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Preface

The CICS® family provides robust transaction processing capabilities across the
major hardware platforms that IBM® offers, and also across key non-IBM
platforms.

It is not intended to be a product in its own right.

The CICS C++ foundation classes, as described here, allow an application
programmer to access many of the CICS services that are available via the EXEC
CICS procedural application programming interface (API). They also provide an
object model, making OO application development simpler and more intuitive.

Who this manual is for

This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of Version 4 Release 2.

This manual is for CICS application programmers who want to know how to use
the CICS foundation classes.

What this manual is about
This manual is divided into three parts and three appendixes:
v Part 1, “Installation and setup,” on page 1 describes how to install the product

and check that the installation is complete.
v Part 2, “Using the CICS foundation classes,” on page 13 describes the classes and

how to use them.
v Part 3, “Foundation Classes—reference,” on page 67 contains the reference

material: the class descriptions and their methods.
v For those of you familiar with the EXEC CICS calls, Appendix A, “Mapping

EXEC CICS calls to Foundation Class methods,” on page 293 maps EXEC CICS
calls to the foundation class methods detailed in this manual.

v Appendix B, “Mapping Foundation Class methods to EXEC CICS calls,” on page
299 maps them the other way — foundation class methods to EXEC CICS calls.

v Appendix C, “Output from sample programs,” on page 305 contains the output
from the sample programs.

What you need to know before reading this manual
Chapter 1, “Getting ready for object oriented CICS,” on page 3 describes what you
need to know to understand this manual.

Terminology
“CICS” is used throughout this manual to mean the CICS element of the IBM CICS
Transaction Server for z/OS®, Version 3 Release 2.
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“RACF” is used throughout this book to mean the z/OS Resource Access Control
Facility (RACF®) or any other external security manager that provides equivalent
function.

In the programming examples in this book, the dollar symbol ($) is used as a
national currency symbol. In countries where the dollar is not the national
currency, the local currency symbol should be used.
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Changes in CICS Transaction Server for z/OS, Version 4
Release 2

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.
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Part 1. Installation and setup

This section describes the CICS foundation classes installed on your CICS server.
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Chapter 1. Getting ready for object oriented CICS

You must be familiar with object oriented concepts and technology, the C++
language and with CICS in order to understand the topics that follow.

This is not intended to be an introduction to any of these subjects.
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Chapter 2. Installed contents

The CICS foundation classes package consists of several files or data sets.

The CICS foundation classes package consists of several files or data sets. These
contain the:
v header files
v executables (DLL's)
v samples
v other CICS Transaction Server for z/OS files

This section describes the files that comprise the CICS C++ Foundation Classes and
explains where you can find them on your CICS server.

Header files
The header files are the C++ class definitions needed to compile CICS C++
Foundation Class programs.

C++ Header File Classes Defined in this Header

ICCABDEH IccAbendData
ICCBASEH IccBase
ICCBUFEH IccBuf
ICCCLKEH IccClock
ICCCNDEH IccCondition (struct)
ICCCONEH IccConsole
ICCCTLEH IccControl
ICCDATEH IccDataQueue
ICCEH see 1 on page 6
ICCEVTEH IccEvent
ICCEXCEH IccException
ICCFILEH IccFile
ICCFLIEH IccFileIterator
ICCGLBEH Icc (struct) (global functions)
ICCJRNEH IccJournal
ICCMSGEH IccMessage
ICCPRGEH IccProgram
ICCRECEH IccRecordIndex, IccKey, IccRBA and IccRRN
ICCRESEH IccResource
ICCRIDEH IccResourceId + subclasses (such as IccConvId)
ICCSEMEH IccSemaphore
ICCSESEH IccSession
ICCSRQEH IccStartRequestQ
ICCSYSEH IccSystem
ICCTIMEH IccTime, IccAbsTime, IccTimeInterval, IccTimeOfDay
ICCTMDEH IccTerminalData
ICCTMPEH IccTempStore
ICCTRMEH IccTerminal
ICCTSKEH IccTask
ICCUSREH IccUser
ICCVALEH IccValue (struct)
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Note:

1. A single header that #includes all the above header files is supplied as ICCEH

2. The file ICCMAIN is also supplied with the C++ header files. This contains the
main function stub that should be used when you build a Foundation Class
program.

Location
PDS: CICSTS42.CICS.SDFHC370

Dynamic link library
The Dynamic Link Library is the runtime that is needed to support a CICS C++
Foundation Class program.

Location
ICCFCDLL module in PDS: CICSTS42.CICS.SDFHLOAD

Sample source code
The samples are provided to help you understand how to use the classes to build
object oriented applications.

Location
PDS: CICSTS42.CICS.SDFHSAMP

Running the sample applications
If you have installed the resources defined in the member DFHCURDS, you should be
ready to run some of the sample applications.

The sample programs are supplied as source code in library
CICSTS42.CICS.SDFHSAMP and before you can run the sample programs, you need to
compile, pre-link and link them.To do this, use the procedure ICCFCCL in data set
CICSTS42.CICS.SDFHPROC.

ICCFCCL contains the Job Control Language needed to compile, pre-link and link a
CICS user application. Before using ICCFCCL you may find it necessary to perform
some customization to conform to your installation standards. See also “Compiling
Programs” on page 47.

Sample programs such as ICC$BUF, ICC$CLK and ICC$HEL require no additional CICS
resource definitions, and should now execute successfully.

Other sample programs, in particular the DTP samples named ICC$SES1 and
ICC$SES2, require additional CICS resource definitions. Refer to the prologues in
the source of the sample programs for information about these additional
requirements.
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Other data sets for CICS Transaction Server for z/OS
CICSTS42.CICS.SDFHSDCK contains the member
v ICCFCIMP - 'sidedeck' containing import control statements

CICSTS42.CICS.SDFHPROC contains the members
v ICCFCC - JCL to compile a CFC user program
v ICCFCCL - JCL to compile, prelink and link a CFC user program
v ICCFCGL - JCL to compile and link an XPLINK program that uses CFC libraries.
v ICCFCL - JCL to prelink and link a CFC user program

CICSTS42.CICS.SDFHLOAD contains the members
v DFHCURDS - program definitions required for CICS system definition.
v DFHCURDI - program definitions required for CICS system definition.
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Chapter 3. Hello World

When you start programming in an unaccustomed environment the hardest task is
usually getting something—anything—to work and to be seen to be working.

The initial difficulty is not in the internals of the program, but in bringing
everything together—the CICS server, the programming environment, program
inputs and program outputs.

This example shows how to get started in CICS OO programming. It is intended as
an appetizer; Chapter 5, “Overview of the foundation classes,” on page 17 is a
more formal introduction and you should read it before you attempt serious OO
programming.

This example could not be much simpler but when it works it is a visible
demonstration that you have got everything together and can go on to greater
things. The program writes a simple message to the CICS terminal.

There follows a series of program fragments interspersed with commentary. The
source for this program can be found in sample ICC$HEL (see “Sample source code”
on page 6 for the location).

The first line includes the header file, ICCEH, which includes the header files for all
the CICS Foundation Class definitions. Note that it is coded as "icceh.hpp" to
preserve cross-platform, C++ language conventions.

The second line includes the supplied program stub. This stub contains the main
function, which is the point of entry for any program that uses the supplied classes
and is responsible for initializing them correctly. (See Chapter 67, “main function,”
on page 289 for more details). You are strongly advised to use the stub provided
but you may in certain cases tailor this stub to your own requirements. The stub
initializes the class environment, creates the program control object, then invokes
the run method, which is where the application program should 'live'.

The code that controls the program flow resides not in the main function but in
the run method of a class derived from IccControl (see Chapter 23, “IccControl
class,” on page 115). The user can define their own subclass of IccControl or, as
here, use the default one – IccUserControl, which is defined in ICCMAIN – and
just provide a definition for the run method.

The terminal method of IccControl class is used to obtain a pointer to the terminal
object for the application to use.

#include "icceh.hpp"
#include "iccmain.hpp"

void IccUserControl::run()
{

IccTerminal* pTerm = terminal();

pTerm->erase();
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The erase method clears the current contents of the terminal.

The send method is called on the terminal object. This causes "Hello World" to be
written to the terminal screen, starting at row 10, column 35.

This waits until the terminal user hits an AID (Action Identifier) key.

Returning from the run method causes program control to return to CICS.

Compile and link "Hello World"
The "Hello World" sample is provided as sample ICC$HEL (see “Sample source
code” on page 6). Find this sample and copy it to your own work area.

To compile and link any CICS C++ Foundation program you need access to:
1. The source of the program, here ICC$HEL.
2. The Foundation Classes header files (see “Header files” on page 5).
3. The Foundation Classes dynamic link library (see “Dynamic link library” on

page 6).

See Chapter 8, “Compiling, executing, and debugging,” on page 47 for the JCL
required to compile the sample program.

Running "Hello World" on your CICS server
To run the program you have just compiled on your CICS server, you need to
make the executable program available to CICS (that is, make sure it is in a
suitable directory or load library).

Then, depending on your server, you may need to create a CICS program
definition for your executable. Finally, you may logon to a CICS terminal and run
the program.

To do this,
1. Logon to a CICS terminal and enter either:

IHEL

or
CECI LINK PROGRAM(ICC$HEL)

2. If you are not using program autoinstall on your CICS region, define the
program ICC$HEL to CICS using the supplied transaction CEDA.

3. Log on to a CICS terminal.
4. On CICS terminal run: CECI LINK PROGRAM(ICC$HEL)

Expected Output from "Hello World"
This is what you should see on the CICS terminal if program ICC$HEL has been
built and executed successfully.

pTerm->send(10, 35, "Hello World");

pTerm->waitForAID();

return;
}
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Hello World

Hit an Action Identifier, such as the ENTER key, to return.
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Part 2. Using the CICS foundation classes

This section describes the CICS foundation classes and how to use them. There is a
formal listing of the user interface in Part 3, “Foundation Classes—reference,” on
page 67.
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Chapter 4. C++ Objects

This section describes how to create, use, and delete objects.

This section describes how to create, use, and delete objects. In our context an
object is an instance of a class. An object cannot be an instance of a base or abstract
base class. It is possible to create objects of all the concrete (non-base) classes
described in the reference part of this book.

Creating an object
If a class has a constructor it is executed when an object of that class is created.
This constructor typically initializes the state of the object. Foundation Classes'
constructors often have mandatory positional parameters that the programmer
must provide at object creation time.

C++ objects can be created in one of two ways:
1. Automatically, where the object is created on the C++ stack. For example:

Here, objX and objY are automatically created on the stack. Their lifetime is

limited by the context in which they were created; when they go out of scope
they are automatically deleted (that is, their destructors run and their storage is
released).

2. Dynamically, where the object is created on the C++ heap. For example:
Here we deal with pointers to objects instead of the objects themselves. The

lifetime of the object outlives the scope in which it was created. In the above
sample the pointers (pObjX and pObjY) are 'lost' as they go out of scope but
the objects they pointed to still exist! The objects exist until they are explicitly
deleted as shown here:

Most of the samples in this book use automatic storage. You are advised to use
automatic storage, because you do not have remember to explicitly delete objects,

{
ClassX objX
ClassY objY(parameter1);

} //objects deleted here

{
ClassX* pObjX = new ClassX;
ClassY* pObjY = new ClassY(parameter1);

} //objects NOT deleted here

{
ClassX* pObjX = new ClassX;
ClassY* pObjY = new ClassY(parameter1);

...
pObjX->method1();
pObjY->method2();

...
delete pObjX;
delete pObjY;

}
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but you are free to use either style for CICS C++ Foundation Class programs. For
more information on Foundation Classes and storage management see Chapter 11,
“Storage management,” on page 61.

Using an object
Any of the class public methods can be called on an object of that class.

Any of the class public methods can be called on an object of that class. The
following example creates object obj and then calls method doSomething on it:

Alternatively, you can do this using dynamic object creation:

Deleting an object
When an object is destroyed its destructor function, which has the same name as
the class preceded with ~(tilde), is automically called. (You cannot call the
destructor explicitly).

If the object was created automatically it is automatically destroyed when it goes
out of scope.

If the object was created dynamically it exists until an explicit delete operator is
used.

ClassY obj("TEMP1234");
obj.doSomething();

ClassY* pObj = new ClassY("parameter1");
pObj->doSomething();
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Chapter 5. Overview of the foundation classes

This topic is a formal introduction to what the Foundation Classes can do for you.

See Chapter 3, “Hello World,” on page 9 for a simple example to get you started.
The sectionchapter takes a brief look at the CICS C++ Foundation Class library by
considering the categories in turn.

See Part 3, “Foundation Classes—reference,” on page 67 for more detailed
information on the Foundation Classes.

Every class that belongs to the CICS Foundation Classes is prefixed by Icc.

Base classes
All classes inherit, directly or indirectly, from IccBase.

All resource identification classes, such as IccTermId, and IccTransId, inherit from
IccResourceId class. These are typically CICS table entries.

All CICS resources—in fact any class that needs access to CICS services—inherit
from IccResource class.

Base classes enable common interfaces to be defined for categories of class. They
are used to create the foundation classes, as provided by IBM, and they can be
used by application programmers to create their own derived classes.

IccBase
The base for every other foundation class. It enables memory management
and allows objects to be interrogated to discover which type they are.

IccControl
The abstract base class that the application program has to subclass and
provide with an implementation of the run method.

IccResource
The base class for all classes that access CICS resources or services. See
“Resource classes” on page 19.

IccResourceId
The base class for all table entry (resource name) classes, such as IccFileId
and IccTempStoreId.

IccBase
IccRecordIndex
IccResource

IccControl
IccTime

IccResourceId

Figure 1. Base classes
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IccTime
The base class for the classes that store time information: IccAbsTime,
IccTimeInterval and IccTimeOfDay.

Resource identification classes
Resource identification classes are as follows.

CICS resource identification classes define CICS resource identifiers – typically the
name of the resource as specified in its RDO resource definition. For example an
IccFileId object represents a CICS file name. All concrete resource identification
classes have the following properties:
v The name of the class ends in Id.
v The class is a subclass of the IccResourceId class.
v The constructors check that any supplied resource identifier meets CICS

standards. For example, an IccFileId object must contain a 1 to 8 byte character
field; providing a 9-byte field is not tolerated.

The resource identification classes improve type checking; methods that expect an
IccFileId object as a parameter do not accept an IccProgramId object instead. If
character strings representing the resource names are used instead, the compiler
cannot check for validity – it cannot check whether the string is a file name or a
program name.

Many of the resource classes, described in “Resource classes” on page 19, contain
resource identification classes. For example, an IccFile object contains an IccFileId
object. You must use the resource object, not the resource identification object, to
operate on a CICS resource. For example, you must use IccFile, rather than
IccFileId to read a record from a file.

Class CICS resource

IccAlarmRequestId alarm request
IccConvId conversation

IccBase
IccResourceId

IccConvId
IccDataQueueId
IccFileId
IccGroupId
IccJournalId
IccJournalTypeId
IccLockId
IccPartnerId
IccProgramId
IccRequestId

IccAlarmRequestId
IccSysId
IccTempStoreId
IccTermId
IccTPNameId
IccTransId
IccUserId

Figure 2. Resource identification classes
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Class CICS resource

IccDataQueueId transient data queue
IccFileId file
IccGroupId group
IccJournalId journal
IccJournalTypeId journal type
IccLockId (Not applicable)
IccPartnerId APPC partner definition files
IccProgramId program
IccRequestId request
IccSysId remote system
IccTempStoreId temporary storage queue
IccTermId terminal
IccTPNameId remote APPC TP name
IccTransId transaction
IccUserId user

Resource classes
All CICS resource classes inherit from the IccResource base class.

These classes model the behavior of the major CICS resources, for example:
v Terminals are modelled by IccTerminal.
v Programs are modelled by IccProgram.
v Temporary Storage queues are modelled by IccTempStore.
v Transient Data queues are modelled by IccDataQueue.

Any operation on a CICS resource may raise a CICS condition; the condition
method of IccResource (see page “condition” on page 186) can interrogate it.

(Any class that accesses CICS services must be derived from IccResource).

IccBase
IccResource

IccAbendData
IccClock
IccConsole
IccControl
IccDataQueue
IccFile
IccFileIterator
IccJournal
IccProgram
IccSemaphore
IccSession
IccStartRequestQ
IccSystem
IccTask
IccTempStore
IccTerminal
IccTerminalData
IccUser

Figure 3. Resource classes
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Class CICS resource

IccAbendData task abend data
IccClock CICS time and date services
IccConsole CICS console
IccControl control of executing program
IccDataQueue transient data queue
IccFile file
IccFileIterator file iterator (browsing files)
IccJournal user or system journal
IccProgram program (outside executing program)
IccSemaphore semaphore (locking services)
IccSession session
IccStartRequestQ start request queue; asynchronous transaction

starts
IccSystem CICS system
IccTask current task
IccTempStore temporary storage queue
IccTerminal terminal belonging to current task
IccTerminalData attributes of IccTerminal
IccTime time specification
IccUser user (security attributes)

Support Classes
Support classes are as follows.

These classes are tools that complement the resource classes: they make life easier
for the application programmer and thus add value to the object model.

Resource class Description

IccAbsTime Absolute time (milliseconds since January 1 1900)
IccBuf Data buffer (makes manipulating data areas easier)
IccEvent Event (the outcome of a CICS command)
IccException Foundation Class exception (supports the C++ exception handling

model)
IccTimeInterval Time interval (for example, five minutes)
IccTimeOfDay Time of day (for example, five minutes past six)

IccBase
IccBuf
IccEvent
IccException
IccMessage
IccRecordIndex

IccKey
IccRBA
IccRRN

IccResource
IccTime

IccAbsTime
IccTimeInterval
IccTimeOfDay

Figure 4. Support classes
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IccAbsTime, IccTimeInterval and IccTimeOfDay classes make it simpler for the
application programmer to specify time measurements as objects within an
application program. IccTime is a base class: IccAbsTime, IccTimeInterval, and
IccTimeOfDay are derived from IccTime.

Consider method delay in class IccTask, whose signature is as follows:

To request a delay of 1 minute and 7 seconds (that is, a time interval) the
application programmer can do this:

Note: The task method is provided in class IccControl and returns a pointer to the
application's task object.

Alternatively, to request a delay until 10 minutes past twelve (lunchtime?) the
application programmer can do this:

The IccBuf class allows easy manipulation of buffers, such as file record buffers,
transient data record buffers, and COMMAREAs (for more information on IccBuf
class see Chapter 6, “Buffer objects,” on page 25).

IccMessage class is used primarily by IccException class to encapsulate a
description of why an exception was thrown. The application programmer can also
use IccMessage to create their own message objects.

IccException objects are thrown from many of the methods in the Foundation
Classes when an error is encountered.

The IccEvent class allows a programmer to gain access to information relating to a
particular CICS event (command).

Using CICS resources
To use a CICS resource, such as a file or program, you must first create an
appropriate object and then call methods on the object.

Creating a resource object
When you create a resource object you create a representation of the actual CICS
resource (such as a file or program). You do not create the CICS resource; the
object is the application's view of the resource. The same is true of destroying
objects.

Use an accompanying resource identification object when creating a resource
object. For example:

void delay(const IccTime& time, const IccRequestId* reqId = 0);

IccTimeInterval time(0, 1, 7);
task()->delay(time);

IccTimeOfDay lunchtime(12, 10);
task()->delay(lunchtime);

IccFileId id("XYZ123");
IccFile file(id);

Chapter 5. Overview of the foundation classes 21



This allows the C++ compiler to protect you against doing something wrong such
as:

The alternative of using the text name of the resource when creating the object is
also permitted:

Singleton classes
Many resource classes, such as IccFile, can be used to create multiple resource
objects within a single program.

However, some resource classes are designed to allow the programmer to create
only one instance of the class; these are called singleton classes. The following
Foundation Classes are singleton:
v IccAbendData provides information about task abends.
v IccConsole, or a derived class, represents the system console for operator

messages.
v IccControl, or a derived class, such as IccUserControl, controls the executing

program.
v IccStartRequestQ, or a derived class, allows the application program to start

CICS transactions (tasks) asynchronously.
v IccSystem, or a derived class, is the application view of the CICS system in

which it is running.
v IccTask, or a derived class, represents the CICS task under which the executing

program is running.
v IccTerminal, or a derived class, represents your task's terminal, provided that

your principal facility is a 3270 terminal.

Any attempt to create more than one object of a singleton class results in an error –
a C++ exception is thrown.

A class method, instance, is provided for each of these singleton classes, which
returns a pointer to the requested object and creates one if it does not already exist.
For example:

Calling methods on a resource object
Any of the public methods can be called on an object of that class.

For example:

IccDataQueueId id("WXYZ");
IccFile file(id); //gives error at compile time

IccFile file("XYZ123");

IccFileId id1("File1");
IccFileId id2("File2");
IccFile file1(id1);
IccFile file2(id2);

IccControl* pControl = IccControl::instance();
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Method writeItem writes the contents of the string it is passed ("Hello TEMP1234")
to the CICS Temporary Storage queue "TEMP1234".

IccTempStoreId id("TEMP1234");
IccTempStore temp(id);
temp.writeItem("Hello TEMP1234");
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Chapter 6. Buffer objects

The Foundation Classes make extensive use of IccBuf objects – buffer objects that
simplify the task of handling pieces of data or records.

Understanding the use of these objects is a necessary precondition for much of the
rest of this book.

Each of the CICS Resource classes that involve passing data to CICS (for example
by writing data records) and getting data from CICS (for example by reading data
records) make use of the IccBuf class. Examples of such classes are IccConsole,
IccDataQueue, IccFile, IccFileIterator, IccJournal, IccProgram, IccSession,
IccStartRequestQ, IccTempStore, and IccTerminal.

IccBuf class
IccBuf, which is described in detail in the reference part of this book, provides
generalized manipulation of data areas.

Because it can be used in a number of ways, there are several IccBuf constructors
that affect the behavior of the object. Two important attributes of an IccBuf object
are now described.

Data area ownership
IccBuf has an attribute indicating whether the data area has been allocated inside
or outside of the object.

The possible values of this attribute are 'internal' and 'external'. It can be
interrogated by using the dataAreaOwner method.

Internal/External ownership of buffers
When DataAreaOwner = external, it is the application programmer's responsibility
to ensure the validity of the storage on which the IccBuf object is based. If the
storage is invalid or inappropriate for a particular method applied to the object,
unpredictable results will occur.

Data area extensibility
This attribute defines whether the length of the data area within the IccBuf object,
once created, can be increased.

The possible values of this attribute are 'fixed' and 'extensible'. It can be
interrogated by using the dataAreaType method.

As an object that is 'fixed' cannot have its data area size increased, the length of
the data (for example, a file record) assigned to the IccBuf object must not exceed
the data area length, otherwise a C++ exception is thrown.

Note: By definition, an 'extensible' buffer must also be 'internal'.
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IccBuf constructors
There are several forms of the IccBuf constructor, used when creating IccBuf
objects.

Some examples are shown here.

This creates an 'internal' and 'extensible' data area that has an initial length of zero.
When data is assigned to the object the data area length is automatically extended
to accommodate the data being assigned.

This creates an 'internal' and 'extensible' data area that has an initial length of 50
bytes. The data length is zero until data is assigned to the object. If 50 bytes of
data are assigned to the object, both the data length and the data area length
return a value of 50. When more than 50 bytes of data are assigned into the object,
the data area length is automatically (that is, without further intervention)
extended to accommodate the data.

This creates an 'internal' and 'fixed' data area that has a length of 50 bytes. If an
attempt is made to assign more than 50 bytes of data into the object, the data is
truncated and an exception is thrown to notify the application of the error
situation.

This creates an IccBuf object that uses an 'external' data area called myRecord. By
definition, an 'external' data area is also 'fixed'. Data can be assigned using the
methods on the IccBuf object or using the myRecord structure directly.

This creates an 'internal' and 'extensible' data area that has a length equal to the
length of the string "Hello World". The string is copied into the object's data area.
This initial data assignment can then be changed using one of the manipulation
methods (such as insert, cut, or replace) provided.

Here the copy constructor creates the second buffer with almost the same attributes
as the first; the exception is the data area ownership attribute – the second object
always contains an 'internal' data area that is a copy of the data area in the first. In
the above example buffer2 contains "Hello World out there" and has both data area
length and data length of 21.

IccBuf buffer;

IccBuf buffer(50);

IccBuf buffer(50, IccBuf::fixed);

struct MyRecordStruct
{

short id;
short code;
char data(30);
char rating;

};
MyRecordStruct myRecord;
IccBuf buffer(sizeof(MyRecordStruct), &myRecord);

IccBuf buffer("Hello World");

IccBuf buffer("Hello World");
buffer << " out there";
IccBuf buffer2(buffer);
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IccBuf methods
An IccBuf object can be manipulated using a number of supplied methods; for
example you can append data to the buffer, change the data in the buffer, cut data
out of the buffer, or insert data into the middle of the buffer.

The operators const char*, =, +=, ==, !=, and << have been overloaded in class
IccBuf. There are also methods that allow the IccBuf attributes to be queried. For
more details see the reference section.

Working with IccResource subclasses
To illustrate working with IccResource subclasses, consider writing a queue item to
CICS temporary storage using IccTempstore class.

The IccTempStore object created is the application's view of the CICS temporary
storage queue named "TEMP1234". The IccBuf object created holds a 50-byte data
area (it also happens to be 'extensible').

The character string "Hello Temporary Storage Queue" is copied into the buffer.
This is possible because the operator= method has been overloaded in the IccBuf
class.

The IccTempStore object calls its writeItem method, passing a reference to the
IccBuf object as the first parameter. The contents of the IccBuf object are written
out to the CICS temporary storage queue.

Now consider the inverse operation, reading a record from the CICS resource into
the application program's IccBuf object:

The readItem method reads the contents of the fifth item in the CICS Temporary
Storage queue and returns the data as an IccBuf reference.

The C++ compiler resolves the above line of code into two method calls, readItem
defined in class IccTempStore and operator= which has been overloaded in class
IccBuf. This second method takes the contents of the returned IccBuf reference and
copies its data into the buffer.

The above style of reading and writing records using the foundation classes is
typical. The final example shows how to write code – using a similar style to the
above example – but this time accessing a CICS transient data queue.

The readItem method of the IccDataQueue object is called, returning a reference to
an IccBuf which it then assigns (via operator= method, overloaded in class IccBuf)

IccTempStore store("TEMP1234");
IccBuf buffer(50);

buffer = "Hello Temporary Storage Queue";
store.writeItem(buffer);

buffer = store.readItem(5);

IccDataQueue queue("DATQ");
IccBuf buffer(50);
buffer = queue.readItem();
buffer << "Some extra data";
queue.writeItem(buffer);
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to the buffer object. The character string – "Some extra data" – is appended to the
buffer (via operator chevron « method, overloaded in class IccBuf). The writeItem
method then writes back this modified buffer to the CICS transient data queue.

You can find further examples of this syntax in the samples presented in the
following sectionchapters, which describe how to use the foundation classes to
access CICS services.

Please refer to the reference section for further information on the IccBuf class. You
might also find the supplied sample – ICC$BUF – helpful.
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Chapter 7. Using CICS Services

This section describes how to use CICS services. The services are considered in
turn.

File control
The file control classes IccFile, IccFileId, IccKey, IccRBA, and IccRRN allow you
to read, write, update and delete records in files.

In addition, IccFileIterator class allows you to browse through all the records in a
file.

An IccFile object is used to represent a file. It is convenient, but not necessary, to
use an IccFileId object to identify a file by name.

An application program reads and writes its data in the form of individual records.
Each read or write request is made by a method call. To access a record, the
program must identify both the file and the particular record.

VSAM (or VSAM-like) files are of the following types:

KSDS
Key-sequenced: each record is identified by a key – a field in a predefined
position in the record. Each key must be unique in the file.

The logical order of records within a file is determined by the key. The
physical location is held in an index which is maintained by VSAM.

When browsing, records are found in their logical order.

ESDS Entry-sequenced: each record is identified by its relative byte address
(RBA).

Records are held in an ESDS in the order in which they were first loaded
into the file. New records are always added at the end and records may
not be deleted or have their lengths altered.

When browsing, records are found in the order in which they were
originally written.

RRDS file
Relative record: records are written in fixed-length slots. A record is
identified by the relative record number (RRN) of the slot which holds it.

Reading records
A read operation uses two classes – IccFile to perform the operation and one of
IccKey, IccRBA, and IccRRN to identify the particular record, depending on
whether the file access type is KSDS, ESDS, or RRDS.

The readRecord method of IccFile class reads the record.

Reading KSDS records
Before reading a record you must use the registerRecordIndex method of IccFile
to associate an object of class IccKey with the file.
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You must use a key, held in the IccKey object, to access records. A 'complete' key is
a character string of the same length as the physical file's key. Every record can be
separately identified by its complete key.

A key can also be 'generic'. A generic key is shorter than a complete key and is
used for searching for a set of records.The IccKey class has methods that allow you
to set and change the key.

IccFile class has methods isReadable, keyLength, keyPosition, recordIndex, and
recordLength, which help you when reading KSDS records.

Reading ESDS records
You must use a relative byte address (RBA) held in an IccRBA object to access the
beginning of a record.

Before reading a record you must use the registerRecordIndex method of IccFile
to associate an object of class IccRBA with the file.

IccFile class has methods isReadable, recordFormat, recordIndex, and
recordLength that help you when reading ESDS records.

Reading RRDS records
You must use a relative record number (RRN) held in an IccRRN object to access a
record.

Before reading a record you must use registerRecordIndex method of IccFile to
associate an object of class IccRRN with the file.

IccFile class has methods isReadable, recordFormat, recordIndex, and
recordLength which help you when reading RRDS records.

Writing records
Writing records is also known as "adding records".

This topic describes writing records that have not previously been written. Writing
records that already exist is not permitted unless they have been previously been
put into 'update' mode. See “Updating records” on page 31 for more information.

Before writing a record you must use registerRecordIndex method of IccFile to
associate an object of class IccKey, IccRBA, or IccRRN with the file. The
writeRecord method of IccFile class writes the record.

A write operation uses two classes – IccFile to perform the operation and one of
IccKey, IccRBA, and IccRRN to identify the particular record, depending on
whether the file access type is KSDS, ESDS, or RRDS.

If you have more than one record to write, you can improve the speed of writing
by using mass insertion of data. You begin and end this mass insertion by calling
the beginInsert and endInsert methods of IccFile.

Writing KSDS records
You must use a key, held in an IccKey object to access records.

A 'complete' key is a character string that uniquely identifies a record. Every record
can be separately identified by its complete key.
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The writeRecord method of IccFile class writes the record.

IccFile class has methods isAddable, keyLength, keyPosition, recordIndex,
recordLength, and registerRecordIndex which help you when writing KSDS
records.

Writing ESDS records
You must use a relative byte address (RBA) held in an IccRBA object to access the
beginning of a record.

IccFile class has methods isAddable, recordFormat, recordIndex, recordLength,
and registerRecordIndex that help you when writing ESDS records.

Writing RRDS records
Use the writeRecord method to add a new ESDS record.

IccFile class has methods isAddable, recordFormat, recordIndex, recordLength,
and registerRecordIndex that help you when writing RRDS records.

Updating records
Updating a record is also known as "rewriting a record".

Before updating a record you must first read it, using readRecord method in
'update' mode. This locks the record so that nobody else can change it.

Use rewriteRecord method to update the record. Note that the IccFile object
remembers which record is being processed and this information is not passed in
again.

For an example, see code fragment: "Read record for update".

The base key in a KSDS file must not be altered when the record is modified. If the
file definition allows variable-length records, the length of the record can be
changed.

The length of records in an ESDS, RRDS, or fixed-length KSDS file must not be
changed on update.

For a file defined to CICS as containing fixed-length records, the length of record
being updated must be the same as the original length. The length of an updated
record must not be greater than the maximum defined to VSAM.

Deleting records
Records can never be deleted from an ESDS file.

Deleting normal records
The deleteRecord method of IccFile class deletes one or more records, provided
they are not locked by virtue of being in 'update' mode.

The records to be deleted are defined by the IccKey or IccRRN object.

Deleting locked records
The deleteLockedRecord method of IccFile class deletes a record which has been
previously locked by virtue of being put in 'update' mode by the readRecord
method.
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Browsing records
Browsing, or sequential reading of files uses another class – IccFileIterator.

An object of this class must be associated with an IccFile object and an IccKey,
IccRBA, or IccRRN object. After this association has been made the IccFileIterator
object can be used without further reference to the other objects.

Browsing can be done either forwards, using readNextRecord method or
backwards, using readPreviousRecord method. The reset method resets the
IccFileIterator object to point to the record specified by the IccKey or IccRBA
object.

Examples of browsing files are shown in page Code fragment "List all records in
assending order of key" .

Example of file control
This sample program demonstrates how to use the IccFile and IccFileIterator
classes.

The source for this sample can be found in the samples directory (see “Sample
source code” on page 6) in file ICC$FIL. Here the code is presented without any of
the terminal input and output that can be found in the source file.

The first two lines include the header files for the Foundation Classes and the
standard main function which sets up the operating environment for the
application program.

This defines several lines of data that are used by the sample program.

The run method of IccUserControl class contains the user code for this example.
As a terminal is to be used, the example starts by creating a terminal object and
clearing the associated screen.

#include "icceh.hpp"
#include "iccmain.hpp"

const char* fileRecords[] =
{

//NAME KEY PHONE USERID
"BACH, J S 003 00-1234 BACH ",
"BEETHOVEN, L 007 00-2244 BEET ",
"CHOPIN, F 004 00-3355 CHOPIN ",
"HANDEL, G F 005 00-4466 HANDEL ",
"MOZART, W A 008 00-5577 WOLFGANG "

};

void IccUserControl::run()
{

short recordsDeleted = 0;
IccFileId id("ICCKFILE");
IccKey key(3,IccKey::generic);
IccFile file( id );
file.registerRecordIndex( &key );
key = "00";
recordsDeleted = file.deleteRecord();
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The key and file objects are first created and then used to delete all the records
whose key starts with "00" in the KSDS file "ICCKFILE". key is defined as a generic
key having 3 bytes, only the first two of which are used in this instance.

This next fragment writes all the data provided into records in the file. The data is
passed by means of an IccBuf object that is created for this purpose. setKind
method is used to change key from 'generic' to 'complete'.

The for loop between these calls loops round all the data, passing the data into the
buffer, using the operator= method of IccBuf, and thence into a record in the file,
by means of writeRecord. On the way the key for each record is set, using assign,
to be a character string that occurs in the data (3 characters, starting 15 characters
in).

The loop shown here lists to the terminal, using sendLine, all the records in
ascending order of key. It uses an IccFileIterator object to browse the records. It
starts by setting the minimum value for the key which, as it happens, does not
exist in this example, and relying on CICS to find the first record in key sequence.

The loop continues until any condition other than NORMAL is returned.

The next loop is nearly identical to the last, but lists the records in reverse order of
key.

This fragment reads a record for update, locking it so that others cannot change it.
It then modifies the record in the buffer and writes the updated record back to the
file.

IccBuf buffer(40);
key.setKind( IccKey::complete );
for (short j = 0; j < 5; j++)
{

buffer = fileRecords[j];
key.assign(3, fileRecords[j]+15);
file.writeRecord( buffer );

}

IccFileIterator fIterator( &file, &key );
key = "000";
buffer = fIterator.readNextRecord();
while (fIterator.condition() == IccCondition::NORMAL)
{

term->sendLine("- record read: [%s]",(const char*) buffer);
buffer = fIterator.readNextRecord();

}

key = "\xFF\xFF\xFF";
fIterator.reset( &key );
buffer = fIterator.readPreviousRecord();
while (fIterator.condition() == IccCondition::NORMAL)
{

buffer = fIterator.readPreviousRecord();
}

key = "008";
buffer = file.readRecord( IccFile::update );
buffer.replace( 4, "5678", 23);
file.rewriteRecord( buffer );

buffer = file.readRecord();
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The same record is read again and sent to the terminal, to show that it has indeed
been updated.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample.

Program control
This section describes how to access and use a program other than the one that is
currently executing.

Program control uses IccProgram class, one of the resource classes.

Programs may be loaded, unloaded and linked to, using an IccProgram object. An
IccProgram object can be interrogated to obtain information about the program.
See Chapter 40, “IccProgram class,” on page 173 for more details.

The example shown here shows one program calling another two programs in
turn, with data passing between them via a COMMAREA. One program is
assumed to be local, the second is on a remote CICS system. The programs are in
two files, ICC$PRG1 and ICC$PRG2, in the samples directory (see “Sample source
code” on page 6).

Most of the terminal IO in these samples has been omitted from the code that
follows.

The code for both programs starts by including the header files for the Foundation
Classes and the stub for main method. The user code is located in the run method
of the IccUserControl class for each program.

The first program (ICC$PRG1) creates an IccSysId object representing the remote
region, and two IccProgram objects representing the local and remote programs
that will be called from this program. A 100 byte, fixed length buffer object is also
created to be used as a communication area between programs.

return;
}

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

IccSysId sysId( "ICC2" );
IccProgram icc$prg2( "ICC$PRG2" );
IccProgram remoteProg( "ICC$PRG3" );
IccBuf commArea( 100, IccBuf::fixed );
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The program then attempts to load and interrogate the properties of program
ICC$PRG2.

The communication area buffer is set to contain some data to be passed to the first
program that ICC$PRG1 links to (ICC$PRG2). ICC$PRG1 is suspended while
ICC$PRG2 is run.

The called program, ICC$PRG2, is a simple program, the gist of which is as
follows:

ICC$PRG2 gains access to the communication area that was passed to it. It then
modifies the data in this communication area and passes control back to the
program that called it.

The first program (ICC$PRG1) now calls another program, this time on another
system, as follows:

The setRouteOption requests that calls on this object are routed to the remote
system. The communication area is set again (because it will have been changed by
ICC$PRG2) and it then links to the remote program (ICC$PRG3 on system ICC2).

The called program uses CICS temporary storage but the three lines we consider
are:

Again, the remote program (ICC$PRG3) gains access to the communication area
that was passed to it. It modifies the data in this communication area and passes
control back to the program that called it.

Finally, the calling program itself ends and returns control to CICS.

icc$prg2.load();
if (icc$prg2.condition() == IccCondition::NORMAL)
{

term->sendLine( "Loaded program: %s <%s> Length=%ld Address=%x",
icc$prg2.name(),
icc$prg2.conditionText(),
icc$prg2.length(),
icc$prg2.address() );

icc$prg2.unload();
}

commArea = "DATA SET BY ICC$PRG1";
icc$prg2.link( &commArea );

IccBuf& commArea = IccControl::commArea();
commArea = "DATA RETURNED BY ICC$PRG2";
return;

remoteProg.setRouteOption( sysId );
commArea = "DATA SET BY ICC$PRG1";
remoteProg.link( &commArea );

IccBuf& commArea = IccControl::commArea();
commArea = "DATA RETURNED BY ICC$PRG3";
return;

return;
};
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See Appendix C, “Output from sample programs,” on page 305 for the expected
output from these sample programs.

Starting transactions asynchronously
The IccStartRequestQ class enables a program to start another CICS transaction
instance asynchronously (and optionally pass data to the started transaction).

The same class is used by a started transaction to gain access to the data that the
task that issued the start request passed to it. Finally start requests (for some time
in the future) can be cancelled.

Starting transactions
You can use any of the following methods to establish what data will be sent to
the started transaction.
v registerData or setData

v setQueueName

v setReturnTermId

v setReturnTransId

The actual start is requested using the start method.

Accessing start data
A started transaction can access its start data by invoking the retrieveData method.

This method stores all the start data attributes in the IccStartRequestQ object such
that the individual attributes can be accessed using the following methods:
v data

v queueName

v returnTermId

v returnTransId

Cancelling unexpired start requests
Unexpired start requests (that is, start requests for some future time that has not
yet been reached) can be cancelled using the cancel method.

Example of starting transactions
start transaction ISR1 on terminal PEO1 on system ICC1.

CICS system ICC1 ICC2

Transaction ISR1/ITMP ISR2

Program ICC$SRQ1/ICC$TMP ICC$SRQ2

Terminal PEO1 PEO2

This issues two start requests; the first is cancelled before it has expired. The
second starts transaction ISR2 on terminal PEO2 on system ICC2. This transaction
accesses its start data and finishes by starting transaction ITMP on the original
terminal (PEO1 on system ICC1).
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The programs can be found in the samples directory (see “Sample source code” on
page 6) as files ICC$SRQ1 and ICC$SRQ2. Here the code is presented without the
terminal IO requests.

Transaction ISR1 runs program ICC$SRQ1 on system ICC1. Let us consider this
program first:

These lines include the header files for the Foundation Classes, and the main
function needed to set up the class library for the application program. The run
method of IccUserControl class contains the user code for this example.

Here we are creating a number of objects:

req1 An empty IccRequestId object ready to identify a particular start request.

req2 An IccRequestId object containing the user-supplied identifier
"REQUEST1".

ti An IccTimeInterval object representing 0 hours, 0 minutes, and 5 seconds.

remoteTermId
An IccTermId object; the terminal on the remote system where we start a
transaction.

ISR2 An IccTransId object; the transaction we start on the remote system.

ITMP An IccTransId object; the transaction that the started transaction starts on
this program's terminal.

buffer
An IccBuf object that holds start data.

Finally, the startRequestQ method of IccControl class returns a pointer to the
single instance (singleton) class IccStartRequestQ.

This code fragment prepares the start data that is passed when we issue a start
request. The setRouteOption says we will issue the start request on the remote
system, ICC2. The registerData method associates an IccBuf object that will
contain the start data (the contents of the IccBuf object are not extracted until we
issue the start request). The setReturnTermId and setReturnTransId methods
allow the start requester to pass a transaction and terminal name to the started

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

IccRequestId req1;
IccRequestId req2("REQUEST1");
IccTimeInterval ti(0,0,5);
IccTermId remoteTermId("PE02");
IccTransId ISR2("ISR2");
IccTransId ITMP("ITMP");
IccBuf buffer;
IccStartRequestQ* startQ = startRequestQ();

startQ->setRouteOption( "ICC2" );
startQ->registerData( &buffer );
startQ->setReturnTermId( terminal()->name() );
startQ->setReturnTransId( ITMP );
startQ->setQueueName( "startqnm" );
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transaction. These fields are typically used to allow the started transaction to start
another transaction (as specified) on another terminal, in this case ours.

The setQueueName is another piece of information that can be passed to the
started transaction.

Here we set the data that we pass on the start requests. We start transaction ISR2
after an interval ti (5 seconds). The request identifier is stored in req1. Before the
five seconds has expired (that is, immediately) we cancel the start request.

Again we start transaction ISR2 after an interval ti (5 seconds). This time the
request is allowed to expire so transaction ISR2 is started on the remote system.
Meanwhile, we end by returning control to CICS.

Let us now consider the started program, ICC$SRQ2.

Here, as in ICC$SRQ1, we create a number of objects:

buffer
An IccBuf object to hold the start data we were passed by our caller
(ICC$SRQ1).

req An IccRequestId object to identify the start we will issue on our caller's
terminal.

ti An IccTimeInterval object representing 0 hours, 0 minutes, and 5 seconds.

The startRequestQ method of IccControl class returns a pointer to the singleton
class IccStartRequestQ.

Here we use the startType method of IccTask class to check that ICC$SRQ2 was
started by the start method, and not in any other way (such as typing the
transaction name on a terminal). If it was not started as intended, we abend with
an "OOPS" abend code.

We retrieve the start data that we were passed by ICC$SRQ1 and store within the
IccStartRequestQ object for subsequent access.

buffer = "This is a greeting from program ’icc$srq1’!!";
req1 = startQ->start( ISR2, &remoteTermId, &ti );
startQ->cancel( req1 );

req1 = startQ->start( ISR2, &remoteTermID, &ti, &req2 );
return;

}

IccBuf buffer;
IccRequestId req("REQUESTX");
IccTimeInterval ti(0,0,5);
IccStartRequestQ* startQ = startRequestQ();

if ( task()->startType() != IccTask::startRequest )
{

term->sendLine(
"This program should only be started via the StartRequestQ");

task()->abend( "OOPS" );
}

startQ->retrieveData();
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The start data buffer is copied into our IccBuf object. The other start data items
(queue, returnTransId, and returnTermId) are displayed on the terminal.

We delay for five seconds (that is, we sleep and do nothing).

The setRouteOption signals that we will start on our caller's system (ICC1).

We start a transaction called ITMP (the name of which was passed by ICC$SRQ1 in
the returnTransId start information) on the originating terminal (where ICC$SRQ1
completed as it started this transaction). Having issued the start request, ICC$SRQ1
ends, by returning control to CICS.

Finally, transaction ITMP runs on the first terminal. This is the end of this
demonstration of starting transactions asynchronously.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from these sample programs.

Transient Data
The transient data classes, IccDataQueue and IccDataQueueId, allow you to store
data in transient data queues for subsequent processing.

You can:
v Read data from a transient data queue (readItem method)
v Write data to a transient data queue (writeItem method)
v Delete a transient data queue (empty method)

An IccDataQueue object is used to represent a temporary storage queue. An
IccDataQueueId object is used to identify a queue by name. Once the
IccDataQueueId object is initialized it can be used to identify the queue as an
alternative to using its name, with the advantage of additional error detection by
the C++ compiler.

The methods available in IccDataQueue class are similar to those in the
IccTempStore class. For more information on these see “Temporary storage” on
page 41.

Reading data
The readItem method is used to read items from the queue.

It returns a reference to the IccBuf object that contains the information.

buffer = startQ->data();
term->sendLine( "Start buffer contents = [%s]", buffer.dataArea() );
term->sendLine( "Start queue= [%s]", startQ->queueName() );
term->sendLine( "Start rtrn = [%s]", startQ->returnTransId().name());
term->sendLine( "Start rtrm = [%s]", startQ->returnTermId().name() );

task()->delay( ti );

startQ->setRouteOption( "ICC1" );

startQ->start( startQ->returnTransId(),startQ->returnTermId());
return;
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Writing data
The writeItem method of IccDataQueue adds a new item of data to the queue,
taking the data from the buffer specified.

Deleting queues
The empty method deletes all items on the queue.

Example of managing transient data
This sample program demonstrates how to use the IccDataQueue and
IccDataQueueId classes.

It can be found in the samples directory (see “Sample source code” on page 6) as
file ICC$DAT. Here the code is presented without the terminal IO requests.

The first two lines include the header files for the foundation classes and the
standard main function that sets up the operating environment for the application
program.

This defines some buffer for the sample program.

The run method of IccUserControl class contains the user code for this example.

This fragment first creates an identification object, of type IccDataQueueId
containing "ICCQ". It then creates an IccDataQueue object representing the
transient data queue "ICCQ", which it empties of data.

This loop writes the three data items to the transient data object. The data is
passed by means of an IccBuf object that was created for this purpose.

#include "icceh.hpp"
#include "iccmain.hpp"

const char* queueItems[] =
{

"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"

};

void IccUserControl::run()
{

short itemNum =1;
IccBuf buffer( 50 );
IccDataQueueId id( "ICCQ" );
IccDataQueue queue( id );
queue.empty();

for (short i=0 ; i<3 ; i++)
{

buffer = queueItems[i];
queue.writeItem( buffer );

}
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Having written out three records we now read them back in to show they were
successfully written.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample program.

Temporary storage
The temporary storage classes, IccTempStore and IccTempStoreId, allow you to
store data in temporary storage queues.

You can:
v Read an item from the temporary storage queue (readItem method)
v Write a new item to the end of the temporary storage queue (writeItem method)
v Update an item in the temporary storage queue (rewriteItem method)
v Read the next item in the temporary storage queue (readNextItem method)
v Delete all the temporary data (empty method)

An IccTempStore object is used to represent a temporary storage queue. An
IccTempStoreId object is used to identify a queue by name. Once the
IccTempStoreId object is initialized it can be used to identify the queue as an
alternative to using its name, with the advantage of additional error detection by
the C++ compiler.

The methods available in IccTempStore class are similar to those in the
IccDataQueue class. For more information on these see “Transient Data” on page
39.

Reading items
The readItem method of IccTempStore reads the specified item from the
temporary storage queue.

It returns a reference to the IccBuf object that contains the information.

Writing items
Writing items is also known as "adding" items.

This section describes writing items that have not previously been written. Writing
items that already exist can be done using the rewriteItem method. See “Updating
items” on page 42 for more information.

The writeItem method of IccTempStore adds a new item at the end of the queue,
taking the data from the buffer specified. If this is done successfully, the item
number of the record added is returned.

buffer = queue.readItem();
while ( queue.condition() == IccCondition::NORMAL )
{

buffer = queue.readItem();
}

return;
}
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Updating items
Updating an item is also known as "rewriting" an item.

The rewriteItem method of IccTempStore class is used to update the specified
item in the temporary storage queue.

Deleting items
You cannot delete individual items in a temporary storage queue.

To delete all the temporary data associated with an IccTempStore object use the
empty method of IccTempStore class.

Example of Temporary Storage
This sample program demonstrates how to use the IccTempStore and
IccTempStoreId classes.

This program can be found in the samples directory (see “Sample source code” on
page 6) as file ICC$TMP. The sample is presented here without the terminal IO
requests.

The first three lines include the header files for the foundation classes, the standard
main function that sets up the operating environment for the application program,
and the standard library.

This defines some buffer for the sample program.

The run method of IccUserControl class contains the user code for this example.

This fragment first creates an identification object, IccTempStoreId containing the
field "ICCSTORE". It then creates an IccTempStore object representing the
temporary storage queue "ICCSTORE", which it empties of records.

#include "icceh.hpp"
#include "iccmain.hpp"
#include <stdlib.h>

const char* bufferItems[] =
{

"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"

};

void IccUserControl::run()
{

short itemNum = 1;
IccTempStoreId id("ICCSTORE");
IccTempStore store( id );
IccBuf buffer( 50 );
store.empty();

for (short j=1 ; j <= 3 ; j++)
{

buffer = bufferItems[j-1];
store.writeItem( buffer );

}
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This loop writes the three data items to the Temporary Storage object. The data is
passed by means of an IccBuf object that was created for this purpose.

This next fragment reads the items back in, modifies the item, and rewrites it to
the temporary storage queue. First, the readItem method is used to read the buffer
from the temporary storage object. The data in the buffer object is changed using
the insert method of IccBuf class and then the rewriteItem method overwrites the
buffer. The loop continues with the next buffer item being read.

This loop reads the temporary storage queue items again to show they have been
updated.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample program.

Terminal control
The terminal control classes, IccTerminal, IccTermId, and IccTerminalData, allow
you to send data to, receive data from, and find out information about the terminal
belonging to the CICS task.

An IccTerminal object is used to represent the terminal that belongs to the CICS
task. It can only be created if the transaction has a 3270 terminal as its principal
facility. The IccTermId class is used to identify the terminal. IccTerminalData,
which is owned by IccTerminal, contains information about the terminal
characteristics.

Sending data to a terminal
The send and sendLine methods of IccTerminal class are used to write data to the
screen.

The set... methods allow you to do this. You may also want to erase the data
currently displayed at the terminal, using the erase method, and free the keyboard
so that it is ready to receive input, using the freeKeyboard method.

buffer = store.readItem( itemNum );
while ( store.condition() == IccCondition::NORMAL )
{

buffer.insert( 9, "Modified " );
store.rewriteItem( itemNum, buffer );
itemNum++;
buffer = store.readItem( itemNum );

}

itemNum = 1;
buffer = store.readItem( itemNum );
while ( store.condition() == IccCondition::NORMAL )
{

term->sendLine( " - record #%d = [%s]", itemNum,
(const char*)buffer );

buffer = store.readNextItem();
}

return;
}
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Receiving data from a terminal
The receive and receive3270data methods of IccTerminal class are used to receive
data from the terminal.

Finding out information about a terminal
You can find out information about both the characteristics of the terminal and its
current state.

The data object points to the IccTerminalData object that contains information
about the characteristics of the terminal. The methods described in
IccTerminalData on page Chapter 58, “IccTerminalData class,” on page 263 allow
you to discover, for example, the height of the screen or whether the terminal
supports Erase Write Alternative. Some of the methods in IccTerminal also give
you information about characteristics, such as how many lines a screen holds.

Other methods give you information about the current state of the terminal. These
include line, which returns the current line number, and cursor, which returns the
current cursor position.

Example of terminal control
This sample program demonstrates how to use the IccTerminal, IccTermId, and
IccTerminalData classes.

This program can be found in the samples directory (see “Sample source code” on
page 6) as file ICC$TRM.

The first two lines include the header files for the Foundation Classes and the
standard main function that sets up the operating environment for the application
program.

The run method of IccUserControl class contains the user code for this example.
As a terminal is to be used, the example starts by creating a terminal object and
clearing the associated screen.

This fragment shows how the send and sendLine methods are used to send data
to the terminal. All of these methods can take IccBuf references (const IccBuf&)
instead of string literals (const char*).

This sends a blank line to the screen.

#include "icceh.hpp"
#include "iccmain.hpp"

void IccUserControl::run()
{

IccTerminal& term = *terminal();
term.erase();

term.sendLine( "First part of the line..." );
term.send( "... a continuation of the line." );
term.sendLine( "Start this on the next line" );
term.sendLine( 40, "Send this to column 40 of current line" );
term.send( 5, 10, "Send this to row 5, column 10" );
term.send( 6, 40, "Send this to row 6, column 40" );

term.setNewLine();
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The setColor method is used to set the color of the text on the screen and the
setHighlight method to set the highlighting.

This fragment shows how to use the iostream–like interface endl to start data on
the next line. To improve performance, you can buffer data in the terminal until
flush is issued, which sends the data to the screen.

The waitForAID method causes the terminal to wait until the specified key is hit,
before calling the erase method to clear the display.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample program.

Time and date services
The IccClock class controls access to the CICS time and date services.

IccAbsTime holds information about absolute time (the time in milliseconds that
have elapsed since the beginning of 1900), and this can be converted to other forms
of date and time. The methods available on IccClock objects and on IccAbsTime
objects are very similar.

Example of time and date services
This sample program demonstrates how to use IccClock class.

The source for this program can be found in the samples directory (see “Sample
source code” on page 6) as file ICC$CLK. The sample is presented here without the
terminal IO requests.

The first two lines include the header files for the Foundation Classes and the
standard main function that sets up the operating environment for the application
program.

term.setColor( IccTerminal::red );
term.sendLine( "A Red line of text.");
term.setColor( IccTerminal::blue );
term.setHighlight( IccTerminal::reverse );
term.sendLine( "A Blue, Reverse video line of text.");

term << "A cout sytle interface... " << endl;
term << "you can " << "chain input together; "

<< "use different types, eg numbers: " << (short)123 << " "
<< (long)4567890 << " " << (double)123456.7891234 << endl;

term << "... and everything is buffered till you issue a flush."
<< flush;

term.send( 24,1, "Program ’icc$trm’ complete: Hit PF12 to End" );
term.waitForAID( IccTerminal::PF12 );
term.erase();

return;
}

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{
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The run method of IccUserControl class contains the user code for this example.

This creates a clock object.

Here the date method is used to return the date in the format specified by the
format enumeration. In order the formats are system, DDMMYY, DD:MM:YY,
MMDDYY and YYDDD. The character used to separate the fields is specified by
the dateSeparator character (that defaults to nothing if not specified).

This fragment demonstrates the use of the daysSince1900 and dayOfWeek
methods. dayOfWeek returns an enumeration that indicates the day of the week. If
it is Friday, a message is sent to the screen, 'Today IS Friday'; otherwise the
message 'Today is NOT Friday' is sent.

This demonstrates the dayOfMonth and monthOfYear methods of IccClock class.

The current time is sent to the terminal, first without a separator (that is HHMMSS
format), then with '-' separating the digits (that is, HH-MM-SS format). The year is
sent, for example 1996.

The end of run, which returns control to CICS.

See Appendix C, “Output from sample programs,” on page 305 for the expected
output from this sample program.

IccClock clock;

term->sendLine( "date() = [%s]",
clock.date() );

term->sendLine( "date(DDMMYY) = [%s]",
clock.date(IccClock::DDMMYY) );

term->sendLine( "date(DDMMYY,’:’) = [%s]",
clock.date(IccClock::DDMMYY,’:’));

term->sendLine( "date(MMDDYY) = [%s]",
clock.date(IccClock::MMDDYY));

term->sendLine( "date(YYDDD) = [%s]",
clock.date(IccClock::YYDDD));

term->sendLine( "daysSince1900() = %ld",
clock.daysSince1900());

term->sendLine( "dayOfWeek() = %d",
clock.dayOfWeek());

if ( clock.dayOfWeek() == IccClock::Friday )
term->sendLine( 40, "Today IS Friday" );

else
term->sendLine( 40, "Today is NOT Friday" );

term->sendLine( "dayOfMonth() = %d",
clock.dayOfMonth());

term->sendLine( "monthOfYear() = %d",
clock.monthOfYear());

term->sendLine( "time() = [%s]",
clock.time() );

term->sendLine( "time(’-’) = [%s]",
clock.time(’-’) );

term->sendLine( "year() = [%ld]",
clock.year());

return;
};
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Chapter 8. Compiling, executing, and debugging

This section describes how to compile, execute, and debug a CICS Foundation
Class program.

Compiling Programs
To compile and link a CICS Foundation Class program you need access to the
following.
v The source of the program you are compiling

Your C++ program source code needs #include statements for the Foundation
Class headers and the Foundation Class main() program stub:
#include "icceh.hpp"
#include "iccmain.hpp"

v The IBM C++ compiler
v The Foundation Classes header files (see “Header files” on page 5)
v The Foundation Classes dynamic link library (DLL) (see “Dynamic link library”

on page 6)

Note that, when using the Foundation Classes, you do not need to translate the
"EXEC CICS" API so the translator program should not be used.

The following sample job statements show how to compile, prelink and link a
program called ICC$HEL:
//ICC$HEL JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//PROCLIB JCLLIB ORDER=(CICSTS42.CICS.SDFHPROC)
//ICC$HEL EXEC ICCFCCL,INFILE=indatasetname(ICC$HEL),OUTFILE=outdatasetname(ICC$HEL)
//

Executing Programs
To run a compiled and linked (that is, executable) Foundation Classes program you
need to do the following.
1. Make the executable program available to CICS. This involves making sure the

program is in a suitable directory or load library. Depending on your server,
you may also need to create a CICS program definition (using CICS resource
definition facilities) before you can execute the program.

2. Logon to a CICS terminal.
3. Run the program.

Program debugging
Having successfully compiled, linked, and attempted to run your Foundation
Classes program, you might need to debug it.

There are three options available to help debug a CICS Foundation Classes
program:
v Use a symbolic debugger
v Run the Foundation Class Program with tracing active
v Run the Foundation Class Program with the CICS Execution Diagnostic Facility
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Symbolic debugger

You can use a symbolic debugger to step through the source of your CICS
Foundation Classes program. Debug Tool is shipped as a feature with IBM C/C++.
To debug a CICS Foundation Classes program with a symbolic debugger, compile
the program with a flag that adds debugging information to your executable
program. For CICS Transaction Server for z/OS, this flag is TEST(ALL).

For more information, see the Debug Tool for z/OS and OS/390 User's Guide.

Tracing

You can configure the CICS Foundation Classes to write a trace file for debugging
purposes.

Exception tracing is always active. The CETR transaction controls the auxiliary and
internal traces for all CICS programs including those developed using the C++
classes.

Execution diagnostic facility

You can use the Execution Diagnostic Facility (EDF) to step through your CICS
program, stopping at each EXEC CICS call. The display screen shows the procedural
EXEC CICS call interface rather than the CICS Foundation Class type interface.

To enable EDF, use the preprocessor macro ICC_EDF in your source code before
including the file ICCMAIN.

#define ICC_EDF //switch EDF on
#include "iccmain.hpp"

Alternatively use the appropriate flag on your compiler CPARM to declare
ICC_EDF.
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Chapter 9. Conditions, errors, and exceptions

This section describes how the Foundation Classes have been designed to respond
to various error situations they might encounter.

Foundation Class Abend codes
For serious errors (such as insufficient storage to create an object) the Foundation
Classes immediately terminate the CICS task.

All CICS Foundation Class abend codes are of the form ACLx. If your application
is terminated with an abend code starting 'ACL' then please refer to CICS Messages
and Codes, GC34-6827.

C++ Exceptions and the Foundation Classes
C++ exceptions are managed using the reserved words try, throw, and catch.

Please refer to your compiler's documentation or one of the C++ books in the
bibliography for more information.

Here is sample ICC$EXC1 (see “Sample source code” on page 6):

The first two lines include the header files for the Foundation Classes and the
standard main function that sets up the operating environment for the application
program.

We then declare class Test, which has one public method, tryNumber. This method
is implemented inline so that if an integer greater than ten is passed an exception
is thrown. We also write out some information to the CICS terminal.

#include "icceh.hpp"
#include "iccmain.hpp"
class Test {
public:

void tryNumber( short num ) {
IccTerminal* term = IccTerminal::instance();
*term << "Number passed = " << num << endl << flush;
if ( num > 10 ) {

*term << ">>Out of Range - throwing exception" << endl << flush;
throw "!!Number is out of range!!";

}
}

};
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The run method of IccUserControl class contains the user code for this example.

After erasing the terminal display and writing some text, we begin our try block. A
try block can scope any number of lines of C++ code.

Here we create a Test object and invoke our only method, tryNumber, with
various parameters. The first two invocations (1, 7) succeed, but the third (11)
causes tryNumber to throw an exception. The fourth tryNumber invocation (6) is
not executed because an exception causes the program execution flow to leave the
current try block.

We then leave the try block and look for a suitable catch block. A suitable catch
block is one with arguments that are compatible with the type of exception being
thrown (here a char*). The catch block writes a message to the CICS terminal and
then execution resumes at the line after the catch block.

The output from this CICS program is as follows:

This is program ’icc$exc1’ ...
Number passed = 1
Number passed = 7
Number passed = 11
>>Out of Range - throwing exception
Exception caught: !!Number is out of range!!
Program ’icc$exc1’ complete: Hit PF12 to End

The CICS C++ Foundation Classes do not throw char* exceptions as in the above
sample but they do throw IccException objects instead.

There are several types of IccException. The type method returns an enumeration
that indicates the type. Here is a description of each type in turn.

objectCreationError
An attempt to create an object was invalid. This happens, for example, if
an attempt is made to create a second instance of a singleton class, such as
IccTask.

invalidArgument
A method was called with an invalid argument. This happens, for example,

void IccUserControl::run()
{

IccTerminal* term = IccTerminal::instance();
term->erase();
*term << "This is program ’icc$exc1’ ..." << endl;
try {

Test test;
test.tryNumber( 1 );
test.tryNumber( 7 );
test.tryNumber( 11 );
test.tryNumber( 6 );

}
catch( const char* exception ) {

term->setLine( 22 );
*term << "Exception caught: " << exception << endl << flush;

}
term->send( 24,1,"Program ’icc$exc1’ complete: Hit PF12 to End" );
term->waitForAID( IccTerminal::PF12 );
term->erase();
return;

}
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if an IccBuf object with too much data is passed to the writeItem method
of the IccTempStore class by the application program.

It also happens when attempting to create a subclass of IccResourceId,
such as IccTermId, with a string that is too long.

The following sample can be found in the samples directory (see “Sample
source code” on page 6) as file ICC$EXC2. The sample is presented here
without many of the terminal IO requests.

In the above example the first IccTermId object is successfully created, but
the second caused an IccException to be thrown, because the string "12345"
is 5 bytes where only 4 are allowed. See Appendix C, “Output from sample
programs,” on page 305 for the expected output from this sample program.

invalidMethodCall
A method cannot be called. A typical reason is that the object cannot honor
the call in its current state. For example, a readRecord call on an IccFile
object is only honored if an IccRecordIndex object, to specify which record
is to be read, has already been associated with the file.

CICSCondition
A CICS condition, listed in the IccCondition structure, has occurred in the
object and the object was configured to throw an exception.

familyConformanceError
Family subset enforcement is on for this program and an operation that is
not valid on all supported platforms has been attempted.

internalError
The CICS foundation classes have detected an internal error. Please call
service.

CICS conditions
The CICS foundation classes provide a powerful framework for handling
conditions that happen when executing an application.

Accessing a CICS resource can raise a number of CICS conditions as documented
in Part 3, “Foundation Classes—reference,” on page 67.

A condition might represent an error or information being returned to the calling
application; the deciding factor is often the context in which the condition is
raised.

#include "icceh.hpp"
#include "iccmain.hpp"
void IccUserControl::run()
{

try
{

IccTermId id1( "1234" );
IccTermId id2( "12345");

}
catch( IccException& exception )
{

terminal()->send( 21, 1, exception.summary() );
}
return;

}
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The application program can handle the CICS conditions in a number of ways.
Each CICS resource object, such as a program, file, or data queue, can handle CICS
conditions differently, if required.

A resource object can be configured to take one of the following actions for each
condition it can encounter:

noAction
Manual condition handling

callHandleEvent
Automatic condition handling

throwException
Exception handling

abendTask
Severe error handling.

Manual condition handling (noAction)
This is the default action for all CICS conditions (for any resource object).

This means that the condition must be handled manually, using the condition
method. For example:

Automatic condition handling (callHandleEvent)
Activate this for any CICS condition, such as QIDERR, as follows.

When a call to any method on object 'temp' causes CICS to raise the QIDERR
condition, handleEvent method is automatically called. As the handleEvent
method is only a virtual method, this call is only useful if the object belongs to a
subclass of IccTempStore and the handleEvent method has been overridden.

Make a subclass of IccTempStore, declare a constructor, and override the
handleEvent method.

IccTempStore temp("TEMP1234");
IccBuf buf(40);
temp.setActionOnCondition(IccResource::noAction,

IccCondition::QIDERR);
buf = temp.readNextItem();
switch (temp.condition())
{
case IccCondition::QIDERR:

//do whatever here...
default:

//do something else here
}

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::callHandleEvent,

IccCondition::QIDERR);
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Now implement the handleEvent method.

This code is called for any MyTempStore object which is configured to
'callHandleEvent' for a particular CICS condition.

Exception handling (throwException)
Activate this for any CICS condition, such as QIDERR, as follows.

Exception handling is by means of the C++ exception handling model using try,
throw, and catch. For example:

An exception is thrown if any of the methods inside the try block raise the
QIDERR condition for object 'temp'. When an exception is thrown, C++ unwinds
the stack and resumes execution at an appropriate catch block – it is not possible
to resume within the try block. For a fuller example of the above, see sample
ICC$EXC3.

class MyTempStore : public IccTempStore
{
public:

MyTempStore(const char* storeName) : IccTempStore(storeName) {}
HandleEventReturnOpt handleEvent(IccEvent& event);

};

IccResource::HandleEventReturnOpt MyTempStore::handleEvent(IccEvent& event)
{

switch (event.condition())
{
case ...

...
case IccCondition::QIDERR:

//Handle QIDERR condition here.

...
//

default:
return rAbendTask;

}
}

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::throwException,

IccCondition::QIDERR);

try
{

buf = temp.readNextItem();

...
}
catch (IccException& exception)
{

//Exception handling code

...
}
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Note: Exceptions can be thrown from the Foundation Classes for many reasons
other than this example – see “C++ Exceptions and the Foundation Classes” on
page 49 for more details.

Severe error handling (abendTask)
This option allows CICS to terminate the task when certain conditions are raised.

Activate this for any CICS condition, such as QIDERR, as follows:

If CICS raises the QIDERR condition for object 'temp' the CICS task terminates
with an ACL3 abend.

Platform differences
The CICS Foundation Classes, as described here, are designed to be independent of
the particular CICS platform on which they are running. There are however some
differences between platforms; these, and ways of coping with them, are described
here.

Note: References in this topicsection to other CICS platforms, such as CICS for
AIX®, are included for completeness. There have been Technology Releases of the
CICS Foundation Classes on those platforms.

Applications can be run in one of two modes:

fsAllowPlatformVariance
Applications written using the CICS Foundation Classes are able to access
all the functions available on the target CICS server.

fsEnforce
Applications are restricted to the CICS functions that are available across
all CICS Servers (z/OS and UNIX).

The default is to allow platform variance and the alternative is to force the
application to only use features which are common to all CICS platforms.

The class headers are the same for all platforms and they "support" (that is, define)
all the CICS functions that are available through the Foundation Classes on any of
the CICS platforms. The restrictions on each platform are documented in Part 3,
“Foundation Classes—reference,” on page 67. Platform variations exist at:
v object level
v method level
v parameter level

Object level
Some objects are not supported on certain platforms.

For example, IccConsole objects cannot be created on CICS for AIX as CICS for
AIX does not support console services.

IccTempStore temp("TEMP1234");
temp.setActionOnCondition(IccResource::abendTask,

IccCondition::QIDERR);
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Any attempt to create an IccConsole object on CICS for AIX causes an
IccException object of type 'platformError' to be thrown, but would be acceptable
on the other platforms
IccConsole* cons = console(); //No good on CICS for AIX

If you initialize your application with 'fsEnforce' selected (see
“initializeEnvironment” on page 70) the previous examples both cause an
IccException object, of type 'familyConformanceError' to be thrown on all
platforms.

Unlike objects of the IccConsole and IccJournal classes, most objects can be created
on any CICS server platform. However the use of the methods can be restricted.
Part 3, “Foundation Classes—reference,” on page 67 fully documents all platform
restrictions.

Method level
Methods that run successfully on one platform can cause a problem on another
platform.

Consider, for example method programId in the IccControl class:

Here method programId executes correctly on CICS TS for z/OS but throws an
IccException object of type 'platformError' on CICS for AIX.

Alternatively, if you initialize your application with family subset enforcement on
(see initializeEnvironment function of Icc structure), method programId throws an
IccException object of type 'familyConformanceError' on any CICS server platform.

Parameter level
At this level a method is supported on all platforms, but a particular positional
parameter has some platform restrictions.

Consider method abend in IccTask class.

Abends �1� to �4� run successfully on all CICS server platforms.

If family subset enforcement is off, abend �5� throws an IccException object of
type 'platformError' on a CICS for AIX platform, but not on a CICS Transaction
Server for z/OS platform.

void IccUserControl::run()
{

if (strcmp(programId.name(), "PROG1234") == 0)
//do something

}

task()->abend(); �1�

task()->abend("WXYZ"); �2�

task()->abend("WXYZ", IccTask::respectAbendHandler); �3�

task()->abend("WXYZ", IccTask::ignoreAbendHandler); �4�

task()->abend("WXYZ", IccTask::ignoreAbendHandler, �5�

IccTask::suppressDump);
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If family subset enforcement is on, abend �5� throws an IccException object of
type 'familyConformanceError', irrespective of the target CICS platform.
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Chapter 10. Polymorphic Behavior

Polymorphism (poly = many, morphe = form) is the ability to treat many different
forms of an object as if they were the same.

Polymorphism is achieved in C++ by using inheritance and virtual functions.
Consider the scenario where we have three forms (ExpenseForm, LoanForm,
PurchaseForm) that are specializations of a general Form:

Each form needs printing at some time. In procedural programming, we would
either code a print function to handle the three different forms or we would write
three different functions (printExpenseForm, printLoanForm, printPurchaseForm).

In C++ this can be achieved far more elegantly as follows:

Each of these overridden functions is implemented so that each form prints
correctly. Now an application using form objects can do this:

Here we create ten objects that might be any combination of Expense, Loan, and
Purchase Forms. However, because we are dealing with pointers to the base class,
Form, we do not need to know which sort of form object we have; the correct
print method is called automatically.

Limited polymorphic behavior is available in the Foundation Classes. Three virtual
functions are defined in the base class IccResource:

Form
│

┌───────────────┼───────────────┐
│ │ │

ExpenseForm LoanForm PurchaseForm

class Form {
public:

virtual void print();
};
class ExpenseForm : public Form {
public:

virtual void print();
};
class LoanForm : public Form {
public:

virtual void print();
};
class PurchaseForm : public Form {
public:

virtual void print();
};

Form* pForm[10]
//create Expense/Loan/Purchase Forms...
for (short i=0 ; i < 9 ; i++)

pForm->print();

virtual void clear();
virtual const IccBuf& get();
virtual void put(const IccBuf& buffer);
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These methods have been implemented in the subclasses of IccResource wherever
possible:

Class clear get put

IccConsole × × U

IccDataQueue U U U

IccJournal × × U

IccSession × U U

IccTempStore U U U

IccTerminal U U U

These virtual methods are not supported by any subclasses of IccResource except
those in the table above.

Note: The default implementations of clear, get, and put in the base class
IccResource throw an exception to prevent the user from calling an unsupported
method.

Example of polymorphic behavior
The following sample can be found in the samples directory as file ICC$RES2.

It is presented here without the terminal IO requests. See “Sample source code” on
page 6.

Here we include Foundation Class headers and the main function. dataItems
contains some sample data items. We write our application code in the run method
of IccUserControl class.

We create an IccBuf object (50 bytes initially) to hold our data items. An array of
two pointers to IccResource objects is declared.

We create two objects whose classes are derived from IccResource – IccDataQueue
and IccTempStore.

#include "icceh.hpp"
#include "iccmain.hpp"
char* dataItems[] =
{

"Hello World - item 1",
"Hello World - item 2",
"Hello World - item 3"

};
void IccUserControl::run()
{

IccBuf buffer( 50 );
IccResource* pObj[2];

pObj[0] = new IccDataQueue("ICCQ");
pObj[1] = new IccTempStore("ICCTEMPS");
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For both objects we invoke the clear method. This is handled differently by each
object in a way that is transparent to the application program; this is polymorphic
behavior.

Now we put three data items in each of our resource objects. Again the put
method responds to the request in a way that is appropriate to the object type.

The data items are read back in from each of our resource objects using the get
method. We delete the resource objects and return control to CICS.

for ( short index=0; index <= 1 ; index++ )
{

pObj[index]->clear();
}

for ( index=0; index <= 1 ; index++ )
{

for (short j=1 ; j <= 3 ; j++)
{

buffer = dataItems[j-1];
pObj[index]->put( buffer );

}
}

for ( index=0; index <= 1 ; index++ )
{

buffer = pObj[index]->get();
while (pObj[index]->condition() == IccCondition::NORMAL)
{

buffer = pObj[index]->get();
}
delete pObj[index];

}
return;

}
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Chapter 11. Storage management

C++ objects are usually stored on the stack or heap.

Objects on the stack are automatically destroyed when they go out of scope, but
objects on the heap are not.

Many of the objects that the CICS Foundation Classes create internally are created
on the heap rather than the stack. This can cause a problem in some CICS server
environments.

On CICS Transaction Server for z/OS,, CICS and Language Environment® manage
all task storage so that it is released at task termination (normal or abnormal).

In a CICS for AIX environment, storage allocated on the heap is not automatically
released at task termination. This can lead to "memory leaks" if the application
programmer forgets to explicitly delete an object on the heap, or, more seriously, if
the task abends.

This problem has been overcome in the CICS Foundation Classes by providing
operators new and delete in the base Foundation Class, IccBase. These can be
configured to map dynamic storage allocation requests to CICS task storage, so
that all storage is automatically released at task termination. The disadvantage of
this approach is a performance hit as the Foundation Classes typically issue a large
number of small storage allocation requests rather than a single, larger allocation
request.

This facility is affected by the Icc::initializeEnvironment call that must be issued
before using the Foundation Classes. (This function is called from the default main
function—see Chapter 67, “main function,” on page 289.)

The first parameter passed to the initializeEnvironment function is an
enumeration that takes one of these three values:

cmmDefault
The default action is platform dependent:

z/OS same as 'cmmNonCICS' - see below.

UNIX same as 'cmmCICS' - see below.

cmmNonCICS
The new and delete operators in class IccBase do not map dynamic
storage allocation requests to CICS task storage; instead the C++ default
new and delete operators are invoked.

cmmCICS
The new and delete operators in class IccBase map dynamic storage
allocation requests to CICS task storage (which is automatically released at
normal or abnormal task termination).

The default main function supplied with the Foundation Classes calls
initializeEnvironment with an enum of 'cmmDefault'. You can change this in your
program without changing the supplied "header file" ICCMAIN as follows:
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Alternatively, set the option DEV(ICC_CLASS_MEMORY_MGMT) when
compiling.

#define ICC_CLASS_MEMORY_MGMT Icc::cmmNonCICS
#include "iccmain.hpp"
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Chapter 12. Parameter passing conventions

The convention used for passing objects on Foundation Classes method calls is if
the object is mandatory, pass by reference; if it is optional pass by pointer.

For example, consider method start of class IccStartRequestQ, which has the
following signature:

Using the above convention, we see that an IccTransId object is mandatory, while
an IccTime and an IccRequestId object are both optional. This enables an
application to use this method in any of the following ways:

const IccRequestId& start( const IccTransId& transId,
const IccTime* time=0,
const IccRequestId* reqId=0 );

IccTransId trn("ABCD");
IccTimeInterval int(0,0,5);
IccRequestId req("MYREQ");
IccStartRequestQ* startQ = startRequestQ();
startQ->start( trn );
startQ->start( trn, &int );
startQ->start( trn, &int, &req );
startQ->start( trn, 0, &req );
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Chapter 13. Scope of data in IccBuf reference returned from
'read' methods

Many of the subclasses of IccResource have 'read' methods that return const
IccBuf references; for example, IccFile::readRecord, IccTempStore::readItem and
IccTerminal::receive.

Care should be taken if you choose to maintain a reference to the IccBuf object,
rather than copy the data from the IccBuf reference into your own IccBuf object.
For example, consider the following

Here, the data in the IccBuf reference returned from IccTempStore::readNextItem
is immediately copied into the application's own IccBuf object, so it does not
matter if the data is later invalidated. However, the application might look like this

Here, the IccBuf reference returned from IccTempStore::readNextItem is not
copied into the application's own storage and care must therefore be taken.

Note: You are recommended not to use this style of programming to avoid using a
reference to an IccBuf object that does not contain valid data.

The returned IccBuf reference typically contains valid data until one of the
following conditions is met:
v Another 'read' method is invoked on the IccResource object (for example,

another readNextItem or readItem method in the above example).
v The resource updates are committed (see method IccTask::commitUOW).
v The task ends (normally or abnormally).

IccBuf buf(50);
IccTempStore store("TEMPSTOR");
buf = store.readNextItem();

IccTempStore store("TEMPSTOR");
const IccBuf& buf = store.readNextItem();
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Part 3. Foundation Classes—reference

This section contains the reference information on the foundation classes and
structures that are provided as part of CICS. The classes and structures are
arranged in alphabetic order. All the functionality you require to create
object-oriented CICS programs is included within these classes and structures.

All of the classes and structures begin with the unique prefix Icc. Do not create
your own classes with this prefix.

Icc structure contains some functions and enumerations that are widely applicable.
IccValue structure consists of a large enumeration of all the CVDA values used in
traditional CICS programs.

The description of each class starts with a simple diagram that shows how it is
derived from IccBase class, the basis of all the other classes. This is followed by a
short description and an indication of the name of the header file that includes it
and, where appropriate, a sample source file that uses it.

Within each class or structure description are, where appropriate, the following
sections:
1. Inheritance diagram
2. Brief description of class
3. Header file where class is defined. For the location of the C++ header files on

your system see “Header files” on page 5.
4. Sample program demonstrating class. For the location of the supplied C++

sample programs on your system see “Sample source code” on page 6.
5. Icc... constructors
6. Public methods (in alphabetic order)
7. Protected methods (in alphabetic order)
8. Inherited public methods (in tabular form)
9. Inherited protected methods (in tabular form)

10. Enumerations

Methods, including constructors, start with a formal function prototype that shows
what a call returns and what the parameters are. There follows a description, in
order, of the parameters. To avoid duplication, inherited methods just have an
indication of the class from which they are derived (and where they are described).

The convention for names is:
1. Variable names are shown as variable.
2. Names of classes, structures, enumerations and methods are shown as method

3. Members of enumerations are shown as 'enumMember'.
4. The names of all the supplied classes and structures begin with Icc.
5. Compound names have no separators, but have capital letters to demark the

beginning of second and subsequent words, as in IccJournalTypeId.
6. Class and structure names and enumeration types begin with capital letters.

Other names begin with lower case letters.
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For further information on how to use these classes, see Part 2, “Using the CICS
foundation classes,” on page 13.
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Chapter 14. Icc structure

This structure holds global enumerations and functions for the CICS Foundation
Classes. These globals are defined within this structure to avoid name conflicts.

Header file: ICCGLBEH

Functions
Functions in Icc structure are as follows.

boolText
Returns the text that represents the boolean value described by the parameters,
such as "yes" or "on".

test
A boolean value, defined in this structure, that has one of two values, chosen
from a set of values given by set.

set
An enumeration, defined in this structure, that indicates from which pair of
values test is selected. The default is to use true and false.

catchException
This is the function of last resort, used to intercept IccException objects that the
application fails to catch. It can be called from the main function in the stub
program, listed in ICCMAIN header file, and described in Chapter 67, “main
function,” on page 289. All OO CICS programs should use this stub or a close
equivalent.

exception
A reference to an IccException object that holds information about a particular
type of exception.

conditionText
Returns the symbolic name associated with a condition value. For example, if
conditionText is called with condition of IccCondition::NORMAL, it returns
"NORMAL", if it is called with condition of IccCondition::IOERR, it returns
"IOERR", and so on.

static const char* boolText (Bool test,
BoolSet set = trueFalse)

static void catchException(IccException& exception)

static const char* conditionText(IccCondition::Codes condition)
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condition
An enumeration, defined in the IccCondition structure, that indicates the
condition returned by a call to CICS.

initializeEnvironment
Initializes the CICS Foundation Classes. The rest of the class library can only be
called after this function has been called. It is called from the main function in the
stub program, listed in ICCMAIN header file, and described in Chapter 67, “main
function,” on page 289. All OO CICS programs should use this stub or a close
equivalent.

mem
An enumeration, defined in this structure, that indicates the memory
management policy for the foundation classes.

fam
An enumeration, defined in this structure, that indicates whether the use of
CICS features that are not available on all platforms is permitted.

EDF
A boolean that indicates whether EDF tracing is initially on.

isClassMemoryMgmtOn
Returns a boolean value, defined in this structure, that indicates whether class
memory management is on.

isEDFOn
Returns a Boolean value, defined in this structure, that indicates whether EDF
tracing is on at the global level.

static Bool isEDFOn()

See setEDF in this structure, isEDFOn and setEDF in IccResource class on
Chapter 45, “IccResource class,” on page 185 and “Program debugging” on page
47.

isFamilySubsetEnforcementOn
Returns a boolean value, defined in this structure, that indicates whether it is
permitted to use CICS features that are not available on all platforms.

returnToCICS
This call returns the program flow to CICS.

static void initializeEnvironment (ClassMemoryMgmt mem = cmmDefault,
FamilySubset fam = fsDefault,
Icc::Bool EDF)

static Bool isClassMemoryMgmtOn()

static Bool isFamilySubsetEnforcementOn()

70 CICS TS for z/OS 4.2: C++ OO Class Libraries



It is called by the main function in the stub program, listed in ICCMAIN header file,
and described in Chapter 67, “main function,” on page 289. All OO CICS programs
should use this stub or a close equivalent.

setEDF
Sets EDF tracing on or off at the global level.

onOff
A boolean, defined in this structure, that indicates whether EDF tracing is
enabled. As EDF is more suitable for tracing programs that use EXEC CICS
calls than object oriented programs, the default is off.

unknownException
This function is called by the main function in ICCMAIN header file and is used to
intercept unknown exceptions.

See Chapter 67, “main function,” on page 289 and catchException in this structure).

Enumerations
References in this section to other CICS platforms, such as CICS for AIX, are
included for completeness. There have been Technology Releases of the CICS
Foundation Classes on those platforms.

Bool
Three equivalent pairs of boolean values are as follows.
v true, yes, on
v false, no, off

true, yes, and on evaluate to 1, while false, no, and off evaluate to zero. Thus you
can code test functions as follows:

Note: 'true' and 'false' are compiler keywords in the z/OS 1.2 C/C++ compiler
and will not be generated by ICCGLBEH when using this compiler, or any later
version.

BoolSet
BoolSet enumerations are as follows.
v trueFalse
v yesNo
v onOff

static void returnToCICS()

static void setEDF(Icc::Bool onOff = off)

static void unknownException()

if (task()->isStartDataAvailable())
{

//do something
}
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ClassMemoryMgmt
ClassMemoryMgmt enumerations are as folows.

cmmDefault
The defaults for the different platforms are:

z/OS cmmNonCICS

UNIX cmmCICS

cmmNonCICS
The C++ environment performs the memory management required by the
program.

In z/OS Language Environment ensures that the storage for CICS tasks is
released at the end of the task, or if the task terminates abnormally.

On CICS for AIX dynamic storage release does not occur at normal or
abnormal task termination. This means that programs are susceptible to
memory leaks.

cmmCICS
The new and delete operators defined in IccBase class map storage
allocations to CICS; storage is automatically released at task termination.

FamilySubset
FamilySubset enumerations are as follows.

fsDefault
The defaults for the different platforms are all the same:
fsAllowPlatformVariance

fsEnforce
Enforces Family Subset conformance; that is, it disallows use of any CICS
features that are not available on all CICS servers (OS/2, AIX, and z/OS).

Note: CICS OS/2 is no longer supported.

fsAllowPlatformVariance
Allows each platform to access all the CICS features available on that
platform.

GetOpt
This enumeration is used on a number of methods throughout the classes. It
indicates whether the value held internally by the object is to be returned to the
caller, or whether it has to be refreshed from CICS first.

object
If the value has been previously retrieved from CICS and stored within the
object, return this stored value. Otherwise, get a copy of the value from
CICS and store within the object.

CICS Force the object to retrieve a fresh value from CICS (and store it within the
object) even if there is already a value stored within the object from a
previous invocation.

Platforms
Indicates on which operating system the program is being run.

Possible values are:
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v OS2
v UNIX
v MVS™
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Chapter 15. IccAbendData class

This is a singleton class used to retrieve diagnostic information from CICS about a
program abend.

IccBase
IccResource

IccAbendData

Header file: ICCABDEH

IccAbendData constructor (protected)
IccAbendData constructor in IccAbendData class

Constructor
IccAbendData()

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method.

abendCode
Returns the current 4-character abend code.

opt
An enumeration, defined in the Icc structure, that indicates whether a value
should be refreshed from CICS or whether the existing value should be
retained. The possible values are described under the GetOpt enumeration in
the Icc structure in topicon page“GetOpt” on page 72.

Conditions

INVREQ

ASRAInterrupt
Returns 8 characters of status word (PSW) interrupt information at the point when
the latest abend with a code of ASRA, ASRB, ASRD, or AICA occurred.The field
contains binary zeroes if no ASRA or ASRB abend occurred during the execution of
the issuing transaction, or if the abend originally occurred in a remote DPL server
program.

const char* abendCode(Icc::GetOpt opt = Icc::object)
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Conditions

INVREQ

ASRAKeyType
Returns an enumeration, defined in IccValue, that indicates the execution key at
the time of the last ASRA, ASRB, AICA, or AEYD abend, if any.

The possible values are:

CICSEXECKEY
The task was executing in CICS-key at the time of the last ASRA, ASRB,
AICA, or AEYD abend. Note that all programs execute in CICS key if CICS
subsystem storage protection is not active.

USEREXECKEY
The task was executing in user-key at the time of the last ASRA, ASRB,
AICA, or AEYD abend. Note that all programs execute in CICS key if CICS
subsystem storage protection is not active.

NONCICS
The execution key at the time of the last abend was not one of the CICS
keys; that is, not key 8 or key 9.

NOTAPPLIC
There has not been an ASRA, ASRB, AICA, or AEYD abend.

Conditions

INVREQ

ASRAPSW
Returns an 8-character status word (PSW) at the point when the latest abend with
a code of ASRA, ASRB, ASRD, or AICA occurred.The field contains nulls if no
ASRA, ASRB, ASRD, or AICA abend occurred during the execution of the issuing
transaction, or if the abend originally occurred in a remote DPL server.

Conditions

INVREQ

ASRARegisters
Returns the contents of general registers 0–15, as a 64-byte data area, at the point
when the latest ASRA, ASRB, ASRD, or AICA abend occurred. The contents of the
registers are returned in the order 0, 1, ..., 15.Note that nulls are returned if no
ASRA, ASRB, ASRD, or AICA abend occurred during the execution of the issuing
transaction, or if the abend originally occurred in a remote DPL server program.

const char* ASRAInterrupt(Icc::GetOpt opt = Icc::object)

IccValue::CVDA ASRAKeyType(Icc::GetOpt opt = Icc::object)

const char* ASRAPSW(Icc::GetOpt opt = Icc::object)
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Conditions

INVREQ

ASRASpaceType
Returns an enumeration, defined in IccValue structure, that indicates what type of
space, if any, was in control at the time of the last ASRA, ASRB, AICA, or AEYD
abend.

Possible values are:

SUBSPACE
The task was executing in either its own subspace or the common subspace
at the time of the last ASRA, ASRB, AICA, or AEYD abend.

BASESPACE
The task was executing in the base space at the time of the last ASRA,
ASRB, AICA, or AEYD abend. Note that all tasks execute in the base space
if transaction isolation is not active.

NOTAPPLIC
There has not been an ASRA, ASRB, AICA, or AEYD abend.

Conditions

INVREQ

ASRAStorageType
Returns an enumeration, defined in IccValue structure, that indicates what type of
storage, if any, was being addressed at the time of the last ASRA, ASRB, AICA, or
AEYD abend.

Possible values are:

CICS CICS-key storage is being addressed. This can be in one of the CICS
dynamic storage areas (CDSA or ECDSA), or in one of the read-only
dynamic storage areas (RDSA or ERDSA) if either of the following apply:
v CICS is running with the NOPROTECT option on the RENTPGM system

initialization parameter
v storage protection is not active

USER
User-key storage in one of the user dynamic storage areas (RDSA or
ERDSA) is being addressed.

READONLY
Read-only storage in one of the read-only dynamic storage areas (RDSA or
ERDSA) when CICS is running with the PROTECT option on the
RENTPGM system initialization parameter.

NOTAPPLIC
One of:

const char* ASRARegisters(Icc::GetOpt opt = Icc::object)

IccValue::CVDA ASRASpaceType(Icc::GetOpt opt = Icc::object)
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v No ASRA or AEYD abend has been found for this task.
v The storage affected by an abend is not managed by CICS.
v The ASRA abend is not caused by a 0C4 abend.
v An ASRB or AICA abend has occurred since the last ASRA or AEYD

abend.

Conditions

INVREQ

instance
Returns a pointer to the single IccAbendData object. If the object does not already
exist, it is created by this method.

isDumpAvailable
Returns a boolean, defined in Icc structure, that indicates whether a dump has
been produced. If it has, use programName method to find the name of the failing
program of the latest abend.

Conditions

INVREQ

originalAbendCode
Returns the original abend code for this task in case of repeated abends.

Conditions

INVREQ

programName
Returns the name of the program that caused the abend.

Conditions

INVREQ

IccValue::CVDA ASRAStorageType(Icc::GetOpt opt = Icc::object)

static IccAbendData* instance()

Icc::Bool isDumpAvailable(Icc::GetOpt opt = Icc::object)

const char* originalAbendCode(Icc::GetOpt opt = Icc::object)

const char* programName(Icc::GetOpt opt = Icc::oldValue)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase
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Chapter 16. IccAbsTime class

This class holds information about absolute time, the time in milliseconds that has
elapsed since the beginning of the year 1900.

IccBase
IccResource

IccTime
IccAbsTime

Header file: ICCTIMEH

IccAbsTime constructor
IccAbsTime constructor in IccAbsTime class.

Constructor (1)
IccAbsTime(const char* absTime)

absTime
The 8-byte value of time, in packed decimal format.

Constructor (2)
The copy constructor.

Public methods
These are the public methods in this class.

date
Returns the date, as a character string.

format
An enumeration, defined in IccClock class, that indicates the format of the
date. The default is to use the installation default, the value set when the CICS
region is initialized.

dateSeparator
The character that separates the different fields of the date The default is no
separation character.

Conditions

INVREQ

IccAbsTime(const IccAbsTime& time)

const char* date (IccClock::DateFormat format = IccClock::defaultFormat,
char dateSeparator = '\0')
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dayOfMonth
Returns the day of the month in the range 1 to 31.

Conditions

INVREQ

dayOfWeek
Returns an enumeration, defined in IccClock class, that indicates the day of the
week.

Conditions

INVREQ

daysSince1900
Returns the number of days that have elapsed since the first day of 1900.

Conditions

INVREQ

hours
Returns the hours component of the time.

milliSeconds
Returns the number of milliseconds that have elapsed since the first day of 1900.

minutes
Returns the minutes component of the time.

monthOfYear
Returns an enumeration, defined in IccClock class, that indicates the month of the
year.

unsigned long dayOfMonth()

IccClock::DayOfWeek dayOfWeek()

unsigned long daysSince1900()

virtual unsigned long hours() const

long double milliSeconds()

virtual unsigned long minutes() const
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Conditions

INVREQ

operator=
Assigns one IccAbsTime object to another.

packedDecimal
Returns the time as an 8-byte packed decimal string that expresses the number of
milliseconds that have elapsed since the beginning of the year 1900.

seconds
Returns the seconds component of the time.

time
Returns the time as a text string.

timeSeparator
The character that delimits the time fields. The default is no time separation
character.

Conditions

INVREQ

timeInHours
Returns the number of hours that have elapsed since the day began.

timeInMinutes
Returns the number of minutes that have elapsed since the day began.

IccClock::MonthOfYear monthOfYear()

IccAbsTime& operator=(const IccAbsTime& absTime)

const char* packedDecimal() const

virtual unsigned long seconds() const

const char* time(char timeSeparator = '\0')

unsigned long timeInHours()

unsigned long timeInMinutes()
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timeInSeconds
Returns the number of seconds that have elapsed since the day began.

year
Returns the year as a 4-digit integer, e.g. 1996.

Conditions

INVREQ

Inherited public methods
These are the inherited public methods in IccAbsTime class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
hours IccTime
isEDFOn IccResource
minutes IccTime
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
timeInHours IccTime
timeInMinutes IccTime
timeInSeconds IccTime
type IccTime

Inherited protected methods
Inherited protected methods in IccAbsTime class:

Method Class
setClassName IccBase
setCustomClassNum IccBase

unsigned long timeInSeconds()

unsigned long year()
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Chapter 17. IccAlarmRequestId class

An IccAlarmRequestId object represents a unique alarm request.

IccBase
IccResourceId

IccRequestId
IccAlarmRequestId

It contains the 8-character name of the request identifier and a pointer to a 4-byte
timer event control area. IccAlarmRequestId is used by the setAlarm method of
IccClock class when setting an alarm, and the waitOnAlarm method of IccTask
when waiting for an alarm.

Header file: ICCRIDEH

IccAlarmRequestId constructors
IccAlarmRequestId constructors IccAlarmRequestId constructors:

Constructor (1)
Creates a new object with no information present.

Constructor (2)
Creates an object with information already set.

name
The 8-character name of the request.

timerECA
A pointer to a 4-byte timer event control area.

Constructor (3)
The copy constructor.

id
A reference to an IccAlarmRequestId object.

Public methods
These methods are used to copy information into an IccAlarmRequestId object.

IccAlarmRequestId()

IccAlarmRequestId (const char* nam,
const void* timerECA)

IccAlarmRequestId(const IccAlarmRequestId& id)
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isExpired
Returns a boolean, defined in Icc structure, that indicates whether the alarm has
expired.

operator= (1)
IccAlarmRequestId& operator=(const IccRequestId& id)

id
A reference to an IccRequestId object.

operator= (2)
IccAlarmRequestId& operator=(const IccAlarmRequestId& id)

id
A reference to an IccAlarmRequestId object.

operator= (3)
IccAlarmRequestId& operator=(const char* requestName)

requestName
The 8-character name of the alarm request.

setTimerECA
void setTimerECA(const void* timerECA)

timerECA
A pointer to a 4-byte timer event control area.

timerECA
Returns a pointer to the 4-byte timer event control area.

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Icc::Bool isExpired()

const void* timerECA() const
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Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 18. IccBase class

IccBase class is the base class from which all CICS Foundation Classes are derived.

IccBase

(The methods associated with IccBase are described here although, in practice,
they can only be called on objects of the derived classes).

Header file: ICCBASEH

IccBase constructor (protected)
IccBase constructor (protected) in IccBase class

Constructor
IccBase(ClassType type)

type
An enumeration that indicates what the subclass type is. For example, for an
IccTempStore object, the class type is 'cTempStore'.

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

classType
Returns an enumeration that indicates what the subclass type is. For example, for
an IccTempStore object, the class type is 'cTempStore'. The possible values are
listed under ClassType on page “ClassType” on page 91.

className
Returns the name of the class. For example, an IccTempStore object returns
"IccTempStore".Suppose a class MyDataQueue inherits from IccDataQueue. If
MyDataQueue calls setClassName("MyDataQueue"),
MyDataQueue::className(IccBase::customName) returns "MyDataQueue" and
MyDataQueue::className(IccBase::baseName) returns "IccDataQueue". An
IccDataQueue object returns "IccDataQueue" for both opt values.

ClassType classType() const

const char* className(NameOpt opt=customName)
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opt
An enumerator, defined in this class, that indicates whether to return the base
name of the class or the name as customized by a derived class.

customClassNum
Returns the number that an application designer has associated with a subclass
that he or she has designed.

operator delete
Destroys an object in an orderly manner.

object
A pointer to an object that is to be destroyed.

operator new
Creates a new object of given size. This operator enables the Foundation Classes to
use CICS storage allocation (see “initializeEnvironment” on page 70).

size
The size of the object that is to be created, in bytes.

Protected methods

setClassName
Sets the name of the class. It is useful for diagnostic purposes to be able to get a
string representation of the name of the class to which an object belongs.

className
The name of the class. For example, if you create a class MyTempStore that is
a specialization of IccTempStore, you might call
setClassName("MyTempStore").

setCustomClassNum
Assigns an identification number to a subclass that is not an original part of the
classes, as supplied.

number
The number that an application designer associates with a subclass for
identification purposes.

unsigned short customClassNum() const

void operator delete(void* object)

void* operator new(size_t size)

void setClassName(const char* className)

void setCustomClassNum(unsigned short number)
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Enumerations
Enumerations in IccBase class:

ClassType
The names are derived by deleting the first two characters from the name of the
class.

The possible values are:

cAbendData cGroupId cSystem

cAlarmRequestId cJournal cTask
cBuf cJournalId cTempStore
cClock cJournalTypeId cTempStoreId
cConsole cLockId cTermId
cControl cMessage cTerminal
cConvId cPartnerId cTerminalData
cCUSTOM cProgram cTime
cDataQueue cProgramId cTPNameId
cDataQueueId cRecordIndex cTransId
cEvent cRequestId cUser
cException cSemaphore cUserId
cFile cSession
cFileId cStartRequestQ
cFileIterator cSysId

Note: cCUSTOM allows the class library to be extended by non-IBM developers.

NameOpt
NameOpt in Enumerations:

See“className” on page 89.

baseName
Returns the default name assigned to the class as provided by IBM.

customName
Returns the name assigned using setClassName method from a subclass or, if
setClassName has not been invoked, the same as baseName.
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Chapter 19. IccBuf class

IccBuf class is supplied for the general manipulation of buffers.

IccBase
IccBuf

This class is used by other classes that make calls to CICS, but does not itself call
CICS services. See Chapter 6, “Buffer objects,” on page 25.

Header file: ICCBUFEH

Sample: ICC$BUF

IccBuf constructors
IccBuf constructors in IccBuf class:

Constructor (1)
Creates an IccBuf object, allocating its own data area with the given length and
with all the bytes within it set to NULL.

length
The initial length of the data area, in bytes. The default length is 0.

type
An enumeration that indicates whether the data area can be dynamically
extended. Possible values are extensible or fixed. The default is extensible.

Constructor (2)
Creates an IccBuf object that cannot be extended, adopting the given data area as
its own.See warning about “Internal/External ownership of buffers” on page 25.

length
The length of the supplied data area, in bytes

dataArea
The address of the first byte of the supplied data area.

Constructor (3)
Creates an IccBuf object, allocating its own data area with the same length as the
text string, and copies the string into its data area.

IccBuf (unsigned long length = 0,
DataAreaType type = extensible)

IccBuf (unsigned long length,
void* dataArea)
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text
A null-terminated string to be copied into the new IccBuf object.

type
An enumeration that indicates whether the data area can be extended. Possible
values are extensible or fixed. The default is extensible.

Constructor (4)
The copy constructor—creates a new IccBuf object that is a copy of the given
object. The created IccBuf object always has an internal data area.

buffer
A reference to an IccBuf object that is to be copied into the new object.

Public methods
These are the public methods in this class.

append (1)
Appends data from the given data area to the data area in the object.

length
The length of the source data area, in bytes

dataArea
The address of the source data area.

append (2)
Append data, in the form of format string and variable argument, to the data area
in the object. This is the same as the form used by printf in the standard C library.
Note that it is the responsibility of the application programmer to ensure that the
optional parameters are consistent with the format string.

format
The null-terminated format string

...
The optional parameters.

IccBuf (const char* text,
DataAreaType type = extensible)

IccBuf(const IccBuf& buffer)

IccBuf& append (unsigned long length,
const void* dataArea)

IccBuf& append (const char* format,
...)
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assign (1)
Assigns data from the given data area to the data area in the object.

length
The length of the source data area, in bytes

dataArea
The address of the source data area.

assign (2)
Assigns data, in the form of format string and variable argument, to the data area
in the object. This is the same as the form used by printf in the standard C library.

format
The format string

...
The optional parameters.

cut
Makes the specified cut to the data in the data area and returns a reference to the
IccBuf object.

length
The number of bytes to be cut from the data area.

offset
The offset into the data area. The default is no offset.

dataArea
Returns the address of data at the given offset into the data area.

offset
The offset into the data area. The default is no offset.

dataAreaLength
Returns the length of the data area in bytes.

IccBuf& assign (unsigned long length,
const void* dataArea)

IccBuf& assign (const char* format,
...)

IccBuf& cut (unsigned long length,
unsigned long offset = 0)

const void* dataArea(unsigned long offset = 0) const

unsigned long dataAreaLength() const
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dataAreaOwner
Returns an enumeration that indicates whether the data area has been allocated by
the IccBuf constructor or has been supplied from elsewhere.

The possible values are listed under “DataAreaOwner” on page 101.

dataAreaType

Returns an enumeration that indicates whether the data area can be extended. The
possible values are listed under “DataAreaType” on page 101.

dataLength
Returns the length of data in the data area. This cannot be greater than the value
returned by dataAreaLength

insert
Inserts the given data into the data area at the given offset and returns a reference
to the IccBuf object.

length
The length of the data, in bytes, to be inserted into the IccBuf object

dataArea
The start of the source data to be inserted into the IccBuf object

offset
The offset in the data area where the data is to be inserted. The default is no
offset.

isFMHContained

Returns a boolean, defined in Icc structure, that indicates whether the data area
contains FMHs (function management headers).

operator const char*

DataAreaOwner dataAreaOwner() const

DataAreaType dataAreaType() const

unsigned long dataLength() const

IccBuf& insert (unsigned long length,
const void* dataArea,
unsigned long offset = 0)

Icc::Bool isFMHContained() const

operator const char*() const
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Casts an IccBuf object to a null terminated string.

operator= (1)
Assigns data from another buffer object and returns a reference to the IccBuf
object.

buffer
A reference to an IccBuf object.

operator= (2)
Assigns data from a null-terminated string and returns a reference to the IccBuf
object. See also the assign method.

text
The null-terminated string to be assigned to the IccBuf object.

operator+= (1)
Appends data from another buffer object and returns a reference to the IccBuf
object.

buffer
A reference to an IccBuf object.

operator+= (2)
Appends data from a null-terminated string and returns a reference to the IccBuf
object. See also the append method.

text
The null-terminated string to be appended to the IccBuf object.

operator==
Returns a boolean, defined in Icc structure, that indicates whether the data
contained in the buffers of the two IccBuf objects is the same. It is true if the
current lengths of the two data areas are the same and the contents are the same.

buffer
A reference to an IccBuf object.

IccBuf data("Hello World");
cout « (const char*) data;

IccBuf& operator=(const IccBuf& buffer)

IccBuf& operator=(const char* text)

IccBuf& operator+=(const IccBuf& buffer)

IccBuf& operator+=(const char* text)

Icc::Bool operator==(const IccBuf& buffer) const
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operator!=
Returns a boolean, defined in Icc structure, that indicates whether the data
contained in the buffers of the two IccBuf objects is different. It is true if the
current lengths of the two data areas are different or if the contents are different.

buffer
A reference to an IccBuf object.

operator« (1)
Appends another buffer.

operator« (2)
Appends a string.

operator« (3)
Appends a character.

operator« (4)
Appends a character.

operator« (5)
Appends a character.

operator« (6)
Appends a string.

operator« (7)
Appends a string.

Icc::Bool operator!=(const IccBuf& buffer) const

operator«(const IccBuf& buffer)

operator«(const char* text)

operator«(char ch)

operator«(signed char ch)

operator«(unsigned char ch)

operator«(const signed char* text)

operator«(const unsigned char* text)
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operator« (8)
Appends a short.

operator« (9)
Appends an unsigned short.

operator« (10)
Appends a long.

operator« (11)
Appends an unsigned long.

operator« (12)
Appends an integer.

operator« (13)
Appends a float.

operator« (14)
Appends a double.

operator« (15)
Appends a long double.

Appends data of various types to the IccBuf object. The types are converted to a
'readable' format, for example from a long to a string representation.

operator«(short num)

operator«(unsigned short num)

operator«(long num)

operator«(unsigned long num)

operator«(int num)

operator«(float num)

operator«(double num)

operator«(long double num)
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overlay
Makes the data area external and fixed. Any existing internal data area is
destroyed.See warning about “Internal/External ownership of buffers” on page 25.

length
The length of the existing data area.

dataArea
The address of the existing data area.

replace
Replaces the current contents of the data area at the given offset with the data
provided and returns a reference to the IccBuf object.

length
The length of the source data area, in bytes.

dataArea
The address of the start of the source data area.

offset
The position where the new data is to be written, relative to the start of the
IccBuf data area. The default is no offset.

setDataLength
Changes the current length of the data area and returns the new length. If the
IccBuf object is not extensible, the data area length is set to either the original
length of the data area or length , whichever is less.

length
The new length of the data area, in bytes

setFMHContained
Allows an application program to indicate that a data area contains function
management headers.

yesNo
A boolean, defined in Icc structure, that indicates whether the data area
contains FMHs. The default value is yes.

IccBuf& overlay (unsigned long length,
void* dataArea)

IccBuf& replace (unsigned long length,
const void* dataArea,
unsigned long offset = 0)

unsigned long setDataLength(unsigned long length)

void setFMHContained(Icc::Bool yesNo = Icc::yes)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

DataAreaOwner
Indicates whether the data area of a IccBuf object has been allocated outside the
object.

Possible values are:

internal
The data area has been allocated by the IccBuf constructor.

external
The data area has been allocated externally.

DataAreaType
Indicates whether the data area of a IccBuf object can be made longer than its
original length.

Possible values are:

extensible
The data area can be automatically extended to accommodate more data.

fixed The data area cannot grow in size. If you attempt to assign too much data,
the data is truncated, and an exception is thrown.
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Chapter 20. IccClock class

The IccClock class controls access to the CICS time and date services.

IccBase
IccResource

IccClock

Header file: ICCCLKEH

Sample: ICC$CLK

IccClock constructor

Constructor

update
An enumeration, defined in this class, that indicates whether the clock is to
update its time automatically whenever a time or date service is used, or
whether it is to wait until an explicit update method call is made. If the time is
updated manually, the initial clock time is the time when the IccClock object
object is created.

Public methods
These are the public methods in this class.

absTime
Returns a reference to an IccAbsTime object that contains the absolute time as
provided by CICS.

cancelAlarm
Cancels a previous setAlarm request if the alarm time has not yet been reached,
that is, the request has not expired.

reqId
An optional pointer to the IccRequestId object that holds information on an
alarm request.

Conditions

ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

IccClock(UpdateMode update = manual)

IccAbsTime& absTime()

void cancelAlarm(const IccRequestId* reqId = 0)
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date
Returns the date as a string.

format
An enumeration, defined in this class, that indicates in which format you want
the date to be returned.

dateSeparator
The character that is used to separate different fields in the date. The default is
no separation character.

Conditions

INVREQ

dayOfMonth
Returns the day component of the date, in the range 1 to 31.

Conditions

INVREQ

dayOfWeek
Returns an enumeration, defined in this class, that indicates the day of the week.

Conditions

INVREQ

daysSince1900
Returns the number of days that have elapsed since 1st January, 1900.

Conditions

INVREQ

milliSeconds
Returns the number of milliseconds that have elapsed since 00:00 on 1st January,
1900.

const char* date (DateFormat format = defaultFormat,
char dateSeparator = '\0')

unsigned long dayOfMonth()

DayOfWeek dayOfWeek()

unsigned long daysSince1900()
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monthOfYear

Returns an enumeration, defined in this class, that indicates the month of the year.

Conditions

INVREQ

setAlarm
Sets an alarm at the time specified in time. It returns a reference to an
IccAlarmRequestId object that can be used to cancel the alarm—see cancelAlarm
method.

See also the “waitOnAlarm” on page 234 method of class IccTask.

time
A reference to an IccTime object that contains time information. As IccTime is
an abstract class time is, in practise, an object of class IccAbsTime,
IccTimeOfDay, or IccTimeInterval.

reqId
An optional pointer to an IccRequestId object that is used to identify this
particular alarm request.

Conditions

EXPIRED, INVREQ

time
Returns the time as a text string.

timeSeparator
The character that delimits the time fields. The default is no separation
character.

Conditions

INVREQ

long double milliSeconds()

MonthOfYear monthOfYear()

const IccAlarmRequestId& setAlarm (const IccTime& time,
const IccRequestId* reqId = 0)

const char* time(char timeSeparator = '\0')
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update
Updates the clock time and date from CICS. See the IccClock constructor.

year

Returns the 4-figure year number, such as 1996.

Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

void update()

unsigned long year()
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Enumerations

DateFormat
v defaultFormat
v DDMMYY
v MMDDYY
v YYDDD
v YYDDMM
v YYMMDD
v DDMMYYYY
v MMDDYYYY
v YYYYDDD
v YYYYDDMM
v YYYYMMDD

DayOfWeek
Indicates the day of the week.
v Sunday
v Monday
v Tuesday
v Wednesday
v Thursday
v Friday
v Saturday

MonthOfYear
Indicates the month of the year.
v January
v February
v March
v April
v May
v June
v July
v August
v September
v October
v November
v December

UpdateMode
Indicates whether the clock is automatically updated.

manual
The clock initially holds the time at which it was created. It is subsequently
updated only when an update method call is made.
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automatic
The clock is updated to the current CICS time and date whenever any time
or date method is called (for example, daysSince1900).
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Chapter 21. IccCondition structure

This structure contains an enumeration of all the CICS condition codes.

Header file: ICCCNDEH

Enumerations

Codes

The possible values are:

Value Value Value
0 NORMAL 35 TSIOERR 70 NOTAUTH
1 ERROR 36 MAPFAIL __
2 RDATT 37 INVERRTERM 72 SUPPRESSED
3 WRBRK 38 INVMPSZ __
4 ICCEOF 39 IGREQID __
5 EODS 40 OVERFLOW 75 RESIDERR
6 EOC 41 INVLDC __
7 INBFMH 42 NOSTG __
8 ENDINPT 43 JIDERR __
9 NONVAL 44 QIDERR __
10 NOSTART 45 NOJBUFSP 80 NOSPOOL
11 TERMIDERR 46 DSSTAT 81 TERMERR
12 FILENOTFOUND 47 SELNERR 82 ROLLEDBACK
13 NOTFND 48 FUNCERR 83 END
14 DUPREC 49 UNEXPIN 84 DISABLED
15 DUPKEY 50 NOPASSBKRD 85 ALLOCERR
16 INVREQ 51 NOPASSBKWR 86 STRELERR
17 IOERR __ 87 OPENERR
18 NOSPACE 53 SYSIDERR 88 SPOLBUSY
19 NOTOPEN 54 ISCINVREQ 89 SPOLERR
20 ENDFILE 55 ENQBUSY 90 NODEIDERR
21 ILLOGIC 56 ENVDEFERR 91 TASKIDERR
22 LENGERR 57 IGREQCD 92 TCIDERR
23 QZERO 58 SESSIONERR 93 DSNNOTFOUND
24 SIGNAL 59 SYSBUSY 94 LOADING
25 QBUSY 60 SESSBUSY 95 MODELIDERR
26 ITEMERR 61 NOTALLOC 96 OUTDESCERR
27 PGMIDERR 62 CBIDERR 97 PARTNERIDERR
28 TRANSIDERR 63 INVEXITREQ 98 PROFILEIDERR
29 ENDDATA 64 INVPARTNSET 99 NETNAMEIDERR
30 INVTSREQ 65 INVPARTN 100 LOCKED
31 EXPIRED 66 PARTNFAIL 101 RECORDBUSY
32 RETPAGE __ 102 UOWNOTFOUND
33 RTEFAIL __ 103 UOWLNOTFOUND
34 RTESOME 69 USERIDERR
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Range
maxValue

The highest CICS condition, currently 103.
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Chapter 22. IccConsole class

This is a singleton class that represents the CICS console.

IccBase
IccResource

IccConsole

Header file: ICCCONEH

Sample: ICC$CON

IccConsole constructor (protected)

Constructor
No more than one of these objects is permitted in a task. An attempt to create
more objects causes an exception to be thrown.

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

instance
Returns a pointer to the single IccConsole object that represents the CICS console.
If the object does not already exist, it is created by this method.

put
Writes the data in send to the CICS console. put is a synonym for write. See
Chapter 10, “Polymorphic Behavior,” on page 57.

send
A reference to an IccBuf object that contains the data that is to be written to
the console.

replyTimeout

IccConsole()

static IccConsole* instance()

virtual void put(const IccBuf& send)
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Returns the length of the reply timeout in milliseconds.

resetRouteCodes

Removes all route codes held in the IccConsole object.

setAllRouteCodes

Sets all possible route codes in the IccConsole object, that is, 1 through 28.

setReplyTimeout (1)

interval
A reference to a IccTimeInterval object that describes the length of the time
interval required.

setReplyTimeout (2)
The two different forms of this method are used to set the length of the reply
timeout.

seconds
The length of the time interval required, in seconds.

setRouteCodes
Saves route codes in the object for use on subsequent write and
writeAndGetReply calls. Up to 28 codes can be held in this way.

numRoutes
The number of route codes provided in this call—the number of arguments
that follow this one.

...
One or more arguments, the number of which is given by numRoutes. Each
argument is a route code, of type unsigned short, in the range 1 to 28.

unsigned long replyTimeout() const

void resetRouteCodes()

void setAllRouteCodes()

void setReplyTimeout(IccTimeInterval& interval)

void setReplyTimeout(unsigned long seconds)

void setRouteCodes (unsigned short numRoutes,
...)

112 CICS TS for z/OS 4.2: C++ OO Class Libraries



write
Writes the data in send to the CICS console.

send
A reference to an IccBuf object that contains the data that is to be written to
the console.

opt
An enumeration, defined below, that indicates the severity of the console
message.

Conditions

INVREQ, LENGERR, EXPIRED

writeAndGetReply
Writes the data in send to the CICS console and returns a reference to an IccBuf
object that contains the reply from the CICS operator.

send
A reference to an IccBuf object that contains the data that is to be written to
the console.

opt
An enumeration, defined below, that indicates the severity of the console
message.

Conditions

INVREQ, LENGERR, EXPIRED

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource

void write (const IccBuf& send,
SeverityOpt opt = none)

const IccBuf& writeAndGetReply (const IccBuf& send,
SeverityOpt opt= none)
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Method Class
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

SeverityOpt

Possible values are:
v none
v warning
v error
v severe
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Chapter 23. IccControl class

IccControl class controls an application program that uses the supplied Foundation
Classes.

IccBase
IccResource

IccControl

This class is a singleton class in the application program; each program running
under a CICS task has a single IccControl object.

IccControl has a pure virtual run method, where application code is written, and
is therefore an abstract base class. The application programmer must subclass
IccControl, and implement the run method.

Header file: ICCCTLEH

IccControl constructor (protected)

Constructor

Public methods
These are the public methods in this class.

callingProgramId
Returns a reference to an IccProgramId object that represents the program that
called this program. The returned IccProgramId reference contains a null name if
the executing program was not called by another program.

Conditions

INVREQ

cancelAbendHandler
Cancels a previously established exit at this logical program level.

Conditions

NOTAUTH, PGMIDERR

IccControl()

const IccProgramId& callingProgramId()

void cancelAbendHandler()
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commArea
Returns a reference to an IccBuf object that encapsulates the COMMAREA—the
communications area of CICS memory that is used for passing data between CICS
programs and transactions.

Conditions

INVREQ

console
Returns a pointer to the single IccConsole object. If this object has not yet been
created, this method creates the object before returning a pointer to it.

initData

Returns a reference to an IccBuf object that contains the initialization parameters
specified for the program in the INITPARM system initialization parameter.

Conditions

INVREQ

instance
Returns a pointer to the single IccControl object. The object is created if it does not
already exist.

isCreated

Returns a boolean value that indicates whether the IccControl object already exists.
Possible values are true or false.

programId

Returns a reference to an IccProgramId object that refers to this executing program.

IccBuf& commArea()

IccConsole* console()

const IccBuf& initData()

static IccControl* instance()

static Icc::Bool isCreated()

const IccProgramId& programId()
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Conditions

INVREQ

resetAbendHandler
Reactivates a previously cancelled abend handler for this logical program level.
(See cancelAbendHandler on page “cancelAbendHandler” on page 115).

Conditions

NOTAUTH, PGMIDERR

returnProgramId
Returns a reference to an IccProgramId object that refers to the program that
resumes control when this logical program level issues a return.

run

This method should be implemented in a subclass of IccControl by the application
programmer.

session

Returns a pointer to the IccSession object that represents the principal facility for
this program. An exception is thrown if this program does not have a session as its
principal facility.

setAbendHandler (1)

programId
A reference to the IccProgramId object that indicates which program is
affected.

setAbendHandler (2)
These methods set the abend handler to the named program for this logical
program level.

void resetAbendHandler()

const IccProgramId& returnProgramId()

virtual void run() = 0

IccSession* session()

void setAbendHandler(const IccProgramId& programId)

void setAbendHandler(const char* programName)
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programName
The name of the program affected.

Conditions

NOTAUTH, PGMIDERR

startRequestQ
Returns a pointer to the IccStartRequestQ object. If this object has not yet been
created, this method creates the object before returning a pointer to it.

system

Returns a pointer to the IccSystem object. If this object has not yet been created,
this method creates the object before returning a pointer to it.

task

Returns a pointer to the IccTask object. If this object has not yet been created, this
method creates the object before returning a pointer to it.

terminal

Returns a pointer to the IccTerminal object. If this object has not yet been created,
this method creates the object before returning a pointer to it.

This method has a condition, that the transaction must have a terminal as its
principal facility. That is, there must be a physical terminal involved.

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource

IccStartRequestQ* startRequestQ()

IccSystem* system()

IccTask* task()

IccTerminal* terminal()
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Method Class
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase
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Chapter 24. IccConvId class

IccConvId class is used to identify an APPC conversation.

IccBase
IccResourceId

IccConvId

IccConvId class is used to identify an APPC conversation.

Header file: ICCRIDEH

IccConvId constructors

Constructor (1)

convName
The 4-character name of the conversation.

Constructor (2)
The copy constructor.

convId
A reference to an IccConvId object.

Public methods
These are the public methods in this class.

operator= (1)

operator= (2)
Assigns new value.

IccConvId(const char* convName)

IccConvId(const IccConvId& convId)

IccConvId& operator=(const char* convName)

IccConvId& operator=(const IccConvId id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 25. IccDataQueue class

This class represents a CICS transient data queue.

IccBase
IccResource

IccDataQueue

Header file: ICCDATEH

Sample: ICC$DAT

IccDataQueue constructors

Constructor (1)

id
A reference to an IccDataQueueId object that contains the name of the CICS
transient data queue.

Constructor (2)

queueName
The 4-byte name of the queue that is to be created. An exception is thrown if
queueName is not valid.

Public methods
These are the public methods in this class.

clear
A synonym for empty. See Chapter 10, “Polymorphic Behavior,” on page 57.

empty

Empties the queue, that is, deletes all items on the queue.

IccDataQueue(const IccDataQueueId& id)

IccDataQueue(const char* queueName)

virtual void clear()

void empty()
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Conditions

ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR, DISABLED, INVREQ

get
A synonym for readItem. See Chapter 10, “Polymorphic Behavior,” on page 57.

put
A synonym for writeItem. See Chapter 10, “Polymorphic Behavior,” on page 57.

buffer
A reference to an IccBuf object that contains data to be put into the queue.

readItem

Returns a reference to an IccBuf object that contains one item read from the data
queue.

Conditions

IOERR, ISCINVREQ, LENGERR, NOTAUTH, NOTOPEN, QBUSY, QIDERR,
QZERO, SYSIDERR, DISABLED, INVREQ

writeItem (1)

item
A reference to an IccBuf object that contains data to be written to the queue.

writeItem (2)
Writes an item of data to the queue.

text
Text that is to be written to the queue.

Conditions

IOERR, ISCINVREQ, LENGERR, NOSPACE, NOTAUTH, NOTOPEN, QIDERR,
SYSIDERR, DISABLED, INVREQ

virtual const IccBuf& get()

virtual void put(const IccBuf& buffer)

const IccBuf& readItem()

void writeItem(const IccBuf& item)

void writeItem(const char* text)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase
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Chapter 26. IccDataQueueId class

IccDataQueueId is used to identify a CICS Transient Data Queue name.

IccBase
IccResourceId

IccDataQueueId

IccDataQueueId is used to identify a CICS Transient Data Queue name.

Header file: ICCRIDEH

IccDataQueueId constructors

Constructor (1)

queueName
The 4-character name of the queue

Constructor (2)

id A reference to an IccDataQueueId object.

Public methods
These are the public methods in this class.

operator= (1)

queueName
The 4-character name of the queue

operator= (2)
Assigns new value.

id A reference to an IccDataQueueId object.

IccDataQueueId(const char* queueName)

IccDataQueueId(const IccDataQueueId& id)

IccDataQueueId& operator=(const char* queueName)

IccDataQueueId& operator=(const IccDataQueueId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 27. IccEvent class

The IccEvent class contains information on a particular CICS call, which we call a
CICS event.

IccBase
IccEvent

Header file: ICCEVTEH

Sample: ICC$RES1

IccEvent constructor

Constructor

object
A pointer to the IccResource object that is responsible for this event.

methodName
The name of the method that caused the event to be created.

Public methods
These are the public methods in this class.

className
Returns the name of the class responsible for this event.

classType

Returns an enumeration, described under classType on page “classType” on page
89 in IccBase class, that indicates the type of class that is responsible for this event.

condition
Returns an enumerated type that indicates the condition returned from this CICS
event. The possible values are described under the Codes type in the IccCondition
structure.

IccEvent (const IccResource* object,
const char* methodName)

const char* className() const

IccBase::ClassType classType() const
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type
An enumeration that indicates whether a major code or minor code is being
requested. Possible values are 'majorCode' or 'minorCode'. 'majorCode' is the
default value.

conditionText

Returns the text of the CICS condition code, such as "NORMAL" or "LENGERR".

methodName

Returns the name of the method responsible for this event.

summary

Returns a summary of the CICS event in the form:

CICS event summary: IccDataQueue::readItem condition=23 (QZERO) minor=0

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

IccCondition::Codes condition(IccResource::ConditionType type =
IccResource::majorCode) const

const char* conditionText() const

const char* methodName() const

const char* summary()
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Chapter 28. IccException class

IccException class contains information about CICS Foundation Class exceptions.

IccBase
IccException

It is used to create objects that are 'thrown' to application programs. They are
generally used for error conditions such as invalid method calls, but the
application programmer can also request an exception is thrown when CICS raises
a particular condition.

Header file: ICCEXCEH

Samples: ICC$EXC1, ICC$EXC2, ICC$EXC3

IccException constructor

Constructor

exceptionType
An enumeration, defined in this class, that indicates the type of the exception

classType
An enumeration, defined in this class, that indicates from which type of class
the exception was thrown

className
The name of the class from which the exception was thrown

methodName
The name of the method from which the exception was thrown

message
A pointer to the IccMessage object that contains information about why the
exception was created.

object
A pointer to the object that threw the exception

exceptionNum
The unique exception number.

Note: When the IccException object is created it takes ownership of the
IccMessage given on the constructor. When the IccException is deleted, the

IccException (Type exceptionType,
IccBase::ClassType classType,
const char* className,
const char* methodName,
IccMessage* message,
IccBase* object = 0,
unsigned short exceptionNum = 0)
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IccMessage object is deleted automatically by the IccException destructor.
Therefore, do not delete the IccMessage object before deleting the IccException
object.

Public methods
These are the public methods in this class.

className
Returns the name of the class responsible for throwing this exception.

classType

Returns an enumeration, described under ClassType in IccBase class, that indicates
the type of class which threw this exception.

message

Returns a pointer to an IccMessage object that contains information on any
message associated with this exception.

methodName

Returns the name of the method responsible for throwing this exception.

number

Returns the unique exception number.

This is a useful diagnostic for IBM service. The number uniquely identifies from
where in the source code the exception was thrown.

summary

Returns a string containing a summary of the exception. This combines the
className, methodName, number, Type, and IccMessage::text methods into the
following form:

const char* className() const

IccBase::ClassType classType() const

IccMessage* message() const

const char* methodName() const

unsigned short number() const

const char* summary()

132 CICS TS for z/OS 4.2: C++ OO Class Libraries



CICS exception summary: 094 IccTempStore::readNextItem type=CICSCondition

type

Returns an enumeration, defined in this class, that indicates the type of exception.

typeText

Returns a string representation of the exception type, for example,
"objectCreationError", "invalidArgument".

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Type
objectCreationError

An attempt to create an object was invalid. This happens, for example, if
an attempt is made to create a second instance of a singleton class, such as
IccTask.

invalidArgument
A method was called with an invalid argument. This happens, for example,
if an IccBuf object with too much data is passed to the writeItem method
of the IccTempStore class by the application program. An attempt to create
an IccFileId object with a 9-character filename also generates an exception
of this type.

Type type() const

const char* typeText() const
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invalidMethodCall
A method call cannot proceed. A typical reason is that the object cannot
honor the call in its current state. For example, a readRecord call on an
IccFile object is only honored if an IccRecordIndex object, to specify which
record is to be read, has already been associated with the file.

CICSCondition
A CICS condition, listed in the IccCondition structure, has occurred in the
object and the object was configured to throw an exception.

platformError
An operation is invalid because of limitations of this particular platform.

A platformError exception can occur at 3 levels:
1. An object is not supported on this platform.
2. An object is supported on this platform, but a particular method is not.
3. A method is supported on this platform, but a particular positional

parameter is not.

See “Platform differences” on page 54 for more details.

familyConformanceError
Family subset enforcement is on for this program and an operation that is
not valid on all supported platforms has been attempted.

internalError
The CICS Foundation Classes have detected an internal error. Please call
your support organization.
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Chapter 29. IccFile class

IccFile class enables the application program to access CICS files.

IccBase
IccResource

IccFile

Header file: ICCFILEH

Sample: ICC$FIL

IccFile constructors

Constructor (1)

id
A reference to the IccFileId object that identifies which file is being operated
on

index
An optional pointer to the IccRecordIndex object that identifies which record
in the file is being operated on.

Constructor (2)
To access files using an IccFile object, it must have an IccRecordIndex object
associated with it. If this association is not made when the object is created, use the
registerRecordIndex method.

fileName
The 8-character name of the file

index
An optional pointer to the IccRecordIndex object that identifies which record
in the file is being operated on.

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

IccFile (const IccFileId& id,
IccRecordIndex* index = 0)

IccFile (const char* fileName,
IccRecordIndex* index = 0)
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access
Returns a composite number indicating the access properties of the file. See also
isReadable, isBrowsable, isAddable, isDeletable, and isUpdatable methods.

opt
An enumeration, defined in Icc structure, that indicates whether you can use a
value previously retrieved from CICS (object), or whether the object should
retrieve a fresh value from CICS.

accessMethod
Returns an enumeration, defined in IccValue, that represents the access method for
this file.

Possible values are:
v VSAM
v BDAM
v SFS

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

beginInsert(VSAM only)
Signals the start of a mass insertion of data into the file.

deleteLockedRecord
Deletes a record that has been previously locked by readRecord method in update
mode. (See also readRecord method.)

updateToken
A token that indicates which previously read record is to be deleted. This is the
token that is returned from readRecord method when in update mode.

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFIND, NOTOPEN, SYSIDERR, LOADING

unsigned long access(Icc::GetOpt opt =Icc::object)

IccValue::CVDA accessMethod(Icc::GetOpt opt = Icc::object)

void beginInsert()

void deleteLockedRecord(unsigned long updateToken = 0)
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deleteRecord
Deletes one or more records, as specified by the associated IccRecordIndex object,
and returns the number of deleted records.

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFIND, NOTOPEN, SYSIDERR, LOADING

enableStatus
Returns an enumeration, defined in IccValue, that indicates whether the file is
enabled to be used by programs.

Possible values are:
v DISABLED
v DISABLING
v ENABLED
v UNENABLED

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

endInsert(VSAM only)
Marks the end of a mass insertion operation. See beginInsert.

isAddable
Indicates whether more records can be added to the file.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

unsigned short deleteRecord()

IccValue::CVDA enableStatus(Icc::GetOpt opt = Icc::object)

void endInsert()

Icc::Bool isAddable(Icc::GetOpt opt = Icc::object)
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isBrowsable
Indicates whether the file can be browsed.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isDeletable
Indicates whether the records in the file can be deleted.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isEmptyOnOpen
Returns a Boolean that indicates whether the EMPTYREQ option is specified.
EMPTYREQ causes the object associated with this file to be set to empty when
opened, if it is a VSAM data set defined as reusable.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

isReadable
Indicates whether the file records can be read.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

Icc::Bool isBrowsable(Icc::GetOpt opt = Icc::object)

Icc::Bool isDeletable(Icc::GetOpt opt = Icc::object)

Icc::Bool isEmptyOnOpen(Icc::GetOpt opt = Icc::object)

Icc::Bool isReadable(Icc::GetOpt opt = Icc::object)
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isRecoverable

opt
See access method.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

isUpdatable
Indicates whether the file can be updated.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

keyLength
Returns the length of the search key.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

keyPosition
Returns the position of the key field in each record relative to the beginning of the
record. If there is no key, zero is returned.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

Icc::Bool isRecoverable(Icc::GetOpt opt = Icc::object)

Icc::Bool isUpdatable(Icc::GetOpt opt = Icc::object)

unsigned long keyLength(Icc::GetOpt opt = Icc::object)

long keyPosition(Icc::GetOpt opt = Icc::object)
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openStatus
Returns a CVDA that indicates the open status of the file. Possible values are:

opt
See access method.

CLOSED
The file is closed.

CLOSING
The file is in the process of being closed. Closing a file may require dynamic
deallocation of data sets and deletion of shared resources, so the process may
last a significant length of time.

CLOSEREQUEST
The file is open and one or more application tasks are using it. A request has
been received to close it.

OPEN
The file is open.

OPENING
The file is in the process of being opened.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

readRecord
Reads a record and returns a reference to an IccBuf object that contains the data
from the record.

mode
An enumeration, defined in this class, that indicates in which mode the record
is to be read.

updateToken
A pointer to an unsigned long token that will be updated by the method when
mode is update and you want to make multiple read updates. The token
uniquely identifies the update request and is passed to the
deleteLockedRecord, rewriteRecord, or unlockRecord methods

Conditions

DISABLED, DUPKEY, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
LENGERR, NOTAUTH, NOTFND, NOTOPEN, SYSIDERR, LOADING

recordFormat
Returns a CVDA that indicates the format of the data. Possible values are:

IccValue::CVDA openStatus(Icc::GetOpt opt = Icc::object)

const IccBuf& readRecord (ReadMode mode = normal,
unsigned long* updateToken = 0)

IccValue::CVDA recordFormat(Icc::GetOpt opt = Icc::object)
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opt
See access method.

FIXED
The records are of fixed length.

UNDEFINED (BDAM data sets only)
The format of records on the file is undefined.

VARIABLE
The records are of variable length. If the file is associated with a data table, the
record format is always variable length, even if the source data set contains
fixed-length records.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

recordIndex
Returns a pointer to an IccRecordIndex object that indicates which records are to
be accessed when using methods such as readRecord, writeRecord, and
deleteRecord.

recordLength
Returns the length of the current record.

opt
See access method.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

registerRecordIndex

index
A pointer to an IccKey, IccRBA, or IccRRN object that will be used by
methods such as readRecord, writeRecord, etc..

rewriteRecord
Updates a record with the contents of buffer.

buffer
A reference to the IccBuf object that holds the new record data to be written to
the file.

IccRecordIndex* recordIndex() const

unsigned long recordLength(Icc::GetOpt opt = Icc::object)

void registerRecordIndex(IccRecordIndex* index)

void rewriteRecord (const IccBuf& buffer,
unsigned long updateToken = 0)

Chapter 29. IccFile class 141



updateToken
The token that identifies which previously read record is to be rewritten. See
readRecord.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR, LOADING

setAccess
Sets the permitted access to the file.

For example:
file.setAccess(IccFile::readable + IccFile::notUpdatable);

access
A positive integer value created by ORing (or adding) one or more of the
values of the Access enumeration, defined in this class.

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

setEmptyOnOpen

Specifies whether or not to make the file empty when it is next opened.

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

setStatus
Sets the status of the file.

status
An enumeration, defined in this class, that indicates the required status of the
file after this method is called.

Conditions

FILENOTFOUND, INVREQ, IOERR, NOTAUTH

type
Returns a CVDA that identifies the type of data set that corresponds to this file.
Possible values are:

void setAccess(unsigned long access)

void setEmptyOnOpen(Icc::Bool trueFalse)

void setStatus(Status status)
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opt
See access method.

ESDS
The data set is an entry-sequenced data set.

KEYED
The data set is addressed by physical keys.

KSDS
The data set is a key-sequenced data-set.

NOTKEYED
The data set is not addressed by physical keys.

RRDS
The data set is a relative record data set.

VRRDS
The data set is a variable relative record data set.

Conditions: END, FILENOTFOUND, ILLOGIC, NOTAUTH

unlockRecord
Unlock a record, previously locked by reading it in update mode. See readRecord.

updateToken
A token that indicates which previous readRecord update request is to be
unlocked.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, IOERR, ISCINVREQ, NOTAUTH,
NOTOPEN, SYSIDERR, INVREQ

writeRecord
Write either a single record or a sequence of records, if used with the beginInsert
and endInsert methods.

buffer
A reference to the IccBuf object that holds the data that is to be written into
the record.

Conditions

DISABLED, DUPREC, FILENOTFOUND, ILLOGIC, INVREEQ, IOERR,
ISCINVREQ, LENGERR, NOSPACE, NOTAUTH, NOTOPEN, SYSIDERR,
LOADING, SUPPRESSED

IccValue::CVDA type(Icc::GetOpt opt = Icc::object)

void unlockRecord(unsigned long updateToken = 0)

void writeRecord(const IccBuf& buffer)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Access
readable

File records can be read by CICS tasks.

notReadable
File records cannot be read by CICS tasks.

browsable
File records can be browsed by CICS tasks.

notBrowsable
File records cannot be browsed by CICS tasks.

addable
Records can be added to the file by CICS tasks.

notAddable
Records cannot be added to the file by CICS tasks.
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updatable
Records in the file can be updated by CICS tasks.

notUpdatable
Records in the file cannot be updated by CICS tasks.

deletable
Records in the file can be deleted by CICS tasks.

notDeletable
Records in the file cannot be deleted by CICS tasks.

fullAccess
Equivalent to readable AND browsable AND addable AND updatable
AND deletable.

noAccess
Equivalent to notReadable AND notBrowsable AND notAddable AND
notUpdatable AND notDeletable.

ReadMode
ReadMode is the mode in which a file is read.

normal
No update is to be performed (that is, read-only mode)

update
The record is to be updated. The record is locked by CICS until:
v it is rewritten using the rewriteRecord method or

v it is deleted using the deleteLockedRecord method or

v it is unlocked using the unlockRecord method or

v the task commits or rolls back its resource updates or

v the task is abended.

SearchCriterion
equalToKey

The search only finds an exact match.

gteqToKey
The search finds either an exact match or the next record in search order.

Status
open File is open, ready for read/write requests by CICS tasks.

closed
File is closed, and is therefore not currently being used by CICS tasks.

enabled
File is enabled for access by CICS tasks.

disabled
File is disabled from access by CICS tasks.
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Chapter 30. IccFileId class

IccFileId is used to identify a file name in the CICS system.

IccBase
IccResourceId

IccFileId

Header file: ICCRIDEH

IccFileId constructors

Constructor (1)

fileName
The name of the file.

Constructor (2)

id
A reference to an IccFileId object.

Public methods
These are the public methods in this class.

operator= (1)

fileName
The 8-byte name of the file.

operator= (2)
Assigns new value.

id
A reference to an IccFileId object.

IccFileId(const char* fileName)

IccFileId(const IccFileId& id)

IccFileId& operator=(const char* fileName)

IccFileId& operator=(const IccFileId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 31. IccFileIterator class

This class is used to create IccFileIterator objects that can be used to browse
through the records of a CICS file, represented by an IccFile object.

IccBase
IccResource

IccFileIterator

Header file: ICCFLIEH

Sample: ICC$FIL

IccFileIterator constructor

Constructor
The IccFile and IccRecordIndex object must exist before the IccFileIterator is
created.

file
A pointer to the IccFile object that is to be browsed

index
A pointer to the IccRecordIndex object that is being used to select a record in
the file

search
An enumeration, defined in IccFile, that indicates the criterion being used to
find a search match. The default is gteqToKey.

Conditions

DISABLED, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR, LOADING

Public methods
These are the public methods in this class.

readNextRecord
Read the record that follows the current record.

mode
An enumeration, defined in IccFile class, that indicates the type of read request

IccFileIterator (IccFile* file,
IccRecordIndex* index,
IccFile::SearchCriterion search = IccFile::gteqToKey)

const IccBuf& readNextRecord (IccFile::ReadMode mode = IccFile::normal,
unsigned long* updateToken = 0)
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updateToken
A returned token that is used to identify this unique update request on a
subsequent rewriteRecord, deleteLockedRecord, or unlockRecord method on
the file object.

Conditions

DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
LENGERR, NOTAUTH, NOTFIND, SYSIDERR

readPreviousRecord
Read the record that precedes the current record.

mode
An enumeration, defined in IccFile class, that indicates the type of read
request.

updateToken
See readNextRecord.

Conditions

DUPKEY, ENDFILE, FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ,
LENGERR, NOTAUTH, NOTFIND, SYSIDERR

reset
Resets the IccFileIterator object to point to the record identified by the
IccRecordIndex object and the specified search criterion.

index
A pointer to the IccRecordIndex object that is being used to select a record in
the file.

search
An enumeration, defined in IccFile, that indicates the criterion being used to
find a search match. The default is gteqToKey.

Conditions

FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ISCINVREQ, NOTAUTH,
NOTFND, SYSIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource

const IccBuf& readPreviousRecord (IccFile::ReadMode mode = IccFile::normal,
unsigned long* updateToken = 0)

void reset (IccRecordIndex* index,
IccFile::SearchCriterion search = IccFile::gteqToKey)
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Method Class
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase
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Chapter 32. IccGroupId class

IccGroupId class is used to identify a CICS group.

IccBase
IccResourceId

IccGroupId

IccGroupId class is used to identify a CICS group.

Header file: ICCRIDEH

IccGroupId constructors

Constructor (1)

groupName
The 8-character name of the group.

Constructor (2)
The copy constructor.

id A reference to an IccGroupId object.

Public methods
These are the public methods in this class.

operator= (1)

groupName
The 8-character name of the group.

operator= (2)
Assigns new value.

id A reference to an IccGroupId object.

IccGroupId(const char* groupName)

IccGroupId(const IccGroupId& id)

IccGroupId& operator=(const char* groupName)

IccGroupId& operator=(const IccGroupId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 33. IccJournal class

IccJournal class represents a user or system CICS journal.

IccBase
IccResource

IccJournal

Header file: ICCJRNEH

Sample: ICC$JRN

IccJournal constructors

Constructor (1)

id
A reference to an IccJournalId object that identifies which journal is being
used.

options
An integer, constructed from the Options enumeration defined in this class,
that affects the behavior of writeRecord calls on the IccJournal object. The
values may be combined by addition or bitwise ORing, for example:
IccJournal::startIO | IccJournal::synchronous

The default is to use the system default.

Constructor (2)

journalNum
The journal number (in the range 1-99)

options
See above.

Public methods
These are the public methods in this class.

clearPrefix
Clears the current prefix as set by registerPrefix or setPrefix.If the current prefix
was set using registerPrefix, then the IccJournal class only removes its own

IccJournal (const IccJournalId& id,
unsigned long options = 0)

IccJournal (unsigned short journalNum,
unsigned long options = 0)
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reference to the prefix. The buffer itself is left unchanged.If the current prefix was
set by setPrefix, then the IccJournal's copy of the buffer is deleted.

journalTypeId
Returns a reference to an IccJournalTypeId object that contains a 2-byte field used
to identify the origin of journal records.

put
A synonym for writeRecord—puts data into the journal. See Chapter 10,
“Polymorphic Behavior,” on page 57 for information on polymorphism.

buffer
A reference to an IccBuf object that holds data to be put into the journal.

registerPrefix

Stores pointer to prefix object for use when the writeRecord method is called on
this IccJournal object.

setJournalTypeId (1)

setJournalTypeId (2)
Sets the journal type—a 2 byte identifier—included in the journal record created
when using the writeRecord method.

setPrefix (1)

setPrefix (2)

Stores the current contents of prefix for inclusion in the journal record created when
the writeRecord method is called.

void clearPrefix()

const IccJournalTypeId& journalTypeId() const

virtual void put(const IccBuf& buffer)

void registerPrefix(const IccBuf* prefix)

void setJournalTypeId(const IccJournalTypeId& id)

void setJournalTypeId(const char* jtypeid)

void setPrefix(const IccBuf& prefix)

void setPrefix(const char* prefix)
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wait
Waits until a previous journal write has completed.

requestNum
The write request. Zero indicates the last write on this journal.

option
An integer that affects the behaviour of writeRecord calls on the IccJournal
object. Values other than 0 should be made from the Options enumeration,
defined in this class. The values may be combined by addition or bitwise
ORing, for example IccJournal::startIO + IccJournal::synchronous. The
default is to use the system default.

writeRecord (1)

record
A reference to an IccBuf object that holds the record

option
See above.

writeRecord (2)
Writes the data in the record to the journal.The returned number represents the
particular write request and can be passed to the wait method in this class.

record
The name of the record

option
See above.

Conditions

IOERR, JIDERR, LENGERR, NOJBUFSP, NOTAUTH, NOTOPEN

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase

void wait (unsigned long requestNum=0,
unsigned long option = 0)

unsigned long writeRecord (const IccBuf& record,
unsigned long option = 0)

unsigned long writeRecord (const char* record,
unsigned long option = 0)
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Method Class
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Options
The behaviour of writeRecord calls on the IccJournal object.

The values can be combined in an integer by addition or bitwise ORing.

startIO
Specifies that the output of the journal record is to be initiated
immediately. If 'synchronous' is specified for a journal that is not
frequently used, you should also specify 'startIO' to prevent the requesting
task waiting for the journal buffer to be filled. If the journal is used
frequently, startIO is unnecessary.

noSuspend
Specifies that the NOJBUFSP condition does not suspend an application
program.

synchronous
Specifies that synchronous journal output is required. The requesting task
waits until the record has been written.
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Chapter 34. IccJournalId class

IccJournalId is used to identify a journal number in the CICS sytem.

IccBase
IccResourceId

IccJournalId

Header file: ICCRIDEH

IccJournalId constructors

Constructor (1)

journalNum
The number of the journal, in the range 1 to 99

Constructor (2)
The copy constructor.

id
A reference to an IccJournalId object.

Public methods
These are the public methods in this class.

number
Returns the journal number, in the range 1 to 99.

operator= (1)

journalNum
The number of the journal, in the range 1 to 99

IccJournalId(unsigned short journalNum)

IccJournalId(const IccJournalId& id)

unsigned short number() const

IccJournalId& operator=(unsigned short journalNum)
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operator= (2)
Assigns new value.

id
A reference to an IccJournalId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

IccJournalId& operator=(const IccJournalId& id)
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Chapter 35. IccJournalTypeId class

An IccJournalTypeId class object is used to help identify the origin of a journal
record—it contains a 2-byte field that is included in the journal record.

IccBase
IccResourceId

IccJournalTypeId

An IccJournalTypeId class object is used to help identify the origin of a journal
record—it contains a 2-byte field that is included in the journal record.

Header file: ICCRIDEH

IccJournalTypeId constructors

Constructor (1)

journalTypeName
A 2-byte identifier used in journal records.

Constructor (2)

id A reference to an IccJournalTypeId object.

Public methods
These are the public methods in this class.

operator= (1)

id A reference to an IccJournalTypeId object.

operator= (2)
Sets the 2-byte field that is included in the journal record.

journalTypeName
A 2-byte identifier used in journal records.

IccJournalTypeId(const char* journalTypeName)

IccJournalTypeId(const IccJournalId& id)

void operator=(const IccJournalTypeId& id)

void operator=(const char* journalTypeName)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 36. IccKey class

IccKey class is used to hold a search key for an indexed (KSDS) file.

IccBase
IccRecordIndex

IccKey

Header file: ICCRECEH

Sample: ICC$FIL

IccKey constructors

Constructor (1)

Constructor (2)

Constructor (3)

Public methods
These are the public methods in this class.

assign
Copies the search key into the IccKey object.

length
The length of the data area

dataArea
A pointer to the start of the data area that holds the search key.

IccKey (const char* initValue,
Kind kind = complete)

IccKey (unsigned short completeLength,
Kind kind= complete)

IccKey(const IccKey& key)

void assign (unsigned short length,
const void* dataArea)
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completeLength
Returns the length of the key when it is complete.

kind

Returns an enumeration, defined in this class, that indicates whether the key is
generic or complete.

operator= (1)

operator= (2)

operator= (3)
Assigns new value to key.

operator== (1)

operator== (2)

operator== (3)
Tests equality.

operator!= (1)

unsigned short completeLength() const

Kind kind() const

IccKey& operator=(const IccKey& key)

IccKey& operator=(const IccBuf& buffer)

IccKey& operator=(const char* value)

Icc::Bool operator==(const IccKey& key) const

Icc::Bool operator==(const IccBuf& text) const

Icc::Bool operator==(const char* text) const

Icc::Bool operator !=(const IccKey& key) const
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operator!= (2)

operator!= (3)
Tests inequality.

setKind
Changes the type of key from generic to complete or vice versa.

kind
An enumeration, defined in this class, that indicates whether the key is generic
or complete.

value

Returns the start of the data area containing the search key.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
length IccRecordIndex
operator delete IccBase
operator new IccBase
type IccRecordIndex
value IccRecordIndex

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Icc::Bool operator!=(const IccBuf& text) const

Icc::Bool operator!=(const char* text) const

void setKind(Kind kind)

const char* value()
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Enumerations

Kind
complete

Specifies that the supplied key is not generic.

generic
Specifies that the search key is generic. A search is satisfied when a record
is found with a key whose prefix matches the supplied key.
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Chapter 37. IccLockId class

IccLockId class is used to identify a lock request.

IccBase
IccResourceId

IccLockId

IccLockId class is used to identify a lock request.

Header file: ICCRIDEH

IccLockId constructors

Constructor (1)

name
The 8-character name of the lock request.

Constructor (2)
The copy constructor.

id A reference to an IccLockId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 8-character name of the lock request.

operator= (2)
Assigns new value.

id A reference to an IccLockId object.

IccLockId(const char* name)

IccLockId(const IccLockId& id)

IccLockId& operator=(const char* name)

IccLockId& operator=(const IccLockId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 38. IccMessage class

IccMessage can be used to hold a message description.

IccBase
IccMessage

It is used primarily by the IccException class to describe why the IccException
object was created.

Header file: ICCMSGEH

IccMessage constructor

Constructor

number
The number associated with the message

text
The text associated with the message

className
The optional name of the class associated with the message

methodName
The optional name of the method associated with the message.

Public methods
These are the public methods in this class.

className
Returns the name of the class with which the message is associated, if any. If there
is no name to return, a null pointer is returned.

methodName

Returns the name of the method with which the message is associated, if any. If
there is no name to return, a null pointer is returned.

IccMessage (unsigned short number,
const char* text,
const char* className = 0,
const char* methodName = 0)

const char* className() const

const char* methodName() const
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number

Returns the number of the message.

summary

Returns the text of the message.

text

Returns the text of the message in the same way as summary.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

unsigned short number() const

const char* summary()

const char* text() const
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Chapter 39. IccPartnerId class

IccPartnerId class represents CICS remote (APPC) partner transaction definitions.

IccBase
IccResourceId

IccPartnerId

IccPartnerId class represents CICS remote (APPC) partner transaction definitions.

Header file: ICCRIDEH

IccPartnerId constructors

Constructor (1)

partnerName
The 8-character name of an APPC partner.

Constructor (2)
The copy constructor.

id A reference to an IccPartnerId object.

Public methods

operator= (1)

partnerName
The 8-character name of an APPC partner.

operator= (2)
Assigns new value.

id A reference to an IccPartnerId object.

IccPartnerId(const char* partnerName)

IccPartnerId(const IccPartnerId& id)

IccPartnerId& operator=(const char* partnerName)

IccPartnerId& operator=(const IccPartnerId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 40. IccProgram class

The IccProgram class represents any CICS program outside of your currently
executing one, which the IccControl object represents.

IccBase
IccResource

IccProgram

Header file: ICCPRGEH

Sample: ICC$PRG1, ICC$PRG2, ICC$PRG3

IccProgram constructors

Constructor (1)

id
A reference to an IccProgramId object.

Constructor (2)

progName
The 8-character name of the program.

Public methods
The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

address
Returns the address of a program module in memory. This is only valid after a
successful load call.

clearInputMessage
Clears the current input message which was set by setInputMessage or
registerInputMessage.If the current input message was set using
registerInputMessage then only the pointer is deleted: the buffer is left
unchanged.If the current input message was set using setInputMessage then
clearInputMessage releases the memory used by that buffer.

IccProgram(const IccProgramId& id)

IccProgram(const char* progName)

const void* address() const
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entryPoint

Returns a pointer to the entry point of a loaded program module. This is only
valid after a successful load call.

length

Returns the length of a program module. This is only valid after a successful load
call.

link

commArea
An optional pointer to the IccBuf object that contains the COMMAREA—the
buffer used to pass information between the calling program and the program
that is being called

transId
An optional pointer to the IccTransId object that indicates the name of the
mirror transaction under which the program is to run if it is a remote (DPL)
program link

opt
An enumeration, defined in this class, that affects the behavior of the link
when the program is remote (DPL). The default (noCommitOnReturn) is not to
commit resource changes on the remote CICS region until the current task
commits its resources. The alternative (commitOnReturn) means that the
resources of the remote program are committed whether or not this task
subsequently abends or encounters a problem.

Conditions: INVREQ, NOTAUTH, PGMIDERR, SYSIDERR, LENGERR,
ROLLEDBACK, TERMERR

Restrictions

Links may be nested, that is, a linked program may link to another program.
However, due to implementation restrictions, you may only nest such programs 15
times. If this is exceeded, an exception is thrown.

void clearInputMessage()

const void* entryPoint() const

unsigned long length() const

void link (const IccBuf* commArea = 0,
const IccTransId* transId = 0,
CommitOpt opt = noCommitOnReturn)
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load

opt
An enumeration, defined in this class, that indicates whether CICS should
automatically allow the program to be unloaded at task termination
(releaseAtTaskEnd), or not (hold).

Conditions: NOTAUTH, PGMIDERR, INVREQ, LENGERR

registerInputMessage
Store pointer to InputMessage for when the link method is called.

setInputMessage
Specifies data to be made available, by the IccSession::receive() method, to the
called program, when using the link method in this class.

unload
Allow a program to be unloaded. It can be reloaded by a call to load.

Conditions

NOTAUTH, PGMIDERR, INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase

void load(LoadOpt opt = releaseAtTaskEnd)

void registerInputMessage(const IccBuf& msg)

void setInputMessage(const IccBuf& msg)

void unload()
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Method Class
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

CommitOpt
noCommitOnReturn

Changes to resources on the remote CICS region are not committed until
the current task commits its resources. This is the default setting.

commitOnReturn
Changes to resources on the remote CICS region are committed whether or
not the current task subsequently abends or encounters a problem.

LoadOpt
releaseAtTaskEnd

Indicates that CICS should automatically allow the program to be
unloaded at task termination.

hold Indicates that CICS should not automatically allow the program to be
unloaded at task termination. (In this case, this or another task must
explicitly use the unload method).
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Chapter 41. IccProgramId class

IccProgramId objects represent program names in the CICS system.

IccBase
IccResourceId

IccProgramId

Header file: ICCRIDEH

IccProgramId constructors

Constructor (1)

progName
The 8-character name of the program.

Constructor (2)
The copy constructor.

id
A reference to an IccProgramId object.

Public methods

operator= (1)

progName
The 8-character name of the program.

operator= (2)
Assigns new value.

id
A reference to an IccProgramId object.

IccProgramId(const char* progName)

IccProgramId(const IccProgramId& id)

IccProgramId& operator=(const char* progName)

IccProgramId& operator=(const IccProgramId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 42. IccRBA class

An IccRBA object holds a relative byte address which is used for accessing VSAM
ESDS files.

IccBase
IccRecordIndex

IccRBA

An IccRBA object holds a relative byte address which is used for accessing VSAM
ESDS files.

Header file: ICCRECEH

IccRBA constructor

Constructor

initRBA
An initial value for the relative byte address.

Public methods

operator= (1)

operator= (2)
Assigns a new value for the relative byte address.

num
A valid relative byte address.

operator== (1)

IccRBA(unsigned long initRBA = 0)

IccRBA& operator=(const IccRBA& rba)

IccRBA& operator=(unsigned long num)

Icc::Bool operator== (const IccRBA& rba) const
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operator== (2)
Tests equality

operator!= (1)

operator!= (2)
Tests inequality

number

Returns the relative byte address.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
length IccRecordIndex
operator delete IccBase
operator new IccBase
type IccRecordIndex
value IccRecordIndex

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Icc::Bool operator== (unsigned long num) const

Icc!:Bool operator== (const IccRBA& rba) const

Icc::Bool operator!=(unsigned long num) const

unsigned long number() const
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Chapter 43. IccRecordIndex class

CICS File Control Record Identifier.

IccBase
IccRecordIndex

IccKey
IccRBA
IccRRN

CICS File Control Record Identifier. Used to tell CICS which particular record the
program wants to retrieve, delete, or update. IccRecordIndex is a base class from
which IccKey, IccRBA, and IccRRN are derived.

Header file: ICCRECEH

IccRecordIndex constructor (protected)

Constructor

type
An enumeration, defined in this class, that indicates whether the index type is
key, RBA, or RRN.

Note: This is protected because you should not create IccRecordIndex objects; see
subclasses IccKey, IccRBA, and IccRRN.

Public methods

length
Returns the length of the record identifier.

type

Returns an enumeration, defined in this class, that indicates whether the index
type is key, RBA, or RRN.

IccRecordIndex(Type type)

unsigned short length() const

Type type() const
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Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Type
Type indicates the access method.

Possible values are:
v key
v RBA
v RRN

182 CICS TS for z/OS 4.2: C++ OO Class Libraries



Chapter 44. IccRequestId class

An IccRequestId is used to hold the name of a request.

IccBase
IccResourceId

IccRequestId

An IccRequestId is used to hold the name of a request. This request identifier can
subsequently be used to cancel a request—see, for example, start and cancel
methods in IccStartRequestQ class.

Header file: ICCRIDEH

IccRequestId constructors

Constructor (1)
An empty IccRequestId object.

Constructor (2)

requestName
The 8-character name of the request.

Constructor (3)
The copy constructor.

id A reference to an IccRequestId.

Public methods

operator= (1)

id A reference to an IccRequestId object whose properties are copied into this
object.

IccRequestId()

IccRequestId(const char* requestName)

IccRequestId(const IccRequestId& id)

IccRequestId& operator=(const IccRequestId& id)
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operator= (2)
Assigns new value.

requestName
An 8-character string which is copied into this object.

Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase

IccRequestId& operator=(const char* reqestName)
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Chapter 45. IccResource class

IccResource class is a base class that is used to derive other classes.

IccBase
IccResource

The methods associated with IccResource are described here although, in practise,
they are only called on objects of derived classes.

IccResource is the parent class for all CICS resources—tasks, files, programs, etc.
Every class inherits from IccBase, but only those that use CICS services inherit
from IccResource.

Header file: ICCRESEH

Sample: ICC$RES1, ICC$RES2

IccResource constructor (protected)

Constructor

classType
An enumeration that indicates what the subclass type is. For example, for an
IccTempStore object, the class type is cTempStore. The possible values are
listed under ClassType in the description of the IccBase class.

Public methods

actionOnCondition
Returns an enumeration that indicates what action the class will take in response
to the specified condition being raised by CICS. The possible values are described
in this class.

condition
The name of the condition as an enumeration. See IccCondition structure for a
list of the possible values.

actionOnConditionAsChar

This method is the same as actionOnCondition but returns a character, rather than
an enumeration, as follows:

IccResource(IccBase::ClassType classType)

ActionOnCondition actionOnCondition(IccCondition::Codes condition)

char actionOnConditionAsChar(IccCondition::Codes condition)
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0 (zero)
No action is taken for this CICS condition.

H The virtual method handleEvent is called for this CICS condition.

X An exception is generated for this CICS condition.

A This program is abended for this CICS condition.

actionsOnConditionsText
Returns a string of characters, one character for each possible condition. Each
character indicates the actions to be performed for that corresponding condition. .

The characters used in the string are described in “actionOnConditionAsChar” on
page 185. For example, the string: 0X00H0A ... shows the actions for the first
seven conditions are as follows:

condition 0 (NORMAL)
action=0 (noAction)

condition 1 (ERROR)
action=X (throwException)

condition 2 (RDATT)
action=0 (noAction)

condition 3 (WRBRK)
action=0 (noAction)

condition 4 (ICCEOF)
action=H (callHandleEvent)

condition 5 (EODS)
action=0 (noAction)

condition 6 (EOC)
action=A (abendTask)

clear
Clears the contents of the object. This method is virtual and is implemented,
wherever appropriate, in the derived classes. See Chapter 10, “Polymorphic
Behavior,” on page 57 for a description of polymorphism. The default
implementation in this class throws an exception to indicate that it has not been
overridden in a subclass.

condition
Returns a number that indicates the condition code for the most recent CICS call
made by this object.

const char* actionsOnConditionsText()

virtual void clear()

unsigned long condition(ConditionType type = majorCode) const
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type
An enumeration, defined in this class, that indicates the type of condition
requested. Possible values are majorCode (the default) and minorCode.

conditionText

Returns the symbolic name of the last CICS condition for this object.

get

Gets data from the IccResource object and returns it as an IccBuf reference. This
method is virtual and is implemented, wherever appropriate, in the derived
classes. See Chapter 10, “Polymorphic Behavior,” on page 57 for a description of
polymorphism. The default implementation in this class throws an exception to
indicate that it has not been overridden in a subclass.

handleEvent
This virtual function may be re-implemented in a subclass (by the application
programmer) to handle CICS events (see IccEvent class on page Chapter 27,
“IccEvent class,” on page 129).

event
A reference to an IccEvent object that describes the reason why this method is
being called.

id

Returns a pointer to the IccResourceId object associated with this IccResource
object.

isEDFOn

Returns a boolean value that indicates whether EDF trace is active. Possible values
are yes or no.

isRouteOptionOn

const char* conditionText() const

virtual const IccBuf& get()

virtual HandleEventReturnOpt handleEvent(IccEvent& event)

const IccResourceId* id() const

Icc::Bool isEDFOn() const

Icc::Bool isRouteOptionOn() const

Chapter 45. IccResource class 187



Returns a boolean value that indicates whether the route option is active. Possible
values are yes or no.

name

Returns a character string that gives the name of the resource that is being used.
For an IccTempStore object, the 8-character name of the temporary storage queue
is returned. For an IccTerminal object, the 4-character terminal name is returned.
This is equivalent to calling id()→name.

put
Puts information from the buffer into the IccResource object. This method is
virtual and is implemented, wherever appropriate, in the derived classes. See
Chapter 10, “Polymorphic Behavior,” on page 57 for more information on
polymorphism. The default implementation in this class throws an exception to
indicate that it has not been overridden in a subclass.

buffer
A reference to an IccBuf object that contains data that is to be put into the
object.

routeOption

Returns a reference to an IccSysId object that represents the system to which all
CICS requests are routed—explicit function shipping.

setActionOnAnyCondition
Specifies the default action to be taken by the CICS foundation classes when a
CICS condition occurs.

action
The name of the action as an enumeration. The possible values are listed under
the description of this class.

setActionOnCondition
Specifies what action is automatically taken by the CICS foundation classes when a
given CICS condition occurs.

const char* name() const

virtual void put(const IccBuf& buffer)

const IccSysId& routeOption() const

void setActionOnAnyCondition(ActionOnCondition action)

void setActionOnCondition (ActionOnCondition action,
IccCondition::Codes condition)
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action
The name of the action as an enumeration. The possible values are listed under
the description of this class.

condition
See IccCondition structure.

setActionsOnConditions

actions
A string that indicates what action is to be taken for each condition. The
default is not to indicate any actions, in which case each condition is given a
default ActionOnCondition of noAction. The string should have the same
format as the one returned by the actionsOnConditionsText method.

setEDF
Switches EDF on or off for this resource object. These methods force the object to
route CICS requests to the named remote system. This is called explicit function
shipping.

void setEDF(Icc::Bool onOff)

onOff
A boolean value that selects whether EDF trace is switched on or off.

setRouteOption (1)
The parameters are:

sysId
The IccSysId object that represents the remote system to which commands are
routed.

setRouteOption (2)
This option is only valid for certain classes: Attempting to use this method on
other subclasses of IccResource causes an exception to be thrown.

Valid classes are:
v IccDataQueue

v IccFile

v IccFileIterator

v IccProgram

v IccStartRequestQ

v IccTempStore

To turn off the route option specify no parameter, for example:
obj.setRouteOption()

void setActionsOnConditions(const char* actions = 0)

void setRouteOption(const IccSysId& sysId)
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sysName
The 4-character name of the system to which commands are routed.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

ActionOnCondition
Possible values are:

noAction
Carry on as normal; it is the application program's responsibility to test
CICS conditions using the condition method, after executing a method that
calls CICS services.

callHandleEvent
Call the virtual handleEvent method.

throwException
An IccException object is created and thrown. This is typically used for
more serious conditions or errors.

abendTask
Abend the CICS task.

HandleEventReturnOpt
Possible values are:

rContinue
The CICS event proceeded satisfactorily and normal processing is to
resume.

rThrowException
The application program could not handle the CICS event and an
exception is to be thrown.

void setRouteOption(const char* sysName = 0)
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rAbendTask
The application program could not handle the CICS event and the CICS
task is to be abended.

ConditionType
Possible values are:

majorCode
The returned value is the CICS RESP value. This is one of the values in
IccCondition::codes.

minorCode
The returned value is the CICS RESP2 value.
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Chapter 46. IccResourceId class

This is a base class from which IccTransId and other classes, whose names all end
in "Id", are derived.

IccBase
IccResourceId

Many of these derived classes represent CICS resource names.

Header file: ICCRIDEH

IccResourceId constructors (protected)

Constructor (1)

type
An enumeration, defined in IccBase class, that indicates the type of class.

id
A reference to an IccResourceId object that is used to create this object.

Constructor (2)

type
An enumeration, defined in IccBase class, that indicates the type of class.

resName
The name of a resource that is used to create this object.

Public methods
These are the public methods in this class.

name
Returns the name of the resource identifier as a string. Most ...Id objects have 4- or
8-character names.

nameLength

IccResourceId (IccBase::ClassType typ,
const IccResourceId& id)

IccResourceId (IccBase::ClassType type,
const char* resName)

const char* name() const
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Returns the length of the name returned by the name method.

Protected methods

operator=
Set an IccResourceId object to be identical to id.

id
A reference to an IccResourceId object.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

unsigned short nameLength() const

IccResourceId& operator=(const IccResourceId& id)
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Chapter 47. IccRRN class

An IccRRN object holds a relative record number and is used to identify records in
VSAM RRDS files.

IccBase
IccRecordIndex

IccRRN

An IccRRN object holds a relative record number and is used to identify records in
VSAM RRDS files.

Header file: ICCRECEH

IccRRN constructors

Constructor

initRRN
The initial relative record number—an integer greater than 0. The default is 1.

Public methods
These are the public methods in this class.

operator= (1)

operator= (2)
Assigns a new value for the relative record number.

num
A relative record number—an integer greater than 0.

operator== (1)

IccRRN(unsigned long initRRN = 1)

IccRRN& operator=(const IccRRN& rrn)

IccRRN& operator=(unsigned long num)

Icc::Bool operator== (const IccRRN& rrn) const
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operator== (2)
Tests equality

operator!= (1)

operator!= (2)
Tests inequality

number

Returns the relative record number.

Inherited public methods
These are the public methods inherited by this class.

Method Class
className IccBase
classType IccBase
customClassNum IccBase
length IccRecordIndex
operator delete IccBase
operator new IccBase
type IccRecordIndex
value IccRecordIndex

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Icc::Bool operator== (unsigned long num) const

Icc::Bool operator!= (const IccRRN& rrn) const

Icc::Bool operator!=(unsigned long num) const

unsigned long number() const
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Chapter 48. IccSemaphore class

This class enables synchronization of resource updates.

IccBase
IccResource

IccSemaphore

Header file: ICCSEMEH

Sample: ICC$SEM

IccSemaphore constructor

Constructor (1)

resource
A text string, if type is byValue, otherwise an address in storage.

type
An enumeration, defined in this class, that indicates whether locking is by
value or by address. The default is by value.

life
An enumeration, defined in this class, that indicates how long the semaphore
lasts. The default is to last for the length of the UOW.

Constructor (2)

id
A reference to an IccLockId object

life
An enumeration, defined in this class, that indicates how long the semaphore
lasts. The default is to last for the length of the UOW.

Public methods
These are the public methods in this class.

lifeTime
Returns an enumeration, defined in this class, that indicates whether the lock lasts
for the length of the current unit-of-work ('UOW') or until the task
terminates('task').

IccSemaphore (const char* resource,
LockType type = byValue,
LifeTime life = UOW)

IccSemaphore (const IccLockId& id,
LifeTime life = UOW)
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lock

Attempts to get a lock. This method blocks if another task already owns the lock.

Conditions

ENQBUSY, LENGERR, INVREQ

tryLock
Attempts to get a lock. This method does not block if another task already owns
the lock. It returns a boolean that indicates whether it succeeded.

Conditions

ENQBUSY, LENGERR, INVREQ

type
Returns an enumeration, defined in this class, that indicates what type of
semaphore this is.

unlock

Release a lock.

Conditions

LENGERR, INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource

LifeTime lifeTime() const

void lock()

Icc::Bool tryLock()

LockType type() const

void unlock()
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Method Class
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

LockType
byValue

The lock is on the contents (for example, name).

byAddress
The lock is on the memory address.

LifeTime
UOW The semaphore lasts for the length of the current unit of work.

task The semaphore lasts for the length of the task.
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Chapter 49. IccSession class

This class enables APPC and DTP programming.

IccBase
IccResource

IccSession

Header file: ICCSESEH

Sample: ICC$SES1, ICC$SES2

IccSession constructors (public)

Constructor (1)

id
A reference to an IccPartnerId object

Constructor (2)

sysId
A reference to an IccSysId object that represents a remote CICS system

profile
The 8-character name of the profile.

Constructor (3)

sysName
The 4-character name of the remote CICS system with which this session is
associated

profile
The 8-character name of the profile.

IccSession(const IccPartnerId& id)

IccSession (const IccSysId& sysId,
const char* profile = 0)

IccSession (const char* sysName,
const char* profile = 0)
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IccSession constructor (protected)

Constructor
This constructor is for back end DTP CICS tasks that have a session as their
principal facility. In this case the application program uses the session method on
the IccControl object to gain access to their IccSession object.

Public methods
These are the public methods in this class.

allocate
Establishes a session (communication channel) to the remote system.

option
An enumeration, defined in this class, that indicates what action CICS is to
take if a communication channel is unavailable when this method is called.

Conditions

INVREQ, SYSIDERR, CBIDERR, NETNAMEIDERR, PARTNERIDERR, SYSBUSY

connectProcess (1)
This method can only be used if an IccPartnerId object was used to construct this
session object.

level
An enumeration, defined in this class, that indicates what sync level is to be
used for this conversation

PIP
An optional pointer to an IccBuf object that contains the PIP data to be sent to
the remote system

connectProcess (2)

level
An enumeration, defined in this class, that indicates what sync level is to be
used for this conversation

IccSession()

void allocate(AllocateOpt option = queue)

void connectProcess (SyncLevel level,
const IccBuf* PIP = 0)

void connectProcess (SyncLevel level,
const IccTransId& transId,
const IccBuf* PIP = 0)
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transId
A reference to an IccTransId object that holds the name of the transaction to be
started on the remote system

PIP
An optional pointer to an IccBuf object that contains the PIP data to be sent to
the remote system

connectProcess (3)
Starts a partner process on the remote system in preparation for sending and
receiving information.

level
An enumeration, defined in this class, that indicates what sync level is to be
used for this conversation

TPName
A reference to an IccTPNameId object that contains the 1–64 character TP
name.

PIP
An optional pointer to an IccBuf object that contains the PIP data to be sent to
the remote system

Conditions

INVREQ, LENGERR, NOTALLOC, PARTNERIDERR, NOTAUTH, TERMERR,
SYSBUSY

converse
converse sends the contents of send and returns a reference to an IccBuf object that
holds the reply from the remote APPC partner.

send
A reference to an IccBuf object that contains the data that is to be sent.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

convId
Returns a reference to an IccConvId object that contains the 4-byte conversation
identifier.

void connectProcess (SyncLevel level,
const IccTPNameId& TPName,
const IccBuf* PIP = 0)

const IccBuf& converse(const IccBuf& send)

const IccConvId& convId()
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errorCode

Returns the 4-byte error code received when isErrorSet returns true. See the
relevant DTP Guide for more information.

extractProcess

Retrieves information from an APPC conversation attach header and holds it inside
the object. See PIPList, process, and syncLevel methods to retrieve the information
from the object. This method should be used by the back end task if it wants
access to the PIP data, the process name, or the synclevel under which it is
running.

Conditions

INVREQ, NOTALLOC, LENGERR

flush
Ensure that accumulated data and control information are transmitted on an APPC
mapped conversation.

Conditions

INVREQ, NOTALLOC

free
Return the APPC session to CICS so that it may be used by other tasks.

Conditions

INVREQ, NOTALLOC

get
A synonym for receive. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

isErrorSet

const char* errorCode() const

void extractProcess()

void flush()

void free()

virtual const IccBuf& get()

204 CICS TS for z/OS 4.2: C++ OO Class Libraries



Returns a boolean variable, defined in Icc structure, that indicates whether an error
has been set.

isNoDataSet

Returns a boolean variable, defined in Icc structure, that indicates if no data was
returned on a send—just control information.

isSignalSet

Returns a boolean variable, defined in Icc structure, that indicates whether a signal
has been received from the remote process.

issueAbend

Abnormally ends the conversation. The partner transaction sees the TERMERR
condition.

Conditions

INVREQ, NOTALLOC, TERMERR

issueConfirmation
Sends positive response to a partner's send request that specified the confirmation
option.

Conditions

INVREQ, NOTALLOC, TERMERR, SIGNAL

issueError
Signals an error to the partner process.

Conditions

INVREQ, NOTALLOC, TERMERR, SIGNAL

Icc::Bool isErrorSet() const

Icc::Bool isNoDataSet() const

Icc::Bool isSignalSet() const

void issueAbend()

void issueConfirmation()

void issueError()
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issuePrepare
This only applies to DTP over APPC links. It enables a syncpoint initiator to
prepare a syncpoint slave for syncpointing by sending only the first flow ('prepare
to commit') of the syncpoint exchange.

Conditions

INVREQ, NOTALLOC, TERMERR

issueSignal
Signals that a mode change is needed.

Conditions

INVREQ, NOTALLOC, TERMERR

PIPList
Returns a reference to an IccBuf object that contains the PIP data sent from the
front end process. A call to this method should be preceded by a call to
extractProcess on back end DTP processes.

process

Returns a reference to an IccBuf object that contains the process data sent from the
front end process. A call to this method should be preceded by a call to
extractProcess on back end DTP processes.

put
A synonym for send. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

data
A reference to an IccBuf object that holds the data to be sent to the remote
process.

receive

void issuePrepare()

void issueSignal()

IccBuf& PIPList()

const IccBuf& process() const

virtual void put(const IccBuf& data)

206 CICS TS for z/OS 4.2: C++ OO Class Libraries



Returns a reference to an IccBuf object that contains the data received from the
remote system.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

send (1)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the send
method. The default is normal.

send (2)
Sends data to the remote partner.

option
An enumeration, defined in this class, that affects the behavior of the send
method. The default is normal.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

sendInvite (1)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the
sendInvite method. The default is normal.

sendInvite (2)
Sends data to the remote partner and indicates a change of direction, that is, the
next method on this object will be receive.

const IccBuf& receive()

void send (const IccBuf& send,
SendOpt option = normal)

void send(SendOpt option = normal)

void sendInvite (const IccBuf& send,
SendOpt option = normal)

void sendInvite(SendOpt option = normal)
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option
An enumeration, defined in this class, that afffects the behavior of the
sendInvite method. The default is normal.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

sendLast (1)

send
A reference to an IccBuf object that contains the data that is to be sent.

option
An enumeration, defined in this class, that affects the behavior of the sendLast
method. The default is normal.

sendLast (2)
Sends data to the remote partner and indicates that this is the final transmission.
The free method must be invoked next, unless the sync level is 2, when you must
commit resource updates before the free. (See commitUOW on page
“commitUOW” on page 228 in IccTaskClass).

option
An enumeration, defined in this class, that affects the behavior of the sendLast
method. The default is normal.

Conditions

INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

state
Returns a CVDA, defined in IccValue structure, that indicates the current state of
the APPC conversation.

Possible values are:
v ALLOCATED
v CONFFREE
v CONFSEND
v FREE
v PENDFREE
v PENDRECEIVE
v RECEIVE
v ROLLBACK
v SEND
v SYNCFREE

void sendLast (const IccBuf& send,
SendOpt option = normal)

void sendLast(SendOpt option = normal)
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v SYNCRECEIVE
v SYNCSEND
v NOTAPPLIC

IccValue::NOTAPPLIC is returned if there is no APPC conversation state.

option
An enumeration, defined in this class, that indicates how to report the state of
the conversation

Conditions

INVREQ, NOTALLOC

stateText
Returns the symbolic name of the state that state method would return. For
example, if state returns IccValue::ALLOCATED, stateText would return
"ALLOCATED".

option
An enumeration, defined in this class, that indicates how to report the state of
the conversation

syncLevel

Returns an enumeration, defined in this class, that indicates the synchronization
level that is being used in this session. A call to this method should be preceded by
a call to extractProcess on back end DTP processes.

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource

IccValue::CVDA state(StateOpt option = lastCommand)

const char* stateText(StateOpt option = lastCommand)

SyncLevel syncLevel() const
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Method Class
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

AllocateOpt
queue

If all available sessions are in use, CICS is to queue this request (and block
the method) until it can allocate a session.

noQueue
Control is returned to the application if it cannot allocate a session. CICS
raises the SYSBUSY condition.

Indicates whether queuing is required on an allocate method.

SendOpt
normal

The default.

confirmation
Indicates that a program using SyncLevel level1 or level2 requires a
response from the remote partner program. The remote partner can
respond positively, using the issueConfirmation method, or negatively,
using the issueError method. The sending program does not receive
control back from CICS until the response is received.

wait Requests that the data is sent and not buffered internally. CICS is free to
buffer requests to improve performance if this option is not specified.

StateOpt
Use StateOpt to indicate how the state of a conversation is to be reported.

lastCommand
Return the state at the time of the completion of the last operation on the
session.

extractState
Return the explicitly extracted current state.
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SyncLevel
level0

Sync level 0

level1
Sync level 1

level2
Sync level 2
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Chapter 50. IccStartRequestQ class

This is a singleton class that enables the application programmer to request an
asynchronous start of another CICS transaction.

IccBase
IccResource

IccStartRequestQ

(see the start method on page “start” on page 217).

An asynchronously started transaction uses the IccStartRequestQ class method
retrieveData to gain the information passed to it by the transaction that issued the
start request.

An unexpired start request can be cancelled by using the cancel method.

Header file: ICCSRQEH

Sample: ICC$SRQ1, ICC$SRQ2

IccStartRequestQ constructor (protected)

Constructor

Public methods
These are the public methods in this class.

cancel
Cancels a previously issued start request that has not yet expired.

reqId
A reference to an IccRequestId object that represents the request to be
cancelled

transId
An optional pointer to an IccTransId object that represents the transaction that
is to be cancelled.

Conditions

ISCINVREQ, NOTAUTH, NOTFND, SYSIDERR

IccStartRequestQ()

void cancel (const IccRequestId& reqId,
const IccTransId* transId = 0)
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clearData
clearData clears the current data that is to be passed to the started transaction.

The data was set using setData or registerData.

If the data was set using registerData, only the pointer to the data is removed, the
data in the buffer is left unchanged.

If the data was set using setData, then clearData releases the memory used by the
buffer.

data
Returns a reference to an IccBuf object that contains data passed on a start request.
A call to this method should be preceded by a call to retrieveData method.

instance

Returns a pointer to the single IccStartRequestQ object. If the object does not exist
it is created. See also startRequestQ method on page “startRequestQ” on page 118
of IccControl.

queueName

Returns the name of the queue that was passed by the start requester. A call to this
method should be preceded by a call to retrieveData method.

registerData
Registers an IccBuf object to be interrogated for start data on each subsequent start
method invocation.This just stores the address of the IccBuf object within the
IccStartRequestQ so that the IccBuf object can be found when using the start
method. This differs from the setData method, which takes a copy of the data held
in the IccBuf object during the time that it is invoked.

buffer
A pointer to the IccBuf object that holds data to be passed on a start request.

reset

void clearData()

const IccBuf& data() const

static IccStartRequestQ* instance()

const char* queueName() const

void registerData(const IccBuf* buffer)

214 CICS TS for z/OS 4.2: C++ OO Class Libraries



Clears any associations previously made by set... methods in this class.

retrieveData
Used by a task that was started, via an async start request, to gain access to the
information passed by the start requester. The information is returned by the data,
queueName, returnTermId, and returnTransId methods.

option
An enumeration, defined in this class, that indicates what happens if there is
no start data available.

Conditions

ENDDATA, ENVDEFERR, IOERR, LENGERR, NOTFND, INVREQ

Note: The ENVDEFERR condition will be raised if all the possible options
(setData, setQueueName, setReturnTermId, and setReturnTransId) are not used
before issuing the start method. This condition is therefore not necessarily an error
condition and your program should handle it accordingly.

returnTermId
Returns a reference to an IccTermId object that identifies which terminal is
involved in the session. A call to this method should be preceded by a call to
retrieveData method.

returnTransId

Returns a reference to an IccTransId object passed on a start request. A call to this
method should be preceded by a call to retrieveData method.

setData

Copies the data in buf into the IccStartRequestQ, which passes it to the started
transaction when the start method is called. See also registerData on page
“registerData” on page 214 for an alternative way to pass data to started
transactions.

setQueueName
Requests that this queue name be passed to the started transaction when the start
method is called.

void reset()

void retrieveData(RetrieveOpt option = noWait)

const IccTermId& returnTermId() const

const IccTransId& returnTransId() const

void setData(const IccBuf& buf)
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queueName
An 8-character queue name.

setReturnTermId (1)

termId
A reference to an IccTermId object that identifies which terminal is involved in
the session.

setReturnTermId (2)
Requests that this return terminal ID be passed to the started transaction when the
start method is called.

termName
The 4-character name of the terminal that is involved in the session.

setReturnTransId (1)

transId
A reference to an IccTransId object.

setReturnTransId (2)
Requests that this return transaction ID be passed to the started transaction when
the start method is called.

transName
The 4-character name of the return transaction.

setStartOpts
Sets whether the started transaction is to have protection and whether it is to be
checked.

popt
An enumeration, defined in this class, that indicates whether start requests are
to be protected

void setQueueName(const char* queueName)

void setReturnTermId(const IccTermId& termId)

void setReturnTermId(const char* termName)

void setReturnTransId(const IccTransId& transId)

void setReturnTransId(const char* transName)

void setStartOpts (ProtectOpt popt = none,
CheckOpt copt = check)
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copt
An enumeration, defined in this class, that indicates whether start requests are
to be checked.

start
Asynchronously starts the named CICS transaction. The returned reference to an
IccRequestId object identifies the start request and can be used subsequently to
cancel the start request.

or

or

transId
A reference to an IccTransId object that represents the transaction to be started

termId
A reference to an IccTermId object that identifies which terminal is involved in
the session.

userId
A reference to an IccUserId object that represents the user ID.

time
An (optional) pointer to an IccTime object that specifies when the task is to be
started. The default is for the task to be started immediately.

reqId
An (optional) pointer to an IccRequestId object that is used to identify this
start request so that the cancel can cancel the request.

Conditions

INVREQ, IOERR, ISCINVREQ, LENGERR, NOTAUTH, SYSIDERR, TERMIDERR,
TRANSIDERR, USERIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource

const IccRequestId& start (const IccTransId& transId,
const IccTermId* termId,
const IccTime* time = 0,
const IccRequestId* reqId = 0)

const IccRequestId& start (const IccTransId& transId,
const IccUserId* userId,
const IccTime* time = 0,
const IccRequestId* reqId = 0)

const IccRequestId& start (const IccTransId& transId,
const IccTime* time = 0,
const IccRequestId* reqId = 0)
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Method Class
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

RetrieveOpt
v noWait
v wait

ProtectOpt
v none
v protect

CheckOpt
v check
v noCheck
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Chapter 51. IccSysId class

IccSysId class is used to identify a remote CICS system.

IccBase
IccResourceId

IccSysId

IccSysId class is used to identify a remote CICS system.

Header file: ICCRIDEH

IccSysId constructors

Constructor (1)

name
The 4-character name of the CICS system.

Constructor (2)
The copy constructor.

id A reference to an IccSysId object.

Public methods
These are the public methods in this class.

operator= (1)

id A reference to an existing IccSysId object.

operator= (2)
Sets the name of the CICS system held in the object.

name
The 4-character name of the CICS system.

IccSysId(const char* name)

IccSysId(const IccSysId& id)

IccSysId& operator=(const IccSysId& id)

IccSysId& operator=(const char* name)
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Inherited public methods

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 52. IccSystem class

This is a singleton class that represents the CICS system. It is used by an
application program to discover information about the CICS system on which it is
running.

IccBase
IccResource

IccSystem

Header file: ICCSYSEH

Sample: ICC$SYS

IccSystem constructor (protected)

Constructor

Public methods
These are the public methods in this class.

applName
Returns the 8-character name of the CICS region.

Conditions

INVREQ

beginBrowse (1)

resource
An enumeration, defined in this class, that indicates the type of resource to be
browsed within the CICS system.

resId
An optional pointer to an IccResourceId object that indicates the starting point
for browsing through the resources.

IccSystem()

const char* applName()

void beginBrowse (ResourceType resource,
const IccResourceId* resId = 0)
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beginBrowse (2)
Signals the start of a browse through a set of CICS resources.

resource
An enumeration, defined in this class, that indicates the type of resource to be
browsed within the CICS system.

resName
The name of the resource that is to be the starting point for browsing the
resources.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

dateFormat
Returns the default dateFormat for the CICS region.

Conditions

INVREQ

endBrowse
Signals the end of a browse through a set of CICS resources.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

freeStorage
Releases the storage obtained by the IccSystem getStorage method.

Conditions

INVREQ

getFile (1)

void beginBrowse (ResourceType resource,
const char* resName)

const char* dateFormat()

void endBrowse(ResourceType resource)

void freeStorage(void* pStorage)

IccFile* getFile(const IccFileId& id)
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id
A reference to an IccFileId object that identifies a CICS file.

getFile (2)
Returns a pointer to the IccFile object identified by the argument.

fileName
The name of a CICS file.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

getNextFile
This method is only valid after a successful beginBrowse(IccSystem::file) call. It
returns the next file object in the browse sequence in the CICS system.

Conditions

END, FILENOTFOUND, ILLOGIC, NOTAUTH

getStorage
Obtains a block of storage of the requested size and returns a pointer to it. The
storage is not released automatically at the end of task; it is only released when a
freeStorage operation is performed.

size
The amount of storage being requested, in bytes

initByte
The initial setting of all bytes in the allocated storage

storageOpts
An enumeration, defined in IccTask class, that affects the way that CICS
allocates storage.

Conditions

LENGERR, NOSTG

instance
Returns a pointer to the singleton IccSystem object. The object is created if it does
not already exist.

IccFile* getFile(const char* fileName)

IccFile* getNextFile()

void* getStorage (unsigned long size,
char initByte = -1,
unsigned long storageOpts = 0)
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operatingSystem

Returns a 1-character value that identifies the operating system under which CICS
is running:

A AIX

N Windows

X z/OS

Conditions

NOTAUTH

operatingSystemLevel
Returns a halfword binary field giving the release number of the operating system
under which CICS is running. The value returned is ten times the formal release
number (the version number is not represented). For example, MVS/ESA Version 3
Release 2.1 would produce a value of 21.

Conditions

NOTAUTH

release
Returns the level of the CICS system as an integer set to 100 multiplied by the
version number plus 10 multiplied by the release level. For example, CICS
Transaction Server for z/OS [Version 1] Release 3 would return 130.

Conditions

NOTAUTH

releaseText
Returns the same as release, except as a 4-character string. For example, CICS
Transaction Server for z/OS [Version 1] Release 3 would return "0130".

Conditions

NOTAUTH

static IccSystem* instance()

char operatingSystem()

unsigned short operatingSystemLevel()

unsigned long release()

const char* releaseText()
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sysId
Returns a reference to the IccSysId object that identifies this CICS system.

Conditions

INVREQ

workArea
Returns a reference to the IccBuf object that holds the work area for the CICS
system.

Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

IccSysId& sysId()

const IccBuf& workArea()
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Enumerations

ResourceType
v autoInstallModel
v connection
v dataQueue
v exitProgram
v externalDataSet
v file
v journal
v modename
v partner
v profile
v program
v requestId
v systemDumpCode
v tempStore
v terminal
v transactionDumpCode
v transaction
v transactionClass
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Chapter 53. IccTask class

IccTask is a singleton class used to invoke task related CICS services.

IccBase
IccResource

IccTask

Header file: ICCTSKEH

Sample: ICC$TSK

IccTask Constructor (protected)

Constructor

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

abend
Requests CICS to abend this task.

abendCode
The 4-character abend code

opt1
An enumeration, defined in this class, that indicates whether to respect or
ignore any abend handling program specified by setAbendHandler method in
IccControl class

opt2
An enumeration, defined in this class, that indicates whether a dump is to be
created.

abendData

IccTask()

void abend (const char* abendCode = 0,
AbendHandlerOpt opt1 = respectAbendHandler,
AbendDumpOpt opt2 = createDump)

IccAbendData* abendData()
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Returns a pointer to an IccAbendData object that contains information about the
program abends, if any, that relate to this task.

commitUOW

Commit the resource updates within the current UOW for this task. This also
causes a new UOW to start for subsequent resource update activity.

Conditions

INVREQ, ROLLEDBACK

delay
Requests that this task be delayed for an interval of time, or until a specific time.

time
A reference to an object that contains information about the delay time. The
object can be one of these types:

IccAbsTime
Expresses time as the number of milliseconds since the beginning of
the year 1900.

IccTimeInterval
Expresses an interval of time, such as 3 hours, 2 minutes, and 1
second.

IccTimeOfDay
Expresses a time of day, such as 13 hours, 30 minutes (1-30 pm).

reqId
An optional pointer to an IccRequestId object that can be used to cancel an
unexpired delay request.

Conditions

EXPIRED, INVREQ

dump
Requests CICS to take a dump for this task. (See also setDumpOpts.) Returns the
character identifier of the dump.

dumpCode
A 4-character label that identifies this dump

void commitUOW()

void delay (const IccTime& time,
const IccRequestId* reqId = 0)

const char* dump (const char* dumpCode,
const IccBuf* buf = 0)
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buf
A pointer to the IccBuf object that contains additional data to be included in
the dump.

Conditions

INVREQ, IOERR, NOSPACE, NOSTG, NOTOPEN, OPENERR, SUPPRESSED

enterTrace
Writes a user trace entry in the CICS trace table.

traceNum
The trace identifier for a user trace table entry; a value in the range 0 through
199.

resource
An 8-character name to be entered in the resource field of the trace table entry.

data
A pointer to the IccBuf object containing data to be included in the trace
record.

opt
An enumeration, defined in this class, that indicates whether tracing should be
normal or whether only exceptions should be traced.

Conditions

INVREQ, LENGERR

facilityType
Returns an enumeration, defined in this class, that indicates what type of principal
facility this task has. This is usually a terminal, such as when the task was started
by someone keying a transaction name on a CICS terminal. It is a session if the
task is the back end of a mapped APPC conversation.

Conditions

INVREQ

freeStorage
Releases the storage obtained by the IccTask getStorage method.

void enterTrace (unsigned short traceNum,
const char* resource = 0,
IccBuf* data = 0,
TraceOpt opt = normal)

FacilityType facilityType()

void freeStorage(void* pStorage)
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Conditions

INVREQ

getStorage
Obtains a block of storage of the requested size. The storage is released
automatically at the end of task, or when the freeStorage operation is performed.
See also getStorage on page “getStorage” on page 223 in IccSystemclass.

size
The amount of storage being requested, in bytes

initByte
The initial setting of all bytes in the allocated storage

storageOpts
An enumeration, defined in this class, that affects the way that CICS allocates
storage.

Conditions

LENGERR, NOSTG

instance
Returns a pointer to the singleton IccTask object. The object is created if it does not
already exist.

isCommandSecurityOn

Returns a boolean, defined in Icc structure, that indicates whether this task is
subject to command security checking.

Conditions

INVREQ

isCommitSupported
Returns a boolean, defined in Icc structure that indicates whether this task can
support the commit method. This method returns true in most environments; the
exception to this is in a DPL environment (see link on page “link” on page 174 in
IccProgram).

void* getStorage (unsigned long size,
char initByte = -1,
unsigned short storageOpts = 0)

static IccTask* instance();

Icc::Bool isCommandSecurityOn()

Icc::Bool isCommitSupported()
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Conditions

INVREQ

isResourceSecurityOn
Returns a boolean, defined in Icc structure, that indicates whether this task is
subject to resource security checking.

Conditions

INVREQ

isRestarted
Returns a boolean, defined in Icc structure, that indicates whether this task has
been automatically restarted by CICS.

Conditions

INVREQ

isStartDataAvailable
Returns a boolean, defined in Icc structure, that indicates whether start data is
available for this task. See the retrieveData method in IccStartRequestQ class if
start data is available.

Conditions

INVREQ

number
Returns the number of this task, unique within the CICS system.

principalSysId

Returns a reference to an IccSysId object that identifies the principal system
identifier for this task.

Conditions

INVREQ

Icc::Bool isResourceSecurityOn()

Icc::Bool isRestarted()

Icc::Bool isStartDataAvailable()

unsigned long number() const

IccSysId& principalSysId(Icc::GetOpt opt = Icc::object)
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priority
Returns the priority for this task.

Conditions

INVREQ

rollBackUOW
Roll back (backout) the resource updates associated with the current UOW within
this task.

Conditions

INVREQ, ROLLEDBACK

setDumpOpts
Set the dump options for this task. This method affects the behavior of the dump
method defined in this class.

opts
An integer, made by adding or logically ORing values from the DumpOpts
enumeration, defined in this class.

setPriority
Changes the dispatch priority of this task.

pri
The new priority.

Conditions

INVREQ

setWaitText
Sets the text that will appear when someone inquires on this task while it is
suspended as a result of a waitExternal or waitOnAlarm method call.

name
The 8-character string label that indicates why this task is waiting.

unsigned short priority(Icc::GetOpt opt = Icc::object)

void rollBackUOW()

void setDumpOpts(unsigned long opts = dDefault)

void setPriority(unsigned short pri)

void setWaitText(const char* name)
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startType

Returns an enumeration, defined in this class, that indicates how this task was
started.

Conditions

INVREQ

suspend
Suspend this task, allowing other tasks to be dispatched.

transId

Returns the IccTransId object representing the transaction name of this CICS task.

triggerDataQueueId

Returns a reference to the IccDataQueueId representing the trigger queue, if this
task was started as a result of data arriving on an IccDataQueue. See startType
method.

Conditions

INVREQ

userId
Returns the ID of the user associated with this task.

opt
An enumeration, defined in Icc structure, that indicates whether the
information already existing in the object is to be used or whether it is to be
refreshed from CICS.

Conditions

INVREQ

StartType startType()

void suspend()

const IccTransId& transId()

const IccDataQueueId& triggerDataQueueId()

const IccUserId& userId(Icc::GetOpt opt = Icc::object)
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waitExternal
Waits for events that post Event Control Blocks (ECBs). The call causes the issuing
task to be suspended until one of the ECBs has been posted—that is, one of the
events has occurred. The task can wait on more than one ECB and can be
dispatched as soon as any of them are posted.

for more information about ECB, see WAIT EXTERNAL.

ECBList
A pointer to a list of ECBs that represent events.

numEvents
The number of events in ECBList.

opt
An enumeration, defined in this class, that indicates whether the wait is
purgeable.

type
An enumeration, defined in this class, that indicates whether the post type is a
standard MVS POST.

Conditions

INVREQ

waitOnAlarm
Suspends the task until the alarm goes off (expires).

See also “setAlarm” on page 105 in IccClock.

id
A reference to the IccAlarmRequestId object that identifies a particular alarm
request.

Conditions

INVREQ

workArea
Returns a reference to the IccBuf object that holds the work area for this task.

Conditions

INVREQ

void waitExternal (long** ECBList,
unsigned long numEvents,
WaitPurgeability opt = purgeable,
WaitPostType type = MVSPost)

void waitOnAlarm(const IccAlarmRequestId& id)

IccBuf& workArea()
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Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

AbendHandlerOpt
respectAbendHandler

Allows control to be passed to an abend handling program if one is in
effect.

ignoreAbendHandler
Does not allow control to be passed to any abend handling program that
may be in effect.

AbendDumpOpt
createDump

Take a transaction dump when servicing an abend request.

suppressDump
Do not take a transaction dump when servicing an abend request.

DumpOpts
The values may be added, or bitwise ORed, together to get the desired
combination.
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The values may be added, or bitwise ORed, together to get the desired
combination. For example IccTask::dProgram + IccTask::dDCT + IccTask::dSIT.

dDefault

dComplete

dTask

dStorage

dProgram

dTerminal

dTables

dDCT

dFCT

dPCT

dPPT

dSIT

dTCT

dTRT

FacilityType
none The task has no principal facility, that is, it is a background task.

terminal
This task has a terminal as its principal facility.

session
This task has a session as its principal facility, that is, it was probably
started as a backend DTP program.

dataqueue
This task has a transient data queue as its principal facility.

StartType
DPL Distributed program link request

dataQueueTrigger
Trigger by data arriving on a data queue

startRequest
Started as a result of an asynchronous start request. See IccStartRequestQ
class.

FEPIRequest
Front end programming interface. See CICS Front End Programming Interface
User's Guide.

terminalInput
Started via a terminal input

CICSInternalTask
Started by CICS.
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StorageOpts
ifSOSReturnCondition

If insufficient space is available, return NOSTG condition instead of
blocking the task.

below
Allocate storage below the 16Mb line.

userDataKey
Allocate storage in the USER data key.

CICSDataKey
Allocate storage in the CICS data key.

TraceOpt
normal

The trace entry is a standard entry.

exception
The trace entry is an exception entry.

WaitPostType
MVSPost

ECB is posted using the MVS POST service.

handPost
ECB is hand posted (that is, using some method other than the MVS POST
service).

WaitPurgeability
purgeable

Task can be purged via a system call.

notPurgeable
Task cannot be purged via a system call.
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Chapter 54. IccTempStore class

IccTempStore objects are used to manage the temporary storage of data.

IccBase
IccResource

IccTempStore

(IccTempStore data can exist between transaction calls.)

Header file: ICCTMPEH

Sample: ICC$TMP

IccTempStore constructors

Constructor (1)

id
Reference to an IccTempStoreId object

loc
An enumeration, defined in this class, that indicates where the storage is to be
located when it is first created. The default is to use auxiliary storage (disk).

Constructor (2)

storeName
Specifies the 8-character name of the queue to be used. The name must be
unique within the CICS system.

loc
An enumeration, defined in this class, that indicates where the storage is to be
located when it is first created. The default is to use auxiliary storage (disk).

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

IccTempStore (const IccTempStoreId& id,
Location loc = auxStorage)

IccTempStore (const char* storeName,
Location loc = auxStorage)
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clear
A synonym for empty. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

empty

Deletes all the temporary data associated with the IccTempStore object and deletes
the associated TD queue.

Conditions

INVREQ, ISCINVREQ, NOTAUTH, QIDERR, SYSIDERR

get
A synonym for readNextItem. See Chapter 10, “Polymorphic Behavior,” on page 57
for information on polymorphism.

numberOfItems

Returns the number of items in temporary storage. This is only valid after a
successful writeItem call.

put
A synonym for writeItem. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

buffer
A reference to an IccBuf object that contains the data that is to be added to the
end of the temporary storage queue.

readItem
Reads the specified item from the temporary storage queue and returns a reference
to the IccBuf object that contains the information.

itemNum
Specifies the item number of the logical record to be retrieved from the queue.

virtual void clear()

void empty()

virtual const IccBuf& get()

unsigned short numberOfItems() const

virtual void put(const IccBuf& buffer)

const IccBuf& readItem(unsigned short itemNum)
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Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR,
SYSIDERR

readNextItem
Reads the next item from a temporary storage queue and returns a reference to the
IccBuf object that contains the information.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOTAUTH, QIDERR,
SYSIDERR

rewriteItem
The parameters are:This method updates the specified item in the temporary
storage queue.

itemNum
Specifies the item number of the logical record that is to be modified

item
The name of the IccBuf object that contains the update data.

opt
An enumeration, defined in this class, that indicates whether the application
program is to be suspended if a shortage of space in the queue prevents the
record being added. suspend is the default.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOSPACE, NOTAUTH,
QIDERR, SYSIDERR

writeItem (1)

item
The name of the IccBuf object that contains the data that is to added to the
end of the temporary storage queue.

opt
An enumeration, defined in this class, that indicates whether the application
program is to be suspended if a shortage of space in the queue prevents the
record being added. suspend is the default.

const IccBuf& readNextItem()

void rewriteItem (unsigned short itemNum,
const IccBuf& item,
NoSpaceOpt opt = suspend)

unsigned short writeItem (const IccBuf& item,
NoSpaceOpt opt = suspend)
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writeItem (2)
This method adds a new record at the end of the temporary storage queue. The
returned value is the item number that was created (if this was done successfully).

text
The text string that is to added to the end of the temporary storage queue.

opt
An enumeration, defined in this class, that indicates whether the application
program is to be suspended if a shortage of space in the queue prevents the
record being added. suspend is the default.

Conditions

INVREQ, IOERR, ISCINVREQ, ITEMERR, LENGERR, NOSPACE, NOTAUTH,
QIDERR, SYSIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
isRouteOptionOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
routeOption IccResource
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
setRouteOption IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

unsigned short writeItem (const char* text,
NoSpaceOpt opt = suspend)
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Enumerations

Location
auxStorage

Temporary store data is to reside in auxiliary storage (disk).

memory
Temporary store data is to reside in memory.

NoSpaceOpt
Take this action if a shortage of space in the queue prevents the record being
added immediately.

suspend
Suspend the application program.

returnCondition
Do not suspend the application program, but raise the NOSPACE
condition instead.
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Chapter 55. IccTempStoreId class

IccTempStoreId class is used to identify a temporary storage name in the CICS
system.

IccBase
IccResourceId

IccTempStoreId

Header file: ICCRIDEH

IccTempStoreId constructors

Constructor (1)

name
The 8-character name of the temporary storage entry.

Constructor (2)
The copy constructor.

id
A reference to an IccTempStoreId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 8-character name of the temporary storage entry.

operator= (2)
Assigns a new value.

id
A reference to an IccTempStoreId object.

IccTempStoreId(const char* name)

IccTempStoreId(const IccTempStoreId& id)

IccTempStoreId& operator=(const char* name)

IccTempStoreId& operator=(const IccTempStoreId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 56. IccTermId class

IccTermId class is used to identify a terminal name in the CICS system.

IccBase
IccResourceId

IccTermId

Header file: ICCRIDEH

IccTermId constructors

Constructor (1)

name
The 4-character name of the terminal

Constructor (2)
The copy constructor.

id
A reference to an IccTermId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 4-character name of the terminal

operator= (2)
Assigns a new value.

id
A reference to an IccTermId object.

IccTermId(const char* name)

IccTermId(const IccTermId& id)

IccTermId& operator=(const char* name)

IccTermId& operator=(const IccTermId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 57. IccTerminal class

This is a singleton class that represents the terminal that belongs to the CICS task.
It can only be created if the transaction has a 3270 terminal as its principal facility,
otherwise an exception is thrown.

IccBase
IccResource

IccTerminal

Header file: ICCTRMEH

Sample: ICC$TRM

IccTerminal constructor (protected)

Constructor

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

AID
Returns an enumeration, defined in this class, that indicates which AID (action
identifier) key was last pressed at this terminal.

clear

A synonym for erase. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

cursor

IccTerminal()

AIDVal AID()

virtual void clear()

unsigned short cursor()
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Returns the current cursor position as an offset from the top left corner of the
screen.

data

Returns a pointer to an IccTerminalData object that contains information about the
characteristics of the terminal. The object is created if it does not already exist.

erase

Erase all the data displayed at the terminal.

Conditions

INVREQ, INVPARTN

freeKeyboard
Frees the keyboard so that the terminal can accept input.

Conditions

INVREQ, INVPARTN

get
A synonym for receive. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

height

Returns how many lines the screen holds.

Conditions

INVREQ

IccTerminalData* data()

void erase()

void freeKeyboard()

virtual const IccBuf& get()

unsigned short height(Icc::getopt opt = Icc::object)
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inputCursor
Returns the position of the cursor on the screen.

instance

Returns a pointer to the single IccTerminal object. The object is created if it does
not already exist.

line

Returns the current line number of the cursor from the top of the screen.

netName

Returns the 8-byte string representing the network logical unit name of the
principal facility.

operator« (1)
Sets the foreground color for data subsequently sent to the terminal.

operator« (2)
Sets the highlighting used for data subsequently sent to the terminal.

operator« (3)
Writes another buffer.

operator« (4)
Writes a character.

unsigned short inputCursor()

static IccTerminal* instance()

unsigned short line()

const char* netName()

IccTerminal& operator « (Color color)

IccTerminal& operator « (Highlight highlight)

IccTerminal& operator « (const IccBuf& buffer)

IccTerminal& operator « (char ch)
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operator« (5)
Writes a character.

operator« (6)
Writes a character.

operator« (7)
Writes a string.

operator« (8)
Writes a string.

operator« (9)
Writes a string.

operator« (10)
Writes a short.

operator« (11)
Writes an unsigned short.

operator« (12)
Writes a long.

IccTerminal& operator « (signed char ch)

IccTerminal& operator « (unsigned char ch)

IccTerminal& operator « (const char* text)

IccTerminal& operator « (const signed char* text)

IccTerminal& operator « (const unsigned char* text)

IccTerminal& operator « (short num)

IccTerminal& operator « (unsigned short num)

IccTerminal& operator « (long num)
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operator« (13)
Writes an unsigned long.

operator« (14)
Writes an integer.

operator« (15)
Writes a float.

operator« (16)
Writes a double.

operator« (17)
Writes a long double.

operator« (18)

Enables the following syntax:

put

A synonym for sendLine. See Chapter 10, “Polymorphic Behavior,” on page 57 for
information on polymorphism.

receive
Receives data from the terminal

IccTerminal& operator « (unsigned long num)

IccTerminal& operator « (int num)

IccTerminal& operator « (float num)

IccTerminal& operator « (double num)

IccTerminal& operator « (long double num)

IccTerminal& operator « (IccTerminal& (*f)(IccTerminal&))

Term « "Hello World" « endl;
Term « "Hello again" « flush;

virtual void put(const IccBuf& buf)

const IccBuf& receive(Case caseOpt = upper)
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caseOpt
An enumeration, defined in this class, that indicates whether text is to be
converted to upper case or left as it is.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

receive3270Data
Receives the 3270 data buffer from the terminal

caseOpt
An enumeration, defined in this class, that indicates whether text is to be
converted to upper case or left as it is.

Conditions

INVREQ, LENGERR, TERMERR

send (1)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send (2)

format
A format string, as in the printf standard library function.

...
The optional arguments that accompany format.

send (3)

row
The row where the writing of the data is started.

col
The column where the writing of the data is started.

buffer
A reference to an IccBuf object that holds the data that is to be sent.

const IccBuf& receive3270Data(Case caseOpt = upper)

void send(const IccBuf& buffer)

void send (const char* format,
...)

void send (unsigned short row,
unsigned short col,
const IccBuf& buffer)
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send (4)
Writes the specified data to either the current cursor position or to the cursor
position specified by the arguments.

row
The row where the writing of the data is started.

col
The column where the writing of the data is started.

format
A format string, as in the printf standard library function.

...
The optional arguments that accompany format.

Conditions

INVREQ, LENGERR, TERMERR

send3270Data (1)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

send3270Data (2)

format
A format string, as in the printf standard library function

...
The optional arguments that accompany format.

send3270Data (3)

col
The column where the writing of the data is started

buffer
A reference to an IccBuf object that holds the data that is to be sent.

void send (unsigned short row,
unsigned short col,
const char* format,
...)

void send3270Data(const IccBuf& buffer)

void send3270 Data(const char* format,
...)

void send3270Data (unsigned short col,
const IccBuf& buf)
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send3270Data (4)
Writes the specified data to either the next line of the terminal or to the specified
column of the current line.

col
The column where the writing of the data is started

format
A format string, as in the printf standard library function

...
The optional arguments that accompany format.

Conditions

INVREQ, LENGERR, TERMERR

sendLine (1)

buffer
A reference to an IccBuf object that holds the data that is to be sent.

sendLine (2)

format
A format string, as in the printf standard library function

...
The optional arguments that accompany format.

sendLine (3)

col
The column where the writing of the data is started

buffer
A reference to an IccBuf object that holds the data that is to be sent.

sendLine (4)
Writes the specified data to either the next line of the terminal or to the specified
column of the current line.

void send3270Data (unsigned short col,
const char* format,
...)

void sendLine(const IccBuf& buffer)

void sendLine (const char* format,
...)

void sendLine (unsigned short col,
const IccBuf& buf)
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col
The column where the writing of the data is started

format
A format string, as in the printf standard library function

...
The optional arguments that accompany format.

Conditions

INVREQ, LENGERR, TERMERR

setColor
Changes the color of the text subsequently sent to the terminal.

color
An enumeration, defined in this class, that indicates the color of the text that is
written to the screen.

setCursor (1)

offset
The position of the cursor where the top left corner is 0.

setCursor (2)
Two different ways of setting the position of the cursor on the screen.

row
The row number of the cursor where the top row is 1

col
The column number of the cursor where the left column is 1

Conditions

INVREQ, INVPARTN

void sendLine (unsigned short col,
const char* format,
...)

void setColor(Color color=defaultColor)

void setCursor(unsigned short offset)

void setCursor (unsigned short row,
unsigned short col)
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setHighlight
Changes the higlighting of the data subsequently sent to the terminal.

highlight
An enumeration, defined in this class, that indicates the highlighting of the text
that is written to the screen.

setLine
Moves the cursor to the start of line lineNum, where 1 is the top line of the
terminal. The default is to move the cursor to the start of line 1.

lineNum
The line number, counting from the top.

Conditions

INVREQ, INVPARTN

setNewLine
Requests that numLines blank lines be sent to the terminal.

numLines
The number of blank lines.

Conditions

INVREQ, INVPARTN

setNextCommArea
Specifies the COMMAREA that is to be passed to the next transaction started on
this terminal.

commArea
A reference to the buffer that is to be used as a COMMAREA.

setNextInputMessage
Specifies data that is to be made available, by the receive method, to the next
transaction started at this terminal.

void setHighlight(Highlight highlight = normal)

void setLine(unsigned short lineNum = 1)

void setNewLine(unsigned short numLines = 1)

void setNextCommArea(const IccBuf& commArea)

void setNextInputMessage(const IccBuf& message)
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message
A reference to the buffer that holds the input message.

setNextTransId
Specifies the next transaction that is to be started on this terminal.

transid
A reference to the IccTransId object that holds the name of a transaction

opt
An enumeration, defined in this class, that indicates whether transId should be
queued or started immediately (that is, it should be the very next transaction)
at this terminal.

signoff

Signs off the user who is currently signed on. Authority reverts to the default user.

Conditions

INVREQ

signon (1)

id
A reference to an IccUserId object

password
The 8-character existing password.

newPassword
An optional 8-character new password.

signon (2)
Signs the user on to the terminal.

user
A reference to an IccUser object

void setNextTransId (const IccTransId& transid,
NextTransIdOpt opt = queue)

void signoff()

void signon (const IccUserId& id,
const char* password = 0,
const char* newPassword = 0)

void signon (IccUser& user,
const char* password = 0,
const char* newPassword = 0)
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password
The 8-character existing password.

newPassword
An optional 8-character new password. This method differs from the first
signon method in that the IccUser object is interrogated to discover
IccGroupId and language information. The object is also updated with
language and ESM return and response codes.

Conditions

INVREQ, NOTAUTH, USERIDERR

waitForAID (1)
Waits for any input and returns an enumeration, defined in this class, that
indicates which AID key is expected.

waitForAID (2)
Waits for the specified AID key to be pressed, before returning control. This
method loops, receiving input from the terminal, until the correct AID key is
pressed by the operator.

aid
An enumeration, defined in this class, that indicates which AID key was last
pressed.

Conditions

EOC, INVREQ, LENGERR, NOTALLOC, SIGNAL, TERMERR

width
Returns the width of the screen in characters.

Conditions

INVREQ

workArea
Returns a reference to the IccBuf object that holds the terminal work area.

AIDVal waitForAID()

void waitForAID(AIDVal aid)

unsigned short width(Icc::getopt opt = Icc::object)

IccBuf& workArea()
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Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

AIDVal
ENTER

CLEAR

PA1 to PA3

PF1 to PF24

Case
upper

mixed

Color
defaultColor

blue

red
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pink

green

cyan

yellow

neutral

Highlight
defaultHighlight

blink

reverse

underscore

NextTransIdOpt
queue

Queue the transaction with any other outstanding starts queued on the
terminal.

immediate
Start the transaction immediately, that is, before any other outstanding
starts queued on the terminal.
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Chapter 58. IccTerminalData class

IccBase
IccResource

IccTerminalData

IccTerminalData is a singleton class owned by IccTerminal (see data on page
“data” on page 250 in IccTerminal class). IccTerminalData contains information
about the terminal characteristics.

Header file: ICCTMDEH

Sample: ICC$TRM

IccTerminalData constructor (protected)

Constructor

Public methods
These are the public methods in this class.

The opt parameter

Many methods have the same parameter, opt, which is described under the
abendCode method in“abendCode” on page 75.

alternateHeight
Returns the alternate height of the screen, in lines.

opt
An enumeration that indicates whether the information in the object should be
refreshed from CICS before being extracted. The default is not to refresh.

Conditions

INVREQ

alternateWidth
Returns the alternate width of the screen, in characters.

IccTerminalData()

unsigned short alternateHeight(Icc::GetOpt opt = Icc::object)

unsigned short alternateWidth(Icc::GetOpt opt = Icc::object)
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Conditions

INVREQ

defaultHeight
Returns the default height of the screen, in lines.

Conditions

INVREQ

defaultWidth
Returns the default width of the screen, in characters.

Conditions

INVREQ

graphicCharCodeSet
Returns the binary code page global identifier as a value in the range 1 to 65534, or
0 for a non-graphics terminal.

Conditions

INVREQ

graphicCharSetId
Returns the graphic character set global identifier as a number in the range 1 to
65534, or 0 for a non-graphics terminal.

Conditions

INVREQ

isAPLKeyboard
Returns a boolean that indicates whether the terminal has the APL keyboard
feature.

unsigned short defaultHeight(Icc::GetOpt opt = Icc::object)

unsigned short defaultWidth(Icc::GetOpt opt = Icc::object)

unsigned short graphicCharCodeSet(Icc::GetOpt opt = Icc::object)

unsigned short graphicCharSetId(Icc::GetOpt opt = Icc::object)

Icc::Bool isAPLKeyboard(Icc::GetOpt opt = Icc::object)
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Conditions

INVREQ

isAPLText
Returns a boolean that indicates whether the terminal has the APL text feature.

Conditions

INVREQ

isBTrans
Returns a boolean that indicates whether the terminal has the background
transparency capability.

Conditions

INVREQ

isColor
Returns a boolean that indicates whether the terminal has the extended color
capability.

Conditions

INVREQ

isEWA
Returns a Boolean that indicates whether the terminal supports Erase Write
Alternative.

Conditions

INVREQ

isExtended3270
Returns a Boolean that indicates whether the terminal supports the 3270 extended
data stream.

Icc::Bool isAPLText(Icc::GetOpt opt = Icc::object)

Icc::Bool isBTrans(Icc::GetOpt opt = Icc::object)

Icc::Bool isColor(Icc::GetOpt opt = Icc::object)

Icc::Bool isEWA(Icc::GetOpt opt = Icc::object)

Icc::Bool isExtended3270(Icc::GetOpt opt = Icc::object)
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Conditions

INVREQ

isFieldOutline
Returns a boolean that indicates whether the terminal supports field outlining.

Conditions

INVREQ

isGoodMorning
Returns a boolean that indicates whether the terminal has a 'good morning'
message.

Conditions

INVREQ

isHighlight
Returns a boolean that indicates whether the terminal has extended highlight
capability.

Conditions

INVREQ

isKatakana
Returns a boolean that indicates whether the terminal supports Katakana.

Conditions

INVREQ

isMSRControl
Returns a boolean that indicates whether the terminal supports magnetic slot
reader control.

Icc::Bool isFieldOutline(Icc::GetOpt opt = Icc::object)

Icc::Bool isGoodMorning(Icc::GetOpt opt = Icc::object)

Icc::Bool isHighlight(Icc::GetOpt opt = Icc::object)

Icc::Bool isKatakana(Icc::GetOpt opt = Icc::object)

Icc::Bool isMSRControl(Icc::GetOpt opt = Icc::object)
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Conditions

INVREQ

isPS
Returns a boolean that indicates whether the terminal supports programmed
symbols.

Conditions

INVREQ

isSOSI
Returns a boolean that indicates whether the terminal supports mixed
EBCDIC/DBCS fields.

Conditions

INVREQ

isTextKeyboard
Returns a boolean that indicates whether the terminal supports TEXTKYBD.

Conditions

INVREQ

isTextPrint
Returns a boolean that indicates whether the terminal supports TEXTPRINT.

Conditions

INVREQ

isValidation
Returns a boolean that indicates whether the terminal supports validation.

Icc::Bool isPS(Icc::GetOpt opt = Icc::object)

Icc::Bool isSOSI(Icc::GetOpt opt = Icc::object)

Icc::Bool isTextKeyboard(Icc::GetOpt opt = Icc::object)

Icc::Bool isTextPrint(Icc::GetOpt opt = Icc::object)

Icc::Bool isValidation(Icc::GetOpt opt = Icc::object)
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Conditions

INVREQ

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase
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Chapter 59. IccTime class

IccTime is used to contain time information and is the base class from which
IccAbsTime, IccTimeInterval, and IccTimeOfDay classes are derived.

IccBase
IccResource

IccTime

Header file: ICCTIMEH

IccTime constructor (protected)

Constructor

hours
The number of hours

minutes
The number of minutes

seconds
The number of seconds

Public methods
These are the public methods in this class.

hours
Returns the hours component of time—the value specified in the constructor.

minutes

Returns the minutes component of time—the value specified in the constructor.

seconds

Returns the seconds component of time—the value specified in the constructor.

IccTime (unsigned long hours = 0,
unsigned long minutes = 0,
unsigned long seconds = 0)

virtual unsigned long hours() const

virtual unsigned long minutes() const

virtual unsigned long seconds() const
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timeInHours

Returns the time in hours.

timeInMinutes

Returns the time in minutes.

timeInSeconds

Returns the time in seconds.

type

Returns an enumeration, defined in this class, that indicates what type of subclass
of IccTime this is.

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
className IccBase
classType IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
isEDFOn IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

virtual unsigned long timeInHours()

virtual unsigned long timeInMinutes()

virtual unsigned long timeInSeconds()

Type type() const
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Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

Enumerations

Type
absTime

The object is of IccAbsTime class. It is used to represent a current date and
time as the number of milliseconds that have elapsed since the beginning
of the year 1900.

timeInterval
The object is of IccTimeInterval class. It is used to represent a length of
time, such as 5 minutes.

timeOfDay
The object is of IccTimeOfDay class. It is used to represent a particular
time of day, such as midnight.
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Chapter 60. IccTimeInterval class

This class holds information about a time interval.

IccBase
IccResource

IccTime
IccTimeInterval

Header file: ICCTIMEH

IccTimeInterval constructors

Constructor (1)

hours
The initial hours setting. The default is 0.

minutes
The initial minutes setting. The default is 0.

seconds
The initial seconds setting. The default is 0.

Constructor (2)
The copy constructor.

Public methods
These are the public methods in this class.

operator=
Assigns one IccTimeInterval object to another.

set
Changes the time held in the IccTimeInterval object.

IccTimeInterval (unsigned long hours = 0,
unsigned long minutes = 0,
unsigned long seconds = 0)

IccTimeInterval(const IccTimeInterval& time)

IccTimeInterval& operator=(const IccTimeInterval& timeInterval)
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hours
The new hours setting

minutes
The new minutes setting

seconds
The new seconds setting

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
hours IccTime
isEDFOn IccResource
minutes IccTime
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
timeInHours IccTime
timeInMinutes IccTime
timeInSeconds IccTime
type IccTime

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

void set (unsigned long hours,
unsigned long minutes,
unsigned long seconds)
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Chapter 61. IccTimeOfDay class

This class holds information about the time of day.

IccBase
IccResource

IccTime
IccTimeOfDay

Header file: ICCTIMEH

IccTimeOfDay constructors

Constructor (1)

hours
The initial hours setting. The default is 0.

minutes
The initial minutes setting. The default is 0.

seconds
The initial seconds setting. The default is 0.

Constructor (2)
The copy constructor

Public methods
These are the public methods in this class.

operator=
Assigns one IccTimeOfDay object to another.

set
Changes the time held in the IccTimeOfDay object.

IccTimeOfDay (unsigned long hours = 0,
unsigned long minutes = 0,
unsigned long seconds = 0)

IccTimeOfDay(const IccTimeOfDay& time)

IccTimeOfDay& operator=(const IccTimeOfDay& timeOfDay)
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hours
The new hours setting

minutes
The new minutes setting

seconds
The new seconds setting

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
hours IccTime
isEDFOn IccResource
minutes IccTime
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource
timeInHours IccTime
timeInMinutes IccTime
timeInSeconds IccTime
type IccTime

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase

void set (unsigned long hours,
unsigned long minutes,
unsigned long seconds)
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Chapter 62. IccTPNameId class

IccTPNameId class holds a 1-64 byte TP partner name.

IccBase
IccResourceId

IccTPNameId

IccTPNameId class holds a 1-64 byte TP partner name.

Header file: ICCRIDEH

IccTPNameId constructors

Constructor (1)

name
The 1- to 64-character TP name.

Constructor (2)
The copy constructor.

id A reference to an IccTPNameId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 1- to 64-character TP name.

operator= (2)
Assigns a new value.

id A reference to an IccTPNameId object.

IccTPNameId(const char* name)

IccTPNameId(const IccTPNameId& id)

IccTPNameId& operator=(const char* name)

IccTPNameId& operator=(const IccTPNameId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 63. IccTransId class

IccTransId class identifies a transaction name in the CICS system.

IccBase
IccResourceId

IccTransId

Header file: ICCRIDEH

IccTransId constructors

Constructor (1)

name
The 4-character transaction name.

Constructor (2)
The copy constructor.

id
A reference to an IccTransId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 4-character transaction name.

operator= (2)
Assigns a new value.

id
A reference to an IccTransId object.

IccTransId(const char* name)

IccTransId(const IccTransId& id)

IccTransId& operator=(const char* name)

IccTransId& operator=(const IccTransId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 64. IccUser class

This class represents a CICS user.

IccBase
IccResource

IccUser

Header file: ICCUSREH

Sample: ICC$USR

IccUser constructors

Constructor (1)

id
A reference to an IccUserId object that contains the user ID name

gid
An optional pointer to an IccGroupId object that contains information about
the user's group ID.

Constructor (2)

userName
The 8-character user ID

gid
The optional 8-character group ID.

Public methods
These are the public methods in this class.

changePassword
Attempts to change the user's password.

password
The user's existing password—a string of up to 8 characters

IccUser (const IccUserId& id,
const IccGroupId* gid = 0)

IccUser (const char* userName,
const char* groupName = 0)

void changePassword (const char* password,
const char* newPassword)
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newPassword
The user's new password—a string of up to 8 characters.

Conditions

INVREQ, NOTAUTH, USERIDERR

daysUntilPasswordExpires
Returns the number of days before the password expires. This method is valid
after a successful verifyPassword method call in this class.

ESMReason

Returns the external security reason code of interest if a changePassword or
verifyPassword method call is unsuccessful.

ESMResponse

Returns the external security response code of interest if a changePassword or
verifyPassword method call is unsuccessful.

groupId

Returns a reference to the IccGroupId object that holds information on the user's
group ID.

invalidPasswordAttempts

Returns the number of times the wrong password has been entered for this user
since the last successful signon. This method should only be used after a successful
verifyPassword method.

language

Returns the user's language after a successful call to signon in IccTerminal.

unsigned short daysUntilPasswordExpires() const

unsigned long ESMReason() const

unsigned long ESMResponse() const

const IccGroupId& groupId() const

unsigned long invalidPasswordAttempts() const

const char* language() const
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lastPasswordChange

Returns a reference to an IccAbsTime object that holds the time when the
password was last changed. This method should only be used after a successful
verifyPassword method.

lastUseTime

Returns a reference to an IccAbsTime object that holds the time when the user ID
was last used. This method should only be used after a successful verifyPassword
method.

passwordExpiration

Returns a reference to an IccAbsTime object that holds the time when the
password will expire. This method should only be used after a successful
verifyPassword method.

setLanguage

Sets the IBM-defined national language code that is to be associated with this user.
This should be a three character value.

verifyPassword

Checks that the supplied password matches the password recorded by the external
security manager for this IccUser.

Conditions

INVREQ, NOTAUTH, USERIDERR

Inherited public methods
These are the public methods inherited by this class.

Method Class
actionOnCondition IccResource
actionOnConditionAsChar IccResource
actionsOnConditionsText IccResource

const IccAbsTime& lastPasswordChange() const

const IccAbsTime& lastUseTime() const

const IccAbsTime& passwordExpiration() const

void setLanguage(const char* language)

void verifyPassword(const char* password)
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Method Class
classType IccBase
className IccBase
condition IccResource
conditionText IccResource
customClassNum IccBase
handleEvent IccResource
id IccResource
isEDFOn IccResource
name IccResource
operator delete IccBase
operator new IccBase
setActionOnAnyCondition IccResource
setActionOnCondition IccResource
setActionsOnConditions IccResource
setEDF IccResource

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
setClassName IccBase
setCustomClassNum IccBase
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Chapter 65. IccUserId class

IccUserId class represents an 8-character user name.

IccBase
IccResourceId

IccUserId

IccUserId class represents an 8-character user name.

Header file: ICCRIDEH

IccUserId constructors

Constructor (1)

name
The 8-character name of the user ID.

Constructor (2)
The copy constructor.

id A reference to an IccUserId object.

Public methods
These are the public methods in this class.

operator= (1)

name
The 8-character name of the user ID.

operator= (2)
Assigns a new value.

id A reference to an IccUserId object.

IccUserId(const char* name)

IccUserId(const IccUserId& id)

IccUserId& operator=(const char* name)

IccUserId& operator=(const IccUserId& id)
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Inherited public methods
These are the public methods inherited by this class.

Method Class
classType IccBase
className IccBase
customClassNum IccBase
name IccResourceId
nameLength IccResourceId
operator delete IccBase
operator new IccBase

Inherited protected methods
These are the protected methods inherited by this class.

Method Class
operator= IccResourceId
setClassName IccBase
setCustomClassNum IccBase
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Chapter 66. IccValue structure

This structure contains CICS-value data areas (CVDAs) as an enumeration.

Header file: ICCVALEH

Enumeration

Listing of valid CVDAs
Valid CVDAs are listed in the CVDAs and numeric values topics in the System
Programming reference information.
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Chapter 67. main function

You are recommended to include this code in your application.

It initializes the CICS Foundation Classes correctly, provides default exception
handling, and releases allocated memory after it is finished. You may substitute
your own variation of this main function, but this should rarely be necessary.

Source file: ICCMAIN

The stub has three functions:
1. It initializes the Foundation Classes environment. You can customize the way it

does this by using #defines that control:
v Memory management (see Chapter 11, “Storage management,” on page 61)
v Family Subset enforcement (see “FamilySubset” on page 72)
v EDF enablement (see “Program debugging” on page 47)

2. It provides a default definition of a class IccUserControl, derived from
IccControl, that includes a default constructor and run method.

3. It invokes the run method of the user's control object using a try-catch
construct.

The functional part of the main code is shown below.

�1� This is the main C++ entry point.

int main() �1�

{
Icc::initializeEnvironment(ICC_CLASS_MEMORY_MGMT, �2�

ICC_FAMILY_SUBSET,
ICC_EDF_BOOL);

try �3�

{
ICC_USER_CONTROL control; �4�

control.run(); �5�

}
catch(IccException& exc) �6�

{
Icc::catchException(exc); �7�

}
catch(...) �8�

{
Icc::unknownException(); �9�

}
Icc::returnToCICS(); �10�

}

© Copyright IBM Corp. 1989, 2012 289



�2� This call initializes the environment and is essential. The three parameters
have previously been defined to the defaults for the platform.

�3� Run the user's application code, using try and catch, in case the application
code does not catch exceptions.

�4� Create control object.

�5� Invoke run method of control object (defined as pure virtual in IccControl.

�6� Catch any IccException objects not caught by the application.

�7� Call this function to abend task.

�8� Catch any other exceptions not caught by application.

�9� Call this function to abend task.

�10� Return control to CICS.
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Part 4. Appendixes
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Appendix A. Mapping EXEC CICS calls to Foundation Class
methods

The following table shows the correspondence between CICS calls made using the
EXEC CICS API and the equivalent calls from the Foundation Classes.

EXEC CICS Class Method

ABEND IccTask abend

ADDRESS COMMAREA IccControl commArea

ADDRESS CWA IccSystem workArea

ADDRESS EIB No direct access to EIB: please use appropriate method on
appropriate class.

ADDRESS TCTUA IccTerminal workArea

ADDRESS TWA IccTask workArea

ALLOCATE IccSession allocate

ASKTIME IccClock update

ASSIGN ABCODE IccAbendData abendCode

ASSIGN ABDUMP IccAbendData isDumpAvaliable

ASSIGN ABPROGRAM IccAbendData programName

ASSIGN ALTSCRNHT IccTerminalData alternateHeight

ASSIGN ALTSCRNWD IccTerminalData alternateWidth

ASSIGN APLKYBD IccTerminalData isAPLKeyboard

ASSIGN APLTEXT IccTerminalData isAPLText

ASSIGN ASRAINTRPT IccAbendData ASRAInterrupt

ASSIGN ASRAKEY IccAbendData ASRAKeyType

ASSIGN ASRAPSW IccAbendData ASRAPSW

ASSIGN ASRAREGS IccAbendData ASRARegisters

ASSIGN ASRASPC IccAbendData ASRASpaceType

ASSIGN ASRASTG IccAbendData ASRAStorageType

ASSIGN APPLID IccSystem applName

ASSIGN BTRANS IccTerminalData isBTrans

ASSIGN CMDSEC IccTask isCommandSecurityOn

ASSIGN COLOR IccTerminalData isColor

ASSIGN CWALENG IccSystem workArea

ASSIGN DEFSCRNHT IccTerminalData defaultHeight

ASSIGN DEFSCRNWD IccTerminalData defaultWidth

ASSIGN EWASUPP IccTerminalData isEWA

ASSIGN EXTDS IccTerminalData isExtended3270

ASSIGN FACILITY IccTerminal name

ASSIGN FCI IccTask facilityType

ASSIGN GCHARS IccTerminalData graphicCharSetId
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ASSIGN GCODES IccTerminalData graphicCharCodeSet

ASSIGN GMMI IccTerminalData isGoodMorning

ASSIGN HILIGHT IccTerminalData isHighlight

ASSIGN INITPARM IccControl initData

ASSIGN INITPARMLEN IccControl initData

ASSIGN INVOKINGPROG IccControl callingProgramId

ASSIGN KATAKANA IccTerminalData isKatakana

ASSIGN NETNAME IccTerminal netName

ASSIGN OUTLINE IccTerminalData isFieldOutline

ASSIGN ORGABCODE IccAbendData originalAbendCode

ASSIGN PRINSYSID IccTask principalSysId

ASSIGN PROGRAM IccControl programId

ASSIGN PS IccTerminalData isPS

ASSIGN QNAME IccTask triggerDataQueueId

ASSIGN RESSEC IccTask isResourceSecurityOn

ASSIGN RESTART IccTask isRestarted

ASSIGN SCRNHT IccTerminal height

ASSIGN SCRNWD IccTerminal width

ASSIGN SOSI IccTerminalData isSOSI

ASSIGN STARTCODE IccTask startType,
isCommitSupported,
isStartDataAvailable

ASSIGN SYSID IccSystem sysId

ASSIGN TASKPRIORITY IccTask priority

ASSIGN TCTUALENG IccTerminal workArea

ASSIGN TEXTKYBD IccTerminalData isTextKeyboard

ASSIGN TEXTPRINT IccTerminalData isTextPrint

ASSIGN TWALENG IccTask workArea

ASSIGN USERID IccTask userId

ASSIGN VALIDATION IccTerminalData isValidation

CANCEL IccClock cancelAlarm

CANCEL IccStartRequestQ cancel

CHANGE PASSWORD IccUser changePassword

CHANGE TASK IccTask setPriority

CONNECT PROCESS IccSession connectProcess

CONVERSE IccSession converse

DELAY IccTask delay

DELETE IccFile deleteRecord

DELETE IccFile deleteLockedRecord

DELETEQ TD IccDataQueue empty

DELETEQ TS IccTempStore empty
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DEQ IccSemaphore unlock

DUMP TRANSACTION IccTask dump

DUMP TRANSACTION IccTask setDumpOpts

ENDBR IccFileIterator IccFileIterator (destructor)

ENQ IccSemaphore lock

ENQ IccSemaphore tryLock

ENTER TRACENUM IccTask enterTrace

EXTRACT ATTRIBUTES IccSession state, stateText

EXTRACT PROCESS IccSession extractProcess

FORMATTIME YYDDD,
YYMMDD, etc

IccClock date

FORMATTIME DATE IccClock date

FORMATTIME DATEFORM IccSystem dateFormat

FORMATTIME DAYCOUNT IccClock daysSince1900

FORMATTIME DAYOFWEEK IccClock dayOfWeek

FORMATTIME
DAYOFMONTH

IccClock dayOfMonth

FORMATTIME
MONTHOFYEAR

IccClock monthOfYear

FORMATTIME TIME IccClock time

FORMATTIME YEAR IccClock year

FREE IccSession free

FREEMAIN IccTask freeStorage

GETMAIN IccTask getStorage

HANDLE ABEND IccControl setAbendHandler,
cancelAbendHandler,
resetAbendHandler

INQUIRE FILE
ACCESSMETHOD

IccFile accessMethod

INQUIRE FILE ADD IccFile isAddable

INQUIRE FILE BROWSE IccFile isBrowsable

INQUIRE FILE DELETE IccFileControl isDeletable

INQUIRE FILE
EMPTYSTATUS

IccFile isEmptyOn

INQUIRE FILE
ENABLESTATUS

IccFile enableStatus

INQUIRE FILE
KEYPOSITION

IccFile keyPosition

INQUIRE FILE
OPENSTATUS

IccFile openStatus

INQUIRE FILE READ IccFile isReadable

INQUIRE FILE
RECORDFORMAT

IccFile recordFormat

INQUIRE FILE RECORDSIZE IccFile recordLength
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INQUIRE FILE
RECOVSTATUS

IccFile isRecoverable

INQUIRE FILE TYPE IccFile type

INQUIRE FILE UPDATE IccFile isUpdatable

ISSUE ABEND IccSession issueAbend

ISSUE CONFIRMATION IccSession issueConfirmation

ISSUE ERROR IccSession issueError

ISSUE PREPARE IccSession issuePrepare

ISSUE SIGNAL IccSession issueSignal

LINK IccProgram link

LINK INPUTMSG
INPUTMSGLEN

IccProgram setInputMessage

LOAD IccProgram load

POST IccClock setAlarm

READ IccFile readRecord

READNEXT IccFileIterator readNextRecord

READPREV IccFileIterator readPreviousRecord

READQ TD IccDataQueue readItem

READQ TS IccTempStore readItem

RECEIVE (APPC) IccSession receive

RECEIVE (3270) IccTerminal receive, receive3270Data

RELEASE IccProgram unload

RESETBR IccFileIterator reset

RETRIEVE IccStartRequestQ retrieveData 1

Note: The retrieveData method gets the start information from CICS and stores it in the
IccStartRequestQ object: the information can then be accessed using data, queueName,
returnTermId and returnTransId methods.

RETRIEVE INTO, LENGTH IccStartRequestQ data

RETRIEVE QUEUE IccStartRequestQ queueName

RETRIEVE RTRANSID IccStartRequestQ returnTransId

RETRIEVE RTERMID IccStartRequestQ returnTermId

RETURN IccControl main 2

Note: Returning (using C++ reserved word return) from method run in class IccControl
results in an EXEC CICS RETURN.

RETURN TRANSID IccTerminal setNextTransId 3

RETURN IMMEDIATE IccTerminal setNextTransId 3

RETURN COMMAREA
LENGTH

IccTerminal setNextCommArea 3

RETURN INPUTMSG,
INPUTMSGLEN

IccTerminal setNextInputMessage 3

Note: Issue this call before returning from IccControl::run.

REWRITE IccFile rewriteRecord

SEND (APPC) IccSession send, sendInvite, sendLast
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SEND (3270) IccTerminal send, sendLine

SEND CONTROL CURSOR IccTerminal setCursor setLine,
setNewLine

SEND CONTROL ERASE IccTerminal erase

SEND CONTROL FREEKB IccTerminal freeKeyboard

SET FILE
ADD|BROWSE|DELETE|...

IccFile setAccess

SET FILE EMPTYSTATUS IccFile setEmptyOnOpen

SET FILE OPEN
STATUS|ENABLESTATUS

IccFile setStatus

SIGNOFF IccTerminal signoff

SIGNON IccTerminal signon

START TRANSID AT/AFTER IccStartRequestQ start 4

START TRANSID FROM
LENGTH

IccStartRequestQ setData, registerDataBuffer 4

START TRANSID NOCHECK IccStartRequestQ setStartOpts 4

START TRANSID PROTECT IccStartRequestQ setStartOpts 4

START TRANSID QUEUE IccStartRequestQ setQueueName 4

START TRANSID REQID IccStartRequestQ start 4

START TRANSID TERMID IccStartRequestQ start 4

START TRANSID USERID IccStartRequestQ start 4

START TRANSID RTERMID IccStartRequestQ setReturnTermId 4

START TRANSID RTRANSID IccStartRequestQ setReturnTransId 4

Note: Use methods setData, setQueueName, setReturnTermId, setReturnTransId,
setStartOpts to set the state of the IccStartRequestQ object before issuing start requests with
the start method.

STARTBR IccFileIterator IccFileIterator (constructor)

SUSPEND IccTask suspend

SYNCPOINT IccTask commitUOW

SYNCPOINT ROLLBACK IccTask rollBackUOW

UNLOCK IccFile unlockRecord

VERIFY PASSWORD IccUser verifyPassword

WAIT CONVID IccSession flush

WAIT EVENT IccTask waitOnAlarm

WAIT EXTERNAL IccTask waitExternal

WAIT JOURNALNUM IccJournal wait

WRITE IccFile writeRecord

WRITE OPERATOR IccConsole write, writeAndGetReply

WRITEQ TD IccDataQueue writeItem

WRITEQ TS IccTempStore writeItem, rewriteItem
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Appendix B. Mapping Foundation Class methods to EXEC
CICS calls

The following table shows the correspondence between CICS calls made using the
Foundation Classes and the equivalent EXEC CICS API calls.

IccAbendData Class

Method EXEC CICS

abendCode ASSIGN ABCODE

ASRAInterrupt ASSIGN ASRAINTRPT

ASRAKeyType ASSIGN ASRAKEY

ASRAPSW ASSIGN ASRAPSW

ASRARegisters ASSIGN ASRAREGS

ASRASpaceType ASSIGN ASRASPC

ASRAStorageType ASSIGN ASRASTG

isDumpAvailable ASSIGN ABDUMP

originalAbendCode ASSIGN ORGABCODE

programName ASSIGN ABPROGRAM

IccAbsTime Class

Method EXEC CICS

date FORMATTIME YYDDD/YYMMDD/etc.

dayOfMonth FORMATTIME DAYOFMONTH

dayOfWeek FORMATTIME DAYOFWEEK

daysSince1900 FORMATTIME DAYCOUNT

monthOfYear FORMATTIME MONTHOFYEAR

time FORMATTIME TIME

year FORMATTIME YEAR

IccClock Class

Method EXEC CICS

cancelAlarm CANCEL

date FORMATTIME YYDDD/YYMMDD/etc.

dayOfMonth FORMATTIME DAYOFMONTH

dayOfWeek FORMATTIME DAYOFWEEK

daysSince1900 FORMATTIME DAYCOUNT

monthOfYear FORMATTIME MONTHOFYEAR

setAlarm POST

time FORMATTIME TIME

update ASKTIME

year FORMATTIME YEAR

IccConsole Class

Method EXEC CICS

© Copyright IBM Corp. 1989, 2012 299



write WRITE OPERATOR

writeAndGetReply WRITE OPERATOR

IccControl Class

Method EXEC CICS

callingProgramId ASSIGN INVOKINGPROG

cancelAbendHandler HANDLE ABEND CANCEL

commArea ADDRESS COMMAREA

initData ASSIGN INITPARM & INITPARMLEN

programId ASSIGN PROGRAM

resetAbendHandler HANDLE ABEND RESET

setAbendHandler HANDLE ABEND PROGRAM

IccDataQueue Class

Method EXEC CICS

empty DELETEQ TD

readItem READQ TD

writeItem WRITEQ TD

IccFile Class

Method EXEC CICS

access INQUIRE FILE
ADD|BROWSE|DELETE|READ|UPDATE

accessMethod INQUIRE FILE ACCESSMETHOD

deleteRecord DELETE FILE RIDFLD

deleteLockedRecord DELETE FILE

enableStatus INQUIRE FILE ENABLESTATUS

isAddable INQUIRE FILE ADD

isBrowsable INQUIRE FILE BROWSE

isDeletable INQUIRE FILE DELETE

isEmptyOnOpen INQUIRE FILE EMPTYSTATUS

isReadable INQUIRE FILE READ

isRecoverable INQUIRE FILE RECOVSTATUS

isUpdatable INQUIRE FILE UPDATE

keyPosition INQUIRE FILE KEYPOSITION

openStatus INQUIRE FILE OPENSTATUS

readRecord READ FILE

recordFormat INQUIRE FILE RECORDFORMAT

recordLength INQUIRE FILE RECORDSIZE

rewriteRecord REWRITE FILE

setAccess SET FILE ADD BROWSE DELETE etc.

setEmptyOnOpen SET FILE EMPTYSTATUS

setStatus SET FILE OPENSTATUS ENABLESTATUS

type INQUIRE FILE TYPE

unlockRecord UNLOCK FILE

300 CICS TS for z/OS 4.2: C++ OO Class Libraries



writeRecord WRITE FILE

IccFileIterator Class

Method EXEC CICS

IccFileIterator (constructor) STARTBR FILE

~IccFileIterator (destructor) ENDBR FILE

readNextRecord READNEXT FILE

readPreviousRecord READPREV FILE

reset RESETBR FILE

IccJournal Class

Method EXEC CICS

wait WAIT JOURNALNUM

writeRecord WRITE JOURNALNUM

IccProgram Class

Method EXEC CICS

link LINK PROGRAM

load LOAD PROGRAM

unload RELEASE PROGRAM

IccResource Class

Method EXEC CICS

condition (RESP & RESP2)

setRouteOption (SYSID)

IccSemaphore Class

Method EXEC CICS

lock ENQ RESOURCE

tryLock ENQ RESOURCE NOSUSPEND

unlock DEQ RESOURCE

IccSession Class

Method EXEC CICS

allocate ALLOCATE

connectProcess CONNECT PROCESS CONVID

converse CONVERSE CONVID

extractProcess EXTRACT PROCESS CONVID

flush WAIT CONVID

free FREE CONVID

issueAbend ISSUE ABEND CONVID

issueConfirmation ISSUE CONFIRMATION CONVID

issueError ISSUE ERROR CONVID

issuePrepare ISSUE PREPARE CONVID

issueSignal ISSUE SIGNAL CONVID

receive RECEIVE CONVID

send SEND CONVID

sendInvite SEND CONVID INVITE
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sendLast SEND CONVID LAST

state EXTRACT ATTRIBUTES

IccStartRequestQ Class

Method EXEC CICS

cancel CANCEL

retrieveData RETRIEVE

start START TRANSID

IccSystem Class

Method EXEC CICS

applName ASSIGN APPLID

beginBrowse INQUIRE (FILE, TDQUEUE, etc) START

dateFormat FORMATTIME DATEFORM

endBrowse INQUIRE (FILE, TDQUEUE, etc) END

freeStorage FREEMAIN

getFile INQUIRE FILE

getNextFile INQUIRE FILE NEXT

getStorage GETMAIN SHARED

operatingSystem INQUIRE SYSTEM OPSYS

operatingSystemLevel INQUIRE SYSTEM OPREL

release INQUIRE SYSTEM RELEASE

releaseText INQUIRE SYSTEM RELEASE

sysId ASSIGN SYSID

workArea ADDRESS CWA

IccTask Class

Method EXEC CICS

abend ABEND

commitUOW SYNCPOINT

delay DELAY

dump DUMP TRANSACTION

enterTrace ENTER TRACENUM

facilityType ASSIGN STARTCODE, TERMCODE, PRINSYSID, FCI

freeStorage FREEMAIN

isCommandSecurityOn ASSIGN CMDSEC

isCommitSupported ASSIGN STARTCODE

isResourceSecurityOn ASSIGN RESSEC

isRestarted ASSIGN RESTART

isStartDataAvailable ASSIGN STARTCODE

principalSysId ASSIGN PRINSYSID

priority ASSIGN TASKPRIORITY

rollBackUOW SYNCPOINT ROLLBACK

setPrioity CHANGE TASK PRIORITY

startType ASSIGN STARTCODE

302 CICS TS for z/OS 4.2: C++ OO Class Libraries



suspend SUSPEND

triggerDataQueueId ASSIGN QNAME

userId ASSIGN USERID

waitExternal WAIT EXTERNAL / WAITCICS

waitOnAlarm WAIT EVENT

workArea ADDRESS TWA

IccTempStore Class

Method EXEC CICS

empty DELETEQ TS

readItem READQ TS ITEM

readNextItem READQ TS NEXT

rewriteItem WRITEQ TS ITEM REWRITE

writeItem WRITEQ TS ITEM

IccTerminal Class

Method EXEC CICS

erase SEND CONTROL ERASE

freeKeyboard SEND CONTROL FREEKB

height ASSIGN SCRNHT

netName ASSIGN NETNAME

receive RECEIVE

receive3270Data RECEIVE BUFFER

send SEND

sendLine SEND

setCursor SEND CONTROL CURSOR

setLine SEND CONTROL CURSOR

setNewLine SEND CONTROL CURSOR

signoff SIGNOFF

signon SIGNON

waitForAID RECEIVE

width ASSIGN SCRNWD

workArea ADDRESS TCTUA

IccTerminalData Class

Method EXEC CICS

alternateHeight ASSIGN ALTSCRNHT

alternateWidth ASSIGN ALTSCRNWD

defaultHeight ASSIGN DEFSCRNHT

defaultWidth ASSIGN DEFSCRNWD

graphicCharSetId ASSIGN GCHARS

graphicCharCodeSet ASSIGN GCODES

isAPLKeyboard ASSIGN APLKYBD

isAPLText ASSIGN APLTEXT

isBTrans ASSIGN BTRANS
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isColor ASSIGN COLOR

isEWA ASSIGN ESASUPP

isExtended3270 ASSIGN EXTDS

isGoodMorning ASSIGN GMMI

isHighlight ASSIGN HILIGHT

isKatakana ASSIGN KATAKANA

isMSRControl ASSIGN MSRCONTROL

isFieldOutline ASSIGN OUTLINE

isPS ASSIGN PS

isSOSI ASSIGN SOSI

isTextKeyboard ASSIGN TEXTKYBD

isTextPrint ASSIGN TEXTPRINT

isValidation ASSIGN VALIDATION

IccUser Class

Method EXEC CICS

changePassword CHANGE PASSWORD

verifyPassword VERIFY PASSWORD
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Appendix C. Output from sample programs

This section shows the typical screen output from the supplied sample programs.

See “Sample source code” on page 6.

ICC$BUF (IBUF)
This is program ’icc$buf’...
IccBuf buf1 dal= 0 dl= 0 E+I []
IccBuf buf2(50) dal=50 dl= 0 E+I []
IccBuf buf3(30,fixed) dal=30 dl= 0 F+I []
IccBuf buf4(sizeof(AStruct),&aStruc) dal=24 dl=24 F+E [!Some text for aStruc]
IccBuf buf5("A String Literal") dal=19 dl=19 E+I [Some data somewhere]
IccBuf buf6(buf5) dal=19 dl=19 E+I [Some data somewhere]
buf1 = "Some XXX data for buf1" dal=22 dl=22 E+I [Some XXX data for buf1]
buf2.assign(strlen(data),data) dal=50 dl=19 E+I [Some data somewhere]
buf1.cut(4,5) dal=22 dl=18 E+I [Some data for buf1]
buf5.insert(5,more,5) dal=24 dl=24 E+I [Some more data somewhere]
buf5.replace(4,xtra,5) dal=24 dl=24 E+I [Some xtra data somewhere]
buf2 << ".ext" dal=50 dl=23 E+I [Some data somewhere.ext]
buf3 = buf4 dal=30 dl=24 F+I [!Some text for aStruc]
(buf3 == buf4) returns true (OK).
buf3 = "garbage" dal=30 dl= 7 F+I [garbage]
(buf3 != buf4) returns true (OK).
Program ’icc$buf’ complete: Hit PF12 to End

ICC$CLK (ICLK)
This is program ’icc$clk’ ...
date() = [220296 ]
date(DDMMYY) = [220296 ]
date(DDMMYY,’:’) = [22:02:96]
date(MMDDYY) = [022296 ]
date(YYDDD) = [96053 ]
daysSince1900() = 35116
dayOfWeek() = 4 Today is NOT Friday
dayOfMonth() = 22
monthOfYear() = 2
time() = [143832 ]
time(’-’) = [14-38-32]
year() = [1996]
Program ’icc$clk’ complete: Hit PF12 to End

ICC$DAT (IDAT)
This is program ’icc$dat’...
Writing records to ’ICCQ’...
- writing record #1: ’Hello World - item 1’ <NORMAL>
- writing record #2: ’Hello World - item 2’ <NORMAL>
- writing record #3: ’Hello World - item 3’ <NORMAL>
Reading records back in...
- reading record #1: ’Hello World - item 1’ <NORMAL>
- reading record #2: ’Hello World - item 2’ <NORMAL>
- reading record #3: ’Hello World - item 3’ <NORMAL>
Program ’icc$dat’ complete: Hit PF12 to End
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ICC$EXC1 (IEX1)
This is program ’icc$exc1’ ...
Number passed = 1
Number passed = 7
Number passed = 11
>>Out of Range - throwing exception
Exception caught: !!Number is out of range!!
Program ’icc$exc1’ complete: Hit PF12 to End

ICC$EXC2 (IEX2)
This is program ’icc$exc2’...
Creating IccTermId id1...
Creating IccTermId id2...
IccException: 112 IccTermId::IccTermId type=invalidArgument (IccMessage: 030 Ic
cTermId::IccTermId <Invalid string length passed to ’IccTermId’ constructor.
Spec ified: 5, Maximum allowed: 4>)
Program ’icc$exc2’ complete: Hit PF12 to End

ICC$EXC3 (IEX3)
This is program ’icc$exc3’...
About to read Temporary Storage ’UNKNOWN!’...
IccException: 094 IccTempStore::readNextItem type=CICSCondition (IccMessage: 008
IccTempStore::readNextItem <CICS returned the ’QIDERR’ condition.>)
Program ’icc$exc3’ complete: Hit PF12 to End

ICC$FIL (IFIL)
This is program ’icc$fil’...
Deleting records in file ’ICCKFILE...
5 records were deleted.
Writing records to file ’ICCKFILE’...
- writing record number 1. <NORMAL>
- writing record number 2. <NORMAL>
- writing record number 3. <NORMAL>
- writing record number 4. <NORMAL>
- writing record number 5. <NORMAL>
Browsing records...
- record read: [BACH, J S 003 00-1234 BACH ]
- record read: [CHOPIN, F 004 00-3355 CHOPIN ]
- record read: [HANDEL, G F 005 00-4466 HANDEL ]
- record read: [BEETHOVEN, L 007 00-2244 BEET ]
- record read: [MOZART, W A 008 00-5577 WOLFGANG ]
- record read: [MOZART, W A 008 00-5577 WOLFGANG ]
- record read: [BEETHOVEN, L 007 00-2244 BEET ]
- record read: [HANDEL, G F 005 00-4466 HANDEL ]
- record read: [CHOPIN, F 004 00-3355 CHOPIN ]
- record read: [BACH, J S 003 00-1234 BACH ]
Updating record 1...
readRecord(update)<NORMAL> rewriteRecord()<NORMAL>
- record read: [MOZART, W A 008 00-5678 WOLFGANG ]
Program ’icc$fil’ complete: Hit PF12 to End

ICC$HEL (IHEL)
Hello World
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ICC$JRN (IJRN)
This is program ’icc$jrn’...
Writing 3 records to journal number 77...
- writing record 1: [Hello World - item 1] <NORMAL>
- writing record 2: [Hello World - item 2] <NORMAL>
- writing record 3: [Hello World - item 3] <NORMAL>
Program ’icc$jrn’ complete: Hit PF12 to End

ICC$PRG1 (IPR1)

First Screen
This is program ’icc$prg1’...
Loaded program: ICC$PRG2 <NORMAL> Length=0 Address=ff000000
Unloading program: ICC$PRG2 <NORMAL>
- Hit ENTER to continue...

Second Screen
About to link to program ’ICC$PRG2 ’
- commArea before link is [DATA SET BY ICC$PRG1]
- Hit ENTER to continue...

This is program ’icc$prg2’...
commArea received from caller =[DATA SET BY ICC$PRG1]
Changed commArea to [DATA RETURNED BY ICC$PRG2]
- Hit ENTER to return to caller...

- link call returned <NORMAL>
- commArea after link is [DATA RETURNED BY ICC$PRG2]
About to link to program ’ICC$PRG3 ’ on system ’ICC2’
- commArea before link is [DATA SET BY ICC$PRG1]
- Hit ENTER to continue...
- link call returned <NORMAL>
- commArea after link is [DATA RETURNED BY ICC$PRG3]
Program ’icc$prg1’ complete: Hit PF12 to End

ICC$RES1 (IRS1)
This is program ’icc$res1’...
Writing items to CustomDataQueue ’ICCQ’ ...
- writing item #1: ’Hello World - item 1’ <NORMAL>
- writing item #2: ’Hello World - item 2’ <NORMAL>
- writing item #3: ’Hello World - item 3’ <NORMAL>
Reading items from CustomDataQueue ’ICCQ’ ...
- item = ’Hello World - item 1’
- item = ’Hello World - item 2’
- item = ’Hello World - item 3’
Reading loop complete.
> In handleEvent().
Summary=IccEvent: CustomDataQueue::readItem condition=23 (QZ ERO) minor=0
Program ’icc$res1’ complete: Hit PF12 to End
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ICC$RES2 (IRS2)
This is program ’icc$res2’...
invoking clear() method for IccDataQueue object
invoking clear() method for IccTempStore object
put() item #1 in IccDataQueue object
put() item #2 in IccDataQueue object
put() item #3 in IccDataQueue object
put() item #1 in IccTempStore object
put() item #2 in IccTempStore object
put() item #3 in IccTempStore object
Now get items from IccDataQueue object
get() from IccDataQueue object returned ’Hello World - item 1’
get() from IccDataQueue object returned ’Hello World - item 2’
get() from IccDataQueue object returned ’Hello World - item 3’
Now get items from IccTempStore object
get() from IccTempStore object returned ’Hello World - item 1’
get() from IccTempStore object returned ’Hello World - item 2’
get() from IccTempStore object returned ’Hello World - item 3’
Program ’icc$res2’ complete: Hit PF12 to End

ICC$SEM (ISEM)
This is program ’icc$sem’...
Constructing IccSemaphore object (lock by value)...
Issuing lock request... <NORMAL>
Issuing unlock request... <NORMAL>
Constructing Semaphore object (lock by address)...
Issuing tryLock request... <NORMAL>
Issuing unlock request... <NORMAL>

Program ’icc$sem’ complete: Hit PF12 to End

ICC$SES1 (ISE1)
This is program ’icc$ses1’...
allocate session... <NORMAL>
STATE=81 ALLOCATED ERR=0 connectProcess...<NORMAL>
STATE=90 SEND ERR=0 sendInvite ... <NORMAL>
STATE=87 PENDRECEIVE ERR=0 receive ... <NORMAL>
STATE=85 FREE ERR=0 - data from back end=[Hi there this is from backEnd
TIME=14:49:18 on 22/02/96]
free... <NORMAL>
STATE=1 NOTAPPLIC ERR=0

Program ’icc$ses1’ complete: Hit PF12 to End
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ICC$SES2 (ISE2)
This panel is typical output after running "CEBR DTPBKEND" on the back-end
CICS system.

CEBR TSQ DTPBKEND SYSID ABCD REC 1 OF 11 COL 1 OF 78
ENTER COMMAND ===>

************************* TOP OF QUEUE *****************************
00001 Transaction ’ISE2’ starting.
00002 extractProcess...
00003 <NORMAL> STATE=88 RECEIVE ERR=0
00004 process=[ISE2] syncLevel=1 PIP=[Hello World]
00005 receive...
00006 <NORMAL> STATE=90 SEND ERR=0 NoData=0
00007 data from front end=[Hi there this is from frontEnd TIME=16:03:18 on 04/0
00008 sendLast ...
00009 <NORMAL> STATE=86 PENDFREE ERR=0
00010 free...
00011 <NORMAL> STATE=1 NOTAPPLIC ERR=0

************************ BOTTOM OF QUEUE ***************************
PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : VIEW RIGHT
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED

ICC$SRQ1 (ISR1)
This is program ’icc$srq1’...
Starting Tran ’ISR2’ on terminal ’PE12’ after 5 seconds... - <NORMAL>
request=’DF!U0000’
Issuing cancel for start request=’DF!U0000’... - <NORMAL>
request=’DF!U0000’
Starting Tran ’ISR2’ on terminal ’PE12’ after 5 seconds... - <NORMAL>
request=’REQUEST1’
Program ’icc$srq1’ complete.

ICC$SRQ2 (ISR2)
This is program ’icc$srq2’...
retrieveData()... <NORMAL>
Start buffer contents = [This is a greeting from program ’icc$srq1’!!]
Start queue= [startqnm]
Start rtrn = [ITMP]
Start rtrm = [PE11]
Sleeping for 5 seconds...
Starting tran ’ITMP’ on terminal ’PE11’ on system ICC1...<NORMAL>

Program ’icc$srq2’ complete: Hit PF12 to end
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ICC$SYS (ISYS)
This is program ’icc$sys’...
applName=ICC$REG01 operatingSystem=A operatingSystemLevel=41
releaseText=[0210] sysidnt=ICC1
getStorage( 5678, ’Y’)... <NORMAL>
freeStorage( p )... <NORMAL>
Checking attributes of a named file (ICCKFILE)...
>ICCKFILE< Add=true Brw=true Del=true Read=true Upd=true op=18 en=23
accessMethod=3 isRecoverable=true keyLength=3 keyPosition=16
setStatus( closed ) ... <NORMAL>
setStatus( disabled ) ... <NORMAL>
setAccess( notUpdatable ) ... <NORMAL>
>ICCKFILE< Add=true Brw=true Del=true Read=true Upd=false op=19 en=24
setAccess( updateable ) & setStatus( enabled, open ) ...
>ICCKFILE< Add=true Brw=true Del=true Read=true Upd=true op=18 en=23
Beginning browse of all file objects in CICS system... <NORMAL>
- >ICCEFILE< type=1 <NORMAL>
- >ICCKFILE< type=6 <NORMAL>
- >ICCRFILE< type=1 <NORMAL>
Program ’icc$sys’ complete: Hit PF12 to End

ICC$TMP (ITMP)
This is program ’icc$tmp’...
Writing 3 records to IccTempStore object ’ICCSTORE’...
- writing record #1: ’Hello World - item 1’ <NORMAL>
- writing record #2: ’Hello World - item 2’ <NORMAL>
- writing record #3: ’Hello World - item 3’ <NORMAL>
Reading records back in & rewriting new buffer contents...
- record #1 = [Hello World - item 1] - rewriteItem #1 <NORMAL>
- record #2 = [Hello World - item 2] - rewriteItem #2 <NORMAL>
- record #3 = [Hello World - item 3] - rewriteItem #3 <NORMAL>
Reading records back in one last time...
- record #1 = [Modified Hello World - item 1]
- record #1 = [Modified Hello World - item 2]
- record #1 = [Modified Hello World - item 3]
Program ’icc$tmp’ complete: Hit PF12 to end

ICC$TRM (ITRM)
This is program ’icc$trm’...
First part of the line...... a continuation of the line.
Start this on the next line Send this to col 40 of current line

Send this to row 5, column 10
Send this to row 6, column 40

A Red line!
A Blue, reverse video line!

A cout style interface...
you can chain input together; use different types, eg numbers: 123 4567890 12345
6.789123
... and everything is buffered till you issue a flush.

Program ’icc$trm’ complete: Hit PF12 to End
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ICC$TSK (ITSK)
This is program ’icc$tsk’...
startType() = terminalInput
number() = 0598
isStartDataSupplied() = true
isCommitSupported() = true
userId() = [rabcics ]
enterTrace( 77, "ICCENTRY", buffer ) <NORMAL>
suspend()... <NORMAL>
delay( ti ) (for 2 seconds)... <NORMAL>
getStorage( 1234, ’X’)... <NORMAL>
freeStorage( p )... <NORMAL>
commitUOW()... <NORMAL>
rollBackUOW()... <NORMAL>

Program ’icc$tsk’ complete: Hit PF12 to End OR PF24 to ABEND
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Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.
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Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.
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IccTempStore

in Automatic condition handling
(callHandleEvent) 52

in Buffer objects 25
in C++ Exceptions and the Foundation
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in Deleting items 42
in Example of polymorphic

behavior 58
in Example of Temporary Storage 42
in IccTempStore class 239
in Reading items 41
in Resource classes 19
in Temporary storage 41
in Transient Data 39
in Updating items 42
in Working with IccResource

subclasses 27
in Writing items 41

IccTempStore class
clear 240
Constructor 239
empty 240
get 240
Location 243
NoSpaceOpt 243
numberOfItems 240
put 240
readItem 240
readNextItem 241
rewriteItem 241
writeItem 241, 242

IccTempStore constructors
Constructor 239
in IccTempStore class 239

IccTempStore::readItem
in Scope of data in IccBuf reference

returned from 'read' methods 65
IccTempStore::readNextItem

in Scope of data in IccBuf reference
returned from 'read' methods 65

IccTempStoreId
in Base classes 17
in Example of Temporary Storage 42
in IccTempStoreId class 245
in Temporary storage 41

IccTempStoreId class
Constructor 245
operator= 245

IccTempStoreId constructors
Constructor 245
in IccTempStoreId class 245

IccTermId
in Base classes 17
in C++ Exceptions and the Foundation
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in Example of starting

transactions 37
in Example of terminal control 44
in IccTermId class 247
in Terminal control 43

IccTermId class
Constructor 247
operator= 247

IccTermId class (continued)
overview 17

IccTermId constructors
Constructor 247
in IccTermId class 247

IccTerminal
in Buffer objects 25
in Example of terminal control 44
in Finding out information about a

terminal 44
in IccTerminalData class 263
in Receiving data from a terminal 44
in Resource classes 19
in Singleton classes 22
in Terminal control 43

IccTerminal class
AID 249
AIDVal 261
Case 261
clear 249
Color 261
Constructor 249
cursor 249
data 250
erase 250
freeKeyboard 250
get 250
height 250
Highlight 262
inputCursor 251
instance 251
line 251
netName 251
NextTransIdOpt 262
operator« 251, 252, 253
put 253
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receive3270Data 254
registerInputMessage 175
send 254, 255
send3270Data 255, 256
sendLine 256, 257
setColor 257
setCursor 257
setHighlight 258
setLine 258
setNewLine 258
setNextCommArea 258
setNextInputMessage 258
setNextTransId 259
signoff 259
signon 259
waitForAID 260
width 260
workArea 260

IccTerminal constructor (protected)
Constructor 249
in IccTerminal class 249

IccTerminal::receive
in Scope of data in IccBuf reference

returned from 'read' methods 65
IccTerminalData

in Example of terminal control 44
in Finding out information about a

terminal 44
in IccTerminalData class 263
in Terminal control 43

IccTerminalData class
alternateHeight 263
alternateWidth 263
Constructor 263
defaultHeight 264
defaultWidth 264
graphicCharCodeSet 264
graphicCharSetId 264
isAPLKeyboard 264
isAPLText 265
isBTrans 265
isColor 265
isEWA 265
isExtended3270 265
isFieldOutline 266
isGoodMorning 266
isHighlight 266
isKatakana 266
isMSRControl 266
isPS 267
isSOSI 267
isTextKeyboard 267
isTextPrint 267
isValidation 267

IccTerminalData constructor (protected)
Constructor 263
in IccTerminalData class 263

IccTime
in Base classes 18
in IccTime class 269
in Parameter passing conventions 63
in Support Classes 21

IccTime class
Constructor 269
hours 269
minutes 269
overview 18
seconds 269
timeInHours 270
timeInMinutes 270
timeInSeconds 270
type 270
Type 271

IccTime constructor (protected)
Constructor 269
in IccTime class 269

IccTimeInterval
in Base classes 18
in delay 228
in Example of starting

transactions 37, 38
in IccTime class 269
in Support Classes 21

IccTimeInterval class
Constructor 273
operator= 273
set 273

IccTimeInterval constructors
Constructor 273
in IccTimeInterval class 273

IccTimeOfDay
in Base classes 18
in delay 228
in IccTime class 269
in Support Classes 21

IccTimeOfDay class
Constructor 275
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IccTimeOfDay class (continued)
operator= 275
set 275

IccTimeOfDay constructors
Constructor 275
in IccTimeOfDay class 275

IccTPNameId
in IccTPNameId class 277

IccTPNameId class
Constructor 277
operator= 277

IccTPNameId constructors
Constructor 277
in IccTPNameId class 277

IccTransId
in Base classes 17
in Example of starting

transactions 37
in IccResourceId class 193
in IccTransId class 279
in Parameter passing conventions 63

IccTransId class
Constructor 279
operator= 279
overview 17

IccTransId constructors
Constructor 279
in IccTransId class 279

IccUser class
changePassword 281
Constructor 281
daysUntilPasswordExpires 282
ESMReason 282
ESMResponse 282
groupId 282
invalidPasswordAttempts 282
language 282
lastPasswordChange 283
lastUseTime 283
passwordExpiration 283
setLanguage 283
verifyPassword 283

IccUser constructors
Constructor 281
in IccUser class 281

IccUserControl
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Classes 50
in Example of file control 32
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behavior 58
in Example of starting

transactions 37
in Example of Temporary Storage 42
in Example of terminal control 44
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in Hello World 9
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IccUserId

in IccUserId class 285

IccUserId class
Constructor 285
operator= 285

IccUserId constructors
Constructor 285
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in Foundation Classes—reference 67

IccValue structure
CVDA 289

id
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in Constructor 85, 123, 127, 135, 147,

153, 155, 159, 161, 167, 171, 173, 177,
183, 193, 197, 201, 219, 239, 245, 247,
277, 279, 281, 285

in getFile 223
in operator= 86, 122, 127, 147, 153,

160, 161, 167, 171, 177, 183, 194, 219,
245, 247, 277, 279, 285

in setJournalTypeId 156
in signon 259
in waitOnAlarm 234
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in Constructor 135, 149
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in IccFileId class 148
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in IccProgram class 176
in IccProgramId class 178
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in IccRequestId class 184
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Inherited protected methods (continued)
in IccRRN class 196
in IccSemaphore class 199
in IccSession class 210
in IccStartRequestQ class 218
in IccSysId class 220
in IccSystem class 225
in IccTask class 235
in IccTempStore class 242
in IccTempStoreId class 246
in IccTermId class 248
in IccTerminal class 261
in IccTerminalData class 268
in IccTime class 271
in IccTimeInterval class 274
in IccTimeOfDay class 276
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Inherited public methods
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in IccBuf class 101
in IccClock class 106
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in IccRRN class 196
in IccSemaphore class 198
in IccSession class 209
in IccStartRequestQ class 217
in IccSysId class 220
in IccSystem class 225
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in IccTerminal class 261
in IccTerminalData class 268
in IccTime class 270
in IccTimeInterval class 274
in IccTimeOfDay class 276
in IccTPNameId class 278

Index 331



Inherited public methods (continued)
in IccTransId class 280
in IccUser class 283
in IccUserId class 286

initByte (parameter)
in getStorage 223, 230

initData
in IccControl class 116
in Public methods 116

initializeEnvironment
in Functions 70
in Icc structure 70
in Method level 55
in Storage management 61

initRBA (parameter)
in Constructor 179

initRRN (parameter)
in Constructor 195

initValue (parameter)
in Constructor 163

inputCursor
in IccTerminal class 251

insert
in Example of Temporary Storage 43
in IccBuf class 96
in IccBuf constructors 26
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Location 6

instance
in IccAbendData class 78
in IccConsole class 111
in IccControl class 116
in IccStartRequestQ class 214
in IccSystem class 224
in IccTask class 230
in IccTerminal class 251
in Singleton classes 22

internal
in DataAreaOwner 101

internalError
in C++ Exceptions and the Foundation

Classes 51
in Type 134

interval (parameter)
in setReplyTimeout 112

invalidArgument
in C++ Exceptions and the Foundation

Classes 50
in Type 133

invalidMethodCall
in C++ Exceptions and the Foundation

Classes 51
in Type 134

invalidPasswordAttempts
in IccUser class 282

isAddable
in IccFile class 137
in Writing ESDS records 31
in Writing KSDS records 31
in Writing RRDS records 31

isAPLKeyboard
in IccTerminalData class 264
in Public methods 264

isAPLText
in IccTerminalData class 265
in Public methods 265

isBrowsable
in IccFile class 138

isBTrans
in IccTerminalData class 265

isClassMemoryMgmtOn
in Functions 70
in Icc structure 70

isColor
in IccTerminalData class 265

isCommandSecurityOn
in IccTask class 230

isCommitSupported
in IccTask class 230

isCreated
in IccControl class 116

isDeletable
in IccFile class 138

isDumpAvailable
in IccAbendData class 78

isEDFOn
in Functions 70
in Icc structure 70
in IccResource class 187

isEmptyOnOpen
in IccFile class 138

isErrorSet
in IccSession class 204

isEWA
in IccTerminalData class 265

isExpired
in IccAlarmRequestId class 86

isExtended3270
in IccTerminalData class 265
in Public methods 265

isFamilySubsetEnforcementOn
in Functions 70
in Icc structure 70

isFieldOutline
in IccTerminalData class 266
in Public methods 266

isFMHContained
in IccBuf class 96
in Public methods 96

isGoodMorning
in IccTerminalData class 266
in Public methods 266

isHighlight
in IccTerminalData class 266

isKatakana
in IccTerminalData class 266

isMSRControl
in IccTerminalData class 266

isNoDataSet
in IccSession class 205

isPS
in IccTerminalData class 267

ISR2
in Example of starting

transactions 37
isReadable

in IccFile class 138
in Reading ESDS records 30
in Reading KSDS records 30
in Reading RRDS records 30

isReadable method 30
isRecoverable

in IccFile class 139

isResourceSecurityOn
in IccTask class 231

isRestarted
in IccTask class 231

isRouteOptionOn
in IccResource class 187
in Public methods 187

isSignalSet
in IccSession class 205

isSOSI
in IccTerminalData class 267

isStartDataAvailable
in IccTask class 231

issueAbend
in IccSession class 205

issueConfirmation
in IccSession class 205

issueError
in IccSession class 205

issuePrepare
in IccSession class 206

issueSignal
in IccSession class 206

isTextKeyboard
in IccTerminalData class 267
in Public methods 267

isTextPrint
in IccTerminalData class 267
in Public methods 267

isUpdatable
in IccFile class 139

isValidation
in IccTerminalData class 267

item (parameter)
in rewriteItem 241
in writeItem 124, 241

itemNum (parameter)
in readItem 240
in rewriteItem 241

ITMP
in Example of starting

transactions 37

J
journalNum (parameter)

in Constructor 155, 159
in operator= 159

journalTypeId
in IccJournal class 156

journalTypeName (parameter)
in Constructor 161
in operator= 161

jtypeid (parameter)
in setJournalTypeId 156

K
key

complete 30
generic 30

key (parameter)
in Constructor 163
in Example of file control 33
in operator!= 165
in operator= 164
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key (parameter) (continued)
in operator== 164

keyLength
in IccFile class 139
in Reading KSDS records 30
in Writing KSDS records 31

keyLength method 30
keyPosition

in IccFile class 139
in Reading KSDS records 30
in writing KSDS records 31

keyPosition method 30
kind

in IccKey class 164
Kind

in Enumerations 166
in IccKey class 166
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in Constructor 163
in setKind 165

KSDS
in File control 29

KSDS file 29

L
language

in IccUser class 282
language (parameter)

in setLanguage 283
lastCommand

in StateOpt 210
lastPasswordChange

in IccUser class 283
lastUseTime

in IccUser class 283
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in IccProgram class 174
in IccRecordIndex class 181
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in replace 100
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in connectProcess 202, 203
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in SyncLevel 211

level1
in SyncLevel 211

level2
in SyncLevel 211
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in Constructor 197

lifeTime
in IccSemaphore class 198

LifeTime
in Enumerations 199
in IccSemaphore class 199

line
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terminal 44
in IccTerminal class 251

lineNum (parameter)
in setLine 258

link
in IccProgram class 174

load
in IccProgram class 175

LoadOpt
in Enumerations 176
in IccProgram class 176
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in Constructor 239
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in Enumerations 243
in Header files 6
in IccTempStore class 243
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in Sample source code 6

lock
in IccSemaphore class 198

LockType
in Enumerations 199
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M
main
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in Example of file control 32
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data 40
in Example of polymorphic

behavior 58
in Example of starting

transactions 37
in Example of Temporary Storage 42
in Example of terminal control 44
in Example of time and date

services 45
in Header files 6
in main function 289
in Program control 34
in Storage management 61

main function
in Hello World 9

majorCode
in ConditionType 191

manual
in UpdateMode 107

Manual condition handling (noAction)
in CICS conditions 52
in Conditions, errors, and

exceptions 52
maxValue

in Range 110
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in initializeEnvironment 70
memory

in Location 243
message

in IccException class 132
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in Constructor 131
in setNextInputMessage 259

method
in Foundation Classes—reference 67

Method level
in Conditions, errors, and

exceptions 55
in Platform differences 55

methodName
in IccEvent class 130
in IccException class 132
in IccMessage class 169

methodName (parameter)
in Constructor 129, 131, 169

milliSeconds
in IccAbsTime class 82
in IccClock class 105

minorCode
in ConditionType 191

minutes
in IccAbsTime class 82
in IccTime class 269

minutes (parameter)
in Constructor 269, 273, 275
in set 274, 276

Miscellaneous
Example of polymorphic behavior 58

mixed
in Case 261

mode (parameter)
in readNextRecord 149
in readPreviousRecord 150
in readRecord 140

monthOfYear
in Example of time and date

services 46
in IccAbsTime class 82
in IccClock class 105

MonthOfYear
in Enumerations 107
in IccClock class 107
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in clearInputMessage 174
in registerInputMessage 175
in setInputMessage 175

MVS/ESA
in ClassMemoryMgmt 72
in Storage management 61

MVSPost
in WaitPostType 237

MyTempStore
in Automatic condition handling

(callHandleEvent) 53

N
N

in operatingSystem 224
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in IccResource class 188
in IccResourceId class 193
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in Constructor 85, 167, 219, 245, 247,

277, 279, 285
in operator= 167, 219, 245, 247, 277,

279, 285
in setWaitText 232

nameLength
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NameOpt
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NameOpt (continued)
in IccBase class 91

netName
in IccTerminal class 251

neutral
in Color 262

new
in Storage management 61

new operator 15
newPassword (parameter)

in changePassword 281, 282
in signon 259, 260

NextTransIdOpt
in Enumerations 262
in IccTerminal class 262

noAccess
in Access 145

noAction
in ActionOnCondition 190
in CICS conditions 52

noCommitOnReturn
in CommitOpt 176

NONCICS
in ASRAKeyType 76

none
in FacilityType 236

noQueue
in AllocateOpt 210
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in ReadMode 145
in SendOpt 210
in TraceOpt 237

NoSpaceOpt
in Enumerations 243
in IccTempStore class 243

noSuspend
in Options 158

notAddable
in Access 144

NOTAPPLIC
in ASRAKeyType 76
in ASRASpaceType 77
in ASRAStorageType 77

notBrowsable
in Access 144

notDeletable
in Access 145

notPurgeable
in WaitPurgeability 237

notReadable
in Access 144

notUpdatable
in Access 145
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in operator!= 180
in operator« 99, 252, 253
in operator= 179, 195
in operator== 180

number
in IccException class 132
in IccJournalId class 159
in IccMessage class 170
in IccRBA class 180
in IccRRN class 196
in IccTask class 231
in Writing RRDS records 31

number (parameter)
in Constructor 169
in setCustomClassNum 90

numberOfItems
in IccTempStore class 240

numEvents (parameter)
in waitExternal 234

numLines (parameter)
in setNewLine 258

numRoutes (parameter)
in setRouteCodes 112

O
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in Using an object 16
object

creating 15
deleting 16
in GetOpt 72
using 16

object (parameter)
in Constructor 129, 131
in operator delete 90

Object level
in Conditions, errors, and

exceptions 54
in Platform differences 54

objectCreationError
in C++ Exceptions and the Foundation

Classes 50
in Type 133

offset (parameter)
in cut 95
in dataArea 95
in insert 96
in replace 100
in setCursor 257

onOff (parameter)
in setEDF 71, 189

open
in Status 145

openStatus
in IccFile class 140

operatingSystem
in IccSystem class 224
in Public methods 224

operatingSystemLevel
in IccSystem class 224

operator const char*
in IccBuf class 96

operator delete
in IccBase class 90
in Public methods 90

operator new
in IccBase class 90

operator!=
in IccBuf class 98
in IccKey class 164, 165
in IccRBA class 180
in IccRRN class 196
in Public methods 98

operator«
in IccBuf class 98, 99
in IccTerminal class 251, 252, 253
in Working with IccResource

subclasses 28

operator+=
in IccBuf class 97

operator=
in Example of file control 33
in IccAbsTime class 83
in IccAlarmRequestId class 86
in IccBuf class 97
in IccConvId class 121
in IccDataQueueId class 127
in IccFileId class 147
in IccGroupId class 153
in IccJournalId class 159, 160
in IccJournalTypeId class 161
in IccKey class 164
in IccLockId class 167
in IccPartnerId class 171
in IccProgramId class 177
in IccRBA class 179
in IccRequestId class 183, 184
in IccResourceId class 194
in IccRRN class 195
in IccSysId class 219
in IccTempStoreId class 245
in IccTermId class 247
in IccTimeInterval class 273
in IccTimeOfDay class 275
in IccTPNameId class 277
in IccTransId class 279
in IccUserId class 285
in Protected methods 194
in Public methods 83, 273
in Working with IccResource

subclasses 27, 28
operator==

in IccBuf class 97
in IccKey class 164
in IccRBA class 179, 180
in IccRRN class 195, 196
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in abendCode 75
in access 136
in accessMethod 136
in alternateHeight 263
in alternateWidth 264
in ASRAInterrupt 76
in ASRAKeyType 76
in ASRAPSW 76
in ASRARegisters 77
in ASRASpaceType 77
in ASRAStorageType 78
in className 89, 90
in defaultHeight 264
in defaultWidth 264
in enableStatus 137
in enterTrace 229
in graphicCharCodeSet 264
in graphicCharSetId 264
in height 250
in isAddable 137
in isAPLKeyboard 265
in isAPLText 265
in isBrowsable 138
in isBTrans 265
in isColor 265
in isDeletable 138
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opt (parameter) (continued)
in isEWA 265
in isExtended3270 266
in isFieldOutline 266
in isGoodMorning 266
in isHighlight 266
in isKatakana 266
in isMSRControl 267
in isPS 267
in isReadable 138
in isRecoverable 139
in isSOSI 267
in isTextKeyboard 267
in isTextPrint 267
in isUpdatable 139
in isValidation 268
in keyLength 139
in keyPosition 139
in link 174
in load 175
in openStatus 140
in originalAbendCode 78
in principalSysId 231
in priority 232
in programName 78
in recordFormat 141
in recordLength 141
in rewriteItem 241
in setNextTransId 259
in type 143
in userId 233
in waitExternal 234
in width 260
in write 113
in writeAndGetReply 113
in writeItem 241, 242

opt1 (parameter)
in abend 227

opt2 (parameter)
in abend 227
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in retrieveData 215
in send 207
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in state 209
in stateText 209
in wait 157
in writeRecord 157

Options
in Enumerations 158
in IccJournal class 158

options (parameter)
in Constructor 155

opts (parameter)
in setDumpOpts 232

originalAbendCode
in IccAbendData class 78

Other data sets for CICS
in Installed contents 7

Output from sample programs
First Screen 307
Second Screen 307

overlay
in IccBuf class 100

overview of Foundation Classes 17

Overview of the foundation classes
Calling methods on a resource

object 22
Creating a resource object 21

P
PA1 to PA3

in AIDVal 261
packedDecimal

in IccAbsTime class 83
Parameter level

in Conditions, errors, and
exceptions 55

in Platform differences 55
parameter passing 63
Parameter passing conventions

in Miscellaneous 63
partnerName (parameter)

in Constructor 171
in operator= 171

password (parameter)
in changePassword 281
in signon 259, 260
in verifyPassword 283

passwordExpiration
in IccUser class 283

PF1 to PF24
in AIDVal 261

pink
in Color 262

PIP (parameter)
in connectProcess 202, 203

PIPList
in IccSession class 206

platform differences
method level 55
object level 54
parameter level 55

Platform differences
in Conditions, errors, and

exceptions 54
Method level 55
Object level 54
Parameter level 55

platformError
in Type 134

Platforms
in Enumerations 72
in Icc structure 72

polymorphic behavior 57
Polymorphic Behavior

Example of polymorphic behavior 58
in Miscellaneous 57

popt (parameter)
in setStartOpts 216

prefix (parameter)
in registerPrefix 156
in setPrefix 156

pri (parameter)
in setPriority 232

principalSysId
in IccTask class 231
in Public methods 231

print
in Polymorphic Behavior 57

priority
in IccTask class 232
in Public methods 232

process
in IccSession class 206

profile (parameter)
in Constructor 201

progName (parameter)
in Constructor 173, 177
in operator= 177

program control
example 34
introduction 34

Program control
in Using CICS Services 34

programId
in IccControl class 116
in Method level 55
in Public methods 116

programId (parameter)
in setAbendHandler 117

programName
in IccAbendData class 78
in Public methods 78

programName (parameter)
in setAbendHandler 118

Protected methods
in IccBase class 90
in IccResourceId class 194
operator= 194
setClassName 90
setCustomClassNum 90

ProtectOpt
in Enumerations 218
in IccStartRequestQ class 218

pStorage (parameter)
in freeStorage 222

Public methods
abend 227
abendCode 75
abendData 227
absTime 103
access 136
accessMethod 136
actionOnCondition 185
actionOnConditionAsChar 185
actionsOnConditionsText 186
address 173
AID 249
allocate 202
alternateHeight 263
alternateWidth 263
append 94
applName 221
ASRAInterrupt 76
ASRAKeyType 76
ASRAPSW 76
ASRARegisters 77
ASRASpaceType 77
ASRAStorageType 78
assign 95, 163
beginBrowse 221, 222
beginInsert(VSAM only) 136
callingProgramId 115
cancel 213
cancelAbendHandler 115
cancelAlarm 103
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Public methods (continued)
changePassword 281
className 89, 129, 132, 169
classType 89, 129, 132
clear 123, 186, 240, 249
clearData 214
clearInputMessage 174
clearPrefix 156
commArea 116
commitUOW 228
completeLength 164
condition 129, 186
conditionText 130, 187
connectProcess 202, 203
console 116
converse 203
convId 203
cursor 249
customClassNum 90
cut 95
data 214, 250
dataArea 95
dataAreaLength 95
dataAreaOwner 96
dataAreaType 96
dataLength 96
date 81, 104
dateFormat 222
dayOfMonth 82, 104
dayOfWeek 82, 104
daysSince1900 82, 104
daysUntilPasswordExpires 282
defaultHeight 264
defaultWidth 264
delay 228
deleteLockedRecord 136
deleteRecord 137
dump 228
empty 123, 240
enableStatus 137
endBrowse 222
endInsert(VSAM only) 137
enterTrace 229
entryPoint 174
erase 250
errorCode 204
ESMReason 282
ESMResponse 282
extractProcess 204
facilityType 229
flush 204
free 204
freeKeyboard 250
freeStorage 222, 229
get 124, 187, 204, 240, 250
getFile 222, 223
getNextFile 223
getStorage 223, 230
graphicCharCodeSet 264
graphicCharSetId 264
groupId 282
handleEvent 187
height 250
hours 82, 269
id 187
in IccAbendData class 75
in IccAbsTime class 81

Public methods (continued)
in IccAlarmRequestId class 86
in IccBase class 89
in IccBuf class 94
in IccClock class 103
in IccConsole class 111
in IccControl class 115
in IccConvId class 121
in IccDataQueue class 123
in IccDataQueueId class 127
in IccEvent class 129
in IccException class 132
in IccFile class 135
in IccFileId class 147
in IccFileIterator class 149
in IccGroupId class 153
in IccJournal class 155
in IccJournalId class 159
in IccJournalTypeId class 161
in IccKey class 163
in IccLockId class 167
in IccMessage class 169
in IccPartnerId class 171
in IccProgram class 173
in IccProgramId class 177
in IccRBA class 179
in IccRecordIndex class 181
in IccRequestId class 183
in IccResource class 185
in IccResourceId class 193
in IccRRN class 195
in IccSemaphore class 197
in IccSession class 202
in IccStartRequestQ class 213
in IccSysId class 219
in IccSystem class 221
in IccTask class 227
in IccTempStore class 239
in IccTempStoreId class 245
in IccTermId class 247
in IccTerminal class 249
in IccTerminalData class 263
in IccTime class 269
in IccTimeInterval class 273
in IccTimeOfDay class 275
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Public methods (continued)
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programId 116
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system 118
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terminal 118
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in IccSystem class 224
releaseAtTaskEnd

in LoadOpt 176
releaseText
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transactions 37
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in operator= 184
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storeName (parameter)
in Constructor 239
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suppressDump
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system
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text (parameter) (continued)
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