
CICS Transaction Server for z/OS
Version 4 Release 2

C++ OO Class Libraries

SC34-7162-01

���

CICS Transaction Server for z/OS
Version 4 Release 2

C++ OO Class Libraries

SC34-7162-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 313.

This edition applies to Version 4 Release 2 of CICS Transaction Server for z/OS (product number 5655-S97) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1989, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface xiii
Who this manual is for xiii
What this manual is about xiii
What you need to know before reading this
manual xiii
Terminology xiii

Changes in CICS Transaction Server
for z/OS, Version 4 Release 2 xv

Part 1. Installation and setup 1

Chapter 1. Getting ready for object
oriented CICS 3

Chapter 2. Installed contents. 5
Header files 5

Location 6
Dynamic link library. 6

Location 6
Sample source code 6

Location 6
Running the sample applications 6

Other data sets for CICS Transaction Server for z/OS 7

Chapter 3. Hello World 9
Compile and link "Hello World" 10
Running "Hello World" on your CICS server . . . 10

Expected Output from "Hello World" 10

Part 2. Using the CICS foundation
classes 13

Chapter 4. C++ Objects. 15
Creating an object 15
Using an object 16
Deleting an object 16

Chapter 5. Overview of the foundation
classes 17
Base classes 17
Resource identification classes 18
Resource classes 19
Support Classes 20
Using CICS resources 21

Creating a resource object 21
Calling methods on a resource object 22

Chapter 6. Buffer objects 25
IccBuf class 25

Data area ownership 25
Data area extensibility 25

IccBuf constructors 26
IccBuf methods 27
Working with IccResource subclasses 27

Chapter 7. Using CICS Services 29
File control 29

Reading records 29
Writing records 30
Updating records 31
Deleting records 31
Browsing records 32
Example of file control 32

Program control 34
Starting transactions asynchronously 36

Starting transactions 36
Accessing start data 36
Cancelling unexpired start requests 36
Example of starting transactions 36

Transient Data 39
Reading data 39
Writing data 40
Deleting queues 40
Example of managing transient data 40

Temporary storage 41
Reading items 41
Writing items 41
Updating items 42
Deleting items 42
Example of Temporary Storage 42

Terminal control 43
Sending data to a terminal 43
Receiving data from a terminal 44
Finding out information about a terminal . . . 44
Example of terminal control 44

Time and date services 45
Example of time and date services. 45

Chapter 8. Compiling, executing, and
debugging 47
Compiling Programs 47
Executing Programs 47
Program debugging 47

Chapter 9. Conditions, errors, and
exceptions 49
Foundation Class Abend codes 49
C++ Exceptions and the Foundation Classes . . . 49
CICS conditions 51

Manual condition handling (noAction) 52
Automatic condition handling (callHandleEvent) 52
Exception handling (throwException) 53
Severe error handling (abendTask) 54

Platform differences 54
Object level 54
Method level 55

© Copyright IBM Corp. 1989, 2012 iii

Parameter level 55

Chapter 10. Polymorphic Behavior . . . 57
Example of polymorphic behavior 58

Chapter 11. Storage management . . . 61

Chapter 12. Parameter passing
conventions 63

Chapter 13. Scope of data in IccBuf
reference returned from 'read' methods 65

Part 3. Foundation
Classes—reference 67

Chapter 14. Icc structure 69
Functions 69

boolText 69
catchException 69
conditionText 69
initializeEnvironment 70
isClassMemoryMgmtOn 70
isEDFOn 70
isFamilySubsetEnforcementOn 70
returnToCICS 70
setEDF 71
unknownException 71

Enumerations. 71
Bool 71
BoolSet 71
ClassMemoryMgmt. 72
FamilySubset 72
GetOpt 72
Platforms 72

Chapter 15. IccAbendData class 75
IccAbendData constructor (protected). 75

Constructor 75
Public methods 75

abendCode 75
ASRAInterrupt 75
ASRAKeyType 76
ASRAPSW. 76
ASRARegisters 76
ASRASpaceType 77
ASRAStorageType 77
instance 78
isDumpAvailable 78
originalAbendCode 78
programName 78

Inherited public methods 79
Inherited protected methods 79

Chapter 16. IccAbsTime class 81
IccAbsTime constructor 81

Constructor (1) 81
Constructor (2) 81

Public methods 81
date 81
dayOfMonth 82
dayOfWeek 82
daysSince1900 82
hours 82
milliSeconds 82
minutes 82
monthOfYear 82
operator= 83
packedDecimal 83
seconds. 83
time 83
timeInHours 83
timeInMinutes 83
timeInSeconds 84
year 84

Inherited public methods 84
Inherited protected methods 84

Chapter 17. IccAlarmRequestId class 85
IccAlarmRequestId constructors 85

Constructor (1) 85
Constructor (2) 85
Constructor (3) 85

Public methods 85
isExpired 86
operator= (1) 86
operator= (2) 86
operator= (3) 86
setTimerECA 86
timerECA 86

Inherited public methods 86
Inherited protected methods 87

Chapter 18. IccBase class 89
IccBase constructor (protected) 89

Constructor 89
Public methods 89

classType 89
className 89
customClassNum 90
operator delete 90
operator new 90

Protected methods 90
setClassName 90
setCustomClassNum 90

Enumerations. 91
ClassType 91
NameOpt 91

Chapter 19. IccBuf class 93
IccBuf constructors 93

Constructor (1) 93
Constructor (2) 93
Constructor (3) 93
Constructor (4) 94

Public methods 94
append (1). 94
append (2). 94

iv CICS TS for z/OS 4.2: C++ OO Class Libraries

assign (1) 95
assign (2) 95
cut 95
dataArea 95
dataAreaLength 95
dataAreaOwner 96
dataAreaType. 96
dataLength 96
insert 96
isFMHContained 96
operator const char* 96
operator= (1) 97
operator= (2) 97
operator+= (1) 97
operator+= (2) 97
operator== 97
operator!= 98
operator« (1) 98
operator« (2) 98
operator« (3) 98
operator« (4) 98
operator« (5) 98
operator« (6) 98
operator« (7) 98
operator« (8) 99
operator« (9) 99
operator« (10) 99
operator« (11). 99
operator« (12) 99
operator« (13) 99
operator« (14) 99
operator« (15) 99
overlay 100
replace 100
setDataLength 100
setFMHContained 100

Inherited public methods 101
Inherited protected methods 101
Enumerations 101

DataAreaOwner 101
DataAreaType 101

Chapter 20. IccClock class. 103
IccClock constructor 103

Constructor 103
Public methods 103

absTime 103
cancelAlarm 103
date 104
dayOfMonth 104
dayOfWeek 104
daysSince1900 104
milliSeconds. 104
monthOfYear 105
setAlarm 105
time 105
update 106
year 106

Inherited public methods 106
Inherited protected methods 106
Enumerations 107

DateFormat 107
DayOfWeek 107
MonthOfYear 107
UpdateMode 107

Chapter 21. IccCondition structure 109
Enumerations 109

Codes 109
Range 110

Chapter 22. IccConsole class. 111
IccConsole constructor (protected) 111

Constructor 111
Public methods 111

instance 111
put 111
replyTimeout 111
resetRouteCodes 112
setAllRouteCodes 112
setReplyTimeout (1) 112
setReplyTimeout (2) 112
setRouteCodes 112
write 113
writeAndGetReply. 113

Inherited public methods 113
Inherited protected methods 114
Enumerations 114

SeverityOpt 114

Chapter 23. IccControl class 115
IccControl constructor (protected) 115

Constructor 115
Public methods 115

callingProgramId 115
cancelAbendHandler 115
commArea 116
console 116
initData 116
instance 116
isCreated 116
programId 116
resetAbendHandler 117
returnProgramId 117
run 117
session 117
setAbendHandler (1) 117
setAbendHandler (2) 117
startRequestQ 118
system. 118
task 118
terminal 118

Inherited public methods 118
Inherited protected methods 119

Chapter 24. IccConvId class 121
IccConvId constructors 121

Constructor (1) 121
Constructor (2) 121

Public methods 121
operator= (1) 121

Contents v

operator= (2) 121
Inherited public methods 122
Inherited protected methods 122

Chapter 25. IccDataQueue class . . . 123
IccDataQueue constructors 123

Constructor (1) 123
Constructor (2) 123

Public methods 123
clear 123
empty 123
get 124
put 124
readItem 124
writeItem (1) 124
writeItem (2) 124

Inherited public methods 125
Inherited protected methods 125

Chapter 26. IccDataQueueId class . . 127
IccDataQueueId constructors 127

Constructor (1) 127
Constructor (2) 127

Public methods 127
operator= (1) 127
operator= (2) 127

Inherited public methods 128
Inherited protected methods 128

Chapter 27. IccEvent class. 129
IccEvent constructor 129

Constructor 129
Public methods 129

className 129
classType 129
condition 129
conditionText 130
methodName 130
summary 130

Inherited public methods 130
Inherited protected methods 130

Chapter 28. IccException class 131
IccException constructor 131

Constructor 131
Public methods 132

className 132
classType 132
message 132
methodName 132
number 132
summary 132
type 133
typeText 133

Inherited public methods 133
Inherited protected methods 133
Enumerations 133

Type 133

Chapter 29. IccFile class 135

IccFile constructors 135
Constructor (1) 135
Constructor (2) 135

Public methods 135
access 136
accessMethod 136
beginInsert(VSAM only) 136
deleteLockedRecord 136
deleteRecord 137
enableStatus 137
endInsert(VSAM only) 137
isAddable 137
isBrowsable 138
isDeletable 138
isEmptyOnOpen 138
isReadable 138
isRecoverable 139
isUpdatable 139
keyLength 139
keyPosition 139
openStatus 140
readRecord 140
recordFormat 140
recordIndex 141
recordLength 141
registerRecordIndex 141
rewriteRecord 141
setAccess 142
setEmptyOnOpen 142
setStatus 142
type 142
unlockRecord 143
writeRecord 143

Inherited public methods 144
Inherited protected methods 144
Enumerations 144

Access. 144
ReadMode 145
SearchCriterion 145
Status 145

Chapter 30. IccFileId class 147
IccFileId constructors 147

Constructor (1) 147
Constructor (2) 147

Public methods 147
operator= (1) 147
operator= (2) 147

Inherited public methods 148
Inherited protected methods 148

Chapter 31. IccFileIterator class . . . 149
IccFileIterator constructor 149

Constructor 149
Public methods 149

readNextRecord 149
readPreviousRecord 150
reset 150

Inherited public methods 150
Inherited protected methods 151

vi CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 32. IccGroupId class 153
IccGroupId constructors 153

Constructor (1) 153
Constructor (2) 153

Public methods 153
operator= (1) 153
operator= (2) 153

Inherited public methods 154
Inherited protected methods 154

Chapter 33. IccJournal class 155
IccJournal constructors 155

Constructor (1) 155
Constructor (2) 155

Public methods 155
clearPrefix 155
journalTypeId 156
put 156
registerPrefix 156
setJournalTypeId (1) 156
setJournalTypeId (2) 156
setPrefix (1) 156
setPrefix (2) 156
wait 157
writeRecord (1) 157
writeRecord (2) 157

Inherited public methods 157
Inherited protected methods 158
Enumerations 158

Options 158

Chapter 34. IccJournalId class 159
IccJournalId constructors 159

Constructor (1) 159
Constructor (2) 159

Public methods 159
number 159
operator= (1) 159
operator= (2) 160

Inherited public methods 160
Inherited protected methods 160

Chapter 35. IccJournalTypeId class 161
IccJournalTypeId constructors 161

Constructor (1) 161
Constructor (2) 161

Public methods 161
operator= (1) 161
operator= (2) 161

Inherited public methods 162
Inherited protected methods 162

Chapter 36. IccKey class 163
IccKey constructors 163

Constructor (1) 163
Constructor (2) 163
Constructor (3) 163

Public methods 163
assign 163
completeLength 164

kind 164
operator= (1) 164
operator= (2) 164
operator= (3) 164
operator== (1) 164
operator== (2) 164
operator== (3) 164
operator!= (1) 164
operator!= (2) 165
operator!= (3) 165
setKind 165
value 165

Inherited public methods 165
Inherited protected methods 165
Enumerations 166

Kind 166

Chapter 37. IccLockId class 167
IccLockId constructors 167

Constructor (1) 167
Constructor (2) 167

Public methods 167
operator= (1) 167
operator= (2) 167

Inherited public methods 168
Inherited protected methods 168

Chapter 38. IccMessage class 169
IccMessage constructor 169

Constructor 169
Public methods 169

className 169
methodName 169
number 170
summary 170
text 170

Inherited public methods 170
Inherited protected methods 170

Chapter 39. IccPartnerId class 171
IccPartnerId constructors 171

Constructor (1) 171
Constructor (2) 171

Public methods 171
operator= (1) 171
operator= (2) 171

Inherited public methods 172
Inherited protected methods 172

Chapter 40. IccProgram class 173
IccProgram constructors 173

Constructor (1) 173
Constructor (2) 173

Public methods 173
address 173
clearInputMessage. 173
entryPoint 174
length 174
link. 174
load 175

Contents vii

registerInputMessage 175
setInputMessage 175
unload 175

Inherited public methods 175
Inherited protected methods 176
Enumerations 176

CommitOpt 176
LoadOpt 176

Chapter 41. IccProgramId class . . . 177
IccProgramId constructors 177

Constructor (1) 177
Constructor (2) 177

Public methods 177
operator= (1) 177
operator= (2) 177

Inherited public methods 178
Inherited protected methods 178

Chapter 42. IccRBA class 179
IccRBA constructor 179

Constructor 179
Public methods 179

operator= (1) 179
operator= (2) 179
operator== (1) 179
operator== (2) 180
operator!= (1) 180
operator!= (2) 180
number 180

Inherited public methods 180
Inherited protected methods 180

Chapter 43. IccRecordIndex class . . 181
IccRecordIndex constructor (protected) 181

Constructor 181
Public methods 181

length 181
type 181

Inherited public methods 182
Inherited protected methods 182
Enumerations 182

Type 182

Chapter 44. IccRequestId class. . . . 183
IccRequestId constructors 183

Constructor (1) 183
Constructor (2) 183
Constructor (3) 183

Public methods 183
operator= (1) 183
operator= (2) 184

Inherited public methods 184
Inherited protected methods 184

Chapter 45. IccResource class 185
IccResource constructor (protected) 185

Constructor 185
Public methods 185

actionOnCondition 185

actionOnConditionAsChar 185
actionsOnConditionsText 186
clear 186
condition 186
conditionText 187
get 187
handleEvent 187
id 187
isEDFOn 187
isRouteOptionOn 187
name 188
put 188
routeOption 188
setActionOnAnyCondition 188
setActionOnCondition 188
setActionsOnConditions 189
setEDF 189
setRouteOption (1) 189
setRouteOption (2) 189

Inherited public methods 190
Inherited protected methods 190
Enumerations 190

ActionOnCondition 190
HandleEventReturnOpt 190
ConditionType 191

Chapter 46. IccResourceId class . . . 193
IccResourceId constructors (protected) 193

Constructor (1) 193
Constructor (2) 193

Public methods 193
name 193
nameLength 193

Protected methods. 194
operator=. 194

Inherited public methods 194
Inherited protected methods 194

Chapter 47. IccRRN class 195
IccRRN constructors 195

Constructor 195
Public methods 195

operator= (1) 195
operator= (2) 195
operator== (1) 195
operator== (2) 196
operator!= (1) 196
operator!= (2) 196
number 196

Inherited public methods 196
Inherited protected methods 196

Chapter 48. IccSemaphore class . . . 197
IccSemaphore constructor 197

Constructor (1) 197
Constructor (2) 197

Public methods 197
lifeTime 197
lock 198
tryLock 198

viii CICS TS for z/OS 4.2: C++ OO Class Libraries

type 198
unlock. 198

Inherited public methods 198
Inherited protected methods 199
Enumerations 199

LockType. 199
LifeTime 199

Chapter 49. IccSession class. 201
IccSession constructors (public) 201

Constructor (1) 201
Constructor (2) 201
Constructor (3) 201

IccSession constructor (protected). 202
Constructor 202

Public methods 202
allocate 202
connectProcess (1) 202
connectProcess (2) 202
connectProcess (3) 203
converse 203
convId 203
errorCode 204
extractProcess 204
flush 204
free. 204
get 204
isErrorSet. 204
isNoDataSet 205
isSignalSet 205
issueAbend 205
issueConfirmation 205
issueError 205
issuePrepare 206
issueSignal 206
PIPList 206
process 206
put 206
receive 206
send (1) 207
send (2) 207
sendInvite (1) 207
sendInvite (2) 207
sendLast (1) 208
sendLast (2) 208
state 208
stateText 209
syncLevel 209

Inherited public methods 209
Inherited protected methods 210
Enumerations 210

AllocateOpt 210
SendOpt 210
StateOpt 210
SyncLevel 211

Chapter 50. IccStartRequestQ class 213
IccStartRequestQ constructor (protected) 213

Constructor 213
Public methods 213

cancel 213
clearData 214
data 214
instance 214
queueName 214
registerData 214
reset 214
retrieveData 215
returnTermId 215
returnTransId 215
setData 215
setQueueName 215
setReturnTermId (1) 216
setReturnTermId (2) 216
setReturnTransId (1) 216
setReturnTransId (2) 216
setStartOpts 216
start 217

Inherited public methods 217
Inherited protected methods 218
Enumerations 218

RetrieveOpt 218
ProtectOpt 218
CheckOpt 218

Chapter 51. IccSysId class. 219
IccSysId constructors 219

Constructor (1) 219
Constructor (2) 219

Public methods 219
operator= (1) 219
operator= (2) 219

Inherited public methods 220
Inherited protected methods 220

Chapter 52. IccSystem class 221
IccSystem constructor (protected) 221

Constructor 221
Public methods 221

applName 221
beginBrowse (1) 221
beginBrowse (2) 222
dateFormat 222
endBrowse 222
freeStorage 222
getFile (1) 222
getFile (2) 223
getNextFile 223
getStorage 223
instance 223
operatingSystem 224
operatingSystemLevel 224
release. 224
releaseText 224
sysId 225
workArea 225

Inherited public methods 225
Inherited protected methods 225
Enumerations 226

ResourceType 226

Contents ix

Chapter 53. IccTask class 227
IccTask Constructor (protected) 227

Constructor 227
Public methods 227

abend 227
abendData 227
commitUOW 228
delay 228
dump 228
enterTrace 229
facilityType 229
freeStorage 229
getStorage 230
instance 230
isCommandSecurityOn 230
isCommitSupported 230
isResourceSecurityOn. 231
isRestarted 231
isStartDataAvailable 231
number 231
principalSysId 231
priority 232
rollBackUOW 232
setDumpOpts 232
setPriority 232
setWaitText 232
startType 233
suspend 233
transId 233
triggerDataQueueId 233
userId 233
waitExternal 234
waitOnAlarm 234
workArea 234

Inherited public methods 235
Inherited protected methods 235
Enumerations 235

AbendHandlerOpt. 235
AbendDumpOpt 235
DumpOpts 235
FacilityType 236
StartType 236
StorageOpts 237
TraceOpt 237
WaitPostType 237
WaitPurgeability 237

Chapter 54. IccTempStore class . . . 239
IccTempStore constructors 239

Constructor (1) 239
Constructor (2) 239

Public methods 239
clear 240
empty 240
get 240
numberOfItems. 240
put 240
readItem 240
readNextItem 241
rewriteItem 241
writeItem (1) 241

writeItem (2) 242
Inherited public methods 242
Inherited protected methods 242
Enumerations 243

Location 243
NoSpaceOpt 243

Chapter 55. IccTempStoreId class. . . 245
IccTempStoreId constructors 245

Constructor (1) 245
Constructor (2) 245

Public methods 245
operator= (1) 245
operator= (2) 245

Inherited public methods 246
Inherited protected methods 246

Chapter 56. IccTermId class 247
IccTermId constructors 247

Constructor (1) 247
Constructor (2) 247

Public methods 247
operator= (1) 247
operator= (2) 247

Inherited public methods 248
Inherited protected methods 248

Chapter 57. IccTerminal class 249
IccTerminal constructor (protected) 249

Constructor 249
Public methods 249

AID 249
clear 249
cursor 249
data 250
erase 250
freeKeyboard 250
get 250
height 250
inputCursor 251
instance 251
line 251
netName 251
operator« (1) 251
operator« (2) 251
operator« (3) 251
operator« (4) 251
operator« (5) 252
operator« (6) 252
operator« (7) 252
operator« (8) 252
operator« (9) 252
operator« (10) 252
operator« (11) 252
operator« (12) 252
operator« (13) 253
operator« (14) 253
operator« (15) 253
operator« (16) 253
operator« (17) 253

x CICS TS for z/OS 4.2: C++ OO Class Libraries

operator« (18) 253
put 253
receive 253
receive3270Data 254
send (1) 254
send (2) 254
send (3) 254
send (4) 255
send3270Data (1) 255
send3270Data (2) 255
send3270Data (3) 255
send3270Data (4) 256
sendLine (1) 256
sendLine (2) 256
sendLine (3) 256
sendLine (4) 256
setColor 257
setCursor (1) 257
setCursor (2) 257
setHighlight 258
setLine 258
setNewLine 258
setNextCommArea 258
setNextInputMessage 258
setNextTransId 259
signoff. 259
signon (1) 259
signon (2) 259
waitForAID (1) 260
waitForAID (2) 260
width 260
workArea 260

Inherited public methods 261
Inherited protected methods 261
Enumerations 261

AIDVal 261
Case 261
Color 261
Highlight 262
NextTransIdOpt 262

Chapter 58. IccTerminalData class . . 263
IccTerminalData constructor (protected) 263

Constructor 263
Public methods 263

alternateHeight 263
alternateWidth 263
defaultHeight 264
defaultWidth 264
graphicCharCodeSet 264
graphicCharSetId 264
isAPLKeyboard. 264
isAPLText 265
isBTrans 265
isColor 265
isEWA. 265
isExtended3270 265
isFieldOutline 266
isGoodMorning. 266
isHighlight 266
isKatakana 266

isMSRControl 266
isPS 267
isSOSI 267
isTextKeyboard 267
isTextPrint 267
isValidation 267

Inherited public methods 268
Inherited protected methods 268

Chapter 59. IccTime class 269
IccTime constructor (protected) 269

Constructor 269
Public methods 269

hours 269
minutes 269
seconds 269
timeInHours. 270
timeInMinutes 270
timeInSeconds 270
type 270

Inherited public methods 270
Inherited protected methods 271
Enumerations 271

Type 271

Chapter 60. IccTimeInterval class . . . 273
IccTimeInterval constructors 273

Constructor (1) 273
Constructor (2) 273

Public methods 273
operator=. 273
set 273

Inherited public methods 274
Inherited protected methods 274

Chapter 61. IccTimeOfDay class . . . 275
IccTimeOfDay constructors 275

Constructor (1) 275
Constructor (2) 275

Public methods 275
operator=. 275
set 275

Inherited public methods 276
Inherited protected methods 276

Chapter 62. IccTPNameId class. . . . 277
IccTPNameId constructors 277

Constructor (1) 277
Constructor (2) 277

Public methods 277
operator= (1) 277
operator= (2) 277

Inherited public methods 278
Inherited protected methods 278

Chapter 63. IccTransId class 279
IccTransId constructors 279

Constructor (1) 279
Constructor (2) 279

Public methods 279

Contents xi

operator= (1) 279
operator= (2) 279

Inherited public methods 280
Inherited protected methods 280

Chapter 64. IccUser class 281
IccUser constructors 281

Constructor (1) 281
Constructor (2) 281

Public methods 281
changePassword 281
daysUntilPasswordExpires 282
ESMReason 282
ESMResponse 282
groupId 282
invalidPasswordAttempts 282
language 282
lastPasswordChange 283
lastUseTime 283
passwordExpiration 283
setLanguage 283
verifyPassword 283

Inherited public methods 283
Inherited protected methods 284

Chapter 65. IccUserId class 285
IccUserId constructors 285

Constructor (1) 285
Constructor (2) 285

Public methods 285
operator= (1) 285
operator= (2) 285

Inherited public methods 286
Inherited protected methods 286

Chapter 66. IccValue structure 287
Enumeration 287

Listing of valid CVDAs 287

Chapter 67. main function 289

Part 4. Appendixes 291

Appendix A. Mapping EXEC CICS
calls to Foundation Class methods . . 293

Appendix B. Mapping Foundation
Class methods to EXEC CICS calls . . 299

Appendix C. Output from sample
programs 305
ICC$BUF (IBUF) 305
ICC$CLK (ICLK) 305
ICC$DAT (IDAT) 305
ICC$EXC1 (IEX1) 306
ICC$EXC2 (IEX2) 306
ICC$EXC3 (IEX3) 306
ICC$FIL (IFIL) 306
ICC$HEL (IHEL) 306
ICC$JRN (IJRN) 307
ICC$PRG1 (IPR1) 307

First Screen 307
Second Screen 307

ICC$RES1 (IRS1) 307
ICC$RES2 (IRS2) 308
ICC$SEM (ISEM) 308
ICC$SES1 (ISE1) 308
ICC$SES2 (ISE2) 309
ICC$SRQ1 (ISR1) 309
ICC$SRQ2 (ISR2) 309
ICC$SYS (ISYS). 310
ICC$TMP (ITMP) 310
ICC$TRM (ITRM) 310
ICC$TSK (ITSK) 311

Notices 313
Trademarks 314

Bibliography. 315
CICS books for CICS Transaction Server for z/OS 315
CICSPlex SM books for CICS Transaction Server
for z/OS 316
Other CICS publications 316
Other IBM publications 316

Accessibility 317

Index 319

xii CICS TS for z/OS 4.2: C++ OO Class Libraries

Preface

The CICS® family provides robust transaction processing capabilities across the
major hardware platforms that IBM® offers, and also across key non-IBM
platforms.

It is not intended to be a product in its own right.

The CICS C++ foundation classes, as described here, allow an application
programmer to access many of the CICS services that are available via the EXEC
CICS procedural application programming interface (API). They also provide an
object model, making OO application development simpler and more intuitive.

Who this manual is for

This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of Version 4 Release 2.

This manual is for CICS application programmers who want to know how to use
the CICS foundation classes.

What this manual is about
This manual is divided into three parts and three appendixes:
v Part 1, “Installation and setup,” on page 1 describes how to install the product

and check that the installation is complete.
v Part 2, “Using the CICS foundation classes,” on page 13 describes the classes and

how to use them.
v Part 3, “Foundation Classes—reference,” on page 67 contains the reference

material: the class descriptions and their methods.
v For those of you familiar with the EXEC CICS calls, Appendix A, “Mapping

EXEC CICS calls to Foundation Class methods,” on page 293 maps EXEC CICS
calls to the foundation class methods detailed in this manual.

v Appendix B, “Mapping Foundation Class methods to EXEC CICS calls,” on page
299 maps them the other way — foundation class methods to EXEC CICS calls.

v Appendix C, “Output from sample programs,” on page 305 contains the output
from the sample programs.

What you need to know before reading this manual
Chapter 1, “Getting ready for object oriented CICS,” on page 3 describes what you
need to know to understand this manual.

Terminology
“CICS” is used throughout this manual to mean the CICS element of the IBM CICS
Transaction Server for z/OS®, Version 3 Release 2.

© Copyright IBM Corp. 1989, 2012 xiii

“RACF” is used throughout this book to mean the z/OS Resource Access Control
Facility (RACF®) or any other external security manager that provides equivalent
function.

In the programming examples in this book, the dollar symbol ($) is used as a
national currency symbol. In countries where the dollar is not the national
currency, the local currency symbol should be used.

xiv CICS TS for z/OS 4.2: C++ OO Class Libraries

Changes in CICS Transaction Server for z/OS, Version 4
Release 2

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 1989, 2012 xv

xvi CICS TS for z/OS 4.2: C++ OO Class Libraries

Part 1. Installation and setup

This section describes the CICS foundation classes installed on your CICS server.

© Copyright IBM Corp. 1989, 2012 1

2 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 1. Getting ready for object oriented CICS

You must be familiar with object oriented concepts and technology, the C++
language and with CICS in order to understand the topics that follow.

This is not intended to be an introduction to any of these subjects.

© Copyright IBM Corp. 1989, 2012 3

4 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 2. Installed contents

The CICS foundation classes package consists of several files or data sets.

The CICS foundation classes package consists of several files or data sets. These
contain the:
v header files
v executables (DLL's)
v samples
v other CICS Transaction Server for z/OS files

This section describes the files that comprise the CICS C++ Foundation Classes and
explains where you can find them on your CICS server.

Header files
The header files are the C++ class definitions needed to compile CICS C++
Foundation Class programs.

C++ Header File Classes Defined in this Header

ICCABDEH IccAbendData
ICCBASEH IccBase
ICCBUFEH IccBuf
ICCCLKEH IccClock
ICCCNDEH IccCondition (struct)
ICCCONEH IccConsole
ICCCTLEH IccControl
ICCDATEH IccDataQueue
ICCEH see 1 on page 6
ICCEVTEH IccEvent
ICCEXCEH IccException
ICCFILEH IccFile
ICCFLIEH IccFileIterator
ICCGLBEH Icc (struct) (global functions)
ICCJRNEH IccJournal
ICCMSGEH IccMessage
ICCPRGEH IccProgram
ICCRECEH IccRecordIndex, IccKey, IccRBA and IccRRN
ICCRESEH IccResource
ICCRIDEH IccResourceId + subclasses (such as IccConvId)
ICCSEMEH IccSemaphore
ICCSESEH IccSession
ICCSRQEH IccStartRequestQ
ICCSYSEH IccSystem
ICCTIMEH IccTime, IccAbsTime, IccTimeInterval, IccTimeOfDay
ICCTMDEH IccTerminalData
ICCTMPEH IccTempStore
ICCTRMEH IccTerminal
ICCTSKEH IccTask
ICCUSREH IccUser
ICCVALEH IccValue (struct)

© Copyright IBM Corp. 1989, 2012 5

Note:

1. A single header that #includes all the above header files is supplied as ICCEH

2. The file ICCMAIN is also supplied with the C++ header files. This contains the
main function stub that should be used when you build a Foundation Class
program.

Location
PDS: CICSTS42.CICS.SDFHC370

Dynamic link library
The Dynamic Link Library is the runtime that is needed to support a CICS C++
Foundation Class program.

Location
ICCFCDLL module in PDS: CICSTS42.CICS.SDFHLOAD

Sample source code
The samples are provided to help you understand how to use the classes to build
object oriented applications.

Location
PDS: CICSTS42.CICS.SDFHSAMP

Running the sample applications
If you have installed the resources defined in the member DFHCURDS, you should be
ready to run some of the sample applications.

The sample programs are supplied as source code in library
CICSTS42.CICS.SDFHSAMP and before you can run the sample programs, you need to
compile, pre-link and link them.To do this, use the procedure ICCFCCL in data set
CICSTS42.CICS.SDFHPROC.

ICCFCCL contains the Job Control Language needed to compile, pre-link and link a
CICS user application. Before using ICCFCCL you may find it necessary to perform
some customization to conform to your installation standards. See also “Compiling
Programs” on page 47.

Sample programs such as ICCBUF, ICCCLK and ICC$HEL require no additional CICS
resource definitions, and should now execute successfully.

Other sample programs, in particular the DTP samples named ICC$SES1 and
ICC$SES2, require additional CICS resource definitions. Refer to the prologues in
the source of the sample programs for information about these additional
requirements.

6 CICS TS for z/OS 4.2: C++ OO Class Libraries

Other data sets for CICS Transaction Server for z/OS
CICSTS42.CICS.SDFHSDCK contains the member
v ICCFCIMP - 'sidedeck' containing import control statements

CICSTS42.CICS.SDFHPROC contains the members
v ICCFCC - JCL to compile a CFC user program
v ICCFCCL - JCL to compile, prelink and link a CFC user program
v ICCFCGL - JCL to compile and link an XPLINK program that uses CFC libraries.
v ICCFCL - JCL to prelink and link a CFC user program

CICSTS42.CICS.SDFHLOAD contains the members
v DFHCURDS - program definitions required for CICS system definition.
v DFHCURDI - program definitions required for CICS system definition.

Chapter 2. Installed contents 7

8 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 3. Hello World

When you start programming in an unaccustomed environment the hardest task is
usually getting something—anything—to work and to be seen to be working.

The initial difficulty is not in the internals of the program, but in bringing
everything together—the CICS server, the programming environment, program
inputs and program outputs.

This example shows how to get started in CICS OO programming. It is intended as
an appetizer; Chapter 5, “Overview of the foundation classes,” on page 17 is a
more formal introduction and you should read it before you attempt serious OO
programming.

This example could not be much simpler but when it works it is a visible
demonstration that you have got everything together and can go on to greater
things. The program writes a simple message to the CICS terminal.

There follows a series of program fragments interspersed with commentary. The
source for this program can be found in sample ICC$HEL (see “Sample source code”
on page 6 for the location).

The first line includes the header file, ICCEH, which includes the header files for all
the CICS Foundation Class definitions. Note that it is coded as "icceh.hpp" to
preserve cross-platform, C++ language conventions.

The second line includes the supplied program stub. This stub contains the main
function, which is the point of entry for any program that uses the supplied classes
and is responsible for initializing them correctly. (See Chapter 67, “main function,”
on page 289 for more details). You are strongly advised to use the stub provided
but you may in certain cases tailor this stub to your own requirements. The stub
initializes the class environment, creates the program control object, then invokes
the run method, which is where the application program should 'live'.

The code that controls the program flow resides not in the main function but in
the run method of a class derived from IccControl (see Chapter 23, “IccControl
class,” on page 115). The user can define their own subclass of IccControl or, as
here, use the default one – IccUserControl, which is defined in ICCMAIN – and
just provide a definition for the run method.

The terminal method of IccControl class is used to obtain a pointer to the terminal
object for the application to use.

#include "icceh.hpp"
#include "iccmain.hpp"

void IccUserControl::run()
{

IccTerminal* pTerm = terminal();

pTerm->erase();

© Copyright IBM Corp. 1989, 2012 9

The erase method clears the current contents of the terminal.

The send method is called on the terminal object. This causes "Hello World" to be
written to the terminal screen, starting at row 10, column 35.

This waits until the terminal user hits an AID (Action Identifier) key.

Returning from the run method causes program control to return to CICS.

Compile and link "Hello World"
The "Hello World" sample is provided as sample ICC$HEL (see “Sample source
code” on page 6). Find this sample and copy it to your own work area.

To compile and link any CICS C++ Foundation program you need access to:
1. The source of the program, here ICC$HEL.
2. The Foundation Classes header files (see “Header files” on page 5).
3. The Foundation Classes dynamic link library (see “Dynamic link library” on

page 6).

See Chapter 8, “Compiling, executing, and debugging,” on page 47 for the JCL
required to compile the sample program.

Running "Hello World" on your CICS server
To run the program you have just compiled on your CICS server, you need to
make the executable program available to CICS (that is, make sure it is in a
suitable directory or load library).

Then, depending on your server, you may need to create a CICS program
definition for your executable. Finally, you may logon to a CICS terminal and run
the program.

To do this,
1. Logon to a CICS terminal and enter either:

IHEL

or
CECI LINK PROGRAM(ICC$HEL)

2. If you are not using program autoinstall on your CICS region, define the
program ICC$HEL to CICS using the supplied transaction CEDA.

3. Log on to a CICS terminal.
4. On CICS terminal run: CECI LINK PROGRAM(ICC$HEL)

Expected Output from "Hello World"
This is what you should see on the CICS terminal if program ICC$HEL has been
built and executed successfully.

pTerm->send(10, 35, "Hello World");

pTerm->waitForAID();

return;
}

10 CICS TS for z/OS 4.2: C++ OO Class Libraries

Hello World

Hit an Action Identifier, such as the ENTER key, to return.

Chapter 3. Hello World 11

12 CICS TS for z/OS 4.2: C++ OO Class Libraries

Part 2. Using the CICS foundation classes

This section describes the CICS foundation classes and how to use them. There is a
formal listing of the user interface in Part 3, “Foundation Classes—reference,” on
page 67.

© Copyright IBM Corp. 1989, 2012 13

14 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 4. C++ Objects

This section describes how to create, use, and delete objects.

This section describes how to create, use, and delete objects. In our context an
object is an instance of a class. An object cannot be an instance of a base or abstract
base class. It is possible to create objects of all the concrete (non-base) classes
described in the reference part of this book.

Creating an object
If a class has a constructor it is executed when an object of that class is created.
This constructor typically initializes the state of the object. Foundation Classes'
constructors often have mandatory positional parameters that the programmer
must provide at object creation time.

C++ objects can be created in one of two ways:
1. Automatically, where the object is created on the C++ stack. For example:

Here, objX and objY are automatically created on the stack. Their lifetime is

limited by the context in which they were created; when they go out of scope
they are automatically deleted (that is, their destructors run and their storage is
released).

2. Dynamically, where the object is created on the C++ heap. For example:
Here we deal with pointers to objects instead of the objects themselves. The

lifetime of the object outlives the scope in which it was created. In the above
sample the pointers (pObjX and pObjY) are 'lost' as they go out of scope but
the objects they pointed to still exist! The objects exist until they are explicitly
deleted as shown here:

Most of the samples in this book use automatic storage. You are advised to use
automatic storage, because you do not have remember to explicitly delete objects,

{
ClassX objX
ClassY objY(parameter1);

} //objects deleted here

{
ClassX* pObjX = new ClassX;
ClassY* pObjY = new ClassY(parameter1);

} //objects NOT deleted here

{
ClassX* pObjX = new ClassX;
ClassY* pObjY = new ClassY(parameter1);

...
pObjX->method1();
pObjY->method2();

...
delete pObjX;
delete pObjY;

}

© Copyright IBM Corp. 1989, 2012 15

but you are free to use either style for CICS C++ Foundation Class programs. For
more information on Foundation Classes and storage management see Chapter 11,
“Storage management,” on page 61.

Using an object
Any of the class public methods can be called on an object of that class.

Any of the class public methods can be called on an object of that class. The
following example creates object obj and then calls method doSomething on it:

Alternatively, you can do this using dynamic object creation:

Deleting an object
When an object is destroyed its destructor function, which has the same name as
the class preceded with ~(tilde), is automically called. (You cannot call the
destructor explicitly).

If the object was created automatically it is automatically destroyed when it goes
out of scope.

If the object was created dynamically it exists until an explicit delete operator is
used.

ClassY obj("TEMP1234");
obj.doSomething();

ClassY* pObj = new ClassY("parameter1");
pObj->doSomething();

16 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 5. Overview of the foundation classes

This topic is a formal introduction to what the Foundation Classes can do for you.

See Chapter 3, “Hello World,” on page 9 for a simple example to get you started.
The sectionchapter takes a brief look at the CICS C++ Foundation Class library by
considering the categories in turn.

See Part 3, “Foundation Classes—reference,” on page 67 for more detailed
information on the Foundation Classes.

Every class that belongs to the CICS Foundation Classes is prefixed by Icc.

Base classes
All classes inherit, directly or indirectly, from IccBase.

All resource identification classes, such as IccTermId, and IccTransId, inherit from
IccResourceId class. These are typically CICS table entries.

All CICS resources—in fact any class that needs access to CICS services—inherit
from IccResource class.

Base classes enable common interfaces to be defined for categories of class. They
are used to create the foundation classes, as provided by IBM, and they can be
used by application programmers to create their own derived classes.

IccBase
The base for every other foundation class. It enables memory management
and allows objects to be interrogated to discover which type they are.

IccControl
The abstract base class that the application program has to subclass and
provide with an implementation of the run method.

IccResource
The base class for all classes that access CICS resources or services. See
“Resource classes” on page 19.

IccResourceId
The base class for all table entry (resource name) classes, such as IccFileId
and IccTempStoreId.

IccBase
IccRecordIndex
IccResource

IccControl
IccTime

IccResourceId

Figure 1. Base classes

© Copyright IBM Corp. 1989, 2012 17

IccTime
The base class for the classes that store time information: IccAbsTime,
IccTimeInterval and IccTimeOfDay.

Resource identification classes
Resource identification classes are as follows.

CICS resource identification classes define CICS resource identifiers – typically the
name of the resource as specified in its RDO resource definition. For example an
IccFileId object represents a CICS file name. All concrete resource identification
classes have the following properties:
v The name of the class ends in Id.
v The class is a subclass of the IccResourceId class.
v The constructors check that any supplied resource identifier meets CICS

standards. For example, an IccFileId object must contain a 1 to 8 byte character
field; providing a 9-byte field is not tolerated.

The resource identification classes improve type checking; methods that expect an
IccFileId object as a parameter do not accept an IccProgramId object instead. If
character strings representing the resource names are used instead, the compiler
cannot check for validity – it cannot check whether the string is a file name or a
program name.

Many of the resource classes, described in “Resource classes” on page 19, contain
resource identification classes. For example, an IccFile object contains an IccFileId
object. You must use the resource object, not the resource identification object, to
operate on a CICS resource. For example, you must use IccFile, rather than
IccFileId to read a record from a file.

Class CICS resource

IccAlarmRequestId alarm request
IccConvId conversation

IccBase
IccResourceId

IccConvId
IccDataQueueId
IccFileId
IccGroupId
IccJournalId
IccJournalTypeId
IccLockId
IccPartnerId
IccProgramId
IccRequestId

IccAlarmRequestId
IccSysId
IccTempStoreId
IccTermId
IccTPNameId
IccTransId
IccUserId

Figure 2. Resource identification classes

18 CICS TS for z/OS 4.2: C++ OO Class Libraries

Class CICS resource

IccDataQueueId transient data queue
IccFileId file
IccGroupId group
IccJournalId journal
IccJournalTypeId journal type
IccLockId (Not applicable)
IccPartnerId APPC partner definition files
IccProgramId program
IccRequestId request
IccSysId remote system
IccTempStoreId temporary storage queue
IccTermId terminal
IccTPNameId remote APPC TP name
IccTransId transaction
IccUserId user

Resource classes
All CICS resource classes inherit from the IccResource base class.

These classes model the behavior of the major CICS resources, for example:
v Terminals are modelled by IccTerminal.
v Programs are modelled by IccProgram.
v Temporary Storage queues are modelled by IccTempStore.
v Transient Data queues are modelled by IccDataQueue.

Any operation on a CICS resource may raise a CICS condition; the condition
method of IccResource (see page “condition” on page 186) can interrogate it.

(Any class that accesses CICS services must be derived from IccResource).

IccBase
IccResource

IccAbendData
IccClock
IccConsole
IccControl
IccDataQueue
IccFile
IccFileIterator
IccJournal
IccProgram
IccSemaphore
IccSession
IccStartRequestQ
IccSystem
IccTask
IccTempStore
IccTerminal
IccTerminalData
IccUser

Figure 3. Resource classes

Chapter 5. Overview of the foundation classes 19

Class CICS resource

IccAbendData task abend data
IccClock CICS time and date services
IccConsole CICS console
IccControl control of executing program
IccDataQueue transient data queue
IccFile file
IccFileIterator file iterator (browsing files)
IccJournal user or system journal
IccProgram program (outside executing program)
IccSemaphore semaphore (locking services)
IccSession session
IccStartRequestQ start request queue; asynchronous transaction

starts
IccSystem CICS system
IccTask current task
IccTempStore temporary storage queue
IccTerminal terminal belonging to current task
IccTerminalData attributes of IccTerminal
IccTime time specification
IccUser user (security attributes)

Support Classes
Support classes are as follows.

These classes are tools that complement the resource classes: they make life easier
for the application programmer and thus add value to the object model.

Resource class Description

IccAbsTime Absolute time (milliseconds since January 1 1900)
IccBuf Data buffer (makes manipulating data areas easier)
IccEvent Event (the outcome of a CICS command)
IccException Foundation Class exception (supports the C++ exception handling

model)
IccTimeInterval Time interval (for example, five minutes)
IccTimeOfDay Time of day (for example, five minutes past six)

IccBase
IccBuf
IccEvent
IccException
IccMessage
IccRecordIndex

IccKey
IccRBA
IccRRN

IccResource
IccTime

IccAbsTime
IccTimeInterval
IccTimeOfDay

Figure 4. Support classes

20 CICS TS for z/OS 4.2: C++ OO Class Libraries

IccAbsTime, IccTimeInterval and IccTimeOfDay classes make it simpler for the
application programmer to specify time measurements as objects within an
application program. IccTime is a base class: IccAbsTime, IccTimeInterval, and
IccTimeOfDay are derived from IccTime.

Consider method delay in class IccTask, whose signature is as follows:

To request a delay of 1 minute and 7 seconds (that is, a time interval) the
application programmer can do this:

Note: The task method is provided in class IccControl and returns a pointer to the
application's task object.

Alternatively, to request a delay until 10 minutes past twelve (lunchtime?) the
application programmer can do this:

The IccBuf class allows easy manipulation of buffers, such as file record buffers,
transient data record buffers, and COMMAREAs (for more information on IccBuf
class see Chapter 6, “Buffer objects,” on page 25).

IccMessage class is used primarily by IccException class to encapsulate a
description of why an exception was thrown. The application programmer can also
use IccMessage to create their own message objects.

IccException objects are thrown from many of the methods in the Foundation
Classes when an error is encountered.

The IccEvent class allows a programmer to gain access to information relating to a
particular CICS event (command).

Using CICS resources
To use a CICS resource, such as a file or program, you must first create an
appropriate object and then call methods on the object.

Creating a resource object
When you create a resource object you create a representation of the actual CICS
resource (such as a file or program). You do not create the CICS resource; the
object is the application's view of the resource. The same is true of destroying
objects.

Use an accompanying resource identification object when creating a resource
object. For example:

void delay(const IccTime& time, const IccRequestId* reqId = 0);

IccTimeInterval time(0, 1, 7);
task()->delay(time);

IccTimeOfDay lunchtime(12, 10);
task()->delay(lunchtime);

IccFileId id("XYZ123");
IccFile file(id);

Chapter 5. Overview of the foundation classes 21

This allows the C++ compiler to protect you against doing something wrong such
as:

The alternative of using the text name of the resource when creating the object is
also permitted:

Singleton classes
Many resource classes, such as IccFile, can be used to create multiple resource
objects within a single program.

However, some resource classes are designed to allow the programmer to create
only one instance of the class; these are called singleton classes. The following
Foundation Classes are singleton:
v IccAbendData provides information about task abends.
v IccConsole, or a derived class, represents the system console for operator

messages.
v IccControl, or a derived class, such as IccUserControl, controls the executing

program.
v IccStartRequestQ, or a derived class, allows the application program to start

CICS transactions (tasks) asynchronously.
v IccSystem, or a derived class, is the application view of the CICS system in

which it is running.
v IccTask, or a derived class, represents the CICS task under which the executing

program is running.
v IccTerminal, or a derived class, represents your task's terminal, provided that

your principal facility is a 3270 terminal.

Any attempt to create more than one object of a singleton class results in an error –
a C++ exception is thrown.

A class method, instance, is provided for each of these singleton classes, which
returns a pointer to the requested object and creates one if it does not already exist.
For example:

Calling methods on a resource object
Any of the public methods can be called on an object of that class.

For example:

IccDataQueueId id("WXYZ");
IccFile file(id); //gives error at compile time

IccFile file("XYZ123");

IccFileId id1("File1");
IccFileId id2("File2");
IccFile file1(id1);
IccFile file2(id2);

IccControl* pControl = IccControl::instance();

22 CICS TS for z/OS 4.2: C++ OO Class Libraries

Method writeItem writes the contents of the string it is passed ("Hello TEMP1234")
to the CICS Temporary Storage queue "TEMP1234".

IccTempStoreId id("TEMP1234");
IccTempStore temp(id);
temp.writeItem("Hello TEMP1234");

Chapter 5. Overview of the foundation classes 23

24 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 6. Buffer objects

The Foundation Classes make extensive use of IccBuf objects – buffer objects that
simplify the task of handling pieces of data or records.

Understanding the use of these objects is a necessary precondition for much of the
rest of this book.

Each of the CICS Resource classes that involve passing data to CICS (for example
by writing data records) and getting data from CICS (for example by reading data
records) make use of the IccBuf class. Examples of such classes are IccConsole,
IccDataQueue, IccFile, IccFileIterator, IccJournal, IccProgram, IccSession,
IccStartRequestQ, IccTempStore, and IccTerminal.

IccBuf class
IccBuf, which is described in detail in the reference part of this book, provides
generalized manipulation of data areas.

Because it can be used in a number of ways, there are several IccBuf constructors
that affect the behavior of the object. Two important attributes of an IccBuf object
are now described.

Data area ownership
IccBuf has an attribute indicating whether the data area has been allocated inside
or outside of the object.

The possible values of this attribute are 'internal' and 'external'. It can be
interrogated by using the dataAreaOwner method.

Internal/External ownership of buffers
When DataAreaOwner = external, it is the application programmer's responsibility
to ensure the validity of the storage on which the IccBuf object is based. If the
storage is invalid or inappropriate for a particular method applied to the object,
unpredictable results will occur.

Data area extensibility
This attribute defines whether the length of the data area within the IccBuf object,
once created, can be increased.

The possible values of this attribute are 'fixed' and 'extensible'. It can be
interrogated by using the dataAreaType method.

As an object that is 'fixed' cannot have its data area size increased, the length of
the data (for example, a file record) assigned to the IccBuf object must not exceed
the data area length, otherwise a C++ exception is thrown.

Note: By definition, an 'extensible' buffer must also be 'internal'.

© Copyright IBM Corp. 1989, 2012 25

IccBuf constructors
There are several forms of the IccBuf constructor, used when creating IccBuf
objects.

Some examples are shown here.

This creates an 'internal' and 'extensible' data area that has an initial length of zero.
When data is assigned to the object the data area length is automatically extended
to accommodate the data being assigned.

This creates an 'internal' and 'extensible' data area that has an initial length of 50
bytes. The data length is zero until data is assigned to the object. If 50 bytes of
data are assigned to the object, both the data length and the data area length
return a value of 50. When more than 50 bytes of data are assigned into the object,
the data area length is automatically (that is, without further intervention)
extended to accommodate the data.

This creates an 'internal' and 'fixed' data area that has a length of 50 bytes. If an
attempt is made to assign more than 50 bytes of data into the object, the data is
truncated and an exception is thrown to notify the application of the error
situation.

This creates an IccBuf object that uses an 'external' data area called myRecord. By
definition, an 'external' data area is also 'fixed'. Data can be assigned using the
methods on the IccBuf object or using the myRecord structure directly.

This creates an 'internal' and 'extensible' data area that has a length equal to the
length of the string "Hello World". The string is copied into the object's data area.
This initial data assignment can then be changed using one of the manipulation
methods (such as insert, cut, or replace) provided.

Here the copy constructor creates the second buffer with almost the same attributes
as the first; the exception is the data area ownership attribute – the second object
always contains an 'internal' data area that is a copy of the data area in the first. In
the above example buffer2 contains "Hello World out there" and has both data area
length and data length of 21.

IccBuf buffer;

IccBuf buffer(50);

IccBuf buffer(50, IccBuf::fixed);

struct MyRecordStruct
{

short id;
short code;
char data(30);
char rating;

};
MyRecordStruct myRecord;
IccBuf buffer(sizeof(MyRecordStruct), &myRecord);

IccBuf buffer("Hello World");

IccBuf buffer("Hello World");
buffer << " out there";
IccBuf buffer2(buffer);

26 CICS TS for z/OS 4.2: C++ OO Class Libraries

IccBuf methods
An IccBuf object can be manipulated using a number of supplied methods; for
example you can append data to the buffer, change the data in the buffer, cut data
out of the buffer, or insert data into the middle of the buffer.

The operators const char*, =, +=, ==, !=, and << have been overloaded in class
IccBuf. There are also methods that allow the IccBuf attributes to be queried. For
more details see the reference section.

Working with IccResource subclasses
To illustrate working with IccResource subclasses, consider writing a queue item to
CICS temporary storage using IccTempstore class.

The IccTempStore object created is the application's view of the CICS temporary
storage queue named "TEMP1234". The IccBuf object created holds a 50-byte data
area (it also happens to be 'extensible').

The character string "Hello Temporary Storage Queue" is copied into the buffer.
This is possible because the operator= method has been overloaded in the IccBuf
class.

The IccTempStore object calls its writeItem method, passing a reference to the
IccBuf object as the first parameter. The contents of the IccBuf object are written
out to the CICS temporary storage queue.

Now consider the inverse operation, reading a record from the CICS resource into
the application program's IccBuf object:

The readItem method reads the contents of the fifth item in the CICS Temporary
Storage queue and returns the data as an IccBuf reference.

The C++ compiler resolves the above line of code into two method calls, readItem
defined in class IccTempStore and operator= which has been overloaded in class
IccBuf. This second method takes the contents of the returned IccBuf reference and
copies its data into the buffer.

The above style of reading and writing records using the foundation classes is
typical. The final example shows how to write code – using a similar style to the
above example – but this time accessing a CICS transient data queue.

The readItem method of the IccDataQueue object is called, returning a reference to
an IccBuf which it then assigns (via operator= method, overloaded in class IccBuf)

IccTempStore store("TEMP1234");
IccBuf buffer(50);

buffer = "Hello Temporary Storage Queue";
store.writeItem(buffer);

buffer = store.readItem(5);

IccDataQueue queue("DATQ");
IccBuf buffer(50);
buffer = queue.readItem();
buffer << "Some extra data";
queue.writeItem(buffer);

Chapter 6. Buffer objects 27

to the buffer object. The character string – "Some extra data" – is appended to the
buffer (via operator chevron « method, overloaded in class IccBuf). The writeItem
method then writes back this modified buffer to the CICS transient data queue.

You can find further examples of this syntax in the samples presented in the
following sectionchapters, which describe how to use the foundation classes to
access CICS services.

Please refer to the reference section for further information on the IccBuf class. You
might also find the supplied sample – ICC$BUF – helpful.

28 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 7. Using CICS Services

This section describes how to use CICS services. The services are considered in
turn.

File control
The file control classes IccFile, IccFileId, IccKey, IccRBA, and IccRRN allow you
to read, write, update and delete records in files.

In addition, IccFileIterator class allows you to browse through all the records in a
file.

An IccFile object is used to represent a file. It is convenient, but not necessary, to
use an IccFileId object to identify a file by name.

An application program reads and writes its data in the form of individual records.
Each read or write request is made by a method call. To access a record, the
program must identify both the file and the particular record.

VSAM (or VSAM-like) files are of the following types:

KSDS
Key-sequenced: each record is identified by a key – a field in a predefined
position in the record. Each key must be unique in the file.

The logical order of records within a file is determined by the key. The
physical location is held in an index which is maintained by VSAM.

When browsing, records are found in their logical order.

ESDS Entry-sequenced: each record is identified by its relative byte address
(RBA).

Records are held in an ESDS in the order in which they were first loaded
into the file. New records are always added at the end and records may
not be deleted or have their lengths altered.

When browsing, records are found in the order in which they were
originally written.

RRDS file
Relative record: records are written in fixed-length slots. A record is
identified by the relative record number (RRN) of the slot which holds it.

Reading records
A read operation uses two classes – IccFile to perform the operation and one of
IccKey, IccRBA, and IccRRN to identify the particular record, depending on
whether the file access type is KSDS, ESDS, or RRDS.

The readRecord method of IccFile class reads the record.

Reading KSDS records
Before reading a record you must use the registerRecordIndex method of IccFile
to associate an object of class IccKey with the file.

© Copyright IBM Corp. 1989, 2012 29

You must use a key, held in the IccKey object, to access records. A 'complete' key is
a character string of the same length as the physical file's key. Every record can be
separately identified by its complete key.

A key can also be 'generic'. A generic key is shorter than a complete key and is
used for searching for a set of records.The IccKey class has methods that allow you
to set and change the key.

IccFile class has methods isReadable, keyLength, keyPosition, recordIndex, and
recordLength, which help you when reading KSDS records.

Reading ESDS records
You must use a relative byte address (RBA) held in an IccRBA object to access the
beginning of a record.

Before reading a record you must use the registerRecordIndex method of IccFile
to associate an object of class IccRBA with the file.

IccFile class has methods isReadable, recordFormat, recordIndex, and
recordLength that help you when reading ESDS records.

Reading RRDS records
You must use a relative record number (RRN) held in an IccRRN object to access a
record.

Before reading a record you must use registerRecordIndex method of IccFile to
associate an object of class IccRRN with the file.

IccFile class has methods isReadable, recordFormat, recordIndex, and
recordLength which help you when reading RRDS records.

Writing records
Writing records is also known as "adding records".

This topic describes writing records that have not previously been written. Writing
records that already exist is not permitted unless they have been previously been
put into 'update' mode. See “Updating records” on page 31 for more information.

Before writing a record you must use registerRecordIndex method of IccFile to
associate an object of class IccKey, IccRBA, or IccRRN with the file. The
writeRecord method of IccFile class writes the record.

A write operation uses two classes – IccFile to perform the operation and one of
IccKey, IccRBA, and IccRRN to identify the particular record, depending on
whether the file access type is KSDS, ESDS, or RRDS.

If you have more than one record to write, you can improve the speed of writing
by using mass insertion of data. You begin and end this mass insertion by calling
the beginInsert and endInsert methods of IccFile.

Writing KSDS records
You must use a key, held in an IccKey object to access records.

A 'complete' key is a character string that uniquely identifies a record. Every record
can be separately identified by its complete key.

30 CICS TS for z/OS 4.2: C++ OO Class Libraries

The writeRecord method of IccFile class writes the record.

IccFile class has methods isAddable, keyLength, keyPosition, recordIndex,
recordLength, and registerRecordIndex which help you when writing KSDS
records.

Writing ESDS records
You must use a relative byte address (RBA) held in an IccRBA object to access the
beginning of a record.

IccFile class has methods isAddable, recordFormat, recordIndex, recordLength,
and registerRecordIndex that help you when writing ESDS records.

Writing RRDS records
Use the writeRecord method to add a new ESDS record.

IccFile class has methods isAddable, recordFormat, recordIndex, recordLength,
and registerRecordIndex that help you when writing RRDS records.

Updating records
Updating a record is also known as "rewriting a record".

Before updating a record you must first read it, using readRecord method in
'update' mode. This locks the record so that nobody else can change it.

Use rewriteRecord method to update the record. Note that the IccFile object
remembers which record is being processed and this information is not passed in
again.

For an example, see code fragment: "Read record for update".

The base key in a KSDS file must not be altered when the record is modified. If the
file definition allows variable-length records, the length of the record can be
changed.

The length of records in an ESDS, RRDS, or fixed-length KSDS file must not be
changed on update.

For a file defined to CICS as containing fixed-length records, the length of record
being updated must be the same as the original length. The length of an updated
record must not be greater than the maximum defined to VSAM.

Deleting records
Records can never be deleted from an ESDS file.

Deleting normal records
The deleteRecord method of IccFile class deletes one or more records, provided
they are not locked by virtue of being in 'update' mode.

The records to be deleted are defined by the IccKey or IccRRN object.

Deleting locked records
The deleteLockedRecord method of IccFile class deletes a record which has been
previously locked by virtue of being put in 'update' mode by the readRecord
method.

Chapter 7. Using CICS Services 31

Browsing records
Browsing, or sequential reading of files uses another class – IccFileIterator.

An object of this class must be associated with an IccFile object and an IccKey,
IccRBA, or IccRRN object. After this association has been made the IccFileIterator
object can be used without further reference to the other objects.

Browsing can be done either forwards, using readNextRecord method or
backwards, using readPreviousRecord method. The reset method resets the
IccFileIterator object to point to the record specified by the IccKey or IccRBA
object.

Examples of browsing files are shown in page Code fragment "List all records in
assending order of key" .

Example of file control
This sample program demonstrates how to use the IccFile and IccFileIterator
classes.

The source for this sample can be found in the samples directory (see “Sample
source code” on page 6) in file ICC$FIL. Here the code is presented without any of
the terminal input and output that can be found in the source file.

The first two lines include the header files for the Foundation Classes and the
standard main function which sets up the operating environment for the
application program.

This defines several lines of data that are used by the sample program.

The run method of IccUserControl class contains the user code for this example.
As a terminal is to be used, the example starts by creating a terminal object and
clearing the associated screen.

#include "icceh.hpp"
#include "iccmain.hpp"

const char* fileRecords[] =
{

//NAME KEY PHONE USERID
"BACH, J S 003 00-1234 BACH ",
"BEETHOVEN, L 007 00-2244 BEET ",
"CHOPIN, F 004 00-3355 CHOPIN ",
"HANDEL, G F 005 00-4466 HANDEL ",
"MOZART, W A 008 00-5577 WOLFGANG "

};

void IccUserControl::run()
{

short recordsDeleted = 0;
IccFileId id("ICCKFILE");
IccKey key(3,IccKey::generic);
IccFile file(id);
file.registerRecordIndex(&key);
key = "00";
recordsDeleted = file.deleteRecord();

32 CICS TS for z/OS 4.2: C++ OO Class Libraries

The key and file objects are first created and then used to delete all the records
whose key starts with "00" in the KSDS file "ICCKFILE". key is defined as a generic
key having 3 bytes, only the first two of which are used in this instance.

This next fragment writes all the data provided into records in the file. The data is
passed by means of an IccBuf object that is created for this purpose. setKind
method is used to change key from 'generic' to 'complete'.

The for loop between these calls loops round all the data, passing the data into the
buffer, using the operator= method of IccBuf, and thence into a record in the file,
by means of writeRecord. On the way the key for each record is set, using assign,
to be a character string that occurs in the data (3 characters, starting 15 characters
in).

The loop shown here lists to the terminal, using sendLine, all the records in
ascending order of key. It uses an IccFileIterator object to browse the records. It
starts by setting the minimum value for the key which, as it happens, does not
exist in this example, and relying on CICS to find the first record in key sequence.

The loop continues until any condition other than NORMAL is returned.

The next loop is nearly identical to the last, but lists the records in reverse order of
key.

This fragment reads a record for update, locking it so that others cannot change it.
It then modifies the record in the buffer and writes the updated record back to the
file.

IccBuf buffer(40);
key.setKind(IccKey::complete);
for (short j = 0; j < 5; j++)
{

buffer = fileRecords[j];
key.assign(3, fileRecords[j]+15);
file.writeRecord(buffer);

}

IccFileIterator fIterator(&file, &key);
key = "000";
buffer = fIterator.readNextRecord();
while (fIterator.condition() == IccCondition::NORMAL)
{

term->sendLine("- record read: [%s]",(const char*) buffer);
buffer = fIterator.readNextRecord();

}

key = "\xFF\xFF\xFF";
fIterator.reset(&key);
buffer = fIterator.readPreviousRecord();
while (fIterator.condition() == IccCondition::NORMAL)
{

buffer = fIterator.readPreviousRecord();
}

key = "008";
buffer = file.readRecord(IccFile::update);
buffer.replace(4, "5678", 23);
file.rewriteRecord(buffer);

buffer = file.readRecord();

Chapter 7. Using CICS Services 33

The same record is read again and sent to the terminal, to show that it has indeed
been updated.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample.

Program control
This section describes how to access and use a program other than the one that is
currently executing.

Program control uses IccProgram class, one of the resource classes.

Programs may be loaded, unloaded and linked to, using an IccProgram object. An
IccProgram object can be interrogated to obtain information about the program.
See Chapter 40, “IccProgram class,” on page 173 for more details.

The example shown here shows one program calling another two programs in
turn, with data passing between them via a COMMAREA. One program is
assumed to be local, the second is on a remote CICS system. The programs are in
two files, ICC$PRG1 and ICC$PRG2, in the samples directory (see “Sample source
code” on page 6).

Most of the terminal IO in these samples has been omitted from the code that
follows.

The code for both programs starts by including the header files for the Foundation
Classes and the stub for main method. The user code is located in the run method
of the IccUserControl class for each program.

The first program (ICC$PRG1) creates an IccSysId object representing the remote
region, and two IccProgram objects representing the local and remote programs
that will be called from this program. A 100 byte, fixed length buffer object is also
created to be used as a communication area between programs.

return;
}

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

IccSysId sysId("ICC2");
IccProgram icc$prg2("ICC$PRG2");
IccProgram remoteProg("ICC$PRG3");
IccBuf commArea(100, IccBuf::fixed);

34 CICS TS for z/OS 4.2: C++ OO Class Libraries

The program then attempts to load and interrogate the properties of program
ICC$PRG2.

The communication area buffer is set to contain some data to be passed to the first
program that ICC$PRG1 links to (ICC$PRG2). ICC$PRG1 is suspended while
ICC$PRG2 is run.

The called program, ICC$PRG2, is a simple program, the gist of which is as
follows:

ICC$PRG2 gains access to the communication area that was passed to it. It then
modifies the data in this communication area and passes control back to the
program that called it.

The first program (ICC$PRG1) now calls another program, this time on another
system, as follows:

The setRouteOption requests that calls on this object are routed to the remote
system. The communication area is set again (because it will have been changed by
ICC$PRG2) and it then links to the remote program (ICC$PRG3 on system ICC2).

The called program uses CICS temporary storage but the three lines we consider
are:

Again, the remote program (ICC$PRG3) gains access to the communication area
that was passed to it. It modifies the data in this communication area and passes
control back to the program that called it.

Finally, the calling program itself ends and returns control to CICS.

icc$prg2.load();
if (icc$prg2.condition() == IccCondition::NORMAL)
{

term->sendLine("Loaded program: %s <%s> Length=%ld Address=%x",
icc$prg2.name(),
icc$prg2.conditionText(),
icc$prg2.length(),
icc$prg2.address());

icc$prg2.unload();
}

commArea = "DATA SET BY ICC$PRG1";
icc$prg2.link(&commArea);

IccBuf& commArea = IccControl::commArea();
commArea = "DATA RETURNED BY ICC$PRG2";
return;

remoteProg.setRouteOption(sysId);
commArea = "DATA SET BY ICC$PRG1";
remoteProg.link(&commArea);

IccBuf& commArea = IccControl::commArea();
commArea = "DATA RETURNED BY ICC$PRG3";
return;

return;
};

Chapter 7. Using CICS Services 35

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from these sample programs.

Starting transactions asynchronously
The IccStartRequestQ class enables a program to start another CICS transaction
instance asynchronously (and optionally pass data to the started transaction).

The same class is used by a started transaction to gain access to the data that the
task that issued the start request passed to it. Finally start requests (for some time
in the future) can be cancelled.

Starting transactions
You can use any of the following methods to establish what data will be sent to
the started transaction.
v registerData or setData

v setQueueName

v setReturnTermId

v setReturnTransId

The actual start is requested using the start method.

Accessing start data
A started transaction can access its start data by invoking the retrieveData method.

This method stores all the start data attributes in the IccStartRequestQ object such
that the individual attributes can be accessed using the following methods:
v data

v queueName

v returnTermId

v returnTransId

Cancelling unexpired start requests
Unexpired start requests (that is, start requests for some future time that has not
yet been reached) can be cancelled using the cancel method.

Example of starting transactions
start transaction ISR1 on terminal PEO1 on system ICC1.

CICS system ICC1 ICC2

Transaction ISR1/ITMP ISR2

Program ICC$SRQ1/ICC$TMP ICC$SRQ2

Terminal PEO1 PEO2

This issues two start requests; the first is cancelled before it has expired. The
second starts transaction ISR2 on terminal PEO2 on system ICC2. This transaction
accesses its start data and finishes by starting transaction ITMP on the original
terminal (PEO1 on system ICC1).

36 CICS TS for z/OS 4.2: C++ OO Class Libraries

The programs can be found in the samples directory (see “Sample source code” on
page 6) as files ICC$SRQ1 and ICC$SRQ2. Here the code is presented without the
terminal IO requests.

Transaction ISR1 runs program ICC$SRQ1 on system ICC1. Let us consider this
program first:

These lines include the header files for the Foundation Classes, and the main
function needed to set up the class library for the application program. The run
method of IccUserControl class contains the user code for this example.

Here we are creating a number of objects:

req1 An empty IccRequestId object ready to identify a particular start request.

req2 An IccRequestId object containing the user-supplied identifier
"REQUEST1".

ti An IccTimeInterval object representing 0 hours, 0 minutes, and 5 seconds.

remoteTermId
An IccTermId object; the terminal on the remote system where we start a
transaction.

ISR2 An IccTransId object; the transaction we start on the remote system.

ITMP An IccTransId object; the transaction that the started transaction starts on
this program's terminal.

buffer
An IccBuf object that holds start data.

Finally, the startRequestQ method of IccControl class returns a pointer to the
single instance (singleton) class IccStartRequestQ.

This code fragment prepares the start data that is passed when we issue a start
request. The setRouteOption says we will issue the start request on the remote
system, ICC2. The registerData method associates an IccBuf object that will
contain the start data (the contents of the IccBuf object are not extracted until we
issue the start request). The setReturnTermId and setReturnTransId methods
allow the start requester to pass a transaction and terminal name to the started

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

IccRequestId req1;
IccRequestId req2("REQUEST1");
IccTimeInterval ti(0,0,5);
IccTermId remoteTermId("PE02");
IccTransId ISR2("ISR2");
IccTransId ITMP("ITMP");
IccBuf buffer;
IccStartRequestQ* startQ = startRequestQ();

startQ->setRouteOption("ICC2");
startQ->registerData(&buffer);
startQ->setReturnTermId(terminal()->name());
startQ->setReturnTransId(ITMP);
startQ->setQueueName("startqnm");

Chapter 7. Using CICS Services 37

transaction. These fields are typically used to allow the started transaction to start
another transaction (as specified) on another terminal, in this case ours.

The setQueueName is another piece of information that can be passed to the
started transaction.

Here we set the data that we pass on the start requests. We start transaction ISR2
after an interval ti (5 seconds). The request identifier is stored in req1. Before the
five seconds has expired (that is, immediately) we cancel the start request.

Again we start transaction ISR2 after an interval ti (5 seconds). This time the
request is allowed to expire so transaction ISR2 is started on the remote system.
Meanwhile, we end by returning control to CICS.

Let us now consider the started program, ICC$SRQ2.

Here, as in ICC$SRQ1, we create a number of objects:

buffer
An IccBuf object to hold the start data we were passed by our caller
(ICC$SRQ1).

req An IccRequestId object to identify the start we will issue on our caller's
terminal.

ti An IccTimeInterval object representing 0 hours, 0 minutes, and 5 seconds.

The startRequestQ method of IccControl class returns a pointer to the singleton
class IccStartRequestQ.

Here we use the startType method of IccTask class to check that ICC$SRQ2 was
started by the start method, and not in any other way (such as typing the
transaction name on a terminal). If it was not started as intended, we abend with
an "OOPS" abend code.

We retrieve the start data that we were passed by ICC$SRQ1 and store within the
IccStartRequestQ object for subsequent access.

buffer = "This is a greeting from program ’icc$srq1’!!";
req1 = startQ->start(ISR2, &remoteTermId, &ti);
startQ->cancel(req1);

req1 = startQ->start(ISR2, &remoteTermID, &ti, &req2);
return;

}

IccBuf buffer;
IccRequestId req("REQUESTX");
IccTimeInterval ti(0,0,5);
IccStartRequestQ* startQ = startRequestQ();

if (task()->startType() != IccTask::startRequest)
{

term->sendLine(
"This program should only be started via the StartRequestQ");

task()->abend("OOPS");
}

startQ->retrieveData();

38 CICS TS for z/OS 4.2: C++ OO Class Libraries

The start data buffer is copied into our IccBuf object. The other start data items
(queue, returnTransId, and returnTermId) are displayed on the terminal.

We delay for five seconds (that is, we sleep and do nothing).

The setRouteOption signals that we will start on our caller's system (ICC1).

We start a transaction called ITMP (the name of which was passed by ICC$SRQ1 in
the returnTransId start information) on the originating terminal (where ICC$SRQ1
completed as it started this transaction). Having issued the start request, ICC$SRQ1
ends, by returning control to CICS.

Finally, transaction ITMP runs on the first terminal. This is the end of this
demonstration of starting transactions asynchronously.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from these sample programs.

Transient Data
The transient data classes, IccDataQueue and IccDataQueueId, allow you to store
data in transient data queues for subsequent processing.

You can:
v Read data from a transient data queue (readItem method)
v Write data to a transient data queue (writeItem method)
v Delete a transient data queue (empty method)

An IccDataQueue object is used to represent a temporary storage queue. An
IccDataQueueId object is used to identify a queue by name. Once the
IccDataQueueId object is initialized it can be used to identify the queue as an
alternative to using its name, with the advantage of additional error detection by
the C++ compiler.

The methods available in IccDataQueue class are similar to those in the
IccTempStore class. For more information on these see “Temporary storage” on
page 41.

Reading data
The readItem method is used to read items from the queue.

It returns a reference to the IccBuf object that contains the information.

buffer = startQ->data();
term->sendLine("Start buffer contents = [%s]", buffer.dataArea());
term->sendLine("Start queue= [%s]", startQ->queueName());
term->sendLine("Start rtrn = [%s]", startQ->returnTransId().name());
term->sendLine("Start rtrm = [%s]", startQ->returnTermId().name());

task()->delay(ti);

startQ->setRouteOption("ICC1");

startQ->start(startQ->returnTransId(),startQ->returnTermId());
return;

Chapter 7. Using CICS Services 39

Writing data
The writeItem method of IccDataQueue adds a new item of data to the queue,
taking the data from the buffer specified.

Deleting queues
The empty method deletes all items on the queue.

Example of managing transient data
This sample program demonstrates how to use the IccDataQueue and
IccDataQueueId classes.

It can be found in the samples directory (see “Sample source code” on page 6) as
file ICC$DAT. Here the code is presented without the terminal IO requests.

The first two lines include the header files for the foundation classes and the
standard main function that sets up the operating environment for the application
program.

This defines some buffer for the sample program.

The run method of IccUserControl class contains the user code for this example.

This fragment first creates an identification object, of type IccDataQueueId
containing "ICCQ". It then creates an IccDataQueue object representing the
transient data queue "ICCQ", which it empties of data.

This loop writes the three data items to the transient data object. The data is
passed by means of an IccBuf object that was created for this purpose.

#include "icceh.hpp"
#include "iccmain.hpp"

const char* queueItems[] =
{

"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"

};

void IccUserControl::run()
{

short itemNum =1;
IccBuf buffer(50);
IccDataQueueId id("ICCQ");
IccDataQueue queue(id);
queue.empty();

for (short i=0 ; i<3 ; i++)
{

buffer = queueItems[i];
queue.writeItem(buffer);

}

40 CICS TS for z/OS 4.2: C++ OO Class Libraries

Having written out three records we now read them back in to show they were
successfully written.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample program.

Temporary storage
The temporary storage classes, IccTempStore and IccTempStoreId, allow you to
store data in temporary storage queues.

You can:
v Read an item from the temporary storage queue (readItem method)
v Write a new item to the end of the temporary storage queue (writeItem method)
v Update an item in the temporary storage queue (rewriteItem method)
v Read the next item in the temporary storage queue (readNextItem method)
v Delete all the temporary data (empty method)

An IccTempStore object is used to represent a temporary storage queue. An
IccTempStoreId object is used to identify a queue by name. Once the
IccTempStoreId object is initialized it can be used to identify the queue as an
alternative to using its name, with the advantage of additional error detection by
the C++ compiler.

The methods available in IccTempStore class are similar to those in the
IccDataQueue class. For more information on these see “Transient Data” on page
39.

Reading items
The readItem method of IccTempStore reads the specified item from the
temporary storage queue.

It returns a reference to the IccBuf object that contains the information.

Writing items
Writing items is also known as "adding" items.

This section describes writing items that have not previously been written. Writing
items that already exist can be done using the rewriteItem method. See “Updating
items” on page 42 for more information.

The writeItem method of IccTempStore adds a new item at the end of the queue,
taking the data from the buffer specified. If this is done successfully, the item
number of the record added is returned.

buffer = queue.readItem();
while (queue.condition() == IccCondition::NORMAL)
{

buffer = queue.readItem();
}

return;
}

Chapter 7. Using CICS Services 41

Updating items
Updating an item is also known as "rewriting" an item.

The rewriteItem method of IccTempStore class is used to update the specified
item in the temporary storage queue.

Deleting items
You cannot delete individual items in a temporary storage queue.

To delete all the temporary data associated with an IccTempStore object use the
empty method of IccTempStore class.

Example of Temporary Storage
This sample program demonstrates how to use the IccTempStore and
IccTempStoreId classes.

This program can be found in the samples directory (see “Sample source code” on
page 6) as file ICC$TMP. The sample is presented here without the terminal IO
requests.

The first three lines include the header files for the foundation classes, the standard
main function that sets up the operating environment for the application program,
and the standard library.

This defines some buffer for the sample program.

The run method of IccUserControl class contains the user code for this example.

This fragment first creates an identification object, IccTempStoreId containing the
field "ICCSTORE". It then creates an IccTempStore object representing the
temporary storage queue "ICCSTORE", which it empties of records.

#include "icceh.hpp"
#include "iccmain.hpp"
#include <stdlib.h>

const char* bufferItems[] =
{

"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"

};

void IccUserControl::run()
{

short itemNum = 1;
IccTempStoreId id("ICCSTORE");
IccTempStore store(id);
IccBuf buffer(50);
store.empty();

for (short j=1 ; j <= 3 ; j++)
{

buffer = bufferItems[j-1];
store.writeItem(buffer);

}

42 CICS TS for z/OS 4.2: C++ OO Class Libraries

This loop writes the three data items to the Temporary Storage object. The data is
passed by means of an IccBuf object that was created for this purpose.

This next fragment reads the items back in, modifies the item, and rewrites it to
the temporary storage queue. First, the readItem method is used to read the buffer
from the temporary storage object. The data in the buffer object is changed using
the insert method of IccBuf class and then the rewriteItem method overwrites the
buffer. The loop continues with the next buffer item being read.

This loop reads the temporary storage queue items again to show they have been
updated.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample program.

Terminal control
The terminal control classes, IccTerminal, IccTermId, and IccTerminalData, allow
you to send data to, receive data from, and find out information about the terminal
belonging to the CICS task.

An IccTerminal object is used to represent the terminal that belongs to the CICS
task. It can only be created if the transaction has a 3270 terminal as its principal
facility. The IccTermId class is used to identify the terminal. IccTerminalData,
which is owned by IccTerminal, contains information about the terminal
characteristics.

Sending data to a terminal
The send and sendLine methods of IccTerminal class are used to write data to the
screen.

The set... methods allow you to do this. You may also want to erase the data
currently displayed at the terminal, using the erase method, and free the keyboard
so that it is ready to receive input, using the freeKeyboard method.

buffer = store.readItem(itemNum);
while (store.condition() == IccCondition::NORMAL)
{

buffer.insert(9, "Modified ");
store.rewriteItem(itemNum, buffer);
itemNum++;
buffer = store.readItem(itemNum);

}

itemNum = 1;
buffer = store.readItem(itemNum);
while (store.condition() == IccCondition::NORMAL)
{

term->sendLine(" - record #%d = [%s]", itemNum,
(const char*)buffer);

buffer = store.readNextItem();
}

return;
}

Chapter 7. Using CICS Services 43

Receiving data from a terminal
The receive and receive3270data methods of IccTerminal class are used to receive
data from the terminal.

Finding out information about a terminal
You can find out information about both the characteristics of the terminal and its
current state.

The data object points to the IccTerminalData object that contains information
about the characteristics of the terminal. The methods described in
IccTerminalData on page Chapter 58, “IccTerminalData class,” on page 263 allow
you to discover, for example, the height of the screen or whether the terminal
supports Erase Write Alternative. Some of the methods in IccTerminal also give
you information about characteristics, such as how many lines a screen holds.

Other methods give you information about the current state of the terminal. These
include line, which returns the current line number, and cursor, which returns the
current cursor position.

Example of terminal control
This sample program demonstrates how to use the IccTerminal, IccTermId, and
IccTerminalData classes.

This program can be found in the samples directory (see “Sample source code” on
page 6) as file ICC$TRM.

The first two lines include the header files for the Foundation Classes and the
standard main function that sets up the operating environment for the application
program.

The run method of IccUserControl class contains the user code for this example.
As a terminal is to be used, the example starts by creating a terminal object and
clearing the associated screen.

This fragment shows how the send and sendLine methods are used to send data
to the terminal. All of these methods can take IccBuf references (const IccBuf&)
instead of string literals (const char*).

This sends a blank line to the screen.

#include "icceh.hpp"
#include "iccmain.hpp"

void IccUserControl::run()
{

IccTerminal& term = *terminal();
term.erase();

term.sendLine("First part of the line...");
term.send("... a continuation of the line.");
term.sendLine("Start this on the next line");
term.sendLine(40, "Send this to column 40 of current line");
term.send(5, 10, "Send this to row 5, column 10");
term.send(6, 40, "Send this to row 6, column 40");

term.setNewLine();

44 CICS TS for z/OS 4.2: C++ OO Class Libraries

The setColor method is used to set the color of the text on the screen and the
setHighlight method to set the highlighting.

This fragment shows how to use the iostream–like interface endl to start data on
the next line. To improve performance, you can buffer data in the terminal until
flush is issued, which sends the data to the screen.

The waitForAID method causes the terminal to wait until the specified key is hit,
before calling the erase method to clear the display.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample program.

Time and date services
The IccClock class controls access to the CICS time and date services.

IccAbsTime holds information about absolute time (the time in milliseconds that
have elapsed since the beginning of 1900), and this can be converted to other forms
of date and time. The methods available on IccClock objects and on IccAbsTime
objects are very similar.

Example of time and date services
This sample program demonstrates how to use IccClock class.

The source for this program can be found in the samples directory (see “Sample
source code” on page 6) as file ICC$CLK. The sample is presented here without the
terminal IO requests.

The first two lines include the header files for the Foundation Classes and the
standard main function that sets up the operating environment for the application
program.

term.setColor(IccTerminal::red);
term.sendLine("A Red line of text.");
term.setColor(IccTerminal::blue);
term.setHighlight(IccTerminal::reverse);
term.sendLine("A Blue, Reverse video line of text.");

term << "A cout sytle interface... " << endl;
term << "you can " << "chain input together; "

<< "use different types, eg numbers: " << (short)123 << " "
<< (long)4567890 << " " << (double)123456.7891234 << endl;

term << "... and everything is buffered till you issue a flush."
<< flush;

term.send(24,1, "Program ’icc$trm’ complete: Hit PF12 to End");
term.waitForAID(IccTerminal::PF12);
term.erase();

return;
}

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

Chapter 7. Using CICS Services 45

The run method of IccUserControl class contains the user code for this example.

This creates a clock object.

Here the date method is used to return the date in the format specified by the
format enumeration. In order the formats are system, DDMMYY, DD:MM:YY,
MMDDYY and YYDDD. The character used to separate the fields is specified by
the dateSeparator character (that defaults to nothing if not specified).

This fragment demonstrates the use of the daysSince1900 and dayOfWeek
methods. dayOfWeek returns an enumeration that indicates the day of the week. If
it is Friday, a message is sent to the screen, 'Today IS Friday'; otherwise the
message 'Today is NOT Friday' is sent.

This demonstrates the dayOfMonth and monthOfYear methods of IccClock class.

The current time is sent to the terminal, first without a separator (that is HHMMSS
format), then with '-' separating the digits (that is, HH-MM-SS format). The year is
sent, for example 1996.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample program.

IccClock clock;

term->sendLine("date() = [%s]",
clock.date());

term->sendLine("date(DDMMYY) = [%s]",
clock.date(IccClock::DDMMYY));

term->sendLine("date(DDMMYY,’:’) = [%s]",
clock.date(IccClock::DDMMYY,’:’));

term->sendLine("date(MMDDYY) = [%s]",
clock.date(IccClock::MMDDYY));

term->sendLine("date(YYDDD) = [%s]",
clock.date(IccClock::YYDDD));

term->sendLine("daysSince1900() = %ld",
clock.daysSince1900());

term->sendLine("dayOfWeek() = %d",
clock.dayOfWeek());

if (clock.dayOfWeek() == IccClock::Friday)
term->sendLine(40, "Today IS Friday");

else
term->sendLine(40, "Today is NOT Friday");

term->sendLine("dayOfMonth() = %d",
clock.dayOfMonth());

term->sendLine("monthOfYear() = %d",
clock.monthOfYear());

term->sendLine("time() = [%s]",
clock.time());

term->sendLine("time(’-’) = [%s]",
clock.time(’-’));

term->sendLine("year() = [%ld]",
clock.year());

return;
};

46 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 8. Compiling, executing, and debugging

This section describes how to compile, execute, and debug a CICS Foundation
Class program.

Compiling Programs
To compile and link a CICS Foundation Class program you need access to the
following.
v The source of the program you are compiling

Your C++ program source code needs #include statements for the Foundation
Class headers and the Foundation Class main() program stub:
#include "icceh.hpp"
#include "iccmain.hpp"

v The IBM C++ compiler
v The Foundation Classes header files (see “Header files” on page 5)
v The Foundation Classes dynamic link library (DLL) (see “Dynamic link library”

on page 6)

Note that, when using the Foundation Classes, you do not need to translate the
"EXEC CICS" API so the translator program should not be used.

The following sample job statements show how to compile, prelink and link a
program called ICC$HEL:
//ICC$HEL JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//PROCLIB JCLLIB ORDER=(CICSTS42.CICS.SDFHPROC)
//ICC$HEL EXEC ICCFCCL,INFILE=indatasetname(ICC$HEL),OUTFILE=outdatasetname(ICC$HEL)
//

Executing Programs
To run a compiled and linked (that is, executable) Foundation Classes program you
need to do the following.
1. Make the executable program available to CICS. This involves making sure the

program is in a suitable directory or load library. Depending on your server,
you may also need to create a CICS program definition (using CICS resource
definition facilities) before you can execute the program.

2. Logon to a CICS terminal.
3. Run the program.

Program debugging
Having successfully compiled, linked, and attempted to run your Foundation
Classes program, you might need to debug it.

There are three options available to help debug a CICS Foundation Classes
program:
v Use a symbolic debugger
v Run the Foundation Class Program with tracing active
v Run the Foundation Class Program with the CICS Execution Diagnostic Facility

© Copyright IBM Corp. 1989, 2012 47

Symbolic debugger

You can use a symbolic debugger to step through the source of your CICS
Foundation Classes program. Debug Tool is shipped as a feature with IBM C/C++.
To debug a CICS Foundation Classes program with a symbolic debugger, compile
the program with a flag that adds debugging information to your executable
program. For CICS Transaction Server for z/OS, this flag is TEST(ALL).

For more information, see the Debug Tool for z/OS and OS/390 User's Guide.

Tracing

You can configure the CICS Foundation Classes to write a trace file for debugging
purposes.

Exception tracing is always active. The CETR transaction controls the auxiliary and
internal traces for all CICS programs including those developed using the C++
classes.

Execution diagnostic facility

You can use the Execution Diagnostic Facility (EDF) to step through your CICS
program, stopping at each EXEC CICS call. The display screen shows the procedural
EXEC CICS call interface rather than the CICS Foundation Class type interface.

To enable EDF, use the preprocessor macro ICC_EDF in your source code before
including the file ICCMAIN.

#define ICC_EDF //switch EDF on
#include "iccmain.hpp"

Alternatively use the appropriate flag on your compiler CPARM to declare
ICC_EDF.

48 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 9. Conditions, errors, and exceptions

This section describes how the Foundation Classes have been designed to respond
to various error situations they might encounter.

Foundation Class Abend codes
For serious errors (such as insufficient storage to create an object) the Foundation
Classes immediately terminate the CICS task.

All CICS Foundation Class abend codes are of the form ACLx. If your application
is terminated with an abend code starting 'ACL' then please refer to CICS Messages
and Codes, GC34-6827.

C++ Exceptions and the Foundation Classes
C++ exceptions are managed using the reserved words try, throw, and catch.

Please refer to your compiler's documentation or one of the C++ books in the
bibliography for more information.

Here is sample ICC$EXC1 (see “Sample source code” on page 6):

The first two lines include the header files for the Foundation Classes and the
standard main function that sets up the operating environment for the application
program.

We then declare class Test, which has one public method, tryNumber. This method
is implemented inline so that if an integer greater than ten is passed an exception
is thrown. We also write out some information to the CICS terminal.

#include "icceh.hpp"
#include "iccmain.hpp"
class Test {
public:

void tryNumber(short num) {
IccTerminal* term = IccTerminal::instance();
*term << "Number passed = " << num << endl << flush;
if (num > 10) {

*term << ">>Out of Range - throwing exception" << endl << flush;
throw "!!Number is out of range!!";

}
}

};

© Copyright IBM Corp. 1989, 2012 49

The run method of IccUserControl class contains the user code for this example.

After erasing the terminal display and writing some text, we begin our try block. A
try block can scope any number of lines of C++ code.

Here we create a Test object and invoke our only method, tryNumber, with
various parameters. The first two invocations (1, 7) succeed, but the third (11)
causes tryNumber to throw an exception. The fourth tryNumber invocation (6) is
not executed because an exception causes the program execution flow to leave the
current try block.

We then leave the try block and look for a suitable catch block. A suitable catch
block is one with arguments that are compatible with the type of exception being
thrown (here a char*). The catch block writes a message to the CICS terminal and
then execution resumes at the line after the catch block.

The output from this CICS program is as follows:

This is program ’icc$exc1’ ...
Number passed = 1
Number passed = 7
Number passed = 11
>>Out of Range - throwing exception
Exception caught: !!Number is out of range!!
Program ’icc$exc1’ complete: Hit PF12 to End

The CICS C++ Foundation Classes do not throw char* exceptions as in the above
sample but they do throw IccException objects instead.

There are several types of IccException. The type method returns an enumeration
that indicates the type. Here is a description of each type in turn.

objectCreationError
An attempt to create an object was invalid. This happens, for example, if
an attempt is made to create a second instance of a singleton class, such as
IccTask.

invalidArgument
A method was called with an invalid argument. This happens, for example,

void IccUserControl::run()
{

IccTerminal* term = IccTerminal::instance();
term->erase();
*term << "This is program ’icc$exc1’ ..." << endl;
try {

Test test;
test.tryNumber(1);
test.tryNumber(7);
test.tryNumber(11);
test.tryNumber(6);

}
catch(const char* exception) {

term->setLine(22);
*term << "Exception caught: " << exception << endl << flush;

}
term->send(24,1,"Program ’icc$exc1’ complete: Hit PF12 to End");
term->waitForAID(IccTerminal::PF12);
term->erase();
return;

}

50 CICS TS for z/OS 4.2: C++ OO Class Libraries

if an IccBuf object with too much data is passed to the writeItem method
of the IccTempStore class by the application program.

It also happens when attempting to create a subclass of IccResourceId,
such as IccTermId, with a string that is too long.

The following sample can be found in the samples directory (see “Sample
source code” on page 6) as file ICC$EXC2. The sample is presented here
without many of the terminal IO requests.

In the above example the first IccTermId object is successfully created, but
the second caused an IccException to be thrown, because the string "12345"
is 5 bytes where only 4 are allowed. See Appendix C, “Output from sample
programs,” on page 305 for the expected output from this sample program.

invalidMethodCall
A method cannot be called. A typical reason is that the object cannot honor
the call in its current state. For example, a readRecord call on an IccFile
object is only honored if an IccRecordIndex object, to specify which record
is to be read, has already been associated with the file.

CICSCondition
A CICS condition, listed in the IccCondition structure, has occurred in the
object and the object was configured to throw an exception.

familyConformanceError
Family subset enforcement is on for this program and an operation that is
not valid on all supported platforms has been attempted.

internalError
The CICS foundation classes have detected an internal error. Please call
service.

CICS conditions
The CICS foundation classes provide a powerful framework for handling
conditions that happen when executing an application.

Accessing a CICS resource can raise a number of CICS conditions as documented
in Part 3, “Foundation Classes—reference,” on page 67.

A condition might represent an error or information being returned to the calling
application; the deciding factor is often the context in which the condition is
raised.

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

try
{

IccTermId id1("1234");
IccTermId id2("12345");

}
catch(IccException& exception)
{

terminal()->send(21, 1, exception.summary());
}
return;

}

Chapter 9. Conditions, errors, and exceptions 51

The application program can handle the CICS conditions in a number of ways.
Each CICS resource object, such as a program, file, or data queue, can handle CICS
conditions differently, if required.

A resource object can be configured to take one of the following actions for each
condition it can encounter:

noAction
Manual condition handling

callHandleEvent
Automatic condition handling

throwException
Exception handling

abendTask
Severe error handling.

Manual condition handling (noAction)
This is the default action for all CICS conditions (for any resource object).

This means that the condition must be handled manually, using the condition
method. For example:

Automatic condition handling (callHandleEvent)
Activate this for any CICS condition, such as QIDERR, as follows.

When a call to any method on object 'temp' causes CICS to raise the QIDERR
condition, handleEvent method is automatically called. As the handleEvent
method is only a virtual method, this call is only useful if the object belongs to a
subclass of IccTempStore and the handleEvent method has been overridden.

Make a subclass of IccTempStore, declare a constructor, and override the
handleEvent method.

IccTempStore temp("TEMP1234");
IccBuf buf(40);
temp.setActionOnCondition(IccResource::noAction,

IccCondition::QIDERR);
buf = temp.readNextItem();
switch (temp.condition())
{
case IccCondition::QIDERR:

//do whatever here...
default:

//do something else here
}

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::callHandleEvent,

IccCondition::QIDERR);

52 CICS TS for z/OS 4.2: C++ OO Class Libraries

Now implement the handleEvent method.

This code is called for any MyTempStore object which is configured to
'callHandleEvent' for a particular CICS condition.

Exception handling (throwException)
Activate this for any CICS condition, such as QIDERR, as follows.

Exception handling is by means of the C++ exception handling model using try,
throw, and catch. For example:

An exception is thrown if any of the methods inside the try block raise the
QIDERR condition for object 'temp'. When an exception is thrown, C++ unwinds
the stack and resumes execution at an appropriate catch block – it is not possible
to resume within the try block. For a fuller example of the above, see sample
ICC$EXC3.

class MyTempStore : public IccTempStore
{
public:

MyTempStore(const char* storeName) : IccTempStore(storeName) {}
HandleEventReturnOpt handleEvent(IccEvent& event);

};

IccResource::HandleEventReturnOpt MyTempStore::handleEvent(IccEvent& event)
{

switch (event.condition())
{
case ...

...
case IccCondition::QIDERR:

//Handle QIDERR condition here.

...
//

default:
return rAbendTask;

}
}

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::throwException,

IccCondition::QIDERR);

try
{

buf = temp.readNextItem();

...
}
catch (IccException& exception)
{

//Exception handling code

...
}

Chapter 9. Conditions, errors, and exceptions 53

Note: Exceptions can be thrown from the Foundation Classes for many reasons
other than this example – see “C++ Exceptions and the Foundation Classes” on
page 49 for more details.

Severe error handling (abendTask)
This option allows CICS to terminate the task when certain conditions are raised.

Activate this for any CICS condition, such as QIDERR, as follows:

If CICS raises the QIDERR condition for object 'temp' the CICS task terminates
with an ACL3 abend.

Platform differences
The CICS Foundation Classes, as described here, are designed to be independent of
the particular CICS platform on which they are running. There are however some
differences between platforms; these, and ways of coping with them, are described
here.

Note: References in this topicsection to other CICS platforms, such as CICS for
AIX®, are included for completeness. There have been Technology Releases of the
CICS Foundation Classes on those platforms.

Applications can be run in one of two modes:

fsAllowPlatformVariance
Applications written using the CICS Foundation Classes are able to access
all the functions available on the target CICS server.

fsEnforce
Applications are restricted to the CICS functions that are available across
all CICS Servers (z/OS and UNIX).

The default is to allow platform variance and the alternative is to force the
application to only use features which are common to all CICS platforms.

The class headers are the same for all platforms and they "support" (that is, define)
all the CICS functions that are available through the Foundation Classes on any of
the CICS platforms. The restrictions on each platform are documented in Part 3,
“Foundation Classes—reference,” on page 67. Platform variations exist at:
v object level
v method level
v parameter level

Object level
Some objects are not supported on certain platforms.

For example, IccConsole objects cannot be created on CICS for AIX as CICS for
AIX does not support console services.

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::abendTask,

IccCondition::QIDERR);

54 CICS TS for z/OS 4.2: C++ OO Class Libraries

Any attempt to create an IccConsole object on CICS for AIX causes an
IccException object of type 'platformError' to be thrown, but would be acceptable
on the other platforms
IccConsole* cons = console(); //No good on CICS for AIX

If you initialize your application with 'fsEnforce' selected (see
“initializeEnvironment” on page 70) the previous examples both cause an
IccException object, of type 'familyConformanceError' to be thrown on all
platforms.

Unlike objects of the IccConsole and IccJournal classes, most objects can be created
on any CICS server platform. However the use of the methods can be restricted.
Part 3, “Foundation Classes—reference,” on page 67 fully documents all platform
restrictions.

Method level
Methods that run successfully on one platform can cause a problem on another
platform.

Consider, for example method programId in the IccControl class:

Here method programId executes correctly on CICS TS for z/OS but throws an
IccException object of type 'platformError' on CICS for AIX.

Alternatively, if you initialize your application with family subset enforcement on
(see initializeEnvironment function of Icc structure), method programId throws an
IccException object of type 'familyConformanceError' on any CICS server platform.

Parameter level
At this level a method is supported on all platforms, but a particular positional
parameter has some platform restrictions.

Consider method abend in IccTask class.

Abends �1� to �4� run successfully on all CICS server platforms.

If family subset enforcement is off, abend �5� throws an IccException object of
type 'platformError' on a CICS for AIX platform, but not on a CICS Transaction
Server for z/OS platform.

void IccUserControl::run()
{

if (strcmp(programId.name(), "PROG1234") == 0)
//do something

}

task()->abend(); �1�

task()->abend("WXYZ"); �2�

task()->abend("WXYZ", IccTask::respectAbendHandler); �3�

task()->abend("WXYZ", IccTask::ignoreAbendHandler); �4�

task()->abend("WXYZ", IccTask::ignoreAbendHandler, �5�

IccTask::suppressDump);

Chapter 9. Conditions, errors, and exceptions 55

If family subset enforcement is on, abend �5� throws an IccException object of
type 'familyConformanceError', irrespective of the target CICS platform.

56 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 10. Polymorphic Behavior

Polymorphism (poly = many, morphe = form) is the ability to treat many different
forms of an object as if they were the same.

Polymorphism is achieved in C++ by using inheritance and virtual functions.
Consider the scenario where we have three forms (ExpenseForm, LoanForm,
PurchaseForm) that are specializations of a general Form:

Each form needs printing at some time. In procedural programming, we would
either code a print function to handle the three different forms or we would write
three different functions (printExpenseForm, printLoanForm, printPurchaseForm).

In C++ this can be achieved far more elegantly as follows:

Each of these overridden functions is implemented so that each form prints
correctly. Now an application using form objects can do this:

Here we create ten objects that might be any combination of Expense, Loan, and
Purchase Forms. However, because we are dealing with pointers to the base class,
Form, we do not need to know which sort of form object we have; the correct
print method is called automatically.

Limited polymorphic behavior is available in the Foundation Classes. Three virtual
functions are defined in the base class IccResource:

Form
│

┌───────────────┼───────────────┐
│ │ │

ExpenseForm LoanForm PurchaseForm

class Form {
public:

virtual void print();
};
class ExpenseForm : public Form {
public:

virtual void print();
};
class LoanForm : public Form {
public:

virtual void print();
};
class PurchaseForm : public Form {
public:

virtual void print();
};

Form* pForm[10]
//create Expense/Loan/Purchase Forms...
for (short i=0 ; i < 9 ; i++)

pForm->print();

virtual void clear();
virtual const IccBuf& get();
virtual void put(const IccBuf& buffer);

© Copyright IBM Corp. 1989, 2012 57

These methods have been implemented in the subclasses of IccResource wherever
possible:

Class clear get put

IccConsole × × U

IccDataQueue U U U

IccJournal × × U

IccSession × U U

IccTempStore U U U

IccTerminal U U U

These virtual methods are not supported by any subclasses of IccResource except
those in the table above.

Note: The default implementations of clear, get, and put in the base class
IccResource throw an exception to prevent the user from calling an unsupported
method.

Example of polymorphic behavior
The following sample can be found in the samples directory as file ICC$RES2.

It is presented here without the terminal IO requests. See “Sample source code” on
page 6.

Here we include Foundation Class headers and the main function. dataItems
contains some sample data items. We write our application code in the run method
of IccUserControl class.

We create an IccBuf object (50 bytes initially) to hold our data items. An array of
two pointers to IccResource objects is declared.

We create two objects whose classes are derived from IccResource – IccDataQueue
and IccTempStore.

#include "icceh.hpp"
#include "iccmain.hpp"
char* dataItems[] =
{

"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"

};
void IccUserControl::run()
{

IccBuf buffer(50);
IccResource* pObj[2];

pObj[0] = new IccDataQueue("ICCQ");
pObj[1] = new IccTempStore("ICCTEMPS");

58 CICS TS for z/OS 4.2: C++ OO Class Libraries

For both objects we invoke the clear method. This is handled differently by each
object in a way that is transparent to the application program; this is polymorphic
behavior.

Now we put three data items in each of our resource objects. Again the put
method responds to the request in a way that is appropriate to the object type.

The data items are read back in from each of our resource objects using the get
method. We delete the resource objects and return control to CICS.

for (short index=0; index <= 1 ; index++)
{

pObj[index]->clear();
}

for (index=0; index <= 1 ; index++)
{

for (short j=1 ; j <= 3 ; j++)
{

buffer = dataItems[j-1];
pObj[index]->put(buffer);

}
}

for (index=0; index <= 1 ; index++)
{

buffer = pObj[index]->get();
while (pObj[index]->condition() == IccCondition::NORMAL)
{

buffer = pObj[index]->get();
}
delete pObj[index];

}
return;

}

Chapter 10. Polymorphic Behavior 59

60 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 11. Storage management

C++ objects are usually stored on the stack or heap.

Objects on the stack are automatically destroyed when they go out of scope, but
objects on the heap are not.

Many of the objects that the CICS Foundation Classes create internally are created
on the heap rather than the stack. This can cause a problem in some CICS server
environments.

On CICS Transaction Server for z/OS,, CICS and Language Environment® manage
all task storage so that it is released at task termination (normal or abnormal).

In a CICS for AIX environment, storage allocated on the heap is not automatically
released at task termination. This can lead to "memory leaks" if the application
programmer forgets to explicitly delete an object on the heap, or, more seriously, if
the task abends.

This problem has been overcome in the CICS Foundation Classes by providing
operators new and delete in the base Foundation Class, IccBase. These can be
configured to map dynamic storage allocation requests to CICS task storage, so
that all storage is automatically released at task termination. The disadvantage of
this approach is a performance hit as the Foundation Classes typically issue a large
number of small storage allocation requests rather than a single, larger allocation
request.

This facility is affected by the Icc::initializeEnvironment call that must be issued
before using the Foundation Classes. (This function is called from the default main
function—see Chapter 67, “main function,” on page 289.)

The first parameter passed to the initializeEnvironment function is an
enumeration that takes one of these three values:

cmmDefault
The default action is platform dependent:

z/OS same as 'cmmNonCICS' - see below.

UNIX same as 'cmmCICS' - see below.

cmmNonCICS
The new and delete operators in class IccBase do not map dynamic
storage allocation requests to CICS task storage; instead the C++ default
new and delete operators are invoked.

cmmCICS
The new and delete operators in class IccBase map dynamic storage
allocation requests to CICS task storage (which is automatically released at
normal or abnormal task termination).

The default main function supplied with the Foundation Classes calls
initializeEnvironment with an enum of 'cmmDefault'. You can change this in your
program without changing the supplied "header file" ICCMAIN as follows:

© Copyright IBM Corp. 1989, 2012 61

Alternatively, set the option DEV(ICC_CLASS_MEMORY_MGMT) when
compiling.

#define ICC_CLASS_MEMORY_MGMT Icc::cmmNonCICS
#include "iccmain.hpp"

62 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 12. Parameter passing conventions

The convention used for passing objects on Foundation Classes method calls is if
the object is mandatory, pass by reference; if it is optional pass by pointer.

For example, consider method start of class IccStartRequestQ, which has the
following signature:

Using the above convention, we see that an IccTransId object is mandatory, while
an IccTime and an IccRequestId object are both optional. This enables an
application to use this method in any of the following ways:

const IccRequestId& start(const IccTransId& transId,
const IccTime* time=0,
const IccRequestId* reqId=0);

IccTransId trn("ABCD");
IccTimeInterval int(0,0,5);
IccRequestId req("MYREQ");
IccStartRequestQ* startQ = startRequestQ();
startQ->start(trn);
startQ->start(trn, &int);
startQ->start(trn, &int, &req);
startQ->start(trn, 0, &req);

© Copyright IBM Corp. 1989, 2012 63

64 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 13. Scope of data in IccBuf reference returned from
'read' methods

Many of the subclasses of IccResource have 'read' methods that return const
IccBuf references; for example, IccFile::readRecord, IccTempStore::readItem and
IccTerminal::receive.

Care should be taken if you choose to maintain a reference to the IccBuf object,
rather than copy the data from the IccBuf reference into your own IccBuf object.
For example, consider the following

Here, the data in the IccBuf reference returned from IccTempStore::readNextItem
is immediately copied into the application's own IccBuf object, so it does not
matter if the data is later invalidated. However, the application might look like this

Here, the IccBuf reference returned from IccTempStore::readNextItem is not
copied into the application's own storage and care must therefore be taken.

Note: You are recommended not to use this style of programming to avoid using a
reference to an IccBuf object that does not contain valid data.

The returned IccBuf reference typically contains valid data until one of the
following conditions is met:
v Another 'read' method is invoked on the IccResource object (for example,

another readNextItem or readItem method in the above example).
v The resource updates are committed (see method IccTask::commitUOW).
v The task ends (normally or abnormally).

IccBuf buf(50);
IccTempStore store("TEMPSTOR");
buf = store.readNextItem();

IccTempStore store("TEMPSTOR");
const IccBuf& buf = store.readNextItem();

© Copyright IBM Corp. 1989, 2012 65

66 CICS TS for z/OS 4.2: C++ OO Class Libraries

Part 3. Foundation Classes—reference

This section contains the reference information on the foundation classes and
structures that are provided as part of CICS. The classes and structures are
arranged in alphabetic order. All the functionality you require to create
object-oriented CICS programs is included within these classes and structures.

All of the classes and structures begin with the unique prefix Icc. Do not create
your own classes with this prefix.

Icc structure contains some functions and enumerations that are widely applicable.
IccValue structure consists of a large enumeration of all the CVDA values used in
traditional CICS programs.

The description of each class starts with a simple diagram that shows how it is
derived from IccBase class, the basis of all the other classes. This is followed by a
short description and an indication of the name of the header file that includes it
and, where appropriate, a sample source file that uses it.

Within each class or structure description are, where appropriate, the following
sections:
1. Inheritance diagram
2. Brief description of class
3. Header file where class is defined. For the location of the C++ header files on

your system see “Header files” on page 5.
4. Sample program demonstrating class. For the location of the supplied C++

sample programs on your system see “Sample source code” on page 6.
5. Icc... constructors
6. Public methods (in alphabetic order)
7. Protected methods (in alphabetic order)
8. Inherited public methods (in tabular form)
9. Inherited protected methods (in tabular form)

10. Enumerations

Methods, including constructors, start with a formal function prototype that shows
what a call returns and what the parameters are. There follows a description, in
order, of the parameters. To avoid duplication, inherited methods just have an
indication of the class from which they are derived (and where they are described).

The convention for names is:
1. Variable names are shown as variable.
2. Names of classes, structures, enumerations and methods are shown as method

3. Members of enumerations are shown as 'enumMember'.
4. The names of all the supplied classes and structures begin with Icc.
5. Compound names have no separators, but have capital letters to demark the

beginning of second and subsequent words, as in IccJournalTypeId.
6. Class and structure names and enumeration types begin with capital letters.

Other names begin with lower case letters.

© Copyright IBM Corp. 1989, 2012 67

For further information on how to use these classes, see Part 2, “Using the CICS
foundation classes,” on page 13.

68 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 14. Icc structure

This structure holds global enumerations and functions for the CICS Foundation
Classes. These globals are defined within this structure to avoid name conflicts.

Header file: ICCGLBEH

Functions
Functions in Icc structure are as follows.

boolText
Returns the text that represents the boolean value described by the parameters,
such as "yes" or "on".

test
A boolean value, defined in this structure, that has one of two values, chosen
from a set of values given by set.

set
An enumeration, defined in this structure, that indicates from which pair of
values test is selected. The default is to use true and false.

catchException
This is the function of last resort, used to intercept IccException objects that the
application fails to catch. It can be called from the main function in the stub
program, listed in ICCMAIN header file, and described in Chapter 67, “main
function,” on page 289. All OO CICS programs should use this stub or a close
equivalent.

exception
A reference to an IccException object that holds information about a particular
type of exception.

conditionText
Returns the symbolic name associated with a condition value. For example, if
conditionText is called with condition of IccCondition::NORMAL, it returns
"NORMAL", if it is called with condition of IccCondition::IOERR, it returns
"IOERR", and so on.

static const char* boolText (Bool test,
BoolSet set = trueFalse)

static void catchException(IccException& exception)

static const char* conditionText(IccCondition::Codes condition)

© Copyright IBM Corp. 1989, 2012 69

condition
An enumeration, defined in the IccCondition structure, that indicates the
condition returned by a call to CICS.

initializeEnvironment
Initializes the CICS Foundation Classes. The rest of the class library can only be
called after this function has been called. It is called from the main function in the
stub program, listed in ICCMAIN header file, and described in Chapter 67, “main
function,” on page 289. All OO CICS programs should use this stub or a close
equivalent.

mem
An enumeration, defined in this structure, that indicates the memory
management policy for the foundation classes.

fam
An enumeration, defined in this structure, that indicates whether the use of
CICS features that are not available on all platforms is permitted.

EDF
A boolean that indicates whether EDF tracing is initially on.

isClassMemoryMgmtOn
Returns a boolean value, defined in this structure, that indicates whether class
memory management is on.

isEDFOn
Returns a Boolean value, defined in this structure, that indicates whether EDF
tracing is on at the global level.

static Bool isEDFOn()

See setEDF in this structure, isEDFOn and setEDF in IccResource class on
Chapter 45, “IccResource class,” on page 185 and “Program debugging” on page
47.

isFamilySubsetEnforcementOn
Returns a boolean value, defined in this structure, that indicates whether it is
permitted to use CICS features that are not available on all platforms.

returnToCICS
This call returns the program flow to CICS.

static void initializeEnvironment (ClassMemoryMgmt mem = cmmDefault,
FamilySubset fam = fsDefault,
Icc::Bool EDF)

static Bool isClassMemoryMgmtOn()

static Bool isFamilySubsetEnforcementOn()

70 CICS TS for z/OS 4.2: C++ OO Class Libraries

It is called by the main function in the stub program, listed in ICCMAIN header file,
and described in Chapter 67, “main function,” on page 289. All OO CICS programs
should use this stub or a close equivalent.

setEDF
Sets EDF tracing on or off at the global level.

onOff
A boolean, defined in this structure, that indicates whether EDF tracing is
enabled. As EDF is more suitable for tracing programs that use EXEC CICS
calls than object oriented programs, the default is off.

unknownException
This function is called by the main function in ICCMAIN header file and is used to
intercept unknown exceptions.

See Chapter 67, “main function,” on page 289 and catchException in this structure).

Enumerations
References in this section to other CICS platforms, such as CICS for AIX, are
included for completeness. There have been Technology Releases of the CICS
Foundation Classes on those platforms.

Bool
Three equivalent pairs of boolean values are as follows.
v true, yes, on
v false, no, off

true, yes, and on evaluate to 1, while false, no, and off evaluate to zero. Thus you
can code test functions as follows:

Note: 'true' and 'false' are compiler keywords in the z/OS 1.2 C/C++ compiler
and will not be generated by ICCGLBEH when using this compiler, or any later
version.

BoolSet
BoolSet enumerations are as follows.
v trueFalse
v yesNo
v onOff

static void returnToCICS()

static void setEDF(Icc::Bool onOff = off)

static void unknownException()

if (task()->isStartDataAvailable())
{

//do something
}

Chapter 14. Icc structure 71

ClassMemoryMgmt
ClassMemoryMgmt enumerations are as folows.

cmmDefault
The defaults for the different platforms are:

z/OS cmmNonCICS

UNIX cmmCICS

cmmNonCICS
The C++ environment performs the memory management required by the
program.

In z/OS Language Environment ensures that the storage for CICS tasks is
released at the end of the task, or if the task terminates abnormally.

On CICS for AIX dynamic storage release does not occur at normal or
abnormal task termination. This means that programs are susceptible to
memory leaks.

cmmCICS
The new and delete operators defined in IccBase class map storage
allocations to CICS; storage is automatically released at task termination.

FamilySubset
FamilySubset enumerations are as follows.

fsDefault
The defaults for the different platforms are all the same:
fsAllowPlatformVariance

fsEnforce
Enforces Family Subset conformance; that is, it disallows use of any CICS
features that are not available on all CICS servers (OS/2, AIX, and z/OS).

Note: CICS OS/2 is no longer supported.

fsAllowPlatformVariance
Allows each platform to access all the CICS features available on that
platform.

GetOpt
This enumeration is used on a number of methods throughout the classes. It
indicates whether the value held internally by the object is to be returned to the
caller, or whether it has to be refreshed from CICS first.

object
If the value has been previously retrieved from CICS and stored within the
object, return this stored value. Otherwise, get a copy of the value from
CICS and store within the object.

CICS Force the object to retrieve a fresh value from CICS (and store it within the
object) even if there is already a value stored within the object from a
previous invocation.

Platforms
Indicates on which operating system the program is being run.

Possible values are:

72 CICS TS for z/OS 4.2: C++ OO Class Libraries

v OS2
v UNIX
v MVS™

Chapter 14. Icc structure 73

74 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 15. IccAbendData class

This is a singleton class used to retrieve diagnostic information from CICS about a
program abend.

IccBase
IccResource

IccAbendData

Header file: ICCABDEH

IccAbendData constructor (protected)
IccAbendData constructor in IccAbendData class

Constructor
IccAbendData()

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method.

abendCode
Returns the current 4-character abend code.

opt
An enumeration, defined in the Icc structure, that indicates whether a value
should be refreshed from CICS or whether the existing value should be
retained. The possible values are described under the GetOpt enumeration in
the Icc structure in topicon page“GetOpt” on page 72.

Conditions

INVREQ

ASRAInterrupt
Returns 8 characters of status word (PSW) interrupt information at the point when
the latest abend with a code of ASRA, ASRB, ASRD, or AICA occurred.The field
contains binary zeroes if no ASRA or ASRB abend occurred during the execution of
the issuing transaction, or if the abend originally occurred in a remote DPL server
program.

const char* abendCode(Icc::GetOpt opt = Icc::object)

© Copyright IBM Corp. 1989, 2012 75

Conditions

INVREQ

ASRAKeyType
Returns an enumeration, defined in IccValue, that indicates the execution key at
the time of the last ASRA, ASRB, AICA, or AEYD abend, if any.

The possible values are:

CICSEXECKEY
The task was executing in CICS-key at the time of the last ASRA, ASRB,
AICA, or AEYD abend. Note that all programs execute in CICS key if CICS
subsystem storage protection is not active.

USEREXECKEY
The task was executing in user-key at the time of the last ASRA, ASRB,
AICA, or AEYD abend. Note that all programs execute in CICS key if CICS
subsystem storage protection is not active.

NONCICS
The execution key at the time of the last abend was not one of the CICS
keys; that is, not key 8 or key 9.

NOTAPPLIC
There has not been an ASRA, ASRB, AICA, or AEYD abend.

Conditions

INVREQ

ASRAPSW
Returns an 8-character status word (PSW) at the point when the latest abend with
a code of ASRA, ASRB, ASRD, or AICA occurred.The field contains nulls if no
ASRA, ASRB, ASRD, or AICA abend occurred during the execution of the issuing
transaction, or if the abend originally occurred in a remote DPL server.

Conditions

INVREQ

ASRARegisters
Returns the contents of general registers 0–15, as a 64-byte data area, at the point
when the latest ASRA, ASRB, ASRD, or AICA abend occurred. The contents of the
registers are returned in the order 0, 1, ..., 15.Note that nulls are returned if no
ASRA, ASRB, ASRD, or AICA abend occurred during the execution of the issuing
transaction, or if the abend originally occurred in a remote DPL server program.

const char* ASRAInterrupt(Icc::GetOpt opt = Icc::object)

IccValue::CVDA ASRAKeyType(Icc::GetOpt opt = Icc::object)

const char* ASRAPSW(Icc::GetOpt opt = Icc::object)

76 CICS TS for z/OS 4.2: C++ OO Class Libraries

Conditions

INVREQ

ASRASpaceType
Returns an enumeration, defined in IccValue structure, that indicates what type of
space, if any, was in control at the time of the last ASRA, ASRB, AICA, or AEYD
abend.

Possible values are:

SUBSPACE
The task was executing in either its own subspace or the common subspace
at the time of the last ASRA, ASRB, AICA, or AEYD abend.

BASESPACE
The task was executing in the base space at the time of the last ASRA,
ASRB, AICA, or AEYD abend. Note that all tasks execute in the base space
if transaction isolation is not active.

NOTAPPLIC
There has not been an ASRA, ASRB, AICA, or AEYD abend.

Conditions

INVREQ

ASRAStorageType
Returns an enumeration, defined in IccValue structure, that indicates what type of
storage, if any, was being addressed at the time of the last ASRA, ASRB, AICA, or
AEYD abend.

Possible values are:

CICS CICS-key storage is being addressed. This can be in one of the CICS
dynamic storage areas (CDSA or ECDSA), or in one of the read-only
dynamic storage areas (RDSA or ERDSA) if either of the following apply:
v CICS is running with the NOPROTECT option on the RENTPGM system

initialization parameter
v storage protection is not active

USER
User-key storage in one of the user dynamic storage areas (RDSA or
ERDSA) is being addressed.

READONLY
Read-only storage in one of the read-only dynamic storage areas (RDSA or
ERDSA) when CICS is running with the PROTECT option on the
RENTPGM system initialization parameter.

NOTAPPLIC
One of:

const char* ASRARegisters(Icc::GetOpt opt = Icc::object)

IccValue::CVDA ASRASpaceType(Icc::GetOpt opt = Icc::object)

Chapter 15. IccAbendData class 77

v No ASRA or AEYD abend has been found for this task.
v The storage affected by an abend is not managed by CICS.
v The ASRA abend is not caused by a 0C4 abend.
v An ASRB or AICA abend has occurred since the last ASRA or AEYD

abend.

Conditions

INVREQ

instance
Returns a pointer to the single IccAbendData object. If the object does not already
exist, it is created by this method.

isDumpAvailable
Returns a boolean, defined in Icc structure, that indicates whether a dump has
been produced. If it has, use programName method to find the name of the failing
program of the latest abend.

Conditions

INVREQ

originalAbendCode
Returns the original abend code for this task in case of repeated abends.

Conditions

INVREQ

programName
Returns the name of the program that caused the abend.

Conditions

INVREQ

IccValue::CVDA ASRAStorageType(Icc::GetOpt opt = Icc::object)

static IccAbendData* instance()

Icc::Bool isDumpAvailable(Icc::GetOpt opt = Icc::object)

const char* originalAbendCode(Icc::GetOpt opt = Icc::object)

const char* programName(Icc::GetOpt opt = Icc::oldValue)

78 CICS TS for z/OS 4.2: C++ OO Class Libraries

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Chapter 15. IccAbendData class 79

80 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 16. IccAbsTime class

This class holds information about absolute time, the time in milliseconds that has
elapsed since the beginning of the year 1900.

IccBase
IccResource

IccTime
IccAbsTime

Header file: ICCTIMEH

IccAbsTime constructor
IccAbsTime constructor in IccAbsTime class.

Constructor (1)
IccAbsTime(const char* absTime)

absTime
The 8-byte value of time, in packed decimal format.

Constructor (2)
The copy constructor.

Public methods
These are the public methods in this class.

date
Returns the date, as a character string.

format
An enumeration, defined in IccClock class, that indicates the format of the
date. The default is to use the installation default, the value set when the CICS
region is initialized.

dateSeparator
The character that separates the different fields of the date The default is no
separation character.

Conditions

INVREQ

IccAbsTime(const IccAbsTime& time)

const char* date (IccClock::DateFormat format = IccClock::defaultFormat,
char dateSeparator = '\0')

© Copyright IBM Corp. 1989, 2012 81

dayOfMonth
Returns the day of the month in the range 1 to 31.

Conditions

INVREQ

dayOfWeek
Returns an enumeration, defined in IccClock class, that indicates the day of the
week.

Conditions

INVREQ

daysSince1900
Returns the number of days that have elapsed since the first day of 1900.

Conditions

INVREQ

hours
Returns the hours component of the time.

milliSeconds
Returns the number of milliseconds that have elapsed since the first day of 1900.

minutes
Returns the minutes component of the time.

monthOfYear
Returns an enumeration, defined in IccClock class, that indicates the month of the
year.

unsigned long dayOfMonth()

IccClock::DayOfWeek dayOfWeek()

unsigned long daysSince1900()

virtual unsigned long hours() const

long double milliSeconds()

virtual unsigned long minutes() const

82 CICS TS for z/OS 4.2: C++ OO Class Libraries

Conditions

INVREQ

operator=
Assigns one IccAbsTime object to another.

packedDecimal
Returns the time as an 8-byte packed decimal string that expresses the number of
milliseconds that have elapsed since the beginning of the year 1900.

seconds
Returns the seconds component of the time.

time
Returns the time as a text string.

timeSeparator
The character that delimits the time fields. The default is no time separation
character.

Conditions

INVREQ

timeInHours
Returns the number of hours that have elapsed since the day began.

timeInMinutes
Returns the number of minutes that have elapsed since the day began.

IccClock::MonthOfYear monthOfYear()

IccAbsTime& operator=(const IccAbsTime& absTime)

const char* packedDecimal() const

virtual unsigned long seconds() const

const char* time(char timeSeparator = '\0')

unsigned long timeInHours()

unsigned long timeInMinutes()

Chapter 16. IccAbsTime class 83

timeInSeconds
Returns the number of seconds that have elapsed since the day began.

year
Returns the year as a 4-digit integer, e.g. 1996.

Conditions

INVREQ

Inherited public methods
These are the inherited public methods in IccAbsTime class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
hours IccTime
isEDFOn IccResource
minutes IccTime
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
timeInHours IccTime
timeInMinutes IccTime
timeInSeconds IccTime
type IccTime

Inherited protected methods
Inherited protected methods in IccAbsTime class:

Method Class
setClassName IccBase
setCustomClassNum IccBase

unsigned long timeInSeconds()

unsigned long year()

84 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 17. IccAlarmRequestId class

An IccAlarmRequestId object represents a unique alarm request.

IccBase
IccResourceId

IccRequestId
IccAlarmRequestId

It contains the 8-character name of the request identifier and a pointer to a 4-byte
timer event control area. IccAlarmRequestId is used by the setAlarm method of
IccClock class when setting an alarm, and the waitOnAlarm method of IccTask
when waiting for an alarm.

Header file: ICCRIDEH

IccAlarmRequestId constructors
IccAlarmRequestId constructors IccAlarmRequestId constructors:

Constructor (1)
Creates a new object with no information present.

Constructor (2)
Creates an object with information already set.

name
The 8-character name of the request.

timerECA
A pointer to a 4-byte timer event control area.

Constructor (3)
The copy constructor.

id
A reference to an IccAlarmRequestId object.

Public methods
These methods are used to copy information into an IccAlarmRequestId object.

IccAlarmRequestId()

IccAlarmRequestId (const char* nam,
const void* timerECA)

IccAlarmRequestId(const IccAlarmRequestId& id)

© Copyright IBM Corp. 1989, 2012 85

isExpired
Returns a boolean, defined in Icc structure, that indicates whether the alarm has
expired.

operator= (1)
IccAlarmRequestId& operator=(const IccRequestId& id)

id
A reference to an IccRequestId object.

operator= (2)
IccAlarmRequestId& operator=(const IccAlarmRequestId& id)

id
A reference to an IccAlarmRequestId object.

operator= (3)
IccAlarmRequestId& operator=(const char* requestName)

requestName
The 8-character name of the alarm request.

setTimerECA
void setTimerECA(const void* timerECA)

timerECA
A pointer to a 4-byte timer event control area.

timerECA
Returns a pointer to the 4-byte timer event control area.

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Icc::Bool isExpired()

const void* timerECA() const

86 CICS TS for z/OS 4.2: C++ OO Class Libraries

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

Chapter 17. IccAlarmRequestId class 87

88 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 18. IccBase class

IccBase class is the base class from which all CICS Foundation Classes are derived.

IccBase

(The methods associated with IccBase are described here although, in practice,
they can only be called on objects of the derived classes).

Header file: ICCBASEH

IccBase constructor (protected)
IccBase constructor (protected) in IccBase class

Constructor
IccBase(ClassType type)

type
An enumeration that indicates what the subclass type is. For example, for an
IccTempStore object, the class type is 'cTempStore'.

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

classType
Returns an enumeration that indicates what the subclass type is. For example, for
an IccTempStore object, the class type is 'cTempStore'. The possible values are
listed under ClassType on page “ClassType” on page 91.

className
Returns the name of the class. For example, an IccTempStore object returns
"IccTempStore".Suppose a class MyDataQueue inherits from IccDataQueue. If
MyDataQueue calls setClassName("MyDataQueue"),
MyDataQueue::className(IccBase::customName) returns "MyDataQueue" and
MyDataQueue::className(IccBase::baseName) returns "IccDataQueue". An
IccDataQueue object returns "IccDataQueue" for both opt values.

ClassType classType() const

const char* className(NameOpt opt=customName)

© Copyright IBM Corp. 1989, 2012 89

opt
An enumerator, defined in this class, that indicates whether to return the base
name of the class or the name as customized by a derived class.

customClassNum
Returns the number that an application designer has associated with a subclass
that he or she has designed.

operator delete
Destroys an object in an orderly manner.

object
A pointer to an object that is to be destroyed.

operator new
Creates a new object of given size. This operator enables the Foundation Classes to
use CICS storage allocation (see “initializeEnvironment” on page 70).

size
The size of the object that is to be created, in bytes.

Protected methods

setClassName
Sets the name of the class. It is useful for diagnostic purposes to be able to get a
string representation of the name of the class to which an object belongs.

className
The name of the class. For example, if you create a class MyTempStore that is
a specialization of IccTempStore, you might call
setClassName("MyTempStore").

setCustomClassNum
Assigns an identification number to a subclass that is not an original part of the
classes, as supplied.

number
The number that an application designer associates with a subclass for
identification purposes.

unsigned short customClassNum() const

void operator delete(void* object)

void* operator new(size_t size)

void setClassName(const char* className)

void setCustomClassNum(unsigned short number)

90 CICS TS for z/OS 4.2: C++ OO Class Libraries

Enumerations
Enumerations in IccBase class:

ClassType
The names are derived by deleting the first two characters from the name of the
class.

The possible values are:

cAbendData cGroupId cSystem

cAlarmRequestId cJournal cTask
cBuf cJournalId cTempStore
cClock cJournalTypeId cTempStoreId
cConsole cLockId cTermId
cControl cMessage cTerminal
cConvId cPartnerId cTerminalData
cCUSTOM cProgram cTime
cDataQueue cProgramId cTPNameId
cDataQueueId cRecordIndex cTransId
cEvent cRequestId cUser
cException cSemaphore cUserId
cFile cSession
cFileId cStartRequestQ
cFileIterator cSysId

Note: cCUSTOM allows the class library to be extended by non-IBM developers.

NameOpt
NameOpt in Enumerations:

See“className” on page 89.

baseName
Returns the default name assigned to the class as provided by IBM.

customName
Returns the name assigned using setClassName method from a subclass or, if
setClassName has not been invoked, the same as baseName.

Chapter 18. IccBase class 91

92 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 19. IccBuf class

IccBuf class is supplied for the general manipulation of buffers.

IccBase
IccBuf

This class is used by other classes that make calls to CICS, but does not itself call
CICS services. See Chapter 6, “Buffer objects,” on page 25.

Header file: ICCBUFEH

Sample: ICC$BUF

IccBuf constructors
IccBuf constructors in IccBuf class:

Constructor (1)
Creates an IccBuf object, allocating its own data area with the given length and
with all the bytes within it set to NULL.

length
The initial length of the data area, in bytes. The default length is 0.

type
An enumeration that indicates whether the data area can be dynamically
extended. Possible values are extensible or fixed. The default is extensible.

Constructor (2)
Creates an IccBuf object that cannot be extended, adopting the given data area as
its own.See warning about “Internal/External ownership of buffers” on page 25.

length
The length of the supplied data area, in bytes

dataArea
The address of the first byte of the supplied data area.

Constructor (3)
Creates an IccBuf object, allocating its own data area with the same length as the
text string, and copies the string into its data area.

IccBuf (unsigned long length = 0,
DataAreaType type = extensible)

IccBuf (unsigned long length,
void* dataArea)

© Copyright IBM Corp. 1989, 2012 93

text
A null-terminated string to be copied into the new IccBuf object.

type
An enumeration that indicates whether the data area can be extended. Possible
values are extensible or fixed. The default is extensible.

Constructor (4)
The copy constructor—creates a new IccBuf object that is a copy of the given
object. The created IccBuf object always has an internal data area.

buffer
A reference to an IccBuf object that is to be copied into the new object.

Public methods
These are the public methods in this class.

append (1)
Appends data from the given data area to the data area in the object.

length
The length of the source data area, in bytes

dataArea
The address of the source data area.

append (2)
Append data, in the form of format string and variable argument, to the data area
in the object. This is the same as the form used by printf in the standard C library.
Note that it is the responsibility of the application programmer to ensure that the
optional parameters are consistent with the format string.

format
The null-terminated format string

...
The optional parameters.

IccBuf (const char* text,
DataAreaType type = extensible)

IccBuf(const IccBuf& buffer)

IccBuf& append (unsigned long length,
const void* dataArea)

IccBuf& append (const char* format,
...)

94 CICS TS for z/OS 4.2: C++ OO Class Libraries

assign (1)
Assigns data from the given data area to the data area in the object.

length
The length of the source data area, in bytes

dataArea
The address of the source data area.

assign (2)
Assigns data, in the form of format string and variable argument, to the data area
in the object. This is the same as the form used by printf in the standard C library.

format
The format string

...
The optional parameters.

cut
Makes the specified cut to the data in the data area and returns a reference to the
IccBuf object.

length
The number of bytes to be cut from the data area.

offset
The offset into the data area. The default is no offset.

dataArea
Returns the address of data at the given offset into the data area.

offset
The offset into the data area. The default is no offset.

dataAreaLength
Returns the length of the data area in bytes.

IccBuf& assign (unsigned long length,
const void* dataArea)

IccBuf& assign (const char* format,
...)

IccBuf& cut (unsigned long length,
unsigned long offset = 0)

const void* dataArea(unsigned long offset = 0) const

unsigned long dataAreaLength() const

Chapter 19. IccBuf class 95

dataAreaOwner
Returns an enumeration that indicates whether the data area has been allocated by
the IccBuf constructor or has been supplied from elsewhere.

The possible values are listed under “DataAreaOwner” on page 101.

dataAreaType

Returns an enumeration that indicates whether the data area can be extended. The
possible values are listed under “DataAreaType” on page 101.

dataLength
Returns the length of data in the data area. This cannot be greater than the value
returned by dataAreaLength

insert
Inserts the given data into the data area at the given offset and returns a reference
to the IccBuf object.

length
The length of the data, in bytes, to be inserted into the IccBuf object

dataArea
The start of the source data to be inserted into the IccBuf object

offset
The offset in the data area where the data is to be inserted. The default is no
offset.

isFMHContained

Returns a boolean, defined in Icc structure, that indicates whether the data area
contains FMHs (function management headers).

operator const char*

DataAreaOwner dataAreaOwner() const

DataAreaType dataAreaType() const

unsigned long dataLength() const

IccBuf& insert (unsigned long length,
const void* dataArea,
unsigned long offset = 0)

Icc::Bool isFMHContained() const

operator const char*() const

96 CICS TS for z/OS 4.2: C++ OO Class Libraries

Casts an IccBuf object to a null terminated string.

operator= (1)
Assigns data from another buffer object and returns a reference to the IccBuf
object.

buffer
A reference to an IccBuf object.

operator= (2)
Assigns data from a null-terminated string and returns a reference to the IccBuf
object. See also the assign method.

text
The null-terminated string to be assigned to the IccBuf object.

operator+= (1)
Appends data from another buffer object and returns a reference to the IccBuf
object.

buffer
A reference to an IccBuf object.

operator+= (2)
Appends data from a null-terminated string and returns a reference to the IccBuf
object. See also the append method.

text
The null-terminated string to be appended to the IccBuf object.

operator==
Returns a boolean, defined in Icc structure, that indicates whether the data
contained in the buffers of the two IccBuf objects is the same. It is true if the
current lengths of the two data areas are the same and the contents are the same.

buffer
A reference to an IccBuf object.

IccBuf data("Hello World");
cout « (const char*) data;

IccBuf& operator=(const IccBuf& buffer)

IccBuf& operator=(const char* text)

IccBuf& operator+=(const IccBuf& buffer)

IccBuf& operator+=(const char* text)

Icc::Bool operator==(const IccBuf& buffer) const

Chapter 19. IccBuf class 97

operator!=
Returns a boolean, defined in Icc structure, that indicates whether the data
contained in the buffers of the two IccBuf objects is different. It is true if the
current lengths of the two data areas are different or if the contents are different.

buffer
A reference to an IccBuf object.

operator« (1)
Appends another buffer.

operator« (2)
Appends a string.

operator« (3)
Appends a character.

operator« (4)
Appends a character.

operator« (5)
Appends a character.

operator« (6)
Appends a string.

operator« (7)
Appends a string.

Icc::Bool operator!=(const IccBuf& buffer) const

operator«(const IccBuf& buffer)

operator«(const char* text)

operator«(char ch)

operator«(signed char ch)

operator«(unsigned char ch)

operator«(const signed char* text)

operator«(const unsigned char* text)

98 CICS TS for z/OS 4.2: C++ OO Class Libraries

operator« (8)
Appends a short.

operator« (9)
Appends an unsigned short.

operator« (10)
Appends a long.

operator« (11)
Appends an unsigned long.

operator« (12)
Appends an integer.

operator« (13)
Appends a float.

operator« (14)
Appends a double.

operator« (15)
Appends a long double.

Appends data of various types to the IccBuf object. The types are converted to a
'readable' format, for example from a long to a string representation.

operator«(short num)

operator«(unsigned short num)

operator«(long num)

operator«(unsigned long num)

operator«(int num)

operator«(float num)

operator«(double num)

operator«(long double num)

Chapter 19. IccBuf class 99

overlay
Makes the data area external and fixed. Any existing internal data area is
destroyed.See warning about “Internal/External ownership of buffers” on page 25.

length
The length of the existing data area.

dataArea
The address of the existing data area.

replace
Replaces the current contents of the data area at the given offset with the data
provided and returns a reference to the IccBuf object.

length
The length of the source data area, in bytes.

dataArea
The address of the start of the source data area.

offset
The position where the new data is to be written, relative to the start of the
IccBuf data area. The default is no offset.

setDataLength
Changes the current length of the data area and returns the new length. If the
IccBuf object is not extensible, the data area length is set to either the original
length of the data area or length , whichever is less.

length
The new length of the data area, in bytes

setFMHContained
Allows an application program to indicate that a data area contains function
management headers.

yesNo
A boolean, defined in Icc structure, that indicates whether the data area
contains FMHs. The default value is yes.

IccBuf& overlay (unsigned long length,
void* dataArea)

IccBuf& replace (unsigned long length,
const void* dataArea,
unsigned long offset = 0)

unsigned long setDataLength(unsigned long length)

void setFMHContained(Icc::Bool yesNo = Icc::yes)

100 CICS TS for z/OS 4.2: C++ OO Class Libraries

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

DataAreaOwner
Indicates whether the data area of a IccBuf object has been allocated outside the
object.

Possible values are:

internal
The data area has been allocated by the IccBuf constructor.

external
The data area has been allocated externally.

DataAreaType
Indicates whether the data area of a IccBuf object can be made longer than its
original length.

Possible values are:

extensible
The data area can be automatically extended to accommodate more data.

fixed The data area cannot grow in size. If you attempt to assign too much data,
the data is truncated, and an exception is thrown.

Chapter 19. IccBuf class 101

102 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 20. IccClock class

The IccClock class controls access to the CICS time and date services.

IccBase
IccResource

IccClock

Header file: ICCCLKEH

Sample: ICC$CLK

IccClock constructor

Constructor

update
An enumeration, defined in this class, that indicates whether the clock is to
update its time automatically whenever a time or date service is used, or
whether it is to wait until an explicit update method call is made. If the time is
updated manually, the initial clock time is the time when the IccClock object
object is created.

Public methods
These are the public methods in this class.

absTime
Returns a reference to an IccAbsTime object that contains the absolute time as
provided by CICS.

cancelAlarm
Cancels a previous setAlarm request if the alarm time has not yet been reached,
that is, the request has not expired.

reqId
An optional pointer to the IccRequestId object that holds information on an
alarm request.

Conditions

ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

IccClock(UpdateMode update = manual)

IccAbsTime& absTime()

void cancelAlarm(const IccRequestId* reqId = 0)

© Copyright IBM Corp. 1989, 2012 103

date
Returns the date as a string.

format
An enumeration, defined in this class, that indicates in which format you want
the date to be returned.

dateSeparator
The character that is used to separate different fields in the date. The default is
no separation character.

Conditions

INVREQ

dayOfMonth
Returns the day component of the date, in the range 1 to 31.

Conditions

INVREQ

dayOfWeek
Returns an enumeration, defined in this class, that indicates the day of the week.

Conditions

INVREQ

daysSince1900
Returns the number of days that have elapsed since 1st January, 1900.

Conditions

INVREQ

milliSeconds
Returns the number of milliseconds that have elapsed since 00:00 on 1st January,
1900.

const char* date (DateFormat format = defaultFormat,
char dateSeparator = '\0')

unsigned long dayOfMonth()

DayOfWeek dayOfWeek()

unsigned long daysSince1900()

104 CICS TS for z/OS 4.2: C++ OO Class Libraries

monthOfYear

Returns an enumeration, defined in this class, that indicates the month of the year.

Conditions

INVREQ

setAlarm
Sets an alarm at the time specified in time. It returns a reference to an
IccAlarmRequestId object that can be used to cancel the alarm—see cancelAlarm
method.

See also the “waitOnAlarm” on page 234 method of class IccTask.

time
A reference to an IccTime object that contains time information. As IccTime is
an abstract class time is, in practise, an object of class IccAbsTime,
IccTimeOfDay, or IccTimeInterval.

reqId
An optional pointer to an IccRequestId object that is used to identify this
particular alarm request.

Conditions

EXPIRED, INVREQ

time
Returns the time as a text string.

timeSeparator
The character that delimits the time fields. The default is no separation
character.

Conditions

INVREQ

long double milliSeconds()

MonthOfYear monthOfYear()

const IccAlarmRequestId& setAlarm (const IccTime& time,
const IccRequestId* reqId = 0)

const char* time(char timeSeparator = '\0')

Chapter 20. IccClock class 105

update
Updates the clock time and date from CICS. See the IccClock constructor.

year

Returns the 4-figure year number, such as 1996.

Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

void update()

unsigned long year()

106 CICS TS for z/OS 4.2: C++ OO Class Libraries

Enumerations

DateFormat
v defaultFormat
v DDMMYY
v MMDDYY
v YYDDD
v YYDDMM
v YYMMDD
v DDMMYYYY
v MMDDYYYY
v YYYYDDD
v YYYYDDMM
v YYYYMMDD

DayOfWeek
Indicates the day of the week.
v Sunday
v Monday
v Tuesday
v Wednesday
v Thursday
v Friday
v Saturday

MonthOfYear
Indicates the month of the year.
v January
v February
v March
v April
v May
v June
v July
v August
v September
v October
v November
v December

UpdateMode
Indicates whether the clock is automatically updated.

manual
The clock initially holds the time at which it was created. It is subsequently
updated only when an update method call is made.

Chapter 20. IccClock class 107

automatic
The clock is updated to the current CICS time and date whenever any time
or date method is called (for example, daysSince1900).

108 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 21. IccCondition structure

This structure contains an enumeration of all the CICS condition codes.

Header file: ICCCNDEH

Enumerations

Codes

The possible values are:

Value Value Value
0 NORMAL 35 TSIOERR 70 NOTAUTH
1 ERROR 36 MAPFAIL __
2 RDATT 37 INVERRTERM 72 SUPPRESSED
3 WRBRK 38 INVMPSZ __
4 ICCEOF 39 IGREQID __
5 EODS 40 OVERFLOW 75 RESIDERR
6 EOC 41 INVLDC __
7 INBFMH 42 NOSTG __
8 ENDINPT 43 JIDERR __
9 NONVAL 44 QIDERR __
10 NOSTART 45 NOJBUFSP 80 NOSPOOL
11 TERMIDERR 46 DSSTAT 81 TERMERR
12 FILENOTFOUND 47 SELNERR 82 ROLLEDBACK
13 NOTFND 48 FUNCERR 83 END
14 DUPREC 49 UNEXPIN 84 DISABLED
15 DUPKEY 50 NOPASSBKRD 85 ALLOCERR
16 INVREQ 51 NOPASSBKWR 86 STRELERR
17 IOERR __ 87 OPENERR
18 NOSPACE 53 SYSIDERR 88 SPOLBUSY
19 NOTOPEN 54 ISCINVREQ 89 SPOLERR
20 ENDFILE 55 ENQBUSY 90 NODEIDERR
21 ILLOGIC 56 ENVDEFERR 91 TASKIDERR
22 LENGERR 57 IGREQCD 92 TCIDERR
23 QZERO 58 SESSIONERR 93 DSNNOTFOUND
24 SIGNAL 59 SYSBUSY 94 LOADING
25 QBUSY 60 SESSBUSY 95 MODELIDERR
26 ITEMERR 61 NOTALLOC 96 OUTDESCERR
27 PGMIDERR 62 CBIDERR 97 PARTNERIDERR
28 TRANSIDERR 63 INVEXITREQ 98 PROFILEIDERR
29 ENDDATA 64 INVPARTNSET 99 NETNAMEIDERR
30 INVTSREQ 65 INVPARTN 100 LOCKED
31 EXPIRED 66 PARTNFAIL 101 RECORDBUSY
32 RETPAGE __ 102 UOWNOTFOUND
33 RTEFAIL __ 103 UOWLNOTFOUND
34 RTESOME 69 USERIDERR

© Copyright IBM Corp. 1989, 2012 109

Range
maxValue

The highest CICS condition, currently 103.

110 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 22. IccConsole class

This is a singleton class that represents the CICS console.

IccBase
IccResource

IccConsole

Header file: ICCCONEH

Sample: ICC$CON

IccConsole constructor (protected)

Constructor
No more than one of these objects is permitted in a task. An attempt to create
more objects causes an exception to be thrown.

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

instance
Returns a pointer to the single IccConsole object that represents the CICS console.
If the object does not already exist, it is created by this method.

put
Writes the data in send to the CICS console. put is a synonym for write. See
Chapter 10, “Polymorphic Behavior,” on page 57.

send
A reference to an IccBuf object that contains the data that is to be written to
the console.

replyTimeout

IccConsole()

static IccConsole* instance()

virtual void put(const IccBuf& send)

© Copyright IBM Corp. 1989, 2012 111

Returns the length of the reply timeout in milliseconds.

resetRouteCodes

Removes all route codes held in the IccConsole object.

setAllRouteCodes

Sets all possible route codes in the IccConsole object, that is, 1 through 28.

setReplyTimeout (1)

interval
A reference to a IccTimeInterval object that describes the length of the time
interval required.

setReplyTimeout (2)
The two different forms of this method are used to set the length of the reply
timeout.

seconds
The length of the time interval required, in seconds.

setRouteCodes
Saves route codes in the object for use on subsequent write and
writeAndGetReply calls. Up to 28 codes can be held in this way.

numRoutes
The number of route codes provided in this call—the number of arguments
that follow this one.

...
One or more arguments, the number of which is given by numRoutes. Each
argument is a route code, of type unsigned short, in the range 1 to 28.

unsigned long replyTimeout() const

void resetRouteCodes()

void setAllRouteCodes()

void setReplyTimeout(IccTimeInterval& interval)

void setReplyTimeout(unsigned long seconds)

void setRouteCodes (unsigned short numRoutes,
...)

112 CICS TS for z/OS 4.2: C++ OO Class Libraries

write
Writes the data in send to the CICS console.

send
A reference to an IccBuf object that contains the data that is to be written to
the console.

opt
An enumeration, defined below, that indicates the severity of the console
message.

Conditions

INVREQ, LENGERR, EXPIRED

writeAndGetReply
Writes the data in send to the CICS console and returns a reference to an IccBuf
object that contains the reply from the CICS operator.

send
A reference to an IccBuf object that contains the data that is to be written to
the console.

opt
An enumeration, defined below, that indicates the severity of the console
message.

Conditions

INVREQ, LENGERR, EXPIRED

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource

void write (const IccBuf& send,
SeverityOpt opt = none)

const IccBuf& writeAndGetReply (const IccBuf& send,
SeverityOpt opt= none)

Chapter 22. IccConsole class 113

Method Class
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

SeverityOpt

Possible values are:
v none
v warning
v error
v severe

114 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 23. IccControl class

IccControl class controls an application program that uses the supplied Foundation
Classes.

IccBase
IccResource

IccControl

This class is a singleton class in the application program; each program running
under a CICS task has a single IccControl object.

IccControl has a pure virtual run method, where application code is written, and
is therefore an abstract base class. The application programmer must subclass
IccControl, and implement the run method.

Header file: ICCCTLEH

IccControl constructor (protected)

Constructor

Public methods
These are the public methods in this class.

callingProgramId
Returns a reference to an IccProgramId object that represents the program that
called this program. The returned IccProgramId reference contains a null name if
the executing program was not called by another program.

Conditions

INVREQ

cancelAbendHandler
Cancels a previously established exit at this logical program level.

Conditions

NOTAUTH, PGMIDERR

IccControl()

const IccProgramId& callingProgramId()

void cancelAbendHandler()

© Copyright IBM Corp. 1989, 2012 115

commArea
Returns a reference to an IccBuf object that encapsulates the COMMAREA—the
communications area of CICS memory that is used for passing data between CICS
programs and transactions.

Conditions

INVREQ

console
Returns a pointer to the single IccConsole object. If this object has not yet been
created, this method creates the object before returning a pointer to it.

initData

Returns a reference to an IccBuf object that contains the initialization parameters
specified for the program in the INITPARM system initialization parameter.

Conditions

INVREQ

instance
Returns a pointer to the single IccControl object. The object is created if it does not
already exist.

isCreated

Returns a boolean value that indicates whether the IccControl object already exists.
Possible values are true or false.

programId

Returns a reference to an IccProgramId object that refers to this executing program.

IccBuf& commArea()

IccConsole* console()

const IccBuf& initData()

static IccControl* instance()

static Icc::Bool isCreated()

const IccProgramId& programId()

116 CICS TS for z/OS 4.2: C++ OO Class Libraries

Conditions

INVREQ

resetAbendHandler
Reactivates a previously cancelled abend handler for this logical program level.
(See cancelAbendHandler on page “cancelAbendHandler” on page 115).

Conditions

NOTAUTH, PGMIDERR

returnProgramId
Returns a reference to an IccProgramId object that refers to the program that
resumes control when this logical program level issues a return.

run

This method should be implemented in a subclass of IccControl by the application
programmer.

session

Returns a pointer to the IccSession object that represents the principal facility for
this program. An exception is thrown if this program does not have a session as its
principal facility.

setAbendHandler (1)

programId
A reference to the IccProgramId object that indicates which program is
affected.

setAbendHandler (2)
These methods set the abend handler to the named program for this logical
program level.

void resetAbendHandler()

const IccProgramId& returnProgramId()

virtual void run() = 0

IccSession* session()

void setAbendHandler(const IccProgramId& programId)

void setAbendHandler(const char* programName)

Chapter 23. IccControl class 117

programName
The name of the program affected.

Conditions

NOTAUTH, PGMIDERR

startRequestQ
Returns a pointer to the IccStartRequestQ object. If this object has not yet been
created, this method creates the object before returning a pointer to it.

system

Returns a pointer to the IccSystem object. If this object has not yet been created,
this method creates the object before returning a pointer to it.

task

Returns a pointer to the IccTask object. If this object has not yet been created, this
method creates the object before returning a pointer to it.

terminal

Returns a pointer to the IccTerminal object. If this object has not yet been created,
this method creates the object before returning a pointer to it.

This method has a condition, that the transaction must have a terminal as its
principal facility. That is, there must be a physical terminal involved.

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource

IccStartRequestQ* startRequestQ()

IccSystem* system()

IccTask* task()

IccTerminal* terminal()

118 CICS TS for z/OS 4.2: C++ OO Class Libraries

Method Class
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Chapter 23. IccControl class 119

120 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 24. IccConvId class

IccConvId class is used to identify an APPC conversation.

IccBase
IccResourceId

IccConvId

IccConvId class is used to identify an APPC conversation.

Header file: ICCRIDEH

IccConvId constructors

Constructor (1)

convName
The 4-character name of the conversation.

Constructor (2)
The copy constructor.

convId
A reference to an IccConvId object.

Public methods
These are the public methods in this class.

operator= (1)

operator= (2)
Assigns new value.

IccConvId(const char* convName)

IccConvId(const IccConvId& convId)

IccConvId& operator=(const char* convName)

IccConvId& operator=(const IccConvId id)

© Copyright IBM Corp. 1989, 2012 121

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

122 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 25. IccDataQueue class

This class represents a CICS transient data queue.

IccBase
IccResource

IccDataQueue

Header file: ICCDATEH

Sample: ICC$DAT

IccDataQueue constructors

Constructor (1)

id
A reference to an IccDataQueueId object that contains the name of the CICS
transient data queue.

Constructor (2)

queueName
The 4-byte name of the queue that is to be created. An exception is thrown if
queueName is not valid.

Public methods
These are the public methods in this class.

clear
A synonym for empty. See Chapter 10, “Polymorphic Behavior,” on page 57.

empty

Empties the queue, that is, deletes all items on the queue.

IccDataQueue(const IccDataQueueId& id)

IccDataQueue(const char* queueName)

virtual void clear()

void empty()

© Copyright IBM Corp. 1989, 2012 123

Conditions

ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR, DISABLED, INVREQ

get
A synonym for readItem. See Chapter 10, “Polymorphic Behavior,” on page 57.

put
A synonym for writeItem. See Chapter 10, “Polymorphic Behavior,” on page 57.

buffer
A reference to an IccBuf object that contains data to be put into the queue.

readItem

Returns a reference to an IccBuf object that contains one item read from the data
queue.

Conditions

IOERR, ISCINVREQ, LENGERR, NOTAUTH, NOTOPEN, QBUSY, QIDERR,
QZERO, SYSIDERR, DISABLED, INVREQ

writeItem (1)

item
A reference to an IccBuf object that contains data to be written to the queue.

writeItem (2)
Writes an item of data to the queue.

text
Text that is to be written to the queue.

Conditions

IOERR, ISCINVREQ, LENGERR, NOSPACE, NOTAUTH, NOTOPEN, QIDERR,
SYSIDERR, DISABLED, INVREQ

virtual const IccBuf& get()

virtual void put(const IccBuf& buffer)

const IccBuf& readItem()

void writeItem(const IccBuf& item)

void writeItem(const char* text)

124 CICS TS for z/OS 4.2: C++ OO Class Libraries

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Chapter 25. IccDataQueue class 125

126 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 26. IccDataQueueId class

IccDataQueueId is used to identify a CICS Transient Data Queue name.

IccBase
IccResourceId

IccDataQueueId

IccDataQueueId is used to identify a CICS Transient Data Queue name.

Header file: ICCRIDEH

IccDataQueueId constructors

Constructor (1)

queueName
The 4-character name of the queue

Constructor (2)

id A reference to an IccDataQueueId object.

Public methods
These are the public methods in this class.

operator= (1)

queueName
The 4-character name of the queue

operator= (2)
Assigns new value.

id A reference to an IccDataQueueId object.

IccDataQueueId(const char* queueName)

IccDataQueueId(const IccDataQueueId& id)

IccDataQueueId& operator=(const char* queueName)

IccDataQueueId& operator=(const IccDataQueueId& id)

© Copyright IBM Corp. 1989, 2012 127

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

128 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 27. IccEvent class

The IccEvent class contains information on a particular CICS call, which we call a
CICS event.

IccBase
IccEvent

Header file: ICCEVTEH

Sample: ICC$RES1

IccEvent constructor

Constructor

object
A pointer to the IccResource object that is responsible for this event.

methodName
The name of the method that caused the event to be created.

Public methods
These are the public methods in this class.

className
Returns the name of the class responsible for this event.

classType

Returns an enumeration, described under classType on page “classType” on page
89 in IccBase class, that indicates the type of class that is responsible for this event.

condition
Returns an enumerated type that indicates the condition returned from this CICS
event. The possible values are described under the Codes type in the IccCondition
structure.

IccEvent (const IccResource* object,
const char* methodName)

const char* className() const

IccBase::ClassType classType() const

© Copyright IBM Corp. 1989, 2012 129

type
An enumeration that indicates whether a major code or minor code is being
requested. Possible values are 'majorCode' or 'minorCode'. 'majorCode' is the
default value.

conditionText

Returns the text of the CICS condition code, such as "NORMAL" or "LENGERR".

methodName

Returns the name of the method responsible for this event.

summary

Returns a summary of the CICS event in the form:

CICS event summary: IccDataQueue::readItem condition=23 (QZERO) minor=0

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

IccCondition::Codes condition(IccResource::ConditionType type =
IccResource::majorCode) const

const char* conditionText() const

const char* methodName() const

const char* summary()

130 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 28. IccException class

IccException class contains information about CICS Foundation Class exceptions.

IccBase
IccException

It is used to create objects that are 'thrown' to application programs. They are
generally used for error conditions such as invalid method calls, but the
application programmer can also request an exception is thrown when CICS raises
a particular condition.

Header file: ICCEXCEH

Samples: ICC$EXC1, ICC$EXC2, ICC$EXC3

IccException constructor

Constructor

exceptionType
An enumeration, defined in this class, that indicates the type of the exception

classType
An enumeration, defined in this class, that indicates from which type of class
the exception was thrown

className
The name of the class from which the exception was thrown

methodName
The name of the method from which the exception was thrown

message
A pointer to the IccMessage object that contains information about why the
exception was created.

object
A pointer to the object that threw the exception

exceptionNum
The unique exception number.

Note: When the IccException object is created it takes ownership of the
IccMessage given on the constructor. When the IccException is deleted, the

IccException (Type exceptionType,
IccBase::ClassType classType,
const char* className,
const char* methodName,
IccMessage* message,
IccBase* object = 0,
unsigned short exceptionNum = 0)

© Copyright IBM Corp. 1989, 2012 131

IccMessage object is deleted automatically by the IccException destructor.
Therefore, do not delete the IccMessage object before deleting the IccException
object.

Public methods
These are the public methods in this class.

className
Returns the name of the class responsible for throwing this exception.

classType

Returns an enumeration, described under ClassType in IccBase class, that indicates
the type of class which threw this exception.

message

Returns a pointer to an IccMessage object that contains information on any
message associated with this exception.

methodName

Returns the name of the method responsible for throwing this exception.

number

Returns the unique exception number.

This is a useful diagnostic for IBM service. The number uniquely identifies from
where in the source code the exception was thrown.

summary

Returns a string containing a summary of the exception. This combines the
className, methodName, number, Type, and IccMessage::text methods into the
following form:

const char* className() const

IccBase::ClassType classType() const

IccMessage* message() const

const char* methodName() const

unsigned short number() const

const char* summary()

132 CICS TS for z/OS 4.2: C++ OO Class Libraries

CICS exception summary: 094 IccTempStore::readNextItem type=CICSCondition

type

Returns an enumeration, defined in this class, that indicates the type of exception.

typeText

Returns a string representation of the exception type, for example,
"objectCreationError", "invalidArgument".

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Type
objectCreationError

An attempt to create an object was invalid. This happens, for example, if
an attempt is made to create a second instance of a singleton class, such as
IccTask.

invalidArgument
A method was called with an invalid argument. This happens, for example,
if an IccBuf object with too much data is passed to the writeItem method
of the IccTempStore class by the application program. An attempt to create
an IccFileId object with a 9-character filename also generates an exception
of this type.

Type type() const

const char* typeText() const

Chapter 28. IccException class 133

invalidMethodCall
A method call cannot proceed. A typical reason is that the object cannot
honor the call in its current state. For example, a readRecord call on an
IccFile object is only honored if an IccRecordIndex object, to specify which
record is to be read, has already been associated with the file.

CICSCondition
A CICS condition, listed in the IccCondition structure, has occurred in the
object and the object was configured to throw an exception.

platformError
An operation is invalid because of limitations of this particular platform.

A platformError exception can occur at 3 levels:
1. An object is not supported on this platform.
2. An object is supported on this platform, but a particular method is not.
3. A method is supported on this platform, but a particular positional

parameter is not.

See “Platform differences” on page 54 for more details.

familyConformanceError
Family subset enforcement is on for this program and an operation that is
not valid on all supported platforms has been attempted.

internalError
The CICS Foundation Classes have detected an internal error. Please call
your support organization.

134 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 29. IccFile class

IccFile class enables the application program to access CICS files.

IccBase
IccResource

IccFile

Header file: ICCFILEH

Sample: ICC$FIL

IccFile constructors

Constructor (1)

id
A reference to the IccFileId object that identifies which file is being operated
on

index
An optional pointer to the IccRecordIndex object that identifies which record
in the file is being operated on.

Constructor (2)
To access files using an IccFile object, it must have an IccRecordIndex object
associated with it. If this association is not made when the object is created, use the
registerRecordIndex method.

fileName
The 8-character name of the file

index
An optional pointer to the IccRecordIndex object that identifies which record
in the file is being operated on.

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

IccFile (const IccFileId& id,
IccRecordIndex* index = 0)

IccFile (const char* fileName,
IccRecordIndex* index = 0)

© Copyright IBM Corp. 1989, 2012 135

access
Returns a composite number indicating the access properties of the file. See also
isReadable, isBrowsable, isAddable, isDeletable, and isUpdatable methods.

opt
An enumeration, defined in Icc structure, that indicates whether you can use a
value previously retrieved from CICS (object), or whether the object should
retrieve a fresh value from CICS.

accessMethod
Returns an enumeration, defined in IccValue, that represents the access method for
this file.

Possible values are:
v VSAM
v BDAM
v SFS

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

beginInsert(VSAM only)
Signals the start of a mass insertion of data into the file.

deleteLockedRecord
Deletes a record that has been previously locked by readRecord method in update
mode. (See also readRecord method.)

updateToken
A token that indicates which previously read record is to be deleted. This is the
token that is returned from readRecord method when in update mode.

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFIND, NOTOPEN, SYSIDERR, LOADING

unsigned long access(Icc::GetOpt opt =Icc::object)

IccValue::CVDA accessMethod(Icc::GetOpt opt = Icc::object)

void beginInsert()

void deleteLockedRecord(unsigned long updateToken = 0)

136 CICS TS for z/OS 4.2: C++ OO Class Libraries

deleteRecord
Deletes one or more records, as specified by the associated IccRecordIndex object,
and returns the number of deleted records.

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFIND, NOTOPEN, SYSIDERR, LOADING

enableStatus
Returns an enumeration, defined in IccValue, that indicates whether the file is
enabled to be used by programs.

Possible values are:
v DISABLED
v DISABLING
v ENABLED
v UNENABLED

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

endInsert(VSAM only)
Marks the end of a mass insertion operation. See beginInsert.

isAddable
Indicates whether more records can be added to the file.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

unsigned short deleteRecord()

IccValue::CVDA enableStatus(Icc::GetOpt opt = Icc::object)

void endInsert()

Icc::Bool isAddable(Icc::GetOpt opt = Icc::object)

Chapter 29. IccFile class 137

isBrowsable
Indicates whether the file can be browsed.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isDeletable
Indicates whether the records in the file can be deleted.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isEmptyOnOpen
Returns a Boolean that indicates whether the EMPTYREQ option is specified.
EMPTYREQ causes the object associated with this file to be set to empty when
opened, if it is a VSAM data set defined as reusable.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isReadable
Indicates whether the file records can be read.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

Icc::Bool isBrowsable(Icc::GetOpt opt = Icc::object)

Icc::Bool isDeletable(Icc::GetOpt opt = Icc::object)

Icc::Bool isEmptyOnOpen(Icc::GetOpt opt = Icc::object)

Icc::Bool isReadable(Icc::GetOpt opt = Icc::object)

138 CICS TS for z/OS 4.2: C++ OO Class Libraries

isRecoverable

opt
See access method.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

isUpdatable
Indicates whether the file can be updated.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

keyLength
Returns the length of the search key.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

keyPosition
Returns the position of the key field in each record relative to the beginning of the
record. If there is no key, zero is returned.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

Icc::Bool isRecoverable(Icc::GetOpt opt = Icc::object)

Icc::Bool isUpdatable(Icc::GetOpt opt = Icc::object)

unsigned long keyLength(Icc::GetOpt opt = Icc::object)

long keyPosition(Icc::GetOpt opt = Icc::object)

Chapter 29. IccFile class 139

openStatus
Returns a CVDA that indicates the open status of the file. Possible values are:

opt
See access method.

CLOSED
The file is closed.

CLOSING
The file is in the process of being closed. Closing a file may require dynamic
deallocation of data sets and deletion of shared resources, so the process may
last a significant length of time.

CLOSEREQUEST
The file is open and one or more application tasks are using it. A request has
been received to close it.

OPEN
The file is open.

OPENING
The file is in the process of being opened.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

readRecord
Reads a record and returns a reference to an IccBuf object that contains the data
from the record.

mode
An enumeration, defined in this class, that indicates in which mode the record
is to be read.

updateToken
A pointer to an unsigned long token that will be updated by the method when
mode is update and you want to make multiple read updates. The token
uniquely identifies the update request and is passed to the
deleteLockedRecord, rewriteRecord, or unlockRecord methods

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
LENGERR, NOTAUTH, NOTFND, NOTOPEN, SYSIDERR, LOADING

recordFormat
Returns a CVDA that indicates the format of the data. Possible values are:

IccValue::CVDA openStatus(Icc::GetOpt opt = Icc::object)

const IccBuf& readRecord (ReadMode mode = normal,
unsigned long* updateToken = 0)

IccValue::CVDA recordFormat(Icc::GetOpt opt = Icc::object)

140 CICS TS for z/OS 4.2: C++ OO Class Libraries

opt
See access method.

FIXED
The records are of fixed length.

UNDEFINED (BDAM data sets only)
The format of records on the file is undefined.

VARIABLE
The records are of variable length. If the file is associated with a data table, the
record format is always variable length, even if the source data set contains
fixed-length records.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

recordIndex
Returns a pointer to an IccRecordIndex object that indicates which records are to
be accessed when using methods such as readRecord, writeRecord, and
deleteRecord.

recordLength
Returns the length of the current record.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

registerRecordIndex

index
A pointer to an IccKey, IccRBA, or IccRRN object that will be used by
methods such as readRecord, writeRecord, etc..

rewriteRecord
Updates a record with the contents of buffer.

buffer
A reference to the IccBuf object that holds the new record data to be written to
the file.

IccRecordIndex* recordIndex() const

unsigned long recordLength(Icc::GetOpt opt = Icc::object)

void registerRecordIndex(IccRecordIndex* index)

void rewriteRecord (const IccBuf& buffer,
unsigned long updateToken = 0)

Chapter 29. IccFile class 141

updateToken
The token that identifies which previously read record is to be rewritten. See
readRecord.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR, LOADING

setAccess
Sets the permitted access to the file.

For example:
file.setAccess(IccFile::readable + IccFile::notUpdatable);

access
A positive integer value created by ORing (or adding) one or more of the
values of the Access enumeration, defined in this class.

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

setEmptyOnOpen

Specifies whether or not to make the file empty when it is next opened.

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

setStatus
Sets the status of the file.

status
An enumeration, defined in this class, that indicates the required status of the
file after this method is called.

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

type
Returns a CVDA that identifies the type of data set that corresponds to this file.
Possible values are:

void setAccess(unsigned long access)

void setEmptyOnOpen(Icc::Bool trueFalse)

void setStatus(Status status)

142 CICS TS for z/OS 4.2: C++ OO Class Libraries

opt
See access method.

ESDS
The data set is an entry-sequenced data set.

KEYED
The data set is addressed by physical keys.

KSDS
The data set is a key-sequenced data-set.

NOTKEYED
The data set is not addressed by physical keys.

RRDS
The data set is a relative record data set.

VRRDS
The data set is a variable relative record data set.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

unlockRecord
Unlock a record, previously locked by reading it in update mode. See readRecord.

updateToken
A token that indicates which previous readRecord update request is to be
unlocked.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, IOERR, ISCINVREQ, NOTAUTH,
NOTOPEN, SYSIDERR, INVREQ

writeRecord
Write either a single record or a sequence of records, if used with the beginInsert
and endInsert methods.

buffer
A reference to the IccBuf object that holds the data that is to be written into
the record.

Conditions

DISABLED, DUPREC, FILENOTFOUND, ILLOGIC, INVREEQ, IOERR,
ISCINVREQ, LENGERR, NOSPACE, NOTAUTH, NOTOPEN, SYSIDERR,
LOADING, SUPPRESSED

IccValue::CVDA type(Icc::GetOpt opt = Icc::object)

void unlockRecord(unsigned long updateToken = 0)

void writeRecord(const IccBuf& buffer)

Chapter 29. IccFile class 143

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Access
readable

File records can be read by CICS tasks.

notReadable
File records cannot be read by CICS tasks.

browsable
File records can be browsed by CICS tasks.

notBrowsable
File records cannot be browsed by CICS tasks.

addable
Records can be added to the file by CICS tasks.

notAddable
Records cannot be added to the file by CICS tasks.

144 CICS TS for z/OS 4.2: C++ OO Class Libraries

updatable
Records in the file can be updated by CICS tasks.

notUpdatable
Records in the file cannot be updated by CICS tasks.

deletable
Records in the file can be deleted by CICS tasks.

notDeletable
Records in the file cannot be deleted by CICS tasks.

fullAccess
Equivalent to readable AND browsable AND addable AND updatable
AND deletable.

noAccess
Equivalent to notReadable AND notBrowsable AND notAddable AND
notUpdatable AND notDeletable.

ReadMode
ReadMode is the mode in which a file is read.

normal
No update is to be performed (that is, read-only mode)

update
The record is to be updated. The record is locked by CICS until:
v it is rewritten using the rewriteRecord method or

v it is deleted using the deleteLockedRecord method or

v it is unlocked using the unlockRecord method or

v the task commits or rolls back its resource updates or

v the task is abended.

SearchCriterion
equalToKey

The search only finds an exact match.

gteqToKey
The search finds either an exact match or the next record in search order.

Status
open File is open, ready for read/write requests by CICS tasks.

closed
File is closed, and is therefore not currently being used by CICS tasks.

enabled
File is enabled for access by CICS tasks.

disabled
File is disabled from access by CICS tasks.

Chapter 29. IccFile class 145

146 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 30. IccFileId class

IccFileId is used to identify a file name in the CICS system.

IccBase
IccResourceId

IccFileId

Header file: ICCRIDEH

IccFileId constructors

Constructor (1)

fileName
The name of the file.

Constructor (2)

id
A reference to an IccFileId object.

Public methods
These are the public methods in this class.

operator= (1)

fileName
The 8-byte name of the file.

operator= (2)
Assigns new value.

id
A reference to an IccFileId object.

IccFileId(const char* fileName)

IccFileId(const IccFileId& id)

IccFileId& operator=(const char* fileName)

IccFileId& operator=(const IccFileId& id)

© Copyright IBM Corp. 1989, 2012 147

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

148 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 31. IccFileIterator class

This class is used to create IccFileIterator objects that can be used to browse
through the records of a CICS file, represented by an IccFile object.

IccBase
IccResource

IccFileIterator

Header file: ICCFLIEH

Sample: ICC$FIL

IccFileIterator constructor

Constructor
The IccFile and IccRecordIndex object must exist before the IccFileIterator is
created.

file
A pointer to the IccFile object that is to be browsed

index
A pointer to the IccRecordIndex object that is being used to select a record in
the file

search
An enumeration, defined in IccFile, that indicates the criterion being used to
find a search match. The default is gteqToKey.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR, LOADING

Public methods
These are the public methods in this class.

readNextRecord
Read the record that follows the current record.

mode
An enumeration, defined in IccFile class, that indicates the type of read request

IccFileIterator (IccFile* file,
IccRecordIndex* index,
IccFile::SearchCriterion search = IccFile::gteqToKey)

const IccBuf& readNextRecord (IccFile::ReadMode mode = IccFile::normal,
unsigned long* updateToken = 0)

© Copyright IBM Corp. 1989, 2012 149

updateToken
A returned token that is used to identify this unique update request on a
subsequent rewriteRecord, deleteLockedRecord, or unlockRecord method on
the file object.

Conditions

DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
LENGERR, NOTAUTH, NOTFIND, SYSIDERR

readPreviousRecord
Read the record that precedes the current record.

mode
An enumeration, defined in IccFile class, that indicates the type of read
request.

updateToken
See readNextRecord.

Conditions

DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
LENGERR, NOTAUTH, NOTFIND, SYSIDERR

reset
Resets the IccFileIterator object to point to the record identified by the
IccRecordIndex object and the specified search criterion.

index
A pointer to the IccRecordIndex object that is being used to select a record in
the file.

search
An enumeration, defined in IccFile, that indicates the criterion being used to
find a search match. The default is gteqToKey.

Conditions

FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH,
NOTFND, SYSIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource

const IccBuf& readPreviousRecord (IccFile::ReadMode mode = IccFile::normal,
unsigned long* updateToken = 0)

void reset (IccRecordIndex* index,
IccFile::SearchCriterion search = IccFile::gteqToKey)

150 CICS TS for z/OS 4.2: C++ OO Class Libraries

Method Class
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Chapter 31. IccFileIterator class 151

152 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 32. IccGroupId class

IccGroupId class is used to identify a CICS group.

IccBase
IccResourceId

IccGroupId

IccGroupId class is used to identify a CICS group.

Header file: ICCRIDEH

IccGroupId constructors

Constructor (1)

groupName
The 8-character name of the group.

Constructor (2)
The copy constructor.

id A reference to an IccGroupId object.

Public methods
These are the public methods in this class.

operator= (1)

groupName
The 8-character name of the group.

operator= (2)
Assigns new value.

id A reference to an IccGroupId object.

IccGroupId(const char* groupName)

IccGroupId(const IccGroupId& id)

IccGroupId& operator=(const char* groupName)

IccGroupId& operator=(const IccGroupId& id)

© Copyright IBM Corp. 1989, 2012 153

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

154 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 33. IccJournal class

IccJournal class represents a user or system CICS journal.

IccBase
IccResource

IccJournal

Header file: ICCJRNEH

Sample: ICC$JRN

IccJournal constructors

Constructor (1)

id
A reference to an IccJournalId object that identifies which journal is being
used.

options
An integer, constructed from the Options enumeration defined in this class,
that affects the behavior of writeRecord calls on the IccJournal object. The
values may be combined by addition or bitwise ORing, for example:
IccJournal::startIO | IccJournal::synchronous

The default is to use the system default.

Constructor (2)

journalNum
The journal number (in the range 1-99)

options
See above.

Public methods
These are the public methods in this class.

clearPrefix
Clears the current prefix as set by registerPrefix or setPrefix.If the current prefix
was set using registerPrefix, then the IccJournal class only removes its own

IccJournal (const IccJournalId& id,
unsigned long options = 0)

IccJournal (unsigned short journalNum,
unsigned long options = 0)

© Copyright IBM Corp. 1989, 2012 155

reference to the prefix. The buffer itself is left unchanged.If the current prefix was
set by setPrefix, then the IccJournal's copy of the buffer is deleted.

journalTypeId
Returns a reference to an IccJournalTypeId object that contains a 2-byte field used
to identify the origin of journal records.

put
A synonym for writeRecord—puts data into the journal. See Chapter 10,
“Polymorphic Behavior,” on page 57 for information on polymorphism.

buffer
A reference to an IccBuf object that holds data to be put into the journal.

registerPrefix

Stores pointer to prefix object for use when the writeRecord method is called on
this IccJournal object.

setJournalTypeId (1)

setJournalTypeId (2)
Sets the journal type—a 2 byte identifier—included in the journal record created
when using the writeRecord method.

setPrefix (1)

setPrefix (2)

Stores the current contents of prefix for inclusion in the journal record created when
the writeRecord method is called.

void clearPrefix()

const IccJournalTypeId& journalTypeId() const

virtual void put(const IccBuf& buffer)

void registerPrefix(const IccBuf* prefix)

void setJournalTypeId(const IccJournalTypeId& id)

void setJournalTypeId(const char* jtypeid)

void setPrefix(const IccBuf& prefix)

void setPrefix(const char* prefix)

156 CICS TS for z/OS 4.2: C++ OO Class Libraries

wait
Waits until a previous journal write has completed.

requestNum
The write request. Zero indicates the last write on this journal.

option
An integer that affects the behaviour of writeRecord calls on the IccJournal
object. Values other than 0 should be made from the Options enumeration,
defined in this class. The values may be combined by addition or bitwise
ORing, for example IccJournal::startIO + IccJournal::synchronous. The
default is to use the system default.

writeRecord (1)

record
A reference to an IccBuf object that holds the record

option
See above.

writeRecord (2)
Writes the data in the record to the journal.The returned number represents the
particular write request and can be passed to the wait method in this class.

record
The name of the record

option
See above.

Conditions

IOERR, JIDERR, LENGERR, NOJBUFSP, NOTAUTH, NOTOPEN

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase

void wait (unsigned long requestNum=0,
unsigned long option = 0)

unsigned long writeRecord (const IccBuf& record,
unsigned long option = 0)

unsigned long writeRecord (const char* record,
unsigned long option = 0)

Chapter 33. IccJournal class 157

Method Class
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Options
The behaviour of writeRecord calls on the IccJournal object.

The values can be combined in an integer by addition or bitwise ORing.

startIO
Specifies that the output of the journal record is to be initiated
immediately. If 'synchronous' is specified for a journal that is not
frequently used, you should also specify 'startIO' to prevent the requesting
task waiting for the journal buffer to be filled. If the journal is used
frequently, startIO is unnecessary.

noSuspend
Specifies that the NOJBUFSP condition does not suspend an application
program.

synchronous
Specifies that synchronous journal output is required. The requesting task
waits until the record has been written.

158 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 34. IccJournalId class

IccJournalId is used to identify a journal number in the CICS sytem.

IccBase
IccResourceId

IccJournalId

Header file: ICCRIDEH

IccJournalId constructors

Constructor (1)

journalNum
The number of the journal, in the range 1 to 99

Constructor (2)
The copy constructor.

id
A reference to an IccJournalId object.

Public methods
These are the public methods in this class.

number
Returns the journal number, in the range 1 to 99.

operator= (1)

journalNum
The number of the journal, in the range 1 to 99

IccJournalId(unsigned short journalNum)

IccJournalId(const IccJournalId& id)

unsigned short number() const

IccJournalId& operator=(unsigned short journalNum)

© Copyright IBM Corp. 1989, 2012 159

operator= (2)
Assigns new value.

id
A reference to an IccJournalId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

IccJournalId& operator=(const IccJournalId& id)

160 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 35. IccJournalTypeId class

An IccJournalTypeId class object is used to help identify the origin of a journal
record—it contains a 2-byte field that is included in the journal record.

IccBase
IccResourceId

IccJournalTypeId

An IccJournalTypeId class object is used to help identify the origin of a journal
record—it contains a 2-byte field that is included in the journal record.

Header file: ICCRIDEH

IccJournalTypeId constructors

Constructor (1)

journalTypeName
A 2-byte identifier used in journal records.

Constructor (2)

id A reference to an IccJournalTypeId object.

Public methods
These are the public methods in this class.

operator= (1)

id A reference to an IccJournalTypeId object.

operator= (2)
Sets the 2-byte field that is included in the journal record.

journalTypeName
A 2-byte identifier used in journal records.

IccJournalTypeId(const char* journalTypeName)

IccJournalTypeId(const IccJournalId& id)

void operator=(const IccJournalTypeId& id)

void operator=(const char* journalTypeName)

© Copyright IBM Corp. 1989, 2012 161

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

162 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 36. IccKey class

IccKey class is used to hold a search key for an indexed (KSDS) file.

IccBase
IccRecordIndex

IccKey

Header file: ICCRECEH

Sample: ICC$FIL

IccKey constructors

Constructor (1)

Constructor (2)

Constructor (3)

Public methods
These are the public methods in this class.

assign
Copies the search key into the IccKey object.

length
The length of the data area

dataArea
A pointer to the start of the data area that holds the search key.

IccKey (const char* initValue,
Kind kind = complete)

IccKey (unsigned short completeLength,
Kind kind= complete)

IccKey(const IccKey& key)

void assign (unsigned short length,
const void* dataArea)

© Copyright IBM Corp. 1989, 2012 163

completeLength
Returns the length of the key when it is complete.

kind

Returns an enumeration, defined in this class, that indicates whether the key is
generic or complete.

operator= (1)

operator= (2)

operator= (3)
Assigns new value to key.

operator== (1)

operator== (2)

operator== (3)
Tests equality.

operator!= (1)

unsigned short completeLength() const

Kind kind() const

IccKey& operator=(const IccKey& key)

IccKey& operator=(const IccBuf& buffer)

IccKey& operator=(const char* value)

Icc::Bool operator==(const IccKey& key) const

Icc::Bool operator==(const IccBuf& text) const

Icc::Bool operator==(const char* text) const

Icc::Bool operator !=(const IccKey& key) const

164 CICS TS for z/OS 4.2: C++ OO Class Libraries

operator!= (2)

operator!= (3)
Tests inequality.

setKind
Changes the type of key from generic to complete or vice versa.

kind
An enumeration, defined in this class, that indicates whether the key is generic
or complete.

value

Returns the start of the data area containing the search key.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
length IccRecordIndex
operator delete IccBase
operator new IccBase
type IccRecordIndex
value IccRecordIndex

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Icc::Bool operator!=(const IccBuf& text) const

Icc::Bool operator!=(const char* text) const

void setKind(Kind kind)

const char* value()

Chapter 36. IccKey class 165

Enumerations

Kind
complete

Specifies that the supplied key is not generic.

generic
Specifies that the search key is generic. A search is satisfied when a record
is found with a key whose prefix matches the supplied key.

166 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 37. IccLockId class

IccLockId class is used to identify a lock request.

IccBase
IccResourceId

IccLockId

IccLockId class is used to identify a lock request.

Header file: ICCRIDEH

IccLockId constructors

Constructor (1)

name
The 8-character name of the lock request.

Constructor (2)
The copy constructor.

id A reference to an IccLockId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 8-character name of the lock request.

operator= (2)
Assigns new value.

id A reference to an IccLockId object.

IccLockId(const char* name)

IccLockId(const IccLockId& id)

IccLockId& operator=(const char* name)

IccLockId& operator=(const IccLockId& id)

© Copyright IBM Corp. 1989, 2012 167

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

168 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 38. IccMessage class

IccMessage can be used to hold a message description.

IccBase
IccMessage

It is used primarily by the IccException class to describe why the IccException
object was created.

Header file: ICCMSGEH

IccMessage constructor

Constructor

number
The number associated with the message

text
The text associated with the message

className
The optional name of the class associated with the message

methodName
The optional name of the method associated with the message.

Public methods
These are the public methods in this class.

className
Returns the name of the class with which the message is associated, if any. If there
is no name to return, a null pointer is returned.

methodName

Returns the name of the method with which the message is associated, if any. If
there is no name to return, a null pointer is returned.

IccMessage (unsigned short number,
const char* text,
const char* className = 0,
const char* methodName = 0)

const char* className() const

const char* methodName() const

© Copyright IBM Corp. 1989, 2012 169

number

Returns the number of the message.

summary

Returns the text of the message.

text

Returns the text of the message in the same way as summary.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

unsigned short number() const

const char* summary()

const char* text() const

170 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 39. IccPartnerId class

IccPartnerId class represents CICS remote (APPC) partner transaction definitions.

IccBase
IccResourceId

IccPartnerId

IccPartnerId class represents CICS remote (APPC) partner transaction definitions.

Header file: ICCRIDEH

IccPartnerId constructors

Constructor (1)

partnerName
The 8-character name of an APPC partner.

Constructor (2)
The copy constructor.

id A reference to an IccPartnerId object.

Public methods

operator= (1)

partnerName
The 8-character name of an APPC partner.

operator= (2)
Assigns new value.

id A reference to an IccPartnerId object.

IccPartnerId(const char* partnerName)

IccPartnerId(const IccPartnerId& id)

IccPartnerId& operator=(const char* partnerName)

IccPartnerId& operator=(const IccPartnerId& id)

© Copyright IBM Corp. 1989, 2012 171

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

172 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 40. IccProgram class

The IccProgram class represents any CICS program outside of your currently
executing one, which the IccControl object represents.

IccBase
IccResource

IccProgram

Header file: ICCPRGEH

Sample: ICC$PRG1, ICC$PRG2, ICC$PRG3

IccProgram constructors

Constructor (1)

id
A reference to an IccProgramId object.

Constructor (2)

progName
The 8-character name of the program.

Public methods
The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

address
Returns the address of a program module in memory. This is only valid after a
successful load call.

clearInputMessage
Clears the current input message which was set by setInputMessage or
registerInputMessage.If the current input message was set using
registerInputMessage then only the pointer is deleted: the buffer is left
unchanged.If the current input message was set using setInputMessage then
clearInputMessage releases the memory used by that buffer.

IccProgram(const IccProgramId& id)

IccProgram(const char* progName)

const void* address() const

© Copyright IBM Corp. 1989, 2012 173

entryPoint

Returns a pointer to the entry point of a loaded program module. This is only
valid after a successful load call.

length

Returns the length of a program module. This is only valid after a successful load
call.

link

commArea
An optional pointer to the IccBuf object that contains the COMMAREA—the
buffer used to pass information between the calling program and the program
that is being called

transId
An optional pointer to the IccTransId object that indicates the name of the
mirror transaction under which the program is to run if it is a remote (DPL)
program link

opt
An enumeration, defined in this class, that affects the behavior of the link
when the program is remote (DPL). The default (noCommitOnReturn) is not to
commit resource changes on the remote CICS region until the current task
commits its resources. The alternative (commitOnReturn) means that the
resources of the remote program are committed whether or not this task
subsequently abends or encounters a problem.

Conditions: INVREQ, NOTAUTH, PGMIDERR, SYSIDERR, LENGERR,
ROLLEDBACK, TERMERR

Restrictions

Links may be nested, that is, a linked program may link to another program.
However, due to implementation restrictions, you may only nest such programs 15
times. If this is exceeded, an exception is thrown.

void clearInputMessage()

const void* entryPoint() const

unsigned long length() const

void link (const IccBuf* commArea = 0,
const IccTransId* transId = 0,
CommitOpt opt = noCommitOnReturn)

174 CICS TS for z/OS 4.2: C++ OO Class Libraries

load

opt
An enumeration, defined in this class, that indicates whether CICS should
automatically allow the program to be unloaded at task termination
(releaseAtTaskEnd), or not (hold).

Conditions: NOTAUTH, PGMIDERR, INVREQ, LENGERR

registerInputMessage
Store pointer to InputMessage for when the link method is called.

setInputMessage
Specifies data to be made available, by the IccSession::receive() method, to the
called program, when using the link method in this class.

unload
Allow a program to be unloaded. It can be reloaded by a call to load.

Conditions

NOTAUTH, PGMIDERR, INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase

void load(LoadOpt opt = releaseAtTaskEnd)

void registerInputMessage(const IccBuf& msg)

void setInputMessage(const IccBuf& msg)

void unload()

Chapter 40. IccProgram class 175

Method Class
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

CommitOpt
noCommitOnReturn

Changes to resources on the remote CICS region are not committed until
the current task commits its resources. This is the default setting.

commitOnReturn
Changes to resources on the remote CICS region are committed whether or
not the current task subsequently abends or encounters a problem.

LoadOpt
releaseAtTaskEnd

Indicates that CICS should automatically allow the program to be
unloaded at task termination.

hold Indicates that CICS should not automatically allow the program to be
unloaded at task termination. (In this case, this or another task must
explicitly use the unload method).

176 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 41. IccProgramId class

IccProgramId objects represent program names in the CICS system.

IccBase
IccResourceId

IccProgramId

Header file: ICCRIDEH

IccProgramId constructors

Constructor (1)

progName
The 8-character name of the program.

Constructor (2)
The copy constructor.

id
A reference to an IccProgramId object.

Public methods

operator= (1)

progName
The 8-character name of the program.

operator= (2)
Assigns new value.

id
A reference to an IccProgramId object.

IccProgramId(const char* progName)

IccProgramId(const IccProgramId& id)

IccProgramId& operator=(const char* progName)

IccProgramId& operator=(const IccProgramId& id)

© Copyright IBM Corp. 1989, 2012 177

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

178 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 42. IccRBA class

An IccRBA object holds a relative byte address which is used for accessing VSAM
ESDS files.

IccBase
IccRecordIndex

IccRBA

An IccRBA object holds a relative byte address which is used for accessing VSAM
ESDS files.

Header file: ICCRECEH

IccRBA constructor

Constructor

initRBA
An initial value for the relative byte address.

Public methods

operator= (1)

operator= (2)
Assigns a new value for the relative byte address.

num
A valid relative byte address.

operator== (1)

IccRBA(unsigned long initRBA = 0)

IccRBA& operator=(const IccRBA& rba)

IccRBA& operator=(unsigned long num)

Icc::Bool operator== (const IccRBA& rba) const

© Copyright IBM Corp. 1989, 2012 179

operator== (2)
Tests equality

operator!= (1)

operator!= (2)
Tests inequality

number

Returns the relative byte address.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
length IccRecordIndex
operator delete IccBase
operator new IccBase
type IccRecordIndex
value IccRecordIndex

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Icc::Bool operator== (unsigned long num) const

Icc!:Bool operator== (const IccRBA& rba) const

Icc::Bool operator!=(unsigned long num) const

unsigned long number() const

180 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 43. IccRecordIndex class

CICS File Control Record Identifier.

IccBase
IccRecordIndex

IccKey
IccRBA
IccRRN

CICS File Control Record Identifier. Used to tell CICS which particular record the
program wants to retrieve, delete, or update. IccRecordIndex is a base class from
which IccKey, IccRBA, and IccRRN are derived.

Header file: ICCRECEH

IccRecordIndex constructor (protected)

Constructor

type
An enumeration, defined in this class, that indicates whether the index type is
key, RBA, or RRN.

Note: This is protected because you should not create IccRecordIndex objects; see
subclasses IccKey, IccRBA, and IccRRN.

Public methods

length
Returns the length of the record identifier.

type

Returns an enumeration, defined in this class, that indicates whether the index
type is key, RBA, or RRN.

IccRecordIndex(Type type)

unsigned short length() const

Type type() const

© Copyright IBM Corp. 1989, 2012 181

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Type
Type indicates the access method.

Possible values are:
v key
v RBA
v RRN

182 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 44. IccRequestId class

An IccRequestId is used to hold the name of a request.

IccBase
IccResourceId

IccRequestId

An IccRequestId is used to hold the name of a request. This request identifier can
subsequently be used to cancel a request—see, for example, start and cancel
methods in IccStartRequestQ class.

Header file: ICCRIDEH

IccRequestId constructors

Constructor (1)
An empty IccRequestId object.

Constructor (2)

requestName
The 8-character name of the request.

Constructor (3)
The copy constructor.

id A reference to an IccRequestId.

Public methods

operator= (1)

id A reference to an IccRequestId object whose properties are copied into this
object.

IccRequestId()

IccRequestId(const char* requestName)

IccRequestId(const IccRequestId& id)

IccRequestId& operator=(const IccRequestId& id)

© Copyright IBM Corp. 1989, 2012 183

operator= (2)
Assigns new value.

requestName
An 8-character string which is copied into this object.

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

IccRequestId& operator=(const char* reqestName)

184 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 45. IccResource class

IccResource class is a base class that is used to derive other classes.

IccBase
IccResource

The methods associated with IccResource are described here although, in practise,
they are only called on objects of derived classes.

IccResource is the parent class for all CICS resources—tasks, files, programs, etc.
Every class inherits from IccBase, but only those that use CICS services inherit
from IccResource.

Header file: ICCRESEH

Sample: ICC$RES1, ICC$RES2

IccResource constructor (protected)

Constructor

classType
An enumeration that indicates what the subclass type is. For example, for an
IccTempStore object, the class type is cTempStore. The possible values are
listed under ClassType in the description of the IccBase class.

Public methods

actionOnCondition
Returns an enumeration that indicates what action the class will take in response
to the specified condition being raised by CICS. The possible values are described
in this class.

condition
The name of the condition as an enumeration. See IccCondition structure for a
list of the possible values.

actionOnConditionAsChar

This method is the same as actionOnCondition but returns a character, rather than
an enumeration, as follows:

IccResource(IccBase::ClassType classType)

ActionOnCondition actionOnCondition(IccCondition::Codes condition)

char actionOnConditionAsChar(IccCondition::Codes condition)

© Copyright IBM Corp. 1989, 2012 185

0 (zero)
No action is taken for this CICS condition.

H The virtual method handleEvent is called for this CICS condition.

X An exception is generated for this CICS condition.

A This program is abended for this CICS condition.

actionsOnConditionsText
Returns a string of characters, one character for each possible condition. Each
character indicates the actions to be performed for that corresponding condition. .

The characters used in the string are described in “actionOnConditionAsChar” on
page 185. For example, the string: 0X00H0A ... shows the actions for the first
seven conditions are as follows:

condition 0 (NORMAL)
action=0 (noAction)

condition 1 (ERROR)
action=X (throwException)

condition 2 (RDATT)
action=0 (noAction)

condition 3 (WRBRK)
action=0 (noAction)

condition 4 (ICCEOF)
action=H (callHandleEvent)

condition 5 (EODS)
action=0 (noAction)

condition 6 (EOC)
action=A (abendTask)

clear
Clears the contents of the object. This method is virtual and is implemented,
wherever appropriate, in the derived classes. See Chapter 10, “Polymorphic
Behavior,” on page 57 for a description of polymorphism. The default
implementation in this class throws an exception to indicate that it has not been
overridden in a subclass.

condition
Returns a number that indicates the condition code for the most recent CICS call
made by this object.

const char* actionsOnConditionsText()

virtual void clear()

unsigned long condition(ConditionType type = majorCode) const

186 CICS TS for z/OS 4.2: C++ OO Class Libraries

type
An enumeration, defined in this class, that indicates the type of condition
requested. Possible values are majorCode (the default) and minorCode.

conditionText

Returns the symbolic name of the last CICS condition for this object.

get

Gets data from the IccResource object and returns it as an IccBuf reference. This
method is virtual and is implemented, wherever appropriate, in the derived
classes. See Chapter 10, “Polymorphic Behavior,” on page 57 for a description of
polymorphism. The default implementation in this class throws an exception to
indicate that it has not been overridden in a subclass.

handleEvent
This virtual function may be re-implemented in a subclass (by the application
programmer) to handle CICS events (see IccEvent class on page Chapter 27,
“IccEvent class,” on page 129).

event
A reference to an IccEvent object that describes the reason why this method is
being called.

id

Returns a pointer to the IccResourceId object associated with this IccResource
object.

isEDFOn

Returns a boolean value that indicates whether EDF trace is active. Possible values
are yes or no.

isRouteOptionOn

const char* conditionText() const

virtual const IccBuf& get()

virtual HandleEventReturnOpt handleEvent(IccEvent& event)

const IccResourceId* id() const

Icc::Bool isEDFOn() const

Icc::Bool isRouteOptionOn() const

Chapter 45. IccResource class 187

Returns a boolean value that indicates whether the route option is active. Possible
values are yes or no.

name

Returns a character string that gives the name of the resource that is being used.
For an IccTempStore object, the 8-character name of the temporary storage queue
is returned. For an IccTerminal object, the 4-character terminal name is returned.
This is equivalent to calling id()→name.

put
Puts information from the buffer into the IccResource object. This method is
virtual and is implemented, wherever appropriate, in the derived classes. See
Chapter 10, “Polymorphic Behavior,” on page 57 for more information on
polymorphism. The default implementation in this class throws an exception to
indicate that it has not been overridden in a subclass.

buffer
A reference to an IccBuf object that contains data that is to be put into the
object.

routeOption

Returns a reference to an IccSysId object that represents the system to which all
CICS requests are routed—explicit function shipping.

setActionOnAnyCondition
Specifies the default action to be taken by the CICS foundation classes when a
CICS condition occurs.

action
The name of the action as an enumeration. The possible values are listed under
the description of this class.

setActionOnCondition
Specifies what action is automatically taken by the CICS foundation classes when a
given CICS condition occurs.

const char* name() const

virtual void put(const IccBuf& buffer)

const IccSysId& routeOption() const

void setActionOnAnyCondition(ActionOnCondition action)

void setActionOnCondition (ActionOnCondition action,
IccCondition::Codes condition)

188 CICS TS for z/OS 4.2: C++ OO Class Libraries

action
The name of the action as an enumeration. The possible values are listed under
the description of this class.

condition
See IccCondition structure.

setActionsOnConditions

actions
A string that indicates what action is to be taken for each condition. The
default is not to indicate any actions, in which case each condition is given a
default ActionOnCondition of noAction. The string should have the same
format as the one returned by the actionsOnConditionsText method.

setEDF
Switches EDF on or off for this resource object. These methods force the object to
route CICS requests to the named remote system. This is called explicit function
shipping.

void setEDF(Icc::Bool onOff)

onOff
A boolean value that selects whether EDF trace is switched on or off.

setRouteOption (1)
The parameters are:

sysId
The IccSysId object that represents the remote system to which commands are
routed.

setRouteOption (2)
This option is only valid for certain classes: Attempting to use this method on
other subclasses of IccResource causes an exception to be thrown.

Valid classes are:
v IccDataQueue

v IccFile

v IccFileIterator

v IccProgram

v IccStartRequestQ

v IccTempStore

To turn off the route option specify no parameter, for example:
obj.setRouteOption()

void setActionsOnConditions(const char* actions = 0)

void setRouteOption(const IccSysId& sysId)

Chapter 45. IccResource class 189

sysName
The 4-character name of the system to which commands are routed.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

ActionOnCondition
Possible values are:

noAction
Carry on as normal; it is the application program's responsibility to test
CICS conditions using the condition method, after executing a method that
calls CICS services.

callHandleEvent
Call the virtual handleEvent method.

throwException
An IccException object is created and thrown. This is typically used for
more serious conditions or errors.

abendTask
Abend the CICS task.

HandleEventReturnOpt
Possible values are:

rContinue
The CICS event proceeded satisfactorily and normal processing is to
resume.

rThrowException
The application program could not handle the CICS event and an
exception is to be thrown.

void setRouteOption(const char* sysName = 0)

190 CICS TS for z/OS 4.2: C++ OO Class Libraries

rAbendTask
The application program could not handle the CICS event and the CICS
task is to be abended.

ConditionType
Possible values are:

majorCode
The returned value is the CICS RESP value. This is one of the values in
IccCondition::codes.

minorCode
The returned value is the CICS RESP2 value.

Chapter 45. IccResource class 191

192 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 46. IccResourceId class

This is a base class from which IccTransId and other classes, whose names all end
in "Id", are derived.

IccBase
IccResourceId

Many of these derived classes represent CICS resource names.

Header file: ICCRIDEH

IccResourceId constructors (protected)

Constructor (1)

type
An enumeration, defined in IccBase class, that indicates the type of class.

id
A reference to an IccResourceId object that is used to create this object.

Constructor (2)

type
An enumeration, defined in IccBase class, that indicates the type of class.

resName
The name of a resource that is used to create this object.

Public methods
These are the public methods in this class.

name
Returns the name of the resource identifier as a string. Most ...Id objects have 4- or
8-character names.

nameLength

IccResourceId (IccBase::ClassType typ,
const IccResourceId& id)

IccResourceId (IccBase::ClassType type,
const char* resName)

const char* name() const

© Copyright IBM Corp. 1989, 2012 193

Returns the length of the name returned by the name method.

Protected methods

operator=
Set an IccResourceId object to be identical to id.

id
A reference to an IccResourceId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

unsigned short nameLength() const

IccResourceId& operator=(const IccResourceId& id)

194 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 47. IccRRN class

An IccRRN object holds a relative record number and is used to identify records in
VSAM RRDS files.

IccBase
IccRecordIndex

IccRRN

An IccRRN object holds a relative record number and is used to identify records in
VSAM RRDS files.

Header file: ICCRECEH

IccRRN constructors

Constructor

initRRN
The initial relative record number—an integer greater than 0. The default is 1.

Public methods
These are the public methods in this class.

operator= (1)

operator= (2)
Assigns a new value for the relative record number.

num
A relative record number—an integer greater than 0.

operator== (1)

IccRRN(unsigned long initRRN = 1)

IccRRN& operator=(const IccRRN& rrn)

IccRRN& operator=(unsigned long num)

Icc::Bool operator== (const IccRRN& rrn) const

© Copyright IBM Corp. 1989, 2012 195

operator== (2)
Tests equality

operator!= (1)

operator!= (2)
Tests inequality

number

Returns the relative record number.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
length IccRecordIndex
operator delete IccBase
operator new IccBase
type IccRecordIndex
value IccRecordIndex

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Icc::Bool operator== (unsigned long num) const

Icc::Bool operator!= (const IccRRN& rrn) const

Icc::Bool operator!=(unsigned long num) const

unsigned long number() const

196 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 48. IccSemaphore class

This class enables synchronization of resource updates.

IccBase
IccResource

IccSemaphore

Header file: ICCSEMEH

Sample: ICC$SEM

IccSemaphore constructor

Constructor (1)

resource
A text string, if type is byValue, otherwise an address in storage.

type
An enumeration, defined in this class, that indicates whether locking is by
value or by address. The default is by value.

life
An enumeration, defined in this class, that indicates how long the semaphore
lasts. The default is to last for the length of the UOW.

Constructor (2)

id
A reference to an IccLockId object

life
An enumeration, defined in this class, that indicates how long the semaphore
lasts. The default is to last for the length of the UOW.

Public methods
These are the public methods in this class.

lifeTime
Returns an enumeration, defined in this class, that indicates whether the lock lasts
for the length of the current unit-of-work ('UOW') or until the task
terminates('task').

IccSemaphore (const char* resource,
LockType type = byValue,
LifeTime life = UOW)

IccSemaphore (const IccLockId& id,
LifeTime life = UOW)

© Copyright IBM Corp. 1989, 2012 197

lock

Attempts to get a lock. This method blocks if another task already owns the lock.

Conditions

ENQBUSY, LENGERR, INVREQ

tryLock
Attempts to get a lock. This method does not block if another task already owns
the lock. It returns a boolean that indicates whether it succeeded.

Conditions

ENQBUSY, LENGERR, INVREQ

type
Returns an enumeration, defined in this class, that indicates what type of
semaphore this is.

unlock

Release a lock.

Conditions

LENGERR, INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource

LifeTime lifeTime() const

void lock()

Icc::Bool tryLock()

LockType type() const

void unlock()

198 CICS TS for z/OS 4.2: C++ OO Class Libraries

Method Class
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

LockType
byValue

The lock is on the contents (for example, name).

byAddress
The lock is on the memory address.

LifeTime
UOW The semaphore lasts for the length of the current unit of work.

task The semaphore lasts for the length of the task.

Chapter 48. IccSemaphore class 199

200 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 49. IccSession class

This class enables APPC and DTP programming.

IccBase
IccResource

IccSession

Header file: ICCSESEH

Sample: ICC$SES1, ICC$SES2

IccSession constructors (public)

Constructor (1)

id
A reference to an IccPartnerId object

Constructor (2)

sysId
A reference to an IccSysId object that represents a remote CICS system

profile
The 8-character name of the profile.

Constructor (3)

sysName
The 4-character name of the remote CICS system with which this session is
associated

profile
The 8-character name of the profile.

IccSession(const IccPartnerId& id)

IccSession (const IccSysId& sysId,
const char* profile = 0)

IccSession (const char* sysName,
const char* profile = 0)

© Copyright IBM Corp. 1989, 2012 201

IccSession constructor (protected)

Constructor
This constructor is for back end DTP CICS tasks that have a session as their
principal facility. In this case the application program uses the session method on
the IccControl object to gain access to their IccSession object.

Public methods
These are the public methods in this class.

allocate
Establishes a session (communication channel) to the remote system.

option
An enumeration, defined in this class, that indicates what action CICS is to
take if a communication channel is unavailable when this method is called.

Conditions

INVREQ, SYSIDERR, CBIDERR, NETNAMEIDERR, PARTNERIDERR, SYSBUSY

connectProcess (1)
This method can only be used if an IccPartnerId object was used to construct this
session object.

level
An enumeration, defined in this class, that indicates what sync level is to be
used for this conversation

PIP
An optional pointer to an IccBuf object that contains the PIP data to be sent to
the remote system

connectProcess (2)

level
An enumeration, defined in this class, that indicates what sync level is to be
used for this conversation

IccSession()

void allocate(AllocateOpt option = queue)

void connectProcess (SyncLevel level,
const IccBuf* PIP = 0)

void connectProcess (SyncLevel level,
const IccTransId& transId,
const IccBuf* PIP = 0)

202 CICS TS for z/OS 4.2: C++ OO Class Libraries

transId
A reference to an IccTransId object that holds the name of the transaction to be
started on the remote system

PIP
An optional pointer to an IccBuf object that contains the PIP data to be sent to
the remote system

connectProcess (3)
Starts a partner process on the remote system in preparation for sending and
receiving information.

level
An enumeration, defined in this class, that indicates what sync level is to be
used for this conversation

TPName
A reference to an IccTPNameId object that contains the 1–64 character TP
name.

PIP
An optional pointer to an IccBuf object that contains the PIP data to be sent to
the remote system

Conditions

INVREQ, LENGERR, NOTALLOC, PARTNERIDERR, NOTAUTH, TERMERR,
SYSBUSY

converse
converse sends the contents of send and returns a reference to an IccBuf object that
holds the reply from the remote APPC partner.

send
A reference to an IccBuf object that contains the data that is to be sent.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

convId
Returns a reference to an IccConvId object that contains the 4-byte conversation
identifier.

void connectProcess (SyncLevel level,
const IccTPNameId& TPName,
const IccBuf* PIP = 0)

const IccBuf& converse(const IccBuf& send)

const IccConvId& convId()

Chapter 49. IccSession class 203

errorCode

Returns the 4-byte error code received when isErrorSet returns true. See the
relevant DTP Guide for more information.

extractProcess

Retrieves information from an APPC conversation attach header and holds it inside
the object. See PIPList, process, and syncLevel methods to retrieve the information
from the object. This method should be used by the back end task if it wants
access to the PIP data, the process name, or the synclevel under which it is
running.

Conditions

INVREQ, NOTALLOC, LENGERR

flush
Ensure that accumulated data and control information are transmitted on an APPC
mapped conversation.

Conditions

INVREQ, NOTALLOC

free
Return the APPC session to CICS so that it may be used by other tasks.

Conditions

INVREQ, NOTALLOC

get
A synonym for receive. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

isErrorSet

const char* errorCode() const

void extractProcess()

void flush()

void free()

virtual const IccBuf& get()

204 CICS TS for z/OS 4.2: C++ OO Class Libraries

Returns a boolean variable, defined in Icc structure, that indicates whether an error
has been set.

isNoDataSet

Returns a boolean variable, defined in Icc structure, that indicates if no data was
returned on a send—just control information.

isSignalSet

Returns a boolean variable, defined in Icc structure, that indicates whether a signal
has been received from the remote process.

issueAbend

Abnormally ends the conversation. The partner transaction sees the TERMERR
condition.

Conditions

INVREQ, NOTALLOC, TERMERR

issueConfirmation
Sends positive response to a partner's send request that specified the confirmation
option.

Conditions

INVREQ, NOTALLOC, TERMERR, SIGNAL

issueError
Signals an error to the partner process.

Conditions

INVREQ, NOTALLOC, TERMERR, SIGNAL

Icc::Bool isErrorSet() const

Icc::Bool isNoDataSet() const

Icc::Bool isSignalSet() const

void issueAbend()

void issueConfirmation()

void issueError()

Chapter 49. IccSession class 205

issuePrepare
This only applies to DTP over APPC links. It enables a syncpoint initiator to
prepare a syncpoint slave for syncpointing by sending only the first flow ('prepare
to commit') of the syncpoint exchange.

Conditions

INVREQ, NOTALLOC, TERMERR

issueSignal
Signals that a mode change is needed.

Conditions

INVREQ, NOTALLOC, TERMERR

PIPList
Returns a reference to an IccBuf object that contains the PIP data sent from the
front end process. A call to this method should be preceded by a call to
extractProcess on back end DTP processes.

process

Returns a reference to an IccBuf object that contains the process data sent from the
front end process. A call to this method should be preceded by a call to
extractProcess on back end DTP processes.

put
A synonym for send. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

data
A reference to an IccBuf object that holds the data to be sent to the remote
process.

receive

void issuePrepare()

void issueSignal()

IccBuf& PIPList()

const IccBuf& process() const

virtual void put(const IccBuf& data)

206 CICS TS for z/OS 4.2: C++ OO Class Libraries

Returns a reference to an IccBuf object that contains the data received from the
remote system.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

send (1)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the send
method. The default is normal.

send (2)
Sends data to the remote partner.

option
An enumeration, defined in this class, that affects the behavior of the send
method. The default is normal.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

sendInvite (1)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the
sendInvite method. The default is normal.

sendInvite (2)
Sends data to the remote partner and indicates a change of direction, that is, the
next method on this object will be receive.

const IccBuf& receive()

void send (const IccBuf& send,
SendOpt option = normal)

void send(SendOpt option = normal)

void sendInvite (const IccBuf& send,
SendOpt option = normal)

void sendInvite(SendOpt option = normal)

Chapter 49. IccSession class 207

option
An enumeration, defined in this class, that afffects the behavior of the
sendInvite method. The default is normal.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

sendLast (1)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the sendLast
method. The default is normal.

sendLast (2)
Sends data to the remote partner and indicates that this is the final transmission.
The free method must be invoked next, unless the sync level is 2, when you must
commit resource updates before the free. (See commitUOW on page
“commitUOW” on page 228 in IccTaskClass).

option
An enumeration, defined in this class, that affects the behavior of the sendLast
method. The default is normal.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

state
Returns a CVDA, defined in IccValue structure, that indicates the current state of
the APPC conversation.

Possible values are:
v ALLOCATED
v CONFFREE
v CONFSEND
v FREE
v PENDFREE
v PENDRECEIVE
v RECEIVE
v ROLLBACK
v SEND
v SYNCFREE

void sendLast (const IccBuf& send,
SendOpt option = normal)

void sendLast(SendOpt option = normal)

208 CICS TS for z/OS 4.2: C++ OO Class Libraries

v SYNCRECEIVE
v SYNCSEND
v NOTAPPLIC

IccValue::NOTAPPLIC is returned if there is no APPC conversation state.

option
An enumeration, defined in this class, that indicates how to report the state of
the conversation

Conditions

INVREQ, NOTALLOC

stateText
Returns the symbolic name of the state that state method would return. For
example, if state returns IccValue::ALLOCATED, stateText would return
"ALLOCATED".

option
An enumeration, defined in this class, that indicates how to report the state of
the conversation

syncLevel

Returns an enumeration, defined in this class, that indicates the synchronization
level that is being used in this session. A call to this method should be preceded by
a call to extractProcess on back end DTP processes.

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource

IccValue::CVDA state(StateOpt option = lastCommand)

const char* stateText(StateOpt option = lastCommand)

SyncLevel syncLevel() const

Chapter 49. IccSession class 209

Method Class
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

AllocateOpt
queue

If all available sessions are in use, CICS is to queue this request (and block
the method) until it can allocate a session.

noQueue
Control is returned to the application if it cannot allocate a session. CICS
raises the SYSBUSY condition.

Indicates whether queuing is required on an allocate method.

SendOpt
normal

The default.

confirmation
Indicates that a program using SyncLevel level1 or level2 requires a
response from the remote partner program. The remote partner can
respond positively, using the issueConfirmation method, or negatively,
using the issueError method. The sending program does not receive
control back from CICS until the response is received.

wait Requests that the data is sent and not buffered internally. CICS is free to
buffer requests to improve performance if this option is not specified.

StateOpt
Use StateOpt to indicate how the state of a conversation is to be reported.

lastCommand
Return the state at the time of the completion of the last operation on the
session.

extractState
Return the explicitly extracted current state.

210 CICS TS for z/OS 4.2: C++ OO Class Libraries

SyncLevel
level0

Sync level 0

level1
Sync level 1

level2
Sync level 2

Chapter 49. IccSession class 211

212 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 50. IccStartRequestQ class

This is a singleton class that enables the application programmer to request an
asynchronous start of another CICS transaction.

IccBase
IccResource

IccStartRequestQ

(see the start method on page “start” on page 217).

An asynchronously started transaction uses the IccStartRequestQ class method
retrieveData to gain the information passed to it by the transaction that issued the
start request.

An unexpired start request can be cancelled by using the cancel method.

Header file: ICCSRQEH

Sample: ICC$SRQ1, ICC$SRQ2

IccStartRequestQ constructor (protected)

Constructor

Public methods
These are the public methods in this class.

cancel
Cancels a previously issued start request that has not yet expired.

reqId
A reference to an IccRequestId object that represents the request to be
cancelled

transId
An optional pointer to an IccTransId object that represents the transaction that
is to be cancelled.

Conditions

ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

IccStartRequestQ()

void cancel (const IccRequestId& reqId,
const IccTransId* transId = 0)

© Copyright IBM Corp. 1989, 2012 213

clearData
clearData clears the current data that is to be passed to the started transaction.

The data was set using setData or registerData.

If the data was set using registerData, only the pointer to the data is removed, the
data in the buffer is left unchanged.

If the data was set using setData, then clearData releases the memory used by the
buffer.

data
Returns a reference to an IccBuf object that contains data passed on a start request.
A call to this method should be preceded by a call to retrieveData method.

instance

Returns a pointer to the single IccStartRequestQ object. If the object does not exist
it is created. See also startRequestQ method on page “startRequestQ” on page 118
of IccControl.

queueName

Returns the name of the queue that was passed by the start requester. A call to this
method should be preceded by a call to retrieveData method.

registerData
Registers an IccBuf object to be interrogated for start data on each subsequent start
method invocation.This just stores the address of the IccBuf object within the
IccStartRequestQ so that the IccBuf object can be found when using the start
method. This differs from the setData method, which takes a copy of the data held
in the IccBuf object during the time that it is invoked.

buffer
A pointer to the IccBuf object that holds data to be passed on a start request.

reset

void clearData()

const IccBuf& data() const

static IccStartRequestQ* instance()

const char* queueName() const

void registerData(const IccBuf* buffer)

214 CICS TS for z/OS 4.2: C++ OO Class Libraries

Clears any associations previously made by set... methods in this class.

retrieveData
Used by a task that was started, via an async start request, to gain access to the
information passed by the start requester. The information is returned by the data,
queueName, returnTermId, and returnTransId methods.

option
An enumeration, defined in this class, that indicates what happens if there is
no start data available.

Conditions

ENDDATA, ENVDEFERR, IOERR, LENGERR, NOTFND, INVREQ

Note: The ENVDEFERR condition will be raised if all the possible options
(setData, setQueueName, setReturnTermId, and setReturnTransId) are not used
before issuing the start method. This condition is therefore not necessarily an error
condition and your program should handle it accordingly.

returnTermId
Returns a reference to an IccTermId object that identifies which terminal is
involved in the session. A call to this method should be preceded by a call to
retrieveData method.

returnTransId

Returns a reference to an IccTransId object passed on a start request. A call to this
method should be preceded by a call to retrieveData method.

setData

Copies the data in buf into the IccStartRequestQ, which passes it to the started
transaction when the start method is called. See also registerData on page
“registerData” on page 214 for an alternative way to pass data to started
transactions.

setQueueName
Requests that this queue name be passed to the started transaction when the start
method is called.

void reset()

void retrieveData(RetrieveOpt option = noWait)

const IccTermId& returnTermId() const

const IccTransId& returnTransId() const

void setData(const IccBuf& buf)

Chapter 50. IccStartRequestQ class 215

queueName
An 8-character queue name.

setReturnTermId (1)

termId
A reference to an IccTermId object that identifies which terminal is involved in
the session.

setReturnTermId (2)
Requests that this return terminal ID be passed to the started transaction when the
start method is called.

termName
The 4-character name of the terminal that is involved in the session.

setReturnTransId (1)

transId
A reference to an IccTransId object.

setReturnTransId (2)
Requests that this return transaction ID be passed to the started transaction when
the start method is called.

transName
The 4-character name of the return transaction.

setStartOpts
Sets whether the started transaction is to have protection and whether it is to be
checked.

popt
An enumeration, defined in this class, that indicates whether start requests are
to be protected

void setQueueName(const char* queueName)

void setReturnTermId(const IccTermId& termId)

void setReturnTermId(const char* termName)

void setReturnTransId(const IccTransId& transId)

void setReturnTransId(const char* transName)

void setStartOpts (ProtectOpt popt = none,
CheckOpt copt = check)

216 CICS TS for z/OS 4.2: C++ OO Class Libraries

copt
An enumeration, defined in this class, that indicates whether start requests are
to be checked.

start
Asynchronously starts the named CICS transaction. The returned reference to an
IccRequestId object identifies the start request and can be used subsequently to
cancel the start request.

or

or

transId
A reference to an IccTransId object that represents the transaction to be started

termId
A reference to an IccTermId object that identifies which terminal is involved in
the session.

userId
A reference to an IccUserId object that represents the user ID.

time
An (optional) pointer to an IccTime object that specifies when the task is to be
started. The default is for the task to be started immediately.

reqId
An (optional) pointer to an IccRequestId object that is used to identify this
start request so that the cancel can cancel the request.

Conditions

INVREQ, IOERR, ISCINVREQ, LENGERR, NOTAUTH, SYSIDERR, TERMIDERR,
TRANSIDERR, USERIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource

const IccRequestId& start (const IccTransId& transId,
const IccTermId* termId,
const IccTime* time = 0,
const IccRequestId* reqId = 0)

const IccRequestId& start (const IccTransId& transId,
const IccUserId* userId,
const IccTime* time = 0,
const IccRequestId* reqId = 0)

const IccRequestId& start (const IccTransId& transId,
const IccTime* time = 0,
const IccRequestId* reqId = 0)

Chapter 50. IccStartRequestQ class 217

Method Class
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

RetrieveOpt
v noWait
v wait

ProtectOpt
v none
v protect

CheckOpt
v check
v noCheck

218 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 51. IccSysId class

IccSysId class is used to identify a remote CICS system.

IccBase
IccResourceId

IccSysId

IccSysId class is used to identify a remote CICS system.

Header file: ICCRIDEH

IccSysId constructors

Constructor (1)

name
The 4-character name of the CICS system.

Constructor (2)
The copy constructor.

id A reference to an IccSysId object.

Public methods
These are the public methods in this class.

operator= (1)

id A reference to an existing IccSysId object.

operator= (2)
Sets the name of the CICS system held in the object.

name
The 4-character name of the CICS system.

IccSysId(const char* name)

IccSysId(const IccSysId& id)

IccSysId& operator=(const IccSysId& id)

IccSysId& operator=(const char* name)

© Copyright IBM Corp. 1989, 2012 219

Inherited public methods

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

220 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 52. IccSystem class

This is a singleton class that represents the CICS system. It is used by an
application program to discover information about the CICS system on which it is
running.

IccBase
IccResource

IccSystem

Header file: ICCSYSEH

Sample: ICC$SYS

IccSystem constructor (protected)

Constructor

Public methods
These are the public methods in this class.

applName
Returns the 8-character name of the CICS region.

Conditions

INVREQ

beginBrowse (1)

resource
An enumeration, defined in this class, that indicates the type of resource to be
browsed within the CICS system.

resId
An optional pointer to an IccResourceId object that indicates the starting point
for browsing through the resources.

IccSystem()

const char* applName()

void beginBrowse (ResourceType resource,
const IccResourceId* resId = 0)

© Copyright IBM Corp. 1989, 2012 221

beginBrowse (2)
Signals the start of a browse through a set of CICS resources.

resource
An enumeration, defined in this class, that indicates the type of resource to be
browsed within the CICS system.

resName
The name of the resource that is to be the starting point for browsing the
resources.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

dateFormat
Returns the default dateFormat for the CICS region.

Conditions

INVREQ

endBrowse
Signals the end of a browse through a set of CICS resources.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

freeStorage
Releases the storage obtained by the IccSystem getStorage method.

Conditions

INVREQ

getFile (1)

void beginBrowse (ResourceType resource,
const char* resName)

const char* dateFormat()

void endBrowse(ResourceType resource)

void freeStorage(void* pStorage)

IccFile* getFile(const IccFileId& id)

222 CICS TS for z/OS 4.2: C++ OO Class Libraries

id
A reference to an IccFileId object that identifies a CICS file.

getFile (2)
Returns a pointer to the IccFile object identified by the argument.

fileName
The name of a CICS file.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

getNextFile
This method is only valid after a successful beginBrowse(IccSystem::file) call. It
returns the next file object in the browse sequence in the CICS system.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

getStorage
Obtains a block of storage of the requested size and returns a pointer to it. The
storage is not released automatically at the end of task; it is only released when a
freeStorage operation is performed.

size
The amount of storage being requested, in bytes

initByte
The initial setting of all bytes in the allocated storage

storageOpts
An enumeration, defined in IccTask class, that affects the way that CICS
allocates storage.

Conditions

LENGERR, NOSTG

instance
Returns a pointer to the singleton IccSystem object. The object is created if it does
not already exist.

IccFile* getFile(const char* fileName)

IccFile* getNextFile()

void* getStorage (unsigned long size,
char initByte = -1,
unsigned long storageOpts = 0)

Chapter 52. IccSystem class 223

operatingSystem

Returns a 1-character value that identifies the operating system under which CICS
is running:

A AIX

N Windows

X z/OS

Conditions

NOTAUTH

operatingSystemLevel
Returns a halfword binary field giving the release number of the operating system
under which CICS is running. The value returned is ten times the formal release
number (the version number is not represented). For example, MVS/ESA Version 3
Release 2.1 would produce a value of 21.

Conditions

NOTAUTH

release
Returns the level of the CICS system as an integer set to 100 multiplied by the
version number plus 10 multiplied by the release level. For example, CICS
Transaction Server for z/OS [Version 1] Release 3 would return 130.

Conditions

NOTAUTH

releaseText
Returns the same as release, except as a 4-character string. For example, CICS
Transaction Server for z/OS [Version 1] Release 3 would return "0130".

Conditions

NOTAUTH

static IccSystem* instance()

char operatingSystem()

unsigned short operatingSystemLevel()

unsigned long release()

const char* releaseText()

224 CICS TS for z/OS 4.2: C++ OO Class Libraries

sysId
Returns a reference to the IccSysId object that identifies this CICS system.

Conditions

INVREQ

workArea
Returns a reference to the IccBuf object that holds the work area for the CICS
system.

Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

IccSysId& sysId()

const IccBuf& workArea()

Chapter 52. IccSystem class 225

Enumerations

ResourceType
v autoInstallModel
v connection
v dataQueue
v exitProgram
v externalDataSet
v file
v journal
v modename
v partner
v profile
v program
v requestId
v systemDumpCode
v tempStore
v terminal
v transactionDumpCode
v transaction
v transactionClass

226 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 53. IccTask class

IccTask is a singleton class used to invoke task related CICS services.

IccBase
IccResource

IccTask

Header file: ICCTSKEH

Sample: ICC$TSK

IccTask Constructor (protected)

Constructor

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

abend
Requests CICS to abend this task.

abendCode
The 4-character abend code

opt1
An enumeration, defined in this class, that indicates whether to respect or
ignore any abend handling program specified by setAbendHandler method in
IccControl class

opt2
An enumeration, defined in this class, that indicates whether a dump is to be
created.

abendData

IccTask()

void abend (const char* abendCode = 0,
AbendHandlerOpt opt1 = respectAbendHandler,
AbendDumpOpt opt2 = createDump)

IccAbendData* abendData()

© Copyright IBM Corp. 1989, 2012 227

Returns a pointer to an IccAbendData object that contains information about the
program abends, if any, that relate to this task.

commitUOW

Commit the resource updates within the current UOW for this task. This also
causes a new UOW to start for subsequent resource update activity.

Conditions

INVREQ, ROLLEDBACK

delay
Requests that this task be delayed for an interval of time, or until a specific time.

time
A reference to an object that contains information about the delay time. The
object can be one of these types:

IccAbsTime
Expresses time as the number of milliseconds since the beginning of
the year 1900.

IccTimeInterval
Expresses an interval of time, such as 3 hours, 2 minutes, and 1
second.

IccTimeOfDay
Expresses a time of day, such as 13 hours, 30 minutes (1-30 pm).

reqId
An optional pointer to an IccRequestId object that can be used to cancel an
unexpired delay request.

Conditions

EXPIRED, INVREQ

dump
Requests CICS to take a dump for this task. (See also setDumpOpts.) Returns the
character identifier of the dump.

dumpCode
A 4-character label that identifies this dump

void commitUOW()

void delay (const IccTime& time,
const IccRequestId* reqId = 0)

const char* dump (const char* dumpCode,
const IccBuf* buf = 0)

228 CICS TS for z/OS 4.2: C++ OO Class Libraries

buf
A pointer to the IccBuf object that contains additional data to be included in
the dump.

Conditions

INVREQ, IOERR, NOSPACE, NOSTG, NOTOPEN, OPENERR, SUPPRESSED

enterTrace
Writes a user trace entry in the CICS trace table.

traceNum
The trace identifier for a user trace table entry; a value in the range 0 through
199.

resource
An 8-character name to be entered in the resource field of the trace table entry.

data
A pointer to the IccBuf object containing data to be included in the trace
record.

opt
An enumeration, defined in this class, that indicates whether tracing should be
normal or whether only exceptions should be traced.

Conditions

INVREQ, LENGERR

facilityType
Returns an enumeration, defined in this class, that indicates what type of principal
facility this task has. This is usually a terminal, such as when the task was started
by someone keying a transaction name on a CICS terminal. It is a session if the
task is the back end of a mapped APPC conversation.

Conditions

INVREQ

freeStorage
Releases the storage obtained by the IccTask getStorage method.

void enterTrace (unsigned short traceNum,
const char* resource = 0,
IccBuf* data = 0,
TraceOpt opt = normal)

FacilityType facilityType()

void freeStorage(void* pStorage)

Chapter 53. IccTask class 229

Conditions

INVREQ

getStorage
Obtains a block of storage of the requested size. The storage is released
automatically at the end of task, or when the freeStorage operation is performed.
See also getStorage on page “getStorage” on page 223 in IccSystemclass.

size
The amount of storage being requested, in bytes

initByte
The initial setting of all bytes in the allocated storage

storageOpts
An enumeration, defined in this class, that affects the way that CICS allocates
storage.

Conditions

LENGERR, NOSTG

instance
Returns a pointer to the singleton IccTask object. The object is created if it does not
already exist.

isCommandSecurityOn

Returns a boolean, defined in Icc structure, that indicates whether this task is
subject to command security checking.

Conditions

INVREQ

isCommitSupported
Returns a boolean, defined in Icc structure that indicates whether this task can
support the commit method. This method returns true in most environments; the
exception to this is in a DPL environment (see link on page “link” on page 174 in
IccProgram).

void* getStorage (unsigned long size,
char initByte = -1,
unsigned short storageOpts = 0)

static IccTask* instance();

Icc::Bool isCommandSecurityOn()

Icc::Bool isCommitSupported()

230 CICS TS for z/OS 4.2: C++ OO Class Libraries

Conditions

INVREQ

isResourceSecurityOn
Returns a boolean, defined in Icc structure, that indicates whether this task is
subject to resource security checking.

Conditions

INVREQ

isRestarted
Returns a boolean, defined in Icc structure, that indicates whether this task has
been automatically restarted by CICS.

Conditions

INVREQ

isStartDataAvailable
Returns a boolean, defined in Icc structure, that indicates whether start data is
available for this task. See the retrieveData method in IccStartRequestQ class if
start data is available.

Conditions

INVREQ

number
Returns the number of this task, unique within the CICS system.

principalSysId

Returns a reference to an IccSysId object that identifies the principal system
identifier for this task.

Conditions

INVREQ

Icc::Bool isResourceSecurityOn()

Icc::Bool isRestarted()

Icc::Bool isStartDataAvailable()

unsigned long number() const

IccSysId& principalSysId(Icc::GetOpt opt = Icc::object)

Chapter 53. IccTask class 231

priority
Returns the priority for this task.

Conditions

INVREQ

rollBackUOW
Roll back (backout) the resource updates associated with the current UOW within
this task.

Conditions

INVREQ, ROLLEDBACK

setDumpOpts
Set the dump options for this task. This method affects the behavior of the dump
method defined in this class.

opts
An integer, made by adding or logically ORing values from the DumpOpts
enumeration, defined in this class.

setPriority
Changes the dispatch priority of this task.

pri
The new priority.

Conditions

INVREQ

setWaitText
Sets the text that will appear when someone inquires on this task while it is
suspended as a result of a waitExternal or waitOnAlarm method call.

name
The 8-character string label that indicates why this task is waiting.

unsigned short priority(Icc::GetOpt opt = Icc::object)

void rollBackUOW()

void setDumpOpts(unsigned long opts = dDefault)

void setPriority(unsigned short pri)

void setWaitText(const char* name)

232 CICS TS for z/OS 4.2: C++ OO Class Libraries

startType

Returns an enumeration, defined in this class, that indicates how this task was
started.

Conditions

INVREQ

suspend
Suspend this task, allowing other tasks to be dispatched.

transId

Returns the IccTransId object representing the transaction name of this CICS task.

triggerDataQueueId

Returns a reference to the IccDataQueueId representing the trigger queue, if this
task was started as a result of data arriving on an IccDataQueue. See startType
method.

Conditions

INVREQ

userId
Returns the ID of the user associated with this task.

opt
An enumeration, defined in Icc structure, that indicates whether the
information already existing in the object is to be used or whether it is to be
refreshed from CICS.

Conditions

INVREQ

StartType startType()

void suspend()

const IccTransId& transId()

const IccDataQueueId& triggerDataQueueId()

const IccUserId& userId(Icc::GetOpt opt = Icc::object)

Chapter 53. IccTask class 233

waitExternal
Waits for events that post Event Control Blocks (ECBs). The call causes the issuing
task to be suspended until one of the ECBs has been posted—that is, one of the
events has occurred. The task can wait on more than one ECB and can be
dispatched as soon as any of them are posted.

for more information about ECB, see WAIT EXTERNAL.

ECBList
A pointer to a list of ECBs that represent events.

numEvents
The number of events in ECBList.

opt
An enumeration, defined in this class, that indicates whether the wait is
purgeable.

type
An enumeration, defined in this class, that indicates whether the post type is a
standard MVS POST.

Conditions

INVREQ

waitOnAlarm
Suspends the task until the alarm goes off (expires).

See also “setAlarm” on page 105 in IccClock.

id
A reference to the IccAlarmRequestId object that identifies a particular alarm
request.

Conditions

INVREQ

workArea
Returns a reference to the IccBuf object that holds the work area for this task.

Conditions

INVREQ

void waitExternal (long** ECBList,
unsigned long numEvents,
WaitPurgeability opt = purgeable,
WaitPostType type = MVSPost)

void waitOnAlarm(const IccAlarmRequestId& id)

IccBuf& workArea()

234 CICS TS for z/OS 4.2: C++ OO Class Libraries

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_waitexternal.html

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

AbendHandlerOpt
respectAbendHandler

Allows control to be passed to an abend handling program if one is in
effect.

ignoreAbendHandler
Does not allow control to be passed to any abend handling program that
may be in effect.

AbendDumpOpt
createDump

Take a transaction dump when servicing an abend request.

suppressDump
Do not take a transaction dump when servicing an abend request.

DumpOpts
The values may be added, or bitwise ORed, together to get the desired
combination.

Chapter 53. IccTask class 235

The values may be added, or bitwise ORed, together to get the desired
combination. For example IccTask::dProgram + IccTask::dDCT + IccTask::dSIT.

dDefault

dComplete

dTask

dStorage

dProgram

dTerminal

dTables

dDCT

dFCT

dPCT

dPPT

dSIT

dTCT

dTRT

FacilityType
none The task has no principal facility, that is, it is a background task.

terminal
This task has a terminal as its principal facility.

session
This task has a session as its principal facility, that is, it was probably
started as a backend DTP program.

dataqueue
This task has a transient data queue as its principal facility.

StartType
DPL Distributed program link request

dataQueueTrigger
Trigger by data arriving on a data queue

startRequest
Started as a result of an asynchronous start request. See IccStartRequestQ
class.

FEPIRequest
Front end programming interface. See CICS Front End Programming Interface
User's Guide.

terminalInput
Started via a terminal input

CICSInternalTask
Started by CICS.

236 CICS TS for z/OS 4.2: C++ OO Class Libraries

StorageOpts
ifSOSReturnCondition

If insufficient space is available, return NOSTG condition instead of
blocking the task.

below
Allocate storage below the 16Mb line.

userDataKey
Allocate storage in the USER data key.

CICSDataKey
Allocate storage in the CICS data key.

TraceOpt
normal

The trace entry is a standard entry.

exception
The trace entry is an exception entry.

WaitPostType
MVSPost

ECB is posted using the MVS POST service.

handPost
ECB is hand posted (that is, using some method other than the MVS POST
service).

WaitPurgeability
purgeable

Task can be purged via a system call.

notPurgeable
Task cannot be purged via a system call.

Chapter 53. IccTask class 237

238 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 54. IccTempStore class

IccTempStore objects are used to manage the temporary storage of data.

IccBase
IccResource

IccTempStore

(IccTempStore data can exist between transaction calls.)

Header file: ICCTMPEH

Sample: ICC$TMP

IccTempStore constructors

Constructor (1)

id
Reference to an IccTempStoreId object

loc
An enumeration, defined in this class, that indicates where the storage is to be
located when it is first created. The default is to use auxiliary storage (disk).

Constructor (2)

storeName
Specifies the 8-character name of the queue to be used. The name must be
unique within the CICS system.

loc
An enumeration, defined in this class, that indicates where the storage is to be
located when it is first created. The default is to use auxiliary storage (disk).

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

IccTempStore (const IccTempStoreId& id,
Location loc = auxStorage)

IccTempStore (const char* storeName,
Location loc = auxStorage)

© Copyright IBM Corp. 1989, 2012 239

clear
A synonym for empty. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

empty

Deletes all the temporary data associated with the IccTempStore object and deletes
the associated TD queue.

Conditions

INVREQ, ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR

get
A synonym for readNextItem. See Chapter 10, “Polymorphic Behavior,” on page 57
for information on polymorphism.

numberOfItems

Returns the number of items in temporary storage. This is only valid after a
successful writeItem call.

put
A synonym for writeItem. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

buffer
A reference to an IccBuf object that contains the data that is to be added to the
end of the temporary storage queue.

readItem
Reads the specified item from the temporary storage queue and returns a reference
to the IccBuf object that contains the information.

itemNum
Specifies the item number of the logical record to be retrieved from the queue.

virtual void clear()

void empty()

virtual const IccBuf& get()

unsigned short numberOfItems() const

virtual void put(const IccBuf& buffer)

const IccBuf& readItem(unsigned short itemNum)

240 CICS TS for z/OS 4.2: C++ OO Class Libraries

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR,
SYSIDERR

readNextItem
Reads the next item from a temporary storage queue and returns a reference to the
IccBuf object that contains the information.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR,
SYSIDERR

rewriteItem
The parameters are:This method updates the specified item in the temporary
storage queue.

itemNum
Specifies the item number of the logical record that is to be modified

item
The name of the IccBuf object that contains the update data.

opt
An enumeration, defined in this class, that indicates whether the application
program is to be suspended if a shortage of space in the queue prevents the
record being added. suspend is the default.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOSPACE, NOTAUTH,
QIDERR, SYSIDERR

writeItem (1)

item
The name of the IccBuf object that contains the data that is to added to the
end of the temporary storage queue.

opt
An enumeration, defined in this class, that indicates whether the application
program is to be suspended if a shortage of space in the queue prevents the
record being added. suspend is the default.

const IccBuf& readNextItem()

void rewriteItem (unsigned short itemNum,
const IccBuf& item,
NoSpaceOpt opt = suspend)

unsigned short writeItem (const IccBuf& item,
NoSpaceOpt opt = suspend)

Chapter 54. IccTempStore class 241

writeItem (2)
This method adds a new record at the end of the temporary storage queue. The
returned value is the item number that was created (if this was done successfully).

text
The text string that is to added to the end of the temporary storage queue.

opt
An enumeration, defined in this class, that indicates whether the application
program is to be suspended if a shortage of space in the queue prevents the
record being added. suspend is the default.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOSPACE, NOTAUTH,
QIDERR, SYSIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

unsigned short writeItem (const char* text,
NoSpaceOpt opt = suspend)

242 CICS TS for z/OS 4.2: C++ OO Class Libraries

Enumerations

Location
auxStorage

Temporary store data is to reside in auxiliary storage (disk).

memory
Temporary store data is to reside in memory.

NoSpaceOpt
Take this action if a shortage of space in the queue prevents the record being
added immediately.

suspend
Suspend the application program.

returnCondition
Do not suspend the application program, but raise the NOSPACE
condition instead.

Chapter 54. IccTempStore class 243

244 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 55. IccTempStoreId class

IccTempStoreId class is used to identify a temporary storage name in the CICS
system.

IccBase
IccResourceId

IccTempStoreId

Header file: ICCRIDEH

IccTempStoreId constructors

Constructor (1)

name
The 8-character name of the temporary storage entry.

Constructor (2)
The copy constructor.

id
A reference to an IccTempStoreId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 8-character name of the temporary storage entry.

operator= (2)
Assigns a new value.

id
A reference to an IccTempStoreId object.

IccTempStoreId(const char* name)

IccTempStoreId(const IccTempStoreId& id)

IccTempStoreId& operator=(const char* name)

IccTempStoreId& operator=(const IccTempStoreId& id)

© Copyright IBM Corp. 1989, 2012 245

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

246 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 56. IccTermId class

IccTermId class is used to identify a terminal name in the CICS system.

IccBase
IccResourceId

IccTermId

Header file: ICCRIDEH

IccTermId constructors

Constructor (1)

name
The 4-character name of the terminal

Constructor (2)
The copy constructor.

id
A reference to an IccTermId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 4-character name of the terminal

operator= (2)
Assigns a new value.

id
A reference to an IccTermId object.

IccTermId(const char* name)

IccTermId(const IccTermId& id)

IccTermId& operator=(const char* name)

IccTermId& operator=(const IccTermId& id)

© Copyright IBM Corp. 1989, 2012 247

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

248 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 57. IccTerminal class

This is a singleton class that represents the terminal that belongs to the CICS task.
It can only be created if the transaction has a 3270 terminal as its principal facility,
otherwise an exception is thrown.

IccBase
IccResource

IccTerminal

Header file: ICCTRMEH

Sample: ICC$TRM

IccTerminal constructor (protected)

Constructor

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

AID
Returns an enumeration, defined in this class, that indicates which AID (action
identifier) key was last pressed at this terminal.

clear

A synonym for erase. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

cursor

IccTerminal()

AIDVal AID()

virtual void clear()

unsigned short cursor()

© Copyright IBM Corp. 1989, 2012 249

Returns the current cursor position as an offset from the top left corner of the
screen.

data

Returns a pointer to an IccTerminalData object that contains information about the
characteristics of the terminal. The object is created if it does not already exist.

erase

Erase all the data displayed at the terminal.

Conditions

INVREQ, INVPARTN

freeKeyboard
Frees the keyboard so that the terminal can accept input.

Conditions

INVREQ, INVPARTN

get
A synonym for receive. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

height

Returns how many lines the screen holds.

Conditions

INVREQ

IccTerminalData* data()

void erase()

void freeKeyboard()

virtual const IccBuf& get()

unsigned short height(Icc::getopt opt = Icc::object)

250 CICS TS for z/OS 4.2: C++ OO Class Libraries

inputCursor
Returns the position of the cursor on the screen.

instance

Returns a pointer to the single IccTerminal object. The object is created if it does
not already exist.

line

Returns the current line number of the cursor from the top of the screen.

netName

Returns the 8-byte string representing the network logical unit name of the
principal facility.

operator« (1)
Sets the foreground color for data subsequently sent to the terminal.

operator« (2)
Sets the highlighting used for data subsequently sent to the terminal.

operator« (3)
Writes another buffer.

operator« (4)
Writes a character.

unsigned short inputCursor()

static IccTerminal* instance()

unsigned short line()

const char* netName()

IccTerminal& operator « (Color color)

IccTerminal& operator « (Highlight highlight)

IccTerminal& operator « (const IccBuf& buffer)

IccTerminal& operator « (char ch)

Chapter 57. IccTerminal class 251

operator« (5)
Writes a character.

operator« (6)
Writes a character.

operator« (7)
Writes a string.

operator« (8)
Writes a string.

operator« (9)
Writes a string.

operator« (10)
Writes a short.

operator« (11)
Writes an unsigned short.

operator« (12)
Writes a long.

IccTerminal& operator « (signed char ch)

IccTerminal& operator « (unsigned char ch)

IccTerminal& operator « (const char* text)

IccTerminal& operator « (const signed char* text)

IccTerminal& operator « (const unsigned char* text)

IccTerminal& operator « (short num)

IccTerminal& operator « (unsigned short num)

IccTerminal& operator « (long num)

252 CICS TS for z/OS 4.2: C++ OO Class Libraries

operator« (13)
Writes an unsigned long.

operator« (14)
Writes an integer.

operator« (15)
Writes a float.

operator« (16)
Writes a double.

operator« (17)
Writes a long double.

operator« (18)

Enables the following syntax:

put

A synonym for sendLine. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

receive
Receives data from the terminal

IccTerminal& operator « (unsigned long num)

IccTerminal& operator « (int num)

IccTerminal& operator « (float num)

IccTerminal& operator « (double num)

IccTerminal& operator « (long double num)

IccTerminal& operator « (IccTerminal& (*f)(IccTerminal&))

Term « "Hello World" « endl;
Term « "Hello again" « flush;

virtual void put(const IccBuf& buf)

const IccBuf& receive(Case caseOpt = upper)

Chapter 57. IccTerminal class 253

caseOpt
An enumeration, defined in this class, that indicates whether text is to be
converted to upper case or left as it is.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

receive3270Data
Receives the 3270 data buffer from the terminal

caseOpt
An enumeration, defined in this class, that indicates whether text is to be
converted to upper case or left as it is.

Conditions

INVREQ, LENGERR, TERMERR

send (1)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send (2)

format
A format string, as in the printf standard library function.

...
The optional arguments that accompany format.

send (3)

row
The row where the writing of the data is started.

col
The column where the writing of the data is started.

buffer
A reference to an IccBuf object that holds the data that is to be sent.

const IccBuf& receive3270Data(Case caseOpt = upper)

void send(const IccBuf& buffer)

void send (const char* format,
...)

void send (unsigned short row,
unsigned short col,
const IccBuf& buffer)

254 CICS TS for z/OS 4.2: C++ OO Class Libraries

send (4)
Writes the specified data to either the current cursor position or to the cursor
position specified by the arguments.

row
The row where the writing of the data is started.

col
The column where the writing of the data is started.

format
A format string, as in the printf standard library function.

...
The optional arguments that accompany format.

Conditions

INVREQ, LENGERR, TERMERR

send3270Data (1)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send3270Data (2)

format
A format string, as in the printf standard library function

...
The optional arguments that accompany format.

send3270Data (3)

col
The column where the writing of the data is started

buffer
A reference to an IccBuf object that holds the data that is to be sent.

void send (unsigned short row,
unsigned short col,
const char* format,
...)

void send3270Data(const IccBuf& buffer)

void send3270 Data(const char* format,
...)

void send3270Data (unsigned short col,
const IccBuf& buf)

Chapter 57. IccTerminal class 255

send3270Data (4)
Writes the specified data to either the next line of the terminal or to the specified
column of the current line.

col
The column where the writing of the data is started

format
A format string, as in the printf standard library function

...
The optional arguments that accompany format.

Conditions

INVREQ, LENGERR, TERMERR

sendLine (1)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

sendLine (2)

format
A format string, as in the printf standard library function

...
The optional arguments that accompany format.

sendLine (3)

col
The column where the writing of the data is started

buffer
A reference to an IccBuf object that holds the data that is to be sent.

sendLine (4)
Writes the specified data to either the next line of the terminal or to the specified
column of the current line.

void send3270Data (unsigned short col,
const char* format,
...)

void sendLine(const IccBuf& buffer)

void sendLine (const char* format,
...)

void sendLine (unsigned short col,
const IccBuf& buf)

256 CICS TS for z/OS 4.2: C++ OO Class Libraries

col
The column where the writing of the data is started

format
A format string, as in the printf standard library function

...
The optional arguments that accompany format.

Conditions

INVREQ, LENGERR, TERMERR

setColor
Changes the color of the text subsequently sent to the terminal.

color
An enumeration, defined in this class, that indicates the color of the text that is
written to the screen.

setCursor (1)

offset
The position of the cursor where the top left corner is 0.

setCursor (2)
Two different ways of setting the position of the cursor on the screen.

row
The row number of the cursor where the top row is 1

col
The column number of the cursor where the left column is 1

Conditions

INVREQ, INVPARTN

void sendLine (unsigned short col,
const char* format,
...)

void setColor(Color color=defaultColor)

void setCursor(unsigned short offset)

void setCursor (unsigned short row,
unsigned short col)

Chapter 57. IccTerminal class 257

setHighlight
Changes the higlighting of the data subsequently sent to the terminal.

highlight
An enumeration, defined in this class, that indicates the highlighting of the text
that is written to the screen.

setLine
Moves the cursor to the start of line lineNum, where 1 is the top line of the
terminal. The default is to move the cursor to the start of line 1.

lineNum
The line number, counting from the top.

Conditions

INVREQ, INVPARTN

setNewLine
Requests that numLines blank lines be sent to the terminal.

numLines
The number of blank lines.

Conditions

INVREQ, INVPARTN

setNextCommArea
Specifies the COMMAREA that is to be passed to the next transaction started on
this terminal.

commArea
A reference to the buffer that is to be used as a COMMAREA.

setNextInputMessage
Specifies data that is to be made available, by the receive method, to the next
transaction started at this terminal.

void setHighlight(Highlight highlight = normal)

void setLine(unsigned short lineNum = 1)

void setNewLine(unsigned short numLines = 1)

void setNextCommArea(const IccBuf& commArea)

void setNextInputMessage(const IccBuf& message)

258 CICS TS for z/OS 4.2: C++ OO Class Libraries

message
A reference to the buffer that holds the input message.

setNextTransId
Specifies the next transaction that is to be started on this terminal.

transid
A reference to the IccTransId object that holds the name of a transaction

opt
An enumeration, defined in this class, that indicates whether transId should be
queued or started immediately (that is, it should be the very next transaction)
at this terminal.

signoff

Signs off the user who is currently signed on. Authority reverts to the default user.

Conditions

INVREQ

signon (1)

id
A reference to an IccUserId object

password
The 8-character existing password.

newPassword
An optional 8-character new password.

signon (2)
Signs the user on to the terminal.

user
A reference to an IccUser object

void setNextTransId (const IccTransId& transid,
NextTransIdOpt opt = queue)

void signoff()

void signon (const IccUserId& id,
const char* password = 0,
const char* newPassword = 0)

void signon (IccUser& user,
const char* password = 0,
const char* newPassword = 0)

Chapter 57. IccTerminal class 259

password
The 8-character existing password.

newPassword
An optional 8-character new password. This method differs from the first
signon method in that the IccUser object is interrogated to discover
IccGroupId and language information. The object is also updated with
language and ESM return and response codes.

Conditions

INVREQ, NOTAUTH, USERIDERR

waitForAID (1)
Waits for any input and returns an enumeration, defined in this class, that
indicates which AID key is expected.

waitForAID (2)
Waits for the specified AID key to be pressed, before returning control. This
method loops, receiving input from the terminal, until the correct AID key is
pressed by the operator.

aid
An enumeration, defined in this class, that indicates which AID key was last
pressed.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

width
Returns the width of the screen in characters.

Conditions

INVREQ

workArea
Returns a reference to the IccBuf object that holds the terminal work area.

AIDVal waitForAID()

void waitForAID(AIDVal aid)

unsigned short width(Icc::getopt opt = Icc::object)

IccBuf& workArea()

260 CICS TS for z/OS 4.2: C++ OO Class Libraries

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

AIDVal
ENTER

CLEAR

PA1 to PA3

PF1 to PF24

Case
upper

mixed

Color
defaultColor

blue

red

Chapter 57. IccTerminal class 261

pink

green

cyan

yellow

neutral

Highlight
defaultHighlight

blink

reverse

underscore

NextTransIdOpt
queue

Queue the transaction with any other outstanding starts queued on the
terminal.

immediate
Start the transaction immediately, that is, before any other outstanding
starts queued on the terminal.

262 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 58. IccTerminalData class

IccBase
IccResource

IccTerminalData

IccTerminalData is a singleton class owned by IccTerminal (see data on page
“data” on page 250 in IccTerminal class). IccTerminalData contains information
about the terminal characteristics.

Header file: ICCTMDEH

Sample: ICC$TRM

IccTerminalData constructor (protected)

Constructor

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

alternateHeight
Returns the alternate height of the screen, in lines.

opt
An enumeration that indicates whether the information in the object should be
refreshed from CICS before being extracted. The default is not to refresh.

Conditions

INVREQ

alternateWidth
Returns the alternate width of the screen, in characters.

IccTerminalData()

unsigned short alternateHeight(Icc::GetOpt opt = Icc::object)

unsigned short alternateWidth(Icc::GetOpt opt = Icc::object)

© Copyright IBM Corp. 1989, 2012 263

Conditions

INVREQ

defaultHeight
Returns the default height of the screen, in lines.

Conditions

INVREQ

defaultWidth
Returns the default width of the screen, in characters.

Conditions

INVREQ

graphicCharCodeSet
Returns the binary code page global identifier as a value in the range 1 to 65534, or
0 for a non-graphics terminal.

Conditions

INVREQ

graphicCharSetId
Returns the graphic character set global identifier as a number in the range 1 to
65534, or 0 for a non-graphics terminal.

Conditions

INVREQ

isAPLKeyboard
Returns a boolean that indicates whether the terminal has the APL keyboard
feature.

unsigned short defaultHeight(Icc::GetOpt opt = Icc::object)

unsigned short defaultWidth(Icc::GetOpt opt = Icc::object)

unsigned short graphicCharCodeSet(Icc::GetOpt opt = Icc::object)

unsigned short graphicCharSetId(Icc::GetOpt opt = Icc::object)

Icc::Bool isAPLKeyboard(Icc::GetOpt opt = Icc::object)

264 CICS TS for z/OS 4.2: C++ OO Class Libraries

Conditions

INVREQ

isAPLText
Returns a boolean that indicates whether the terminal has the APL text feature.

Conditions

INVREQ

isBTrans
Returns a boolean that indicates whether the terminal has the background
transparency capability.

Conditions

INVREQ

isColor
Returns a boolean that indicates whether the terminal has the extended color
capability.

Conditions

INVREQ

isEWA
Returns a Boolean that indicates whether the terminal supports Erase Write
Alternative.

Conditions

INVREQ

isExtended3270
Returns a Boolean that indicates whether the terminal supports the 3270 extended
data stream.

Icc::Bool isAPLText(Icc::GetOpt opt = Icc::object)

Icc::Bool isBTrans(Icc::GetOpt opt = Icc::object)

Icc::Bool isColor(Icc::GetOpt opt = Icc::object)

Icc::Bool isEWA(Icc::GetOpt opt = Icc::object)

Icc::Bool isExtended3270(Icc::GetOpt opt = Icc::object)

Chapter 58. IccTerminalData class 265

Conditions

INVREQ

isFieldOutline
Returns a boolean that indicates whether the terminal supports field outlining.

Conditions

INVREQ

isGoodMorning
Returns a boolean that indicates whether the terminal has a 'good morning'
message.

Conditions

INVREQ

isHighlight
Returns a boolean that indicates whether the terminal has extended highlight
capability.

Conditions

INVREQ

isKatakana
Returns a boolean that indicates whether the terminal supports Katakana.

Conditions

INVREQ

isMSRControl
Returns a boolean that indicates whether the terminal supports magnetic slot
reader control.

Icc::Bool isFieldOutline(Icc::GetOpt opt = Icc::object)

Icc::Bool isGoodMorning(Icc::GetOpt opt = Icc::object)

Icc::Bool isHighlight(Icc::GetOpt opt = Icc::object)

Icc::Bool isKatakana(Icc::GetOpt opt = Icc::object)

Icc::Bool isMSRControl(Icc::GetOpt opt = Icc::object)

266 CICS TS for z/OS 4.2: C++ OO Class Libraries

Conditions

INVREQ

isPS
Returns a boolean that indicates whether the terminal supports programmed
symbols.

Conditions

INVREQ

isSOSI
Returns a boolean that indicates whether the terminal supports mixed
EBCDIC/DBCS fields.

Conditions

INVREQ

isTextKeyboard
Returns a boolean that indicates whether the terminal supports TEXTKYBD.

Conditions

INVREQ

isTextPrint
Returns a boolean that indicates whether the terminal supports TEXTPRINT.

Conditions

INVREQ

isValidation
Returns a boolean that indicates whether the terminal supports validation.

Icc::Bool isPS(Icc::GetOpt opt = Icc::object)

Icc::Bool isSOSI(Icc::GetOpt opt = Icc::object)

Icc::Bool isTextKeyboard(Icc::GetOpt opt = Icc::object)

Icc::Bool isTextPrint(Icc::GetOpt opt = Icc::object)

Icc::Bool isValidation(Icc::GetOpt opt = Icc::object)

Chapter 58. IccTerminalData class 267

Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

268 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 59. IccTime class

IccTime is used to contain time information and is the base class from which
IccAbsTime, IccTimeInterval, and IccTimeOfDay classes are derived.

IccBase
IccResource

IccTime

Header file: ICCTIMEH

IccTime constructor (protected)

Constructor

hours
The number of hours

minutes
The number of minutes

seconds
The number of seconds

Public methods
These are the public methods in this class.

hours
Returns the hours component of time—the value specified in the constructor.

minutes

Returns the minutes component of time—the value specified in the constructor.

seconds

Returns the seconds component of time—the value specified in the constructor.

IccTime (unsigned long hours = 0,
unsigned long minutes = 0,
unsigned long seconds = 0)

virtual unsigned long hours() const

virtual unsigned long minutes() const

virtual unsigned long seconds() const

© Copyright IBM Corp. 1989, 2012 269

timeInHours

Returns the time in hours.

timeInMinutes

Returns the time in minutes.

timeInSeconds

Returns the time in seconds.

type

Returns an enumeration, defined in this class, that indicates what type of subclass
of IccTime this is.

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
isEDFOn IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

virtual unsigned long timeInHours()

virtual unsigned long timeInMinutes()

virtual unsigned long timeInSeconds()

Type type() const

270 CICS TS for z/OS 4.2: C++ OO Class Libraries

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Type
absTime

The object is of IccAbsTime class. It is used to represent a current date and
time as the number of milliseconds that have elapsed since the beginning
of the year 1900.

timeInterval
The object is of IccTimeInterval class. It is used to represent a length of
time, such as 5 minutes.

timeOfDay
The object is of IccTimeOfDay class. It is used to represent a particular
time of day, such as midnight.

Chapter 59. IccTime class 271

272 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 60. IccTimeInterval class

This class holds information about a time interval.

IccBase
IccResource

IccTime
IccTimeInterval

Header file: ICCTIMEH

IccTimeInterval constructors

Constructor (1)

hours
The initial hours setting. The default is 0.

minutes
The initial minutes setting. The default is 0.

seconds
The initial seconds setting. The default is 0.

Constructor (2)
The copy constructor.

Public methods
These are the public methods in this class.

operator=
Assigns one IccTimeInterval object to another.

set
Changes the time held in the IccTimeInterval object.

IccTimeInterval (unsigned long hours = 0,
unsigned long minutes = 0,
unsigned long seconds = 0)

IccTimeInterval(const IccTimeInterval& time)

IccTimeInterval& operator=(const IccTimeInterval& timeInterval)

© Copyright IBM Corp. 1989, 2012 273

hours
The new hours setting

minutes
The new minutes setting

seconds
The new seconds setting

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
hours IccTime
isEDFOn IccResource
minutes IccTime
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
timeInHours IccTime
timeInMinutes IccTime
timeInSeconds IccTime
type IccTime

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

void set (unsigned long hours,
unsigned long minutes,
unsigned long seconds)

274 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 61. IccTimeOfDay class

This class holds information about the time of day.

IccBase
IccResource

IccTime
IccTimeOfDay

Header file: ICCTIMEH

IccTimeOfDay constructors

Constructor (1)

hours
The initial hours setting. The default is 0.

minutes
The initial minutes setting. The default is 0.

seconds
The initial seconds setting. The default is 0.

Constructor (2)
The copy constructor

Public methods
These are the public methods in this class.

operator=
Assigns one IccTimeOfDay object to another.

set
Changes the time held in the IccTimeOfDay object.

IccTimeOfDay (unsigned long hours = 0,
unsigned long minutes = 0,
unsigned long seconds = 0)

IccTimeOfDay(const IccTimeOfDay& time)

IccTimeOfDay& operator=(const IccTimeOfDay& timeOfDay)

© Copyright IBM Corp. 1989, 2012 275

hours
The new hours setting

minutes
The new minutes setting

seconds
The new seconds setting

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
hours IccTime
isEDFOn IccResource
minutes IccTime
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
timeInHours IccTime
timeInMinutes IccTime
timeInSeconds IccTime
type IccTime

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

void set (unsigned long hours,
unsigned long minutes,
unsigned long seconds)

276 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 62. IccTPNameId class

IccTPNameId class holds a 1-64 byte TP partner name.

IccBase
IccResourceId

IccTPNameId

IccTPNameId class holds a 1-64 byte TP partner name.

Header file: ICCRIDEH

IccTPNameId constructors

Constructor (1)

name
The 1- to 64-character TP name.

Constructor (2)
The copy constructor.

id A reference to an IccTPNameId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 1- to 64-character TP name.

operator= (2)
Assigns a new value.

id A reference to an IccTPNameId object.

IccTPNameId(const char* name)

IccTPNameId(const IccTPNameId& id)

IccTPNameId& operator=(const char* name)

IccTPNameId& operator=(const IccTPNameId& id)

© Copyright IBM Corp. 1989, 2012 277

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

278 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 63. IccTransId class

IccTransId class identifies a transaction name in the CICS system.

IccBase
IccResourceId

IccTransId

Header file: ICCRIDEH

IccTransId constructors

Constructor (1)

name
The 4-character transaction name.

Constructor (2)
The copy constructor.

id
A reference to an IccTransId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 4-character transaction name.

operator= (2)
Assigns a new value.

id
A reference to an IccTransId object.

IccTransId(const char* name)

IccTransId(const IccTransId& id)

IccTransId& operator=(const char* name)

IccTransId& operator=(const IccTransId& id)

© Copyright IBM Corp. 1989, 2012 279

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

280 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 64. IccUser class

This class represents a CICS user.

IccBase
IccResource

IccUser

Header file: ICCUSREH

Sample: ICC$USR

IccUser constructors

Constructor (1)

id
A reference to an IccUserId object that contains the user ID name

gid
An optional pointer to an IccGroupId object that contains information about
the user's group ID.

Constructor (2)

userName
The 8-character user ID

gid
The optional 8-character group ID.

Public methods
These are the public methods in this class.

changePassword
Attempts to change the user's password.

password
The user's existing password—a string of up to 8 characters

IccUser (const IccUserId& id,
const IccGroupId* gid = 0)

IccUser (const char* userName,
const char* groupName = 0)

void changePassword (const char* password,
const char* newPassword)

© Copyright IBM Corp. 1989, 2012 281

newPassword
The user's new password—a string of up to 8 characters.

Conditions

INVREQ, NOTAUTH, USERIDERR

daysUntilPasswordExpires
Returns the number of days before the password expires. This method is valid
after a successful verifyPassword method call in this class.

ESMReason

Returns the external security reason code of interest if a changePassword or
verifyPassword method call is unsuccessful.

ESMResponse

Returns the external security response code of interest if a changePassword or
verifyPassword method call is unsuccessful.

groupId

Returns a reference to the IccGroupId object that holds information on the user's
group ID.

invalidPasswordAttempts

Returns the number of times the wrong password has been entered for this user
since the last successful signon. This method should only be used after a successful
verifyPassword method.

language

Returns the user's language after a successful call to signon in IccTerminal.

unsigned short daysUntilPasswordExpires() const

unsigned long ESMReason() const

unsigned long ESMResponse() const

const IccGroupId& groupId() const

unsigned long invalidPasswordAttempts() const

const char* language() const

282 CICS TS for z/OS 4.2: C++ OO Class Libraries

lastPasswordChange

Returns a reference to an IccAbsTime object that holds the time when the
password was last changed. This method should only be used after a successful
verifyPassword method.

lastUseTime

Returns a reference to an IccAbsTime object that holds the time when the user ID
was last used. This method should only be used after a successful verifyPassword
method.

passwordExpiration

Returns a reference to an IccAbsTime object that holds the time when the
password will expire. This method should only be used after a successful
verifyPassword method.

setLanguage

Sets the IBM-defined national language code that is to be associated with this user.
This should be a three character value.

verifyPassword

Checks that the supplied password matches the password recorded by the external
security manager for this IccUser.

Conditions

INVREQ, NOTAUTH, USERIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource

const IccAbsTime& lastPasswordChange() const

const IccAbsTime& lastUseTime() const

const IccAbsTime& passwordExpiration() const

void setLanguage(const char* language)

void verifyPassword(const char* password)

Chapter 64. IccUser class 283

Method Class
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

284 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 65. IccUserId class

IccUserId class represents an 8-character user name.

IccBase
IccResourceId

IccUserId

IccUserId class represents an 8-character user name.

Header file: ICCRIDEH

IccUserId constructors

Constructor (1)

name
The 8-character name of the user ID.

Constructor (2)
The copy constructor.

id A reference to an IccUserId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 8-character name of the user ID.

operator= (2)
Assigns a new value.

id A reference to an IccUserId object.

IccUserId(const char* name)

IccUserId(const IccUserId& id)

IccUserId& operator=(const char* name)

IccUserId& operator=(const IccUserId& id)

© Copyright IBM Corp. 1989, 2012 285

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

286 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 66. IccValue structure

This structure contains CICS-value data areas (CVDAs) as an enumeration.

Header file: ICCVALEH

Enumeration

Listing of valid CVDAs
Valid CVDAs are listed in the CVDAs and numeric values topics in the System
Programming reference information.

© Copyright IBM Corp. 1989, 2012 287

288 CICS TS for z/OS 4.2: C++ OO Class Libraries

Chapter 67. main function

You are recommended to include this code in your application.

It initializes the CICS Foundation Classes correctly, provides default exception
handling, and releases allocated memory after it is finished. You may substitute
your own variation of this main function, but this should rarely be necessary.

Source file: ICCMAIN

The stub has three functions:
1. It initializes the Foundation Classes environment. You can customize the way it

does this by using #defines that control:
v Memory management (see Chapter 11, “Storage management,” on page 61)
v Family Subset enforcement (see “FamilySubset” on page 72)
v EDF enablement (see “Program debugging” on page 47)

2. It provides a default definition of a class IccUserControl, derived from
IccControl, that includes a default constructor and run method.

3. It invokes the run method of the user's control object using a try-catch
construct.

The functional part of the main code is shown below.

�1� This is the main C++ entry point.

int main() �1�

{
Icc::initializeEnvironment(ICC_CLASS_MEMORY_MGMT, �2�

ICC_FAMILY_SUBSET,
ICC_EDF_BOOL);

try �3�

{
ICC_USER_CONTROL control; �4�

control.run(); �5�

}
catch(IccException& exc) �6�

{
Icc::catchException(exc); �7�

}
catch(...) �8�

{
Icc::unknownException(); �9�

}
Icc::returnToCICS(); �10�

}

© Copyright IBM Corp. 1989, 2012 289

�2� This call initializes the environment and is essential. The three parameters
have previously been defined to the defaults for the platform.

�3� Run the user's application code, using try and catch, in case the application
code does not catch exceptions.

�4� Create control object.

�5� Invoke run method of control object (defined as pure virtual in IccControl.

�6� Catch any IccException objects not caught by the application.

�7� Call this function to abend task.

�8� Catch any other exceptions not caught by application.

�9� Call this function to abend task.

�10� Return control to CICS.

290 CICS TS for z/OS 4.2: C++ OO Class Libraries

Part 4. Appendixes

© Copyright IBM Corp. 1989, 2012 291

292 CICS TS for z/OS 4.2: C++ OO Class Libraries

Appendix A. Mapping EXEC CICS calls to Foundation Class
methods

The following table shows the correspondence between CICS calls made using the
EXEC CICS API and the equivalent calls from the Foundation Classes.

EXEC CICS Class Method

ABEND IccTask abend

ADDRESS COMMAREA IccControl commArea

ADDRESS CWA IccSystem workArea

ADDRESS EIB No direct access to EIB: please use appropriate method on
appropriate class.

ADDRESS TCTUA IccTerminal workArea

ADDRESS TWA IccTask workArea

ALLOCATE IccSession allocate

ASKTIME IccClock update

ASSIGN ABCODE IccAbendData abendCode

ASSIGN ABDUMP IccAbendData isDumpAvaliable

ASSIGN ABPROGRAM IccAbendData programName

ASSIGN ALTSCRNHT IccTerminalData alternateHeight

ASSIGN ALTSCRNWD IccTerminalData alternateWidth

ASSIGN APLKYBD IccTerminalData isAPLKeyboard

ASSIGN APLTEXT IccTerminalData isAPLText

ASSIGN ASRAINTRPT IccAbendData ASRAInterrupt

ASSIGN ASRAKEY IccAbendData ASRAKeyType

ASSIGN ASRAPSW IccAbendData ASRAPSW

ASSIGN ASRAREGS IccAbendData ASRARegisters

ASSIGN ASRASPC IccAbendData ASRASpaceType

ASSIGN ASRASTG IccAbendData ASRAStorageType

ASSIGN APPLID IccSystem applName

ASSIGN BTRANS IccTerminalData isBTrans

ASSIGN CMDSEC IccTask isCommandSecurityOn

ASSIGN COLOR IccTerminalData isColor

ASSIGN CWALENG IccSystem workArea

ASSIGN DEFSCRNHT IccTerminalData defaultHeight

ASSIGN DEFSCRNWD IccTerminalData defaultWidth

ASSIGN EWASUPP IccTerminalData isEWA

ASSIGN EXTDS IccTerminalData isExtended3270

ASSIGN FACILITY IccTerminal name

ASSIGN FCI IccTask facilityType

ASSIGN GCHARS IccTerminalData graphicCharSetId

© Copyright IBM Corp. 1989, 2012 293

EXEC CICS Class Method

ASSIGN GCODES IccTerminalData graphicCharCodeSet

ASSIGN GMMI IccTerminalData isGoodMorning

ASSIGN HILIGHT IccTerminalData isHighlight

ASSIGN INITPARM IccControl initData

ASSIGN INITPARMLEN IccControl initData

ASSIGN INVOKINGPROG IccControl callingProgramId

ASSIGN KATAKANA IccTerminalData isKatakana

ASSIGN NETNAME IccTerminal netName

ASSIGN OUTLINE IccTerminalData isFieldOutline

ASSIGN ORGABCODE IccAbendData originalAbendCode

ASSIGN PRINSYSID IccTask principalSysId

ASSIGN PROGRAM IccControl programId

ASSIGN PS IccTerminalData isPS

ASSIGN QNAME IccTask triggerDataQueueId

ASSIGN RESSEC IccTask isResourceSecurityOn

ASSIGN RESTART IccTask isRestarted

ASSIGN SCRNHT IccTerminal height

ASSIGN SCRNWD IccTerminal width

ASSIGN SOSI IccTerminalData isSOSI

ASSIGN STARTCODE IccTask startType,
isCommitSupported,
isStartDataAvailable

ASSIGN SYSID IccSystem sysId

ASSIGN TASKPRIORITY IccTask priority

ASSIGN TCTUALENG IccTerminal workArea

ASSIGN TEXTKYBD IccTerminalData isTextKeyboard

ASSIGN TEXTPRINT IccTerminalData isTextPrint

ASSIGN TWALENG IccTask workArea

ASSIGN USERID IccTask userId

ASSIGN VALIDATION IccTerminalData isValidation

CANCEL IccClock cancelAlarm

CANCEL IccStartRequestQ cancel

CHANGE PASSWORD IccUser changePassword

CHANGE TASK IccTask setPriority

CONNECT PROCESS IccSession connectProcess

CONVERSE IccSession converse

DELAY IccTask delay

DELETE IccFile deleteRecord

DELETE IccFile deleteLockedRecord

DELETEQ TD IccDataQueue empty

DELETEQ TS IccTempStore empty

294 CICS TS for z/OS 4.2: C++ OO Class Libraries

EXEC CICS Class Method

DEQ IccSemaphore unlock

DUMP TRANSACTION IccTask dump

DUMP TRANSACTION IccTask setDumpOpts

ENDBR IccFileIterator IccFileIterator (destructor)

ENQ IccSemaphore lock

ENQ IccSemaphore tryLock

ENTER TRACENUM IccTask enterTrace

EXTRACT ATTRIBUTES IccSession state, stateText

EXTRACT PROCESS IccSession extractProcess

FORMATTIME YYDDD,
YYMMDD, etc

IccClock date

FORMATTIME DATE IccClock date

FORMATTIME DATEFORM IccSystem dateFormat

FORMATTIME DAYCOUNT IccClock daysSince1900

FORMATTIME DAYOFWEEK IccClock dayOfWeek

FORMATTIME
DAYOFMONTH

IccClock dayOfMonth

FORMATTIME
MONTHOFYEAR

IccClock monthOfYear

FORMATTIME TIME IccClock time

FORMATTIME YEAR IccClock year

FREE IccSession free

FREEMAIN IccTask freeStorage

GETMAIN IccTask getStorage

HANDLE ABEND IccControl setAbendHandler,
cancelAbendHandler,
resetAbendHandler

INQUIRE FILE
ACCESSMETHOD

IccFile accessMethod

INQUIRE FILE ADD IccFile isAddable

INQUIRE FILE BROWSE IccFile isBrowsable

INQUIRE FILE DELETE IccFileControl isDeletable

INQUIRE FILE
EMPTYSTATUS

IccFile isEmptyOn

INQUIRE FILE
ENABLESTATUS

IccFile enableStatus

INQUIRE FILE
KEYPOSITION

IccFile keyPosition

INQUIRE FILE
OPENSTATUS

IccFile openStatus

INQUIRE FILE READ IccFile isReadable

INQUIRE FILE
RECORDFORMAT

IccFile recordFormat

INQUIRE FILE RECORDSIZE IccFile recordLength

Appendix A. Mapping EXEC CICS calls to Foundation Class methods 295

EXEC CICS Class Method

INQUIRE FILE
RECOVSTATUS

IccFile isRecoverable

INQUIRE FILE TYPE IccFile type

INQUIRE FILE UPDATE IccFile isUpdatable

ISSUE ABEND IccSession issueAbend

ISSUE CONFIRMATION IccSession issueConfirmation

ISSUE ERROR IccSession issueError

ISSUE PREPARE IccSession issuePrepare

ISSUE SIGNAL IccSession issueSignal

LINK IccProgram link

LINK INPUTMSG
INPUTMSGLEN

IccProgram setInputMessage

LOAD IccProgram load

POST IccClock setAlarm

READ IccFile readRecord

READNEXT IccFileIterator readNextRecord

READPREV IccFileIterator readPreviousRecord

READQ TD IccDataQueue readItem

READQ TS IccTempStore readItem

RECEIVE (APPC) IccSession receive

RECEIVE (3270) IccTerminal receive, receive3270Data

RELEASE IccProgram unload

RESETBR IccFileIterator reset

RETRIEVE IccStartRequestQ retrieveData 1

Note: The retrieveData method gets the start information from CICS and stores it in the
IccStartRequestQ object: the information can then be accessed using data, queueName,
returnTermId and returnTransId methods.

RETRIEVE INTO, LENGTH IccStartRequestQ data

RETRIEVE QUEUE IccStartRequestQ queueName

RETRIEVE RTRANSID IccStartRequestQ returnTransId

RETRIEVE RTERMID IccStartRequestQ returnTermId

RETURN IccControl main 2

Note: Returning (using C++ reserved word return) from method run in class IccControl
results in an EXEC CICS RETURN.

RETURN TRANSID IccTerminal setNextTransId 3

RETURN IMMEDIATE IccTerminal setNextTransId 3

RETURN COMMAREA
LENGTH

IccTerminal setNextCommArea 3

RETURN INPUTMSG,
INPUTMSGLEN

IccTerminal setNextInputMessage 3

Note: Issue this call before returning from IccControl::run.

REWRITE IccFile rewriteRecord

SEND (APPC) IccSession send, sendInvite, sendLast

296 CICS TS for z/OS 4.2: C++ OO Class Libraries

EXEC CICS Class Method

SEND (3270) IccTerminal send, sendLine

SEND CONTROL CURSOR IccTerminal setCursor setLine,
setNewLine

SEND CONTROL ERASE IccTerminal erase

SEND CONTROL FREEKB IccTerminal freeKeyboard

SET FILE
ADD|BROWSE|DELETE|...

IccFile setAccess

SET FILE EMPTYSTATUS IccFile setEmptyOnOpen

SET FILE OPEN
STATUS|ENABLESTATUS

IccFile setStatus

SIGNOFF IccTerminal signoff

SIGNON IccTerminal signon

START TRANSID AT/AFTER IccStartRequestQ start 4

START TRANSID FROM
LENGTH

IccStartRequestQ setData, registerDataBuffer 4

START TRANSID NOCHECK IccStartRequestQ setStartOpts 4

START TRANSID PROTECT IccStartRequestQ setStartOpts 4

START TRANSID QUEUE IccStartRequestQ setQueueName 4

START TRANSID REQID IccStartRequestQ start 4

START TRANSID TERMID IccStartRequestQ start 4

START TRANSID USERID IccStartRequestQ start 4

START TRANSID RTERMID IccStartRequestQ setReturnTermId 4

START TRANSID RTRANSID IccStartRequestQ setReturnTransId 4

Note: Use methods setData, setQueueName, setReturnTermId, setReturnTransId,
setStartOpts to set the state of the IccStartRequestQ object before issuing start requests with
the start method.

STARTBR IccFileIterator IccFileIterator (constructor)

SUSPEND IccTask suspend

SYNCPOINT IccTask commitUOW

SYNCPOINT ROLLBACK IccTask rollBackUOW

UNLOCK IccFile unlockRecord

VERIFY PASSWORD IccUser verifyPassword

WAIT CONVID IccSession flush

WAIT EVENT IccTask waitOnAlarm

WAIT EXTERNAL IccTask waitExternal

WAIT JOURNALNUM IccJournal wait

WRITE IccFile writeRecord

WRITE OPERATOR IccConsole write, writeAndGetReply

WRITEQ TD IccDataQueue writeItem

WRITEQ TS IccTempStore writeItem, rewriteItem

Appendix A. Mapping EXEC CICS calls to Foundation Class methods 297

298 CICS TS for z/OS 4.2: C++ OO Class Libraries

Appendix B. Mapping Foundation Class methods to EXEC
CICS calls

The following table shows the correspondence between CICS calls made using the
Foundation Classes and the equivalent EXEC CICS API calls.

IccAbendData Class

Method EXEC CICS

abendCode ASSIGN ABCODE

ASRAInterrupt ASSIGN ASRAINTRPT

ASRAKeyType ASSIGN ASRAKEY

ASRAPSW ASSIGN ASRAPSW

ASRARegisters ASSIGN ASRAREGS

ASRASpaceType ASSIGN ASRASPC

ASRAStorageType ASSIGN ASRASTG

isDumpAvailable ASSIGN ABDUMP

originalAbendCode ASSIGN ORGABCODE

programName ASSIGN ABPROGRAM

IccAbsTime Class

Method EXEC CICS

date FORMATTIME YYDDD/YYMMDD/etc.

dayOfMonth FORMATTIME DAYOFMONTH

dayOfWeek FORMATTIME DAYOFWEEK

daysSince1900 FORMATTIME DAYCOUNT

monthOfYear FORMATTIME MONTHOFYEAR

time FORMATTIME TIME

year FORMATTIME YEAR

IccClock Class

Method EXEC CICS

cancelAlarm CANCEL

date FORMATTIME YYDDD/YYMMDD/etc.

dayOfMonth FORMATTIME DAYOFMONTH

dayOfWeek FORMATTIME DAYOFWEEK

daysSince1900 FORMATTIME DAYCOUNT

monthOfYear FORMATTIME MONTHOFYEAR

setAlarm POST

time FORMATTIME TIME

update ASKTIME

year FORMATTIME YEAR

IccConsole Class

Method EXEC CICS

© Copyright IBM Corp. 1989, 2012 299

write WRITE OPERATOR

writeAndGetReply WRITE OPERATOR

IccControl Class

Method EXEC CICS

callingProgramId ASSIGN INVOKINGPROG

cancelAbendHandler HANDLE ABEND CANCEL

commArea ADDRESS COMMAREA

initData ASSIGN INITPARM & INITPARMLEN

programId ASSIGN PROGRAM

resetAbendHandler HANDLE ABEND RESET

setAbendHandler HANDLE ABEND PROGRAM

IccDataQueue Class

Method EXEC CICS

empty DELETEQ TD

readItem READQ TD

writeItem WRITEQ TD

IccFile Class

Method EXEC CICS

access INQUIRE FILE
ADD|BROWSE|DELETE|READ|UPDATE

accessMethod INQUIRE FILE ACCESSMETHOD

deleteRecord DELETE FILE RIDFLD

deleteLockedRecord DELETE FILE

enableStatus INQUIRE FILE ENABLESTATUS

isAddable INQUIRE FILE ADD

isBrowsable INQUIRE FILE BROWSE

isDeletable INQUIRE FILE DELETE

isEmptyOnOpen INQUIRE FILE EMPTYSTATUS

isReadable INQUIRE FILE READ

isRecoverable INQUIRE FILE RECOVSTATUS

isUpdatable INQUIRE FILE UPDATE

keyPosition INQUIRE FILE KEYPOSITION

openStatus INQUIRE FILE OPENSTATUS

readRecord READ FILE

recordFormat INQUIRE FILE RECORDFORMAT

recordLength INQUIRE FILE RECORDSIZE

rewriteRecord REWRITE FILE

setAccess SET FILE ADD BROWSE DELETE etc.

setEmptyOnOpen SET FILE EMPTYSTATUS

setStatus SET FILE OPENSTATUS ENABLESTATUS

type INQUIRE FILE TYPE

unlockRecord UNLOCK FILE

300 CICS TS for z/OS 4.2: C++ OO Class Libraries

writeRecord WRITE FILE

IccFileIterator Class

Method EXEC CICS

IccFileIterator (constructor) STARTBR FILE

~IccFileIterator (destructor) ENDBR FILE

readNextRecord READNEXT FILE

readPreviousRecord READPREV FILE

reset RESETBR FILE

IccJournal Class

Method EXEC CICS

wait WAIT JOURNALNUM

writeRecord WRITE JOURNALNUM

IccProgram Class

Method EXEC CICS

link LINK PROGRAM

load LOAD PROGRAM

unload RELEASE PROGRAM

IccResource Class

Method EXEC CICS

condition (RESP & RESP2)

setRouteOption (SYSID)

IccSemaphore Class

Method EXEC CICS

lock ENQ RESOURCE

tryLock ENQ RESOURCE NOSUSPEND

unlock DEQ RESOURCE

IccSession Class

Method EXEC CICS

allocate ALLOCATE

connectProcess CONNECT PROCESS CONVID

converse CONVERSE CONVID

extractProcess EXTRACT PROCESS CONVID

flush WAIT CONVID

free FREE CONVID

issueAbend ISSUE ABEND CONVID

issueConfirmation ISSUE CONFIRMATION CONVID

issueError ISSUE ERROR CONVID

issuePrepare ISSUE PREPARE CONVID

issueSignal ISSUE SIGNAL CONVID

receive RECEIVE CONVID

send SEND CONVID

sendInvite SEND CONVID INVITE

Appendix B. Mapping Foundation Class methods to EXEC CICS calls 301

sendLast SEND CONVID LAST

state EXTRACT ATTRIBUTES

IccStartRequestQ Class

Method EXEC CICS

cancel CANCEL

retrieveData RETRIEVE

start START TRANSID

IccSystem Class

Method EXEC CICS

applName ASSIGN APPLID

beginBrowse INQUIRE (FILE, TDQUEUE, etc) START

dateFormat FORMATTIME DATEFORM

endBrowse INQUIRE (FILE, TDQUEUE, etc) END

freeStorage FREEMAIN

getFile INQUIRE FILE

getNextFile INQUIRE FILE NEXT

getStorage GETMAIN SHARED

operatingSystem INQUIRE SYSTEM OPSYS

operatingSystemLevel INQUIRE SYSTEM OPREL

release INQUIRE SYSTEM RELEASE

releaseText INQUIRE SYSTEM RELEASE

sysId ASSIGN SYSID

workArea ADDRESS CWA

IccTask Class

Method EXEC CICS

abend ABEND

commitUOW SYNCPOINT

delay DELAY

dump DUMP TRANSACTION

enterTrace ENTER TRACENUM

facilityType ASSIGN STARTCODE, TERMCODE, PRINSYSID, FCI

freeStorage FREEMAIN

isCommandSecurityOn ASSIGN CMDSEC

isCommitSupported ASSIGN STARTCODE

isResourceSecurityOn ASSIGN RESSEC

isRestarted ASSIGN RESTART

isStartDataAvailable ASSIGN STARTCODE

principalSysId ASSIGN PRINSYSID

priority ASSIGN TASKPRIORITY

rollBackUOW SYNCPOINT ROLLBACK

setPrioity CHANGE TASK PRIORITY

startType ASSIGN STARTCODE

302 CICS TS for z/OS 4.2: C++ OO Class Libraries

suspend SUSPEND

triggerDataQueueId ASSIGN QNAME

userId ASSIGN USERID

waitExternal WAIT EXTERNAL / WAITCICS

waitOnAlarm WAIT EVENT

workArea ADDRESS TWA

IccTempStore Class

Method EXEC CICS

empty DELETEQ TS

readItem READQ TS ITEM

readNextItem READQ TS NEXT

rewriteItem WRITEQ TS ITEM REWRITE

writeItem WRITEQ TS ITEM

IccTerminal Class

Method EXEC CICS

erase SEND CONTROL ERASE

freeKeyboard SEND CONTROL FREEKB

height ASSIGN SCRNHT

netName ASSIGN NETNAME

receive RECEIVE

receive3270Data RECEIVE BUFFER

send SEND

sendLine SEND

setCursor SEND CONTROL CURSOR

setLine SEND CONTROL CURSOR

setNewLine SEND CONTROL CURSOR

signoff SIGNOFF

signon SIGNON

waitForAID RECEIVE

width ASSIGN SCRNWD

workArea ADDRESS TCTUA

IccTerminalData Class

Method EXEC CICS

alternateHeight ASSIGN ALTSCRNHT

alternateWidth ASSIGN ALTSCRNWD

defaultHeight ASSIGN DEFSCRNHT

defaultWidth ASSIGN DEFSCRNWD

graphicCharSetId ASSIGN GCHARS

graphicCharCodeSet ASSIGN GCODES

isAPLKeyboard ASSIGN APLKYBD

isAPLText ASSIGN APLTEXT

isBTrans ASSIGN BTRANS

Appendix B. Mapping Foundation Class methods to EXEC CICS calls 303

isColor ASSIGN COLOR

isEWA ASSIGN ESASUPP

isExtended3270 ASSIGN EXTDS

isGoodMorning ASSIGN GMMI

isHighlight ASSIGN HILIGHT

isKatakana ASSIGN KATAKANA

isMSRControl ASSIGN MSRCONTROL

isFieldOutline ASSIGN OUTLINE

isPS ASSIGN PS

isSOSI ASSIGN SOSI

isTextKeyboard ASSIGN TEXTKYBD

isTextPrint ASSIGN TEXTPRINT

isValidation ASSIGN VALIDATION

IccUser Class

Method EXEC CICS

changePassword CHANGE PASSWORD

verifyPassword VERIFY PASSWORD

304 CICS TS for z/OS 4.2: C++ OO Class Libraries

Appendix C. Output from sample programs

This section shows the typical screen output from the supplied sample programs.

See “Sample source code” on page 6.

ICC$BUF (IBUF)
This is program ’icc$buf’...
IccBuf buf1 dal= 0 dl= 0 E+I []
IccBuf buf2(50) dal=50 dl= 0 E+I []
IccBuf buf3(30,fixed) dal=30 dl= 0 F+I []
IccBuf buf4(sizeof(AStruct),&aStruc) dal=24 dl=24 F+E [!Some text for aStruc]
IccBuf buf5("A String Literal") dal=19 dl=19 E+I [Some data somewhere]
IccBuf buf6(buf5) dal=19 dl=19 E+I [Some data somewhere]
buf1 = "Some XXX data for buf1" dal=22 dl=22 E+I [Some XXX data for buf1]
buf2.assign(strlen(data),data) dal=50 dl=19 E+I [Some data somewhere]
buf1.cut(4,5) dal=22 dl=18 E+I [Some data for buf1]
buf5.insert(5,more,5) dal=24 dl=24 E+I [Some more data somewhere]
buf5.replace(4,xtra,5) dal=24 dl=24 E+I [Some xtra data somewhere]
buf2 << ".ext" dal=50 dl=23 E+I [Some data somewhere.ext]
buf3 = buf4 dal=30 dl=24 F+I [!Some text for aStruc]
(buf3 == buf4) returns true (OK).
buf3 = "garbage" dal=30 dl= 7 F+I [garbage]
(buf3 != buf4) returns true (OK).
Program ’icc$buf’ complete: Hit PF12 to End

ICC$CLK (ICLK)
This is program ’icc$clk’ ...
date() = [220296]
date(DDMMYY) = [220296]
date(DDMMYY,’:’) = [22:02:96]
date(MMDDYY) = [022296]
date(YYDDD) = [96053]
daysSince1900() = 35116
dayOfWeek() = 4 Today is NOT Friday
dayOfMonth() = 22
monthOfYear() = 2
time() = [143832]
time(’-’) = [14-38-32]
year() = [1996]
Program ’icc$clk’ complete: Hit PF12 to End

ICC$DAT (IDAT)
This is program ’icc$dat’...
Writing records to ’ICCQ’...
- writing record #1: ’Hello World - item 1’ <NORMAL>
- writing record #2: ’Hello World - item 2’ <NORMAL>
- writing record #3: ’Hello World - item 3’ <NORMAL>
Reading records back in...
- reading record #1: ’Hello World - item 1’ <NORMAL>
- reading record #2: ’Hello World - item 2’ <NORMAL>
- reading record #3: ’Hello World - item 3’ <NORMAL>
Program ’icc$dat’ complete: Hit PF12 to End

© Copyright IBM Corp. 1989, 2012 305

ICC$EXC1 (IEX1)
This is program ’icc$exc1’ ...
Number passed = 1
Number passed = 7
Number passed = 11
>>Out of Range - throwing exception
Exception caught: !!Number is out of range!!
Program ’icc$exc1’ complete: Hit PF12 to End

ICC$EXC2 (IEX2)
This is program ’icc$exc2’...
Creating IccTermId id1...
Creating IccTermId id2...
IccException: 112 IccTermId::IccTermId type=invalidArgument (IccMessage: 030 Ic
cTermId::IccTermId <Invalid string length passed to ’IccTermId’ constructor.
Spec ified: 5, Maximum allowed: 4>)
Program ’icc$exc2’ complete: Hit PF12 to End

ICC$EXC3 (IEX3)
This is program ’icc$exc3’...
About to read Temporary Storage ’UNKNOWN!’...
IccException: 094 IccTempStore::readNextItem type=CICSCondition (IccMessage: 008
IccTempStore::readNextItem <CICS returned the ’QIDERR’ condition.>)
Program ’icc$exc3’ complete: Hit PF12 to End

ICC$FIL (IFIL)
This is program ’icc$fil’...
Deleting records in file ’ICCKFILE...
5 records were deleted.
Writing records to file ’ICCKFILE’...
- writing record number 1. <NORMAL>
- writing record number 2. <NORMAL>
- writing record number 3. <NORMAL>
- writing record number 4. <NORMAL>
- writing record number 5. <NORMAL>
Browsing records...
- record read: [BACH, J S 003 00-1234 BACH]
- record read: [CHOPIN, F 004 00-3355 CHOPIN]
- record read: [HANDEL, G F 005 00-4466 HANDEL]
- record read: [BEETHOVEN, L 007 00-2244 BEET]
- record read: [MOZART, W A 008 00-5577 WOLFGANG]
- record read: [MOZART, W A 008 00-5577 WOLFGANG]
- record read: [BEETHOVEN, L 007 00-2244 BEET]
- record read: [HANDEL, G F 005 00-4466 HANDEL]
- record read: [CHOPIN, F 004 00-3355 CHOPIN]
- record read: [BACH, J S 003 00-1234 BACH]
Updating record 1...
readRecord(update)<NORMAL> rewriteRecord()<NORMAL>
- record read: [MOZART, W A 008 00-5678 WOLFGANG]
Program ’icc$fil’ complete: Hit PF12 to End

ICC$HEL (IHEL)
Hello World

306 CICS TS for z/OS 4.2: C++ OO Class Libraries

ICC$JRN (IJRN)
This is program ’icc$jrn’...
Writing 3 records to journal number 77...
- writing record 1: [Hello World - item 1] <NORMAL>
- writing record 2: [Hello World - item 2] <NORMAL>
- writing record 3: [Hello World - item 3] <NORMAL>
Program ’icc$jrn’ complete: Hit PF12 to End

ICC$PRG1 (IPR1)

First Screen
This is program ’icc$prg1’...
Loaded program: ICC$PRG2 <NORMAL> Length=0 Address=ff000000
Unloading program: ICC$PRG2 <NORMAL>
- Hit ENTER to continue...

Second Screen
About to link to program ’ICC$PRG2 ’
- commArea before link is [DATA SET BY ICC$PRG1]
- Hit ENTER to continue...

This is program ’icc$prg2’...
commArea received from caller =[DATA SET BY ICC$PRG1]
Changed commArea to [DATA RETURNED BY ICC$PRG2]
- Hit ENTER to return to caller...

- link call returned <NORMAL>
- commArea after link is [DATA RETURNED BY ICC$PRG2]
About to link to program ’ICC$PRG3 ’ on system ’ICC2’
- commArea before link is [DATA SET BY ICC$PRG1]
- Hit ENTER to continue...
- link call returned <NORMAL>
- commArea after link is [DATA RETURNED BY ICC$PRG3]
Program ’icc$prg1’ complete: Hit PF12 to End

ICC$RES1 (IRS1)
This is program ’icc$res1’...
Writing items to CustomDataQueue ’ICCQ’ ...
- writing item #1: ’Hello World - item 1’ <NORMAL>
- writing item #2: ’Hello World - item 2’ <NORMAL>
- writing item #3: ’Hello World - item 3’ <NORMAL>
Reading items from CustomDataQueue ’ICCQ’ ...
- item = ’Hello World - item 1’
- item = ’Hello World - item 2’
- item = ’Hello World - item 3’
Reading loop complete.
> In handleEvent().
Summary=IccEvent: CustomDataQueue::readItem condition=23 (QZ ERO) minor=0
Program ’icc$res1’ complete: Hit PF12 to End

Appendix C. Output from sample programs 307

ICC$RES2 (IRS2)
This is program ’icc$res2’...
invoking clear() method for IccDataQueue object
invoking clear() method for IccTempStore object
put() item #1 in IccDataQueue object
put() item #2 in IccDataQueue object
put() item #3 in IccDataQueue object
put() item #1 in IccTempStore object
put() item #2 in IccTempStore object
put() item #3 in IccTempStore object
Now get items from IccDataQueue object
get() from IccDataQueue object returned ’Hello World - item 1’
get() from IccDataQueue object returned ’Hello World - item 2’
get() from IccDataQueue object returned ’Hello World - item 3’
Now get items from IccTempStore object
get() from IccTempStore object returned ’Hello World - item 1’
get() from IccTempStore object returned ’Hello World - item 2’
get() from IccTempStore object returned ’Hello World - item 3’
Program ’icc$res2’ complete: Hit PF12 to End

ICC$SEM (ISEM)
This is program ’icc$sem’...
Constructing IccSemaphore object (lock by value)...
Issuing lock request... <NORMAL>
Issuing unlock request... <NORMAL>
Constructing Semaphore object (lock by address)...
Issuing tryLock request... <NORMAL>
Issuing unlock request... <NORMAL>

Program ’icc$sem’ complete: Hit PF12 to End

ICC$SES1 (ISE1)
This is program ’icc$ses1’...
allocate session... <NORMAL>
STATE=81 ALLOCATED ERR=0 connectProcess...<NORMAL>
STATE=90 SEND ERR=0 sendInvite ... <NORMAL>
STATE=87 PENDRECEIVE ERR=0 receive ... <NORMAL>
STATE=85 FREE ERR=0 - data from back end=[Hi there this is from backEnd
TIME=14:49:18 on 22/02/96]
free... <NORMAL>
STATE=1 NOTAPPLIC ERR=0

Program ’icc$ses1’ complete: Hit PF12 to End

308 CICS TS for z/OS 4.2: C++ OO Class Libraries

ICC$SES2 (ISE2)
This panel is typical output after running "CEBR DTPBKEND" on the back-end
CICS system.

CEBR TSQ DTPBKEND SYSID ABCD REC 1 OF 11 COL 1 OF 78
ENTER COMMAND ===>

************************* TOP OF QUEUE *****************************
00001 Transaction ’ISE2’ starting.
00002 extractProcess...
00003 <NORMAL> STATE=88 RECEIVE ERR=0
00004 process=[ISE2] syncLevel=1 PIP=[Hello World]
00005 receive...
00006 <NORMAL> STATE=90 SEND ERR=0 NoData=0
00007 data from front end=[Hi there this is from frontEnd TIME=16:03:18 on 04/0
00008 sendLast ...
00009 <NORMAL> STATE=86 PENDFREE ERR=0
00010 free...
00011 <NORMAL> STATE=1 NOTAPPLIC ERR=0

************************ BOTTOM OF QUEUE ***************************
PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : VIEW RIGHT
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED

ICC$SRQ1 (ISR1)
This is program ’icc$srq1’...
Starting Tran ’ISR2’ on terminal ’PE12’ after 5 seconds... - <NORMAL>
request=’DF!U0000’
Issuing cancel for start request=’DF!U0000’... - <NORMAL>
request=’DF!U0000’
Starting Tran ’ISR2’ on terminal ’PE12’ after 5 seconds... - <NORMAL>
request=’REQUEST1’
Program ’icc$srq1’ complete.

ICC$SRQ2 (ISR2)
This is program ’icc$srq2’...
retrieveData()... <NORMAL>
Start buffer contents = [This is a greeting from program ’icc$srq1’!!]
Start queue= [startqnm]
Start rtrn = [ITMP]
Start rtrm = [PE11]
Sleeping for 5 seconds...
Starting tran ’ITMP’ on terminal ’PE11’ on system ICC1...<NORMAL>

Program ’icc$srq2’ complete: Hit PF12 to end

Appendix C. Output from sample programs 309

ICC$SYS (ISYS)
This is program ’icc$sys’...
applName=ICC$REG01 operatingSystem=A operatingSystemLevel=41
releaseText=[0210] sysidnt=ICC1
getStorage(5678, ’Y’)... <NORMAL>
freeStorage(p)... <NORMAL>
Checking attributes of a named file (ICCKFILE)...
>ICCKFILE< Add=true Brw=true Del=true Read=true Upd=true op=18 en=23
accessMethod=3 isRecoverable=true keyLength=3 keyPosition=16
setStatus(closed) ... <NORMAL>
setStatus(disabled) ... <NORMAL>
setAccess(notUpdatable) ... <NORMAL>
>ICCKFILE< Add=true Brw=true Del=true Read=true Upd=false op=19 en=24
setAccess(updateable) & setStatus(enabled, open) ...
>ICCKFILE< Add=true Brw=true Del=true Read=true Upd=true op=18 en=23
Beginning browse of all file objects in CICS system... <NORMAL>
- >ICCEFILE< type=1 <NORMAL>
- >ICCKFILE< type=6 <NORMAL>
- >ICCRFILE< type=1 <NORMAL>
Program ’icc$sys’ complete: Hit PF12 to End

ICC$TMP (ITMP)
This is program ’icc$tmp’...
Writing 3 records to IccTempStore object ’ICCSTORE’...
- writing record #1: ’Hello World - item 1’ <NORMAL>
- writing record #2: ’Hello World - item 2’ <NORMAL>
- writing record #3: ’Hello World - item 3’ <NORMAL>
Reading records back in & rewriting new buffer contents...
- record #1 = [Hello World - item 1] - rewriteItem #1 <NORMAL>
- record #2 = [Hello World - item 2] - rewriteItem #2 <NORMAL>
- record #3 = [Hello World - item 3] - rewriteItem #3 <NORMAL>
Reading records back in one last time...
- record #1 = [Modified Hello World - item 1]
- record #1 = [Modified Hello World - item 2]
- record #1 = [Modified Hello World - item 3]
Program ’icc$tmp’ complete: Hit PF12 to end

ICC$TRM (ITRM)
This is program ’icc$trm’...
First part of the line...... a continuation of the line.
Start this on the next line Send this to col 40 of current line

Send this to row 5, column 10
Send this to row 6, column 40

A Red line!
A Blue, reverse video line!

A cout style interface...
you can chain input together; use different types, eg numbers: 123 4567890 12345
6.789123
... and everything is buffered till you issue a flush.

Program ’icc$trm’ complete: Hit PF12 to End

310 CICS TS for z/OS 4.2: C++ OO Class Libraries

ICC$TSK (ITSK)
This is program ’icc$tsk’...
startType() = terminalInput
number() = 0598
isStartDataSupplied() = true
isCommitSupported() = true
userId() = [rabcics]
enterTrace(77, "ICCENTRY", buffer) <NORMAL>
suspend()... <NORMAL>
delay(ti) (for 2 seconds)... <NORMAL>
getStorage(1234, ’X’)... <NORMAL>
freeStorage(p)... <NORMAL>
commitUOW()... <NORMAL>
rollBackUOW()... <NORMAL>

Program ’icc$tsk’ complete: Hit PF12 to End OR PF24 to ABEND

Appendix C. Output from sample programs 311

312 CICS TS for z/OS 4.2: C++ OO Class Libraries

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 1989, 2012 313

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

314 CICS TS for z/OS 4.2: C++ OO Class Libraries

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI13-0565
CICS Transaction Server for z/OS What's New, GC34-7192
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1, GC34-7188
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2, GC34-7189
CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1, GC34-7190
CICS Transaction Server for z/OS Installation Guide, GC34-7171

Access to CICS
CICS Internet Guide, SC34-7173
CICS Web Services Guide, SC34-7191

Administration
CICS System Definition Guide, SC34-7185
CICS Customization Guide, SC34-7161
CICS Resource Definition Guide, SC34-7181
CICS Operations and Utilities Guide, SC34-7213
CICS RACF Security Guide, SC34-7179
CICS Supplied Transactions, SC34-7184

Programming
CICS Application Programming Guide, SC34-7158
CICS Application Programming Reference, SC34-7159
CICS System Programming Reference, SC34-7186
CICS Front End Programming Interface User's Guide, SC34-7169
CICS C++ OO Class Libraries, SC34-7162
CICS Distributed Transaction Programming Guide, SC34-7167
CICS Business Transaction Services, SC34-7160
Java Applications in CICS, SC34-7174

Diagnosis
CICS Problem Determination Guide, GC34-7178
CICS Performance Guide, SC34-7177
CICS Messages and Codes Vol 1, GC34-7175
CICS Messages and Codes Vol 2, GC34-7176
CICS Diagnosis Reference, GC34-7166
CICS Recovery and Restart Guide, SC34-7180
CICS Data Areas, GC34-7163
CICS Trace Entries, SC34-7187
CICS Debugging Tools Interfaces Reference, GC34-7165

Communication
CICS Intercommunication Guide, SC34-7172
CICS External Interfaces Guide, SC34-7168

Databases
CICS DB2 Guide, SC34-7164
CICS IMS Database Control Guide, SC34-7170

© Copyright IBM Corp. 1989, 2012 315

CICS Shared Data Tables Guide, SC34-7182

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7196
CICSPlex SM Web User Interface Guide, SC34-7214

Administration and Management
CICSPlex SM Administration, SC34-7193
CICSPlex SM Operations Views Reference, SC34-7202
CICSPlex SM Monitor Views Reference, SC34-7200
CICSPlex SM Managing Workloads, SC34-7199
CICSPlex SM Managing Resource Usage, SC34-7198
CICSPlex SM Managing Business Applications, SC34-7197

Programming
CICSPlex SM Application Programming Guide, SC34-7194
CICSPlex SM Application Programming Reference, SC34-7195

Diagnosis
CICSPlex SM Resource Tables Reference Vol 1, SC34-7204
CICSPlex SM Resource Tables Reference Vol 2, SC34-7205
CICSPlex SM Messages and Codes, GC34-7201
CICSPlex SM Problem Determination, GC34-7203

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 4 Release 2.

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

Other IBM publications
The following publications contain information about related IBM products.

CICS Client manuals
CICS Clients: Administration, SC33-1792
CICS Clients: Messages, SC33-1793
CICS Clients: Gateways, SC33-1821
CICS Family: OO Programming in C++ for CICS Clients, SC33-1923
CICS Family: OO Programming in BASIC for CICS Clients, SC33-1924

316 CICS TS for z/OS 4.2: C++ OO Class Libraries

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1989, 2012 317

318 CICS TS for z/OS 4.2: C++ OO Class Libraries

Index

Special characters
... (parameter)

in sendLine 257

Numerics
0 (zero)

in actionOnConditionAsChar 186

A
A

in actionOnConditionAsChar 186
in operatingSystem 224

abend
in IccTask class 227
in Parameter level 55

abend codes 49
abendCode

in IccAbendData class 75
abendCode (parameter)

in abend 227
abendData

in IccTask class 227
AbendDumpOpt

in Enumerations 235
in IccTask class 235

AbendHandlerOpt
in Enumerations 235
in IccTask class 235

abendTask
in ActionOnCondition 190
in CICS conditions 52

absTime
in IccClock class 103
in Type 271

absTime (parameter)
in Constructor 81
in operator= 83

access
in IccFile class 136

Access
in Enumerations 144
in IccFile class 144

access (parameter)
in setAccess 142

Accessing start data
in Starting transactions

asynchronously 36
in Using CICS Services 36

accessMethod
in IccFile class 136

action (parameter)
in setActionOnAnyCondition 188
in setActionOnCondition 189

actionOnCondition
in IccResource class 185

ActionOnCondition
in Enumerations 190
in IccResource class 190

actionOnConditionAsChar
in IccResource class 185

actions (parameter)
in setActionsOnConditions 189

actionsOnConditionsText
in IccResource class 186

addable
in Access 144

address
in IccProgram class 173

AID
in IccTerminal class 249

aid (parameter)
in waitForAID 260

AIDVal
in Enumerations 261
in IccTerminal class 261

AIX, CICS for
in Platform differences 54

allocate
in IccSession class 202

AllocateOpt
in Enumerations 210
in IccSession class 210

alternateHeight
in IccTerminalData class 263
in Public methods 263

alternateWidth
in IccTerminalData class 263
in Public methods 263

append
in IccBuf class 94

applName
in IccSystem class 221

ASRAInterrupt
in IccAbendData class 76
in Public methods 76

ASRAKeyType
in IccAbendData class 76
in Public methods 76

ASRAPSW
in IccAbendData class 76

ASRARegisters
in IccAbendData class 77
in Public methods 77

ASRASpaceType
in IccAbendData class 77
in Public methods 77

ASRAStorageType
in IccAbendData class 78
in Public methods 78

assign
in Example of file control 33
in IccBuf class 95
in IccKey class 163

automatic
in UpdateMode 108

Automatic condition handling
(callHandleEvent)

in CICS conditions 52

Automatic condition handling
(callHandleEvent) (continued)

in Conditions, errors, and
exceptions 52

automatic creation 15
automatic deletion 15
auxStorage

in Location 243

B
base class

overview 17
Base classes

in Overview of the foundation
classes 17

baseName (parameter)
in NameOpt 91

BASESPACE
in ASRASpaceType 77

BDAM 29
beginBrowse

in IccSystem class 221, 222
beginInsert

in Writing records 30
beginInsert(VSAM only)

in IccFile class 136
in Public methods 136

below
in StorageOpts 237

blink
in Highlight 262

blue
in Color 261

Bool
in Enumerations 71
in Icc structure 71

BoolSet
in Enumerations 71
in Icc structure 71

boolText
in Functions 69
in Icc structure 69

browsable
in Access 144

browsing records 32
Browsing records

in File control 32
in Using CICS Services 32

buf (parameter)
in dump 228, 229
in put 253
in send3270Data 255
in sendLine 256
in setData 215

buffer
in Example of starting

transactions 37, 38
buffer (parameter)

in Constructor 94
in operator!= 98

© Copyright IBM Corp. 1989, 2012 319

buffer (parameter) (continued)
in operator« 98, 251
in operator+= 97
in operator= 97
in operator== 97
in Polymorphic Behavior 58
in put 124, 156, 188, 240
in registerData 214
in rewriteRecord 141
in send 254
in send3270Data 255
in sendLine 256
in writeRecord 143

Buffer objects
Data area extensibility 25
Data area ownership 25
IccBuf constructors 26
IccBuf methods 27
Working with IccResource

subclasses 27
buffers 25, 28
byAddress

in LockType 199
byValue

in LockType 199

C
C++ exceptions 49
C++ Exceptions and the Foundation

Classes
in Conditions, errors, and

exceptions 49
callHandleEvent

in ActionOnCondition 190
in CICS conditions 52

calling conventions 63
Calling methods on a resource object

in Overview of the foundation
classes 22

in Using CICS resources 22
callingProgramId

in IccControl class 115
in Public methods 115

cancel
in Cancelling unexpired start

requests 36
in IccRequestId class 183
in IccStartRequestQ class 213

cancelAbendHandler
in IccControl class 115

cancelAlarm
in IccClock class 103

Cancelling unexpired start requests
in Starting transactions

asynchronously 36
in Using CICS Services 36

Case
in Enumerations 261
in IccTerminal class 261

caseOpt (parameter)
in receive 254
in receive3270Data 254

catch
in C++ Exceptions and the Foundation

Classes 49, 50

catch (continued)
in Exception handling

(throwException) 53
in main function 290

catchException
in Functions 69
in Icc structure 69

ch (parameter)
in operator« 98, 252

changePassword
in IccUser class 281
in Public methods 281

char*
in C++ Exceptions and the Foundation

Classes 50
CheckOpt

in Enumerations 218
in IccStartRequestQ class 218

CICS
in ASRAStorageType 77
in GetOpt 72
in Platform differences 54

CICS conditions
abendTask 54
automatic condition handling 52
Automatic condition handling

(callHandleEvent) 52
callHandleEvent 52
exception handling 53
Exception handling

(throwException) 53
in Conditions, errors, and

exceptions 51
manual condition handling 52
Manual condition handling

(noAction) 52
noAction 52
severe error handling 54
Severe error handling (abendTask) 54
throwException 53

CICS for AIX
in Platform differences 54

CICS resources 21
CICSCondition

in C++ Exceptions and the Foundation
Classes 51

in Type 134
CICSDataKey

in StorageOpts 237
CICSEXECKEY

in ASRAKeyType 76
CICSInternalTask

in StartType 236
CICSTS13.CICS.SDFHSAMP 6
CICSTS42.CICS.SDFHC370 6
CICSTS42.CICS.SDFHLOAD 7
CICSTS42.CICS.SDFHPROC 6, 7
CICSTS42.CICS.SDFHSAMP 6
CICSTS42.CICS.SDFHSDCK 7
class

base 17
resource 19
resource identification 18
singleton 22
support 20

ClassMemoryMgmt
in Enumerations 72

ClassMemoryMgmt (continued)
in Icc structure 72

className
in IccBase class 89
in IccEvent class 129
in IccException class 132
in IccMessage class 169

className (parameter)
in Constructor 131, 169
in setClassName 90

classType
in IccBase class 89
in IccEvent class 129
in IccException class 132

ClassType
in Enumerations 91
in IccBase class 91

classType (parameter)
in Constructor 131, 185

clear
in Example of polymorphic

behavior 59
in IccDataQueue class 123
in IccResource class 186
in IccTempStore class 240
in IccTerminal class 249
in Polymorphic Behavior 58

CLEAR
in AIDVal 261

clearData
in IccStartRequestQ class 214

clearInputMessage
in IccProgram class 174

clearPrefix
in IccJournal class 156

closed
in Status 145

cmmCICS
in ClassMemoryMgmt 72
in Storage management 61

cmmDefault
in ClassMemoryMgmt 72
in Storage management 61

cmmNonCICS
in ClassMemoryMgmt 72
in Storage management 61

Codes
in Enumerations 109
in IccCondition structure 109

col (parameter)
in send 254, 255
in send3270Data 255, 256
in sendLine 256, 257
in setCursor 257

Color
in Enumerations 261
in IccTerminal class 261

color (parameter)
in operator« 251
in setColor 257

commArea
in IccControl class 116

commArea (parameter)
in link 174
in setNextCommArea 258

commitOnReturn
in CommitOpt 176

320 CICS TS for z/OS 4.2: C++ OO Class Libraries

CommitOpt
in Enumerations 176
in IccProgram class 176

commitUOW
in IccTask class 228

Compile and link "Hello World"
in Hello World 10

compiling programs 47
Compiling Programs

in Compiling, executing, and
debugging 47

complete
in Kind 166

complete key 30
completeLength

in IccKey class 164
in Public methods 164

completeLength (parameter)
in Constructor 163

condition
in IccEvent class 129
in IccResource class 186
in Manual condition handling

(noAction) 52
in Resource classes 19

condition (parameter)
in actionOnCondition 185
in actionOnConditionAsChar 185
in conditionText 69, 70
in setActionOnCondition 189

condition 0 (NORMAL)
in actionsOnConditionsText 186

condition 1 (ERROR)
in actionsOnConditionsText 186

condition 2 (RDATT)
in actionsOnConditionsText 186

condition 3 (WRBRK)
in actionsOnConditionsText 186

condition 4 (ICCEOF)
in actionsOnConditionsText 186

condition 5 (EODS)
in actionsOnConditionsText 186

condition 6 (EOC)
in actionsOnConditionsText 186

Conditions, errors, and exceptions
Automatic condition handling

(callHandleEvent) 52
Exception handling

(throwException) 53
Manual condition handling

(noAction) 52
Method level 55
Object level 54
Parameter level 55
Severe error handling (abendTask) 54

conditionText
in Functions 69
in Icc structure 69
in IccEvent class 130
in IccResource class 187

ConditionType
in Enumerations 191
in IccResource class 191

confirmation
in SendOpt 210

connectProcess
in IccSession class 202, 203

connectProcess (continued)
in Public methods 202, 203

console
in IccControl class 116

Constructor
in IccAbendData class 75
in IccAbendData constructor

(protected) 75
in IccAbsTime class 81
in IccAbsTime constructor 81
in IccAlarmRequestId class 85
in IccAlarmRequestId

constructors 85
in IccBase class 89
in IccBase constructor (protected) 89
in IccBuf class 93, 94
in IccBuf constructors 93, 94
in IccClock class 103
in IccClock constructor 103
in IccConsole class 111
in IccConsole constructor

(protected) 111
in IccControl class 115
in IccControl constructor

(protected) 115
in IccConvId class 121
in IccConvId constructors 121
in IccDataQueue class 123
in IccDataQueue constructors 123
in IccDataQueueId class 127
in IccDataQueueId constructors 127
in IccEvent class 129
in IccEvent constructor 129
in IccException class 131
in IccException constructor 131
in IccFile class 135
in IccFile constructors 135
in IccFileId class 147
in IccFileId constructors 147
in IccFileIterator class 149
in IccFileIterator constructor 149
in IccGroupId class 153
in IccGroupId constructors 153
in IccJournal class 155
in IccJournal constructors 155
in IccJournalId class 159
in IccJournalId constructors 159
in IccJournalTypeId class 161
in IccJournalTypeId constructors 161
in IccKey class 163
in IccKey constructors 163
in IccLockId class 167
in IccLockId constructors 167
in IccMessage class 169
in IccMessage constructor 169
in IccPartnerId class 171
in IccPartnerId constructors 171
in IccProgram class 173
in IccProgram constructors 173
in IccProgramId class 177
in IccProgramId constructors 177
in IccRBA class 179
in IccRBA constructor 179
in IccRecordIndex class 181
in IccRecordIndex constructor

(protected) 181
in IccRequestId class 183

Constructor (continued)
in IccRequestId constructors 183
in IccResource class 185
in IccResource constructor

(protected) 185
in IccResourceId class 193
in IccResourceId constructors

(protected) 193
in IccRRN class 195
in IccRRN constructors 195
in IccSemaphore class 197
in IccSemaphore constructor 197
in IccSession class 201, 202
in IccSession constructor

(protected) 202
in IccSession constructors

(public) 201
in IccStartRequestQ class 213
in IccStartRequestQ constructor

(protected) 213
in IccSysId class 219
in IccSysId constructors 219
in IccSystem class 221
in IccSystem constructor

(protected) 221
in IccTask class 227
in IccTask Constructor

(protected) 227
in IccTempStore class 239
in IccTempStore constructors 239
in IccTempStoreId class 245
in IccTempStoreId constructors 245
in IccTermId class 247
in IccTermId constructors 247
in IccTerminal class 249
in IccTerminal constructor

(protected) 249
in IccTerminalData class 263
in IccTerminalData constructor

(protected) 263
in IccTime class 269
in IccTime constructor

(protected) 269
in IccTimeInterval class 273
in IccTimeInterval constructors 273
in IccTimeOfDay class 275
in IccTimeOfDay constructors 275
in IccTPNameId class 277
in IccTPNameId constructors 277
in IccTransId class 279
in IccTransId constructors 279
in IccUser class 281
in IccUser constructors 281
in IccUserId class 285
in IccUserId constructors 285

converse
in IccSession class 203

convId
in IccSession class 203

convId (parameter)
in Constructor 121

convName (parameter)
in Constructor 121
in operator= 121

copt (parameter)
in setStartOpts 216, 217

Index 321

createDump
in AbendDumpOpt 235

creating a resource object 21
Creating a resource object

in Overview of the foundation
classes 21

in Using CICS resources 21
Singleton classes 22

Creating an object
in C++ Objects 15

creating object 15
current (parameter)

in setPrefix 156
cursor

in Finding out information about a
terminal 44

in IccTerminal class 249
customClassNum

in IccBase class 90
in Public methods 90

cut
in IccBuf class 95
in IccBuf constructors 26

CVDA
in Enumeration 289
in IccValue structure 289

cyan
in Color 262

D
data

in Accessing start data 36
in Finding out information about a

terminal 44
in IccStartRequestQ class 214
in IccTerminal class 250

data (parameter)
in enterTrace 229
in put 206

data area extensibility 25
Data area extensibility

in Buffer objects 25
in IccBuf class 25

data area ownership 25
Data area ownership

in Buffer objects 25
in IccBuf class 25

dataArea
in IccBuf class 95

dataArea (parameter)
in append 94
in assign 95, 163
in Constructor 93
in insert 96
in overlay 100
in replace 100

dataAreaLength
in IccBuf class 95
in Public methods 95

dataAreaOwner
in Data area ownership 25
in IccBuf class 96

DataAreaOwner
in Enumerations 101
in IccBuf class 101

dataAreaType
in Data area extensibility 25
in IccBuf class 96

DataAreaType
in Enumerations 101
in IccBuf class 101

dataItems
in Example of polymorphic

behavior 58
dataLength

in IccBuf class 96
dataqueue

in FacilityType 236
dataQueueTrigger

in StartType 236
date

in IccAbsTime class 81
in IccClock class 104

date services 45
dateFormat

in IccSystem class 222
DateFormat

in Enumerations 107
in IccClock class 107

dateSeparator (parameter)
in date 81, 104
in Example of time and date

services 46
dayOfMonth

in Example of time and date
services 46

in IccAbsTime class 82
in IccClock class 104

dayOfWeek
in Example of time and date

services 46
in IccAbsTime class 82
in IccClock class 104

DayOfWeek
in Enumerations 107
in IccClock class 107

daysSince1900
in Example of time and date

services 46
in IccAbsTime class 82
in IccClock class 104

daysUntilPasswordExpires
in IccUser class 282

dComplete
in DumpOpts 236

dDCT
in DumpOpts 236

dDefault
in DumpOpts 236

debugging programs 47
Debugging Programs

in Compiling, executing, and
debugging 47

defaultColor
in Color 261

defaultHeight
in IccTerminalData class 264
in Public methods 264

defaultHighlight
in Highlight 262

defaultWidth
in IccTerminalData class 264

defaultWidth (continued)
in Public methods 264

delay
in IccTask class 228
in Support Classes 21

deletable
in Access 145

delete
in Deleting an object 16
in Storage management 61

delete operator 15
deleteLockedRecord 32

in Deleting locked records 32
in IccFile class 136

deleteRecord
in Deleting normal records 31
in IccFile class 137

deleteRecord method 31
Deleting an object

in C++ Objects 16
deleting items 42
Deleting items

in Temporary storage 42
in Using CICS Services 42

Deleting locked records
in Deleting records 32
in File control 32

Deleting normal records
in Deleting records 31
in File control 31

deleting queues 40
Deleting queues

in Transient Data 40
in Using CICS Services 40

deleting records 31
Deleting records

Deleting locked records 32
Deleting normal records 31
in File control 31
in Using CICS Services 31

dFCT
in DumpOpts 236

DFHCURDI 7
DFHCURDS 6, 7
disabled

in Status 145
doSomething

in Using an object 16
dPCT

in DumpOpts 236
DPL

in StartType 236
dPPT

in DumpOpts 236
dProgram

in DumpOpts 236
dSIT

in DumpOpts 236
dStorage

in DumpOpts 236
dTables

in DumpOpts 236
dTask

in DumpOpts 236
dTCT

in DumpOpts 236

322 CICS TS for z/OS 4.2: C++ OO Class Libraries

dTerminal
in DumpOpts 236

dTRT
in DumpOpts 236

dump
in IccTask class 228

dumpCode (parameter)
in dump 228

DumpOpts
in Enumerations 236
in IccTask class 236

dynamic creation 15
dynamic deletion 15
dynamic link library 6
Dynamic link library

in Installed contents 6
Location 6

E
ECBList (parameter)

in waitExternal 234
EDF (parameter)

in initializeEnvironment 70
empty

in Deleting items 42
in Deleting queues 40
in IccDataQueue class 123
in IccTempStore class 240
in Temporary storage 41
in Transient Data 39

enabled
in Status 145

enableStatus
in IccFile class 137

endBrowse
in IccSystem class 222

endInsert
in Writing records 30

endInsert(VSAM only)
in IccFile class 137
in Public methods 137

endl
in Example of terminal control 45

ENTER
in AIDVal 261

enterTrace
in IccTask class 229

entryPoint
in IccProgram class 174

Enumeration
CVDA 289
in IccValue structure 287

Enumerations
AbendDumpOpt 235
AbendHandlerOpt 235
Access 144
ActionOnCondition 190
AIDVal 261
AllocateOpt 210
Bool 71
BoolSet 71
Case 261
CheckOpt 218
ClassMemoryMgmt 72
ClassType 91
Codes 109

Enumerations (continued)
Color 261
CommitOpt 176
ConditionType 191
DataAreaOwner 101
DataAreaType 101
DateFormat 107
DayOfWeek 107
DumpOpts 236
FacilityType 236
FamilySubset 72
GetOpt 72
HandleEventReturnOpt 190
Highlight 262
in Icc structure 71
in IccBase class 91
in IccBuf class 101
in IccClock class 107
in IccCondition structure 109
in IccConsole class 114
in IccException class 133
in IccFile class 144
in IccJournal class 158
in IccKey class 166
in IccProgram class 176
in IccRecordIndex class 182
in IccResource class 190
in IccSemaphore class 199
in IccSession class 210
in IccStartRequestQ class 218
in IccSystem class 226
in IccTask class 235
in IccTempStore class 243
in IccTerminal class 261
in IccTime class 271
Kind 166
LifeTime 199
LoadOpt 176
Location 243
LockType 199
MonthOfYear 107
NameOpt 91
NextTransIdOpt 262
NoSpaceOpt 243
Options 158
Platforms 72
ProtectOpt 218
Range 110
ReadMode 145
ResourceType 226
RetrieveOpt 218
SearchCriterion 145
SendOpt 210
SeverityOpt 114
StartType 236
StateOpt 210
Status 145
StorageOpts 237
SyncLevel 211
TraceOpt 237
Type 133, 182, 271
UpdateMode 107
WaitPostType 237
WaitPurgeability 237

equalToKey
in SearchCriterion 145

erase
in Example of terminal control 45
in Hello World 10
in IccTerminal class 250
in Sending data to a terminal 43

errorCode
in IccSession class 204

ESDS
in File control 29

ESDS file 29
ESMReason

in IccUser class 282
ESMResponse

in IccUser class 282
event (parameter)

in handleEvent 187
Example of file control

in File control 32
in Using CICS Services 32

Example of managing transient data
in Transient Data 40
in Using CICS Services 40

Example of polymorphic behavior
in Miscellaneous 58
in Polymorphic Behavior 58

Example of starting transactions
in Starting transactions

asynchronously 36
in Using CICS Services 36

Example of Temporary Storage
in Temporary storage 42
in Using CICS Services 42

Example of terminal control
in Terminal control 44
in Using CICS Services 44

Example of time and date services
in Time and date services 45
in Using CICS Services 45

exception
in TraceOpt 237

exception (parameter)
in catchException 69

Exception handling (throwException)
in CICS conditions 53
in Conditions, errors, and

exceptions 53
exceptionNum (parameter)

in Constructor 131
exceptions 49
exceptionType (parameter)

in Constructor 131
Executing Programs

in Compiling, executing, and
debugging 47

Expected Output from "Hello World"
in Hello World 11
in Running "Hello World" on your

CICS server 11
extensible

in DataAreaType 101
external

in DataAreaOwner 101
extractProcess

in IccSession class 204
extractState

in StateOpt 210

Index 323

F
facilityType

in IccTask class 229
FacilityType

in Enumerations 236
in IccTask class 236

fam (parameter)
in initializeEnvironment 70

familyConformanceError
in C++ Exceptions and the Foundation

Classes 51
in Type 134

FamilySubset
in Enumerations 72
in Icc structure 72

FEPIRequest
in StartType 236

file (parameter)
in Constructor 149
in Example of file control 33

file control
browsing records 32
deleting records 31
example 32
rewriting records 31
updating records 31

File control
Browsing records 32
Deleting locked records 32
Deleting normal records 31
Deleting records 31
Example of file control 32
in Using CICS Services 29
Reading ESDS records 30
Reading KSDS records 30
Reading records 29
Reading RRDS records 30
Updating records 31
Writing ESDS records 31
Writing KSDS records 30
Writing records 30
Writing RRDS records 31

fileName (parameter)
in Constructor 135, 147
in getFile 223
in operator= 147

Finding out information about a terminal
in Terminal control 44
in Using CICS Services 44

First Screen
in ICC$PRG1 (IPR1) 307
in Output from sample

programs 307
fixed

in DataAreaType 101
flush

in Example of terminal control 45
in IccSession class 204

for
in Example of file control 33

Form
in Polymorphic Behavior 57

format (parameter)
in append 94
in assign 95
in date 81, 104

format (parameter) (continued)
in Example of time and date

services 46
in send 254, 255
in send3270Data 255, 256
in sendLine 256, 257

Foundation Class Abend codes
in Conditions, errors, and

exceptions 49
free

in IccSession class 204
freeKeyboard

in IccTerminal class 250
in Sending data to a terminal 43

freeStorage
in IccSystem class 222
in IccTask class 229

fsAllowPlatformVariance
in FamilySubset 72
in Platform differences 54

fsDefault
in FamilySubset 72

fsEnforce
in FamilySubset 72
in Platform differences 54

fullAccess
in Access 145

Functions
boolText 69
catchException 69
conditionText 69
in Icc structure 69
initializeEnvironment 70
isClassMemoryMgmtOn 70
isEDFOn 70
isFamilySubsetEnforcementOn 70
returnToCICS 70
setEDF 71
unknownException 71

G
generic

in Kind 166
generic key 30
get

in Example of polymorphic
behavior 59

in IccDataQueue class 124
in IccResource class 187
in IccSession class 204
in IccTempStore class 240
in IccTerminal class 250
in Polymorphic Behavior 58

getFile
in IccSystem class 222, 223

getNextFile
in IccSystem class 223

GetOpt
in Enumerations 72
in Icc structure 72

getStorage
in IccSystem class 223
in IccTask class 230

gid (parameter)
in Constructor 281

graphicCharCodeSet
in IccTerminalData class 264

graphicCharSetId
in IccTerminalData class 264

green
in Color 262

groupId
in IccUser class 282

groupName (parameter)
in Constructor 153, 281
in operator= 153

gteqToKey
in SearchCriterion 145

H
H

in actionOnConditionAsChar 186
handleEvent

in Automatic condition handling
(callHandleEvent) 52, 53

in IccResource class 187
HandleEventReturnOpt

in Enumerations 190
in IccResource class 190

handPost
in WaitPostType 237

Header files
in Installed contents 5
Location 6

height
in IccTerminal class 250

Hello World
commentary 9
Compile and link 10
Expected Output from "Hello

World" 11
running 10

Highlight
in Enumerations 262
in IccTerminal class 262

highlight (parameter)
in operator« 251
in setHighlight 258

hold
in LoadOpt 176

hours
in IccAbsTime class 82
in IccTime class 269

hours (parameter)
in Constructor 269, 273, 275
in set 274, 276

I
Icc

in Foundation Classes—reference 67
in Method level 55
in Overview of the foundation

classes 17
Icc structure

Bool 71
BoolSet 71
boolText 69
catchException 69
ClassMemoryMgmt 72

324 CICS TS for z/OS 4.2: C++ OO Class Libraries

Icc structure (continued)
conditionText 69
FamilySubset 72
GetOpt 72
initializeEnvironment 70
isClassMemoryMgmtOn 70
isEDFOn 70
isFamilySubsetEnforcementOn 70
Platforms 72
returnToCICS 70
setEDF 71
unknownException 71

Icc::initializeEnvironment
in Storage management 61

ICC$BUF 6
ICC$BUF (IBUF)

in Output from sample
programs 305

ICC$CLK 6
ICC$CLK (ICLK)

in Output from sample
programs 305

ICC$DAT (IDAT)
in Output from sample

programs 305
ICC$EXC1 (IEX1)

in Output from sample
programs 306

ICC$EXC2 (IEX2)
in Output from sample

programs 306
ICC$EXC3 (IEX3)

in Output from sample
programs 306

ICC$FIL (IFIL)
in Output from sample

programs 306
ICC$HEL 6
ICC$HEL (IHEL)

in Output from sample
programs 306

ICC$JRN (IJRN)
in Output from sample

programs 307
ICC$PRG1 (IPR1)

First Screen 307
in Output from sample

programs 307
Second Screen 307

ICC$RES1 (IRS1)
in Output from sample

programs 307
ICC$RES2 (IRS2)

in Output from sample
programs 308

ICC$SEM (ISEM)
in Output from sample

programs 308
ICC$SES1 6
ICC$SES1 (ISE1)

in Output from sample
programs 308

ICC$SES2 6
in Output from sample

programs 309

ICC$SRQ1 (ISR1)
in Output from sample

programs 309
ICC$SRQ2 (ISR2)

in Output from sample
programs 309

ICC$SYS (ISYS)
in Output from sample

programs 310
ICC$TMP (ITMP)

in Output from sample
programs 310

ICC$TRM (ITRM)
in Output from sample

programs 310
ICC$TSK (ITSK)

in Output from sample programs 311
IccAbendData

in Singleton classes 22
IccAbendData class

abendCode 75
ASRAInterrupt 76
ASRAKeyType 76
ASRAPSW 76
ASRARegisters 77
ASRASpaceType 77
ASRAStorageType 78
Constructor 75
instance 78
isDumpAvailable 78
originalAbendCode 78
programName 78

IccAbendData constructor (protected)
Constructor 75
in IccAbendData class 75

IccAbsTime
in Base classes 18
in delay 228
in IccTime class 269
in Support Classes 21
in Time and date services 45

IccAbsTime class
Constructor 81
date 81
dayOfMonth 82
dayOfWeek 82
daysSince1900 82
hours 82
milliSeconds 82
minutes 82
monthOfYear 82
operator= 83
packedDecimal 83
seconds 83
time 83
timeInHours 83
timeInMinutes 83
timeInSeconds 84
year 84

IccAbsTime constructor
Constructor 81
in IccAbsTime class 81

IccAbsTime,
in Support Classes 21

IccAlarmRequestId
in IccAlarmRequestId class 85

IccAlarmRequestId class
Constructor 85
isExpired 86
operator= 86
setTimerECA 86
timerECA 86

IccAlarmRequestId constructors
Constructor 85
in IccAlarmRequestId class 85

IccBase
in Base classes 17
in Foundation Classes—reference 67
in IccAbendData class 75
in IccAbsTime class 81
in IccAlarmRequestId class 85
in IccBase class 89
in IccBuf class 93
in IccClock class 103
in IccConsole class 111
in IccControl class 115
in IccConvId class 121
in IccDataQueue class 123
in IccDataQueueId class 127
in IccEvent class 129
in IccException class 131
in IccFile class 135
in IccFileId class 147
in IccFileIterator class 149
in IccGroupId class 153
in IccJournal class 155
in IccJournalId class 159
in IccJournalTypeId class 161
in IccKey class 163
in IccLockId class 167
in IccMessage class 169
in IccPartnerId class 171
in IccProgram class 173
in IccProgramId class 177
in IccRBA class 179
in IccRecordIndex class 181
in IccRequestId class 183
in IccResource class 185
in IccResourceId class 193
in IccRRN class 195
in IccSemaphore class 197
in IccSession class 201
in IccStartRequestQ class 213
in IccSysId class 219
in IccSystem class 221
in IccTask class 227
in IccTempStore class 239
in IccTempStoreId class 245
in IccTermId class 247
in IccTerminal class 249
in IccTerminalData class 263
in IccTime class 269
in IccTimeInterval class 273
in IccTimeOfDay class 275
in IccTPNameId class 277
in IccTransId class 279
in IccUser class 281
in IccUserId class 285
in Resource classes 19
in Resource identification classes 18
in Storage management 61
in Support Classes 20

Index 325

IccBase class
className 89
classType 89
ClassType 91
Constructor 89
customClassNum 90
NameOpt 91
operator delete 90
operator new 90
overview 17
setClassName 90
setCustomClassNum 90

IccBase constructor (protected)
Constructor 89
in IccBase class 89

IccBuf
in Buffer objects 25
in C++ Exceptions and the Foundation

Classes 51
in Data area extensibility 25
in Data area ownership 25
in Example of file control 33
in Example of managing transient

data 40
in Example of polymorphic

behavior 58
in Example of starting

transactions 37, 38, 39
in Example of Temporary Storage 43
in Example of terminal control 44
in IccBuf class 25, 93
in IccBuf constructors 26
in IccBuf methods 27
in Reading data 39
in Reading items 41
in Scope of data in IccBuf reference

returned from 'read' methods 65
in Support Classes 21
in Working with IccResource

subclasses 27, 28
IccBuf class

append 94
assign 95
Constructor 93, 94
constructors 26
cut 95
data area extensibility 25
Data area extensibility 25
data area ownership 25
Data area ownership 25
dataArea 95
dataAreaLength 95
dataAreaOwner 96
DataAreaOwner 101
dataAreaType 96
DataAreaType 101
dataLength 96
IccBuf constructors 26
IccBuf methods 27
in Buffer objects 25
insert 96
isFMHContained 96
methods 27
operator const char* 96
operator!= 98
operator« 98, 99
operator+= 97

IccBuf class (continued)
operator= 97
operator== 97
overlay 100
replace 100
setDataLength 100
setFMHContained 100
Working with IccResource

subclasses 27
IccBuf constructors 26

Constructor 93, 94
in Buffer objects 26
in IccBuf class 26, 93

IccBuf methods 27
in Buffer objects 27
in IccBuf class 27

IccBuf reference 65
IccClock

in Example of time and date
services 45, 46

in IccAlarmRequestId class 85
in IccClock class 103
in Time and date services 45

IccClock class
absTime 103
cancelAlarm 103
Constructor 103
date 104
DateFormat 107
dayOfMonth 104
dayOfWeek 104
DayOfWeek 107
daysSince1900 104
milliSeconds 105
monthOfYear 105
MonthOfYear 107
setAlarm 105
time 105
update 106
UpdateMode 107
year 106

IccClock constructor
Constructor 103
in IccClock class 103

IccCondition
in C++ Exceptions and the Foundation

Classes 51
IccCondition structure

Codes 109
Range 110

IccConsole
in Buffer objects 25
in Object level 54, 55
in Singleton classes 22

IccConsole class
Constructor 111
instance 111
overview 22
put 111
replyTimeout 111
resetRouteCodes 112
setAllRouteCodes 112
setReplyTimeout 112
setRouteCodes 112
SeverityOpt 114
write 113
writeAndGetReply 113

IccConsole constructor (protected)
Constructor 111
in IccConsole class 111

IccControl
in Base classes 17
in Example of starting

transactions 37, 38
in Hello World 9
in IccControl class 115
in IccProgram class 173
in main function 289, 290
in Mapping EXEC CICS calls to

Foundation Class methods 293
in Method level 55
in Singleton classes 22
in Support Classes 21

IccControl class
callingProgramId 115
cancelAbendHandler 115
commArea 116
console 116
Constructor 115
initData 116
instance 116
isCreated 116
overview 17, 22
programId 116
resetAbendHandler 117
returnProgramId 117
run 117
session 117
setAbendHandler 117
startRequestQ 118
system 118
task 118
terminal 118

IccControl constructor (protected)
Constructor 115
in IccControl class 115

IccControl::run
in Mapping EXEC CICS calls to

Foundation Class methods 293
IccConvId

in IccConvId class 121
IccConvId class

Constructor 121
operator= 121

IccConvId constructors
Constructor 121
in IccConvId class 121

IccDataQueue
in Buffer objects 25
in Example of managing transient

data 40
in Example of polymorphic

behavior 58
in Resource classes 19
in Temporary storage 41
in Transient Data 39
in Working with IccResource

subclasses 28
in Writing data 40

IccDataQueue class
clear 123
Constructor 123
empty 123
get 124

326 CICS TS for z/OS 4.2: C++ OO Class Libraries

IccDataQueue class (continued)
put 124
readItem 124
writeItem 124

IccDataQueue constructors
Constructor 123
in IccDataQueue class 123

IccDataQueueId
in Example of managing transient

data 40
in IccDataQueueId class 127
in Transient Data 39

IccDataQueueId class
Constructor 127
operator= 127

IccDataQueueId constructors
Constructor 127
in IccDataQueueId class 127

IccEvent
in IccEvent class 129
in Support Classes 21

IccEvent class
className 129
classType 129
condition 129
conditionText 130
Constructor 129
methodName 130
summary 130

IccEvent constructor
Constructor 129
in IccEvent class 129

IccException
in C++ Exceptions and the Foundation

Classes 50, 51
in IccException class 131
in IccMessage class 169
in main function 290
in Method level 55
in Object level 55
in Parameter level 55, 56
in Support Classes 21

IccException class
CICSCondition type 51
className 132
classType 132
Constructor 131
familyConformanceError type 51
internalError type 51
invalidArgument type 50
invalidMethodCall type 51
message 132
methodName 132
number 132
objectCreationError type 50
summary 132
type 133
Type 133
typeText 133

IccException constructor
Constructor 131
in IccException class 131

ICCFCC 7
ICCFCCL 6, 7
ICCFCDLL 6
ICCFCGL 7
ICCFCIMP 7

ICCFCL 7
IccFile

in Browsing records 32
in Buffer objects 25
in C++ Exceptions and the Foundation

Classes 51
in Deleting locked records 32
in Deleting normal records 31
in Example of file control 32
in File control 29
in IccFile class 135
in IccFileIterator class 149
in Reading ESDS records 30
in Reading KSDS records 30
in Reading records 29
in Reading RRDS records 30
in Resource identification classes 18
in Singleton classes 22
in Updating records 31
in Writing ESDS records 31
in Writing KSDS records 31
in Writing records 30
in Writing RRDS records 31

IccFile class
access 136
Access 144
accessMethod 136
beginInsert(VSAM only) 136
Constructor 135
deleteLockedRecord 32, 136
deleteRecord 137
deleteRecord method 31
enableStatus 137
endInsert(VSAM only) 137
isAddable 137
isBrowsable 138
isDeletable 138
isEmptyOnOpen 138
isReadable 138
isReadable method 30
isRecoverable 139
isUpdatable 139
keyLength 139
keyLength method 30
keyPosition 139
keyPosition method 30
openStatus 140
ReadMode 145
readRecord 140
readRecord method 29
recordFormat 140
recordFormat method 30
recordIndex 141
recordIndex method 30
recordLength 141
recordLength method 30
registerRecordIndex 30, 141
registerRecordIndex method 30
rewriteRecord 141
rewriteRecord method 31
SearchCriterion 145
setAccess 142
setEmptyOnOpen 142
setStatus 142
Status 145
type 143
unlockRecord 143

IccFile class (continued)
writeRecord 143
writeRecord method 30

IccFile constructors
Constructor 135
in IccFile class 135

IccFile::readRecord
in Scope of data in IccBuf reference

returned from 'read' methods 65
IccFileId

in Base classes 17
in File control 29
in IccFileId class 147
in Resource identification classes 18

IccFileId class
Constructor 147
operator= 147
overview 17, 29
reading records 29

IccFileId constructors
Constructor 147
in IccFileId class 147

IccFileIterator
in Browsing records 32
in Buffer objects 25
in Example of file control 32, 33
in File control 29
in IccFileIterator class 149

IccFileIterator class
Constructor 149
overview 29
readNextRecord 149
readNextRecord method 32
readPreviousRecord 32, 150
reset 150

IccFileIterator constructor
Constructor 149
in IccFileIterator class 149

IccGroupId
in IccGroupId class 153

IccGroupId class
Constructor 153
operator= 153

IccGroupId constructors
Constructor 153
in IccGroupId class 153

IccJournal
in Buffer objects 25
in IccJournal class 155
in Object level 54, 55

IccJournal class
clearPrefix 156
Constructor 155
journalTypeId 156
Options 158
put 156
registerPrefix 156
setJournalTypeId 156
setPrefix 156
wait 157
writeRecord 157

IccJournal constructors
Constructor 155
in IccJournal class 155

IccJournalId
in IccJournalId class 159

Index 327

IccJournalId class
Constructor 159
number 159
operator= 159, 160

IccJournalId constructors
Constructor 159
in IccJournalId class 159

IccJournalTypeId
in Foundation Classes—reference 67
in IccJournalTypeId class 161

IccJournalTypeId class
Constructor 161
operator= 161

IccJournalTypeId constructors
Constructor 161
in IccJournalTypeId class 161

IccKey
in Browsing records 32
in Deleting normal records 31
in File control 29
in IccKey class 163
in IccRecordIndex class 181
in Reading KSDS records 30
in Reading records 29
in Writing KSDS records 30
in Writing records 30

IccKey class 30
assign 163
completeLength 164
Constructor 163
kind 164
Kind 166
operator!= 164, 165
operator= 164
operator== 164
reading records 29
setKind 165
value 165

IccKey constructors
Constructor 163
in IccKey class 163

IccLockId
in IccLockId class 167

IccLockId class
Constructor 167
operator= 167

IccLockId constructors
Constructor 167
in IccLockId class 167

IccMessage
in IccMessage class 169
in Support Classes 21

IccMessage class
className 169
Constructor 169
methodName 169
number 170
summary 170
text 170

IccMessage constructor
Constructor 169
in IccMessage class 169

IccPartnerId
in IccPartnerId class 171

IccPartnerId class
Constructor 171
operator= 171

IccPartnerId constructors
Constructor 171
in IccPartnerId class 171

IccProgram
in Buffer objects 25
in IccProgram class 173
in Program control 34
in Resource classes 19

IccProgram class
address 173
clearInputMessage 174
CommitOpt 176
Constructor 173
entryPoint 174
length 174
link 174
load 175
LoadOpt 176
program control 34
setInputMessage 175
unload 175

IccProgram constructors
Constructor 173
in IccProgram class 173

IccProgramId
in IccProgramId class 177
in Resource identification classes 18

IccProgramId class
Constructor 177
operator= 177

IccProgramId constructors
Constructor 177
in IccProgramId class 177

IccRBA
in Browsing records 32
in File control 29
in IccRBA class 179
in IccRecordIndex class 181
in Reading ESDS records 30
in Reading records 29
in Writing ESDS records 31
in Writing records 30
in Writing RRDS records 31

IccRBA class
Constructor 179
number 180
operator!= 180
operator= 179
operator== 179, 180
reading records 29

IccRBA constructor
Constructor 179
in IccRBA class 179

IccRecordIndex
in C++ Exceptions and the Foundation

Classes 51
in IccRecordIndex class 181

IccRecordIndex class
Constructor 181
length 181
type 181
Type 182

IccRecordIndex constructor (protected)
Constructor 181
in IccRecordIndex class 181

IccRequestId
in Example of starting

transactions 37, 38
in IccRequestId class 183
in Parameter passing conventions 63

IccRequestId class
Constructor 183
operator= 183, 184

IccRequestId constructors
Constructor 183
in IccRequestId class 183

IccResource
in Base classes 17
in Example of polymorphic

behavior 58
in IccResource class 185
in Polymorphic Behavior 57, 58
in Resource classes 19
in Scope of data in IccBuf reference

returned from 'read' methods 65
IccResource class

actionOnCondition 185
ActionOnCondition 190
actionOnConditionAsChar 185
actionsOnConditionsText 186
clear 186
condition 186
conditionText 187
ConditionType 191
Constructor 185
get 187
handleEvent 187
HandleEventReturnOpt 190
id 187
isEDFOn 187
isRouteOptionOn 187
name 188
overview 17
put 188
routeOption 188
setActionOnAnyCondition 188
setActionOnCondition 188
setActionsOnConditions 189
setEDF 189
setRouteOption 189, 190
working with subclasses 27

IccResource constructor (protected)
Constructor 185
in IccResource class 185

IccResourceId
in Base classes 17
in C++ Exceptions and the Foundation

Classes 51
in Resource identification classes 18

IccResourceId class
Constructor 193
name 193
nameLength 193
operator= 194
overview 17, 18

IccResourceId constructors (protected)
Constructor 193
in IccResourceId class 193

IccRRN
in Browsing records 32
in Deleting normal records 31
in File control 29

328 CICS TS for z/OS 4.2: C++ OO Class Libraries

IccRRN (continued)
in IccRecordIndex class 181
in IccRRN class 195
in Reading records 29
in Reading RRDS records 30
in Writing records 30

IccRRN class
Constructor 195
number 196
operator!= 196
operator= 195
operator== 195, 196
reading records 29

IccRRN constructors
Constructor 195
in IccRRN class 195

IccSemaphore class
Constructor 197
lifeTime 198
LifeTime 199
lock 198
LockType 199
tryLock 198
type 198
unlock 198

IccSemaphore constructor
Constructor 197
in IccSemaphore class 197

IccSession
in Buffer objects 25

IccSession class
allocate 202
AllocateOpt 210
connectProcess 202, 203
Constructor 201, 202
converse 203
convId 203
errorCode 204
extractProcess 204
flush 204
free 204
get 204
isErrorSet 204
isNoDataSet 205
isSignalSet 205
issueAbend 205
issueConfirmation 205
issueError 205
issuePrepare 206
issueSignal 206
PIPList 206
process 206
put 206
receive 206
send 207
sendInvite 207
sendLast 208
SendOpt 210
state 209
StateOpt 210
stateText 209
syncLevel 209
SyncLevel 211

IccSession constructor (protected)
Constructor 202
in IccSession class 202

IccSession constructors (public)
Constructor 201
in IccSession class 201

IccStartRequestQ
in Accessing start data 36
in Buffer objects 25
in Example of starting

transactions 37, 38
in IccRequestId class 183
in IccStartRequestQ class 213
in Mapping EXEC CICS calls to

Foundation Class methods 293
in Parameter passing conventions 63
in Singleton classes 22
in Starting transactions

asynchronously 36
IccStartRequestQ class

cancel 213
CheckOpt 218
clearData 214
Constructor 213
data 214
instance 214
overview 22
ProtectOpt 218
queueName 214
registerData 214
reset 214
retrieveData 215
RetrieveOpt 218
returnTermId 215
returnTransId 215
setData 215
setQueueName 216
setReturnTermId 216
setReturnTransId 216
setStartOpts 216
start 217

IccStartRequestQ constructor (protected)
Constructor 213
in IccStartRequestQ class 213

IccSysId
in IccSysId class 219
in Program control 34

IccSysId class
Constructor 219
operator= 219

IccSysId constructors
Constructor 219
in IccSysId class 219

IccSystem
in Singleton classes 22

IccSystem class
applName 221
beginBrowse 221, 222
Constructor 221
dateFormat 222
endBrowse 222
freeStorage 222
getFile 222, 223
getNextFile 223
getStorage 223
instance 224
operatingSystem 224
operatingSystemLevel 224
overview 22
release 224

IccSystem class (continued)
releaseText 224
ResourceType 226
sysId 225
workArea 225

IccSystem constructor (protected)
Constructor 221
in IccSystem class 221

IccTask
in C++ Exceptions and the Foundation

Classes 50
in Example of starting

transactions 38
in IccAlarmRequestId class 85
in IccTask class 227
in Parameter level 55
in Singleton classes 22
in Support Classes 21

IccTask class
abend 227
abendData 227
AbendDumpOpt 235
AbendHandlerOpt 235
commitUOW 228
Constructor 227
delay 228
dump 228
DumpOpts 236
enterTrace 229
facilityType 229
FacilityType 236
freeStorage 229
getStorage 230
instance 230
isCommandSecurityOn 230
isCommitSupported 230
isResourceSecurityOn 231
isRestarted 231
isStartDataAvailable 231
number 231
overview 22
principalSysId 231
priority 232
rollBackUOW 232
setDumpOpts 232
setPriority 232
setWaitText 232
startType 233
StartType 236
StorageOpts 237
suspend 233
TraceOpt 237
transId 233
triggerDataQueueId 233
userId 233
waitExternal 234
waitOnAlarm 234
WaitPostType 237
WaitPurgeability 237
workArea 234

IccTask Constructor (protected)
Constructor 227
in IccTask class 227

IccTask::commitUOW
in Scope of data in IccBuf reference

returned from 'read' methods 65

Index 329

IccTempstore
in Working with IccResource

subclasses 27
IccTempStore

in Automatic condition handling
(callHandleEvent) 52

in Buffer objects 25
in C++ Exceptions and the Foundation

Classes 51
in Deleting items 42
in Example of polymorphic

behavior 58
in Example of Temporary Storage 42
in IccTempStore class 239
in Reading items 41
in Resource classes 19
in Temporary storage 41
in Transient Data 39
in Updating items 42
in Working with IccResource

subclasses 27
in Writing items 41

IccTempStore class
clear 240
Constructor 239
empty 240
get 240
Location 243
NoSpaceOpt 243
numberOfItems 240
put 240
readItem 240
readNextItem 241
rewriteItem 241
writeItem 241, 242

IccTempStore constructors
Constructor 239
in IccTempStore class 239

IccTempStore::readItem
in Scope of data in IccBuf reference

returned from 'read' methods 65
IccTempStore::readNextItem

in Scope of data in IccBuf reference
returned from 'read' methods 65

IccTempStoreId
in Base classes 17
in Example of Temporary Storage 42
in IccTempStoreId class 245
in Temporary storage 41

IccTempStoreId class
Constructor 245
operator= 245

IccTempStoreId constructors
Constructor 245
in IccTempStoreId class 245

IccTermId
in Base classes 17
in C++ Exceptions and the Foundation

Classes 51
in Example of starting

transactions 37
in Example of terminal control 44
in IccTermId class 247
in Terminal control 43

IccTermId class
Constructor 247
operator= 247

IccTermId class (continued)
overview 17

IccTermId constructors
Constructor 247
in IccTermId class 247

IccTerminal
in Buffer objects 25
in Example of terminal control 44
in Finding out information about a

terminal 44
in IccTerminalData class 263
in Receiving data from a terminal 44
in Resource classes 19
in Singleton classes 22
in Terminal control 43

IccTerminal class
AID 249
AIDVal 261
Case 261
clear 249
Color 261
Constructor 249
cursor 249
data 250
erase 250
freeKeyboard 250
get 250
height 250
Highlight 262
inputCursor 251
instance 251
line 251
netName 251
NextTransIdOpt 262
operator« 251, 252, 253
put 253
receive 253
receive3270Data 254
registerInputMessage 175
send 254, 255
send3270Data 255, 256
sendLine 256, 257
setColor 257
setCursor 257
setHighlight 258
setLine 258
setNewLine 258
setNextCommArea 258
setNextInputMessage 258
setNextTransId 259
signoff 259
signon 259
waitForAID 260
width 260
workArea 260

IccTerminal constructor (protected)
Constructor 249
in IccTerminal class 249

IccTerminal::receive
in Scope of data in IccBuf reference

returned from 'read' methods 65
IccTerminalData

in Example of terminal control 44
in Finding out information about a

terminal 44
in IccTerminalData class 263
in Terminal control 43

IccTerminalData class
alternateHeight 263
alternateWidth 263
Constructor 263
defaultHeight 264
defaultWidth 264
graphicCharCodeSet 264
graphicCharSetId 264
isAPLKeyboard 264
isAPLText 265
isBTrans 265
isColor 265
isEWA 265
isExtended3270 265
isFieldOutline 266
isGoodMorning 266
isHighlight 266
isKatakana 266
isMSRControl 266
isPS 267
isSOSI 267
isTextKeyboard 267
isTextPrint 267
isValidation 267

IccTerminalData constructor (protected)
Constructor 263
in IccTerminalData class 263

IccTime
in Base classes 18
in IccTime class 269
in Parameter passing conventions 63
in Support Classes 21

IccTime class
Constructor 269
hours 269
minutes 269
overview 18
seconds 269
timeInHours 270
timeInMinutes 270
timeInSeconds 270
type 270
Type 271

IccTime constructor (protected)
Constructor 269
in IccTime class 269

IccTimeInterval
in Base classes 18
in delay 228
in Example of starting

transactions 37, 38
in IccTime class 269
in Support Classes 21

IccTimeInterval class
Constructor 273
operator= 273
set 273

IccTimeInterval constructors
Constructor 273
in IccTimeInterval class 273

IccTimeOfDay
in Base classes 18
in delay 228
in IccTime class 269
in Support Classes 21

IccTimeOfDay class
Constructor 275

330 CICS TS for z/OS 4.2: C++ OO Class Libraries

IccTimeOfDay class (continued)
operator= 275
set 275

IccTimeOfDay constructors
Constructor 275
in IccTimeOfDay class 275

IccTPNameId
in IccTPNameId class 277

IccTPNameId class
Constructor 277
operator= 277

IccTPNameId constructors
Constructor 277
in IccTPNameId class 277

IccTransId
in Base classes 17
in Example of starting

transactions 37
in IccResourceId class 193
in IccTransId class 279
in Parameter passing conventions 63

IccTransId class
Constructor 279
operator= 279
overview 17

IccTransId constructors
Constructor 279
in IccTransId class 279

IccUser class
changePassword 281
Constructor 281
daysUntilPasswordExpires 282
ESMReason 282
ESMResponse 282
groupId 282
invalidPasswordAttempts 282
language 282
lastPasswordChange 283
lastUseTime 283
passwordExpiration 283
setLanguage 283
verifyPassword 283

IccUser constructors
Constructor 281
in IccUser class 281

IccUserControl
in C++ Exceptions and the Foundation

Classes 50
in Example of file control 32
in Example of managing transient

data 40
in Example of polymorphic

behavior 58
in Example of starting

transactions 37
in Example of Temporary Storage 42
in Example of terminal control 44
in Example of time and date

services 46
in Hello World 9
in main function 289
in Program control 34
in Singleton classes 22

IccUserControl class 9
IccUserId

in IccUserId class 285

IccUserId class
Constructor 285
operator= 285

IccUserId constructors
Constructor 285
in IccUserId class 285

IccValue
in Foundation Classes—reference 67

IccValue structure
CVDA 289

id
in IccResource class 187

Id
in Resource identification classes 18

id (parameter)
in Constructor 85, 123, 127, 135, 147,

153, 155, 159, 161, 167, 171, 173, 177,
183, 193, 197, 201, 219, 239, 245, 247,
277, 279, 281, 285

in getFile 223
in operator= 86, 122, 127, 147, 153,

160, 161, 167, 171, 177, 183, 194, 219,
245, 247, 277, 279, 285

in setJournalTypeId 156
in signon 259
in waitOnAlarm 234

ifSOSReturnCondition
in StorageOpts 237

ignoreAbendHandler
in AbendHandlerOpt 235

immediate
in NextTransIdOpt 262

index (parameter)
in Constructor 135, 149
in registerRecordIndex 141
in reset 150

Inherited protected methods
in IccAbendData class 79
in IccAbsTime class 84
in IccAlarmRequestId class 87
in IccBuf class 101
in IccClock class 106
in IccConsole class 114
in IccControl class 119
in IccConvId class 122
in IccDataQueue class 125
in IccDataQueueId class 128
in IccEvent class 130
in IccException class 133
in IccFile class 144
in IccFileId class 148
in IccFileIterator class 151
in IccGroupId class 154
in IccJournal class 158
in IccJournalId class 160
in IccJournalTypeId class 162
in IccKey class 165
in IccLockId class 168
in IccMessage class 170
in IccPartnerId class 172
in IccProgram class 176
in IccProgramId class 178
in IccRBA class 180
in IccRecordIndex class 182
in IccRequestId class 184
in IccResource class 190
in IccResourceId class 194

Inherited protected methods (continued)
in IccRRN class 196
in IccSemaphore class 199
in IccSession class 210
in IccStartRequestQ class 218
in IccSysId class 220
in IccSystem class 225
in IccTask class 235
in IccTempStore class 242
in IccTempStoreId class 246
in IccTermId class 248
in IccTerminal class 261
in IccTerminalData class 268
in IccTime class 271
in IccTimeInterval class 274
in IccTimeOfDay class 276
in IccTPNameId class 278
in IccTransId class 280
in IccUser class 284
in IccUserId class 286

Inherited public methods
in IccAbendData class 79
in IccAbsTime class 84
in IccAlarmRequestId class 86
in IccBuf class 101
in IccClock class 106
in IccConsole class 113
in IccControl class 118
in IccConvId class 122
in IccDataQueue class 125
in IccDataQueueId class 128
in IccEvent class 130
in IccException class 133
in IccFile class 144
in IccFileId class 148
in IccFileIterator class 150
in IccGroupId class 154
in IccJournal class 157
in IccJournalId class 160
in IccJournalTypeId class 162
in IccKey class 165
in IccLockId class 168
in IccMessage class 170
in IccPartnerId class 172
in IccProgram class 175
in IccProgramId class 178
in IccRBA class 180
in IccRecordIndex class 182
in IccRequestId class 184
in IccResource class 190
in IccResourceId class 194
in IccRRN class 196
in IccSemaphore class 198
in IccSession class 209
in IccStartRequestQ class 217
in IccSysId class 220
in IccSystem class 225
in IccTask class 235
in IccTempStore class 242
in IccTempStoreId class 246
in IccTermId class 248
in IccTerminal class 261
in IccTerminalData class 268
in IccTime class 270
in IccTimeInterval class 274
in IccTimeOfDay class 276
in IccTPNameId class 278

Index 331

Inherited public methods (continued)
in IccTransId class 280
in IccUser class 283
in IccUserId class 286

initByte (parameter)
in getStorage 223, 230

initData
in IccControl class 116
in Public methods 116

initializeEnvironment
in Functions 70
in Icc structure 70
in Method level 55
in Storage management 61

initRBA (parameter)
in Constructor 179

initRRN (parameter)
in Constructor 195

initValue (parameter)
in Constructor 163

inputCursor
in IccTerminal class 251

insert
in Example of Temporary Storage 43
in IccBuf class 96
in IccBuf constructors 26

Installed contents
Location 6

instance
in IccAbendData class 78
in IccConsole class 111
in IccControl class 116
in IccStartRequestQ class 214
in IccSystem class 224
in IccTask class 230
in IccTerminal class 251
in Singleton classes 22

internal
in DataAreaOwner 101

internalError
in C++ Exceptions and the Foundation

Classes 51
in Type 134

interval (parameter)
in setReplyTimeout 112

invalidArgument
in C++ Exceptions and the Foundation

Classes 50
in Type 133

invalidMethodCall
in C++ Exceptions and the Foundation

Classes 51
in Type 134

invalidPasswordAttempts
in IccUser class 282

isAddable
in IccFile class 137
in Writing ESDS records 31
in Writing KSDS records 31
in Writing RRDS records 31

isAPLKeyboard
in IccTerminalData class 264
in Public methods 264

isAPLText
in IccTerminalData class 265
in Public methods 265

isBrowsable
in IccFile class 138

isBTrans
in IccTerminalData class 265

isClassMemoryMgmtOn
in Functions 70
in Icc structure 70

isColor
in IccTerminalData class 265

isCommandSecurityOn
in IccTask class 230

isCommitSupported
in IccTask class 230

isCreated
in IccControl class 116

isDeletable
in IccFile class 138

isDumpAvailable
in IccAbendData class 78

isEDFOn
in Functions 70
in Icc structure 70
in IccResource class 187

isEmptyOnOpen
in IccFile class 138

isErrorSet
in IccSession class 204

isEWA
in IccTerminalData class 265

isExpired
in IccAlarmRequestId class 86

isExtended3270
in IccTerminalData class 265
in Public methods 265

isFamilySubsetEnforcementOn
in Functions 70
in Icc structure 70

isFieldOutline
in IccTerminalData class 266
in Public methods 266

isFMHContained
in IccBuf class 96
in Public methods 96

isGoodMorning
in IccTerminalData class 266
in Public methods 266

isHighlight
in IccTerminalData class 266

isKatakana
in IccTerminalData class 266

isMSRControl
in IccTerminalData class 266

isNoDataSet
in IccSession class 205

isPS
in IccTerminalData class 267

ISR2
in Example of starting

transactions 37
isReadable

in IccFile class 138
in Reading ESDS records 30
in Reading KSDS records 30
in Reading RRDS records 30

isReadable method 30
isRecoverable

in IccFile class 139

isResourceSecurityOn
in IccTask class 231

isRestarted
in IccTask class 231

isRouteOptionOn
in IccResource class 187
in Public methods 187

isSignalSet
in IccSession class 205

isSOSI
in IccTerminalData class 267

isStartDataAvailable
in IccTask class 231

issueAbend
in IccSession class 205

issueConfirmation
in IccSession class 205

issueError
in IccSession class 205

issuePrepare
in IccSession class 206

issueSignal
in IccSession class 206

isTextKeyboard
in IccTerminalData class 267
in Public methods 267

isTextPrint
in IccTerminalData class 267
in Public methods 267

isUpdatable
in IccFile class 139

isValidation
in IccTerminalData class 267

item (parameter)
in rewriteItem 241
in writeItem 124, 241

itemNum (parameter)
in readItem 240
in rewriteItem 241

ITMP
in Example of starting

transactions 37

J
journalNum (parameter)

in Constructor 155, 159
in operator= 159

journalTypeId
in IccJournal class 156

journalTypeName (parameter)
in Constructor 161
in operator= 161

jtypeid (parameter)
in setJournalTypeId 156

K
key

complete 30
generic 30

key (parameter)
in Constructor 163
in Example of file control 33
in operator!= 165
in operator= 164

332 CICS TS for z/OS 4.2: C++ OO Class Libraries

key (parameter) (continued)
in operator== 164

keyLength
in IccFile class 139
in Reading KSDS records 30
in Writing KSDS records 31

keyLength method 30
keyPosition

in IccFile class 139
in Reading KSDS records 30
in writing KSDS records 31

keyPosition method 30
kind

in IccKey class 164
Kind

in Enumerations 166
in IccKey class 166

kind (parameter)
in Constructor 163
in setKind 165

KSDS
in File control 29

KSDS file 29

L
language

in IccUser class 282
language (parameter)

in setLanguage 283
lastCommand

in StateOpt 210
lastPasswordChange

in IccUser class 283
lastUseTime

in IccUser class 283
length

in IccProgram class 174
in IccRecordIndex class 181

length (parameter)
in append 94
in assign 95, 163
in Constructor 93
in cut 95
in insert 96
in overlay 100
in replace 100
in setDataLength 100

level (parameter)
in connectProcess 202, 203

level0
in SyncLevel 211

level1
in SyncLevel 211

level2
in SyncLevel 211

life (parameter)
in Constructor 197

lifeTime
in IccSemaphore class 198

LifeTime
in Enumerations 199
in IccSemaphore class 199

line
in Finding out information about a

terminal 44
in IccTerminal class 251

lineNum (parameter)
in setLine 258

link
in IccProgram class 174

load
in IccProgram class 175

LoadOpt
in Enumerations 176
in IccProgram class 176

loc (parameter)
in Constructor 239

Location
in Dynamic link library 6
in Enumerations 243
in Header files 6
in IccTempStore class 243
in Installed contents 6
in Sample source code 6

lock
in IccSemaphore class 198

LockType
in Enumerations 199
in IccSemaphore class 199

M
main

in C++ Exceptions and the Foundation
Classes 49

in Example of file control 32
in Example of managing transient

data 40
in Example of polymorphic

behavior 58
in Example of starting

transactions 37
in Example of Temporary Storage 42
in Example of terminal control 44
in Example of time and date

services 45
in Header files 6
in main function 289
in Program control 34
in Storage management 61

main function
in Hello World 9

majorCode
in ConditionType 191

manual
in UpdateMode 107

Manual condition handling (noAction)
in CICS conditions 52
in Conditions, errors, and

exceptions 52
maxValue

in Range 110
mem (parameter)

in initializeEnvironment 70
memory

in Location 243
message

in IccException class 132
message (parameter)

in Constructor 131
in setNextInputMessage 259

method
in Foundation Classes—reference 67

Method level
in Conditions, errors, and

exceptions 55
in Platform differences 55

methodName
in IccEvent class 130
in IccException class 132
in IccMessage class 169

methodName (parameter)
in Constructor 129, 131, 169

milliSeconds
in IccAbsTime class 82
in IccClock class 105

minorCode
in ConditionType 191

minutes
in IccAbsTime class 82
in IccTime class 269

minutes (parameter)
in Constructor 269, 273, 275
in set 274, 276

Miscellaneous
Example of polymorphic behavior 58

mixed
in Case 261

mode (parameter)
in readNextRecord 149
in readPreviousRecord 150
in readRecord 140

monthOfYear
in Example of time and date

services 46
in IccAbsTime class 82
in IccClock class 105

MonthOfYear
in Enumerations 107
in IccClock class 107

msg (parameter)
in clearInputMessage 174
in registerInputMessage 175
in setInputMessage 175

MVS/ESA
in ClassMemoryMgmt 72
in Storage management 61

MVSPost
in WaitPostType 237

MyTempStore
in Automatic condition handling

(callHandleEvent) 53

N
N

in operatingSystem 224
name

in IccResource class 188
in IccResourceId class 193

name (parameter)
in Constructor 85, 167, 219, 245, 247,

277, 279, 285
in operator= 167, 219, 245, 247, 277,

279, 285
in setWaitText 232

nameLength
in IccResourceId class 193

NameOpt
in Enumerations 91

Index 333

NameOpt (continued)
in IccBase class 91

netName
in IccTerminal class 251

neutral
in Color 262

new
in Storage management 61

new operator 15
newPassword (parameter)

in changePassword 281, 282
in signon 259, 260

NextTransIdOpt
in Enumerations 262
in IccTerminal class 262

noAccess
in Access 145

noAction
in ActionOnCondition 190
in CICS conditions 52

noCommitOnReturn
in CommitOpt 176

NONCICS
in ASRAKeyType 76

none
in FacilityType 236

noQueue
in AllocateOpt 210

normal
in ReadMode 145
in SendOpt 210
in TraceOpt 237

NoSpaceOpt
in Enumerations 243
in IccTempStore class 243

noSuspend
in Options 158

notAddable
in Access 144

NOTAPPLIC
in ASRAKeyType 76
in ASRASpaceType 77
in ASRAStorageType 77

notBrowsable
in Access 144

notDeletable
in Access 145

notPurgeable
in WaitPurgeability 237

notReadable
in Access 144

notUpdatable
in Access 145

num (parameter)
in operator!= 180
in operator« 99, 252, 253
in operator= 179, 195
in operator== 180

number
in IccException class 132
in IccJournalId class 159
in IccMessage class 170
in IccRBA class 180
in IccRRN class 196
in IccTask class 231
in Writing RRDS records 31

number (parameter)
in Constructor 169
in setCustomClassNum 90

numberOfItems
in IccTempStore class 240

numEvents (parameter)
in waitExternal 234

numLines (parameter)
in setNewLine 258

numRoutes (parameter)
in setRouteCodes 112

O
obj (parameter)

in Using an object 16
object

creating 15
deleting 16
in GetOpt 72
using 16

object (parameter)
in Constructor 129, 131
in operator delete 90

Object level
in Conditions, errors, and

exceptions 54
in Platform differences 54

objectCreationError
in C++ Exceptions and the Foundation

Classes 50
in Type 133

offset (parameter)
in cut 95
in dataArea 95
in insert 96
in replace 100
in setCursor 257

onOff (parameter)
in setEDF 71, 189

open
in Status 145

openStatus
in IccFile class 140

operatingSystem
in IccSystem class 224
in Public methods 224

operatingSystemLevel
in IccSystem class 224

operator const char*
in IccBuf class 96

operator delete
in IccBase class 90
in Public methods 90

operator new
in IccBase class 90

operator!=
in IccBuf class 98
in IccKey class 164, 165
in IccRBA class 180
in IccRRN class 196
in Public methods 98

operator«
in IccBuf class 98, 99
in IccTerminal class 251, 252, 253
in Working with IccResource

subclasses 28

operator+=
in IccBuf class 97

operator=
in Example of file control 33
in IccAbsTime class 83
in IccAlarmRequestId class 86
in IccBuf class 97
in IccConvId class 121
in IccDataQueueId class 127
in IccFileId class 147
in IccGroupId class 153
in IccJournalId class 159, 160
in IccJournalTypeId class 161
in IccKey class 164
in IccLockId class 167
in IccPartnerId class 171
in IccProgramId class 177
in IccRBA class 179
in IccRequestId class 183, 184
in IccResourceId class 194
in IccRRN class 195
in IccSysId class 219
in IccTempStoreId class 245
in IccTermId class 247
in IccTimeInterval class 273
in IccTimeOfDay class 275
in IccTPNameId class 277
in IccTransId class 279
in IccUserId class 285
in Protected methods 194
in Public methods 83, 273
in Working with IccResource

subclasses 27, 28
operator==

in IccBuf class 97
in IccKey class 164
in IccRBA class 179, 180
in IccRRN class 195, 196

opt (parameter)
in abendCode 75
in access 136
in accessMethod 136
in alternateHeight 263
in alternateWidth 264
in ASRAInterrupt 76
in ASRAKeyType 76
in ASRAPSW 76
in ASRARegisters 77
in ASRASpaceType 77
in ASRAStorageType 78
in className 89, 90
in defaultHeight 264
in defaultWidth 264
in enableStatus 137
in enterTrace 229
in graphicCharCodeSet 264
in graphicCharSetId 264
in height 250
in isAddable 137
in isAPLKeyboard 265
in isAPLText 265
in isBrowsable 138
in isBTrans 265
in isColor 265
in isDeletable 138
in isDumpAvailable 78
in isEmptyOnOpen 138

334 CICS TS for z/OS 4.2: C++ OO Class Libraries

opt (parameter) (continued)
in isEWA 265
in isExtended3270 266
in isFieldOutline 266
in isGoodMorning 266
in isHighlight 266
in isKatakana 266
in isMSRControl 267
in isPS 267
in isReadable 138
in isRecoverable 139
in isSOSI 267
in isTextKeyboard 267
in isTextPrint 267
in isUpdatable 139
in isValidation 268
in keyLength 139
in keyPosition 139
in link 174
in load 175
in openStatus 140
in originalAbendCode 78
in principalSysId 231
in priority 232
in programName 78
in recordFormat 141
in recordLength 141
in rewriteItem 241
in setNextTransId 259
in type 143
in userId 233
in waitExternal 234
in width 260
in write 113
in writeAndGetReply 113
in writeItem 241, 242

opt1 (parameter)
in abend 227

opt2 (parameter)
in abend 227

option (parameter)
in allocate 202
in retrieveData 215
in send 207
in sendInvite 207, 208
in sendLast 208
in state 209
in stateText 209
in wait 157
in writeRecord 157

Options
in Enumerations 158
in IccJournal class 158

options (parameter)
in Constructor 155

opts (parameter)
in setDumpOpts 232

originalAbendCode
in IccAbendData class 78

Other data sets for CICS
in Installed contents 7

Output from sample programs
First Screen 307
Second Screen 307

overlay
in IccBuf class 100

overview of Foundation Classes 17

Overview of the foundation classes
Calling methods on a resource

object 22
Creating a resource object 21

P
PA1 to PA3

in AIDVal 261
packedDecimal

in IccAbsTime class 83
Parameter level

in Conditions, errors, and
exceptions 55

in Platform differences 55
parameter passing 63
Parameter passing conventions

in Miscellaneous 63
partnerName (parameter)

in Constructor 171
in operator= 171

password (parameter)
in changePassword 281
in signon 259, 260
in verifyPassword 283

passwordExpiration
in IccUser class 283

PF1 to PF24
in AIDVal 261

pink
in Color 262

PIP (parameter)
in connectProcess 202, 203

PIPList
in IccSession class 206

platform differences
method level 55
object level 54
parameter level 55

Platform differences
in Conditions, errors, and

exceptions 54
Method level 55
Object level 54
Parameter level 55

platformError
in Type 134

Platforms
in Enumerations 72
in Icc structure 72

polymorphic behavior 57
Polymorphic Behavior

Example of polymorphic behavior 58
in Miscellaneous 57

popt (parameter)
in setStartOpts 216

prefix (parameter)
in registerPrefix 156
in setPrefix 156

pri (parameter)
in setPriority 232

principalSysId
in IccTask class 231
in Public methods 231

print
in Polymorphic Behavior 57

priority
in IccTask class 232
in Public methods 232

process
in IccSession class 206

profile (parameter)
in Constructor 201

progName (parameter)
in Constructor 173, 177
in operator= 177

program control
example 34
introduction 34

Program control
in Using CICS Services 34

programId
in IccControl class 116
in Method level 55
in Public methods 116

programId (parameter)
in setAbendHandler 117

programName
in IccAbendData class 78
in Public methods 78

programName (parameter)
in setAbendHandler 118

Protected methods
in IccBase class 90
in IccResourceId class 194
operator= 194
setClassName 90
setCustomClassNum 90

ProtectOpt
in Enumerations 218
in IccStartRequestQ class 218

pStorage (parameter)
in freeStorage 222

Public methods
abend 227
abendCode 75
abendData 227
absTime 103
access 136
accessMethod 136
actionOnCondition 185
actionOnConditionAsChar 185
actionsOnConditionsText 186
address 173
AID 249
allocate 202
alternateHeight 263
alternateWidth 263
append 94
applName 221
ASRAInterrupt 76
ASRAKeyType 76
ASRAPSW 76
ASRARegisters 77
ASRASpaceType 77
ASRAStorageType 78
assign 95, 163
beginBrowse 221, 222
beginInsert(VSAM only) 136
callingProgramId 115
cancel 213
cancelAbendHandler 115
cancelAlarm 103

Index 335

Public methods (continued)
changePassword 281
className 89, 129, 132, 169
classType 89, 129, 132
clear 123, 186, 240, 249
clearData 214
clearInputMessage 174
clearPrefix 156
commArea 116
commitUOW 228
completeLength 164
condition 129, 186
conditionText 130, 187
connectProcess 202, 203
console 116
converse 203
convId 203
cursor 249
customClassNum 90
cut 95
data 214, 250
dataArea 95
dataAreaLength 95
dataAreaOwner 96
dataAreaType 96
dataLength 96
date 81, 104
dateFormat 222
dayOfMonth 82, 104
dayOfWeek 82, 104
daysSince1900 82, 104
daysUntilPasswordExpires 282
defaultHeight 264
defaultWidth 264
delay 228
deleteLockedRecord 136
deleteRecord 137
dump 228
empty 123, 240
enableStatus 137
endBrowse 222
endInsert(VSAM only) 137
enterTrace 229
entryPoint 174
erase 250
errorCode 204
ESMReason 282
ESMResponse 282
extractProcess 204
facilityType 229
flush 204
free 204
freeKeyboard 250
freeStorage 222, 229
get 124, 187, 204, 240, 250
getFile 222, 223
getNextFile 223
getStorage 223, 230
graphicCharCodeSet 264
graphicCharSetId 264
groupId 282
handleEvent 187
height 250
hours 82, 269
id 187
in IccAbendData class 75
in IccAbsTime class 81

Public methods (continued)
in IccAlarmRequestId class 86
in IccBase class 89
in IccBuf class 94
in IccClock class 103
in IccConsole class 111
in IccControl class 115
in IccConvId class 121
in IccDataQueue class 123
in IccDataQueueId class 127
in IccEvent class 129
in IccException class 132
in IccFile class 135
in IccFileId class 147
in IccFileIterator class 149
in IccGroupId class 153
in IccJournal class 155
in IccJournalId class 159
in IccJournalTypeId class 161
in IccKey class 163
in IccLockId class 167
in IccMessage class 169
in IccPartnerId class 171
in IccProgram class 173
in IccProgramId class 177
in IccRBA class 179
in IccRecordIndex class 181
in IccRequestId class 183
in IccResource class 185
in IccResourceId class 193
in IccRRN class 195
in IccSemaphore class 197
in IccSession class 202
in IccStartRequestQ class 213
in IccSysId class 219
in IccSystem class 221
in IccTask class 227
in IccTempStore class 239
in IccTempStoreId class 245
in IccTermId class 247
in IccTerminal class 249
in IccTerminalData class 263
in IccTime class 269
in IccTimeInterval class 273
in IccTimeOfDay class 275
in IccTPNameId class 277
in IccTransId class 279
in IccUser class 281
in IccUserId class 285
initData 116
inputCursor 251
insert 96
instance 78, 111, 116, 214, 224, 230,

251
invalidPasswordAttempts 282
isAddable 137
isAPLKeyboard 264
isAPLText 265
isBrowsable 138
isBTrans 265
isColor 265
isCommandSecurityOn 230
isCommitSupported 230
isCreated 116
isDeletable 138
isDumpAvailable 78
isEDFOn 187

Public methods (continued)
isEmptyOnOpen 138
isErrorSet 204
isEWA 265
isExpired 86
isExtended3270 265
isFieldOutline 266
isFMHContained 96
isGoodMorning 266
isHighlight 266
isKatakana 266
isMSRControl 266
isNoDataSet 205
isPS 267
isReadable 138
isRecoverable 139
isResourceSecurityOn 231
isRestarted 231
isRouteOptionOn 187
isSignalSet 205
isSOSI 267
isStartDataAvailable 231
issueAbend 205
issueConfirmation 205
issueError 205
issuePrepare 206
issueSignal 206
isTextKeyboard 267
isTextPrint 267
isUpdatable 139
isValidation 267
journalTypeId 156
keyLength 139
keyPosition 139
kind 164
language 282
lastPasswordChange 283
lastUseTime 283
length 174, 181
lifeTime 198
line 251
link 174
load 175
lock 198
message 132
methodName 130, 132, 169
milliSeconds 82, 105
minutes 82, 269
monthOfYear 82, 105
name 188, 193
nameLength 193
netName 251
number 132, 159, 170, 180, 196, 231
numberOfItems 240
openStatus 140
operatingSystem 224
operatingSystemLevel 224
operator const char* 96
operator delete 90
operator new 90
operator!= 98, 164, 165, 180, 196
operator« 98, 99, 251, 252, 253
operator+= 97
operator= 83, 86, 97, 121, 127, 147,

153, 159, 160, 161, 164, 167, 171, 177,
179, 183, 184, 195, 219, 245, 247, 273,
275, 277, 279, 285

336 CICS TS for z/OS 4.2: C++ OO Class Libraries

Public methods (continued)
operator== 97, 164, 179, 180, 195, 196
originalAbendCode 78
overlay 100
packedDecimal 83
passwordExpiration 283
PIPList 206
principalSysId 231
priority 232
process 206
programId 116
programName 78
put 111, 124, 156, 188, 206, 240, 253
queueName 214
readItem 124, 240
readNextItem 241
readNextRecord 149
readPreviousRecord 150
readRecord 140
receive 206, 253
receive3270Data 254
recordFormat 140
recordIndex 141
recordLength 141
registerData 214
registerInputMessage 175
registerPrefix 156
registerRecordIndex 141
release 224
releaseText 224
replace 100
replyTimeout 111
reset 150, 214
resetAbendHandler 117
resetRouteCodes 112
retrieveData 215
returnProgramId 117
returnTermId 215
returnTransId 215
rewriteItem 241
rewriteRecord 141
rollBackUOW 232
routeOption 188
run 117
seconds 83, 269
send 207, 254, 255
send3270Data 255, 256
sendInvite 207
sendLast 208
sendLine 256, 257
session 117
set 273, 275
setAbendHandler 117
setAccess 142
setActionOnAnyCondition 188
setActionOnCondition 188
setActionsOnConditions 189
setAlarm 105
setAllRouteCodes 112
setColor 257
setCursor 257
setData 215
setDataLength 100
setDumpOpts 232
setEDF 189
setEmptyOnOpen 142
setFMHContained 100

Public methods (continued)
setHighlight 258
setInputMessage 175
setJournalTypeId 156
setKind 165
setLanguage 283
setLine 258
setNewLine 258
setNextCommArea 258
setNextInputMessage 258
setNextTransId 259
setPrefix 156
setPriority 232
setQueueName 216
setReplyTimeout 112
setReturnTermId 216
setReturnTransId 216
setRouteCodes 112
setRouteOption 189, 190
setStartOpts 216
setStatus 142
setTimerECA 86
setWaitText 232
signoff 259
signon 259
start 217
startRequestQ 118
startType 233
state 209
stateText 209
summary 130, 132, 170
suspend 233
syncLevel 209
sysId 225
system 118
task 118
terminal 118
text 170
time 83, 105
timeInHours 83, 270
timeInMinutes 83, 270
timeInSeconds 84, 270
timerECA 86
transId 233
triggerDataQueueId 233
tryLock 198
type 133, 143, 181, 198, 270
typeText 133
unload 175
unlock 198
unlockRecord 143
update 106
userId 233
value 165
verifyPassword 283
wait 157
waitExternal 234
waitForAID 260
waitOnAlarm 234
width 260
workArea 225, 234, 260
write 113
writeAndGetReply 113
writeItem 124, 241, 242
writeRecord 143, 157
year 84, 106

purgeable
in WaitPurgeability 237

put
in Example of polymorphic

behavior 59
in IccConsole class 111
in IccDataQueue class 124
in IccJournal class 156
in IccResource class 188
in IccSession class 206
in IccTempStore class 240
in IccTerminal class 253
in Polymorphic Behavior 58

Q
queue

in AllocateOpt 210
in NextTransIdOpt 262

queueName
in Accessing start data 36
in IccStartRequestQ class 214

queueName (parameter)
in Constructor 123, 127
in operator= 127
in setQueueName 216

R
rAbendTask

in HandleEventReturnOpt 191
Range

in Enumerations 110
in IccCondition structure 110

RBA 29
rba (parameter)

in operator!= 180
in operator= 179
in operator== 180

rContinue
in HandleEventReturnOpt 190

readable
in Access 144

reading data 39
Reading data

in Transient Data 39
in Using CICS Services 39

Reading ESDS records
in File control 30
in Reading records 30

reading items 41
Reading items

in Temporary storage 41
in Using CICS Services 41

Reading KSDS records
in File control 30
in Reading records 30

Reading records
in File control 29
in Using CICS Services 29
Reading ESDS records 30
Reading KSDS records 30
Reading RRDS records 30

Reading RRDS records
in File control 30
in Reading records 30

Index 337

readItem
in Example of Temporary Storage 43
in IccDataQueue class 124
in IccTempStore class 240
in Reading data 39
in Reading items 41
in Scope of data in IccBuf reference

returned from 'read' methods 65
in Temporary storage 41
in Transient Data 39
in Working with IccResource

subclasses 27, 28
ReadMode

in Enumerations 145
in IccFile class 145

readNextItem
in IccTempStore class 241
in Scope of data in IccBuf reference

returned from 'read' methods 65
in Temporary storage 41

readNextRecord
in Browsing records 32
in IccFileIterator class 149
in Public methods 149

readNextRecord method 32
READONLY

in ASRAStorageType 77
readPreviousRecord 32

in Browsing records 32
in IccFileIterator class 150

readRecord
in C++ Exceptions and the Foundation

Classes 51
in Deleting locked records 32
in IccFile class 140
in Reading records 29
in Updating records 31

readRecord method 29
receive

in IccSession class 206
in IccTerminal class 253
in Receiving data from a terminal 44

receive3270data
in Receiving data from a terminal 44

receive3270Data
in IccTerminal class 254
in Public methods 254

receiving data from a terminal 44
Receiving data from a terminal

in Terminal control 44
in Using CICS Services 44

record (parameter)
in writeRecord 157

recordFormat
in IccFile class 140
in Reading ESDS records 30
in Reading RRDS records 30
in Writing ESDS records 31
in Writing RRDS records 31

recordFormat method 30
recordIndex

in IccFile class 141
in Reading ESDS records 30
in Reading KSDS records 30
in Reading RRDS records 30
in Writing ESDS records 31
in Writing KSDS records 31

recordIndex (continued)
in Writing RRDS records 31

recordIndex method 30
recordLength

in IccFile class 141
in Reading ESDS records 30
in Reading KSDS records 30
in Reading RRDS records 30
in Writing ESDS records 31
in Writing KSDS records 31
in Writing RRDS records 31

recordLength method 30
red

in Color 262
registerData 214

in Example of starting
transactions 38

in IccStartRequestQ class 214
in Starting transactions 36

registerInputMessage 173
in IccTerminal class 175

registerPrefix
in IccJournal class 156
in Public methods 156

registerRecordIndex 30
in IccFile class 141
in Reading ESDS records 30
in Reading KSDS records 30
in Reading RRDS records 30
in Writing ESDS records 31
in Writing KSDS records 31
in Writing records 30
in Writing RRDS records 31

registerRecordIndex method 30
relative byte address 29
relative record number 29
release

in IccSystem class 224
releaseAtTaskEnd

in LoadOpt 176
releaseText

in IccSystem class 224
remoteTermId

in Example of starting
transactions 37

replace
in IccBuf class 100
in IccBuf constructors 26

replyTimeout
in IccConsole class 111

req
in Example of starting

transactions 38
req1

in Example of starting
transactions 37

req2
in Example of starting

transactions 37
reqestName (parameter)

in operator= 184
reqId (parameter)

in cancel 213
in cancelAlarm 103
in delay 228
in setAlarm 105
in start 217

requestName (parameter)
in Constructor 183
in operator= 86, 184

requestNum (parameter)
in wait 157

reset
in Browsing records 32
in IccFileIterator class 150
in IccStartRequestQ class 214

resetAbendHandler
in IccControl class 117

resetRouteCodes
in IccConsole class 112
in Public methods 112

resId (parameter)
in beginBrowse 221

resName (parameter)
in beginBrowse 222
in Constructor 193

resource (parameter)
in beginBrowse 221, 222
in Constructor 197
in endBrowse 222
in enterTrace 229

resource class 19
Resource classes

in Overview of the foundation
classes 19

resource identification class 18
Resource identification classes

in Overview of the foundation
classes 18

resource object
creating 21

ResourceType
in Enumerations 226
in IccSystem class 226

respectAbendHandler
in AbendHandlerOpt 235

retrieveData
in Accessing start data 36
in IccStartRequestQ class 213, 215
in Mapping EXEC CICS calls to

Foundation Class methods 293
RetrieveOpt

in Enumerations 218
in IccStartRequestQ class 218

return
in Mapping EXEC CICS calls to

Foundation Class methods 293
returnCondition

in NoSpaceOpt 243
returnProgramId

in IccControl class 117
in Public methods 117

returnTermId
in Accessing start data 36
in IccStartRequestQ class 215

returnToCICS
in Functions 70
in Icc structure 70

returnTransId
in Accessing start data 36
in IccStartRequestQ class 215

reverse
in Highlight 262

338 CICS TS for z/OS 4.2: C++ OO Class Libraries

rewriteItem
in Example of Temporary Storage 43
in IccTempStore class 241
in Temporary storage 41
in Updating items 42
in Writing items 41

rewriteRecord
in IccFile class 141
in Updating records 31

rewriteRecord method 31
rewriting records 31
rollBackUOW

in IccTask class 232
routeOption

in IccResource class 188
row (parameter)

in send 254, 255
in setCursor 257

RRDS file
in File control 29

RRN 29
rrn (parameter)

in operator!= 196
in operator= 195
in operator== 196

rThrowException
in HandleEventReturnOpt 190

run
in Base classes 17
in C++ Exceptions and the Foundation

Classes 50
in Example of file control 32, 34
in Example of managing transient

data 40, 41
in Example of polymorphic

behavior 58
in Example of starting

transactions 37
in Example of Temporary Storage 42,

43
in Example of terminal control 44, 45
in Example of time and date

services 46
in Hello World 10
in IccControl class 115, 117
in main function 289, 290
in Mapping EXEC CICS calls to

Foundation Class methods 293
in Program control 34

run method
in Hello World 9

Running "Hello World" on your CICS
server

Expected Output from "Hello
World" 11

in Hello World 10
Running the sample applications. 6

S
sample source 6
Sample source code

in Installed contents 6
Location 6

scope of data 65

Scope of data in IccBuf reference returned
from 'read' methods

in Miscellaneous 65
scope of references 65
search (parameter)

in Constructor 149
in reset 150

SearchCriterion
in Enumerations 145
in IccFile class 145

Second Screen
in ICC$PRG1 (IPR1) 307
in Output from sample

programs 307
seconds

in IccAbsTime class 83
in IccTime class 269

seconds (parameter)
in Constructor 269, 273, 275
in set 274, 276
in setReplyTimeout 112

send
in Example of terminal control 44
in Hello World 10
in IccSession class 207
in IccTerminal class 254, 255

send (parameter)
in converse 203
in put 111
in send 207
in sendInvite 207
in sendLast 208
in write 113
in writeAndGetReply 113

send3270Data
in IccTerminal class 255, 256

sending data to a terminal 43
Sending data to a terminal

in Terminal control 43
in Using CICS Services 43

sendInvite
in IccSession class 207

sendLast
in IccSession class 208

sendLine
in Example of file control 33
in Example of terminal control 44
in IccTerminal class 256, 257

SendOpt
in Enumerations 210
in IccSession class 210

sequential reading of files 32
session

in FacilityType 236
in IccControl class 117

set
in IccTimeInterval class 273
in IccTimeOfDay class 275

set (parameter)
in boolText 69

set...
in Sending data to a terminal 43

setAbendHandler
in IccControl class 117

setAccess
in IccFile class 142

setActionOnAnyCondition
in IccResource class 188

setActionOnCondition
in IccResource class 188

setActionsOnConditions
in IccResource class 189

setAlarm
in IccAlarmRequestId class 85
in IccClock class 105

setAllRouteCodes
in IccConsole class 112

setClassName
in IccBase class 90
in Protected methods 90

setColor
in Example of terminal control 45
in IccTerminal class 257

setCursor
in IccTerminal class 257

setCustomClassNum
in IccBase class 90
in Protected methods 90

setData 214
in IccStartRequestQ class 215
in Starting transactions 36

setDataLength
in IccBuf class 100

setDumpOpts
in IccTask class 232

setEDF
in Functions 71
in Icc structure 71
in IccResource class 189

setEmptyOnOpen
in IccFile class 142
in Public methods 142

setFMHContained
in IccBuf class 100
in Public methods 100

setHighlight
in Example of terminal control 45
in IccTerminal class 258

setInputMessage 173
in IccProgram class 175
in Public methods 175

setJournalTypeId
in IccJournal class 156

setKind
in Example of file control 33
in IccKey class 165

setLanguage
in IccUser class 283

setLine
in IccTerminal class 258

setNewLine
in IccTerminal class 258

setNextCommArea
in IccTerminal class 258
in Public methods 258

setNextInputMessage
in IccTerminal class 258

setNextTransId
in IccTerminal class 259

setPrefix
in IccJournal class 156

setPriority
in IccTask class 232

Index 339

setPriority (continued)
in Public methods 232

setQueueName
in Example of starting

transactions 38
in IccStartRequestQ class 216
in Starting transactions 36

setReplyTimeout
in IccConsole class 112

setReturnTermId
in Example of starting

transactions 38
in IccStartRequestQ class 216
in Starting transactions 36

setReturnTransId
in Example of starting

transactions 38
in IccStartRequestQ class 216
in Starting transactions 36

setRouteCodes
in IccConsole class 112

setRouteOption
in Example of starting

transactions 38, 39
in IccResource class 189, 190
in Program control 35
in Public methods 189, 190

setStartOpts
in IccStartRequestQ class 216

setStatus
in IccFile class 142

setTimerECA
in IccAlarmRequestId class 86

setWaitText
in IccTask class 232

Severe error handling (abendTask)
in CICS conditions 54
in Conditions, errors, and

exceptions 54
SeverityOpt

in Enumerations 114
in IccConsole class 114

signoff
in IccTerminal class 259

signon
in IccTerminal class 259
in Public methods 259

singleton class 22
Singleton classes

in Creating a resource object 22
in Using CICS resources 22

size (parameter)
in getStorage 223, 230
in operator new 90

start
in Example of starting

transactions 38
in IccRequestId class 183
in IccStartRequestQ class 213, 217
in Mapping EXEC CICS calls to

Foundation Class methods 293
in Parameter passing conventions 63
in Starting transactions 36

Starting transactions
in Starting transactions

asynchronously 36
in Using CICS Services 36

starting transactions asynchronously 36
Starting transactions asynchronously

Accessing start data 36
Cancelling unexpired start

requests 36
Example of starting transactions 36
in Using CICS Services 36
Starting transactions 36

startIO
in Options 158

startRequest
in StartType 236

startRequestQ
in Example of starting

transactions 37, 38
in IccControl class 118

startType
in Example of starting

transactions 38
in IccTask class 233

StartType
in Enumerations 236
in IccTask class 236

state
in IccSession class 209

StateOpt
in Enumerations 210
in IccSession class 210

stateText
in IccSession class 209

Status
in Enumerations 145
in IccFile class 145

status (parameter)
in setStatus 142

Storage management
in Miscellaneous 61

StorageOpts
in Enumerations 237
in IccTask class 237

storageOpts (parameter)
in getStorage 223, 230

storeName (parameter)
in Constructor 239

SUBSPACE
in ASRASpaceType 77

summary
in IccEvent class 130
in IccException class 132
in IccMessage class 170

support classes 20
Support Classes

in Overview of the foundation
classes 20

suppressDump
in AbendDumpOpt 235

suspend
in IccTask class 233
in NoSpaceOpt 243

synchronous
in Options 158

syncLevel
in IccSession class 209

SyncLevel
in Enumerations 211
in IccSession class 211

sysId
in IccSystem class 225

sysId (parameter)
in Constructor 201
in setRouteOption 189

sysName (parameter)
in Constructor 201
in setRouteOption 190

system
in IccControl class 118

T
task

in IccControl class 118
in LifeTime 199

temporary storage
deleting items 42
example 42
introduction 41
reading items 41
updating items 42
Writing items 41

Temporary storage
Deleting items 42
Example of Temporary Storage 42
in Using CICS Services 41
Reading items 41
Updating items 42
Writing items 41

termId (parameter)
in setReturnTermId 216
in start 217

terminal
finding out about 44
in FacilityType 236
in Hello World 9
in IccControl class 118
receiving data from 44
sending data to 43

terminal control
example 44
finding out information 44
introduction 43
receiving data 44
sending data 43

Terminal control
Example of terminal control 44
Finding out information about a

terminal 44
in Using CICS Services 43
Receiving data from a terminal 44
Sending data to a terminal 43

terminalInput
in StartType 236

termName (parameter)
in setReturnTermId 216

Test
in C++ Exceptions and the Foundation

Classes 49, 50
test (parameter)

in boolText 69
text

in IccMessage class 170
text (parameter)

in Constructor 93, 94, 169
in operator!= 165

340 CICS TS for z/OS 4.2: C++ OO Class Libraries

text (parameter) (continued)
in operator« 98, 99, 252
in operator+= 97
in operator= 97
in operator== 164
in writeItem 124, 242

throw
in C++ Exceptions and the Foundation

Classes 49
in Exception handling

(throwException) 53
throwException

in ActionOnCondition 190
in CICS conditions 52

ti
in Example of starting

transactions 37, 38
time

in IccAbsTime class 83
in IccClock class 105

time (parameter)
in Constructor 81, 273, 275
in delay 228
in setAlarm 105
in start 217

Time and date services
Example of time and date

services 45
in Using CICS Services 45

time services 45
timeInHours

in IccAbsTime class 83
in IccTime class 270

timeInMinutes
in IccAbsTime class 83
in IccTime class 270

timeInSeconds
in IccAbsTime class 84
in IccTime class 270

timeInterval
in Type 271

timeInterval (parameter)
in operator= 273

timeOfDay
in Type 271

timeOfDay (parameter)
in operator= 275

timerECA
in IccAlarmRequestId class 86

timerECA (parameter)
in Constructor 85
in setTimerECA 86

timeSeparator (parameter)
in time 83, 105

TPName (parameter)
in connectProcess 203

traceNum (parameter)
in enterTrace 229

TraceOpt
in Enumerations 237
in IccTask class 237

tracing
activating trace output 48

trademarks 314
transId

in IccTask class 233

transid (parameter)
in setNextTransId 259

transId (parameter)
in cancel 213
in connectProcess 202, 203
in link 174
in setNextTransId 259
in setReturnTransId 216
in start 217

transient data
deleting queues 40
example 40
introduction 39
reading data 39
Writing data 40

Transient Data
Deleting queues 40
Example of managing transient

data 40
in Using CICS Services 39
Reading data 39
Writing data 40

transName (parameter)
in setReturnTransId 216

triggerDataQueueId
in IccTask class 233

trueFalse (parameter)
in setEmptyOnOpen 142

try
in C++ Exceptions and the Foundation

Classes 49, 50
in Exception handling

(throwException) 53
in main function 290

tryLock
in IccSemaphore class 198

tryNumber
in C++ Exceptions and the Foundation

Classes 49, 50
type

in C++ Exceptions and the Foundation
Classes 50

in IccException class 133
in IccFile class 143
in IccRecordIndex class 181
in IccSemaphore class 198
in IccTime class 270

Type
in Enumerations 133, 182, 271
in IccException class 133
in IccRecordIndex class 182
in IccTime class 271

type (parameter)
in condition 130, 187
in Constructor 89, 93, 94, 181, 193,

197
in waitExternal 234

typeText
in IccException class 133

U
underscore

in Highlight 262
UNIX

in ClassMemoryMgmt 72
in Storage management 61

unknownException
in Functions 71
in Icc structure 71

unload
in IccProgram class 175

unlock
in IccSemaphore class 198

unlockRecord
in IccFile class 143

UOW
in LifeTime 199

updatable
in Access 145

update
in IccClock class 106
in ReadMode 145

update (parameter)
in Constructor 103

UpdateMode
in Enumerations 107
in IccClock class 107

updateToken (parameter)
in deleteLockedRecord 136
in readNextRecord 149, 150
in readPreviousRecord 150
in readRecord 140
in rewriteRecord 141, 142
in unlockRecord 143

updating items 42
Updating items

in Temporary storage 42
in Using CICS Services 42

updating records 31
Updating records

in File control 31
in Using CICS Services 31

upper
in Case 261

USER
in ASRAStorageType 77

user (parameter)
in signon 259

userDataKey
in StorageOpts 237

USEREXECKEY
in ASRAKeyType 76

userId
in IccTask class 233

userId (parameter)
in start 217

userName (parameter)
in Constructor 281

Using an object
in C++ Objects 16

using CICS resources 21
Using CICS resources

Calling methods on a resource
object 22

Creating a resource object 21
in Overview of the foundation

classes 21
Singleton classes 22

Using CICS Services
Accessing start data 36
Browsing records 32
Cancelling unexpired start

requests 36

Index 341

Using CICS Services (continued)
Deleting items 42
Deleting queues 40
Deleting records 31
Example of file control 32
Example of managing transient

data 40
Example of starting transactions 36
Example of Temporary Storage 42
Example of terminal control 44
Example of time and date

services 45
Finding out information about a

terminal 44
Reading data 39
Reading items 41
Reading records 29
Receiving data from a terminal 44
Sending data to a terminal 43
Starting transactions 36
Updating items 42
Updating records 31
Writing data 40
Writing items 41
Writing records 30

V
value

in IccKey class 165
value (parameter)

in operator= 164
variable (parameter)

in Foundation Classes—reference 67
verifyPassword

in IccUser class 283
in Public methods 283

VSAM 29

W
wait

in IccJournal class 157
in SendOpt 210

waitExternal
ECBList (parameter)

in waitExternal 234
in IccTask class 234
numEvents (parameter)

in waitExternal 234
opt (parameter)

in waitExternal 234
type (parameter)

in waitExternal 234
waitForAID

in Example of terminal control 45
in IccTerminal class 260

waitOnAlarm
in IccAlarmRequestId class 85
in IccTask class 234

WaitPostType
in Enumerations 237
in IccTask class 237

WaitPurgeability
in Enumerations 237
in IccTask class 237

width
in IccTerminal class 260

workArea
in IccSystem class 225
in IccTask class 234
in IccTerminal class 260

Working with IccResource subclasses
in Buffer objects 27
in IccBuf class 27

write
in IccConsole class 113

writeAndGetReply
in IccConsole class 113

writeItem
in C++ Exceptions and the Foundation

Classes 51
in Calling methods on a resource

object 23
in IccDataQueue class 124
in IccTempStore class 241, 242
in Temporary storage 41
in Transient Data 39
in Working with IccResource

subclasses 27, 28
in Writing data 40
in Writing items 41

writeRecord
in Example of file control 33
in IccFile class 143
in IccJournal class 157
in Writing KSDS records 31
in Writing records 30
in Writing RRDS records 31

writeRecord method
IccFile class 30

Writing data 40
in Transient Data 40
in Using CICS Services 40

Writing ESDS records
in File control 31
in Writing records 31

Writing items 41
in Temporary storage 41
in Using CICS Services 41

Writing KSDS records
in File control 30
in Writing records 30

Writing records
in File control 30
in Using CICS Services 30
Writing ESDS records 31
Writing KSDS records 30
Writing RRDS records 31

Writing RRDS records
in File control 31
in Writing records 31

X
X

in actionOnConditionAsChar 186
in operatingSystem 224

XPLINK 7

Y
year

in IccAbsTime class 84
in IccClock class 106

yellow
in Color 262

yesNo (parameter)
in setFMHContained 100

342 CICS TS for z/OS 4.2: C++ OO Class Libraries

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 4 Release 2
C++ OO Class Libraries

Publication No. SC34-7162-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7162-01

SC34-7162-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-7162-01

	Contents
	Preface
	Who this manual is for
	What this manual is about
	What you need to know before reading this manual
	Terminology

	Changes in CICS Transaction Server for z/OS, Version 4 Release 2
	Part 1. Installation and setup
	Chapter 1. Getting ready for object oriented CICS
	Chapter 2. Installed contents
	Header files
	Location

	Dynamic link library
	Location

	Sample source code
	Location
	Running the sample applications

	Other data sets for CICS Transaction Server for z/OS

	Chapter 3. Hello World
	Compile and link "Hello World"
	Running "Hello World" on your CICS server
	Expected Output from "Hello World"

	Part 2. Using the CICS foundation classes
	Chapter 4. C++ Objects
	Creating an object
	Using an object
	Deleting an object

	Chapter 5. Overview of the foundation classes
	Base classes
	Resource identification classes
	Resource classes
	Support Classes
	Using CICS resources
	Creating a resource object
	Singleton classes

	Calling methods on a resource object

	Chapter 6. Buffer objects
	IccBuf class
	Data area ownership
	Internal/External ownership of buffers

	Data area extensibility
	IccBuf constructors
	IccBuf methods
	Working with IccResource subclasses

	Chapter 7. Using CICS Services
	File control
	Reading records
	Reading KSDS records
	Reading ESDS records
	Reading RRDS records

	Writing records
	Writing KSDS records
	Writing ESDS records
	Writing RRDS records

	Updating records
	Deleting records
	Deleting normal records
	Deleting locked records

	Browsing records
	Example of file control

	Program control
	Starting transactions asynchronously
	Starting transactions
	Accessing start data
	Cancelling unexpired start requests
	Example of starting transactions

	Transient Data
	Reading data
	Writing data
	Deleting queues
	Example of managing transient data

	Temporary storage
	Reading items
	Writing items
	Updating items
	Deleting items
	Example of Temporary Storage

	Terminal control
	Sending data to a terminal
	Receiving data from a terminal
	Finding out information about a terminal
	Example of terminal control

	Time and date services
	Example of time and date services

	Chapter 8. Compiling, executing, and debugging
	Compiling Programs
	Executing Programs
	Program debugging

	Chapter 9. Conditions, errors, and exceptions
	Foundation Class Abend codes
	C++ Exceptions and the Foundation Classes
	CICS conditions
	Manual condition handling (noAction)
	Automatic condition handling (callHandleEvent)
	Exception handling (throwException)
	Severe error handling (abendTask)

	Platform differences
	Object level
	Method level
	Parameter level

	Chapter 10. Polymorphic Behavior
	Example of polymorphic behavior

	Chapter 11. Storage management
	Chapter 12. Parameter passing conventions
	Chapter 13. Scope of data in IccBuf reference returned from 'read' methods
	Part 3. Foundation Classes—reference
	Chapter 14. Icc structure
	Functions
	boolText
	catchException
	conditionText
	initializeEnvironment
	isClassMemoryMgmtOn
	isEDFOn
	isFamilySubsetEnforcementOn
	returnToCICS
	setEDF
	unknownException

	Enumerations
	Bool
	BoolSet
	ClassMemoryMgmt
	FamilySubset
	GetOpt
	Platforms

	Chapter 15. IccAbendData class
	IccAbendData constructor (protected)
	Constructor

	Public methods
	abendCode
	ASRAInterrupt
	ASRAKeyType
	ASRAPSW
	ASRARegisters
	ASRASpaceType
	ASRAStorageType
	instance
	isDumpAvailable
	originalAbendCode
	programName

	Inherited public methods
	Inherited protected methods

	Chapter 16. IccAbsTime class
	IccAbsTime constructor
	Constructor (1)
	Constructor (2)

	Public methods
	date
	dayOfMonth
	dayOfWeek
	daysSince1900
	hours
	milliSeconds
	minutes
	monthOfYear
	operator=
	packedDecimal
	seconds
	time
	timeInHours
	timeInMinutes
	timeInSeconds
	year

	Inherited public methods
	Inherited protected methods

	Chapter 17. IccAlarmRequestId class
	IccAlarmRequestId constructors
	Constructor (1)
	Constructor (2)
	Constructor (3)

	Public methods
	isExpired
	operator= (1)
	operator= (2)
	operator= (3)
	setTimerECA
	timerECA

	Inherited public methods
	Inherited protected methods

	Chapter 18. IccBase class
	IccBase constructor (protected)
	Constructor

	Public methods
	classType
	className
	customClassNum
	operator delete
	operator new

	Protected methods
	setClassName
	setCustomClassNum

	Enumerations
	ClassType
	NameOpt

	Chapter 19. IccBuf class
	IccBuf constructors
	Constructor (1)
	Constructor (2)
	Constructor (3)
	Constructor (4)

	Public methods
	append (1)
	append (2)
	assign (1)
	assign (2)
	cut
	dataArea
	dataAreaLength
	dataAreaOwner
	dataAreaType
	dataLength
	insert
	isFMHContained
	operator const char*
	operator= (1)
	operator= (2)
	operator+= (1)
	operator+= (2)
	operator==
	operator!=
	operator« (1)
	operator« (2)
	operator« (3)
	operator« (4)
	operator« (5)
	operator« (6)
	operator« (7)
	operator« (8)
	operator« (9)
	operator« (10)
	operator« (11)
	operator« (12)
	operator« (13)
	operator« (14)
	operator« (15)
	overlay
	replace
	setDataLength
	setFMHContained

	Inherited public methods
	Inherited protected methods
	Enumerations
	DataAreaOwner
	DataAreaType

	Chapter 20. IccClock class
	IccClock constructor
	Constructor

	Public methods
	absTime
	cancelAlarm
	date
	dayOfMonth
	dayOfWeek
	daysSince1900
	milliSeconds
	monthOfYear
	setAlarm
	time
	update
	year

	Inherited public methods
	Inherited protected methods
	Enumerations
	DateFormat
	DayOfWeek
	MonthOfYear
	UpdateMode

	Chapter 21. IccCondition structure
	Enumerations
	Codes
	Range

	Chapter 22. IccConsole class
	IccConsole constructor (protected)
	Constructor

	Public methods
	instance
	put
	replyTimeout
	resetRouteCodes
	setAllRouteCodes
	setReplyTimeout (1)
	setReplyTimeout (2)
	setRouteCodes
	write
	writeAndGetReply

	Inherited public methods
	Inherited protected methods
	Enumerations
	SeverityOpt

	Chapter 23. IccControl class
	IccControl constructor (protected)
	Constructor

	Public methods
	callingProgramId
	cancelAbendHandler
	commArea
	console
	initData
	instance
	isCreated
	programId
	resetAbendHandler
	returnProgramId
	run
	session
	setAbendHandler (1)
	setAbendHandler (2)
	startRequestQ
	system
	task
	terminal

	Inherited public methods
	Inherited protected methods

	Chapter 24. IccConvId class
	IccConvId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 25. IccDataQueue class
	IccDataQueue constructors
	Constructor (1)
	Constructor (2)

	Public methods
	clear
	empty
	get
	put
	readItem
	writeItem (1)
	writeItem (2)

	Inherited public methods
	Inherited protected methods

	Chapter 26. IccDataQueueId class
	IccDataQueueId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 27. IccEvent class
	IccEvent constructor
	Constructor

	Public methods
	className
	classType
	condition
	conditionText
	methodName
	summary

	Inherited public methods
	Inherited protected methods

	Chapter 28. IccException class
	IccException constructor
	Constructor

	Public methods
	className
	classType
	message
	methodName
	number
	summary
	type
	typeText

	Inherited public methods
	Inherited protected methods
	Enumerations
	Type

	Chapter 29. IccFile class
	IccFile constructors
	Constructor (1)
	Constructor (2)

	Public methods
	access
	accessMethod
	beginInsert(VSAM only)
	deleteLockedRecord
	deleteRecord
	enableStatus
	endInsert(VSAM only)
	isAddable
	isBrowsable
	isDeletable
	isEmptyOnOpen
	isReadable
	isRecoverable
	isUpdatable
	keyLength
	keyPosition
	openStatus
	readRecord
	recordFormat
	recordIndex
	recordLength
	registerRecordIndex
	rewriteRecord
	setAccess
	setEmptyOnOpen
	setStatus
	type
	unlockRecord
	writeRecord

	Inherited public methods
	Inherited protected methods
	Enumerations
	Access
	ReadMode
	SearchCriterion
	Status

	Chapter 30. IccFileId class
	IccFileId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 31. IccFileIterator class
	IccFileIterator constructor
	Constructor

	Public methods
	readNextRecord
	readPreviousRecord
	reset

	Inherited public methods
	Inherited protected methods

	Chapter 32. IccGroupId class
	IccGroupId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 33. IccJournal class
	IccJournal constructors
	Constructor (1)
	Constructor (2)

	Public methods
	clearPrefix
	journalTypeId
	put
	registerPrefix
	setJournalTypeId (1)
	setJournalTypeId (2)
	setPrefix (1)
	setPrefix (2)
	wait
	writeRecord (1)
	writeRecord (2)

	Inherited public methods
	Inherited protected methods
	Enumerations
	Options

	Chapter 34. IccJournalId class
	IccJournalId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	number
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 35. IccJournalTypeId class
	IccJournalTypeId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 36. IccKey class
	IccKey constructors
	Constructor (1)
	Constructor (2)
	Constructor (3)

	Public methods
	assign
	completeLength
	kind
	operator= (1)
	operator= (2)
	operator= (3)
	operator== (1)
	operator== (2)
	operator== (3)
	operator!= (1)
	operator!= (2)
	operator!= (3)
	setKind
	value

	Inherited public methods
	Inherited protected methods
	Enumerations
	Kind

	Chapter 37. IccLockId class
	IccLockId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 38. IccMessage class
	IccMessage constructor
	Constructor

	Public methods
	className
	methodName
	number
	summary
	text

	Inherited public methods
	Inherited protected methods

	Chapter 39. IccPartnerId class
	IccPartnerId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 40. IccProgram class
	IccProgram constructors
	Constructor (1)
	Constructor (2)

	Public methods
	address
	clearInputMessage
	entryPoint
	length
	link
	load
	registerInputMessage
	setInputMessage
	unload

	Inherited public methods
	Inherited protected methods
	Enumerations
	CommitOpt
	LoadOpt

	Chapter 41. IccProgramId class
	IccProgramId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 42. IccRBA class
	IccRBA constructor
	Constructor

	Public methods
	operator= (1)
	operator= (2)
	operator== (1)
	operator== (2)
	operator!= (1)
	operator!= (2)
	number

	Inherited public methods
	Inherited protected methods

	Chapter 43. IccRecordIndex class
	IccRecordIndex constructor (protected)
	Constructor

	Public methods
	length
	type

	Inherited public methods
	Inherited protected methods
	Enumerations
	Type

	Chapter 44. IccRequestId class
	IccRequestId constructors
	Constructor (1)
	Constructor (2)
	Constructor (3)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 45. IccResource class
	IccResource constructor (protected)
	Constructor

	Public methods
	actionOnCondition
	actionOnConditionAsChar
	actionsOnConditionsText
	clear
	condition
	conditionText
	get
	handleEvent
	id
	isEDFOn
	isRouteOptionOn
	name
	put
	routeOption
	setActionOnAnyCondition
	setActionOnCondition
	setActionsOnConditions
	setEDF
	setRouteOption (1)
	setRouteOption (2)

	Inherited public methods
	Inherited protected methods
	Enumerations
	ActionOnCondition
	HandleEventReturnOpt
	ConditionType

	Chapter 46. IccResourceId class
	IccResourceId constructors (protected)
	Constructor (1)
	Constructor (2)

	Public methods
	name
	nameLength

	Protected methods
	operator=

	Inherited public methods
	Inherited protected methods

	Chapter 47. IccRRN class
	IccRRN constructors
	Constructor

	Public methods
	operator= (1)
	operator= (2)
	operator== (1)
	operator== (2)
	operator!= (1)
	operator!= (2)
	number

	Inherited public methods
	Inherited protected methods

	Chapter 48. IccSemaphore class
	IccSemaphore constructor
	Constructor (1)
	Constructor (2)

	Public methods
	lifeTime
	lock
	tryLock
	type
	unlock

	Inherited public methods
	Inherited protected methods
	Enumerations
	LockType
	LifeTime

	Chapter 49. IccSession class
	IccSession constructors (public)
	Constructor (1)
	Constructor (2)
	Constructor (3)

	IccSession constructor (protected)
	Constructor

	Public methods
	allocate
	connectProcess (1)
	connectProcess (2)
	connectProcess (3)
	converse
	convId
	errorCode
	extractProcess
	flush
	free
	get
	isErrorSet
	isNoDataSet
	isSignalSet
	issueAbend
	issueConfirmation
	issueError
	issuePrepare
	issueSignal
	PIPList
	process
	put
	receive
	send (1)
	send (2)
	sendInvite (1)
	sendInvite (2)
	sendLast (1)
	sendLast (2)
	state
	stateText
	syncLevel

	Inherited public methods
	Inherited protected methods
	Enumerations
	AllocateOpt
	SendOpt
	StateOpt
	SyncLevel

	Chapter 50. IccStartRequestQ class
	IccStartRequestQ constructor (protected)
	Constructor

	Public methods
	cancel
	clearData
	data
	instance
	queueName
	registerData
	reset
	retrieveData
	returnTermId
	returnTransId
	setData
	setQueueName
	setReturnTermId (1)
	setReturnTermId (2)
	setReturnTransId (1)
	setReturnTransId (2)
	setStartOpts
	start

	Inherited public methods
	Inherited protected methods
	Enumerations
	RetrieveOpt
	ProtectOpt
	CheckOpt

	Chapter 51. IccSysId class
	IccSysId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 52. IccSystem class
	IccSystem constructor (protected)
	Constructor

	Public methods
	applName
	beginBrowse (1)
	beginBrowse (2)
	dateFormat
	endBrowse
	freeStorage
	getFile (1)
	getFile (2)
	getNextFile
	getStorage
	instance
	operatingSystem
	operatingSystemLevel
	release
	releaseText
	sysId
	workArea

	Inherited public methods
	Inherited protected methods
	Enumerations
	ResourceType

	Chapter 53. IccTask class
	IccTask Constructor (protected)
	Constructor

	Public methods
	abend
	abendData
	commitUOW
	delay
	dump
	enterTrace
	facilityType
	freeStorage
	getStorage
	instance
	isCommandSecurityOn
	isCommitSupported
	isResourceSecurityOn
	isRestarted
	isStartDataAvailable
	number
	principalSysId
	priority
	rollBackUOW
	setDumpOpts
	setPriority
	setWaitText
	startType
	suspend
	transId
	triggerDataQueueId
	userId
	waitExternal
	waitOnAlarm
	workArea

	Inherited public methods
	Inherited protected methods
	Enumerations
	AbendHandlerOpt
	AbendDumpOpt
	DumpOpts
	FacilityType
	StartType
	StorageOpts
	TraceOpt
	WaitPostType
	WaitPurgeability

	Chapter 54. IccTempStore class
	IccTempStore constructors
	Constructor (1)
	Constructor (2)

	Public methods
	clear
	empty
	get
	numberOfItems
	put
	readItem
	readNextItem
	rewriteItem
	writeItem (1)
	writeItem (2)

	Inherited public methods
	Inherited protected methods
	Enumerations
	Location
	NoSpaceOpt

	Chapter 55. IccTempStoreId class
	IccTempStoreId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 56. IccTermId class
	IccTermId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 57. IccTerminal class
	IccTerminal constructor (protected)
	Constructor

	Public methods
	AID
	clear
	cursor
	data
	erase
	freeKeyboard
	get
	height
	inputCursor
	instance
	line
	netName
	operator« (1)
	operator« (2)
	operator« (3)
	operator« (4)
	operator« (5)
	operator« (6)
	operator« (7)
	operator« (8)
	operator« (9)
	operator« (10)
	operator« (11)
	operator« (12)
	operator« (13)
	operator« (14)
	operator« (15)
	operator« (16)
	operator« (17)
	operator« (18)
	put
	receive
	receive3270Data
	send (1)
	send (2)
	send (3)
	send (4)
	send3270Data (1)
	send3270Data (2)
	send3270Data (3)
	send3270Data (4)
	sendLine (1)
	sendLine (2)
	sendLine (3)
	sendLine (4)
	setColor
	setCursor (1)
	setCursor (2)
	setHighlight
	setLine
	setNewLine
	setNextCommArea
	setNextInputMessage
	setNextTransId
	signoff
	signon (1)
	signon (2)
	waitForAID (1)
	waitForAID (2)
	width
	workArea

	Inherited public methods
	Inherited protected methods
	Enumerations
	AIDVal
	Case
	Color
	Highlight
	NextTransIdOpt

	Chapter 58. IccTerminalData class
	IccTerminalData constructor (protected)
	Constructor

	Public methods
	alternateHeight
	alternateWidth
	defaultHeight
	defaultWidth
	graphicCharCodeSet
	graphicCharSetId
	isAPLKeyboard
	isAPLText
	isBTrans
	isColor
	isEWA
	isExtended3270
	isFieldOutline
	isGoodMorning
	isHighlight
	isKatakana
	isMSRControl
	isPS
	isSOSI
	isTextKeyboard
	isTextPrint
	isValidation

	Inherited public methods
	Inherited protected methods

	Chapter 59. IccTime class
	IccTime constructor (protected)
	Constructor

	Public methods
	hours
	minutes
	seconds
	timeInHours
	timeInMinutes
	timeInSeconds
	type

	Inherited public methods
	Inherited protected methods
	Enumerations
	Type

	Chapter 60. IccTimeInterval class
	IccTimeInterval constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator=
	set

	Inherited public methods
	Inherited protected methods

	Chapter 61. IccTimeOfDay class
	IccTimeOfDay constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator=
	set

	Inherited public methods
	Inherited protected methods

	Chapter 62. IccTPNameId class
	IccTPNameId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 63. IccTransId class
	IccTransId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 64. IccUser class
	IccUser constructors
	Constructor (1)
	Constructor (2)

	Public methods
	changePassword
	daysUntilPasswordExpires
	ESMReason
	ESMResponse
	groupId
	invalidPasswordAttempts
	language
	lastPasswordChange
	lastUseTime
	passwordExpiration
	setLanguage
	verifyPassword

	Inherited public methods
	Inherited protected methods

	Chapter 65. IccUserId class
	IccUserId constructors
	Constructor (1)
	Constructor (2)

	Public methods
	operator= (1)
	operator= (2)

	Inherited public methods
	Inherited protected methods

	Chapter 66. IccValue structure
	Enumeration
	Listing of valid CVDAs

	Chapter 67. main function
	Part 4. Appendixes
	Appendix A. Mapping EXEC CICS calls to Foundation Class methods
	Appendix B. Mapping Foundation Class methods to EXEC CICS calls
	Appendix C. Output from sample programs
	ICC$BUF (IBUF)
	ICC$CLK (ICLK)
	ICC$DAT (IDAT)
	ICC$EXC1 (IEX1)
	ICC$EXC2 (IEX2)
	ICC$EXC3 (IEX3)
	ICC$FIL (IFIL)
	ICC$HEL (IHEL)
	ICC$JRN (IJRN)
	ICC$PRG1 (IPR1)
	First Screen
	Second Screen

	ICC$RES1 (IRS1)
	ICC$RES2 (IRS2)
	ICC$SEM (ISEM)
	ICC$SES1 (ISE1)
	ICC$SES2 (ISE2)
	ICC$SRQ1 (ISR1)
	ICC$SRQ2 (ISR2)
	ICC$SYS (ISYS)
	ICC$TMP (ITMP)
	ICC$TRM (ITRM)
	ICC$TSK (ITSK)

	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications
	Other IBM publications

	Accessibility
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Readers’ Comments — We'd Like to Hear from You

