
CICS Transaction Gateway for Multiplatforms
Version 9 Release 2

Programming Reference

SC34-7340-00

IBM

CICS Transaction Gateway for Multiplatforms
Version 9 Release 2

Programming Reference

SC34-7340-00

IBM

Note
Note: Before you use this information and the product it supports, read the information in Safety and environmental notices
and Notices.

This edition applies to Version 9, Release 2 Modification 0 of CICS TG for Multiplatforms, program number
5724-I81 and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1998, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information v

Part 1. Programming Reference . . . 1

Chapter 1. C 3
ECI V1 3

CICS_ExternalCall (ECI_Parms) 3
Call types 5
ECI status block 28
CICS_EciListSystems (NameSpace Systems List) 29

EPI 30
EPI constants and data structures 30
EPI functions 35
EPI events 54

ESI V1 57
ESI constants and data structures 57
ESI functions 59

Chapter 2. COBOL. 65

Chapter 3. C++ 67
Ccl class 67

Enumerations. 67
CclBuf class 67

CclBuf constructors 68
Public methods 69
Enumerations. 72

CclConn class 72
CclConn constructor 73
Public methods 73
Enumerations. 77

CclECI class 77
CclECI constructor (protected) 77
Public methods 77

CclEPI class 79
CclEPI constructor 79
Public methods 79
Enumerations. 81

CclException class 81
Public methods 81

CclField class 82
Public methods 82
Enumerations. 86

CclFlow class 87
CclFlow constructor 87
Public methods 88
Enumerations. 90

CclMap class 90
CclMap constructor. 90
Public methods 90
Protected methods 91

CclScreen class 92
Public methods 92
Enumerations. 94

CclSecAttr 94
Public Methods 94

CclSecTime 95
Public Methods 95

CclSession class 96
CclSession constructor 96
Public methods 96
Enumerations. 97

CclTerminal class 97
CclTerminal constructor 97
Public methods 99
Enumerations 104

CclUOW class 105
CclUOW constructor 105
Public methods 105

C++ Exception Objects 106

Chapter 4. COM 111
Buffer COM class 111

Interface Selection 111
Object Creation 111
Methods 111

Connect COM class 113
Interface Selection 113
Object Creation 114
Methods 114

ECI COM class 118
Interface Selection 118
Object Creation 118
Methods 119

EPI COM class 120
Interface Selection 121
Object Creation 121
Methods 121

Field COM class 124
Interface Selection 124
Methods 124

Flow COM class 128
Interface Selection 128
Object Creation 128
Methods 128

Map COM class 130
Interface Selection 131
Object Creation 131
Methods 131

Screen COM class 132
Interface Selection 132
Methods 132

SecAttr COM class 134
Interface Selection 134
Methods 135

SecTime COM class 135
Interface Selection 135
Methods 136

Session COM class 136

© Copyright IBM Corp. 1998, 2016 iii

Interface Selection 136
Object Creation 137
Methods 137

Terminal COM class 138
Interface Selection 138
Object Creation 138
Methods 138

UOW COM class 145
COM Global Constants 146
COM EPI Specific Constants 146
COM ECI Constants 150
COM Error Code References 151
COM Global Constants 152
COM EPI Specific Constants 153
COM ECI Constants 157
COM Error Code References 157
COM Global Constants 159
COM EPI Specific Constants 159
COM ECI Constants 163
COM Error Code References 164
Interface Selection 166
Object Creation 166
Methods 166

COM Global Constants 167
COM EPI Specific Constants 167

Synchronization Types 167
CclEPI states 167
CclSession States 168
CclTerminal States 168
CclTerminal ATI States 168
CclTerminal EndTermReasons 168
CclTerminal Sign-on Types 169
CclScreen AID key codes 169
CclField Protected State Attributes 170
CclField Numeric Attributes 170
CclField Intensity Attributes 170
CclField Modified Attributes 170
CclField Highlight Attributes 170
CclField Transparency Attributes 171
CclField Color Attributes 171

COM ECI Constants 171
Synchronization Types 171
Flow status types 171
Connection Status Codes 172

COM Error Code References 172

Chapter 5. Exits 175
ECI Client API exits 175

Identification token 176
CICS_EciInitializeExit 176
CICS_EciTerminateExit 177
CICS_EciExternalCallExit1 178
CICS_EciExternalCallExit2 179
CICS_EciSystemIdExit 180
CICS_EciDataSendExit 181
CICS_EciDataReturnExit. 182
CICS_EciSetProgramAliasExit 182

EPI Client API exits 183
CICS_EpiInitializeExit 185
CICS_EpiTerminateExit 186
CICS_EpiAddTerminalExit 187
CICS_EpiTermIdExit 188
CICS_EpiTermIdInfoExit. 189
CICS_EpiStartTranExtendedExit 190
CICS_EpiStartTranExit 191
CICS_EpiReplyExit 192
CICS_EpiDelTerminalExit 193
CICS_EpiGetEventExit 194
CICS_EpiSystemIdExit 194
CICS_EpiTranFailedExit 196

Chapter 6. Code pages 199

Part 2. Appendixes 203

Glossary 205

Related literature 227

Accessibility 229
Installation 229
Configuration Tool accessibility 229
Starting the Gateway daemon 229
cicsterm 230

Notices 233
Programming interface information 235
Trademarks 235
Terms and conditions for product documentation 235
IBM Online Privacy Statement. 236
Safety and environmental notices 236
Trademarks 236

iv CICS TG for Multiplatforms V9.2: Programming Reference

About this information

This information describes the planning, installation, configuration, and operation
of the IBM® CICS® Transaction Gateway and the IBM CICS Transaction Gateway
Desktop Edition products.

You should be familiar with the operating system on which CICS Transaction
Gateway runs and also with Internet terminology.

This information includes trademarks including Java™, for more information about
Trademarks, see the Trademark information at the back of this publication.

© Copyright IBM Corp. 1998, 2016 v

vi CICS TG for Multiplatforms V9.2: Programming Reference

Part 1. Programming Reference

© Copyright IBM Corp. 1998, 2016 1

2 CICS TG for Multiplatforms V9.2: Programming Reference

Chapter 1. C

Programming reference information for the CICS Transaction Gateway C APIs.

ECI V1
This section describes CICS_ExternalCall and the call types that control its
function.

CICS_ExternalCall (ECI_Parms)
CICS_ExternalCall gives access to the program link calls, status information calls,
and reply solicitation calls.

The function performed is controlled by the eci_call_type field in the ECI
parameter block.

Parameters

ECI_Parms
A pointer to the ECI parameter block. Set the parameter block to nulls before
use. The parameter block fields that are used as input and output are
described in detail for each call type in the following sections. A brief
summary of the fields follows:

eci_abend_code
Abend code for a failed program.

eci_callback
A pointer to a callback routine for an asynchronous request. Not
supported in COBOL applications.

eci_call_type
An integer field defining the type of call being made.

eci_commarea
A COMMAREA for use by a called program, or for returned status
information.

eci_commarea_length
The length of the COMMAREA. The size of the COMMAREA must
be set to the largest size of the input or output data. This length
must not exceed 32,500 bytes. If the input data is less than the
length of the COMMAREA, pad the COMMAREA with nulls. The
Client daemon strips off the null padding and sends only the data
on the ECI request to the CICS server.

eci_extend_mode
Used to manage logical units of work that span multiple ECI
requests. See the information about managing logical units of work
in the CICS Transaction Gateway for Multiplatforms: Developing
Applications for more details.

eci_luw_token
An identifier for a logical unit of work.

eci_message_qualifier
A user-provided reference to an asynchronous call.

© Copyright IBM Corp. 1998, 2016 3

eci_password
Password for security checking.

eci_password2
Password for security checking. This is used if the password is
more than 8 characters.

eci_program_name
The name of a program to be called.

eci_sysid
Reserved for future use; leave null.

eci_system_name
The name of a CICS server.

eci_timeout
The time to wait for a response from the CICS server. For more
information on the ECI time-out support, see the information about
timeout of the ECI request in the CICS Transaction Gateway for
Multiplatforms: Developing Applications. For remote mode IPIC, this
value can be overridden by the ECITIMEOUT property on the IPIC
server definition.

eci_tpn
A transaction identifier for the mirror transaction.

eci_transid
A transaction identifier.

eci_userid
User ID for security checking.

eci_userid2
User ID for security checking. This is used if the User ID is more
than 8 characters.

eci_version
The version of the ECI for which the application is coded. Use the
value ECI_VERSION_1A.

reserved1
This field was previously eci_system_return_code. In Version 3.1
and higher of the product, this field is kept for compatibility. No
information is returned in this field; all system errors are written to
the CICS Transaction Gateway's error log.

Return codes

In addition to the return codes described for each call type in the following
sections, the following return codes are possible.

ECI_ERR_INVALID_CALL_TYPE
The call type was not one of the valid call types.

ECI_ERR_CALL_FROM_CALLBACK
The call was made from a callback routine.

ECI_ERR_REQUEST_TIMEOUT
The time-out interval expired before the request could be processed, or the
specified interval was negative.

4 CICS TG for Multiplatforms V9.2: Programming Reference

ECI_ERR_RESPONSE_TIMEOUT
The time-out interval expired while the program was running.

ECI_ERR_SYSTEM_ERROR
An internal system error occurred. The error might be in the CICS
Transaction Gateway or in the server. Save the information returned in the
CICS Transaction Gateway's error log, because this will help service
personnel to diagnose the error.

ECI_ERR_INVALID_VERSION
The value supplied for eci_version was invalid.

In some implementations, some of the return codes documented here and for each
call type will never be returned.

The mapping of actual return code values to the symbolic names is contained in
the following files:

C <install_path>/include/cics_eci.h

COBOL
<install_path>/copybook/cicseci.cbl

Call types
Call types define the action requested by the call.

ECI_SYNC call type
The ECI_SYNC call type is available in all environments.

Purpose

The ECI_SYNC call type provides a synchronous program link call to start,
continue, or end a logical unit of work. The calling application does not get control
back until the called CICS program has run to completion.

ECI parameter block fields

Set the ECI parameter block to nulls before setting the input parameter fields.

eci_call_type
Required input parameter, which must be set to ECI_SYNC.

eci_program_name
Input parameter; required except when eci_extend_mode is ECI_COMMIT
or ECI_BACKOUT. See the information about managing logical units of
work in the CICS Transaction Gateway for Multiplatforms: Developing
Applications for more details.

An 8-character field containing the name of the program to be called. Pad
unused characters with spaces. This field is transmitted to the server
without conversion to uppercase.

The characters used are translated from the client's code page to an
EBCDIC code page before transmission. If the server uses an ASCII code
page, they will be retranslated. The only characters guaranteed to be
invariant under these translations are the uppercase characters A to Z, and
the numeric characters 0 to 9. Some EBCDIC servers (Katakana and
Hebrew character set A) do not use the standard representations of the
lowercase alphabetic characters; use them with care when communicating
with such servers.

Chapter 1. C 5

eci_userid
Required input parameter.

An 8-character field containing a user ID. Pad unused characters with
spaces.

Consult the documentation for the CICS Transaction Gateway and the
server to check whether this field is converted to uppercase before being
transmitted to the server. If a user ID or password longer than 8 characters
is required, set eci_userid and eci_password to nulls, and use fields
eci_userid2 and eci_password2 instead.

If a user ID is supplied, the server uses the user ID and any supplied
password to authenticate the user. The supplied user ID and password are
used in subsequent security checking in the server.

eci_password
Required input parameter.

An 8-character field containing a password. Pad unused characters with
spaces.

Consult the documentation for the CICS Transaction Gateway and the
server to check whether this field is converted to uppercase before being
transmitted to the server. If a user ID or password longer than 8 characters
is required, set this field and eci_userid to nulls, and use fields eci_userid2
and eci_password2 instead.

eci_transid
Optional input parameter

A 4-character field optionally containing the ID of a CICS transaction. Pad
unused characters with spaces. The parameter is ignored if eci_tpn is used
(set to any value other than nulls). The use of this parameter depends on
the client from which the request is sent. The value of eci_transid is
converted from ASCII to EBCDIC, with no uppercase translation, and
stored in EIBTRNID for the duration of the LINK to the program specified
in the eci_program_name.

The called program runs under the mirror transaction CPMI, but is linked
to under the eci_transid transaction name. This name is available to the
called program for querying the transaction ID. Some servers use the
transaction ID to determine security and performance attributes for the
called program. In those servers, use this parameter to control the
processing of your called programs.

If the field is all nulls, and eci_tpn is not specified, the default server
transaction ID is used.

eci_abend_code
Output parameter.

A 4-character field in which a CICS abend code is returned if the
transaction that executes the called program ends abnormally. Unused
characters are padded with spaces.

eci_commarea
Optional input parameter.

A pointer to the data to be passed to the called CICS program as its
COMMAREA. The COMMAREA will be used by the called program to
return information to the application.

6 CICS TG for Multiplatforms V9.2: Programming Reference

If no COMMAREA is required, supply a null pointer and set the length
(specified in eci_commarea_length) to zero.

If the code page of the application is different from the code page of the
server, data conversion must be performed at the server. To do this, use
CICS-supplied resource conversion capabilities, such as the DFHCNV
macro definitions.

eci_commarea_length
Optional input parameter.

The length of the COMMAREA in bytes. Application developers are
advised to use a maximum size of 32,500 bytes because this is guaranteed
to be flowed successfully across all protocols. COMMAREA sizes greater
than this might cause an ECI_ERR_INVALID_DATA_LENGTH return code
to be generated.

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

eci_timeout
The time in seconds to wait for a response from the CICS server. A value
of 0 means that no limit is set.

If timeout occurs, the conversation ends abnormally.

reserved1
Output parameter.

This field was previously eci_system_ return_code. In the CICS
Transaction Gateway Version 3.1, and higher, this field is reserved for
compatibility with earlier versions. No information is returned in this field;
all system errors are written to the CICS Transaction Gateway's error log.

eci_extend_mode
Required input parameter.

An integer field determining whether a logical unit of work is terminated
at the end of this call. (See the information about managing logical units of
work in the CICS Transaction Gateway for Multiplatforms: Developing
Applications for more details.)

The values for this field (shown by their symbolic names) are as follows:

ECI_NO_EXTEND

1. If the input eci_luw_token field is zero, this is the only call for
a logical unit of work.

2. If the input eci_luw_token field is not zero, this is the last call
for the specified logical unit of work.

In each case, changes to recoverable resources are committed by a
CICS end-of-task sync point, and the logical unit of work ends.

If you set eci_extend_mode to ECI_NO_EXTEND and
eci_luw_token to 0, you will observe one request flowing from
client to server and one reply flowing from server to client. The
server sends the reply after the program specified in
eci_program_name has been invoked and the changes made by
that program have been committed.

ECI_EXTENDED

1. If the input eci_luw_token field is zero, this is the first call for
a logical unit of work that is to be continued.

Chapter 1. C 7

2. If the input eci_luw_token field is not zero, this call is intended
to continue the specified logical unit of work.

In each case the logical unit of work continues after the called
program completes successfully, and changes to recoverable
resources remain uncommitted.

ECI_COMMIT
Terminate the current logical unit of work, identified by the input
eci_luw_token field, and commit all changes made to recoverable
resources.

ECI_BACKOUT
Terminate the logical unit of work identified by the input
eci_luw_token field, and back out all changes made to recoverable
resources.

eci_luw_token
Required input and output parameter.

An integer field used for identifying the logical unit of work to which a
call belongs. It must be set to zero at the start of a logical unit of work
(regardless of whether the logical unit of work is going to be extended). If
the logical unit of work is to be extended, the ECI updates eci_luw_token
with a valid value on the first call of the logical unit of work, and this
value is used as input to all later calls related to the same logical unit of
work. (See the information about managing logical units of work in the
CICS Transaction Gateway for Multiplatforms: Developing Applications for more
details.)

If the return code is not ECI_NO_ERROR, and the call was continuing or
ending an existing logical unit of work, this field is used as output to
report the condition of the logical unit of work. If it is set to zero, the
logical unit of work has ended, and its updates have been backed out. If it
is nonzero, it is the same as the input value, the logical unit of work is
continuing, and its updates are still pending.

eci_sysid
Required input parameter.

Reserved for future use, but initialize this field with nulls before the start
of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. Use the value
ECI_VERSION_1A.

eci_system_name
Optional input parameter.

An 8-character field that specifies the name of the server to which the ECI
request is to be directed. Pad unused characters with spaces. If supplied, it
is one of the server names returned by CICS_EciListSystems. The value
can be supplied whenever eci_luw_token is set to zero. (If it is supplied
when eci_luw_token is not zero, it is ignored, because the server was
established at the start of the logical unit of work.)

If the field is set to nulls, the default CICS server is selected; the name of
the chosen server is returned in this field, and must be used in subsequent

8 CICS TG for Multiplatforms V9.2: Programming Reference

related ECI requests. If ECI requests made in different logical units of work
must be directed to the same server, eci_system_name must identify that
server by name.

eci_userid2
Optional input parameter.

If the eci_userid field is set to nulls, the eci_userid2 field specifies the user
ID (if any) to be used at the server for any authority validation. The user
ID can be up to 16 characters.

See the description of the eci_userid field for information about how the
user ID is used.

eci_password2
Optional input parameter.

If the eci_password field is set to nulls, the eci_password2 field specifies
the password (if any) to be used at the server for any authority validation.
The password can be up to 16 characters.

See the description of the eci_password field for information about how
the password is used.

eci_tpn
Optional input parameter.

A 4-character field that specifies the transaction ID of the transaction that
will be used in the server to process the ECI request. This transaction must
be defined in the server as a CICS mirror transaction. If the field is not set,
the default mirror transaction CPMI is used.

If the ECI request is extended (see the description of eci_extend_mode),
this parameter has a meaning only for the first request in the unit of work.
Subsequent requests within the same unit of work will use the mirror
transaction specified on the first request.

If this field is used, the contents of eci_transid are ignored.

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall (ECI_Parms)” on page 3.

ECI_NO_ERROR
The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is outside the valid range, or is
inconsistent with the value in eci_commarea, being zero for a non-null
eci_commarea pointer, or non-zero for a null eci_commarea pointer.

ECI_ERR_INVALID_EXTEND_MODE
The value in eci_extend_mode field is not valid.

ECI_ERR_NO_CICS
The CICS Transaction Gateway is unavailable, or the server
implementation is unavailable, or a logical unit of work was to be begun,
but the CICS server specified in eci_system_name is not available. No
resources have been updated.

ECI_ERR_CICS_DIED
A logical unit of work was to be begun or continued, but the CICS server

Chapter 1. C 9

was no longer available. If eci_extend_mode was ECI_EXTENDED, the
changes are backed out, and the logical unit of work ends. If
eci_extend_mode was ECI_NO_EXTEND, ECI_COMMIT, or
ECI_BACKOUT, the application cannot determine whether the changes
have been committed or backed out, and must log this condition to aid
future manual recovery.

ECI_ERR_TRANSACTION_ABEND
The CICS transaction that executed the requested program ended
abnormally. The abend code is in eci_abend_code. For information about
abend codes and their meaning, consult the documentation for the server
system to which the request was directed.

ECI_ERR_LUW_TOKEN
The value supplied in eci_luw_token is invalid.

ECI_ERR_ALREADY_ACTIVE
An attempt was made to continue an existing logical unit of work, but
there was an outstanding asynchronous call for the same logical unit of
work.

ECI_ERR_RESOURCE_SHORTAGE
The server implementation or the Client daemon did not have enough
resources to complete the request.

ECI_ERR_NO_SESSIONS
A new logical unit of work was being created, but the application already
has as many outstanding logical units of work as the configuration will
support.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_ERR_ROLLEDBACK
An attempt was made to commit a logical unit of work, but the server was
unable to commit the changes, and backed them out instead.

ECI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by
CICS_EciListSystems are acceptable.

ECI_ERR_MAX_SESSIONS
The maximum number of concurrent requests handled by the Client
daemon, as defined by the configuration parameter maxrequests in the
configuration file, has been reached.

ECI_ERR_MAX_SYSTEMS
You tried to start requests to more servers than your configuration allows.
Consult the documentation for your CICS Transaction Gateway or server to
see how to control the number of servers you can use.

ECI_ERR_SECURITY_ERROR
You did not supply a valid combination of user ID and password.

ECI_ASYNC call type
The ECI_ASYNC call type provides an asynchronous program link call to start,
continue, or end a logical unit of work.

10 CICS TG for Multiplatforms V9.2: Programming Reference

Purpose

The calling application gets control back when the ECI has accepted the request. At
this point the parameters have been validated; however, the request might still be
queued for later processing.

If no callback routine is provided, the application must use a reply solicitation call
to determine whether the request has ended and what the outcome was.

If a callback routine is provided, the callback routine eci_callback is invoked when
a response is available.

Note: Some compilers do not support the use of callback routines. Consult your
compiler documentation for more information.

It is important that the Eci parameter blocks of outstanding ECI_ASYNC calls are
not modified before the results of the call are received. Results will be incorrect if
these blocks are modified before this stage.

When the callback routine is called, it is passed a single parameter—the value
specified in eci_message_qualifier. This enables the callback routine to identify the
asynchronous call that is completing. Follow these guidelines when using the
callback routine:
1. Perform the minimum possible processing within the callback routine.
2. ECI functions cannot be invoked from within the callback routine.
3. The callback routine indicates to the main body of the application that the reply

is available using an appropriate technique for the operating system upon
which the ECI application is executing. For example, in a multithreaded
environment, the callback routine might post a semaphore to signal another
thread that an event has occurred.

4. The application, not the callback routine, must use a reply solicitation call to
receive the actual response.

ECI parameter block fields

Set the ECI parameter block to nulls before you set the input parameter fields.

eci_call_type
Required input parameter.

Must be set to ECI_ASYNC.

eci_program_name
Input only, required parameter except when eci_extend_mode is
ECI_COMMIT or ECI_BACKOUT. (See the information about managing
logical units of work in the CICS Transaction Gateway for Multiplatforms:
Developing Applications for more details.)

An 8-character field containing the name of the program to be called. Pad
unused characters with spaces. This field is transmitted to the server
without conversion to uppercase.

The characters used are translated from the client's code page to an
EBCDIC code page before transmission. If the server uses an ASCII code
page, they will be retranslated. The only characters guaranteed to be
invariant under these translations are the uppercase characters A to Z, and
the numeric characters 0 to 9. Some EBCDIC servers (Katakana and

Chapter 1. C 11

Hebrew character set A) do not use the standard representations of the
lowercase alphabetic characters; use them with care when communicating
with such servers.

eci_userid
Required input parameter.

An 8-character field containing a user ID. Pad unused characters with
spaces.

Consult the documentation for the CICS Transaction Gateway and the
server to check whether this field is converted to uppercase before being
transmitted to the server. (If a user ID or password longer than 8
characters is required, set eci_userid and eci_password to nulls, and use
eci_userid2 and eci_password2 instead.)

If a user ID is supplied, the server uses the user ID and any supplied
password to authenticate the user. The supplied user ID and password are
used in subsequent security checking in the server.

eci_password
Required input parameter.

An 8-character field containing a password. Pad unused characters with
spaces.

Consult the documentation for the CICS Transaction Gateway and the
server to check whether this field is converted to uppercase before being
transmitted to the server. (If a user ID or password longer than 8
characters is required, set eci_userid and eci_password to nulls, and use
eci_userid2 and eci_password2 instead.)

eci_transid
Optional input parameter

A 4-character field optionally containing the ID of a CICS transaction. Pad
unused characters with spaces. The parameter is ignored if eci_tpn is used
(set to any value other than nulls). The use of this parameter depends on
the client from which the request is sent. The value of eci_transid is
converted from ASCII to EBCDIC, with no uppercase translation, and
stored in EIBTRNID for the duration of the LINK to the program specified
in the eci_program_name.

The called program runs under the mirror transaction CPMI, but is linked
to under the eci_transid transaction name. This name is available to the
called program for querying the transaction ID. Some servers use the
transaction ID to determine security and performance attributes for the
called program. In those servers, use this parameter to control the
processing of your called programs.

If the field is all nulls, and eci_tpn is not specified, the default server
transaction ID is used.

eci_commarea
Required input parameter.

A pointer to the data to be passed to the called CICS program as its
COMMAREA.

If no COMMAREA is required, supply a null pointer and set the length
(specified in eci_commarea_length) to zero.

12 CICS TG for Multiplatforms V9.2: Programming Reference

If the code page of the application is different from the code page of the
server, data conversion must be performed at the server. To do this, use
CICS-supplied resource conversion capabilities, such as the DFHCNV
macro definitions.

eci_commarea_length
Required input parameter.

The length of the COMMAREA in bytes. Application developers are
advised to use a maximum size of 32,500 bytes, as this is guaranteed to be
flowed successfully across all protocols. COMMAREA sizes greater than
this may generate an ECI_ERR_INVALID_DATA_LENGTH return code.

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

eci_timeout
The time in seconds to wait for a response from the CICS server. A value
of 0 means that no limit is set.

If timeout occurs, the conversation ends abnormally.

reserved1
Output parameter.

This field was previously eci_system_ return_code. In the CICS
Transaction Gateway Version 3.1, and higher, this field is reserved for
compatibility with earlier versions. No information is returned in this field;
all system errors are written to the error log.

eci_extend_mode
Required input parameter.

An integer field determining whether a logical unit of work is terminated
at the end of this call. (See the information about managing logical units of
work in the CICS Transaction Gateway for Multiplatforms: Developing
Applications for more details.)

Values (shown by their symbolic names) for this field are as follows:

ECI_NO_EXTEND

1. If the input eci_luw_token field is zero, this is the only call for
a logical unit of work.

2. If the input eci_luw_token field is not zero, this is the last call
for the specified logical unit of work.

In each case, changes to recoverable resources are committed by a
CICS end-of-task sync point, and the logical unit of work ends.

ECI_EXTENDED

1. If the input eci_luw_token field is zero, this is the first call for
a logical unit of work that is to be continued.

2. If the input eci_luw_token field is not zero, this call is intended
to continue the specified logical unit of work.

In each case the logical unit of work continues after the called
program completes, and changes to recoverable resources remain
uncommitted.

Chapter 1. C 13

ECI_COMMIT
Terminate the current logical unit of work, identified by the input
eci_luw_token field, and commit all changes made to recoverable
resources.

ECI_BACKOUT
Terminate the logical unit of work identified by the input
eci_luw_token field, and back out all changes made to recoverable
resources.

eci_message_qualifier
Optional input parameter.

An integer field allowing the application to identify each asynchronous call
if it is making more than one. If a callback routine is specified, the value in
this field is returned to the callback routine during the notification process.

eci_luw_token
Required input and output parameter.

An integer field used for identifying the logical unit of work to which a
call belongs. It must be set to zero at the start of a logical unit of work
(regardless of whether the logical unit of work is going to be extended),
and the ECI updates it with a valid value on the first or only call of the
logical unit of work. If the logical unit of work is to be extended, use this
as input to all later calls related to the same logical unit of work. (See the
information about managing logical units of work in the CICS Transaction
Gateway for Multiplatforms: Developing Applications for more details.)

If the return code is not ECI_NO_ERROR, and the call was continuing or
ending an existing logical unit of work, this field is used as output to
report the condition of the logical unit of work. If it is set to zero, the
logical unit of work has ended, and its updates have been backed out. If it
is nonzero, it is the same as the input value, the logical unit of work is
continuing, and its updates are still pending.

eci_sysid
Required input parameter.

Reserved for future use, but initialize this field with nulls before the start
of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. Use the value
ECI_VERSION_1A.

eci_system_name
Optional input parameter.

An 8-character field that specifies the name of the server to which the ECI
request is to be directed. Pad unused characters with spaces. The value
might be supplied whenever eci_luw_token is set to zero. (If it is supplied
when eci_luw_token is not zero, it is ignored, because the server was
established at the start of the logical unit of work.)

If the field is set to nulls, the default CICS server is selected. You can
obtain the name of the chosen server from the eci_system_name field of
the reply solicitation call you use to get the result of this asynchronous
request. (If later ECI requests made in different logical units of work must

14 CICS TG for Multiplatforms V9.2: Programming Reference

be directed to the same server as this request, eci_system_name in those
requests must identify that server by name.)

eci_callback
Optional input parameter.

A pointer to the routine to be called when the asynchronous request
completes. (The callback routine will be called only if the return code is
ECI_NO_ERROR, and the pointer is not null.)

eci_userid2
Optional input parameter.

If the eci_userid field is set to nulls, the eci_userid2 field specifies the user
ID (if any) to be used at the server for any authority validation. The user
ID can be up to 16 characters.

See the description of the eci_userid field for information about how the
user ID is used.

eci_password2
Optional input parameter.

If the eci_password field is set to nulls, the eci_password2 field specifies
the password (if any) to be used at the server for any authority validation.
The password can be up to 16 characters.

See the description of the eci_password field for information about how
the password is used.

eci_tpn
Optional input parameter.

A 4-character field that specifies the transaction ID of the transaction that
will be used in the server to process the ECI request. This transaction must
be defined in the server as a CICS mirror transaction. If the field is not set,
the default mirror transaction CPMI is used.

If the ECI request is extended (see the description of eci_extend_mode),
this parameter has a meaning only for the first request in the unit of work.
Subsequent requests within the same unit of work will use the mirror
transaction specified on the first request.

If this field is used, the contents of eci_transid are ignored.

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall (ECI_Parms)” on page 3.

If the return code is not ECI_NO_ERROR, the callback routine will not be called,
and there will be no asynchronous reply for this request.

ECI_NO_ERROR
The call to the ECI completed successfully. No errors have yet been
detected. The callback routine will be called when the request completes.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is outside the valid range, or is
inconsistent with the value in eci_commarea, being zero for a non-null
eci_commarea pointer, or non-zero for a null eci_commarea pointer.

Chapter 1. C 15

ECI_ERR_INVALID_EXTEND_MODE
The value in eci_extend_mode field is not valid.

ECI_ERR_NO_CICS
Either the client or the server implementation is not available.

ECI_ERR_LUW_TOKEN
The value supplied in eci_luw_token is invalid.

ECI_ERR_THREAD_CREATE_ERROR
The server implementation or the client failed to create a thread to process
the request.

ECI_ERR_ALREADY_ACTIVE
An attempt was made to continue an existing logical unit of work, but
there was an outstanding asynchronous call for the same logical unit of
work.

ECI_ERR_RESOURCE_SHORTAGE
The server implementation or the client did not have enough resources to
complete the request.

ECI_ERR_NO_SESSIONS
A new logical unit of work was being created, but the application already
has as many outstanding logical units of work as the configuration will
support.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_STATE_SYNC call type
The ECI_STATE_SYNC call type is available in all environments.

Purpose

The ECI_STATE_SYNC call type provides a synchronous call that gives information
about the status of the server.

ECI parameter block fields

Set the ECI parameter block to nulls before setting the input parameter fields.

eci_call_type
Required input parameter.

Must be set to ECI_STATE_SYNC.

eci_commarea
Input parameter, required except when eci_extend_mode has the value
ECI_STATE_CANCEL.

A pointer to the area of storage where the application receives the returned
COMMAREA containing status information. See the information about
status information calls in the CICS Transaction Gateway for Multiplatforms:
Developing Applications and “ECI status block” on page 28, for more details.

If eci_extend_mode has the value ECI_STATE_CANCEL, supply a null
pointer and set the length (specified in eci_commarea_length) to zero.

eci_commarea_length
Required input and output parameter, except when eci_extend_mode has
the value ECI_STATE_CANCEL.

16 CICS TG for Multiplatforms V9.2: Programming Reference

The length of the COMMAREA in bytes, which must be the length of the
ECI_STATUS structure that gives the layout of the status information
COMMAREA. See the information about status information calls in the
CICS Transaction Gateway for Multiplatforms: Developing Applications and
“ECI status block” on page 28, for more details. Area size must not exceed
32,500 bytes

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

reserved1
Output parameter.

This field was previously eci_system_ return_code. In the CICS
Transaction Gateway Version 3.1, and higher, this field is reserved for
compatibility with earlier versions. No information is returned in this field;
all system errors are written to the error log.

eci_extend_mode
Required input parameter.

An integer field further qualifying the call type. The values for this field
(shown by their symbolic names) are as follows:

ECI_STATE_IMMEDIATE
Force a status reply to be sent as soon as it is available. The layout
of the returned COMMAREA is defined in the ECI_STATUS
structure. See the information about status information calls in the
CICS Transaction Gateway for Multiplatforms: Developing Applications
and “ECI status block” on page 28, for more details.

ECI_STATE_CHANGED
Force a status reply to be sent only when the status changes. The
supplied COMMAREA must contain the status as perceived by the
application. A reply is sent only when there is a change from the
status that the application supplied. The layout of the
COMMAREA is defined in the ECI_STATUS structure. See the
information about status information calls in the CICS Transaction
Gateway for Multiplatforms: Developing Applications and “ECI status
block” on page 28, for more details. The eci_luw_token field that is
returned on the immediate response provides a token to identify
the request.

ECI_STATE_CANCEL
Cancel an ECI_STATE_CHANGED type of operation. No
COMMAREA is required for this request. The eci_luw_token field
must contain the token that was received during the
ECI_STATE_CHANGED call.

eci_luw_token
Optional input and output parameter.

When a deferred status request is being set up (eci_extend_mode set to
ECI_STATE_CHANGED), the token identifying the request is returned in
the eci_luw_token field.

When a deferred status request is being cancelled (eci_extend_mode set to
ECI_STATE_CANCEL), the eci_luw_token field must contain the token
that was received during the ECI_STATE_CHANGED call.

This field is not used when other values of eci_extend_mode are specified.

Chapter 1. C 17

eci_sysid
Required input parameter.

Reserved for future use, initialize this field with nulls before the start of
each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. Use the value
ECI_VERSION_1A.

eci_system_name
Optional input parameter.

An 8-character field that specifies the name of the server for which status
information is required. Pad unused characters with spaces. If supplied, it
is one of the server names returned by CICS_EciListSystems. The value
might be supplied whenever eci_luw_token is set to zero.

If the field is set to nulls, the default CICS server is selected; the name of
the chosen server is returned in this field.

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall (ECI_Parms)” on page 3.

ECI_NO_ERROR
The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is outside the valid range, or is
inconsistent with the value in eci_commarea, being zero for a non-null
eci_commarea pointer, or non-zero for a null eci_commarea pointer.

ECI_ERR_INVALID_EXTEND_MODE
The value in eci_extend_mode field is not valid.

ECI_ERR_LUW_TOKEN
The value supplied in eci_luw_token is invalid.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by
CICS_EciListSystems are acceptable.

ECI_STATE_ASYNC call type
The ECI_STATE_ASYNC call type provides an asynchronous status information
call. The calling application gets control back when the ECI accepts the request. At
this point the parameters have been validated; however, the request might still be
queued for later processing.

Purpose

If no callback routine is provided, the application must use a reply solicitation call
to determine that the request has ended and what the outcome was.

18 CICS TG for Multiplatforms V9.2: Programming Reference

If a callback routine is provided, the callback routine eci_callback is invoked when
a response is available.

Note: Some compilers do not support the use of callback routines. Consult your
compiler documentation for more information.

Note: It is important that the ECI parameter blocks of outstanding
ECI_STATE_ASYNC calls are not modified before the results of the call are
received. Results will be incorrect if these blocks are modified before this stage.

When the callback routine is called, it is passed a single parameter—the value
specified in eci_message_qualifier. This enables the callback routine to identify the
asynchronous call that is completing. Note the following guidelines on the use of
the callback routine:
1. Perform the minimum possible processing within the callback routine.
2. ECI functions cannot be invoked from within the callback routine.
3. The callback routine indicate to the main body of the application that the reply

is available using an appropriate technique for the operating system upon
which the ECI application is executing. For example, in a multithreaded
environment, the callback routine might post a semaphore to signal another
thread that an event has occurred.

4. The application, not the callback routine, must use a reply solicitation call to
receive the actual response.

ECI parameter block fields

Set the ECI parameter block to nulls before setting the input parameter fields.

eci_call_type
Required input parameter.

Must be set to ECI_STATE_ASYNC.

eci_commarea
Input parameter, required except when eci_extend_mode has the value
ECI_STATE_CANCEL.

A pointer to the area of storage where the application receives the returned
COMMAREA containing status information. See the information about
status information calls in the CICS Transaction Gateway for Multiplatforms:
Developing Applications and “ECI status block” on page 28 for more details.

If eci_extend_mode has the value ECI_STATE_CANCEL, supply a null
pointer and set the length (specified in eci_commarea_length) to zero.

eci_commarea_length
Required input parameter, except when eci_extend_mode has the value
ECI_STATE_CANCEL.

The length of the COMMAREA in bytes, which must be the length of the
ECI_STATUS structure that gives the layout of the status information
COMMAREA. See the information about status information calls in the
CICS Transaction Gateway for Multiplatforms: Developing Applications and
“ECI status block” on page 28, for more details. Area size must not exceed
32,500 bytes

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

Chapter 1. C 19

reserved1
Output parameter.

This field was previously eci_system_ return_code. In the CICS
Transaction Gateway Version 3.1, and higher, this field is reserved for
compatibility with earlier versions. No information is returned in this field;
all system errors are written to the error log.

eci_extend_mode
Required input parameter.

An integer field further qualifying the call type. The values for this field
(shown by their symbolic names) are as follows:

ECI_STATE_IMMEDIATE
Force a status reply to be sent immediately it is available. The
layout of the returned COMMAREA is defined in the ECI_STATUS
structure. See the information about status information calls in the
CICS Transaction Gateway for Multiplatforms: Developing Applications
and “ECI status block” on page 28, for more details.

ECI_STATE_CHANGED
Force a status reply to be sent only when the status changes. The
supplied COMMAREA must contain the status as perceived by the
application. A reply is sent only when there is a change from the
status that the application supplied. The layout of the
COMMAREA is defined in the ECI_STATUS structure. See the
information about status information calls in the CICS Transaction
Gateway for Multiplatforms: Developing Applications and “ECI status
block” on page 28, for more details. The eci_luw_token field that is
returned on the immediate response identifies the logical unit of
work to which this call belongs.

ECI_STATE_CANCEL
Cancel an ECI_STATE_CHANGED type of operation. No
COMMAREA is required for this request. The eci_luw_token field
must contain the token that was received during the
ECI_STATE_CHANGED call.

eci_message_qualifier
Optional input parameter.

An integer field allowing you to identify each asynchronous call if you are
making more than one. If a callback routine is specified, the value in this
field is returned to the callback routine during the notification process.

eci_luw_token
Optional input and output parameter.

When a deferred status request is being set up (eci_extend_mode set to
ECI_STATE_CHANGED), the token identifying the request is returned in
the eci_luw_token field.

When a deferred status request is being cancelled (eci_extend_mode set to
ECI_STATE_CANCEL), the eci_luw_token field must contain the token
that was received during the ECI_STATE_CHANGED call.

This field is not used when other values of eci_extend_mode are specified.

eci_sysid
Required input parameter.

20 CICS TG for Multiplatforms V9.2: Programming Reference

Reserved for future use, but initialize this field with nulls before the start
of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. Use the value
ECI_VERSION_1A.

eci_system_name
Optional input parameter.

An 8-character field that specifies the name of the server for which status
information is requested. Pad unused characters with spaces. If supplied, it
is one of the server names returned by CICS_EciListSystems. The value
might be supplied whenever eci_luw_token is set to zero.

If the field is set to nulls, the default CICS server is selected. You can find
out the name of the server from the eci_system_name field of the reply
solicitation call you use to get the result of this asynchronous request. field.

eci_callback
Optional input parameter.

A pointer to the routine to be called when the asynchronous request
completes. (The callback routine will be called only if the return code is
ECI_NO_ERROR, and the pointer is not null.)

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall (ECI_Parms)” on page 3.

If the return code is not ECI_NO_ERROR, the callback routine will not be called,
and there will be no asynchronous reply for this request.

ECI_NO_ERROR
The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is outside the valid range, or is
inconsistent with the value in eci_commarea, being zero for a non-null
eci_commarea pointer, or non-zero for a null eci_commarea pointer.

ECI_ERR_INVALID_EXTEND_MODE
The value in eci_extend_mode field is not valid.

ECI_ERR_LUW_TOKEN
The value supplied in eci_luw_token is invalid.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_GET_REPLY call type
The ECI_GET_REPLY call type provides a reply solicitation call to return
information appropriate to any outstanding reply for any asynchronous request. If
there is no such reply, ECI_ERR_NO_REPLY is returned. (To cause the application
to wait until a reply is available, use call type ECI_GET_REPLY_WAIT instead.)

Chapter 1. C 21

Purpose

Note: It is important that the Eci parameter blocks of outstanding ECI_ASYNC
calls are not modified before the results of the call are received (for example using
this get reply call). Results will be incorrect if these blocks are modified before this
stage.

ECI parameter block fields

Set the ECI parameter block to nulls before setting the input parameter fields.

The following fields are the fields of the ECI parameter block that might be
supplied as input.

In the course of an ECI_GET_REPLY call, the ECI parameter block is updated as
follows:
1. All the outputs from the reply, some of which overwrite input fields, are

added. These fields are those that are output from the corresponding
synchronous version of the asynchronous request.

2. The eci_message_qualifier value supplied as input to the asynchronous request
to which this reply relates is restored.

3. Any inputs that are not updated become undefined, except the pointer to the
COMMAREA. Do not use the contents of these fields again.

eci_call_type
Required input parameter.

Must be set to ECI_GET_REPLY.

eci_commarea
Optional input parameter.

A pointer to the area of storage where the application receives the returned
COMMAREA. The contents of the returned commarea depend on the type
of asynchronous call to which a reply is being sought. For a program link
call, it is the COMMAREA expected to be returned from the called
program, if any. For a status information call, except when
eci_extend_mode has the value ECI_STATE_CANCEL, it is a COMMAREA
containing status information. See the information about status information
calls in the CICS Transaction Gateway for Multiplatforms: Developing
Applications and “ECI status block” on page 28, for more details.

If no COMMAREA is required, supply a null pointer and set the length
(specified in eci_commarea_length) to zero.

If the code page of the application is different from the code page of the
server, data conversion must be performed at the server. To do this, use
CICS-supplied resource conversion capabilities, such as the DFHCNV
macro definitions.

eci_commarea_length
Required input parameter.

The length of the COMMAREA in bytes. This value must not exceed
32,500. (Some client/server combinations might allow larger
COMMAREAs, but this is not guaranteed to work.)

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

22 CICS TG for Multiplatforms V9.2: Programming Reference

eci_sysid
Required input parameter.

Reserved for future use, but initialize this field with nulls before the start
of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. Use the value
ECI_VERSION_1A.

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall (ECI_Parms)” on page 3.

ECI_NO_ERROR
The asynchronous request to which this reply relates completed
successfully.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is unacceptable for one of the
following reasons:
v It is outside the valid range.
v It is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null eci_commarea
pointer.

v It is not large enough for the output COMMAREA from the
asynchronous request to which this reply relates.

In the last case, you can use the output eci_commarea_length to allocate
more storage for the COMMAREA, and then use the output
eci_message_qualifier (if it identifies the asynchronous request uniquely)
with an ECI_GET_SPECIFIC_REPLY call type to retrieve the reply.

ECI_ERR_NO_CICS
The CICS server specified in eci_system_name in the asynchronous request
to which this reply relates is not available. No resources have been
updated.

ECI_ERR_CICS_DIED
A logical unit of work was to be begun or continued by the asynchronous
request to which this reply relates, but the CICS server was no longer
available. If eci_extend_mode was ECI_EXTENDED, the changes are
backed out, and the logical unit of work ends. If eci_extend_mode was
ECI_NO_EXTEND, ECI_COMMIT, or ECI_BACKOUT, the application
cannot determine whether the changes have been committed or backed
out, and must log this condition to aid future manual recovery.

ECI_ERR_NO_REPLY
There was no outstanding reply.

ECI_ERR_TRANSACTION_ABEND
The asynchronous request to which this reply relates caused a program to
be executed in the server, but the CICS transaction that executed the
requested program abended. The abend code will be found in
eci_abend_code. For information about abend codes and their meaning,
consult the documentation for the server system to which the request was
directed.

Chapter 1. C 23

ECI_ERR_THREAD_CREATE_ERROR
The CICS server or CICS Transaction Gateway failed to create the thread to
process the asynchronous call to which this reply relates.

ECI_ERR_RESOURCE_SHORTAGE
The server implementation or CICS Transaction Gateway did not have
enough resources to complete the asynchronous request to which this reply
relates.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_ERR_ROLLEDBACK
The asynchronous request to which this reply relates attempted to commit
a logical unit of work, but the server was unable to commit the changes,
and backed them out instead.

ECI_ERR_UNKNOWN_SERVER
The asynchronous request to which this reply relates specified a server that
could not be located. Only servers returned by CICS_EciListSystems are
acceptable.

ECI_ERR_MAX_SESSIONS
There were not enough resources to satisfy the asynchronous request to
which this reply relates. The maximum number of concurrent requests
handled by the Client daemon, as defined by the configuration parameter
maxrequests in the configuration file, has been reached.

ECI_ERR_MAX_SYSTEMS
The asynchronous request to which this reply relates attempted to start
requests to more servers than your configuration allows. Consult the
documentation for your CICS Transaction Gateway or server to see how to
control the number of servers you can use.

ECI_ERR_SECURITY_ERROR
You did not supply a valid combination of user ID and password on the
asynchronous request to which this reply relates.

ECI_GET_REPLY_WAIT call type
The ECI_GET_REPLY_WAIT call type provides a reply solicitation call to return
information appropriate to any outstanding reply for any asynchronous request. If
there is no such reply, the application waits until there is. (You can get an
indication that no reply is available by using call type ECI_GET_REPLY instead.)

Purpose

Note: It is important that the Eci parameter blocks of outstanding
ECI_STATE_ASYNC calls are not modified before the results of the call are
received. Results will be incorrect if these blocks are modified before this stage.

ECI parameter block fields

Same as for ECI_GET_REPLY, but eci_call_type must be set to
ECI_GET_REPLY_WAIT.

Return codes

Same as for ECI_GET_REPLY, except that ECI_ERR_NO_REPLY cannot be
returned.

24 CICS TG for Multiplatforms V9.2: Programming Reference

ECI_GET_SPECIFIC_REPLY call type
The ECI_GET_SPECIFIC_REPLY call type provides a reply solicitation call to return
information appropriate to any outstanding reply that matches the
eci_message_qualifier input. If there is no such reply, ECI_ERR_NO_REPLY is
returned. (To cause the application to wait until a reply is available, use call type
ECI_GET_REPLY_WAIT instead.)

Purpose

It is important that the Eci parameter blocks of outstanding ECI_STATE_ASYNC
calls are not modified before the results of the call are received. Results will be
incorrect if these blocks are modified before this stage.

ECI parameter block fields

Set the ECI parameter block to nulls before setting the input parameter fields.

The following fields are the fields of the ECI parameter block that might be
supplied as input.

In the course of an ECI_GET_REPLY call, the ECI parameter block is updated as
follows:
1. All the outputs from the reply, some of which overwrite input fields, are

added. These fields are those that are output from the corresponding
synchronous version of the asynchronous request.

2. Any inputs that are not updated become undefined, except the pointer to the
COMMAREA and the input eci_message_qualifier. Do not use the contents of
these fields again.

eci_call_type
Required input parameter.

Must be set to ECI_GET_SPECIFIC_REPLY.

eci_commarea
Optional input parameter.

A pointer to the area of storage where the application receives the returned
COMMAREA. The contents of the returned commarea depend on the type
of asynchronous call to which a reply is being sought. For a program link
call, it is the COMMAREA expected to be returned from the called
program, if any. For a status information call, except one in which
eci_extend_mode had the value ECI_STATE_CANCEL, it is a
COMMAREA containing status information. See the information about
status information calls in the CICS Transaction Gateway for Multiplatforms:
Developing Applications and “ECI status block” on page 28, for more details.

If the code page of the application is different from the code page of the
server, data conversion must be performed at the server. To do this, use
CICS-supplied resource conversion capabilities, such as the DFHCNV
macro definitions.

eci_commarea_length
Required input parameter.

The length of the COMMAREA in bytes. This value must not exceed
32,500. (Some client/server combinations might allow larger
COMMAREAs, but this is not guaranteed to work.)

Chapter 1. C 25

eci_message_qualifier
Required input parameter.

An integer field that identifies the asynchronous call for which a reply is
being solicited.

eci_sysid
Required input parameter.

Reserved for future use, but initialize this field with nulls before the start
of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. Use the value
ECI_VERSION_1A.

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall (ECI_Parms)” on page 3.

ECI_NO_ERROR
The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is unacceptable for one of the
following reasons:
v It is outside the valid range.
v It is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null eci_commarea
pointer.

v It is not large enough for the output COMMAREA from the
asynchronous request to which this reply relates.

In the last case, you can use the output eci_commarea_length to allocate
more storage for the COMMAREA, and then retry the
ECI_GET_SPECIFIC_REPLY call.

ECI_ERR_NO_CICS
The CICS server specified in eci_system_name in the asynchronous request
to which this reply relates is not available. No resources have been
updated.

ECI_ERR_CICS_DIED
A logical unit of work was to be begun or continued by the asynchronous
request to which this reply relates, but the CICS server was no longer
available. If eci_extend_mode was ECI_EXTENDED, the changes are
backed out, and the logical unit of work ends. If eci_extend_mode was
ECI_NO_EXTEND, ECI_COMMIT, or ECI_BACKOUT, the application
cannot determine whether the changes have been committed or backed
out, and must log this condition to aid future manual recovery.

ECI_ERR_NO_REPLY
There was no outstanding reply that matched the input
eci_message_qualifier.

ECI_ERR_TRANSACTION_ABEND
The asynchronous request to which this reply relates caused a program to
be executed in the server, but the CICS transaction that executed the

26 CICS TG for Multiplatforms V9.2: Programming Reference

requested program ended abnormally. The abend code is in
eci_abend_code. For information about abend codes and their meaning,
consult the documentation for the server system to which the request was
directed.

ECI_ERR_THREAD_CREATE_ERROR
The CICS server or CICS Transaction Gateway failed to create the thread to
process the asynchronous request to which this reply relates.

ECI_ERR_RESOURCE_SHORTAGE
The CICS server or CICS Transaction Gateway did not have enough
resources to complete the asynchronous request to which this reply relates.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_ERR_ROLLEDBACK
The asynchronous request to which this reply relates attempted to commit
a logical unit of work, but the server was unable to commit the changes,
and backed them out instead.

ECI_ERR_UNKNOWN_SERVER
The asynchronous request to which this reply relates specified a server that
could not be located. Only servers returned by CICS_EciListSystems are
acceptable.

ECI_ERR_MAX_SESSIONS
There were not enough resources to satisfy the asynchronous request to
which this reply relates. The maximum number of concurrent requests
handled by the Client daemon, as defined by the configuration parameter
maxrequests in the configuration file, has been reached.

ECI_ERR_MAX_SYSTEMS
The asynchronous request to which this reply relates attempted to start
requests to more servers than your configuration allows. Consult the
documentation for your CICS Transaction Gateway or server to see how to
control the number of servers you can use.

ECI_ERR_SECURITY_ERROR
You did not supply a valid combination of user ID and password on the
asynchronous request to which this reply relates.

ECI_GET_SPECIFIC_REPLY_WAIT call type
The ECI_GET_SPECIFIC_REPLY_WAIT call type provides a reply solicitation call to
return information appropriate to any outstanding reply that matches the input
eci_message_qualifier.

Purpose

If there is no such reply, the application waits until there is. (You can get an
indication that no reply is available by using call type ECI_GET_SPECIFIC_REPLY
instead.)

Note: It is important that the ECI parameter blocks of outstanding
ECI_STATE_ASYNC calls are not modified before the results of the call are received.
Results will be incorrect if these blocks are modified before this stage.

Chapter 1. C 27

ECI parameter block fields

Same as for ECI_GET_SPECIFIC_REPLY, but eci_call_type must be set to
ECI_GET_SPECIFIC_REPLY_WAIT.

Return codes

Same as for ECI_GET_SPECIFIC_REPLY, except that ECI_ERR_NO_REPLY cannot be
returned.

Note: If you issue an ECI_GET_SPECIFIC_REPLY_WAIT call against an outstanding
ECI_STATE_AYSNC call with eci_extend mode set to ECI_STATE_CHANGED, no response
will ever be received if an ECI_STATE_ASYNC call with eci_extend_mode set to
ECI_STATE_CANCEL is issued.

ECI status block
The ECI status block is used in status information calls to pass information to and
from the ECI. It contains the following fields:

ConnectionType
An integer field specifying the type of system on which the application is
running, with the following possible values:

ECI_CONNECTED_NOWHERE
Application is not connected to anything.

ECI_CONNECTED_TO_CLIENT
Application is running on a client system.

ECI_CONNECTED_TO_SERVER
Application is using a server implementation of the ECI.

CicsServerStatus
An integer field specifying the state of the CICS server, with the following
possible values:

ECI_SERVERSTATE_UNKNOWN
The CICS server state could not be determined.

ECI_SERVERSTATE_UP
The CICS server is available to run programs.

ECI_SERVERSTATE_DOWN
The CICS server is not available to run programs.

CicsClientStatus
An integer field specifying the state of the Client daemon, with the
following possible values:

ECI_CLIENTSTATE_UNKNOWN
The Client daemon state could not be determined.

ECI_CLIENTSTATE_UP
The Client daemon is available to receive ECI calls.

ECI_CLIENTSTATE_INAPPLICABLE
The application is using a server implementation of the ECI.

28 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_EciListSystems (NameSpace Systems List)
Purpose

The list of servers is returned as an array of system information structures, one
element for each CICS server. The structure, called CICS_EciSystem_t, defines the
following fields.

SystemName
A pointer to a null-terminated string specifying the name of a CICS server.
If the name is shorter than CICS_ECI_SYSTEM_MAX, it is padded with
spaces to a length of CICS_ECI_SYSTEM_MAX + 1.

Description
A pointer to a null-terminated string that provides a description of the
system, if one is available. If the description is shorter than
CICS_ECI_DESCRIPTION_MAX characters, it is padded with nulls to a
length of CICS_ECI_DESCRIPTION_MAX + 1.

Parameters

NameSpace
A pointer reserved for future use. Ensure that this is a null pointer.

Systems
On entry to the function, this parameter specifies the number of elements
in the array provided in the List parameter. On return it contains the
actual number of systems found.

List An array of CICS_EciSystem_t structures that are filled in and returned by
the function. The application must provide storage for the array, and must
set the Systems parameter to indicate the number of elements in the array.

Return Codes

ECI_NO_ERROR
The function completed successfully. The number of systems found is at
least one, and does not exceed the value supplied as input in the Systems
parameter.

ECI_ERR_MORE_SYSTEMS
There was not enough space in the List array to store the information. The
supplied array has been filled, and the Systems parameter has been
updated to contain the total number of systems found, so that you can
reallocate an array of suitable size and try the function again.

ECI_ERR_NO_SYSTEMS
No CICS servers can be located. In this case, the value returned in Systems
is zero.

ECI_ERR_NO_CICS
The Client daemon is not active.

ECI_ERR_INVALID_DATA _LENGTH
The value specified in the Systems parameter is so large that the length of
storage for the List parameter exceeds 32 767.

ECI_ERR_CALL_FROM_CALLBACK
The call was made from a callback routine.

ECI_ERR_SYSTEM_ERROR
An internal system error occurred.

Chapter 1. C 29

EPI
This section describes the constants and data structures that you need to use the
EPI, the functions provided by the EPI that can be called from an application
program, and the EPI events that occur when CICS has data to pass to the EPI
application.

EPI constants and data structures
This section describes the constants and data structures that you will need to use
the EPI.

They are referred to in “EPI functions” on page 35.

EPI constants
The following constants are referred to symbolically in the descriptions of the EPI
data structures, functions, and events in this section.

The values given here are to help you understand the descriptions. However, your
code uses the symbolic names of EPI constants provided for the programming
language you are using.

Lengths of fields

v CICS_EPI_SYSTEM_MAX (8)
v CICS_EPI_DESCRIPTION_MAX (60)
v CICS_EPI_NETNAME_MAX (8)
v CICS_EPI_TRANSID_MAX (4)
v CICS_EPI_ABEND_MAX (4)
v CICS_EPI_DEVTYPE_MAX (16)
v CICS_EPI_ERROR_MAX (60).
v CICS_EPI_PASSWORD_MAX (10)
v CICS_EPI_USERID_MAX (10)
v CICS_EPI_MAPNAME_MAX (7)
v CICS_EPI_MAPSETNAME_MAX (8)
v CICS_EPI_TERMID_MAX (4)

Relating to TermIndex

v CICS_EPI_TERM_INDEX_NONE 0xFFFF.

Version numbers (See the information about EPI versions in the CICS Transaction
Gateway for Multiplatforms: Developing Applications.)
v CICS_EPI_VERSION_200

EPI data structures
The following data structures are available for use with the EPI.
v CICS_EpiSystem_t

v CICS_EpiAttributes_t

v CICS_EpiDetails_t

v CICS_EpiEventData_t

In the descriptions of the fields in the data structures, fields described as strings
are null-terminated strings.

30 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_EpiSystem_t:

The CICS_EpiSystem_t structure contains the name and description of a CICS
server.

Purpose

An array of these structures is returned from the CICS_EpiListSystems function.

Fields

SystemName
A string naming the CICS server. It can be passed as a parameter to the
CICS_EpiAddTerminal and CICS_EpiAddExTerminal functions, to
identify the CICS server in which the terminal resource is installed. If the
name is shorter than CICS_EPI_SYSTEM_MAX characters, it is padded
with nulls to a length of CICS_EPI_SYSTEM_MAX + 1.

Description
A string giving a brief description of the server. If the description is shorter
than CICS_EPI_DESCRIPTION_MAX, it is padded with nulls to a length of
CICS_EPI_DESCRIPTION_MAX + 1.

CICS_EpiAttributes_t:

The CICS_EpiAttributes_t structure holds information about the attributes to be
associated with a terminal resource installed by the CICS_EpiAddExTerminal
function.

Fields

EpiAddType
Indicates whether the application is prepared to wait until the request to
install the terminal is complete. Use one of the following values:

CICS_EPI_ADD_ASYNC
The calling application gets control back when the request to install
the terminal resource has been accepted; at this point the
parameters have been validated.

Assuming valid parameters, the CICS_EPI_EVENT_ADD_TERM
event is generated when the request to install the terminal has
completed.

The TermIndex is returned for use with the CICS_EpiGetEvent
function.

CICS_EPI_ADD_SYNC
The calling application gets control back when the request to install
the terminal resource has completed. Returned information is
immediately available.

InstallTimeOut
A value in the range 0 through 3600, specifying the maximum time in
seconds that installation of the terminal resource is allowed to take; a value
of 0 means that no limit is set.

A value of 3600 is assumed if a larger value is specified.

ReadTimeOut
A value in the range 0 through 3600, specifying the maximum time in

Chapter 1. C 31

seconds that is allowed between notification of a
CICS_EPI_EVENT_CONVERSE event for the terminal resource and the
following invocation of the CICS_EpiReply; a value of 0 means that no
limit is set.

A value of 3600 is assumed if a larger value is specified.

If time out occurs, the conversation is abended. This results in a
CICS_EPI_EVENT_END_TRAN event being generated; the EndReason
field is set to CICS_EPI_READTIMEOUT_EXPIRED; the AbendCode field
is not set.

SignonCapability
Indicates whether the application can start server-provided sign-on and
sign-off transactions from the terminal resource. Use one of the following
values:

CICS_EPI_SIGNON_CAPABLE
The terminal resource is to be installed as sign-on capable.

CICS_EPI_SIGNON_INCAPABLE
The resource is to be installed as sign-on incapable.

CCSId
A value in the range 1 through 65536 specifying the coded character set
identifier (CCSID) that identifies the coded graphic character set used by
the client application for data passed between the terminal resource and
CICS transactions.

A value of 0 means that a default CCSID is used.

For details on the CCSID values for various character sets, see the
information about Supported conversions in the CICS Transaction Gateway:
UNIX and Linux Administration.

UserId
A string specifying the user ID to be associated with the terminal resource.
If the user ID is shorter than CICS_EPI_USERID_MAX, it must be padded
with nulls to a length of CICS_EPI_USERID_MAX+1.

Password
A string specifying the password to be associated with the terminal
resource. If the password is shorter than CICS_EPI_PASSWORD_MAX
characters, it must be padded with nulls to a length of
CICS_EPI_PASSWORD_MAX+1.

CICS_EpiDetails_t:

The CICS_EpiDetails_t structure holds information about a terminal resource
installed by the CICS_EpiAddTerminal or the CICS_EpiAddExTerminal function.

Fields

NetName
A string specifying the IBM VTAM® style netname of the terminal resource.
If the name is shorter than CICS_EPI_NETNAME_MAX characters, it is
padded with nulls to a length of CICS_EPI_NETNAME_MAX + 1.

NumLines
The number of rows supported by the terminal resource.

32 CICS TG for Multiplatforms V9.2: Programming Reference

NumColumns
The number of columns supported by the terminal resource.

MaxData
The maximum size of data that can be sent to this terminal resource from a
CICS transaction, and the maximum size of data that can be sent from this
terminal resource to a CICS transaction by a CICS_EpiStartTran call or
CICS_EpiReply call.

The maximum size can be defined in the model terminal definition
specified by the DevType parameter on the CICS_EpiAddTerminal call
that installed the terminal resource in the server. If the value is not
specified in the model terminal definition, a default value of 12000 is
assumed.

ErrLastLine
1 if the terminal resource will display error messages on its last row, 0
otherwise.

ErrIntensify
1 if the terminal resource will display error messages intensified, 0
otherwise.

ErrColor
The 3270 attribute defining the color to be used to display error messages.

ErrHilight
The 3270 attribute defining the highlight value to be used to display error
messages.

Hilight
1 if the terminal resource is defined to support extended highlighting, 0
otherwise.

Color 1 if the terminal resource is defined to support color, 0 otherwise.

System
A string specifying the name of the server in which the terminal resource
has been installed. If the name is shorter than CICS_EPI_SYSTEM_MAX
characters, it is padded with nulls to a length of CICS_EPI_SYSTEM_MAX
+ 1.

TermId
A string specifying the name of the terminal resource. If the name is
shorter than CICS_EPI_TERMID_MAX characters, it is padded with nulls
to a length of CICS_EPI_TERMID_MAX + 1.

SignonCapability
The sign-on capability assigned by the server to the terminal resource:

CICS_EPI_SIGNON_CAPABLE
The application might start server-provided sign-on and sign-off
transactions at the terminal resource.

CICS_EPI_SIGNON_INCAPABLE
The application might not start server-provided sign-on and
sign-off transactions at the terminal resource.

CICS_EPI_SIGNON_UNKNOWN
The CICS_EpiAddTerminal function was used to add the terminal
resource. (This value is also returned if the

Chapter 1. C 33

CICS_EpiAddExTerminal function was used to add the terminal
resource and prerequisite changes have not been applied to the
server.)

CICS_EpiEventData_t:

The CICS_EpiEventData_t structure holds details of a terminal-related event.

Purpose

Not all fields are valid for all events, and fields that are not valid are set to nulls.
This structure is an output from CICS_EpiGetEvent.

Fields

TermIndex
The terminal index for the terminal resource against which this event
occurred.

Event The event indicator; that is, one of the event codes listed in “EPI events”
on page 54.

EndReason
The reason for termination, if the event is a
CICS_EPI_EVENT_END_TERM or CICS_EPI_EVENT_END_TRAN event.

TransId
A string specifying a transaction name. If the name is shorter than
CICS_EPI_TRANSID_MAX characters, it is padded with spaces to this
length, followed by a single null character.

Reserved1
A reserved field.

Prior to CICS Transaction Gateway Version 3.1, this field was called
AbendCode.

Data A pointer to a buffer that is updated with any terminal data stream
associated with the event.

On input set the Data parameter to point to a CICS_EpiDetails_t structure
on the first invocation of CICS_EpiGetEvent for a terminal being added
asynchronously. The details structure is updated on return from
CICS_EpiGetEvent.

Size The maximum size of the buffer addressed by Data. On return from the
CICS_EpiGetEvent call, this contains the actual length of data returned.

EndReturnCode
A string containing the CICS_EPI_returncode.

MapName
A string specifying the name of the map that was most recently referenced
in the MAP option of a SEND MAP command processed for the terminal
resource, if the event is a CICS_EPI_EVENT_SEND or a
CICS_EPI_EVENT_CONVERSE event. If the terminal resource is not
supported by BMS, or the server has no record of any map being sent, the
value returned is spaces. If the name is shorter than
CICS_EPI_MAPNAME_MAX characters, it is padded with spaces to this
length, followed by a single null character.

34 CICS TG for Multiplatforms V9.2: Programming Reference

MapSetName
A string specifying the name of the mapset that was most recently
referenced in the MAPSET option of a SEND MAP command processed for
the terminal resource, if the event is a CICS_EPI_EVENT_SEND or a
CICS_EPI_EVENT_CONVERSE event. If the MAPSET option was not
specified on the most recent request, BMS used the map name as the
mapset name. In both cases, the mapset name used might have been
suffixed by a terminal suffix. If the terminal resource is not supported by
BMS, or the server has no record of any mapset being sent, the value
returned is spaces. If the name is shorter than
CICS_EPI_MAPSETNAME_MAX characters, it is padded with spaces to
this length, followed by a single null character.

Note: Set the Data and Size fields before the call to CICS_EpiGetEvent is made.

EPI functions
This section describes the functions provided by the EPI that can be called from an
application program.

Table 1 summarizes the functions of the interface, the parameters passed to each
function, and the possible return codes from each function.

The mapping of actual return code values to the symbolic names is contained in
the following files:

C /include/cics_epi.h

COBOL
/copybook/cicsepi.cbl

Table 1. Summary of EPI functions

Function name Parameters Return codes: CICS_EPI_

CICS_EpiInitialize
Version ERR_FAILED

ERR_IS_INIT
ERR_VERSION
NORMAL

CICS_EpiTerminate none
ERR_FAILED
ERR_NOT_INIT
ERR_IN_CALLBACK
NORMAL

CICS_EpiListSystems
NameSpace
Systems
List

ERR_FAILED
ERR_MORE_SYSTEMS
ERR_NO_SYSTEMS
ERR_NOT_INIT
ERR_NULL_PARM
ERR_IN_CALLBACK
NORMAL

Chapter 1. C 35

Table 1. Summary of EPI functions (continued)

Function name Parameters Return codes: CICS_EPI_

CICS_EpiAddTerminal
NameSpace
System
Netname
DevType
NotifyFn
Details
TermIndex

ERR_ALREADY_INSTALLED
ERR_FAILED
ERR_IN_CALLBACK
ERR_MAX_SESSIONS
ERR_MAX_SYSTEMS
ERR_MODELID_INVALID
ERR_NOT_3270_DEVICE
ERR_NOT_INIT
ERR_NULL_PARM
ERR_RESOURCE_SHORTAGE
ERR_SECURITY
ERR_SERVER_BUSY
ERR_SERVER_DOWN
ERR_SYSTEM
ERR_TERMID_INVALID
NORMAL

CICS_EpiAddExTerminal
System
Netname
DevType
NotifyFn
Details
TermIndex
Attributes

ERR_FAILED
ERR_NOT_INIT
ERR_SYSTEM
ERR_SECURITY
ERR_NULL_PARM
ERR_VERSION
ERR_IN_CALLBACK
ERR_SERVER_DOWN
ERR_RESPONSE_TIMEOUT
ERR_SIGNON_NOT_POSS
ERR_PASSWORD_INVALID
ERR_ADDTYPE_INVALID
ERR_SIGNONCAP_INVALID
ERR_USERID_INVALID
ERR_TERMID_INVALID
ERR_MODELID_INVALID
ERR_NOT_3270_DEVICE
ERR_ALREADY_INSTALLED
ERR_CCSID_INVALID
ERR_SERVER_BUSY
ERR_RESOURCE_SHORTAGE
ERR_MAX_SESSIONS
ERR_MAX_SYSTEMS
NORMAL

CICS_EpiInquireSystem
TermIndex
System

ERR_BAD_INDEX
ERR_FAILED
ERR_NOT_INIT
ERR_NULL_PARM
ERR_IN_CALLBACK
NORMAL

36 CICS TG for Multiplatforms V9.2: Programming Reference

Table 1. Summary of EPI functions (continued)

Function name Parameters Return codes: CICS_EPI_

CICS_EpiDelTerminal
TermIndex ERR_BAD_INDEX

ERR_FAILED
ERR_NOT_INIT
ERR_TRAN_ACTIVE
ERR_IN_CALLBACK
NORMAL

CICS_EpiPurgeTerminal
TermIndex ERR_BAD_INDEX

ERR_FAILED
ERR_NOT_INIT
ERR_IN_CALLBACK
ERR_VERSION
NORMAL

CICS_EpiSetSecurity
TermIndex
UserId
Password

ERR_NOT_INIT
ERR_BAD_INDEX
ERR_IN_CALLBACK
ERR_SYSTEM_ERROR
ERR_VERSION
ERR_PASSWORD_INVALID
ERR_USERID_INVALID
ERR_NULL_PASSWORD
ERR_NULL_USERID
NORMAL

CICS_EpiStartTran
TermIndex
TransId
Data
Size

ERR_ATI_ACTIVE
ERR_BAD_INDEX
ERR_FAILED
ERR_NO_DATA
ERR_NOT_INIT
ERR_TTI_ACTIVE
ERR_IN_CALLBACK
ERR_SERVER_DOWN
ERR_RESOURCE_SHORTAGE
ERR_MAX_SESSIONS
NORMAL

CICS_EpiReply
TermIndex
Data
Size

ERR_BAD_INDEX
ERR_FAILED
ERR_NO_CONVERSE
ERR_NO_DATA
ERR_NOT_INIT
ERR_IN_CALLBACK
ERR_ABENDED
ERR_SERVER_DOWN
NORMAL

CICS_EpiATIState
TermIndex
ATIState

ERR_ATI_STATE
ERR_BAD_INDEX
ERR_FAILED
ERR_NOT_INIT
ERR_IN_CALLBACK
ERR_NULL_PARAM
NORMAL

Chapter 1. C 37

Table 1. Summary of EPI functions (continued)

Function name Parameters Return codes: CICS_EPI_

CICS_EpiGetEvent
TermIndex
Wait

ERR_BAD_INDEX
ERR_FAILED
ERR_MORE_DATA
ERR_MORE_EVENTS
ERR_NO_EVENT
ERR_NOT_INIT
ERR_WAIT
ERR_NULL_PARAM
ERR_IN_CALLBACK
NORMAL

CICS_GetSysError
TermIndex
SysErr

ERR_NOT_INIT
ERR_BAD_INDEX
ERR_FAILED
ERR_NULL_PARAM
ERR_VERSION
NORMAL

Refer to the definitions of the functions to discover the types and usage of the
parameters, the data structures used by the functions, and the meanings of the
return codes.

CICS_EpiInitialize
The CICS_EpiInitialize function initializes the EPI. All other EPI calls from this
application are invalid before this call is made.

Parameters

Version
The version of the EPI for which this application is coded. This makes it
possible for old applications to remain compatible with future versions of
the EPI. The version described here is CICS_EPI_VERSION_200. See the
information about EPI versions in the CICS Transaction Gateway for
Multiplatforms: Developing Applications for more information.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_IS_INIT
The EPI is already initialized.

CICS_EPI_ERR_VERSION
The EPI cannot support the version requested.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiTerminate
The CICS_EpiTerminate function ends the application's use of the EPI, typically
just before the application terminates.

38 CICS TG for Multiplatforms V9.2: Programming Reference

All other EPI calls (except for CICS_EpiInitialize) are invalid when this call has
completed.

The application issues CICS_EpiDelTerminal calls before terminating, to delete any
terminal resources.

Parameters

None.

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_TTI_ACTIVE
A transaction started from the EPI is still active or a CICS_EpiGetEvent call
is still outstanding.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiListSystems
The CICS_EpiListSystems function returns a list of CICS servers that are candidates
to act as servers for EPI requests. There is no guarantee that a communications link
exists between the CICS Transaction Gateway and any server in the list, or that
any of the servers is available to process requests.

The list is returned as an array of system information structures, one element for
each CICS server. See “CICS_EpiSystem_t” on page 31 for the contents of the
structure.

EPI applications call this function immediately after each CICS_EpiInitialize call
made to determine which CICS servers are available.

Parameters

NameSpace
A pointer reserved for future use. Ensure that this is a null pointer.

Systems
A pointer to a number. On entry to the function, this number specifies the
number of elements in the array specified in the List parameter. This
value must accurately reflect the amount of storage that is available to the
EPI to store the result. On return, it contains the actual number of servers
found.

The EPI uses this parameter for both input and output.

List An array of CICS_EpiSystem_t structures that are filled in and returned by
the function. The application must provide the storage for the array and
must set the Systems parameter to indicate the number of elements in the
array.

The EPI uses this parameter only for output.

Chapter 1. C 39

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_MORE_SYSTEMS
There was not enough space in the List array to store the details of all the
CICS servers found. The supplied array has been filled, and the Systems
parameter has been updated to contain the total number of servers found,
thus allowing you to reallocate an array of suitable size and try the
function again.

CICS_EPI_ERR_NO_SYSTEMS
No CICS servers can be located. In this case, the value returned in Systems
is zero.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_NULL_PARM
Systems is a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully. The number of systems found is at
least one, and does not exceed the value supplied as input in the Systems
parameter.

CICS_EpiAddTerminal
The CICS_EpiAddTerminal function installs a new terminal resource, or reserves
an existing terminal resource, for the application.

It provides a terminal index, which is used to identify the terminal resource on all
further EPI calls. It also provides the information defined in the CICS_EpiDetails_t
data structure.

The number of terminals that you can add with this operation is limited; the
maximum varies according to the resources available on the client system.

The CICS_EpiAddTerminal function adds terminal resources that have sign-on
capability that depends on the server in which the terminal resource is installed;
for example, they cannot sign on to CICS Transaction Server for z/OS® servers.

Parameters

NameSpace
A pointer reserved for future use. Ensure that it is a null pointer.

System
A pointer to a null-terminated string that specifies the name of the server
in which the terminal resource is to be installed or reserved. If the name is
shorter than CICS_EPI_SYSTEM_MAX characters, it must be padded with
nulls to a length of CICS_EPI_SYSTEM_MAX + 1.

If the string is all nulls, the default CICS server is selected by the EPI. To
determine the name of the server chosen, use CICS_EpiInquireSystem.

The EPI uses this parameter only for input.

40 CICS TG for Multiplatforms V9.2: Programming Reference

NetName
A pointer to a null-terminated string that specifies the name of the terminal
resource to be installed or reserved, or null. The interpretation of this name
is server-dependent.

If a string is supplied that is shorter than CICS_EPI_NETNAME_MAX, it
must be padded with nulls to a length of CICS_EPI_NETNAME_MAX + 1.

The string is transmitted to the server without conversion to uppercase.

The characters used are translated from the client code page to an EBCDIC
code page before transmission. If the server uses an ASCII code page, they
will be retranslated. The only characters guaranteed to be invariant under
these translations are the uppercase characters A to Z and the numeric
characters 0 to 9. Some EBCDIC servers (Katakana and Hebrew character
set A) do not use the standard representations of the lowercase alphabetic
characters; use them with care when communicating with such servers.

The use of NetName is as follows:
1. If a name is supplied using the NetName, and it matches the name of an

existing terminal resource in the server, the server attempts to reserve
that terminal resource.

2. If a name is supplied, but it does not match the name of an existing
terminal resource in the server, the server installs a terminal resource
using the model terminal definition specified by the DevType parameter,
and gives it the input name. (If DevType is a null pointer,
CICS_EPI_ERR_TERMID_INVALID is returned for
CICS_EPI_VERSION_200 or later, otherwise CICS_EPI_ERR_FAILED is
returned.)

3. If NetName is a null pointer, a terminal resource is installed using the
model terminal definition specified in DevType. If DevType is a null
pointer, the selected terminal type is not predictable, so you are advised
to use DevType to ensure consistent results. The name of the terminal
resource is returned in the NetName field of the CICS_EpiDetails_t
structure.

The EPI uses this parameter only for input.

DevType
A pointer to a null-terminated string that is used in the server to select a
model terminal definition from which a terminal resource definition is
generated, or a null pointer.

If a string is supplied that is shorter than CICS_EPI_DEVTYPE_MAX
characters, pad it with nulls to a length of CICS_EPI_DEVTYPE_MAX + 1.

The string is transmitted to the server without conversion to uppercase.

The characters used are translated from the client's code page to an
EBCDIC code page before transmission. If the server uses an ASCII code
page, they will be retranslated. The only characters guaranteed to be
invariant under these translations are the uppercase characters A to Z, and
the numeric characters 0 to 9. Some EBCDIC servers (Katakana and
Hebrew character set A) do not use the standard representations of the
lowercase alphabetic characters; use them with care when communicating
with such servers.

The EPI uses this parameter only for input.

NotifyFn
A pointer to a callback routine that is called whenever an event occurs for

Chapter 1. C 41

the terminal resource, such as the arrival of an ATI request. If a callback
routine is not required, set this parameter to null. Not supported in
COBOL applications.

The EPI uses this parameter only for input.

Details
A pointer to the CICS_EpiDetails_t structure that on return contains
various details about the terminal resource that was installed or reserved.

The EPI uses the fields in this structure only for output.

TermIndex
A pointer to a terminal index for the terminal resource just installed or
reserved. The returned terminal index must be used as input to all further
EPI function calls to identify the terminal resource to which the function is
directed. The terminal index supplied is the first available integer starting
from 0.

The EPI uses this parameter only for output.

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_SYSTEM
The specified server is not known to the client.

CICS_EPI_ERR_SECURITY
The server rejected the attempt for security reasons.

CICS_EPI_ERR_NULL_PARM
TermIndex was a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_SERVER_DOWN
The function failed because the server was down.

CICS_EPI_ERR_TERMID_INVALID
The function failed because an invalid TermId was supplied.

CICS_EPI_ERR_MODELID_INVALID
The function failed because an invalid Model terminal definition was
supplied.

CICS_EPI_ERR_NOT_3270_DEVICE
The function failed because the device type supplied was not for a 3270
device.

CICS_EPI_ERR_ALREADY_INSTALLED
The function failed because the terminal was already installed.

CICS_EPI_ERR_SERVER_BUSY
The function failed because the server was busy.

CICS_EPI_ERR_RESOURCE_SHORTAGE
The CICS server or CICS Transaction Gateway did not have enough
resources to complete the terminal installation.

42 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_EPI_ERR_MAX_SESSIONS
The maximum number of concurrent requests handled by the Client
daemon, as defined by the configuration parameter maxrequests in the
configuration file, has been reached.

CICS_EPI_ERR_MAX_SYSTEMS
An attempt was made to start connections to more servers than your
configuration allows.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiAddExTerminal
The CICS_EpiAddExTerminal function installs a new terminal resource, or reserves
an existing terminal resource, for the application's use.

It provides a terminal index, which you can use to identify the terminal resource
on all further EPI calls. It also provides the information defined in the
CICS_EpiDetails_t data structure.

Some attributes, for example the character set and encoding scheme to be used for
3270 data and the sign-on capability, can be determined by the application. These
attributes are specified in the CCSID and SignonCapability fields in the
CICS_EpiAttributes_t structure.

Parameters

System
A pointer to a null-terminated string that specifies the name of the server
in which the terminal resource is to be installed or reserved. If the name is
shorter than CICS_EPI_SYSTEM_MAX characters, it must be padded with
nulls to a length of CICS_EPI_SYSTEM_MAX + 1.

If the string is all nulls, the default CICS server is selected by the EPI. To
determine the name of the server chosen, use CICS_EpiInquireSystem.

The EPI uses this parameter only for input.

NetName
A pointer to a null-terminated string that specifies the name of the terminal
resource to be installed or reserved, or null. The interpretation of this name
is server-dependent.

If a string is supplied that is shorter than CICS_EPI_NETNAME_MAX, it
must be padded with nulls to a length of CICS_EPI_NETNAME_MAX + 1.

The string is transmitted to the server without conversion to uppercase.

The characters used are translated from the client's code page to an
EBCDIC code page before transmission. If the server uses an ASCII code
page, they will be retranslated. The only characters guaranteed to be
invariant under these translations are the uppercase characters A to Z, and
the numeric characters 0 to 9. Some EBCDIC servers (Katakana and
Hebrew character set A) do not use the standard representations of the
lowercase alphabetic characters; use them with care when communicating
with such servers.

The use of NetName is as follows:
1. If a name is supplied using the NetName, and it matches the name of an

existing terminal resource in the server, the server attempts to reserve
that terminal resource.

Chapter 1. C 43

2. If a name is supplied, but does not match the name of an existing
terminal resource in the server, the server installs a terminal resource
using the model terminal definition specified by the DevType parameter
described below, and gives it the input name. (If DevType is a null
pointer, CICS_EPI_ERR_TERMID_INVALID is returned for
CICS_EPI_VERSION_200 or later, otherwise CICS_EPI_ERR_FAILED is
returned.)

3. If NetName is a null pointer, a terminal resource is installed using the
model terminal definition specified in DevType. If DevType is a null
pointer, the selected terminal type is not predictable, so you are advised
to use DevType to ensure consistent results. The name of the terminal
resource is returned in the NetName field of the CICS_EpiDetails_t
structure.

The EPI uses this parameter only for input.

DevType
A pointer to a null-terminated string that is used in the server to select a
model terminal definition from which a terminal resource definition is
generated, or a null pointer.

If a string is supplied that is shorter than CICS_EPI_DEVTYPE_MAX
characters pad it with nulls to a length of CICS_EPI_DEVTYPE_MAX + 1.

The string is transmitted to the server without conversion to uppercase.

The characters used are translated from the client's code page to an
EBCDIC code page before transmission. If the server uses an ASCII code
page, they will be retranslated. The only characters guaranteed to be
invariant under these translations are the uppercase characters A to Z, and
the numeric characters 0 to 9. Some EBCDIC servers (Katakana and
Hebrew character set A) do not use the standard representations of the
lowercase alphabetic characters; use them with care when communicating
with such servers.

The EPI uses this parameter only for input.

NotifyFn
A pointer to a callback routine that is called whenever an event occurs for
the terminal resource, such as the arrival of an ATI request. If a callback
routine is not required set this parameter to null. Not supported in COBOL
applications.

The EPI uses this parameter only for input.

Details
A pointer to the CICS_EpiDetails_t structure that on return contains
various details about the terminal resource that was installed or reserved.
For asynchronous calls set the Details parameter to NULL. If the pointer
is not set to nulls, the details are added to the structure when the request
to install the terminal resource has completed. For asynchronous calls this
is done when the CICS_EPI_EVENT_ADD_TERM event occurs.

The EPI uses the fields in this structure only for output.

TermIndex
A pointer to a terminal index for the terminal resource just installed or
reserved. The returned terminal index must be used as input to all further
EPI function calls to identify the terminal resource to which the function is
directed. The terminal index supplied is the first available integer starting
from 0.

44 CICS TG for Multiplatforms V9.2: Programming Reference

The EPI uses this parameter only for output.

Attributes
A pointer to the CICS_EpiAttributes_t structure that specifies attributes
definable by the client application for the terminal resource that is to be
installed The structure must be set to nulls before use.

Default attributes are assumed if the pointer is set to null.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_SYSTEM
The specified server is not known to the CICS Transaction Gateway.

CICS_EPI_ERR_SECURITY
The server rejected the attempt for security reasons.

CICS_EPI_ERR_NULL_PARM
TermIndex was a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_RESPONSE_TIMEOUT
No response was received from the server within the specified interval.

CICS_EPI_ERR_SIGNON_NOT_POSS
The server does not allow terminal resources to be installed as sign-on
capable.

CICS_EPI_ERR_SERVER_DOWN
The function failed because the server was down.

CICS_EPI_ERR_PASSWORD_INVALID
The length of the password exceeds CICS_EPI_PASSWORD_MAX.

CICS_EPI_ERR_ADDTYPE_INVALID
The value assigned to the EpiAddType field in the CICS_EpiAttributes_t
structure is neither CICS_EPI_ADD_ASYNC nor CICS_EPI_ADD_SYNC.

CICS_EPI_ERR_SIGNONCAP_INVALID
The value assigned to the SignonCapability field in the
CICS_EpiAttributes_t structure is neither CICS_EPI_SIGNON_CAPABLE
nor CICS_EPI_SIGNON_INCAPABLE.

CICS_EPI_ERR_USERID_INVALID
The length of the user ID exceeds CICS_EPI_USERID_MAX.

CICS_EPI_ERR_TERMID_INVALID
The function failed because an invalid TermId was supplied.

CICS_EPI_ERR_MODELID_INVALID
The function failed because an invalid Model terminal definition was
supplied.

Chapter 1. C 45

CICS_EPI_ERR_NOT_3270_DEVICE
The function failed because the device type supplied was not for a 3270
device.

CICS_EPI_ERR_ALREADY_INSTALLED
The function failed because the terminal was already installed.

CICS_EPI_ERR_CCSID_INVALID
The function failed because an invalid CCSID was supplied.

For details on the CCSID values for various character sets, see the
information about Supported conversions in the CICS Transaction Gateway:
UNIX and Linux Administration.

CICS_EPI_ERR_SERVER_BUSY
The function failed because the server was busy.

CICS_EPI_ERR_VERSION
The function is not supported for the version at which the EPI was
initialized.

CICS_EPI_ERR_RESOURCE_SHORTAGE
The CICS server or CICS Transaction Gateway did not have enough
resources to complete the terminal installation.

CICS_EPI_ERR_MAX_SESSIONS
The maximum number of concurrent requests handled by the Client
daemon, as defined by the configuration parameter maxrequests in the
configuration file, has been reached.

CICS_EPI_ERR_MAX_SYSTEMS
An attempt was made to start connections to more servers than your
configuration allows.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiInquireSystem
The CICS_EpiInquireSystem function returns the name of the server on which a
given terminal resource (identified by its terminal index) is installed.

Parameters

TermIndex
The terminal index of the terminal resource, the location of which is to be
determined.

The EPI uses this parameter only for input.

System
A pointer to a string of length CICS_ECI_SYSTEM_MAX + 1 in which the
name of the server will be returned.

The EPI uses this parameter only for output.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

46 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_NULL_PARM
System was a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully. The name of the server is returned in
the System parameter padded with nulls to a length of
CICS_EPI_SYSTEM_MAX +1.

CICS_EpiDelTerminal
The CICS_EpiDelTerminal function deletes a previously added terminal resource.

The application does not consider the deletion complete until it receives the
corresponding CICS_EPI_EVENT_END_TERM event. The terminal index remains
allocated until a CICS_EpiGetEvent call retrieves the
CICS_EPI_EVENT_END_TERM event. A call to this function fails if the terminal
resource is currently running a transaction. To ensure that a terminal resource is
deleted, the application must wait until the current transaction finishes and process
all outstanding events before issuing the CICS_EpiDelTerminal call.

If the terminal resource was autoinstalled, its definition is deleted from the server.
When a CICS_EpiDelTerminal call has completed successfully for a terminal
resource, use of the terminal index is restricted to CICS_EpiGetEvent calls until the
application has received the corresponding CICS_EPI_EVENT_END_TERM event.

Parameters

TermIndex
The terminal index of the terminal resource to be deleted.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_TRAN_ACTIVE
A transaction is currently running against the terminal resource, or there
are unprocessed events for the terminal resource.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiPurgeTerminal
The CICS_EpiPurgeTerminal function purges a previously added terminal resource.

Chapter 1. C 47

The application does not consider the deletion complete until it receives the
corresponding CICS_EPI_EVENT_END_TERM event.

The CICS_EpiPurgeTerminal call differs from the CICS_EpiDelTerminal call in that
the application does not have to wait until the current transaction finishes or
process all outstanding events before issuing the call.

If the terminal resource was autoinstalled, its definition is deleted from the server.

This purge function does not cancel ATI requests already received by the server,
and queued against the terminal.

Parameters

TermIndex
The terminal index of the terminal resource to be deleted.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_VERSION
The function is not supported for the version at which the EPI was
initialized.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiSetSecurity
The CICS_EpiSetSecurity function allows a client application to specify a user ID
and password to be associated with a terminal resource previously installed as
sign-on incapable.

The CICS_EpiSetSecurity function can be invoked at any time; the user ID and
password will be used as further transactions are started for the terminal resource.
A CICS Transaction Gateway determined user ID and password will be used if the
function either has not been invoked for the terminal resource or has been invoked
and has set the user ID, and by implication the password, to nulls.

Note that the client application is responsible for verifying the user ID and
password.

Parameters

TermIndex
The terminal index of the terminal.

The EPI uses this parameter only for input.

48 CICS TG for Multiplatforms V9.2: Programming Reference

UserId
A pointer to a null-terminated string that specifies the user ID. If the user
ID is shorter than CICS_EPI_USERID_MAX characters, it must be padded
with nulls to a length of CICS_EPI_USERID_MAX+1.

The EPI uses this parameter only for input.

Password
A pointer to a null-terminated string that specifies the password. If the
password is shorter than CICS_EPI_PASSWORD_MAX characters, it must
be padded with nulls to a length of CICS_EPI_PASSWORD_MAX+1.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_SYSTEM_ERROR
An internal system error occurred.

CICS_EPI_ERR_VERSION
The function is not supported for the version at which the EPI was
initialized.

CICS_EPI_ERR_NULL_PASSWORD
Password was a null pointer.

CICS_EPI_ERR_NULL_USERID
Userid was a null pointer.

CICS_EPI_ERR_PASSWORD_INVALID
The length of the password exceeds CICS_EPI_PASSWORD_MAX.

CICS_EPI_ERR_USERID_INVALID
The length of the user ID exceeds CICS_EPI_USERID_MAX.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiStartTran
The CICS_EpiStartTran function starts a new transaction from a terminal resource,
or continues a pseudoconversation.
v Starting a new transaction—do this after CICS_EpiAddTerminal, or after a

CICS_EPI_EVENT_END_TRAN event indicated that the previous transaction did
not specify a transaction to process the next input from the terminal resource.

v Continuing a pseudoconversation—do this after a CICS_EPI_EVENT_END_TRAN
event that indicated that the previous transaction specified did specify a
transaction to process the next input from the terminal resource.

If the call is successful, no further start requests can be issued for this terminal
resource until the transaction ends; this is indicated by the
CICS_EPI_EVENT_END_TRAN event.

Chapter 1. C 49

Parameters

TermIndex
The terminal index of the terminal resource that is to run the transaction.

The EPI uses this parameter only for input.

TransId
A pointer to a string specifying the transaction to be run, or the null
pointer. If a new transaction is being started, and this input is the null
pointer, the name of the transaction is extracted from the data stream
supplied in the Data parameter. If a pseudoconversation is being
continued, and the pointer is not null, the string must be the name of the
transaction returned in the preceding CICS_EPI_EVENT_END_TRAN event for
this terminal resource. If the pointer is not null, and the string is shorter
than CICS_EPI_TRANSID_MAX characters, pad it with spaces to this length.

The EPI uses this parameter only for input.

Data A pointer to the 3270 data stream to be associated with the transaction.
This parameter must not be a null pointer, because the data stream must
contain at least an AID byte.

If a new transaction is being started, and the TransId parameter is the null
pointer, the data stream must be at least 4 bytes long, must contain the
name of the transaction to be started, and might contain data to be
supplied to the transaction on its first EXEC CICS RECEIVE command.

If a new transaction is being started, and the TransId parameter is not the
null pointer, the data stream might be only one byte (an AID byte), or 3
bytes (an AID byte and a cursor address), or longer than 3 bytes (an AID
byte, a cursor address, and data and SBA commands). In the last case, the
data is supplied to the transaction program on the first EXEC CICS RECEIVE
command.

If a pseudoconversation is being continued, the data stream might be only
one byte (an AID byte), or 3 bytes (an AID byte and a cursor address), or
longer than 3 bytes (an AID byte, a cursor address, and data and SBA
commands). In the last case the data is supplied to the transaction program
on the first EXEC CICS RECEIVE command.

The details of the format of 3270 data streams for CICS are described in the
information about 3270 data streams for the EPI in the CICS Transaction
Gateway for Multiplatforms: Developing Applications.

The length of the 3270 data stream must not exceed the value that was
returned in MaxData in CICS_EpiDetails_t when the terminal resource was
installed with CICS_EpiAddTerminal.

The EPI uses this parameter only for input.

Size The size in bytes of the initial data to be passed to the transaction.

The EPI uses this parameter only for input.

Note: The application might expect a terminal resource to be free to start a
transaction and yet get an unexpected return code of CICS_EPI_ERR_ATI_ACTIVE
from a call to CICS_EpiStartTran. If this happens, it means that the EPI has started
an ATI request against the terminal resource and issued the corresponding
CICS_EPI_EVENT_START_ATI event, but the application has not yet retrieved the
event by issuing a CICS_EpiGetEvent call.

50 CICS TG for Multiplatforms V9.2: Programming Reference

Return codes

CICS_EPI_ERR_ATI_ACTIVE
An ATI transaction is active for this terminal resource.

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NO_DATA
No initial data was supplied.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_TTI_ACTIVE
A transaction started from the EPI is already active for this terminal
resource.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_SERVER_DOWN
The function failed because the server was down.

CICS_EPI_ERR_RESOURCE_SHORTAGE
The CICS server or CICS Transaction Gateway did not have enough
resources to complete the terminal installation.

CICS_EPI_ERR_MAX_SESSIONS
The maximum number of concurrent requests handled by the Client
daemon, as defined by the configuration parameter maxrequests in the
configuration file, has been reached.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiReply
The CICS_EpiReply function sends data from a terminal resource to a CICS
transaction.

CICS_EpiReply is only issued in response to a CICS_EPI_EVENT_CONVERSE
event.

Parameters

TermIndex
The terminal index of the terminal resource from which the data is being
sent.

The EPI uses this parameter only for input.

Data A pointer to the 3270 data stream to be sent to the transaction. This
parameter must not be a null pointer, because the data stream must
contain at least an AID byte. The data stream might be one byte (an AID
byte), 3 bytes (an AID byte and a cursor address), or more than 3 bytes (an
AID byte, a cursor address, and data and SBA commands). In the last case,
what follows the cursor address is supplied to the transaction program on
the first EXEC CICS RECEIVE command.

Chapter 1. C 51

The length of the 3270 data stream must not exceed the value that was
returned in MaxData in CICS_EpiDetails_t when the terminal resource was
installed with CICS_EpiAddTerminal.

The EPI uses this parameter only for input.

Size The size of the data in bytes.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NO_CONVERSE
No reply is expected by the terminal resource.

CICS_EPI_ERR_NO_DATA
No reply data was supplied.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_SERVER_DOWN
The function failed because the server was down.

CICS_EPI_ERR_ABENDED
The read timeout period has expired and an abend of the conversation has
occurred, but the CICS_EPI_EVENT_END_TRAN event has not yet been
received by the application.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiATIState
The CICS_EpiATIState function allows the calling application to query and alter
the way in which ATI requests for a terminal resource are handled.

If ATI requests are enabled (CICS_EPI_ATI_ON) and an ATI request is issued in
the server, the request is started when the terminal resource becomes free. If ATI
requests are held (CICS_EPI_ATI_HOLD), any ATI requests issued are queued, and
started when ATI requests are next enabled.

The state for ATI requests after a CICS_EpiAddTerminal call is
CICS_EPI_ATI_HOLD. The EPI application might change the state to
CICS_EPI_ATI_ON when it is ready to allow ATI requests to be processed. (The
server also maintains a ATI state for terminal resources, which is independent of
the ATI state maintained in the EPI. Changes to the ATI state on the server do not
affect the ATI status in the EPI.)

Parameters

TermIndex
The terminal index of the terminal resource with the ATI state that is
required.

52 CICS TG for Multiplatforms V9.2: Programming Reference

The EPI uses this parameter only for input.

ATIState
The EPI uses this parameter for both input and output depending on the
input value as follows:

CICS_EPI_ATI_ON
Enable ATI requests, and return the previous ATI state in this
parameter.

CICS_EPI_ATI_HOLD
Hold ATI requests until they are next enabled, and return the
previous ATI state in this parameter.

CICS_EPI_ATI_QUERY
Do not change the ATI state; just return the current state in this
parameter.

Return codes

CICS_EPI_ERR_ATI_STATE
An invalid ATIState value was provided.

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NULL_PARAM
ATIState was a null pointer.

CICS_EPI_NORMAL
The function completed successfully.

CICS_EpiGetEvent
The CICS_EpiGetEvent function obtains information about an event that has
occurred for a terminal resource.

Remember that this call can be attempted only from the application, not from the
callback routine.

Parameters

TermIndex
The terminal index of the terminal resource for which to obtain an event.
This can be set to the constant CICS_EPI_TERM_INDEX_NONE to indicate
that the next event for any terminal resource used by this application is to
be returned. The application can examine the TermIndex field in the
returned CICS_EpiEventData_t structure to determine the terminal resource
against which the event was generated.

The EPI uses this parameter for both input and output.

Wait An indication of what happens if no event has been generated for the
terminal resource. Use one of the following values:

Chapter 1. C 53

CICS_EPI_WAIT
Do not return until the next event occurs.

CICS_EPI_NOWAIT
Return immediately with an error code. This option is used if the
application elects to poll for events.

The EPI uses this parameter only for input.

Event A pointer to a CICS_EpiEventData_t structure that on return contains the
details of the event that occurred. The Data field in the structure must be
set to point to the data buffer that is updated with any terminal data
stream associated with the event. The Size field must be set to indicate the
maximum size of this buffer, and is updated to contain the actual length of
data returned.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_MORE_DATA
The supplied data buffer was not large enough to contain the terminal
data; the data has been truncated.

CICS_EPI_ERR_MORE_EVENTS
An event was successfully obtained, but there are more events outstanding
against this terminal resource.

CICS_EPI_ERR_NO_EVENT
No events are outstanding for this terminal resource.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_WAIT
The Wait parameter is not valid.

CICS_EPI_ERR_NULL_PARM
Event is a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully, and there are no more events.

EPI events
EPI events occur when CICS has data to pass to the EPI application.

The application can handle EPI events in a variety of ways. See the information
about events and callbacks in the CICS Transaction Gateway for Multiplatforms:
Developing Applications. Whichever mechanism is used, the data from CICS is
obtained by calling CICS_EpiGetEvent.

54 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_EPI_EVENT_ADD_TERM
The CICS_EPI_EVENT_ADD_TERM event indicates that an asynchronous request
to install a terminal resource has completed. If the terminal resource was installed
details will have been placed in the CICS_EpiDetails_t structure, pointed to by
Data.

Fields completed

Event The CICS_EPI_EVENT_ADD_TERM event code.

EndReturnCode
The reason for termination. Refer to the CICS_EpiAddExTerminal function
for details of return codes.

Data A pointer to the CICS_EpiDetails_t structure that is updated with the
terminal details, if the EndReturnCode is CICS_EPI_NORMAL.

CICS_EPI_EVENT_SEND
The CICS_EPI_EVENT_SEND event indicates that a transaction has sent some 3270
data to a terminal resource, typically as a result of an EXEC CICS SEND command.
No reply is expected, and none should be attempted.

Fields completed

Event The CICS_EPI_EVENT_SEND event code.

Data A pointer to the buffer that is updated to contain the data sent by the
transaction. See the information about 3270 data streams for the EPI in the
CICS Transaction Gateway for Multiplatforms: Developing Applications for
details of the data stream format.

Size The length of the data in the Data buffer.

CICS_EPI_EVENT_CONVERSE
The CICS_EPI_EVENT_CONVERSE event indicates that a transaction is expecting
a reply as a result of either an EXEC CICS RECEIVE command, or an EXEC CICS
CONVERSE command.

The application issues a CICS_EpiReply call to return the data to CICS, as follows:
v If the transaction has issued an EXEC CICS RECEIVE command without

specifying the BUFFER option, the buffer might contain data sent from the
transaction, or it might be empty. If there is data to process, deal with it before
replying. Send the reply when the data to be sent is available.

v If the transaction has issued an EXEC CICS RECEIVE BUFFER command, the
data buffer contains the 3270 Read Buffer command and the Size field is set to
1. The reply is be sent immediately.

Fields completed

Event The CICS_EPI_EVENT_CONVERSE event code.

Data A pointer to the buffer that is updated to contain the data sent by the
transaction, as defined above.

Size The length of the data in the buffer. This can be set to zero to indicate that
no data was sent, but a reply is still expected.

Chapter 1. C 55

CICS_EPI_EVENT_END_TRAN
The CICS_EPI_EVENT_END_TRAN event indicates the end of a transaction that
was running against a terminal resource. If the transaction failed, the EndReason
and EndReturnCode specify the cause.

If the transaction completed typically, the EndReason field is set to
CICS_EPI_TRAN_NO_ERROR and EndReturnCode is set to CICS_EPI_NORMAL.
If the transaction was pseudoconversational, the TransId field contains the name of
the next transaction required. The application starts this transaction by issuing a
CICS_EpiStartTran call.

The CICS_EPI_EVENT_END_TRAN event occurs when a transaction running
against a terminal resource abends or ends following execution of a RETURN
command for which the IMMEDIATE option was not specified.

Fields completed

Event The CICS_EPI_EVENT_END_TRAN event code.

EndReason
An indication of what caused the end transaction event. It can be one of
the following values:

CICS_EPI_TRAN_NO_ERROR
Typical transaction termination.

CICS_EPI_TRAN_NOT_STARTED
The transaction failed to start.

CICS_EPI_TRAN_STATE_UNKNOWN
The transaction failed to complete.

CICS_EPI_READTIMEOUT_EXPIRED
The read timeout expired.

TransId
The name of the next transaction to start, if the previous transaction was
pseudoconversational. This name is 4 characters long and null-terminated.
If there is no next transaction, the field is set to nulls.

EndReturnCode
A string containing the CICS_EPI_returncode.

CICS_EPI_EVENT_START_ATI
The CICS_EPI_EVENT_START_ATI event indicates that an ATI transaction has
been started against the terminal resource. If the terminal resource receives an ATI
request while it is running another transaction, the request is held until the
transaction ends. The transaction is then started on behalf of the terminal resource,
and the CICS_EPI_EVENT_START_ATI event is generated to inform the
application.

Fields completed

Event The CICS_EPI_EVENT_START_ATI event code.

TransId
The name of the transaction that was started. This name is 4 characters
long and null-terminated.

56 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_EPI_EVENT_END_TERM
The CICS_EPI_EVENT_END_TERM event indicates that a terminal resource no
longer exists. After this event, the terminal index that was previously used for the
terminal resource is not valid. If the EPI detects that a CICS server has shut down,
CICS_EPI_EVENT_END_TERM events are generated for all terminal resources that
the application has installed in that server and not subsequently deleted.

Fields completed

Event The CICS_EPI_EVENT_END_TERM event code.

EndReason
An indication of why the terminal resource was deleted. It can be one of
the following values:

CICS_EPI_END_SIGNOFF
The terminal resource was signed off. This can be as a result of
running the CESF transaction or of calling the
CICS_EpiDelTerminal function.

CICS_EPI_END_SHUTDOWN
The CICS server is shutting down.

CICS_EPI_END_OUTSERVICE
The terminal resource has been switched out of service.

CICS_EPI_END_UNKNOWN
An unexpected error has occurred.

CICS_EPI_END_FAILED
An attempt to delete a terminal resource failed.

ESI V1
This section describes the constants and data structures that you need to use the
ESI, and the functions provided by the ESI that can be called from an application
program.

ESI constants and data structures
This section describes the constants and data structures that you need to use the
ESI.

ESI constants
The following constants are referred to symbolically in the descriptions of the ESI
data structures, and functions in this information. Their values are given here to
help you understand the descriptions. However, you must always use the symbolic
names of ESI constants provided for the programming language you are using in
your code.

Lengths of fields

v CICS_ESI_PASSWORD_MAX (10)
v CICS_ESI_SYSTEM_MAX (8)
v CICS_ESI_USERID_MAX (10)

ESI data structures
The three data structures are available for use with the ESI are CICS_EsiDate_t,
CICS_EsiTime_t and CICS_EsiDetails_t.

Chapter 1. C 57

In the descriptions of the fields in the data structures, fields described as strings
are null-terminated strings.

CICS_EsiDate_t:

The CICS_EsiDate_t structure contains a date represented as year, month, and day.

Fields

Year 4-digit year held in cics_ushort_t format.

Month
Month held in cics_ushort_t format; values range from 1 to 12 with 1
representing January.

Day Day held in cics_ushort_t format; values range from 1 to 31 with 1
representing the first day of the month.

CICS_EsiTime_t:

The CICS_EsiTime structure contains a time represented as hours, minutes,
seconds, and hundredths of a second.

Fields

Hours Hours held in cics_ushort_t format; values range from 0 to 23.

Minutes
Minutes held in cics_ushort_t format; values range from 0 to 59.

Seconds
Seconds held in cics_ushort_t format; values range from 0 to 59.

Hundredths
Hundredths of a second held in cics_ushort_t format; values range from 0
to 99.

CICS_EsiDetails_t:

The CICS_EsiDetails_t structure contains information returned from a successful
invocation of the CICS_VerifyPassword or CICS_ChangePassword functions.

Fields

LastVerifiedDate
The date on which the password was last verified.

LastVerifiedTime
The time at which the password was last verified.

ExpiryDate
The date on which the password will expire.

ExpiryTime
The time at which the password will expire.

LastAccessDate
The date on which the user ID was last accessed.

LastAccessTime
The time at which the user ID was last accessed.

58 CICS TG for Multiplatforms V9.2: Programming Reference

InvalidCount
The number of invalid password verification attempts for the user ID since
the last successful password verification. This value is zero on a successful
invocation of the CICS_ChangePassword function.

ESI functions
This section describes the functions provided by the ESI that can be called from an
application program.

CICS_VerifyPassword
The CICS_VerifyPassword function allows a client application to verify that a
password matches the password recorded by an external security manager for a
specified user ID.

CICS_VerifyPassword
UserId
Password
System
Details

Purpose

Note that the external security manager is assumed to be located in a server to
which the client is connected.

Parameters

UserId

A pointer to a null-terminated string that specifies which user ID to verify
the password for. If the user ID is shorter than CICS_ESI_USERID_MAX
characters, it must be padded with nulls to a length of
CICS_ESI_USERID_MAX+1.

The ESI uses this parameter only for input.

Password

A pointer to a null-terminated string that specifies the password to be
checked by the external security manager for the specified user ID. If the
password is shorter than CICS_ESI_PASSWORD_MAX characters, it must
be padded with nulls to a length of CICS_ESI_PASSWORD_MAX+1.

The ESI uses this parameter only for input.

System

A pointer to a null-terminated string that specifies the name of the server
in which the password is to be verified. If the name is shorter than
CICS_ESI_SYSTEM_MAX characters, it must be padded with nulls to a
length of CICS_ESI_SYSTEM_MAX+1.

If the string is all nulls, the default CICS server is selected.

The ESI uses this parameter only for input.

Details

A pointer to the CICS_EsiDetails_t structure that on return contains further
information returned by the external security manager.

The ESI uses the fields in this structure only for output.

Chapter 1. C 59

Return codes

CICS_ESI_NO_ERROR
The function completed successfully.

CICS_ESI_ERR_CALL_FROM_CALLBACK
The function was invoked from a callback routine.

CICS_ESI_ERR_SYSTEM_ERROR
An internal system error occurred.

CICS_ESI_ERR_NO_CICS
The CICS Transaction Gateway is unavailable, or the specified server is
unavailable.

CICS_ESI_ERR_CICS_DIED
The specified server is no longer available.

CICS_ESI_ERR_RESOURCE_SHORTAGE
The CICS Transaction Gateway did not have enough resources to complete
the request.

CICS_ESI_ERR_NO_SESSIONS
The application has as many outstanding ECI and EPI requests as the
configuration will support.

CICS_ESI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by the
CICS_EciListSystems and CICS_EpiListSystems functions are acceptable.

CICS_ESI_ERR_MAX_SESSIONS
There were not enough communications resources to satisfy the request.
Consult the documentation for your CICS Transaction Gateway or server to
see how to control the number of servers you can use.

CICS_ESI_ERR_MAX_SYSTEMS
You tried to start requests to more servers than your configuration allows.
Consult the documentation for your CICS Transaction Gateway or server to
see how to control the number of servers you can use.

CICS_ESI_ERR_NULL_USERID
The user ID is set to nulls.

CICS_ESI_ERR_NULL_PASSWORD
The password is set to nulls.

CICS_ESI_ERR_PEM_NOT_SUPPORTED
Password expiry management is supported only for communications with
the requested server over SNA.

CICS_ESI_ERR_PEM_NOT_ACTIVE
The requested server does not support password expiry management.

CICS_ESI_ERR_PASSWORD_EXPIRED
The password has expired.

CICS_ESI_ERR_PASSWORD_INVALID
The password is invalid.

CICS_ESI_ERR_USERID_INVALID
The user ID is not known to the external security manager.

CICS_ESI_ERR_SECURITY_ERROR
An error has been detected by the external security manager. The most
likely explanation is that the user ID has been revoked.

60 CICS TG for Multiplatforms V9.2: Programming Reference

The mapping of actual return code values to the symbolic names is contained in
the <install_path>\include\cics_esi.h file. COBOL users can find it in the
<install_path>\copybook\cicsesi.cbl file.

CICS_ChangePassword
The CICS_ChangePassword function allows a client application to change the
password recorded by an external security manager for a specified user ID.

CICS_ChangePassword
UserId
OldPassword
NewPassword
System
Details

Purpose

Note that the external security manager is assumed to be located in a server to
which the CICS Transaction Gateway is connected.

Parameters

UserId

A pointer to a null-terminated string that specifies which user ID requires a
password change. If the user ID is shorter than CICS_ESI_USERID_MAX
characters, it must be padded with nulls to a length of
CICS_ESI_USERID_MAX+1.

The ESI uses this parameter only for input.

OldPassword

A pointer to a null-terminated string that specifies the current password
for the specified user ID. If the password is shorter than
CICS_ESI_PASSWORD_MAX characters, it must be padded with nulls to a
length of CICS_ESI_PASSWORD_MAX+1.

The ESI uses this parameter only for input.

NewPassword

A pointer to a null-terminated string that specifies the new password for
the specified user ID. If the password is shorter than
CICS_ESI_PASSWORD_MAX characters, it must be padded with nulls to a
length of CICS_ESI_PASSWORD_MAX+1.

The password is changed only if the currently password is correctly
specified.

The ESI uses this parameter only for input.

System

A pointer to a null-terminated string that specifies the name of the server
in which the password is to be verified. If the name is shorter than
CICS_ESI_SYSTEM_MAX characters, it must be padded with nulls to a
length of CICS_ESI_SYSTEM_MAX+1.

If the string is all nulls, the default CICS server is selected.

The ESI uses this parameter only for input.

Chapter 1. C 61

Details

A pointer to the CICS_EsiDetails_t structure that on return contains further
information returned by the external security manager.

The ESI uses the fields in this structure only for output.

Return codes

CICS_ESI_NO_ERROR
The function completed successfully.

CICS_ESI_ERR_CALL_FROM_CALLBACK
The function was invoked from a callback routine.

CICS_ESI_ERR_SYSTEM_ERROR
An internal system error occurred.

CICS_ESI_ERR_NO_CICS
The CICS Transaction Gateway is unavailable, or the specified server is
unavailable.

CICS_ESI_ERR_CICS_DIED
The specified server is no longer available. To confirm that the password
has been changed, use the CICS_VerifyPassword function.

CICS_ESI_ERR_RESOURCE_SHORTAGE
The CICS Transaction Gateway did not have enough resources to complete
the request.

CICS_ESI_ERR_NO_SESSIONS
The application has as many outstanding ECI and EPI requests as the
configuration will support.

CICS_ESI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by the
CICS_EciListSystems and CICS_EpiListSystems functions are acceptable.

CICS_ESI_ERR_MAX_SESSIONS
There were not enough communications resources to satisfy the request.
Consult the documentation for your CICS Transaction Gateway or server to
see how to control the number of servers you can use.

CICS_ESI_ERR_MAX_SYSTEMS
You tried to start requests to more servers than your configuration allows.
Consult the documentation for your CICS Transaction Gateway or server to
see how to control the number of servers you can use.

CICS_ESI_ERR_NULL_USERID
The user ID is set to nulls.

CICS_ESI_ERR_NULL_OLD_PASSWORD
The current password is set to nulls.

CICS_ESI_ERR_NULL_NEW_PASSWORD
The new password is set to nulls.

CICS_ESI_ERR_PEM_NOT_SUPPORTED
Password expiry management is supported only for communications with
the requested server over SNA.

CICS_ESI_ERR_PEM_NOT_ACTIVE
The requested server does not support password expiry management.

62 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_ESI_ERR_PASSWORD_INVALID
The password is invalid.

CICS_ESI_ERR_PASSWORD_REJECTED
The new password does not confirm to the standards defined for the
external security manager.

CICS_ESI_ERR_USERID_INVALID
The user ID is not known to the external security manager.

CICS_ESI_ERR_SECURITY_ERROR
An error has been detected by the external security manager. The most
likely explanation is that the user ID has been revoked.

The mapping of actual return code values to the symbolic names is contained in
the <install_path>\include\cics_esi.h file. COBOL users can find it in the
<install_path>\copybook\cicsesi.cbl file.

CICS_SetDefaultSecurity
A client application can specify a default user ID and password to be used for ECI
and EPI requests passed to the server by using the CICS_SetDefaultSecurity
function.

CICS_SetDefaultSecurity
UserId
Password
System

Purpose

The user ID, and the password, can be set to nulls, that is, binary zeroes. In this
case the default user ID and password are unset, so that CICS Transaction Gateway
acts as if no user ID and password has been set.

The user ID, and the password, can also be set to spaces. However, this is valid
only if Usedfltuser=yes is specified in the CICS connection definition. In this case
CICS uses its default user ID. See the documentation for your CICS server for
more information on the Usedfltuser specification.

The client application is responsible for verifying the user ID and password.

Note that the user ID and password, if required, can be obtained from any one of
several places. The assumption is that the CICS Transaction Gateway uses the
following search order:
1. Either the ECI parameter block for the ECI or the terminal specific values set

by the CICS_EpiSetSecurity function.
2. The server specific values set by the CICS_SetDefaultSecurity function.
3. Defaults, for example the Windows user ID, from the CICS Transaction

Gateway's pop-up window, and other similar defaults.

Parameters

UserId

A pointer to a null-terminated string that specifies the user ID to be set. If
the user ID is shorter than CICS_ESI_USERID_MAX characters, it must be
padded with nulls to a length of CICS_ESI_USERID_MAX + 1.

Chapter 1. C 63

The ESI uses this parameter only for input.

Password

A pointer to a null-terminated string that specifies the password to be set
for the specified user ID. If the password is shorter than
CICS_ESI_PASSWORD_MAX characters, it must be padded with nulls to a
length of CICS_ESI_PASSWORD_MAX + 1.

The ESI uses this parameter only for input.

System

A pointer to a null-terminated string that specifies the name of the server
for which the password and user ID are to be set. If the name is shorter
than CICS_ESI_SYSTEM_MAX characters, it must be padded with nulls to a
length of CICS_ESI_SYSTEM_MAX + 1.

If the string is all nulls, the default CICS server is selected.

The ESI uses this parameter only for input.

Return codes

CICS_ESI_NO_ERROR
The function completed successfully.

CICS_ESI_ERR_CALL_FROM_CALLBACK
The function was invoked from a callback routine.

CICS_ESI_ERR_SYSTEM_ERROR
An internal system error occurred.

CICS_ESI_ERR_NO_CICS
The CICS Transaction Gateway is unavailable, or the specified server is
unavailable.

CICS_ESI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by the
CICS_EciListSystems and CICS_EpiListSystems functions are acceptable.

CICS_ESI_ERR_USERID_INVALID
The length of the user ID exceeds CICS_ESI_USERID_MAX.

CICS_ESI_ERR_PASSWORD_INVALID
The length of the password exceeds CICS_ESI_PASSWORD_MAX.

The mapping of actual return code values to the symbolic names is contained in
the <install_path>\include\cics_esi.h file. COBOL users can find it in the
<install_path>\copybook\cicsesi.cbl file.

64 CICS TG for Multiplatforms V9.2: Programming Reference

Chapter 2. COBOL

COBOL headers are provided for the ECI V1, EPI and ESI V1 APIs.

The callback functions of ECI and EPI are not supported in COBOL applications.

The following table shows how the names of the calls in COBOL map to the names
of the calls in C:

Interface C COBOL

ECI CICS_ExternalCall CICSEXTERNALCALL

CICS_EciListSystems CICSECILISTSYSTEMS

EPI CICS_EpiInitialize CICSEPIINITIALIZE

CICS_EpiTerminate CICSEPITERMINATE

CICS_EpiListSystems CICSEPILISTSYSTEMS

CICS_EpiAddTerminal CICSEPIADDTERMINAL

CICS_EpiAddExTerminal CICSEPIADDEXTERMINAL

CICS_EpiInquireSystem CICSEPIINQUIRESYSTEM

CICS_EpiDelTerminal CICSEPIDELTERMINAL

CICS_EpiPurgeTerminal CICSEPIPURGETERMINAL

CICS_EpiSetSecurity CICSEPISETSECURITY

CICS_EpiStartTran CICSEPISTARTTRAN

CICS_EpiReply CICSEPIREPLY

CICS_EpiATIState CICSEPIATISTATE

CICS_EpiGetEvent CICSEPIGETEVENT

ESI CICS_VerifyPassword CICSVERIFYPASSWORD

CICS_ChangePassword CICSCHANGEPASSWORD

CICS_SetDefaultSecurity CICSSETDEFAULTSECURITY

© Copyright IBM Corp. 1998, 2016 65

66 CICS TG for Multiplatforms V9.2: Programming Reference

Chapter 3. C++

Ccl class
This class defines enumerations which are used by other classes—both ECI and
EPI.

Enumerations

Bool

There are two equivalent pairs of values:
v no and yes
v off and on

Sync

Possible values are:

async asynchronous

dsync deferred synchronous

sync synchronous

ExCode

For possible values, see “C++ Exception Objects” on page 106.

CclBuf class
A CclBuf object contains a data area in memory that can be used to hold
information. A particular use for a CclBuf object is to hold a COMMAREA, which
passes data to and from a CICS server.

The CclBuf object is primarily intended for use with byte (binary) data. A typical
COMMAREA contains an application-specific data structure, often originating from
a CICS server PL/l or C program. Methods such as assign() and insert() therefore
provide a void* parameter type for application data input. There is limited support
for SBCS null-terminated strings (some of the code samples use this), but there is
no code-page conversion or DBCS support in the CclBuf class.

The maximum data length for a buffer is the maximum value for unsigned long
(232) for 32-bit platforms. CICS imposes a limit of 32 KB in COMMAREAs. This can
be reduced by setting the MaxBufferSize parameter in the CICS Transaction
Gateway configuration file (ctg.ini). See the information about Maximum buffer
size in the CICS Transaction Gateway: UNIX and Linux Administration or the CICS
Transaction Gateway: Windows Administration for more information. If a buffer object
used as a COMMAREA is too long, a data length exception is raised.

When a CclBuf object is created it either uses an area of memory passed to it as its
buffer, or allocates its own. The length of the data in this buffer can be reduced
after the CclBuf object is created. The length of the data in this buffer can only be

© Copyright IBM Corp. 1998, 2016 67

increased beyond the original length if the CclBuf object is created with a
DataAreaType of extensible, rather than fixed.

If a buffer object has a DataAreaType of fixed and a method is called which would
result in its data area length being exceeded, a buffer overflow exception is raised.
If the exception is not handled, the buffer will contain the result of the call,
truncated to the data area length.

If a method is called that results in a buffer object having a data length smaller
than its data area length, the data is padded with nulls.

Many of the methods return object references. This makes it possible for users to
chain calls to member functions. For example, the code:

would create the following string:
Some inserted text at the end

CclBuf constructors

CclBuf (1)

CclBuf(unsigned long length, DataAreaType type = extensible)

length
The initial length of the data area, in bytes. The default is 0.

type
An enumeration indicating whether the data area can be extended. Possible
values are extensible or fixed. The default is extensible.

Creates a CclBuf object, allocating its own data area with the given length. All the
bytes within it are set to null. The data length is set to zero and remains zero until
data is put in the buffer.

CclBuf (2)

CclBuf(unsigned long length, void* dataArea)

length
The length of the supplied data area, in bytes.

dataArea
The address of the first byte of the supplied data area.

Creates a CclBuf object that cannot be extended, adopting the given data area as its
own. The DataAreaOwner is set external.

CclBuf (3)

CclBuf(const char* text, DataAreaType type = extensible)

text
A string to be copied into the new CclBuf object.

CclBuf comma1;
comma1="Some text";
comma1.insert(9,"inserted ",5) += " at the end";

68 CICS TG for Multiplatforms V9.2: Programming Reference

type
An enumeration indicating whether the data area can be extended. Possible
values are extensible or fixed. The default is extensible.

Creates a CclBuf object, allocating its own data area with the same length as the
text string and copies the string into its data area.

CclBuf (4)

CclBuf(const CclBuf& buffer)

buffer
A reference to the CclBuf object that is to be copied.

This copy constructor creates a new CclBuf object, which is a copy of the given
object. The data length, data area length and data area type of the new buffer are
the same as the old buffer. The data area owner of the new buffer is internal.

Public methods

assign

CclBuf& assign(unsigned long length, const void* dataArea)

length
The length of the source data area, in bytes.

dataArea
The address of the source data area.

Overwrites the current contents of the data area with the source data and resets
the data length.

cut

CclBuf& cut(unsigned long length, unsigned long offset = 0)

length
The number of bytes to be cut from the data area.

offset
The offset into the data area. The default is zero.

Cuts the specified data from the data area. Data in the data area is padded with
nulls.

dataArea

const void* dataArea(unsigned long offset = 0) const

offset
The offset into the data area. The default is zero.

Returns the address of the given offset into the data area.

dataAreaLength
Returns the length of the data area in bytes.

unsigned long dataAreaLength() const

Chapter 3. C++ 69

dataAreaOwner
Returns an enumeration value indicating whether the data area has been allocated
by the CclBuf constructor or has been supplied from elsewhere.

DataAreaOwner dataAreaOwner() const

Possible values are internal and external.

dataAreaType
Returns an enumeration value indicating whether the data area can be extended.

DataAreaType dataAreaType() const

Possible values are extensible and fixed.

dataLength
Returns the length of data in the data area. This cannot be greater than the value
returned by dataAreaLength.

unsigned long dataLength() const

insert

CclBuf& insert(unsigned long length,
const void* dataArea,
unsigned long offset = 0)

length
The length of the data, in bytes, to be inserted into the CclBuf object.

dataArea
The start of the source data to be inserted into the CclBuf object.

offset
The offset into the data area where the data is to be inserted. The default is
zero.

Inserts the source data into the data area at the given offset.

listState
Returns a formatted string containing the current state of the object.

const char* listState() const

For example:
Buffer state..&CclBuf=000489B4 &CclBufI=00203A00
dataLength=8 &dataArea=002039C0
dataAreaLength=8 dataAreaOwner=0 dataAreaType=1

operator= (1)

CclBuf& operator=(const CclBuf& buffer)

buffer
A reference to a CclBuf object.

Assigns data from another buffer object.

70 CICS TG for Multiplatforms V9.2: Programming Reference

operator= (2)

CclBuf& operator=(const char* text)

text
The string to be assigned to the CclBuf object.

Assigns data from a string.

operator+= (1)

CclBuf& operator+=(const CclBuf& buffer)

buffer
A reference to a CclBuf object.

Appends data from another buffer object to the data in the data area.

operator+= (2)

CclBuf& operator+=(const char* text)

text
The string to be appended to the CclBuf object.

Appends a string to the data in the data area.

operator==

Ccl::Bool operator==(const CclBuf& buffer) const

buffer
A reference to a CclBuf object.

Returns an enumeration indicating whether the data contained in the buffers of the
two CclBuf objects is the same. Possible values are yes, indicating that the data
lengths and contents are the same, or no.

operator!=

Ccl::Bool operator!=(const CclBuf& buffer) const

buffer
A reference to a CclBuf object.

Returns an enumeration indicating whether the data contained in the buffers of the
two CclBuf objects is different. Possible values are yes or no. no means that the
data lengths are the same and the contents are the same.

replace

CclBuf& replace(unsigned long length,
const void* dataArea,
unsigned long offset = 0)

length
The length of the source data area, in bytes.

dataArea
The address of the start of the source data area.

Chapter 3. C++ 71

offset
The position where the new data is to be written, relative to the start of the
CclBuf data area. The default is zero.

Overwrites the current contents of the data area at the given offset with the source
data. The data length remains the same.

setDataLength

unsigned long setDataLength(unsigned long length)

length
The new length of the data area, in bytes.

Changes the current length of the data area and returns the new length. If the
CclBuf object is not extensible, the data area length is set to either the original
length of the data area, or length, whichever is less.

If length is greater than the data area length, the data is padded with nulls.

Enumerations

DataAreaOwner
Indicates whether the data area of a CclBuf object has been allocated outside the
object.

Possible values are:

internal
The data area has been allocated by the CclBuf constructor.

external
The data area has been allocated externally.

DataAreaType
Indicates whether the data area of a CclBuf object can be made longer than its
original length.

Possible values are:

extensible
The data area of a CclBuf object can be made longer than its original
length.

fixed The data area of a CclBuf object cannot be made longer than its original
length.

CclConn class
An object of class CclConn is used to represent an ECI connection between a client
and a named server.

See the information about linking to a CICS server program in the CICS Transaction
Gateway for Multiplatforms: Developing Applications. Access to the server is optionally
controlled by a user ID and password. It can call a program in the server or get
information on the state of the connection. See the information about passing data

72 CICS TG for Multiplatforms V9.2: Programming Reference

to a server program and the information about monitoring server availability in the
CICS Transaction Gateway for Multiplatforms: Developing Applications for more
information.

The creation of a CclConn object does not cause any interaction with the CICS
server, nor does it guarantee that the server is available to process requests.

Any interaction between client and server requires the use of a CclFlow object. See
the information about controlling server interactions in the CICS Transaction
Gateway for Multiplatforms: Developing Applications for more information.

A CclConn object cannot be copied or assigned. Any attempt to delete a CclConn
object for which there are active CclFlow or CclUOW objects raises an activeFlow
or an activeUOW exception.

CclConn constructor

CclConn(const char* serverName = 0,
const char* userId = 0,
const char* password = 0,
const char* runTran = 0,
const char* attachTran = 0)

serverName
The name of the server. If no name is supplied the default CICS server is used.
After the first call to the server you can discover this name by using the
serverName method. The length is adjusted to 8 characters by padding with
blanks or truncating, if necessary.

userId
The user ID, if needed. The length is adjusted to 16 characters by padding with
blanks or truncating, if necessary.

password
The password corresponding to the user ID in userID, if needed. The length is
adjusted to 16 characters by padding with blanks or truncating, if necessary.

runTran
The CICS transaction under which the called program will run. The default is
to use the default server transaction. The length is adjusted to 4 characters by
padding with blanks or truncating, if necessary.

attachTran
The CICS transaction to which the called program is attached. The default is to
use the default CPMI. The length is adjusted to 4 characters by padding with
blanks or truncating, if necessary.

This constructor creates a CclConn object; it does not cause any interaction with
the CICS server or guarantee that the server is available to process requests. The
user ID and password are not needed if the connection is used only for status calls,
or if the server has no security.

Public methods

alterSecurity

void alterSecurity(const char* newUserid, const char* newPassword)

Chapter 3. C++ 73

newUserid
The new user ID

newPassword
The new password corresponding to the new user ID

Updates the user ID and Password to be used on the next link call

cancel
void cancel(CclFlow& flow)

flow
A reference to the CclFlow object used to control the server request call.

Cancels all changed calls that were previously issued to the server associated with
this connection.

changed

void changed(CclFlow& flow)

flow
A reference to the CclFlow object used to control the server request call.

Requests the server to notify the Client daemon when the current connection status
changes. The call is ignored if there is already an outstanding changed call for this
connection. Use serverStatus or serverStatusText to obtain server availability.

changePassword

CclSecAttr* changePassword(const char* newPassword)

newPassword
the new password to be given

Allows a Client application to change:
v The password held in the terminal object
v The password recorded by an external security manager for the user ID held in

the terminal object

The external security manager is assumed to be located in the server defined by
the terminal object.

link

void link(CclFlow& flow,
const char* programName,
CclBuf* commarea = 0,
CclUOW* unit = 0)

flow
A reference to the CclFlow object used to control the server request call.

programName
The name of the server program that is being called. The length is adjusted to
8 characters by padding with blanks or truncating, if necessary.

commarea
A pointer to a CclBuf object that holds the data to be passed to the called
program in a COMMAREA. The default is not to pass a COMMAREA.

74 CICS TG for Multiplatforms V9.2: Programming Reference

unit
A pointer to the CclUOW object that identifies the unit of work (UOW) in
which this call participates. The default is none. See the information about
managing logical units of work in the CICS Transaction Gateway for
Multiplatforms: Developing Applications.

Requests execution of the specified program on the server. The server program sees
the incoming call as an EXEC CICS LINK call.

If the commarea buffer object is too long, a dataLength exception is raised and the
request is denied. CICS imposes a limit of 32 KB which can be made smaller by
using the MaxBufferSize parameter in the CICS Transaction Gateway Initialization
file.

listState
Returns a formatted string containing the current state of the object.

const char* listState() const

For example:
Connection state..&CclConn=000489AC &CclConnI=00203A50
flowCount=0 &CclFlow(changed)=00000000 token(changed)=0
serverName="server " userId="userId " password="password "
&CclUOWI=00000000 runTran="run " attachTran="att "

makeSecurityDefault
Informs the client that the current user ID and password for this object is to
become the default for ECI and EPI requests passed to the server as specified in
the construction of the connection object.

void makeSecurityDefault()

password (1)
Returns the password held by the CclConn object, padded with spaces to 10
characters, or blanks if there is no password.

const char* password() const

password (2)

void password(Ccl::Bool unpadded)

unpadded

Ccl::Yes
returns a null terminated string of the stored password with no space
padding in the string.

Ccl::No
returns the string padded with spaces — the same as invoking the
password method with no parameters.

serverName (1)
Returns the name of the server system held by the CclConn object, padded with
spaces, or blanks if the default CICS server is being used and no calls have yet
been made.

const char* serverName() const

Chapter 3. C++ 75

serverName (2)

void serverName(Ccl::Bool unpadded)

unpadded

Ccl::Yes
returns a null terminated string of the stored server name with no
space padding in the string.

Ccl::No
returns the string padded with spaces — the same as invoking the
serverName method with no parameters.

status

void status(CclFlow& flow)

flow
A reference to the CclFlow object used to control the server request call.

Requests the status of the server connection. When the reply has been received, use
serverStatus or serverStatusText to obtain server availability.

serverStatus
Returns an enumeration value, set by an earlier status or changed request,
indicating the availability of the server. Possible values are listed under
Enumerations.

ServerStatus serverStatus() const

serverStatusText
Returns a string, set by an earlier status or changed request, indicating the
availability of the server.

const char* serverStatusText() const

userId (1)
Returns the user ID held by the CclConn object, padded with spaces, or blanks if
none.

const char* userId() const

userId (2)

void userId(Ccl::Bool unpadded)

unpadded

Ccl::Yes
returns a null terminated string of the stored user ID with no space
padding in the string.

Ccl::No
returns the string padded with spaces exactly as invoking the user ID
method with no parameters.

verifyPassword

CclSecAttr* verifyPassword()

76 CICS TG for Multiplatforms V9.2: Programming Reference

Allows a Client application to verify that the password held in the CclConn object
matches the password recorded by an external security manager for the user ID
held in the CclConn object. The external security manager is assumed to be located
in the server defined by the CclConn object.

Enumerations

ServerStatus
Indicates the availability of the server.

Possible values are:

unknown
The server status is unknown.

available
The server is available.

unavailable
The server is not available.

CclECI class
One instance only of the CclECI class can exist. It is created by the instance class
method. It controls the client interface to the available servers.

Subclass the CclECI to implement your own handleException method.

One instance only of a CclECI subclass can exist. Any attempt to create more than
one raises a multipleInstance exception.

A CclECI object cannot be copied or assigned.

CclECI constructor (protected)
This constructor is protected and can be accessed only from a subclass.

CclECI()

Public methods

exCode
Returns an enumeration indicating the most recent exception code.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

Ccl::ExCode exCode() const

The possible values are listed under “C++ Exception Objects” on page 106.

exCodeText
Returns a text string describing the most recent exception code.

Deprecated method

Chapter 3. C++ 77

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

const char* exCodeText() const

handleException
virtual void handleException(CclException &except)

except
A CclException object that contains information about the exception just raised.

This method is called whenever an exception is raised. To deal with exceptions,
you must always subclass CclECI, and provide your own implementation of
handleException. See the information about handling exceptions in the CICS
Transaction Gateway for Multiplatforms: Developing Applications. The default
implementation merely throws the exception object.

instance
A class method that returns a pointer to the single CclECI object that exists on the
client.

static CclECI* instance()

Here is an example of its use:
CclECI* pmgr = CclECI::instance();

listState
Returns a formatted string containing the current state of the object.

const char* listState() const

For example:
ECI state..&CclECI=00203AE0 &CclECII=00203B20
retCode=0 exCode=0
serverCount=0 &serverBuffer=00000000

serverCount
Returns the number of available servers to which the CICS Transaction Gateway
might be connected, as configured in the CICS Transaction Gateway initialization
file.

unsigned short serverCount() const

In practice, some or all of these servers might not be available. See the information
about finding potential servers in the CICS Transaction Gateway for Multiplatforms:
Developing Applications.

serverDesc

const char* serverDesc(unsigned short index = 1) const

index
The index of a connected server in the list. The default index is 1.

Returns the description of the indexth server. See the information about finding
potential servers in the CICS Transaction Gateway for Multiplatforms: Developing
Applications for more information.

78 CICS TG for Multiplatforms V9.2: Programming Reference

serverName

const char* serverName(unsigned short index = 1) const

index
The index of a connected server in the list. The default index is 1.

Returns the name of the indexth server. See the information about finding potential
servers in the CICS Transaction Gateway for Multiplatforms: Developing Applications
for more information.

CclEPI class
The CclEPI class initializes and terminates the CICS Transaction Gateway EPI
function. It also has methods which allow you to obtain information about CICS
servers configured in the CICS Transaction Gateway initialization file. You must
create one object of this class for each application process before you create
CclTerminal objects to connect to CICS servers.

CclEPI constructor
This method initializes the CICS EPI interface on the client.

CclEPI()

An initEPI exception is raised if initialization fails. Initialization of the CICS
Transaction Gateway EPI is synchronous. In other words, initialization is complete
when the call to the CclEPI constructor returns.

Public methods

diagnose
Returns a character string that holds a description of the condition returned by the
most recent server call.

const char* diagnose() const

exCode
Returns an enumeration indicating the most recent exception code.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

Ccl::ExCode exCode() const

The possible values are listed under “C++ Exception Objects” on page 106.

exCodeText
Returns a text string describing the most recent exception code.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

Chapter 3. C++ 79

const char* exCodeText() const

handleException

virtual void handleException(CclException &except)

except
A CclException object that contains information about the exception just raised.

This method is called whenever an exception is raised. To deal with exceptions,
use try...catch, or subclass CclEPI and provide your own implementation of
handleException. The default implementation merely throws the exception object.

serverCount
Returns the number of available servers to which the CICS Transaction Gateway
might be connected, as configured in the CICS Transaction Gateway initialization
file.

unsigned short serverCount()

serverDesc

const char* serverDesc(unsigned short index = 1)

index
The index of a configured server

Returns a description of the selected CICS server, or NULL if no information is
available in the CICS Transaction Gateway initialization file for the specified server.
If the index exceeds the number of servers configured, a maxServers exception is
raised.

serverName

const char* serverName(unsigned short index = 1)

index
The index of a configured server

Returns the name of the requested CICS server, or NULL if no information is
available in the CICS Transaction Gateway initialization file for the specified server.
If the index exceeds the number of servers configured, a maxServers exception is
raised.

state
Returns an enumeration indicating the state of the EPI.

State state() const

Possible values are:
active EPI has been initialized successfully
discon

EPI has terminated
error EPI initialization has failed

80 CICS TG for Multiplatforms V9.2: Programming Reference

terminate
Terminates the CICS Transaction Gateway EPI in a controlled manner. The CclEPI
object remains in existence, so that anything which occurs during the termination
can be monitored by the application.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

void terminate()

Because the terminate method is started during CclEPI object destruction, you do
not need to start this method.

Enumerations

State
An enumeration indicating the state of the EPI.

Possible values are:
active EPI has been initialized successfully
discon

EPI has terminated
error EPI initialization has failed

CclException class
A CICS Transaction Gateway object constructs an object of the CclException class if
it encounters a problem.

To deal with such a problem, subclass the CclECI or CclEPI class and provide
your own implementation of the handleException method. See the information
about handling exceptions in the CICS Transaction Gateway for Multiplatforms:
Developing Applications. This method has access to the methods of the CclException
object and can be coded to take whatever action is necessary. For example, it can
stop the program or display a dialog box.

Alternatively, you can use a C++ try...catch block to handle exceptions.

A CclException object cannot be assigned and its constructors are intended for use
by the CICS Transaction Gateway class implementation only.

Public methods

abendCode
Returns a null-terminated string containing the ECI abend code, or blanks if no
abend code is available.

const char* abendCode()

className
Returns the name of the class in which the exception was raised.

const char* className() const

Chapter 3. C++ 81

diagnose

const char* diagnose() const

Returns text explaining the exception for use in diagnostic output, for example:
unknown server, classname=CclFlowI, methodName=afterReply, originCode=13
"link", flowId=2, retCode=-22, abendCode=" "

exCode
Returns the exception code.

Ccl::ExCode exCode() const

For further information see “C++ Exception Objects” on page 106.

exCodeText
Returns a text string that describes the exception code.

const char* exCodeText() const

exObject
This method is relevant to to both the ECI and EPI.

void* exObject() const

exObject returns a pointer to the object controlling any server interaction at the
time of the exception. If there was no such object, a null pointer is returned.
v In the case of ECI the pointer must be cast to a CclFlow*. For example:

CclFlow* pflo = (CclFlow*) ex.exObject();

v In the case of EPI exObject returns the relevant CclTerminal object pointer in the
exception block. Cast this to a CclTerminal*; for example:
CclTerminal* pTerm = (CclFlow*)ex.exObject();

methodName
Returns the name of the method in which the exception was raised.

const char* methodName() const

CclField class
An object of the CclField class is responsible for looking after a single field on a
3270 screen. CclField objects are created and deleted when 3270 data from the
CICS server is processed by a CclScreen object.

Methods in this class allow field text and attributes to be read and updated.
Modified fields are sent to the CICS server on the next send.

Public methods

appendText (1)

void appendText(const char* text, unsigned short length)

text
The text to be appended to the field

82 CICS TG for Multiplatforms V9.2: Programming Reference

length
The number of characters to be appended to the field

Appends length characters from text to the end of the text already in the field.

appendText (2)

void appendText(const char* text)

text
The null-terminated text string to be appended to the field

Appends the characters within the text string to the end of the text already in the
field.

backgroundColor
Returns an enumeration indicating the background color of the field. The possible
values are shown under Color at the end of the description of this class.

Color backgroundColor() const

baseAttribute
Returns the 3270 base attribute of the field.

char baseAttribute() const

column
Returns the column number of the position of the start of the field on the screen,
with the leftmost column being 1.

unsigned short column() const

dataTag
Returns an enumeration indicating whether the data in the field has been
modified.

BaseMDT dataTag() const

Possible values are:
v modified
v unmodified

foregroundColor
Returns an enumeration indicating the foreground color of the field. The possible
values are shown under Color at the end of the description of this class.

Color foregroundColor() const

highlight
Returns an enumeration indicating which type of highlight is being used. The
possible values are shown under Highlight at the end of the description of this
class.

Highlight highlight() const

Chapter 3. C++ 83

inputProt
Returns an enumeration indicating whether the field is protected.

BaseProt inputProt() const

Possible values are:
v protect
v unprotect

inputType
Returns an enumeration indicating the input data type for this field.

BaseType inputType() const

Possible values are:
v alphanumeric
v numeric

intensity
Returns an enumeration indicating the field intensity.

BaseInts intensity() const

Possible values are :
v dark
v normal
v intense

length
Returns the total length of the field.

unsigned short length() const

This includes one byte used to store the 3270 attribute byte information. The actual
space for data is one byte less than the value returned by this method. See also the
“textLength” on page 85 method.

position

unsigned short position() const

Returns the position of the start of the field on the screen, given by position =
column number + (n x row number), where n is the number of columns in a row
(usually 80).

resetDataTag

void resetDataTag()

Resets the modified data tag (MDT) to unmodified.

row
Returns the row number of the position of the start of the field on the screen. The
top row is 1.

84 CICS TG for Multiplatforms V9.2: Programming Reference

unsigned short row() const

setBaseAttribute

void setBaseAttribute(char attribute)

attribute
The value of the base 3270 attribute byte to be entered into the field

Sets the 3270 base attribute.

setExtAttribute

void setExtAttribute(char attribute, char value)

attribute
The type of extended attribute being set

value
The value of the extended attribute

Sets an extended 3270 attribute. If an invalid 3270 attribute type or value is
supplied, a parameter exception is raised.

setText (1)
These methods update the field with the given text.

void setText(const char* text, unsigned short length)

text
The text to be entered into the field

length
The number of characters to be entered into the field

Copies length characters from text into the field.

setText (2)

void setText(const char* text)

text
The null-terminated text to be entered into the field

Copies text, without the terminating null, into the field.

text
Returns the text currently held in the field.

const char* text() const

textLength
Returns the number of characters currently held in the field.

unsigned short textLength() const

transparency
Returns an enumeration indicating the background transparency of the field.
Possible values are shown under Transparency at the end of the description of this
class.

Chapter 3. C++ 85

Transparency transparency() const

Enumerations

BaseInts
Indicates the field intensity.

Possible values are:
v normal
v intense
v dark

BaseMDT
Indicates whether data in the field has been modified.

Possible values are:
v unmodified
v modified

BaseProt
Indicates whether the field is protected.

Possible values are:
v protect
v unprotect

BaseType
Indicates field input data type.

Possible values are:
v alphanumeric
v numeric

Color
Possible values are:

defaultColor yellow paleGreen
blue neutral paleCyan
red black gray
pink darkBlue white
green orange
cyan purple

Highlight
Indicates which type of highlight is being used. Possible values are:

defaultHlt blinkHlt underscoreHlt
normalHlt reverseHlt intenseHlt

Transparency
Indicates the background transparency of the field.

Possible values are:

86 CICS TG for Multiplatforms V9.2: Programming Reference

defaultTran
default transparency

orTran
OR with underlying color

xorTran
XOR with underlying color

opaqueTran
opaque

CclFlow class
A CclFlow object is used to control ECI communications for a client/server pair
and to determine the synchronization of reply processing.

See the information about compiling and running a C++ Client application in the
CICS Transaction Gateway for Multiplatforms: Developing Applications for an
explanation of synchronization. CclFlow automatically calls its handleReply
method when a reply is available; this simplifies control of interleaved replies.
Subclass CclFlow to implement your own handleReply method.

A CclFlow object is created for each client/server interaction (request from client
and response from server). CclFlow objects can be reused when they become
inactive, that is, when reply processing is complete. An attempt to delete or reuse
an active CclFlow object raises an activeFlow exception.

CclFlow constructor

CclFlow (1)

CclFlow(Ccl::Sync syncType, unsigned long stackPages = 3)

syncType
The type of synchronization

stackPages
If asynchronous, the number of 4kb stack pages. The default is 3. If not
asynchronous, this parameter is ignored.

CclFlow (2)

CclFlow(Ccl::Sync syncType,
unsigned long stackPages,
const unsigned short &timeout)

syncType
The type of synchronization

stackPages
If asynchronous, the number of 4kb stack pages. If not asynchronous, this
parameter is ignored.

timeout
The time in seconds to wait for the ECI program to respond. If a timeout
occurs, the HandleException method is called with a timeout CclException
Object. Valid values are 0-32767.

Chapter 3. C++ 87

Public methods

abendCode
Returns the abend code from the most recently executed CICS transaction, or blank
if there have been none.

const char* abendCode() const

callType
Returns an enumeration value indicating the most recent type of server request.

CallType callType() const

callTypeText
Returns the name of the most recent server request.

const char* callTypeText() const

connection
Returns a pointer to the CclConn object that represents the server being used, if
any, or zeros.

CclConn* connection() const

diagnose

const char* diagnose() const

Returns text explaining the exception for use in diagnostic output; for example:
"link", flowId=2, retCode=-22, abendCode=" "

flowId
Returns the unique identity of this CclFlow object.

unsigned short flowId() const

forceReset
Makes the flow inactive and resets it.

void forceReset()

This is typically used to prepare a CclFlow object for re-use or deletion after a flow
has been abandoned, for example when a C++ throw is used in a exception
handler. This applies only to dsync and async flows. You cannot issue this on a
sync call from another thread.

handleReply
virtual void handleReply(CclBuf* commarea)

commarea
A pointer to the CclBuf object containing the returned COMMAREA or zero if
none.

This method is called whenever a reply is received from a server, irrespective of
the type of synchronization or the type of call. See the information about
Programming in C++ in the CICS Transaction Gateway for Multiplatforms: Developing

88 CICS TG for Multiplatforms V9.2: Programming Reference

Applications. To deal with replies, subclass CclFlow and provide your own
implementation of handleReply. The default implementation merely returns to the
caller.

listState
Returns a formatted string containing the current state of the object.

const char* listState() const

For example:
Flow state..&CclFlow=000489A4 &CclFlowI=00203B70
syncType=2 threadId=0 stackPages=9 callType=0 flowId=0 commLength=0
retCode=0 systemRC=0 abendCode=" " &CclConnI=00000000 &CclUOWI=00000000

poll

Ccl::Bool poll(CclBuf* commarea = 0)

commarea
An optional pointer to the CclBuf object that will be used to contain the
returned COMMAREA.

Returns an enumeration, defined within the Ccl class indicating whether a reply
has been received from a deferred synchronous Backout, Cancel, Changed,
Commit, Link, or Status call request. If poll is used on a flow object that is not
deferred synchronous, a syncType exception is raised. Possible values are:

yes A reply has been received. handleReply has been called synchronously.

no No reply has been received. The client process is not blocked.

setTimeout

void setTimeout(const unsigned short &timeout)

timeout
the defined time in seconds to wait for the ECI program to respond. If a
timeout occurs, the HandleException method is called with a timeout
CclException Object. Valid values are 0-32767.

Sets the timeout value for the flow object for the next activation of the flow. This
value can be set while a flow is active but does not affect the current active flow

syncType
Returns an enumeration, defined within the Ccl class indicating the type of
synchronization being used.

Ccl::Sync syncType() const

Possible values are shown in “Sync” on page 67.

timeout
Retrieves the current timeout value set for the flow object.

short timeout()

uow
Returns a pointer to any CclUOW object containing information on any units of
work (UOWs) associated with this interaction.

Chapter 3. C++ 89

CclUOW* uow() const

wait
Waits for a reply from the server, blocking the client process in the meantime.

void wait()

If wait is used on a synchronous flow object, a syncType exception is raised.

Enumerations

CallType

The possible values for server requests in progress under the control of a CclFlow
object are:
inactive

No server call is currently in progress
link A CclConn::link call to a server program
backout

A CclUOW::backout call to back out changes made to recoverable
resources on the server

commit
A CclUOW::commit call to commit changes made to recoverable resources
on the server

status A CclConn::status call to determine the status of a server connection
changed

A CclConn::changed call to request notification when the status of a
connection to a server changes

cancel
A CclConn::cancel call to cancel an earlier CclConn::changed request.

CclMap class
The CclMap class is a base class for map classes created by the CICS BMS Map
Conversion Utility. The methods provided by CclMap class are inherited by the
classes generated from BMS maps.

CclMap constructor

CclMap(CclScreen* screen)

screen
A pointer to the matching CclScreen object.

Creates a CclMap object and checks (validates) that the map matches the content of
the screen, defined by the CclScreen object. If validation was unsuccessful, an
invalidMap exception is raised. If the supplied CclScreen object is invalid, a
parameter exception is raised.

Public methods

exCode
Returns an enumeration indicating the most recent exception code.

Deprecated method

90 CICS TG for Multiplatforms V9.2: Programming Reference

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

Ccl::ExCode exCode() const

The possible values are listed in “C++ Exception Objects” on page 106.

exCodeText
Returns a text string describing the most recent exception code.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

const char* exCodeText() const

field (1)

CclField* field(unsigned short index)

index
The index number of the required CclField object.

Returns a pointer to the CclField object identified by index in the BMS map.

field (2)

CclField* field(unsigned short row, unsigned short column)

row
The row number of the required CclField object within the map. The top row
is 1.

column
The column number of the required CclField object within the map. The left
column is 1.

Returns a pointer to the CclField object identified by position in the BMS map.

Protected methods

namedField

CclField* namedField(unsigned long index)

index
The index number of the required CclField object.

Returns the address of the indexth object.

validate

void validate(const MapData* map,
const FieldIndex* index,
const FieldData* fields)

Chapter 3. C++ 91

map
A structure that contains information about the map. The structure is defined
within this class and contains the following members, which are all unsigned
short integers:
row Map row position on screen
col Map column position on screen
width

Map width in columns
depth Map depth in rows
fields Number of fields
labels

Number of labeled fields

index
The index number of the required CclField object. FieldIndex is a typedef of
this class and is equivalent to an unsigned short integer.

fields
A structure that contains information about a particular field. The structure is
defined within this class and contains the following members, which are all
unsigned short integers:

row Field row (within map)

col Field column (within map)

len Field length

Validate map against the current screen.

CclScreen class
The CclScreen EPI class maintains all data on the 3270 virtual screen and provides
access to this data. It contains a collection of CclField objects which represent the
fields on the current 3270 screen.

A single CclScreen object is created by the CclTerminal object; use the screen
method on the CclTerminal object to obtain it. The CclScreen object is updated by
the CclTerminal object when 3270 data is received from CICS. A dataStream
exception is raised if an unsupported data stream is received.

Public methods

cursorCol
Returns the column number of the current position of the cursor. The left column
is 1.

unsigned short cursorCol() const

cursorRow
Returns the row number of the current position of the cursor. The top row is 1.

unsigned short cursorRow() const

depth
Returns the number of rows in the screen.

unsigned short depth() const

92 CICS TG for Multiplatforms V9.2: Programming Reference

field (1)
These methods allow you to access fields on the current screen by returning a
pointer to the relevant CclField object.

CclField* field(unsigned short index)

index
The index number of the field of interest

field (2)

CclField* field(unsigned short row, unsigned short column)

row
The row number of the field

column
The column number of the field

fieldCount
Returns the number of fields in the screen.

unsigned short fieldCount() const

mapName
Returns a padded null terminated string specifying the name of the map that was
most recently referenced in the MAP option of a SEND MAP command processed
for the terminal resource.

const char* mapName()

If the terminal resource is not supported by BMS, or the server has no record of
any map being sent, the value returned is spaces.

mapSetName
Returns a padded null terminated string specifying the name of the mapset that
was most recently referenced in the MAPSET option of a SEND MAP command
processed for the terminal resource.

const char* mapSetName()

If the MAPSET option was not specified on the most recent request, BMS used the
map name as the mapset name. In both cases, the mapset name used might have
been suffixed by a terminal suffix. If the terminal resource is not supported by
BMS, or the server has no record of any mapset being sent, the value returned is
spaces.

setAID
void setAID(const AID key)

key
An AID key. See the “AID” on page 94 enumerations at the end of this section.

Sets the AID key value to be passed to the server on the next transmission.

setCursor

void setCursor(unsigned short row, unsigned short col)

Chapter 3. C++ 93

row
The required row number of the cursor. The top row is 1.

col
The required column number of the cursor. The left column is 1.

Requests that the cursor position be set. If the supplied row or column values are
outside the screen boundaries, a parameter exception is raised.

width
Returns the number of columns on the screen.

unsigned short width() const

Enumerations

AID
Indicates an AID key.

Possible values are:
v enter
v clear
v PA1—PA3
v PF1—PF24

CclSecAttr
The CclSecAttr class provides information about passwords reported back by the
external security manager when verifyPassword or changePassword methods are
issued on CclConn or CclTerminal objects.

This object is created and owned by the CclConn or CclTerminal Object; access to
this object is provided when the verifyPassword or changePassword methods are
invoked.

Public Methods

expiryTime
Returns a CclSecTime object that contains the Date and Time at which the
password will expire

CclSecTime* expiryTime() const

invalidCount
Returns the Number of times that an invalid password has been entered for the
user ID.

unsigned short invalidCount() const

lastAccessTime
Returns a CclSecTime object that contains the date and time when the user ID was
last accessed.

CclSecTime* lastAccessTime() const

94 CICS TG for Multiplatforms V9.2: Programming Reference

lastVerifiedTime
Returns a CclSecTime object that contains the date and time of the Last
Verification.

CclSecTime* lastVerifiedTime() const

CclSecTime
The CclSecTime class provides date and time information in the CclSecAttr object
for various entries reported back by the external security manager when
verifyPassword or changePassword methods are issued on CclConn or CclTerminal
objects.

These objects are created and owned by the CclSecAttr object and access is
obtained via the various methods available on this object. No Constructors or
Destructors are available.

Public Methods

day
Returns the day with a range from 1 to 31; 1 represents the first day of the month.

unsigned short day() const

get_time_t
Returns the date and time in a time_t format.

time_t get_time_t() const

get_tm
Returns the date and time in a tm structure.

tm get_tm() const

hours
Returns the hours with a range from 0 to 23.

unsigned short hours() const

hundredths
Returns the hundredths of seconds with a range from 0 to 99.

unsigned short hundredths() const

minutes
Returns the minutes with a range from 0 to 59.

unsigned short minutes() const

month
Returns the month with a range from 1 to 12. January is 1.

unsigned short month() const

Chapter 3. C++ 95

seconds
Returns the seconds with a range from 0 to 59.

unsigned short seconds() const

year
Returns a 4–digit year

unsigned short year() const

CclSession class
The CclSession class allows the programmer to implement reusable code to handle
a segment (one or more transmissions) of a 3270 conversation. In multi-threaded
environments it provides asynchronous handling of replies from CICS.

The CclSession class controls the flow of data to and from CICS within a single
3270 session. Derive your own classes from CclSession.

CclSession constructor

CclSession(Ccl::Sync syncType)

syncType
The protocol to be used on transmissions to the CICS server. Possible values
are:

async asynchronous

dsync deferred synchronous

sync synchronous

Public methods

diagnose
Returns a text description of the last error.

const char* diagnose() const

handleReply

virtual void handleReply(State state, CclScreen* screen)

state
An enumeration indicating the state of the data flow. The scope of the values is
shown under State at the end of the description of this class.

screen
A pointer to the CclScreen object.

This is a virtual method which you can override when you develop your own class
derived from CclSession. It is called when data is received from CICS.

state
Returns an enumeration indicating the current state of the session. Possible values
are shown under State at the end of the description of this class.

State state() const

96 CICS TG for Multiplatforms V9.2: Programming Reference

terminal
Returns a pointer to the CclTerminal object for this session. This method returns a
NULL pointer until the CclSession object has been associated with a CclTerminal
object (that is, until the CclSession object has been used as a parameter on a
CclTerminal send method).

CclTerminal* terminal() const

transID
Returns the 4-letter name of the current transaction.

const char* transID() const

Enumerations

State
Indicates the state of a session.

Possible values are:

idle The terminal is connected and no CICS transaction is in progress.

server
A CICS transaction is in progress in the server.

client A CICS transaction is in progress, and the server is waiting for a response
from the client.

discon
The terminal is disconnected.

error There is an error in the terminal.

CclTerminal class
An object of class CclTerminal represents a 3270 terminal connection to a CICS
server. A CICS connection is established when the object is created. Methods can
then be used to converse with a 3270 terminal application (often a BMS
application) in the CICS server.

The EPI must be initialized (that is, a CclEPI object created) before a CclTerminal
object can be created.

The CclTerminal class destructor does not purge ATI requests queued against the
terminal.

CclTerminal constructor

CclTerminal (1)

CclTerminal(const char* server = NULL,
const char* devtype = NULL,
const char* netname = NULL)

server
The name of the server with which you want to communicate. If no name is
provided the default CICS server system is assumed. The length is adjusted to
8 characters by padding with blanks.

Chapter 3. C++ 97

devtype
The name of the model terminal definition that the server uses to generate a
terminal resource definition. If no string is provided the default model is used.
The length is adjusted to 16 characters by padding with blanks.

netname
The name of the terminal resource to be installed or reserved. The default is to
use the contents of devtype. The length is adjusted to 8 characters by padding
with blanks.

Creates the CclTerminal object that is used for EPI communication between the
client and server.

This constructor does an implicit install terminal. You do not need to start the
install method if you construct a terminal object this way.

If the named server is not configured in the CICS Transaction Gateway
initialization file, an unknownServer exception is raised.

If invalid values are supplied for server, devtype or netname, a parameter exception
is raised.

If a CclEPI object has not been created, an initEPI exception is raised.

If the maximum number of supported terminal connections has been exceeded, a
maxRequests exception is raised.

CclTerminal (2)

CclTerminal(const char* server,
const char* devtype,
const char* netname,
signonType signonCapability
const char* userid
const char* password
const unsigned short &readTimeOut,
const unsigned short &CCSid)

server
The name of the server with which you want to communicate. If no name is
provided the default CICS server system is assumed. The length is adjusted to
8 characters by padding with blanks.

devtype
The name of the model terminal definition which the server uses to generate a
terminal resource definition. If no string is provided the default model is used.
The length is adjusted to 16 characters by padding with blanks.

netname
The name of the terminal resource to be installed or reserved. The default is to
use the contents of devtype. The length is adjusted to 8 characters by padding
with blanks.

signonCapability

Sets the type of sign-on capability for the terminal.

Possible values are:
v CclTerminal::SignonCapable

98 CICS TG for Multiplatforms V9.2: Programming Reference

v CclTerminal::SignonIncapable

userid
The name of the user ID to associate with this terminal resource

password
The password to associate with the user ID

readTimeOut
A value in the range 0 through 3600, specifying the maximum time in seconds
between the time the classes go clientrepl state and the application program
invokes the reply method.

CCSid
An unsigned short specifying the coded character set identifier (CCSID) that
identifies the coded graphic character set used by the Client application for
data passed between the terminal resource and CICS transactions. A zero string
means that a default will be used.

Creates a Terminal object that does not do an implicit install terminal. You must
run the install method to install the terminal.

Public methods

alterSecurity
You can call the method before you install a terminal. It changes only the terminal
definition; the new user ID and password will be used for the terminal when
install is called.

void alterSecurity(const char* userid,const char* password)

userid
The new user ID

password
The new password for userid

Allows you to re-define the user ID and password for a terminal resource.

changePassword
Allows a Client application to change the password held in the terminal object and
the password recorded by an external security manager for the user ID held in the
terminal object.

CclSecAttr* changePassword(const char* newPassword)

newPassword
The new password

The external security manager is assumed to be located in the server defined by
the terminal object.

CCSid
Returns the selected code page as an unsigned short.

unsigned short CCSid()

Chapter 3. C++ 99

diagnose
Returns a character string that holds a description of the error returned by the
most recent server call.

const char* diagnose()

disconnect (1)
Disconnects the terminal from CICS. No attempt is made to purge outstanding
running transactions.

void disconnect()

disconnect (2)
Disconnects the terminal from CICS.

void disconnect(Ccl::Bool withPurge)

withPurge

Ccl::Yes
Disconnects the terminal from CICS and attempts to purge any
outstanding running transaction. This purge function does not cancel
ATI requests queued against the terminal.

Ccl::No
Disconnects the terminal from CICS. No attempt is made to purge
outstanding running transactions.

discReason
Returns the reasons for a disconnection.

void discReason(void)

See “EndTerminalReason” on page 105.

exCode
Returns an enumeration indicating the most recent exception code.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

Ccl::ExCode exCode() const

The possible values are listed in “C++ Exception Objects” on page 106.

exCodeText
Returns a text string describing the most recent exception code.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

const char* exCodeText() const

100 CICS TG for Multiplatforms V9.2: Programming Reference

install
Connects a non-connected terminal resource.

void install(CclSession *session,
const unsigned short &installTimeOut)

session
A pointer to the CclSession object that is to be used for the CICS server
interaction.

installTimeOut
A value in the range 0 to 3600, specifying the maximum time in seconds that
installation of the terminal resource is allowed to take. A value of 0 means that
no limit is set.

Throws an invalidState error if already connected, or a timeout error if a timeout
occurs.

makeSecurityDefault
Informs the client that the current user ID and password for this object are to
become the default for ECI and EPI requests passed to the server as specified in
the construction of the Terminal object.

void makeSecurityDefault()

netName
Returns the network name of the terminal as a null terminated string.

const char* netName() const

password
Returns a null terminated string containing the current password setting for the
terminal, or null if the terminal has no password.

const char* password()

poll
Polls for data from the CICS server.

Ccl::Bool poll()

For deferred synchronous transmissions (that is, if a deferred synchronous
CclSession object was used on a previous send call) the poll method is called by
the application when it wants to receive data from the CICS server. If a reply from
CICS is ready, the CclTerminal object updates the CclScreen object with the
contents of the 3270 data stream received from CICS, the handleReply virtual
function on the CclSession object is called, and the poll method returns Ccl::yes.
If no reply has been received from CICS, the poll method returns Ccl::no.

The poll method is used only for deferred synchronous transmissions; a syncType
exception is raised if the poll method is called when a synchronous or
asynchronous session is in use. An invalidState exception is raised if the poll
method is called when there was no previous send call. The CclTerminal object
must be in server state for poll to be called.

A CICS server transaction can send more than one reply in response to a
CclTerminal send call. More than one CclTerminal poll call can therefore be needed

Chapter 3. C++ 101

to collect all the replies. Use the CclTerminal state method to find out whether
further replies are expected. If there are, the value returned will be server. See the
information about EPI call synchronization types in the CICS Transaction Gateway
for Multiplatforms: Developing Applications.

queryATI
Returns an enumeration indicating whether the “Automatic Transaction Initiation”
(ATI) is enabled or disabled.

ATIState queryATI()

Possible values are:
v disabled
v enabled

readTimeout
Returns the read timeout value for the terminal as a null terminated string .

const char* readTimeout()

receiveATI
Waits for and receives 3270 data stream for a CICS ATI transaction.

void receiveATI(CclSession* session)

session
pointer to the CclSession object that is to be used for the CICS server
interaction.

The CclSession object supplied as a parameter determines whether the call is
synchronous or asynchronous, and can be subclassed to provide a reply handler

screen
Returns a pointer to the CclScreen object that is handling the 3270 screen
associated with this terminal session.

CclScreen* screen() const

send (1)
Formats and sends a 3270 data stream, starting the named transaction.

void send(CclSession* session,
const char* transid,
const char* startdata = NULL)

session
A pointer to the CclSession object that controls the session which is to be used.
If no valid CclSession object is supplied, a parameter exception is raised.

transid
The name of the transaction which is to be started

startdata
start transaction data. The default is to have no data for the transaction being
started.

102 CICS TG for Multiplatforms V9.2: Programming Reference

The CclTerminal object must be in idle state (connected to a CICS server but with
no transaction in progress). If the object is not in idle state, an invalidState
exception is raised.

send (2)
Formats and sends a 3270 data stream.

void send(CclSession* session)

The session parameter is described above.

The CclTerminal object must be in idle state (see above) or in client state (that is,
with a transaction in progress and the CICS server waiting for a response). If the
object is not in idle or client state, an invalidState exception is raised.

setATI
Indicates whether the ATI is to be enabled or disabled.

void setATI(ATIState newstate)

newstate
An enumeration indicating whether the ATI is to be enabled or disabled. The
scope of the values is within this class and the possible values are disabled and
enabled.

signonCapability
Returns the type of sign-on capability applied to the terminal at installation.

signonType signonCapability()

Possible values are:
v CclTerminal::signonCapable

v CclTerminal::signonIncapable

v CclTerminal::signonUnknown

state
Returns an enumeration indicating the current state of the session. Possible values
are shown at the end of the description of this class.

State state() const

serverName
Returns the name of the CICS server to which this terminal session is connected.

const char* serverName() const

termID
Returns the 4-character terminal ID.

const char* termID() const

transID
Returns the 4-character name of the current CICS transaction. If a RETURN
IMMEDIATE is run from the current transaction, TransId does not provide the
name of the new transaction; it still contains the name of the first transaction.

Chapter 3. C++ 103

const char* transID() const

userId
Returns a null terminated string containing the current user ID setting for the
terminal, Null if none.

const char* userId()

verifyPassword
Allows a Client application to verify that the password held in the terminal object
matches the password recorded by an external security manager for the user ID
held in the terminal object. The external security manager is assumed to be located
in the server defined by the terminal object.

CclSecAttr* verifyPassword()

Enumerations

ATIState
Indicates whether “Automatic Transaction Initiation” (ATI) is enabled or disabled.

Possible values are:
v enabled
v disabled

signonType
Indicates the sign-on capability of a terminal.

Possible values are:

signonCapable
Sign-on Capable

signonIncapable
Sign-on Incapable

signonUnknown
Sign-on Unknown

State
Indicates the state of the CclTerminal object.

Possible values are:
client A CICS transaction is in progress and the server is waiting for a response

from the client.
discon

The terminal is disconnected.
error There is an error in the terminal.
idle The terminal is connected and no CICS transaction is in progress.
server

A CICS transaction is in progress in the server.
termDefined

A terminal has been defined but not installed.
txnTimedOut

A conversational transaction has timed out, but the END_TRAN event has
not been retrieved. For synchronous and asynchronous terminals the
terminal method blocks until the event has been received and the terminal

104 CICS TG for Multiplatforms V9.2: Programming Reference

becomes idle. For deferred synchronous terminals it indicates that a poll()
needs to be done to get the event. This resets the terminal to the idle state;
handleException() and handleReply() are not invoked.

EndTerminalReason
Indicates the EndTerminalReason of the CclTerminal object.

Possible values are:
signoff

A disconnect was requested or the user has signed off the terminal.
shutdown

The CICS server has been shut down.
outofService

The terminal has been switched to out of service.
unknown

An unknown situation has occurred.
failed The terminal failed to disconnect.
notDiscon

The terminal is not disconnected.

CclUOW class
Use this ECI class when you make updates to recoverable resources in the server
within a “unit of work” (UOW).

Each update in a UOW is identified at the client by a reference to its
CclUOW—see link in CclConn (“link” on page 74).

A CclUOW object cannot be copied or assigned. An attempt to delete a CclUOW
object for which there is an active CclFlow object raises an activeFlow exception.
Any attempt to delete an active CclUOW object, that is one which has not been
committed or backed out, raises an activeUOW exception.

CclUOW constructor
Creates a CclUOW object.

CclUOW()

Public methods

backout

void backout(CclFlow& flow)

flow
A reference to the CclFlow object that is used to control the client/server call

Terminate this UOW and back out all changes made to recoverable resources in the
server.

commit

void commit(CclFlow& flow)

flow
A reference to the CclFlow object that is used to control the client/server call

Chapter 3. C++ 105

Terminate this UOW and commit all changes made to recoverable resources in the
server.

forceReset
Make this UOW inactive and reset it.

void forceReset()

listState
Returns a zero-terminated formatted string containing the current state of the
object.

const char* listState() const

For example:
UOW state..&CclUOW=0004899C &CclUOWI=00203BD0
&CclConnI=00000000 uowId=0 &CclFlowI=00000000

uowId
Returns the identifier of the UOW. 0 means that the UOW is either complete or has
not yet started and it is, therefore, inactive.

unsigned long uowId() const

C++ Exception Objects
Exception objects for the C++ classes.

All exception objects provide the following information:
v Class Name
v Method Name
v Exception Code
v Exception Text
v Abend Code (ECI Only)
v Origin Point

The Class name can contain a trailing 'I', which implies it is an internally-contained
class for the well known class. For example, CclFlowI is contained by CclFlow. If
an internal class is reported the method reported might be an internal method, not
an external one.

The Origin Point is a unique value which defines the exact point within the class
library where the exception was generated. These are mainly useful for service.

The more important items of information are the Exception Code, Exception Text
and Abend Code (ECI only). The following is a Summary of these Exception Codes
and Text and whether they are relevant to ECI or EPI or both.

Table 2. Exception codes

Enumeration Text Description ECI EPI

Ccl::noError no error No error occurred. Yes Yes

Ccl::bufferOverflow buffer overflow Attempted to increase a CclBuf
object which isn't Extensible.

Yes

106 CICS TG for Multiplatforms V9.2: Programming Reference

Table 2. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::multipleInstance multiple instance Attempted to create more than
one ECI object.

Yes

Ccl::activeFlow flow is active Current Flow is still active, you
cannot use this flow until it is
inactive.

Yes

Ccl::activeUOW UOW is active Current UOW is still active,
you need to backout or commit.

Yes

Ccl::syncType sync error Incorrect synchronization type
for method call.

Yes Yes

Ccl::threadCreate thread create error Internal thread creation error. Yes Yes

Ccl::threadWait thread wait error Internal thread wait error. Yes

Ccl::threadKill thread kill error Internal thread kill error. Yes

Ccl::dataLength data length invalid CommArea > 32768 Bytes or
inbound 3270 data stream too
large for Terminal Buffer size.

Yes Yes

Ccl::noCICS no CICS The Gateway is unavailable, or
the server implementation is
unavailable, or a logical unit of
work was to be begun, but the
CICS server specified is not
available. No resources have
been updated.

Yes Yes

Ccl::CICSDied CICS died A logical unit of work was to
be begun or continued, but the
CICS server was no longer
available. If this is a link call
with an active UOW, the
changes are backed out. If this
was a UOW Commit or
Backout, the application cannot
determine whether the changes
have been committed or backed
out, and must log this condition
to aid future manual recovery.

Yes

Ccl::noReply no reply There was no outstanding reply. Yes

Ccl::transaction transaction abend ECI Program Abended. Yes

Ccl::systemError system error Unknown internal error
occurred.

Yes Yes

Ccl::resource resource shortage The server implementation or
the Gateway did not have
enough resources to complete
the request e.g. insufficient
SNA sessions.

Yes Yes

Ccl::maxUOWs exceeded max UOWs A new logical unit of work was
being created, but the
application already has as many
outstanding logical units of
work as the configuration will
support.

Yes

Ccl::unknownServer unknown server The requested server could not
be located.

Yes Yes

Chapter 3. C++ 107

Table 2. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::security security error You did not supply a valid
combination of user ID and
password, though the server
expects it.

Yes Yes

Ccl::maxServers exceeded max servers You attempted to start requests
to more servers than your
configuration allows. Consult
the documentation for your
Gateway or server to see how
to control the number of servers
you can use.

Yes Yes

Ccl::maxRequests exceeded max requests There were not enough
communication resources to
satisfy the request. Consult the
documentation for your
Gateway or server to see how
to control communication
resources.

Yes Yes

Ccl::rolledBack rolled back An attempt was made to
commit a logical unit of work,
but the server was unable to
commit the changes, and
backed them out instead.

Yes

Ccl::parameter parameter error Incorrect parameter supplied. Yes Yes

Ccl::invalidState invalid object state The Object is not in the correct
state to start the method, e.g.
terminal object still in server
state and an attempt to send
data is made.

Yes Yes

Ccl::transId invalid transaction Null transid supplied or
returned for a pseudo
conversational transaction.

Yes

Ccl::initEPI EPI not initialized EPI has failed to initialize
correctly or EPI object is
missing.

Yes

Ccl::connect connection failed Unexpected error trying to add
the terminal.

Yes

Ccl::data stream 3270 data stream error Unsupported Data Stream. Yes

Ccl::invalidMap map/screen mismatch Map definition and Screen do
not match.

Yes

Ccl::cclClass CICS class error Unknown internal Class error
occurred.

Yes Yes

Ccl::startTranFailure Start Transaction Failure Transaction failed to start. Yes

Ccl::timeout Timeout Occurred Timeout occurred before
response from Server.

Yes Yes

Ccl::noPassword Password is Null The object's password is null. Yes Yes

Ccl::noUserid Userid is Null The object's user ID is null. Yes Yes

Ccl::nullNewPassword A NULL new password was
supplied

The provided password is null. Yes Yes

108 CICS TG for Multiplatforms V9.2: Programming Reference

Table 2. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::pemNotSupported PEM is not supported on the
server

The CICS Server does not
support the Password Expiry
Management facilities. The
method cannot be used.

Yes Yes

Ccl::pemNotActive PEM is not active on the server Password Expiry Management
is not active.

Yes Yes

Ccl::passwordExpired Password has expired The password has expired. No
information has been returned.

Yes Yes

Ccl::passwordInvalid Password is invalid The password is invalid. Yes Yes

Ccl::passwordRejected New password was rejected Change password failed
because the password does not
conform to standards defined.

Yes Yes

Ccl::useridInvalid Userid unknown at server The user ID is unknown. Yes Yes

Ccl:invalidTermid Termid is invalid The terminal ID is invalid. Yes

Ccl:invalidModelid Modelid is invalid Invalid Model/Device Type. Yes

Ccl:not3270 Not a 3270 device Not a 3270 device. Yes

Ccl:invalidCCSid Code page (CCSid value) is
invalid

Invalid CCSid. Yes

Ccl:serverBusy Server is too busy CICS server is busy. Yes

Ccl:signonNotPossible Sign-on Capable terminal is not
possible

The server does not allow the
terminal to be installed as
sign-on capable.

Yes

Chapter 3. C++ 109

110 CICS TG for Multiplatforms V9.2: Programming Reference

Chapter 4. COM

Buffer COM class
A CclOBuffer object contains a data area in memory which can be used to hold
information. A particular use for a CclOBuffer object is to hold a COMMAREA
used to pass data to and from a CICS server.

The CclOBuffer object is primarily intended for use with byte (binary) data.
Typically a COMMAREA contains an application-specific data structure, often
originating from a CICS server C program. The preferred method for handling
binary data in Visual Basic is now the Byte data type. The SetData and Data
methods allow the contents of the CclOBuffer object to be accessed as a Byte array.
The CclOBuffer object can be used for string data, and stores strings as single-byte
ANSI characters, but it does not provide any support for code-page conversions or
DBCS. Note that in 32-bit environments Visual Basic uses 2-byte Unicode character
representation; the COM class converts this to and from single-byte ANSI.

When a CclOBuffer object is created it allocates an area of memory as its buffer.
The length of this buffer can be set explicitly via the SetLength method.

Interface Selection
The interfaces available for Visual Basic.

The interfaces are:
Dim var as Object
Dim var as CclOBuf

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Object Creation
Ways of creating an object.

To create an object use one of the following:
set var = CreateObject("Ccl.Buffer")
set var = New CclOBuf

New is the preferred method in Visual Basic. For VBScript, you can use only the
CreateObject method.

Methods
Methods available on this class.

AppendString
Appends a string to existing data in the Ccl.Buffer object.

AppendString(string as String)

© Copyright IBM Corp. 1998, 2016 111

string
The source string.

Data
Returns the contents of the buffer as a Byte array.

ExtractString
Returns a string from the data area starting at the specified offset.

offset
The offset into the data area.

length
(optional) The length, in bytes, of the string to be extracted.

If length is not specified, ExtractString returns data until it finds the first null
terminator. If length is specified, ExtractString returns the number of bytes
requested, including any nulls found in the string.

InsertString
Inserts the given string into the data area at the given offset.

offset
The offset in the data area where the string is to be inserted.

string
The source string.

Length
Returns the length of the data area in bytes.

Overlay
Overlays the data area with the given string, starting at the given offset.

offset
The offset in the data area where the string is to be inserted.

string
The source string.

Data() as Variant

ExtractString (offset as Integer[,
length as Integer]) as String

InsertString (offset as Integer,
string as String)

Length() as Integer

Overlay (offset as Integer,
string as String)

112 CICS TG for Multiplatforms V9.2: Programming Reference

SetData
Copies the supplied array into the buffer. Byte, Integer, and Long arrays are
supported.

array
The array containing the source data.

SetLength
Changes the current length of the data area.

length
The new length of the data area, in bytes.

If you increase the length of the buffer object, the extra space is padded with nulls.
The Client daemon truncates any nulls before sending the buffer to a CICS server.
If you decrease the length of the buffer object, the contents are truncated.

SetString
Copies the supplied string into the object.

string
Source string

String
Returns the contents of the Ccl.Buffer object as a string.

Connect COM class
The Connect COM class is used to maintain and represent an ECI connection
between a client and a named server. Access to the server is optionally controlled
by a user ID and password. It can call a program in the server or get information
on the state of the connection.

Before the Connect COM class can be used to make calls to CICS, it must be
initialized using the Details method and, optionally, the TranDetails method.

Any interaction between client and server requires a CclOFlow object and a
CclOConnect object.

Interface Selection
The interfaces available for Visual Basic.

The interfaces are:

SetData(array as Variant)

SetLength(length as Integer)

SetString(string as String)

String() as String

Chapter 4. COM 113

Dim var as Object
Dim var as CclOConn

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Object Creation
Ways of creating an object.

To create an object use one of the following:
set var = CreateObject("Ccl.Connect")
set var = New CclOConn

New is the preferred method in Visual Basic. For VBScript, you can use only the
CreateObject method.

Methods
Methods available on this class.

AlterSecurity
Sets the user ID and password to be used on the next link call.

AlterSecurity(newUserid as String, newPassword as String)

newUserid
The new user ID

newPassword
The new password corresponding to the new user ID.

Cancel
Cancels Changed calls that were previously issued to the server associated with
this connection.

Cancel(flow as Object)

Cancel(flow as CclOFlow)

flow
The CclOFlow object used to control the client/server call

Changed
Requests the server to notify the client when the current connection status changes.
The call is ignored if there is an outstanding Changed call for this connection.

flow
The CclOFlow object used to control the client/server call.

Changed(flow as Object)

Changed(flow as CclOFlow)

114 CICS TG for Multiplatforms V9.2: Programming Reference

ChangePassword
Allows a client application to change the password held in the Connect object and
the password recorded by an external security manager for the user ID held in the
Connect object.

newPassword
The new password

The external security manager is assumed to be located in the server defined by
the Connect object. A CclOSecAttr object is returned if no errors occur.

Details
Supplies details of the CICS server.

serverName
The name of the server. If no name is supplied the default server—the first
server named in the Gateway initialization file—is used. You can discover this
name, after the first call to the server by using the ServerName method. The
length is adjusted to 8 characters by padding with blanks.

userId
The user ID, if needed. The length is adjusted to 16 characters by padding with
blanks.

password
The password corresponding to the user ID in userID, if needed. The length is
adjusted to 16 characters by padding with blanks.

No interaction with the CICS server takes place until the Link, Status or Changed
methods are called. The user ID and password are not needed if the connection is
only used for status calls or if the server has no security.

Link
Calls the specified program on the server.

flow
The CclOFlow object used to control the client/server call.

ChangePassword (newPassword as String) as Object

ChangePassword (newPassword as String) as CclOSecAttr

Details (serverName as String,
userId as String,
password as String)

Link (flow as Object,
programName as String,
commArea as Object,
unitOfWork as Object)

Link (flow as CclOFlow,
programName as String,
commArea as CclOBuf,
unitOfWork as CclOUOW)

Chapter 4. COM 115

programName
The name of the server program that is being called. The length is adjusted to
8 characters by padding with blanks or truncating, if necessary.

commArea
A CclOBuffer object that holds the data to be passed to the called program in a
COMMAREA. A NULL value is supplied if no COMMAREA is to be sent.

unitOfWork
The CclOUOW object that identifies the unit of work (UOW) with which this
call is being associated. A NULL value is supplied if no UOW is to be used.

The server program sees the incoming call as an EXEC CICS LINK call.

MakeSecurityDefault
Informs the client that the current user ID and password for this object is to
become the default for ECI and EPI requests passed to the server as specified in
the construction of the Connect object.

MakeSecurityDefault()

Password
Returns the password held by the CclOConnect object, padded with spaces.

ServerName
Returns the name of the server system held by the CclOConnect object and listed
by the Gateway initialization file, or blanks if the default CICS server is being used
and no calls have yet been made.

ServerStatus
Returns the status of the server connection, set by an earlier status or changed
request.

Possible values are:

cclUnknowncclUnknown
The CICS server status is unknown

cclAvailablecclAvailable
The CICS server is available

cclUnavailablecclUnavailable
The CICS server is not available

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

Password() as String

ServerName() as String

ServerStatus() as Integer

ServerStatus() as CclConnectStatusCodes

116 CICS TG for Multiplatforms V9.2: Programming Reference

ServerStatusText
Returns a string, set by an earlier status or changed request, indicating the
availability of the server.

Status
Requests the status of the server connection.

flow
The CclOFlow object used to control the client/server call

TranDetails
Supplies additional information about the related transaction to the CICS server.

runTran
The CICS transaction under which called programs will run. The default is to
use the default server transaction. The length is adjusted to four characters by
padding with blanks.

attachTran
The CICS transaction to which called programs are attached. The default is to
use the default CPMI. The length is adjusted to four characters by padding
with blanks.

The information is optional, but can be used to affect the environment in which
programs are run on the CICS server.

Note: Use the Details method, to supply details of the CICS server, before using
the TranDetails method; see “Details” on page 115.

UnpaddedPassword
Returns the password held by the CclOConnect object, but with no padding with
spaces at the end.

UnpaddedServerName
Returns the server name held by the CclOConnect object, but with no padding
with spaces at the end.

ServerStatusText() as String

Status(flow as Object)

Status(flow as CclOFlow)

TranDetails (runTran as String,
attachTran as String)

UnpaddedPassword() as String

UnpaddedServerName() as String

Chapter 4. COM 117

UnpaddedUserid
Returns the user ID held by the CclOConnect object, but with no padding with
spaces at the end.

UserId
Returns the user ID held by the CclOConnect object, padded with spaces, or
blanks if none.

VerifyPassword
Allows a client application to verify that the password held in the Connect object
matches the password recorded by an external security manager for the user ID
held in the Connect object.

VerifyPassword() as Object

VerifyPassword() as CclOSecAttr

The external security manager is assumed to be located in the server defined by
the Connect object. A CclOSecAttr Object is returned if no errors occur.

ECI COM class
All applications using the ECI COM class must first create a CclOECI object.

The ECI COM class provides details of candidate CICS servers. It can also be used
to obtain error information.

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOECI

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Object Creation
Ways of creating an object.

You can create an object in two ways:
set var = CreateObject("Ccl.ECI")
set var = New CclOECI

New is the preferred method in Visual Basic. For VBScript, you can use only the
CreateObject method.

UnpaddedUserid() as String

UserId() as String

118 CICS TG for Multiplatforms V9.2: Programming Reference

Methods
Methods available on this class.

ErrorFormat
Returns a value indicating the current setting for the Error Message Format.

ErrorFormat() as Integer

See “SetErrorFormat” on page 120 for a current list of valid values.

ErrorOffset
Returns a value that can be used to convert a Client daemon error value retrieved
from the ERR.Number method into the documented ExCode error values.

ErrorOffset() as Long

For more information on how to do this, see the information about handling
exceptions in the CICS Transaction Gateway for Multiplatforms: Developing
Applications.

ErrorWindow
Determines whether or not an error window is displayed to the user. This is a
deprecated method.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

display

true Permits the error window to be displayed to the user. This is the
default setting.

false The error window will not be displayed to the user. The application
must check for errors using the “ExCode” method.

ExCode
Returns an enumeration that indicates the last ECI error. This is a deprecated
method.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

ExCode() as Integer

ExCode() as CclECIExceptionCodes

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

The ExCodeText method returns a text string describing the error value.

ErrorWindow(display as Boolean)

Chapter 4. COM 119

ExCodeText
Returns a text string describing the last ECI error.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

ExCodeText() as String

ServerCount
Returns the number of candidate servers to which the client might be connected,
as configured in the Gateway initialization file.

ServerCount() as Integer

ServerDesc
Returns the description of the indexth server.

index
The number of a connected server in the list, starting from 1

ServerName
Returns the name of the indexth server.

index
The number of a connected server in the list, starting from 1

SetErrorFormat
Specifies the error message format.

SetErrorFormat(format as Integer)

format

0 Old format, provided for compatibility with earlier versions only.

1 New format, provides more information in the Visual Basic and
VBScript Err object. This format is recommended.

EPI COM class
The EPI COM class initializes the Client daemon EPI function.

It also has methods that allow you to obtain information about CICS servers which
can be used. You create a CclOEPI object before you create CclOTerminal objects to
connect to CICS servers. The Diagnose, ExCode, and State methods provide
information on error conditions.

ServerDesc(index as Integer) as String

ServerName(index as Integer) as String

120 CICS TG for Multiplatforms V9.2: Programming Reference

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOEPI

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Object Creation
Ways of creating an object.

You can create an object in two ways
set var = CreateObject("Ccl.EPI")
set var = New CclOEPI

New is the preferred method in Visual Basic. For VBScript, you can use only the
CreateObject method.

Methods
Methods available on this class.

Diagnose
Returns a character string which holds a description of the last error.

ErrorFormat
Returns a value indicating the current setting for the Error Message Format.

ErrorFormat() as Integer

See “SetErrorFormat” on page 123 for a current list of valid values.

ErrorOffset
Returns a value that can be used to convert a Client daemon error value retrieved
from the ERR.Number method into the documented ExCode error values.

ErrorOffset() as Long

For more information on how to do this, see the information about handling
exceptions in the CICS Transaction Gateway for Multiplatforms: Developing
Applications.

ErrorWindow
Determines whether or not an error window is displayed to the user. This is a
deprecated method.

Deprecated method

Diagnose() as String

Chapter 4. COM 121

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

display

true Permits the error window to be displayed to the user. This is the
default setting.

false The error window will not be displayed to the user. The application
must check for errors using the ExCode method.

ExCode
Returns the condition code. This is a deprecated method.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

ExCode() as Integer

ExCode() as CclEPIExceptionCodes

Possible values are:

cclSystemErrorcclSystemError
An internal Client daemon system error occurred.

cclUnknownServercclUnknownServer
There is no CICS server corresponding to the supplied index on ServerDesc
or ServerName methods.

cclNoErrorcclNoError
The call has executed normally.

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

ExCodeText
Returns a string containing descriptive text for the most recent exception.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

ExCodeText() as String

ServerCount
Returns the number of candidate servers to which the Client daemon might be
connected, as configured in the Gateway initialization file.

ServerCount() as Integer

ErrorWindow(display as Boolean)

122 CICS TG for Multiplatforms V9.2: Programming Reference

ServerDesc
Returns a description of the selected CICS server, or a NULL string if no
information is available in the Gateway initialization file for the specified server.

index
The index number of a connected server (starting from 1).

ServerName
Returns the name of the requested CICS server, or a NULL string if no information
is available in the Gateway initialization file for the specified server.

index
The index number of a connected server (starting from 1).

SetErrorFormat
Specifies the format for error messages.

SetErrorFormat(format as Integer)

format

0 Old format, provided for compatibility with earlier versions only.

1 New format, provides more information in the Visual Basic and
VBScript Err object. This format is recommended.

State
Returns a value that indicates the state of the EPI.

State() as Integer

State() as CclEPIStates

Possible values are:

cclActive
Initialized

cclDiscon
Terminated

cclError
Error. See the information about Programming in COM in the CICS
Transaction Gateway for Multiplatforms: Developing Applications.

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

Terminate
Terminates the Client daemon EPI in a controlled manner.

Deprecated method

ServerDesc(index as Integer) as String

ServerName(index as Integer) as String

Chapter 4. COM 123

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

Field COM class
The Field COM class is used to access a single field on a 3270 screen.

CclOField objects are created and deleted when 3270 data from the CICS server is
processed by a CclOScreen object.

Field objects are returned by invoking a CclOScreen object's fieldbyIndex or
fieldbyPosition method. For example:

set var=Screen.fieldbyIndex(1)

Methods in this class allow field text and attributes to be read and updated.
Updated fields are sent to the CICS server on the next transmission.

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOField

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Methods
Methods available on this class.

AppendText
Appends the characters within textString to the end of the text already in the field.

textString
The text string to be appended to the field.

BackgroundColor
Returns a value which indicates the background color of the field.

BackgroundColor() as Integer

BackgroundColor() as CclColorAttributes

Returns a value which indicates the background color of the field as listed in
“CclField Color Attributes” on page 149.

Terminate()

AppendText(textString as String)

124 CICS TG for Multiplatforms V9.2: Programming Reference

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

BaseAttribute
Returns the 3270 base attribute of the field.

BaseAttribute() as Integer

Column
Returns the column number of the position of the start of the field on the screen,
with the leftmost column being 1.

DataTag
Returns a value which indicates whether the data in the field has been modified.

DataTag() as Integer

DataTag() as CclModifiedAttributes

Possible values are:
v cclModified
v cclUnmodified

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

ForegroundColor
Returns a value which indicates the foreground color of the field.

ForegroundColor() as Integer

ForegroundColor() as CclColorAttributes

Returns a value which indicates the foreground color of the field as listed in
“CclField Color Attributes” on page 149.

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

Highlight
Returns a value which indicates the type of highlight used.

Highlight() as Integer

Highlight() as CclHighlightAttributes

Returns a value which indicates which type of highlight is being used as listed in
“CclField Highlight Attributes” on page 149.

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

Column() as Integer

Chapter 4. COM 125

InputProt
Returns a value which indicates whether the field is protected.

InputProt() as Integer

InputProt() as CclProtAttributes

Possible values are:
v cclProtect
v cclUnprotect

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

InputType
Returns a value which indicates whether the field is alphanumeric or numeric.

InputType() as Integer

InputType() as CclNumericAttributes

Possible values are:
v cclAlphanumeric
v cclNumeric

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

Intensity
Returns a value which indicates whether the field is normal, intense or dark.

Intensity() as Integer

Intensity() as CclIntensityAttributes

Possible values are:
v cclDark
v cclNormal
v cclIntense

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

Length
Returns the total length of the field.

This includes one byte used to store the 3270 attribute byte information; therefore
the actual space for data is one less byte than the value returned by this method.
See also the “TextLength” on page 128 method.

Length() as Integer

126 CICS TG for Multiplatforms V9.2: Programming Reference

Position
Returns the position of the start of the field as an offset from the top left corner of
the screen. The top row consists of positions 0 to 79; the second row, positions 80
to 159; and so on.

Position() as Integer

ResetDataTag
Resets the modified data tag (MDT) to cclUnmodified.

Row
Returns the row number of the position of the start of the field on the screen. The
top row is 1.

SetBaseAttribute
Sets the 3270 base attribute.

Attribute
The value of the base 3270 attribute to be entered into the field.

SetExtAttribute
Sets the extended 3270 attribute.

Attribute
The type of extended attribute to be set.

Value
The value of the extended attribute.

If an invalid 3270 attribute type or value is supplied a parameter exception is
raised.

SetText
Copies textString into the field.

textString
The null-terminated text to be entered into the field.

Text
Returns the text currently held in the field.

ResetDataTag()

Row() as Integer

SetBaseAttribute(Attribute as Integer)

SetExtAttribute(Attribute as Integer, Value as Integer)

SetText(textString as String)

Chapter 4. COM 127

TextLength
Returns the number of characters currently held in the field.

Transparency
Returns a value which indicates the background transparency of the field.

Transparency() as Integer

Transparency() as CclTransparencyAttributes

Returns a value which indicates the background transparency of the field as listed
in “CclField Transparency Attributes” on page 149.

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

Flow COM class
A CclOFlow object is used to control ECI communications for a client/server pair.

A CclOFlow object is created for each client server interaction (call from client and
response from server) and destroyed when it has been used. CclOFlow objects can
be reused but an attempt to reuse a CclOFlow object that is already in use is
rejected.

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOFlow

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Object Creation
Ways of creating an object.

You can create an object in two ways:
set var = CreateObject("Ccl.Flow")
set var = New CclOFlow

New is the preferred method in Visual Basic. For VBScript, you can use only the
CreateObject method.

Methods
Methods available on this class.

Text() as String

TextLength() as Integer

128 CICS TG for Multiplatforms V9.2: Programming Reference

AbendCode
Returns a four-character CICS transaction abend code, or spaces if no abend has
occurred.

AbendCode() as String

CallType
Returns the call type for the call currently being executed.

CallType() as Integer

CallType() as CclFlowCallTypes

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

CallTypeText
Returns the type of call the flow is currently executing as text.

CallTypeText() as String

Diagnose
Returns text describing the current state of the flow object.

Diagnose() as String

Flowid
Returns a unique identifier for this flow object.

Flowid() as Integer

ForceReset
Makes the flow inactive and resets it. Typically, this method is used to prepare a
flow object for re-use or deletion after a flow has been abandoned.

ForceReset()

Poll
Indicates whether a reply has been received from a deferred synchronous Backout,
Cancel, Changed, Commit, Link, or Status call request.

Poll(commArea as Object) as Boolean

Poll(commArea as CclOBuf) as Boolean

commArea
A CclOBuffer object into which the returned COMMAREA will be placed. This
parameter can be set to Nothing if you do not want a COMMAREA to be
returned.

This method is only valid for deferred synchronous communications. Possible
values are:

True A reply has been received.

False A reply has not been received.

Chapter 4. COM 129

SetSyncType
Sets the synchronization type required for this CclOFlow object.

SetSyncType(syncType as Integer)

SetSyncType(syncType as CclFlowSyncTypes)

syncType
The synchronization type required for this CclOFlow object. Possible values
are:
v cclSync
v cclDSynccclDSync

If cclSync is used, link and status calls using this flow block the calling program
until a reply is received from CICS. If cclDSynccclDSync is used, link and status
calls using this flow return immediately to the calling program. The program can
then use the Poll method to receive the reply from CICS later.

SetTimeout
Sets the timeout value for the flow object for the next activation of the flow. This
value can be set while a flow is active, but does not affect the current active flow.

SetTimeout(Timeout as Integer)

SyncType
Returns the type of synchronization being used.

SyncType() as Integer

SyncType() as CclFlowSyncTypes

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

Timeout
Returns the current timeout value set for the flow object.

Timeout() as Integer

Wait
Waits for a reply from the server, blocking the client process in the meantime. This
method is used when a deferred synchronous call was made, but the application
now wants to wait synchronously for a reply.

Map COM class
The Map COM class provides validation and access to 3270 screen data using
symbolic information obtained from CICS BMS maps.

To use this interface, run the CICSBMSC utility on your server program BMS
maps.

Wait()

130 CICS TG for Multiplatforms V9.2: Programming Reference

Note: CICSBMSC is not provided with CICS Transaction Gateway for the Linux
operating system. If you require this functionality, contact your local IBM support
representative and ask them to forward your request to the CICS service team.

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOMap

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Object Creation
Ways of creating an object.

You can create an object in two ways:
set var = CreateObject("Ccl.Map")
set var = New CclOMap

New is the preferred method in Visual Basic. For VBScript, you can use only the
CreateObject method.

Methods
Methods available on this class.

ExCode
Returns a value that indicates the current condition code.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

ExCode() as Integer

ExCode() as CclEPIExceptionCodes

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

FieldByName
Returns the specified CclOField object.

FieldByName(name as Integer) as Object

FieldByName(name as Integer) as CclOField

name
Symbolic value for the required field. This value is provided in the
<mapname>.BAS file generated from the source BMS by the CICSBMSC utility.

Chapter 4. COM 131

Validate
Validates a BMS map against the current screen and verifies that a specific map
has been received from the CICS server.

Validate (screenRef as Object, mapname as String) as Boolean

Validate (screenRef as CclOScreen, mapname as String) as Boolean

screenRef
CclOScreen object

mapname
String value supplied in <mapname>.BAS file generated from the source BMS by
the CICSBMSC utility.

Possible return values are:

TRUE
Specified BMS map matches current screen contents.

FALSE
Specified BMS map does not match current screen contents

If TRUE is returned, the FieldByName method can be used to access fields using
their BMS name.

Screen COM class
The Screen COM class maintains all data on the 3270 virtual screen and provides
access to this data.

It contains a collection of CclOField objects which represent the fields on the
current 3270 screen.

A single Screen object is created by the Terminal object when the terminal is
installed either with the Ccl Terminal connect or install method. The application
gets access to the CclOScreen object via the Ccl Terminal Screen method.

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOScreen

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Methods
Methods available on this class.

CursorCol
Returns the current cursor column (the left col is 1).

132 CICS TG for Multiplatforms V9.2: Programming Reference

CursorRow
Returns the current cursor row (the top row is 1).

Depth
Returns the number of rows on the screen.

FieldByIndex
Returns the index number of the field required.

FieldByIndex(index as Integer) as Object

FieldByIndex(index as Integer) as CclOField

index
The first field is number 1.

FieldByPosition
Returns the row number and column number of the field.

FieldByPosition (rowPos as Integer, colPos as Integer) as Object

FieldByPosition (rowPos as Integer, colPos as Integer) as CclOField

rowPos
The row number of the field (topmost row = 1).

colPos
The column number of the field (leftmost column = 1).

FieldCount
Returns the number of fields on the screen.

MapName
Returns a string specifying the name of the map that was most recently referenced
in the MAP option of a SEND MAP command processed for the terminal resource.

MapName() as String

If the terminal resource is not supported by BMS, or the server has no record of
any map being sent, the value returned is blank.

MapSetName
Returns a string specifying the name of the mapset that was most recently
referenced in the MAPSET option of a SEND MAP command processed for the
terminal resource.

MapSetName() as String

CursorCol() as Integer

CursorRow() as Integer

Depth() as Integer

FieldCount() as Integer

Chapter 4. COM 133

If the MAPSET option was not specified on the most recent request, BMS used the
map name as the mapset name. In both cases, the mapset name used might have
been suffixed by a terminal suffix. If the terminal resource is not supported by
BMS, or the server has no record of any mapset being sent, the value returned is
blank.

SetAID
Sets the AID key value to be passed to the server on the next transmission.

SetAID(key as Integer)

SetAID(key as CclADIKeys)

key

The AID key value as listed in “CclScreen AID key codes” on page 147.

Constants are available in the type library. Use the Visual Basic Object Browser
to view them.

SetCursor
Sets the column number and row number of the cursor.

rowPos
The required row number of the cursor (the top row is 1).

colPos
The required column number of the cursor (the left column is 1).

Width
Returns the number of columns on the screen.

SecAttr COM class
The SecAttr COM class provides information about passwords reported back by
the external security manager when issuing verifySecurity or changePassword
methods on CclOConnect or CclOTerminal objects.

This object is created and owned by the CclOConnect or CclOTerminal Object and
access to this object is provided when invoking the VerifyPassword or
ChangePassword methods.

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOSecAttr

The second method is preferred.

SetCursor (rowPos as Integer, colPos as Integer)

Width() as Integer

134 CICS TG for Multiplatforms V9.2: Programming Reference

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Methods
Methods available on this class.

ExpiryTime
Returns a CclOSecTime object that contains the date and time when the password
expires.

ExpiryTime() as Object

ExpiryTime() as CclOSecTime

InvalidCount
Returns the number of times an invalid password has been entered for the user ID.

InvalidCount() as Integer

LastAccessTime
Returns a CclOSecTime object which contains the date and time when the user ID
was last accessed.

LastAccessTime() as Object

LastAccessTime() as CclOSecTime

LastVerifiedTime
Returns a CclOSecTime object which contains the date and time of the last
verification.

LastVerifiedTime() as Object

LastVerifiedTime() as CclOSecTime

SecTime COM class
The SecTime COM class provides date and time information in the CclOSecAttr
object for various entries reported back by the external security manager when
issuing verifySecurity or changePassword methods on Connect or Terminal objects.
These objects are created and owned by the CclOSecAttr object and access is
obtained via the various methods available on this object. No constructors or
destructors are available.

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOSecTime

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Chapter 4. COM 135

Methods
Methods available on this class.

Day
Returns the day in the range 1 to 31.

unsigned short Day() as Integer

GetDate
Returns the date and time in a Visual Basic DATE type format.

GetDate() as Date

Hours
Returns the hours in the range 0 to 23.

unsigned short Hours() as Integer

Hundredths
Returns the hundredths of a second in the range 0 to 99.

unsigned short Hundredths() as Integer

Minutes
Returns the minutes in the range 0 to 59.

unsigned short Minutes() as Integer

Month
Returns the month in the range 1 to 12.

unsigned short Month() as Integer

Seconds
Returns the seconds in the range 0 to 59.

unsigned short Seconds() as Integer

Year
Returns a 4 digit year.

unsigned short Year() as Integer

Session COM class
The Session COM class controls the flow of data to and from CICS within a single
EPI session.

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOSession

The second method is preferred.

136 CICS TG for Multiplatforms V9.2: Programming Reference

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Object Creation
Ways of creating an object.

You can create an object in two ways:
set var = CreateObject("Ccl.Session")
set var = New CclOSession

New is the preferred method in Visual Basic. For VBScript, you can use only the
CreateObject method.

Methods
Methods available on this class.

Diagnose
Returns the text description of the current state of the session.

Diagnose() as String

SetSyncType
Sets the synchronization type required for this CclOSession object.

SetSyncType(syncType as Integer)

SetSyncType(syncType as CclFlowSyncTypes)

syncType
The synchronization type required for this CclOSession object. Possible values
are:
v cclSync
v cclDSynccclDSync

If cclSync is used, Start and Send calls using this flow will block the calling
program until a reply is received from CICS. If cclDSynccclDSync is used, Start
and Send calls using this flow will return immediately to the calling program. The
program can then use the Poll method to receive the reply from CICS at a later
time.

State
Returns a value which indicates the current state of the session.

State() as Integer

State() as CclEPIStates

Possible values are:

cclActive
Connected

cclServer
Transaction in progress in the CICS server.

cclClient
CICS server is waiting for a response from the client

Chapter 4. COM 137

cclDiscon
Disconnected

cclError
Error, call ExCode and Diagnose methods for further information.

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

TransId
Returns the four-letter name of the current transaction.

TransId() as String

Terminal COM class
The Terminal COM class represents a 3270 terminal connection to a CICS server.

A CICS connection is established when the Connect method is called. Methods can
then be used to converse with a 3270 terminal application (often a BMS
application) in the CICS server.

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOTerminal

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Object Creation
Ways of creating an object.

You can create an object in two ways:
set var = CreateObject("Ccl.Terminal")
set var = New CclOTerminal

New is the preferred method in Visual Basic. For VBScript, you can use only the
CreateObject method.

Methods
Methods available on this class.

AlterSecurity
Redefines the user ID and password for a terminal resource that has been
constructed without these values (a sign-on incapable terminal).

AlterSecurity(newUserid as String,newPassword as String)

newPassword
The new password to be given to newUserid.

138 CICS TG for Multiplatforms V9.2: Programming Reference

newUserid
The new user ID.

This method can be called before you install a terminal. It changes the terminal
definition; the new user ID and password are be used for the terminal when install
is called.

CCSId
Returns a long showing the selected code page.

ChangePassword
Enables a client application to change the password held in the terminal object and
the password recorded by an external security manager for the user ID held in the
terminal object.

ChangePassword(newPassword as String) as Object

ChangePassword(newPassword as String) as CclOSecAttr

newPassword
The new password to be given

The external security manager is assumed to be located in the server defined by
the terminal object. A CclOSecAttr Object is returned if no errors occurred.

Connect
Establishes a 3270 communication to the specified CICS server.

servName
The name of the server with which you want to communicate. If a NULL
string is provided, the default CICS server system, defined in the Gateway
initialization file, is assumed. The name is expanded to 8 characters by
padding with blanks, if necessary.

devType
The name of the model terminal definition which the server uses to generate a
terminal resource definition. If a NULL string is provided the default model is
used. The name is expanded to 16 characters by padding with blanks, if
necessary.

nworkName
The name of the terminal resource to be installed or reserved. The name is
expanded to 8 characters by padding with blanks, if necessary. If a NULL
string is supplied, the CICS server allocates a name.

Devtype
Returns the terminal device type as a string.

CCSId() as long

Connect(servName as String,
devType as String,
nworkName as String)

Chapter 4. COM 139

Diagnose
Returns a character string which holds a description of the error returned by the
most recent server call.

Disconnect
Disconnects the terminal from CICS. No attempt is made to purge outstanding
running transactions.

Disconnect()

DisconnectWithPurge
DisconnectWithPurge disconnects the terminal from CICS and attempts to purge
all outstanding running transactions. This purge function does not cancel ATI
requests queued against the terminal.

DisconnectWithPurge()

DiscReason
This method will return an enumeration showing the reason the terminal has been
disconnected.

DiscReason() as CclEndTermReasons

Possible values are shown in “CclTerminal EndTermReasons” on page 147.

ExCode
Returns a value which indicates the most recent condition code returned by the
server.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

ExCode() as Integer

ExCode() as CclEPIExceptionCodes

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

ExCodeText
Returns a text string describing the most recent condition code returned by the
server.

Deprecated method

: Do not use this method in a new applications. The method has been deprecated
and is provided only for compatibility.

ExCodeText() as String

Devtype() as String

Diagnose() as String

140 CICS TG for Multiplatforms V9.2: Programming Reference

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

Install
Installs a non-connected terminal resource.

Install(session as Object, timeout as Integer)

Install(session as CclOSession, timeout as Integer)

session
The session object to be used by this terminal object.

InstallTimeout
A value in the range 0 through 3600, specifying the maximum time in seconds
that installation of the terminal resource is allowed to take. A value of 0 means
that no limit is set.

A cclInvalidState error is raised if the terminal is already installed.

MakeSecurityDefault
Informs the client that the current user ID and password for this object is to
become the default for ECI and EPI requests passed to the server as specified in
the construction of the Terminal object.

NetName
Returns the network name of the terminal.

Password
Returns a text string containing the current password for the user ID associated
with the terminal. The string is empty if there is no password.

Password() as String

Poll
Checks to see if a replies have been received from a deferred synchronous Start or
Send request.

Possible values are:
True No further replies outstanding
False Further replies outstanding

A CICS server transaction can send more than one reply in response to a
Terminal.Start or Terminal.Send call. More than one Terminal.Poll call might
therefore be needed to collect all the replies. The return code indicates whether you
need to perform more poll requests.

MakeSecurityDefault()

NetName() as String

Poll() as Boolean

Chapter 4. COM 141

PollForReply
Checks to see whether replies have been received from a deferred synchronous
Start or Send request.

PollForReply() as Boolean

Possible values are

true Replies have been received

false No replies have been received

A CICS server transaction can send more than one reply in response to a
Terminal.Start or Terminal.Send call. More than one Terminal.PollForReply call
might therefore be needed to collect all replies. Use the Terminal.State method to
find out whether further replies are expected. If there are, the value returned will
be cclServer.

QueryATI
Returns a value that indicates whether Automatic Transaction Initiation (ATI) is
enabled or disabled.

QueryATI() as Integer

QueryATI() as CclATIStates

Possible values are:
v cclATIEnabled
v cclATIDisabled

ReadTimeout
Returns the read timeout setting for the terminal.

ReadTimeout() as Integer

ReceiveATI
Waits for and receives 3270 data stream for a CICS ATI transaction.

ReceiveATI (session as Object)

ReceiveATI (session as CclOSession)

session
A pointer to the CclOSession object which is to be used for the CICS server
interaction.

The CclOSession object supplied can only be synchronous.

Screen
Returns the CclOScreen object that is handling the 3270 screen associated with this
terminal.

Screen() as Object

142 CICS TG for Multiplatforms V9.2: Programming Reference

Send
Generates a 3270 data stream from the current contents of the CclOScreen object
and transmits it to the CICS server.

session
The CclOSession object which controls the session which is to be used. It is set
to NULL if no CclOSession object is used.

ServerName
Returns the name of the server system held by the CclOTerminal object and listed
by the Gateway initialization file, or blanks if the default CICS server is being used
and no calls have yet been made.

SetATI
Indicates whether the ATI is to be enabled or disabled.

SetATI(stateVal as Integer)

SetATI(stateVal as CclATIStates)

stateVal
Possible values are:
v cclATIEnabled
v cclATIDisabled

SetTermDefns
Creates a terminal resource but does not make the connection to the Server.

SetTermDefns (servName as String,
devType as String,
nworkName as String
signonCapability as CclSignonTypes
userid as String
password as String
ReadTimeout as Integer
CCSid as Long)

servName
The name of the server with which you want to communicate. If a NULL
string is provided, the default CICS server system, defined in the Gateway
initialization file, is assumed. The name is expanded to 8 characters by
padding with blanks, if necessary.

devType
The name of the model terminal definition which the server uses to generate a
terminal resource definition. If a NULL string is provided the default model is
used. The name is expanded to 16 characters by padding with blanks, if
necessary.

Send(session as Object)

Send(session as CclOSession)

ServerName() as String

Chapter 4. COM 143

nworkName
The name of the terminal resource to be installed or reserved. The name is
expanded to 8 characters by padding with blanks, if necessary. If a NULL
string is supplied, the CICS server will allocate a name.

signonCapability
Set the sign-on capability to one of the following:

cclSignonCapable

cclSignonIncapable

ReadTimeout
A value in the range 0 through 3600, specifying the maximum time in seconds
between the time the classes go clientrepl state and the time that the
application program invokes the reply method.

userid
The name of the user ID to associate with this terminal resource.

password
The password to associate with the user ID.

CCSid
A long specifying the coded character set identifier (CCSID) that identifies the
coded graphic character set used by the client application for data passed
between the terminal resource and CICS transactions. A zero indicates that a
default will be used.

SignonCapability
Returns the type of terminal installed.

SignonCapability() as Integer

SignonCapability() as CclSignonTypes

Possible values are:
v cclSignonCapable
v cclSignonIncapable

Start
Generates a 3270 data stream from the supplied data and transmits it to the CICS
server, starting the named transaction.

Start (session as Object,
tranCode as String,
startData as String)

Start (session as CclOSession,
tranCode as String,
startData as String)

session
The CclOSession object which controls the session which is to be used. It is set
to NULL if no CclOSession object is used.

tranCode
The name of the transaction which is to be started

144 CICS TG for Multiplatforms V9.2: Programming Reference

startData
Start transaction data. A NULL value indicates no data is required for the
transaction being started.

State
Returns a value which indicates the current state of the session.

State() as Integer

State() as CclEPIStates

These values are the same as those returned by the state method in the Session
COM class.

Constants are available in the type library. Use the Visual Basic Object Browser to
view them.

TermId
Returns the terminal ID.

TermId() as String

TransId
Returns the 4-character name of the current CICS transaction. Note that if a
RETURN IMMEDIATE is run from the current transaction, TransId does not
provide the name of the new transaction; it still contains the name of the first
transaction.

TransId() as String

Userid
Returns a text string containing the current user ID for the terminal. The string is
empty if there is no user ID.

Userid() as String

VerifyPassword
Enables a client application to verify that the password held in the terminal object
matches the password recorded by an external security manager for the user ID
held in the terminal object.

VerifyPassword() as Object

VerifyPassword() as CclOSecAttr

The external security manager is assumed to be located in the server defined by
the terminal object. A CclOSecAttr Object is returned if no errors occurred.

UOW COM class
Use this COM class when you make updates to recoverable resources in the server
within a “unit of work” (UOW).

Each update in a UOW is identified by a reference to its CclOUOW object — see
Link method in Connect COM class (“Link” on page 115).

Chapter 4. COM 145

COM Global Constants
Constants are provided in the type libraries for the Client daemon COM libraries.
The libraries are in CCLIECI.DLL and CCLIEPI.DLL.

If you are using Visual Basic, you can look at the definitions in the type libraries
by using Visual Basic Object viewer or another type library viewer.

If you are using VBScript, you cannot access the enumerations defined in the type
library; use the numeric values provided here.

The exception code constants are listed in “COM Error Code References” on page
151.

COM EPI Specific Constants

Synchronization Types
Table 3. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

CclEPI states
Table 4. CclEPI States

VB Enumeration Value Description

cclEPIActive 0 EPI initialized

cclDiscon 1 EPI Terminated

cclEPIError 2 EPI failed to initialize, handle exception for
more information

CclSession States
Table 5. CclSession States

VB Enumeration Value Description

cclSessionIdle 0 Idle, client needs to initiate transaction

cclSessionServer 1 Waiting for server

ccISessionClient 2 Waiting for Client daemon to respond

ccISessionDiscon 3 Disconnected

ccISessionError 4 Session Error, handle exception for more
information

CclTerminal States
Table 6. CclTerminal States

VB Enumeration Value Description

cclInit 0 Terminal defined but not installed

cclActive 1 Terminal connected (not used)

146 CICS TG for Multiplatforms V9.2: Programming Reference

Table 6. CclTerminal States (continued)

VB Enumeration Value Description

cclIdle 2 Idle, Client daemon needs to initiate
transaction

cclServer 3 Waiting for server

cclClient 4 Waiting for client to respond

cclDiscon 5 Disconnected

cclError 6 Terminal error, handle exception for more
information

CclTerminal ATI States
Table 7. CclTerminal ATI states

VB Enumeration Value Description

cclATIEnabled 0 ATIs are allowed

cclATIDisabled 1 ATIs are not allowed

CclTerminal EndTermReasons
Table 8. CclTerminal ATI states

VB Enumeration Value Description

cclSignoff 0 Disconnect request or user has signed off
the terminal

cclShutdown 1 The CICS server has been shut down

cclOutOfService 2 The terminal has been switched to out of
use

cclUnknown 3 An unknown situation as occurred

cclFailed 4 The terminal failed to disconnect

cclNotDiscon 5 The terminal is not disconnected

CclTerminal Sign-on Types
Table 9. CclTerminal Sign-on Types

VB Enumeration Value Description

cclSignonCapable 0 Terminal supports sign-on transaction

cclSignonIncapable 1 Terminal does not support sign-on
transaction

cclSignonUnknown 2 Terminal sign-on capability is unknown

CclScreen AID key codes
Table 10. CclScreen AID key codes

VB Enumeration Value Description

cclEnter 0 Enter key

cclClear 1 Clear key

cclPA1 2 Program Attention key 1

cclPA2 3 Program Attention key 2

Chapter 4. COM 147

Table 10. CclScreen AID key codes (continued)

VB Enumeration Value Description

cclPA3 4 Program Attention key 3

cclPF1 5 Program Function key 1

cclPF2 6 Program Function key 2

cclPF3 7 Program Function key 3

cclPF4 8 Program Function key 4

cclPF5 9 Program Function key 5

cclPF6 10 Program Function key 6

cclPF7 11 Program Function key 7

cclPF8 12 Program Function key 8

cclPF9 13 Program Function key 9

cclPF10 14 Program Function key 10

cclPF11 15 Program Function key 11

cclPF12 16 Program Function key 12

cclPF13 17 Program Function key 13

cclPF14 18 Program Function key 14

cclPF15 19 Program Function key 15

cclPF16 20 Program Function key 16

cclPF17 21 Program Function key 17

cclPF18 22 Program Function key 18

cclPF19 23 Program Function key 19

cclPF20 24 Program Function key 20

cclPF21 25 Program Function key 21

cclPF22 26 Program Function key 22

cclPF23 27 Program Function key 23

cclPF24 28 Program Function key 24

CclField Protected State Attributes
Table 11. CclField Protected state attributes

VB Enumeration Value Description

cclProtect 0 Protected Field (cannot be modified)

cclUnprotect 1 Unprotected (input) field

CclField Numeric Attributes
Table 12. CclField Numeric Attributes

VB Enumeration Value Description

cclAlphanumeric 0 Alphanumeric input field

cclNnumeric 1 Numeric input field

148 CICS TG for Multiplatforms V9.2: Programming Reference

CclField Intensity Attributes
Table 13. CclField Intensity attributes

VB Enumeration Value Description

cclNormal 0 Normal display

cclIntense 1 Intensified display

cclDark 2 Non-display field

CclField Modified Attributes
Table 14. CclField Modified Attributes

VB Enumeration Value Description

cclUnmodified 0 Field has not been changed

cclModified 1 Field has been changed

CclField Highlight Attributes
Table 15. CclField Highlight attributes

VB Enumeration Value Description

cclHltDefault 0 Default field text highlighting

cclHltNormal 1 Field text highlight as specified by 3270 base
attribute

cclHltBlink 2 Blinking text

cclHltReverse 3 Reverse video text

cclHltUnderscore 4 Underscored text

cclHltIntense 5 High intensity text

CclField Transparency Attributes
Table 16. CclField Transparency attributes

VB Enumeration Value Description

cclTrnDefault 0 Default (opaque) field background

cclTrnOr 1 Transparent field background (OR)

cclTrnXorcclTrnXor 2 Transparent field background (XOR)

cclTrnOpaque 3 Opaque field background

CclField Color Attributes
Table 17. CclField Color attributes

VB Enumeration Value Description

cclDefaultColor 0

cclBlue 1

cclRed 2

cclPink 3

cclGreen 4

cclCyan 5

Chapter 4. COM 149

Table 17. CclField Color attributes (continued)

VB Enumeration Value Description

cclYellow 6

cclNeutral 7

cclBlack 8

cclDarkBlue 9

cclOrange 10

cclPurple 11

cclPaleGreen 12

cclPaleCyan 13

cclGray 14

cclWhite 15

COM ECI Constants

Synchronization Types
Table 18. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

Flow status types
Table 19. Flow status types

VB Enumeration Value Description

cclInactive 0 Flow is inactive

cclLink 1 Flow is currently making a link call

cclBackout 2 Flow is currently backing out a UOW

cclCommit 3 Flow is currently committing a UOW

cclStatus 4 Flow is requesting status

cclChanged 5 Flow is requesting a status change

cclCancel 6 Flow is requesting a status cancel

Connection Status Codes
Table 20. Connection status code

VB Enumeration Value Description

cclUnknown 0 The CICS server status is unknown

cclAvailable 1 The CICS server status is available

cclUnavailable 2 The CICS server status is unavailable

150 CICS TG for Multiplatforms V9.2: Programming Reference

COM Error Code References

Enumeration Value Description ECI EPI

cclNoError 0 No error occurred Yes Yes

cclBufferOverflow 1 Attempted to increase a CclBuf object which
isn't Extensible

Yes

cclMultipleInstance 2 Attempted to create more than one ECI object Yes

cclActiveFlow 3 Current Flow is still active, you cannot use this
flow until it is inactive

Yes

cclActiveUOW 4 Current UOW is still active, you need to
backout or commit.

Yes

cclSyncType 5 Incorrect synchronization type for method call. Yes Yes

cclDataLength 9 CommArea > 32768 Bytes or inbound 3270 data
stream too large for Terminal Buffer size.

Yes Yes

cclNoCICS 10 The Client daemon is unavailable, or the server
implementation is unavailable, or a logical unit
of work was to be begun, but the CICS server
specified is not available. No resources have
been updated

Yes Yes

cclCICSDied 11 A logical unit of work was to be begun or
continued, but the CICS server was no longer
available. If this is a link call with an active
UOW, the changes are backed out. If This was a
UOW Commit or the application cannot
determine whether the changes have been
committed or backed out, and must log this
condition to aid future manual recovery

Yes

cclNoReply 12 There was no outstanding reply Yes

cclTransaction 13 ECI program ended abnormally Yes

cclSystemError 14 Unknown internal error occurred Yes Yes

cclResource 15 The server implementation or the Client daemon
did not have enough resources to complete the
request e.g. insufficient SNA sessions.

Yes Yes

cclMaxUOWs 16 A new logical unit of work was being created,
but the application already has as many
outstanding logical units of work as the
configuration will support.

Yes

cclUnknownServer 17 The requested server could not be located Yes Yes

cclSecurity 18 You did not supply a valid combination of user
ID and password, though the server expects it.

Yes Yes

cclMaxServers 19 You attempted to start requests to more servers
than your configuration allows. Consult the
documentation for your Client daemon or server
to see how to control the number of servers you
can use.

Yes Yes

cclMaxRequests 20 There were not enough communication
resources to satisfy the request. Consult the
documentation for your Client daemon or server
to see how to control communication resources

Yes Yes

cclRolledBack 21 An attempt was made to commit a logical unit
of work, but the server was unable to commit
the changes, and backed them out instead

Yes

Chapter 4. COM 151

Enumeration Value Description ECI EPI

cclParameter 22 Incorrect parameter supplied Yes Yes

cclInvalidState 23 The Object is not in the correct state to start the
method, e.g. terminal object still in server state
and an attempt to send data is made.

Yes Yes

ccltransId 24 Null transid supplied or returned for a pseudo
conversational transaction

Yes

cclInitEPI 25 No EPI object or EPI failed to initialize correctly Yes

cclConnect 26 Unexpected error trying to add the terminal Yes

ccldata stream 27 Unsupported Data Stream Yes

cclInvalidMap 28 Map definition and Screen do not match Yes

cclClass 29 Unknown internal Class error occurred. Yes Yes

cclStartTranFailure 30 Transaction failed to start Yes

cclTimeout 31 Timeout occurred before response from Server Yes Yes

cclNoPassword 32 The object's password is null. Yes Yes

cclNoUserid 33 The object's user ID is null Yes Yes

cclNullNewPassword 34 The provided password is null Yes Yes

cclPemNotSupported 35 The CICS Server does not support the Password
Expiry Management facilities. The method
cannot be used

Yes Yes

cclPemNotActive 36 Password Expiry Management is not active Yes Yes

cclPasswordExpired 37 The password has expired. No information has
been returned

Yes Yes

cclPasswordInvalid 38 The password is invalid. Yes Yes

cclPasswordRejected 39 Change password failed because the password
doesn't conform to standards defined

Yes Yes

cclUseridInvalid 40 The user ID is unknown Yes Yes

cclInvalidTermid 41 Invalid Terminal ID Yes

cclInvalidModelId 42 Invalid Model/Type Yes

cclnot3270 43 Not a 3270 device Yes

cclinvalidCCSId 44 Invalid CCSid Yes

cclServerBusy 45 CICS server is busy Yes

cclSignonNotPoss 46 The server does not allow the terminal to be
installed as sign-on capable.

Yes

COM Global Constants
Constants are provided in the type libraries for the Client daemon COM libraries.
The libraries are in CCLIECI.DLL and CCLIEPI.DLL.

If you are using Visual Basic, you can look at the definitions in the type libraries
by using Visual Basic Object viewer or another type library viewer.

If you are using VBScript, you cannot access the enumerations defined in the type
library; use the numeric values provided here.

The exception code constants are listed in “COM Error Code References” on page
151.

152 CICS TG for Multiplatforms V9.2: Programming Reference

COM EPI Specific Constants

Synchronization Types
Table 21. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

CclEPI states
Table 22. CclEPI States

VB Enumeration Value Description

cclEPIActive 0 EPI initialized

cclDiscon 1 EPI Terminated

cclEPIError 2 EPI failed to initialize, handle exception for
more information

CclSession States
Table 23. CclSession States

VB Enumeration Value Description

cclSessionIdle 0 Idle, client needs to initiate transaction

cclSessionServer 1 Waiting for server

ccISessionClient 2 Waiting for Client daemon to respond

ccISessionDiscon 3 Disconnected

ccISessionError 4 Session Error, handle exception for more
information

CclTerminal States
Table 24. CclTerminal States

VB Enumeration Value Description

cclInit 0 Terminal defined but not installed

cclActive 1 Terminal connected (not used)

cclIdle 2 Idle, Client daemon needs to initiate
transaction

cclServer 3 Waiting for server

cclClient 4 Waiting for client to respond

cclDiscon 5 Disconnected

cclError 6 Terminal error, handle exception for more
information

CclTerminal ATI States
Table 25. CclTerminal ATI states

VB Enumeration Value Description

cclATIEnabled 0 ATIs are allowed

Chapter 4. COM 153

Table 25. CclTerminal ATI states (continued)

VB Enumeration Value Description

cclATIDisabled 1 ATIs are not allowed

CclTerminal EndTermReasons
Table 26. CclTerminal ATI states

VB Enumeration Value Description

cclSignoff 0 Disconnect request or user has signed off
the terminal

cclShutdown 1 The CICS server has been shut down

cclOutOfService 2 The terminal has been switched to out of
use

cclUnknown 3 An unknown situation as occurred

cclFailed 4 The terminal failed to disconnect

cclNotDiscon 5 The terminal is not disconnected

CclTerminal Sign-on Types
Table 27. CclTerminal Sign-on Types

VB Enumeration Value Description

cclSignonCapable 0 Terminal supports sign-on transaction

cclSignonIncapable 1 Terminal does not support sign-on
transaction

cclSignonUnknown 2 Terminal sign-on capability is unknown

CclScreen AID key codes
Table 28. CclScreen AID key codes

VB Enumeration Value Description

cclEnter 0 Enter key

cclClear 1 Clear key

cclPA1 2 Program Attention key 1

cclPA2 3 Program Attention key 2

cclPA3 4 Program Attention key 3

cclPF1 5 Program Function key 1

cclPF2 6 Program Function key 2

cclPF3 7 Program Function key 3

cclPF4 8 Program Function key 4

cclPF5 9 Program Function key 5

cclPF6 10 Program Function key 6

cclPF7 11 Program Function key 7

cclPF8 12 Program Function key 8

cclPF9 13 Program Function key 9

cclPF10 14 Program Function key 10

154 CICS TG for Multiplatforms V9.2: Programming Reference

Table 28. CclScreen AID key codes (continued)

VB Enumeration Value Description

cclPF11 15 Program Function key 11

cclPF12 16 Program Function key 12

cclPF13 17 Program Function key 13

cclPF14 18 Program Function key 14

cclPF15 19 Program Function key 15

cclPF16 20 Program Function key 16

cclPF17 21 Program Function key 17

cclPF18 22 Program Function key 18

cclPF19 23 Program Function key 19

cclPF20 24 Program Function key 20

cclPF21 25 Program Function key 21

cclPF22 26 Program Function key 22

cclPF23 27 Program Function key 23

cclPF24 28 Program Function key 24

CclField Protected State Attributes
Table 29. CclField Protected state attributes

VB Enumeration Value Description

cclProtect 0 Protected Field (cannot be modified)

cclUnprotect 1 Unprotected (input) field

CclField Numeric Attributes
Table 30. CclField Numeric Attributes

VB Enumeration Value Description

cclAlphanumeric 0 Alphanumeric input field

cclNnumeric 1 Numeric input field

CclField Intensity Attributes
Table 31. CclField Intensity attributes

VB Enumeration Value Description

cclNormal 0 Normal display

cclIntense 1 Intensified display

cclDark 2 Non-display field

CclField Modified Attributes
Table 32. CclField Modified Attributes

VB Enumeration Value Description

cclUnmodified 0 Field has not been changed

cclModified 1 Field has been changed

Chapter 4. COM 155

CclField Highlight Attributes
Table 33. CclField Highlight attributes

VB Enumeration Value Description

cclHltDefault 0 Default field text highlighting

cclHltNormal 1 Field text highlight as specified by 3270 base
attribute

cclHltBlink 2 Blinking text

cclHltReverse 3 Reverse video text

cclHltUnderscore 4 Underscored text

cclHltIntense 5 High intensity text

CclField Transparency Attributes
Table 34. CclField Transparency attributes

VB Enumeration Value Description

cclTrnDefault 0 Default (opaque) field background

cclTrnOr 1 Transparent field background (OR)

cclTrnXorcclTrnXor 2 Transparent field background (XOR)

cclTrnOpaque 3 Opaque field background

CclField Color Attributes
Table 35. CclField Color attributes

VB Enumeration Value Description

cclDefaultColor 0

cclBlue 1

cclRed 2

cclPink 3

cclGreen 4

cclCyan 5

cclYellow 6

cclNeutral 7

cclBlack 8

cclDarkBlue 9

cclOrange 10

cclPurple 11

cclPaleGreen 12

cclPaleCyan 13

cclGray 14

cclWhite 15

156 CICS TG for Multiplatforms V9.2: Programming Reference

COM ECI Constants

Synchronization Types
Table 36. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

Flow status types
Table 37. Flow status types

VB Enumeration Value Description

cclInactive 0 Flow is inactive

cclLink 1 Flow is currently making a link call

cclBackout 2 Flow is currently backing out a UOW

cclCommit 3 Flow is currently committing a UOW

cclStatus 4 Flow is requesting status

cclChanged 5 Flow is requesting a status change

cclCancel 6 Flow is requesting a status cancel

Connection Status Codes
Table 38. Connection status code

VB Enumeration Value Description

cclUnknown 0 The CICS server status is unknown

cclAvailable 1 The CICS server status is available

cclUnavailable 2 The CICS server status is unavailable

COM Error Code References

Enumeration Value Description ECI EPI

cclNoError 0 No error occurred Yes Yes

cclBufferOverflow 1 Attempted to increase a CclBuf object which
isn't Extensible

Yes

cclMultipleInstance 2 Attempted to create more than one ECI object Yes

cclActiveFlow 3 Current Flow is still active, you cannot use this
flow until it is inactive

Yes

cclActiveUOW 4 Current UOW is still active, you need to
backout or commit.

Yes

cclSyncType 5 Incorrect synchronization type for method call. Yes Yes

cclDataLength 9 CommArea > 32768 Bytes or inbound 3270 data
stream too large for Terminal Buffer size.

Yes Yes

Chapter 4. COM 157

Enumeration Value Description ECI EPI

cclNoCICS 10 The Client daemon is unavailable, or the server
implementation is unavailable, or a logical unit
of work was to be begun, but the CICS server
specified is not available. No resources have
been updated

Yes Yes

cclCICSDied 11 A logical unit of work was to be begun or
continued, but the CICS server was no longer
available. If this is a link call with an active
UOW, the changes are backed out. If This was a
UOW Commit or the application cannot
determine whether the changes have been
committed or backed out, and must log this
condition to aid future manual recovery

Yes

cclNoReply 12 There was no outstanding reply Yes

cclTransaction 13 ECI program ended abnormally Yes

cclSystemError 14 Unknown internal error occurred Yes Yes

cclResource 15 The server implementation or the Client daemon
did not have enough resources to complete the
request e.g. insufficient SNA sessions.

Yes Yes

cclMaxUOWs 16 A new logical unit of work was being created,
but the application already has as many
outstanding logical units of work as the
configuration will support.

Yes

cclUnknownServer 17 The requested server could not be located Yes Yes

cclSecurity 18 You did not supply a valid combination of user
ID and password, though the server expects it.

Yes Yes

cclMaxServers 19 You attempted to start requests to more servers
than your configuration allows. Consult the
documentation for your Client daemon or server
to see how to control the number of servers you
can use.

Yes Yes

cclMaxRequests 20 There were not enough communication
resources to satisfy the request. Consult the
documentation for your Client daemon or server
to see how to control communication resources

Yes Yes

cclRolledBack 21 An attempt was made to commit a logical unit
of work, but the server was unable to commit
the changes, and backed them out instead

Yes

cclParameter 22 Incorrect parameter supplied Yes Yes

cclInvalidState 23 The Object is not in the correct state to start the
method, e.g. terminal object still in server state
and an attempt to send data is made.

Yes Yes

ccltransId 24 Null transid supplied or returned for a pseudo
conversational transaction

Yes

cclInitEPI 25 No EPI object or EPI failed to initialize correctly Yes

cclConnect 26 Unexpected error trying to add the terminal Yes

ccldata stream 27 Unsupported Data Stream Yes

cclInvalidMap 28 Map definition and Screen do not match Yes

cclClass 29 Unknown internal Class error occurred. Yes Yes

cclStartTranFailure 30 Transaction failed to start Yes

158 CICS TG for Multiplatforms V9.2: Programming Reference

Enumeration Value Description ECI EPI

cclTimeout 31 Timeout occurred before response from Server Yes Yes

cclNoPassword 32 The object's password is null. Yes Yes

cclNoUserid 33 The object's user ID is null Yes Yes

cclNullNewPassword 34 The provided password is null Yes Yes

cclPemNotSupported 35 The CICS Server does not support the Password
Expiry Management facilities. The method
cannot be used

Yes Yes

cclPemNotActive 36 Password Expiry Management is not active Yes Yes

cclPasswordExpired 37 The password has expired. No information has
been returned

Yes Yes

cclPasswordInvalid 38 The password is invalid. Yes Yes

cclPasswordRejected 39 Change password failed because the password
doesn't conform to standards defined

Yes Yes

cclUseridInvalid 40 The user ID is unknown Yes Yes

cclInvalidTermid 41 Invalid Terminal ID Yes

cclInvalidModelId 42 Invalid Model/Type Yes

cclnot3270 43 Not a 3270 device Yes

cclinvalidCCSId 44 Invalid CCSid Yes

cclServerBusy 45 CICS server is busy Yes

cclSignonNotPoss 46 The server does not allow the terminal to be
installed as sign-on capable.

Yes

COM Global Constants
Constants are provided in the type libraries for the Client daemon COM libraries.
The libraries are in CCLIECI.DLL and CCLIEPI.DLL.

If you are using Visual Basic, you can look at the definitions in the type libraries
by using Visual Basic Object viewer or another type library viewer.

If you are using VBScript, you cannot access the enumerations defined in the type
library; use the numeric values provided here.

The exception code constants are listed in “COM Error Code References” on page
151.

COM EPI Specific Constants

Synchronization Types
Table 39. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

Chapter 4. COM 159

CclEPI states
Table 40. CclEPI States

VB Enumeration Value Description

cclEPIActive 0 EPI initialized

cclDiscon 1 EPI Terminated

cclEPIError 2 EPI failed to initialize, handle exception for
more information

CclSession States
Table 41. CclSession States

VB Enumeration Value Description

cclSessionIdle 0 Idle, client needs to initiate transaction

cclSessionServer 1 Waiting for server

ccISessionClient 2 Waiting for Client daemon to respond

ccISessionDiscon 3 Disconnected

ccISessionError 4 Session Error, handle exception for more
information

CclTerminal States
Table 42. CclTerminal States

VB Enumeration Value Description

cclInit 0 Terminal defined but not installed

cclActive 1 Terminal connected (not used)

cclIdle 2 Idle, Client daemon needs to initiate
transaction

cclServer 3 Waiting for server

cclClient 4 Waiting for client to respond

cclDiscon 5 Disconnected

cclError 6 Terminal error, handle exception for more
information

CclTerminal ATI States
Table 43. CclTerminal ATI states

VB Enumeration Value Description

cclATIEnabled 0 ATIs are allowed

cclATIDisabled 1 ATIs are not allowed

CclTerminal EndTermReasons
Table 44. CclTerminal ATI states

VB Enumeration Value Description

cclSignoff 0 Disconnect request or user has signed off
the terminal

cclShutdown 1 The CICS server has been shut down

160 CICS TG for Multiplatforms V9.2: Programming Reference

Table 44. CclTerminal ATI states (continued)

VB Enumeration Value Description

cclOutOfService 2 The terminal has been switched to out of
use

cclUnknown 3 An unknown situation as occurred

cclFailed 4 The terminal failed to disconnect

cclNotDiscon 5 The terminal is not disconnected

CclTerminal Sign-on Types
Table 45. CclTerminal Sign-on Types

VB Enumeration Value Description

cclSignonCapable 0 Terminal supports sign-on transaction

cclSignonIncapable 1 Terminal does not support sign-on
transaction

cclSignonUnknown 2 Terminal sign-on capability is unknown

CclScreen AID key codes
Table 46. CclScreen AID key codes

VB Enumeration Value Description

cclEnter 0 Enter key

cclClear 1 Clear key

cclPA1 2 Program Attention key 1

cclPA2 3 Program Attention key 2

cclPA3 4 Program Attention key 3

cclPF1 5 Program Function key 1

cclPF2 6 Program Function key 2

cclPF3 7 Program Function key 3

cclPF4 8 Program Function key 4

cclPF5 9 Program Function key 5

cclPF6 10 Program Function key 6

cclPF7 11 Program Function key 7

cclPF8 12 Program Function key 8

cclPF9 13 Program Function key 9

cclPF10 14 Program Function key 10

cclPF11 15 Program Function key 11

cclPF12 16 Program Function key 12

cclPF13 17 Program Function key 13

cclPF14 18 Program Function key 14

cclPF15 19 Program Function key 15

cclPF16 20 Program Function key 16

cclPF17 21 Program Function key 17

cclPF18 22 Program Function key 18

Chapter 4. COM 161

Table 46. CclScreen AID key codes (continued)

VB Enumeration Value Description

cclPF19 23 Program Function key 19

cclPF20 24 Program Function key 20

cclPF21 25 Program Function key 21

cclPF22 26 Program Function key 22

cclPF23 27 Program Function key 23

cclPF24 28 Program Function key 24

CclField Protected State Attributes
Table 47. CclField Protected state attributes

VB Enumeration Value Description

cclProtect 0 Protected Field (cannot be modified)

cclUnprotect 1 Unprotected (input) field

CclField Numeric Attributes
Table 48. CclField Numeric Attributes

VB Enumeration Value Description

cclAlphanumeric 0 Alphanumeric input field

cclNnumeric 1 Numeric input field

CclField Intensity Attributes
Table 49. CclField Intensity attributes

VB Enumeration Value Description

cclNormal 0 Normal display

cclIntense 1 Intensified display

cclDark 2 Non-display field

CclField Modified Attributes
Table 50. CclField Modified Attributes

VB Enumeration Value Description

cclUnmodified 0 Field has not been changed

cclModified 1 Field has been changed

CclField Highlight Attributes
Table 51. CclField Highlight attributes

VB Enumeration Value Description

cclHltDefault 0 Default field text highlighting

cclHltNormal 1 Field text highlight as specified by 3270 base
attribute

cclHltBlink 2 Blinking text

162 CICS TG for Multiplatforms V9.2: Programming Reference

Table 51. CclField Highlight attributes (continued)

VB Enumeration Value Description

cclHltReverse 3 Reverse video text

cclHltUnderscore 4 Underscored text

cclHltIntense 5 High intensity text

CclField Transparency Attributes
Table 52. CclField Transparency attributes

VB Enumeration Value Description

cclTrnDefault 0 Default (opaque) field background

cclTrnOr 1 Transparent field background (OR)

cclTrnXorcclTrnXor 2 Transparent field background (XOR)

cclTrnOpaque 3 Opaque field background

CclField Color Attributes
Table 53. CclField Color attributes

VB Enumeration Value Description

cclDefaultColor 0

cclBlue 1

cclRed 2

cclPink 3

cclGreen 4

cclCyan 5

cclYellow 6

cclNeutral 7

cclBlack 8

cclDarkBlue 9

cclOrange 10

cclPurple 11

cclPaleGreen 12

cclPaleCyan 13

cclGray 14

cclWhite 15

COM ECI Constants

Synchronization Types
Table 54. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

Chapter 4. COM 163

Flow status types
Table 55. Flow status types

VB Enumeration Value Description

cclInactive 0 Flow is inactive

cclLink 1 Flow is currently making a link call

cclBackout 2 Flow is currently backing out a UOW

cclCommit 3 Flow is currently committing a UOW

cclStatus 4 Flow is requesting status

cclChanged 5 Flow is requesting a status change

cclCancel 6 Flow is requesting a status cancel

Connection Status Codes
Table 56. Connection status code

VB Enumeration Value Description

cclUnknown 0 The CICS server status is unknown

cclAvailable 1 The CICS server status is available

cclUnavailable 2 The CICS server status is unavailable

COM Error Code References

Enumeration Value Description ECI EPI

cclNoError 0 No error occurred Yes Yes

cclBufferOverflow 1 Attempted to increase a CclBuf object which
isn't Extensible

Yes

cclMultipleInstance 2 Attempted to create more than one ECI object Yes

cclActiveFlow 3 Current Flow is still active, you cannot use this
flow until it is inactive

Yes

cclActiveUOW 4 Current UOW is still active, you need to
backout or commit.

Yes

cclSyncType 5 Incorrect synchronization type for method call. Yes Yes

cclDataLength 9 CommArea > 32768 Bytes or inbound 3270 data
stream too large for Terminal Buffer size.

Yes Yes

cclNoCICS 10 The Client daemon is unavailable, or the server
implementation is unavailable, or a logical unit
of work was to be begun, but the CICS server
specified is not available. No resources have
been updated

Yes Yes

cclCICSDied 11 A logical unit of work was to be begun or
continued, but the CICS server was no longer
available. If this is a link call with an active
UOW, the changes are backed out. If This was a
UOW Commit or the application cannot
determine whether the changes have been
committed or backed out, and must log this
condition to aid future manual recovery

Yes

cclNoReply 12 There was no outstanding reply Yes

164 CICS TG for Multiplatforms V9.2: Programming Reference

Enumeration Value Description ECI EPI

cclTransaction 13 ECI program ended abnormally Yes

cclSystemError 14 Unknown internal error occurred Yes Yes

cclResource 15 The server implementation or the Client daemon
did not have enough resources to complete the
request e.g. insufficient SNA sessions.

Yes Yes

cclMaxUOWs 16 A new logical unit of work was being created,
but the application already has as many
outstanding logical units of work as the
configuration will support.

Yes

cclUnknownServer 17 The requested server could not be located Yes Yes

cclSecurity 18 You did not supply a valid combination of user
ID and password, though the server expects it.

Yes Yes

cclMaxServers 19 You attempted to start requests to more servers
than your configuration allows. Consult the
documentation for your Client daemon or server
to see how to control the number of servers you
can use.

Yes Yes

cclMaxRequests 20 There were not enough communication
resources to satisfy the request. Consult the
documentation for your Client daemon or server
to see how to control communication resources

Yes Yes

cclRolledBack 21 An attempt was made to commit a logical unit
of work, but the server was unable to commit
the changes, and backed them out instead

Yes

cclParameter 22 Incorrect parameter supplied Yes Yes

cclInvalidState 23 The Object is not in the correct state to start the
method, e.g. terminal object still in server state
and an attempt to send data is made.

Yes Yes

ccltransId 24 Null transid supplied or returned for a pseudo
conversational transaction

Yes

cclInitEPI 25 No EPI object or EPI failed to initialize correctly Yes

cclConnect 26 Unexpected error trying to add the terminal Yes

ccldata stream 27 Unsupported Data Stream Yes

cclInvalidMap 28 Map definition and Screen do not match Yes

cclClass 29 Unknown internal Class error occurred. Yes Yes

cclStartTranFailure 30 Transaction failed to start Yes

cclTimeout 31 Timeout occurred before response from Server Yes Yes

cclNoPassword 32 The object's password is null. Yes Yes

cclNoUserid 33 The object's user ID is null Yes Yes

cclNullNewPassword 34 The provided password is null Yes Yes

cclPemNotSupported 35 The CICS Server does not support the Password
Expiry Management facilities. The method
cannot be used

Yes Yes

cclPemNotActive 36 Password Expiry Management is not active Yes Yes

cclPasswordExpired 37 The password has expired. No information has
been returned

Yes Yes

cclPasswordInvalid 38 The password is invalid. Yes Yes

Chapter 4. COM 165

Enumeration Value Description ECI EPI

cclPasswordRejected 39 Change password failed because the password
doesn't conform to standards defined

Yes Yes

cclUseridInvalid 40 The user ID is unknown Yes Yes

cclInvalidTermid 41 Invalid Terminal ID Yes

cclInvalidModelId 42 Invalid Model/Type Yes

cclnot3270 43 Not a 3270 device Yes

cclinvalidCCSId 44 Invalid CCSid Yes

cclServerBusy 45 CICS server is busy Yes

cclSignonNotPoss 46 The server does not allow the terminal to be
installed as sign-on capable.

Yes

Interface Selection
The interfaces available for Visual Basic.

For Visual Basic, the following types of interface are available:
Dim var as Object
Dim var as CclOUOW

The second method is preferred.

If you do not dim a variable, dim it with no type, or are using VBScript, the
variable is assumed to be of type Object.

Object Creation
Ways of creating an object.

You can create an object in two ways:
set var = CreateObject("Ccl.UOW")
set var = New CclOUOW

New is the preferred method in Visual Basic. For VBScript, you can use only the
CreateObject method.

Methods
Methods available on this class.

BackOut
Terminates this UOW and backs out all changes made to recoverable resources in
the server.

BackOut(flow as Object)

BackOut(flow as CclOFlow)

flow
The CclOFlow object which is used to control the client/server call

Commit
Terminates this UOW and commits all changes made to recoverable resources in
the server.

166 CICS TG for Multiplatforms V9.2: Programming Reference

Commit(flow as Object)

Commit(flow as CclOFlow)

flow
The CclOFlow object which is used to control the client/server call

ForceReset
Makes this UOW inactive and resets it. The UOW is neither committed or backed
out.

ForceReset()

UowId
Returns the identifier of the UOW. A zero return indicates that the UOW is either
complete or has not yet started, and is therefore inactive.

UowId() as long

COM Global Constants
Constants are provided in the type libraries for the Client daemon COM libraries.
The libraries are in CCLIECI.DLL and CCLIEPI.DLL.

If you are using Visual Basic, you can look at the definitions in the type libraries
by using Visual Basic Object viewer or another type library viewer.

If you are using VBScript, you cannot access the enumerations defined in the type
library; use the numeric values provided here.

The exception code constants are listed in “COM Error Code References” on page
151.

COM EPI Specific Constants

Synchronization Types
Table 57. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

CclEPI states
Table 58. CclEPI States

VB Enumeration Value Description

cclEPIActive 0 EPI initialized

cclDiscon 1 EPI Terminated

cclEPIError 2 EPI failed to initialize, handle exception for
more information

Chapter 4. COM 167

CclSession States
Table 59. CclSession States

VB Enumeration Value Description

cclSessionIdle 0 Idle, client needs to initiate transaction

cclSessionServer 1 Waiting for server

ccISessionClient 2 Waiting for Client daemon to respond

ccISessionDiscon 3 Disconnected

ccISessionError 4 Session Error, handle exception for more
information

CclTerminal States
Table 60. CclTerminal States

VB Enumeration Value Description

cclInit 0 Terminal defined but not installed

cclActive 1 Terminal connected (not used)

cclIdle 2 Idle, Client daemon needs to initiate
transaction

cclServer 3 Waiting for server

cclClient 4 Waiting for client to respond

cclDiscon 5 Disconnected

cclError 6 Terminal error, handle exception for more
information

CclTerminal ATI States
Table 61. CclTerminal ATI states

VB Enumeration Value Description

cclATIEnabled 0 ATIs are allowed

cclATIDisabled 1 ATIs are not allowed

CclTerminal EndTermReasons
Table 62. CclTerminal ATI states

VB Enumeration Value Description

cclSignoff 0 Disconnect request or user has signed off
the terminal

cclShutdown 1 The CICS server has been shut down

cclOutOfService 2 The terminal has been switched to out of
use

cclUnknown 3 An unknown situation as occurred

cclFailed 4 The terminal failed to disconnect

cclNotDiscon 5 The terminal is not disconnected

168 CICS TG for Multiplatforms V9.2: Programming Reference

CclTerminal Sign-on Types
Table 63. CclTerminal Sign-on Types

VB Enumeration Value Description

cclSignonCapable 0 Terminal supports sign-on transaction

cclSignonIncapable 1 Terminal does not support sign-on
transaction

cclSignonUnknown 2 Terminal sign-on capability is unknown

CclScreen AID key codes
Table 64. CclScreen AID key codes

VB Enumeration Value Description

cclEnter 0 Enter key

cclClear 1 Clear key

cclPA1 2 Program Attention key 1

cclPA2 3 Program Attention key 2

cclPA3 4 Program Attention key 3

cclPF1 5 Program Function key 1

cclPF2 6 Program Function key 2

cclPF3 7 Program Function key 3

cclPF4 8 Program Function key 4

cclPF5 9 Program Function key 5

cclPF6 10 Program Function key 6

cclPF7 11 Program Function key 7

cclPF8 12 Program Function key 8

cclPF9 13 Program Function key 9

cclPF10 14 Program Function key 10

cclPF11 15 Program Function key 11

cclPF12 16 Program Function key 12

cclPF13 17 Program Function key 13

cclPF14 18 Program Function key 14

cclPF15 19 Program Function key 15

cclPF16 20 Program Function key 16

cclPF17 21 Program Function key 17

cclPF18 22 Program Function key 18

cclPF19 23 Program Function key 19

cclPF20 24 Program Function key 20

cclPF21 25 Program Function key 21

cclPF22 26 Program Function key 22

cclPF23 27 Program Function key 23

cclPF24 28 Program Function key 24

Chapter 4. COM 169

CclField Protected State Attributes
Table 65. CclField Protected state attributes

VB Enumeration Value Description

cclProtect 0 Protected Field (cannot be modified)

cclUnprotect 1 Unprotected (input) field

CclField Numeric Attributes
Table 66. CclField Numeric Attributes

VB Enumeration Value Description

cclAlphanumeric 0 Alphanumeric input field

cclNnumeric 1 Numeric input field

CclField Intensity Attributes
Table 67. CclField Intensity attributes

VB Enumeration Value Description

cclNormal 0 Normal display

cclIntense 1 Intensified display

cclDark 2 Non-display field

CclField Modified Attributes
Table 68. CclField Modified Attributes

VB Enumeration Value Description

cclUnmodified 0 Field has not been changed

cclModified 1 Field has been changed

CclField Highlight Attributes
Table 69. CclField Highlight attributes

VB Enumeration Value Description

cclHltDefault 0 Default field text highlighting

cclHltNormal 1 Field text highlight as specified by 3270 base
attribute

cclHltBlink 2 Blinking text

cclHltReverse 3 Reverse video text

cclHltUnderscore 4 Underscored text

cclHltIntense 5 High intensity text

170 CICS TG for Multiplatforms V9.2: Programming Reference

CclField Transparency Attributes
Table 70. CclField Transparency attributes

VB Enumeration Value Description

cclTrnDefault 0 Default (opaque) field background

cclTrnOr 1 Transparent field background (OR)

cclTrnXorcclTrnXor 2 Transparent field background (XOR)

cclTrnOpaque 3 Opaque field background

CclField Color Attributes
Table 71. CclField Color attributes

VB Enumeration Value Description

cclDefaultColor 0

cclBlue 1

cclRed 2

cclPink 3

cclGreen 4

cclCyan 5

cclYellow 6

cclNeutral 7

cclBlack 8

cclDarkBlue 9

cclOrange 10

cclPurple 11

cclPaleGreen 12

cclPaleCyan 13

cclGray 14

cclWhite 15

COM ECI Constants

Synchronization Types
Table 72. Synchronization types

VB Enumeration Value Description

cclSync 0 Synchronous call type

cclDsync 1 Deferred synchronous call type

Flow status types
Table 73. Flow status types

VB Enumeration Value Description

cclInactive 0 Flow is inactive

Chapter 4. COM 171

Table 73. Flow status types (continued)

VB Enumeration Value Description

cclLink 1 Flow is currently making a link call

cclBackout 2 Flow is currently backing out a UOW

cclCommit 3 Flow is currently committing a UOW

cclStatus 4 Flow is requesting status

cclChanged 5 Flow is requesting a status change

cclCancel 6 Flow is requesting a status cancel

Connection Status Codes
Table 74. Connection status code

VB Enumeration Value Description

cclUnknown 0 The CICS server status is unknown

cclAvailable 1 The CICS server status is available

cclUnavailable 2 The CICS server status is unavailable

COM Error Code References

Enumeration Value Description ECI EPI

cclNoError 0 No error occurred Yes Yes

cclBufferOverflow 1 Attempted to increase a CclBuf object which
isn't Extensible

Yes

cclMultipleInstance 2 Attempted to create more than one ECI object Yes

cclActiveFlow 3 Current Flow is still active, you cannot use this
flow until it is inactive

Yes

cclActiveUOW 4 Current UOW is still active, you need to
backout or commit.

Yes

cclSyncType 5 Incorrect synchronization type for method call. Yes Yes

cclDataLength 9 CommArea > 32768 Bytes or inbound 3270 data
stream too large for Terminal Buffer size.

Yes Yes

cclNoCICS 10 The Client daemon is unavailable, or the server
implementation is unavailable, or a logical unit
of work was to be begun, but the CICS server
specified is not available. No resources have
been updated

Yes Yes

cclCICSDied 11 A logical unit of work was to be begun or
continued, but the CICS server was no longer
available. If this is a link call with an active
UOW, the changes are backed out. If This was a
UOW Commit or the application cannot
determine whether the changes have been
committed or backed out, and must log this
condition to aid future manual recovery

Yes

cclNoReply 12 There was no outstanding reply Yes

cclTransaction 13 ECI program ended abnormally Yes

cclSystemError 14 Unknown internal error occurred Yes Yes

172 CICS TG for Multiplatforms V9.2: Programming Reference

Enumeration Value Description ECI EPI

cclResource 15 The server implementation or the Client daemon
did not have enough resources to complete the
request e.g. insufficient SNA sessions.

Yes Yes

cclMaxUOWs 16 A new logical unit of work was being created,
but the application already has as many
outstanding logical units of work as the
configuration will support.

Yes

cclUnknownServer 17 The requested server could not be located Yes Yes

cclSecurity 18 You did not supply a valid combination of user
ID and password, though the server expects it.

Yes Yes

cclMaxServers 19 You attempted to start requests to more servers
than your configuration allows. Consult the
documentation for your Client daemon or server
to see how to control the number of servers you
can use.

Yes Yes

cclMaxRequests 20 There were not enough communication
resources to satisfy the request. Consult the
documentation for your Client daemon or server
to see how to control communication resources

Yes Yes

cclRolledBack 21 An attempt was made to commit a logical unit
of work, but the server was unable to commit
the changes, and backed them out instead

Yes

cclParameter 22 Incorrect parameter supplied Yes Yes

cclInvalidState 23 The Object is not in the correct state to start the
method, e.g. terminal object still in server state
and an attempt to send data is made.

Yes Yes

ccltransId 24 Null transid supplied or returned for a pseudo
conversational transaction

Yes

cclInitEPI 25 No EPI object or EPI failed to initialize correctly Yes

cclConnect 26 Unexpected error trying to add the terminal Yes

ccldata stream 27 Unsupported Data Stream Yes

cclInvalidMap 28 Map definition and Screen do not match Yes

cclClass 29 Unknown internal Class error occurred. Yes Yes

cclStartTranFailure 30 Transaction failed to start Yes

cclTimeout 31 Timeout occurred before response from Server Yes Yes

cclNoPassword 32 The object's password is null. Yes Yes

cclNoUserid 33 The object's user ID is null Yes Yes

cclNullNewPassword 34 The provided password is null Yes Yes

cclPemNotSupported 35 The CICS Server does not support the Password
Expiry Management facilities. The method
cannot be used

Yes Yes

cclPemNotActive 36 Password Expiry Management is not active Yes Yes

cclPasswordExpired 37 The password has expired. No information has
been returned

Yes Yes

cclPasswordInvalid 38 The password is invalid. Yes Yes

cclPasswordRejected 39 Change password failed because the password
doesn't conform to standards defined

Yes Yes

Chapter 4. COM 173

Enumeration Value Description ECI EPI

cclUseridInvalid 40 The user ID is unknown Yes Yes

cclInvalidTermid 41 Invalid Terminal ID Yes

cclInvalidModelId 42 Invalid Model/Type Yes

cclnot3270 43 Not a 3270 device Yes

cclinvalidCCSId 44 Invalid CCSid Yes

cclServerBusy 45 CICS server is busy Yes

cclSignonNotPoss 46 The server does not allow the terminal to be
installed as sign-on capable.

Yes

174 CICS TG for Multiplatforms V9.2: Programming Reference

Chapter 5. Exits

These topics describe the data available to exits.

ECI Client API exits
The ECI Client API exits are available for use with ECI requests that are sent to
servers connected by the TCP/IP and SNA protocols. They are not available if
using the IPIC protocol.

The exits are called from the Gateway daemon process when running in remote
mode and from the application process when running in local mode. The exits are
called for ECI requests issued from all APIs. For more information on creating and
deploying user exits see ECI and EPI C exits.

Table 75 summarizes the exit names, the parameters passed to each exit, and the
possible return codes.

Table 75. Summary of ECI exits

Function name Parameters Return codes:

“CICS_EciInitializeExit” on page 176
Version
Anchor

CICS_EXIT_OK
CICS_EXIT_NO_EXIT
CICS_EXIT_CANT_INIT_EXITS
user-defined

“CICS_EciTerminateExit” on page 177
Anchor CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_STORAGE
user-defined

“CICS_EciExternalCallExit1” on page 178
Anchor
Token
ParmPtr

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

“CICS_EciExternalCallExit2” on page 179
Anchor
Token
ParmPtr

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

“CICS_EciSystemIdExit” on page 180
Anchor
Token
ParmPtr
Reason

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
CICS_EXIT_GIVE_UP
user_defined

“CICS_EciDataSendExit” on page 181
Anchor
Token

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

© Copyright IBM Corp. 1998, 2016 175

Table 75. Summary of ECI exits (continued)

Function name Parameters Return codes:

“CICS_EciDataReturnExit” on page 182
Anchor
Token
ParmPtr

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

“CICS_EciSetProgramAliasExit” on page 182
Anchor
EciParms
Program

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

Identification token
So that the exits can correlate calls for the same ECI request, an identification token
is passed in as a parameter to all exits except CICS_EciInitializeExit and
CICS_EciTerminateExit.

The token is the same for CICS_EciExternalCallExit1 and
CICS_EciExternalCallExit2 that relate to the same call, and on intervening
CICS_EciDataSendExit, CICS_EciDataReturnExit, and CICS_EciSystemIdExit
exits. CICS_EciExternalCallExit1 and CICS_EciExternalCallExit2 are not called for
a reply solicitation request.

The token is unique within the CICS Transaction Gateway instance for the duration
of the request. It can be reused when the last exit for the request has been called.

In the case of an extended logical unit of work, the token might be different on
different requests within the logical unit of work. Because reuse of the token, and a
new program link call cannot be made until the ECI_GET_REPLY request for the
previous asynchronous request has completed, the token might also be the same.

The token is 8 bytes long. A value of 8 null bytes is not valid for the token and is
not supplied to the exits.

CICS_EciInitializeExit
This exit allows the user to set up an ECI exit initialization environment.

Function name:
CICS_EciInitializeExit

Parameters
Version
Anchor

When called

The CICS_EciInitializeExit exit is invoked when the first ECI request is flowed
through the CICS Transaction Gateway for remote mode applications, and when
the first ECI request is flowed from each local mode application process. The exit is
called after ECI parameter validation has occurred.

176 CICS TG for Multiplatforms V9.2: Programming Reference

Parameters

Version
Input parameter. The version of the ECI under which the exit is running.

Anchor
Output parameter. A pointer to a pointer that is passed to the ECI exits.
The second pointer is not used by the ECI; it is passed to the exits as
supplied. You can acquire storage in this exit and pass its address to the
other exits.

Return codes

CICS_EXIT_OK
The ECI continues processing this request, calling the exits where
appropriate.

CICS_EXIT_NO_EXIT
The ECI continues processing this request, but does not call any more exits.

CICS_EXIT_CANT_INIT_EXITS
The ECI writes a CICS Transaction Gateway trace record, and then
continues processing this request, but does not call any more exits.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway trace
record, and then continues processing this request, but does not call any
more exits.

CICS_EciTerminateExit
This exit allows the user to clean up the exit environment.

Function name:
CICS_EciTerminateExit

Parameters
Anchor

CICS_EciTerminateExit is not called by CICS Transaction Gateway.

When called

On termination of the process that issued the CICS_EciInitializeExit.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EciInitializeExit.

Return codes

CICS_EXIT_OK
Termination continues.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The ECI writes a CICS Transaction
Gateway trace record, and then continues with termination.

Chapter 5. Exits 177

CICS_EXIT_BAD_STORAGE
CICS detected a storage error. The ECI writes a CICS Transaction Gateway
trace record, and then continues with termination.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway trace
record, and then continues with termination.

CICS_EciExternalCallExit1
This exit enables the user to specify the destination CICS server where the ECI
request is to be sent.

Function name: Parameters:

CICS_EciExternalCallExit1 Anchor
Token
ParmPtr

The exit can select a system if the call is a program link or status information call,
and if a new logical unit of work is being started. In other cases, the exit should
return CICS_EXIT_OK.

When called

This exit is called once on each program link and each status information call, after
the ECI has validated the parameters. It is not called on a reply solicitation call.
Although the exit is called when eci_luw_token is not zero, any change made to
eci_system_name in the ECI parameter block is ignored, as the server was selected
when the logical unit of work was started. If eci_system_name is changed to
contain binary zeros as the server name, then CICS Transaction Gateway
dynamically selects the server to which the ECI request is sent.

Parameters

Anchor
Input parameter. The pointer setup by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for this
request.

ParmPtr
Input parameter. A pointer to the ECI parameter block. The exit must treat
all fields in the ECI parameter block as inputs, except the
eci_system_name field, which it can change.

Return codes

CICS_EXIT_OK
The ECI continues to process the request with the eci_system_name now
specified in the ECI parameter block.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The ECI writes a CICS Transaction
Gateway trace record, and then continues to process the request with the
eci_system_name now specified in the ECI parameter block.

178 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The ECI writes a CICS Transaction
Gateway trace record, and then continues to process the request with the
eci_system_name now specified in the ECI parameter block.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway trace
record, and then continues to process the request with the
eci_system_name now specified in the ECI parameter block.

CICS_EciExternalCallExit2
This exit enables the user to view the results of synchronous ECI calls, and is used
for information gathering purposes.

Function name:
CICS_EciExternalCallExit2

Parameters:
Anchor
Token
ParmPtr

When called

This exit is called once on every application program link or status information
call. It is not called on reply solicitation calls. The exit is called before the ECI call
returns to the application, and after the return data is filled into the ECI parameter
block.

Parameters

Anchor
Input parameter. The pointer setup by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for this
request.

ParmPtr
Input parameter. A pointer to the ECI parameter block. The exit must treat
all fields in the ECI parameter block as inputs.

Return codes

CICS_EXIT_OK
The ECI returns control to the application that issued the
CICS_ExternalCall request.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The ECI writes a CICS Transaction
Gateway trace record, and then returns control to the application that
issued the CICS_ExternalCall request.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The ECI writes a CICS Transaction
Gateway trace record, and then returns control to the application that
issued the CICS_ExternalCall request.

user-defined
User-defined return codes must have a value not less than

Chapter 5. Exits 179

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway trace
record, and then returns control to the application that issued the
CICS_ExternalCall request.

CICS_EciSystemIdExit
This exit enables the user to supply a new system ID, if the value supplied in the
ECI parameter block is not valid.

Function name:
CICS_EciSystemIdExit

Parameters:
Anchor
Token
ParmPtr
Reason

When called

This exit is called when an error occurs that can be corrected by selection of a new
system, user ID, or password. This would be when the ECI has returned one of the
following codes:
v ECI_ERR_NO_CICS
v ECI_ERR_UNKNOWN_SERVER
v ECI_ERR_SECURITY_ERROR
v ECI_ERR_SYSTEM_ERROR
v ECI_ERR_RESOURCE_SHORTAGE
v ECI_ERR_MAX_SYSTEMS.

It can be called when the Client daemon detects an error before data is sent to the
server, or after data returns from the server.

Parameters

Anchor
Input parameter. The pointer setup by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for this
request.

ParmPtr
Input parameter. A pointer to the ECI parameter block. The exit must treat
all fields in the ECI parameter block as inputs, except the following, which
it can set:
v eci_system_name

v eci_userid

v eci_password.

Reason
Input parameter. A standard ECI error code that explains why the
application request has not so far succeeded.

Return codes

CICS_EXIT_OK
The ECI retries the application call using the new parameters in the ECI
parameter block. (The CICS program communication area supplied by the

180 CICS TG for Multiplatforms V9.2: Programming Reference

application to the CICS_ExternalCall is preserved.) The application
callback routine is not called, nor is CICS_EciExternalCallExit2.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The ECI writes a CICS Transaction
Gateway trace record, and then returns to the application that issued the
CICS_ExternalCall request.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The ECI writes a CICS Transaction
Gateway trace record, and then returns to the application that issued the
CICS_ExternalCall request.

CICS_EXIT_GIVE_UP
The ECI returns to the application that issued the CICS_ExternalCall
request.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway trace
record, and then retries the application call as described for
CICS_EXIT_OK.

CICS_EciDataSendExit
This exit enables the user to time ECI calls, and is used for performance analysis
purposes.

Function name:
CICS_EciDataSendExit

Parameters:
Anchor
Token

When called

As close as possible to the time that the request is sent to the server.

Parameters

Anchor
Input parameter. The pointer setup by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for this
request.

Return codes

CICS_EXIT_OK
The ECI continues processing the request.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The ECI writes a CICS Transaction
Gateway trace record, and then continues processing the request.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The ECI writes a CICS Transaction
Gateway trace record, and then continues processing the request.

user-defined
User-defined return codes must have a value not less than

Chapter 5. Exits 181

CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway trace
record, and then continues processing the request.

CICS_EciDataReturnExit
This exit enables the user to time ECI calls, and is used for performance analysis
purposes.

Function name: Parameters:

CICS_EciDataReturnExit Anchor
Token
ParmPtr

When called

As close as possible to the time that the response from the server has been
received, and the ECI block and commarea data for eventual return to the
application has been built. It is also called if there is a timeout because of a lack of
response from the server.

Parameters

Anchor
Input parameter. The pointer setup by CICS_EciInitializeExit.

Token Input parameter. The identification token established by the ECI for this
request.

ParmPtr
Input parameter. A pointer to the ECI parameter block. The exit must treat
all fields in the ECI parameter block as inputs.

Return codes

CICS_EXIT_OK
The ECI continues processing the request.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The ECI writes a CICS Transaction
Gateway trace record, and then continues processing the request.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The ECI writes a CICS Transaction
Gateway trace record, and then continues processing the request.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway trace
record, and then continues processing the request.

CICS_EciSetProgramAliasExit
This exit allows the user to change the program name that the Workload Manager
of CICS Transaction Gateway for Windows uses for load balancing.

182 CICS TG for Multiplatforms V9.2: Programming Reference

Function name:
CICS_EciSetProgramAliasExit

Parameters:
Anchor
EciParms
Program

This exit is only available when the Workload Manager is enabled.

When called

Immediately before the Workload Manager tries to select a server for an ECI
program to connect to.

Parameters

Anchor
Input parameter. The pointer setup by CICS_EciInitializeExit.

ECIParms
ECI parameter block.

Program
The alias name of the ECI program that the Workload Manager uses for
load balancing.

Return codes

CICS_EXIT_OK
The ECI continues processing the request.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The ECI writes a CICS Transaction
Gateway trace record, and then continues processing the request.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The ECI writes a CICS Transaction
Gateway trace record, and then continues processing the request.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS Transaction Gateway trace
record, and then continues processing the request.

EPI Client API exits
The EPI Client API exits can be used with EPI requests sent to CICS servers over
either the TCP/IP or SNA protocol.

For more information on creating and deploying user exits see
../progguide/topics/eiexits.dita.

The C EPI exits are:
v CICS_EpiInitializeExit
v CICS_EpiTerminateExit
v CICS_EpiAddTerminalExit
v CICS_EpiTermIdExit
v CICS_EpiTermIdInfoExit

Chapter 5. Exits 183

v CICS_EpiStartTranExtendedExit
v CICS_EpiStartTranExit
v CICS_EpiReplyExit
v CICS_EpiDelTerminalExit
v CICS_EpiGetEventExit
v CICS_EpiSystemIdExit
v CICS_EpiTranFailedExit

Table 76 summarizes the exit names, the parameters passed to each exit, and the
possible return codes.

Table 76. Summary of EPI exits

Function name Parameters Return codes:

CICS_EpiInitializeExit
Version
Anchor

CICS_EXIT_OK
CICS_EXIT_NO_EXIT
CICS_EXIT_CANT_INIT_EXITS
user-defined

CICS_EpiTerminateExit
Anchor CICS_EXIT_OK

CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_STORAGE
user-defined

CICS_EpiAddTerminalExit
Anchor
NameSpace
System
NetName
DevType

CICS_EXIT_OK
CICS_EXIT_DONT_ADD_TERMINAL
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

CICS_EpiTermIdExit
Anchor
TermIndex
System

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

CICS_EpiTermIdInfoExit
Anchor
Version
TermIndex
EpiDetails

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

CICS_EpiStartTranExtendedExit
Anchor
TermIndex
TransId
Data
Size

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

CICS_EpiStartTranExit
Anchor
TransId
Data

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

184 CICS TG for Multiplatforms V9.2: Programming Reference

Table 76. Summary of EPI exits (continued)

Function name Parameters Return codes:

CICS_EpiReplyExit
Anchor
TermIndex
Data
Size

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EpiDelTerminalExit
Anchor
TermIndex

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EpiGetEventExit
Anchor
TermIndex
Wait
Event

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EpiSystemIdExit
Anchor
NameSpace
System
NetName
DevType
FailedSystem
Reason
SubReason
UserId
PassWord

CICS_EXIT_OK
CICS_EXIT_DONT_ADD_TERMINAL
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EpiTranFailedExit
Anchor
TermIndex
Wait
Event

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EpiInitializeExit
This exit enables the user to set up an EPI exit initialization environment.

Function name: Parameters:

CICS_EpiInitializeExit Version
Anchor

When called

On each invocation of CICS_EpiInitialize, after the EPI has validated the
parameters.

Parameters

Version
Input parameter. The version of the EPI under which the exit is running.

Anchor
Output parameter. A pointer to a pointer that will be passed to the EPI

Chapter 5. Exits 185

exits. The second pointer is not used by the EPI; it is passed to the exits as
supplied. You can acquire storage in this exit and pass its address to the
other exits.

Return codes

CICS_EXIT_OK
The EPI continues processing this request, calling the exits where
appropriate.

CICS_EXIT_NO_EXIT
The EPI continues processing this request, but does not call any more exits.

CICS_EXIT_CANT_INIT_EXITS
The EPI writes a CICS Transaction Gateway trace record, and then
continues processing this request, but does not call any more exits.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then continues processing this request, but does not call any
more exits.

CICS_EpiTerminateExit
This exit enables the user to clean up the EPI exit termination environment. Any
storage acquired by CICS_EpiInitializeExit must be released in this exit.

Function name:
CICS_EpiTerminateExit

Parameters:
Anchor

When called

On each invocation of CICS_EpiTerminate, after the EPI has validated the
parameters.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

Return codes

CICS_EXIT_OK
Termination continues.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then continues with termination.

CICS_EXIT_BAD_STORAGE
CICS detected a storage error. The EPI writes a CICS Transaction Gateway
trace record, and then continues with termination.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then continues with termination.

186 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_EpiAddTerminalExit
To allow the user to select a server, or override the one passed to
CICS_EpiAddTerminal or CICS_EpiAddExTerminal in the System parameter.

Function name: Parameters:

CICS_EpiAddTerminalExit Anchor
NameSpace
System
NetName
DevType

When called

On each invocation of CICS_EpiAddTerminal or CICS_EpiAddExTerminal, after
the EPI has validated the parameters.

Parameters

Anchor
Input parameter. The pointer storage set up by CICS_EpiInitializeExit.

NameSpace
Input-output parameter. On input, its value depends on the value supplied
for the NameSpace parameter of the CICS_EpiAddTerminal or
CICS_EpiAddExTerminal call to which this exit relates:
v If a null pointer was supplied, this input is a pointer to a null string.
v If a non-null pointer was supplied, the Namespace input parameter

points to a copy of this data.

On output, it will be used by the EPI in the same way as the value
specified on the call would have been used.

System
Input-output parameter. On input, it is the value supplied for the System
parameter of the CICS_EpiAddTerminal or CICS_EpiAddExTerminal call
to which this exit relates. On output, it will be used by the EPI in the same
way as the value specified on the call would have been used.

NetName
Input-output parameter. On input, it is the value supplied for the
NetName parameter of the CICS_EpiAddTerminal or
CICS_EpiAddExTerminal call to which this exit relates. On output, it will
be used by the EPI in the same way as the value specified on the call
would have been used.

DevType
Input-output parameter. On input, it is the value supplied for the DevType
parameter of the CICS_EpiAddTerminal or CICS_EpiAddExTerminal call
to which this exit relates. On output, it will be used by the EPI in the same
way as the value specified on the call would have been used.

Return codes

CICS_EXIT_OK
Processing continues with the output values of NameSpace, System,
NetName, and DevType.

Chapter 5. Exits 187

CICS_EXIT_DONT_ADD_TERMINAL
The CICS_EpiAddTerminal or CICS_EpiAddExTerminal is ended with a
return code of CICS_EPI_ERR_FAILED.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then continues as for CICS_EXIT_OK.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then continues as for CICS_EXIT_OK.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then continues as for CICS_EXIT_OK.

Note:

Note on selection of systems:

If the calling application does not specify system name in its parameter list, then it
is expecting that the system will be dynamically selected, and the exit can safely
select the system.

If however the calling application specifies a system name, then it might not be
expecting the target system to change and application errors could result. In this
case the exit would generally not specify a replacement system, with the result that
the specified or default system name, device type, etc. is to be used. If the exit
chooses to change the selected system in this situation, then it can do so, but bear
in mind the following.
v The exit routine must be sensitive to whether or not the modification of the

target system will cause errors in the EPI application running on the client.
v The exit routine must maintain a knowledge base, keyed on appropriate data

available to it, so the exit routine can determine whether this modification is
acceptable to the client application.

CICS_EpiAddTerminalExit and CICS_EpiSystemIdExit:

The relationship between these exits is as follows. The exits will get multiple
chances to make a selection of the system. The first chance will always occur on
the CICS_EpiAddTerminalExit. This exit will only receive the parameters passed
by the application to CICS_EpiAddTerminal or CICS_EpiAddExTerminal. If an
error occurs when CICS tries to add the terminal (whether or not the exit has
made a selection) then CICS_EpiSystemIdExit will be called.
CICS_EpiSystemIdExit will additionally be passed the error that occurred on the
attempt to add the terminal, and will get a chance to correct the error. This
continues to occur until either a terminal is successfully added, or until
CICS_EpiSystemIdExit signals to give up.

If no error occurs on the attempt to add the terminal, then CICS_EpiSystemIdExit
will not be called.

CICS_EpiTermIdExit
This exit enables the user to find out the terminal ID allocated to a new EPI
terminal, after a successful EPI call to CICS_EpiAddTerminal.

188 CICS TG for Multiplatforms V9.2: Programming Reference

Function name: Parameters:

CICS_EpiTermIdExit Anchor
TermIndex
System

Purpose

CICS_EpiTermIdExit is provided for compatibility with older applications only. All
new applications that use the EPI exits use CICS_EpiTermIdInfoExit instead.

When called

On each invocation of CICS_EpiAddTerminal, after the server has allocated the
terminal.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex
Input parameter. This is the terminal index for the terminal resource just
reserved or installed.

System
Input parameter. A pointer to a null-terminated string that specifies the
name of the server in which the terminal resource has been reserved or
installed.

Return codes

CICS_EXIT_OK
Processing continues.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then continues as for CICS_EXIT_OK.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then continues as for CICS_EXIT_OK.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then continues as for CICS_EXIT_OK.

CICS_EpiTermIdInfoExit
This exit enables the user to retrieve information about the current EPI terminal.

Function name:
CICS_EpiTermIdInfoExit

Parameters:
Anchor
Version
TermIndex
EpiDetails

Chapter 5. Exits 189

When called

Immediately after a CICS terminal has been installed

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

Version
Input parameter. The EPI version.

TermIndex
Input parameter. The index of the terminal being installed.

EpiDetails
Input parameter. A pointer to the CICS_EpiDetails_t structure, containing
details about the terminal being installed.

Return codes

CICS_EXIT_OK
Processing continues.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then continues as for CICS_EXIT_OK.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then continues as for CICS_EXIT_OK.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then continues as for CICS_EXIT_OK.

CICS_EpiStartTranExtendedExit
This exit enables the user to see when an EPI transaction is started, and is used for
information gathering purposes. This exit does not select a system, and does not
return data.

Function name:
CICS_EpiStartTranExtendedExit

Parameters:
Anchor
TermIndex
TransId
Data
Size

When called

On invocation of CICS_EpiStartTran, after the EPI has validated the parameters.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

190 CICS TG for Multiplatforms V9.2: Programming Reference

TermIndex
Input parameter. The value supplied by the TermIndex parameter of the
CICS_EpiReply call to which this exit relates.

TransId
Input parameter. The value supplied for the TransId parameter of the
CICS_EpiStartTran call to which this exit relates.

Data Input parameter. The value supplied for the Data parameter of the
CICS_EpiStartTran call to which this exit relates.

Size Input parameter. The value supplied for the Size parameter of the
CICS_EpiStartTran call to which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiStartTran call continues.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiStartTran call
continues.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiStartTran call
continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then processing of the CICS_EpiStartTran call continues.

CICS_EpiStartTranExit
This exit enables the user to see when an EPI transaction is started, and is used for
information gathering purposes. This exit does not select a system, and does not
return data.

Function name:
CICS_EpiStartTranExit

Parameters:
Anchor
TransId
Data
Size

When called

On invocation of CICS_EpiStartTran, after the EPI has validated the parameters.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

TransId
Input parameter. The value supplied for the TransId parameter of the
CICS_EpiStartTran call to which this exit relates.

Chapter 5. Exits 191

Data Input parameter. The value supplied for the Data parameter of the
CICS_EpiStartTran call to which this exit relates.

Size Input parameter. The value supplied for the Size parameter of the
CICS_EpiStartTran call to which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiStartTran call continues.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiStartTran call
continues.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiStartTran call
continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then processing of the CICS_EpiStartTran call continues.

CICS_EpiReplyExit
This exit enables the user to see when a reply is sent to an EPI transaction, and is
used for information gathering purposes.

Function name:
CICS_EpiReplyExit

Parameters:
Anchor
TermIndex
Data
Size

When called

On invocation of CICS_EpiReply, after the EPI has validated the parameters.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex
Input parameter. The value supplied for the TermIndex parameter of the
CICS_EpiReply call to which this exit relates.

Data Input parameter. The value supplied for the Data parameter of the
CICS_EpiReply call to which this exit relates.

Size Input parameter. The value supplied for the Size parameter of the
CICS_EpiReply call to which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiReply call continues.

192 CICS TG for Multiplatforms V9.2: Programming Reference

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiReply call
continues.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiReply call
continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then processing of the CICS_EpiReply call continues.

CICS_EpiDelTerminalExit
This exit enables the user to clean up EPI terminal data structures.

Function Name:
CICS_EpiDelTerminalExit

Parameters:
Anchor
TermIndex

When called

On invocation of CICS_EpiDelTerminal or CICS_EpiPurgeTerminal, after the EPI has
validated the parameters. To allow the user to clean up any terminal-related data
structures.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex
Input parameter. The value supplied for the TermIndex parameter of the
CICS_EpiDelTerminal or CICS_EpiPurgeTerminal call to which this exit
relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiDelTerminalor CICS_EpiPurgeTerminal call
continues.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiDelTerminal or
CICS_EpiPurgeTerminal call continues.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiDelTerminal or
CICS_EpiPurgeTerminal call continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace

Chapter 5. Exits 193

record, and then processing of the CICS_EpiDelTerminal or
CICS_EpiPurgeTerminal call continues.

CICS_EpiGetEventExit
This exit enables the user to collect EPI event data.

Function name:
CICS_EpiGetEventExit

Parameters:
Anchor
TermIndex
Wait
Event

When called

Immediately before CICS_EpiGetEvent returns to the caller. The exit can then
examine the data returned, time the response from the system, etc.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

TermIndex
Input parameter. The value to be returned to the application in the
TermIndex parameter of the CICS_EpiGetEvent call to which this exit
relates.

Wait Input parameter. The value supplied for the Wait parameter of the
CICS_EpiGetEvent call to which this exit relates.

Event Input parameter. The value to be returned to the application in the Event
parameter of the CICS_EpiGetEvent call to which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiGetEvent call continues.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiGetEvent call
continues.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiGetEvent call
continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then processing of the CICS_EpiGetEvent call continues.

CICS_EpiSystemIdExit
This exit enables the user to supply a new EPI system ID, if the value supplied by
CICS_Epi_AddTerminal or CICS_EpiAddExTerminal is not valid.

194 CICS TG for Multiplatforms V9.2: Programming Reference

Function name:
CICS_EpiSystemIdExit

Parameters:
Anchor
NameSpace
System
NetName
DevType
FailedSystem
Reason
SubReason
UserId
PassWord

When called

Immediately before CICS_EpiAddTerminal or CICS_EpiAddExTerminal returns to the
application when an error occurred while trying to add the terminal. The error can
be CICS_EPI_ERR_SYSTEM, CICS_EPI_ERR_FAILED, or
CICS_EPI_ERR_SERVER_DOWN. It occurs whether or not
CICS_EpiAddTerminalExit or CICS_EpiAddExTerminal has been called previously.

Note: On some systems the completion of CICS_EpiAddTerminal or
CICS_EpiAddExTerminal is returned to the application asynchronously, and in this
case this exit will be called asynchronously.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

NameSpace
Input-output parameter. The NameSpace parameter used in the failed
CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

System
Input-output parameter. The System parameter used in the failed
CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

NetName
Input-output parameter. The NetName parameter used in the failed
CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

DevType
Input-output parameter. The DevType parameter used in the failed
CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

FailedSystem
Input parameter. The identifier of the system on which the failure
occurred.

Reason
Input parameter. The reason for the failure:. CICS_EPI_ERR_SYSTEM or
CICS_EPI_ERR_FAILED.

SubReason
Input parameter. More about the failure.

UserId
Output parameter. Not used.

Chapter 5. Exits 195

PassWord
Output parameter. Not used.

Return codes

CICS_EXIT_OK
The EPI will retry the CICS_EpiAddTerminal or CICS_EpiAddExTerminal call
using the values specified as output of this exit. Note that in this case the
considerations described in “CICS_EpiAddTerminalExit” on page 187
apply.

CICS_EXIT_DONT_ADD_TERMINAL
The CICS_EpiAddTerminal or CICS_EpiAddExTerminal is ended with a return
code of CICS_EPI_ERR_FAILED.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then the error that caused the exit to be called is
returned to the application.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then the error that caused the exit to be called is
returned to the application.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then the error that caused the exit to be called is returned to
the application.

CICS_EpiTranFailedExit
This exit enables the user to collect data if an EIP transaction ends abnormally or if
an EPI terminal fails.

Function Name:
CICS_EpiTranFailedExit

Parameters:Anchor
TermIndex
Wait
Event

When called

Immediately before CICS_EpiGetEvent returns to the caller, with or without
GetEventExit, when the event is CICS_EPI_EVENT_END_TRAN, and the
AbendCode field is not blank.

Note that there are some failures on remote systems that can occur and will simply
cause the presentation of a 3270 data stream with an error message and no abend
code in the CICS_EPI_EVENT_END_TRAN. This error message might not even
occur on the same event as the CICS_EPI_EVENT_END_TRAN. If the exit requires
to handle this situation, it can monitor it through CICS_EpiGetEventExit and scan
the appropriate 3270 data streams.

Parameters

Anchor
Input parameter. The pointer set up by CICS_EpiInitializeExit.

196 CICS TG for Multiplatforms V9.2: Programming Reference

TermIndex
Input parameter. The value to be returned to the application in the
TermIndex parameter of the CICS_EpiGetEvent call to which this exit relates.

Wait Input parameter. The value supplied for the Wait parameter of the
CICS_EpiGetEvent call to which this exit relates.

Event Input parameter. The value to be returned to the application in the Event
parameter of the CICS_EpiGetEvent call to which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiGetEvent call continues.

CICS_EXIT_BAD_ANCHOR
CICS detected an invalid anchor field. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiGetEvent call
continues.

CICS_EXIT_BAD_PARM
CICS detected an invalid parameter. The EPI writes a CICS Transaction
Gateway trace record, and then processing of the CICS_EpiGetEvent call
continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a CICS Transaction Gateway trace
record, and then processing of the CICS_EpiGetEvent call continues.

Chapter 5. Exits 197

198 CICS TG for Multiplatforms V9.2: Programming Reference

Chapter 6. Code pages

This table provides the following information about each code page: canonical
name, description and CCSID.

A canonical name is converted to the corresponding CCSID so that a CICS server
can determine the code page location for a data stream. The CICS server must
support EPI Version 2 for the encodings to be implemented. To find out which
CCSIDs your CICS server supports check your CICS Server documentation.

Canonical name Description CCSID

Cp1252 Windows Latin-1 5348

ISO8859_1 ISO 8859-1, Latin alphabet No. 1 819

UTF8 Eight-bit Unicode Transformation format 1208

ASCII American Standard Code for Information Interchange 437

Big5 Big 5, Traditional Chinese 950

Cp037 USA, Canada (Bilingual, French), Netherlands, Portugal, Brazil, Australia 37

Cp273 IBM Austria, Germany 273

Cp277 IBM Denmark, Norway 277

Cp278 IBM Finland, Sweden 278

Cp280 IBM Italy 280

Cp284 IBM Catalan/Spain, Spanish Latin America 284

Cp285 IBM United Kingdom, Ireland 285

Cp297 IBM France 297

Cp420 IBM Arabic 420

Cp424 IBM Hebrew 424

Cp437 MS-DOS United States, Australia, New Zealand, South Africa 437

Cp500 EBCDIC 500V1 500

Cp838 IBM Thailand extended SBCS 9030

Cp850 MS-DOS Latin-1 850

Cp852 MS-DOS Latin-2 852

Cp855 IBM Cyrillic 855

Cp856 IBM Hebrew 856

Cp857 IBM Turkish 857

Cp858 Variant of Cp850 with euro character 858

Cp862 PC Hebrew 862

Cp864 PC Arabic 864

Cp865 MS-DOS Nordic 865

Cp866 MS-DOS Russian 866

Cp868 MS-DOS Pakistan 868

Cp869 IBM Modern Greek 869

Cp870 IBM Multilingual Latin-2 870

© Copyright IBM Corp. 1998, 2016 199

Canonical name Description CCSID

Cp871 IBM Iceland 871

Cp874 IBM Thai 9066

Cp875 IBM Greek 875

Cp918 IBM Pakistan (Urdu) 918

Cp921 IBM Latvia, Lithuania (IBM AIX®, DOS) 921

Cp922 IBM Estonia (IBM AIX, DOS) 922

Cp923 IBM Latin-9 923

Cp930 Japanese Katakana-Kanji mixed with 4370 UDC, superset of 5026 930

Cp933 Korean Mixed with 1880 UDC, superset of 5029 933

Cp935 Simplified Chinese Host mixed with 1880 UDC, superset of 5031 935

Cp937 Traditional Chinese Host mixed with 6204 UDC, superset of 5033 937

Cp939 Japanese Latin Kanji mixed with 4370 UDC, superset of 5035 939

Cp942 IBM OS/2 Japanese, superset of Cp932 942

Cp942C Variant of Cp942 942

Cp943 IBM OS/2 Japanese, superset of Cp932 and Shift-JIS 943

Cp943C Variant of Cp943 943

Cp948 OS/2 Chinese (Taiwan) superset of 938 948

Cp949 PC Korean 949

Cp949C Variant of Cp949 949

Cp950 PC Chinese (Hong Kong, Taiwan) 950

Cp964 IBM AIX Chinese (Taiwan) 964

Cp970 IBM AIX Korean 970

Cp1006 IBM AIX Pakistan (Urdu) 1006

Cp1025 IBM Multilingual Cyrillic: Bulgaria, Bosnia, Herzegovinia, Macedonia
(FYR)

1025

Cp1026 IBM Latin-5, Turkey 1026

Cp1097 IBM Iran (Farsi)/Persian 1097

Cp1098 IBM Iran (Farsi)/Persian 1098

Cp1112 IBM Latvia, Lithuania 1112

Cp1122 IBM Estonia 1122

Cp1123 IBM Ukraine 1123

Cp1124 IBM AIX Ukraine 1124

Cp1140 Variant of Cp037 with euro character 1140

Cp1141 Variant of Cp273 with euro character 1141

Cp1142 Variant of Cp277 with euro character 1142

Cp1143 Variant of Cp278 with euro character 1143

Cp1144 Variant of Cp280 with euro character 1144

Cp1145 Variant of Cp284 with euro character 1145

Cp1146 Variant of Cp285 with euro character 1146

Cp1147 Variant of Cp297 with euro character 1147

Cp1148 Variant of Cp500 with euro character 1148

200 CICS TG for Multiplatforms V9.2: Programming Reference

Canonical name Description CCSID

Cp1149 Variant of Cp871 with euro character 1149

Cp1250 Windows Eastern European 5346

Cp1251 Windows Cyrillic 5347

Cp1253 Windows Greek 5349

Cp1254 Windows Turkish 5350

Cp1255 Windows Hebrew 5351

Cp1256 Windows Arabic 5352

Cp1257 Windows Baltic 5353

Cp1258 Windows Vietnamese 5354

Cp1381 IBM OS/2, DOS People's Republic of China (PRC) 1381

Cp1383 IBM AIX, People's Republic of China (PRC) 1383

EUC_CN GB2312, EUC encoding, Simplified Chinese 1383

EUC_JP JIS X 0201, 0208, 0212, EUC encoding, Japanese 954

EUC_KR KS C 5601, EUC encoding, Korean 970

GBK GBK, Simplified Chinese 1386

ISO8859_2 ISO 8859-2, Latin alphabet No. 2 912

ISO8859_5 ISO 8859-5, Latin/Cyrillic alphabet 915

ISO8859_6 ISO 8859-6, Latin/Arabic alphabet 1089

ISO8859_7 ISO 8859-7, Latin/Greek alphabet 813

ISO8859_8 ISO 8859-8, Latin/Hebrew alphabet 916

ISO8859_9 ISO 8859-9, Latin alphabet No. 5 920

ISO8859_15_FDIS ISO 8859-15, Latin alphabet No. 9 923

JIS0201 JIS X 0201, Japanese 5050

JIS0208 JIS X 0208, Japanese 5050

JIS0212 JIS X 0212, Japanese 5050

EUC_TW CNS 11643 (Plane 1-3), EUC encoding, Traditional Chinese 964

MS932 Windows Japanese 943

MS936 Windows Simplified Chinese 1386

MS949 Windows Korean 1363

Chapter 6. Code pages 201

202 CICS TG for Multiplatforms V9.2: Programming Reference

Part 2. Appendixes

© Copyright IBM Corp. 1998, 2016 203

204 CICS TG for Multiplatforms V9.2: Programming Reference

Glossary

This glossary defines the terms and abbreviations used in CICS Transaction
Gateway and in the information centers.

A

abnormal end of task (abend)
The termination of a task, job, or subsystem because of an error condition
that recovery facilities cannot resolve.

Advanced program-to-program communication (APPC)
An implementation of the SNA/SDLC LU 6.2 protocol that allows
interconnected systems to communicate and share the processing of
programs. The Client daemon uses APPC to communicate with CICS
systems.

APAR See Authorized program analysis report.

API See application programming interface.

APPC See Advanced program-to-program communication.

application programming interface (API)
A functional interface that allows an application program that is written in
a high-level language to use specific data or functions of the operating
system or another program.

APPLID

1. On CICS Transaction Gateway: The application identifier that is used to
identify connections on the CICS server and tasks in a CICSplex. See
also APPLID qualifier and fully qualified APPLID.

2. On CICS Transaction Server: The name by which a CICS system is
known in a network of interconnected CICS systems. CICS Transaction
Gateway application identifiers do not need to be defined in
SYS1.VTAMLST. The CICS APPLID is specified in the APPLID system
initialization parameter.

APPLID qualifier
Optionally used as a high-level qualifier for the APPLID to form a fully
qualified APPLID. See also APPLID and fully qualified APPLID.

ARM See automatic restart manager.

ATI See automatic transaction initiation.

attach In SNA, the request unit that flows on a session to initiate a conversation.

Attach Manager
The component of APPC that matches attaches received from remote
computers to accepts issued by local programs.

Authorized Program Analysis Report (APAR)
A request for correction of a defect in a current release of an IBM-supplied
program.

autoinstall
A method of creating and installing resources dynamically as terminals log
on, and deleting them at logoff.

© Copyright IBM Corp. 1998, 2016 205

automatic restart manager (ARM)
An IBM z/OS recovery function that can improve the availability of
specific batch jobs or started tasks, and therefore result in faster
resumption of productive work.

automatic transaction initiation (ATI)
The initiation of a CICS transaction by an internally generated request, for
example, the issue of an EXEC CICS START command or the reaching of a
transient data trigger level. CICS resource definition can associate a trigger
level and a transaction with a transient data destination. When the number
of records written to the destination reaches the trigger level, the specified
transaction is automatically initiated.

B

Basic Mapping Support
Basic mapping support is an interface between CICS and CICS application
programs that move 3270 data streams to and from a terminal. The format
of the input and output display data is defined by the BMS commands.

bean A definition or instance of a JavaBeans component. See also JavaBeans.

bean-managed transaction
A transaction where the JEE bean itself is responsible for administering
transaction tasks such as committal or rollback. See also container-managed
transaction.

BIND command
In SNA, a request to activate a session between two logical units (LUs).

BMS see Basic Mapping Support

business logic
The part of a distributed application that is concerned with the application
logic rather than the user interface of the application. Compare with
presentation logic.

C

CA See certificate authority.

callback
A way for one thread to notify another application thread that an event
has happened.

CCIN The CCIN transaction is invoked by the Client daemon, for each TCP/IP
or SNA connection established. CCIN installs a Client connection on the
CICS server.

CCSID
Coded Character Set Identifier. A 16-bit number that includes a specific set
of encoding scheme identifiers, character set identifiers, code page
identifiers, and other information that uniquely identifies the coded
graphic-character representation.

certificate authority (CA)
In computer security, an organization that issues certificates. The certificate
authority authenticates the certificate owner's identity and the services that
the owner is authorized to use. It issues new certificates and revokes
certificates from users who are no longer authorized to use them.

206 CICS TG for Multiplatforms V9.2: Programming Reference

change-number-of-sessions (CNOS)
An internal transaction program that regulates the number of parallel
sessions between the partner LUs with specific characteristics.

channel
A channel is a set of containers, grouped together to pass data to CICS.
There is no limit to the number of containers that can be added to a
channel, and the size of individual containers is limited only by the
amount of storage that you have available.

CICS connectivity components
The Client daemon, the EXCI (External CICS Interface), and the IPIC (IP
Interconnectivity) protocol are collectively called the 'CICS connectivity
components'. The Client daemon handles the TCP/IP and the SNA
protocols.

CICS Request Exit
An exit that is invoked by the CICS Transaction Gateway for IBM z/OS at
run time to determine which CICS server to use.

CICS server name
A defined server known to CICS Transaction Gateway.

CICS TS
Abbreviation of CICS Transaction Server.

class In object-oriented programming, a model or template that can be
instantiated to create objects with a common definition and therefore,
common properties, operations, and behavior. An object is an instance of a
class.

CLASSPATH
In the execution environment, an environment variable keyword that
specifies the directories in which to look for class and resource files.

Client API
The Client API is the interface used by Client applications to interact with
CICS using the Client daemon. See External Call Interface, External
Presentation Interface, and External Security Interface.

Client application
The client application is a user application written in a supported
programming language that uses one or more of the CICS Transaction
Gateways APIs.

Client daemon
The Client daemon manages TCP/IP and SNA connections to CICS servers
on UNIX, Linux, and Windows. It processes ECI, EPI, and ESI requests,
sending and receiving the appropriate flows to and from the CICS server
to satisfy Client application requests. It can support concurrent requests to
one or more CICS servers. The CICS Transaction Gateway initialization file
defines the operation of the Client daemon and the servers and protocols
used for communication.

client/server
Pertaining to the model of interaction in distributed data processing in
which a program on one computer sends a request to a program on
another computer and awaits a response. The requesting program is called
a client; the answering program is called a server.

CNOS See Change-Number-of-Sessions.

Glossary 207

code page
An assignment of hexadecimal identifiers (code points) to graphic
characters. Within a given code page, a code point can have only one
meaning.

color mapping file
A file that is used to customize the 3270 screen color attributes on client
workstations.

COMMAREA
See communication area.

commit phase
The second phase in a XA process. If all participants acknowledge that
they are prepared to commit , the transaction manager issues the commit
request. If any participant is not prepared to commit the transaction
manager issues a back-out request to all participants.

communication area (COMMAREA)
A communication area that is used for passing data both between
programs within a transaction and between transactions.

configuration file
A file that specifies the characteristics of a program, system device, server
or network.

connection
In data communication, an association established between functional units
for conveying information.

In Open Systems Interconnection architecture, an association established by
a given layer between two or more entities of the next higher layer for the
purpose of data transfer.

In TCP/IP, the path between two protocol application that provides
reliable data stream delivery service.

In Internet, a connection extends from a TCP application on one system to
a TCP application on another system.

container
A container is a named block of data designed for passing information
between programs. A container is a "named COMMAREA" that is not
limited to 32KB. Containers are grouped together in sets called channels.

container-managed transaction
A transaction where the EJB container is responsible for administration of
tasks such as committal or rollback. See also bean-managed transaction.

control table
In CICS, a storage area used to describe or define the configuration or
operation of the system.

conversation
A connection between two programs over a session that allows them to
communicate with each other while processing a transaction.

conversation security
In APPC, a process that allows validation of a user ID or group ID and
password before establishing a connection.

CTIN The CTIN transaction is invoked by the Client daemon to install a Client
terminal definition on the CICS server.

208 CICS TG for Multiplatforms V9.2: Programming Reference

D

daemon
A program that runs unattended to perform continuous or periodic
systemwide functions, such as network control. A daemon can be launched
automatically, such as when the operating system is started, or manually.

data link control (DLC)
A set of rules used by nodes on a data link (such as an SDLC link or a
token ring) to accomplish an orderly exchange of information.

DBCS See double-byte character set.

default CICS server
The CICS server that is used if a server name is not specified on an ECI,
EPI, or ESI request. The default CICS server name is defined as a product
wide setting in the configuration file (ctg.ini).

dependent logical unit
A logical unit that requires assistance from a system services control point
(SSCP) to instantiate an LU-to-LU session.

deprecated
Pertaining to an entity, such as a programming element or feature, that is
supported but no longer recommended, and that might become obsolete.

digital certificate
An electronic document used to identify an individual, server, company, or
some other entity, and to associate a public key with the entity. A digital
certificate is issued by a certificate authority and is digitally signed by that
authority.

digital signature
Information that is encrypted with an entity's private key and is appended
to a message to assure the recipient of the authenticity and integrity of the
message. The digital signature proves that the message was signed by the
entity that owns, or has access to, the private key or shared secret
symmetric key.

distinguished name
The name that uniquely identifies an entry in a directory. A distinguished
name is made up of attribute:value pairs, separated by commas. The
format of a distinguished name is defined by RFC4514. For more
information, see http://www.ietf.org/rfc/rfc4514.txt. See also realm
name and identity propagation.

distributed application
An application for which the component application programs are
distributed between two or more interconnected processors.

distributed identity
User identity information that originates from a remote system. The
distributed identity is created in one system and is passed to one or more
other systems over a network. See also distinguished name and realm name.

distributed processing
The processing of different parts of the same application in different
systems, on one or more processors.

distributed program link (DPL)
A link that enables an application program running on one CICS system to
link to another application program running in another CICS system.

Glossary 209

DLC See data link control.

DLL See dynamic link library.

domain
In the Internet, a part of a naming hierarchy in which the domain name
consists of a sequence of names (labels) separated by periods (dots).

domain name
In TCP/IP, a name of a host system in a network.

domain name server
In TCP/IP, a server program that supplies name-to-address translation by
mapping domain names to IP addresses. Synonymous with name server.

dotted decimal notation
The syntactical representation for a 32-bit integer that consists of four 8-bit
numbers written in base 10 with periods (dots) separating them. It is used
to represent IP addresses.

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese and Korean, which contain more
symbols than can be represented by 256 code points, require double-byte
character sets. Because each character requires 2 bytes, the typing, display,
and printing of DBCS characters requires hardware and programs that
support DBCS. Contrast with single-byte character set.

DPL See distributed program link.

dynamic link library (DLL)
A collection of runtime routines made available to applications as required.

dynamic server selection (DSS)
The mapping of a logical CICS server name to an actual CICS server name
at run time.

E

EBCDIC
See extended binary-coded decimal interchange code.

ECI See external call interface.

EJB See Enterprise JavaBeans.

emulation program
A program that allows a host system to communicate with a workstation
in the same way as it would with the emulated terminal.

emulator
A program that causes a computer to act as a workstation attached to
another system.

encryption
The process of transforming data into an unintelligible form in such a way
that the original data can be obtained only by using a decryption process.

enterprise bean
A Java component that can be combined with other resources to create JEE
applications. There are three types of enterprise beans: entity beans, session
beans, and message-driven beans.

210 CICS TG for Multiplatforms V9.2: Programming Reference

Enterprise Information System (EIS)
The applications that comprise an enterprise's existing system for handling
company-wide information. An enterprise information system offers a
well-defined set of services that are exposed as local or remote interfaces or
both.

Enterprise JavaBeans (EJB)
A component architecture defined by Oracle for the development and
deployment of object-oriented, distributed, enterprise-level applications
(JEE).

environment variable
A variable that specifies the operating environment for a process. For
example, environment variables can describe the home directory, the
command search path, the terminal in use, and the current time zone.

EPI See external presentation interface.

ESI See external security interface.

Ethernet
A local area network that allows multiple stations to access the
transmission medium at will without prior coordination, avoids contention
by using carrier sense and deference, and resolves contention by using
collision detection and transmission. Ethernet uses carrier sense multiple
access with collision detection (CSMA/CD).

EXCI See external CICS interface.

extended binary-coded decimal interchange code (EBCDIC)
A coded character set of 256 8-bit characters developed for the
representation of textual data.

extended logical unit of work (extended LUW)
A logical unit of work that is extended across successive ECI requests to
the same CICS server.

external call interface (ECI)
A facility that allows a non CICS program to run a CICS program. Data is
exchanged in a COMMAREA or a channel as for usual CICS interprogram
communication.

external communications interface (EXCI)
An MVS™ application programming interface provided by CICS
Transaction Server for IBM z/OS that enables a non-CICS program to call a
CICS program and to pass and receive data using a COMMAREA. The
CICS application program is started as if linked-to by another CICS
application program.

external presentation interface (EPI)
A facility that allows a non CICS program to appear to CICS as one or
more standard 3270 terminals. 3270 data can be presented to the user by
emulating a 3270 terminal or by using a graphical user interface.

external security interface (ESI)
A facility that enables client applications to verify and change passwords
for user IDs on CICS servers.

External Security Manager (ESM)
A security manager that operates outside CICS. For example, RACF® can
be used as an external security manager with CICS Transaction Server.

Glossary 211

F

firewall
A configuration of software that prevents unauthorized traffic between a
trusted network and an untrusted network.

FMH See function management header.

fully qualified APPLID
Used to identify CICS Transaction Gateway connections on the CICS server
and tasks in a CICSplex. It is composed of an APPLID with an optional
network qualifier. See also APPLID and APPLID qualifier.

function management header (FMH)
One or more headers, optionally present in the leading request units (RUs)
of an RU chain, that allow one LU to (a) select a transaction program or
device at the session partner and control the way in which the user data it
sends is handled at the destination, (b) change the destination or the
characteristics of the data during the session, and (c) transmit between
session partners status or user information about the destination (for
example, a program or device). Function management headers can be used
with LU type 1, 4, and 6.2 protocols.

G

Gateway
A device or program used to connect two systems or networks.

Gateway classes
The Gateway classes provide APIs for ECI, EPI, and ESI that allow
communication between Java client applications and the Gateway daemon.

Gateway daemon
A long-running Java process that listens for network requests from remote
Client applications. It issues these requests to CICS servers using the CICS
connectivity components. The Gateway daemon on IBM z/OS processes
ECI requests and on UNIX, Windows, and Linux platforms it process EPI
and ESI requests as well. The Gateway daemon uses the GATEWAY section
of ctg.ini for its configuration.

Gateway group
A set of Gateway daemons that share an APPLID qualifier, and where each
Gateway daemon has a unique APPLID within the Gateway group.

Gateway token
A token that represents a specific Gateway daemon, when a connection is
established successfully. Gateway tokens are used in the C language
statistics and ECI V2 APIs.

global transaction
A recoverable unit of work performed by one or more resource managers
in a distributed transaction processing environment and coordinated by an
external transaction manager.

H

HA group
See highly available Gateway group.

highly available Gateway group (HA group)
A Gateway group that utilizes TCP/IP load balancing, and can be viewed

212 CICS TG for Multiplatforms V9.2: Programming Reference

as a single logical Gateway daemon. A Gateway daemon instance in a HA
group can recover indoubt XA transactions on behalf of another Gateway
daemon within the HA group.

host A computer that is connected to a network (such as the Internet or an SNA
network) and provides an access point to that network. The host can be
any system; it does not have to be a mainframe.

host address
An IP address that is used to identify a host on a network.

host ID
In TCP/IP, that part of the IP address that defines the host on the network.
The length of the host ID depends on the type of network or network class
(A, B, or C).

host name
In the Internet suite of protocols, the name given to a computer.
Sometimes, host name is used to mean the fully qualified domain name;
other times, it is used to mean the most specific subname of a fully
qualified domain name. For example, if mycomputer.city.company.com is
the fully qualified domain name, either of the following can be considered
the host name: mycomputer.city.company.com, mycomputer.

hover help
Information that can be viewed by holding a mouse over an item such as
an icon in the user interface.

HTTP See Hypertext Transfer Protocol.

HTTPS
See Hypertext Transfer Protocol Secure.

Hypertext Transfer Protocol (HTTP)
In the Internet suite of protocols, the protocol that is used to transfer and
display hypertext and XML documents.

Hypertext Transfer Protocol Secure (HTTPS)
A TCP/IP protocol that is used by World Wide Web servers and Web
browsers to transfer and display hypermedia documents securely across
the Internet.

I

ID data
An ID data structure holds an individual result from a statistical API
function.

identity propagation
The concept of preserving a user's security identity information (the
distributed identity) independent of where the identity information has
been created, for use during authorization and for auditing purposes. The
distributed identity is carried with a request from the distributed client
application to the CICS server, and is incorporated in the access control of
the server as part of the authorization process, for example, using RACF.
CICS Transaction Gateway flows the distributed identity to CICS. See also
distributed identity.

identity propagation login module
A code component that provides support for identity propagation. The
identity propagation login module is included with the CICS Transaction

Glossary 213

Gateway ECI resource adapter (cicseci.rar), conforms to the JAAS
specification and is contained in a single Java class within the resource
adapter. See also identity propagation.

iKeyman
A tool for maintaining digital certificates for JSSE.

in doubt
The state of a transaction that has completed the prepare phase of the
two-phase commit process and is waiting to be completed.

in flight
The state of a transaction that has not yet completed the prepare phase of
the two-phase commit process.

independent logical unit
A logical unit (LU) that can both send and receive a BIND, and which
supports single, parallel, and multiple sessions. See BIND.

<install_path>
This term is used in file paths to represent the directory where you
installed the product. For more information, see ../installing/topics/
cclahlinstfiles.dita.

Internet Architecture Board
The technical body that oversees the development of the internet suite of
protocols known as TCP/IP.

Internet Protocol (IP)
In TCP/IP, a protocol that routes data from its source to its destination in
an Internet environment.

interoperability
The capability to communicate, run programs, or transfer data among
various functional units in a way that requires the user to have little or no
knowledge of the unique characteristics of those units.

IP Internet Protocol.

IP address
A unique address for a device or logical unit on a network that uses the IP
standard.

IP interconnectivity (IPIC)
The IPIC protocol enables Distributed Program Link (DPL) access from a
non-CICS program to a CICS program over TCP/IP, using the External
Call Interface (ECI). IPIC passes and receives data using COMMAREAs, or
containers.

IPIC See IP interconnectivity.

J

Java An object-oriented programming language for portable interpretive code
that supports interaction among remote objects.

Java 2 Platform, Enterprise Edition (J2EE, Java EE)
An environment for developing and deploying enterprise applications,
defined by Oracle. The JEE platform consists of a set of services,
application programming interfaces (APIs), and protocols that allow
multi-tiered, Web-based applications to be developed.

214 CICS TG for Multiplatforms V9.2: Programming Reference

JavaBeans
As defined for Java by Oracle, a portable, platform-independent, reusable
component model.

Java Client application
The Java client application is a user application written in Java, including
servlets and enterprise beans, that uses the Gateway classes.

Java Development Kit (JDK)
The name of the software development kit that Oracle provided for the
Java platform.

JavaGateway
The URL of the CICS Transaction Gateway with which the Java Client
application communicates. The JavaGateway takes the form
protocol://address:port. These protocols are supported: tcp://, ssl://,
and local:. CICS Transaction Gateway runs with the default port value of
2006. This parameter is not relevant if you are using the protocol local:.
For example, you might specify a JavaGateway of tcp://
ctg.business.com:2006. If you specify the protocol as local: you will
connect directly to the CICS server, bypassing any CICS Transaction
Gateway servers.

Java Native Interface (JNI)
A programming interface that allows Java code running in a Java virtual
machine to work with functions that are written in other programming
languages.

Java Runtime Environment (JRE)
A subset of the Java Software Development Kit (SDK) that supports the
execution, but not the development, of Java applications. The JRE
comprises the Java Virtual Machine (JVM), the core classes, and supporting
files.

Java Secure Socket Extension (JSSE)
A Java package that enables secure Internet communications. It implements
a Java version of the Secure Sockets Layer (SSL) and Transport Layer
Security (TSL) protocols and supports data encryption, server
authentication, message integrity, and optionally client authentication.

Java virtual machine (JVM)
A software implementation of a processor that runs compiled Java code
(applets and applications).

JavaScript Object Notation (JSON)
A lightweight data-interchange format that is based on the object-literal
notation of JavaScript. JSON is programming-language neutral but uses
conventions from languages that include C, C++, C#, Java, JavaScript, Perl,
Python.

JCA See JEE Connector Architecture.

JDK See Java development kit.

JEE (formerly J2EE)
See Java 2 Platform Enterprise Edition.

JEE Connector architecture (JCA)
A standard architecture for connecting the JEE platform to heterogeneous
enterprise information systems (EIS).

JNI See Java Native Interface.

Glossary 215

JRE See Java Runtime Environment.

JSON See JavaScript Object Notation (JSON).

JSON Schema
A JavaScript Object Notation (JSON) document that describes the structure
and constrains the contents of other JSON documents.

JSON web service
A web service that accepts and produces JSON payloads.

JSSE See Java Secure Socket Extension.

JVM See Java Virtual Machine.

K

keyboard mapping
A list that establishes a correspondence between keys on the keyboard and
characters displayed on a display screen, or action taken by a program,
when that key is pressed.

Keystore
In the JSSE protocol, a file that contains public keys, private keys, trusted
roots, and certificates.

L

local mode
Local mode describes the use of the CICS Transaction Gateway local
protocol. The Gateway daemon is not used in local mode.

local transaction
A recoverable unit of work managed by a resource manager and not
coordinated by an external transaction manager.

logical CICS server
An alias that can be passed on an ECI request when running in remote
mode to CICS Transaction Gateway. The alias name is mapped to an actual
CICS server name by a dynamic server selection (DSS) mechanism.

logical end of day
The local time of day on the 24-hour clock to which a Gateway daemon
aligns statistics intervals. If the statistics interval is 24 hours, this is the
local time at which interval statistics will be reset and, on IBM z/OS,
optionally recorded to SMF. This time is set using the stateod parameter in
the configuration file (ctg.ini).

logical unit (LU)
In SNA, a port through which a user accesses the SNA network to
communicate with another user and through which the user accesses the
functions provided by system services control points (SSCP). An LU can
support at least two sessions, one with an SSCP and one with another LU,
and might be capable of supporting many sessions with other logical units.
See also network addressable unit, primary logical unit, secondary logical unit.

logical unit 6.2 (LU 6.2)
A type of logical unit that supports general communications between
programs in a distributed processing environment.

The LU type that supports sessions between two applications using APPC.

216 CICS TG for Multiplatforms V9.2: Programming Reference

logical unit of work (LUW)
The processing that a program performs between synchronization points.

LU See logical unit.

LU 6.2 See logical unit 6.2.

LU-LU session
In SNA, a session between two logical units (LUs) in an SNA network. It
provides communication between two users, or between a user and an LU
services component.

LU-LU session type 6.2
In SNA, a type of session for communication between peer systems.
Synonymous with APPC protocol.

LUW See logical unit of work.

M

managed mode
Describes an environment in which connections are obtained from
connection factories that the JEE server has set up. Such connections are
owned by the JEE server.

media access control (MAC) sublayer
One of two sublayers of the ISO Open Systems Interconnection data link
layer proposed for local area networks by the IEEE Project 802 Committee
on Local Area Networks and the European Computer Manufacturers
Association (ECMA). It provides functions that depend on the topology of
the network and uses services of the physical layer to provide services to
the logical link control (LLC) sublayer. The OSI data link layer corresponds
to the SNA data link control layer.

method
In object-oriented programming, an operation that an object can perform.
An object can have many methods.

mode In SNA, a set of parameters that defines the characteristics of a session
between two LUs.

N

name server
In TCP/IP, synonym for Domain Name Server. In Internet
communications, a host that translates symbolic names assigned to
networks and hosts into IP addresses.

NAU See network addressable unit.

network address
In SNA, an address, consisting of subarea and element fields, that
identifies a link, link station, or network addressable unit (NAU). Subarea
nodes use network addresses; peripheral nodes use local addresses. The
boundary function in the subarea node to which a peripheral node is
attached transforms local addresses to network addresses and vice versa.
See also network name.

network addressable unit (NAU)
In SNA, a logical unit, a physical unit, or a system services control point.
The NAU is the origin or the destination of information transmitted by the
path control network. See also logical unit, network address, network name.

Glossary 217

network name
In SNA, the symbolic identifier by which users refer to a network
addressable unit (NAU), link station, or link. See also network address.

node type
In SNA, a designation of a node according to the protocols it supports and
the network addressable units (NAUs) it can contain. Four types are
defined: 1, 2, 4, and 5. Type 1 and type 2 nodes are peripheral nodes; type
4 and type 5 nodes are subarea nodes.

nonextended logical unit of work
See SYNCONRETURN.

nonmanaged mode
An environment in which the application is responsible for generating and
configuring connection factories. The JEE server does not own or know
about these connection factories and therefore provides no Quality of
Service facilities.

O

object In object-oriented programming, a concrete realization of a class that
consists of data and the operations associated with that data.

object-oriented (OO)
Describing a computer system or programming language that supports
objects.

one-phase commit
A protocol with a single commit phase, that is used for the coordination of
changes to recoverable resources when a single resource manager is
involved.

OO See object-oriented.

OSGi A specification that describes a modular system and a service platform for
the Java programming language that implements a complete and dynamic
component model.

P

pacing
A technique by which a receiving station controls the rate of transmission
of a sending station to prevent overrun.

parallel session
In SNA, two or more concurrently active sessions between the same two
LUs using different pairs of network addresses. Each session can have
independent session parameters.

partner logical unit (PLU)
In SNA, the remote participant in a session.

partner transaction program
The transaction program engaged in an APPC conversation with a local
transaction program.

password phrase
A character string, between 9 and 100 characters in length, that is used for
authentication when a user signs on to CICS. Because a password phrase
can provide an exponentially greater number of possible combinations of
characters than a standard 8 character password, the use of password

218 CICS TG for Multiplatforms V9.2: Programming Reference

phrases can enhance system security. Password phrases are verified by the
External Security Manager (ESM), and can contain alphanumeric
characters, and any of the other non alphanumeric characters that are
supported by the ESM. See also External Security Manager (ESM).

PING In Internet communications, a program used in TCP/IP networks to test
the ability to reach destinations by sending the destinations an Internet
Control Message Protocol (ICMP) echo request and waiting for a reply.

PLU See primary logical unit and partner logical unit.

port An endpoint for communication between devices, generally referring to a
logical connection. A 16-bit number identifying a particular Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP) resource within a
given TCP/IP node.

port sharing
A way of load balancing TCP/IP connections across a group of servers
running in the same IBM z/OS image.

prepare phase
The first phase of a XA process in which all participants are requested to
confirm readiness to commit.

presentation logic
The part of a distributed application that is concerned with the user
interface of the application. Compare with business logic.

primary logical unit (PLU)
In SNA, the logical unit that contains the primary half-session for a
particular logical unit-to-logical unit (LU-to-LU) session. See also secondary
logical unit.

<product_data_path>
This term represents the directory used by the Windows CICS Transaction
Gateway for common application data. For more information, see
../installing/topics/cclahlinstfiles.dita.

protocol boundary
The signals and rules governing interactions between two components
within a node.

Q

Query strings
Query strings are used in the statistical data API. A query string is an
input parameter, specifying the statistical data to be retrieved.

R

RACF See Resource Access Control Facility.

realm A named collection of users and groups that can be used in a specific
security context. See also distinguished name and identity propagation.

Recoverable resource management services (RRMS)
The registration services, context services, and resource recovery services
provided by the IBM z/OS sync point manager that enable consistent
changes to be made to multiple protected resources.

Resource Access Control Facility (RACF)
An IBM licensed program that provides access control by identifying users
to the system; verifying users of the system; authorizing access to protected

Glossary 219

resources; logging detected unauthorized attempts to enter the system; and
logging detected accesses to protected resources.

region In workload management on CICS Transaction Gateway for Windows, an
instance of a CICS server.

remote mode
Remote mode describes the use of one of the supported CICS Transaction
Gateway network protocols to connect to the Gateway daemon.

remote procedure call (RPC)
A protocol that allows a program on a client computer to run a program
on a server.

Request monitoring exits
Exits that provide information about individual requests as they are
processed by the CICS Transaction Gateway.

request unit (RU)
In SNA, a message unit that contains control information such as a request
code, or function management (FM) headers, user data, or both.

request/response unit
A generic term for a request unit or a response unit. See also request unit
and response unit.

response file
A file that contains predefined values that is used instead of someone
having to enter those values one at a time. See also CID methodology.

response unit (RU)
A message unit that acknowledges a request unit; it can contain prefix
information received in a request unit.

Resource adapter
A system-level software driver that is used by an EJB container or an
application client to connect to an enterprise information system (EIS). A
resource adapter plugs in to a container; the application components
deployed on the container then use the client API (exposed by adapter) or
tool-generated, high-level abstractions to access the underlying EIS.

resource group ID
A resource group ID is a logical grouping of resources, grouped for
statistical purposes. A resource group ID is associated with a number of
resource group statistics, each identified by a statistic ID.

resource ID
A resource ID refers to a specific resource. Information about the resource
is included in resource-specific statistics. Each statistic is identified by a
statistic ID.

resource manager
The participant in a transaction responsible for controlling access to
recoverable resources. In terms of the CICS resource adapters this is
represented by an instance of a ConnectionFactory.

Resource Recovery Services (RRS)
An IBM z/OS facility that provides two-phase sync point support across
participating resource managers.

RESTful
Pertaining to applications and services that conform to Representational
State Transfer (REST) constraints.

220 CICS TG for Multiplatforms V9.2: Programming Reference

Result set
A result set is a set of data calculated or recorded by a statistical API
function.

Result set token
A result set token is a reference to the set of results returned by a statistical
API function.

rollback
An operation in a transaction that reverses all the changes made during the
unit of work. After the operation is complete, the unit of work is finished.
Also known as a backout.

RPC See remote procedure call.

RRMS
See Recoverable resource management services.

RRS See Resource Recovery Services.

RU See Request unit and Response unit.

S

SBCS See single-byte character set.

secondary logical unit (SLU)
In SNA, the logical unit (LU) that contains the secondary half-session for a
particular LU-LU session. Contrast with primary logical unit. See also
logical unit.

Secure Sockets Layer (SSL)
A security protocol that provides communication privacy. SSL enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. SSL applies only
to internet protocols, and is not applicable to SNA.

server name remapping
See dynamic server selection.

servlet
A Java program that runs on a Web server and extends the server's
functionality by generating dynamic content in response to Web client
requests. Servlets are commonly used to connect databases to the Web.

session limit
In SNA, the maximum number of concurrently active logical unit to logical
unit (LU-to-LU) sessions that a particular logical unit (LU) can support.

sign-on capable terminal
A sign-on capable terminal allows sign-on transactions that are either
supplied with CICS (CESN) or written by the user, to be run. Contrast with
sign-on incapable terminal.

silent installation
Installation that does not display messages or windows during its progress.
Silent installation is not a synonym of "unattended installation", although it
is often improperly used as such.

single-byte character set (SBCS)
A character set in which each character is represented by 1 byte. Contrast
with double-byte character set.

SIT See system initialization table.

Glossary 221

SLU See secondary logical unit.

SMF The IBM z/OS System Management Facility (SMF) collects and records
system and job-related information that your IBM z/OS installation can
use for reporting, billing, analysis, profiling, and maintaining system
security. CICS TG for IBM z/OS writes statistical data to SMF.

SMIT See System Management Interface Tool.

SNA See Systems Network Architecture.

SNA sense data
An SNA-defined encoding of error information In SNA, the data sent with
a negative response, indicating the reason for the response.

SNASVCMG mode name
The SNA service manager mode name. This is the architecturally-defined
mode name identifying sessions on which CNOS is exchanged. Most
APPC-providing products predefine SNASVCMG sessions.

socket A network communication concept, typically representing a point of
connection between a client and a server. A TCP/IP socket will normally
combine a host name or IP address, and a port number.

SSL See Secure Sockets Layer.

SSLight
An implementation of SSL, written in Java, and no longer supported by
CICS Transaction Gateway.

standard error
In many workstation-based operating systems, the output stream to which
error messages or diagnostic messages are sent.

statistic data
A statistic data structure holds individual statistical result returned after
calling a statistical API function.

statistic group
A generic term for a collection of statistic IDs.

statistic ID
A label referring to a specific statistic. A statistic ID is used to retrieve
specific statistical data, and always has a direct relationship with a statistic
group.

subnet
An interconnected, but independent segment of a network that is identified
by its Internet Protocol (IP) address.

subnet address
In Internet communications, an extension to the basic IP addressing scheme
where a portion of the host address is interpreted as the local network
address.

sync point
Synchronization point. During transaction processing, a reference point to
which protected resources can be restored if a failure occurs.

SYNCONRETURN
A request where the CICS server takes a sync point on successful
completion of the server program. Changes to recoverable resources made
by the server program are committed or rolled-back independently of
changes to recoverable resources made by the client program issuing the

222 CICS TG for Multiplatforms V9.2: Programming Reference

ECI request, or changes made by the server in any subsequent ECI request.
Also referred to as a nonextended logical unit of work.

system initialization table (SIT)
A table containing parameters used to start a CICS control region.

System Management Command
An administrative request received by a Gateway daemon (or Gateway
daemon address space on IBM z/OS) from the ctgadmin command (on
UNIX, Linux, or Windows) or the IBM z/OS console. The request might be
made to retrieve information about the Gateway daemon, or to alter some
aspect of Gateway daemon behavior. Typically, a ctgadmin command in the
form ctgadmin <command string> is entered by an operator using the
command line interface, or a modify command in the form /F <job
name>,APPL=<command string> is entered by an operator on the IBM z/OS
console.

System Management Interface Tool (SMIT)
An interface tool of the IBM AIX operating system for installing,
maintaining, configuring, and diagnosing tasks.

Systems Network Architecture (SNA)
An architecture that describes the logical structure, formats, protocols, and
operational sequences for transmitting information units through the
networks and also the operational sequences for controlling the
configuration and operation of networks.

System SSL
An implementation of SSL, no longer supported by CICS Transaction
Gateway on IBM z/OS.

T

TCP/IP
See Transmission Control Protocol/Internet Protocol.

TCP/IP load balancing
The ability to distribute TCP/IP connections across target servers.

terminal emulation
The capability of a personal computer to operate as if it were a particular
type of terminal linked to a processing unit and to access data. See also
emulator, emulation program.

thread A stream of computer instructions that is in control of a process. In some
operating systems, a thread is the smallest unit of operation in a process.
Several threads can run concurrently, performing different jobs.

timeout
A time interval that is allotted for an event to occur or complete before
operation is interrupted.

TLS See Transport Layer Security.

token-ring network
A local area network that connects devices in a ring topology and allows
unidirectional data transmission between devices by a token-passing
procedure. A device must receive a token before it can transmit data.

trace A record of the processing of a computer program. It exhibits the
sequences in which the instructions were processed.

Glossary 223

transaction manager
A software unit that coordinates the activities of resource managers by
managing global transactions and coordinating the decision to commit
them or roll them back.

transaction program
A program that uses the Advanced Program-to-Program Communications
(APPC) application programming interface (API) to communicate with a
partner application program on a remote system.

Transmission Control Protocol/Internet Protocol (TCP/IP)
An industry-standard, nonproprietary set of communications protocols that
provide reliable end-to-end connections between applications over
interconnected networks of different types.

Transport Layer Security (TLS)
A security protocol that provides communication privacy. TLS enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. TLS applies only
to internet protocols, and is not applicable to SNA. TLS is also known as
SSL 3.1.

Two-phase commit
A protocol with both a prepare and a commit phase, that is used for the
coordination of changes to recoverable resources when more than one
resource manager is used by a single transaction.

type 2.0 node
A node that attaches to a subarea network as a peripheral node and
provides a range of user services but no intermediate routing services.

type 2.1 node
An SNA node that can be configured as an endpoint or intermediate
routing node in a network, or as a peripheral node attached to a subarea
network.

U

unattended installation
Unattended installation is installation performed without user interaction
during its progress, or, with no user present at all, except for the initial
launch of the process.

Uniform Resource Locator (URL)
A sequence of characters that represent information resources on a
computer or in a network such as the Internet. This sequence of characters
includes (a) the abbreviated name of the protocol used to access the
information resource and (b) the information used by the protocol to locate
the information resource.

unit of recovery (UR)
A defined package of work to be performed by the RRS.

unit of work (UOW)
A recoverable sequence of operations performed by an application between
two points of consistency. A unit of work begins when a transaction starts
or at a user-requested sync point. It ends either at a user-requested sync
point or at the end of a transaction.

UOW See unit of work.

UR See unit of recovery.

224 CICS TG for Multiplatforms V9.2: Programming Reference

URL See Uniform Resource Locator.

user registry
The location where the distinguished name of a user is defined and
authenticated. See also distinguished name.

user session
Any APPC session other than a SNASVCMG session.

V

verb A reserved word that expresses an action to be taken by an application
programming interface (API), a compiler, or an object program.

In SNA, the general name for a transaction program's request for
communication services.

version string
A character string containing version information about the statistical data
API.

W

WAN See wide area network.

Web browser
A software program that sends requests to a Web server and displays the
information that the server returns.

Web server
A software program that responds to information requests generated by
Web browsers.

wide area network (WAN)
A network that provides communication services to a geographic area
larger than that served by a local area network or a metropolitan area
network, and that can use or provide public communication facilities.

Wrapping trace
On Windows, UNIX, and Linux, a configuration in which the Maximum
Client wrap size setting is greater than 0. The total size of Client daemon
binary trace files is limited to the value specified in the Maximum Client
wrap size setting. With standard I/O tracing, two files, called cicscli.bin
and cicscli.wrp, are used; each can be up to half the size of the
Maximum Client wrap size.

WSBind file
A Web service bind file is a resource that describes the specifics of the Web
service.

X

XA request
Any request sent or received by the CICS Transaction Gateway in support
of an XA transaction. These requests include the XA commands commit,
complete, end, forget, prepare, recover, rollback, and start.

XA transaction
A global transaction that adheres to the X/Open standard for distributed
transaction processing (DTP).

Glossary 225

226 CICS TG for Multiplatforms V9.2: Programming Reference

Related literature

Other documentation relating to CICS Transaction Gateway.

IBM Redbooks® titles are available on a wide range of subjects relevant to CICS
Transaction Gateway programming, installation, operation and troubleshooting. See
the: IBM Redbooks site for more information.

Documentation for many IBM products is available online from the IBM
Publications Center.

© Copyright IBM Corp. 1998, 2016 227

http://www.ibm.com/redbooks/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

228 CICS TG for Multiplatforms V9.2: Programming Reference

Accessibility

Accessibility features help users with a physical disability, for example restricted
mobility or limited vision, to use information technology products successfully.
CICS Transaction Gateway is compatible with the JAWS screen reader. CICS
Transaction Gateway provides accessibility by enabling keyboard-only operation.

For more information about the IBM commitment to accessibility, visit the IBM
Accessibility Center.

Installation
The InstallAnywhere wizard is not fully accessible to screen readers.

To use the installer with a screen reader you must use console mode installation
from a command prompt, specifying the -i console option.

Console mode displays text over multiple screens, and enables you to make
choices during the installation process. The command prompt interface does not
provide a cursor for navigating over the displayed text. When you use the JAWS
screen reader you can repeat the displayed text with the command used for
reading the current window (key combination Insert+B).

The first screen displayed by the installer is for language selection; the default
language depends on the values in the system regional settings. To bypass the
language selection screen, use the -l lang command option; where lang is one of the
following:
v de German
v en English
v es Spanish
v fr French
v it Italian
v ja Japanese
v ko Korean
v tr Turkish
v zh_CN Chinese

For example, to install with the console interface in French:
installer -i console -l fr

Configuration Tool accessibility
The configuration file uses the number sign (#) character to denote a comment;
consider configuring your screen reader accordingly.

Starting the Gateway daemon
You can start the Gateway daemon from a command prompt using a screen reader.

© Copyright IBM Corp. 1998, 2016 229

http://www.ibm.com/able
http://www.ibm.com/able

In some Telnet sessions, the screen reader might reread CICS Transaction Gateway
log output or the command prompt after the CICS Transaction Gateway has
started. This behavior is expected, and does not mean that the CICS Transaction
Gateway has failed to start.

To determine if the CICS Transaction Gateway started correctly, check for the
message:
’CTG6512I CICS Transaction Gateway initialization complete’.

If the CICS Transaction Gateway did not start successfully, this message is
produced:
’CTG6513E CICS Transaction Gateway failed to initialize’.

When using a screen reader on Windows, the Gateway daemon should be started
and stopped with Windows services by starting and stopping the IBM CICS
Transaction Gateway service. To determine if the CICS Transaction Gateway has
started or stopped use the Windows Event Log viewer to check the messages in
the Application log.

cicsterm
Although cicsterm is accessible, it relies on the application that is being processed
to define an accessible 3270 screen.

Keyboard mapping depends on the terminal type that you are using, for more
information, see Keyboard mapping for cicsterm.

The bottom row of cicsterm contains status information. The following list shows
this information, as it appears from left to right:

Status For example, 1B is displayed while cicsterm is connecting to a server.
Displayed at columns 1 – 3.

Terminal name
Also referred to as LU Name. Columns 4 – 7.

Action
For example, X-System, indicating that you cannot enter text in the
terminal window because cicsterm is waiting for a response from the
server. Columns 9 – 16.

Error number
Errors in the form CCLNNNN, relating to the CICS Transaction Gateway.
Columns 17 – 24.

Server name
The server to which cicsterm is connected. Columns 27 – 35.

Uppercase
An up arrow is displayed when the Shift key is pressed. Column 42.

Caps Lock
A capital A is displayed when Caps Lock is on. Column 43.

Insert on
The caret symbol (^) is displayed if text will be inserted, rather than
overwriting existing text. If you have difficulty seeing the caret, change the
font face and size, or use a screen magnifier to increase the size of the
status line. Column 52.

230 CICS TG for Multiplatforms V9.2: Programming Reference

Cursor position
The cursor position, in the form ROW/COLUMN, where ROW is a
two-digit number, and COLUMN a three-digit number. The top left of the
screen is 01/001. Column 75–80.

Note: You might need to change the default behavior of your screen
reader if it reads only the last digit of the cursor position. Customize your
screen reader to specify that columns 75–80 of the status row are to be
treated as one field. This will cause the full area to be read when any digit
changes.

Accessibility 231

232 CICS TG for Multiplatforms V9.2: Programming Reference

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1998, 2016 233

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary.

The client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating
conditions.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

234 CICS TG for Multiplatforms V9.2: Programming Reference

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Notices 235

http://www.ibm.com/legal/us/en/copytrade.shtml

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement

Safety and environmental notices

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

236 CICS TG for Multiplatforms V9.2: Programming Reference

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Gateway for Multiplatforms
Version 9 Release 2
Programming Reference

Publication No. SC34-7340-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7340-00

SC34-7340-00

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP189)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

SC34-7340-00

	Contents
	About this information
	Part 1. Programming Reference
	Chapter 1. C
	ECI V1
	CICS_ExternalCall (ECI_Parms)
	Call types
	ECI_SYNC call type
	ECI_ASYNC call type
	ECI_STATE_SYNC call type
	ECI_STATE_ASYNC call type
	ECI_GET_REPLY call type
	ECI_GET_REPLY_WAIT call type
	ECI_GET_SPECIFIC_REPLY call type
	ECI_GET_SPECIFIC_REPLY_WAIT call type

	ECI status block
	CICS_EciListSystems (NameSpace Systems List)

	EPI
	EPI constants and data structures
	EPI constants
	EPI data structures

	EPI functions
	CICS_EpiInitialize
	CICS_EpiTerminate
	CICS_EpiListSystems
	CICS_EpiAddTerminal
	CICS_EpiAddExTerminal
	CICS_EpiInquireSystem
	CICS_EpiDelTerminal
	CICS_EpiPurgeTerminal
	CICS_EpiSetSecurity
	CICS_EpiStartTran
	CICS_EpiReply
	CICS_EpiATIState
	CICS_EpiGetEvent

	EPI events
	CICS_EPI_EVENT_ADD_TERM
	CICS_EPI_EVENT_SEND
	CICS_EPI_EVENT_CONVERSE
	CICS_EPI_EVENT_END_TRAN
	CICS_EPI_EVENT_START_ATI
	CICS_EPI_EVENT_END_TERM

	ESI V1
	ESI constants and data structures
	ESI constants
	ESI data structures

	ESI functions
	CICS_VerifyPassword
	CICS_ChangePassword
	CICS_SetDefaultSecurity

	Chapter 2. COBOL
	Chapter 3. C++
	Ccl class
	Enumerations
	Bool
	Sync
	ExCode

	CclBuf class
	CclBuf constructors
	CclBuf (1)
	CclBuf (2)
	CclBuf (3)
	CclBuf (4)

	Public methods
	assign
	cut
	dataArea
	dataAreaLength
	dataAreaOwner
	dataAreaType
	dataLength
	insert
	listState
	operator= (1)
	operator= (2)
	operator+= (1)
	operator+= (2)
	operator==
	operator!=
	replace
	setDataLength

	Enumerations
	DataAreaOwner
	DataAreaType

	CclConn class
	CclConn constructor
	Public methods
	alterSecurity
	cancel
	changed
	changePassword
	link
	listState
	makeSecurityDefault
	password (1)
	password (2)
	serverName (1)
	serverName (2)
	status
	serverStatus
	serverStatusText
	userId (1)
	userId (2)
	verifyPassword

	Enumerations
	ServerStatus

	CclECI class
	CclECI constructor (protected)
	Public methods
	exCode
	exCodeText
	handleException
	instance
	listState
	serverCount
	serverDesc
	serverName

	CclEPI class
	CclEPI constructor
	Public methods
	diagnose
	exCode
	exCodeText
	handleException
	serverCount
	serverDesc
	serverName
	state
	terminate

	Enumerations
	State

	CclException class
	Public methods
	abendCode
	className
	diagnose
	exCode
	exCodeText
	exObject
	methodName

	CclField class
	Public methods
	appendText (1)
	appendText (2)
	backgroundColor
	baseAttribute
	column
	dataTag
	foregroundColor
	highlight
	inputProt
	inputType
	intensity
	length
	position
	resetDataTag
	row
	setBaseAttribute
	setExtAttribute
	setText (1)
	setText (2)
	text
	textLength
	transparency

	Enumerations
	BaseInts
	BaseMDT
	BaseProt
	BaseType
	Color
	Highlight
	Transparency

	CclFlow class
	CclFlow constructor
	CclFlow (1)
	CclFlow (2)

	Public methods
	abendCode
	callType
	callTypeText
	connection
	diagnose
	flowId
	forceReset
	handleReply
	listState
	poll
	setTimeout
	syncType
	timeout
	uow
	wait

	Enumerations
	CallType

	CclMap class
	CclMap constructor
	Public methods
	exCode
	exCodeText
	field (1)
	field (2)

	Protected methods
	namedField
	validate

	CclScreen class
	Public methods
	cursorCol
	cursorRow
	depth
	field (1)
	field (2)
	fieldCount
	mapName
	mapSetName
	setAID
	setCursor
	width

	Enumerations
	AID

	CclSecAttr
	Public Methods
	expiryTime
	invalidCount
	lastAccessTime
	lastVerifiedTime

	CclSecTime
	Public Methods
	day
	get_time_t
	get_tm
	hours
	hundredths
	minutes
	month
	seconds
	year

	CclSession class
	CclSession constructor
	Public methods
	diagnose
	handleReply
	state
	terminal
	transID

	Enumerations
	State

	CclTerminal class
	CclTerminal constructor
	CclTerminal (1)
	CclTerminal (2)

	Public methods
	alterSecurity
	changePassword
	CCSid
	diagnose
	disconnect (1)
	disconnect (2)
	discReason
	exCode
	exCodeText
	install
	makeSecurityDefault
	netName
	password
	poll
	queryATI
	readTimeout
	receiveATI
	screen
	send (1)
	send (2)
	setATI
	signonCapability
	state
	serverName
	termID
	transID
	userId
	verifyPassword

	Enumerations
	ATIState
	signonType
	State
	EndTerminalReason

	CclUOW class
	CclUOW constructor
	Public methods
	backout
	commit
	forceReset
	listState
	uowId

	C++ Exception Objects

	Chapter 4. COM
	Buffer COM class
	Interface Selection
	Object Creation
	Methods
	AppendString
	Data
	ExtractString
	InsertString
	Length
	Overlay
	SetData
	SetLength
	SetString
	String

	Connect COM class
	Interface Selection
	Object Creation
	Methods
	AlterSecurity
	Cancel
	Changed
	ChangePassword
	Details
	Link
	MakeSecurityDefault
	Password
	ServerName
	ServerStatus
	ServerStatusText
	Status
	TranDetails
	UnpaddedPassword
	UnpaddedServerName
	UnpaddedUserid
	UserId
	VerifyPassword

	ECI COM class
	Interface Selection
	Object Creation
	Methods
	ErrorFormat
	ErrorOffset
	ErrorWindow
	ExCode
	ExCodeText
	ServerCount
	ServerDesc
	ServerName
	SetErrorFormat

	EPI COM class
	Interface Selection
	Object Creation
	Methods
	Diagnose
	ErrorFormat
	ErrorOffset
	ErrorWindow
	ExCode
	ExCodeText
	ServerCount
	ServerDesc
	ServerName
	SetErrorFormat
	State
	Terminate

	Field COM class
	Interface Selection
	Methods
	AppendText
	BackgroundColor
	BaseAttribute
	Column
	DataTag
	ForegroundColor
	Highlight
	InputProt
	InputType
	Intensity
	Length
	Position
	ResetDataTag
	Row
	SetBaseAttribute
	SetExtAttribute
	SetText
	Text
	TextLength
	Transparency

	Flow COM class
	Interface Selection
	Object Creation
	Methods
	AbendCode
	CallType
	CallTypeText
	Diagnose
	Flowid
	ForceReset
	Poll
	SetSyncType
	SetTimeout
	SyncType
	Timeout
	Wait

	Map COM class
	Interface Selection
	Object Creation
	Methods
	ExCode
	FieldByName
	Validate

	Screen COM class
	Interface Selection
	Methods
	CursorCol
	CursorRow
	Depth
	FieldByIndex
	FieldByPosition
	FieldCount
	MapName
	MapSetName
	SetAID
	SetCursor
	Width

	SecAttr COM class
	Interface Selection
	Methods
	ExpiryTime
	InvalidCount
	LastAccessTime
	LastVerifiedTime

	SecTime COM class
	Interface Selection
	Methods
	Day
	GetDate
	Hours
	Hundredths
	Minutes
	Month
	Seconds
	Year

	Session COM class
	Interface Selection
	Object Creation
	Methods
	Diagnose
	SetSyncType
	State
	TransId

	Terminal COM class
	Interface Selection
	Object Creation
	Methods
	AlterSecurity
	CCSId
	ChangePassword
	Connect
	Devtype
	Diagnose
	Disconnect
	DisconnectWithPurge
	DiscReason
	ExCode
	ExCodeText
	Install
	MakeSecurityDefault
	NetName
	Password
	Poll
	PollForReply
	QueryATI
	ReadTimeout
	ReceiveATI
	Screen
	Send
	ServerName
	SetATI
	SetTermDefns
	SignonCapability
	Start
	State
	TermId
	TransId
	Userid
	VerifyPassword

	UOW COM class
	COM Global Constants
	COM EPI Specific Constants
	Synchronization Types
	CclEPI states
	CclSession States
	CclTerminal States
	CclTerminal ATI States
	CclTerminal EndTermReasons
	CclTerminal Sign-on Types
	CclScreen AID key codes
	CclField Protected State Attributes
	CclField Numeric Attributes
	CclField Intensity Attributes
	CclField Modified Attributes
	CclField Highlight Attributes
	CclField Transparency Attributes
	CclField Color Attributes

	COM ECI Constants
	Synchronization Types
	Flow status types
	Connection Status Codes

	COM Error Code References
	COM Global Constants
	COM EPI Specific Constants
	Synchronization Types
	CclEPI states
	CclSession States
	CclTerminal States
	CclTerminal ATI States
	CclTerminal EndTermReasons
	CclTerminal Sign-on Types
	CclScreen AID key codes
	CclField Protected State Attributes
	CclField Numeric Attributes
	CclField Intensity Attributes
	CclField Modified Attributes
	CclField Highlight Attributes
	CclField Transparency Attributes
	CclField Color Attributes

	COM ECI Constants
	Synchronization Types
	Flow status types
	Connection Status Codes

	COM Error Code References
	COM Global Constants
	COM EPI Specific Constants
	Synchronization Types
	CclEPI states
	CclSession States
	CclTerminal States
	CclTerminal ATI States
	CclTerminal EndTermReasons
	CclTerminal Sign-on Types
	CclScreen AID key codes
	CclField Protected State Attributes
	CclField Numeric Attributes
	CclField Intensity Attributes
	CclField Modified Attributes
	CclField Highlight Attributes
	CclField Transparency Attributes
	CclField Color Attributes

	COM ECI Constants
	Synchronization Types
	Flow status types
	Connection Status Codes

	COM Error Code References
	Interface Selection
	Object Creation
	Methods
	BackOut
	Commit
	ForceReset
	UowId

	COM Global Constants
	COM EPI Specific Constants
	Synchronization Types
	CclEPI states
	CclSession States
	CclTerminal States
	CclTerminal ATI States
	CclTerminal EndTermReasons
	CclTerminal Sign-on Types
	CclScreen AID key codes
	CclField Protected State Attributes
	CclField Numeric Attributes
	CclField Intensity Attributes
	CclField Modified Attributes
	CclField Highlight Attributes
	CclField Transparency Attributes
	CclField Color Attributes

	COM ECI Constants
	Synchronization Types
	Flow status types
	Connection Status Codes

	COM Error Code References

	Chapter 5. Exits
	ECI Client API exits
	Identification token
	CICS_EciInitializeExit
	CICS_EciTerminateExit
	CICS_EciExternalCallExit1
	CICS_EciExternalCallExit2
	CICS_EciSystemIdExit
	CICS_EciDataSendExit
	CICS_EciDataReturnExit
	CICS_EciSetProgramAliasExit

	EPI Client API exits
	CICS_EpiInitializeExit
	CICS_EpiTerminateExit
	CICS_EpiAddTerminalExit
	CICS_EpiTermIdExit
	CICS_EpiTermIdInfoExit
	CICS_EpiStartTranExtendedExit
	CICS_EpiStartTranExit
	CICS_EpiReplyExit
	CICS_EpiDelTerminalExit
	CICS_EpiGetEventExit
	CICS_EpiSystemIdExit
	CICS_EpiTranFailedExit

	Chapter 6. Code pages
	Part 2. Appendixes
	Glossary
	Related literature
	Accessibility
	Installation
	Configuration Tool accessibility
	Starting the Gateway daemon
	cicsterm

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Safety and environmental notices
	Trademarks

	Readers’ Comments — We'd Like to Hear from You

