utilities provided within your user
application development environment.

If you are using Java you can determine the code page of the Client daemon from
the user application. For more information about this utility see the Javadoc for
com.ibm.ctg.client.CicsCpRequest.

© Copyright IBM Corp. 1998, 2016 111

112 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 10. Programming in Java

This information provides an introduction to writing Java client programs for the
CICS Transaction Gateway.

Overview of the programming interface for Java
The CICS Transaction Gateway enables Java client applications to communicate
with programs on a CICS server by providing base classes for the External Call
Interface (ECI) and the External Security Interface (ESI), and EPI support classes
for the External Presentation Interface (EPI).

The following list of classes are the basic classes provided with the CICS
Transaction Gateway. For a full description of all the classes and methods
discussed in this section, see the Javadoc supplied with the CICS Transaction
Gateway.

com.ibm.ctg.client.JavaGateway
This class is the logical connection between a program and a CICS
Transaction Gateway. You need a JavaGateway object for each CICS
Transaction Gateway that you want to send requests to.

com.ibm.ctg.client.ECIRequest
This class contains the details of an ECI request to the CICS Transaction
Gateway.

com.ibm.ctg.epi.Terminal
This class controls a 3270 terminal connection to CICS. The Terminal class
handles CICS conversational, pseudoconversational, and ATI transactions.
A single application can create many Terminal objects.

com.ibm.ctg.client.ESIRequest
This class contains the details of an ESI request to the CICS Transaction
Gateway.

Writing Java client applications
Before a Java client application can send a request to the CICS server, it must
create and open a JavaGateway object. The JavaGateway object is a logical
connection between your application and the Gateway daemon when the
application is running in remote mode. If a Java Client application is running in
local mode, the JavaGateway is a connection between the application and the CICS
server, bypassing the Gateway daemon.

When the JavaGateway is open, the Java client application can flow requests to the
CICS server using the flow method of the JavaGateway. When there are no more
requests for the CICS Transaction Gateway, the Java client application closes the
JavaGateway object.

There are several constructors available for creating a JavaGateway. The default
constructor creates a JavaGateway with no properties. You must then use the set
methods to set the required properties and the open method to open the Gateway.
There are other constructors which set different combinations of properties and
open the Gateway for you.

© Copyright IBM Corp. 1998, 2016 113

Use one of the constructors provided to create a JavaGateway. You must specify
the protocol you are using, and the network address and port number of the
remote Gateway daemon. You can specify this information either by using the
setAddress, setProtocol and setPort methods, of the JavaGateway class, or by
providing all the information in URL form: Protocol://Address:Port. If you
specify a local connection, you must specify a URL of local: You can use the
setURL method or pass the URL into one of the JavaGateway constructors.

Note: The IP address can be in IPv6 format. If you are using a Java Client
application on an HP-UX on Itanium system, and the application calls a Gateway
that binds to an IPv6 address, specify -Djava.net.preferIPv4Stack=false
explicitly.

The JavaGateway supports the following protocols:
v TCP/IP
v SSL
v Local

Java applications that connect to the Gateway daemon using TCP or SSL can
specify a local port number to use for the connection. Set the
JavaGateway.PROP_CLIENT_PORT property in a java.util.Properties object to the
numeric value of the port to use, then pass the Properties object to the
JavaGateway constructor. If the local port is already in use the connection will fail,
so a different property value must be used for each concurrent TCP or SSL
connection.

SSL cipher suites in Java Client applications
Cipher suites define the key exchange, data encryption, and hash algorithms used
for an SSL session between a client and server.

Cipher suites define the key exchange, data encryption, and hash algorithms used
for an SSL session between a client and server. During the SSL handshake, both
sides present the cipher suites that they are able to support and the strongest one
common to both sides is selected. In this way, you can restrict the cipher suites
that a Java client application presents. CICS Transaction Gateway uses cipher suites
provided by the Java runtime environment for the SSL protocol. The cipher suites
available to be used are dependant on the Java version. See the documentation
supplied with your Java runtime environment for valid cipher suites.

Restricting cipher suites for a Java Client application

To restrict the cipher suites used by a JavaGateway object, use the
setProtocolProperties() method to add the property
JavaGateway.SSL_PROP_CIPHER_SUITES to the properties object passed to it. The
value of the property must contain a comma-separated list of the cipher suites that
the application is restricted to using.

For example:
Properties sslProps = new Properties();
sslProps.setProperty(JavaGateway.SSL_PROP_KEYRING_CLASS, strSSLKeyring);
sslProps.setProperty(JavaGateway.SSL_PROP_KEYRING_PW, strSSLPassword);
sslProps.setProperty(JavaGateway.SSL_PROP_CIPHER_SUITES,

"SSL_RSA_WITH_NULL_SHA");
javaGatewayObject = new JavaGateway(strUrl, iPort, sslProps);

114 CICS TG for Multiplatforms V9.2: Developing Applications

JavaGateway security
When you connect to a remote CICS Transaction Gateway, resources allocated to a
particular connection, and identifiers specified on the request objects on a
particular connection, are available only to that connection.

If you specify the local: protocol, all JavaGateways that are created in the same
JVM, that is, the same process, have access to each other's allocated resources or
specified identifiers.

Making ECI calls from a Java client program
This section describes how to run a program on a CICS server using ECI calls from
a Java Client application.

Use the com.ibm.ctg.client.ECIRequest base class and the JavaGateway flow
method to pass details of an ECI request to CICS Transaction Gateway. The
following table shows Java objects corresponding to the ECI terms described in
“I/O parameters on ECI calls” on page 9.

Table 10. ECI terms and corresponding Java objects

ECI term Java object.field or object.method()

Abend code ECIRequest.Abend_Code

Channel ECIRequest.setChannel(channel)

See “Introduction to channels and
containers” on page 13.

COMMAREA ECIRequest.Commarea

See “ECI performance considerations when
using COMMAREAs” on page 15.

ECI timeout ECIRequest.setECITimeout(short)

See “Timeout of the ECI request” on page
14.

LUW control ECIRequest.Extend_Mode

See “Program link calls” on page 10.

LUW identifier ECIRequest.Luw_Token

See “Managing logical units of work” on
page 11.

Message qualifier ECIRequest.getMessageQualifier() and
ECIRequest.setMessageQualifier()

See “Retrieving replies from asynchronous
ECI requests” on page 12.

Password or password phrase ECIRequest.Password

See “Security in the ECI” on page 15.

Program name ECIRequest.Program

Server name ECIRequest.Server

Chapter 10. Programming in Java 115

Table 10. ECI terms and corresponding Java objects (continued)

ECI term Java object.field or object.method()

TPNName ECIRequest.Call_Type = ECI_SYNC_TPN or
ECI_ASYNC_TPN and ECIRequest.Transid

See “ECI and CICS transaction IDs” on page
13.

TranName ECIRequest.Call_Type = ECI_SYNC or
ECI_ASYNC and ECIRequest.Transid

See “ECI and CICS transaction IDs” on page
13.

User ID ECIRequest.Userid

See “Security in the ECI” on page 15.

Linking to a CICS server program
A link to a CICS program is made using an ECIRequest constructor to set the
required parameters for the ECI call.

You can either use the default constructor which sets all parameters to their default
values, or one of the other constructors which allow you to set different
combinations of parameters. Place any data to be passed to the server program in a
COMMAREA or container.

You can create ECI requests for synchronous program link calls by setting the
Call_Type field to ECI_SYNC or ECI_SYNC_TPN. You can create ECI requests for
asynchronous program link calls by setting the Call_Type field to ECI_ASYNC or
ECI_ASYNC_TPN. The ECI_SYNC and ECI_ASYNC call types cause the Transid field to be
used as TranName, and the ECI_SYNC_TPN and ECI_ASYNC_TPN call types cause the
Transid field to be used as TPNName.

Creating Java channels and containers for ECI calls
You can use channels and containers when you connect to CICS using the IPIC
protocol. You must construct a channel before it can be used in an ECIRequest.
1. Add the following code to your application program, to construct a channel to

hold the containers:
Channel myChannel = new Channel("CHANNELNAME");

2. You can add containers with a data type of BIT or CHAR to your channel. Here
is a sample BIT container:
byte[] custNumber = new byte[]{0,1,2,3,4,5};
myChannel.createContainer("CUSTNO", custNumber);

And a sample CHAR container:
String company = "IBM";
myChannel.createContainer("COMPANY", company);

3. The channel and containers can now be used in an ECIRequest, as the example
shows:
ECIRequest eciReq = new ECIRequest("CICSA", "USERNAME", "PASSWORD",
"CHANPROG", channel, ECIRequest.ECI_NO_EXTEND, 0);
jgateway.flow(eciReq);

4. When the request is complete, you can retrieve the contents of the containers in
the channel by interpreting the type. For example:

116 CICS TG for Multiplatforms V9.2: Developing Applications

Channel myChannel = eciReq.getChannel();

for(Container container: myChannel.getContainers()){
System.out.println(container.getName());

if (container.getType() == ContainerType.BIT){
byte[] data = container.getBITData();

}
if (container.getType() == ContainerType.CHAR){

String data = container.getCHARData();
}

}

Managing an LUW
Set the extend mode to ECI_EXTENDED if the ECI call is part of an extended
LUW. If the call is the last, or only call for the LUW, the extend mode must be
ECI_NO_EXTEND, ECI_COMMIT or ECI_BACKOUT.

Retrieving replies from asynchronous requests
Replies to asynchronous requests can be retrieved by using callbacks or reply
solicitation calls.

Callbacks
ECIRequest supports callback objects. A callback object, which must implement the
Callbackable interface, receives the results of the flow via the setResults method.
When the results have been applied, a new thread is started to execute the run
method.

If you specify a callback object for a synchronous call the results are passed to your
Callbackable object as well as to your ECIRequest object in the flow request.

Reply solicitation calls
You can retrieve asynchronous replies using message qualifiers and reply
solicitation calls.

Turn the feature on by invoking the method setAutoMsgQual(true) on your
ECIRequest object. This will assign a message qualifier that is unique on all
asynchronous requests (ECI_ASYNC, ECI_ASYNC_TPN, ECI_STATE_ASYNC,
ECI_STATE_ASYNC_JAVA), when the request is flowed. Use this message qualifier
to retrieve replies when you use the ECI_GET_SPECIFIC_REPLY and
ECI_GET_SPECIFIC_REPLY_WAIT call types.

For remote connections you cannot get replies on a different connection to the one
that flowed the original request with a message qualifier.

If you use ASYNC calls with message qualifiers, you might have to pass a user ID
and password when you retrieve the reply with one of the various GET_REPLY
call types. The user ID and password are not used to validate whether the reply
can be retrieved; they are passed to the Gateway to hold in case security is
required to clean up (BACKOUT) an LUW if the connection is lost while the server
program is still running.

For a local connection, the message qualifier must be unique for each request,
although this is not enforced. Provided the JavaGateways are within the same
JVM, any connection can get a message using a message qualifier, even if the
request was flowed over a different connection. However, it is recommended that
you use automatic message qualifier generation:

Chapter 10. Programming in Java 117

v To avoid problems resulting from reusing the same message qualifier
v To allow you to switch your application between local and remote connection

IPIC connections do not support asynchronous requests using message qualifiers
from Java clients. Java clients that perform asynchronous requests using IPIC
connections must use callbacks.

Making EPI calls from a Java Client program
This section describes how to run a 3270–based program on a CICS server using
EPI calls from a Java Client application.

To do this you can use either the EPI support classes, which is the recommended
method, or the EPIRequest base class. Table 11 shows Java objects corresponding to
the EPI terms described in the following table.

Table 11. EPI terms and corresponding Java objects

EPI term Terminal object:property EpiRequest object.field

Code page Terminal:CCSid EPIRequest.CCSid

Color no equivalent EPIRequest.color

Columns Screen:Width EPIRequest.numColumns

Device type Terminal:Device type EPIRequest.deviceType

Error last line no equivalent EPIRequest.errLastLine

Error message color no equivalent EPIRequest.errColor

Error message highlight no equivalent EPIRequest.errHighlight

Error message intensity no equivalent EPIRequest.errIntensity

Extended highlight no equivalent EPIRequest.highlight

Install timeout Terminal:InstallTimeout EPIRequest.installTimeout

Map name Screen:MapName EPIRequest.mapName

Mapset name Screen:MapsetName EPIRequest.mapSetName

Maximum data no equivalent EPIRequest.maxData

Netname Terminal:Netname EPIRequest.netName

Password Terminal:Password EPIRequest.password

Read timeout Terminal:ReadTimeout EPIRequest.readTimeout

Rows Screen:Depth EPIRequest.numLines

Server name Terminal:ServerName EPIRequest.Server

Sign-on capability Terminal:SignonCapability EPIRequest.signoncapability

SocketConnectTimeout No equivalent EPIRequest:SocketConnectTimeout

Terminal ID Terminal:Termid EPIRequest.termID

User ID Terminal:Userid EPIRequest.userid

EPI support classes
The EPI support classes are similar to the C++ EPI classes in that the objects
required and the methods to manipulate them are similar.

This section:
v Explains how to use the EPI support classes

118 CICS TG for Multiplatforms V9.2: Developing Applications

v Describes how to handle exceptions
v Describes the encoding of 3270 data streams
v Explains how to convert BMS maps and use the Map class

The CICS Transaction Gateway EPI support classes make it simpler for a Java
programmer to access the facilities that the EPI provides:
v Adding and deleting terminals
v Starting CICS transactions
v Sending and receiving 3270 data streams

You do not need a detailed knowledge of 3270 data streams. EPI support classes
provide higher-level constructs for handling 3270 data streams:
v General purpose Java classes are provided for handling screens, terminal

attributes, and transaction data.
v Java classes for specific CICS applications can be generated from BMS map

source files. These classes allow Java Client applications to access data on 3270
panels, using the same map field names used in the CICS program.

Note: These classes do not contain any specific support for 3270 data streams that
contain DBCS fields. Data streams with a mixture of DBCS and SBCS fields are not
supported.

The BMS conversion utility is a tool for statically producing Java class source code
from a CICS BMS map set. See “Converting BMS maps and using the Map class”
on page 126.

In the examples in this section, statements similar to the following are assumed:
import com.ibm.ctg.epi.*; import java.io.*;

Adding a terminal to CICS
This section describes how to install a terminal on a CICS server.

For more information about EPI and terminal properties, such as Sign-on capability
and Read timeout, see Chapter 5, “External Presentation Interface (EPI),” on page
19.

EPIGateway:

Create a JavaGateway object to start a connection to the CICS Transaction Gateway
before attempting to connect a terminal to CICS.

The EPIGateway class provides methods to access information about CICS servers
that are accessible from the CICS Transaction Gateway, and it can be used instead
of the JavaGateway class.

Adding a basic terminal:

There are two ways to construct a basic terminal: using the default constructor and
using the basic terminal constructor.

Default terminal constructor

To create a terminal using the default constructor, first instantiate a terminal,
and then use the appropriate setter methods to set the required properties. Use
only the setters that apply to a basic terminal. These methods are:

Chapter 10. Programming in Java 119

v setGateway
v setServerName
v setDeviceType
v setNetName
v setSession

All the set methods, with the exception of setGateway, are optional and have a
default setting of null. After you have defined your terminal, install it on the
CICS server using the connect() method. Use only this version of the connect()
method. The connect(installTimeout) and connect(Session, InstallTimeout)
methods are allowed only for extended terminals. See “Installing a terminal on
CICS” on page 121 and “Synchronization and sessions” on page 123 for further
information.
try {

EPIGateway eGate = new EPIGateway("tcp://MyGateway",2006);
Terminal term = new Terminal();
term.setGateway(eGate);
term.setServerName("CICS1");
term.connect();

}
catch (IOException ioEx) {

ioEx.printStackTrace();
}
catch (EPIException epiEx) {

epiEx.printStackTrace();
}

Basic terminal constructor

The second way is to use the basic terminal constructor. This sets all the
required properties and automatically connects you to the CICS Server.
try {

EPIGateway eGate = new EPIGateway("tcp://MyGateway",2006);
Terminal term = new Terminal(eGate, "CICS1", null, null);

}
catch (IOException ioEx) {

ioEx.printStackTrace();
}
catch (EPIException epiEx) {

epiEx.printStackTrace();
}

Exceptions: As the examples show, you must catch exceptions, irrespective of
which method you use to construct a basic terminal.

Adding an extended terminal:

There are two ways to construct an extended terminal: using the default
constructor and using the extended terminal constructor.

Default terminal constructor

To create a terminal using the default constructor, first instantiate a terminal, and
then use the appropriate set methods on that object. As with the basic terminal,
only the setGateway method is mandatory. The setDeviceType, setNetName,
setSession and setServer methods are optional as are the methods that set the
extended terminal properties. The following setters define the properties for the
extended terminal. Using any of these setters implies that you are creating an
extended terminal:

120 CICS TG for Multiplatforms V9.2: Developing Applications

v setSignonCapability (Default = sign-on capable, but see “Specifying terminal
sign-on capability” on page 23)

v setUserid (Default = null)
v setPassword (Default = null)
v setReadTimeout (Default = 0)
v setEncoding (Default = null)
v setInstallTimeout (Default = 0)
try {

EPIGateway eGate = new EPIGateway("tcp://MyGateway",2006);
Terminal term = new Terminal();
term.setGateway(eGate);
term.setServerName("CICS1");
term.setSignonCapability(Terminal.EPI_SIGNON_INCAPABLE);
term.setUserid(userid);
term.setPassword(password);
term.connect();

}
catch (IOException ioEx) {

ioEx.printStackTrace();
}
catch (EPIException epiEx) {

epiEx.printStackTrace();
}

After you have defined your terminal, you can use the connect method to install it
on CICS (see “Installing a terminal on CICS”).

Extended terminal constructor

The extended terminal constructor sets all required properties at construction time:
try {

EPIGateway eGate = new EPIGateway("tcp://MyGateway",2006);
Terminal term = new Terminal(eGate, "CICS1", null, null,

Terminal.EPI_SIGNON_INCAPABLE, userid,
password,0, null);

term.connect();
}
catch (IOException ioEx) {

ioEx.printStackTrace();
}
catch (EPIException epiEx) {

epiEx.printStackTrace();
}

Unlike the basic terminal constructor the extended terminal constructor does not
automatically install the terminal on CICS. This must be done explicitly by using
one of the following connect methods.

Installing a terminal on CICS:

There are three connect methods that you can use to install a terminal on CICS.

Connect()
This method installs a terminal on CICS using the session property and
install timeout property.

Connect(installTimeout)
This method installs the terminal on CICS using the session property, but
updates the install timeout property to that supplied.

Chapter 10. Programming in Java 121

Connect(Session, installTimeout)
This method installs the terminal on CICS, updating the current session
property with the supplied session object, and updating the install timeout
property with that supplied. Sessions are discussed in “Synchronization
and sessions” on page 123.

Deleting terminals
Use the disconnect method to delete terminals from CICS. Ensure that all terminals
are deleted without errors before your application ends. To purge a terminal while
a transaction is still running, set the PurgeOnDisconnect property to true.
term.setPurgeOnDisconnect(true);
term.disconnect();

After you have deleted the terminal from CICS, you can install it again by issuing
one of the connect() methods:
term.disconnect();

.....

term.connect();

The Session parameter does not apply to a disconnect call. Deleting a terminal is a
synchronous operation.

Starting a transaction
After you have added a terminal to CICS, you can use on of the send methods to
start a new transaction.
try {

term.send("EP01",null);
}
catch (EPIException ex) {

ex.printStackTrace();
}

You can also start a transaction by building a screen and sending it to CICS. Screen
manipulation and fields are discussed in “Accessing fields on CICS 3270 screens.”
The following example shows how to start a transaction using the Screen and Field
objects:
try {

Screen scr = term.getScreen();
Field fld = scr.field(1);
fld.setText("EP01");
term.send();

}
catch (EPIException ex) {

ex.printStackTrace();
}

Sending and receiving data
Synchronous and asynchronous events, such as Read Timeout events, and terminal
connections to CICS 3270 screens.

Accessing fields on CICS 3270 screens:

When a terminal connection to CICS has been established, the Terminal, Screen
and Field objects are used to navigate through the screens presented by the CICS
server application, reading and updating screen data as required.

122 CICS TG for Multiplatforms V9.2: Developing Applications

The Screen object is created by the Terminal object and is obtained via the
getScreen method on the Terminal object. It provides methods for obtaining
general information about the 3270 screen, for example, cursor position, and for
accessing individual fields by row and column, screen position, or index. The
following example prints out field contents, ends the CICS transaction by returning
PF3, and disconnects the terminal:

// Get access to the Screen object
Screen screen = terminal.getScreen();

for (int i=1; i <= screen.fieldCount(); i++) {
Field field = screen.field(i); // get field by index
if (field.textLength() > 0)

System.out.println("Field " + i + ": " + field.getText());
}

// Return PF3 to CICS
screen.setAID(AID.PF3);
terminal.send();

// Disconnect the terminal from CICS
terminal.disconnect();

The Field class provides access to the text and attributes of an individual 3270
field. You can use these in a variety of ways to locate and manipulate information
on a 3270 screen:

for (int i=1; i <= screen.fieldCount(); i++) {
Field field = screen.field(i); // get field by index

// Find unprotected (i.e. input) fields
if (field.inputProt() == Field.unprotect)

...
// Find fields the same as a specific text string
if (field.getText().equals("CICS Sign-on"))

...
// Find red fields
if (field.foregroundColor() == Field.red)

...
}

Synchronization and sessions:

The Terminal class supports both synchronous and asynchronous sends to the
CICS Server. In the case of an asynchronous send, the Screen object is updated
while information is being received from the server.

To select synchronous mode, you can either specify null for the session using the
setSession method, or specify a null session when invoking send. Alternatively, you
can implement the session interface and specify that it is a synchronous session.

To select asynchronous mode, implement the session interface and specify that it is
an asynchronous session.

Implementing the session interface:

You can set the session on a terminal by either using the setSession method, or by
passing the session object as part of a send or connect method.

“null” is also accepted as a session, meaning that you have no listening object in
place for replies and exceptions, and that all calls are synchronous.

Chapter 10. Programming in Java 123

The session interface defines two methods that must be implemented: getSyncType
and handleReply. The following code shows a sample implementation:
import com.ibm.ctg.epi.*;
public class myASession implements Session {

public int getSyncType() {
return Session.async;

}
public void handleReply(TerminalInterface term) {

System.out.println(
"Reply received Terminal state = " + term.getState());

}
public void handleException(TerminalInterface a, Exception e) {

System.out.println("Exception received:" + e.getMessage());
}

}

This example defines the session as an asynchronous session, because it returns
Session.async on the getSyncType call. To make the session a synchronous session,
you return Session.sync.

The example shows the handleReply and handleException methods:

handleReply

You must implement the handleReply method. It is called for each
transmission received from CICS. Depending on the design of the CICS
server program, a Terminal send call can result in one or more replies. The
Terminal state property indicates whether the server has finished sending
replies:

Terminal.server
Indicates that the CICS server program is still running and has
further data to send. The client application can process the current
screen contents immediately, or simply wait for further replies. The
application cannot delete the terminal, or send the screen to CICS,
or start a new transaction.

Terminal.client
Indicates that the CICS server program is now waiting for a
response. The client application should process the screen contents
and send a reply. The application cannot delete the terminal or
start a new transaction.

Terminal.idle
Indicates that the CICS server program has completed. The client
application should process the screen contents and either delete the
terminal or start a further transaction.

Terminal.failed
Indicates that the transaction has failed to start or complete for
some reason, for example, a conversion transaction has timed-out
waiting for a response from the application. Call the endReason
and endReasonString methods for more information.

Terminal.discon
Indicates that the terminal has been deleted. Call the endReason
and endReasonString methods for more information.

Terminal.error
Indicates that the terminal is in error state and cannot be used. Try
to delete the terminal to ensure that all terminal resources are
cleaned up.

124 CICS TG for Multiplatforms V9.2: Developing Applications

Most Java Client applications wait until the CICS server program has
finished sending data (that is, the Terminal state is client or idle) before
processing the screen. However, some long-running server programs might
send intermediate results or progress information that can usefully be
accessed while the Terminal state is still server.

The implementation of the handleReply method can read and process data
from the Screen object, update fields as required, set the cursor position
and AID key in preparation for the return transmission to CICS, and then
use the Terminal send method to drive the server application.

In synchronous mode, handleReply executes on the same thread that
invoked the send. In asynchronous mode, handleReply executes on a
separate thread.

Note: The handleReply method should never attempt to delete a terminal.
The disconnect call might make the application hang if called from
handleReply.

handleException

The handleException method is not specified as part of the session
interface and is optional unless you are using asynchronous mode sends,
when it must be implemented. The compiler does not force implementation
of the method. The Terminal class calls this method if it is present in the
Session object.

It is recommended that you also implement the handleException method
for synchronous mode sends with Automatic Transaction Initiation (ATI)
enabled.

For the handleReply method, the Terminal state property shows
information about the terminal connection.

Exceptions are passed in the Exception object. See “Exception handling,”
for a list of the exceptions that can occur.

ATIs and Read Timeouts:

ATI events and Read Timeout events are asynchronous and can occur at any time
during the execution of an application, providing ATIs are enabled and a Read
Timeout value was specified when creating an extended terminal.

If you plan to use these features, it is recommended that you use an asynchronous
session. However, these features can be used on a synchronous session; in this
case, if any events occur while blocked, handleReply runs on the thread that
invoked send or disconnect. If your application is not within a send or disconnect
invocation, handleReply executes on a separate thread.

Exception handling
EPI exceptions can occur when a user application interacts with a terminal.

The exception hierarchy is shown in the following diagram:

Chapter 10. Programming in Java 125

A description of each of these exceptions is given in the Javadoc supplied with the
product.

The other type of exception that can occur is IOException.

Use the getErrorCode method to retrieve the exception-specific error code which
identifies the exceptions.

If you are using either a null session or a synchronous session, and you have not
enabled ATIs and are not using Read Timeouts, all exceptions are thrown on the
application thread. When trying to start methods such as connect, send, or
disconnect, wrap the call in a try/catch/finally block.

When using asynchronous sessions, a problem arises if you have ATIs, or Read
Timeouts, or both, enabled. In this case, exceptions can occur while within connect,
send, and disconnect method invocations but also outside these calls.

If you use asynchronous sessions, exceptions cannot be thrown on any of the
application threads. If you enable ATIs, or Read Timeouts, or both, it is
recommended that you use asynchronous sessions.

To know when an exception has occurred when you are not invoking a terminal
method, you can implement the handleException method on the session. See
“Synchronization and sessions” on page 123, for an example of this. You can
implement it for both synchronous and asynchronous sessions. If the terminal is
unable to throw the exception on the application thread (that is, it is not blocked
on a synchronous call or it is an asynchronous session), this method is invoked on
a separate thread and the exception is passed to it.

Terminal encoding property
You can specify the encoding in which the resulting 3270 data stream is to be
constructed. When the terminal is installed, the CICS server (providing it supports
EPI Version 2) is informed of the encoding applied to the 3270 data stream.

If you specify null, the encoding used by the CICS Transaction Gateway server is
used (or the default encoding of the application if the local gateway is being used).

Basic terminals always work in the encoding used by the CICS Transaction
Gateway server (or the default encoding of the application if the local gateway is
being used).

Refer to your CICS Server document for more information on supported code
pages.

Converting BMS maps and using the Map class
The EPI BMS conversion utility uses the information in the BMS map source to
generate classes specific to individual maps, which allow fields to be accessed by
their names.

Figure 4. Exception hierarchy

126 CICS TG for Multiplatforms V9.2: Developing Applications

A large proportion of existing CICS applications use BMS maps for 3270 screen
output. This means that the server application can use data structures
corresponding to named fields in the BMS map rather than handling 3270 data
streams directly.

The utility generates Java classes that applications can use to access the map data
as named fields within a map object. A class is defined for each map, allowing
field names and lengths to be known at compile time. The generated classes extend
the class Map, which provides general functions required by all map classes.

Run the BMS map converter utility on the BMS source as follows:
java -cp <install path>/classes/ctgclient.jar com.ibm.ctg.epi.BMSMapConvert
-p package filename.BMS

The utility generates .java files containing the source for the map classes. Use the
-p parameter to specify the package to put the new files into. This saves you
having to edit the files to add the "package" statement.

After you have used the EPI BMS utility to generate the map class, use the base
EPI classes to reach the required 3270 screens in the usual way. Then use the map
classes to access fields by their names in the BMS map. The map classes are
validated against the data in the current Screen object.

Using Map classes:

The features of the classes generated by using the BMS Conversion Utility, and
using the generated Map class.
v The class name is derived from the map name in the BMS source.
v The class extends Map.
v Two constructors are provided. One constructor takes a Screen parameter and

throws an EPIException, if the screen has not been produced by the relevant
BMS map. The no argument constructor creates a Map that can be validated
against a screen later by using the setScreen method.

v The method field provides access to fields in the map, using the BMS source
field names (provided as constants within the class).

To use the generated Map class, create a Terminal and start a transaction as usual:
try {

EPIGateway epi = new EPIGateway("jgate", 2006);
// Connect to CICS server
Terminal terminal = new Terminal(epi, "CICS1234", null, null);
// Start transaction on CICS server
terminal.send(null, "EPIC", null);
MAPINQ1Map map = new MAPINQ1Map(terminal.getScreen());
Field field;
// Output text from "PRODNAM" field
field = map.field(MAPINQ1Map.PRODNAM);
System.out.println("Product Name: " + field.getText());
// Output text from "APPLID" field
field = map.field(MAPINQ1Map.APPLID);
System.out.println("Applid : " + field.getText());

} catch (Exception exception) {
exception.printStackTrace();

}

In this example the server program uses a BMS map for its first panel, for which a
map class "MAPINQ1Map" has been generated. When the map object is created,
the constructor validates the screen contents with the fields defined in the map. If

Chapter 10. Programming in Java 127

validation is successful, fields can then be accessed using their BMS field names
instead of by index or position from the Screen object:

BMS Map objects can also be used within the Session handleReply method.

For validation to succeed, the entire BMS map must be available on the current
screen. A map class cannot therefore be used when some or all of the BMS map
has been overlaid by another map or by individual 3270 fields.

EPIRequest
To make EPI type calls to CICS you need to create EPIRequest objects.

For more information on these objects, refer to the Javadoc supplied with the CICS
Transaction Gateway.

Using the EPIRequest class
It is recommended that you use the EPI support classes or the JEE EPI resource
adapter if you are writing programs to interface with CICS 3270 transactions,
because support for the EPIRequest class might be removed in a future release of
the CICS Transaction Gateway.

However, read this section if you intend to use the EPIRequest class.

When a Java Client application connects to CICS using EPI, the application appears
to CICS as a 3270 terminal. It is, therefore, important to be aware of the 3270 data
streams that might flow in both directions. After an event has been returned to a
Java application, the size field of the EPIRequest object indicates the size of the
data array returned.

It is also important to be aware of the principles and restrictions governing EPI
programming, and to be aware that there might be minor differences in the
working of the EPI code on different operating systems. For example, if you are
running a CICS Transaction Gateway on Windows, you will probably need to send
Transaction identifiers in the data array of the EPIRequest object, rather than in the
EPIRequest object's Transid field.

When getting events from CICS it is recommended that you use the EPI_WAIT
option, and ensure that the size field of the EPIRequest object is set to the
maximum size of the 3270 data stream that CICS might return.

Parameter lengths: When using the EPIRequest class it is important to note that
the parameters have maximum lengths. Any parameters passed exceeding these
lengths will be truncated.

Generally, EPI programs written using the CICS Transaction Gateway should:
1. Open a connection to the Gateway.
2. Add a terminal.
3. Start a transaction.
4. Get an event until one of the following happens:
v the event received is an end transaction or a converse
v a severe error is received

5. If the event received is a converse, send the reply and return to the get event
loop.

128 CICS TG for Multiplatforms V9.2: Developing Applications

6. If the event received is an end transaction, delete the terminal and do a last get
event to obtain the end terminal event.

7. Close the connection to the Gateway.

Terminal Indexes
For remote connections, terminal indexes can only be used on the connection to
which they were assigned.

See “EPI security” for more information. For local connections, all local
JavaGateways can access terminal indexes on other local JavaGateways, provided
they are in the same JVM.

EPI security
Terminal IDs can only be used on the same JavaGateway that created the terminal.
Again, this is a security feature to stop other programs that connect to the same
CICS Transaction Gateway from manipulating that terminal.

Making ESI calls from a Java client program
Use the ESIRequest base class for password management.

The following table shows Java objects corresponding to the ESI terms listed in
“I/O parameters on ESI calls” on page 27.

Table 12. ESI terms and corresponding Java objects

ESI term Java object

Current password ESIRequest.setCurrentPassword()

New password ESIRequest.setNewPassword()

Server name ESIRequest.setServer()

User ID ESIRequest.setUserid()

Verifying a password using ESI

Use the verifyPassword method, passing the current password, user ID and server
name to verify a password.

Changing a password using ESI

Use the changePassword method, passing the current password, new password,
user ID and server name to change a password.

Compiling and running a Java Client application
Issues to consider when compiling and running a Java client application include
performance, the Java class path and whether or not you are running a Web
browser on the same machine as CICS Transaction Gateway.

Setting stack and heap sizes
There are several memory allocation issues to consider when you run Java client
applications.

Chapter 10. Programming in Java 129

The Java Virtual Machine (JVM) allocates a fixed size of stack space for each
running thread in an application. You can usually control the amount of space that
Java allocates by setting limits on the following sizes:
v The native stack size, allocated when running native JIT (Just-In-Time) compiled

code.
v The Java stack size, allocated when running Java Bytecode.
v The initial Java heap size.
v The maximum Java heap size.

How you set these limits depends on your JVM. See your Java documentation for
more information.

For information about setting the Java heap size for the Gateway daemon, see
Setting Gateway daemon JVM options.

Setting up the CLASSPATH
Before you write any Java client programs, update the CLASSPATH environment
variable to include the jar files supplied with CICS Transaction Gateway.

For example, on Windows:
CLASSPATH = <install_path>\classes\ctgclient.jar;

<install_path>\classes\ctgserver.jar

The ctgserver.jar file is required in CLASSPATH only for JavaGateways using the
local URL.

Integration testing Java applications using a Gateway Intercept plug-in
You can use integration test tools to intercept ECI, EPI, and ESI calls from Java
Standard Edition and Java Enterprise Edition applications. This feature allows such
applications to be tested without requiring a running CICS server using tools such
as IBM Rational Integration Tester.

Overview

You can use a plug-in to test your application by writing a Java program which
implements the GatewayIntercept interface, and enabling this plug-in for your
application

When enabled, a Gateway intercept plug-in is notified before a connection to a
Gateway daemon is opened or closed, and before a request is sent to the Gateway
daemon.
v Before a connection is opened, the plug-in can change the properties of the

connection object, and can prevent the connection from opening.
v Before a request is sent, the plug-in can change the properties of the request

object, and return the request to the application without being sent.
v Before a connection is closed, the plug-in can prevent the connection from

closing.

This feature allows various scenarios to be simulated for application testing.
Related tasks:
“Integration testing JEE components using an intercept plug-in” on page 157
You can use integration test tools to intercept ECI and EPI calls from Java
Enterprise Edition components. This feature allows such components to be tested

130 CICS TG for Multiplatforms V9.2: Developing Applications

without requiring a running CICS Transaction Gateway or CICS server.

The sample plug-in
A sample plug-in, which is written in Java, is provided with this feature.

The plug-in is used with the EciB1 Java sample included with CICS TG. When the
plug-in is active, EciB1 can be run successfully without requiring a CICS TG or a
CICS server to be running. The EciB1 Java sample is provided compiled into
ctgsamples.jar along with all other samples.

To use the EciB1 sample plug-in, issue the following commands:
v On Linux, UNIX and IBM z/OS enter the command on one line:

java -cp ctgclient.jar:ctgsamples.jar
-Dgateway.intercept.plugin=com.ibm.ctg.samples.intercept.BasicPlugin
com.ibm.ctg.samples.eci.EciB1 cicstg.host.name

v On Windows:
java -cp ctgclient.jar;ctgsamples.jar

-Dgateway.intercept.plugin=com.ibm.ctg.samples.intercept.BasicPlugin
com.ibm.ctg.samples.eci.EciB1 cicstg.host.name

Plug-in development
The API for implementing a Gateway intercept plug-in is provided in
ctgclient.jar.

Plug-in classes must implement the com.ibm.ctg.client.GatewayIntercept interface.

To compile your plug-in class, ctgclient.jar must be available on the class path.
For more information, see “Setting up the CLASSPATH” on page 130.
Related information:
“Compiling applications” on page 156
To enable Java applications to be compiled in a managed or nonmanaged
environment, the relevant .jar details must be added to the class path.
“Running the sample programs” on page 252
To run the sample programs, ensure that ctgsamples.jar and ctgclient.jar are
referenced in your class path. If running the sample in local mode, ctgserver.jar is
also required.

Enabling a Gateway intercept plug-in in a Java SE application
You can enable a Gateway intercept plug-in in a Java SE application,
programmatically or by using a Java system property.

Procedure
1. Ensure that the plug-in class is available on the class path of your application.
2. To enable the plug-in, choose one of the following methods:
v Programmatically:

Properties connectionProps = new Properties();
connectionProps.put(GatewayIntercept.CTG_PROP_INTERCEPT_PLUGIN,
"plugin.package.name.PluginClassName");
gateway.setProtocolProperties(connectionProps);
gateway.open();

v By using a Java system property:
java -Dgateway.intercept.plugin=plugin.package.name.PluginClassName
application.package.name.ApplicationClassName

Chapter 10. Programming in Java 131

Related information:
Chapter 10, “Programming in Java,” on page 113
This information provides an introduction to writing Java client programs for the
CICS Transaction Gateway.

Problem determination for Java client programs
Use tracing to help determine the cause of any problems when running Java
clients.

Tracing in Java client programs
You can control tracing in Java client programs by issuing various calls and by
setting properties. Ideally applications should implement an option that activates
trace.

Calling the com.ibm.ctg.client.T trace class

Here is an example of how to call this class from within a user application:
if (getParameter("trace") != null)
{
T.setOn(true);

}

where trace is a startup parameter that can be set on the user program.

Setting the gateway.T trace system property

Here is an example of how to set this property:
java -Dgateway.T=on com.usr.smp.test.testprog1

This example specifies full debug trace for testprog1.

For more information on the use of system properties see your Java
documentation.

Standard trace

This is the standard option for application tracing. By default, it displays only the
first 128 bytes of any data blocks (for example the commarea, or network flows).
This trace level is equivalent to the Gateway trace set by the ctgstart –trace
option.

com.ibm.ctg.client.T call: T.setOn (true/false)

System property: gateway.T.trace=on

Full debug trace

This is the debugging option for application tracing. By default, it traces out the
whole of any data blocks. The trace contains more information about the CICS
Transaction Gateway than the standard trace level. This trace level is equivalent to
the Gateway debug trace set by the ctgstart –x option.

com.ibm.ctg.client.T call: T.setDebugOn (true/false)

132 CICS TG for Multiplatforms V9.2: Developing Applications

System property: gateway.T=on

Exception stack trace

This is the exception stack option for application tracing. It traces most Java
exceptions, including exceptions which are expected during typical operation of
the CICS Transaction Gateway. No other tracing is written. This trace level is
equivalent to the Gateway stack trace set by the ctgstart –stack option.

com.ibm.ctg.client.T call: T.setStackOn (true/false)

System property: gateway.T.stack=on

Additional options for configuring trace

You can also configure additional options for trace, including: output destination,
data block size, dump offset, and whether or not to include timestamps. Use these
options, in addition to one of the directives, to activate trace. For example, the
following command activates standard trace, and also sets the maximum size of
any data blocks to be dumped to 20 000 bytes:
java -Dgateway.T.trace=on -Dgateway.T.setTruncationSize=20000

Output destination

com.ibm.ctg.client.T call: T.setTFile(true,filename)
System property: gateway.T.setTFile=filename

Usage: The value filename specifies a file location for writing of trace output.
This is as an alternative to the default output on stderr. Long file names must
be nested within quotation marks, for example: "trace output file.log".
Example: java -Dgateway.T.trace=on -Dgateway.T.setTFile="trace output
file.log"

Data block size

com.ibm.ctg.client.T call: T.setTruncationSize(number)
System property: gateway.T.setTruncationSize=number

Usage: The value number specifies the maximum size of any data blocks that
will be written in the trace. Any positive integer is valid. If you specify a value
of 0, then no data blocks will be written in the trace. If a negative value is
assigned to this option the exception java.lang.IllegalArgumentException will be
raised.
Example: java -Dgateway.T.trace=on -Dgateway.T.setTruncationSize=20000

Dump offset

com.ibm.ctg.client.T call: T.setDumpOffset(number)
System property: gateway.T.setDumpOffset=number

Usage: The value number specifies the offset from which displays of any data
blocks will start. If the offset is greater than the total length of data to be
displayed, an offset of 0 will be used. If a negative value is assigned to this
option the exception java.lang.IllegalArgumentException will be raised.
Example: java -Dgateway.T.trace=on -Dgateway.T.setDumpOffset=100

Display timestamps

com.ibm.ctg.client.T call: T.setTimingOn (true/false)

Chapter 10. Programming in Java 133

System property: gateway.T.timing=on
Specifies whether or not to display timestamps in the trace.
Example: java -Dgateway.T.trace=on -Dgateway.T.setTimingOn="true"

Security for Java client programs
CICS Transaction Gateway provides the Java classes for implementing security.
Java provides the Security Manager.

CICS Transaction Gateway security classes
The CICS Transaction Gateway provides the following classes (security exits) for
implementing security.

com.ibm.ctg.security.JSSEServerSecurity
Use this interface to allow the exposure of of X.509 Client Certificates when
using the JSSE protocol.

See your JSSE, or Java, documentation for information on using X.509
certificates.

com.ibm.ctg.security.ServerSecurity
Use this interface for server-side security classes that do not require the
exposure of SSL Client Certificates.

com.ibm.ctg.security.ClientSecurity
Use this interface for all client-side security classes.

The JSSEServerSecurity and ServerSecurity interfaces and partner ClientSecurity
interface define a simple yet flexible model for providing security when using
CICS Transaction Gateway. Implementations of the interfaces can be as simple, or
as robust, as necessary; from simple XOR (exclusive-OR) scrambling to use of the
Java Cryptography Architecture.

The JSSEServerSecurity interface works in conjunction with the Secure Sockets
Layer (SSL) protocol. The interface allows server-side security objects access to a
Client Certificate passed during the initial SSL handshake. The exposure of the
Client Certificate depends on the CICS Transaction Gateway being configured to
support Client Authentication.

An individual JavaGateway instance has an instance of a ClientSecurity class
associated with it, until the JavaGateway is closed. Similarly, an instance of the
partner JSSEServerSecurity or ServerSecurity class is associated with the connected
Java client, until the connection is closed.

The basic model consists of:
v An initial handshake to exchange pertinent information. For example, this

handshake could involve the exchange of public keys. However, at the interface
level, the flow consists of a simple byte-array, therefore an implementation has
complete control over the contents of its handshake flows.

v The relevant ClientSecurity instance being called to encode outbound requests,
and decode inbound replies.

v The partner JSSEServerSecurity or ServerSecurity instance, being called to
decode inbound requests and to encode outbound replies.
The inbound request, and Client Certificate, is exposed via the afterDecode()
method. For JSSE, the afterDecode() method exposes the GatewayRequest object,
along with the javax.security.cert.X509Certificate[] certificate chain object.

134 CICS TG for Multiplatforms V9.2: Developing Applications

ClientSecurity, JSSEServerSecurity, or ServerSecurity class instances maintain as
data members sufficient information from the initial handshake to correctly encode
and decode the flows. At the server, each connected client has its own instance of
the ServerSecurity implementation class.

If you are implementing the security exits you must implement both a client-side
security class and server-side security class.

For applications using Java base classes, the security classes are specified using the
setSecurity method prior to opening the JavaGateway object. When using a JEE
application server, the security classes are specified using the clientSecurity and
serverSecurity connection factory properties. For non-managed JCA applications,
the security classes are specified using the setClientSecurity and setServerSecurity
methods.

The client-side security class must be available on the class path of the application
for Java base classes and non-managed JCA applications, or on the class path of
the resource adapter when using a JEE application server. The server-side security
class must be available on the class path of the Gateway daemon.

To use the com.ibm.ctg.security.ClientSecurity security classes, you must
configure the requiresecurity configuration parameter available with the TCP and
SSL protocol handlers.

Using a Java 2 Security Manager
Java 2 provides a Security Manager system that controls access to Java resources.

The Security Manager restricts access to Java resources using a security policy.
Some examples of protected resources are: reading a file, and opening a network
socket. When a program tries to access a protected resource, the Java Security
Manager verifies that both the code trying to access the resource, and, possibly, the
caller of that code, have appropriate permissions. Without these permissions, the
program cannot run.

If you are using any of the CICS Transaction Gateway Java APIs under a Java 2
security environment (such as a JEE server), your application needs Java
permissions to run correctly. The only exception to this is if you are using the JEE
APIs in a managed environment.

Figure 5 on page 136 shows the minimum permissions that your application needs
to use Gateway Java APIs. It might need additional permissions to run correctly.

Chapter 10. Programming in Java 135

Permissions to access the file system
Depending on the functions performed by your program, the CICS Transaction
Gateway Java APIs might require access to the file system, for example to write
trace files.

The following permission statement gives permission for the CICS Transaction
Gateway to access and create an ibm/ctg (on UNIX and Linux) or ibm\ctg (on
Windows) subdirectory in the users' home directory:
permission java.io.FilePermission "${user.home}${file.separator}ibm
${file.separator}ctg${file.separator}-","read,write,delete";

The format of the permission might vary depending on the installation, and you
can specify alternative locations, or none at all. CICS Transaction Gateway classes
require access to the file system in the following cases:
v For writing trace information to a file
v For accessing key rings, if you are using JSSE for your SSL protocol

implementation
See the information about Network security management in the CICS Transaction
Gateway: UNIX and Linux Administration or the CICS Transaction Gateway:
Windows Administration for information on how JSSE is selected as the
implementation.

For example, on Windows, you can specify the following permission to allow
access to the directory c:\trace and all subdirectories:
permission java.io.FilePermission "c:\trace\-",

"read,write,delete";

On Unix and Linux systems, you can specify the following permission to allow
access to the directory /tmp/ibm and all subdirectories:
permission java.io.FilePermission "/tmp/ibm/",

"read,write,delete";

Signing Applets and Web Start Applications
The security configuration for Java 7 running in a browser has changed.

java.net.SocketPermission "*", "resolve";
java.util.PropertyPermission "*", "read";
java.io.FilePermission "${user.home}${file.separator}ibm${file.separator}

ctg${file.separator}-","read,write,delete";
java.lang.RuntimePermission "loadLibrary.*", "";
java.lang.RuntimePermission "shutdownHooks", "";
java.lang.RuntimePermission "modifyThread", "";
java.lang.RuntimePermission "modifyThreadGroup", "";
java.lang.RuntimePermission "readFileDescriptor", "";
java.lang.RuntimePermission "writeFileDescriptor", "";
java.security.SecurityPermission "putProviderProperty.IBMJSSE", "";
java.security.SecurityPermission "insertProvider.IBMJSSE", "";
java.security.SecurityPermission "putProviderProperty.IBMJCE", "";
java.security.SecurityPermission "insertProvider.IBMJCE", "";
javax.security.auth.PrivateCredentialPermission "* * \"*\"","read";
java.lang.RuntimePermission "accessClassInPackage.sun.io", "";

Figure 5. Required Java 2 Security Manager permissions

136 CICS TG for Multiplatforms V9.2: Developing Applications

The default security configuration for Java 7 running in a browser changed
significantly in the January 2014 CPU (Oracle 7u51, IBM 7 SR6-FP1).

When you run in these Java environments:
v All Applets and Web Start applications must be signed with a certificate from a

trusted authority. Self-signed certificates are not accepted.
v All JARS must have the Permissions attribute set in the JAR Manifest.

The ctgclient.jar file that is included in CICS TG has the Permissions attribute
set and is signed with trusted CA certificates from Symantec:
v Symantec Root CA for all SSL and Code Signing products enrolled after October

10, 2010.
v Symantec Intermediate CA Certificates: Code Signing Certificate

Any other JARs running as part of Applets and Web Start applications also need to
have the Permissions attribute set in the JAR Manifest and be signed with a
certificate from a trusted authority.

Using the CICS TG OSGi bundle
You can use any of the CICS TG Java APIs from an OSGi environment, this allows
for CICS TG Java client applications running in remote mode to benefit from the
advantages of running in an OSGi framework.

The CICS TG OSGi Bundle is called com.ibm.ctg.client-1.0.0.jar and is found
in the SDK in the cicstgsdk\api\java\runtime directory.

The following packages are exported from the bundle:
v com.ibm.ctg.client

v com.ibm.ctg.client.exceptions

v com.ibm.ctg.epi

v com.ibm.ctg.monitoring

v com.ibm.ctg.security

v com.ibm.ctg.util

Building an OSGi client application

A client application bundle will need to import the required packages as part of it's
manifest file. The client application bundle will need to be available for
compilation and runtime.

Refer to the documentation of your OSGi environment for details on importing the
packages and making the client application bundle available.

Using a Request Monitoring Exit in OSGi

The request monitoring exit needs to be packaged with the main application inside
the same bundle or, in a separate bundle with the package containing the exit
exported. This exit is then imported into the main application bundle.

Chapter 10. Programming in Java 137

https://knowledge.verisign.com/support/code-signing-support/index?page=content&actp=CROSSLINK&id=AR1553
https://knowledge.verisign.com/support/code-signing-support/index?page=content&actp=CROSSLINK&id=AR1553
https://knowledge.verisign.com/support/code-signing-support/index?page=content&id=AR1739

138 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 11. Programming using the JEE Connector
Architecture

How to program using the ECI and EPI resource adapters provided by the CICS
Transaction Gateway.

Overview of the JCA programming interface
JCA connects enterprise information systems such as CICS, to the JEE platform.
JCA supports the qualities of service provided by a JEE application server (security
credential management, connection pooling and transaction management).

Qualities of service are provided through system level contracts between a resource
adapter provided by CICS Transaction Gateway and the JEE application server.
There is often no need for any extra program code to be provided. The
programmer is therefore free to concentrate on writing business code and need not
be concerned with quality of service. For information about the provided qualities
of service and configuration guidance see the documentation for your JEE
application server.

JCA defines a programming interface called the Common Client Interface (CCI).
This interface can be used with minor changes to communicate with any enterprise
information system. CICS Transaction Gateway provides resource adapters which
implement the CCI for interactions with CICS.

CICS Transaction Gateway Desktop Edition: Support is not provided for the JCA
resource adapters.

The Common Client Interface (CCI)
The CCI is a high-level programming interface defined by the JEE Connector
Architecture (JCA).

The CCI is available to JEE developers who want to use the External Call Interface
(ECI) and the External Presentation Interface (EPI) to enable client applications to
communicate with programs running on a CICS server. The CCI does not support
the External Security Interface (ESI).

The CCI has two class types:
v Generic CCI classes used for requesting a connection to an EIS such as CICS,

and for executing commands on that EIS, passing input and retrieving output.
These classes are generic because they do not pass information specific to a
particular EIS. Examples are Connection and ConnectionFactory.

v CICS-specific classes used for passing specific information between the Java
Client application and CICS. Examples are ECIInteractionSpec and
ECIConnectionSpec.

The programming interface model
Applications that use the CCI have a common structure for all enterprise
information systems. The JCA defines connections and connection factories that

© Copyright IBM Corp. 1998, 2016 139

represent the connection to the EIS. These connection objects allow a JEE
application server to manage the security, transaction context and connection pools
for the resource adapter.

An application must start by accessing a connection factory from which a
connection can be acquired. The properties of the connection can be overridden by
a ConnectionSpec object. The ConnectionSpec class is specific to CICS and can be
either an ECIConnectionSpec or an EPIConnectionSpec.

After a connection has been acquired, an interaction can be created from the
connection to make a particular request. The interaction, like the connection, can
have custom properties which are set by the InteractionSpec class
(ECIInteractionSpec or EPIInteractionSpec) which is specific to CICS. To perform
the interaction, call the execute() method and use record objects, which are specific
to CICS, to hold the data. For example:

/* Obtain a ConnectionFactory cf */
Connection c = cf.getConnection(ConnectionSpec)
Interaction i = c.createInteraction()
InteractionSpec is = newInteractionSpec();
i.execute(spec, input, output)

If you are using a JEE application server, you create the connection factory by
configuring it using an administration interface such as the WebSphere
administrative console. You set custom properties such as the Gateway daemon
connection URL. When you have created a connection factory, enterprise
applications can access it by looking it up in the JNDI (Java Naming Directory
Interface). This type of environment is called a managed environment, and allows
a JEE application server to manage the qualities of service of the connections. For
more information about managed environments see your JEE application server
documentation.

If you are not using a JEE application server, you must create a managed
connection factory and set its custom properties. You can then create a connection
factory from the managed connection factory. This type of environment is called a
nonmanaged environment and does not allow a JEE application server to manage
the qualities of service of connections.

Record objects
Record objects are used to represent data passing to and from the EIS.

In the case of the ECI, this is a representation of a COMMAREA or channels and
containers. In the case of the EPI, it is a terminal screen. A sample Record is
provided for the ECI and a Screenable interface is provided for the EPI to access
the screen data. It is recommended that application development tools are used to
generate these Records.

ECI resource adapter
The ECI resource adapter provides a high level CCI interface to the ECI for
sending ECI requests to CICS.

The ECI resource adapter is used to connect to CICS server programs and for
passing data to COMMAREAs or channels and containers. The resource adapter
can be deployed into a JEE application server to allow JEE enterprise applications
to access CICS. If JCA is used, connection pooling, security, and transaction context
are managed by the JEE application server, not by the application.

140 CICS TG for Multiplatforms V9.2: Developing Applications

CICS Transaction Gateway includes the cicseci.rar resource adapter.

You can use the cicseci.rar resource adapter for one-phase commit transactions
over any server protocol, and for two-phase commit transactions over IPIC only.
For information about the transaction management models that the resource
adapter supports see “Transaction management” on page 146.

CICS Transaction Gateway Desktop Edition: Support is not provided for the JCA
resource adapter.

EPI resource adapter
The EPI resource adapter provides a high level CCI interface to the EPI which can
be used to install terminals and run 3270-based transactions on a CICS server.

The EPI resource adapter can be deployed into a JEE application server to allow
JEE enterprise applications to access CICS. When the JCA is used, connection
pooling, security, and transaction context are managed by the JEE application
server not the application. Automatic Transaction Initiation (ATI) is not supported.

CICS Transaction Gateway Desktop Edition: Support is not provided for the JCA
resource adapter.

Managed and nonmanaged environments
The connection, transaction and security qualities of service can either be managed
by the application server or they can be provided by the Java application.

In a managed environment, a JEE application server such as WebSphere®

Application Server manages the connections, transactions, and security. In this
situation, the application developer does not have to provide the code for these.

In a nonmanaged environment, the Java application uses the resource adapters
directly without the intervention of a JEE application server. In this situation the
application must contain code for the management of connections, transactions and
security.

The Common Client Interface
The Common Client Interface (CCI) of the JEE Connector Architecture provides a
standard interface that allows developers to communicate with any number of
Enterprise Information Systems (EISs) through their specific resource adapters,
using a generic programming style.

The CCI is closely modeled on the client interface used by Java Database
Connectivity (JDBC), and is similar in its idea of Connections and Interactions.

Generic CCI Classes
The generic CCI classes define the environment in which a JEE application can
send and receive data from an enterprise information system such as CICS.

When you are developing a JEE component you must complete these tasks:
1. Use the ConnectionFactory object to create a connection object.
2. Use the Connection object to create an interaction object.
3. Use the Interaction object to run commands on the enterprise information

system.

Chapter 11. Programming using the JEE Connector Architecture 141

4. Close the interaction and the connection.

The following example shows the JEE CCI interfaces being used to run a command
on an enterprise information system:
ConnectionFactory cf = <Lookup from JNDI namespace>
Connection conn = cf.getConnection();
Interaction interaction = conn.createInteraction();
interaction.execute(<Input output data>);
interaction.close();
conn.close();

CICS-specific classes
The CICS Transaction Gateway resource adapters provide additional classes
specific to CICS.

The following object types are used to define the ECI- and EPI-specific properties:
v InteractionSpec objects
v ConnectionSpec objects

Spec objects define the action that a resource adapter carries out, for example by
specifying the name of a program which is to be executed on CICS.

Record objects store the input/output data that is used during an interaction with
an EIS, for example a byte array representing an ECI COMMAREA.

The following example shows a complete interaction with an EIS. In this example
input and output Record objects and Spec objects are used to define the specific
attributes of both the interaction and the connection. The example uses setters to
define any component-specific properties on the Spec objects before they are used.
ConnectionFactory cf = <Lookup from JNDI namespace>
ECIConnectionSpec cs = new ECIConnectionSpec();
cs.setXXX(); //Set any connection specific properties

Connection conn = cf.getConnection(cs);
Interaction interaction = conn.createInteraction();
ECIInteractionSpec is = new ECIInteractionSpec();
is.setXXX(); //Set any interaction specific properties

RecordImpl in = new RecordImpl();
RecordImpl out = new RecordImpl();

interaction.execute(is, in, out);
interaction.close();
conn.close();

The following sections cover the ECI and EPI implementations of the CCI classes
in detail.

Using the ECI resource adapter
A JEE developer can use the ECI resource adapter to access CICS programs, using
COMMAREAs and channels, to pass information to and from the server.

The table below shows the JCA objects corresponding to the ECI terms listed in
“I/O parameters on ECI calls” on page 9. The CCI interfaces for CICS are in the
com.ibm.connector2.cics package.

142 CICS TG for Multiplatforms V9.2: Developing Applications

Table 13. ECI terms and corresponding JCA objects

ECI term JCA object: property

Abend code CICSTxnAbendException

COMMAREA Record

Channel ECIChannelRecord. See “Introduction to
channels and containers” on page 13.

Container with a data type of BIT byte[]

Container with a data type of CHAR String

ECI timeout ECIInteractionSpec:ExecuteTimeout. See
“Timeout of the ECI request” on page 14.

LUW identifier JEE transaction

Password or password phrase ECIConnectionSpec:Password. See “Security
in the ECI” on page 15.

Program name ECIInteractionSpec:FunctionName

Server name ECIConnectionFactory:ServerName

SocketConnectTimeout ECIConnection:SocketConnectTimeout

TPNName ECIInteractionSpec:TPNName. See “ECI and
CICS transaction IDs” on page 13.

TranName ECIInteractionSpec:TranName. See “ECI and
CICS transaction IDs” on page 13.

User ID ECIConnectionSpec:UserName. See “Security
in the ECI” on page 15.

Using the ECI resource adapter with channels and containers
To use channels and containers in the JEE Connector Architecture (JCA), use an
ECIChannelRecord to hold your data. When the ECIChannelRecord is passed to
the execute() method of ECIInteraction, the method uses the ECIChannelRecord
itself to create a channel and converts the entries inside the ECIChannelRecord into
containers before passing them to CICS.

The ECIChannelRecord allows multiple data records to pass over the same
interface to and from the execute() method of ECIInteraction. A container is created
for each entry in the channel. You can have a combination of container types in
one channel. The containers are of the following types:
v A container with a data type of BIT. This type of container is created when the

entry is a byte[], or implements the javax.resource.cci.Streamable interface.
No code page conversion takes place.

v A container with a data type of CHAR. This type of container is created when
you use a String to create the entry.

You can create your own data records, which must conform to existing JCA rules
(they must implement the javax.resource.cci.Streamable and
javax.resource.cci.Record interfaces). Any data records you create are treated as
containers with a data type of BIT.

You can also use an existing Record type, for example, JavaStringRecord, to create
a container with a data type of BIT.

Chapter 11. Programming using the JEE Connector Architecture 143

The ECIChannelRecord.getRecordName method obtains the name of the channel.
When creating your Record, you must make sure that the name is not an empty
string. The record.getRecordName method retrieves the name of the containers.

The JCA resource adapter handles ECIChannelRecord and Records differently,
when it receives the data in the execute() method of ECIInteraction.
v When an ECIChannelRecord is received, the resource adapter uses a channel to

send the data.
v When a Record (that is not an ECIChannelRecord) is received, the resource

adapter uses a COMMAREA to send the data.

Connection to a CICS server using the ECI resource adapter
Use the ConnectionFactory and Connection interfaces to establish a connection
with a CICS server. The ECI resource adapter provides implementations of the
connection interfaces, but you do not work directly with the ECI implementations.
Use the ECIConnectionSpec class directly to define the properties of the
connection.

The ECIConnectionSpec class allows the JEE component to override the user ID
and password set at deployment time. Here is an example of how to code to
obtain a connection using this class:

Record and
Streamable

BYTE[] BIT container

JavaStringRecord BIT container

String CHAR container

Record and
Streamable

BIT container

COMMAREA
execute ()
method of

ECIInteraction

execute ()
method of

ECIInteraction

ChannelECIChannelRecord

Figure 6. Data conversion by the execute() method of ECIInteraction, depending on whether it receives a Record or
ECIChannelRecord

144 CICS TG for Multiplatforms V9.2: Developing Applications

ConnectionFactory cf = <Lookup from JNDI namespace>
ECIConnectionSpec cs = new ECIConnectionSpec();
cs.setUserName("myuser");
cs.setPassword("mypass");
Connection conn = cf.getConnection(cs);

Linking to a program on a CICS server
Use the Interaction interface to link to a server program. The ECI resource adapter
provides an implementation of the Interaction interface but you do not use this
directly.

To define the properties of the interaction use the ECIInteractionSpec class directly.
1. Set the FunctionName property to the name of the CICS server program.
2. Set the InteractionVerb to SYNC_SEND for an asynchronous call or

SYNC_SEND_RECEIVE for a synchronous call. Use SYNC_RECEIVE to retrieve
a reply from a asynchronous call.

Note:

a. When a SYNC_SEND call has been issued with the execute() method of a
particular ECIInteraction object, that instance of ECIInteraction cannot issue
another SYNC_SEND, or SYNC_SEND_RECEIVE, until a SYNC_RECEIVE
has been run.

b. Simultaneous asynchronous calls to the same connection are permitted,
provided they do not result in two asynchronous calls being outstanding in
the same transaction scope. In that case an exception is thrown.

c. If you are using the adapter in local mode with IBM WebSphere Application
Server for IBM z/OS, and you require transactional support, specify the
SYNC_SEND_RECEIVE interaction type. If you use SYNC_SEND and
SYNC_RECEIVE to issue asynchronous requests, the ECI requests are issued
with SYNCONRETURN, and are outside the scope of the current global
transaction. In remote mode, asynchronous calls work in the usual way.

3. If you are using channels and containers, the program receiving the data does
not need the exact size of the data returned. If you are using COMMAREAs,
set the CommareaLength property to the length of the COMMAREA being
passed to CICS. If it is not supplied, a default is used:

SYNC_SEND, SYNC_SEND_RECEIVE
Length of input record data

SYNC_RECEIVE
The value of ReplyLength

4. Set the ReplyLength property to the length of the data stream to be returned
from the Gateway daemon to the JCA application. This value can reduce the
data transmitted over the network if the data returned by CICS is less than the
full COMMAREA size, and you know the size of the data in advance.
The JCA application still receives a full COMMAREA of the size specified in
CommareaLength, but the amount of data sent over the network is reduced.
This method is equivalent to the setCommareaInboundLength() method
available for the ECIRequest class.
If you do not set ReplyLength, CICS Transaction Gateway automatically strips
trailing zeros from the COMMAREA sent from the Gateway daemon to the JCA
application, without needing the size of the data in advance.
For more information on COMMAREA stripping, see “ECI performance
considerations when using COMMAREAs” on page 15.

Chapter 11. Programming using the JEE Connector Architecture 145

As with ECIConnectionSpec, you can set properties on the ECIInteractionSpec class
at either construction time or by using setters. Unlike ECIConnectionSpec, the
ECIInteractionSpec class behaves like a Java bean. So, in a managed environment,
your server might provide tools to allow you to define these properties using a
GUI without writing any code.

To specify a value for ECI timeout, set the ExecuteTimeout property of the
ECIInteractionSpec class to the ECI Timeout value. Allowable values are:

0 No timeout default value.

A positive integer
Time in milliseconds.

ECI resource adapter CICS-specific records using the
streamable interface

For input and output, the ECI resource adapter supports only records that
implement the javax.resource.cci.Streamable interface.

MappedRecords that are used to make up channels and containers also conform to
the javax.resource.cci.Streamable interface. This interface allows the ECI
resource adapter to read streams of bytes that make up the CICS COMMAREAs or
channels and containers directly from, and write them to, the Record objects
supplied to the execute() method of ECIInteraction.

The following example shows how to build a record for use as input by the ECI
resource adapter, using the method supplied in the
javax.resource.cci.Streamable interface.
byte commarea[] = new byte[10];
ByteArrayInputStream stream = new ByteArrayInputStream(commarea);
RecordImpl in = new RecordImpl();
RecordImpl out = new RecordImpl();
in.read(stream);
interaction.execute(is, in, out);

To retrieve a byte array from the output record, use output records write() method
using a ByteArrayOutputStream object as the parameter to reverse the process
shown in the above example. The streams toByteArray() method then provides the
CICS COMMAREA or channel and container output in the form of a byte array. In
the above example a class called RecordImpl is used as the concrete
implementation class of the javax.resource.cci.Record interface. To provide more
function for your specific JEE components, you can write implementations of the
Record interface that allow you to set the contents of the record using the
constructor. In this way, you avoid the use of the ByteArrayInputStream used in
the above example. A managed environment might provide tools that allow you to
build implementations of the Record interface that are customized for your JEE
components needs without writing any code.

Transaction management
CICS Transaction Gateway includes a resource adapter that can provide
LocalTransaction support or XATransaction support.

The cicseci.rar resource adapter provides LocalTransaction support when
deployed on any supported JEE application server. It can also provide
XATransaction support when deployed with the custom property xasupport=on on

146 CICS TG for Multiplatforms V9.2: Developing Applications

any supported JEE application server using local mode to connect to CICS
Transaction Server using the IPIC protocol.

To provide for different transactional qualities of service for JEE applications, you
can deploy the CICS resource adapter into the JEE application server and create
multiple connection factories on it. Each of these connection factories can be
configured with a different quality of service.

See the information about Deploying CICS resource adapters in the CICS
Transaction Gateway: UNIX and Linux Administration for information about installing
the resource adapters.

Managed mode

If you are running multiple interactions with CICS using the ECI resource
adapter, you might want to group all actions together to ensure that they
either all succeed or all fail. The preferred method is to let the JEE
application server manage the transactions which are then known
as container-managed transactions.

Alternatively, you can use
the LocalTransaction or UserTransaction interface. Such transactions are
known as bean-managed transactions. Bean-managed transactions that use
the LocalTransaction interface can group work performed only through
the resource adapter; the UserTransaction interface allows all transactional
resources in the application to be grouped. The cicseci.rar resource
adapter with xasupport enabled and with bean-managed transactions
supports the UserTransaction and LocalTransaction interfaces.

The cicseci.rar resource adapter with xasupport disabled and
bean-managed transactions supports only the LocalTransaction interface.

For more information on container-managed transactions and bean-managed
transactions, see The Java EE 6 Tutorial.

Nonmanaged mode

When the ECI resource adapter is used in nonmanaged mode, interactions
with CICS will be non-transactional by default (synconreturn). Only the
LocalTransaction interface is available for applications using nonmanaged
mode, and any global transaction context, such as provided by the
UserTransaction interface, will be ignored by the ECI resource adapter.

Samples

JEE ECI sample programs are provided in the <install_path>\samples
subdirectory and as a deployable EAR file in the <install_path>\deployable
subdirectory.

For more information, see “Resource adapter samples” on page 158.

XA overview
A global transaction is a recoverable unit of work performed by one or more
resource managers in a distributed transaction processing environment,
coordinated by an external transaction manager.

The resources that are updated by the transaction can take many forms, such as a
database table, a messaging queue, or the resources updated by running a CICS
transaction. Each of these resources is managed by a resource manager. Where the
recoverable resources updated by the global transaction are all managed by the

Chapter 11. Programming using the JEE Connector Architecture 147

http://docs.oracle.com/javaee/6/tutorial/doc/bncih.html

same resource manager, a one-phase commit protocol is adequate to ensure that all
resources are updated in an atomic manner.

However, where the resources updated by a global transaction are managed by
multiple resource managers, a two-phase commit protocol is required. With this
protocol the atomic nature of the transaction is maintained by ensuring that all
resource managers update their resources in a consistent manner. The cicseci.rar
supports the two-phase commit XA protocol and enables JEE applications to
include CICS resources in such global transactions.

In both the one-phase commit and XA scenarios, a transaction manager is
responsible for controlling the running of the transaction and for coordinating the
resource managers to ensure that the transaction works in an atomic manner.

An example of where this behavior is required is an online flight booking, which
uses one resource manager to debit a customer's bank account and another to
reserve the customer a flight. The customer's account must be updated only if the
flight is booked; and vice versa.

If a timeout occurs during an XA transaction it is recommended that the EJB sets
the transaction to be rolled back.

For information on using XA transactions with JEE applications see Redpaper
Transactions in J2EE, (REDP-3659-00) .

IBM WebSphere optimizations

The following optimizations are supported:
v Last participant support
v Only-agent optimization

See the documentation supplied with IBM WebSphere Application Server for more
details.

Samples
JCA ECI sample programs are provided in the samples directory of your CICS
Transaction Gateway installation or as a deployable EAR in the
<install_path>/deployable directory.

These are documented in “Resource adapter samples” on page 158.

Using the EPI resource adapter
With the CICS EPI resource adapter a JEE component can communicate with CICS
transactions that use 3270 data streams for input and output.

The resource adapter provides access to the CICS 3270 interface because each
EPIConnection object is treated as a 3270 terminal by CICS. The following table
shows the JEE objects corresponding to the EPI terms listed in “Terminal
characteristics” on page 21. The CCI interfaces for CICS are in the
com.ibm.connector2.cics package.

Note: ATIs are not supported.

148 CICS TG for Multiplatforms V9.2: Developing Applications

Table 14. Terminal attributes and corresponding JEE objects

EPI term JCA object:property

Code page EPIConnectionFactory:Encoding

Columns EPIInteractionSpec:ScreenWidth

Model EPIInteractionSpec:DeviceType

Install timeout EPIConnectionFactory:InstallTimeout

Map name EPIInteractionSpec:MapName

Map set name EPIInteractionSpec:MapSetName

Netname EPIConnectionFactory:NetName

Password EPIConnectionFactory:Password

Read timeout EPIConnectionFactory:ReadTimeout

Rows EPIInteractionSpec:ScreenDepth

Server name EPIConnectionFactory:ServerName

Sign-on capability EPIConnectionFactory:SignonType

SocketConnectTimeout EPIConnection:SocketConnectTimeout

Terminal ID EPIInteractionSpec:TermID

User ID EPIConnectionFactory:Userid

Connecting to a CICS server using the EPI resource adapter
CCI

Use the ConnectionFactory and Connection interfaces to establish a connection
with a CICS server. The EPI resource adapter provides implementations of the
connection interfaces but do not work directly with the EPI implementations. Use
the EPIConnectionSpec class directly to define the properties of the connection.

Setting terminal attributes
With JEE you do not have to add and delete terminals explicitly.

You can use the EPIConnectionSpec class to set the following properties:
v User ID
v Password
v Netname
v Model

Starting a transaction
Use the Interaction interface to start a transaction on a CICS server.

The EPI resource adapter provides an implementation of the Interaction interface
but you should not use this directly. Each Interaction.execute() call must have an
EPIInteractionSpec instance associated with it. Use the EPIInteractionSpec class
directly, to define the properties of the interaction:
v Set the FunctionName property to the name of the CICS transaction.
v Set the InteractionVerb to one of the following:

– SYNC_SEND - A synchronous call. It does not unblock until the EPI
transaction has sent all the information that is on a screen.

Chapter 11. Programming using the JEE Connector Architecture 149

– SYNC_RECEIVE - A synchronous receive. Used to retrieve the current
contents of the screen.

– SYNC_SEND_RECEIVE - A synchronous call.

The EPIInteractionSpec class also allows you to set the following properties:
v The AID key to be sent to CICS. The default value is enter.
v The position of the cursor.
v The output attribute type. This allows you to control what will be held in the

attribute byte for the field on a returned screen. It applies only to the streamable
interface (see “Sending and receiving data”).

The EPIInteractionSpec class returns the following properties which can be used by
the JEE component:
v Cursor position
v Screen size
v Terminal ID
v Map name
v Mapset name

Closing an EPIInteraction does not affect the state of the connection; the terminal
remains connected.

Sending and receiving data
Use records to pass information to the EPI resource adapter and to retrieve
information from the resource adapter.

Although the EPI resource adapter supports the Streamable interface as defined in
the Connector Architecture, if you want to use the Streamable interface you must
write your own records, parsing the input stream and generating the output
stream correctly. For information about the Stream format see “Stream Format” on
page 152.

The EPI resource adapter provides a more efficient way to access information in
the form of a record that is ready to use. This is the recommended way to access
and send information to a resource adapter.

The Screen model
The EPI resource adapter provides a record that you can use with the EPI resource
adapter to retrieve and send information to CICS through the EPI.

Like the EPI Support classes, it allows you to address fields on a screen. Use the
Screen container to get a reference to a field, and then use methods to query and
manipulate the field text.

The record is found in the com.ibm.connector2.cics package. It is an
implementation of the screenable interface, which transfers information between
the EPI resource adapter and the record.

The EPIScreenRecord:

When you create an EPIScreenRecord you instantiate an EPIScreenRecordImpl.
EPIScreenRecord screen = new EPIScreenRecordImpl();

150 CICS TG for Multiplatforms V9.2: Developing Applications

You start a new transaction by passing this record, for example:
EPIInteractionSpec epiSpec = new EPIInteractionSpec();
epiSpec.setFunctionName(“CESN”);
epiSpec.setAID(AIDKey.enter);
epiSpec.setInteractionVerb(EPIInteractionSpec.SYNC_SEND_RECEIVE);
// epiInter is an interaction created elsewhere
epiInter.execute(epiSpec, null, screen);

Note the use of null as the input record.

The screen information is in the screen object. Other screen information, such as
cursor position, is returned to your defined EPIInteractionSpec object. You can then
request a specific field by index number, which is a number in the range from 1 to
the total number of fields on the screen, or you can use an iterator to request all
the fields. The fields are indexed in order starting from the top left of the screen
proceeding from left to right to the bottom right of the screen. The iterator returns
each field in ascending index order.

So for example you can obtain a field using the index number by coding:
EPIFieldRecord field = screen.getField(7);

To use the iterator, code the following:
java.util.Iterator it = screen.getFields();
while (it.hasNext()) {

EPIFieldRecord field = (EPIFieldRecord)it.next();
....
....

}

The following is an example of a function that takes a screen record and prints out
the screen in a layout suitable for a terminal:
public void printScreen(EPIScreenRecord inscr) {

int col = 1;
int row = 1;

System.out.println(“——————————————————————————————————————”);

for (int i = 1; i <= inscr.getFieldCount(); i++) {
try {

EPIFieldRecord f = inscr.getField(i);
while (f.getTextRow() > row) {

System.out.print(“\n”);
row++;
col = 1;

}
while (f.getTextCol() > col) {

System.out.print(“ ”);
col++;

}
if (f.isDisplay()) {

System.out.print(f.getText());
col += f.getText().length();

}
}
catch (ScreenException se) {
}

}
System.out.print(“\n”);

System.out.println(“——————————————————————————————————————”);
}

Chapter 11. Programming using the JEE Connector Architecture 151

After you have accessed and updated the fields, pass the record back as the input
record. If you want, you can use it again as the output record. For example:
epiSpec.setAID(AIDKey.enter);
epiInter.execute(epiSpec, screen, screen);

The EPIFieldRecord:

Access EPIFieldRecords from an EPIScreenRecord instance rather than creating
them directly.

The EPIFieldRecord has methods to access the attributes of a field, for example
whether it is protected or which colors are available. You can also retrieve and
modify text. For more information see the information about the
com.ibm.connector2.cics package in the Javadoc information for more information
about these interfaces. The EPIFieldRecord contains the static final variables that
define names for color attributes, highlighting and transparency.

The ScreenException:

An EPIScreenRecord and EPIFieldRecord can throw exceptions.

They are checked exceptions, inherited from the base class ScreenException.

Stream Format
The stream is a byte representation of the screen.

The number of bytes that are sent to the application, and received from the
application, is the same as the number of bytes on the screen. That is, the number
of bytes equal the product of screen depth and screen width. For example, if the
terminal to which you are connected has a 24 by 80 character screen, the number
of bytes that flow to and from the resource adapter is: 24x80 = 1920 bytes.

When providing an input record, you must flow the exact number of bytes on the
stream, otherwise the record will be rejected. The byte stream must represent
exactly what the screen looks like as seen by the resource adapter. If it does not the
record will be rejected.

For each field on the screen, there is a byte preceding the field that represents the
attribute byte on a 3270 terminal. On a 3270 screen this byte is displayed as a
blank. However, in the byte stream it can contain information about the field. You
can select what is placed in this field by specifying an appropriate value in the
EPIInteractionSpec setOutputAttributeType method. For example, this byte could
contain a blank, which is the base attribute, or it could contain a value which
represents the color attribute for that field.

A special option is EPIInteractionSpec.ATTRIBUTE_MARKER. This stores the value
EPIInteractionSpec.MARKER_BYTE in that location. This enables a record to locate a
field dynamically, without needing prior knowledge of the screen format, for
example a BMS map.

Writing LogonLogoff classes
LogonLogoff classes are specified at deployment and used to logon to sign-on
capable terminals, or to terminals that install as sign-on unknown.

It is recommended that you use sign-on incapable terminals, in which case you do
not need the LogonLogoff classes.

152 CICS TG for Multiplatforms V9.2: Developing Applications

If you choose to use the classes, implement the
com.ibm.connector2.cci.LogonLogoff interface which has the following interface
definition:
public interface LogonLogoff {

public void logoff(javax.resource.cci.Connection conn);
public void logon(javax.resource.cci.Connection conn,

javax.security.auth.Subject security);
}

This class is only required for the EPI resource adapter. You do not need to
implement the logoff method because this is never called. However, you must
provide a dummy implementation so that the class can be compiled. You are
passed a connection and a security subject with the logon method signature. The
logon is driven in the same way as for applications that communicate with CICS
using the EPI resource adapter. You create interactions using this connection and,
when finished, you close the interaction. For example:
Interaction epiInt = (Interaction)(conn.createInteraction());
EPIInteractionSpec spec = new EPIInteractionSpec();

//--
// configure the spec to perform a CESN, and execute the call
//--
spec.setAID(AIDKey.enter);
spec.setFunctionName("CESN");
spec.setInteractionVerb(EPIInteractionSpec.SYNC_SEND_RECEIVE);
EPIScreenRecord screen = new EPIScreenRecordImpl();
epiInt.execute(spec,null,screen);

Close the interaction when you have finished with it. For example:
epiInt.close();

Note: Do not close the connection within the LogonLogoff class.

The credentials with which you logon are held as Subject object. To retrieve this
information you need to get an iterator from the private credentials. There is a
single entry within the private credentials of type PasswordCredential. You can
obtain the user ID and password from this entry as follows:
Iterator it = security.getPrivateCredentials().iterator();
PasswordCredential pc = null;
if (it.hasNext()) {

pc = (PasswordCredential)it.next();
}
if (pc == null) {

throw new javax.resource.spi.SecurityException("
Unable to logon, No Security Information Provided");

}
String user = pc.getUserName();
String pass = new String(pc.getPassword());

If there are any problems, throw a javax.resource.spi.SecurityException.

Java security
You might need to grant your LogonLogoff class the Java security permission, to
enable it to retrieve the credential information from the subject passed to it.
permission javax.security.auth.PrivateCredentialPermission
"javax.resource.spi.security.PasswordCredential * \"*\"", "read";

Chapter 11. Programming using the JEE Connector Architecture 153

Samples
JCA EPI sample programs are provided in the samples subdirectory of your CICS
Transaction Gateway installation or as a deployable EAR in the <install_path>
deployable subdirectory.

These are documented in “Resource adapter samples” on page 158.

Using the resource adapters in a nonmanaged environment
You can use the resource adapters in a nonmanaged environment.

In this environment, you are responsible for:
v Defining the EIS connection
v Creating the ConnectionFactory object
v Providing your own connection pooling
v Supplying your log writer
v Managing transactions

Your nonmanaged environment can be either inside, or outside, a JEE server
environment. The resource adapters provide a default connection manager to
support execution within the nonmanaged environment.

Transaction management applies only to the ECI resource adapter. See “Transaction
management” on page 146 for information on managing transactions in a
nonmanaged environment.

Note: Nonmanaged JCA applications are not able to exploit XA transaction
support. Usage of Container-Managed Transactions (CMT) or Bean-Managed
Transactions (BMT) can only influence CICS interactions with managed mode JCA
applications.

Creating the appropriate ConnectionFactory object
Your application needs to get an appropriate ConnectionFactory object.

In the managed environment, the server or application does this for you, and you
can reference it using JNDI (see “Saving and reusing connection factories” on page
155). In the nonmanaged environment, unless you have previously registered one
that you can access, you must create a ConnectionFactory object with the
appropriate EIS connection information.

Creating an ECI ConnectionFactory
You must first create an ECIManagedConnectionFactory and set the appropriate
properties on this object.

The properties are the same as the deployment parameters described in Deployment
parameters for the ECI resource adapters in the CICS Transaction Gateway: UNIX and
Linux Administration.

These are accessible using setter and getter methods. The JEE Programming
Reference documentation lists the setter and getter methods for the
ECIManagedConnectionFactory and shows the relationship between deployment
parameters and properties. The following example shows how to create a
ConnectionFactory for ECI:

154 CICS TG for Multiplatforms V9.2: Developing Applications

ECIManagedConnectionFactory eciMgdCf = new ECIManagedConnectionFactory();
eciMgdCf.setConnectionURL("local:");
eciMgdCf.setPortNumber("0");
eciMgdCf.setServerName("tp600");
eciMgdCf.setLogWriter(new java.io.PrintWriter(System.err));
eciMgdCf.setUserName("myUser");
eciMgdCf.setPassword("myPass");
eciMgdCf.setTraceLevel(new

Integer(ECIManagedConnectionFactory.RAS_TRACE_ENTRY_EXIT));
ConnectionFactory cxf = (ConnectionFactory)eciMgdCf.createConnectionFactory();

Creating an EPI ConnectionFactory
You must first create an EPIManagedConnectionFactory and set the appropriate
properties on this object.

The properties are the same as the deployment parameters described in Deployment
parameters for the EPI resource adapters in the CICS Transaction Gateway: UNIX and
Linux Administration.

This process is similar to that for creating an ECI ConnectionFactory. The following
example shows how to create a ConnectionFactory for EPI:
EPIManagedConnectionFactory epiMgdCf = new EPIManagedConnectionFactory();
epiMgdCf.setConnectionURL("local:");
epiMgdCf.setPortNumber(new Integer(0));
epiMgdCf.setServerName("tp600");
epiMgdCf.setLogWriter(new java.io.PrintWriter(System.err));
epiMgdCf.setUserName("myUser");
epiMgdCf.setPassword("myPass");
epiMgdCf.setSignonType(new Integer(0)); // sign-on capable terminal
epiMgdCf.setLogonLogoffClass("com.acme.companyApp.ourCICSLogon");
epiMgdCf.setTraceLevel(new

Integer(EPIManagedConnectionFactory.RAS_TRACE_ERROR_EXCEPTION));
ConnectionFactory cxf = (ConnectionFactory)epiMgdCf.createConnectionFactory();

Saving and reusing connection factories
When a connection factory has been created it can be saved and reused so that the
application does not have to create one.

In a JEE application server environment, IBM recommends that you register your
connection factory object, which has links to your enterprise information system
connection information, in the JNDI (Java Naming Directory Interface) service. This
makes upgrade from nonmanaged to managed Java environments easier because
applications can acquire connection factory objects in the same way. However, this
might not be possible outside a JNDI environment unless either an LDAP server,
or an appropriate JNDI service provider is available within your environment.

Connection factories support the serializable and referenceable Java interfaces. This
means that you can decide how to register them in the JNDI. For more information
see the JEE Connector Architecture Specification.

If you plan to use serializable interfaces see “Tracing issues relating to serialized
interfaces and ConnectionFactory objects” on page 158 for more information on
how serialization and deserialization of connection factory objects affects the
setting of the LogWriter property.

Chapter 11. Programming using the JEE Connector Architecture 155

Running the JEE resource adapters in a nonmanaged
environment

In a JEE environment all required Java libraries are available however, you might
need to ensure that your JEE server adds the jar files to the class path.

The jar files are located in the <install_path>\classes subdirectory:
v cicsjee.jar

v ctgclient.jar

v ctgserver.jar (required only for local: protocol)
v ccf2.jar

v screenable.jar (required for the EPIScreenRecord)

Outside a JEE environment, you must ensure that, in addition to the above
libraries being listed in the class path, the following Java extensions are also
available:
v JAAS (required for EPI resource adapter). JAAS is included with IBM JREs and

JDKs by default.
v JCA 1.6 Connector class file (required for ECI resource adapter).
v Java Transaction API (required for XA transactions).

The JCA 1.6 Connector class file and the Java Transaction API (JTA) libraries are
available for download from the Oracle Java Web site.

Compiling applications
To enable Java applications to be compiled in a managed or nonmanaged
environment, the relevant .jar details must be added to the class path.

To compile supplied applications in both managed and nonmanaged environments,
include the following in the CLASSPATH:
v cicsjee.jar (required for access to Connection and Interaction Specs)
v ctgclient.jar (required for AIDkey objects)
v ccf2.jar (required for creating LogonLogoff classes)
v screenable.jar (required if using the EPI Screen Record)

The JCA 1.6 Connector class file library is also required, and is available for
download from the Oracle Java Web site at http://www.oracle.com/us/sun/
index.htm.

Compiling and running JEE components
If you develop a JEE component that returns the EPI screen record parameter, the
deployment tool you are using requires two Java archive (.jar) files.

The Java archive files required by the deployment tool are:
cicsj2ee.jar

screenable.jar

An EJB client that receives an EPI screen record requires that these jar files are
defined on the class path.

156 CICS TG for Multiplatforms V9.2: Developing Applications

http://www.sun.com/
http://www.oracle.com/us/sun/index.htm
http://www.oracle.com/us/sun/index.htm

Integration testing JEE components using an intercept plug-in
You can use integration test tools to intercept ECI and EPI calls from Java
Enterprise Edition components. This feature allows such components to be tested
without requiring a running CICS Transaction Gateway or CICS server.

Before you begin

To use a Gateway intercept plug-in, the plug-in class must be available on the class
path. For information on developing an intercept plug-in, refer to “Integration
testing Java applications using a Gateway Intercept plug-in” on page 130.

Procedure
1. Choose one of the following methods to enable the plug-in:
v For a connection factory instance, set the interceptPlugin connection factory

custom property to the plug-in class name.
v Programmatically, use the setInterceptPlugin method of the

ECIManagedConnectionFactory or EPIManagedConnectionFactory object
before you obtain an ECIConnectionFactory or EPIConnectionFactory object.

2. Add the plug-in class to the JEE Application Server's classpath. The plug-in
class can be contained in a jar file.

Related tasks:
“Enabling a Gateway intercept plug-in in a Java SE application” on page 131
You can enable a Gateway intercept plug-in in a Java SE application,
programmatically or by using a Java system property.

Security credentials and the CICS resource adapters
Security Credentials for accessing CICS can come from three different places.

These are the ConnectionSpec properties, the deployed security credentials, or the
server itself (for non managed environments, the third option does not apply). The
precedence for these credentials is:
1. The Server Supplied Credentials (highest precedence)
2. The ConnectionSpec Supplied Credentials
3. The Deployed Security Credentials

Managed enterprise applications can be deployed with "container" or "application"
as a security choice. If "container" is specified, the JEE will provide the credentials
by means of a user interface. If "application" is specified, security is determined
from the deployment properties and can be overridden by the ConnectionSpec.

JEE tracing
In a nonmanaged environment where the default connection manager is used, the
application can set the LogWriter property on the class to define where trace
messages are sent.

If the connection factory is serialized for storage in a nonmanaged environment,
for the LogWriter to be used, it must be set after deserialization because it is not
restored automatically after deserialization. This process is shown in the following
example:

Chapter 11. Programming using the JEE Connector Architecture 157

ECIManagedConnectionFactory MCF = new ECIManagedConnectionFactory();
MCF.setLogWriter(myLogWriter);

ECIConnectionFactory cf = MCF.createConnectionFactory();
objOutStream.write(cf);

ECIConnectionFactory cf2 = (ECIConnectionFactory) objInStream.read();
DefaultConnectionManager.setLogWriter(myLogWriter);

Tracing issues relating to serialized interfaces and
ConnectionFactory objects

If you use the serializable interface to store your ConnectionFactory objects, the
reference to your LogWriter is lost.

If you use a serializable interface to store your ConnectionFactory objects, when
you deserialize the interface the ConnectionFactory does not contain a reference to
the LogWriter. This is because LogWriters are not serializable.

In a nonmanaged environment, you can ensure that your LogWriters are stored on
any connections created from the ConnectionFactory object by configuring the
connection using the following code.
DefaultConnectionManager.setLogWriter(new java.io.PrintWriter(System.err));
Connection Conn = (Connection)cxf.getConnection();

The setLogWriter method on the DefaultConnectionManager, which is supplied
with the resource adapters, is a static method. The example defines that the log is
set to output to the System.err. Managed environments are unaffected because the
trace level applied to the ManagedConnectionFactory remains.

Resource adapter samples
The resource adapter samples consist of ECI COMMAREA, channels and
containers, and EPI samples.

The samples show you how to use the CICS resource adapters and how to write
custom records that implement the javax.resource.cci.Streamable interface. For
information on how to deploy the ECI and EPI resource adapters, see Deploying
CICS resource adapters in the CICS Transaction Gateway: UNIX and Linux
Administration.

CICS Transaction Gateway Desktop Edition: Support is not provided for the JCA
resource adapters.

ECI COMMAREA sample
The ECI COMMAREA sample consists of a stateless session bean, a client
application, and a custom record that demonstrates using the Streamable interface.

The following files are part of the sample:

ECIDateTime.java
Enterprise bean remote interface

ECIDateTimeHome.java
Enterprise bean home interface

ECIDateTimeBean.java
Enterprise bean implementation

158 CICS TG for Multiplatforms V9.2: Developing Applications

ECIDateTimeClient.java
Enterprise bean client program

JavaStringRecord.java
Custom record

Ejb-jar-eci-1.1.xml
Example of a deployment descriptor

The deployment descriptor is an example of an EJB 1.1–compliant deployment
descriptor for this enterprise bean. If you want to package it up into a jar file,
rename it to Ejb-jar.xml and store it in the META-INF directory of the jar file. It
might require further entries if it is to be deployed into an EJB 2.0–compliant
environment.

See your JEE Server documentation for information on how to compile and deploy
the bean within your environment. However, you need to ensure that the
following jar files are also available on the CLASSPATH:
v cicsjee.jar
v connector.jar
v ctgclient.jar
v ccf2.jar

The enterprise bean looks for an ECI connection factory named java:comp/env/ECI.
The bean must refer to this resource when deployed. See your JEE Server
documentation on how to deploy the resource adapter with an entry in the JNDI
with this name. The client program looks for the ECIDateTime bean with a name
of ECIDateTimeBean1. See your JEE Server documentation for details of how to
setup the bean with this JNDI name.

You will need to install the server sample program EC01 on your CICS Server. This
file can be found in the samples\server subdirectory of your CICS Transaction
Gateway installation. Further details of this sample can be found in Chapter 18,
“Sample programs,” on page 251.

The bean is a simple bean that outputs the date and time as known to the CICS
Server, and can be deployed as a bean-managed transaction. The Custom record
takes a COMMAREA and converts it to a string. Ensure that the EC01 sample
program, which you installed on your CICS server, sends its results in ASCII, as
the COMMAREA is expected in ASCII. The JavaStringRecord does however allow
for the selection of other encodings, and is commented using JavaDoc. The Client
program takes no parameters. If your CICS server is running on z/OS, the EC01
sample program will return its results in EBCDIC rather than ASCII. To resolve
this, update the DFHCNV table by adding lines similar to the following:
*
* CTG Sample conversion
*
*

DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=EC01,USREXIT=NO, *
SRVERCP=037,CLINTCP=8859-1

DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=18, *

LAST=YES

Chapter 11. Programming using the JEE Connector Architecture 159

EPI sample
The EPI Sample consists of a stateful session bean, a client application, a custom
record which demonstrates the use of the Screenable interface, and a custom
LogonLogoff class.

The following files are part of the EPI Sample:

EPIPlayScript.java
Enterprise bean remote interface.

EPIPlayScriptHome.java
Enterprise bean home interface.

EPIPlayScriptBean.java
Enterprise bean implementation.

EPIPlayScriptClient.java
Enterprise bean client program.

CICSCESNLogon.java
A LogonLogoff class.

Ejb-jar-epi-1.1.xml
Example of a deployment descriptor.

The deployment descriptor is an example of an EJB 1.1 compliant deployment
descriptor for this enterprise bean. If you want to package it up into a jar file,
rename it to Ejb-jar.xml and store it in the META-INF directory of the jar file. It
might require further entries if it is to be deployed into an EJB 2.0-compliant
environment.

Your JEE Server documentation describes how to compile and deploy the bean
within your environment. However, you need to ensure that the following jar files
are also available on the CLASSPATH:
v cicsj2ee.jar
v connector.jar
v ctgclient.jar
v ccf2.jar
v screenable.jar

The enterprise bean looks for an EPI connection factory named java:comp/env/EPI.
See your JEE Server's documentation for details of how deploy the resource
adapter under this reference in the JNDI. When deploying the bean into your
environment you need to supply this reference for the bean to find the resource.
The client program looks for the EPIPlayScript bean with a name of
EPIPlayScript1. Refer to your JEE Server documentation for details of how to
setup the bean with this name in the JNDI namespace. The bean can be deployed
as a bean-managed transaction.

The bean takes a series of commands and drives a 3270 interaction. Once the
commands are complete, the field text is returned as a string array based on fields
requested to be returned by the script. The client can then look at these field texts
and send more commands to drive that interaction if necessary. The commands
that drive the 3270 screen are as follows:

S(txn) Start transaction “txn”.

160 CICS TG for Multiplatforms V9.2: Developing Applications

F(x)=“Text”
Set field number x to “Text”. Field numbers start at 1.

P(aid) Press key “aid”.

C(row, col)
Place cursor at row, col (row and col start at 1).

R(x) Adds the text of the field at the given field number to the string array that
will be returned. Field numbers start at 1.

So an example of a script might be:
S(CESN)F(7)=“myuser”F(10)=“mypass”P(enter)R(1)

The EPIPlayScriptClient program takes no parameters; it has a default command
sequence coded into it. Experiment by changing this command sequence or
enhancing the sample.

The CICSCESNLogon.java sample contains example code on how to logon to a CICS
Transaction Server for z/OS system. The code is works for English systems and
might have to be tailored for other versions of CICS and languages. In order to use
this class, deploy it as part of the sample bean and reference it when you deploy
the EPI resource adapter. For more information about how to deploy the EPI
resource adapter see the information about Deploying CICS resource adapters in
the CICS Transaction Gateway: UNIX and Linux Administration.

ECI channels and containers sample
The ECI channels and containers sample uses JCA to send an ECI request to a
sample channel program in CICS called EC03. The CICS EC03 sample program
adds containers to the channel which is then returned.

The sample can call the CICS sample program EC03, either through the ECI
resource adapter, or through the ECI XA resource adapter. The sample includes a
client application that invokes an enterprise bean. The enterprise bean then issues
the ECI request to CICS.

The sample includes the following files:

EC03ChannelBean.java
The implementation of the EC03 Channel EJB

EC03Channel.java
The remote interface for the EC03 Channel EJB

EC03ChannelHome.java
The home interface for the EC03 Channel EJB

EC03ChannelClient.java
A basic client which calls the EC03 Channel EJB

Enterprise beans have a main body of code and two interfaces. The Remote
interface contains the business methods that the bean implements, in this case, the
execute() method. The Home interface handles the lifecycle of the enterprise bean.

EC03ChannelClient looks up the enterprise bean as EC03ChannelHome in the
JNDI (Java Naming Directory Interface). It then locates an object using the remote
interface as a type-cast. When execute() is called on this interface, the method is
called remotely on the enterprise bean. The remote method then looks up the
resource adapter connection factory (an instance of the resource adapter) under the

Chapter 11. Programming using the JEE Connector Architecture 161

name ECI. The method runs EC03 in CICS, passing in a channel with one
container. When the ECI call program returns, the containers returned from the
program are enumerated and placed into a HashMap which is then returned back
to the client application that issued the call.

To use the sample:
1. Deploy the CICS ECI resource adapter (cicseci.rar); this is located in the

deployable directory of the CICS Transaction Gateway install path.
2. Create a connection factory with parameters to suit your CICS server

environment. .

Note: The connection factory must have a JNDI name of ECI for the sample to
work.

3. Deploy your enterprise bean. This automatically generates code that handles
remote method calls to your enterprise bean that are made by the enterprise
bean client. This process is specific to your JEE application server, but mainly
involves identifying the interfaces to the deployment tool, after setting any
properties you need. The properties you will be asked for might include:

Transaction Type
This can be set to container-managed, or bean-managed, and
determines whether you want to control transactions yourself. The JEE
application server manages Container managed transactions. If you are
prompted, select Container managed for the sample.

Enterprise bean Type
EC03Channel is a stateless session bean.

JNDI Name
The enterprise bean client uses JNDI to look up the name of the
enterprise bean in the naming directory.

Resource References
The enterprise bean refers to a connection factory. You must add the
connection factory (as defined in step 2) as a resource reference for this
enterprise bean.

4. Run the client application. You can run the client either from the command line
or with the launchClient utility (if you are using IBM WebSphere Application
Server). The launchClient utility sets up the necessary parameters to
communicate with the JNDI directory in IBM WebSphere to find the
EC03Channel enterprise bean. The application calls the bean, passes a text
string to the EC03 program, and displays the contents of the container that the
EC03 program returns.

Assistance in coding CCI applications
When coding CCI applications, refer to the Javadoc and the specification for the
JEE Connector Architecture (JCA).

See the Javadoc in the JEE resource adapter

JEE Connector Architecture API
Use this reference for help in coding your CCI applications.

162 CICS TG for Multiplatforms V9.2: Developing Applications

Refer to the Java EE Connector Architecture 1.6 Specification document from Java EE
Downloads. It contains information such as the exceptions used in CCI
applications.

Chapter 11. Programming using the JEE Connector Architecture 163

http://www.oracle.com/technetwork/java/javaee/tech/javaee6technologies-1955512.html
http://www.oracle.com/technetwork/java/javaee/tech/javaee6technologies-1955512.html

164 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 12. Programming in C and COBOL

This information describes the external access interfaces specific to C and COBOL.

Overview of the programming interfaces for C and COBOL
C interfaces are provided for the ECI and ESI for building 32-bit applications that
can be run in local mode. Separate C interfaces are provided for the ECI and ESI
for building 32-bit or 64-bit applications that can be run in remote mode.

A user application must only use a single process to make API requests. However,
in environments in which a process can generate several threads, the user
application can be multithreaded and each thread can make API requests. On
UNIX and Linux, a child process, started from a parent application that has
already made a Client API request, cannot make subsequent Client API requests. A
child process that makes Client API requests must be started before the parent
application has made any Client API requests.

For local mode, interfaces are provided in C and COBOL for the ECI, EPI and ESI.
For more information see the following links:

“Making ECI V1 calls from C and COBOL programs”
“Making EPI calls from C and COBOL programs” on page 176
“Making ESI V1 calls from C and COBOL programs” on page 183

For remote mode, a C interface is provided for the ECI and ESI. For more
information see “Making ECI V2 and ESI V2 calls from C programs” on page 168.

Making ECI V1 calls from C and COBOL programs
This section describes how to make ECI V1 calls to a CICS server from a local
32-bit COBOL or C Client application. ECI V1 can be used only in local mode.

The following table shows the field names in C and COBOL data structures that
correspond to the ECI terms described in “I/O parameters on ECI calls” on page 9.

Table 15. ECI terms and corresponding fields in C and COBOL

ECI term C structure.field COBOL structure.field

Abend code ECI_PARMS.eci_abend_Code ECI-PARMS.ECI-ABEND-CODE

COMMAREA ECI_PARMS.eci_commarea ECI-PARMS.ECI-COMMAREA

ECI timeout ECI_PARMS.eci_timeout ECI-PARMS.ECI-TIMEOUT

LUW control ECI_PARMS.eci_extend_mode ECI-PARMS.ECI-EXTEND-MODE

LUW identifier ECI_PARMS.eci_luw_token ECI-PARMS.ECI-LUW-TOKEN

Message qualifier ECI_PARMS.eci_message_qualifier ECI-PARMS.ECI-MESSAGE-
QUALIFIER

Password ECI_PARMS.eci_password
ECI_PARMS.eci_password2

ECI-PARMS.ECI-PASSWORD
ECI-PARMS.ECI-PASSWORD2

Program name ECI_PARMS.eci_program_name ECI-PARMS.ECI-PROGRAM-NAME

Server name ECI_PARMS.eci_system_name ECI-PARMS.ECI-SYSTEM-NAME

© Copyright IBM Corp. 1998, 2016 165

Table 15. ECI terms and corresponding fields in C and COBOL (continued)

ECI term C structure.field COBOL structure.field

TPNName ECI_PARMS.eci_tpn ECI-PARMS.ECI-TPN

TranName ECI_PARMS.eci_transid ECI-PARMS.ECI-TRANSID

User ID ECI_PARMS.eci_userid ECI-PARMS.ECI-USERID

CICS_ExternalCall
Use CICS_ExternalCall for making program link calls, status information calls, and
reply solicitation calls.

Use the ECI parameter block (ECI_PARMS for C and ECI-PARMS for COBOL) for
passing parameters to the ECI. The eci_call_type parameter in the ECI parameter
block indicates the type of CICS_ExternalCall. The following example shows the
format of the request and associated declarations:

For C programs:
ECI_PARMS EciBlock;
cics_sshort_t Response;
.
.
.
Response = CICS_ExternalCall(&EciBlock);

For COBOL programs:
CALL CICSEXTERNALCALL
USING BY REFERENCE ECI-PARMS
RETURNING ECI_ERROR_ID.

Program link calls
Complete the required fields in the ECI parameter block. Pass any data required by
the program you are linking to in the COMMAREA.

Use eci_call_type to define an ECI request as either synchronous or asynchronous:
v ECI_SYNC for a synchronous program link call
v ECI_ASYNC for an asynchronous program link call

Managing logical units of work
To start a logical unit of work, set the eci_extend_mode parameter to
ECI_EXTENDED and the eci_luw_token parameter to zero, when making a
program link call.

The Client daemon generates an LUW identifier which is returned in the
eci_luw_token field. This identifier must be input to all subsequent calls for the
same unit of work. To call the last program in an LUW, set the eci_extend_mode
parameter to ECI_NO_EXTEND. To end an LUW without linking to a program, set
the eci_extend_mode parameter to ECI_COMMIT or ECI_BACKOUT to commit or
back out changes to recoverable resources.

The following table shows how you can use combinations of eci_extend_mode,
eci_program_name, and eci_luw_token parameter values to perform tasks
associated with managing logical units of work through ECI. In each case you
must also store appropriate values in other fields for the call type you have chosen.

166 CICS TG for Multiplatforms V9.2: Developing Applications

Table 16. Logical units of work in ECI

Task to perform Parameters to use

Call a program that is to be the only program of a logical
unit of work.

One request flows from client to server and a reply is
sent to the client only after all the changes made by the
specified program have been committed.

Set up the parameters as follows:

v eci_extend_mode: ECI_NO_EXTEND

v eci_program_name: provide it

v eci_luw_token: zero

Call a program that is to start an extended logical unit of
work.

Set up the parameters as follows:

v eci_extend_mode: ECI_EXTENDED

v eci_program_name: provide it

v eci_luw_token: zero

Then save the token from eci_luw_token.

Call a program that is to continue an existing logical unit
of work.

Set up the parameters as follows:

v eci_extend_mode: ECI_EXTENDED

v eci_program_name: provide it

v eci_luw_token: provide it

Call a program that is to be the last program of an
existing logical unit of work, and commit the changes.

Set up the parameters as follows:

v eci_extend_mode: ECI_NO_EXTEND

v eci_program_name: provide it

v eci_luw_token: provide it

End an existing logical unit of work, without calling
another program, and commit changes to recoverable
resources.

Set up the parameters as follows:

v eci_extend_mode: ECI_COMMIT

v eci_program_name: null

v eci_luw_token: provide it

End an existing logical unit of work, without calling
another program, and back out changes to recoverable
resources.

Set up the parameters as follows:

v eci_extend_mode: ECI_BACKOUT

v eci_program_name: null

v eci_luw_token: provide it

If an error occurs in one of the calls of an extended logical unit of work, you can
use the eci_luw_token field to see if the changes made so far have been backed
out, or are still pending. See the description of the eci_luw_token field in CICS
Transaction Gateway for Multiplatforms: Programming Reference for more information.
If the changes are still pending, end the logical unit of work with another program
link call, either committing or backing out the changes.

ECI timeouts
Use the eci_timeout field in the ECI parameter block to specify the timeout value.
If a timeout occurs either the ECI_ERR_RESPONSE_TIMEOUT code or the
ECI_ERR_REQUEST_TIMEOUT code is returned.

See “Timeout of the ECI request” on page 14 for more information on ECI
timeouts.

Reply solicitation calls
Use one of the following call types to solicit replies for an asynchronous program
link call.

Chapter 12. Programming in C and COBOL 167

Unique message qualifiers for specific replies must be created by the Client
application.

ECI_GET_REPLY
For a reply solicitation call that gets any outstanding reply for any
asynchronous call, if any reply is available.

ECI_GET_REPLY_WAIT
For a reply solicitation call that gets any outstanding reply for any
asynchronous call, waiting if no replies are available.

ECI_GET_SPECIFIC_REPLY
For a reply solicitation call that gets any outstanding reply for a given
asynchronous call, if any reply is available.

ECI_GET_SPECIFIC_REPLY_WAIT
For a reply solicitation call that gets any outstanding reply for a given
asynchronous call, waiting if no replies are available.

Security credentials in ECI V1
The Client application can specify the user ID and password by setting eci_userid
and eci_password or eci_userid2 and eci_password2 in the ECI parameter block.

Use eci_userid and eci_password if the user ID and password names are 8
characters or less in length, or eci_userid2 and eci_password2 if the names can be
more than 8 characters in length.

You can set a default user ID and password for the connection. See “Making ESI
V1 calls from C and COBOL programs” on page 183 for more information.

Making ECI V2 and ESI V2 calls from C programs
This section describes how to make ECI V2 and ESI V2 calls to a CICS server from
a 32-bit or 64-bit C application. ECI V2 and ESI V2 are supported only in remote
mode.

Making ECI V2 calls
You can make ECI V2 calls to a CICS server from a C Client application in remote
mode.

Use the CTG_ECI_PARMS parameter block structure to communicate with a CICS
server. The parameter block fields are used for input and output. To communicate
with the CICS server using the Gateway daemon use the CTG_ECI_Execute
function. The Remote Client interface requires Version 2 of the ECI Parameter
block. Set the ECI parameter block to nulls before setting the input parameter
fields. For guidance on how to use the ECI to manage logical units. See “Managing
logical units of work” on page 171.

The following table shows the field names in C data structures that correspond to
the ECI terms described in “I/O parameters on ECI calls” on page 9.

Table 17. ECI terms and corresponding fields in C in remote mode

ECI term C structure.field

Abend code CTG_ECI_PARMS.eci_abend_Code.

Channel CTG_ECI_PARMS.channel. See “Introduction to channels
and containers” on page 13.

168 CICS TG for Multiplatforms V9.2: Developing Applications

Table 17. ECI terms and corresponding fields in C in remote mode (continued)

ECI term C structure.field

COMMAREA CTG_ECI_PARMS.eci_commarea.

ECI timeout CTG_ECI_PARMS.eci_timeout. See “Timeout of the ECI
request” on page 14.

LUW control CTG_ECI_PARMS.eci_extend_mode. See “Program link
calls” on page 10.

LUW identifier CTG_ECI_PARMS.eci_luw_token. See “Managing logical
units of work” on page 11.

Message qualifier CTG_ECI_PARMS.eci_message_qualifier. See “Retrieving
replies from asynchronous ECI requests” on page 12.

Password or password phrase CTG_ECI_PARMS.eci_password_ptr. See “Security in the
ECI” on page 15.

Program name CTG_ECI_PARMS.eci_program_name.

Server name CTG_ECI_PARMS.eci_system_name.

TPNName CTG_ECI_PARMS.eci_tpn. See “ECI and CICS
transaction IDs” on page 13.

TranName CTG_ECI_PARMS.eci_transid. See “ECI and CICS
transaction IDs” on page 13.

User ID CTG_ECI_PARMS.eci_userid_ptr. See “Security in the
ECI” on page 15.

Making ESI V2 calls
You can make ESI V2 calls to a CICS server from a C Client application in remote
mode.

Verifying a password or password phrase

Use the CTG_ESI_verifyPassword function to verify a password or password phrase
in CICS. Pass in the user ID and password or password phrase to verify, and the
name of the CICS server to send the verify request to. If the password or password
phrase is verified successfully, information about the user ID is returned in the
ESI_DETAILS structure passed to the function. If information about the user ID is
not required, NULL can be passed to the function.
ESI_DETAILS Details;
int Response;

Response = CTG_ESI_verifyPassword(GatewayToken, Userid, Password,
CicsServer, &Details);

Changing a password or password phrase

Use the CTG_ESI_changePassword function to change a password or password
phrase in CICS. Pass in the user ID and current password or password phrase, the
new password or password phrase, and the name of the CICS server to send the
change request to. If the password or password phrase is changed successfully,
information about the user ID is returned in the ESI_DETAILS structure passed to
the function. If information about the user ID is not required, NULL can be passed
to the function.

Chapter 12. Programming in C and COBOL 169

ESI_DETAILS Details;
int Response;

Response = CTG_ESI_changePassword(GatewayToken, Userid, CurrentPassword,
NewPassword, CicsServer, &Details);

Establishing a connection to a Gateway daemon
To use client applications in C in remote mode, you must establish a connection to
the Gateway daemon Client protocol handler using the specified host name and
port number.

The following functions establish a remote Client connection to a Gateway
daemon:
int CTG_openRemoteGatewayConnection(

char * address,
int port,
CTG_ConnToken_t* gwTokPtr,
int connTimeout

)

int CTG_openRemoteGatewayConnectionApplid(
char * address,
int port,
CTG_ConnToken_t* gwTokPtr,
int connTimeout,
char * applid,
char * applidQualifier

)

Use CTG_openRemoteGatewayConnectionApplid in preference to
CTG_openRemoteGatewayConnection, as this allows a Client APPLID and APPLID
qualifier to be set enabling requests from the Client application to be tracked.

The connection to a Gateway daemon is established using the specified host name
and port number. If the connection is successful the Gateway token is returned in
the gwTokPtr parameter. The Gateway token is required to interact with that
Gateway daemon on further API calls.

The following functions close a remote Client connection to a Gateway daemon:
CTG_closeGatewayConnection(CTG_GatewayToken_t * gwTokPtr)

CTG_closeAllGatewayConnections()

The CTG_closeGatewayConnection function frees a single Gateway connection
held by the API.

The CTG_closeAllGatewayConnections function attempts to free all resources
held by the API, including open Gateway daemon connections. This function is for
use in the event of a severe error because it enables some form of controlled
shutdown even if all gateway tokens (gwTokens) have been lost.

Setting the client APPLID and APPLID qualifier using
environment variables

The APPLID and APPLID qualifier of the client application can be overridden at
run time by setting the environment variables CTG_APPLID and
CTG_APPLIDQUALIFIER to the desired values. The environment variable values
override any values passed to the CTG_openRemoteGatewayConnectionApplid
function and are also available to existing ECI V2 and ESI V2 applications without

170 CICS TG for Multiplatforms V9.2: Developing Applications

requiring the application to be recompiled.

Program link calls
For all program link calls, complete the required fields in the ECI parameter block
(CTG_ECI_PARMS structure). All unused fields should be set to zero.

The eci_call_type field must be set to ECI_SYNC or ECI_ASYNC and the
eci_version field must be set to ECI_VERSION_2A. The constant ECI_VERSION_2
is provided for compatibility with existing applications only and should not be
used for new applications.

To specify a user ID and password or password phrase for the program link call,
set the eci_userid_ptr and eci_password_ptr fields.

Program links calls with a COMMAREA

When calling a COMMAREA-based CICS program, provide a pointer to the
COMMAREA data in the eci_commarea field and the COMMAREA length in the
eci_commarea_length field.

The commarea_outbound_length and commarea_inbound_length fields can be used
to limit the amount of data sent between the application and the CICS Transaction
Gateway. For example, if there is a large difference between the size of the data
that the CICS program reads from the COMMAREA and the size of the data that
the CICS program writes to the COMMAREA.

To perform the program link call, call the CTG_ECI_Execute function, passing a
Gateway token and a pointer to the CTG_ECI_PARMS structure:
int Response;
Response = CTG_ECI_Execute(gatewayToken, &EciBlock);

Program link calls with a channel

When calling a channel-based CICS program, create the channel and any required
containers and then set the channel field of the ECI parameter block. For more
information see “Using channels and containers in ECI V2 applications” on page
173.

To perform the program link call, call the CTG_ECI_Execute_Channel function,
passing a Gateway token and a pointer to the CTG_ECI_PARMS structure:
int Response;
Response = CTG_ECI_Execute_Channel(gatewayToken, &EciBlock);

All unused fields must be set to zero.

Managing logical units of work
To start a logical unit of work, set the eci_extend_mode parameter to
ECI_EXTENDED and the eci_luw_token parameter to zero, when making a
program link call.

When a transaction is started, an LUW identifier is generated and is returned in
the eci_luw_token field. This identifier must be input to all subsequent calls for
the same unit of work. To call the last program in an LUW, set the
eci_extend_mode parameter to ECI_NO_EXTEND. To end an LUW without linking
to a program, set the eci_extend_mode parameter to ECI_COMMIT or
ECI_BACKOUT to commit or back out changes to recoverable resources.

Chapter 12. Programming in C and COBOL 171

The following table shows how you can use combinations of eci_extend_mode,
eci_program_name, and eci_luw_token parameter values to perform tasks
associated with managing logical units of work through ECI. In each case you
must also store appropriate values in other fields for the call type you have chosen.

Table 18. Logical units of work in ECI

Task to perform Parameters to use

Call a program that is to be the only program of a logical
unit of work.

One request flows from client to server and a reply is
sent to the client only after all the changes made by the
specified program have been committed.

Set up the parameters as follows:

v eci_extend_mode: ECI_NO_EXTEND

v eci_program_name: provide it

v eci_luw_token: zero

Call a program that is to start an extended logical unit of
work.

Set up the parameters as follows:

v eci_extend_mode: ECI_EXTENDED

v eci_program_name: provide it

v eci_luw_token: zero

Then save the token from eci_luw_token.

Call a program that is to continue an existing logical unit
of work.

Set up the parameters as follows:

v eci_extend_mode: ECI_EXTENDED

v eci_program_name: provide it

v eci_luw_token: provide it

Call a program that is to be the last program of an
existing logical unit of work, and commit the changes.

Set up the parameters as follows:

v eci_extend_mode: ECI_NO_EXTEND

v eci_program_name: provide it

v eci_luw_token: provide it

End an existing logical unit of work, without calling
another program, and commit changes to recoverable
resources.

Set up the parameters as follows:

v eci_extend_mode: ECI_COMMIT

v eci_program_name: null

v eci_luw_token: provide it

End an existing logical unit of work, without calling
another program, and back out changes to recoverable
resources.

Set up the parameters as follows:

v eci_extend_mode: ECI_BACKOUT

v eci_program_name: null

v eci_luw_token: provide it

If an error occurs in one of the calls of an extended logical unit of work and the
returned eci_luw_token is non-zero, the changes made so far are still pending. You
must end the logical unit of work with another program link call, either
committing or backing out the changes. If the returned eci_luw_token is zero, the
logical unit of work has ended.

ECI timeouts
Use the eci_timeout field in the ECI parameter block to specify the timeout value.
If a timeout occurs either the ECI_ERR_RESPONSE_TIMEOUT code or the
ECI_ERR_REQUEST_TIMEOUT code is returned.

See “Timeout of the ECI request” on page 14 for more information on ECI
timeouts.

172 CICS TG for Multiplatforms V9.2: Developing Applications

Reply solicitation calls
Use one of the following call types to solicit replies for an asynchronous program
link call.

Unique message qualifiers for specific replies are generated by the API.

ECI_GET_REPLY
For a reply solicitation call that gets any outstanding reply for any
asynchronous call, if any reply is available.

ECI_GET_REPLY_WAIT
For a reply solicitation call that gets any outstanding reply for any
asynchronous call, waiting if no replies are available.

ECI_GET_SPECIFIC_REPLY
For a reply solicitation call that gets the outstanding reply for the
asynchronous call identified by the message qualifier.

ECI_GET_SPECIFIC_REPLY_WAIT
For a reply solicitation call that gets the outstanding reply for the
asynchronous call identified by the message qualifier, the call waits if no
reply is available.

Using channels and containers in ECI V2 applications
You can use channels and containers when you connect to CICS using the IPIC
protocol. You must create a channel before it can be used in an ECI request.
1. Add the following code to your application program, to create a channel:

ECI_ChannelToken_t chanToken;
createChannel(&chanToken);

2. You can add containers with a data type of BIT or CHAR to your channel. Here
is a sample BIT container:
char custNumber[] = {0,1,2,3,4,5};
rc = ECI_createContainer(chanToken, "CUSTNO", ECI_BIT, 0, custNumber,
sizeof(custNumber));

Here is a sample CHAR container that uses the CCSID of the channel:
char * company = "IBM";
rc = ECI_createContainer(chanToken, "COMPANY", ECI_CHAR, 0, company,
strlen(company));

3. The channel can now be used in an ECI request, as the example shows:
CTG_ECI_PARMS eciParms = {0};

eciParms.eci_version = ECI_VERSION_2A;
eciParms.eci_call_type = ECI_SYNC;
strncpy(eciParms.eci_system_name, "CICSA", ECI_SYSTEM_NAME_LENGTH);
eciParms.eci_userid_ptr = "USERNAME";
eciParms.eci_password_ptr = "PASSWORD";
strncpy(eciParms.eci_program_name, "CHANPROG", ECI_PROGRAM_NAME_LENGTH);
eciParms.eci_extend_mode = ECI_NO_EXTEND;
eciParms.channel = chanToken;

4. When the request is complete, you can retrieve the current state of the
containers in the channel, as the example shows:
ECI_CONTAINER_INFO contInfo;

rc = ECI_getFirstContainer(chanToken, &contInfo);

while (rc == ECI_NO_ERROR) {
printf("Container %s\n", contInfo.name);

Chapter 12. Programming in C and COBOL 173

if (contInfo.type == ECI_BIT) {
printf("Type BIT\n");

} else {
printf("Type CHAR\n");

}

/* Read block of data into buffer */
ECI_getContainerData(channelToken, contInfo.name, dataBuff,

sizeof(dataBuff), offset, &bytesRead);

rc = ECI_getNextContainer(chanToken, &contInfo);
}

Tracing in ECI V2 and ESI V2 applications
Applications should implement an option to enable trace. You can control tracing
in ECI and ESI Version 2 applications using the functions and environment
variables described here.

You can set trace level, file, data length and offset either by using a function call or
by setting an environment variable. Examples of each are shown below. To avoid
having to recompile applications, enable trace by setting the environment variable.

Trace level

You can set 5 trace levels:

CTG_TRACE_LEVEL0
Disables all tracing. This is the default setting.

CTG_TRACE_LEVEL1
Enables exception trace points. This level of tracing can be set on
permanently to provide an error log capability. Messages are written only
for system errors, socket errors, and other Gateway connection errors.

CTG_TRACE_LEVEL2
Enables event trace points and those from lower trace levels.

CTG_TRACE_LEVEL3
Enables function entry and exit trace points and those from lower trace
levels.

CTG_TRACE_LEVEL4
Enables debug trace points and those from lower trace levels.

Here is an example of the trace level function call:
CTG_setAPITraceLevel(CTG_TRACE_LEVEL1);

Here is an example of the trace level environment variable:
CTG_CLIENT_TRACE_LEVEL=1

Trace file

The default trace destination is the standard error stream.

Here is an example of the trace file function call:
CTG_setAPITraceFile("filename.trc");

Here is an example of the trace file environment variable:

174 CICS TG for Multiplatforms V9.2: Developing Applications

CTG_CLIENT_TRACE_FILE=filename.trc

If the trace file is not set, trace is written to the standard error stream (stderr).

Trace data length

The trace data length specifies the maximum amount of data that is written to
trace when communicating with CICS Transaction Gateway and the trace level is
set to CTG_TRACE_LEVEL4. The default setting is 128 bytes.

Here is an example of the trace data length function call:
CTG_setAPITraceDataLength(256);

Here is an example of the trace data length environment variable:
CTG_CLIENT_DATA_LENGTH=256

Trace data offset

The trace data offset specifies an offset into data where tracing begins. When
combined with the trace data length this allows a specific section of data to be
traced, for example a section of data in a COMMAREA. The default setting is zero.

Here is an example of the trace data offset function call:
CTG_setAPITraceDataOffset(40);

Here is an example of the trace data offset environment variable:
CTG_CLIENT_DATA_OFFSET=40

Security credentials in ECI V2
The application can specify the user ID and password or password phrase by
setting eci_userid_ptr and eci_password_ptr in the ECI V2 parameter block.

The fields eci_userid and eci_password are provided for compatibility with existing
applications. New applications must use eci_userid_ptr and eci_password_ptr.

The maximum length of a user ID and password or password phrase depends on
the CICS server version and communications protocol type. For more information
see your CICS server documentation.

Multithreaded ECI V2 and ESI V2 applications
Considerations when using multithreaded ECI V2 and ESI V2 applications to
connect to CICS.

ECI calls using a COMMAREA

It is the responsibility of the application to ensure that application threads do not
read or update the contents of the COMMAREA while another thread is
performing an ECI call using the same COMMAREA. If applications use the same
COMMAREA for simultaneous ECI calls, unpredictable behavior could be
experienced.

Chapter 12. Programming in C and COBOL 175

ECI calls using a channel

For ECI_SYNC calls using a channel, the channel is locked for the duration of the
ECI call. For ECI_ASYNC calls using a channel, the channel is locked from the
start of the ECI call until the response is retrieved by a subsequent reply
solicitation call. While a channel is locked, other application threads block if they
attempt to read or update the channel or its containers, or perform further ECI
calls using the channel.

Making EPI calls from C and COBOL programs
This section describes how to run a 3270-based program on a CICS server using
EPI calls from a local 32-bit C or COBOL application. The EPI C interface can be
used only in local mode.

The following table shows the field names in C and COBOL data structures that
correspond to the terminal attributes described in “Terminal characteristics” on
page 21.

Table 19. C and COBOL field names corresponding to terminal attributes

EPI term C structure.field COBOL structure.field

Code page CICS_EpiAttributes_t.CCSId CICS-EPIATTRIBUTES.CCSID

Color CICS_EpiDetails_t.Color CICS-EPIDETAILS.COLOR

Columns CICS_EpiDetails_t.NumColumns CICS-EPIDETAILS.NUMCOLUMNS

Device type CICS_EpiAddTerminal(,,,DevType,,,,) CICSEPIADDTERMINAL.(,,,DEVTYPE,,,,)

Error last line CICS_EpiDetails_t.ErrLastLine CICS-EPIDETAILS.ERRLASTLINE

Error message
color

CICS_EpiDetails_t.ErrColor CICS-EPIDETAILS.ERRCOLOR

Error message
highlight

CICS_EpiDetails_t.ErrHilight CICS-EPIDETAILS.ERRHILIGHT

Error message
intensity

CICS_EpiDetails_t.ErrIntensity CICS-EPIDETAILS.ERRINTENSITY

Extended
highlight

CICS_EpiDetails_t.Hilight CICS-EPIDETAILS.HILIGHT

Install timeout CICS_EpiAttributes_t.InstallTimeOut CICS-EPIATTRIBUTES.INSTALLTIMEOUT

Map name CICS_EpiEventData_t.MapName CICS-EPIEVENTDATA.MAPNAME

Map set name CICS_EpiEventData_t.MapSetName CICS-EPIEVENTDATA.MAPSETNAME

Maximum data CICS_EpiDetails_t.MaxData CICS-EPIDETAILS.MAXDATA

Netname CICS_EpiDetails_t.NetName CICS-EPIDETAILS.NETNAME

Password CICS_EpiAttributes_t.Password CICS-EPIATTRIBUTES.EPI-PASSWORD

Read timeout CICS_EpiAttributes_t.ReadTimeOut CICS-EPIATTRIBUTES.READTIMEOUT

Rows CICS_EpiDetails_t.NumLines CICS-EPIDETAILS.NUMLINES

Server name CICS_EpiDetails_t.System CICS-EPIDETAILS.SYSTEM

Sign-on
capability

CICS_EpiAttributes_t.SignonCapability CICS-EPIATTRIBUTES.SIGNONCAP

Terminal ID CICS_EpiDetails_t.Termid CICS-EPIDETAILS.TERMID

User ID CICS_EpiAttributes_t.Userid CICS-EPIATTRIBUTES.EPI-USERID

176 CICS TG for Multiplatforms V9.2: Developing Applications

EPI versions
Only version 2 of the EPI is supported for new applications. Existing applications
that use EPI version 1 are supported for compatibility with earlier versions.

EPI Initialization and termination
Any application that needs to use EPI must call the CICS_EpiInitialize function
to initialize EPI. Until this call is made, no other EPI function is allowed. The
CICS_EpiInitialize function takes a parameter indicating the version of the EPI
for which the application was coded. This is to ensure that existing applications
continue to run without change if the EPI is extended.

Before an EPI application ends, it must call the CICS_EpiTerminate function to
terminate EPI cleanly.

If the Client Daemon is restarted while an application is active, the application
must reissue CICS_EpiInitialize and reinstall all the terminals. Restarting the
Client Daemon while an application is active is not recommended.

Adding a terminal to CICS
Use the CICS_EpiAddTerminal function or the CICS_EpiAddExTerminal function to
add terminals to CICS.

Terminal indexes
Each index identifies a combination of server name and terminal ID. The terminal
index supplied is the first available integer starting from 0.

The CICS_EpiAddTerminal and CICS_EpiAddExTerminal functions return a terminal
index, which must be passed on subsequent EPI function calls to indicate the
terminal to which the function is to apply.

Terminal indexes are unique within a Client application, but not across
applications, so each application gets terminal index zero for the first terminal it
installs.

When the terminal has been deleted, the terminal index value becomes free and
can be reused when another terminal is added. The server deletes the terminal if it
was autoinstalled.

Install timeout
The length of time that an application will wait for a terminal to be installed is
specified in the InstallTimeOut field in the CICS_EpiAttributes_t structure passed
to the CICS_EpiAddExTerminal function.

If no response is received from the server within the specified interval, control is
returned to the invoking application with the return code set to
CICS_EPI_ERR_RESPONSE_TIMEOUT.

Deleting a terminal
If a terminal is no longer required, it can be deleted by invoking either the
CICS_EpiDelTerminal or CICS_EpiPurgeTerminal function.

Use the CICS_EpiDelTerminal if no transaction is running against the terminal
and there are no unprocessed events outstanding.

Chapter 12. Programming in C and COBOL 177

Use the CICS_EpiPurgeTerminal function if the terminal is to be deleted without
regard to any transaction that might be running against the terminal or
unprocessed events for that terminal.

Starting transactions
To start a transaction, call the CICS_EpiStartTran function. There are two ways of
specifying the transaction to be started and the data to be associated with it.
1. Supply the transaction identifier as a parameter to the call (TransId), and

supply any transaction data in the Data parameter.
2. Combine a transaction identifier and transaction data into a 3270 data stream,

and supply the data stream as a parameter to the call (Data).

The server might have to:
v Authenticate the user ID and password for the terminal "operator".
v Grant authority, based on the authenticated user ID, to access the resources

required for the execution of each transaction.

The frequency with which the user ID and password are authenticated by the
server depends on whether the terminal has been defined as sign-on capable or
sign-on incapable; see “Security in the EPI” on page 22.

Sending and receiving data
When a transaction sends data to a terminal, the EPI generates either a
CICS_EPI_EVENT_SEND event or a CICS_EPI_EVENT_CONVERSE event.

The CICS_EPI_EVENT_SEND event indicates that data was sent but that no reply
is required. Typically this would result from an EXEC CICS SEND command, but in
some servers it would result from an EXEC CICS CONVERSE command. (In the latter
case, a CICS_EPI_EVENT_CONVERSE event occurs later to tell the application to
send a data stream back to the transaction in the server.)

The CICS_EPI_EVENT_CONVERSE event indicates that a reply is required, and
would typically result from an EXEC CICS RECEIVE or EXEC CICS CONVERSE
command. The application must respond to this event by issuing a CICS_EpiReply
call to provide the response data. The CICS_EpiReply function should be issued
only to respond to a CICS_EPI_EVENT_CONVERSE event; if it is issued at any
other time, an error is returned.

Managing pseudoconversations
The CICS_EPI_EVENT_END_TRAN event tells the application whether the
transaction just ended has specified a transaction to process the next input, and
which transaction has been specified.

The application must not attempt to start a different transaction, but must use
CICS_EpiStartTran to start the transaction specified by the
CICS_EPI_EVENT_END_TRAN event.

Events and callbacks
Use the CICS_EpiGetEvent function to collect events.

The EPI puts information in a CICS_EpiEventData_t structure to indicate the event
that occurred and any associated data. It also indicates whether there are more
events still waiting in the queue.

178 CICS TG for Multiplatforms V9.2: Developing Applications

The application can synchronize the processing of these events with its other
activities in one of three ways:
v Polling.
v Blocking.
v Callback notification. Callback is a way for another thread to notify your

application thread that an event has happened.

Polling
You can make the CICS_EpiGetEvent call in a polling mode by specifying
CICS_EPI_NOWAIT for the Wait parameter.

If no event is waiting to be collected an error code is immediately returned. Use
this mechanism in a single-user single-threaded environment, where the
application might alternately poll the keyboard for user activity and poll the EPI
for event activity. This mechanism is not recommended.

Blocking
The CICS_EpiGetEvent call can be made in a blocking mode by specifying
CICS_EPI_WAIT for the Wait parameter.

If no event is waiting to be collected, the function waits and does not return until
an event becomes available. You can use this mechanism in a multithreaded
environment, where a secondary thread can be dedicated to event processing. It
can also be used after a notification by callback, because the event information is
known to be available.

Callback notification
Callback routines can be used in C but are not available in COBOL.

When you define a terminal, you can use the optional parameter NotifyFn to
provide the address of a callback routine that the EPI is to call whenever an event
occurs against that terminal.

Note: Some compilers do not support the use of callback routines. Consult your
compiler documentation for more information.

An application carries out the minimum of processing in its callback routine, and
never block in the specified routine before returning to the EPI. The routine itself
cannot make EPI calls. You decide what call it makes when the notification is
received. For example, in a multithreaded environment, it might post a semaphore
to signal another thread that an event has occurred. In a Windows environment, it
might post a message to a window to indicate to the window procedure that an
event has occurred. Other actions will be appropriate for other environments.

When the callback routine is called, it is passed a single parameter, the terminal
index of the terminal against which the event occurred. This allows the same
callback routine to be used for more than one terminal.

Processing events
The CICS_EpiGetEvent function returns information about an event in the
CICS_EpiEventData_t structure.

The Event field in this structure contains the name of the event:
v CICS_EPI_EVENT_SEND

Chapter 12. Programming in C and COBOL 179

v CICS_EPI_EVENT_CONVERSE
v CICS_EPI_EVENT_END_TRAN
v CICS_EPI_EVENT_START_ATI
v CICS_EPI_EVENT_ADD_TERM
v CICS_EPI_EVENT_END_TERM

The application processes events as quickly as possible.

When a Client application is driven with an event or callback, it must issue a
CICS_EpiGetEvent to get the associated event. In certain timing conditions, the
CICS_EPI_EVENT_START_ATI might already have been notified from a previous
CICS_EpiGetEvent. The CICS_EpiGetEvent issued after the callback can receive
CICS_EPI_ERR_NO_EVENT (if CICS_EPI_NOWAIT is specified for the Wait
parameter) or wait until a subsequent event is received (if CICS_EPI_WAIT is
specified for the Wait parameter). Note that this can happen after a
CICS_EPI_EVENT_START_ATI is received.

Automatic transaction initiation (ATI)
The CICS server API call EXEC CICS START allows a server program to start a
transaction on a particular terminal. This mechanism, called Automatic Transaction
Initiation (ATI), requires additional programming at the client side to handle the
interaction between these transactions and typical client-initiated transactions.

ATIs are queued for a terminal while a transaction is in progress. By default ATI
requests are held, and not started against a terminal. The CICS_EPIATIState
function enables and disables ATI requests. If ATIs are enabled, they are run only
when the terminal is in an idle state (no transaction is currently running against
the terminal). The ATI is started when the CICS_EPI_EVENT_START_ATI event is
retrieved.

3270 data streams for the EPI
The supplied C header file, cics3270.h, and the COBOL copybook cics3270.cbl,
contain constants and conversion tables that you will find useful in handling 3270
data streams.

EPI to CICS (Inbound data streams)
EPI applications send 3270 data to CICS on calls to the following functions.
v CICS_EpiStartTran

v CICS_EpiReply.

The format in both cases is the same. The data stream must be a minimum of 3
non-null bytes, representing the AID and cursor address; the sole exception to this
is if the AID represents the CLEAR key or a PA key, when the data stream might
consist of the AID only. These fields are passed to the CICS transaction in the
EIBAID and EIBCPOSN fields of the EIB.

AID
(1 byte)

Cursor address
(2 bytes)

Data buffer
(variable length)

The contents of the data buffer consist of:
v ASCII displayable characters with embedded 3270 control characters, when it is

passed to an EXEC CICS RECEIVE MAP command.

180 CICS TG for Multiplatforms V9.2: Developing Applications

v User-specified data, when it is passed to an EXEC CICS RECEIVE command.

On starting a transaction, the transaction ID is extracted from the start of the data
buffer as follows:
v If a set buffer address (SBA) order is present at the start of the data buffer, the

transaction ID is extracted from the 4th through 7th bytes of the buffer.
v If an SBA is not present at the start of the data buffer, the transaction ID is

extracted from the 1st through 4th bytes of the buffer.

In either case, the transaction ID can be shorter than 4 bytes, being delimited by
either another SBA, an ASCII space, or the end of the string.

The contents of the data buffer passed on the start of a CICS transaction are
available to the transaction in response to an initial EXEC CICS RECEIVE
command.

When the application replies, the contents of the data buffer are available in an
unconverted form in response to an EXEC CICS RECEIVE command or converted
to a BMS structure in response to an EXEC CICS RECEIVE MAP command.

It is the EPI programmer's responsibility in the latter case to ensure that the data is
formatted correctly so that the conversion succeeds.

CICS to EPI (Outbound data streams)
The 3270 commands are either write commands, which instruct the EPI to process
the data, or read commands, which instruct the EPI to reply with data.

On a CICS_EPI_EVENT_SEND event, the command is one of the following 3270
write commands:
v Write
v Erase/Write
v Erase/Write Alternate
v Erase All Unprotected.

The first three commands are followed by a write control character (WCC) and
data. An Erase All Unprotected command has neither WCC nor data. The Write
Structured Field command is not generated by CICS and is therefore not supported
for the EPI.

Command
(1 byte)

Write control
character
(1 byte)

Data buffer
(variable length)

The contents of the data buffer consist of:
v ASCII displayable characters with embedded 3270 control characters, when it is

passed from an EXEC CICS SEND MAP command.
v User-specified data, when it is passed from an EXEC CICS SEND command.

A CICS_EPI_EVENT_CONVERSE event specifies a read command. The contents of
the data stream vary with the source of the event, as follows:

Chapter 12. Programming in C and COBOL 181

v If the event is the result of an EXEC CICS RECEIVE command, the data buffer
might contain data sent by the transaction, or it might be empty. The EPI
program should reply when the data to be sent is available.

v If the event is the result of an EXEC CICS RECEIVE BUFFER command, the data
buffer contains the 3270 Read Buffer command. This should be processed as
described in the 3270 Data Stream Programmer’s Reference.

3270 order codes provide additional control function
3270 orders are included in both inbound and outbound data streams to provide
additional control function.

The following table lists the order codes that occur in 3270 data streams, and
shows whether they relate to inbound or outbound data streams, or both.

Table 20. Order codes occurring in 3270 data streams

Order code Inbound Outbound

Start field (SF) Yes Yes

Start field extended (SFE) Yes Yes

Set buffer address (SBA) Yes Yes

Set attribute (SA) Yes Yes

Modify field (MF) No Yes

Insert cursor (IC) No Yes

Program tab (TB) No Yes

Repeat to address (RA) No Yes

Erase unprotected to address (EUA) No Yes

Graphic escape (GE) No No

Note: The 3270 Data Stream Programmer’s Reference states that the SFE, SA, and MF
orders are not supported in ASCII. However, they do occur in 3270 data streams
for the EPI, where they take the following values:
SFE X’10’
SA X’1F’
MF X’1A’

Each of these orders is followed by one or more attribute type-value pairs. The
count of attribute pairs and the attribute type are both binary values, and are thus
as defined in the 3270 Data Stream Programmer’s Reference3270 Data Stream
Programmer’s Reference. However, the contents of the attribute value field can vary
from those defined in the 3270 Data Stream Programmer’s Reference3270 Data
Stream Programmer’s Reference as follows:
v If the attribute type is less than or equal to X'C0' (for example, a color), the

attribute value is defined as an EBCDIC value in the 3270 Data Stream
Programmer’s Reference3270 Data Stream Programmer’s Reference. The EPI uses
the ASCII equivalent of the EBCDIC value; for example, red is defined as X'F2'
in the 3270 Data Stream Programmer’s Reference3270 Data Stream Programmer’s
Reference, and should be defined as X'32' in the EPI data stream.

v If the attribute type is greater than X'C0' (for example, field outlining), the
attribute value is a binary value. The EPI uses the values defined in the 3270
Data Stream Programmer’s Reference3270 Data Stream Programmer’s Reference.

182 CICS TG for Multiplatforms V9.2: Developing Applications

Further details of 3270 orders and other control characters are supplied in the files
named in the following table.

Supplied file

COBOL copybook cics3270.cbl

C header file cics3270.h

Making ESI V1 calls from C and COBOL programs
You can make ESI V1 calls from a local 32-bit C or COBOL Client application to
verify or change passwords for a user ID, known to an external security manager
on a CICS server. ESI V1 can be used in local mode only.

The following table shows C and COBOL names that correspond to the ESI terms
described in “I/O parameters on ESI calls” on page 27.

Table 21. C and COBOL names corresponding to ESI terms

ESI terms C structure.field COBOL structure.field

Expiry
date

CICS_EsiDetails_t.ExpiryDate CICS-ESIDETAILS.EXPIRYDATE

Expiry
time

CICS_EsiDetails_t.ExpiryTime CICS-ESIDETAILS.EXPIRYTIME

Invalid
count

CICS_EsiDetails_t.InvalidCount CICS-ESIDETAILS.INVALIDCOUNT

Last access
date

CICS_EsiDetails_t.LastAccessDate CICS-ESIDETAILS.LASTACCESSDATE

Last access
time

CICS_EsiDetails_t.LastAccessTime CICS-ESIDETAILS.LASTACCESSTIME.

Last verify
date

CICS_EsiDetails_t.LastVerifiedDate CICS-ESIDETAILS.LASTVERIFIEDDATE

Last verify
time

CICS_EsiDetails_t.LastVerified.Time CICS-ESIDETAILS.LASTVERIFIEDTIME

New
password

CICS_ChangePassword(,,NewPassword,,,)
CICSCHANGEPASSWORD
(,,NEWPASSWORD,,,)

Old
password

CICS_ChangePassword(,OldPassword,,,,)
CICSCHANGEPASSWORD
(,OLDPASSWORD,,,,)

Password CICS_VerifyPassword(,Password,,,,) CICSVERIFYPASSWORD(,PASSWORD,,,,)

System CICS_ChangePassword(,,,System,,) CICSCHANGEPASSWORD(,,,SYSTEM,,)

User ID CICS_ChangePassword(Userid,,,,,) CICSCHANGEPASSWORD(USERID,,,,,)

Verifying a password using ESI
Use the CICS_VerifyPassword function, passing the user ID, password, and system
name as input parameters. If the call is successful, the information is returned in
the CICS_EsiDetails_t structure.

Chapter 12. Programming in C and COBOL 183

Changing a password using ESI
Use the CICS_ChangePassword function, passing the user ID, current password,
new password, and system name as input parameters. If the call is successful, any
information is returned in the CICS_EsiDetails_t structure.

Setting default security using ESI
Use the CICS_SetDefaultSecurity function, passing the user ID, password, and
system name as input parameters to set the default security on a connection to a
CICS server.

Compiling and linking C and COBOL applications
This section gives some examples showing how to compile and link typical ECI,
EPI, and ESI applications in the various client environments. These are examples
only, and might refer to specific compilers and linkers.

For details of supported compilers, see the Administration Guide for your platform.

The following table shows the C header files required depending on the API being
used and whether they can be used to build 32-bit and 64-bit applications:

Table 22. C header files

Use File 32-bit support 64-bit support

ECI V1 cics_eci.h U x

EPI cics_epi.h U x

ESI V1 cics_esi.h U x

ECI V2 ctgclient_eci.h and
ctgclient.h

U U

ESI V2 ctgclient_esi.h and
ctgclient.h

U U

Type definitions cicstype.h U x

When compiling C programs, you might need to pass structures to the external
CICS interfaces in packed format. If this is the case, the C header files contain the
#pragma pack directive, which must not be changed.

The following table shows the copybook files for COBOL required and whether
they can be used to build 32-bit and 64-bit applications:

Table 23. COBOL copybooks

Use File 32-bit support 64-bit support

ECI V1 cicseci.cbl U x

EPI cicsepi.cbl U x

ESI V1 cicsesi.cbl U x

For Micro Focus COBOL, you must use call-convention 8 for every program call,
or use the default call-convention 0 and compile using the LITLINK compiler
directive.

184 CICS TG for Multiplatforms V9.2: Developing Applications

Refer to the Chapter 18, “Sample programs,” on page 251 supplied with your
environment for examples of compiling and linking programs.

Windows
Some examples showing how to compile and link typical ECI, EPI, and ESI
applications in a Windows environment.

For local C applications
v The compiler options /DWIN32, /D_WIN32, and /D_X86_=1 are used to select

the correct Windows function and are standard Win32 options. These options are
not specific to the CICS Transaction Gateway.

v The compiler option /DCICS_W32 must be used to define the symbol
CICS_W32 to the compiler to ensure that the CICS header files are processed
correctly.

v The application must be linked with the cclwin32.lib library in addition to the
standard C runtime and Windows libraries.

v Callback functions must be declared using the CICSEXIT calling convention—see
samples for details.

v 32-bit applications are supported.

For remote C applications (ECI V2 and ESI V2)
v The compiler option /DWIN32 is used to select the correct Windows function

and is a standard Win32 option. This options is not specific to the CICS
Transaction Gateway.

v The compiler option /DCICS_W32 must be used to define the symbol
CICS_W32 to the compiler to ensure that the CICS header files are processed
correctly.

v The application must be linked with the ctgclient.lib library in addition to the
standard C runtime and Windows libraries.

v 32-bit and 64-bit applications are supported.

For statistics applications
v The compiler option /DCICS_W32 must be used to define the symbol

CICS_W32 to the compiler to ensure that the CICS header files are processed
correctly.

v The application must be linked with the ctgstats.lib library in addition to the
standard C runtime and Windows libraries.

v 32-bit applications are supported.

For local COBOL programs
v It is important to use the correct calling convention when invoking the ECI or

EPI from COBOL. The sample programs use the "SPECIAL-NAMES. CALL
CONVENTION 8 IS CICS." statements to achieve this.

v The application must be linked with the CCLWIN32.LIB library, in addition to
the standard COBOL libraries, because a 32-bit Windows application is being
generated.

v ECI or EPI callback functions are not supported in COBOL applications.

IBM AIX
Some examples showing how to compile and link typical ECI, EPI, and ESI
applications in an IBM AIX environment.

Chapter 12. Programming in C and COBOL 185

For local C applications
v The constant CICS_AIX must be defined to the compiler using the -DCICS_AIX

option.
v The application must be linked with the standard IBM AIX libpthreads.a and

libc_r.a libraries, as well as the libcclaix.a library.
v 32-bit applications are supported.

For remote C applications (ECI V2 and ESI V2)
v The constant CICS_AIX must be defined to the compiler using the -DCICS_AIX

option.
v The application must be linked with the standard IBM AIX libpthreads.a and

libc_r.a libraries, as well as the libcgtclient.a library.
v 32-bit and 64-bit applications are supported.

For statistics applications
v The constant CICS_AIX must be defined to the compiler using the -DCICS_AIX

option.
v The application must be linked with the standard AIX libpthreads.a and libc_r.a

libraries, as well as the libctgstats.a library.
v 32-bit applications are supported.

For local COBOL applications
v It is important to use the correct calling convention when invoking the ECI or

EPI from COBOL. When using MicroFocus COBOL the sample programs use the
"SPECIAL-NAMES CALL CONVENTION 8 IS CICS." statements to achieve the
correct calling convention.

v To build an application, object files must be linked with the libcclaix.a library
file. Only 32-bit applications are supported by the API.

v ECI or EPI callback functions are not supported in COBOL applications.

Solaris
Compiling and linking ECI, EPI, and ESI applications in an Solaris environment.

For local C applications
v The constant CICS_SOL must be defined to the compiler using the -DCICS_SOL

option.
v The application must be linked with the standard Solaris libpthread.so, libc.so,

and libcclsol.so libraries.
v 32-bit applications are supported.

For remote C applications (ECI V2 and ESI V2)
v The constant CICS_SOL must be defined to the compiler using the -DCICS_SOL

option.
v The application must be linked with the standard Solaris libpthread.so, libc.so,

and libctgclient.so libraries.
v 32-bit and 64-bit applications are supported.

For statistics applications
v The constant CICS_SOL must be defined to the compiler using the -DCICS_SOL

option.

186 CICS TG for Multiplatforms V9.2: Developing Applications

v The application must be linked with the standard Solaris libpthread.so, libc.so,
and libctgstats.so libraries

v 32-bit applications are supported.

For local COBOL applications
v It is important to use the correct calling convention when calling the ECI or EPI

from COBOL. When you are using MicroFocus COBOL the sample programs use
the SPECIAL-NAMES CALL CONVENTION 8 IS CICS statements to achieve the correct
calling convention.

v To build an application object files must be linked with the libcclsol.so library.
Only 32-bit applications are supported by the API.

v ECI or EPI callback functions are not supported in COBOL applications.

Solaris is supported exclusively on SPARC.

Linux
Some examples showing how to compile and link typical ECI, EPI, and ESI
applications in a Linux environment.

To compile and link applications the Linux distribution will require a 32-bit or
64-bit glibc-devel Linux package to be installed.

For local C applications
v The constant CICS_LNX must be defined to the compiler using the -DCICS_LNX

option.
v The application must be linked with the standard Linux libpthread.so and

libc.so libraries, as well as the libccllnx.so library.
v 32-bit applications are supported.

For remote C applications (ECI V2 and ESI V2)
v The constant CICS_LNX must be defined to the compiler using the -DCICS_LNX

option.
v The application must be linked with the standard Linux libpthread.so and

libc.so libraries, as well as the libctgclient.so library.
v 32-bit and 64-bit applications are supported.

For statistics applications
v The constant CICS_LNX must be defined to the compiler using the -DCICS_LNX

option.
v The application must be linked with the standard Linux libpthread.so and

libc.so libraries, as well as the libctgstats.so library.
v 32-bit applications are supported.

For local COBOL applications
v It is important to use the correct calling convention when calling the ECI or EPI

from COBOL. When using MicroFocus COBOL the sample programs use the
SPECIAL-NAMES CALL CONVENTION 8 IS CICS statements to achieve the correct
calling convention.

v To build an application, object files must be linked with the libccllnx.so library
file. Only 32-bit applications are supported by the API.

v ECI or EPI callback functions are not supported in COBOL applications.

Chapter 12. Programming in C and COBOL 187

HP-UX
Compiling and linking ECI, EPI, and ESI applications in a HP-UX environment is
supported exclusively on Itanium.

For local C programs and statistics applications
v The constants CICS_HPUX and CICS_HPIT must be defined to the compiler

using the –DCICS_HPUX and -DCICS_HPIT options.
v The application must be linked with the system specific library files:

libpthread.so, libc.so and libcclhpux.so.
v 32-bit applications are supported.

For remote C applications (ECI V2 and ESI V2)
v The constants CICS_HPUX and CICS_HPIT must be defined to the compiler

using the –DCICS_HPUX and -DCICS_HPIT options.
v The application must be linked with the system specific library files:

libpthread.so, libc.so and libctgclient.so.
v 32-bit and 64-bit applications are supported.

For statistics applications
v The constants CICS_HPUX and CICS_HPIT must be defined to the compiler

using the –DCICS_HPUX and -DCICS_HPIT options.
v The application must be linked with the system specific library files:

libpthread.so, libc.so and libctgstats.so.
v 32-bit applications are supported.

For local COBOL programs
v Use the correct calling convention when calling the ECI or EPI from COBOL.

When using MicroFocus COBOL, the sample programs use the
“SPECIAL-NAMES CALL CONVENTION 8 IS CICS” statements to achieve the
correct calling convention.

v To build an application, ensure that object files are be linked with the system
specific library file: libcclhpux.so for Itanium. 32-bit applications only are
supported by the API.

v ECI and EPI callback functions are not supported in COBOL applications.

188 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 13. Programming in C++

This information contains information about the external access interfaces specific
to C++.

Overview of the programming interface for C++
C++ classes are provided for the ECI, EPI and ESI for building 32-bit applications
that can be run in local mode over TCP/IP or SNA connections.

Writing C++ Client applications
You must ensure that you have the required work environment.

Establishing the working environment
You are provided with C++ (OO) support on AIX, HP-UX on Itanium, Linux,
Solaris on SPARC and Windows operating systems. This includes the class library,
C++ header files, the BMS map utility, and sample code. Note that the BMS map
utility is not supported for Linux.

For full details of supported CICS servers, follow the Support link on the left hand
menu of the appropriate Web page:
v www.ibm.com/software/cics/ctg

If the version you require is not shown as a flash on the Web page you can either
click View all Flashes or search for the appropriate version using the following
example format:

Supported Software for CICS Transaction Gateway V5.1.

Multi-threading
The CICS Transaction Gateway C++ libraries are not completely threadsafe.

That is, they do not have critical sections, or semaphores, to prevent two threads
from updating the same instance of an object. However, the classes do not share
data, so they can be used in a well designed, multi-threaded, Client application.
The usual technique is for each thread to have its own instance of lightweight
objects, such as CclConn, CclFlow, CclBuf.

Making ECI calls from a C++ Client program
The ECI is one of two interfaces through which a Client application can interact
with a CICS server. The ECI object model consists of a set of classes which give
access to the features of the ECI and supports an object-oriented approach to CICS
Transaction Gateway programming with the ECI.

Linking to a CICS server program
A Client application requires one connection object, CclConn, for each CICS server
with which it will interact.

When a connection object is created, optional data can be specified which includes:

© Copyright IBM Corp. 1998, 2016 189

http://www.ibm.com/software/cics/ctg

v The name of the server to be connected. This must be one of the server names
defined in the configuration file ctg.ini. If this name is omitted, the default CICS
server will be used.

v A user ID. Some servers might require that a client application provides a user
ID and password before they permit specific interactions.

v A password.

In this example, a connection object is created with a server name, user ID and
password:
CclConn serv2("Server2","sysad","sysad");

Creating a connection object does not, in itself, cause any interaction with the
server. The information in the connection object is used when one of the following
server request calls is issued:
v link—to request the execution of a server program.
v status—to request the status (availability) of the server.
v changed—to request the notification of any change in this status.
v cancel—to request the cancellation of a changed request.

These are methods of the connection class. There are two other server request calls;
the backout and commit methods of the unit of work class. More information on
the use of all these methods can be found in following sections.

Passing data to a server program
A buffer object—CclBuf is used in the Client application to encapsulate the
communication area that is used for passing data to and from a server program.

The use of buffer objects is not limited to communication areas; they offer
considerable flexibility for general-purpose data marshaling.

The following code constructs a buffer object and dynamically extends it as text
strings are assigned, inserted and appended to its data area:
CclBuf comma1;
comma1 = "Some text";
comma1.insert(9,"inserted ",5) += " at the end";
cout << (char*)comma1.dataArea() << endl;

...

Output produced:
Some inserted text at the end

In the next example, an existing memory structure is used. This could, for example,
correspond to a record used in the server program. In this case, the buffer object
knows the record is fixed-length, externally-defined, and ensures it cannot be
extended in any subsequent processing. The link call requests execution of the
program QVALUE on the CICS server defined by the serv2 connection object and
passes data via the structure on which the buffer object comma2 is overlaid.
struct rec{

short key;
char name[8];
char retval[70];
};

rec record1 = { 1234,"Hilary" };
CclBuf comma2(sizeof(rec),&record1);
serv2.link(sflow,"QVALUE",&comma2);

...

190 CICS TG for Multiplatforms V9.2: Developing Applications

The communications area returned from a server is also contained in a buffer
object.

Using COMMAREAs
A COMMAREA is a block of storage allocated by the program. The Client
application uses the COMMAREA to send data to the server and the server uses
the same storage to return data to the client.

Therefore, you must create a COMMAREA that is large enough to contain all the
information to be sent to the server and large enough to contain all the information
that can be returned from the server.

For example, you need to send a 12 byte serial number to the server, but you
might receive 20 Kb back from the server. You must create a COMMAREA of size
20 Kb. Your code would look like this:
// serialNo is a Null terminated string
CclBuf Commarea; // create extensible buffer object
Commarea.assign(strlen(serialNo),serialNo); // Won’t include the Null
Commarea.setDataLength(20480); // stores Nulls in the unused area

In the example, the serial number is stored in the new Commarea which is then
increased in size to 20480. The extra bytes are filled with nulls. This is important as
it ensures that the information transmitted to the server is kept to a minimum. The
CICS Transaction Gateway software strips off the excess nulls and transmits 12
bytes to the server.

Controlling server interactions
A flow object CclFlow, controls each interaction between the Client application and
a server and determines the synchronization of reply processing; synchronous,
deferred synchronous or asynchronous.

This example creates a synchronous flow object:
CclFlow sflow(Ccl::sync);

A flow object is referenced when a server request call is first issued and remains
active from that time until all client processing of the corresponding reply from the
server has been completed. At that point it is set inactive and becomes available
for reuse or deletion. During its active lifespan, a flow object maintains the state of
the client/server interaction it is controlling.

The flow class should be subclassed to provide the implementation of a reply
handler which will be called when a reply is received; this happens regardless of
the synchronization type. The reply handler is passed a buffer object which
contains the communication area returned by the server. A default reply handler is
provided; it just returns to the caller without doing anything.

Separate flow subclasses could be needed to cater for different client/server
communication area protocols. Many flows can be active at the same time. Many
servers can be used simultaneously by the same CICS Transaction Gateway.

Managing logical units of work
A Client application uses a unit of work object, CclUOW, for each logical unit of
work that it needs to manage.

This code creates a unit of work object:
CclUOW uow;

Chapter 13. Programming in C++ 191

Any server link request which participates in a unit of work references the
corresponding unit of work object. When all the links participating in a unit of
work have successfully completed, the unit of work can be committed by the
commit method of the unit of work object or backed out by backout:
serv1.link(sflow, "ECITSQ", &(comma1="1st link in UOW"), &uow);
serv1.link(sflow, "ECITSQ", &(comma1="2nd link in UOW"), &uow);

...
uow.backout(sflow);

If no UOW object is used, each link call becomes a complete unit of work
(equivalent to LINK SYNCONRETURN in the CICS server).

Whenever using logical units of work, you must ensure that you backout or
commit active units of work, especially at program termination. You can check to
see if a logical unit of work is still active by checking the uowId method of the
CclUOW class for a non zero value.

Retrieving replies from synchronous requests
In the synchronous model, the client remains blocked at the server request call
until a reply is eventually received from the server.

The following example calls a server program using parameters supplied on the
command line. It does no subclassing to handle exceptions or to handle the reply
from the server.

The Client application gains access to the ECI object and constructs a connection
object using the supplied server name, password and user ID. Then a buffer object
is constructed using text from the command line and a synchronous flow object is
created.

The link call requests execution of the CICS ECIWTO sample program on the
server and passes text to it in the buffer. Processing is then blocked until a reply is
received from the server. ECIWTO just writes the communication area to the
operator console on the server and returns it, unchanged, to the client.

After the reply is received, the Client application reports the most recent exception
code and prints the returned communication area:
cout << "Link returned with \""

<< pECI-> exCodeText() << "\"" << endl;
cout << "Reply from CICS server: "

<< (char*)comma1.dataArea() << endl;

If you call the program like this:
ECICPO1 DEVTSERV sysad sysad "Hello World"

the following output is expected on successful completion:
Link returned with "no error"
Reply from CICS server: Hello World

...
CclECI* pECI = CclECI::instance();
CclConn server1(argv[1],argv[2],argv[3]);
CclBuf comma1(argv[4]);
CclFlow sflow(Ccl::sync);
server1.link(sflow,"ECIWTO",&comma1);

Figure 7. Synchronous request to call a server program

192 CICS TG for Multiplatforms V9.2: Developing Applications

If the flow object controlling the interaction is an instance of a subclass which has
implemented a reply handler, this is called and executed before processing
continues with the statement following the original server request call. For
example, the flow subclass defined in the asynchronous example which follows
could have been used.

Retrieving replies from asynchronous requests
In the asynchronous model, the Client application issues a server request call and
then continues immediately with the next statement without waiting for a reply.

As soon as the reply is received from the server it is immediately passed to the
reply handler of the flow object controlling the interaction; in parallel with
whatever else the client happens to be doing.

The following example calls a server program using parameters supplied on the
command line. It subclasses the ECI class to handle exceptions and subclasses the
flow class to handle the reply from the server.

Here is a simple subclass of the flow class with a reply handler implementation
which just prints the reply received:
class MyCclFlow : public CclFlow {
public:

MyCclFlow(Ccl::Sync sync) : CclFlow(sync) {}
void handleReply(CclBuf* pcomm){
cout << "Reply from CICS server: "

<< (char*)pcomm-> dataArea() << endl;
}

};

A subclassed ECI object is constructed; then a connection object using the supplied
server name, password and user ID. A buffer object is constructed using text from
the command line and an asynchronous subclassed flow object.

The link call requests execution of the ECIWTO sample program on the server and
passes text to it in the buffer object. Processing then continues with the statement
following the link call:

In the example, there is nothing else for the main Client application to do, so to
avoid premature termination, it is made to wait for user input:
cout << "Server call in progress. Enter q to quit..." << endl;
char input;
cin >> input;

Meanwhile, when the reply does come back from the server, the reply handler is
called and, assuming there are no exceptions, prints the returned communication
area. Note that in the asynchronous model, the buffer object to hold the returned
communication area is allocated internally within the flow object, and is deleted

...
MyCclECI myeci;
CclConn server1(argv[1],argv[2],argv[3]);
CclBuf comma1(argv[4]);
MyCclFlow asflow(Ccl::async);
server1.link(asflow,"ECIWTO",&comma1);

...

Figure 8. Asynchronous request to call a server program

Chapter 13. Programming in C++ 193

after the reply handler has run. The buffer object supplied on the original link call
is not used for the reply, and can be deleted as soon as the link call returns.

If you call the program like this:
ecicpo2 DEVTSERV sysad sysad "Hello World"

the following output is expected on successful completion:
Server call in progress. Enter q to quit...
Reply from CICS server: Hello World
q

If the Client application decides at some point that it really can do no more until a
reply is received from the server, it can use the wait method on the appropriate
flow object. This effectively makes the interaction synchronous, blocking the client:
asflow.wait();

Reply solicitation calls
There are some changes to the main Client application to indicate deferred
synchronous reply handling.

Deferred synchronous reply handling
In the deferred synchronous model, the Client application issues a server request
call and then continues immediately with the next statement without waiting for a
reply.

Unlike the asynchronous case, where a server reply is handled immediately it
arrives, the client decides when it wants to poll for a reply.

When a poll is issued, the flow object checks whether there is, in fact, a reply from
the original server request. If there is, the flow object's reply handler is called
synchronously and is passed the returned communication area in a buffer object.
Poll returns a value to its caller indicating whether the reply was received or not; if
not it can try again later.

The same simple subclass of the flow class described above is used. There are
some small changes to the main Client application to indicate deferred
synchronous reply handling:

...
MyCclECI myeci;
CclConn server1(argv[1],argv[2],argv[3]);
CclBuf comma1(argv[4]);
MyCclFlow dsflow(Ccl::dsync);
server1.link(dsflow,"ECIWTO",&comma1);

...

For demonstration purposes, the Client application is now made to loop with a
delay until poll indicates the reply has been received from the server. Note that in
the deferred synchronous model, a buffer object to hold the returned
communication area can be supplied as a parameter to the poll method. If, as in
the following example, no buffer object is supplied on the poll method, one is
allocated internally within the flow object, and is deleted after the reply handler
has run.

...
Ccl::Bool reply = Ccl::no;
while (reply == Ccl::no) {

cout << "DSync polling..." << endl;

194 CICS TG for Multiplatforms V9.2: Developing Applications

reply = dsflow.poll();
if (reply == Ccl::no) DosSleep(msecs);
}
...

Typical output on successful completion would look like this:
DSync polling...
DSync polling...
DSync polling...
Reply from CICS server: Hello World

As in the asynchronous model, the wait method can be used to make a deferred
synchronous flow synchronous, blocking the client.

ECI security
You can perform security management on servers that support Password Expiry
Management (PEM).

To use these features you first must have constructed a Connection object. The two
methods available are verifyPassword which checks the user ID and password
within the connection object with the Server Security System, and changePassword
which allows you to change the password at the server. If successful the
connection object password is updated accordingly.

If either call is successful, you are returned a pointer to an internal object which
provides information about the security, a CclSecAttr object. This object provides
access to information such as last verified Date and Time, Expiry Date and Time
and Last access Date and Time. If you query for example last verified Date, you
get back a pointer to an object which allows you to get the information in various
formats. The following is a sample of code to show the use of these various
objects:
// Connection object already created called conn
CclSecAttr *pAttrblock; // pointer to security attributes
CclSecTime *pDTinfo; // pointer to Date/Time information
try {

pAttrblock = conn->verifyPassword();
pDTinfo = pAttrblock->lastVerifiedTime();
cout << "last verified year :" <<pDTinfo->year() << endl;
cout << "last verified month :" <<pDTinfo->month() << endl;
cout << "last verified day :" <<pDTinfo->day() << endl;
cout << "last verified hours :" <<pDTinfo->hours() << endl;
cout << "last verified mins :" <<pDTinfo->minutes() << endl;
cout << "last verified secs :" <<pDTinfo->seconds() << endl;
cout << "last verified 100ths:" <<pDTinfo->hundredths() << endl;

// Use a tm structure to produce a single line text of information
tm mytime;
mytime = pDTinfo->get_tm();
cout << "full info:" << asctime(&mytime) << endl;

}
catch (CclException &ex)
{

// Could check for expired password error and handle if required
cout << "Exception occurred: " <<ex.diagnose()<< endl;

}

The security attributes and date/time memory are all handled by the connection
object. If you destroy the connection object, you destroy the security information
being held by that object.

Chapter 13. Programming in C++ 195

For more information about supported servers and protocols, see the information
about Supported software in the CICS Transaction Gateway: UNIX and Linux
Administration.

Finding potential servers
Information about the CICS servers that can be used by a Client application is
defined in the CICS Transaction Gateway configuration file (ctg.ini). The existence
of a server definition doesn't guarantee availability of a server.

The ECI object CclECI provides access to this server information through its
serverCount, serverDesc, and serverName methods. Unless the ECI class has been
subclassed, its unique instance is found using the class method instance as in the
following example:
CclECI* pECI = CclECI::instance();
printf("Server Count = %d\n", pECI-> serverCount());
printf("Server1 Name = %s\n", pECI-> serverName(1));

...

Typical output produced:
Server Count = 2
Server1 Name = DEVTSERV

Monitoring server availability
The connection object CclConn has three methods which can be used to determine
the availability of the server connection that it represents.

status requests the status (that is, the availability) of the server.

changed
requests notification of any change in this status.

cancel
requests cancellation of a changed request.

The following example shows how server availability can be monitored in a Client
application that is busy doing something else.

Here is a subclass of the flow class for use with server status calls. The reply
handler implementation prints the server name and its newly-changed status; it
ignores the returned communication area. Next, it issues a changed server request
so that the next server status change will be received. The reply handler will be
called every time the availability of the server changes.
class ChgFlow : public CclFlow {
public:

ChgFlow(Ccl::Sync stype) : CclFlow(stype) {}
void handleReply(CclBuf*) {

CclConn* ccon = connection();
cout << ccon-> serverName() << " is "

<< ccon-> serverStatusText() << endl;
ChgFlow* sflow = new ChgFlow(Ccl::async);
ccon-> changed(*sflow);
}

};

The main Client application iterates through all the servers listed in the CICS
Transaction Gateway Initialization file. For each one, an asynchronous status
request call is issued. The Client application continues with whatever else it has to
do.

196 CICS TG for Multiplatforms V9.2: Developing Applications

int numservs = myeci.serverCount();
CclConn* pcon;
ChgFlow* pflo;
for (int i = 1; i <= numservs ; i++) {

pcon = new CclConn(myeci.serverName(i));
pflo = new ChgFlow(Ccl::async);
pcon-> status(*pflo);
}
...

The output produced could look something like this:
PROD1 is unavailable
DEVTSERV is unavailable
PROD1 is available

Initially, both servers are unavailable because the ECI Client application is not
running. It starts, and after a while makes contact with one of the servers.

C++ ECI classes
A table that summarizes the classes provided for programming using the C++
interface.

Table 24. C++ ECI classes.

Object Classname Description

Global Ccl Contains global enumerations.

Buffer CclBuf Used for exchanging data with a server.

Connection CclConn Models the connection to a server.

ECI CclECI Controls and lists access to CICS servers.

Exception CclException Encapsulates exception information.

Flow CclFlow Handles a single client/server interaction.

SecAttr CclSecAttr Provides information about security attributes
(passwords).

SecTime CclSecTime Provides date and time information.

UOW CclUOW Corresponds with a Unit of Work in the server
and used for managing updates to recoverable
resources.

Making EPI calls from a C++ Client program
In procedural programming, the EPI provides a mechanism for clients to
communicate with transactions on a server and to handle 3270 data streams.

The classes provided to support the EPI make it simpler for a programmer using
OO techniques to access the facilities that EPI provides:
v Connection of 3270 sessions to CICS servers
v Starting CICS transactions
v Sending and receiving 3270 data streams

The classes also enhance the procedural CICS EPI support by providing higher
level constructs for handling 3270 data streams:
1. General purpose C++ classes for handling 3270 data stream, such as fields and

attributes, and CICS transaction routing data, such as transaction ID.

Chapter 13. Programming in C++ 197

2. Generation of C++ classes for specific CICS applications from BMS map source
files. These classes allow client applications to access data on 3270 panels, using
the same field names as used in the CICS server BMS application.

Note: These classes do not contain any specific support for 3270 data streams that
contain DBCS fields. Data streams with a mixture of DBCS and SBCS fields are not
supported.

The BMS utility is a tool for statically producing C++ class source code definitions
and implementations from a CICS BMS mapset.

Note: CICSBMSC is not provided with CICS Transaction Gateway for the Linux
operating system.

Adding a terminal to CICS
The EPI must be initialized, by creating a CclEPI object, before a terminal
connection can be made to CICS.

The CclEPI object, like the CclECI object, also provides access to information about
CICS servers which have been configured in the CICS Transaction Gateway
configuration file. The following C++ sample shows the use of the CclEPI object:

#include <cicsepi.hpp> // CICS Transaction Gateway EPI headers
...

CclEPI epi; // Initialize CICS Transaction Gateway EPI
// List all CICS servers in Gateway initialization file
for (int i=1; i<= EPI.serverCount(); i++)

cout << EPI.serverName(i) << " "
<< EPI.serverDesc(i) << endl;

To add a 3270 terminal to CICS, a CclTerminal object is created. The CICS server
name used must be configured in the CICS Transaction Gateway initialization file.
To start a transaction on the CICS server a CclSession object is required to control
the session. The required transaction (in this example the CICS-supplied sign-on
transaction CESN) can then be started using the send method on the CclTerminal
object:

try {
// Connect to CICS server
CclTerminal terminal("CICS1234");
// Start CESN transaction on CICS server
CclSession session(Ccl::sync);
terminal.send(&session, "CESN");
...

} catch (CclException &exception) {
cout << "CclClass exception: " << exception.diagnose() << endl;

}

Note the use of try and catch blocks to handle any exceptions thrown by the CICS
classes.

EPI call synchronization types
The EPI C++ classes support synchronous (“blocking”), and deferred synchronous
(“polling”) and asynchronous (“callback”) protocols.

In the previous example the CclSession object is created with the synchronization
type of Ccl::sync. When this CclSession object is passed as the first parameter on a
CclTerminal send method, a synchronous call is made to CICS. The C++ Client
application is then blocked until the reply was received from CICS. When the reply

198 CICS TG for Multiplatforms V9.2: Developing Applications

is received, updates are made to the CclScreen object according to the 3270 data
stream received, then control is returned to the C++ program.

To make asynchronous calls the CclSession object used on the CclTerminal send
method is created with a synchronization type of Ccl::async. The call is made to
CICS using the CclTerminal send method, but control returns immediately to the
Client application without waiting for a reply from CICS. The CclTerminal object
starts a separate thread which waits for the reply from CICS. When a reply is
received, the handleReply method on the CclSession object is invoked. To process
the reply, the handleReply method should be overridden in a CclSession subclass:

class MySession : public CclSession {
public:

MySession(Ccl::Sync protocol) : CclSession(protocol) {}
// Override reply handler method
void handleReply(State state, CclScreen* screen);

};

The implementation of the handleReply method can process the screen data
available in the CclScreen object, which will have been updated in line with the
3270 data stream sent from CICS:

void MySession::handleReply(State state, CclScreen* screen) {
// Check the state of the session
switch(state) {
case CclSession::client:
case CclSession::idle:

// Output data from the screen
for (int i=1; i < screen->fieldCount(); i++) {

cout << "Field " << i << ": " << screen->field->text();
screen->setAID(CclScreen::PF3);
...

} // end switch
}

The handleReply method is called for each transmission received from CICS.
Depending on the design of the CICS server program, a CclTerminal send call
might result in one or more replies. The state parameter on the handleReply
method indicates whether the server has finished sending replies:

CclSession::server
indicates that the CICS server program is still running and has further data
to send. The Client application can process the current screen contents
immediately, or simply wait for further replies.

CclSession::client
indicates that the CICS server program is now waiting for a response. The
Client application should process the screen contents and send a reply.

CclSession::idle
indicates that the CICS server program has completed. The Client
application should process the screen contents and either disconnect the
terminal, or start a further transaction.

Most Client application will want to wait until the CICS server program has
finished sending data (that is, the CclSession/CclTerminal state is client or idle)
before processing the screen. However, some long-running server programs might
send intermediate results or progress information that can usefully be accessed
while the state is still server.

The implementation of the handleReply method can read and process data from
the CclScreen object, update fields as required, and set the cursor position and

Chapter 13. Programming in C++ 199

AID key in preparation for the return transmission to CICS. The Client application
main program should start further methods (send or disconnect) on the
CclTerminal object to drive the server application:

try {
// Connect to CICS server
CclTerminal terminal("CICS1234");
// Create asynchronous session
MySession session(Ccl::async);
// Start CESN transaction on CICS server
terminal.send(&session, "CESN");
// Replies processed asynchronously in overridden
// handleReply method
...

} catch (CclException &exception) {
cout << "CclClass exception: " << exception.diagnose() << endl;

}

Note that the handleReply method is run on a separate thread. If the main Client
application program needs to know when the reply has been received, a message
or semaphore could be used to communicate between the handleReply method
and the main program.

To make deferred synchronous calls the CclSession object used on the CclTerminal
send method is created with a synchronization type of Ccl::dsync. As in the
asynchronous case, a call is made to CICS using the CclTerminal send method and
control returns immediately to the Client application without waiting for a reply
from CICS. 3270 screen updates from CICS must be retrieved later using the poll()
method on the Terminal object:

try {
// Connect to CICS server
CclTerminal terminal("CICS1234");
// Create deferred synchronous session
MySession session(Ccl::dsync);
// Start CESN transaction on CICS server
terminal.send(&session, "CESN");
...
if (terminal.poll())

// reply processed in handleReply method
else

// no reply received yet
} catch (CclException &exception) {

cout << "CclClass exception: " << exception.diagnose() << endl;
}

A CICS server transaction can send more than one reply in response to a
CclTerminal send call. More than one CclTerminal poll call might therefore be
needed to collect all the replies. Use the CclTerminal state method to find out
whether further replies are expected. If there are, the value returned will be server.

As in the synchronous and asynchronous cases, the handleReply method can
conveniently be used to encapsulate the code processing the 3270 data returned
from CICS from one or more transmissions.

Sending and receiving data
Sending and receiving data using CICS 3270 screens.

200 CICS TG for Multiplatforms V9.2: Developing Applications

Accessing fields on CICS 3270 screens
Once a terminal connection to CICS has been established, the CclTerminal,
CclSession, CclScreen and CclField objects are used to navigate through the screens
presented by the CICS server application, reading and updating screen data as
required.

The CclScreen object is created by the CclTerminal object and is obtained via the
screen method on the CclTerminal object. It provides methods for obtaining
general information about the 3270 screen (e.g. cursor position) and for accessing
individual fields (by row/column screen position or by index). The following
example prints out field contents, then ends the CESN transaction (started above)
by returning PF3:

// Get access to the CclScreen object
CclScreen* screen = terminal.screen();
for (int i=1; i ≤ screen->fieldCount(); i++) {

CclField* field = screen->field(i); // get field by index
if (field->textLength > 0)

cout << "Field " << i << ": " << field->text();
}
// Return PF3 to CICS
screen->setAID(CclScreen::PF3);
terminal.send(&session);
// Disconnect the terminal from CICS
terminal.disconnect();

The CclField class provides access to the text and attributes of an individual 3270
field. These can be used in a variety of ways to locate and manipulate information
on a 3270 screen:

for (int i=1; i ≤ screen->fieldCount(); i++) {
CclField* field = screen->field(i); // get field by index
// Find unprotected (i.e. input) fields
if (field->inputProt() == CclField::unprotect)

...
// Find fields containing a specific text string
if (strstr(field->text(), "CICS Sign-on"))

...
// Find red fields
if (field->foregroundColor() == CclField::red)

...
}

Note that the string “Sign-on” in the above sample might need to be changed to
meet local conventions. For example, an IBM AIX server might use the string
“SIGNON”.

Converting BMS maps and using the Map class
A large proportion of existing CICS applications use BMS maps for 3270 screen
output.

This means that the server application can use data structures corresponding to
named fields in the BMS map rather than handling 3270 data stream directly. The
EPI BMS conversion utility uses the information in the BMS map source to
generate classes specific to individual maps, that allow fields to be accessed by
their names, and allow field lengths and attributes to be known at compile time.

Chapter 13. Programming in C++ 201

The utility generates C++ class definitions and implementations that applications
can use to access the map data as named fields within a map object. A class is
defined for each map, allowing field names and lengths to be known at compile
time. The C++ classes use the CICS EPI base classes to handle the inbound and
outbound 3270 data streams. The generated classes inherit a base class CclMap
that provides general functions required by all map classes.

Run the CICSBMSC utility on the BMS source as follows:
CICSBMSC <filename>.BMS

See the note at “Making EPI calls from a C++ Client program” on page 197 for
BMS support on Linux.

The utility generates .HPP and .CPP files containing the definition and
implementation of the map classes.

Having used the EPI BMS utility to generate the map class, use the base EPI
classes to reach the required 3270 screens in the usual way. Then use the map
classes to access fields by their names in the BMS map. The map classes are
validated against the data in the current CclScreen object.

Mapset containing a single map
The mapset listed in this example contains a simple map, MAPINQ1.

The BMS Conversion Utility generates the C++ class definition (shown in Figure 11
on page 203) from this mapset. The class name “MAPINQ1Map” is derived from
the map name in the BMS source. The class inherits the CclMap class.

Figure 9. Use of BMS map classes

* cicssda MAPINQ1 -- Wed 2 Aug 14:14:02 1995

MAPINQ1 DFHMSD TYPE=&SYSPARM,MODE=INOUT,LANG=C,STORAGE=AUTO,TIOAPFX=YES
MAPINQ1 DFHMDI SIZE=(24,80),MAPATTS=(COLOR,HILIGHT,VALIDN),LINE=1, X

COLUMN=1,COLOR=NEUTRAL,HILIGHT=OFF
DTITLE DFHMDF POS=(2,2),LENGTH=5,ATTRB=(PROT,NORM),COLOR=TURQUOISE, X

CASE=MIXED,INITIAL=’Date:’
DATE DFHMDF POS=(2,9),LENGTH=8,ATTRB=(PROT,BRT),CASE=MIXED
...
PRODNAM DFHMDF POS=(5,24),LENGTH=40,ATTRB=(PROT,BRT),CASE=MIXED
...
APPLID DFHMDF POS=(15,15),LENGTH=8,ATTRB=(PROT,BRT),CASE=MIXED
...
MAPINQ1 DFHMSD TYPE=FINAL

Figure 10. Sample Map Class—BMS Source

202 CICS TG for Multiplatforms V9.2: Developing Applications

The class provides these main operations:
1. The constructor MAPINQ1Map invokes the parent constructor, that validates

the map object against the current screen.
2. The method field provides access to fields in the map, using the BMS source

field names (provided as an enumeration within the class).

Using EPI BMS Map Classes
The map classes generated using CICSBMSC can be compiled and built into a Client
application. Note that when building Windows applications using pre-compiled
headers, add #include stdafx.h to the .cpp file generated by CICSBMSC.

CclEPI, CclTerminal and CclSession objects are used in the usual way to start a
CICS transaction:

try {
// Initialize CICS Transaction Gateway EPI
CclEPI epi;
// Connect to CICS server
CclTerminal terminal("CICS1234");
// Start transaction on CICS server
CclSession session(Ccl::sync);
terminal.send(&session, "EPIC");

In this example the server program uses a BMS map for its first panel, for which a
map class “MAPINQ1Map” has been generated. When the map object is created,
the constructor validates the screen contents with the fields defined in the map. If
validation is successful, fields can then be accessed using their BMS field names
instead of by index or position from the CclScreen object:

//************* CICS Transaction Gateway Classes ******************
//
// FILE NAME: epiinq.hpp
//
// DESCRIPTION: C++ header for epiinq.bms
// Generated by CICS BMS Conversion Utility - Version 1.0
//
//***
#include <cicsepi.hpp> // CICS Transaction Gateway EPI classes
//---
// MAPINQ1Map class declaration
//---
class MAPINQ1Map : public CclMap {
public:

enum FieldName {
DTITLE,
DATE,
...
PRODNAM,
...
APPLID,
...

};
//-------------- Constructors/Destructors -------------------------------

MAPINQ1Map(CclScreen* screen);
~MAPINQ1Map();

//-------------- Actions --
CclField* field(FieldName name); // access field by name

...
}; // end class

Figure 11. Sample Map Class—Generated C++ Header

Chapter 13. Programming in C++ 203

MAPINQ1Map map(terminal.screen());
CclField* field;
// Output text from "PRODNAM" field
field = map.field(MAPINQ1Map::PRODNAM);
cout << "Product Name: " << field->text() << endl;
// Output text from "APPLID" field
field = map.field(MAPINQ1Map::APPLID);
cout << "Product Name: " << field->text() << endl;

} catch (CclException &exception) {
cout << exception.diagnose()<<endl;

}

BMS Map objects can also be used within the handleReply method for
asynchronous and deferred synchronous calls.

For validation to succeed, the entire BMS map must be available on the current
screen. A map class cannot therefore be used when some or all of the BMS map
has been overlayed by another map or by individual 3270 fields.

Support for Automatic Transaction Initiation (ATI)
Client applications can control whether ATI transactions are allowed by using the
setATI() and queryATI() methods on the CclTerminal class.

The default setting is for ATIs to be disabled. The following code fragment shows
how to enabled ATIs for a particular terminal:
// Create terminal connection to CICS server
CclTerminal terminal("myserver");
// Enable ATIs
terminal.setATI(CclTerminal::enabled);

The CclTerminal class performs one or more of the following
v Run any outstanding ATIs as soon as a transaction ends
v Call additional programming needed to handle the ATI replies
v Run ATIs before or between client-initiated transactions

depending on whether the call synchronization type is Synchronous, Asynchronous
or Deferred synchronous.

Synchronous
When you call the CclTerminal send() method, any outstanding ATIs will
be run after the client-initiated transaction has completed. The CclTerminal
class will wait for the ATI replies then update the CclScreen contents as
part of the synchronous send() call. If you expect an ATI to occur before or
between client-initiated transactions, you can call the CclTerminal
receiveATI() method to wait synchronously for the ATI.

Asynchronous
When the client application calls the CclTerminal send() method for an
async session, the CclTerminal class starts a separate thread to handle
replies. If ATIs are disabled, this thread finishes when the CICS transaction
is complete. If ATIs are enabled, the reply thread continues to run between
transactions. When the CclTerminal state becomes idle, any outstanding
ATIs are run and ATIs received subsequently are run immediately. The
reply thread is not started until the first CclTerminal::send() call, so if
you expect ATIs to occur before any client-initiated transactions, you can
call the receiveATI() method to start the reply thread.

Deferred synchronous
After the CclTerminal send() method is called for a dsync session, the

204 CICS TG for Multiplatforms V9.2: Developing Applications

poll() method is used to receive the replies. Outstanding ATIs are started
when the last reply has been received (that is, on the final poll() call). You
can also call the poll() method to start and receive replies for ATIs between
client-initiated transactions. As the poll() method can be called before or
between client-initiated transactions, the receiveATI() method is not needed
(and is invalid) for deferred synchronous sessions. For any of the
synchronization types you can provide a handleReply() method by
subclassing the CclSession class. As for client-initiated transactions, this
method will be called when the ATI 3270 data has been received and the
CclScreen object updated. The transID() method on the CclTerminal or
CclSession can be called to identify the ATI.

EPI Security
You can perform security management on servers that support Password Expiry
Management (PEM).

To use these features you first must have constructed a CclTerminal object which
is sign-on incapable, in other words it must have a user ID and password (even if
they are null). The two methods available are verifyPassword which checks the
user ID and password within the terminal object with the Server Security System,
and changePassword which allows you to change the password at the server. If
successful the connection object password is updated accordingly.

If either call is successful, you are returned a pointer to an internal object which
provides information about the security, a CclSecAttr object. This object provides
access to information such as last verified Date and Time, Expiry Date and Time
and Last access Date and Time. If you query for example last verified Date, you
get back a pointer to an object which allows you to get the information in various
formats. The following is sample code to show the use of these various objects.
// Terminal object already created called term
CclSecAttr *pAttrblock; // pointer to security attributes
CclSecTime *pDTinfo; // pointer to Date/Time information
try {

pAttrblock = term->verifyPassword();
pDTinfo = pAttrblock->lastVerifiedTime();
cout << "last verified year :" <<pDTinfo->year() << endl;
cout << "last verified month :" <<pDTinfo->month() << endl;
cout << "last verified day :" <<pDTinfo->day() << endl;
cout << "last verified hours :" <<pDTinfo->hours() << endl;
cout << "last verified mins :" <<pDTinfo->minutes() << endl;
cout << "last verified secs :" <<pDTinfo->seconds() << endl;
cout << "last verified 100ths:" <<pDTinfo->hundredths() << endl;

// Use a tm structure to produce a single line text of information

tm mytime;
mytime = pDTinfo->get_tm();
cout << "full info:" << asctime(&mytime) << endl;

}
catch (CclException &ex)
{

// Could check for expired password error and handle if required
cout << "Exception occurred: " <<ex.diagnose()<< endl;

}

The security attributes and date/time memory are all handled by the terminal
object. If you destroy the terminal object, you destroy the security information
being held by that object.

Chapter 13. Programming in C++ 205

For more information about supported servers and protocols, see the information
about Supported software in the CICS Transaction Gateway: UNIX and Linux
Administration .

C++ EPI classes
This table summarizes the C++ EPI classes by object.

For full details of the methods each class provides, refer to the information about
C++ in the CICS Transaction Gateway for z/OS: Programming Reference.

Table 25. C++ EPI classes.

Object Classname Description

Global Ccl Contains global enumerations.

EPI CclEPI Initializes the EPI. This class also has methods
that obtain information on CICS servers
accessible to the CICS Transaction Gateway.

Exception CclException Encapsulates error information.

Field CclField Supports a single field on a virtual screen and
provides access to field text and attributes.

Map CclMap
This class provides access to CclField objects,
using BMS map information. The CICSBMSC
utility generates classes derived from CclMap.

See the note at “Making EPI calls from a C++
Client program” on page 197 for BMS support
on Linux.

Screen CclScreen Each terminal (CclTerminal object) has a virtual
screen associated with it. The CclScreen class
contains a collection of CclField objects and
methods to access these objects. It also has
methods for general screen handling.

SecAttr CclSecAttr Provides information about security attributes
(passwords).

SecTime CclSecTime Provides date and time information.

Session CclSession Controls communication with the server in
synchronous, asynchronous and deferred
synchronous modes.

Applications can use CclSession to derive their
own classes to encapsulate specific CICS
transactions.

Terminal CclTerminal Controls a 3270 terminal connection to CICS.

The CclTerminal class handles CICS
conversational, pseudo-conversational, and ATI
transactions. One application can create many
CclTerminal objects.

Compiling and linking a C++ application
Your C++ program source needs #include statements to include either cicseci.hpp
for the ECI classes, or cicsepi.hpp, for the EPI classes. These files are in the
<install path>/include subdirectory.

206 CICS TG for Multiplatforms V9.2: Developing Applications

The CICS Transaction Gateway C++ interface supports 32-bit multi-threaded
applications.

On a Linux distribution the libstdc++ Linux package is required when compiling a
C++ application.

Refer to the sample programs for more information about compiling and linking
programs; see “Building C++ sample programs” on page 266.

Define the following macros when compiling C++ applications that use the CICS
C++ libraries.

Operating system Macro

IBM AIX CICS_AIX

HP-UX on Itanium CICS_HPUX and CICS_HPIT

Linux CICS_LNX

Solaris on SPARC CICS_SOL

Windows CICS_W32

On HP-UX Itanium hardware all C++ applications must be compiled with the -AP
flag in order to run successfully with the CICS Transaction Gateway, for example:
aCC -AP -DCICS_HPUX -DCICS_HPIT file.cpp

On UNIX and Linux operating systems a C++ application must link to the
libcclcp.so shared object file available in <install_path>/lib.

On Windows operating systems, the CICS Transaction Gateway API DLL is built
using the synchronous model of C++ exception handling which assumes that
external C functions do not throw exceptions. The Visual Studio exception
handling compiler option used with building the CICS Transaction Gateway API
DLL is /EHsc. When building a C++ application with Visual Studio 2012 link with
cclcpw32.lib, when building with Visual Studio 2013 link with cclcpw32vc12.lib,
the lib files are available in <install_path>/lib.

Problem determination for C++ Client programs
There is a default exception handler in the handleException method in the CclECI
and CclEPI classes. If you are using the async synchronization mode you must
override the ECI handleException routine by subclassing CclECI.

Handling Exceptions
Most class methods could generate an exception.

The default exception handler is found in the handleException method in the
CclECI and CclEPI classes. It is a simple routine which does a C++ throw of a
CclException object. It does not perform any action if an exception occurs within
the destruction of an object. You must not do a throw within a destructor as this
causes unpredictable results.

This routine is suitable for most needs when using synchronization modes of
dsync and sync. For example:

Chapter 13. Programming in C++ 207

#include <iostream.h>
#include <cicseci.hpp>

void main(void) {
CclECI *eci;
eci = CclECI::instance();
CclFlow flow(Ccl::sync);
CclBuf buf;
CclConn conn("CICSOS2","SYSAD","SYSAD");
buf.setDataLength(80);
try {
conn.link(flow,"EC01",&buf);
cout << (char *)buf.dataArea() << endl;

}
catch(CclException &exc) {
cout << "link failed" << endl;
cout << "diagnose:" << exc.diagnose() << endl;
cout << "abend code:" << exc.abendCode() << endl;

}
};

You might want to implement your own exception handler, by subclassing the
CclECI or CclEPI class, if you want to handle object destruction exceptions
explicitly.
void CclECI::handleException(CclException except) {

if (*(except.methodName()) != ’~’) {
throw(except);

} else {

// Handle a destructor exception, but ensure that this
// routine just returns

}
};

Async exception handling
You must override the ECI handleException routine by subclassing CclECI if you
are using the async synchronization mode. With async mode a separate thread
controlled by the class library dll is created and an exception can occur on that
thread.

If an exception does occur on that thread, the default exception handler would
throw the exception but there is no code in the class library to trap the throw. For
unhandled exceptions, the default action of most compilers' runtimes is to
terminate the application.

To create a new exception handler you do the following
class MyCclECI : public CclECI {
public:

void handleException(CclException ex) {
// Place whatever code you want here, for example set a
// semaphore, or generate a Window Message
}

};

Once you have subclassed the ECI Class, you still can only create one object of this
class for your application, however do not use the instance method, you must
create the object either explicitly, for example:
MyCclECI myeci;

or by using the new operator, for example:

208 CICS TG for Multiplatforms V9.2: Developing Applications

MyCclECI *pmyeci;
pmyeci = new MyCclECI;

Chapter 13. Programming in C++ 209

210 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 14. Programming using COM

This contains information about the external access interfaces specific to COM.

Overview of the programming interface for COM
COM classes are provided for the CICS ECI, EPI, and ESI functions on Windows
for use in local mode over TCP/IP or SNA connections.

Writing COM Client applications
The working environment, interfaces and type libraries.

Establishing the working environment
You are provided with Component Object Model (COM) Object Oriented (OO)
support for Client applications in the Windows environment.

This includes the COM runtimes, type libraries, the BMS map utility, and sample
code.

The COM libraries:

The COM libraries are automation compatible.

Servers:

The libraries are provided as in-process servers cclieci.dll and ccliepi.dll.

Registration:

The COM libraries are registered at installation time. This includes the COM
classes, associated ProgIDs and the type libraries.

Visual Basic uses the type libraries if you register them to each Visual Basic Project.
Do this to make full use of the features and performance enhancements of these
type libraries. See “Enabling the use of the COM libraries” on page 212 for details
about project enablement.

VBScript does not use type libraries.

All the COM libraries support automatic registration and unregistration.

Use the Microsoft supplied program REGSVR32 to register or unregister a server.

For example to register or re-register the ECI COM libraries issue the following
command:
REGSVR32 CCLIECI.DLL

to unregister, issue the following command:
REGSVR32 /U CCLIECI.DLL

© Copyright IBM Corp. 1998, 2016 211

Windows COM DLL Registration:

The installation and uninstallation processes use Windows REGSVR32 to register
and unregister two DLL files as Windows COM libraries.

During installation, the following Windows library files and will be registered as
COM libraries:
v cclieci.dll

v ccliepi.dll

Enabling the use of the COM libraries:

To set up Visual Basic to use the type libraries, go to the Visual Basic
Project/References... dialog and select either EPI or ECI depending on your
application needs.

If the type libraries are not listed then the COM libraries probably have not been
registered. Refer to the previous section for information on registering the COM
libraries.

COM Libraries: Objects and Apartments:

Things to consider when passing a COM object to another COM object.

The design of the Client COM Libraries requires the passing of a COM object to
another COM object. For this to work the relevant COM objects need to be created
in the same apartment. For example, in ECI, to make a link method call on the
Connect COM object a Flow, Buffer and UOW object need to be passed. These
must all be created in the same apartment in order to function properly.

Again with EPI it is important to ensure that the Terminal Session and Map COM
Objects are created in the same apartment. The Terminal is responsible for creating
the Screen object and it will create it in the same apartment as itself. This Screen
object is then responsible for creating field objects and also creates them in the
same apartment as itself. The programmer has control of the apartment where
COM objects are created.

In most cases in Visual Basic you do not need to worry about apartments as you
will be creating single threaded applications.

Object creation and interfaces
To talk to COM objects you must use interfaces. The ECI and EPI COM libraries
provide two interfaces per COM class.

The first interface is called IDispatch and is provided to support old Visual Basic
applications and VBScript. A second interface, a Custom interface, is also provided
for use by Visual Basic. This interface is faster than the IDispatch interface and it is
recommended that you use this interface with Visual Basic. Each COM class
provides an IDispatch interface and a Custom interface.

Visual Basic provides more than one way to create a COM object and select the
interface to talk to that object. To create an object there are the CreateObject
function and the New function. It is recommended that you use the New function
to create objects in Visual Basic.

212 CICS TG for Multiplatforms V9.2: Developing Applications

VBScript is simpler. It provides only one way to create an object, the CreateObject
function, and you must use the IDispatch interface.

The following are some examples of creating COM objects:
Set eci = CreateObject("Ccl.ECI")

Set eci = New CcloECI

Set connection = CreateObject("Ccl.Connect")

Set connection = New CcloConn

Note the two ways you can request the object class. When using CreateObject you
specify a string called the Programmatic ID or ProgID for short. When using the
New function you specify the Class name that is registered in the type library.

When using Visual Basic you have the choice of which interface you want to use.
If you DIM your variable as Object, then you select the IDispatch interface. If you
DIM your variable as the Class name then you will select the custom interface. To
create a terminal object in Visual Basic you would use the code:

or you can combine the above into a single statement if you want
Dim Terminal as New CclOTerminal

When using VBScript, VBScript will automatically select the IDispatch interface for
you. For example to create a terminal Object in VBScript you would use the code

It is recommended that you:
v choose one interface type or the other.
v do not mix the object interface types in your program. This type of environment

is not supported.
v select the custom interface because it should provide performance

improvements.

No matter which interface you select or how the object is created, you use the
objects identically in your program.

Type Libraries and Visual Basic Intellisense
Type libraries add many useful features to the COM libraries.

One of these is Visual Basic Intellisense. The type libraries provide Visual Basic
with information so that it can help you with code completion. It prompts you
with the format of the method and, where applicable, constants which might be
relevant to method parameters or return values you can test for. For example if
you create a terminal object for Visual Basic as shown in the example in “Object
creation and interfaces” on page 212, when you want to select a method on the
terminal object, press the '.' key and you are presented with a list of available
methods. Select the method and press space or open bracket and you are shown
the required parameters. You can also browse the type libraries for reference

Dim Terminal as CclOTerminal
Set Terminal = New CclOTerminal

Figure 12. Creating a terminal object in Visual Basic

Dim Terminal
Set Terminal = CreateObject("Ccl.Terminal")

Figure 13. Creating a terminal Object in VBScript

Chapter 14. Programming using COM 213

information on the ECI and EPI classes by using the Visual Basic Object Browser.
Select either CclECILib for ECI classes reference or CclEPILib for EPI classes
reference information. The type libraries are embedded within the in-process
library files cclieci.dll and ccliepi.dll.

Making ECI calls from a COM Client program
ECI support that CICS Transaction Gateway provides for COM Clients.

Linking to a CICS server program using Visual Basic
The first step is to declare object variables for the ECI interfaces to be used.

See the information about programming in COM in the CICS Transaction Gateway
for z/OS: Programming Reference for details of the available interfaces. Declarations
are usually made in the General Declarations section of a Visual Basic program:

Dim ECI As CclOECI
Dim Connect As CclOConn
Dim Flow As CclOFlow
Dim Buffer As CclOBuf
Dim UOW As CclOUOW

The required ECI objects are then instantiated using the Visual Basic New function.
This can be done in the Form_Load subroutine or at some later stage in response
to some user action. Note that a CclOECI object must be created first.

Sub ECILink_Click()
Set ECI = New CclOECI
Set Connect = New CclOConn
Set Flow = New CclOFlow
Set Buffer = New CclOBuf

Details of the CICS server to be used – server name (as configured in the Gateway
initialization file), user ID and password – are supplied via the Details method on
the Connect object. The Buffer object is initialized with some data to be sent to
CICS:

Connect.Details "CICSNAME", "sysad", "sysad"
Buffer.SetString "Hello"

Now we are ready to make the call to CICS. The Link method takes as parameters
the Flow object, the name of the CICS server program to be invoked, the Buffer
object and a UOW object. In this example a null variable is supplied for the UOW
parameter, so this call will not be part of a recoverable Unit Of Work. The contents
of the Buffer returned from CICS are output to a Visual Basic text box “Text1”:

Connect.Link Flow, "ECIWTO", Buffer, UOW
Text1.Text = Buffer.String

Finally the CICS COM objects are deleted:
Set Connect = Nothing
Set Flow = Nothing
Set Buffer = Nothing

End Sub

This example sends and receives a simple text string. In practice, the Buffer object
would contain more complex data (for example C data structure). For binary data
the Buffer.SetData and Buffer.Data methods are provided to allow the contents to
be accessed as a Byte array.

214 CICS TG for Multiplatforms V9.2: Developing Applications

A typical client application could access CICS through one or more Connect.Link
calls and construct a 'business object' for use in end-user Basic programs. One
approach to this would be to implement the 'business object' as a separate COM
automation server containing the logic to process the contents of the CclOBuffer
objects.

Handling COMMAREAs in Visual Basic
A COMMAREA is a block of storage that contains all the information you send to
and receive from the server.

The amount of data sent may differ from the amount of data received, so you must
create a COMMAREA that is big enough for the larger of the two.. For example,
you might need to send a 12 byte serial number to the server, but receive a
maximum of 20 Kb back from the server; this means you must create a
COMMAREA of size 20 Kb. To do this you could code:
Set Buf = new CclOBuf ’ create extensible buffer object
Buf.SetString(serialNo)
Buf.setLength(20480) ’ stores Nulls in the unused area

In the above example, the COMMAREA is given the serial number and the buffer
is increased to the required amount, but the extra area is filled with nulls. This is
important as it ensures that the information transmitted to the server is kept to a
minimum. The Client daemon strips off the excess nulls and only transmits the 12
bytes to the server.

Linking to a CICS server program using VBScript
This is similar to the previous section visual basic but the creating of the objects is
different.

It is not necessary to DIM any variables with VBScript but it would be good
programming practice to do so.

Dim ECI, Connect, Flow, Buffer, UOW

To create the objects you use the code:
Set ECI = CreateObject("Ccl.ECI")
Set Connect = CreateObject("Ccl.Connect")
Set Flow = CreateObject("Ccl.Flow")
Set Buffer = CreateObject("Ccl.Buffer")
Set UOW = Nothing

If you are not going to use a UOW, you must explicitly set it to 'Nothing' in
VBScript.

Managing an LUW
Managing link calls to a CICS server as a single unit of work.

ECI Link Calls within a Unit Of Work
Using the UOW COM class, a number of link calls can be made to a CICS server
within a single Unit of Work.

Updates to recoverable resources in the CICS server can then be committed or
backed out by the client program as necessary.

In this example a UOW object is created, and is used as a parameter to the
Connect.Link calls:

Chapter 14. Programming using COM 215

Sub ECIStartUOW_Click()
’Instantiate CICS ECI objects
Set Connect = New CclOConn
Set Flow = New CclOFlow
Set UOW = New CclOUOW
Set Buffer = New CclOBuf
Connect.Details "CICSNAME", "sysad", "sysad"

End Sub

Sub ECILink_Click()
’Set up the commarea buffer
Buffer.SetString Text1.Text
Buffer.SetLength 80
’Make the link call as part of a Unit of Work
Connect.link Flow, "ECITSQ", Buffer, UOW

End Sub

After a number of link calls have been made, the Commit or Backout methods on
the Ccl UOW interface can be used:

Sub Commit_Click()
’Commit the CICS updates
UOW.Commit Flow

End Sub
Sub Backout_Click()

’Backout the CICS updates
UOW.Backout Flow

End Sub

If no UOW object is used (a NULL value is supplied on the Connect.Link call),
each link call becomes a complete unit of work (equivalent to LINK
SYNCONRETURN in the CICS server).

When you use Logical units of work, you must ensure that you backout or commit
active units of work, this is particularly important at program termination. You can
check if a logical unit of work is still active by checking the uowId method for a
non-zero value.

In Visual Basic, if you Dim a UOW variable but never create the object, it is
assumed to a be of value Nothing and the Link call will therefore not associate a
unit of work with the call. In VBScript, however, it is necessary to ensure explicitly
that the variable is set to nothing. To do this code
Set UOW=Nothing

before making your link call.

Retrieving replies from asynchronous requests
The Client daemon ECI COM classes support synchronous (“blocking”) and
deferred synchronous (“polling”) protocols. These classes do not support the
asynchronous calls that are available in the C++ classes.

Reply solicitation calls
Deferred synchronous calls use the SetSyncType method on the Flow object.

Deferred synchronous reply handling:

When making a deferred synchronous call, control returns immediately to the
Visual Basic program and the reply must be retrieved later.

216 CICS TG for Multiplatforms V9.2: Developing Applications

In the examples in section “Linking to a CICS server program using Visual Basic”
on page 214 a Flow object was used with the default synchronization type of
cclSync. When this Flow object was used as the first parameter on Connect.Link, a
synchronous link call was made to CICS. The Visual Basic program was then
blocked until the reply was received from CICS. When the link call returned the
reply from CICS was immediately available in the Buffer object.

To make a deferred synchronous call you use the SetSyncType method on the Flow
object to set the Flow to cclDSync. When this Flow object is used on a
Connect.Link call, the ECI call is made to CICS, but control returns immediately to
the Visual Basic program, and the reply from CICS must be retrieved later using
the Poll method on the Flow object:

Sub ECIDsync_Click()
Set Connect = New CclOConn
Set Flow = New CclOFlow
Set Buffer = New CclOBuf
Connect.Details "CICSNAME", "sysad", "sysad"
Flow.SetSyncType cclDSync
Buffer.SetString "Hello"
Connect.Link Flow, "ECIWTO", Buffer, UOW

End Sub

The call to CICS is now in progress. At a later stage (in response to a user action,
or perhaps when the Visual Basic program has completed some other task) the Poll
method is used on the Flow object to collect the reply from CICS. Note that the
Poll method requires a Buffer object as parameter if reply data is expected from
CICS.

Sub ECIReply_Click()
If Flow.Poll(Buffer) Then

Text1.Text = Buffer.String
Else

Text1.Text = "No reply from CICS yet"
End If

End Sub

ECI security
You can perform security management on servers that support Password Expiry
Management.

Refer to the information about Password expiry management in the CICS
Transaction Gateway: UNIX and Linux Administration or the CICS Transaction Gateway:
Windows Administration for more information on supported servers and protocols.

To use these features you must first create a connection object and start the
Details method to associate a user ID and password with the object. The two
methods available are Verify Password that checks the user ID and password
within the connection object with the Server Security System, and ChangePassword
that allows you to change the password at the server. If successful the connection
object password is updated accordingly.

If either call is successful, a CclOSecAttr object is returned. This object provides
access to information such as last verified time, expiry time and last access time. If,
for example, you queried the last verified time, a CclOSecTime object is returned
and you can use the SecTime COM class methods to obtain the information in
various formats. The following code shows the use of these various objects.
’ Connection object already created called conn

on error goto pemhandler

Chapter 14. Programming using COM 217

Dim SecAttr as CclOSecAttr
Dim LastVerified as CclOSecTime
Dim lvdate as Date

Set SecAttr = conn.VerifySecurity
Set LastVerified = SecAttr.LastVerifiedTime

lvdate = LastVerified.GetDate
strout = Format(lvdate, "hh:mm:ss, dddd, mmm d yyyy")
Text1.Text = strout

exit sub

pemhandler:

’ handle a expired password here maybe
end sub

ECI CICS Server Information and Connection Status
The ECI COM class provides the names and descriptions of CICS servers
configured in the Gateway initialization file.

The Connect COM class provides methods for querying the availability of a
particular CICS server.

Object variables are declared as before, this time we use ECI, Connect and Flow
COM classes:

’Declare object variables
Dim ECI As CclOECI
Dim Connect As CclOConn
Dim Flow As CclOFlow

On user request, the objects are created, and a list of CICS server names and their
descriptions is constructed:

Sub ECIServers_Click()
Dim I as Integer

’Instantiate CICS ECI objects
Set ECI = New CclOECI
Set Connect = New CclOConn
Set Flow = New CclOFlow

’List CICS server information
For I = 1 To ECI.ServerCount

List1.AddItem ECI.ServerName(I)
List1.AddItem ECI.ServerDesc(I)

Next
End Sub

A synchronous status call to the first server is made, and the results of the call
displayed in a text field:

Connect.Details ECI.ServerName(1)
Connect.Status Flow
Text1.Text = Connect.ServerStatusText

ECI COM classes
The ECI COM classes that the CICS COM servers provide.

218 CICS TG for Multiplatforms V9.2: Developing Applications

More information about the methods these COM classes provide can be found in
CICS Transaction Gateway for Multiplatforms: Programming Reference.

Table 26. ECI COM classes

COM class Description

Buffer Buffer used for passing data to and from a CICS server

Connect Controls a connection to a CICS server

ECI Provides access to a list of CICS servers configured in the Client
daemon

Flow Controls a single interaction with CICS server program

SecAttr Provides information about security attributes (passwords)

SecTime Provides date and time information

UOW Coordinates a recoverable set of calls to a CICS server

Making EPI calls from a COM Client Program
EPI support that CICS Transaction Gateway provides for COM Clients.

Adding a terminal to CICS
How to add a terminal to CICS using Visual Basic or VBScript.

Adding a terminal to CICS using Visual Basic
The first step is to declare object variables for the EPI interfaces to be used, usually
in the General Declarations section of a Visual Basic program.

Note: These classes do not contain any specific support for 3270 data streams that
contain DBCS fields. Data streams with a mixture of DBCS and SBCS fields are not
supported.

Dim EPI As CclOEPI
Dim Terminal As CclOTerminal
Dim Session As CclOSession
Dim Screen As CclOScreen
Dim Field As CclOField

The required EPI objects are then instantiated using the Visual Basic New function.
This can be done in the Form_Load subroutine or at a later stage in response to a
user action.

The CclOEPI object must be created first to initialize the Client daemon EPI. A
CclOTerminal object can then be created, and a connection established to a specific
CICS server using the Terminal.Connect method. The first parameter to this
method is the CICS server name (as configured in the Gateway initialization file),
the other parameters specify additional connection details. See the information
about programming in COM in the CICS Transaction Gateway for z/OS: Programming
Reference for additional information.

Sub EPIConnect_Click()
’Create Ccl.EPI first to initialize EPI
Set EPI = New CclOEPI
’Create a terminal object and connect to CICS
Set Terminal = New CclOTerminal
Terminal.Connect "CICSNAME","",""
’Create a session object (defaults to synchronous)
Set Session = New CclOSession

End Sub

Chapter 14. Programming using COM 219

Adding a terminal to CICS using VBScript
VBScript is again very similar to Visual Basic but differs in how you create the
objects.

You do not have to Dim your variables but it is good coding practice to do so. As
with Visual basic COM objects do not support DBCS fields in the 3270 data
streams. To create objects you must use the CreateObject function, for example:
Sub EPIConnect_Click()

’ Create Ccl.EPI first to initialise EPI
Set EPI = CreateObject("Ccl.EPI")
’ Create a terminal object and connect to CICS
Set Terminal = CreateObject("Ccl.Terminal")
Terminal.Connect "CICSNAME","",""
’ Create a session object (defaults to synchronous)
Set Session = CreateObject("Ccl.Session")

End Sub

In a similar manner, to create a Map object you issue
Set Map = CreateObject("Ccl.MAP")

Screen objects and Fields Objects are created for you.

Sending and receiving data
When you have connected a CclOTerminal object to the required CICS server you
can use the Terminal, Session, Screen and Field COM classes to start a transaction
on CICS and navigate through 3270 panels, accessing 3270 fields as required by the
application.

The required CICS transaction is started using its four character transaction code.
Initial transaction data can also be supplied on the Terminal.Start method, in this
example no data is required. To access the 3270 data returned by CICS, a screen
object is obtained from the terminal object, and a variety of methods can be used
to obtain fields from the screen and read and update text and attributes in the
fields:

Sub EPIStart_Click()
’Start CESN transaction
Terminal.Start Session, "CESN", ""
’Get the screen object
Set Screen = Terminal.Screen
’Output the text from some 3270 fields
Set Field = Screen.FieldByIndex(5)
List1.AddItem Field.Text
Set Field = Screen.FieldByIndex(6)
List1.AddItem Field.Text

The CESN transaction is waiting for input from the user, the program could enter
text into some fields and continue the transaction, in this example we simply end
the transaction by sending PF3 to CICS.

’Send PF3 back to CICS to end CESN
Screen.SetAID cclPF3
Terminal.Send Session
’Output the text from a 3270 field
Set Field = Screen.FieldByIndex(1)
List1.AddItem Field.Text

End Sub

Finally, disconnect the terminal, and then terminate the EPI. After you have
disconnected the terminal it is recommended that you set Session, Terminal and

220 CICS TG for Multiplatforms V9.2: Developing Applications

EPI to Nothing. Disconnect the terminal before setting these objects; you cannot
disconnect a terminal that you have set to Nothing.

Sub EPIDone_Click()
Terminal.Disconnect
’Delete the EPI COM objects
Set Field = Nothing
Set Screen = Nothing
Set Session = Nothing
Set Terminal = Nothing
Set EPI = Nothing

End Sub

EPI call synchronization types
The EPI COM classes support synchronous (“blocking”) and deferred synchronous
(“polling”) protocols. The Visual Basic environment does not support the
asynchronous calls that are available in the C++ classes.

In the previous example a Session object was used with the default
synchronization type of cclSync. When this Session object was used as the first
parameter on Terminal.Start or Terminal.Send, a synchronous link call was made
to CICS. The Visual Basic program was then blocked until the reply was received
from CICS. When the call returned updated screen data from CICS was
immediately available in the Screen object.

To make a deferred synchronous call you use the Session.SetSyncType method to
set the Session to cclDSync. When this Session object is used on a Terminal.Start or
Terminal.Send call, the screen contents are transmitted to CICS as 3270 data
stream, but the method returns immediately. This allows the Visual Basic program
to continue other tasks, including user interactions, while the CICS server
transaction is running. Further 3270 screen updates from CICS must be retrieved
later using the Poll method on the Terminal object:

Sub EPIDSync_Click()
’Create a session object (deferred synchronous)
Set Session = New CclOSession
Session.SetSyncType cclDSync
Terminal.Start Session, "CESN", ""

End Sub

The transaction is now in progress in the CICS server. At a later stage (in response
to a user action, or when the Visual Basic program has completed some other task)
the Terminal.PollForReply method is used to collect the reply from CICS:
Sub EPIReply_Click()

If terminal.State <> cclDiscon And terminal.State <> cclError Then
If terminal.PollForReply Then

’Screen has been updated, output some fields
Set Screen = Terminal.Screen
Set Field = Screen.FieldByIndex(1)
List1.AddItem Field.Text

Else
List1.AddItem "No Reply from CICS yet"

End If
End If

End Sub

A CICS server transaction might send more than one reply in response to a
Terminal.Start or Terminal.Send call. More than one Terminal.PollForReply call
can therefore be needed to collect all the replies. Use the Terminal.State method to
find out whether further replies are expected. If there are, the value returned will
be cclServer.

Chapter 14. Programming using COM 221

Converting BMS maps and using the Map class
Many CICS server programs use Basic Mapping Support (BMS) to implement their
3270 screen designs.

The server programs can then use symbolic names for the individual screen maps
and for the 3270 fields on those maps. If the BMS source files are available, they
can be copied to the Client daemon development environment and used in the
implementation of a Visual Basic EPI program.

The CICS BMS Conversion Utility (CICSBMSC.EXE) that is provided produces a
Visual Basic definitions file (a .BAS file) from the source BMS file (.BMS file). This
definitions file can then be included in a Visual Basic program, and the same
symbolic names used to identify maps and their fields in the server program can
be used in the client program with the EPI Map COM class.

The /B option should be specified when running the conversion utility to produce
Visual Basic definitions:

CICSBMSC /B <filename>.BMS

The following example shows how to use the Map COM class to access fields by
their BMS symbolic names:

Dim EPI As CclOEPI
Dim Terminal As CclOTerminal
Dim Session As CclOSession
Dim Screen As CclOScreen
Dim Map as CclOMap
Dim Field As CclOField

First the EPI is initialized and a 3270 terminal connection to CICS is started as in
the earlier example:

Sub EPIConnect_Click()
’Create Ccl.EPI first to initialize EPI
Set EPI = New CclOEPI
’Create a terminal object and connect to CICS
Set Terminal = New CclOTerminal
Terminal.Connect "CICSNAME","",""
’Create a session object (defaults to synchronous)
Set Session = New CclOSession

End Sub

Then the BMS application is started. This example uses a transaction code “EPIC”
which runs the CICS supplied server program EPIINQ:

Sub EPIRunBMS_Click()
Terminal.Start Session, "EPIC", ""
Set Screen = Terminal.Screen

At this point the CICS server program has returned the first screen to the client.
This is expected to be a known map “MAPINQ1” so we create a Map object, and
use the Map.Validate method to initialize it and to verify that we received the
expected 3270 screen. Fields can then be accessed using the Map.FieldByName
method:

Set Map = New CclOMap
If (Map.Validate(Screen,MAPINQ1)) Then

Set Field = Map.FieldByName(MAPINQ1_PRODNAM)
List1.AddItem Field.Text
Set Field = Map.FieldByName(MAPINQ1_TIME)

222 CICS TG for Multiplatforms V9.2: Developing Applications

List1.AddItem Field.Text
Else

List1.Text= "Unexpected screen data"
End If

A more complex application would then enter data into selected fields, set the
required AID key (Enter, Clear, PF or PA key) and navigate through further screens
as required. The client application can mix the use of the Screen COM class (and
its FieldByIndex and FieldByPosition methods) with the use of the Map COM
class.

Support for Automatic Transaction Initiation (ATI)
Client applications can control whether ATI transactions are allowed by using the
setATI methods on the Terminal COM class. The default setting is for ATIs to be
disabled.

The following code fragment shows how to enable ATIs for a particular terminal:
// Create terminal connection to CICS server
Dim terminal as CclOTerminal
Set terminal = new CclOTerminal
terminal.details "MYSERVER","",""
terminal.setATI CclATIEnabled

The Ccl Terminal class runs any outstanding ATIs as soon as a transaction ends,
and calls additional programming needed to handle the ATI replies, and to run
ATIs before or between client-initiated transactions, depending on the call
synchronization type used:

Synchronous
When you call the Terminal send method, any outstanding ATIs are run
after the client-initiated transaction has completed. The Terminal class
waits for the ATI replies then updates the CclOScreen object contents as
part of the synchronous send call. If you expect an ATI to occur before or
between client-initiated transactions, call the Ccl Terminal receiveATI
method to wait synchronously for the ATI.

Deferred synchronous

After the CclTerminal Start or Send method is called for a deferred
synchronous session, the Poll or PollForReply method is used to receive
the replies. Outstanding ATIs are started when the last reply is received
(that is on the final Poll or PollForReply method). You can also call the
Poll or PollForReply method to start and receive replies for ATIs between
client-initiated transactions.

As the Poll or PollForReply methods can be called before or between
client-initiated transactions, the receiveATI method is not needed (and is
invalid) for deferred synchronous sessions.

EPI Security
You can perform security management on servers that support Password Expiry
Management.

Refer to the information about Password expiry management in the CICS
Transaction Gateway: UNIX and Linux Administration or the CICS Transaction Gateway:
Windows Administration for more information on supported servers and protocols.

Chapter 14. Programming using COM 223

To use these features you first must have created a Terminal object and invoked
the SetTerminalDefinition method to associate a user ID and password with the
object. The two methods available are VerifyPassword which checks the user ID
and password within the terminal object with the Server Security System, and
ChangePassword which allows you to change the password at the server. If
successful, the terminal object password is updated accordingly.

If either call is successful, you are returned a CclOSecAttr object. This object
provides access to information such as last verified Date and Time, Expiry Date
and Time and Last access Date and Time. If you query for example last verified
Date, you are returned a CclOSecTime object which allows you to get the
information in various formats. The following shows the use of these various
objects.
’ Terminal object already created called term

on error goto pemhandler

dim SecAttr as CclOSecAttr
dim LastVerified as CclOSecTime
dim lvdate as Date

set SecAttr = term.VerifyPassword
set LastVerified = SecAttr.LastVerifiedTime

lvdate = LastVerified.GetDate
strout = Format(lvdate, "hh:mm:ss, dddd, mmm d yyyy")
Text1.Text = strout

exit sub

pemhandler:
’ handle a expired password here maybe

end sub

EPI CICS Server Information
The EPI COM class provides the names and descriptions of CICS servers
configured in the Gateway initialization file.

An EPI object is created as in the previous examples, and a list of CICS server
names and their descriptions is output to a listbox “List1”:

Sub EPIServers_Click()
Dim I
’Instantiate CICS EPI object
Set EPI = New CclOEPI
’List CICS server information
For I = 1 To EPI.ServerCount

List1.AddItem EPI.ServerName(I)
List1.AddItem EPI.ServerDesc(I)

Next

EPI COM classes
The EPI COM classes that the CICS COM servers provide.

Details of the methods these classes provide are in the information about COM in
the ../progref/topics/progref_landing.ditaCICS Transaction Gateway for IBM z/OS:
Programming Reference.

224 CICS TG for Multiplatforms V9.2: Developing Applications

Table 27. EPI COM classes

COM class Description

EPI Initializes and terminates the CICS EPI and provides access to a list
of CICS servers configured in the Client daemon

Field Provides access to a single 3270 field on a screen.

Map Provides access to 3270 fields defined by a CICS server BMS map

Screen Provides access to a 3270 terminal screen

Session Controls a sequence of 3270 terminal interactions with a CICS
server

Terminal Controls a 3270 terminal connection

Problem determination for COM Client programs
How to check for problems with the ECI and EPI classes when starting methods.

Handling exceptions
How to check for problems with the ECI and EPI classes when starting methods,
using Visual Basic and VBScript.

One way of handling exceptions is to use the ErrorWindow method and set it to
false, then check the ExCode and ExCodeText methods after a call to see what the
return codes are. The ErrorWindow method is not the recommended way and
exists only to support compatibility with earlier versions for old applications.

The recommended way os handling exceptions is to use the Err objects which
Visual Basic and VBScript provide. An Err object contains the information about an
error. Visual Basic supports On Error Goto and On Error Resume features to detect
that an error has occurred. VBScript only supports the On Error Resume Next
feature. If you use On Error Resume Next either in Visual Basic or VBScript, you
must always enter this line before any COM object call that you expect could
return an error. Visual Basic/VBScript might not reset the Err variable unless you
do this.

The type of interface you have selected (you DIM'ed a variable as either Object or
classname) will affect the value contained in the Err.number property. It is possible
to write a generic routine that handles all values in Err.Number and converts them
to the documented ExCode error codes available. The example code following
shows how to achieve this.

To get full advantage of this technique, ensure that you get full information in the
Err object. Issue the following call after creating the ECI object:
ECI.SetErrorFormat 1

or, for EPI:
EPI.SetErrorFormat 1

The following sample shows how to handle errors in Visual Basic.

Chapter 14. Programming using COM 225

The following sample shows error handling code for VBScript.

Private Sub Command1_Click()
’
’ The following code assumes you have created the
’ required objects first, ECI, Connect, Flow, UOW,
’ Buffer
’
On Error GoTo ErrorHandler
conn.Link flow, "EC01", buf, uow
Exit Sub
ErrorHandler:
’
’ Ok, the Connect call failed
’ Parse the Error Number, this will work regardless of
’ how the ECI objects were Dimmed
’
Dim RealError As CclECIExceptionCodes
RealError = (Err.Number And 65535) - eci.ErrorOffset

If RealError = cclTransaction Then
’
’ Transaction abend, so query the Abend code
’

AbendCode = flow.AbendCode
If AbendCode = "AEY7" Then

MsgBox "Invalid Userid/Password to execute CICS Program", , "CICS ECI Error"
Else

MsgBox "Unable to execute EC01, transaction abend:" + AbendCode, , "CICS ECI Error"
End If

Else
MsgBox Err.Description, , "CICS ECI Error"

End If
End Sub

Figure 14. Visual Basic exception handling sample

On Error Resume Next
con.Link flow, "EC01", buf, uow
if Err.Number <> 0 then
’
’ Ok, the Connect call failed
’ Parse the Error Number, this will work regardless of
’ how the ECI objects were Dimmed
’

RealError = Err.Number And 65535 - eci.ErrorOffset
’
’ 13 = CclTransaction, a transaction abend.
’

If RealError = 13 Then
’
’ Transaction abend, so query the Abend code
’

AbendCode = flow.AbendCode
If AbendCode = "AEY7" Then

Wscript.Echo "Invalid Userid/Password to execute CICS Program"
Else

Wscript.Echo "Unable to execute EC01, transaction abend:", AbendCode
End If

Else
Wscript.Echo Err.Description

End If
End If

Figure 15. VBScript exception handling sample

226 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 15. Developing Microsoft .NET Framework-based
applications

The .NET Framework offers a number of advantages when developing remote
client applications.
v A consistent model, provided by the .NET class library, for all supported

programming languages.
v High levels of security for applications used in remote mode topologies;

method-level security using industry standard security technologies can be
explicitly defined.

v Separation of application logic from presentation logic for easier maintenance
and upgrade.

v Simplified debugging plus the availability of runtime diagnostics.
v Simpler application deployment.

Overview of the programming interface
The Microsoft .NET Framework classes are supported on all Windows platforms
and can be used to build 32-bit and 64-bit remote mode applications. The .NET
Framework classes are not supported in local mode.

The GatewayConnection class represents a connection to CICS Transaction
Gateway and the SslGatewayConnection class represents a connection that uses
Secure Sockets Layer (SSL). The connection is opened in the constructor and
remains open until the Close() method is invoked. The class provides two methods
for interacting with CICS Transaction Gateway: Flow(request) which flows a
request to CICS Transaction Gateway, and ListSystems() which returns a list of all
CICS servers that have been defined in CICS Transaction Gateway. Transaction
tracking can be enabled on the GatewayConnection class by setting the Applid and
ApplidQualifier properties.

The EciRequest class represents an ECI call to CICS, and allows data to be flowed
in either COMMAREAs or channels. The Channel and Container classes are used
to construct and manage channel and container data. If you specify both a channel
and a COMMAREA on an ECI call, the channel is flowed and the COMMAREA is
ignored.

The EsiVerifyRequest and EsiChangeRequest classes provide methods for
verifying security credentials and changing passwords and password phrases.

The Trace class provides methods for controlling tracing within the API.

Making ECI calls from Microsoft .NET Framework-based programs
Table showing how the .NET properties map to the component parts of an ECI
request.

Use the IBM.CTG.EciRequest class to pass details of an ECI request to CICS
Transaction Gateway. The following table shows the .NET class properties that

© Copyright IBM Corp. 1998, 2016 227

correspond to the ECI terms described in “I/O parameters on ECI calls” on page 9.
For more information see, the GatewayConnection information in the .NET section
of the Programming Reference.

ECI term .NET class property

Abend code EciRequest.AbendCode.

Channel EciRequest.Channel. See “Introduction to channels and
containers” on page 13.

COMMAREA EciRequest.SetCommareaData.

EciRequest.GetCommareaData.

EciRequest.CommareaLength.

ECI return code EciRequest.EciReturnCode.

ECI timeout EciRequest.Timeout. See “Timeout of the ECI request” on page
14.

LUW control EciRequest.ExtendMode. See “Program link calls” on page 10.

LUW identifier EciRequest.LuwToken. See “Managing logical units of work” on
page 11.

Password or password
phrase

EciRequest.Password. See “Security in the ECI” on page 15.

Program name EciRequest.Program.

Server name EciRequest.ServerName.

TPNName EciRequest.MirrorTransId. See “ECI and CICS transaction IDs”
on page 13.

TranName EciRequest.TransId. See “ECI and CICS transaction IDs” on
page 13.

Userid EciRequest.UserId. See “Security in the ECI” on page 15.

Making ESI calls from Microsoft .NET Framework-based programs
Table showing how the .NET properties map to the component parts of an ESI
request.

Use the IBM.CTG.EsiVerifyRequest and IBM.CTG.EsiChangeRequest classes to pass
details of an ESI request to CICS Transaction Gateway. The following table shows
the .NET class properties that correspond to the ESI terms described in I/O
parameters on ESI calls(link). For more information see, and in the CICS Transaction
Gateway Programming Reference:

ESI term .NET class property

Current password or
password phrase

EsiVerifyRequest.Password

New password or
password phrase

EsiChangeRequest.NewPassword

Server name EsiVerifyRequest.ServerName

User ID EsiVerifyRequest.UserId

228 CICS TG for Multiplatforms V9.2: Developing Applications

Using channels and containers in Microsoft .NET Framework-based
programs

You can use channels and containers for connections to CICS over the IPIC
protocol. You must construct a channel before it can be used in an ECI request.

To construct a channel to hold containers add the following code to your
application program:
C#:

Channel myChannel = new Channel("CHANNELNAME");

VB.NET:

Dim myChannel As New Channel("CHANNELNAME")

You can add containers with a data type of BIT or CHAR to your channel. Here is
a sample BIT container:
C#:

byte [] custNumber = new byte []{1, 2, 3, 4, 5};
myChannel.CreateContainer("CUSTNO", custNumber);

VB.NET:

Dim custNumber() As Byte = {1, 2, 3, 4, 5}
myChannel.CreateContainer("CUSTNO", custNumber)

Here is a sample CHAR container:
C#:

String company = "IBM";
myChannel.CreateContainer("COMPANY", company);

VB.NET:

Dim company As String = "IBM"
myChannel.CreateContainer("COMPANY", company)

The channel and containers can now be used in an EciRequest, as the example
shows:
C#:

EciRequest eciReq = new EciRequest();
eciReq.ServerName = "CICSA";
eciReq.Program = "CHANPROG";
eciReq.ExtendMode = EciExtendMode.EciNoExtend;
eciReq.Channel = myChannel;

gwyConnection.Flow(eciReq);

VB.NET:

Dim eciReq As New EciRequest()
eciReq.ServerName = "CICSA"
eciReq.Program = "CHANPROG"
eciReq.ExtendMode = EciExtendMode.EciNoExtend
eciReq.Channel = myChannel

gwyConnection.Flow(eciReq)

Chapter 15. Developing Microsoft .NET Framework-based applications 229

When the request is complete, you can retrieve the contents of the containers in the
channel by interpreting the type, as this example shows:
C#:

Channel myChannel = eciReq.Channel;

foreach (Container aContainer in myChannel.GetContainers()) {
Console.WriteLine(aContainer.Name);
if (aContainer.Type == ContainerType.BIT) {
byte[] data = aContainer.GetBitData();
} else if (aContainer.Type == ContainerType.CHAR){
String data = aContainer.GetCharData();
}
}
VB.NET:

Dim myChannel As Channel = eciReq.Channel

For Each aContainer In myChannel.GetContainers()
Console.WriteLine(aContainer.Name)
If (aContainer.Type = ContainerType.BIT) Then
Dim data() As Byte = aContainer.GetBitData()
ElseIf (aContainer.Type = ContainerType.CHAR) Then
Dim data As String = aContainer.GetCharData()
End If
Next aContainer

Developing ECI and ESI applications based on the Microsoft .NET
Framework

How to develop ECI and ESI applications using the .NET Framework.

Developing using Microsoft Visual Studio

If you are developing using Microsoft Visual Studio, you must add a reference to
the IBM.CTG.Client.dll assembly.

When you have added the reference, the types in the IBM.CTG namespace can be
used to perform ECI and ESI calls to CICS. To avoid the need to fully qualify each
type, you can add the IBM.CTG namespace to the imports section of your code.

See Microsoft Visual Studio documentation for further information on creating and
building projects.

Compiling and linking from the command line

The .NET Framework provides command line tools for compiling and linking
.NET applications. Applications that are written in C# can be compiled and linked
using the csc tool:
csc /target:exe /out:"AppName.exe" /reference:"IBM.CTG.Client.dll"
"SourceFile.cs"

Applications that are written in Visual Basic.NET can be compiled and linked
using the vbc tool:
vbc /target:exe /out:"AppName.exe" /reference:"IBM.CTG.Client.dll"
"SourceFile.vb"

For more information on the csc and vbc command line tools see the Microsoft
documentation.

230 CICS TG for Multiplatforms V9.2: Developing Applications

Problem determination for Microsoft .NET Framework-based client
programs

Use tracing to help determine the cause of any problems when running .NET
Framework-based client programs.

Tracing for Microsoft NET Framework-based client programs
Trace is activated for the IBM.CTG.Client.dll either by specifying it as an
application configuration file or by using the Trace class.

Trace levels

The following trace levels are available:

CtgTrcDisabled
disables tracing

CtgTrcLevel1
includes exception trace points but nothing else

CtgTrcLevel2
includes event trace points and all CtgTrcLevel1 trace points

CtgTrcLevel3
includes function entry and exit trace points and all CtgTrcLevel1 and
CtgTrcLevel2 trace points

CtgTrcLevel4
includes debug trace points and all CtgTrcLevel1, CtgTrcLevel2 and
CtgTrcLevel3 trace points (the most verbose tracing level)

Specifying trace in an application configuration file

Trace can be enabled using the CtgTrace trace switch in an application
configuration file (an XML file). The switch allows the trace to be specified as an
IBM.CTG.TraceLevel value, a System.Diagnostics.TraceLevel value, or an integer
between 0 and 4 inclusive. In the following example the switch
value="CtgTrcLevel4" specifies Level 4 tracing, with tracing of data blocks limited
to the first 128 bytes.
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.diagnostics>
<switches>
<add name="CtgTrace" value="CtgTrcLevel4" dataDumpOffset="0"

dataDumpLength="128"/>
</switches>
</system.diagnostics>
</configuration>

A sample trace configuration file called App.config is included in the SDK package
or in <install_path>\samples\csharp\eci and <install_path>\samples\vb\eci on
a Windows machine with CICS Transaction Gateway installed.

Using the Trace class

The Trace class includes the following members:

TraceLevel
gets or sets the trace level

Chapter 15. Developing Microsoft .NET Framework-based applications 231

DataDumpOffset
gets or sets the starting offset in each data blocks when tracing at
CtgTrcLevel4

DataDumpLength
gets or sets the maximum amount of data traced in each data block at
CtgTrcLevel4

For more information see the Trace information in the .NET section of the
Programming Reference.

232 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 16. Request monitoring exits

Two sets of request monitoring exits exist; one for Java exits, one for C exits.

Java request monitoring exits
Request monitoring exits enable Java user exit code to obtain the details of requests
as they are processed by CICS Transaction Gateway and Java client applications.

The following flow topology diagrams show when the request monitoring time
stamps are generated depending on the CICS Transaction Gateway configuration.
In each diagram, points T1, T2, T3, and T4 show where time stamps are collected
for each request.

A request exit running inside the Gateway daemon can be called with the
following event types:

RequestEntry
When a request is received by the Gateway daemon.

RequestDetails
Before the request is sent to CICS and after any DSS routing decision has
been made.

ResponseExit
When the Gateway daemon sends the response back to the client
application.

A request exit running inside the Java API for both the RemoteClient and
LocalClient configurations can be called with the following event types:

RequestEntry
Before the request is sent to the Gateway daemon or CICS.

ResponseExit
After the response is received from the Gateway daemon or CICS.

CICS

Transaction

Gateway

T1 T2

T3T4

Client

application
CICS

Flow Topology = Gateway

Figure 16. Request flow through the Gateway daemon

© Copyright IBM Corp. 1998, 2016 233

Considerations for using request monitoring exits
v Request monitoring exits are configured independently in the Gateway daemon

and Java client applications.
v Multiple exits can be configured but the order in which they are called is not

defined.
v Exits running in the Gateway daemon are loaded at startup and remain active

until disabled using the systems management command or the Gateway daemon
is shut down.

v Exits running in a Java client application are loaded when the JavaGateway
object is opened and remain active until the JavaGateway object is closed.

v Exits should be coded to have minimal impact on performance.
v An exit that throws a runtime exception or error is disabled.

Writing a monitoring application to use the exits

A request monitoring exit is a Java class that implements the
com.ibm.ctg.monitoring.RequestExit interface. When the exit is created the default
no argument constructor is called. At this point, the exit can create any resources it
needs when processing events from the Gateway daemon or Java client
application. The eventFired() method is called at each of the exit points; when a

CICS

Transaction

Gateway

Java

API

T1 T2

T3T4

Java Client

application
CICS

Flow Topology = RemoteClient

Figure 17. Request flow through the Gateway classes in remote mode

Java

API

T1 T2

T3T4

Java Client

application
CICS

Flow Topology = LocalClient

Figure 18. Request flow through the Gateway classes in local mode

234 CICS TG for Multiplatforms V9.2: Developing Applications

systems management command is sent; or when the exit is shutdown. The
shutdown event should be used to release any resources obtained during the
lifetime of the exit.

Timestamps are taken during the flow at T1, T2, T3, and T4 on the diagrams.
v Timestamp T1 (RequestReceived) is generated as a request arrives at the

Gateway daemon or Gateway classes. This data is available when the request
event type is RequestEntry, RequestDetails, or ResponseExit.

v Timestamp T2 (RequestSent) is generated as the request leaves the Gateway
daemon or Gateway classes. This data is available when the request event type
is ResponseExit.

v Timestamp T3 (ResponseReceived) is generated when the reply arrives back in
the Gateway daemon or Gateway classes. This data is available when the request
event type is ResponseExit.

v Timestamp T4 (ResponseSent) is generated when the reply leaves the Gateway
daemon or Gateway classes. This data is available when the request event type
is ResponseExit.

When the exit is triggered, the eventFired() method is called and runs on the same
thread as the caller. When the eventFired() method returns, the thread continues
running as before. Processing performed by the exit on this thread affects
performance and must be kept to a minimum. An example exit
com.ibm.ctg.samples.requestexit.ThreadedMonitor shows you how to transfer this
processing to a separate thread to reduce the impact on performance.

Controlling request monitoring user exits dynamically

Request monitoring exits running in the Gateway daemon can be controlled
through the rmexit option of the ctgadmin command.

The enable and disable options allow you to enable or disable all the exits
running within the Gateway daemon. When exits are disabled they are not called
as part of the Gateway daemon processing.

The command option allows you to send system management commands to your
request monitoring user exits so you can interact with the request monitoring user
exits, to perform tasks such as dynamically starting or stopping a particular user
exit.

When you issue a system management command with a RequestEvent of Command,
the eventFired() method is driven for all request monitoring user exits that are
active on the Gateway daemon. The input data is formed of a single entry in the
map, with RequestData key "CommandData". The value associated with this key is
a string representing the data provided via the system management command.

Sample request monitoring user exits

A simple request monitoring user exit implementation of the RequestExit interface
is in the com.ibm.ctg.samples.requestexit.BasicMonitor class. The source code for
request monitoring user exits samples is located in /samples/java/com/ibm/ctg/
samples/requestexit.
Related information:
Request monitoring user exit API information

Chapter 16. Request monitoring exits 235

Correlation points available in the exits
Correlation points are available to identify the flow data available in the exits,
between the exits, and between flows. For all flows, the FlowType enumeration is
available. The enumeration defines the type of flow and has methods to determine
other key qualities about this flow.

You can use FlowTopology to distinguish between Gateway daemon flows and
flows in the Gateway classes, in both local and remote mode. The underlying
ECIRequest object is not accessible from the exits.

Flow correlators

Individual flows through the Gateway daemon or Gateway classes have a
CtgCorrelator. This correlator is a Java integer which is available at all
RequestEvents: RequestEntry to ResponseExit, and can take any value from
Integer.MinValue to Integer.MaxValue (values from -2,147,483,648 to 2,147,483,647).
Each Gateway daemon or JavaGateway object uses independent correlators.

The Gateway daemon or JavaGateway object of a Client application can be
identified if the APPLID and APPLID Qualifier are defined and are available as
CtgApplid and CtgApplidQualifier. These are Java Strings containing 1 to 8
characters.

In three-tier (or remote mode) topologies, the CtgCorrelator, CtgApplid, and
CtgApplidQualifier of the Client application flow are available in the exits in the
Gateway daemon as ClientCtgCorrelator, ClientCtgApplid, and
ClientCtgApplidQualifier.

For transactions that use IPIC, the origin data is available to associate the flow
from a Java application through to a CICS server.

Access to any user correlation data in the COMMAREA is through the PayLoad
object, which is read-only, and available only during the eventFired() method.

Transaction correlators

For XA transactions the XID is available.

For extended mode ECI transactions, the LUW token is available after it has been
set; for example, on all exits except the RequestEntry of the first request of the
transaction.

Data available by FlowType and RequestEvent
For RequestEvent types of RequestEntry, RequestDetails, and ResponseExit, data is
available from several fields.

The RequestEvent type is passed with associated data on the eventFired method.
Data is represented by a Map object, whose keys are of type RequestData and
values are of type Object. The Map object can contain RequestData keys with
values of “null”.

The following tables cover the data available for each FlowType.

Non-XA flows at RequestEntry
Data available for non-XA flows at RequestEvent = RequestEntry.

236 CICS TG for Multiplatforms V9.2: Developing Applications

Y indicates that the field data is available for a specific flow type, N indicates that
the field data is not available for the specific flow type.

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

Channel 11 on page 238 N Y Y N N

CicsAbendCode N N N N N

CicsReturnCode N N N N N

CicsServer N N N N N

ClientCtgApplid 7 on page
238, 11 on page 238

Y Y Y Y Y

ClientCtgApplidQualifier 7
on page 238, 11 on page 238

Y Y Y Y Y

ClientCtgCorrelator 7 on
page 238, 11 on page 238

Y Y Y Y Y

ClientLocation 1 Y Y Y Y Y

ClientProtocol 1 Y Y Y Y Y

ClientType 1 Y Y Y Y Y

ClientVersion 1, 11 on page
238

Y Y Y Y Y

CtgApplid Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y

CtgCorrelator Y Y Y Y Y

CtgReturnCode N N N N N

DistributedIdentity N Y Y Y Y

FlowTopology Y Y Y Y Y

FlowType Y Y Y Y Y

GatewayUrl 5 Y Y Y Y Y

HttpPath 10 on page 238 N Y N N N

HttpPayload10 on page 238 N Y N N N

HttpStatusCode 10 on page
238

N N N N N

HttpVerb 10 on page 238 N Y N N N

Location 6 Y Y Y Y Y

LUW Token N N Y Y Y

OriginData 2 N N N N N

PayLoad 11 on page 238 N Y Y N N

Program 12 on page 238 N Y Y N N

RequestReceived Y Y Y Y Y

RequestSent 3 N N N N N

ResponseReceived 3 N N N N N

ResponseSent N N N N N

RetryCount N N N N N

Server 8 on page 238, 12 on
page 238

Y Y Y Y Y

TranName TpnName 4, 11
on page 238

N Y Y Y Y

Userid N Y Y Y Y

WireSize 1, 11 on page 238 Y Y Y Y Y

WorkerWaitTime 1 N N N N N

XaReturnCode N N N N N

XctCurrent 9 on page 238 N Y Y N N

XctParent 9 on page 238 N Y Y N N

XctRoot 9 on page 238 N Y Y N N

Xid N N N N N

Note:

1. ClientLocation, ClientProtocol, ClientType, ClientVersion, WorkerWaitTime and
WireSize are available only when FlowTopology=Gateway.

2. OriginData is available only for IPIC flows to CICS servers when
FlowTopology=Gateway and FlowTopology=LocalClient.

3. The timestamps from and to another system are set only if the flow goes to
another system. For EciStatus and for non-IPIC XA flows, except XaEci, this
will be when FlowTopology=RemoteClient only.

4. TranName and TpnName are mutually exclusive. Either might be set, but not
both.

5. GatewayUrl is available only when FlowTopology=RemoteClient.
6. Location is available exclusively when FlowTopology=Gateway and

FlowTopology=RemoteClient.

Chapter 16. Request monitoring exits 237

7. ClientCtgApplid, ClientCtgApplidQualifier, and ClientCtgCorrelator are
available to clients that support these data fields when
FlowTopology=Gateway. These data fields are supported by Java clients using
classes from CICS Transaction Gateway V7.1 and later, ECI V2, and .NET
clients using libraries from CICS Transaction Gateway V8.1 and later.

8. Server is only available if a server was specified on the request.
9. XCT data is only available if the Cross Component Trace (XCT) facility is

enabled in WebSphere Application Server.
10. HttpPath, HttpStatusCode, HttpVerb and HttpPayload are only available for

HTTP requests.
11. Channel, ClientCtgApplid, ClientCtgApplidQualifier, ClientCtgCorrelator,

ClientVersion, Payload, TranName, TpnName and WireSize are not available
for HTTP requests.

12. Program and Server are only available for HTTP requests if the URI matches a
defined web service.

XA flows at RequestEntry
Data available for XA flows at RequestEvent = RequestEntry.

Y indicates that the field data is available for a specific flow type, N indicates that
the field data is not available for the specific flow type.

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

Channel N Y N N N N N N

CicsAbendCode N N N N N N N N

CicsReturnCode N N N N N N N N

CicsServer N N N N N N N N

ClientCtgApplid 7 on page 239 Y Y Y Y Y Y Y Y

ClientCtgApplidQualifier 7 on
page 239

Y Y Y Y Y Y Y Y

ClientCtgCorrelator 7 on page
239

Y Y Y Y Y Y Y Y

ClientLocation 1 on page 239 Y Y Y Y Y Y Y Y

ClientProtocol 1 on page 239 Y Y Y Y Y Y Y Y

ClientType 1 on page 239 Y Y Y Y Y Y Y Y

ClientVersion 1 on page 239 Y Y Y Y Y Y Y Y

CtgApplid Y Y Y Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y Y Y Y

CtgCorrelator Y Y Y Y Y Y Y Y

CtgReturnCode N N N N N N N N

DistributedIdentity N Y N N N N N N

FlowTopology Y Y Y Y Y Y Y Y

FlowType Y Y Y Y Y Y Y Y

GatewayUrl 5 on page 239 Y Y Y Y Y Y Y Y

HttpPath N N N N N N N N

HttpPayload N N N N N N N N

HttpStatusCode N N N N N N N N

HttpVerb N N N N N N N N

Location 6 on page 239 Y Y Y Y Y Y Y Y

LUW Token N N N N N N N N

OriginData 2 on page 239 N N N N N N N N

PayLoad N Y N N N N N N

Program N N N N N N N N

RequestReceived Y Y Y Y Y Y Y Y

RequestSent 3 on page 239 N N N N N N N N

ResponseReceived 3 on page
239

N N N N N N N N

ResponseSent N N N N N N N N

RetryCount N N N N N N N N

Server 8 on page 239 Y Y Y Y Y Y Y Y

TranName TpnName 4 on page
239

N Y N N N N N N

Userid N Y N N N N N N

WireSize 1 on page 239 Y Y Y Y Y Y Y Y

WorkerWaitTime 1 on page 239 N N N N N N N N

XaReturnCode N N N N N N N N

238 CICS TG for Multiplatforms V9.2: Developing Applications

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

XctCurrent N N N N N N N N

XctParent N N N N N N N N

XctRoot N N N N N N N N

Xid Y Y Y Y Y Y Y N

Note:

1. ClientLocation, ClientProtocol, ClientType, ClientVersion, WorkerWaitTime and
WireSize are available only when FlowTopology=Gateway.

2. OriginData is available only for IPIC flows to CICS servers when
FlowTopology=Gateway and FlowTopology=LocalClient.

3. The timestamps from and to another system are set if the flow goes to another
system. For EciStatus and for non-IPIC XA flows, except XaEci, this will be
when FlowTopology=RemoteClient only.

4. TranName and TpnName are mutually exclusive. Either TranName or
TpnName can be set, but not both.

5. GatewayUrl is available only when FlowTopology=RemoteClient.
6. Location is available exclusively when FlowTopology=Gateway and

FlowTopology=RemoteClient.
7. ClientCtgApplid, ClientCtgApplidQualifier, and ClientCtgCorrelator are

available to clients that support these data fields when FlowTopology=Gateway.
These data fields are supported by Java clients using classes from CICS
Transaction Gateway V7.1 and later, ECI V2, and NET Framework-based clients
using libraries from CICS Transaction Gateway V8.1 and later.

8. Server is only available if a server was specified on the request.

Non-XA flows at RequestDetails
Data available for non-XA flows at RequestEvent = RequestDetails.

The RequestDetails request monitoring exit is only applicable when
FlowTopology=Gateway.

Y indicates that the field data is available for a specific flow type, N indicates that
the field data is not available for the specific flow type.

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

Channel 10 on page 240 N Y Y N N

CicsAbendCode N N N N N

CicsReturnCode N Y Y N N

CicsServer N Y Y Y Y

ClientCtgApplid 4 on page
240, 10 on page 240

Y Y Y Y Y

ClientCtgApplidQualifier 4
on page 240, 10 on page 240

Y Y Y Y Y

ClientCtgCorrelator 4 on
page 240, 10 on page 240

Y Y Y Y Y

ClientLocation Y Y Y Y Y

ClientProtocol Y Y Y Y Y

ClientType Y Y Y Y Y

ClientVersion 10 on page
240

Y Y Y Y Y

CtgApplid Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y

CtgCorrelator Y Y Y Y Y

CtgReturnCode N N N N N

DistributedIdentity N Y Y Y Y

FlowTopology Y Y Y Y Y

FlowType Y Y Y Y Y

GatewayUrl N N N N N

HttpPath 9 on page 240 N Y N N N

HttpPayload9 on page 240 N Y N N N

Chapter 16. Request monitoring exits 239

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

HttpStatusCode 9 N N N N N

HttpVerb 9 N Y N N N

Location Y Y Y Y Y

LUWToken 6 N N Y Y Y

OriginData 1 N Y Y Y Y

PayLoad 10 N Y Y N N

Program 11 N Y Y N N

RequestReceived Y Y Y Y Y

RequestSent 2 N N N N N

ResponseReceived 2 N N N N N

ResponseSent N N N N N

RetryCount 7 N Y Y N N

Server 5, 11 Y Y Y Y Y

TranName TpnName 3, 10 N Y Y Y Y

Userid N Y Y Y Y

WireSize 10 Y Y Y Y Y

WorkerWaitTime Y Y Y Y Y

XaReturnCode N N N N N

XctCurrent 8 N Y Y N N

XctParent 8 N Y Y N N

XctRoot 8 N Y Y N N

Xid N N N N N

Note:

1. OriginData is available only for IPIC flows to CICS servers.
2. The timestamps from and to another system are set only if the flow goes to

another system.
3. TranName and TpnName are mutually exclusive. Either might be set, but not

both.
4. ClientCtgApplid, ClientCtgApplidQualifier, and ClientCtgCorrelator are

available to clients that support these data fields when
FlowTopology=Gateway. These data fields are supported by Java clients using
classes from CICS Transaction Gateway V7.1 and later, ECI V2, and .NET
clients using libraries from CICS Transaction Gateway V8.1 and later.

5. Server is only available if one was specified on the request.
6. LuwToken is available only for IPIC flows to CICS servers.
7. RetryCount is available for only the first request of the transaction.
8. XCT data is only available if the Cross Component Trace (XCT) facility is

enabled in IBM WebSphere Application Server.
9. HttpPath, HttpStatusCode, HttpVerb and HttpPayload are only available for

HTTP requests.
10. Channel, ClientCtgApplid, ClientCtgApplidQualifier, ClientCtgCorrelator,

ClientVersion, Payload, TranName, TpnName and WireSize are not available
for HTTP requests.

11. Program and Server are only available for HTTP requests if the URI matches a
defined web service

Non-XA flows at ResponseExit
Data available for non-XA flows at RequestEvent = ResponseExit.

Y indicates that the field data is available for a specific flow type, N indicates that
the field data is not available for the specific flow type.

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

Channel 11 on page 242 N Y Y N N

CicsAbendCode N Y Y N N

CicsReturnCode N Y Y Y Y

CicsServer 1 on page 241 N Y Y Y Y

240 CICS TG for Multiplatforms V9.2: Developing Applications

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

ClientCtgApplid 7, 11 on
page 242

Y Y Y Y Y

ClientCtgApplidQualifier 7,
11 on page 242

Y Y Y Y Y

ClientCtgCorrelator 7, 11 on
page 242

Y Y Y Y Y

ClientLocation 1 Y Y Y Y Y

ClientProtocol 1 Y Y Y Y Y

ClientType 1 Y Y Y Y Y

ClientVersion 1, 11 on page
242

Y Y Y Y Y

CtgApplid Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y

CtgCorrelator Y Y Y Y Y

CtgReturnCode Y Y Y Y Y

DistributedIdentity N Y Y Y Y

FlowTopology Y Y Y Y Y

FlowType Y Y Y Y Y

GatewayUrl 5 Y Y Y Y Y

HttpPath 10 on page 242 N Y N N N

HttpPayload10 on page 242 N Y N N N

HttpStatusCode 10 on page
242

N Y N N N

HttpVerb 10 on page 242 N Y N N N

Location 6 Y Y Y Y Y

LUW Token N N Y Y Y

OriginData 2 N Y Y Y Y

PayLoad 11 on page 242 Y Y Y N N

Program 12 on page 242 N Y Y N N

RequestReceived Y Y Y Y Y

RequestSent 3 Y Y Y Y Y

ResponseReceived 3 Y Y Y Y Y

ResponseSent Y Y Y Y Y

RetryCount 1 N Y Y N N

Server 8 on page 242, 12 on
page 242

Y Y Y Y Y

TranName TpnName 4, 11
on page 242

N Y Y Y Y

Userid N Y Y Y Y

WireSize 1, 11 on page 242 Y Y Y Y Y

WorkerWaitTime 1 Y Y Y Y Y

XaReturnCode N N N N N

XctCurrent 9 on page 242 N Y Y N N

XctParent 9 on page 242 N Y Y N N

XctRoot 9 on page 242 N Y Y N N

Xid N N N N N

Note:

1. CicsServer, ClientLocation, ClientProtocol, ClientType, ClientVersion,
RetryCount, WorkerWaitTime and WireSize are available only when
FlowTopology=Gateway. RetryCount is only available for the first request of
the transaction.

2. OriginData is available only for IPIC flows to CICS servers when
FlowTopology=Gateway and FlowTopology=LocalClient.

3. The timestamps from and to another system are set only if the flow goes to
another system. For EciStatus and for non-IPIC XA flows, except XaEci, this
will be when FlowTopology=RemoteClient only.

4. TranName and TpnName are mutually exclusive. Either can be set, but not
both.

5. GatewayUrl is available exclusively when FlowTopology=RemoteClient.
6. Location is available only for FlowTopology=Gateway and

FlowTopology=RemoteClient.
7. ClientCtgApplid, ClientCtgApplidQualifier, and ClientCtgCorrelator are

available to clients that support these data fields when
FlowTopology=Gateway. These data fields are supported by Java clients using

Chapter 16. Request monitoring exits 241

classes from CICS Transaction Gateway V7.1 and later, ECI V2, and .NET
clients using libraries from CICS Transaction Gateway V8.1 and later.

8. Server is only available on EciStatus flows if one was specified on the request.
9. XCT data is only available if the Cross Component Trace (XCT) facility is

enabled in WebSphere Application Server.
10. HttpPath, HttpStatusCode, HttpVerb and HttpPayload are only available for

HTTP requests.
11. Channel, ClientCtgApplid, ClientCtgApplidQualifier, ClientCtgCorrelator,

ClientVersion, Payload, TranName, TpnName and WireSize are not available
for HTTP requests.

12. Program and Server are only available for HTTP requests if the URI matches a
defined web service

XA flows at ResponseExit
Data available for XA flows at RequestEvent = ResponseExit.

Y indicates that the field data is available for a specific flow type, N indicates that
the field data is not available for the specific flow type.

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

Channel N Y N N N N N N

CicsAbendCode N Y N N N N N N

CicsReturnCode N Y N N N N N N

CicsServer 1 on page 243 N Y Y Y Y Y Y N

ClientCtgApplid 7 on page
243

Y Y Y Y Y Y Y Y

ClientCtgApplidQualifier 7
on page 243

Y Y Y Y Y Y Y Y

ClientCtgCorrelator 7 on
page 243

Y Y Y Y Y Y Y Y

ClientLocation 1 on page 243 Y Y Y Y Y Y Y Y

ClientProtocol 1 on page 243 Y Y Y Y Y Y Y Y

ClientType 1 on page 243 Y Y Y Y Y Y Y Y

ClientVersion 1 on page 243 Y Y Y Y Y Y Y Y

CtgApplid Y Y Y Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y Y Y Y

CtgCorrelator Y Y Y Y Y Y Y Y

CtgReturnCode Y Y Y Y Y Y Y Y

DistributedIdentity N Y N N N N N N

FlowTopology Y Y Y Y Y Y Y Y

FlowType Y Y Y Y Y Y Y Y

GatewayUrl 5 on page 243 Y Y Y Y Y Y Y Y

HttpPath N N N N N N N N

HttpPayload N N N N N N N N

HttpStatusCode N N N N N N N N

HttpVerb N N N N N N N N

Location 6 on page 243 Y Y Y Y Y Y Y Y

LUW Token N N N N N N N N

OriginData 2 on page 243 N Y N N N N N N

PayLoad N Y N N N N N N

Program N Y N N N N N N

RequestReceived Y Y Y Y Y Y Y Y

RequestSent 3 on page 243 Y Y Y Y Y Y Y Y

ResponseReceived 3 on page
243

Y Y Y Y Y Y Y Y

ResponseSent Y Y Y Y Y Y Y Y

RetryCount 1 on page 243 N Y N N N N N N

Server8 on page 243 Y Y Y Y Y Y Y Y

TranName TpnName 4 on
page 243

N Y N N N N N N

Userid N Y N N N N N N

WireSize 1 on page 243 Y Y Y Y Y Y Y Y

WorkerWaitTime 1 on page
243

Y Y Y Y Y Y Y Y

XaReturnCode Y N Y Y Y Y Y Y

XctCurrent N N N N N N N N

XctParent N N N N N N N N

242 CICS TG for Multiplatforms V9.2: Developing Applications

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

XctRoot N N N N N N N N

Xid Y Y Y Y Y Y Y N

Note:

1. CicsServer, ClientLocation, ClientProtocol, ClientType, ClientVersion,
RetryCount, WorkerWaitTime and WireSize are available only when
FlowTopology=Gateway. CicsServer and RetryCount are available only for the
first request of the transaction.

2. OriginData is available only for IPIC flows to CICS servers when
FlowTopology=Gateway and FlowTopology=LocalClient.

3. The timestamps from and to another system are set only if the flow goes to
another system. For non-IPIC XA flows, except XaEci, this will be when
FlowTopology=RemoteClient only.

4. TranName and TpnName are mutually exclusive. Either might be set, but not
both.

5. GatewayUrl is available only when FlowTopology=RemoteClient.
6. Location is available exclusively when FlowTopology=Gateway and

FlowTopology=RemoteClient.
7. ClientCtgApplid, ClientCtgApplidQualifier, and ClientCtgCorrelator are

available to clients that support these data fields when FlowTopology=Gateway.
These data fields are supported by Java clients using classes from CICS
Transaction Gateway V7.1 and later, ECI V2, and NET Framework-based clients
using libraries from CICS Transaction Gateway V8.1 and later.

8. Server is only available if a server was specified on the request.

ECI and EPI C exits
This information describes exits you can add to the ECI, EPI, and cicsterm when
using the Client daemon.

The exits allow you to influence the processing of certain application requests and
can be used for monitoring purposes. The exits must be coded in the C
programming language.

Loading the exits
During ECI, EPI, cicsterm, and cicsprnt initialization, CICS Transaction Gateway
attempts to load the objects, described in the following table, from the
<install_path>\bin subdirectory, and to call the corresponding entry points.

Table 28. ECI and EPI exits
Exit name Object name Entry point name

ECI cicsecix CICS_ECIEXITINIT
EPI cicsepix CICS_EPIEXITINIT
cicsterm cicsepix CICS_EPIEXITINIT
cicsprnt cicsepix CICS_EPIEXITINIT

Each entry point is passed a single parameter, a pointer to a structure that contains
a list of addresses. The initialization code of the program puts the addresses of all
the exits into the structure, and then the exits are called at appropriate points in
ECI, EPI, cicsterm, and cicsprnt processing. Because the exits are entered by using

Chapter 16. Request monitoring exits 243

the addresses supplied, you can give the exits any valid names. In this book,
conventional names are used for the exits.

For upgrade purposes, the CICS Transaction Gateway first looks for a lowercase
named object, and then for an uppercase named object. If the objects are not found,
no exit processing occurs.

Sample exits and interface definitions
The locations of sample exits and how to edit them for your use.

Sample user exit files are supplied in <install_path>\samples\c\exits.

See Chapter 18, “Sample programs,” on page 251 for more details about the
samples, and how to edit them for your system. To install the samples:
1. Make any required changes to the details of servers and aliases to make files

cicsecix and cicsepix:
v On Windows, run ecix1mak.cmd and epix1mak.cmd
v On UNIX and Linux, issue the following command to compile the user exit

sample programs with the supplied sample makefile:
make -f samp2.mak

To compile the user exit sample programs on Linux on POWER using the
IBM XL C compiler, issue the following command:
make -f samp2.mak COMPILER=XL

2. Copy cicsecix and cicsepix to the <install_path>\bin subdirectory

The following header files define the exit interfaces:

cicsecix.h
A header file in the <install_path>\include directory that defines:
v inputs and outputs for each ECI exit
v the format of the list of addresses for calling ECI exits
v data structures used by ECI exits
v return code values for ECI exits

cicsepix.h
A header file in the <install_path>\include directory that defines:
v inputs and outputs for each EPI exit
v the format of the list of addresses for calling EPI exits
v data structures used by EPI exits
v return code values for EPI exits

ecix1.c A template that you can use to write your own ECI user exits. It does not
perform any actions if you compile it.

epix1.c
A template that you can use to write your own EPI user exits. It does not
perform any actions if you compile it.

Writing your own user exits
How to write and use your own user exits.

Follow these rules when writing your own user exits:
v Do not make EPI or ECI calls from the exit.

244 CICS TG for Multiplatforms V9.2: Developing Applications

v To minimize the impact on performance, keep executable code to a minimum.
v Ensure that all your exit code is re-entrant and threadsafe.
v Name the primary entry points as follows:

ECI
CICS_ECIEXITINIT

EPI, cicsterm, and cicsprnt
CICS_EPIEXITINIT

You can change the names of the actual exits; do not change the parameter lists.
v Ensure that your user exit programs contain valid entry points for all of the user

exit functions, apart from the following:
– CICS_EciSetProgramAlias is optional.
– Include either CICS_EpiTermIdExit or CICS_EpiTermIdInfoExit. New DLLs

should use CICS_EpiTermIdInfoExit.
– Include either CICS_EPIStartTranExit or CICS_EPIStartTranExtendedExit.

New DLLs should use CICS_EPIStartTranExtendedExit.

If a required exit is not included, the exits will not load.

To use the ECI exits, you supply a CICS_ECIEXITINIT function in a DLL called
cicsecix .dll (cicsecix.a on UNIX and Linux operating systems).

To use the EPI exits, you supply a CICS_EPIEXITINIT function in a DLL called
cicsepix.dll (cicsepix.a on UNIX and Linux operating systems).

The CICS_ECIEXITINIT and CICS_EPIEXITINIT functions each set an ExitList
structure to point to the addresses of all the exit functions contained in the exit
object. For example, the sample CICS_EPIEXITINIT is as follows:
void CICSEXIT CICS_EPIEXITINIT(CICS_EpiExitList_t *ExitList)

{
ExitList->InitializeExit = &CICS_EpiInitializeExit;
ExitList->TerminateExit = &CICS_EpiTerminateExit;
ExitList->AddTerminalExit = &CICS_EpiAddTerminalExit;
ExitList->StartTranExit = &CICS_EpiStartTranExit;
ExitList->ReplyExit = &CICS_EpiReplyExit;
ExitList->DelTerminalExit = &CICS_EpiDelTerminalExit;
ExitList->GetEventExit = &CICS_EpiGetEventExit;
ExitList->TranFailedExit = &CICS_EpiTranFailedExit;
ExitList->SystemIdExit = &CICS_EpiSystemIdExit;
ExitList->TermIdExit = &CICS_EpiTermIdExit;
ExitList->TermIdInfoExit = &CICS_EpiTermIdInfoExit;
ExitList->StartTranExtendedExit = &CICS_EpiStartTranExtendedExit;

}

As the exits are entered by using the addresses supplied, you can give them any
name you want, as long as their function signature is exactly the same as the
CICS_Eci* or CICS_Epi* functions.

InitializeExit is passed a version number of X'FF000000' when driven by cicsterm
or cicsprnt. This enables user programs to be able to differentiate between cicsterm
and cicsprnt user exits, and EPI user exits if required.

Diagnostic information
The Client API trace shows the input parameters to the exits immediately before
they are called, and the output of the exit when the exit returns.

Chapter 16. Request monitoring exits 245

A user exit active flag of 0 in the trace means that the exits have failed to activate,
due to a missing required exit. This information is also shown in a log message.
See “Writing your own user exits” on page 244 for information about required
exits.

The Client API trace shows the input parameters to the exits immediately before
they are called, and the output of the exit when the exit returns. Tracing is not
available for use within the exit.

EPI user exits
The following describes the EPI exits that are available and how they affect the
EPI, cicsterm, and cicsprnt behavior is described.

CICS_EpiInitializeExit

EPI: This EPI exit does not affect the running of the calling EPI program, but it
does allow the user to switch the user exits on or off for the process that
calls it. It is called once per process that uses the EPI. It is called before
any other EPI calls take place, and is called at the end of a successful
CICS_EpiInitialize.

cicsterm:
This exit is called once only for each cicsterm session that is created,
because each cicsterm runs in a separate process. The version number
passed is X'FF000000'.

CICS_EpiTerminateExit

EPI: Called by CICS_EpiTerminate, this is always the last EPI call in a
particular process. It does not affect the running of the calling EPI
program. It is called after checking that the EPI was initialized, and that
there is not an active notify thread, but just before EPI is actually
terminated. The EPI exit DLL is unloaded immediately following the user
exit call.

cicsterm:
Only called once during cicsterm termination.

CICS_EpiAddTerminalExit

EPI: Allows the user to select a server, change the server parameters passed to
the EPI call, and refuse to add a terminal to a server. This all happens from
within the EPI call. The EPI program subsequently refers to the server by
an index number, therefore the program does not need to know what
server it is actually connected to. If the user exit refuses to connect a
server, then CICS_EpiSystemIDExit is not called.
CICS_EpiAddTerminalExit is called after CICS_EpiAddTerminal or
CICS_EpiAddExTerminal has verified that the EPI has been successfully
initialized, and that there is a free terminal index. It is called before the
CICS_EpiAddTerminal or CICS_EpiAddExTerminal call actually sends
the terminal definition to the server.

cicsterm:
The /s or /r parameters of cicsterm allow the user to specify that the CICS
Transaction Gateway can connect to:
v The first server defined in the CICS Transaction Gateway configuration

file.
v A server chosen by the user from a list of available servers.
v A server specified by the /s or /r parameter.

246 CICS TG for Multiplatforms V9.2: Developing Applications

CICS_EpiAddTerminalExit receives the system name as a parameter, and
can specify a different server if required, or reject the server and cause the
terminal emulator to terminate. If AddTerminalExit rejects the install
request, cicsterm displays an error to the effect that the server is
unavailable.

CICS_EpiSystemIdExit

EPI: Allows the user to re-select a server if a CICS_EpiAddTerminal or
CICS_EpiAddExTerminal call fails. This user exit is not called if the exit
itself causes the failure. If the exit returns CICS_EXIT_OK,
CICS_EpiAddTerminal or CICS_EpiAddExTerminal tries to add the
terminal again. The server parameters can be changed by this exit between
retries.

CICS_EpiSystemIdExit can be called asynchronously or synchronously by
EPI programs. CICS_EpiSystemIdExit can be presented with any of the
following:
v A CICS_EPI_ERR_SYSTEM error, meaning the server is unknown.
v A CICS_EPI_ERR_SERVER_DOWN error, meaning the server has failed.
v A CICS_EPI_ERR_SECURITY error, for a security failure.
v A CICS_EPI_ERR_FAILED error for any other type of failure.

It is also passed a parameter that is the same as the cics_syserr_t data
structure cause field. This value further specifies the error and is a value
specific to the operating environment.

cicsterm:
If a cicsterm terminal add call fails due to the Client daemon not having
enough sessions free, SystemIdExit is called with CICS_EPI_ERR_FAILED
as the primary reason code and 7046 as the secondary reason code
indicating a resource shortage. In all other cases of
CICS_EPI_ERR_FAILED, cicsterm passes a secondary reason code of 0.

If no user exits are active, then cicsterm retries a terminal installation if it
fails due to there not being enough available sessions. (This allows
terminals to wait for free sessions before being installed.) If there are user
exits active, any retry behavior is controlled completely by the exit.

CICS_EpiTermIdExit

EPI: Allows the user to know what EPI Termid an added terminal is given. This
is only called after a terminal has been successfully installed on a server. It
does not affect the running of the EPI program. EPI Termid numbers are
local to each process the EPI program runs under.

cicsterm:
As only one cicsterm runs per process, the Termid number is always set to
1.

CICS_EpiTermIdInfoExit

EPI: Allows the user to know details about a terminal. This is called after a
terminal has been successfully installed on a server.

cicsterm:
As only one cicsterm runs per process, the Termid number is always set to
1.

CICS_EpiDelTerminalExit

Chapter 16. Request monitoring exits 247

EPI: Is called when CICS_EpiDelTerminal is issued. It does not affect the
running of the EPI program.

cicsterm:
As only one cicsterm runs per process, the Termid number is always set to
1. It is called just before the CICS_EpiTerminateExit when the terminal is
ended. When the server fails the CICS_EpiAddTerminalExit is called again
when it is restarted. However the CICS_EpiDelTerminalExit is not called
when the server fails.

CICS_EpiStartTranExtendedExit/CICS_EpiStartTranExit

EPI: Allows a user to see that a transaction has been started, and to see the
Transid, 3270 data, and Termid (CICS_EpiStartTranExtendedExit only) sent
to it. It does not affect the running of the EPI program.
CICS_EpiStartTranExtendedExit/CICS_EpiStartTranExit is called after the
EPI state has been verified, and just before the request to start the
transaction is sent to the Client daemon.

Note that a pseudo-conversational transaction causes the exit to be called
for each actual transaction.

cicsterm:
If a non-ATI transaction is being started, the exit is called, sending a blank
in the Transid field and the TIOA (terminal input output area) for the Data
field. As only one cicsterm runs per process, the Termid number is always
set to 1. The Transid is either the first four characters of the TIOA data, or
follows a 3270 Set Buffer Address (SBA) command (which begins X'11'). In
the latter case, it starts on the 4th byte of the TIOA (as a SBA command
takes up a total of three bytes).

CICS_EpiStartTranExtendedExit/CICS_EpiStartTranExit is not driven for
ATI transactions. However pseudo-conversational transactions drive the
exit. In the case of pseudo-conversational transactions, the transaction ID is
put in the transid parameter block and the TIOA passed in the data block
does not contain the transaction ID.

StartTranExtendedExit is not called as a result of an EXEC CICS RETURN
TRANSIDname IMMEDIATE command issued by an application from a cicsterm
session.

CICS_EpiReplyExit

EPI: Allows the user to see when an application sends a data reply to CICS. It
does not affect the running of the EPI program.

cicsterm:
Activated when the cicsterm is sending data to CICS and a transaction is
currently active. The Termid number is always set to 1. The terminal TIOA
is passed to ReplyExit.

ReplyExit is not called as a result of an EXEC CICS RETURN TRANSIDname
IMMEDIATE command issued by an application from a cicsterm session.

The CICS_EpiGetEventExit and CICS_EpiTranFailedExit exits are called only for
the EPI and not for cicsterm and cicsprnt.

248 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 17. Creating a CICS request exit

The CICS request exit is called by CICS Transaction Gateway in remote mode, to
select a CICS server name for an ECI or ESI request. The CICS request exit can be
used for request retry, dynamic server selection and for rejecting non-valid
requests. If the server name returned by a CICS request exit is null, the request is
sent to the default CICS server if one is specified in the configuration file (ctg.ini).

Before you begin

If a request fails with a retryable error and the retry limit has not been reached, the
Gateway daemon calls the CICS request exit to select an alternative CICS server.
The following errors are retryable:
v The specified CICS server is no longer available (ECI_ERR_CICS_DIED or

ESI_ERR_CICS_DIED).
v There are insufficient communication resources to complete the request

(ECI_ERR_RESOURCE_SHORTAGE or ESI_ERR_RESOURCE_SHORTAGE).
v The specified CICS server is not available (ECI_ERR_NO_CICS or

ESI_ERR_NO_CICS).

You can pass a command to a CICS request exit dynamically using the CREXIT
administration option; for more information see the CICS Transaction Gateway for
IBM z/OS: Administration Guide.

About this task

To configure and deploy a CICS request exit use the following steps:

Procedure
1. Create a Java class that implements the com.ibm.ctg.ha.CICSRequestExit

interface.
2. Compile the Java class and package it into a JAR file.
3. Copy the JAR file to a location in your file system accessible by the Gateway

daemon.
4. Update the CLASSPATH environment variable in the Gateway daemon

configuration to include the location of the JAR file containing your exit.
5. Specify the fully qualified package name of your exit class by using the

cicsrequestexit parameter in the configuration file (ctg.ini). For example, to
deploy the sample RoundRobinCICSRequestExit, specify this:
cicsrequestexit=com.ibm.ctg.samples.ha.RoundRobinCICSRequestExit

6. Start the Gateway daemon.
Related information:
CICS request exit

Writing a CICS request exit
Methods implemented by the CICS request exit interface.

© Copyright IBM Corp. 1998, 2016 249

The CICS request exit must implement the com.ibm.ctg.ha.CICSRequestExit
interface. Two methods defined by the interface must be implemented by the class:
v getRetryCount
v getCICSServer

If the CICS request exit fails to load and then initialize, the Gateway daemon fails
to start. When the Gateway daemon loads the CICS request exit class, the default
constructor is called, enabling any setup information to be initialized before the
CICS request exit is used.

getRetryCount
If the initialization is successful; that is, no exceptions are thrown from the
default constructor, the getRetryCount method is called to determine how
many times a request for a new transaction can be retried following a
retryable error. The getRetryCount method is called once only, so the value
will be constant for the lifetime of the Gateway daemon and used for the
start of every transaction.

getCICSServer
The getCICSServer method is called by the Gateway daemon at the start of
each ECI unit of work and each ESI request to determine the CICS server
that the unit of work or request is sent to. A unit of work is started by a
SYNCONRETURN ECI request or the first ECI request in an extended
LUW. If the request fails with a retryable error and the maximum number
of retries has not been reached, the getCICSServer method is called again
to allow a different CICS server to be used. However, if the request fails
and the maximum number of retries has been reached the error from the
last request is returned to the Java client application. For more information
about the request data available to a getCICSServer method, see CICS
Transaction Gateway High Availability Exit Programming Reference. The
retryable errors are:
v ECI_ERR_NO_CICS
v ECI_ERR_CICS_DIED
v ECI_ERR_RESOURCE_SHORTAGE
v ESI_ERR_NO_CICS
v ESI_ERR_CICS_DIED
v ESI_ERR_RESOURCE_SHORTAGE

InvalidRequestException
If the getCICSServer method determines that the request is invalid it can
throw a com.ibm.ctg.ha.InvalidRequestException that stops the request
from being sent to CICS or from being retried. If the request is an ECI
request, ECI_ERR_INVALID_CALL_TYPE is returned to the caller. If the
request is an ESI request, ESI_ERR_PEM_NOT_ACTIVE is returned.

EventFired
The EventFired method is called if:
v The CICSRequestExit is disabled at shutdown of the Gateway daemon.
v A Gateway daemon receives an administration request for the CICS

request exit that includes a command string.

This method is called for each defined ExitEvent. The CICS request exit
can selectively process these using the event parameter.

250 CICS TG for Multiplatforms V9.2: Developing Applications

Chapter 18. Sample programs

A wide selection of sample programs for the supported programming languages
are included with CICS Transaction Gateway.

The CICS Transaction Gateway product installs sample programs to the
<install_path>/samples directory. The Software Development Kit supplies the
same sample programs to enable application development on a system where CICS
Transaction Gateway is not installed.

Sample CICS programs and maps
These samples are for running on a CICS server.

To run the sample programs, the sample CICS programs must be built, defined
and installed on your CICS server. The sample CICS programs and maps are in
<install_path>/samples/server. Refer to your CICS server documentation for
details on how to compile, define and install these sample CICS programs.

COBOL samples

EC01.CCP
This sample returns the current date and time in its COMMAREA.

EC02.CCP
This sample returns the number of times it has been run in a unit of work
in its COMMAREA.

EC03.CCP
This sample receives CHAR container INPUTDATA and queries the length
of the received data; it then returns this length in a BIT container, plus the
current date and time and a message indicating success or failure.

EC04.CCP

This sample returns the following data in the COMMAREA:
v Date and timestamp
v CICS APPLID of the region where this program was run
v CICS platform (e.g. CICS TS, IBM TXSeries)
v Version and release of CICS
v CICS USERID that the mirror used when it ran (e.g. CICSUSER)
v CICS mirror used (e.g. CPMI, CSMI)
v CICS transid used
v CICS protocol used (e.g. IPIC, SNA)

This sample can be called from the “Java EciB2 sample” on page 253.

EP01.CCP
When this sample has been compiled you must define a transaction called
EP01 to call EP01.CCP. This program returns the number of times it has
been run as the contents of a 3270 data stream.

EP02.CCP
When this sample has been compiled you must define a transaction called

© Copyright IBM Corp. 1998, 2016 251

|

|

|

|

|

|

|

|

|

|

|

EP02 to call EP02.CCP. This program returns the number of times it has
been run as information in fields of a BMS map.

EP03.CCP
This sample is referenced by HighEpiI1.java. The sample issues an EXEC
CICS START to run itself again to simulate automatic transaction initiation
(ATI). This sample returns two strings of data: “Issued EXEC CICS Start”
and “Started as an ATI”.

BMS samples

EP02MAP.BMS
This sample is a map source for use with EP02.

MAPINQ.BMS
This sample is a map source for EPIINQ.CCS. The sample contains a
mapset MAPINQ, and maps MAPINQ1 and MAPINQ2.

C sample

EPIINQ.CCS
This sample is for an EPI transaction containing two screens. To compile
this sample on IBM z/OS, you require SP in the translation parameters
JCL.

For information about how to build and install these programs, refer to your CICS
server documentation.

Java client samples
These samples show the use of the ECI, EPI, and ESI Java APIs.

To use these samples, you must ensure that the required server programs or
transactions are installed on your CICS server. These samples do not demonstrate
all the techniques required for a large application. They are not templates and
should not be used as the basis for developing production applications.

Compiled Java samples
These samples are already compiled and are provided together with their source
code.

The samples are in <install_path>/classes/ctgsamples.jar.

The source for these samples is in the <install_path>/samples/java directory
under the package structure, which is in the following form:
com.ibm.ctg.samples.type_of_sample

Running the sample programs
To run the sample programs, ensure that ctgsamples.jar and ctgclient.jar are
referenced in your class path. If running the sample in local mode, ctgserver.jar is
also required.

These files are in the classes directory.
CLASSPATH=<install_path>/classes/ctgsamples.jar
:<install_path>/classes/ctgclient.jar
:<install_path>/classes/ctgserver.jar

252 CICS TG for Multiplatforms V9.2: Developing Applications

Alternatively you can run the sample programs by using the Java -classpath
option, specifying the same information.

When running a sample program, if you provide any command line parameters,
you must enter them in the order specified by the usage statement of the particular
sample program.

Connecting to CICS Transaction Gateway
You can provide a URL that specifies the location of the CICS Transaction Gateway
to which you want to connect.

This should be of the form protocol://address. For example, for a remote mode
connection using the SSL protocol to a Gateway daemon with address
“myserver.test.com”:
ssl://myserver.ibm.com

If you are using IPv6, you must enclose the address in square brackets. For
example, for a remote mode connection using the TCP/IP protocol to a Gateway
daemon with IPv6 address “2002:914:fc12:632:7:36:66:134”:
tcp://[2002:914:fc12:632:7:36:66:134]

If you want to use local mode, the URL is “local:”.

Java ECI base class samples
Samples demonstrating the use of the ECI Java base class API. These samples
include simple, intermediate, and advanced ECI Java base classes.

Java EciB1 sample
This sample lists the systems defined in the Gateway daemon configuration file
(ctg.ini) and allows you to choose the one to which an ECI request is sent. This
request is then sent, and the date and time are returned in ASCII by CICS program
EC01, alongside a representation in hexadecimal.

Usage:
java com.ibm.ctg.samples.eci.EciB1 [Gateway Url] [Gateway Port Number]
there [SSL Keyring] [SSL Password]

Java EciB2 sample
This sample is used for testing ECI requests sent to CICS. It controls the
parameters values from the command line.

Usage:
java com.ibm.ctg.samples.eci.EciB2 [jgate=gateway_URL]

[jgateport=gateway_port]
[clientsecurity=client_security_class]
[serversecurity=server_security_class]
[server=cics_server_name or IPIC_url]
[userid=cics_userid]
[password=cics_password]
[prog<0..9>=prog_name]
[commarea=comm_area]
[commarealength=comm_area_length]
[status]
[trace]
[ascii | ebcdic | asis]

Chapter 18. Sample programs 253

You can specify the Gateway URL and relevant ECI request parameters as input to
the application, and either call a single CICS program or call multiple CICS
programs within one extended LUW. You can control the code page of the
COMMAREA flowed on the ECI request as an input parameter. To run the sample
in local mode, specify jgate=local.

For example, to run the sample in local mode to an IPIC connected server, you can
use a command like:
java com.ibm.ctg.samples.eci.EciB2 jgate=local: server=tcp://cicssrv1.company.com:1234 prog0=EC01 commarealength=18 ebcdic

You can also use EciB2 to run EC04 which returns more data in the COMMAREA.
For more information, see “Sample CICS programs and maps” on page 251.

For example:

C:\>java com.ibm.ctg.samples.eci.EciB2 jgate=localhost jgateport=2006 prog0=EC04
server=CICSIPIC commarealength=122 ebcdic

CICS Transaction Gateway Basic ECI Sample 2

Test Parameters
CICS TG address : localhost:2006
Client security : null
Server security : null
CICS Server : CICSIPIC
UserId : null
Password : null
Data Conversion : IBM037

COMMAREA : null
COMMAREA length : 122

Number of programs given : 1
[0] : EC04

Connect to Gateway

Successfully created JavaGateway

Call Programs

About to call : EC04
COMMAREA :
extend_mode : 0
LUW_token : 0
Commarea : date=05/05/15,time=10:21:45,applid=myapplid,version=CICS TS 5.3

,userid=CICSUSER,mirror=CPMI,transid=CPMI,protocol=IPIC
Return code : ECI_NO_ERROR(0)
Abend code : null
Successfully closed JavaGateway

C:\>

Java EciB3 sample
This sample is for using with the channels and containers components of the CICS
Transaction Gateway API.

Usage:
java com.ibm.ctg.samples.eci.EciB3 [Gateway URL] [Gateway Port Number]
[SSL Keyring] [SSL Password]

When using remote mode, the sample program connects to a Gateway daemon
and obtains a list of available CICS servers. It then flows an ECI request for CICS
program EC03 to the selected server.

254 CICS TG for Multiplatforms V9.2: Developing Applications

|
|

When using local mode, the sample program prompts for the URL of a CICS
TCPIPSERVICE listening for IPIC requests, before flowing an ECI request for CICS
program EC03 to that CICS server. This URL is of the form protocol://hostname:port,
where protocol is “tcp” or “ssl”.

Java EciI1 sample
This sample shows the use of the ECI Request classes with an asynchronous
extended request and a “callbackable” object.

Usage:
java com.ibm.ctg.samples.eci.EciI1 [Gateway URL] [Port]
[SSL keyring] [SSL password]

The sample queries the Gateway daemon for a list of servers, then runs transaction
EC02 on the selected server.

You can provide a gateway URL and port number, along with an SSL keyring and
SSL password as command-line parameters. If you do not provide a URL, the
sample programs default to local.

When you start the Gateway daemon, ensure that the ctgsamples.jar file is
referenced in the class path.

This sample program also illustrates the use of the ClientCompression and
ServerCompression samples. For more information, see “Java security exit data
compression samples” on page 273.

Java EciA1 sample
This sample shows the use of the ECI request classes within the framework of a
servlet.

To compile EciA1, the servlet packages (2.2) javax.servlet and javax.servlet.http
must be referenced in the class path or added to the <install_path>/samples/java
directory.

When the servlet is initialized, it reads values supplied for the Gateway URL, SSL
classname and SSL password if they have been specified as initialization
parameters. Otherwise the default URL is local. The initial page displays the URL
of the connected Gateway daemon and a number of areas for user input: Server,
Program, CommArea Size, User ID, and Password.
v Server is a combination box containing the names of all the servers listed in the

configuration file (ctg.ini).
v Program is a list limited to EC01 and EC02; these must be available on the CICS

Server.
v CommArea Size can be set for EC01 only; for EC02 the size is always 50.
v The user ID and password can be specified in the two remaining text areas.

The servlet takes the submitted data and runs the program, automatically backing
out if the transaction terminates abnormally, or committing if it runs successfully.
The results of the transaction are displayed on a new page.

You can use a servlet properties file to provide initialization parameters. The
sample servlet looks for the following case sensitive parameters:
v GatewayURL
v SSLClassname

Chapter 18. Sample programs 255

v SSLPassword

For example:
servlet.EciA1.initArgs=GatewayURL=tcp://localhost:2006

If your JEE application server requires Java 2 Security permissions, or if you have
enabled this facility on your server, you might have to give the permissions
described in “Using a Java 2 Security Manager” on page 135.

Refer to the documentation for your JEE application server on setting servlet
initialization parameters.

Java EPI base class samples
Samples demonstrating the use of the EPI Java base class API.

Java EpiB1 sample
This sample lists the systems defined in the Gateway daemon configuration file
(ctg.ini) and allows you to select the one to which an EPI request is made. This
request is then made, and the data returned in the 3270 data stream from the
transaction EP01 is displayed on the screen.

Usage:
java com.ibm.ctg.samples.epi.EpiB1 [Gateway URL] [Gateway port number]
[debug] [SSL keyring] [SSL password]

By default the data is returned as an ASCII string, but if you specify debug as the
third command line option, the data stream is displayed in hexadecimal alongside
the ASCII text.

Java ESI base class samples
Samples demonstrating the use of the ESI Java base class API.

Java EsiB1 sample
This sample lists the systems defined in the Gateway daemon configuration file
(ctg.ini) and allows you to select one. Using the ESI API, you then enter a user ID
and password for verification on the selected CICS server. Information about the
account being used is displayed on the screen.

Usage: java com.ibm.ctg.samples.esi.EsiB1 [Gateway URL] [Gateway port number]
[SSL keyring] [SSL password]

Java EPI support class samples
These samples include simple and intermediate EPI support classes.

Java HighEpiB1 sample
This sample shows use of the higher level EPI classes.

Usage:
java com.ibm.ctg.samples.epi.HighEpiB1 [GatewayUrl] [Port]

The Gateway address and port can be provided as command line parameters. If no
URL is provided the sample programs default to local.

The sample program then obtains a list of available servers from which the user
selects one. A basic terminal object is constructed. The user is prompted to enter

256 CICS TG for Multiplatforms V9.2: Developing Applications

the name of a transaction, which must be located on the CICS server and must be
able to return the terminal to the idle state with the PF3 key. The selected
transaction is run on the selected server and the screen displayed to the user. If the
terminal is not idle, the sample program sends the PF3 key and then disconnects.

Java HighEpiI1 sample
This sample shows the use of ATI (automatic transaction initiation). To use this
sample, the CICS program EP03 must be installed on the CICS server. This sample
also uses the client and server compression classes.

Usage:
java com.ibm.ctg.samples.epi.HighEpiI1 [GatewayUrl] [Port]

The Gateway address and port can be provided as command line parameters. If no
URL is provided the sample programs default to local: mode.

A list of available servers is displayed. When a server has been selected, the
application creates an extended, sign-on incapable terminal, and makes a
synchronous connection to it. The user is prompted for a transaction ID; this
transaction must be located on the CICS server and it must be able to return the
terminal to the idle state with the PF3 key. Note that it is program EP03 (see
“Sample CICS programs and maps” on page 251) that demonstrates the use of an
ATI.

Because the design of the client application requires the reply to the start
transaction to be asynchronous, the sample program must instantiate an object that
implements the Session interface. The sample program contains an inner class
named ReplyHandler that does this. Therefore before the transaction is sent, the
ReplyHandler is instantiated and passed as a parameter to either setSession() or
send().

When the sample program sends the transaction, its thread enters a loop that tests
to see if a reply has been received. A different application could take this
opportunity to do other tasks, but all that is necessary in the sample program is to
monitor whether a reply has been received. When the reply is sent, the method
handleReply() is run on the ReplyHandler object in its own thread.

This method sets a Boolean value in the sample program thread to indicate that a
reply has been received. Upon receipt of the reply, the state of the terminal is
interrogated. If it is in server state the client application continues to wait for a
reply, otherwise the application continues, depending on the derived state (see the
comments in the source for further details). The sample program terminates when
the terminal has been returned to the idle state and disconnected.

JEE samples
These samples are based on the JEE (Java 2 Enterprise Edition) standard.

The JEE samples are in <install_path>/samples/java/com/ibm/ctg/samples/jee.

JEE ECIDateTime sample
This sample uses the ECI resource adapter, and calls the CICS program EC01. The
program uses an enterprise bean that makes CCI calls; a client to the enterprise
bean is also provided.

Chapter 18. Sample programs 257

The ECIDateTime sample program includes the following files:

ECIDateTimeBean.java
The enterprise bean ECIDateTime implementation code

ECIDateTime.java
The enterprise bean Remote interface

ECIDateTimeHome.java
The enterprise bean Home interface

JavaStringRecord.java
The sample program record interface that wraps an ECI COMMAREA

ECIDateTimeClient.java
The client for the enterprise bean

Enterprise beans have a main body of code and two interfaces. The Remote
interface contains the business methods that the bean implements (in this case, the
execute() method.) The Home interface manages the lifecycle of the enterprise
bean.

ECIDateTimeClient looks up the enterprise bean as ECIDateTimeBean1 in Java
Naming Directory Interface (JNDI), and then narrows the search to a specific object
using the remote interface as a type-cast. When execute() is called on this interface,
the method is called remotely on the enterprise bean. This remote method in turn
looks up the resource adapter's connection factory (an instance of the resource
adapter) under the name ECI and runs EC01 in CICS and gets the date and time
back as a COMMAREA, which it then returns to the caller (the client application).

To use the sample program:
1. Deploy the CICS ECI resource adapter; this is a file called <install_path>/

deployable/cicseci.rar.
2. Create a connection factory with parameters that are valid for your CICS server

environment (on IBM WebSphere Application Server, these settings are on the
Custom properties tab of the J2C connection factory settings), for more
information, see the information about deploying resource adapters in the CICS
Transaction Gateway Administration Guide. The connection factory must have a
JNDI name of ECI for the sample program to work.

3. Deploy the ECIDateTime sample. The sample is a file called ECIDateTime.ear
and is located in the <install_path>/deployable directory. The deployment
process is specific to your JEE application server, but mainly involves
identifying the interfaces to the deployment tool, after setting any properties
you need. The properties you are asked for might include:

Transaction type
This can be set to Container-managed or Bean-managed. This
determines whether you want to control transactions yourself. The JEE
application server manages Container-managed transactions; if
prompted, select this type for the sample program.

Enterprise bean type
ECIDateTime is a stateless session bean.

JNDI name
The enterprise bean client uses JNDI to look up the enterprise bean.
This allows you to find the name of the enterprise bean in the directory.
The ECIDateTimeClient requires this name to be set to
ECIDateTimeBean1.

258 CICS TG for Multiplatforms V9.2: Developing Applications

Resource references
The enterprise bean refers to another resource, the ECI resource
adapter. To enable this to happen, you need to:
a. Deploy a ConnectionFactory for the ECI resource adapter with a

JNDI name of ECI.
b. List this ConnectionFactory as a resource reference for this

enterprise bean.
4. Run the Client application. You can run it from a command line, but if using

IBM WebSphere, use the launchClient utility, which sets up the necessary
parameters to allow you to talk to the JNDI directory in IBM WebSphere to
find the ECIDateTime enterprise bean. The application returns the current date
and time from CICS application EC01.

JEE EPIPlayScript sample
This sample uses the EPI resource adapter and drives a CICS terminal using a
command script interpreted by the CCI enterprise bean.

The EPIPlayScript sample program includes the following files:

EPIPlayScriptBean.java
The EPIPlayScript implementation code

EPIPlayScript.java
The Remote interface

EPIPlayScriptHome.java
The Home interface

CICSCESNLogon.java
A sample logon/logoff class to drive the CICS transaction CESN via the
terminal

EPIPlayScriptClient.java
The client for the enterprise bean

Enterprise beans have a main body of code and two interfaces.
v The Remote interface contains the business methods that the bean implements

(in this case, the playScript(String script) method).
v The Home interface controls the lifecycle of the enterprise bean.

EPIPlayScriptClient looks up the enterprise bean as EPIPlayScriptBean1 in Java
Naming Directory Interface (JNDI), and then narrows the search to a specific object
using the remote interface as a type-cast. When execute() is called on this interface,
the method is called remotely on the enterprise bean. This remote method in turn
looks up the resource adapter's connection factory (an instance of the RA) under
the name EPI and then uses a simple script to drive a CICS terminal.

The script commands consist of a letter and a bracketed argument. The script is
provided as string by the EPIPlayScriptClient application.

Commands are as follows:

S(xxxx)
Start Transaction xxxx

F(nn)=text
Set field number nn to text.

Chapter 18. Sample programs 259

P(aid) Press key aid. An AID key is a function key in a CICS terminal, such as
Enter or Clearscreen. See the Java Programming Reference information for
AIDKey for the available keys.

C(row,col)
Set the cursor to row,col.

R(field)
Returns the value of field as a string array.

The script provided by the client is as follows:
S(EP02)P(enter)P(enter)P(enter)P(enter)R(2)R(6)

To run this sample program:
1. Deploy the CICS EPI resource adapter. This is a file called cicsepi.rar in the

<install_path>/deployable directory.
2. Create a connection factory with parameters that are valid for your CICS server

environment (on IBM WebSphere Application Server, these settings are on the
Custom properties tab of the J2C connection factory settings). See the
information about deploying resource adapters in the CICS Transaction Gateway
Administration Guide for more information. The connection factory must have a
JNDI name of “EPI” for the sample program to work.

3. Deploy the EPIPlayScript sample. The sample is a file called EPIPlayScript.ear
and is located in the <install_path>/deployable directory. You might also need
to set these properties:

EJB type
EPIPlayScript is a stateful session bean.

JNDI name
The enterprise bean is looked up by the enterprise client through JNDI.
This allows the enterprise client to find the bean in the directory. The
EPIPlayScriptClient requires this name to be set to
“EPIPlayScriptBean1”.

Resource References
The enterprise bean refers to another resource, the EPI resource adapter.
To enable this to happen:
a. Deploy a ConnectionFactory for the EPI resource adapter with a

JNDI name of “EPI”.
b. This ConnectionFactory should then be listed as a resource reference

for this enterprise bean.
4. If your terminal is sign-on capable, include

com.ibm.ctg.samples.jee.CICSCESNLogon as your LogonLogoff class. Place this
in the application. See “Using a Java 2 Security Manager” on page 135 for
information about security privileges that you might need to grant to your
enterprise bean.

5. Run the client application. You can run it from a command line, but if you are
using IBM WebSphere, use the launchClient utility. This sets up the necessary
parameters to allow the enterprise client to look up the bean in the JNDI
directory in IBM WebSphere to find the EPIPlayScript bean. The application
returns two fields from the EP02 screen:
v The number of times the EP02 has been run, which is five (Transaction

started, then enter was pressed four times)
v The current time

260 CICS TG for Multiplatforms V9.2: Developing Applications

JEE EC03Channel sample
This sample calls the CICS program EC03 using the CICS ECI resource adapter.
The program uses an enterprise bean that makes ECI calls; a client to the
enterprise bean is provided.

The EC03Channel sample program includes the following files:

EC03ChannelBean.java
The implementation of the EC03 channel EJB

EC03Channel.java
The Remote interface for the EC03 channel EJB

EC03ChannelHome.java
The Home interface for the EC03 channel EJB

EC03ChannelClient.java
A basic client which calls the EC03 channel EJB

Enterprise beans have a main body of code and two interfaces. The Remote
interface contains the business methods that the bean implements (in this case, the
execute() method). The Home interface manages the lifecycle of the enterprise
bean.

EC03ChannelClient looks up the enterprise bean as EC03ChannelHome in Java
Naming Directory Interface (JNDI), and then narrows the search to a specific object
using the remote interface as a type-cast. When execute() is called on this interface,
the method is called remotely on the enterprise bean. This remote method in turn
looks up the resource adapter's connection factory (an instance of the resource
adapter) under the name ECI and runs EC03 in CICS, passing in a channel with
one container. When the ECI call program returns, the containers returned from the
program are enumerated and placed into a HashMap, which is then returned to
the client.

To use the sample program:
1. Deploy the CICS ECI resource adapter (cicseci.rar); this is located in the

deployable directory of the CICS Transaction Gateway install path.
2. Create a connection factory with parameters that are valid for your CICS server

environment (on IBM WebSphere Application Server, these settings are on the
Custom properties tab of the J2C connection factory settings). See the
information about deploying resource adapters in the CICS Transaction Gateway
Administration Guide for more information. The connection factory must have a
JNDI name of “ECI” for the sample program to work.

3. Deploy the EC03Channel sample. The sample is a file called EC03Channel.ear
and is located in the <install_path>/deployable directory. The deployment
process is specific to your JEE application server, but mainly involves
identifying the interfaces to the deployment tool, after setting any properties
you need. The properties you are asked for might include:

Transaction type
Can be set to container-managed or bean-managed. This determines
whether you want to control transactions yourself. The JEE application
server manages Container-managed transactions; if prompted, select
this type for the sample program.

Enterprise bean type
EC03Channel is a stateless session bean.

Chapter 18. Sample programs 261

JNDI name
The enterprise bean client uses JNDI to look up the enterprise bean.
This allows the enterprise client to find the name of the enterprise bean
in the directory.

Resource references
The enterprise bean refers to a connection factory. To enable this to
happen you need to add the connection factory defined in Step 2 on
page 261 as a resource reference for this enterprise bean.

4. Run the Client application. You can run it from a command line, but if using
IBM WebSphere, use the launchClient utility, which sets up the necessary
parameters to allow the enterprise client to look up the bean in the JNDI
directory in IBM WebSphere to find the EC03Channel enterprise bean. The
application calls the bean, passing a string of text to the EC03 program, and
displays the contents of the containers returned.

C remote client samples
These samples demonstrate the use of the ECI V2 and ESI V2 APIs.

The ECI V2 samples are written in C and are installed in the <install_path>/
samples/c/eci_v2 product directory or the <SDK_path>/api/c/remote/samples/
eci_v2 SDK directory.

The ESI V2 sample is written in C and is installed in the <install_path>>/
samples/c/esi_v2 product directory or the <SDK_path>/api/c/remote/samples/
esi_v2 SDK directory.

C ctgecib1 sample
This sample lists the CICS servers defined on a remote CICS Transaction Gateway,
and allows you to select the CICS server to which an ECI program call is made.
This call is then made and the date and time are returned by the CICS program
EC01.

The ctgecib1 sample is written in C and installed in <install_path>/samples/c/
eci_v2 or the <SDK_path>/api/c/remote/samples/eci_v2 SDK directory.

To build the product sample, change to the <install path>/samples/c/eci_v2
directory directory and issue the following command:

Table 29. Commands used to build the product sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f samp.mak make -f samp64.mak

Linux on POWER using IBM
XL C

make -f samp.mak
COMPILER=XL

make -f samp64.mak
COMPILER=XL

Windows ctgecib1mak.cmd 32 ctgecib1mak.cmd 64

To build the SDK sample, change to the <SDK_path>>/api/c/remote/samples/
eci_v2 directory and issue the following command:

262 CICS TG for Multiplatforms V9.2: Developing Applications

Table 30. Commands used to build the SDK sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f make32
OS=<platform>

make -f make64
OS=<platform>

Linux on POWER using IBM
XL C

make -f make32
OS=<platform> COMPILER=XL

make -f make64
OS=<platform> COMPILER=XL

Windows make 32 make 64

where <platform> is one of: IBM AIX, HPUX, LinuxI, LinuxP, LinuxZ, Solaris.

Once compiled, the sample program can be executed using the following
command:
ctgecib1 [host name] [port number]

C ctgecib2 sample
This sample lists the CICS servers defined on a remote CICS Transaction Gateway,
and allows you to select the CICS server to which a number of asynchronous ECI
program calls are made. The CICS program EC01 returns the date and time on
each call. A separate thread retrieves the responses for the program calls and
displays the results of each call.

The ctgecib2 sample is written in C and is installed in the <install_path>/
samples/c/eci_v2 product directory or the <SDK_path>/api/c/remote/samples/
eci_v2 SDK directory.

To build the product sample, change to the <install_path>/samples/c/eci_v2
directory and issue the following command:

Table 31. Commands used to build the product sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f samp.mak make -f samp64.mak

Linux on POWER using IBM
XL C

make -f samp.mak
COMPILER=XL

make -f samp64.mak
COMPILER=XL

Windows ctgecib2mak.cmd 32 ctgecib2mak.cmd 64

To build the SDK sample, change to the <SDK_path>/api/c/remote/samples/eci_v2
directory and issue the following command:

Table 32. Commands used to build the SDK sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f make32
OS=<platform>

make -f make64
OS=<platform>

Linux on POWER using IBM
XL C

make -f make32
OS=<platform> COMPILER=XL

make -f make64
OS=<platform> COMPILER=XL

Windows make 32 make 64

where <platform> is one of: IBM AIX, HPUX, LinuxI, LinuxP, LinuxZ, Solaris.

Once compiled, the sample program can be started using the following command:
ctgecib2 [host name] [port number] [num calls] [user id] [password]

Chapter 18. Sample programs 263

C ctgecib3 sample
This sample lists the systems defined on a remote CICS Transaction Gateway, and
allows you to select the one to which an ECI program call is made. The supplied
CICS program EC03 is called with a channel and a single CHAR container. The
program updates the channel by adding new containers. The sample program lists
all the containers that are returned from the EC03 program.

The ctgecib3 sample is written in C and is installed in the <install_path>/
samples/c/eci_v2 product directory or the <SDK_path>/api/c/remote/samples/
eci_v2 SDK directory.

To build the product sample, change to the <install_path>/samples/c/eci_v2
directory and issue the following command:

Table 33. Commands used to build the product sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f samp.mak make -f samp64.mak

Linux on POWER using IBM
XL C

make -f samp.mak
COMPILER=XL

make -f samp64.mak
COMPILER=XL

Windows ctgecib3mak.cmd 32 ctgecib3mak.cmd 64

To build the SDK sample, change to the <SDK_path>/api/c/remote/samples/eci_v2
directory and issue the following command:

Table 34. Commands used to build the SDK sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f make32
OS=<platform>

make -f make64
OS=<platform>

Linux on POWER using IBM
XL C

make -f make32
OS=<platform> COMPILER=XL

make -f make64
OS=<platform> COMPILER=XL

Windows make 32 make 64

where <platform> is one of: IBM AIX, HPUX, LinuxI, LinuxP, LinuxZ, Solaris.

Once compiled, the sample program can be started using the following command:
ctgecib3 [host name] [port number]

C ctgesib1 sample
This sample lists the CICS servers defined on a remote CICS Transaction Gateway,
and allows you to select a server. You are prompted to input the user ID and
password or password phrase which are then verified on the chosen server using
the ESI V2 API. The last verified time of the user ID and the password expiry time
are displayed.

The ctgesib1 sample is written in C and is installed in the <install_path>>/
samples/c/esi_v2 or the <SDK_path>/api/c/remote/samples/esi_v2 SDK directory.

To build the sample, change to the <install_path>/samples/c/esi_v2 directory
and issue the following command:

264 CICS TG for Multiplatforms V9.2: Developing Applications

Table 35. Commands used to build the product sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f samp.mak make -f samp64.mak

Linux on POWER using IBM
XL C

make -f samp.mak
COMPILER=XL

make -f samp64.mak
COMPILER=XL

Windows ctgesib1mak.cmd 32 ctgesib1mak.cmd 64

To build the SDK sample, change to the <SDK_path>/api/c/remote/samples/esi_v2
directory and issue the following command:

Table 36. Commands used to build the SDK sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f make32
OS=<platform>

make -f make64
OS=<platform>

Linux on POWER using IBM
XL C

make -f make32
OS=<platform> COMPILER=XL

make -f make64
OS=<platform> COMPILER=XL

Windows make 32 make 64

where <platform> is one of: IBM AIX, HPUX, LinuxI, LinuxP, LinuxZ, Solaris.

When compiled, the sample program can be executed using the following
command:
ctgesib1 [host name] [port number]

C, C++ and COBOL local client samples
These samples show the use of the C and C++ APIs for ECI V1, EPI, and ESI V1 in
C, C++ and COBOL applications

The local client samples are installed as part of the CICS Transaction Gateway
product in the <install_path>/samples directory. They are also available as part of
the Software Development Kit in the <SDK_path>/api/*/local/samples directories
where * can be c, cobol, or cpp.

To compile the C and C++ sample programs on 64-bit Linux ensure that the 32-bit
compatibility development packages, including glibc-devel-32bit, are installed.
This applies to all supported architectures.

On Windows, the output from building the samples can be found under the
<product_data_path>/samples directory.

On UNIX and Linux, the output from building the samples can be found in the
current working directory.

The C and C++ sample programs require you to change the user ID and password
in the code for your environment.

Building C sample programs
Each sample program is in a subdirectory of the <install_path>/samples/c
directory.

Chapter 18. Sample programs 265

The software that is supported for developing C applications is listed in
Development environments.

On Windows, the sample programs can be built using the supplied command files.
For example, to build the basic ECI sample ecib1.c, go to the eci subdirectory and
process the ecib1mak.cmd file. All C samples can be built by changing to the
<install path>/samples/c directory and processing the sampmak.cmd file.

On UNIX and Linux, you can build all the C sample programs, by changing the
directory to the <install_path>/samples/c directory and running the sample make
file, samp.mak. The make file <install_path>/samples/c/samp.mak is a parent
make file that invokes the sample make files in each of the subdirectories. The
executable files are created in the subdirectories. To process the make file, issue the
following command:
make -f samp.mak

Linux on POWER supports the use of IBM XL C and GNU C. To compile the C
sample programs using the IBM XL C compiler, use the command.
make -f samp.mak COMPILER=XL

Building C++ sample programs
Each sample program is in a subdirectory of the <install_path>/samples/cpp
directory.

The software that is supported for developing C applications is listed in
Development environments.

On Windows, each sample program can be built using the supplied command files.
For example, to build the basic ECI sample ecib1.cpp, go to the eci subdirectory
and process the ecib1mak.cmd file. All C++ samples can be built by changing to
the <install_path>/samples/cpp directory and procssing the sampmak.cmd file.

On UNIX and Linux, you can build all the C++ sample programs by changing to
the <install_path>/samples/cpp directory and processing the sample make file,
samp.mak. The make file <install_path>/samples/cpp/samp.mak is a parent make
file that invokes the sample make files in each of the subdirectories. The executable
files are created in the subdirectories. To process the make file, issue the following
command:
make -f samp.mak

Linux on POWER supports the use of IBM XL C++ and GNU C++. To compile the
C++ sample programs using the IBM XL C++ compiler, use the command:
make -f samp.mak COMPILER=XL

Building COBOL sample programs
Each sample program is in a subdirectory of the <install_path>/samples/cobol
directory.

On Windows, the sample programs can be built using the supplied command files.
For example, to build the basic ECI sample ecib1.cbl, use the command
ecib1cbl.cmd, which is in the same directory as the source. Both COBOL samples
can be built using the <install_path>\samples\cobol\sampmak.cmd file with
either the MF or VAC parameter. The command file uses either the Micro Focus

266 CICS TG for Multiplatforms V9.2: Developing Applications

COBOL compiler or the IBM COBOL for Windows compiler to compile the
program. Specify the compiler to use by issuing an ecib1cbl command, for
example:
ecib1cbl MF (for Micro Focus)
ecib1cbl VAC (for IBM COBOL for Windows)

If you are using the Micro Focus COBOL compiler, refer to the comments in the
COBOL samples for information about what you need to do before you can run
them.

On UNIX and Linux, both COBOL sample programs can be built using the Korn
shell build file <install_path>/samples/cobol/sampmak. The build file sampmak
must be run from the <install_path>/samples/cobol directory. To display the usage
syntax of sampmak issue the command:
./sampmak -?

To build the COBOL sample programs you must specify the mf or ibm parameter
(the ibm parameter is supported on IBM AIX only). For example: sampmak mf (for
MicroFocus) or sampmak ibm (for IBM COBOL for IBM AIX).

The source code for the ECI sample program is located in the eci subdirectory. The
source code for the EPI sample program is located in the epi subdirectory.

C/C++ ECIB1 sample
This sample lists the CICS server defined in the Gateway daemon configuration
file (ctg.ini) and allows you to select the one to which an ECI call is made. This call
is then made and the date and time are returned by the CICS program EC01.

C/C++ ECII1 sample
This sample lists the CICS servers defined in the Gateway daemon configuration
file (ctg.ini) and allows you to select the one to which an ECI call is made. A unit
of work is then started and the first ECI call is made to the CICS program EC02.

You then have the choice of running EC02 again or finishing the unit of work. On
exit from the loop you can choose either to commit or back out the current unit of
work.

In this sample program, all calls are asynchronous and are handled using event
functions that are found in the supplied cclcalls.h header file. This header file must
be in the <install_path>/include directory when you build this sample program.

C/C++ EPIB1 sample
This sample lists the CICS servers defined in the Gateway daemon configuration
file (ctg.ini) and allows you to select the one to which an EPI call is made.

You are then prompted to enter the name of a transaction; enter EP01. The call is
then made and the 3270 data stream returned by transaction EP01 is displayed on
the screen.

C/C++ EPII1 sample
This sample lists the CICS servers defined in the Gateway daemon configuration
file (ctg.ini), and allows you to select the one to which an EPI call is made.

Chapter 18. Sample programs 267

A terminal is then installed asynchronously and you are prompted to run a
transaction. Enter EP01 or EP02 for the transaction, which is called asynchronously.
When a reply has been received, the screen returned by EP01 or EP02 is displayed,
and you are prompted for further input options. The header file cclcalls.h is
needed for the event handling functions within this sample program.

C/C++ EPIA1 sample
This sample uses multithreading to call the CICS program EP01 or EP02 on every
CICS server defined in the Gateway daemon configuration file ctg.ini.

The call passes parameters that define the following:
v The number of threads run on each server
v The number of calls to EP01 or EP02 per thread
v Call type, synchronous or asynchronous

This sample program needs the supplied header file cclcalls.h for the threading
functions used.

C/C++ ECIA1 sample
This sample uses multithreading to call CICS program EC01 on every CICS server
defined in the Gateway daemon configuration file, ctg.ini.

The call passes parameters that define the following:
v The number of threads run on each server
v The number of calls to EC01 per thread
v Call type (synchronous or asynchronous)

This sample program needs the supplied header file cclcalls.h for the threading
functions used.

C/C++ ESIB1 sample
This sample lists the CICS servers defined in the Gateway daemon configuration
file (ctg.ini) and authenticates you before calling CICS program EC01.

You are prompted to select the server to which an ECI call is made, and on which
your security is verified. You then enter a user ID and password for verification on
the chosen server using the ESI API. When they have been verified, the user ID
and password are used in a synchronous ESI call of EC01. The reply by EC01 is
then displayed on the screen.

ECI extensions that are environment-dependent
This information describes extensions to the ECI that are supported only in certain
environments.

Call type extensions
The following call types are for asynchronous calls.

For more information about the program link calls, see the table in “ECI return
notification” on page 270, and the information about ECI_ASYNC call type in the
CICS Transaction Gateway for z/OS: Programming Reference.

For more information about the status information calls, see the table in “ECI
return notification” on page 270, and the information about ECI_STATE_ASYNC
call type in the CICS Transaction Gateway for z/OS: Programming Reference.

268 CICS TG for Multiplatforms V9.2: Developing Applications

Asynchronous ECI call with notification by message:

The asynchronous ECI call type with notification by message
(ECI_ASYNC_NOTIFY_MSG) is available only for programs running on Windows.

The calling application regains control when the ECI accepts the request. This does
not indicate that the program has started to run, it indicates that the parameters
have been validated. The request might be queued for later processing.

The ECI sends a notification message to the specified window when the response
is available. For information about the message format, see “Reply message
formats” on page 270. When this notification has been received, the calling
application should use ECI_GET_SPECIFIC_REPLY to receive the actual response; the
ECI_GET_REPLY call type is no longer supported.

The following fields are required parameters for notification by message:

eci_async_notify.window_handle
The handle of the window to which the reply message is posted.

eci_message_id
The message type to be used in the notification process.

eci_message_qualifier
Can be used as an input to provide a user-defined name for the call. It is
returned as part of the notification message for the Windows environment.

Asynchronous ECI call with notification by semaphore:

The asynchronous ECI call type with notification by semaphore
(ECI_ASYNC_NOTIFY_SEM) is available only for programs running on Windows.

The calling application gets control back when the ECI accepts the request. Note
that this does not indicate that the program has started to run, merely that the
parameters have been validated. The request might be queued for later processing.

The ECI posts the specified semaphore when the response is available. On receipt
of this notification, the calling application uses ECI_GET_SPECIFIC_REPLY to
receive the actual response.

eci_message_qualifier can be used as an input to provide a user-defined name for
the call.

The following field is a required parameter for notification by semaphore:
v eci_async_notify.sem_handle refers to the semaphore.

Fields to support ECI extensions
These fields in the ECI parameter block are to support environment-dependent
extensions.

eci_async_notify.window_handle
(Windows environment, ECI_ASYNC_NOTIFY_MSG and
ECI_STATE_ASYNC_MSG call types)

The handle of the window to which the reply message will be posted.

The ECI uses this field as input only.

Note: eci_window_handle is a synonym for this parameter.

Chapter 18. Sample programs 269

eci_async_notify.sem_handle
(Windows environment, ECI_ASYNC_NOTIFY_SEM and
ECI_STATE_ASYNC_SEM call types)

Windows applications should pass an event object handle.

The ECI uses this field as input only.

eci_async_notify.win_fields.hwnd

The handle of the Windows window to which the reply message will be
posted.

The ECI uses this field as input only.

eci_async_notify.win_fields.hinstance

The Windows hInstance of the calling program as supplied during
program initialization.

The ECI uses this field as input only.

eci_sync_wait.hwnd

The handle of the window that is to be disabled during the synchronous
call.

The ECI uses this field as input only.

eci_message_id
(Windows environment, ECI_ASYNC_NOTIFY_MSG and
ECI_STATE_ASYNC_MSG call types)

The message identifier to be used for posting the reply message to the
window specified in the relevant window handle.

The ECI uses this field as input only.

Reply message formats
When an application makes an asynchronous call requesting notification by
message, the ECI returns the result in a message to a window using the specified
window handle and message identifier.

The message is divided into two parameters, as follows:

wParam

High-order 16 bits
Specified message qualifier

Low-order 16 bits
Return code

lParam
4-character abend code, if applicable

ECI return notification
ECI notifications are returned to the user of the ECIRequest object.

Table 37. CICS_ExternalCall return codes — environment-dependent extensions

Return code Meaning

ECI_ERR_NULL_WIN_HANDLE An asynchronous call was specified with the
window handle set to 0.

270 CICS TG for Multiplatforms V9.2: Developing Applications

Table 37. CICS_ExternalCall return codes — environment-dependent
extensions (continued)

Return code Meaning

ECI_ERR_NULL_MESSAGE_ID An asynchronous call was specified with the
message identifier set to 0.

ECI_ERR_NULL_SEM_HANDLE A null semaphore handle was passed when
a valid handle was required.

Summary of ECI input parameters
The ECI call input parameters shown here are either required (mandatory) or
optional other parameters are not applicable.

Table 38 shows the input parameters for an ECI call, and, for each call type,
whether the parameters are required (R), optional (O), or not applicable (-). Where
a parameter is shown as optional or not-applicable an initial field setting of nulls is
recommended. An asterisk (*) immediately following an R means that further
details regarding applicability are given under the description of the parameter.

The following abbreviations are used in the Parameter column:

AN async_notify

WF win_fields

SW sync_wait

Also, all named parameters have an eci_ prefix. Thus AN.WF.hwnd represents the
eci_async_notify.win_fields.hwnd parameter.

The following 3-character abbreviations are used for the call types in the column
headings of the table:

ANM ECI_ASYNC_NOTIFY_MSG

ANS ECI_ASYNC_NOTIFY_SEM

SAM ECI_STATE_ASYNC_MSG

SAS ECI_STATE_ASYNC_SEM

SYN ECI_SYNC

SSN ECI_STATE_SYNC

Table 38. Input parameters for CICS_ExternalCall — environment-dependent extensions

Parameter, eci_ ANM ANS SAM SAS SYN SSN

call_type R R R R R R

program_name R* R* - - R* -

userid R R - - R -

password R R - - R -

transid O O - - O -

commarea O O R* R* O R*

commarea_length O O R* R* O R*

timeout O O O O O O

Chapter 18. Sample programs 271

Table 38. Input parameters for CICS_ExternalCall — environment-dependent
extensions (continued)

Parameter, eci_ ANM ANS SAM SAS SYN SSN

extend_mode R R R R R R

AN.window_handle R* - R* - - -

AN.sem_handle - R - R - -

AN.WF.hwnd R* - R* - - -

AN.WF.hinstance R* - R* - - -

SW.hwnd - - - - R* R*

message_id R - R - - -

message_qualifier O O O O O O

luw_token R R R* R* R R*

version O O O O O O

system_name O O O O O O

C# and Visual Basic samples based on Microsoft .NET Framework
These samples show how NET Framework-based client applications written in C#
and Visual Basic can make ECI and ESI calls to CICS.

C# and Visual Basic EciB1 sample based on Microsoft .NET
Framework

This sample lists the CICS servers defined on a CICS Transaction Gateway, and
allows you to select the CICS server to which an ECI program call is made. The
call is made and the date and time are returned by program EC01.

The sample is provided in C# and Visual Basic .NET. The C# sample is in
<install_path>/samples/csharp/eci, and the Visual Basic .NET sample is in
<install_path>/samples/vb/eci.

You can compile the sample using Microsoft Visual Studio or from a Windows
command prompt. A Microsoft Visual Studio project file is provided for each
language.

To build the sample program from a command prompt, change to the appropriate
directory and run the supplied command file EciB1mak.cmd. The file compiles the
program for Windows using the C# or Visual Basic .NET compiler which are
provided by the Microsoft .NET Framework.

When compiled, you can execute the sample program using the following
command:
EciB1 [host name] [port number]

C# and Visual Basic EciB3 sample based on Microsoft .NET
Framework

This sample lists the systems defined on a CICS Transaction Gateway, and allows
you to select the one to which an ECI program call is made. The supplied CICS
program EC03 is called with a channel and a single CHAR container. The program
updates the channel by adding new containers. The sample program lists all the

272 CICS TG for Multiplatforms V9.2: Developing Applications

containers that are returned from the EC03 program. The name, type and data
contained within the returned containers is displayed to the console.

The sample is provided in C# and Visual Basic .NET. The C# sample is in
<install_path>/samples/csharp/eci, and the Visual Basic .NET sample is in
<install_path>/samples/vb/eci.

You can compile the sample using Microsoft Visual Studio or from a Windows
command prompt. A Microsoft Visual Studio project file is provided for each
language.

To build the sample program from a command prompt, change to the appropriate
directory and run the supplied command file EciB3mak.cmd. The file compiles the
program for Windows using the C# or Visual Basic .NET compiler which is
provided by the Microsoft .NET Framework.

When compiled, you can execute the sample program using the following
command:
EciB3 [host name] [port number]

C# and Visual Basic EsiB1 sample based on Microsoft .NET
Framework

This sample lists the CICS servers defined on a CICS Transaction Gateway and
allows you to select one. Using the ESI API, you then enter a user ID, and
password or password phrase, for verification on the selected CICS server.
Information about the account being used is displayed on the screen.

The sample is provided in C# and Visual Basic .NET. The C# sample is in
<install_path>/samples/csharp/esi, and the Visual Basic .NET sample is in
<install_path>/samples/vb/esi. You can compile the sample using Microsoft
Visual Studio or from a Windows command prompt. A Microsoft Visual Studio
project file is provided for each language.

To build the sample program from a command prompt, change to the appropriate
directory and run the supplied command file EsiB1mak.cmd. The file compiles the
program for Windows using the C# or Visual Basic .NET compiler which is
provided by the Microsoft .NET Framework.

When compiled, you can execute the sample program using the following
command:
EsiB1 [host name] [port number]

User exit samples
These samples illustrate the use of CICS Transaction Gateway user exits.

Java security exit data compression samples
These samples illustrate the use of the Java security exits principally to compress
the data stream between the client application and the Gateway daemon.
v ClientCompression implements ClientSecurity and demonstrates data

compression.
v ServerCompression implements ServerSecurity and demonstrates data

compression.

Chapter 18. Sample programs 273

v SSLServerCompression implements JSSEServerSecurity and demonstrates how to
expose an SSL client certificate.

The source for these samples is in <install_path>/samples/java/com/ibm/ctg/
samples/security.

Java request monitoring exit samples
These samples show basic and extended use of the CICS Transaction Gateway Java
request monitoring exits.

Java BasicMonitor request monitoring exit sample
This sample shows the basic use of the CICS Transaction Gateway request
monitoring exits. The sample program writes the data available at each exit point
to STDOUT or to a file specified by the Java property
com.ibm.ctg.samples.requestexit.out.

The class name for this sample is com.ibm.ctg.samples.requestexit.BasicMonitor

To enable the sample program on the Gateway daemon you must do the following:
1. Add ctgsamples.jar to the class path used when starting the CICS Transaction

Gateway.
2. Set the requestexits value in the configuration file (ctg.ini) to

com.ibm.ctg.samples.requestexit.BasicMonitor.
3. On UNIX and Linux the sample program writes the data available at each exit

point to STDOUT by default. On Windows the sample program writes the data
available at each exit point to file basicMonitorOutput.txt in the CICS TG data
directory by default. You can override the default output destination by setting
the Java property com.ibm.ctg.samples.requestexit.out to specify the name of
the file to be written.

Java ThreadedMonitor request monitoring exit sample
This sample extends the BasicMonitor sample program. The sample uses a
background thread to reduce the overhead for each monitored request. The sample
program writes the data available at each exit point to STDOUT or to a file
specified by the Java property com.ibm.ctg.samples.requestexit.out. Errors are
logged to STDERR or to a file specified by the Java property
com.ibm.ctg.samples.requestexit.err.

The class name of this sample is
com.ibm.ctg.samples.requestexit.ThreadedMonitor.

To enable the sample program on the Gateway daemon you must do the following:
1. Add ctgsamples.jar to the class path used when starting CICS Transaction

Gateway.
2. Set the requestexits value in the configuration file to

com.ibm.ctg.samples.requestexit.ThreadedMonitor.
3. On UNIX and Linux, errors are logged to STDERR by default. On Windows,

errors are logged to file threadedMonitorError.txt in the CICS TG data
directory by default. You can override the default error destination by setting
the Java property com.ibm.ctg.samples.requestexit.err to specify the name of
the file to write errors to

4. Errors are written to STDERR by default. To capture data to a file use the Java
property com.ibm.ctg.samples.requestexit.err, for example:
ctgstart -j-Dcom.ibm.ctg.samples.requestexit.err=/hfs.error.file

274 CICS TG for Multiplatforms V9.2: Developing Applications

5. An alert is logged for any transactions that take longer than 15 seconds. To
change this time, use the Java property com.ibm.ctg.samples.requestexit.lrt,
for example:
ctgstart -j-Dcom.ibm.ctg.samples.requestexit.lrt=5000

(time is in milliseconds).

The sample program code details additional optional parameters that can be set.

Java CICS request exit samples
Two sample CICS request exits are provided. The first sample exit returns the CICS
server to use for an ECI or ESI request. The second sample exit supports workload
management using a round-robin algorithm.

Location of sample files

The source code for the CICS request exit samples is provided in the following
location: <install_path>/samples/java/com/ibm/ctg/samples/ha.

BasicCICSRequestExit

This sample shows you how to implement a basic CICS request exit. The
getCICSServer method returns the CICS server to be used on an ECI or ESI
request, based on a predefined server mapping. If the CICS server on the ECI or
ESI request is defined in the server mapping, the actual CICS server that it maps to
is returned. If the CICS server on the ECI or ESI request is not defined in the
server mapping, the CICS server is returned unchanged.

RoundRobinCICSRequestExit

This sample shows you how to implement a CICS request exit to perform
workload management. Each time that the getCICSServer method is called, it
returns the next CICS server, in a threadsafe manner, from a predefined list. The
CICS server specified on the ECI or ESI request by the application is ignored. The
retry count is set so that each server in the list is called at most once for each
request.

Using the CICS request exit samples
Before using these samples modify the code so that the samples reference known
CICS servers.

When these changes have been made, compile the sample, for example by using
the javac command.

When configuring each sample exit for use in a specific environment refer to the
following information:

BasicCICSRequestExit

The constructor for this class populates a hash table with mappings between a
name that would be used by the Java client application and an actual CICS server.
Change the contents of the hash table so that there is a mapping between the CICS
server specified on the ECI or ESI request, by the Java client application, and an
actual CICS server.

Chapter 18. Sample programs 275

RoundRobinCICSRequestExit

The list of available CICS servers is contained in the serverList array. Change the
values stored in this array to a list of actual CICS servers.

C ECI and EPI user exit template samples
These samples provide templates containing the ECI and EPI user exit functions,
their return codes and meanings. The templates support the writing of user exit
applications but do not contain any function.

The templates are:
v ecix1.c
v epix1.c

When you have built a user exit application, put it in <install_path>/bin. In
addition to the standard ECI or EPI header files, the sample programs require the
cicsecix.h or cicsepix.h header files in <install_path>/include. For more
information on how to install a user exit, see “ECI and EPI C exits” on page 243.

C ECI and EPI user exit samples
These samples redirect requests to a server other than that specified by the Client
application.

If your server configuration changes, you can continue to use your existing
applications, without changing the application code. The samples are:
v ecix2.c
v epix2.c

You define server aliases through two arrays: redirectFrom and redirectTo. Any
request to a server that appears in redirectFrom is redirected to the server defined
in the corresponding entry in the redirectTo array. For example, the sample
programs redirect any requests sent to a server named SERVER2 to a server named
SERVERAA. Requests sent to SERVER4 are sent to SERVERBB.

To change the names of the servers in the sample program to match your
configuration:
1. Set the NUM_SERVERS constant to the number of elements in your arrays (set

to 4 in the sample programs)
2. Change the elements of the requestFrom and requestTo arrays. The number of

elements must be the same in each array.
3. Recompile the sample program.

When you have built a user exit application, put it in <install_path>/bin. In
addition to the standard ECI or EPI header files, the sample programs require the
cicsecix.h or cicsepix.h header files in <install_path>/include. For more
information on how to install a user exit, see “ECI and EPI C exits” on page 243.

Building C user exit samples
Two “make” files are provided for you to build the user exit samples.

The samples are in subdirectories of <install_path>/samples/c/exits.

276 CICS TG for Multiplatforms V9.2: Developing Applications

The user exit directory <install_path>/samples/c/exits provides two “make”
files. The user exit template sample programs ecix1.c and epix1.c are built by the
parent makefile <install_path>/samples/c/samp.mak.

The user exit redirection sample programs ecix2.c and epix2.c can be built on
Windows using the supplied command files. For example, to build ecix2.c, use the
command ecix2mak.cmd, which is in the same subdirectory as the source.

To build the user exit redirection sample programs ecix2.c and epix2.c on UNIX
and Linux, do the following:
1. Change to <install_path>/samples/c/exits.
2. To compile the user exit sample programs using the supplied sample makefile,

issue the following command:
make -f samp2.mak

To compile the user exit sample programs on Linux on POWER using the IBM
XL C compiler, issue the following command:
make -f samp2.mak COMPILER=XL

C and Java statistics API samples
These samples show use of the statistics API for C and Java clients.

C ctgstat1 statistics API sample
This sample shows how Gateway daemon statistics can be obtained by C clients.

The statistics sample program is written in C and can be found in the
<install_path>/samples/c/stats directory or the <SDK_path>/spi/statistics/c/
samples SDK directory.

The ctgstat1 C sample program demonstrates the following functions:
1. Connecting to the statistical API port.
2. Querying running Gateway daemons for statistics in the connection manager

resource group.
3. Obtaining values for these statistics.
4. Retrieving and displaying information about the Gateway daemon running

time and the total number of requests made.

Building the product sample
1. Change directory to <install_path>/samples/c/stats.
2. On Windows, run the supplied command file

ctgstat1mak.cmd

3. On UNIX and Linux, issue the following command:
make -f samp.mak

4. On Linux on POWER using the IBM XL C compiler, issue the following
command:
make -f samp.mak COMPILER=XL

Building the SDK sample
1. Change directory to <SDK_path>/spi/statistics/c/samples.
2. On Windows, run the command file

make.cmd

Chapter 18. Sample programs 277

3. On UNIX and Linux, issue the command:
make OS=<platform>

4. On Linux for POWER using the IBM XL C compiler, issue the command:
make OS=<platform> COMPILER=XL

where <platform> is one of: IBM AIX, HPUX, LinuxI, LinuxP, LinuxZ, Solaris.

Java Ctgstat1 statistics API sample
This sample shows how Gateway daemon statistics can be obtained by Java clients.

The statistics sample program is written in Java and is in samples/java/com/ibm/
ctg/samples/stats/Ctgstat1.java.

The Ctgstat1 Java sample program demonstrates the following functions:
1. Connecting to the statistical API port.
2. Querying running Gateway daemons for statistics in the connection manager

resource group.
3. Obtaining values for these statistics.
4. Retrieving and displaying information about the Gateway daemon running

time and the total number of requests made.

A precompiled version of com.ibm.ctg.samples.stats.Ctgstat1 is included in the Java
archive file classes/ctgsamples.jar.

The ctgstats.jar file must be on the class path.

For information about the API see “Statistics Java API” on page 108.

Java Ctgstat2 statistics recording sample
This sample shows how an application can parse an XML statistics log file,
validate it against the ctgstatslog.xsd XML schema file and output statistics in a
simple text format.

The supplied sample Ctgstat2 demonstrates a simple application using the XML
statistics log file and XML schema file. The XML schema file, ctgstatslog.xsd, will
need to be in the same directory as the XML statistics log file.

The statistics sample program is written in Java and supplied in
samples/java/com/ibm/ctg/samples/stats/Ctgstat2.java. A precompiled version
of com.ibm.ctg.samples.stats.Ctgstat2 is included in the Java archive file
classes/ctgsamples.jar.

Usage:
java com.ibm.ctg.samples.stats.Ctgstat2 filename

where filename is the name of the XML statistics file.

278 CICS TG for Multiplatforms V9.2: Developing Applications

Part 2. Appendixes

© Copyright IBM Corp. 1998, 2016 279

280 CICS TG for Multiplatforms V9.2: Developing Applications

Glossary

This glossary defines the terms and abbreviations used in CICS Transaction
Gateway and in the information centers.

A

abnormal end of task (abend)
The termination of a task, job, or subsystem because of an error condition
that recovery facilities cannot resolve.

Advanced program-to-program communication (APPC)
An implementation of the SNA/SDLC LU 6.2 protocol that allows
interconnected systems to communicate and share the processing of
programs. The Client daemon uses APPC to communicate with CICS
systems.

APAR See Authorized program analysis report.

API See application programming interface.

APPC See Advanced program-to-program communication.

application programming interface (API)
A functional interface that allows an application program that is written in
a high-level language to use specific data or functions of the operating
system or another program.

APPLID

1. On CICS Transaction Gateway: The application identifier that is used to
identify connections on the CICS server and tasks in a CICSplex. See
also APPLID qualifier and fully qualified APPLID.

2. On CICS Transaction Server: The name by which a CICS system is
known in a network of interconnected CICS systems. CICS Transaction
Gateway application identifiers do not need to be defined in
SYS1.VTAMLST. The CICS APPLID is specified in the APPLID system
initialization parameter.

APPLID qualifier
Optionally used as a high-level qualifier for the APPLID to form a fully
qualified APPLID. See also APPLID and fully qualified APPLID.

ARM See automatic restart manager.

ATI See automatic transaction initiation.

attach In SNA, the request unit that flows on a session to initiate a conversation.

Attach Manager
The component of APPC that matches attaches received from remote
computers to accepts issued by local programs.

Authorized Program Analysis Report (APAR)
A request for correction of a defect in a current release of an IBM-supplied
program.

autoinstall
A method of creating and installing resources dynamically as terminals log
on, and deleting them at logoff.

© Copyright IBM Corp. 1998, 2016 281

automatic restart manager (ARM)
An IBM z/OS recovery function that can improve the availability of
specific batch jobs or started tasks, and therefore result in faster
resumption of productive work.

automatic transaction initiation (ATI)
The initiation of a CICS transaction by an internally generated request, for
example, the issue of an EXEC CICS START command or the reaching of a
transient data trigger level. CICS resource definition can associate a trigger
level and a transaction with a transient data destination. When the number
of records written to the destination reaches the trigger level, the specified
transaction is automatically initiated.

B

Basic Mapping Support
Basic mapping support is an interface between CICS and CICS application
programs that move 3270 data streams to and from a terminal. The format
of the input and output display data is defined by the BMS commands.

bean A definition or instance of a JavaBeans component. See also JavaBeans.

bean-managed transaction
A transaction where the JEE bean itself is responsible for administering
transaction tasks such as committal or rollback. See also container-managed
transaction.

BIND command
In SNA, a request to activate a session between two logical units (LUs).

BMS see Basic Mapping Support

business logic
The part of a distributed application that is concerned with the application
logic rather than the user interface of the application. Compare with
presentation logic.

C

CA See certificate authority.

callback
A way for one thread to notify another application thread that an event
has happened.

CCIN The CCIN transaction is invoked by the Client daemon, for each TCP/IP
or SNA connection established. CCIN installs a Client connection on the
CICS server.

CCSID
Coded Character Set Identifier. A 16-bit number that includes a specific set
of encoding scheme identifiers, character set identifiers, code page
identifiers, and other information that uniquely identifies the coded
graphic-character representation.

certificate authority (CA)
In computer security, an organization that issues certificates. The certificate
authority authenticates the certificate owner's identity and the services that
the owner is authorized to use. It issues new certificates and revokes
certificates from users who are no longer authorized to use them.

282 CICS TG for Multiplatforms V9.2: Developing Applications

change-number-of-sessions (CNOS)
An internal transaction program that regulates the number of parallel
sessions between the partner LUs with specific characteristics.

channel
A channel is a set of containers, grouped together to pass data to CICS.
There is no limit to the number of containers that can be added to a
channel, and the size of individual containers is limited only by the
amount of storage that you have available.

CICS connectivity components
The Client daemon, the EXCI (External CICS Interface), and the IPIC (IP
Interconnectivity) protocol are collectively called the 'CICS connectivity
components'. The Client daemon handles the TCP/IP and the SNA
protocols.

CICS Request Exit
An exit that is invoked by the CICS Transaction Gateway for IBM z/OS at
run time to determine which CICS server to use.

CICS server name
A defined server known to CICS Transaction Gateway.

CICS TS
Abbreviation of CICS Transaction Server.

class In object-oriented programming, a model or template that can be
instantiated to create objects with a common definition and therefore,
common properties, operations, and behavior. An object is an instance of a
class.

CLASSPATH
In the execution environment, an environment variable keyword that
specifies the directories in which to look for class and resource files.

Client API
The Client API is the interface used by Client applications to interact with
CICS using the Client daemon. See External Call Interface, External
Presentation Interface, and External Security Interface.

Client application
The client application is a user application written in a supported
programming language that uses one or more of the CICS Transaction
Gateways APIs.

Client daemon
The Client daemon manages TCP/IP and SNA connections to CICS servers
on UNIX, Linux, and Windows. It processes ECI, EPI, and ESI requests,
sending and receiving the appropriate flows to and from the CICS server
to satisfy Client application requests. It can support concurrent requests to
one or more CICS servers. The CICS Transaction Gateway initialization file
defines the operation of the Client daemon and the servers and protocols
used for communication.

client/server
Pertaining to the model of interaction in distributed data processing in
which a program on one computer sends a request to a program on
another computer and awaits a response. The requesting program is called
a client; the answering program is called a server.

CNOS See Change-Number-of-Sessions.

Glossary 283

code page
An assignment of hexadecimal identifiers (code points) to graphic
characters. Within a given code page, a code point can have only one
meaning.

color mapping file
A file that is used to customize the 3270 screen color attributes on client
workstations.

COMMAREA
See communication area.

commit phase
The second phase in a XA process. If all participants acknowledge that
they are prepared to commit , the transaction manager issues the commit
request. If any participant is not prepared to commit the transaction
manager issues a back-out request to all participants.

communication area (COMMAREA)
A communication area that is used for passing data both between
programs within a transaction and between transactions.

configuration file
A file that specifies the characteristics of a program, system device, server
or network.

connection
In data communication, an association established between functional units
for conveying information.

In Open Systems Interconnection architecture, an association established by
a given layer between two or more entities of the next higher layer for the
purpose of data transfer.

In TCP/IP, the path between two protocol application that provides
reliable data stream delivery service.

In Internet, a connection extends from a TCP application on one system to
a TCP application on another system.

container
A container is a named block of data designed for passing information
between programs. A container is a "named COMMAREA" that is not
limited to 32KB. Containers are grouped together in sets called channels.

container-managed transaction
A transaction where the EJB container is responsible for administration of
tasks such as committal or rollback. See also bean-managed transaction.

control table
In CICS, a storage area used to describe or define the configuration or
operation of the system.

conversation
A connection between two programs over a session that allows them to
communicate with each other while processing a transaction.

conversation security
In APPC, a process that allows validation of a user ID or group ID and
password before establishing a connection.

CTIN The CTIN transaction is invoked by the Client daemon to install a Client
terminal definition on the CICS server.

284 CICS TG for Multiplatforms V9.2: Developing Applications

D

daemon
A program that runs unattended to perform continuous or periodic
systemwide functions, such as network control. A daemon can be launched
automatically, such as when the operating system is started, or manually.

data link control (DLC)
A set of rules used by nodes on a data link (such as an SDLC link or a
token ring) to accomplish an orderly exchange of information.

DBCS See double-byte character set.

default CICS server
The CICS server that is used if a server name is not specified on an ECI,
EPI, or ESI request. The default CICS server name is defined as a product
wide setting in the configuration file (ctg.ini).

dependent logical unit
A logical unit that requires assistance from a system services control point
(SSCP) to instantiate an LU-to-LU session.

deprecated
Pertaining to an entity, such as a programming element or feature, that is
supported but no longer recommended, and that might become obsolete.

digital certificate
An electronic document used to identify an individual, server, company, or
some other entity, and to associate a public key with the entity. A digital
certificate is issued by a certificate authority and is digitally signed by that
authority.

digital signature
Information that is encrypted with an entity's private key and is appended
to a message to assure the recipient of the authenticity and integrity of the
message. The digital signature proves that the message was signed by the
entity that owns, or has access to, the private key or shared secret
symmetric key.

distinguished name
The name that uniquely identifies an entry in a directory. A distinguished
name is made up of attribute:value pairs, separated by commas. The
format of a distinguished name is defined by RFC4514. For more
information, see http://www.ietf.org/rfc/rfc4514.txt. See also realm
name and identity propagation.

distributed application
An application for which the component application programs are
distributed between two or more interconnected processors.

distributed identity
User identity information that originates from a remote system. The
distributed identity is created in one system and is passed to one or more
other systems over a network. See also distinguished name and realm name.

distributed processing
The processing of different parts of the same application in different
systems, on one or more processors.

distributed program link (DPL)
A link that enables an application program running on one CICS system to
link to another application program running in another CICS system.

Glossary 285

DLC See data link control.

DLL See dynamic link library.

domain
In the Internet, a part of a naming hierarchy in which the domain name
consists of a sequence of names (labels) separated by periods (dots).

domain name
In TCP/IP, a name of a host system in a network.

domain name server
In TCP/IP, a server program that supplies name-to-address translation by
mapping domain names to IP addresses. Synonymous with name server.

dotted decimal notation
The syntactical representation for a 32-bit integer that consists of four 8-bit
numbers written in base 10 with periods (dots) separating them. It is used
to represent IP addresses.

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese and Korean, which contain more
symbols than can be represented by 256 code points, require double-byte
character sets. Because each character requires 2 bytes, the typing, display,
and printing of DBCS characters requires hardware and programs that
support DBCS. Contrast with single-byte character set.

DPL See distributed program link.

dynamic link library (DLL)
A collection of runtime routines made available to applications as required.

dynamic server selection (DSS)
The mapping of a logical CICS server name to an actual CICS server name
at run time.

E

EBCDIC
See extended binary-coded decimal interchange code.

ECI See external call interface.

EJB See Enterprise JavaBeans.

emulation program
A program that allows a host system to communicate with a workstation
in the same way as it would with the emulated terminal.

emulator
A program that causes a computer to act as a workstation attached to
another system.

encryption
The process of transforming data into an unintelligible form in such a way
that the original data can be obtained only by using a decryption process.

enterprise bean
A Java component that can be combined with other resources to create JEE
applications. There are three types of enterprise beans: entity beans, session
beans, and message-driven beans.

286 CICS TG for Multiplatforms V9.2: Developing Applications

Enterprise Information System (EIS)
The applications that comprise an enterprise's existing system for handling
company-wide information. An enterprise information system offers a
well-defined set of services that are exposed as local or remote interfaces or
both.

Enterprise JavaBeans (EJB)
A component architecture defined by Oracle for the development and
deployment of object-oriented, distributed, enterprise-level applications
(JEE).

environment variable
A variable that specifies the operating environment for a process. For
example, environment variables can describe the home directory, the
command search path, the terminal in use, and the current time zone.

EPI See external presentation interface.

ESI See external security interface.

Ethernet
A local area network that allows multiple stations to access the
transmission medium at will without prior coordination, avoids contention
by using carrier sense and deference, and resolves contention by using
collision detection and transmission. Ethernet uses carrier sense multiple
access with collision detection (CSMA/CD).

EXCI See external CICS interface.

extended binary-coded decimal interchange code (EBCDIC)
A coded character set of 256 8-bit characters developed for the
representation of textual data.

extended logical unit of work (extended LUW)
A logical unit of work that is extended across successive ECI requests to
the same CICS server.

external call interface (ECI)
A facility that allows a non CICS program to run a CICS program. Data is
exchanged in a COMMAREA or a channel as for usual CICS interprogram
communication.

external communications interface (EXCI)
An MVS™ application programming interface provided by CICS
Transaction Server for IBM z/OS that enables a non-CICS program to call a
CICS program and to pass and receive data using a COMMAREA. The
CICS application program is started as if linked-to by another CICS
application program.

external presentation interface (EPI)
A facility that allows a non CICS program to appear to CICS as one or
more standard 3270 terminals. 3270 data can be presented to the user by
emulating a 3270 terminal or by using a graphical user interface.

external security interface (ESI)
A facility that enables client applications to verify and change passwords
for user IDs on CICS servers.

External Security Manager (ESM)
A security manager that operates outside CICS. For example, RACF can be
used as an external security manager with CICS Transaction Server.

Glossary 287

F

firewall
A configuration of software that prevents unauthorized traffic between a
trusted network and an untrusted network.

FMH See function management header.

fully qualified APPLID
Used to identify CICS Transaction Gateway connections on the CICS server
and tasks in a CICSplex. It is composed of an APPLID with an optional
network qualifier. See also APPLID and APPLID qualifier.

function management header (FMH)
One or more headers, optionally present in the leading request units (RUs)
of an RU chain, that allow one LU to (a) select a transaction program or
device at the session partner and control the way in which the user data it
sends is handled at the destination, (b) change the destination or the
characteristics of the data during the session, and (c) transmit between
session partners status or user information about the destination (for
example, a program or device). Function management headers can be used
with LU type 1, 4, and 6.2 protocols.

G

Gateway
A device or program used to connect two systems or networks.

Gateway classes
The Gateway classes provide APIs for ECI, EPI, and ESI that allow
communication between Java client applications and the Gateway daemon.

Gateway daemon
A long-running Java process that listens for network requests from remote
Client applications. It issues these requests to CICS servers using the CICS
connectivity components. The Gateway daemon on IBM z/OS processes
ECI requests and on UNIX, Windows, and Linux platforms it process EPI
and ESI requests as well. The Gateway daemon uses the GATEWAY section
of ctg.ini for its configuration.

Gateway group
A set of Gateway daemons that share an APPLID qualifier, and where each
Gateway daemon has a unique APPLID within the Gateway group.

Gateway token
A token that represents a specific Gateway daemon, when a connection is
established successfully. Gateway tokens are used in the C language
statistics and ECI V2 APIs.

global transaction
A recoverable unit of work performed by one or more resource managers
in a distributed transaction processing environment and coordinated by an
external transaction manager.

H

HA group
See highly available Gateway group.

highly available Gateway group (HA group)
A Gateway group that utilizes TCP/IP load balancing, and can be viewed

288 CICS TG for Multiplatforms V9.2: Developing Applications

as a single logical Gateway daemon. A Gateway daemon instance in a HA
group can recover indoubt XA transactions on behalf of another Gateway
daemon within the HA group.

host A computer that is connected to a network (such as the Internet or an SNA
network) and provides an access point to that network. The host can be
any system; it does not have to be a mainframe.

host address
An IP address that is used to identify a host on a network.

host ID
In TCP/IP, that part of the IP address that defines the host on the network.
The length of the host ID depends on the type of network or network class
(A, B, or C).

host name
In the Internet suite of protocols, the name given to a computer.
Sometimes, host name is used to mean the fully qualified domain name;
other times, it is used to mean the most specific subname of a fully
qualified domain name. For example, if mycomputer.city.company.com is
the fully qualified domain name, either of the following can be considered
the host name: mycomputer.city.company.com, mycomputer.

hover help
Information that can be viewed by holding a mouse over an item such as
an icon in the user interface.

HTTP See Hypertext Transfer Protocol.

HTTPS
See Hypertext Transfer Protocol Secure.

Hypertext Transfer Protocol (HTTP)
In the Internet suite of protocols, the protocol that is used to transfer and
display hypertext and XML documents.

Hypertext Transfer Protocol Secure (HTTPS)
A TCP/IP protocol that is used by World Wide Web servers and Web
browsers to transfer and display hypermedia documents securely across
the Internet.

I

ID data
An ID data structure holds an individual result from a statistical API
function.

identity propagation
The concept of preserving a user's security identity information (the
distributed identity) independent of where the identity information has
been created, for use during authorization and for auditing purposes. The
distributed identity is carried with a request from the distributed client
application to the CICS server, and is incorporated in the access control of
the server as part of the authorization process, for example, using RACF.
CICS Transaction Gateway flows the distributed identity to CICS. See also
distributed identity.

identity propagation login module
A code component that provides support for identity propagation. The
identity propagation login module is included with the CICS Transaction

Glossary 289

Gateway ECI resource adapter (cicseci.rar), conforms to the JAAS
specification and is contained in a single Java class within the resource
adapter. See also identity propagation.

iKeyman
A tool for maintaining digital certificates for JSSE.

in doubt
The state of a transaction that has completed the prepare phase of the
two-phase commit process and is waiting to be completed.

in flight
The state of a transaction that has not yet completed the prepare phase of
the two-phase commit process.

independent logical unit
A logical unit (LU) that can both send and receive a BIND, and which
supports single, parallel, and multiple sessions. See BIND.

<install_path>
This term is used in file paths to represent the directory where you
installed the product. For more information, see ../installing/topics/
cclahlinstfiles.dita.

Internet Architecture Board
The technical body that oversees the development of the internet suite of
protocols known as TCP/IP.

Internet Protocol (IP)
In TCP/IP, a protocol that routes data from its source to its destination in
an Internet environment.

interoperability
The capability to communicate, run programs, or transfer data among
various functional units in a way that requires the user to have little or no
knowledge of the unique characteristics of those units.

IP Internet Protocol.

IP address
A unique address for a device or logical unit on a network that uses the IP
standard.

IP interconnectivity (IPIC)
The IPIC protocol enables Distributed Program Link (DPL) access from a
non-CICS program to a CICS program over TCP/IP, using the External
Call Interface (ECI). IPIC passes and receives data using COMMAREAs, or
containers.

IPIC See IP interconnectivity.

J

Java An object-oriented programming language for portable interpretive code
that supports interaction among remote objects.

Java 2 Platform, Enterprise Edition (J2EE, Java EE)
An environment for developing and deploying enterprise applications,
defined by Oracle. The JEE platform consists of a set of services,
application programming interfaces (APIs), and protocols that allow
multi-tiered, Web-based applications to be developed.

290 CICS TG for Multiplatforms V9.2: Developing Applications

JavaBeans
As defined for Java by Oracle, a portable, platform-independent, reusable
component model.

Java Client application
The Java client application is a user application written in Java, including
servlets and enterprise beans, that uses the Gateway classes.

Java Development Kit (JDK)
The name of the software development kit that Oracle provided for the
Java platform.

JavaGateway
The URL of the CICS Transaction Gateway with which the Java Client
application communicates. The JavaGateway takes the form
protocol://address:port. These protocols are supported: tcp://, ssl://,
and local:. CICS Transaction Gateway runs with the default port value of
2006. This parameter is not relevant if you are using the protocol local:.
For example, you might specify a JavaGateway of tcp://
ctg.business.com:2006. If you specify the protocol as local: you will
connect directly to the CICS server, bypassing any CICS Transaction
Gateway servers.

Java Native Interface (JNI)
A programming interface that allows Java code running in a Java virtual
machine to work with functions that are written in other programming
languages.

Java Runtime Environment (JRE)
A subset of the Java Software Development Kit (SDK) that supports the
execution, but not the development, of Java applications. The JRE
comprises the Java Virtual Machine (JVM), the core classes, and supporting
files.

Java Secure Socket Extension (JSSE)
A Java package that enables secure Internet communications. It implements
a Java version of the Secure Sockets Layer (SSL) and Transport Layer
Security (TSL) protocols and supports data encryption, server
authentication, message integrity, and optionally client authentication.

Java virtual machine (JVM)
A software implementation of a processor that runs compiled Java code
(applets and applications).

JavaScript Object Notation (JSON)
A lightweight data-interchange format that is based on the object-literal
notation of JavaScript. JSON is programming-language neutral but uses
conventions from languages that include C, C++, C#, Java, JavaScript, Perl,
Python.

JCA See JEE Connector Architecture.

JDK See Java development kit.

JEE (formerly J2EE)
See Java 2 Platform Enterprise Edition.

JEE Connector architecture (JCA)
A standard architecture for connecting the JEE platform to heterogeneous
enterprise information systems (EIS).

JNI See Java Native Interface.

Glossary 291

JRE See Java Runtime Environment.

JSON See JavaScript Object Notation (JSON).

JSON Schema
A JavaScript Object Notation (JSON) document that describes the structure
and constrains the contents of other JSON documents.

JSON web service
A web service that accepts and produces JSON payloads.

JSSE See Java Secure Socket Extension.

JVM See Java Virtual Machine.

K

keyboard mapping
A list that establishes a correspondence between keys on the keyboard and
characters displayed on a display screen, or action taken by a program,
when that key is pressed.

Keystore
In the JSSE protocol, a file that contains public keys, private keys, trusted
roots, and certificates.

L

local mode
Local mode describes the use of the CICS Transaction Gateway local
protocol. The Gateway daemon is not used in local mode.

local transaction
A recoverable unit of work managed by a resource manager and not
coordinated by an external transaction manager.

logical CICS server
An alias that can be passed on an ECI request when running in remote
mode to CICS Transaction Gateway. The alias name is mapped to an actual
CICS server name by a dynamic server selection (DSS) mechanism.

logical end of day
The local time of day on the 24-hour clock to which a Gateway daemon
aligns statistics intervals. If the statistics interval is 24 hours, this is the
local time at which interval statistics will be reset and, on IBM z/OS,
optionally recorded to SMF. This time is set using the stateod parameter in
the configuration file (ctg.ini).

logical unit (LU)
In SNA, a port through which a user accesses the SNA network to
communicate with another user and through which the user accesses the
functions provided by system services control points (SSCP). An LU can
support at least two sessions, one with an SSCP and one with another LU,
and might be capable of supporting many sessions with other logical units.
See also network addressable unit, primary logical unit, secondary logical unit.

logical unit 6.2 (LU 6.2)
A type of logical unit that supports general communications between
programs in a distributed processing environment.

The LU type that supports sessions between two applications using APPC.

292 CICS TG for Multiplatforms V9.2: Developing Applications

logical unit of work (LUW)
The processing that a program performs between synchronization points.

LU See logical unit.

LU 6.2 See logical unit 6.2.

LU-LU session
In SNA, a session between two logical units (LUs) in an SNA network. It
provides communication between two users, or between a user and an LU
services component.

LU-LU session type 6.2
In SNA, a type of session for communication between peer systems.
Synonymous with APPC protocol.

LUW See logical unit of work.

M

managed mode
Describes an environment in which connections are obtained from
connection factories that the JEE server has set up. Such connections are
owned by the JEE server.

media access control (MAC) sublayer
One of two sublayers of the ISO Open Systems Interconnection data link
layer proposed for local area networks by the IEEE Project 802 Committee
on Local Area Networks and the European Computer Manufacturers
Association (ECMA). It provides functions that depend on the topology of
the network and uses services of the physical layer to provide services to
the logical link control (LLC) sublayer. The OSI data link layer corresponds
to the SNA data link control layer.

method
In object-oriented programming, an operation that an object can perform.
An object can have many methods.

mode In SNA, a set of parameters that defines the characteristics of a session
between two LUs.

N

name server
In TCP/IP, synonym for Domain Name Server. In Internet
communications, a host that translates symbolic names assigned to
networks and hosts into IP addresses.

NAU See network addressable unit.

network address
In SNA, an address, consisting of subarea and element fields, that
identifies a link, link station, or network addressable unit (NAU). Subarea
nodes use network addresses; peripheral nodes use local addresses. The
boundary function in the subarea node to which a peripheral node is
attached transforms local addresses to network addresses and vice versa.
See also network name.

network addressable unit (NAU)
In SNA, a logical unit, a physical unit, or a system services control point.
The NAU is the origin or the destination of information transmitted by the
path control network. See also logical unit, network address, network name.

Glossary 293

network name
In SNA, the symbolic identifier by which users refer to a network
addressable unit (NAU), link station, or link. See also network address.

node type
In SNA, a designation of a node according to the protocols it supports and
the network addressable units (NAUs) it can contain. Four types are
defined: 1, 2, 4, and 5. Type 1 and type 2 nodes are peripheral nodes; type
4 and type 5 nodes are subarea nodes.

nonextended logical unit of work
See SYNCONRETURN.

nonmanaged mode
An environment in which the application is responsible for generating and
configuring connection factories. The JEE server does not own or know
about these connection factories and therefore provides no Quality of
Service facilities.

O

object In object-oriented programming, a concrete realization of a class that
consists of data and the operations associated with that data.

object-oriented (OO)
Describing a computer system or programming language that supports
objects.

one-phase commit
A protocol with a single commit phase, that is used for the coordination of
changes to recoverable resources when a single resource manager is
involved.

OO See object-oriented.

OSGi A specification that describes a modular system and a service platform for
the Java programming language that implements a complete and dynamic
component model.

P

pacing
A technique by which a receiving station controls the rate of transmission
of a sending station to prevent overrun.

parallel session
In SNA, two or more concurrently active sessions between the same two
LUs using different pairs of network addresses. Each session can have
independent session parameters.

partner logical unit (PLU)
In SNA, the remote participant in a session.

partner transaction program
The transaction program engaged in an APPC conversation with a local
transaction program.

password phrase
A character string, between 9 and 100 characters in length, that is used for
authentication when a user signs on to CICS. Because a password phrase
can provide an exponentially greater number of possible combinations of
characters than a standard 8 character password, the use of password

294 CICS TG for Multiplatforms V9.2: Developing Applications

phrases can enhance system security. Password phrases are verified by the
External Security Manager (ESM), and can contain alphanumeric
characters, and any of the other non alphanumeric characters that are
supported by the ESM. See also External Security Manager (ESM).

PING In Internet communications, a program used in TCP/IP networks to test
the ability to reach destinations by sending the destinations an Internet
Control Message Protocol (ICMP) echo request and waiting for a reply.

PLU See primary logical unit and partner logical unit.

port An endpoint for communication between devices, generally referring to a
logical connection. A 16-bit number identifying a particular Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP) resource within a
given TCP/IP node.

port sharing
A way of load balancing TCP/IP connections across a group of servers
running in the same IBM z/OS image.

prepare phase
The first phase of a XA process in which all participants are requested to
confirm readiness to commit.

presentation logic
The part of a distributed application that is concerned with the user
interface of the application. Compare with business logic.

primary logical unit (PLU)
In SNA, the logical unit that contains the primary half-session for a
particular logical unit-to-logical unit (LU-to-LU) session. See also secondary
logical unit.

<product_data_path>
This term represents the directory used by the Windows CICS Transaction
Gateway for common application data. For more information, see
../installing/topics/cclahlinstfiles.dita.

protocol boundary
The signals and rules governing interactions between two components
within a node.

Q

Query strings
Query strings are used in the statistical data API. A query string is an
input parameter, specifying the statistical data to be retrieved.

R

RACF See Resource Access Control Facility.

realm A named collection of users and groups that can be used in a specific
security context. See also distinguished name and identity propagation.

Recoverable resource management services (RRMS)
The registration services, context services, and resource recovery services
provided by the IBM z/OS sync point manager that enable consistent
changes to be made to multiple protected resources.

Resource Access Control Facility (RACF)
An IBM licensed program that provides access control by identifying users
to the system; verifying users of the system; authorizing access to protected

Glossary 295

resources; logging detected unauthorized attempts to enter the system; and
logging detected accesses to protected resources.

region In workload management on CICS Transaction Gateway for Windows, an
instance of a CICS server.

remote mode
Remote mode describes the use of one of the supported CICS Transaction
Gateway network protocols to connect to the Gateway daemon.

remote procedure call (RPC)
A protocol that allows a program on a client computer to run a program
on a server.

Request monitoring exits
Exits that provide information about individual requests as they are
processed by the CICS Transaction Gateway.

request unit (RU)
In SNA, a message unit that contains control information such as a request
code, or function management (FM) headers, user data, or both.

request/response unit
A generic term for a request unit or a response unit. See also request unit
and response unit.

response file
A file that contains predefined values that is used instead of someone
having to enter those values one at a time. See also CID methodology.

response unit (RU)
A message unit that acknowledges a request unit; it can contain prefix
information received in a request unit.

Resource adapter
A system-level software driver that is used by an EJB container or an
application client to connect to an enterprise information system (EIS). A
resource adapter plugs in to a container; the application components
deployed on the container then use the client API (exposed by adapter) or
tool-generated, high-level abstractions to access the underlying EIS.

resource group ID
A resource group ID is a logical grouping of resources, grouped for
statistical purposes. A resource group ID is associated with a number of
resource group statistics, each identified by a statistic ID.

resource ID
A resource ID refers to a specific resource. Information about the resource
is included in resource-specific statistics. Each statistic is identified by a
statistic ID.

resource manager
The participant in a transaction responsible for controlling access to
recoverable resources. In terms of the CICS resource adapters this is
represented by an instance of a ConnectionFactory.

Resource Recovery Services (RRS)
An IBM z/OS facility that provides two-phase sync point support across
participating resource managers.

RESTful
Pertaining to applications and services that conform to Representational
State Transfer (REST) constraints.

296 CICS TG for Multiplatforms V9.2: Developing Applications

Result set
A result set is a set of data calculated or recorded by a statistical API
function.

Result set token
A result set token is a reference to the set of results returned by a statistical
API function.

rollback
An operation in a transaction that reverses all the changes made during the
unit of work. After the operation is complete, the unit of work is finished.
Also known as a backout.

RPC See remote procedure call.

RRMS
See Recoverable resource management services.

RRS See Resource Recovery Services.

RU See Request unit and Response unit.

S

SBCS See single-byte character set.

secondary logical unit (SLU)
In SNA, the logical unit (LU) that contains the secondary half-session for a
particular LU-LU session. Contrast with primary logical unit. See also
logical unit.

Secure Sockets Layer (SSL)
A security protocol that provides communication privacy. SSL enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. SSL applies only
to internet protocols, and is not applicable to SNA.

server name remapping
See dynamic server selection.

servlet
A Java program that runs on a Web server and extends the server's
functionality by generating dynamic content in response to Web client
requests. Servlets are commonly used to connect databases to the Web.

session limit
In SNA, the maximum number of concurrently active logical unit to logical
unit (LU-to-LU) sessions that a particular logical unit (LU) can support.

sign-on capable terminal
A sign-on capable terminal allows sign-on transactions that are either
supplied with CICS (CESN) or written by the user, to be run. Contrast with
sign-on incapable terminal.

silent installation
Installation that does not display messages or windows during its progress.
Silent installation is not a synonym of "unattended installation", although it
is often improperly used as such.

single-byte character set (SBCS)
A character set in which each character is represented by 1 byte. Contrast
with double-byte character set.

SIT See system initialization table.

Glossary 297

SLU See secondary logical unit.

SMF The IBM z/OS System Management Facility (SMF) collects and records
system and job-related information that your IBM z/OS installation can
use for reporting, billing, analysis, profiling, and maintaining system
security. CICS TG for IBM z/OS writes statistical data to SMF.

SMIT See System Management Interface Tool.

SNA See Systems Network Architecture.

SNA sense data
An SNA-defined encoding of error information In SNA, the data sent with
a negative response, indicating the reason for the response.

SNASVCMG mode name
The SNA service manager mode name. This is the architecturally-defined
mode name identifying sessions on which CNOS is exchanged. Most
APPC-providing products predefine SNASVCMG sessions.

socket A network communication concept, typically representing a point of
connection between a client and a server. A TCP/IP socket will normally
combine a host name or IP address, and a port number.

SSL See Secure Sockets Layer.

SSLight
An implementation of SSL, written in Java, and no longer supported by
CICS Transaction Gateway.

standard error
In many workstation-based operating systems, the output stream to which
error messages or diagnostic messages are sent.

statistic data
A statistic data structure holds individual statistical result returned after
calling a statistical API function.

statistic group
A generic term for a collection of statistic IDs.

statistic ID
A label referring to a specific statistic. A statistic ID is used to retrieve
specific statistical data, and always has a direct relationship with a statistic
group.

subnet
An interconnected, but independent segment of a network that is identified
by its Internet Protocol (IP) address.

subnet address
In Internet communications, an extension to the basic IP addressing scheme
where a portion of the host address is interpreted as the local network
address.

sync point
Synchronization point. During transaction processing, a reference point to
which protected resources can be restored if a failure occurs.

SYNCONRETURN
A request where the CICS server takes a sync point on successful
completion of the server program. Changes to recoverable resources made
by the server program are committed or rolled-back independently of
changes to recoverable resources made by the client program issuing the

298 CICS TG for Multiplatforms V9.2: Developing Applications

ECI request, or changes made by the server in any subsequent ECI request.
Also referred to as a nonextended logical unit of work.

system initialization table (SIT)
A table containing parameters used to start a CICS control region.

System Management Command
An administrative request received by a Gateway daemon (or Gateway
daemon address space on IBM z/OS) from the ctgadmin command (on
UNIX, Linux, or Windows) or the IBM z/OS console. The request might be
made to retrieve information about the Gateway daemon, or to alter some
aspect of Gateway daemon behavior. Typically, a ctgadmin command in the
form ctgadmin <command string> is entered by an operator using the
command line interface, or a modify command in the form /F <job
name>,APPL=<command string> is entered by an operator on the IBM z/OS
console.

System Management Interface Tool (SMIT)
An interface tool of the IBM AIX operating system for installing,
maintaining, configuring, and diagnosing tasks.

Systems Network Architecture (SNA)
An architecture that describes the logical structure, formats, protocols, and
operational sequences for transmitting information units through the
networks and also the operational sequences for controlling the
configuration and operation of networks.

System SSL
An implementation of SSL, no longer supported by CICS Transaction
Gateway on IBM z/OS.

T

TCP/IP
See Transmission Control Protocol/Internet Protocol.

TCP/IP load balancing
The ability to distribute TCP/IP connections across target servers.

terminal emulation
The capability of a personal computer to operate as if it were a particular
type of terminal linked to a processing unit and to access data. See also
emulator, emulation program.

thread A stream of computer instructions that is in control of a process. In some
operating systems, a thread is the smallest unit of operation in a process.
Several threads can run concurrently, performing different jobs.

timeout
A time interval that is allotted for an event to occur or complete before
operation is interrupted.

TLS See Transport Layer Security.

token-ring network
A local area network that connects devices in a ring topology and allows
unidirectional data transmission between devices by a token-passing
procedure. A device must receive a token before it can transmit data.

trace A record of the processing of a computer program. It exhibits the
sequences in which the instructions were processed.

Glossary 299

transaction manager
A software unit that coordinates the activities of resource managers by
managing global transactions and coordinating the decision to commit
them or roll them back.

transaction program
A program that uses the Advanced Program-to-Program Communications
(APPC) application programming interface (API) to communicate with a
partner application program on a remote system.

Transmission Control Protocol/Internet Protocol (TCP/IP)
An industry-standard, nonproprietary set of communications protocols that
provide reliable end-to-end connections between applications over
interconnected networks of different types.

Transport Layer Security (TLS)
A security protocol that provides communication privacy. TLS enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. TLS applies only
to internet protocols, and is not applicable to SNA. TLS is also known as
SSL 3.1.

Two-phase commit
A protocol with both a prepare and a commit phase, that is used for the
coordination of changes to recoverable resources when more than one
resource manager is used by a single transaction.

type 2.0 node
A node that attaches to a subarea network as a peripheral node and
provides a range of user services but no intermediate routing services.

type 2.1 node
An SNA node that can be configured as an endpoint or intermediate
routing node in a network, or as a peripheral node attached to a subarea
network.

U

unattended installation
Unattended installation is installation performed without user interaction
during its progress, or, with no user present at all, except for the initial
launch of the process.

Uniform Resource Locator (URL)
A sequence of characters that represent information resources on a
computer or in a network such as the Internet. This sequence of characters
includes (a) the abbreviated name of the protocol used to access the
information resource and (b) the information used by the protocol to locate
the information resource.

unit of recovery (UR)
A defined package of work to be performed by the RRS.

unit of work (UOW)
A recoverable sequence of operations performed by an application between
two points of consistency. A unit of work begins when a transaction starts
or at a user-requested sync point. It ends either at a user-requested sync
point or at the end of a transaction.

UOW See unit of work.

UR See unit of recovery.

300 CICS TG for Multiplatforms V9.2: Developing Applications

URL See Uniform Resource Locator.

user registry
The location where the distinguished name of a user is defined and
authenticated. See also distinguished name.

user session
Any APPC session other than a SNASVCMG session.

V

verb A reserved word that expresses an action to be taken by an application
programming interface (API), a compiler, or an object program.

In SNA, the general name for a transaction program's request for
communication services.

version string
A character string containing version information about the statistical data
API.

W

WAN See wide area network.

Web browser
A software program that sends requests to a Web server and displays the
information that the server returns.

Web server
A software program that responds to information requests generated by
Web browsers.

wide area network (WAN)
A network that provides communication services to a geographic area
larger than that served by a local area network or a metropolitan area
network, and that can use or provide public communication facilities.

Wrapping trace
On Windows, UNIX, and Linux, a configuration in which the Maximum
Client wrap size setting is greater than 0. The total size of Client daemon
binary trace files is limited to the value specified in the Maximum Client
wrap size setting. With standard I/O tracing, two files, called cicscli.bin
and cicscli.wrp, are used; each can be up to half the size of the
Maximum Client wrap size.

WSBind file
A Web service bind file is a resource that describes the specifics of the Web
service.

X

XA request
Any request sent or received by the CICS Transaction Gateway in support
of an XA transaction. These requests include the XA commands commit,
complete, end, forget, prepare, recover, rollback, and start.

XA transaction
A global transaction that adheres to the X/Open standard for distributed
transaction processing (DTP).

Glossary 301

302 CICS TG for Multiplatforms V9.2: Developing Applications

Related literature

Other documentation relating to CICS Transaction Gateway.

IBM Redbooks® titles are available on a wide range of subjects relevant to CICS
Transaction Gateway programming, installation, operation and troubleshooting. See
the: IBM Redbooks site for more information.

Documentation for many IBM products is available online from the IBM
Publications Center.

© Copyright IBM Corp. 1998, 2016 303

http://www.ibm.com/redbooks/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

304 CICS TG for Multiplatforms V9.2: Developing Applications

Accessibility

Accessibility features help users with a physical disability, for example restricted
mobility or limited vision, to use information technology products successfully.
CICS Transaction Gateway is compatible with the JAWS screen reader. CICS
Transaction Gateway provides accessibility by enabling keyboard-only operation.

For more information about the IBM commitment to accessibility, visit the IBM
Accessibility Center.

Installation
The InstallAnywhere wizard is not fully accessible to screen readers.

To use the installer with a screen reader you must use console mode installation
from a command prompt, specifying the -i console option.

Console mode displays text over multiple screens, and enables you to make
choices during the installation process. The command prompt interface does not
provide a cursor for navigating over the displayed text. When you use the JAWS
screen reader you can repeat the displayed text with the command used for
reading the current window (key combination Insert+B).

The first screen displayed by the installer is for language selection; the default
language depends on the values in the system regional settings. To bypass the
language selection screen, use the -l lang command option; where lang is one of the
following:
v de German
v en English
v es Spanish
v fr French
v it Italian
v ja Japanese
v ko Korean
v tr Turkish
v zh_CN Chinese

For example, to install with the console interface in French:
installer -i console -l fr

Configuration Tool accessibility
The configuration file uses the number sign (#) character to denote a comment;
consider configuring your screen reader accordingly.

Starting the Gateway daemon
You can start the Gateway daemon from a command prompt using a screen reader.

© Copyright IBM Corp. 1998, 2016 305

http://www.ibm.com/able
http://www.ibm.com/able

In some Telnet sessions, the screen reader might reread CICS Transaction Gateway
log output or the command prompt after the CICS Transaction Gateway has
started. This behavior is expected, and does not mean that the CICS Transaction
Gateway has failed to start.

To determine if the CICS Transaction Gateway started correctly, check for the
message:
’CTG6512I CICS Transaction Gateway initialization complete’.

If the CICS Transaction Gateway did not start successfully, this message is
produced:
’CTG6513E CICS Transaction Gateway failed to initialize’.

When using a screen reader on Windows, the Gateway daemon should be started
and stopped with Windows services by starting and stopping the IBM CICS
Transaction Gateway service. To determine if the CICS Transaction Gateway has
started or stopped use the Windows Event Log viewer to check the messages in
the Application log.

cicsterm
Although cicsterm is accessible, it relies on the application that is being processed
to define an accessible 3270 screen.

Keyboard mapping depends on the terminal type that you are using, for more
information, see Keyboard mapping for cicsterm.

The bottom row of cicsterm contains status information. The following list shows
this information, as it appears from left to right:

Status For example, 1B is displayed while cicsterm is connecting to a server.
Displayed at columns 1 – 3.

Terminal name
Also referred to as LU Name. Columns 4 – 7.

Action
For example, X-System, indicating that you cannot enter text in the
terminal window because cicsterm is waiting for a response from the
server. Columns 9 – 16.

Error number
Errors in the form CCLNNNN, relating to the CICS Transaction Gateway.
Columns 17 – 24.

Server name
The server to which cicsterm is connected. Columns 27 – 35.

Uppercase
An up arrow is displayed when the Shift key is pressed. Column 42.

Caps Lock
A capital A is displayed when Caps Lock is on. Column 43.

Insert on
The caret symbol (^) is displayed if text will be inserted, rather than
overwriting existing text. If you have difficulty seeing the caret, change the
font face and size, or use a screen magnifier to increase the size of the
status line. Column 52.

306 CICS TG for Multiplatforms V9.2: Developing Applications

Cursor position
The cursor position, in the form ROW/COLUMN, where ROW is a
two-digit number, and COLUMN a three-digit number. The top left of the
screen is 01/001. Column 75–80.

Note: You might need to change the default behavior of your screen
reader if it reads only the last digit of the cursor position. Customize your
screen reader to specify that columns 75–80 of the status row are to be
treated as one field. This will cause the full area to be read when any digit
changes.

Accessibility 307

308 CICS TG for Multiplatforms V9.2: Developing Applications

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1998, 2016 309

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary.

The client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating
conditions.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

310 CICS TG for Multiplatforms V9.2: Developing Applications

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Notices 311

http://www.ibm.com/legal/us/en/copytrade.shtml

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement

Safety and environmental notices

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries
in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

312 CICS TG for Multiplatforms V9.2: Developing Applications

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Gateway for Multiplatforms
Version 9 Release 2
Developing Applications

Publication No. SC34-7339-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7339-00

SC34-7339-00

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP189)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

SC34-7339-00

	Contents
	About this information
	Part 1. Developing applications
	Chapter 1. Application programming interfaces
	Chapter 2. Intercept plug-ins
	CICS Intercept plug-in
	CICS Intercept plug-in development
	Java BasicCicsPlugin sample

	Gateway Intercept plug-in

	Chapter 3. Client applications
	JEE applications

	Chapter 4. External Call Interface (ECI)
	List CICS systems
	The ECI request
	I/O parameters on ECI calls
	Program link calls
	Managing logical units of work

	Status information calls
	Retrieving replies from asynchronous ECI requests

	Introduction to channels and containers
	ECI and CICS transaction IDs
	Timeout of the ECI request
	Request timeout
	Response timeout

	Security in the ECI
	IPIC support for ECI
	ECI performance considerations when using COMMAREAs

	Chapter 5. External Presentation Interface (EPI)
	List CICS systems
	EPI concepts
	Adding and deleting terminals
	Starting transactions
	Sending and receiving data
	Managing CICS conversations

	Terminal characteristics
	Timeout of the EPI request
	Security in the EPI
	Specifying terminal sign-on capability
	Sign-on incapable terminals
	Sign-on capable terminals

	Automatic transaction initiation (ATI)
	Restrictions on application design when using EPI
	3270 data streams for the EPI
	BMS map conversion utilities

	Chapter 6. External Security Interface (ESI)
	I/O parameters on ESI calls
	Using ESI to manage passwords

	Chapter 7. JSON web services
	Concepts of RESTful JSON web services
	Creating a Request-Response JSON web service from high-level language structures
	Creating a Request-Response JSON web service from JSON Schemas
	Creating a RESTful JSON web service
	The JSON web services assistant
	Creating a Request-Response WSBind file from a language structure
	Creating a channel description document

	Creating a Request-Response WSBind file from JSON Schemas
	Creating a RESTful WSBind file
	High-level language and JSON Schema mapping
	COBOL to JSON Schema mapping
	JSON Schema to COBOL mapping
	C and C++ to JSON Schema mapping
	JSON Schema to C and C++ mapping
	PL/I to JSON Schema mapping
	JSON Schema to PL/I mapping
	Variable arrays of elements with MAPPING-MODE=JS2LS

	JSON web service restrictions
	Error responses from JSON web services

	Chapter 8. Statistics APIs
	Statistical data overview
	API and protocol version control
	Statistics C API
	Calling the C API
	Statistics C API components
	Statistics C API program structure
	C API data types
	Gateway tokens
	Query strings
	Result set tokens
	ID data
	Statistical data

	Statistics C API trace levels
	C API functions
	Gateway daemon connection functions
	ID functions
	Retrieving statistical data functions
	Result set functions
	Utility functions

	Correlating results and error checking

	Statistics Java API

	Chapter 9. Code page information
	Chapter 10. Programming in Java
	Overview of the programming interface for Java
	Writing Java client applications
	SSL cipher suites in Java Client applications
	JavaGateway security

	Making ECI calls from a Java client program
	Linking to a CICS server program
	Creating Java channels and containers for ECI calls
	Managing an LUW
	Retrieving replies from asynchronous requests
	Callbacks
	Reply solicitation calls

	Making EPI calls from a Java Client program
	EPI support classes
	Adding a terminal to CICS
	Deleting terminals
	Starting a transaction
	Sending and receiving data
	Exception handling
	Terminal encoding property
	Converting BMS maps and using the Map class

	EPIRequest
	Using the EPIRequest class
	Terminal Indexes

	EPI security

	Making ESI calls from a Java client program
	Compiling and running a Java Client application
	Setting stack and heap sizes
	Setting up the CLASSPATH

	Integration testing Java applications using a Gateway Intercept plug-in
	The sample plug-in
	Plug-in development
	Enabling a Gateway intercept plug-in in a Java SE application

	Problem determination for Java client programs
	Tracing in Java client programs

	Security for Java client programs
	CICS Transaction Gateway security classes
	Using a Java 2 Security Manager
	Permissions to access the file system

	Signing Applets and Web Start Applications
	Using the CICS TG OSGi bundle

	Chapter 11. Programming using the JEE Connector Architecture
	Overview of the JCA programming interface
	The Common Client Interface (CCI)
	The programming interface model
	Record objects
	ECI resource adapter
	EPI resource adapter
	Managed and nonmanaged environments

	The Common Client Interface
	Generic CCI Classes
	CICS-specific classes

	Using the ECI resource adapter
	Using the ECI resource adapter with channels and containers
	Connection to a CICS server using the ECI resource adapter
	Linking to a program on a CICS server
	ECI resource adapter CICS-specific records using the streamable interface
	Transaction management
	XA overview

	Samples

	Using the EPI resource adapter
	Connecting to a CICS server using the EPI resource adapter CCI
	Setting terminal attributes

	Starting a transaction
	Sending and receiving data
	The Screen model
	Stream Format

	Writing LogonLogoff classes
	Java security

	Samples

	Using the resource adapters in a nonmanaged environment
	Creating the appropriate ConnectionFactory object
	Creating an ECI ConnectionFactory
	Creating an EPI ConnectionFactory

	Saving and reusing connection factories
	Running the JEE resource adapters in a nonmanaged environment

	Compiling applications
	Compiling and running JEE components
	Integration testing JEE components using an intercept plug-in
	Security credentials and the CICS resource adapters
	JEE tracing
	Tracing issues relating to serialized interfaces and ConnectionFactory objects

	Resource adapter samples
	ECI COMMAREA sample
	EPI sample
	ECI channels and containers sample

	Assistance in coding CCI applications
	JEE Connector Architecture API

	Chapter 12. Programming in C and COBOL
	Overview of the programming interfaces for C and COBOL
	Making ECI V1 calls from C and COBOL programs
	CICS_ExternalCall
	Program link calls
	Managing logical units of work
	ECI timeouts

	Reply solicitation calls
	Security credentials in ECI V1

	Making ECI V2 and ESI V2 calls from C programs
	Making ECI V2 calls
	Making ESI V2 calls
	Establishing a connection to a Gateway daemon
	Program link calls
	Managing logical units of work
	ECI timeouts

	Reply solicitation calls
	Using channels and containers in ECI V2 applications
	Tracing in ECI V2 and ESI V2 applications
	Security credentials in ECI V2
	Multithreaded ECI V2 and ESI V2 applications

	Making EPI calls from C and COBOL programs
	EPI versions
	EPI Initialization and termination
	Adding a terminal to CICS
	Terminal indexes
	Install timeout

	Deleting a terminal
	Starting transactions
	Sending and receiving data
	Managing pseudoconversations
	Events and callbacks
	Polling
	Blocking
	Callback notification

	Processing events
	Automatic transaction initiation (ATI)
	3270 data streams for the EPI
	EPI to CICS (Inbound data streams)
	CICS to EPI (Outbound data streams)
	3270 order codes provide additional control function

	Making ESI V1 calls from C and COBOL programs
	Verifying a password using ESI
	Changing a password using ESI
	Setting default security using ESI

	Compiling and linking C and COBOL applications
	Windows
	IBM AIX
	Solaris
	Linux
	HP-UX

	Chapter 13. Programming in C++
	Overview of the programming interface for C++
	Writing C++ Client applications
	Establishing the working environment
	Multi-threading

	Making ECI calls from a C++ Client program
	Linking to a CICS server program
	Passing data to a server program
	Using COMMAREAs
	Controlling server interactions

	Managing logical units of work
	Retrieving replies from synchronous requests
	Retrieving replies from asynchronous requests
	Reply solicitation calls
	Deferred synchronous reply handling

	ECI security
	Finding potential servers
	Monitoring server availability
	C++ ECI classes

	Making EPI calls from a C++ Client program
	Adding a terminal to CICS
	EPI call synchronization types
	Sending and receiving data
	Accessing fields on CICS 3270 screens

	Converting BMS maps and using the Map class
	Mapset containing a single map
	Using EPI BMS Map Classes

	Support for Automatic Transaction Initiation (ATI)
	EPI Security
	C++ EPI classes

	Compiling and linking a C++ application
	Problem determination for C++ Client programs
	Handling Exceptions
	Async exception handling

	Chapter 14. Programming using COM
	Overview of the programming interface for COM
	Writing COM Client applications
	Establishing the working environment
	Object creation and interfaces
	Type Libraries and Visual Basic Intellisense

	Making ECI calls from a COM Client program
	Linking to a CICS server program using Visual Basic
	Handling COMMAREAs in Visual Basic

	Linking to a CICS server program using VBScript
	Managing an LUW
	ECI Link Calls within a Unit Of Work

	Retrieving replies from asynchronous requests
	Reply solicitation calls

	ECI security
	ECI CICS Server Information and Connection Status
	ECI COM classes

	Making EPI calls from a COM Client Program
	Adding a terminal to CICS
	Adding a terminal to CICS using Visual Basic
	Adding a terminal to CICS using VBScript

	Sending and receiving data
	EPI call synchronization types
	Converting BMS maps and using the Map class
	Support for Automatic Transaction Initiation (ATI)
	EPI Security
	EPI CICS Server Information
	EPI COM classes

	Problem determination for COM Client programs
	Handling exceptions

	Chapter 15. Developing Microsoft .NET Framework-based applications
	Overview of the programming interface
	Making ECI calls from Microsoft .NET Framework-based programs
	Making ESI calls from Microsoft .NET Framework-based programs
	Using channels and containers in Microsoft .NET Framework-based programs
	Developing ECI and ESI applications based on the Microsoft .NET Framework
	Problem determination for Microsoft .NET Framework-based client programs
	Tracing for Microsoft NET Framework-based client programs

	Chapter 16. Request monitoring exits
	Java request monitoring exits
	Correlation points available in the exits
	Data available by FlowType and RequestEvent
	Non-XA flows at RequestEntry
	XA flows at RequestEntry
	Non-XA flows at RequestDetails
	Non-XA flows at ResponseExit
	XA flows at ResponseExit

	ECI and EPI C exits
	Loading the exits
	Sample exits and interface definitions
	Writing your own user exits
	Diagnostic information
	EPI user exits

	Chapter 17. Creating a CICS request exit
	Writing a CICS request exit

	Chapter 18. Sample programs
	Sample CICS programs and maps
	Java client samples
	Compiled Java samples
	Running the sample programs
	Connecting to CICS Transaction Gateway
	Java ECI base class samples
	Java EciB1 sample
	Java EciB2 sample
	Java EciB3 sample
	Java EciI1 sample
	Java EciA1 sample

	Java EPI base class samples
	Java EpiB1 sample

	Java ESI base class samples
	Java EsiB1 sample

	Java EPI support class samples
	Java HighEpiB1 sample
	Java HighEpiI1 sample

	JEE samples
	JEE ECIDateTime sample
	JEE EPIPlayScript sample
	JEE EC03Channel sample

	C remote client samples
	C ctgecib1 sample
	C ctgecib2 sample
	C ctgecib3 sample
	C ctgesib1 sample

	C, C++ and COBOL local client samples
	Building C sample programs
	Building C++ sample programs
	Building COBOL sample programs
	C/C++ ECIB1 sample
	C/C++ ECII1 sample
	C/C++ EPIB1 sample
	C/C++ EPII1 sample
	C/C++ EPIA1 sample
	C/C++ ECIA1 sample
	C/C++ ESIB1 sample
	ECI extensions that are environment-dependent
	Call type extensions
	Fields to support ECI extensions
	Reply message formats
	ECI return notification
	Summary of ECI input parameters

	C# and Visual Basic samples based on Microsoft .NET Framework
	C# and Visual Basic EciB1 sample based on Microsoft .NET Framework
	C# and Visual Basic EciB3 sample based on Microsoft .NET Framework
	C# and Visual Basic EsiB1 sample based on Microsoft .NET Framework

	User exit samples
	Java security exit data compression samples
	Java request monitoring exit samples
	Java BasicMonitor request monitoring exit sample
	Java ThreadedMonitor request monitoring exit sample

	Java CICS request exit samples
	Using the CICS request exit samples

	C ECI and EPI user exit template samples
	C ECI and EPI user exit samples
	Building C user exit samples

	C and Java statistics API samples
	C ctgstat1 statistics API sample
	Java Ctgstat1 statistics API sample

	Java Ctgstat2 statistics recording sample

	Part 2. Appendixes
	Glossary
	Related literature
	Accessibility
	Installation
	Configuration Tool accessibility
	Starting the Gateway daemon
	cicsterm

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Safety and environmental notices
	Trademarks

	Readers’ Comments — We'd Like to Hear from You

