
CICS Transaction Server for z/OS

Release Guide
Version 3 Release 1

GC34-6421-08

���

CICS Transaction Server for z/OS

Release Guide
Version 3 Release 1

GC34-6421-08

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
395.

Ninth edition (July 2010)

This edition applies to Version 3 Release 1 of CICS Transaction Server for z/OS, program number 5655-M15, and
to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

© Copyright IBM Corporation 2004, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . xi
What this book is about . xi
Who this book is for . xi
What you need to know to understand this book xi
Notes on terminology . xi
Syntax notation . xii

Part 1. Summary of CICS Transaction Server for z/OS, Version 3 Release 1 . . . 1

Chapter 1. Summary of CICS Transaction Server for z/OS, Version 3 Release
1. 3

CICS integration . 3
Application transformation . 4
Enterprise management . 5
Miscellaneous changes . 6
Discontinued function . 7
The CICS Information Center . 8

Part 2. CICS integration . 9

Chapter 2. Web services in CICS 11
How Web services can help your business. 11
Web services terminology . 12
Requirements . 14
How CICS supports Web services 14

Message handlers and pipelines 15
SOAP messages and the application data structure 20
WSDL and the application data structure 22
The Web service binding file 24
External standards . 24

Planning to use Web services 31
Planning a service provider application 32
Planning a service requester application 34

The CICS Web services assistant 36
DFHLS2WS: high level language to WSDL conversion 37
DFHWS2LS: WSDL to high level language conversion 44

The pipeline configuration file 52
Changes to CICS externals . 54

Changes to resource definition 54
Changes to the application programming interface 60
Changes to the system programming interface 64
Changes to CEMT . 70
Changes to the JCICS API 74
Changes to CICS-supplied transactions 74
Changes to statistics . 74
Changes to sample programs 74
Changes to CICS utilities . 75
Changes to problem determination 75

Security . 75
Migration and coexistence . 75

Migration of existing functions 76
Coexistence . 76

© Copyright IBM Corp. 2004, 2010 iii

CICSPlex SM support . 77
Changes to the CICSPlex SM application programming interface 77
Changes to CICSPlex SM Web User Interface 79

Chapter 3. Support for HTTP client requests from CICS applications . . . 83
Benefits of support for HTTP client requests from CICS applications 83
Requirements . 83
HTTP request and response processing for CICS as an HTTP client 83

Session tokens . 85
Changes to CICS externals . 85

Changes to resource definition 85
Changes to the application programming interface (HTTP client requests) 86
Changes to the JCICS API 106
Changes to global user exits 106
Changes to monitoring . 109

Chapter 4. CICS Web support upgrade to HTTP/1.1 111
Benefits of CICS Web support upgrade to HTTP/1.1. 112
Requirements . 112
New HTTP functionality . 113

Chunked transfer-coding . 113
Pipelining . 114
Persistent connections. 115
Virtual hosting . 116

Changes to CICS externals . 117
Changes to resource definition. 117
Changes to the application programming interface (HTTP/1.1 support) 119
Changes to the system programming interface 127
Changes to CEMT . 130
Changes to statistics . 130

Chapter 5. General enhancements to CICS Web support 131
Benefits of CICS Web support enhancements 131
Terminology . 132
Requirements . 133
HTTP request and response processing for CICS as an HTTP server 133
Unicode UTF-8 and UTF-16 code page conversion in CICS Web support 134
Handling HTTP date and time stamp formats 135
Changes to CICS externals . 135

Changes to resource definition 135
Changes to the application programming interface (General CICS Web

support enhancements) 146
Changes to the system programming interface 153
Changes to CEMT . 159
Changes to CICS-supplied transactions 159
Changes to user-replaceable programs 161
Changes to statistics . 164
Changes to CICS utilities. 164
Changes to problem determination 164

Security . 165
Migration . 166

Migration of existing CICS Web support applications 166
Migration to the new CICS Web support function 167

CICSPlex SM support . 168
Changes to CICSPlex SM end user interface views 168
Changes to CICSPlex SM application programming interface 169

iv Release Guide

Changes to CICSPlex SM Web User Interface 174

Chapter 6. Improvements to Internet security 177
Benefits of improvements to Internet security 177
Security terminology . 177
Requirements . 178
Transport Layer Security protocol 178
Improvements to SSL performance 179
Using certificate revocation lists 180
The SSL cache . 180
Customizing encryption negotiations 180
Changes to CICS externals . 181

Changes to system initialization parameters 181
Changes to resource definition 183
Changes to the system programming interface 184
Changes to CICS-supplied transactions 184
Changes to global user exits 185
Changes to monitoring . 186
Changes to statistics . 186
Changes to CICS utilities. 186
Changes to problem determination 186

Security . 187
Migration . 187

Migration of existing functions 187
Migration to the new function 187

Coexistence . 187
CICSPlex SM support . 187

Changes to CICSPlex SM end user interface views 187
Changes to the CICSPlex SM application programming interface 188
Changes to CICSPlex SM Web User Interface 190

Part 3. Application transformation . 193

Chapter 7. Enhanced inter-program data transfer: channels as
modern-day COMMAREAs 195

Benefits of channels . 195
Terminology . 196
Channels: quick start . 196

Containers and channels . 196
Basic examples . 197

Using channels: some typical scenarios 200
One channel, one program 200
One channel, several programs (a component) 200
Several channels, one component 201
Multiple interactive components 202

Creating a channel . 202
The current channel . 203

Current channel example, with LINK commands 203
Current channel example, with XCTL commands 205
Current channel: START and RETURN commands 206

The scope of a channel . 207
Scope example, with LINK commands 207
Scope example, with LINK and XCTL commands 209

Discovering which containers were passed to a program 211
Discovering which containers were returned from a link 211
CICS read only containers . 211

Contents v

Designing a channel: best practices. 212
Constructing and using a channel: an example. 213
Channels and BTS activities 214

Context . 215
Using channels from JCICS. 216

Creating channels and containers in JCICS 216
Putting data into a container 217
Passing a channel to another program or task 217
Receiving the current channel 217
Getting data from a container 218
Browsing the current channel 218
A JCICS example . 218

Dynamic routing with channels 219
Data conversion . 219

Why is data conversion needed? 219
Data conversion with channels 220

Requirements . 223
Changes to CICS externals . 223

Changes to the application programming interface 223
Changes to the JCICS API 237
Changes to global user exits 237
Changes to task-related user exits 238
Changes to user-replaceable programs 238
Changes to monitoring . 240
Changes to statistics . 242
Changes to sample programs 243
Changes to problem determination 243

Migrating from COMMAREAs to channels 246
Migration of existing functions 246
Migration to the new function 247

Coexistence . 249
CICSPlex SM support . 250

Changes to CICSPlex SM application programming interface 250
Changes to CICSPlex SM Web User Interface 252

Chapter 8. OPENAPI Support 255
Benefits of OPENAPI Support 256
Requirements . 256
Changes to CICS externals . 257

Changes to system initialization parameters 257
Changes to resource definition 257
Changes to the application programming interface 257
Changes to the system programming interface 258
Changes to CEMT . 259

Chapter 9. XPLink Support 261
Benefits of XPLink Support . 262
Requirements . 262
Changes to CICS externals . 263

Changes to installation . 263
Changes to system initialization parameters 263
Changes to resource definition 263
Changes to the application programming interface 263
Changes to the system programming interface 264
Changes to CEMT . 265
Changes to global user exits 266

vi Release Guide

Changes to user-replaceable programs 266
Changes to monitoring . 266
Changes to statistics . 268

Migration . 268
Migration of existing functions 268
Migration to the new function 268

CICSPlex SM support . 269
Changes to the CICSPlex SM application programming interface 269
Changes to CICSPlex SM Web User Interface 270

Chapter 10. Support for Language Environment conforming assembler
MAIN programs . 271

Benefits of Support for Language Environment conforming assembler MAIN
programs. 271

Requirements . 271
Changes to CICS externals . 271

Changes to resource definition 271
Changes to the application programming interface 272
Changes to global user exits 281
Changes to task-related user exits 281

Part 4. Enterprise management . 283

Chapter 11. CICSPlex SM Web User Interface enhancements 285
Requirements . 286
Changes to CICSPlex SM . 286

User favorites . 286
User group profiles . 290
Business application services redesign 293
Record count warnings . 296
Filter confirmation . 297
Dynamic selection lists . 298
Improved screen design . 299
Changes to CICSPlex SM API 304
Messages . 304

Chapter 12. Enhancements to CICSPlex SM batched repository update
facility . 307

Benefits of the enhancements to CICSPlex SM batched repository-update
facility . 307

Requirements . 307
Batch utility program . 307
Changes to CICSPlex SM application programming interface 307
Changes to the CICSPlex SM Web User Interface 308
Messages . 308
Security . 308
Migration . 309

Part 5. Miscellaneous changes . 311

Chapter 13. New installation process 313
Benefits of the new installation process 313

Chapter 14. EXTRACT STATISTICS command 315
Benefits of the EXTRACT STATISTICS command 315

Contents vii

Changes to CICS externals . 315
Changes to the system programming interface 315

Chapter 15. Support for mixed case passwords 319

Chapter 16. Codepage conversion changes 321
Benefits of Codepage conversion changes 321
Terminology . 322
Requirements . 322
Changes to CICS externals . 322

Changes to installation . 322
Changes to system initialization parameters 323
Changes to application programming 323
Changes to CICS utilities. 324
Changes to problem determination 324

Chapter 17. Simplified definition of default code pages 327
Benefits of improved defaults for code pages in data conversion templates 327
Requirements . 327
Changes to CICS externals . 328

Changes to system initialization parameters 328
Changes to user-replaceable programs 328

Chapter 18. 64-Bit Addressing Toleration changes 329
Benefits of 64-Bit Addressing Toleration changes 329
Requirements . 329
Changes to CICS externals . 329

Changes to CICS utilities. 329
Changes to problem determination 329

Chapter 19. Support for revoked user IDs 331

Part 6. Discontinued function . 333

Chapter 20. Withdrawal of runtime support for OS/VS COBOL programs 335

Chapter 21. Changes to BTAM and TCAM support 337
Changes to CICS externals . 338

Changes to system initialization parameters 338
Changes to resource definition 338
Changes to the application programming interface 338
Changes to global user exits 339
Changes to user-replaceable programs 339
Changes to sample programs 339

Migration . 339
Coexistence . 339

Chapter 22. Withdrawal of support for 1-byte console id 341
CICSPlex SM support . 341

Changes to CICSPlex SM application programming interface 341
Changes to CICSPlex SM end user interface views 341
Changes to CICSPlex SM Web User Interface 341
Messages . 341

Chapter 23. Withdrawal of the CICS Connector for CICS TS 343

viii Release Guide

Chapter 24. Withdrawal of run-time support for Java program objects and
hot-pooling. 345

Changes to CICS externals . 345
Changes to system initialization parameters 345
Changes to resource definition 345
Changes to the application programming interface 346
Changes to the system programming interface 346
Changes to CEMT . 346
Changes to global user exits 346
Changes to the exit programming interface (XPI) 346
Changes to user-replaceable programs 347
Changes to monitoring . 347
Changes to statistics . 347
Changes to problem determination 347

CICSPlex SM support . 347
Changes to CICSPlex SM end user interface views 347
Changes to the CICSPlex SM application programming interface 347
Changes to the CICSPlex SM Web User Interface 348

Chapter 25. Removal of CICSPlex SM support for Windows remote MAS 349

Chapter 26. Withdrawal of the CICS Transaction Affinities Utility 351

Part 7. General Information . 353

Chapter 27. The CICS operating environment 355
Hardware requirements . 355
Software Requirements . 355
Support for CICS Tools and related products 357
Compatibility . 359

Chapter 28. Threadsafe application programming interface commands 361

Chapter 29. High-level language support 363

Part 8. Publications . 369

Chapter 30. The Eclipse information center 371
Benefits of the Eclipse information center. 371
Terminology . 372
Requirements . 372
What's New section. 373
Information Roadmaps . 373
Learning paths . 374
Techniques for searching in the information center 374
Navigating the information center. 376
Bookmarking a topic . 377
User Preferences . 377

Chapter 31. The CICS Transaction Server for z/OS library 379
Books available as hardcopy 379
PDF-only books . 379

CICS books for CICS Transaction Server for z/OS 379
CICSPlex SM books for CICS Transaction Server for z/OS 380
CICS family books . 381

Contents ix

Licensed publications . 381

Accessibility . 383

Index . 385

Notices . 395
Trademarks. 396

Sending your comments to IBM 397

x Release Guide

Preface

What this book is about
This book provides information about new and changed function in CICS®

Transaction Server for z/OS®, Version 3 Release 1. It gives an overview of the
changes to reference information, and points you to the manuals where more
detailed reference information is given.

The programming interface information given in this book is intended to show only
what is new and changed from the previous release of CICS TS, and to highlight
the benefits of the new function. For programming interface information, read the
primary sources of programming interface and associated information in the
following publications:

v CICS Application Programming Reference

v CICS System Programming Reference

v CICS Customization Guide

v CICS External Interfaces Guide

v CICSPlex SM Application Programming Guide

v CICSPlex SM Application Programming Reference

Who this book is for
This book is for those responsible for the following user tasks:

v Evaluation and planning

v System administration

v Programming

v Customization

What you need to know to understand this book
The book assumes that you are familiar with CICS and CICSPlex SM, either as a
systems administrator, or as a systems or application programmer.

Notes on terminology
When the term “CICS” is used without any qualification in this book, it refers to the
CICS element of IBM CICS TS.

“CICSPlex SM” is used for the CICSPlex System Manager element of IBM CICS
TS.

“MVS” is used for the operating system, which is a base element of z/OS.

© Copyright IBM Corp. 2004, 2010 xi

Syntax notation
Syntax notation specifies the permissible combinations of options or attributes that
you can specify on CICS commands, resource definitions, and many other things.

The conventions used in the syntax notation are:

Notation Explanation

�� A
B
C

��
Denotes a set of required alternatives. You
must specify one (and only one) of the
values shown.

�� � A
B
C

��

Denotes a set of required alternatives. You
must specify at least one of the values
shown. You can specify more than one of
them, in any sequence.

��
A
B
C

��
Denotes a set of optional alternatives. You
can specify none, or one, of the values
shown.

�� �

A
B
C

��

Denotes a set of optional alternatives. You
can specify none, one, or more than one of
the values shown, in any sequence.

��
A

B
C

��

Denotes a set of optional alternatives. You
can specify none, or one, of the values
shown. A is the default value that is used if
you do not spacify anything.

�� Name ��

Name:

A
B

A reference to a named section of syntax
notation.

�� A=value ��
A= denote characters that should be entered
exactly as shown.

value denotes a variable, for which you
should specify an appropriate value.

xii Release Guide

Part 1. Summary of CICS Transaction Server for z/OS, Version
3 Release 1

This part contains a brief overview of the major new function in CICS Transaction
Server for z/OS, Version 3 Release 1.

© Copyright IBM Corp. 2004, 2010 1

2 Release Guide

Chapter 1. Summary of CICS Transaction Server for z/OS,
Version 3 Release 1

The major new and changed function in CICS Transaction Server for z/OS, Version
3 Release 1 are represented in the three themes of CICS Integration, Application
transformation, and Enterprise management. CICS TS 3.1 also includes
miscellaneous changes that are outside the scope of the three themes, and a
number of functions are discontinued or reduced in scope.

CICS integration
CICS TS 3.1 provides a range of new and enhanced capabilities which enable
reuse of existing CICS applications within broader on-demand scenarios, by the use
of widely adopted application programming interfaces and standard protocols.
These include:

Support for Web services

Support for Web services is fully integrated into CICS TS 3.1. In this
release, CICS applications can act in the role of both service provider and
service requester, where the services are defined using Web Services
Description Language (WSDL).

The infrastructure provided as part of CICS TS V3.1 includes a distributed
transaction coordination capability compatible with the WS-
AtomicTransaction specification.

The support for Web services includes the CICS Web services assistant, a
batch utility which can help you to

v transform an existing CICS application into a Web service

v and enable a CICS application to use a Web service provided by an
external provider.

The assistant can create a WSDL document from a simple language
structure, or a language structure from an existing WSDL document, and
supports COBOL, C/C++, and PL/I. It also generates information used to
enable automatic runtime conversion of the SOAP messages to containers
and COMMAREAs, and vice versa.

For more information, see Chapter 2, “Web services in CICS,” on page 11.

Support for HTTP client requests from CICS applications
In CICS TS 3.1 the ability of CICS to act as an HTTP client is fully
integrated into CICS Web support. Your application programs can now use
EXEC CICS commands to open a connection to a server, to make an HTTP
request, and to receive the response.

For more information, see Chapter 3, “Support for HTTP client requests
from CICS applications,” on page 83.

Support for HTTP/1.1
CICS Web support is now conditionally compliant with the HTTP/1.1
specification, as defined by RFC 2616, Hypertext Transfer Protocol --
HTTP/1.1.

New functions that are supported in CICS TS 3.1 include chunked
transfer-coding, pipelining, and persistent connections.

© Copyright IBM Corp. 2004, 2010 3

For more information, see Chapter 4, “CICS Web support upgrade to
HTTP/1.1,” on page 111.

Other enhancements to CICS Web support
Other enhancements to CICS Web support in CICS TS 3.1 include:

v The URIMAP resource, which gives improved capability for processing
HTTP requests and responses when CICS is an HTTP server

v Improvements to the way CICS Web supports code pages (including
support of the UTF-8 and UTF-16 code pages)

v A new API command which provides support for HTTP time and date
formats.

For more information, see Chapter 5, “General enhancements to CICS Web
support,” on page 131.

Improvements to support for SSL
Support for the Secure Sockets Layer (SSL) is enhanced in CICS TS 3.1:

v CICS now supports the Transport Layer Security (TLS) 1.0 protocol as
well as SSL 3.0, allowing you to use the new AES cipher suites that offer
128-bit and 256-bit encryption.

v The number of simultaneous SSL connections that can be used in the
system at one time has increased to achieve better throughput.

v There is more flexibility in controlling the encryption negotiation between
client and server. You can now specify a minimum as well as a maximum
encryption level in CICS for negotiating with particular users.

v CICS can now check all certificates against a certificate revocation list
when negotiating with clients. Any connections using revoked certificates
are closed immediately.

v You can specify whether you want to share session IDs across a sysplex
by using the SSL cache. CICS will perform a partial SSL handshake if
the client has negotiated with CICS previously. If the cache is shared
across a number of CICS regions, this will improve the performance of
SSL negotiation and connection throughput.

For more information, see Chapter 6, “Improvements to Internet security,”
on page 177.

Application transformation
CICS Transaction Server for z/OS, Version 3 Release 1 provides a range of new
functions that enable you to enhance your existing applications, and to construct
new applications, using contemporary programming languages, constructs, and
tools. These include:

Enhanced inter-program data transfer: channels as modern-day COMMAREAs

In CICS TS 3.1, channels and containers provide an improved method of
transferring data between programs, in amounts that far exceed the 32KB
limit that applies to COMMAREAs.

v A container is a named block of data designed for passing information
between programs.

v Containers are grouped together in sets called channels. A channel is a
standard mechanism for exchanging data between CICS programs, and
is analogous to a parameter list. A channel can be used on the LINK,
START, XCTL, and RETURN commands, and with local and remote

4 Release Guide

transactions. There is no limit to the number of containers that can be
added to a channel, and the size of each container is limited only by the
amount of storage available.

The channel and container model has several advantages over the
traditional COMMAREA model. These include:

v There is no 32KB size limit.

v Unlike a COMMAREA, which is a monolithic block of data, a channel
with several containers can represent structured data.

For more information, see Chapter 7, “Enhanced inter-program data
transfer: channels as modern-day COMMAREAs,” on page 195.

OPENAPI support
CICS extends the use of Open Transaction Environment (OTE) functionality
by providing support for OPENAPI application programs. Prior to this,
OPENAPI function was available only to task related user exits (TRUEs).
The use of OPENAPI programs allows application workloads to be moved
off the QR TCB onto multiple open TCBs.

For more information, see Chapter 8, “OPENAPI Support,” on page 255.

XPLINK support for C and C++
New support for C and C++ has been introduced in CICS TS 3.1, bringing
the performance of applications that are written in these languages, to a
level comparable with that obtained with COBOL, PL/I, or Assembler. The
performance improvements are provided by the Extra Performance Linkage
(XPLINK) feature of z/OS, which provides high performance subroutine
linkage mechanisms and guard pages for stack extension, resulting in
highly optimized execution path lengths.

The applications that benefit most from these improvements are those that:

v are run in the CICS Open Transaction Environment (OTE)

v are written to threadsafe standards and use only threadsafe CICS
commands

The use of XPLINK enables the latest compiler and optimization
technologies included with C and C++ to be exploited. In particular, you can
achieve greater reuse of C and C++ code by using dynamic load libraries
(DLLs) that were compiled with the XPLINK option in the CICS
environment.

For more information, see Chapter 9, “XPLink Support,” on page 261.

Support for Language Environment® enabled Assembler Main programs
CICS TS 3.1 supports main programs which are written in Assembler, and
that are Language Environment enabled. This support extends the
availability of Language Environment use, and makes Debugger support
available with Assembler programs.

For more information, see Chapter 10, “Support for Language Environment
conforming assembler MAIN programs,” on page 271.

Enterprise management
The CICSPlex® SM element of CICS TS 3.1 provides new capabilities that enable
effective management of large runtime configurations by the use of modern user
interfaces, so that you can meet your demanding service level objectives. These
include:

Chapter 1. Summary of CICS Transaction Server for z/OS, Version 3 Release 1 5

Enhancements to the CICSPlex SM Web User Interface
The CICSPlex SM Web User Interface has been improved to make it more
powerful and more usable. The Web User Interface is now functionally
equivalent to the CICSPlex SM TSO end user interface, and is now the
primary method of accessing CICSPlex SM.

For more information, see Chapter 11, “CICSPlex SM Web User Interface
enhancements,” on page 285.

Enhancements to the CICSPlex SM batched repository update facility

New facilities have been introduced that provide alternatives to the existing
TSO EUI command for submitting batched updates to a specified CICSPlex
SM repository. The alternative BATCHREP facilities introduced are:

v A new BATCHREP resource table that is available as an object for
reference by the CPSM API

v Web User Interface support of the new resource table

v A batch utility program that provides a BATCHREP facility

For more information, see Chapter 12, “Enhancements to CICSPlex SM
batched repository update facility,” on page 307.

Miscellaneous changes
Other new and changed functions in CICS Transaction Server for z/OS, Version 3
Release 1 include:

EXTRACT STATISTICS command
A new SPI command, EXTRACT STATISTICS performs a function
equivalent to COLLECT STATISTICS, for the URIMAP, PIPELINE, and
WEBSERVICE resources.

For more information, see Chapter 14, “EXTRACT STATISTICS command,”
on page 315.

Support for mixed case passwords
When the security manager used with CICS supports the use of mixed case
passwords, CICS TS 3.1 does not convert passwords to uppercase before
passing them to the security manager.

For more information, see Chapter 15, “Support for mixed case passwords,”
on page 319.

Simplified definition of default code pages
In CICS TS 3.1, the default client or server code pages used by the
DFHCNV data conversion table can be defined in the system initialization
parameters.

For more information, see Chapter 17, “Simplified definition of default code
pages,” on page 327.

64-Bit Addressing toleration
CICS does not support 64-bit addressing execution, but programs can use
storage at addresses which are only available when CICS is running on
64-bit architecture machines. The CICS abend capture mechanisms have
changed so that the contents of the full 64-bit general purpose registers is
captured.

For more information, see Chapter 18, “64-Bit Addressing Toleration
changes,” on page 329.

6 Release Guide

Support for revoked user IDs
When the EXEC CICS VERIFY PASSWORD command is issued, CICS
now honors the revoked status of a user ID or a user's group connection.

Discontinued function
Some functions which were supported in CICS Transaction Server for z/OS, Version
2 have been discontinued, or reduced in scope in CICS TS 3.1. They include:

Runtime support for OS/VS COBOL programs

OS/VS COBOL programs, which had runtime support in CICS Transaction
Server for z/OS, Version 2, cannot run under CICS TS 3.1.

For more information, see Chapter 20, “Withdrawal of runtime support for
OS/VS COBOL programs,” on page 335.

Support for BTAM and TCAM
CICS support for the Basic Telecommunications Access Method (BTAM) is
discontinued in CICS TS 3.1. Support for the Telecommunications Access
Method (TCAM) is limited to indirect support for the DCB interface.

For more information, see Chapter 21, “Changes to BTAM and TCAM
support,” on page 337.

Support for 1-byte console IDs
Support for the 1-byte console id has been removed. You can define
consoles using the CONSNAME(name) attribute on the TERMINAL
definition.

For more information, see Chapter 22, “Withdrawal of support for 1-byte
console id,” on page 341.

The CICS connector for CICS TS
Support for the CICS Connector for CICS TS, introduced in CICS
Transaction Server for z/OS, Version 2 Release 1, is withdrawn.

For more information, see Chapter 23, “Withdrawal of the CICS Connector
for CICS TS,” on page 343.

Support for Java™ program objects and hot-pooling
Run-time support for Java program objects and for hot-pooling (HPJ) is
withdrawn.

For more information, see Chapter 24, “Withdrawal of run-time support for
Java program objects and hot-pooling,” on page 345.

CICSPlex SM support for Windows® remote MAS

For more information, see Chapter 25, “Removal of CICSPlex SM support
for Windows remote MAS,” on page 349.

Withdrawal of the CICS Transaction Affinities Utility
The CICS Transaction Affinities Utility is no longer supplied with CICS. Its
function of detecting transaction affinities is now provided by the CICS
Interdependency Analyzer, which is a more sophisticated tool.

For more information, see Chapter 26, “Withdrawal of the CICS Transaction
Affinities Utility,” on page 351.

Chapter 1. Summary of CICS Transaction Server for z/OS, Version 3 Release 1 7

The CICS Information Center
In CICS TS 3.1, the CICS Information Center runs within the WebSphere® Studio
WorkBench User Assistance system, an Eclipse framework that contains a number
of documentation plug-ins that make up the information center. The new look and
feel of the information center, in particular the welcome page, is now consistent with
other product information centers.

For more information, see Chapter 30, “The Eclipse information center,” on page
371

8 Release Guide

Part 2. CICS integration

CICS Transaction Server for z/OS, Version 3 Release 1 provides a range of new
and enhanced capabilities which enable reuse of existing CICS applications within
broader on demand scenarios, by the use of widely adopted application
programming interfaces and standard protocols.

© Copyright IBM Corp. 2004, 2010 9

10 Release Guide

Chapter 2. Web services in CICS

Support for Web services is fully integrated into CICS Transaction Server for z/OS,
Version 3 Release 1. In this release, CICS applications can act in the role of both
service provider and service requester, where the services are defined using Web
Services Description Language (WSDL).

The infrastructure provided as part of CICS TS V3.1 includes a distributed
transaction coordination capability compatible with the WS-AtomicTransaction
specification, and support for the Web Services Security: SOAP Message Security
1.0 specification.

Note: Support for Web Services Security is delivered in the CICS WS-Security
Component. To install the component, apply the PTF for APAR PK22736.

Additionally, the IBM® XML Toolkit for z/OS V1.9 is required for WS-Security
support. For information about this no-charge product, see “Software
Requirements” on page 355.

The support for Web services includes the CICS Web services assistant, a batch
utility which can help you to

v transform an existing CICS application into a Web service

v and enable a CICS application to use a Web service provided by an external
provider.

The assistant can create a WSDL document from a simple language structure, or a
language structure from an existing WSDL document, and supports COBOL, C/C++,
and PL/I. It also generates information used to enable automatic runtime conversion
of the SOAP messages to containers and COMMAREAs, and vice versa.

How Web services can help your business
Web services is a technology for deploying, and providing access to, business
functions over the World Wide Web. Web services make it possible for applications
to be integrated more rapidly, easily, and cheaply than ever before.

Web services can help your business by:

v Reducing the cost of doing business

v Making it possible to deploy solutions more rapidly

v Opening up new opportunities.

The key to achieving all these things is a common program-to-program
communication model, built on existing and emerging standards such as HTTP,
XML, SOAP, and WSDL.

The support that CICS provides for Web services makes it possible for your existing
applications to be deployed in new ways, with the minimum amount of
reprogramming.

© Copyright IBM Corp. 2004, 2010 11

#
#

#
#

#
#
#

Web services terminology
Extensible Markup Language (XML)

A standard for document markup, which uses a generic syntax to mark up
data with simple, human-readable tags. The standard is endorsed by the
World Wide Web Consortium (W3C) (http://www.w3.org).

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of
a SOAP message path.

Service provider
The collection of software that provides a Web service.

Service provider application
An application that is used in a service provider. Typically, a service
provider application provides the business logic component of a service
provider.

Service requester
The collection of software that is responsible for requesting a Web service
from a service provider.

Service requester application
An application that is used in a service requester. Typically, a service
requester application provides the business logic component of a service
requester.

Simple Object Access Protocol
See SOAP.

SOAP Formerly an acronym for Simple Object Access Protocol. A lightweight
protocol for exchange of information in a decentralized, distributed
environment. It is an XML based protocol that consists of three parts:

v An envelope that defines a framework for describing what is in a
message and how to process it.

v A set of encoding rules for expressing instances of application-defined
data types.

v A convention for representing remote procedure calls and responses.

SOAP can be used with other protocols, such as HTTP.

The specification for SOAP 1.1 is published at http://www.w3.org/TR/SOAP.

The specification for SOAP 1.2 is published at:

http://www.w3.org/TR/soap12-part0

http://www.w3.org/TR/soap12-part1

http://www.w3.org/TR/soap12-part2

SOAP intermediary
A SOAP node that is both a SOAP receiver and a SOAP sender and is
targetable from within a SOAP message. It processes the SOAP header
blocks targeted at it and acts to forward a SOAP message towards an
ultimate SOAP receiver.

SOAP message path
The set of SOAP nodes through which a single SOAP message passes.
This includes the initial SOAP sender, zero or more SOAP intermediaries,
and an ultimate SOAP receiver.

12 Release Guide

SOAP node
Processing logic which operates on a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

SOAP sender
A SOAP node that transmits a SOAP message.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It is
responsible for processing the contents of the SOAP body and any SOAP
header blocks targeted at it.

UDDI Universal Description, Discovery and Integration

Universal Description, Discovery and Integration
Universal Description, Discovery and Integration (UDDI) is a specification
for distributed Web-based information registries of Web services. UDDI is
also a publicly accessible set of implementations of the specification that
allow businesses to register information about the Web services they offer
so that other businesses can find them. The specification is published by
OASIS (http://www.oasis-open.org)

Web service
A software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a
machine-processable format (specifically, Web Service Description
Language, or WSDL).

Web Services Atomic Transaction
A specification that provides the definition of an atomic transaction
coordination type used to coordinate activities having an "all or nothing"
property.

The specification is published at http://www.ibm.com/developerworks/library/
specification/ws-tx/#atomhttp://www.ibm.com/developerworks/library/
specification/ws-tx/#atom.

Web service binding file
A file, associated with a WEBSERVICE resource, which contains
information that CICS uses to map data between input and output
messages, and application data structures.

Web service description
An XML document by which a service provider communicates the
specifications for invoking a Web service to a service requester. Web
service descriptions are written in Web Service Description Language
(WSDL).

Web Service Description Language
An XML application for describing Web services. It is designed to separate
the descriptions of the abstract functions offered by a service, and the
concrete details of a service, such as how and where that functionality is
offered.

The specification is published at http://www.w3.org/TR/wsdlhttp://
www.w3.org/TR/wsdl.

Web Services Security
A set of enhancements to SOAP messaging that provides message integrity
and confidentiality. The specification is published by OASIS

Chapter 2. Web services in CICS 13

http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://www.w3.org/TR/wsdl

(http://www.oasis-open.org) at http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0.pdf.

WS-Atomic Transaction
Web Services Atomic Transaction

WS-I Basic Profile
A set of non-proprietary Web services specifications, along with
clarifications and amendments to those specifications, which, taken
together, promote interoperability between different implementations of Web
services. The profile is defined by the Web Services Interoperability
Organization (WS-I) and version 1.0 is available at http://www.ws-i.org/
Profiles/BasicProfile-1.0.html.

WSDL Web Service Description Language.

WSS Web Services Security

XML Extensible Markup Language.

The specifications for XML are published at:

http://www.w3.org/TR/soap12-part0

http://www.w3.org/TR/soap12-part1

http://www.w3.org/TR/soap12-part2

XML namespace
A collection of names, identified by a URI reference, which are used in XML
documents as element types and attribute names.

XML schema
An XML document that describes the structure, and constrains the contents
of other XML documents.

XML schema definition language
An XML syntax for writing XML schemas, recommended by the World Wide
Web Consortium (W3C).

Requirements
There are no special hardware or software requirements to support this function.

Related information

Chapter 27, “The CICS operating environment,” on page 355

How CICS supports Web services
CICS supports two different approaches to deploying your CICS applications in a
Web services environment. One approach enables rapid deployment, with the least
amount of programming effort; the other approach gives you complete flexibility and
control over your Web service applications, using code that you write to suit your
particular needs. Both approaches are underpinned by an infrastructure consisting
of one or more pipelines and message handler programs which operate on Web
service requests and responses.

When you deploy your CICS applications in a Web services environment:

v You can use the CICS Web services assistant to help you deploy an application
with the least amount of programming effort.

For example, if you want to expose an existing application as a Web service, you
can start with a high-level language data structure, and generate the Web
services description. Alternatively, if you want to communicate with an existing

14 Release Guide

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org
http://www.w3.org

Web service, you can start with its Web service description and generate a high
level language structure that you can use in your program.

The CICS Web services assistant also generates the CICS resources that you
need to deploy your application. And when your application runs, CICS
transforms your application data into a SOAP message on output, and transforms
the SOAP message back to application data on input.

v You can take complete control over the processing of your data by writing your
own code to map between your application data and the message that flows
between the service requester and provider.

For example, if you want to use non-SOAP messages within the Web service
infrastructure, you can write your own code to transform between the message
format and the format used by your application.

Whichever approach you follow, you can use your own message handlers to
perform additional processing on your request and response messages, or use
CICS-supplied message handlers which are designed especially to help you
process SOAP messages.

Message handlers and pipelines
A message handler is a program in which you can perform your own processing of
Web service requests and responses. A pipeline is a set of message handlers that
are executed in sequence.

There are two distinct phases in the operation of a pipeline:

1. The request phase, during which CICS invokes each handler in the pipeline in
turn. Each message handler can process the request before returning control to
CICS.

2. This is followed by the response phase, during which CICS again invokes each
handler in turn, but with the sequence reversed. That is, the message handler
that is invoked first in the request phase, is invoked last in the response phase.
Each message handler can process the response during this phase.

Not every request is succeeded by a response; some applications use a
one-way message flow from service requester to provider. In this case, although
there is no message to be processed, each handler is invoked in turn during the
response phase.

Figure 1 shows a pipeline of three message handlers:

In this example, the handlers are executed in the following sequence:

In the request phase
1. Handler 1
2. Handler 2
3. Handler 3

In the response phase
1. Handler 3
2. Handler 2
3. Handler 1

Request

Response

Handler
1

Handler
2

Handler
3

Request

Response

Figure 1. A generic CICS pipeline

Chapter 2. Web services in CICS 15

In a service provider, the transition between the phases normally occurs in the last
handler in the pipeline (known as the terminal handler) which absorbs the request,
and generates a response; in a service requester, the transition occurs when the
request is processed in the service provider. However, a message handler in the
request phase can force an immediate transition to the response phase, and an
immediate transition can also occur if CICS detects an error.

A message handler can modify the message, or can leave it unchanged. For
example:

v A message handler that performs encryption and decryption will receive an
encrypted message on input, and pass the decrypted message to the next
handler. On output, it will do the opposite: receive a plain text message, and
pass an encrypted version to the following handler.

v A message handler that performs logging will examine a message, and copy the
relevant information from that message to the log. The message that is passed to
the next handler is unchanged.

Important: If you are familiar with the SOAP feature for CICS TS, you should be
aware that the structure of the pipeline in this release of CICS is not
the same as that used in the feature.

Transport-related handlers
CICS supports the use of two transport mechanisms between the Web service
requester and the provider. In some cases, you might require different message
handlers to be invoked, depending upon which transport mechanism is in use. For
example, you might wish to include message handlers that perform encryption of
parts of your messages when you are using the HTTP transport to communicate on
an external network. But encryption might not be required when you are using the
MQ transport on a secure internal network.

To support this, you can configure your pipeline to specify handlers that are invoked
only when a particular transport (HTTP or MQ) is in use. For a service provider, you
can be even more specific, and specify handlers that are invoked only when a
particular named resource (a TCPIPSERVICE for the HTTP transport, a QUEUE for
the MQ transport) is in use.

This is illustrated in Figure 2:

In this example, which applies to a service provider:

v Handler 1 is invoked for messages that use the MQ transport.

v Handlers 2 and 3 are invoked for messages that use the HTTP transport.

v Handlers 4 and 5 are invoked for all messages.

Request

Response

Handler
1

Handler
4

Handler
5

Handler
2

Handler
3

Request

Response

HTTP

Websphere MQ

Figure 2. Pipeline with transport-related handlers

16 Release Guide

v Handler 5 is the terminal handler.

Interrupting the flow
During processing of a request, a message handler can decide not to pass a
message to the next handler, but can, instead, generate a response. Normal
processing of the message is interrupted, and some handlers in the pipeline are not
invoked. For example, suppose that handler 2 in Figure 3 is responsible for
performing security checks.

If the request does not bear the correct security credentials, then, instead of
passing the request to handler 3, handler 2 suppresses the request and constructs
a suitable response. The pipeline is now in the response phase, and when handler
2 returns control to CICS, the next handler invoked is handler 1, and handler 3 is
bypassed altogether.

A handler that interrupts the normal message flow in this way must only do so if the
originator of the message expects a response; for example, a handler should not
generate a response when an application uses a one-way message flow from
service requester to provider.

A service provider pipeline
In a service provider pipeline, CICS receives a request, which is passed through a
pipeline to the target application program. The response from the application is
returned to the service requester through the same pipeline.

When CICS is in the role of service provider, it performs the following operations:

1. Receive the request from the service requester.

2. Examine the request, and extract the contents that are relevant to the target
application program.

3. Invoke the application program, passing data extracted from the request.

4. When the application program returns control, construct a response, using data
returned by the application program.

5. Send a response to the service requester.

Figure 4 on page 18 illustrates a pipeline of three message handlers in a service
provider setting:

Request

Response

Handler
1

Handler
2

Handler
3

Figure 3. Interrupting the pipeline flow

Chapter 2. Web services in CICS 17

1. CICS receives a request from the service requester. It passes the request to
message handler 1.

2. Message handler 1 performs some processing, and passes the request to
handler 2 (To be precise, it returns control to CICS, which manages the pipeline.
CICS then passes control to the next message handler).

3. Message handler 2 receives the request from handler 1, performs some
processing, and passes the request to handler 3.

4. Message handler 3 is the terminal handler of the pipeline. It uses the
information in the request to invoke the application program. It then uses the
output from the application program to generate a response, which it passes
back to handler 2.

5. Message handler 2 receives the response from handler 3, performs some
processing, and passes it to handler 1.

6. Message handler 1 receives the response from handler 2, performs some
processing, and returns the response to the service requester.

A service requester pipeline
In a service requester pipeline, an application program creates a request, which is
passed through a pipeline to the service provider. The response from the service
provider is returned to the application program through the same pipeline.

When CICS is in the role of service requester, it performs the following operations:

1. Use data provided by the application program to construct a request.

2. Send the request to the service provider.

3. Receive a response from the service provider.

4. Examine the response, and extract the contents that are relevant to the original
application program.

5. Return control to the application program.

Figure 5 on page 19 illustrates a pipeline of three message handlers in a service
requester setting:

CICS
Application

program

Request

Response

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
requester

CICS Transaction Server

Figure 4. A service provider pipeline

18 Release Guide

1. An application program creates a request.

2. Message handler 1 receives the request from the application program, performs
some processing, and passes the request to handler 2 (To be precise, it returns
control to CICS, which manages the pipeline. CICS then passes control to the
next message handler).

3. Message handler 2 receives the request from handler 1, performs some
processing, and passes the request to handler 3.

4. Message handler 3 receives the request from handler 2, performs some
processing, and passes the request to the service provider.

5. Message handler 3 receives the response from the service provider, performs
some processing, and passes it to handler 2.

6. Message handler 2 receives the response from handler 3, performs some
processing, and passes it to handler 1.

7. Message handler 1 receives the response from handler 2, performs some
processing, and returns the response to the application program.

CICS pipelines and SOAP
The pipeline which CICS uses to process Web service requests and responses is
generic, in that there are few restrictions on what processing can be performed in
each message handler. However, many Web service applications use SOAP
messages, and any processing of those messages should comply with the SOAP
specification. Therefore, CICS provides special SOAP message handler programs
that can help you to configure your pipeline as a SOAP node.

v Your pipeline can be configured to support SOAP 1.1 or SOAP 1.2. Within your
CICS system, you can have many pipelines, some of which support SOAP 1.1
and some of which support SOAP 1.2.

v A pipeline can be configured for use in a service requester, or in a service
provider:

– A service requester pipeline is the initial SOAP sender for the request, and the
ultimate SOAP receiver for the response

– A service provider pipeline is the ultimate SOAP receiver for the request, and
the initial SOAP sender for the response

You cannot configure a CICS pipeline to function as a SOAP intermediary.

v You can configure a CICS pipeline to have more than one SOAP message
handler.

v The CICS-provided SOAP message handlers can be configured to invoke one or
more user-written header-handling routines.

Request

Response

CICS
Application

program

CICS Web services

Handler
1

Handler
2

Handler
3

non-terminal
handlers

terminal
handler

Service
provider

CICS Transaction Server

Figure 5. A service requester pipeline

Chapter 2. Web services in CICS 19

v The CICS-provided SOAP message handlers can be configured to enforce some
aspects of compliance with the WS-I Basic Profile 1.1 and Simple SOAP Binding
Profile 1.0, and to enforce the presence of particular headers in the SOAP
message.

The SOAP message handlers, and their header handling routines are specified in
the pipeline configuration file.

SOAP messages and the application data structure
In many cases, the CICS Web services assistant can generate the code to
transform the data between a high level data structure used in an application
program, and the contents of the <Body> element of a SOAP message. In these
cases, when you write your application program, you do not need to parse or
construct the SOAP body; CICS will do this for you.

In order to transform the data, CICS needs information, at run time, about the
application data structure, and about the format of the SOAP messages. This
information is held in two files:

v The Web service binding file

This file is generated by the CICS Web services assistant from an application
language data structure, using utility program DFHLS2WS, or from a Web
service description, using utility program DFHWS2LS. CICS uses the binding file
to generate the resources used by the Web service application, and to perform
the mapping between the application's data structure and the SOAP messages.

v The Web service description

This may be an existing Web service description, or it may be generated from an
application language data structure, using utility program DFHLS2WS. CICS uses
the Web service description to perform full validation of SOAP messages.

Figure 6 shows where these files are used in a service provider.

A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) removes the SOAP envelope from an inbound request, and passes the
SOAP body to the data mapper function. This uses the Web service binding file to
map the contents of the SOAP body to the application's data structure. If full
validation of the SOAP message is active, then the SOAP body is validated against
the Web service description. If there is an outbound response, the process is
reversed.

CICS
Application

program

Request

Response

CICS Web services

Pipeline Data
mapper

Service
requester

CICS Transaction Server

Web
service

description

Web
service
binding

SOAP body interface

HLL data structure interface

SOAP envelope

Figure 6. Mapping the SOAP body to the application data structure in a service provider

20 Release Guide

Figure 7 shows where these files are used in a service requester.

For an outbound request, the data mapper function constructs a SOAP body from
the application's data structure, using information from the Web service binding file.
A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) adds the SOAP envelope. If there is an inbound response, the process is
reversed. If full validation of the SOAP message is active, then the inbound SOAP
body is validated against the Web service description.

In both cases, the execution environment that allows a particular CICS application
program to operate in a Web services setting is defined by three objects. These are
the pipeline, the Web service binding file, and the Web service description. The
three objects are defined to CICS as attributes of the WEBSERVICE resource
definition.

There are some situations in which, even though you are using SOAP messages,
you cannot use the transformation that the CICS Web services assistant generates:

v When the same data cannot be represented in the SOAP message and in the
high level language.

All the high level languages that CICS supports, and XML Schema, support a
variety of different data types. However, there is not a one-to-one
correspondence between the data types used in the high level languages, and
those used in XML Schema, and there are cases where data can be represented
in one, but not in the other. In this situations, you should consider one of the
following:

– Change your application data structure. This may not be feasible, as it might
entail changes to the application program itself.

– Construct a wrapper program, which transforms the application data into a
form that CICS can then transform into a SOAP message body. If you do this,
you can leave your application program unchanged. In this case CICS Web
service support interacts directly with the wrapper program, and only indirectly
with the application program.

v When your application program is in a language which is not supported by the
CICS Web services assistant.

In this situation, you should consider one of the following:

– Construct a wrapper program that is written in one of the languages that the
CICS Web services assistant does support (COBOL, PL/I, C or C++).

CICS
Application

program

Request

Response

CICS Web services

PipelineData
mapper

Service
provider

CICS Transaction Server

Web
service

description

Web
service
binding

SOAP body interface

EXEC CICS INVOKE WEBSERVICE
with HLL data structure interface

SOAP envelope

Figure 7. Mapping the SOAP body to the application data structure in a service requester

Chapter 2. Web services in CICS 21

– Instead of using the CICS Web services assistant, write your own program to
perform the mapping between the SOAP messages and the application
program's data structure.

WSDL and the application data structure
A Web service description contains abstract representations of the input and output
messages used by the service. CICS uses the Web service description to construct
the data structures used by application programs. At run time, CICS performs the
mapping between the application data structures and the messages.

The description of a Web service contains, among other things:

v One or more operations

v For each operation, an input message and an optional output message

v For each message, the message structure, defined in terms of XML data types.
Complex data types used in the messages are defined in an XML schema which
is contained in the <types> element within the Web service description. Simple
messages can be described without using the <types> element.

WSDL contains an abstract definition of an operation, and the associated
messages; it cannot be used directly in an application program. To implement the
operation, a service provider must do the following:

v It must parse the WSDL, in order to understand the structure of the messages

v It must parse each input message, and construct the output message

v It must perform the mappings between the contents of the input and output
messages, and the data structures used in the application program

A service requester must do the same in order to invoke the operation.

When you use the the CICS Web services assistant, much of this is done for you,
and you can write your application program without detailed understanding of
WSDL, or of the way the input and output messages are constructed.

The CICS Web services assistant consists of two utility programs:

DFHWS2LS
This utility program takes a Web service description as a starting point. It
uses the descriptions of the messages, and the data types used in those
messages, to construct high level language data structures that you can
use in your application programs.

DFHLS2WS
This utility program takes a high level language data structure as a starting
point. It uses the structure to construct a Web services description that
contains descriptions of messages, and the data types used in those
messages derived from the language structure.

Both utility programs generate a Web services binding file that CICS uses at run
time to perform the mapping between the application program's data structures and
the SOAP messages.

An example of COBOL to WSDL mapping

This example shows how the data structure used in a COBOL program is
represented in the Web services description that is generated by the CICS Web
services assistant.

22 Release Guide

Figure 8 shows a simple COBOL data structure:

The key elements in the corresponding fragment of the Web services description
are shown in Figure 9:

* Catalogue COMMAREA structure
03 CA-REQUEST-ID PIC X(6).
03 CA-RETURN-CODE PIC 9(2).
03 CA-RESPONSE-MESSAGE PIC X(79).

* Fields used in Place Order
03 CA-ORDER-REQUEST.

05 CA-USERID PIC X(8).
05 CA-CHARGE-DEPT PIC X(8).
05 CA-ITEM-REF-NUMBER PIC 9(4).
05 CA-QUANTITY-REQ PIC 9(3).
05 FILLER PIC X(888).

Figure 8. COBOL record definition of an input message defined in WSDL

<xsd:sequence>
<xsd:element name="CA-REQUEST-ID" nillable="false">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:length value="6"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="CA-RETURN-CODE" nillable="false">

<xsd:simpleType>
<xsd:restriction base="xsd:short">

<xsd:maxInclusive value="99"/>
<xsd:minInclusive value="0"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="CA-RESPONSE-MESSAGE" nillable="false">

...
</xsd:element>
<xsd:element name="CA-ORDER-REQUEST" nillable="false">

<xsd:complexType mixed="false">
<xsd:sequence>

<xsd:element name="CA-USERID" nillable="false">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:length value="8"/>
<xsd:whiteSpace value="preserve"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="CA-CHARGE-DEPT" nillable="false">

...
</xsd:element>
<xsd:element name="CA-ITEM-REF-NUMBER" nillable="false">

...
</xsd:element>
<xsd:element name="CA-QUANTITY-REQ" nillable="false">

...
</xsd:element>
<xsd:element name="FILLER" nillable="false">

...
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

Figure 9. WSDL fragment derived from a COBOL data structure

Chapter 2. Web services in CICS 23

The Web service binding file
The Web service binding file contains information that CICS uses to map data
between input and output messages, and application data structures.

A Web service description contains abstract representations of the input and output
messages used by the service. When a service provider or service requester
application executes, CICS needs information about how the contents of the
messages maps to the data structures used by the application. This information is
held in a Web service binding file.

Web service binding files are created:

v By utility program DFHWS2LS when language structures are generated from
WSDL.

v By utility program DFHLS2WS when WSDL is generated from a language
structure.

At run time, CICS uses information in the Web service binding file to perform the
mapping between application data structures and SOAP messages. Web service
binding files are defined to CICS in the WSBIND attribute of the WEBSERVICE
resource.

External standards
CICS support for Web services conforms to a number of industry standards and
specifications.

Extensible Markup Language Version 1.0
Extensible Markup Language (XML) 1.0 is a subset of SGML. Its goal is to enable
generic SGML to be served, received, and processed on the Web in the way that is
now possible with HTML.

XML has been designed for ease of implementation and for interoperability with
both SGML and HTML.

The specification for XML 1.0 and its errata is published by the World Wide Web
Consortium (W3C) as a W3C Recommendation at http://www.w3.org/TR/REC-xml.

SOAP 1.1 and 1.2
SOAP is a lightweight, XML-based, protocol for exchange of information in a
decentralized, distributed environment.

The protocol consists of three parts:

v An envelope that defines a framework for describing what is in a message and
how to process it.

v A set of encoding rules for expressing instances of application-defined data
types.

v A convention for representing remote procedure calls and responses.

SOAP can be used with other protocols, such as HTTP.

The specifications for SOAP are published by the World Wide Web Consortium
(W3C). The specification for SOAP 1.1 is described as a note at
http://www.w3.org/TR/SOAP. This specification has not been endorsed by the W3C,
but forms the basis for the SOAP 1.2 specification. It expands the SOAP acronym
to Simple Object Access Protocol.

24 Release Guide

#
#
#
#

#
#

#
#

#
#
#

#

#
#

#
#

#

#

#
#
#
#
#

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/REC-xml
http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/SOAP

SOAP 1.2 is a W3C recommendation and is published in two parts:

v Part 1: Messaging Framework is published at http://www.w3.org/TR/soap12-
part1/ .

v Part 2: Adjuncts is published at http://www.w3.org/TR/soap12-part2/.

The specification also includes a primer that is intended to provide a tutorial on the
features of the SOAP Version 1.2 specification, including usage scenarios. The
primer is published at http://www.w3.org/TR/soap12-part0/. The specification for
SOAP 1.2 does not expand the acronym.

Web Services Description Language Version 1.1
Web Services Description Language (WSDL) 1.1 is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information.

The operations and messages are described abstractly, and then bound to a
concrete network protocol and message format to define an endpoint. Related
concrete end points are combined into abstract endpoints (services).

WSDL is extensible to allow the description of endpoints and their messages
regardless of what message formats or network protocols are used to communicate.
The WSDL 1.1 specification only defines bindings that describe how to use WSDL
in conjunction with SOAP 1.1, HTTP GET and POST, and MIME.

The specification for WSDL is published by the World Wide Web Consortium (W3C)
as a W3C Note at http://www.w3.org/TR/wsdl.

Web Services Coordination Version 1.0
Web Services Coordination Version 1.0 (or WS-Coordination) is an extensible
framework for providing protocols that coordinate the actions of distributed
applications. These coordination protocols are used to support a number of
applications, including those that need to reach consistent agreement on the
outcome of distributed activities.

The framework enables an application service to create a context needed to
propagate an activity to other services and to register for coordination protocols.
The framework enables existing transaction processing, workflow, and other
systems for coordination to hide their proprietary protocols and to operate in a
heterogeneous environment.

The specification for WS-Coordination is published at http://www.ibm.com/
developerworks/library/specification/ws-tx/.

Web Services Atomic Transaction Version 1.0
Web Services Atomic Transaction Version 1.0 (or WS-AtomicTransaction) is a
protocol that defines the atomic transaction coordination type for transactions of a
short duration. It is used with the extensible coordination framework described in
the Web Services Coordination Version 1.0 (or WS-Coordination) specification.

The WS-AtomicTransaction specification and the WS-Coordination specification
define protocols for short term transactions that enable transaction processing
systems to interoperate in a Web services environment. Transactions that use
WS-AtomicTransaction have the ACID properties of atomicity, consistency, isolation,
and durability.

Chapter 2. Web services in CICS 25

#

#
#

#

#
#
#
#

#
#
#
#

#
#
#

#
#
#
#

#
#

#
#
#
#
#
#

#
#
#
#
#

#
#

#
#
#
#
#

#
#
#
#
#

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org
http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/

The specification for WS-AtomicTransaction is published at http://www.ibm.com/
developerworks/library/specification/ws-tx/.

WS-I Basic Profile Version 1.1
WS-I Basic Profile Version 1.1 (WS-I BP 1.1) is a set of non-proprietary Web
services specifications, along with clarifications and amendments to those
specifications, which together promote interoperability between different
implementations of Web services.

The WS-I BP 1.1 is derived from Basic Profile Version 1.0 by incorporating its
published errata and separating out the requirements that relate to the serialization
of envelopes and their representation in messages. These requirements are now
part of the Simple SOAP Binding Profile Version 1.0.

To summarize, the WS-I Basic Profile Version 1.0 has now been split into two
separately published profiles. These are:

v WS-I Basic Profile Version 1.1

v WS-I Simple SOAP Binding Profile Version 1.0

Together, these two Profiles supersede the WS-I Basic Profile Version 1.0.

The reason for this separation is to enable the Basic Profile 1.1 to be composed
with any profile that specifies envelope serialization, including the Simple SOAP
Binding Profile 1.0.

The specification for WS-I BP 1.1 is published by the Web Services Interoperability
Organization (WS-I), and can be found at http://www.ws-i.org/Profiles/BasicProfile-
1.1.html.

WS-I Simple SOAP Binding Profile Version 1.0
WS-I Simple SOAP Binding Profile Version 1.0 (SSBP 1.0) is a set of
non-proprietary Web services specifications, along with clarifications and
amendments to those specifications which promote interoperability.

The SSBP 1.0 is derived from the WS-I Basic Profile 1.0 requirements that relate to
the serialization of the envelope and its representation in the message.

WS-I Basic Profile 1.0 has now been split into two separately published profiles.
These are:

v WS-I Basic Profile Version 1.1

v WS-I Simple SOAP Binding Profile Version 1.0

Together, these two Profiles supersede the WS-I Basic Profile Version 1.0.

The specification for SSBP 1.0 is published by the Web Services Interoperability
Organization (WS-I), and can be found at http://www.ws-i.org/Profiles/
SimpleSoapBindingProfile-1.0.html.

Web Services Security: SOAP Message Security
Web Services Security (WSS): SOAP Message Security is a set of enhancements
to SOAP messaging that provides message integrity and confidentiality. WSS:
SOAP Message Security is extensible, and can accommodate a variety of security
models and encryption technologies.

WSS: SOAP Message Security provides three main mechanisms that can be used
independently or together. They are:

26 Release Guide

#
#

|
|
|
|
|

|
|
|
|

|
|

|

|

|

|
|
|

|
|
|

#
#
#
#
#

#
#

http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html

v The ability to send security tokens as part of a message, and for associating the
security tokens with message content

v The ability to protect the contents of a message from unauthorized and
undetected modification (message integrity)

v The ability to protect the contents of a message from unauthorized disclosure
(message confidentiality).

WSS: SOAP Message Security can be used in conjunction with other Web service
extensions and application-specific protocols to satisfy a variety of security
requirements.

The specification is published by the Organization for the Advancement of
Structured Information Standards (OASIS) at http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0.pdf.

Web Services Security: UsernameToken Profile 1.0
Web Services Security (WSS): UsernameToken Profile 1.0 describes how to use
the UsernameToken in conjunction with the WSS: SOAP Message Security
specification. More specifically, it covers how a Web service can use a
UsernameToken as a means of providing a username and password authentication
between a Web service provider and requester.

The WSS: UsernameToken Profile 1.0 specification is published by the Organization
for the Advancement of Structured Information Standards (OASIS) at
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0.pdf.

Web Services Security: X.509 Certificate Token Profile 1.0
Web Services Security (WSS): X.509 Certificate Token Profile 1.0 describes how to
use X.509 certificates in conjunction with the WSS: SOAP Message Security
specification. More specifically, it covers how a Web service can use X.509
certificates as a means of providing authentication between a Web service provider
and requester.

The WSS: X.509 Certificate Token Profile 1.0 specification is published by the
Organization for the Advancement of Structured Information Standards (OASIS) at
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf.

XML Encryption Syntax and Processing
XML Encryption Syntax and Processing specifies a process for encrypting data and
representing the result in XML. The data may be arbitrary data (including an XML
document), an XML element, or XML element content. The result of encrypting data
is an XML Encryption element which contains or references the cipher data.

XML Encryption Syntax and Processing is a recommendation of the World Wide
Web Consortium (W3C) and is published at http://www.w3.org/TR/xmlenc-core.

XML-Signature Syntax and Processing
XML-Signature Syntax and Processing specifies processing rules and syntax for
XML digital signatures.

XML digital signatures provide integrity, message authentication, and signer
authentication services for data of any type, whether located within the XML that
includes the signature or elsewhere.

Chapter 2. Web services in CICS 27

#
#

#
#

#
#

#
#
#

#
#
#

#
#
#
#
#
#

#
#
#
#

#
#
#
#
#
#

#
#
#

#
#
#
#
#

#
#

#
#
#

#
#
#

http://www.oasis-open.org
http://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org
http://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/xmlenc-core

The specification for XML-Signature is published by World Wide Web Consortium
(W3C) at http://www.w3.org/TR/xmldsig-core.

CICS compliance with Web services standards
CICS is compliant with the supported Web services standards and specifications, in
that it allows you to generate and deploy Web services that are compliant.

It should be noted that CICS does not enforce this compliancy. For example, in the
case of support for the WS-I Basic Profile 1.1 specification, CICS allows you to
apply additional qualities of service to your Web service that could break the
interoperability outlined in this Profile.

How CICS complies with WS-I Basic Profile 1.1:

CICS conditionally complies with WS-I Basic Profile 1.1 in that it adheres to all the
MUST level requirements. However, CICS does not specifically implement support
for UDDI registries, and therefore the points relating to this in the specification are
ignored. Also the Web services assistant jobs and associated runtime environment
are not fully compliant with this Profile, as there are limitations in the support of
mapping certain schema elements.

See High level language and XML schema mapping for a list of unsupported
schema elements.

Conformance targets identify what artifacts (e.g. SOAP message, WSDL
description) or parties (e.g. SOAP processor, end user) that the requirements apply
to. The conformance targets supported by CICS are:

MESSAGE
Protocol elements that transport the ENVELOPE (e.g. SOAP over HTTP
messages).

ENVELOPE
The serialization of the soap:Envelope element and its content.

DESCRIPTION
The description of types, messages, interfaces and their protocol and data
format bindings, and network access points associated with Web services
(e.g. WSDL descriptions).

INSTANCE
Software that implements a wsdl:port.

CONSUMER
Software that invokes an INSTANCE.

SENDER
Software that generates a message according to the protocol associated
with it

RECEIVER
Software that consumes a message according to the protocol associated
with it.

How CICS complies with Web Services Security specifications:

CICS conditionally complies with Web Services Security: SOAP Message Security
and related specifications by supporting the following aspects.

28 Release Guide

#
#

#
#
#

#
#
#
#

#

#
#
#
#
#
#

#
#

#
#
#

#
#
#

#
#

#
#
#
#

#
#

#
#

#
#
#

#
#
#

#

#
#

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/xmldsig-core/

Compliance with Web Services Security: SOAP Message Security

Security header
The <wsse:Security> header provides a mechanism for attaching
security-related information targeted at a specific recipient in the form of a
SOAP actor or role. This could be the ultimate recipient of the message or
an intermediary. The following attributes are supported in CICS:

v S11:actor (for an intermediary)

v S11:mustUnderstand

v S12:role (for an intermediary)

v S12:mustUnderstand

Security tokens
The following security tokens are supported in the security header:

v User name and password

v Binary security token (X.509 certificate)

Token references
A security token conveys a set of claims. Sometimes these claims reside
elsewhere and need to be accessed by the receiving application. The
<wsse:SecurityTokenReference> element provides an extensible
mechanism for referencing security tokens. The following mechanisms are
supported:

v Direct reference

v Key identifier

v Key name

v Embedded reference

Signature algorithms
This specification builds on XML Signature and therefore has the same
algorithms as those that are specified as required in the XML Signature
specification. CICS supports:

Algorithm type Algorithm URI

Digest SHA1 http://www.w3.org/2000/09/
xmldsig#sha1

Signature DSA with SHA1 (validation
only)

http://www.w3.org/2000/09/
xmldsig#dsa-sha1

Signature RSA with SHA1 http://www.w3.org/2000/09/
xmldsig#rsa-sha1

Canonicalization Exclusive XML
canonicalization (without
comments)

http://www.w3.org/2001/10/
xml-exc-c14n#

Signature signed parts
CICS allows the following SOAP elements to be signed:

v the SOAP message body

v the identity token (a type of security token), that is used as an asserted
identity

Encryption algorithms
The following data encryption algorithms are supported:

Chapter 2. Web services in CICS 29

#

#
#
#
#
#

#

#

#

#

#
#

#

#

#
#
#
#
#
#

#

#

#

#

#
#
#
#

####

###
#

##
#
#
#

###
#

##
#
#

#
#

#

#
#

#

#
#

#
#

Algorithm URI

Triple Data Encryption
Standard algorithm (Triple
DES)

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-cbc

Advanced Encryption
Standard (AES) algorithm
with a key length of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-cbc

The following key encryption algorithm is supported:

Algorithm URI

Key transport (public key cryptography) RSA
Version 1.5:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

Encryption message parts
CICS allow the following SOAP elements to be encrypted:

v the SOAP body

Timestamp
The <wsu:Timestamp> element provides a mechanism for expressing the
creation and expiration times of the security semantics in a message. CICS
tolerates the use of timestamps within the Web services security header on
inbound SOAP messages.

Error handling
CICS generates SOAP fault messages using the standard list of response
codes listed in the specification.

Compliance with Web Services Security: UsernameToken Profile 1.0

The following aspects of this specification are supported:

Password types
Text

Token references
Direct reference

Compliance with Web Services Security: X.509 Certificate Token Profile 1.0

The following aspects of this specification are supported:

Token types

v X.509 Version 3: Single certificate. See http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-x509- token-profile-1.0#X509v3.

v X.509 Version 3: X509PKIPathv1 without certificate revocation lists
(CRL). See http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
x509- token-profile-1.0#X509PKIPathv1.

30 Release Guide

###

#
#
#

#

#
#
#

#

#
#
#

#

#
#
#

#

#
#

###

#
#
#

#

#
#

#

#
#
#
#
#

#
#
#

#

#

#
#

#
#

#

#

#

#
#

#
#
#

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509v3
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509v3
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509PKIPathv1
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509PKIPathv1

v X.509 Version 3: PKCS7 with or without CRLs. The IBM Software
Development Kit (SDK) supports both. The Sun Java Development Kit
(JDK) supports PKCS7 without CRL only.

Token references

v Key identifier - subject key identifier

v Direct reference

v Custom reference - issuer name and serial number

Aspects that are not supported

The following items are not supported in CICS:

v Validation of Timestamps for freshness

v Nonces

v Web services security for SOAP attachments

v Security Assertion Markup Language (SAML) token profile, WS-SecurityKerberos
token profile, and XrML token profile

v Web Services Interoperability (WS-I) Basic Security Profile

v XML enveloping digital signature

v XML enveloping digital encryption

v The following transport algorithms for digital signatures are not supported:

– XSLT: http://www.w3.org/TR/1999/REC-xslt-19991116

– SOAP Message Normalization. For more information, see
http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/

v The Diffie-Hellman key agreement algorithm for encryption is not supported. For
more information, see http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
Overview.html#sec-DHKeyValue.

v The following canonicalization algorithms for encryption, which are optional in the
XML encryption specification, are not supported:

– Canonical XML with or without comments

– Exclusive XML canonicalization with or comments

v In the Username Token Version 1.0 Profile specification, the digest password
type is not supported.

Planning to use Web services

Before you can plan to use Web services in CICS, you need to consider these
questions for each application:

Do you plan to deploy your CICS application in the role of a service provider
or a service requester?

You may have a pair of applications that you want to connect using CICS
support for Web services. In this case, one application will be the service
provider; the other will be the service requester.

Do you plan to use your existing application programs, or write new ones?
If your existing applications are designed with a well defined interface to the
business logic, you will probably be able to use them in a Web services
setting, either as a service provider or a service requester. However, in
most cases, you will need to write a wrapper program that connects your
business logic to the Web services logic.

Chapter 2. Web services in CICS 31

#
#
#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#
#

#
#
#

#
#

#

#

#
#

#

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue

If you plan to write new applications, you should aim to keep your business
logic separated from your Web services logic, and, once again, you will
need to write a wrapper program to provide this separation. However, if
your application is designed with Web services in mind, the wrapper may
prove to be simpler to write.

Do you intend to use SOAP messages?
SOAP is fundamental to the Web services architecture, and much of the
support that is provided in CICS assumes that you will use SOAP. However,
there may be situations where you wish to use other message formats. For
example, you may have developed your own message formats that you
want to deploy with the CICS Web services infrastructure. CICS allows you
to do this, but you will not be able to use some of the functions that CICS
provides, such as the Web services assistant, and the SOAP message
handlers.

Do you intend to use the CICS Web services assistant to generate the
mappings between your data structures and SOAP messages?

The assistant provides a rapid deployment of many applications into a Web
services setting with little or no additional programming. And when
additional programming is required, it is usually straightforward, and can be
done without changing existing business logic.

However, there are cases which are better handled without using the Web
services assistant. For example, if you have existing code that maps data
structures to SOAP messages, there is no advantage in reengineering your
application with the Web services assistant.

Do you intend to use an existing service description, or create a new one?
In some situations, you will be obliged to use an existing service description
as a starting point. For example:

v Your application is a service requester, and it is designed to invoke an
existing Web service.

v Your application is a service provider, and you want it to conform to an
existing industry-standard service description.

In other situations, you may need to create a new service description for
your application.

Next steps:

v Planning a service provider

v Planning a service requester

Planning a service provider application
In general, CICS applications should be structured to ensure separation of business
logic and communications logic. Following this practice will help you to deploy new
and existing applications in a Web service provider in a straightforward way. You
will, in some situations, need to interpose a simple wrapper program between your
application program and CICS Web service support.

Figure 10 on page 33 shows a typical application which is partitioned to ensure a
separation between communication logic and business logic.

32 Release Guide

In many cases, you can deploy the business logic directly as a service provider
application. This is illustrated in Figure 11.

To use this simple model, the following conditions apply:

When you are using the CICS Web services assistant to generate the mapping
between SOAP messages and application data structures:

The data types used in the interface to the business logic must be
supported by the CICS Web services assistant. If this is not the case, you
must interpose a wrapper program between CICS Web service support and
your business logic.

You will also need a wrapper program when you deploy an existing program
to provide a service that conforms to an existing Web service description: if
you process the Web service description using the assistant, the resulting
data structures are very unlikely to match the interface to your business
logic.

When you are not using the CICS Web services assistant:
Message handlers in your service provider pipeline must interact directly
with your business logic.

Using a wrapper program

Use a wrapper program when the CICS Web services assistant cannot generate
code to interact directly with the business logic. For example, the interface to the
business logic might use a data structure which the CICS Web services assistant
cannot map directly into a SOAP message. In this situation, you can use a wrapper
program to provide any additional data manipulation that is required:

EXEC CICS
LINKCommunications

logic
Business

logicClient

CICS Transaction Server

Figure 10. Application partitioned into communications and business logic

Business
logic

CICS
Web service

support
Client

CICS Transaction Server

Figure 11. Simple deployment of CICS application as a Web service provider

CICS
Web service

support

Business
logic

EXEC CICS
LINKwrapper

programClient

CICS Transaction Server

Figure 12. Deployment of CICS application as a Web service provider using a wrapper
program

Chapter 2. Web services in CICS 33

You will need to design a second data structure that the assistant can support, and
use this as the interface to your wrapper program. The wrapper program then has
two simple functions to perform:

v move data between the two data structures

v invoke the business logic using its existing interface

Error handling

If you are planning to use the CICS Web services assistant, you should also
consider how to handle rolling back changes when errors occur. When a SOAP
request message is received from a service requester, the SOAP message is
transformed by CICS just before it is passed to your application program. If an error
occurs during this transformation, CICS does not automatically roll back any work
that has been performed on the message. For example, if you plan to add some
additional processing on the SOAP message using handlers in the pipeline, you
need to decide if they should roll back any recoverable changes that they have
already performed.

On outbound SOAP messages, for example when your service provider application
program is sending a response message to a service requester, if CICS encounters
an error when generating the response SOAP message, all of the recoverable
changes made by the application program are automatically backed out. You should
consider whether adding synchronization points is appropriate for your application
program.

If you are planning to use Web service atomic transactions in your provider
application, and the Web service requester also supports atomic transactions, any
error that causes CICS to roll back a transaction would also cause the remote
requester to roll back its changes.

Planning a service requester application
In general, CICS applications should be structured to ensure separation of business
logic and communications logic. Following this practice will help you to deploy new
and existing applications in a Web service requester in a straightforward way. You
will, in almost every situation, need to interpose a simple wrapper program between
your application program and CICS Web service support.

Figure 13 shows a typical application which is partitioned to ensure a separation
between communication logic and business logic. The application is ideally
structured for reuse of the business logic in a Web service requester.

You cannot use the existing EXEC CICS LINK command to invoke CICS Web
services support in this situation:

v When you are using the CICS Web services assistant to generate the mapping
between SOAP messages and application data structures, you must use an
EXEC CICS INVOKE WEBSERVICE command, and pass the application's data

EXEC CICS
LINK Communications

logic
Business

logic Server

CICS Transaction Server

Figure 13. Application partitioned into communications and business logic

34 Release Guide

#

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#

structure to CICS Web services support. Also, the data types used in the
interface to the business logic must be supported by the CICS Web services
assistant.

However, if the target WEBSERVICE that your application program invokes is
provider mode, i.e. a value has been defined for the PROGRAM attribute, CICS
automatically optimizes the request using the EXEC CICS LINK command.

v When you are not using the CICS Web services assistant, you must construct
your own messages, and link to program DFHPIRT.

Either way, it follows that your business logic cannot invoke a Web service directly
unless you are prepared to change the program. For the Web services assistant,
this option is shown in Figure 14, but it is not advisable in either case.

Using a wrapper program

A better solution, which keeps the business logic almost unchanged, is to use a
wrapper program. The wrapper, in this case, has two purposes:

v It issues an EXEC CICS INVOKE WEBSERVICE command, or an EXEC CICS
LINK PROGRAM(DFHPIRT), on behalf of the business logic. The only change in
the business logic is the name of the program to which it links.

v It can, if necessary, provide any data manipulation that is required if your
application uses a data structure which the CICS Web services assistant cannot
map directly into a SOAP message.

For the case when the Web services assistant is used, this structure is illustrated in
Figure 15.

Error handling

If you are planning to use the CICS Web services assistant, you should also
consider how to handle rolling back changes when errors occur. If your service
requester application receives a SOAP fault message from the service provider, you
need to decide how your application program should handle the fault message.
CICS does not automatically roll back any changes when a SOAP fault message is
received.

If you are planning to implement Web service atomic transactions in your requester
application program, the error handling is different. If the remote service provider

EXEC CICS
INVOKE

WEBSERVICEBusiness
logic

CICS
Web service

support
Server

CICS Transaction Server

Figure 14. Simple deployment of CICS application as a Web service requester

CICS
Web service

support

EXEC CICS
LINKBusiness

logic

EXEC CICS
INVOKE

WEBSERVICEwrapper
program Server

CICS Transaction Server

Figure 15. Deployment of CICS application as a Web service requester using a wrapper
program

Chapter 2. Web services in CICS 35

#
#
#

#

#
#
#
#
#
#

#
#

encounters an error and rolls back its changes, a SOAP fault message is returned
and the local transaction in CICS also rolls back. If local optimization is in effect, the
service requester and provider use the same transaction. If the provider encounters
an error, any changes made by the transaction in the requester are also rolled
back.

The CICS Web services assistant
The CICS Web services assistant is a set of batch utilities which can help you to
transform existing CICS applications into Web services and to enable CICS
applications to use Web services provided by external providers. The assistant
supports rapid deployment of CICS applications for use in service providers and
service requesters, with the minimum of programming effort.

When you use the Web services assistant for CICS, you do not have to write your
own code for parsing inbound messages and for constructing outbound messages;
CICS maps data between the body of a SOAP message and the application
program's data structure.

Resource definitions are, for the most part, generated and installed automatically.
You do have to define PIPELINE resources, but you can, in many cases, use one of
the pipeline configuration files that CICS provides. These are:

basicsoap11provider.xml
Pipeline configuration file for a service provider using the SOAP 1.1
message handler.

basicsoap11requester.xml
Pipeline configuration file for a service requester using the SOAP 1.1
message handler.

The assistant can create a WSDL document from a simple language structure, or a
language structure from an existing WSDL document, and supports COBOL, C/C++,
and PL/I. It also generates information used to enable automatic runtime conversion
of the SOAP messages to containers and COMMAREAs, and vice versa.

However, the assistant cannot deal with every possibility, and there are times when
you will need to take a different approach. For example:

You don't want to use SOAP messages
If you prefer to use a non-SOAP protocol for your messages, you can do
so. However, your application programs will be responsible for parsing
inbound messages, and constructing outbound messages.

You want to use SOAP messages, but don't want CICS to parse them
For an inbound message, the assistant maps the SOAP body to an
application data structure. In some applications, you may want to parse the
SOAP body yourself.

The CICS Web services assistant does not support your application's data
structure

Although the CICS Web services assistant supports the most common data
types and structures, there are some which are not supported. In this
situation, you should first consider providing a program layer that maps your
application's data to a format that the assistant can support. If this is not
possible, you will need to parse the message yourself.

If you decide not to use the CICS Web services assistant, you will have to:

36 Release Guide

#
#
#
#
#

v Provide your own code for parsing inbound messages, and constructing
outbound messages

v Provide your own pipeline configuration file

v Define and install your own URIMAP and PIPELINE resources

The CICS Web services assistant comprises two utility programs:

DFHLS2WS
Generates a Web service binding file from a language structure. This utility
also generates a Web service description.

DFHWS2LS
Generates a Web service binding file from a Web service description. This
utility also generates a language structure that you can use in your
application programs.

The JCL procedures to run both programs are in the hlq.XDFHINST library.

DFHLS2WS: high level language to WSDL conversion
The DFHLS2WS procedure generates a Web service description and a Web service
binding file from a high-level language data structure. You can use DFHLS2WS
when you expose a CICS application program as a service provider.

As per the W3C recommendation for WSDL documents, DFHLS2WS uses a top
level wrapper element to contain the body of the SOAP message. The wrapper
element takes the name of the WSDL operation and is represented as a
complexType in the WSDL document.

The job control statements for DFHLS2WS, its symbolic parameters, its input
parameters and their descriptions, and an example job help you to use this
procedure.

Job control statements for DFHLS2WS

JOB Initiates the job.

EXEC Specifies the procedure name (DFHLS2WS).

DFHLS2WS requires sufficient storage to run a Java virtual machine (JVM).
You are advised to specify REGION=0M on the EXEC statement.

INPUT.SYSUT1 DD
Specifies the input. The input parameters are usually specified in the input
stream. However, they can be defined in a data set, or in a member of a
partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in cataloged procedure DFHLS2WS:

JAVADIR=path
Specifies the name of the Java directory that is used by DFHLS2WS. The value
of this parameter is appended to /usr/lpp/ giving a complete path name of
/usr/lpp/path.

Normally, you do not need to specify this parameter; the default value is the
value that was supplied to the CICS installation job (DFHISTAR) in the
JAVADIR parameter.

Chapter 2. Web services in CICS 37

PATHPREF=prefix
Specifies an optional prefix that extends the HFS directory path used on other
parameters. The default is the empty string.

Normally, you do not need to specify this parameter; the default value is the
value that was supplied to the CICS installation job (DFHISTAR) in the
JAVADIR parameter.

SERVICE=value
Use this parameter only when directed to do so by IBM support.

TMPDIR=tmpdir
Specifies the location of a directory in HFS that DFHLS2WS uses as a
temporary work space. The user ID under which the job runs must have read
and write permission to this directory.

The default value is /tmp.

TMPFILE=tmpprefix
Specifies a prefix that DFHLS2WS uses to construct the names of the
temporary workspace files.

The default value is LS2WS

USSDIR=path
Specifies the name of the CICS TS directory in the UNIX® system services
HFS. The value of this parameter is appended to /usr/lpp/cicsts/ giving a
complete path name of /usr/lpp/cicsts/path

Normally, you do not need to specify this parameter; the default value is the
value that was supplied to the CICS installation job (DFHISTAR) in the USSDIR
parameter.

The temporary work space

DFHLS2WS creates the following three temporary files during execution:

tmpdir/tmpprefix.in

tmpdir/tmpprefix.out

tmpdir/tmpprefix.err

where

tmpdir is the value specified in the TMPDIR parameter

tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files (when TMPDIR and TMPFILE are not specified),
are:

/tmp/LS2WS.in

/tmp/LS2WS.out

/tmp/LS2WS.err

Important: DFHLS2WS does not lock access to the generated HFS file names.
Therefore, if two or more instances of DFHLS2WS run concurrently,
and use the same temporary workspace files, there is nothing to
prevent one job overwriting the workspace files while another job is
using them. This can lead to unpredictable failures.

Therefore, you are advised to devise a naming convention, and
operating procedures, that will avoid this situation. For example, you

38 Release Guide

#
#
#

#
#
#

#
#

can use the system symbolic parameter SYSUID to generate
workspace file names that are unique to an individual user.

These temporary files are deleted before the end of the job.

Input parameters for DFHLS2WS

If you need any help understanding this syntax diagram, see “Syntax notation” on
page xii.

�� PDSLIB=value
PDSCP=value REQMEM=value RESPMEM=value

�

� LANG=COBOL
LANG=PLI-ENTERPRISE
LANG=PLI-OTHER
LANG=C
LANG=CPP DFHREQUEST DFHRESPONSE

STRUCTURE=(,)
request response

�

�

PGMINT=CHANNEL
CONTID=value

PGMNAME=value
TRANSACTION=name USERID=id URI=value PGMINT=COMMAREA

�

� WSBIND=value WSDL=value LOGFILE=value
MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1
CHAR-VARYING=NO

MAPPING-LEVEL=1.2
CHAR-VARYING=NULL

�

�
MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=1.0
MINIMUM-RUNTIME-LEVEL=1.1
MINIMUM-RUNTIME-LEVEL=1.2
MINIMUM-RUNTIME-LEVEL=CURRENT

CCSID=value REQUEST-NAMESPACE=value RESPONSE-NAMESPACE=value
�

�
NO

SYNCONRETURN=
SYNCONRETURN=YES

WSDLCP=LOCAL
WSDLCP=UTF-8

��

Parameter use
v You can specify the input parameters in any order.

v Each parameter must start on a new line.

v A parameter (and its continuation character, if you use one) must not extend
beyond column 72; columns 73 to 80 should contain blanks.

v If a parameter is too long to fit on a single line, use an asterisk (*) character at
the end of the line to indicate that the parameter continues on the next line.
Everything (including spaces) before the asterisk is considered part of the
parameter. For example:

Chapter 2. Web services in CICS 39

#

##

#####

########

#####

#
#

WSBIND=wsbinddir*
/app1

is equivalent to

WSBIND=wsbinddir/app1

v A # character in the first character position of the line is a comment character.
The line is ignored.

Parameter descriptions

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the
application data structure. The value of this parameter overrides the value of
the LOCALCCSID system initialization parameter. The value must be an
EBCDIC CCSID that is supported by Java and z/OS conversion services. If you
do not specify this parameter, the application data structure is encoded using
the CCSID specified in the system initialization parameter.

You can use this parameter with any mapping level. However, if you want to
deploy the generated files, you must apply APAR PK23547 to the CICS region
to achieve the minimum runtime level of code to install the Web service binding
file.

CHAR-VARYING=NO|NULL
Specifies how character fields in the language structure should be mapped
when the mapping level is 1.2. A character field in COBOL is a Picture clause of
type X, for example PIC(X) 10; a character field in C/C++ is a character array.
This parameter does not apply to Enterprise and Other PL/I language
structures. The options you can select are:

NO Character fields are mapped to an xsd:string and are processed as
fixed length fields. The maximum length of the data is equal to the
length of the field.

NULL Character fields are mapped to an xsd:string and are processed as
null terminated strings. CICS adds a terminating null character when
transforming from a SOAP message. The maximum length of the
character string is calculated as one character less than the length
indicated in the language structure.

CONTID=value
In a service provider, specifies the name of the container that holds the top
level data structure used to represent a SOAP message.

LANG=COBOL
Specifies that the programming language of the high level language structure is
COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high level language structure is
Enterprise PL/I.

LANG=PLI-OTHER
Specifies that the programming language of the high level language structure is
a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high level language structure is
C.

40 Release Guide

#
#
#
#
#
#
#

#
#
#
#

#
#
#
#
#
#

##
#
#

##
#
#
#
#

#
#
#

LANG=CPP
Specifies that the programming language of the high level language structure is
C++.

LOGFILE=value
The fully qualified HFS name of the file into which DFHLS2WS writes its activity
log and trace information. DFHLS2WS creates the file (but not the directory
structure) if it does not already exist.

Normally, you will not need to use this file, but it may be requested by the IBM
service organization if you encounter problems with DFHLS2WS.

MAPPING-LEVEL={1.0|1.1|1.2}
Specifies the level of mapping that DFHLS2WS should use when generating the
Web service binding file and Web service description. This parameter is
available when you apply APAR PK15904. You also need to apply APAR
PK23547 if you want to use the 1.2 mapping level option. The options you can
select are:

1.0 This is the default mapping level.

1.1 Use this mapping if you need to regenerate a binding file at this specific
level.

1.2 At this mapping level you can use the parameter CHAR-VARYING to
control how character arrays should be processed at run time.
VARYING and VARYINGZ arrays are also supported in PL/I.

For details of what is supported at each level of mapping, see Mapping levels
for the CICS Web services assistant.

MINIMUM-RUNTIME-LEVEL={MINIMUM|1.0|1.1|1.2|CURRENT}
Specifies the minimum CICS runtime environment that the Web service binding
file can be deployed into. If you select a level that does not match the other
parameters that you have specified, you receive an error message. The options
you can select are:

MINIMUM
The lowest possible runtime level of CICS is allocated automatically
given the parameters that you have specified.

1.0 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that does not have APARs PK15904 and PK23547
applied. You cannot specify the CHAR-VARYING, CCSID, or
MAPPING-LEVEL parameters.

1.1 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that has at least APAR PK15904 applied. You
cannot specify the CHAR-VARYING or CCSID parameters. You cannot
use a mapping level of 1.2 for the MAPPING-LEVEL parameter.

1.2 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that has both APAR PK15904 and PK23547
applied. You can use any optional parameter at this level.

CURRENT
The generated Web service binding file deploys successfully into a
CICS region at the same runtime level as the one you are using to
generate the Web service binding file.

PDSLIB=value
Specifies the name of the partitioned data set that contains the high level

Chapter 2. Web services in CICS 41

#
#
#
#
#
#

##

##
#

##
#
#

#
#

#
#
#
#
#

#
#
#

##
#
#
#

##
#
#
#

##
#
#

#
#
#
#

language data structures to be processed. The data set members used for the
request and response are specified in the REQMEM and RESPMEM
parameters respectively.

Restriction: The records in the partitioned data set must have a fixed length of
80 bytes.

PDSCP=value
Specifies the code page used in the partitioned data set members specified in
the REQMEM and RESPMEM parameters, where value is a CCSID number or
a Java code page number. If this parameter is not specified, then the z/OS
UNIX System Services code page is used. For example, you could specify
PDSCP=037.

PGMINT=CHANNEL|COMMAREA
For a service provider, specifies how CICS passes data to the target application
program:

CHANNEL
CICS uses a channel interface to pass data to the target application
program.

COMMAREA
CICS uses a communication area to pass data to the target application
program.

This parameter is ignored when the output from DFHLS2WS is used in a
service requester.

PGMNAME=value
Specifies the name of the target CICS application program that will be exposed
as a Web service. This is the program that the CICS Web service support will
link to.

REQMEM=value
Specifies the name of the partitioned data set member which contains the high
level language structure for the Web service request:
v For a service provider, the Web service request is the input to the application

program
v For a service requester, the Web service request is the output from the

application program

REQUEST-NAMESPACE=value
Specifies the namespace of the XML schema for the request message in the
generated Web service description. If you do not specify this parameter, CICS
generates a namespace automatically.

RESPMEM=value
Specifies the name of the partitioned data set member which contains the high
level language structure for the Web service response:
v For a service provider, the Web service response is the output from the

application program
v For a service requester, the Web service response is the input to the

application program

If there is no response (that is, for one way messages) omit this parameter.

RESPONSE-NAMESPACE=value
Specifies the namespace of the XML schema for the response message in the
generated Web service description. If you do not specify this parameter, CICS
generates a namespace automatically.

42 Release Guide

#
#
#
#
#
#

STRUCTURE=(request,response)
For C and C++ only, specifies the names of the high level structures contained
in the partitioned data set members specified in the REQMEM and RESPMEM
parameters:

request
specifies the name of the high level structure containing the request when
the REQMEM parameter is specified. The default value is DFHREQUEST.

The partitioned data set member must contain a high level structure with
the name that you specify (or a structure named DFHREQUEST if you do
not specify a name).

response
specifies the name of the high level structure containing the response when
the RESPMEM parameter is specified. The default value is
DFHRESPONSE.

If you specify a value, the partitioned data set member must contain a high
level structure with the name that you specify (or a structure named
DFHRESPONSE if you do not specify a name).

SYNCONRETURN=NO|YES
specifies whether the remote Web service can issue a syncpoint.

NO The remote Web service cannot issue a syncpoint. This value is the
default. If the remote Web service issues a syncpoint, it fails with an
ADPL abend.

YES The remote Web service can issue a syncpoint. If you select YES, the
remote task is committed as a separate unit of work when control
returns from the remote Web service. If the remote Web service
updates a recoverable resource and a failure occurs after it returns, the
update to that resource cannot be backed out.

TRANSACTION=name
In a service provider, this parameter specifies the 1-4 character name of an
alias transaction that can start the pipeline. The value of this parameter is used
to define the TRANSACTION attribute of the URIMAP resource when it is
created automatically using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

URI=value
In a service provider, this parameter specifies the relative URI that a client will
to use to access the Web service. CICS uses the value specified when it
generates a URIMAP resource from the Web service binding file created by
DFHLS2WS: the parameter specifies the path component of the URI to which
the URIMAP definition applies.

USERID=id
In a service provider, this parameter specifies a 1-8 character user ID which can
be used by any Web client. For an application-generated response or a Web
service, the alias transaction is attached under this user ID. The value of this
parameter is used to define the USERID attribute of the URIMAP resource
when it is created automatically using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ #

Chapter 2. Web services in CICS 43

#
#

##
#
#

##
#
#
#
#

#
#
#
#
#

##

#
#

#

#
#
#
#
#
#

##

#

WSBIND=value
The fully qualified HFS name of the Web service binding file. DFHLS2WS
creates the file (but not the directory structure) if it does not already exist.

WSDL=value
The fully qualified HFS name of the file into which the Web service description
is written. DFHLS2WS creates the file (but not the directory structure) if it does
not already exist.

WSDLCP=LOCAL|UTF-8
Specifies the code page that is used to generate the WSDL document.

LOCAL
This value specifies that the WSDL document is generated using the
local code page and no encoding tag is generated in the WSDL
document.

UTF-8 This value specifies that the WSDL document is generated using the
UTF-8 code page. An encoding tag is generated in the WSDL
document. If you specify this option, you must ensure that the encoding
remains correct when copying the WSDL document between different
platforms.

Other information
v The user ID under which DFHLS2WS runs must be defined to OMVS. The user

ID must have read permission to the CICS HFS file structure and PDS libraries,
and write permission to the directories specified on the LOGFILE, WSBIND, and
WSDL parameters.

v The user ID must have a sufficiently large storage allocation to run Java.

DFHWS2LS: WSDL to high level language conversion
Cataloged procedure DFHWS2LS generates a high level language data structure
and a Web service binding file from a Web service description. You can use
DFHWS2LS when you expose a CICS application program as a service provider or
when you construct a service requester.

Job control statements for DFHWS2LS

JOB Initiates the job.

EXEC Specifies the procedure name (DFHWS2LS).

DFHWS2LS requires sufficient storage to run a Java virtual machine (JVM).
You are advised to specify REGION=0M on the EXEC statement.

INPUT.SYSUT1 DD
Specifies the input. The input parameters are usually specified in the input
stream. However, they can be defined in a data set, or in a member of a
partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in cataloged procedure DFHWS2LS:

JAVADIR=path
Specifies the name of the Java directory that is used by DFHWS2LS. The value
of this parameter is appended to /usr/lpp/ giving a complete path name of
/usr/lpp/path.

44 Release Guide

#

#

#
#

#
#
#
#

##
#
#
#
#

Normally, you do not need to specify this parameter; the default value is the
value that was supplied to the CICS installation job (DFHISTAR) in the
JAVADIR parameter.

PATHPREF=prefix
Specifies an optional prefix that extends the HFS directory path used on other
parameters. The default is the empty string.

Normally, you do not need to specify this parameter; the default value is the
value that was supplied to the CICS installation job (DFHISTAR) in the
JAVADIR parameter.

TMPDIR=tmpdir
Specifies the location of a directory in HFS that DFHWS2LS uses as a
temporary work space. The user ID under which the job runs must have read
and write permission to this directory.

The default value is /tmp.

TMPFILE=tmpprefix
Specifies a prefix that DFHWS2LS uses to construct the names of the
temporary workspace files.

The default value is WS2LS.

USSDIR=path
Specifies the name of the CICS TS directory in the UNIX system services HFS.
The value of this parameter is appended to /usr/lpp/cicsts/ giving a complete
path name of /usr/lpp/cicsts/path.

Normally, you do not need to specify this parameter; the default value is the
value that was supplied to the CICS installation job (DFHISTAR) in the USSDIR
parameter.

SERVICE=value
Use this parameter only when directed to do so by IBM support.

The temporary work space

DFHWS2LS creates the following three temporary files during execution:

tmpdir/tmpprefix.in

tmpdir/tmpprefix.out

tmpdir/tmpprefix.err

where

tmpdir is the value specified in the TMPDIR parameter

tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files (when TMPDIR and TMPFILE are not specified),
are:

/tmp/WS2LS.in

/tmp/WS2LS.out

/tmp/WS2LS.err

Important: DFHWS2LS does not lock access to the generated HFS file names.
Therefore, if two or more instances of DFHWS2LS run concurrently,
and use the same temporary workspace files, there is nothing to
prevent one job overwriting the workspace files while another job is
using them. This can lead to unpredictable failures.

Chapter 2. Web services in CICS 45

#
#
#

#
#
#

#
#

Therefore, you are advised to devise a naming convention, and
operating procedures, that will avoid this situation. For example, you
can use the system symbolic parameter SYSUID to generate
workspace file names that are unique to an individual user.

These temporary files are deleted before the end of the job.

Input parameters for DFHWS2LS

If you need any help understanding this syntax diagram, see “Syntax notation” on
page xii.

�� PDSLIB=value
PDSCP=value REQMEM=value RESPMEM=value

�

� LANG=COBOL
LANG=PLI-ENTERPRISE
LANG=PLI-OTHER
LANG=C
LANG=CPP DFHREQUEST DFHRESPONSE

STRUCTURE=(,)
request response

�

�
PGMINT=CHANNEL

CONTID=value
PGMNAME=value

URI=value PGMINT=COMMAREA TRANSACTION=name USERID=id

�

� WSBIND=value WSDL=value
MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1
MAPPING-LEVEL=1.2 Advanced data mapping

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=1.0
MINIMUM-RUNTIME-LEVEL=1.1
MINIMUM-RUNTIME-LEVEL=1.2
MINIMUM-RUNTIME-LEVEL=CURRENT

�

�
HTTPPROXY= domain name :port number HTTPPROXY-USERNAME=value HTTPPROXY-PASSWORD=value

IP address

�

�
BINDING=value CCSID=value

LOGFILE=value
NO

SYNCONRETURN=
SYNCONRETURN=YES

��

Advanced data mapping:

CHAR-VARYING=NO
CHAR-VARYING=NULL
CHAR-VARYING=YES

CHAR-VARYING-LIMIT=32767

CHAR-VARYING-LIMIT=value

CHAR-MULTIPLIER=1

CHAR-MULTIPLIER=value
�

�
DEFAULT-CHAR-MAXLENGTH=255

DEFAULT-CHAR-MAXLENGTH=value

46 Release Guide

#

##

########

######

####

Parameter use
v You can specify the input parameters in any order.

v Each parameter must start on a new line.

v A parameter (and its continuation character, if you use one) must not extend
beyond column 72; columns 73 to 80 should contain blanks.

v If a parameter is too long to fit on a single line, use an asterisk (*) character at
the end of the line to indicate that the parameter continues on the next line.
Everything (including spaces) before the asterisk is considered part of the
parameter. For example:

WSBIND=wsbinddir*
/app1

is equivalent to

WSBIND=wsbinddir/app1

v A # character in the first character position of the line is a comment character.
The line is ignored.

Parameter descriptions

BINDING=value
If the Web service description contains more than one <binding> element, use
this parameter to specify which one is to be used to generate the language
structure and Web service binding file. Specify the value of the name attribute
that is used on the <binding> element in the Web service description.

CCSID=value
Specifies the CCSID that is used at run time to encode character data in the
application data structure. The value of this parameter overrides the value of
the LOCALCCSID system initialization parameter. The value must be an
EBCDIC CCSID that is supported by Java and z/OS conversion services. If you
do not specify this parameter, the application data structure is encoded using
the CCSID specified in the system initialization parameter.

You can use this parameter with any mapping level. However, if you want to
deploy the generated files, you must apply APAR PK23547 to the CICS region
to achieve the minimum runtime level of code to install the Web service binding
file.

CHAR-MULTIPLIER=1|value
Specifies the number of bytes to allow for each character when the mapping
level is 1.2. The value of this parameter can be a positive integer in the range
of 1 to 2147483647. All nonnumeric character-based mappings, are subject to
this multiplier. Binary, numeric, zoned and packed decimal fields are not subject
to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS
characters where you could opt for a multiplier of 3 to allow space for potential
shift-out and shift-in characters around every double byte character at run time.

CHAR-VARYING=NO|NULL|YES
Specifies how variable length character data is mapped. Variable length
character data is where the minimum and maximum length of a field is different.
This parameter can only be used when the mapping level is 1.2. If you do not
specify this parameter, the default mapping depends on the language that is
specified. These defaults are described in the mappings for each language and
XML schema in High level language and XML schema mapping. The options
that you can select are:

Chapter 2. Web services in CICS 47

#
#

#
#
#
#
#
#
#

#
#
#
#

NO Variable length character data is mapped as fixed length strings.

NULL Variable length character data is mapped to null terminated strings.

YES Variable length character data is mapped to a CHAR VARYING data
type in PL/I. In the COBOL, C and C++ languages, variable length
character data is mapped to an equivalent representation that
comprises of two related elements - data length and the data.

CHAR-VARYING-LIMIT=32767|value
Specifies the maximum size of variable length character data that is mapped to
the language structure. If the character data is larger than the value specified in
this parameter, it is mapped to a container and the container name is used in
the generated language structure. The value can range from 0 to the default
32767 bytes.

This parameter can only be used when the mapping level is 1.2.

CONTID=value
In a service provider, specifies the name of the container that holds the top
level data structure used to represent a SOAP message.

DEFAULT-CHAR-MAXLENGTH=255|value
Specifies the default field length of character data in characters for mappings
where no length is implied in the Web service description document. The value
of this parameter can be a positive integer in the range of 1 to 2147483647.

You can only use this parameter when the mapping level is 1.2.

HTTPPROXY={domain name|IP address}:port number
If your WSDL contains references to other WSDL files that are located on the
internet, and the system on which you are running DFHWS2LS uses a proxy
server to access the internet, specify the domain name or IP address, and port
number, of the proxy server. For example:
HTTPPROXY=proxy.example.com:8080

In other cases, this parameter is not required.

HTTPPROXY-USERNAME=value
Specifies the HTTP proxy username that should be used in conjunction with
HTTPPROXY-PASSWORD if the system on which you are running DFHWS2LS
uses a HTTP proxy server to access the Internet, and the HTTP proxy server
uses basic authentication. You can only use this parameter when you also
specify HTTPPROXY.

HTTPPROXY-PASSWORD=value
Specifies the HTTP proxy password that should be used in conjunction with
HTTPPROXY-USERNAME if the system on which you are running DFHWS2LS
uses a HTTP proxy server to access the Internet, and the HTTP proxy server
uses basic authentication. You can only use this parameter when you also
specify HTTPPROXY.

LANG=COBOL
Specifies that the programming language of the high level language structure is
COBOL.

LANG=PLI-ENTERPRISE
Specifies that the programming language of the high level language structure is
Enterprise PL/I.

48 Release Guide

#
#
#
#
#
#

#

#
#
#
#

#

#
#
#
#
#
#

#
#
#
#
#
#

LANG=PLI-OTHER
Specifies that the programming language of the high level language structure is
a level of PL/I other than Enterprise PL/I.

LANG=C
Specifies that the programming language of the high level language structure is
C.

LANG=CPP
Specifies that the programming language of the high level language structure is
C++.

LOGFILE=value
The fully qualified HFS name of the file into which DFHWS2LS writes its activity
log and trace information. DFHWS2LS creates the file (but not the directory
structure) if it does not already exist.

Normally you will not need to use this file, but it may be requested by the IBM
service organization if you encounter problems with DFHWS2LS.

MAPPING-LEVEL={1.0|1.1|1.2}
Specifies the level of mapping that DFHWS2LS should use when generating the
Web service binding file and language structure. This parameter is available
when you apply APAR PK15904. You also need to apply APAR PK23547 if you
want to use the 1.2 mapping level option. The options you can select are:

1.0 This is the default mapping level.

1.1 XML attributes, <list> data types, and <union> data types are mapped
to the language structure. Character and binary data that has a
maximum length of more than 32,767 bytes is mapped to a container.
The container name is created in the language structure.

1.2 Use the parameters CHAR-VARYING and CHAR-VARYING-LIMIT to
control how character data is mapped and processed at run time. If you
do not specify either of these parameters, binary and character data
that has a maximum length less than 32768 bytes is mapped to a
VARYING structure for all languages except C++, where character data
is mapped to a null terminated string.

For details of what is supported at each level of mapping, see Mapping levels
for the CICS Web services assistant.

MINIMUM-RUNTIME-LEVEL={MINIMUM|1.0|1.1|1.2|CURRENT}
Specifies the minimum CICS runtime environment that the Web service binding
file can be deployed into. If you select a level that does not match the other
parameters that you have specified, you receive an error message. The options
you can select are:

MINIMUM
The lowest possible runtime level of CICS is allocated automatically
given the parameters that you have specified.

1.0 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that does not have APARs PK15904 and PK23547
applied. You cannot specify the CCSID or MAPPING-LEVEL parameter,
or any other optional parameters that rely on the MAPPING-LEVEL
parameter.

1.1 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that has at least APAR PK15904 applied. You
cannot specify the CCSID parameter or use a mapping level of 1.2 for

Chapter 2. Web services in CICS 49

#
#
#

#
#
#
#
#

##

##
#
#
#

##
#
#
#
#
#

#
#

#
#
#
#
#

#
#
#

##
#
#
#
#

##
#
#

the MAPPING-LEVEL parameter. You cannot specify any optional
parameters that rely on the 1.2 level of mapping.

1.2 The generated Web service binding file deploys successfully into a
CICS TS 3.1 region that has both APAR PK15904 and PK23547
applied. You can use any optional parameter at this level.

CURRENT
The generated Web service binding file deploys successfully into a
CICS region at the same runtime level as the one you are using to
generate the Web service binding file.

PDSLIB=value
Specifies the name of the partitioned data set that contains the generated high
level language. The data set members used for the request and response are
specified in the REQMEM and RESPMEM parameters respectively.

PDSCP=value
Specifies the code page used in the partitioned data set members specified in
the REQMEM and RESPMEM parameters, where value is a CCSID number or
a Java code page number. If this parameter is not specified, then the z/OS
UNIX System Services code page is used. For example, you could specify
PDSCP=037.

PGMINT=CHANNEL|COMMAREA
For a service provider, specifies how CICS passes data to the target application
program:

CHANNEL
CICS uses a channel interface to pass data to the target application
program.

COMMAREA
CICS uses a communication area to pass data to the target application
program.

This parameter is ignored when the output from DFHWS2LS is used in a
service requester.

PGMNAME=value
This parameter specifies the name of a CICS program.

When DFHWS2LS is being used to generate a Web service binding file that will
be used in a service provider, this parameter must be supplied. It specifies the
name of the application program that is being exposed as a Web service.

When DFHWS2LS is being used to generate a Web service binding file that will
be used in a service requester, this parameter must be omitted.

REQMEM=value
Specifies a 1 - 6 character prefix that DFHWS2LS uses to generate the names
of the partitioned data set members that will contain the high level language
structures for the Web service request:
v For a service provider, the Web service request is the input to the application

program
v For a service requester, the Web service request is the output from the

application program

DFHWS2LS generates a partitioned data set member for each operation. It
generates the member name by appending a two digit number to the prefix.

50 Release Guide

#
#

##
#
#

#
#
#
#

#
#
#
#
#
#

Although this parameter is optional, you must specify it if the Web service
description contains a definition of a request.

RESPMEM=value
Specifies a 1 - 6 character prefix that DFHWS2LS uses to generate the names
of the partitioned data set members that will contain the high level language
structures for the Web service response:
v For a service provider, the Web service response is the output from the

application program
v For a service requester, the Web service response is the input to the

application program

DFHWS2LS generates a partitioned data set member for each operation. It
generates the member name by appending a two digit number to the prefix.

If there is no response (that is, for one way messages) omit this parameter.

STRUCTURE=(request,response)
For C and C++ only, specifies how the names of the request and response
structures are generated.

The generated request and response structures are given names of requestnn
and responsenn where nn is a numeric suffix that is generated to distinguish the
structures for each operation.
If one or both names is omitted, the structures have the same name as the
partitioned data set member names generated from the REQMEM and
RESPMEM parameters that you specify.

SYNCONRETURN=NO|YES
specifies whether the remote Web service can issue a syncpoint.

NO The remote Web service cannot issue a syncpoint. This value is the
default. If the remote Web service issues a syncpoint, it fails with an
ADPL abend.

YES The remote Web service can issue a syncpoint. If you select YES, the
remote task is committed as a separate unit of work when control
returns from the remote Web service. If the remote Web service
updates a recoverable resource and a failure occurs after it returns, the
update to that resource cannot be backed out.

TRANSACTION=name
In a service provider, this parameter specifies the 1-4 character name of an
alias transaction that can start the pipeline. The value of this parameter is used
to define the TRANSACTION attribute of the URIMAP resource when it is
created automatically using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

URI=value
In a service provider, this parameter specifies the relative URI that a client will
use to access the Web service. CICS uses the value specified when it
generates a URIMAP resource from the Web service binding file created by
DFHWS2LS: the parameter specifies the path component of the URI to which
the URIMAP definition applies.

In a service requester, the URI of the target Web service is not specified with
this parameter: the URI specified in the Web service description is used,
although you can override that with the URI option on the EXEC CICS INVOKE
WEBSERVICE command.

Chapter 2. Web services in CICS 51

#
#

##
#
#

##
#
#
#
#

#
#
#
#
#

##

#
#

#

USERID=id
In a service provider, this parameter specifies a 1-8 character user ID which can
be used by any Web client. For an application-generated response or a Web
service, the alias transaction is attached under this user ID. The value of this
parameter is used to define the USERID attribute of the URIMAP resource
when it is created automatically using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ #

WSBIND=value
The fully qualified HFS name of the Web service binding file. DFHWS2LS
creates the file (but not the directory structure) if it does not already exist.

WSDL=value
The fully qualified HFS name of the file that contains the Web service
description.

Other information
v The user ID under which DFHWS2LS runs must be defined to OMVS. The user

ID must have read permission to the CICS HFS file structure and PDS libraries,
and write permission to the directories specified on the LOGFILE, WSBIND, and
WSDL parameters.

v The user ID must have a sufficiently large storage allocation to run Java.

The pipeline configuration file
The configuration of a pipeline used to handle a Web service request is specified in
an XML document, known as a pipeline configuration file.

The pipeline configuration file is stored in the z/OS UNIX System Services
hierarchical file system (HFS), and its name is specified in the CONFIGFILE
attribute of a PIPELINE resource definition. Use a suitable XML editor or text editor
to work with your pipeline configuration files. When you work with configuration files,
ensure that the character set encoding is US EBCDIC (Code page 037).

When CICS processes a Web service request, it uses a pipeline of one or more
message handlers to handle the request. A pipeline is configured to provide aspects
of the execution environment that apply to different categories of applications, such
as support for Web Service Security, and Web Service transactions. Typically, a
CICS region that has a large number of service provider or service requester
applications will need several different pipeline configurations. However, where
different applications have similar requirements, they can share the same pipeline
configuration.

There are two kinds of pipeline configuration: one describes the configuration of a
service provider pipeline; the other describes a service requester pipeline. Each is
defined by its own schema, and each has a different root element.

Pipeline Schema Root element

Service provider Provider.xsd <provider_pipeline>

Service requester Requester.xsd <requester_pipeline>

Although many of the XML elements used are common to both kinds of pipeline
configuration, others are used only in one or the other, so you cannot use the same

52 Release Guide

#
#
#
#
#
#

##

#
#

#

#
#
#
#
#

#
#
#
#
#
#
#
#

configuration file for both a provider and requester.

The immediate sub-elements of the <provider_pipeline> and
<requester_pipeline> elements are:

v A <service> element, which specifies the message handlers that are invoked for
every request. This element is mandatory when used within the
<provider_pipeline> element, and optional within the <requester_pipeline>
element.

v An optional <transport> element, which specifies message handlers that are
selected at run time, based upon the resources that are being used for the
message transport.

v For the <provider_pipeline> only, an <apphandler> element, which is used in
some cases to specify the target application (or wrapper program) that provides
the service.

v An optional <service_parameter_list> element, which contains the parameters
that are available to the message handlers in the pipeline.

Associated with the pipeline configuration file is a PIPELINE resource. The
attributes include CONFIGFILE, which specifies the name of the pipeline
configuration file in HFS. When you install a PIPELINE definition, CICS reads the
information that it needs in order to configure the pipeline from the file.

CICS supplies sample configuration files that you can use as a basis for developing
your own. They are provided in library /usr/lpp/cicts/samples/pipelines.

File Description

basicsoap11provider.xml
A pipeline definition for a service provider that uses the CICS-provided
SOAP 1.1 handler, for use when the application has been deployed using
the CICS Web services assistant.

basicsoap11requester.xml
A pipeline definition for a service requester that uses the CICS-provided
SOAP 1.1 handler, for use when the application has been deployed using
the CICS Web services assistant.

wsatprovider.xml
A pipeline definition that adds configuration information for Web Services
transactions to basicsoap11provider.xml.

wsatrequester.xml
A pipeline definition that adds configuration information for Web Services
transactions to basicsoap11requester.xml.

Example pipeline configuration file

This is a simple example of a configuration file for a service provider pipeline:
<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline/provider.xsd">
<service>
<terminal_handler>
<cics_soap_1.1_handler/>

</terminal_handler>
</service>
<apphandler>DFHPITP</apphandler>

</provider_pipeline>

Chapter 2. Web services in CICS 53

#
#
#
#

The pipeline contains just one message handler, the CICS-supplied SOAP 1.1
message handler. The handler links to program DFHPITP.

v The <provider_pipeline> element is the root element of the pipeline
configuration file for a service provider pipeline.

v The <service> element specifies the message handlers that are invoked for
every request. In the example, there is just one message handler.

v The <terminal_handler> element contains the definition of the terminal message
handler of the pipeline.

v The <cics_soap_1.1_handler> indicates that the terminal handler of the pipeline
is the CICS-supplied handler program for SOAP 1.1 messages.

v The <apphandler> element specifies the name of the program to which the
terminal handler of the pipeline will link by default. In this case, the program is
DFHPITP, which is the CICS-supplied target program for applications deployed
with the CICS Web services assistant. For programs that are not deployed with
the Web services assistant, this is the name of the target application program.

Changes to CICS externals

Changes to resource definition
Web services in CICS uses three new CICS resources: PIPELINE, URIMAP, and
WEBSERVICE.

PIPELINE
A PIPELINE resource definition specifies the processing to be applied to a
Web service request. For more information see “PIPELINE resource
definitions” on page 55.

The PIPELINE refers to an XML file which defines the processing nodes.

URIMAP
URIMAP definitions enable CICS to match the URIs of requests from Web
clients, or requests to a remote server, and provide information on how to
process the requests. For more information see “URIMAP resource
definitions” on page 135.

The following attributes of the URIMAP resource are relevant:

PIPELINE
Specifies the PIPELINE resource definition that provides information
about the message handlers which will act on the service request from
the client.

WEBSERVICE
Specifies the WEBSERVICE that defines aspects of the run time
environment for a CICS application used in a Web services setting.

TRANSACTION
Specifies the name of an alias transaction that is used to start the
pipeline.

USERID
Specifies the user ID under which the alias transaction is attached.

WEBSERVICE
A WEBSERVICE resource defines aspects of the run time environment for
a CICS application program deployed in a Web services setting, where the
mapping between application data structure and SOAP messages has been

54 Release Guide

#
#
#
#
#

generated using the CICS Web services assistant. For more information,
see “WEBSERVICE resource definitions” on page 57.

PIPELINE resource definitions
A PIPELINE resource definition is used when a CICS application is in the role of a
Web service provider or requester. It provides information about the message
handler programs that act on a service request and on the response. Typically, a
single PIPELINE definition defines an infrastructure that can be used by many
applications.

The information about the processing nodes is supplied indirectly: the PIPELINE
specifies the name of an HFS file which contains an XML description of the nodes
and their configuration.

An inbound Web service request (that is, a request by which a client invokes a Web
service in CICS) is associated with a PIPELINE resource by the URIMAP resource.
The URIMAP identifies the PIPELINE resource that applies to the URI associated
with the request; the PIPELINE specifes the processing that is to be performed on
the message.

PIPELINE attributes:

�� PIPELINE(name) GROUP(groupname)
DESCRIPTION(text)

�

� CONFIGFILE(name)
SHELF(/var/cicsts)

SHELF(directory)

STATUS(ENABLED)

STATUS(DISABLED)
�

�
WSDIR(directory)

��

PIPELINE(name)
Specifies the name of this PIPELINE. The name can be up to eight characters
in length.

Acceptable characters:

A-Z 0-9 $ @ #

Unless you are using the CREATE command, any lowercase characters you enter are
converted to uppercase.

GROUP(groupname)
Every resource definition must have a GROUP name. The resource definition
becomes a member of the group and is installed in the CICS system when the
group is installed.

Acceptable characters:

A-Z 0-9 $ @ #

Any lower case characters you enter are converted to upper case.

Chapter 2. Web services in CICS 55

The GROUP name can be up to eight characters in length. Lowercase
characters are treated as uppercase characters. Do not use group names
beginning with DFH, because these characters are reserved for use by CICS.

DESCRIPTION(text)
You can provide a description of the resource you are defining in this field. The
description text can be up to 58 characters in length. There are no restrictions
on the characters that you can use. However, if you use parentheses, ensure
that for each left parenthesis there is a matching right one. If you use the
CREATE command, for each single apostrophe in the text, code two
apostrophes.

CONFIGFILE(name)
Specifies the name of an HFS file that contains information about the
processing nodes that will act on a service request, and on the response.

Acceptable characters:

A-Z a-z 0-9 . / _ # @

The value specified must be a valid name for an HFS file:
v The name must not contain imbedded space characters
v The name must not contain consecutive instances of the / character

The name is case-sensitive.

SHELF({/var/cicsts/|directory})
Specifies the 1–255 character fully-qualified name of a directory (a shelf,
primarily for Web service binding files) on HFS.

Acceptable characters:

A-Z a-z 0-9 . / _ # @

The value specified must be a valid name for an HFS file:
v The name must not contain imbedded space characters
v The name must not contain consecutive instances of the / character

The name is case-sensitive.

CICS regions into which the PIPELINE definition is installed must have full
permissions to the shelf directory—read, write, and the ability to create
subdirectories.

A single shelf directory can be shared by multiple CICS regions and by multiple
PIPELINE definitions. Within a shelf directory, each CICS region uses a
separate subdirectory to keep its files separate from those of other CICS
regions. Within each region's directory, each PIPELINE uses a separate
subdirectory.

After a CICS region performs a cold or initial start, it deletes its subdirectories
from the shelf before trying to use the shelf.

You should not attempt to modify the contents of a shelf that is referred to by
an installed PIPELINE definition. If you do, the effects are unpredictable.

STATUS({ENABLED|DISABLED})
Specifies the initial status of the PIPELINE when it is installed:

ENABLED
Web service requests for this PIPELINE are processed normally.

56 Release Guide

##

#
#

##

#
#

DISABLED
Web service requests for this PIPELINE cannot be processed.

WSDIR(directory)
specifies the 1–255 character fully-qualified name of the Web service binding
directory (also known as the pickup directory) on HFS.

Acceptable characters:

A-Z a-z 0-9 . / _ # @

The value specified must be a valid name for an HFS file:
v The name must not contain imbedded space characters
v The name must not contain consecutive instances of the / character

The name is case-sensitive.

The Web service binding directory contains Web service binding files that are
associated with a PIPELINE, and that are to be installed automatically by the
CICS scanning mechanism. When the PIPELINE definition is installed, CICS
scans the directory and automatically installs any Web service binding files it
finds there. Note that this happens regardless of whether the PIPELINE is
installed in enabled or disabled state.

If you specify a value for the WSDIR attribute, it must refer to a valid HFS
directory to which the CICS region has at least read access. If this is not the
case, any attempt to install the PIPELINE resource will fail.

If you do not specify a value for WSDIR, no automatic scan takes place on
installation of the PIPELINE, and PERFORM PIPELINE SCAN commands will
fail.

WEBSERVICE resource definitions
A WEBSERVICE resource defines aspects of the run time environment for a CICS
application program deployed in a Web services setting, where the mapping
between application data structure and SOAP messages has been generated using
the CICS Web services assistant. Although CICS provides the usual resource
definition mechanisms for WEBSERVICE resources, they are typically installed
dynamically, using the output produced by the assistant.

The aspects of the run time environment that are defined by the WEBSERVICE
resource are:

A pipeline
Defines the set of message handlers that operate on Web service requests
and responses. The WEBSERVICE resource specifies a separate
PIPELINE resource which, in turn, specifies the pipeline configuration file.

A Web service binding file
Contains information that is used at run time to perform the mapping
between application data structures and SOAP messages. The Web service
binding file is generated by the CICS-supplied tools.

A Web service description
The Web services description is used only when runtime validation of SOAP
messages is required. Validation of each message is performed against its
schema, which is imbedded within the Web service description.

An inbound Web service request (that is, a request by which a client invokes a Web
service in CICS) is associated with a WEBSERVICE resource by the URIMAP

Chapter 2. Web services in CICS 57

##

#
#

resource. The URIMAP identifies the WEBSERVICE resource that applies to the
URI in the inbound message; the WEBSERVICE specifies the processing that is to
be performed on the message.

Although CICS provides the usual resource definition mechanisms for creating
WEBSERVICE resources, and installing them in your CICS region, you can instead
use the scanning mechanism to dynamically install WEBSERVICE resources in
your running CICS system. The advantages of this approach are that it reduces the
amount of resource definition required, and that CICS can make direct use of
information provided at development time.

To invoke the scanning mechanism, use the PERFORM PIPELINE command.

The name of a dynamically-installed WEBSERVICE is derived from the name of the
Web service binding file from which the WEBSERVICE definition is generated, and
has a maximum length of 32 characters; the names of WEBSERVICE definitions
installed from the CSD or with the EXEC CICS CREATE WEBSERVICE are limited
to eight characters. For example, a Webservice binding file whose HFS name is
/samples/Webservices/WSDir/InquireSingle.wsbind generates a WEBSERVICE
definition named InquireSingle

WEBSERVICE attributes:

�� WEBSERVICE(name) GROUP(groupname)
DESCRIPTION(text)

�

� PIPELINE(pipelinename) WSBIND(hfsfile)
VALIDATION(NO)

VALIDATION(YES)
�

�
WSDLFILE(hfsfile)

��

WEBSERVICE(name)

Specifies the 1-8 character name of the WEBSERVICE.

Acceptable characters:

A-Z a-z 0-9 $ @ # . / - _ % & ¢ ? ! : | " = ¬ , ; < >

Do not use names beginning with DFH, because these characters are reserved
for use by CICS.

GROUP(groupname)
Every resource definition must have a GROUP name. The resource definition
becomes a member of the group and is installed in the CICS system when the
group is installed.

Acceptable characters:

A-Z 0-9 $ @ #

Any lower case characters you enter are converted to upper case.

58 Release Guide

The GROUP name can be up to eight characters in length. Lowercase
characters are treated as uppercase characters. Do not use group names
beginning with DFH, because these characters are reserved for use by CICS.

DESCRIPTION(text)
You can provide a description of the resource you are defining in this field. The
description text can be up to 58 characters in length. There are no restrictions
on the characters that you can use. However, if you use parentheses, ensure
that for each left parenthesis there is a matching right one. If you use the
CREATE command, for each single apostrophe in the text, code two
apostrophes.

PIPELINE(pipelinename)
Specifies the 1-8 character name of the PIPELINE with which this
WEBSERVICE is associated.

Acceptable characters:

A-Z 0-9 $ @ #

Unless you are using the CREATE command, any lowercase characters you enter are
converted to uppercase.

VALIDATION(NO|YES)
Specifies whether full validation of SOAP messages against the corresponding
schema in the Web service description should be performed at run time.
Validating a SOAP message against its schema incurs considerable processing
overhead, and you should normally specify VALIDATION(NO).

Full validation ensures that all SOAP messages that are sent and received are
valid XML with respect to the XML schema. If VALIDATION(NO) is specified,
sufficient validation is performed to ensure that the message contains
well-formed XML.

WSBIND(hfsfile)
Specifies the 1-255 character fully-qualified file name of the Web service
binding file on HFS.

Acceptable characters:

A-Z a-z 0-9 . / _ # @

The name is case-sensitive, and cannot contain spaces. The name must not
end with a / character, and must not contain consecutive instances of the /
character.

WSDLFILE(hfsfile)
Specifies the 1-255 character fully-qualified file name of the Web service
description (WSDL) file on HFS. This file is used when full runtime validation is
active.

Acceptable characters:

A-Z a-z 0-9 . / _ # @

The name is case-sensitive, and cannot contain spaces. The name must not
end with a / character, and must not contain consecutive instances of the /
character.

Chapter 2. Web services in CICS 59

##

#
#

##

#
#

Changes to the application programming interface

There is a new command that enables a CICS application program to invoke a Web
service. For more details, see “INVOKE WEBSERVICE.”

There are three new commands that enable a SOAP node to construct a SOAP
fault. For more details, see:

v “SOAPFAULT ADD” on page 61

v “SOAPFAULT CREATE” on page 62

v “SOAPFAULT DELETE” on page 64

INVOKE WEBSERVICE
This command invokes a Web service from a CICS application. The command
specifies the name of a WEBSERVICE resource, which contains information about
the service to be invoked.

Options

CHANNEL(name)
specifies the name of the channel used to pass the containers that hold the
data mapped by the application data structure. On return, the same channel
holds the response from the Web service, again mapped by the application data
structure. The name of the channel can be up to 16 characters. If name is a
variable, and it contains a name that is less than 16 characters, then the
variable must be padded with trailing blanks.

OPERATION(data-area)
specifies a data area containing the name of the operation that is to be invoked.
The name of the operation is contained in the WSDL for the target Web service.
The data area must be 255 characters long; if the operation name is less than
255 characters, then the data area must be padded with trailing blanks.

URI(data-area)
specifies a data area containing the URI of the Web service to be invoked. If
specified, this option supersedes any URI specified in the WEBSERVICE
resource definition. If this option is omitted, then the WEBSERVICE resource
definition must include either a provider URI or a provider application name.
The data area must be 255 characters long; if the URI is less than 255
characters, then the data area must be padded with trailing blanks.

WEBSERVICE(name)
specifies the name of the WEBSERVICE resource that defines the Web service
to be invoked. The WEBSERVICE resource specifies the location of the Web
service description, and the Web service binding file that CICS uses when it
communicates with the Web service. The name of the WEBSERVICE can be up

INVOKE WEBSERVICE

�� INVOKE WEBSERVICE(name) CHANNEL(name) OPERATION(data-area) �

�
URI(data-area)

��

This command is threadsafe.

60 Release Guide

to 32 characters. If name is a variable, and it contains a name that is less than
32 characters, then the variable must be padded with trailing blanks.

SOAPFAULT ADD
This command adds information to an existing SOAPFAULT object. You can use
this command only in a program that is invoked from a CICS-supplied SOAP
message handler.

Options

SUBCODESTR(data-value)
Specifies the contents of a <Subcode> element that is to be added to the
SOAPFAULT object. The subcode can be up to 64 characters in length, and
must be an XML qualified name (QName). An XML qualified name has the form
prefix:name.
v For SOAP 1.1, this option is ignored.
v For SOAP 1.2, this option supplies the contents of the <Subcode> element.

SUBCODELEN(data-value)
specifies the length, as a fullword binary value, of the <Subcode> element
specified in the SUBCODESTR option.

FAULTSTRING(data-value)
specifies a human-readable explanation of the fault. The FAULTSTRING can be
up to 2056 characters in length.
v For SOAP 1.1, this option supplies the contents of the <faultstring>

element.
v For SOAP 1.2, this option supplies the contents of the <Reason> element.

FAULTSTRLEN(data-value)
Specifies the length, as a fullword binary value, of the FAULTSTRING option.

FROMCCSID(data-value)
Specifies, as a fullword decimal number, the current Coded Character Set
Identifier (CCSID) of the character data to be put into the SOAP fault. If this
option is not specified, CICS uses the value which is specified in the
LOCALCCSID system initialization parameter. For more information about
CCSIDs, and a list of the CCSIDs supported by CICS, see CICS Family:
Communicating from CICS on System/390.

NATLANG(data-value)
Specifies an eight character field containing the national language used for the

SOAPFAULT ADD

�� SOAPFAULT ADD �

�
NATLANG('en')

FAULTSTRING(data-value) FAULTSTRLEN(data-value)
NATLANG(data-value)

SUBCODESTR(data-value) SUBCODELEN(data-value)

�

�
FROMCCSID(data-value)

��

This command is threadsafe.

Chapter 2. Web services in CICS 61

#
#
#
#
#
#

FAULTSTRING. The language is specified using the XML 1.0 language
identification. The default value is 'en' (English).

When the language identifier is shorter than eight characters, you must pad it
on the right with space characters in the character set specified in the
FROMCCSID option (or the CICS LOCALCCSID). For example, if you specify
the UTF-8 character set with FROMCCSID(1208), you must pad the NATLANG
value with X'20' characters.

SOAPFAULT CREATE
This command creates a SOAP fault. You can use this command only in a program
that is invoked from a CICS-supplied SOAP message handler.

Options

DETAIL(data-value)
v For SOAP 1.1, this option supplies the contents of the <detail> element of

the SOAP fault.
v For SOAP 1.2, this option supplies the contents of the <Detail> element of

the SOAP fault..

It should contain either one or more valid namespace-qualified XML elements,
or whitespace. Refer to the appropriate SOAP specifications for a full
description of the valid content of the element.

The element carries application-specific error information related to the <Body>
element, and is used when the contents of the <Body> element could not be
successfully processed. For SOAP 1.1, the <detail> element must be present if
the contents of the <Body> element could not be successfully processed; for
SOAP 1.2, the <Detail> element is optional.

If the SOAPFAULT CREATE command is issued in a header handler program
the <detail> or <Detail> element is carried in a header block.

SOAPFAULT CREATE

�� SOAPFAULT CREATE FAULTCODE(cvda)
CLIENT
SERVER
SENDER
RECEIVER
FAULTCODESTR(data-value) FAULTCODELEN(data-value)

�

�
NATLANG('en')

FAULTSTRING(data-value) FAULTSTRLEN(data-value)
NATLANG(data-value)

�

�
ROLE(data-value) ROLELENGTH(data-value)

�

�
FAULTACTOR(data-value) FAULTACTLEN(data-value)

�

�
DETAIL(data-value) DETAILLENGTH(data-value) FROMCCSID(data-value)

��

This command is threadsafe.

62 Release Guide

DETAILLENGTH(data-value)
specifies the length, as a fullword binary value, of the DETAIL option.

FAULTACTLEN(data-value)
Specifies the length, as a fullword binary value, of the FAULTACTOR option.

FAULTACTOR(data-value)
v For SOAP 1.1, this option supplies the contents of the <faultactor> element.
v For SOAP 1.2, this option supplies the contents of the <Node> element.

The FAULTACTOR option can be up to 2056 characters in length, and must be
a valid URI (anyURI).

FAULTCODE(cvda)

CLIENT
SENDER

For SOAP 1.1 specifies a SOAP Fault code of Client

For SOAP 1.2 specifies a SOAP Fault code of Sender

SERVER
RECEIVER

For SOAP 1.1 specifies a SOAP Fault code of Server

For SOAP 1.2 specifies a SOAP Fault code of Receiver

FAULTCODELEN(data-value)
Specifies the length, as a fullword binary value, of the FAULTCODESTR option.

FAULTCODESTR(data-value)
Specifies a user-defined SOAP Fault code. The Fault code can be up to 64
characters in length, and must be an XML qualified name (QName). The use of
the "." (dot) character to separate Fault code values is not supported.
v For SOAP 1.1, this option supplies the contents of the <faultcode> element.
v For SOAP 1.2, this option supplies the contents of the <Code> element.

FAULTSTRING(data-value)
specifies a human-readable explanation of the fault. The FAULTSTRING can be
up to 2056 characters in length.
v For SOAP 1.1, this option supplies the contents of the <faultstring>

element.
v For SOAP 1.2, this option supplies the contents of the <Reason> element.

FAULTSTRLEN(data-value)
Specifies the length, as a fullword binary value, of the FAULTSTRING option.

FROMCCSID(data-value)
Specifies, as a fullword decimal number, the current Coded Character Set
Identifier (CCSID) of the character data to be put into the SOAP fault. If this
option is not specified, CICS uses the value which is specified in the
LOCALCCSID system initialization parameter. For more information about
CCSIDs, and a list of the CCSIDs supported by CICS, see CICS Family:
Communicating from CICS on System/390.

NATLANG(data-value)
Specifies an eight character field containing the national language used for the
FAULTSTRING. The language is specified using the XML 1.0 language
identification. The default value is 'en' (English).

When the language identifier is shorter than eight characters, you must pad it
on the right with space characters in the character set specified in the

Chapter 2. Web services in CICS 63

FROMCCSID option (or the CICS LOCALCCSID). For example, if you specify
the UTF-8 character set with FROMCCSID(1208), you must pad the NATLANG
value with X'20' characters.

ROLE(data-value)
Specifies the URI that describes the role of the SOAP node that generated the
fault. The ROLE option can be up to 2056 characters in length, and must be a
valid URI (XML type anyURI).
v For SOAP 1.1, this option is ignored.
v For SOAP 1.2, this option supplies the contents of the <Role> element.

ROLELENGTH(data-value)
Specifies the length, as a fullword binary value, of the ROLE option.

SOAPFAULT DELETE
This command deletes an existing SOAPFAULT object. You can use it only in a
program that is invoked from a CICS-supplied SOAP message handler.

Changes to the system programming interface

CREATE PIPELINE command
Use the CREATE PIPELINE command to dynamically create a PIPELINE in your
CICS region. The attributes you can specify on this command are described in
“PIPELINE attributes” on page 55.

CREATE WEBSERVICE command
Use the CREATE WEBSERVICE command to dynamically create a WEBSERVICE
in your CICS region. The attributes you can specify on this command are described
in “WEBSERVICE attributes” on page 58.

DISCARD PIPELINE command
Use the DISCARD PIPELINE pipeline to remove a PIPELINE from your CICS
region. The PIPELINE must be disabled before it can be discarded.

DISCARD WEBSERVICE command
Use the DISCARD WEBSERVICE command to remove a WEBSERVICE from your
CICS region. The WEBSERVICE must be disabled before it can be discarded.

INQUIRE PIPELINE command
Use the INQUIRE PIPELINE to retrieve information about an installed PIPELINE.

SOAPFAULT DELETE

�� SOAPFAULT DELETE ��

This command is threadsafe.

64 Release Guide

INQUIRE PIPELINE

�� �INQUIRE PIPELINE(data-value)
CONFIGFILE(data-area)
ENABLESTATUS(cvda)
SHELF(data-area)
WSDIR(data-area)

��

You can browse through all the PIPELINEs installed in your system by using the
browse options (START, NEXT, and END) on INQUIRE PIPELINE commands.

Options

CONFIGFILE(data-area)
Returns the name of the pipeline configuration file associated with the
PIPELINE resource. The name can be up to 255 characters long.

ENABLESTATUS(cvda)
Returns the status of the PIPELINE:

ENABLED
The PIPELINE is ready for use.

DISABLED
The PIPELINE is not processing requests, and is unable to accept new
work. It may have failed to initialize, or may have been explicitly disabled.

ENABLING
The PIPELINE is being initialized; it is not yet ready to accept work.

DISABLING
The PIPELINE is quiescing before entering DISABLED state. It is not
accepting new work, but is allowing currently-executing work to complete.

DISCARDING
A DISCARD command has been issued for the PIPELINE. The PIPELINE is
quiescing before being discarded. It is not accepting new work, but is
allowing currently-executing work to complete.

PIPELINE(data-value)
Specifies the name of the PIPELINE about which you are inquiring. The name
can be up to 8 characters long.

SHELF(data-area)
Returns the name of the shelf directory. The name can be up to 255 characters
long.

WSDIR(data-area)
Returns the name of the Web service binding directory (also known as the
pickup directory). The name can be up to 255 characters long.

INQUIRE WORKREQUEST command

There is a new value for the WORKTYPE option on the INQUIRE WORKREQUEST
command:

Chapter 2. Web services in CICS 65

SOAP
Specifies that the work is being executed for a Web service request.

PERFORM PIPELINE command
Use the PERFORM PIPELINE command to initiate a scan of the Web service
binding files that are associated with a PIPELINE.

PERFORM PIPELINE

�� PERFORM PIPELINE(name)
ACTION(cvda)
SCAN

��

The Web service binding files that are scanned are located in the directory that is
specified in the WSBIND attribute of the PIPELINE definition. If the WSBIND
attribute is not specified, there is nothing to scan, and control returns to your
program.

If the directory location specified is valid, CICS examines the Web service binding
files in the directory to determine if they should be installed into the system:

v CICS installs any files it finds that have not been installed already.

v If a file has been installed already, but the file in the directory is newer than the
one currently in use, the one that is in use is discarded, and the newer file is
installed in its place.

If, for any reason, CICS fails to install an individual Web service binding file,
processing continues with the remaining files in the directory. When the scan
completes, the PIPELINE is available for use with whichever of the binding files
were installed successfully.

Options

ACTION(cvda)
Specifies a CVDA value indicating the action to be taken on the PIPELINE.
CVDA values are:

SCAN Scan the PIPELINE's Web service binding directory

PIPELINE(name)
Specifies the name of the PIPELINE.

PERFORM STATISTICS RECORD command

This command supports the following new options:

PIPELINE
Records statistics related to a PIPELINE. This includes information about HFS
files.

SET PIPELINE command

Use the SET PIPELINE command to change the status of an installed PIPELINE:

PIPELINE(data-value)
Specifies the 8-character name of the PIPELINE about which you are inquiring.

66 Release Guide

ENABLESTATUS(cvda)
Specifies the status of the PIPELINE:

ENABLED
Inbound service requests for this PIPELINE are processed normally.

DISABLED
Inbound service requests for this PIPELINE are rejected.

SET WORKREQUEST command

There is a new value for the WORKTYPE option on the SET WORKREQUEST
command:

SOAP
Specifies that the work is being executed for a Web service request.

INQUIRE WEBSERVICE
Use the INQUIRE WEBSERVICE command to retrieve information about an
installed WEBSERVICE.

Browsing

You can browse through all the WEBSERVICEs installed in your system by using
the browse options (START, NEXT, and END) on INQUIRE WEBSERVICE
commands. See Browsing resource definitions for general information about
browsing, including syntax, exception conditions, and examples.

Options

BINDING(data-area)
Returns the WSDL binding represented by the WEBSERVICE. This binding is
one of (potentially) many that appear in the WSDL file. The name can be up to
255 characters long.

INQUIRE WEBSERVICE

�� �INQUIRE WEBSERVICE(name)
BINDING(data-area)
CONTAINER(data-area)
ENDPOINT(data-area)
LASTMODTIME(data-area)
PGMINTERFACE(cvda)
PIPELINE(data-area)
PROGRAM(data-area)
STATE(cvda)
URIMAP(data-area)
VALIDATIONST(cvda)
WSBIND(data-area)
WSDLFILE(data-area)

��

Conditions: NOTAUTH, NOTFND

Chapter 2. Web services in CICS 67

dfha80w.htm#dfha80w

CONTAINER(data-area)
Returns the name of the container used if PGMINTERFACE returns a value of
CHANNEL. The name can be up to 16 characters long.

ENDPOINT(data-area)
Returns the endpoint URI of a remote WEBSERVICE. This is the endpoint URI
specified in the WSDL file for a remote Web service. If a CICS application
program is the service provider, then the ENDPOINT will be empty. The URI
can be up to 255 characters long.

LASTMODTIME(data-area)

Returns the time, in milliseconds since 00:00 on January 1st 1900, that the
deployed WSBind file on HFS was last updated. This is a readonly value that
CICS updates when the WEBSERVICE resource is installed or updated. The
last-modified-time can be used to determine whether CICS has refreshed itself
after an update is made to a WSBind file in the pickup directory.

v For dynamically-installed WEBSERVICEs (those installed by the CICS
scanning mechanism), the value of LASTMODTIME is the timestamp of the
HFS file pointed to by the WSBind definition, at the time the WEBSERVICE
definition was last installed or updated.

v For statically-installed WEBSERVICEs (those installed from a CSD or by
CREATE WEBSERVICE), the value of LASTMODTIME is the timestamp of
the WSBind HFS file pointed to by the WEBSERVICE definition, at the time
the WEBSERVICE was installed.

If you issue an INQUIRE WEBSERVICE command before a newly-installed or
updated WEBSERVICE has fully initialized, the returned LASTMODTIME value
will be zero.

The value is returned in 8-byte packed-decimal form. You can use the EXEC
CICS FORMATTIME command to convert the LASTMODTIME value to the
date-and-time format that you prefer.

PGMINTERFACE(cvda)
Returns a CVDA indicating whether the CICS program that implements the Web
service expects input in a channel or in a commarea:

CHANNEL
The program expects input in a channel.

COMMAREA
The program expects input in a commarea

PIPELINE(data-area)
Returns the name of the PIPELINE in which the WEBSERVICE is installed; that
is, the name of the PIPELINE resource that contains this WEBSERVICE
resource. The name can be up to 8 characters long.

PROGRAM(data-area)
Returns the name of a CICS program that implements the Web service. If this
WEBSERVICE represents a remote Web service (that is, CICS is not the
service provider), PROGRAM will be empty. The name can be up to 8
characters long.

STATE(cvda)
Returns a CVDA indicating the state of the WEBSERVICE:

DISCARDING
A DISCARD command has been issued for the WEBSERVICE. The

68 Release Guide

WEBSERVICE is quiescing before being discarded. It is not accepting new
work, but is allowing currently-executing work to complete.

INITING
The Web service binding file, and the WSDL file, are being copied to the
shelf.

INSERVICE
Resolution of the copy of the WSBIND file on the shelf has succeeded, and
the WEBSERVICE is usable.

UNUSABLE
Copying of the WSBIND file on the shelf has failed, and the WEBSERVICE
is unusable.

URIMAP(data-area)
Returns the name of a dynamically installed URIMAP if there is one that is
associated with this WEBSERVICE. If the WEBSERVICE was not installed by
performing the SCAN function on a PIPELINE resource, or if the WEBSERVICE
represents a remote Web service, then the URIMAP will be empty. The name
can be up to 8 characters long.

VALIDATIONST(cvda)
Returns a CVDA indicating whether full validation of SOAP messages is
currently enabled for this WEBSERVICE:

VALIDATION
Full validation is enabled.

DISABLED
Full validation is disabled.

WEBSERVICE(name)
Specifies the name of the WEBSERVICE about which you are inquiring. The
name can be up to 32 characters long.

WSBIND(data-area)
Returns the name of the Web service binding file. The name can be up to 255
characters long.

WSDLFILE(data-area)
Returns the name of the Web service description file associated with the
WEBSERVICE resource. The name can be up to 255 characters long.

SET WEBSERVICE
Use the SET WEBSERVICE command to change the status of an installed
WEBSERVICE.

SET WEBSERVICE

�� SET WEBSERVICE(name)
VALIDATIONST(cvda)
VALIDATION
NOVALIDATION

��

Conditions: INVREQ, NOTAUTH, NOTFND

Chapter 2. Web services in CICS 69

Options

WEBSERVICE(name)
Specifies the name of the WEBSERVICE.

VALIDATIONST(cvda)
Specifies whether full validation is enabled for the WEBSERVICE or not. CVDA
values are:

VALIDATION
Full validation is enabled.

NOVALIDATION
Full validation is not enabled.

Changes to CEMT
CEMT DISCARD WEBSERVICE

Use the DISCARD WEBSERVICE command to remove a WEBSERVICE from your
CICS region.

CEMT DISCARD PIPELINE

Use the DISCARD PIPELINE to remove a PIPELINE from your CICS region.

CEMT INQUIRE WEBSERVICE

Use the INQUIRE WEBSERVICE command to display the following information
about an installed WEBSERVICE:

�� CEMT INQUIRE WEBSERVICE
ALL

(value) BINDING(value)
�

�
DATESTAMP(value) DISCARDING

INITING
INSERVICE
UNUSABLE

ENDPOINT(value)
�

�
PIPELINE(value) CHANNEL

COMMAREA
PORTTYPE(value)

�

�
PROGRAM(value) TIMESTAMP(value) URIMAP(value)

�

�
VALIDATION
NOVALIDATION

WSBIND(value) WSDLFILE(value)
��

70 Release Guide

BINDING(value)
Displays the WSDL binding represented by the WEBSERVICE. This binding is
one of (potentially) many that appear in the WSDL file.

DATESTAMP(value)
Displays the date, in yyyymmdd format, that the WEBSERVICE was last
updated. This is a readonly value that CICS updates when the WEBSERVICE
resource is installed or updated.

COMMAREA
The program expects to receive input in a COMMAREA.

CONTAINER
The program is expecting to receive input in a CONTAINER.

DISCARDING
A DISCARD operation is in progress for this WEBSERVICE.

ENDPOINT(value)
Displays the endpoint URI of a remote WEBSERVICE. This is the endpoint URI
specified in the WSDL file for a remote Web service. If a CICS application
program is the service provider, then the ENDPOINT will be empty.

INITING
The WSBind file and WSDL file are being copied to the shelf.

INSERVICE
Resolution of the copy of the WSBind file on the shelf has succeeded and the
WEBSERVICE is usable.

NOVALIDATION
Full validation is not enabled.

PIPELINE(value)
Displays the name of the PIPELINE in which the WEBSERVICE is installed;
that is, the name of the PIPELINE resource that contains this WEBSERVICE
resource.

PORTTYPE(value)
Displays the contents of the <portType> element within the WSDL document
represented by this WEBSERVICE resource.

PROGRAM(value)
Displays the name of the CICS program that implements the WSDL <portType>
when CICS is the service provider.

TIMESTAMP(value)
Displays the time, in hh:mm:ss format, that the WEBSERVICE was last
updated. This is a readonly value that CICS updates when the WEBSERVICE
resource is installed or updated.

URIMAP(value)
Displays the name of a dynamically installed URIMAP if there is one that is
associated with this WEBSERVICE. If the WEBSERVICE was not installed by
performing the SCAN function on a PIPELINE resource, or if the WEBSERVICE
represents a remote Web service, then the URIMAP will be empty.

UNUSABLE
Copying the WSBind file to the shelf has failed and the WEBSERVICE is
unusable.

VALIDATION
Full validation is enabled.

Chapter 2. Web services in CICS 71

WEBSERVICE(ALL|value)

ALL
is the default. Information about all WEBSERVICEs is displayed, unless you
specify a selection of WEBSERVICEs to be queried.

value
is the name (1-8 characters) of an installed WEBSERVICE definition.

WSBIND(value)
Returns the 1-255 character fully-qualified file name of the WSBind file on HFS.

WSDLFILE(value)
Returns the 1-255 character fully-qualified file name of the WSDL file on HFS.

CEMT INQUIRE WORKREQUEST

There is a new value for the WORKTYPE option on the INQUIRE WORKREQUEST
command:

PIPE
Specifies that the work is being executed for a Web service request.

CEMT INQUIRE PIPELINE

Use the INQUIRE PIPELINE command to display information about an installed
PIPELINE.

CEMT INQUIRE PIPELINE

�� CEMT INQUIRE PIPELINE(value)
ENABLED
DISABLED

HFSFILE(value)
�

�
PICKUPDIR(value) SHELF(value)

��

PIPELINE(value)
Specifies the 8-character name of the PIPELINE about which you are inquiring.

HFSFILE(value)
Returns the name of the HFS file that contains information about the processing
nodes that will act on a service request, and on the response.

ENABLED
Inbound service requests for this PIPELINE are processed normally.

DISABLED
Inbound service requests for this PIPELINE are rejected.

PICKUPDIR(value)
Returns the 1–255 character fully-qualified name of the pickup directory on
HFS.

SHELF(value)
Returns the 1–255 character fully-qualified name of a shelf directory on HFS.

72 Release Guide

CEMT PERFORM STATISTICS

This command supports the following new options:

PIPELINE
Statistics related to a PIPELINE are written immediately to the SMF data set.
The statistics include information about HFS files.

WEBSERVICE
Statistics related to a WEBSERVICE are written immediately to the SMF data
set.

CEMT PERFORM PIPELINE

Use the CEMT PERFORM PIPELINE command to initiate a scan of the directory
named in the WSDIR attribute of a PIPELINE.

CEMT SET WEBSERVICE

Use the SET WEBSERVICE command to change the status of an installed
WEBSERVICE.

��
ALL

CEMT SET WEBSERVICE
(value) VALIDATION

NOVALIDATION

��

WEBSERVICE(ALL|value)

ALL
Any changes you request are made to all resources of the specified type
that you are authorized to access.

value
is the name (1-8 characters) of an installed WEBSERVICE definition.

Validation
Full validation is enabled

Novalidation
Full validation is not enabled

CEMT SET WORKREQUEST command

There is a new value for the WORKTYPE option on the SET WORKREQUEST
command:

PIPE
Specifies that the work is being executed for a Web service request.

CEMT SET PIPELINE

Use the SET PIPELINE command to change the status of an installed PIPELINE.

Chapter 2. Web services in CICS 73

CEMT SET PIPELINE

��
ALL

CEMT SET PIPELINE
(value) ENABLED

DISABLED

��

PIPELINE(value)
Specifies the 8-character name of the PIPELINE.

ENABLED
Specifies that inbound service requests for this PIPELINE are to be processed
normally.

DISABLED
Specifies that inbound service requests for this PIPELINE are to be rejected.

Changes to the JCICS API

There are JCICS equivalents of the following commands:

EXEC CICS FAULT ADD

EXEC CICS FAULT CREATE

EXEC CICS FAULT DELETE

EXEC CICS INVOKE WEBSERVICE

Changes to CICS-supplied transactions

Note: Changes to CEMT are described in “Changes to CEMT” on page 70.

Changes to CETR

Transaction CETR now supports the PI domain.

Changes to statistics

The following new DSECTs will be provided:

DFHPIPDS
Provides statistics for the PIPELINE resource.

DFHPIWDS
Provides statistics for the WEBSERVICE resource

Changes to sample programs

The following programs now support the PIPELINE and WEBSERVICE resources:

DFH0STAT, the sample statistics program

DFH$FORA, the DB2® formatting sample program (assembler)

DFH$FORP, the DB2 formatting sample program (PL/I)

DFH0FORC, the DB2 formatting sample program (COBOL)

DFH$DB2T, the DB2 table definitions for DFH$FORA, DFH$FORP, and
DFH0FORC

74 Release Guide

DFH$SQLT, input for the DB2 table load utility

Changes to CICS utilities
Statistics utility program DFHSTUP

DFHSTUP supports the changes to statistics described in “Changes to statistics” on
page 74.

The resource types that you can code on the SELECT TYPE and IGNORE TYPE
control parameters for DFHSTUP now include:

v WEBSERVICE

v PIPELINE

Changes to problem determination

The following domains are new in CICS Transaction Server for z/OS, Version 3
Release 1:

Component ID Description

PI Pipeline manager domain

To support the new domains:

v CICS trace functions (including CETR, trace-related system initialization
parameters, and the trace utility program) now support the component IDs listed.

v CICS system dumps include control blocks for the new domains. The
CICS-supplied dump exit routine supports the use of the component IDs listed, to
specify the control blocks to be included in the dump output.

v CICS messages issued by the domains listed above use a message prefix of the
form DFHcomponent-ID.

Security
Security for new SPI and CEMT commands

New predefined RACF® resource names will control access to the following
resources using the SPI and CEMT:

PIPELINE

WEBSERVICE

New Category 1 transactions

The following new transaction is for CICS internal use, and should not be invoked
from a user terminal. For security purposes, it is a category 1 transaction.

CPIS

Migration and coexistence
This topic describes how Web services in CICS affects migration to CICS
Transaction Server for z/OS, Version 3, and how it coexists with other functions.

Chapter 2. Web services in CICS 75

#

#
#

#

Migration of existing functions
If you use the SOAP for CICS feature, you must perform a number of tasks to
migrate applications that use the feature. The support for Web services provided in
CICS Transaction Server for z/OS, Version 3 Release 1 is substantially different
from that provided in the feature.

The SOAP for CICS feature relies to a considerable extent upon user-written code,
and therefore it is not possible to set out a step-by-step migration task. However,
here are some of the things you will need to think about.

v Consider using the Web services assistant to construct and parse SOAP
messages. If you decide to do so, you are advised to discard your existing
message adapters, and deign new wrapper programs to replace them, as it is
unlikely that you will be able to reuse significant amounts of code in your
adapters.

v If you use SOAP messages, but decide not to use the Web services assistant,
you may be able to reuse your existing code for constructing and parsing the
messages. However, you should consider whether to use the CICS-provided
SOAP message handlers, because they are designed to work with SOAP 1.1 and
SOAP 1.2 messages.

v Review your use of containers. The SOAP for CICS feature uses BTS containers,
whereas CICS Transaction Server for z/OS, Version 3 Release 1 uses channel
containers. You will need to review your programs and change any BTS-related
commands required by the feature. You will also need to review the name and
usage of each container, as most of these have changed.

v Consider how to migrate the function that was provided by your pipeline
programs. The pipeline in the SOAP for CICS feature has a fixed number of
user-written programs, each with a designated purpose. The function provided by
some of these programs is provided in CICS Transaction Server for z/OS,
Version 3 Release 1 by the CICS-provided SOAP message handlers, so you may
be able to dispense with these programs altogether.

On the other hand, CICS Transaction Server for z/OS, Version 3 Release 1 lets
you define as many programs in your pipeline as you need. Therefore, you
should consider whether the function performed by your pipeline programs
should be restructured to take advantage of the new framework.

In any case, the way that pipeline programs communicate with CICS, and with
one another, has changed, so you will need to review these programs to see if
they can be reused in the new environment.

In the SOAP for CICS feature, you could have just one pipeline for all your
service provider applications, and one for all your service requesters. In CICS
Transaction Server for z/OS, Version 3 Release 1, you can configure many
different pipelines. Therefore, it is possible that the logic you provided in your
pipeline programs to distinguish one application from another can be replaced by
CICS resource definitions. For example, in a service provider, code that
distinguishes between applications based upon a URI, can be replaced with a
suitable set of URIMAP resources

Coexistence
If you use the SOAP for CICS feature, you can continue to do so; the feature
continues to be fully supported in CICS Transaction Server for z/OS, Version 3
Release 1, independently of Web services in CICS.

76 Release Guide

The SOAP for CICS feature can interoperate with the support for Web services in
CICS TS for z/OS, Version 3.1: the feature can be the service requester or the
service provider.

CICSPlex SM support

There are changes to CICSPlex SM views and resource tables to support Web
services in CICS.

Changes to the CICSPlex SM application programming interface

The following new resource tables have been introduced:

v “PIPEDEF resource table”

v “PIPELINE resource table”

v “WEBSVDEF resource table” on page 78

v “WEBSERV resource table” on page 78

PIPEDEF resource table

The PIPEDEF resource table includes the following RDO attributes:

PIPELINE
Pipeline definition name

STATUS
Shows the CVDA value that indicates if the PIPELINE is to be installed in
ENABLED (default) or DISABLED state

CONFIGFILE
The 255-character fully-qualified configuration file name on HFS for this
Pipeline

SHELF
The 255-character fully-qualified name of the WSBind directory (shelf)

WSDIR
The 255-character name of the WSBind (pickup) directory on HFS

PIPELINE resource table

The PIPELINE resource table has the following SPI attributes:

PIPELINE
Pipeline definition name

ENABLESTATUS
The CVDA value that specifies the ENABLE status of the Pipeline

PIPEUSECOUNT
Pipeline use count

CONFIGFILE
The 255-character fully-qualified configuration file name on HFS for this
Pipeline

SHELF
The 255-character name of a directory (shelf) for WSBind files

Chapter 2. Web services in CICS 77

WSDIR
The 255-character name of the WSBind (pickup) directory on HFS

WEBSVDEF resource table

The WEBSVDEF resource table includes the following RDO attributes:

WEBSERVICE
WEBSERVICE definition name

PIPELINE
The Pipeline in which this Web service is to be installed

WSBIND
The 255-character fully-qualified name of the WSBind file on HFS

WSDLFILE
The 255-character fully-qualified name of the WSDL file on HFS

VALIDATION
Shows the CVDA value (YES or NO) to indicate whether or not a full
validation of WSDL SOAP messages will be performed

WEBSERV resource table

The WEBSERV resource table includes the following SPI attributes:

WEBSERVICE
WEBSERVICE name

PIPELINE
The Pipeline in which this Web service is installed

WSBIND
The 255-character fully-qualified name of the WSBind file on HFS

WSDLFILE
The 255-character fully-qualified name of the WSDL file on HFS

URIMAP
The dynamically-installed URIMAP associated with this Web service

BINDING
The WSDL Binding that this Web service represents

ENDPOINT
The ENDPOINT URI of a remote Web service

PROGRAM
The 8-character CICS application program name that implements this Web
Service

PGMINTERFACE
The CVDA value (CHANNEL or COMMAREA) indicating where the
specified PROGRAM expects input

CONTAINER
The name of the container used if the PGMINTERFACE is CHANNEL

VALIDATIONST
The CVDA value (VALIDATION or NOVALIDATION) indicating whether or
not the full validation of WSDL SOAP messages should be performed

78 Release Guide

LASTMODTIME
The time that the deployed WSBind file on HFS was last updated

STATE
The CVDA value (DISCARDING, INITING, INSERVICE, UPDATING, or
UNUSABLE) indicating the state of the Web service

WEBUSECOUNT
Web service use count

Changed resource table

The following resource table has been changed:

v “WORKREQ”

WORKREQ

The WORKREQ resource table now includes the following attribute:

WORKTYPE
Type of work being performed. CVDA IIOP and SOAP types are the only
types available.

Changes to CICSPlex SM Web User Interface
New WUI views

The following WUI views have been introduced:

v “Pipeline definitions view”

v “Pipeline view” on page 80

v “Web service definition view” on page 80

v “Web service view” on page 80

Pipeline definitions view

A new definitional view set has been introduced called Pipeline definitions,
associated with the new PIPEDEF resource table. The view name for this tabular
view is EYUSTARTPIPEDEF.TABULAR. and the existing EYUSTARTADMRES
menu has been extended to include it.

To open the Pipeline definitions view, do the following:

1. Click Administration views from the Main menu

2. Click Basic CICS resource administration views (or, alternatively, click Fully
functional Business Application Services (BAS) administration views)

3. Click CICS resource definitions

4. Scroll down and click Pipeline definitions

The Pipeline definitions view is displayed. This view includes the following five
action buttons:

v Create

v Update

v Remove

v Install

v Add to Resource group

Chapter 2. Web services in CICS 79

#
#
#

See the attributes of the PIPEDEF resource table listed in “PIPEDEF resource
table” on page 77 for field details.

Pipeline view

A new view has been introduced called Pipeline, associated with the new
PIPELINE resource table. The view name for this tabular view is
EYUSTARTPIPELINE.TABULAR and the existing EYUSTARTTCPIPS menu has
been extended to include it.

To open the Pipeline view, do the following:

1. Click CICS operations view from the Main menu

2. Scroll down and click TCP/IP service operations views

3. Click Pipeline

The Pipeline view is displayed.

See the attribute details of the PIPELINE resource table listed in “PIPELINE
resource table” on page 77 for field details.

Web service definition view

A new definitional view set has been introduced called Web service definition,
associated with the new WEBSVDEF resource table. The view name for this tabular
view is EYUSTARTWEBSVDEF.TABULAR. and the existing EYUSTARTADMRES
menu has been extended to include it.

To open the Web service definition view, do the following:

1. Click Administration views from the Main menu

2. Click Basic CICS resource administration views (or, alternatively, click Fully
functional Business Application Services (BAS) administration views)

3. Click CICS resource definitions

4. Scroll down and click Web service definitions

The Web service definition view is displayed This view includes the following five
action buttons:

v Create

v Update

v Remove

v Install

v Add to Resource group

See the attributes of the WEBSVDEF resource table listed in “WEBSVDEF resource
table” on page 78 for field details.

Web service view

A new tabular view has been introduced called Web service, associated with the
new WEBSERV resource table. The view name for this tabular view is
EYUSTARTWEBSERV.TABULAR and the existing EYUSTARTTCPIPS menu has
been extended to include it.

To open the Web service view, do the following:

1. Click CICS operations view from the Main menu

80 Release Guide

2. Scroll down and click TCP/IP service operations views

3. Click Web service

The Web service view is displayed.

See the attributes of the WEBSERV resource table listed in “WEBSERV resource
table” on page 78 for field details.

Changed WUI view

The following WUI view has been changed:

v “Work Request view”

Work Request view

The following attribute has been added to the Work Request view within the Task
operations view:

WORKTYPE
The type of work being performed. IIOP and SOAP are the only types
available.

Chapter 2. Web services in CICS 81

82 Release Guide

Chapter 3. Support for HTTP client requests from CICS
applications

You can now create outbound requests from a CICS application through CICS as
an HTTP client, using EXEC CICS commands.

The facility for CICS to act as an HTTP client is fully integrated into CICS Web
support. You can use EXEC CICS commands in CICS application programs to open
an HTTP connection to a server, make requests, and receive responses for
processing by the application program. Some new EXEC CICS commands are
introduced for this purpose, and some existing commands have been given
outbound as well as inbound options.

Benefits of support for HTTP client requests from CICS applications

The EXEC CICS commands for CICS as an HTTP client mean that CICS
application programs can be written to:

v Use a common protocol for business-to-business communications.

v Control hardware or software using the HTTP protocol (for example, printers can
sometimes be controlled in this way).

v Access HTTP applications that provide items of information (for example, share
prices) and retrieve this information for use in the application.

Global user exits in CICS Web support processes enable you to specify the use of
proxy servers, and to apply a security policy, for outbound HTTP requests from
CICS.

Requirements
There are no special hardware or software requirements to support this function.

Related information

Chapter 27, “The CICS operating environment,” on page 355

HTTP request and response processing for CICS as an HTTP client
For CICS as an HTTP client, CICS is the Web client, and it communicates with an
HTTP server. A user-written application program sends requests through CICS to
the HTTP server, and receives the responses from it. CICS maintains a persistent
connection with the server. A session token is used on the commands issued by the
application program to identify the connection.

An application program that makes an HTTP request and receives a response must
use the EXEC CICS WEB API commands to explicitly direct the interaction with the
server.

The application program that initiates the HTTP request should be designed to
process whatever CICS receives from the server in response to that request, which
might include error responses, redirection to another URL, embedded hypertext
links, HTML forms, image source, or other items that request an action from the
application program. CICS can perform code page conversion for requests and
responses, if required.

© Copyright IBM Corp. 2004, 2010 83

This figure contains a high-resolution graphic that is not supported in this display
format. To view the graphic, please use the CICS Information Center.

Processing for CICS as an HTTP client takes place as follows:

1. The application program initiates a connection with the HTTP server
through CICS. The application program does this by issuing the EXEC CICS
WEB OPEN command. A URIMAP resource definition that you have created
can be referenced to specify the scheme and host name for the connection, or
the application program can provide this information.

2. CICS establishes the connection with the server. Using the information
provided by the application program, CICS opens a TCP/IP connection on a
socket and contacts the server. When the TCP/IP connection is established,
CICS returns a session token to the application program to uniquely identify
the connection. This session token is used on all the remaining commands
issued by the application program concerning that connection.

3. The application program may write HTTP headers for its request.
User-written HTTP headers can be built using the WEB WRITE HTTPHEADER
command and stored ready for sending.

4. The application program specifies components of the request line. The
request method, path information and query string are specified using the WEB
SEND or WEB CONVERSE command.

5. The application program may produce an entity body for its request. The
content of the request is specified on the WEB SEND or WEB CONVERSE
command.

6. The application program initiates transmission of the request. When the
application program issues the WEB SEND or WEB CONVERSE command,
the request is passed to CICS for sending across the connection specified by
the session token.

7. CICS generates some required HTTP headers and adds them to the
request, then sends the request to the server.

8. The server receives and processes the request, and provides a response.
CICS passes the response to the application program.

9. The application program examines the response. The WEB READ
HTTPHEADER command, or the HTTP header browsing commands, can be
used to examine the headers of the response. The WEB RECEIVE or WEB
CONVERSE command receives the body of the response (if there is one),
which can be processed by the application program, and the response's status
code and status text.

10. The application program may initiate further requests and responses. If
the server supports persistent connections, the connection identified by the
session token remains open for further requests.

11. The application program initiates closing of the connection to the server.
When all the requests and responses are completed, the application program
issues a WEB CLOSE command, and CICS closes its end of the TCP/IP
connection. If the application program does not issue a WEB CLOSE
command, the connection is closed at end of task.

During this process, code page conversion is usually needed when messages enter
and leave the CICS environment, so that CICS Web support processing and
user-written applications (which typically use an EBCDIC encoding) can
communicate with HTTP servers (which typically use an ASCII encoding).

84 Release Guide

Session tokens
A session token is an 8-byte binary value that uniquely identifies a connection
between CICS as an HTTP client, and an HTTP server. The use of a session token
for each connection means that CICS Web support can manage multiple
connections to servers by different tasks, and also means that an application
program can control more than one connection.

A connection begins in response to a WEB OPEN command issued by a user
application program. The session token is returned on successful completion of the
WEB OPEN command, and used on all the EXEC CICS WEB commands issued by
the application program concerning that connection.

Using the connection, the user application program can make HTTP client requests
to the server, and receive responses from it. The connection can persist for more
than one exchange of a request and a response, until either the application
program or the server chooses to terminate the connection. “How CICS Web
support handles persistent connections” on page 115 has more detail about how
CICS Web support handles persistent connections and how they are terminated.

If the server terminates the connection, the application program cannot send any
further requests using that connection, but it can read the response that the server
sent before it terminated the connection. The session token remains valid for use
on commands to access that data, until the application issues the WEB CLOSE
command. After the WEB CLOSE command is issued, the session token that
applies to the connection is no longer valid. If the application program does not
issue a WEB CLOSE command, the connection is closed at end of task.

The maximum number of open client connections, each represented by a session
token, that can be present simultaneously in a CICS region is 32768.

Changes to CICS externals

Changes to resource definition
URIMAP definitions can be used as a convenient way to make an HTTP request
through CICS as an HTTP client.

URIMAP definitions for CICS as an HTTP client

URIMAP definitions may be used to avoid specifying information such as a URL or
a certificate label in an application program that makes an HTTP client request. The
attributes of a URIMAP definition are listed in “Changes to resource definition” on
page 135. A URIMAP definition for CICS as an HTTP client is defined with
USAGE(CLIENT), and the SCHEME, HOST, PATH, CERTIFICATE and CIPHERS
attributes can be specified. An application program can name the URIMAP definition
on the WEB OPEN and WEB SEND commands to use the relevant information
from it.

URIMAP definitions are also used for CICS as an HTTP server, and for Web
services.

Chapter 3. Support for HTTP client requests from CICS applications 85

Changes to the monitoring control table, DFHMCT

The new monitoring fields 331-338 in the DFHWEBB group of performance class
records are added to the monitoring control table. These fields monitor actions for
CICS as an HTTP client.

Changes to the application programming interface (HTTP client
requests)

New and changed commands

The following new EXEC CICS WEB commands are provided for CICS as an HTTP
client:

v EXEC CICS WEB OPEN

v EXEC CICS WEB CONVERSE

v EXEC CICS WEB CLOSE

The following EXEC CICS WEB commands have a new range of options when
used for CICS as an HTTP client:

v EXEC CICS WEB SEND

v EXEC CICS WEB RECEIVE

The following new EXEC CICS commands can be used for both CICS as an HTTP
client, and CICS as an HTTP server, and are described in “Changes to the
application programming interface (General CICS Web support enhancements)” on
page 146:

v EXEC CICS WEB PARSE URL

v EXEC CICS CONVERTTIME

There are changes to the options available on most of the remaining EXEC CICS
WEB commands. The changed commands can be used for both CICS as an HTTP
client, and CICS as an HTTP server. The changes to the following commands are
described in this section:

v EXEC CICS WEB WRITE HTTPHEADER

v EXEC CICS WEB READ HTTPHEADER

v EXEC CICS WEB STARTBROWSE HTTPHEADER

v EXEC CICS WEB READNEXT HTTPHEADER

v EXEC CICS WEB ENDBROWSE HTTPHEADER

The changes to the following commands are described in “Changes to the
application programming interface (General CICS Web support enhancements)” on
page 146:

v EXEC CICS WEB EXTRACT

v EXEC CICS FORMATTIME

The WEB FORMFIELD commands and the WEB RETRIEVE command cannot be
used for CICS as an HTTP client.

86 Release Guide

WEB OPEN
Open a connection to a server for CICS as an HTTP client.

Description

WEB OPEN enables an application program, through CICS Web support, to open a
connection with a specified host on an HTTP server on the Internet. The host name
and scheme can be used from a preset URIMAP definition, which also supplies a
default path for requests.

When the connection is open, the application program can make HTTP client
requests to the server and receive responses from it. CICS queries the HTTP
version of the server (using an OPTIONS request) when the connection is opened,
and uses this information for subsequent communications. CICS also returns the
HTTP version information to the application program, to be checked if you plan to
write HTTP headers or send chunked information.

The WEB OPEN command drives the XWBOPEN user exit, which can make the
connection to the server go through a proxy server, if required.

Options

CERTIFICATE(data-value)
specifies the label of the X.509 certificate that is to be used as the SSL client
certificate during the SSL handshake. Certificate labels can consist of up to 32
alphanumeric characters. This option is only relevant when SCHEME(HTTPS) is
specified. If SCHEME(HTTPS) is specified, but the CERTIFICATE option is
omitted, the default certificate defined in the key ring for the CICS region user
ID is used. The certificate must be stored in a key ring in the external security
manager's database.

CIPHERS(data-value)
specifies a string of up to 56 hexadecimal digits that is interpreted as a list of up
to 28 2-digit cipher suite codes. The cipher suite codes are used when SSL is
active for the connection, so this option is only relevant when SCHEME(HTTPS)
is specified. They indicate the method of encryption to be used for this
connection.

WEB OPEN

�� WEB OPEN �

� URIMAP(data-value)
HOST(data-value) HOSTLENGTH(data-value) PORTNUMBER(data-value) SCHEME(cvda)

�

�
CERTIFICATE(data-value) CIPHERS(data-value) NUMCIPHERS(data-value)

�

�
CODEPAGE(data-value)

SESSTOKEN(data-area) HTTPVNUM(data-area) HTTPRNUM(data-area) ��

Conditions: IOERR, INVREQ, LENGERR, NOTFND, NOTAUTH, TIMEDOUT

This command is threadsafe.

Chapter 3. Support for HTTP client requests from CICS applications 87

Use the NUMCIPHERS option to specify the number of cipher suite codes in
your list. The codes that are available depend on what level of encryption has
been specified by the ENCRYPTION system initialization parameter. If you
specify any cipher codes that are not in the default list for the active encryption
level, they are ignored.

You can specify the URIMAP option to use this information directly from an
existing URIMAP definition, in which case the CIPHERS option is not required.
You may still specify the CIPHERS option, and the setting in the URIMAP
definition is overridden by any codes that you specify for this option.

If you omit the CIPHERS option and the URIMAP option, but SSL is active for
the connection, the default cipher list for the encryption level for the running
system is used.

CODEPAGE(data-value)
specifies a code page, usually EBCDIC, that is suitable for the application
program. The code page name can be up to 8 alphanumeric characters. The
default is the default code page for the local CICS region, as specified in the
LOCALCCSID system initialization parameter. The code page applies for the
duration of this connection. When the server returns a response to an HTTP
request, if conversion is requested (which is the default), CICS converts the
request body into this code page before passing it to the application.

HOST(data-value)
specifies the host name on the server to which you want to connect.

An IPv4 address can be used as a host name, but IPv6 addresses are not
supported.

If a port number is required, do not include this with the host name, but use the
PORTNUMBER option to specify it.

HOSTLENGTH(data-value)
specifies, as a fullword binary value, the length of the host name.

HTTPRNUM(data-area)
returns the release number for the HTTP version of the server, as a halfword
binary value. (HTTPVNUM returns the version number.) For example, if the
server is at HTTP/1.0 level, HTTPRNUM returns 0.

HTTPVNUM(data-area)
returns the version number for the HTTP version of the server, as a halfword
binary value. (HTTPRNUM returns the release number.) For example, if the
server is at HTTP/1.0 level, HTTPVNUM returns 1.

CICS obtains the HTTP version information when it opens the connection to the
server. If the server does not provide HTTP version information, CICS assumes
that it is at HTTP/1.0 level.

If your application program writes HTTP headers that might be unsuitable for a
server at HTTP/1.0 level, or if you intend to send a chunked message to the
server (which cannot be received by a server at HTTP/1.0 level), your
application program should also consult the HTTP version information.

Note: CICS does not make any special provision for a server that is below
HTTP/1.0 level. CICS behaves as though these servers were at
HTTP/1.0 level, and returns HTTP/1.0 as the HTTP version.

NUMCIPHERS(data-value)
specifies, as a halfword binary value, the number of cipher suite codes that you
specified for the CIPHERS option.

88 Release Guide

#
#
#

PORTNUMBER(data-value)
specifies the port number, as a fullword binary value. You only need to specify
the port number if it is not the default for the specified scheme. For HTTP, the
default port number is 80, and for HTTPS, the default port number is 443.

SCHEME(cvda)
specifies the scheme that is to be used for the connection to the server, which
can be with or without SSL. CVDA values are:

HTTP is the HTTP protocol, without SSL.

HTTPS
is the HTTPS protocol, which is HTTP with SSL. If HTTPS is used, the
CICS address space must be enabled for SSL.

SESSTOKEN(data-area)
returns the session token, an 8-byte binary value that uniquely identifies this
connection between CICS and a server. It is returned when the connection is
opened successfully. The session token must be used on all CICS WEB
commands that relate to this connection. "Session tokens" in the CICS Internet
Guide explains the use of the session token.

URIMAP(data-value)
specifies the name (up to 8 characters, in mixed case) of a URIMAP definition
that provides the following information:

v The scheme that is to be used for the connection to the server.

v The host name on the server to which you want to connect.

v A port number, if required.

v A path component for the URI, representing the resource on the server that
you want to access. This path becomes the default path for WEB SEND or
WEB CONVERSE commands relating to this connection, but it can be
overridden by specifying another path on the WEB SEND or WEB
CONVERSE command.

v The label of the X.509 certificate that is to be used as the SSL client
certificate, if required.

v The cipher suite codes that can be used for the connection.

If the URIMAP option is specified, do not specify the CERTIFICATE, HOST,
HOSTLENGTH, PORTNUMBER, PORTLENGTH, or SCHEME options. The
CIPHERS and NUMCIPHERS options can be omitted or specified in the
command; if specified, they override these settings in the URIMAP definition.
The URIMAP definition must be for CICS as an HTTP client, with
USAGE(CLIENT) specified.

Chapter 3. Support for HTTP client requests from CICS applications 89

WEB CLOSE
Closes a connection to a server for CICS as an HTTP client.

Description

WEB CLOSE enables an application program to close a connection with a server.
The session token identifies the connection that is to be closed. When the
connection is closed, the session token that applies to it is no longer valid for use.
The session token is required to receive a response from the server and to read the
HTTP headers for the response, so the WEB CLOSE command should not be
issued until all interaction with the server and with the response that it sends is
complete. The command releases CICS resources involved with the connection.

The WEB CLOSE command does not cause CICS to notify the server that the
connection should be terminated. It only makes CICS close the connection on the
client side. On the final request that you make using the connection, you should
specify the CLOSESTATUS(CLOSE) option on the WEB SEND or WEB
CONVERSE command. When this option is specified, CICS writes a Connection:
close header on the request, or, for a server at HTTP/1.0 level, omits the
Connection: Keep-Alive header. The information in the headers means that the
server can close its connection with you immediately after sending the final
response, rather than waiting to see if you send further requests before timing out.

The connection might also be closed at the request of the server before the WEB
CLOSE command is issued. If you need to test whether the server has requested
termination of the connection, use the WEB READ HTTPHEADER command to
look for the Connection: close header in the last message from the server.

If the server does request termination of the connection, the data relating to that
connection is still kept available within CICS until the WEB CLOSE command is
issued. The available data includes the most recent message received from the
server, and the parameters used to open the connection (such as the scheme and
the host name of the server). When a server has terminated the connection, the
application program cannot:

v Send further requests on that connection, using the WEB SEND or WEB
CONVERSE commands.

v Write HTTP headers, using the WEB WRITE HTTPHEADER command.

However, the application program can still:

v Receive a response, using the WEB RECEIVE command.

v Examine HTTP headers, using the WEB READ HTTPHEADER and HTTP
header browsing commands.

v Extract connection information, using the WEB EXTRACT command.

WEB CLOSE

�� WEB CLOSE SESSTOKEN(data-value) ��

Conditions: NOTOPEN

This command is threadsafe.

90 Release Guide

When the WEB CLOSE command is issued, the data relating to the connection is
cleared.

If the WEB CLOSE command is not issued by the application program, then at end
of task CICS clears the data relating to the connection and closes the connection, if
it has not already been closed.

Options

SESSTOKEN(data-value)
specifies the session token, an 8-byte binary value that uniquely identifies a
connection between CICS and a server. This value is returned by a WEB OPEN
command for CICS as an HTTP client. When you issue the WEB CLOSE
command for the connection identified by the session token, CICS ends that
connection and clears the data associated with it, and makes the session token
invalid for further use by the application program. "Session tokens" in the CICS
Internet Guide explains the use of the session token.

WEB SEND (Client)
Send an HTTP request by CICS as an HTTP client, using CICS Web support.

Description

WEB SEND for CICS as an HTTP client is used to make an HTTP request to a
server. A session token must be included on this command.

Tip: For CICS as an HTTP client, the CONVERSE command can be used as an
alternative to issuing a WEB SEND command followed by a WEB RECEIVE
command. However, bear in mind that the WEB CONVERSE command does
not support chunked transfer-coding, because this requires a sequence of
send actions, and the WEB CONVERSE command provides a single send
action.

WEB SEND (CICS as an HTTP client)

�� WEB SEND SESSTOKEN(data-value) METHOD(cvda)
PATH(data-area) PATHLENGTH(data-value)
URIMAP(data-value)

�

�
QUERYSTRING(data-area) QUERYSTRLEN(data-value)

�

�
MEDIATYPE(data-value)

DOCTOKEN(data-value)
FROM(data-area) FROMLENGTH(data-value)

CHUNKING(cvda)

�

�
CLIENTCONV(cvda) CHARACTERSET(data-value) ACTION(cvda) CLOSESTATUS(cvda)

��

Conditions: IOERR, INVREQ, LENGERR, NOTFND, NOTAUTH, NOTOPEN,
TOKENERR

This command is threadsafe.

Chapter 3. Support for HTTP client requests from CICS applications 91

Options

ACTION(cvda)
This option is used to specify how the message should be sent out. The CVDA
value that applies for CICS as an HTTP client is:

EXPECT
makes CICS send an Expect header along with the request line and
headers for the request, and await a 100-Continue response before
sending the message body to the server. If a response other than
100-Continue is received, CICS informs the application program and
cancels the send. If no response is received after a period of waiting,
CICS sends the message body anyway.

This option must only be used if your request has a message body.

CHARACTERSET(data-value)
specifies the character set into which CICS translates the entity body of the
request before sending. The name of the character set can consist of up to 40
alphanumeric characters, including appropriate punctuation. CICS does not
support all the character sets named by IANA.

For conversion of the entity body to take place, the CLIENTCONV option must
be specified as (or allowed to default to) CLICONVERT. Specifying
NOCLICONVERT suppresses conversion of the entity body. If conversion is
requested, ISO-8859-1 is used as the default if the CHARACTERSET attribute
is not specified.

CHUNKING(cvda)
is used for controlling the message send when the message is being sent in
chunks (known as chunked transfer-coding). The default when the option is not
specified is that chunked transfer-coding is not in use.

The content of a chunked message can be divided into chunks in whatever way
is most convenient for the application program. The body of a chunked
message cannot be formed directly from CICS documents, so the DOCTOKEN
option cannot be used.

Use a separate WEB SEND command with CHUNKING(CHUNKYES) for each
chunk of the message. Use the FROM option to specify the chunk of data, and
the FROMLENGTH option to specify the length of the chunk. Other options for
the message, such as the CLOSESTATUS option, can be specified on the first
WEB SEND command of the sequence (which sends the first chunk), but do
not specify them on subsequent commands (which send the second and
subsequent chunks).

When you have sent the last chunk of the data, specify a further WEB SEND
command with CHUNKING(CHUNKEND) and no FROM or FROMLENGTH
option. CICS then sends an empty chunk to the recipient to end the chunked
message.

CVDA values are:

CHUNKNO
Chunked transfer-coding is not used for the message. This is the
default if the CHUNKING option is not specified.

CHUNKYES
Chunked transfer-coding is in progress. The data specified by the
FROM option represents a chunk of the message.

92 Release Guide

CHUNKEND
Chunked transfer-coding is complete. No data is specified for this send.
CICS sends an empty chunk to the recipient to complete the chunked
message.

Note:

1. The method (METHOD option) must be compatible with chunked
transfer-coding.

2. When you have begun sending the parts of a chunked message, the
application program cannot send any different messages or receive
any items until the final empty chunk is sent and the chunked
message is complete.

CLOSESTATUS(cvda)
specifies whether or not a Connection header with the "close" connection option
(Connection: close) should be included on the message. The default is that the
header is not included. The CVDA values are:

CLOSE
makes CICS write a Connection: close header for this request. The
header notifies the server that the connection should be closed after the
server has sent its response to the request. (For a server at HTTP/1.0
level, CICS achieves the same effect by omitting the Connection:
Keep-Alive header.)

If chunked transfer-coding is in use, the CLOSESTATUS(CLOSE)
option can be specified on the first chunk of the message, to inform the
server that the connection should be closed after the chunked message
is complete and a response has been sent.

If chunked transfer-coding is not in use, and the
CLOSESTATUS(CLOSE) option is specified on a WEB SEND
command, no further messages can be sent to the server until a new
connection is made.

NOCLOSE
means that the Connection: close header is not used for this request. If
the server is identified as HTTP/1.0, CICS sends a Connection header
with the "Keep-Alive" connection option (Connection: Keep-Alive), to
notify that a persistent connection is desired.

CLIENTCONV(cvda)
specifies whether or not CICS translates the entity body of the HTTP request
before sending, from the code page used by the application, to a character set
suitable for the recipient. If this option is omitted, the default is that any entity
body is converted, unless a non-text media type is specified. CVDA values are:

CLICONVERT
CICS converts the entity body of the HTTP request from the code page
used by the application, into the character set that you identify for the
server. You can use the CHARACTERSET option on this command to
specify the character set that is used. If conversion is requested but you
do not specify a character set, the default is that CICS converts the
entity body to the ISO-8859-1 character set. (The code page used by
the application was identified on the WEB OPEN command for the
connection.)

NOCLICONVERT
CICS does not convert the entity body of the HTTP request, and it is

Chapter 3. Support for HTTP client requests from CICS applications 93

sent to the server in the code page used by the application, as
identified on the WEB OPEN command for the connection.

DOCTOKEN(data-value)
specifies the 16-byte binary token of a document to be sent as the message
body. The document must be created using the CICS Document interface
(EXEC CICS DOCUMENT CREATE, INSERT, and SET commands), as
described in the CICS Application Programming Guide. The FROM option
provides an alternative way to create a message body.

The body of a chunked message cannot be formed from CICS documents, so
the DOCTOKEN option cannot be used for chunked transfer-coding.

CICS documents cannot be converted to the UTF-8 and UTF-16 character
encodings.

FROM(data-area)
specifies a buffer of data which holds the message body. The message body is
built by the application program. When you specify the FROM option, use the
FROMLENGTH option to specify the length of the buffer of data. The
DOCTOKEN option provides an alternative way to create the message body,
but that option cannot be used for the body of a chunked message.

FROMLENGTH(data-value)
specifies the length, as a fullword binary value, of the buffer of data supplied on
the FROM option (the message body). It is important to state this value
correctly, because an incorrect data length can cause problems for the recipient
of the message.

MEDIATYPE(data-value)
specifies the data content of any message body provided, for example
text/xml. The media type is up to 56 alphanumeric characters, including
appropriate punctuation, but not spaces. CICS checks that the format of the
media type is correct, but does not check the validity of the media type against
the data content. CICS uses this information to produce the Content-Type
header for the message.

For requests which require a body, you must specify the MEDIATYPE option.
There is no default. However, if the required Content-Type header needs to
contain spaces or more than 56 characters, the application can provide it using
the WEB WRITE HTTPHEADER command. In this case, do not specify the
MEDIATYPE option.

METHOD(cvda)
specifies the HTTP method for the request.

The GET, HEAD, POST, PUT, TRACE, OPTIONS, and DELETE methods are
supported by this command. However, some HTTP servers, particularly
HTTP/1.0 servers, might not implement all of these methods.

CICS bars the sending of a message body for methods where it is
inappropriate, and requires it for methods where it is appropriate. Chunked
transfer-coding is not relevant for methods that do not have a request body.The
CVDA values are:

GET Obtain a resource from the server. A request body is not allowed.

HEAD Obtain the HTTP headers, but not the response body, for a resource. A
request body is not allowed.

POST Send data to a server. A request body is required.

PUT Create or modify a resource on the server. A request body is required.

94 Release Guide

#

#
#

#
#
#
#
#

TRACE
Trace the route of your request to the server. A request body is not
allowed.

OPTIONS
Obtain information about the server. A request body is allowed, but
there is no defined purpose for the body. If you do use a request body,
then you must specify a media type.

DELETE
Delete a resource on the server. A request body is not allowed.

PATH(data-area)
specifies the path information for the specific resource within the server that the
application needs to access.

If the URIMAP option was used to specify an existing URIMAP definition on the
WEB OPEN command for this connection, the path specified in that URIMAP
definition is the default path for the WEB SEND command. In these
circumstances, if you do not specify path information on the WEB SEND
command, the path from the URIMAP definition is used. If you specify a
different path from that given in the URIMAP definition, this overrides the path
from the URIMAP definition.

If the URIMAP option was not used on the WEB OPEN command, there is no
default path, and you must provide path information. Path information can be
extracted from a known URL using the WEB PARSE URL command.

As an alternative to using the PATH option to provide the path information, you
can use the URIMAP option on the WEB SEND command to specify a URIMAP
definition from which the path information is taken directly.

PATHLENGTH(data-value)
specifies the length of the path, as a fullword binary value. If you are providing
path information using the PATH option, you need to specify the PATHLENGTH
option. Path length information is returned if you use the WEB PARSE URL
command to parse a URL.

QUERYSTRING(data-area)
specifies a query string that is to be supplied to the server as part of the
request. You do not need to include a question mark (?) at the beginning of the
query string; if you do not include it, CICS supplies it for you automatically when
constructing the request. If you include escaped characters in the query string,
CICS passes them to the server in their escaped format.

QUERYSTRLEN(data-value)
specifies the length of the query string supplied on the QUERYSTRING option,
as a fullword binary value.

SESSTOKEN(data-value)
specifies the session token, an 8-byte binary value that uniquely identifies a
connection between CICS and a server. This value is returned by a WEB OPEN
command for CICS as an HTTP client.

URIMAP(data-value)
specifies the name (up to eight characters, in mixed case) of a URIMAP
definition that provides the path information for the specific resource within the
server that the application needs to access. The URIMAP definition must be for
CICS as an HTTP client (with USAGE(CLIENT) specified). Its HOST attribute
must be the same as the HOST attribute of the URIMAP definition that was
specified on the WEB OPEN command for this connection, or the same as the

Chapter 3. Support for HTTP client requests from CICS applications 95

host name specified in the HOST option on the WEB OPEN command for this
connection. A URIMAP definition specified on the WEB SEND command applies
only to this request.

If the URIMAP option is specified, do not specify the PATH or PATHLENGTH
options.

WEB RECEIVE (Client)
Receive an HTTP response for CICS as an HTTP client.

Description

WEB RECEIVE for CICS as an HTTP client receives the body of an HTTP
response that a server has made. The headers for the HTTP response can be
examined separately using the WEB READ HTTPHEADER command or the HTTP
header browsing commands. A session token must be included on this command.

Code page conversion for the incoming message can be specified on this
command.

Note: The RTIMOUT value specified for the transaction that starts the user
application indicates the time that the application is prepared to wait to
receive the incoming message. (RTIMOUT is specified on the transaction
profile definition). When the period specified by RTIMOUT expires, CICS
returns a TIMEDOUT response to the application. An RTIMOUT value of
zero means that the application is prepared to wait indefinitely. The default
setting for RTIMOUT on transaction profile definitions is zero, so it is
important to check and change that setting for applications that are making
HTTP client requests.

Tip: For CICS as an HTTP client, the CONVERSE command can be used as an
alternative to issuing a WEB SEND command followed by a WEB RECEIVE
command.

WEB RECEIVE (CICS as an HTTP client)

�� WEB RECEIVE SESSTOKEN(data-value)
MEDIATYPE(data-area)

�

�
STATUSCODE(data-value)

�

�
STATUSTEXT(data-area) STATUSLEN(data-value)

INTO(data-area)
SET(ptr-ref)

�

� LENGTH(data-area)
MAXLENGTH(data-value) NOTRUNCATE

�

�
CLIENTCONV(cvda)

��

Conditions: INVREQ, LENGERR, NOTOPEN, IOERR, TIMEDOUT

This command is threadsafe.

96 Release Guide

Options

CLIENTCONV(cvda)
specifies whether or not CICS translates the entity body of the response from
the character set used by the server, to a code page suitable for the application.
The default is that the entity body is converted.

CLICONVERT
CICS converts the entity body of the response from the character set
used by the server, into the code page that you identify for the
application.

NOCLICONVERT
CICS does not convert the entity body of the response, and it is passed
to the application in the character set used by the server.

You do not need to specify a character set or application code page on the
WEB RECEIVE command for CICS as an HTTP client. If code page conversion
is required, CICS identifies the character set used by the server by examining
the Content-Type header of the message. If the header does not provide this
information, or if the named character set is not supported by CICS for code
page conversion, the ISO-8859-1 character set is used. For the application's
code page, the default code page for the local CICS region (as specified in the
LOCALCCSID system initialization parameter) is used, or an alternative
EBCDIC code page that you specified on the WEB OPEN COMMAND.

INTO(data-area)
specifies the buffer that is to contain the data being received.

LENGTH(data-area)
specifies a fullword binary variable which is set to the amount of data that CICS
has returned to the application.

v If the NOTRUNCATE option is not specified, any further data present in the
message has now been discarded. A LENGERR response with a RESP2
value of 57 is returned if further data was present.

v If the NOTRUNCATE option is specified, any additional data is retained. A
LENGERR response with a RESP2 value of 36 is returned if additional data
is available. The description for the NOTRUNCATE option tells you what to
do in this case.

MAXLENGTH(data-value)
specifies the maximum amount, as a fullword binary value, of data that CICS is
to pass to the application. The MAXLENGTH option applies whether the INTO
or the SET option is specified for receiving data. If the data has been sent using
chunked transfer-coding, CICS assembles the chunks into a single message
before passing it to the application, so the MAXLENGTH option applies to the
total length of the chunked message, rather than to each individual chunk. The
data is measured after any code page conversion has taken place.

MEDIATYPE(data-area)
specifies a 56-character data-area to receive the media type (that is, the type of
data content) for the body, for example text/xml.

NOTRUNCATE
specifies that when the data available exceeds the length requested on the
MAXLENGTH option, the remaining data is not to be discarded immediately but
is to be retained for retrieval by subsequent RECEIVE commands. (If no further
RECEIVE commands are issued, the data is discarded during transaction
termination.)

Chapter 3. Support for HTTP client requests from CICS applications 97

A single RECEIVE command using the SET option and without the
MAXLENGTH option receives all the remaining data, whatever its length.
Alternatively, you can use a series of RECEIVE commands with the
NOTRUNCATE option to receive the remaining data in appropriate chunks.
Keep issuing the RECEIVE command until you are no longer getting a
LENGERR response.

SET(ptr-ref)
specifies a pointer reference that is to be set to the address of data received.
The pointer reference is valid until the next receive command or the end of
task.

SESSTOKEN(data-value)
specifies the session token, an 8-byte binary value that uniquely identifies a
connection between CICS and a server. This value is returned by a WEB OPEN
command for CICS as an HTTP client.

STATUSCODE(data-value)
specifies a data-area to receive the HTTP status code sent by the server. The
code is a binary halfword value. Examples are 200 (normal) or 404 (not found).
Receiving the status code is optional, but you should always receive and check
the status code in the following circumstances:

v If you intend to make an identical request to the server, now or during a
future connection.

v If you intend to make further requests to the server using this connection.

v If your application is carrying out any further processing that depends on the
information you receive in the response.

STATUSTEXT(data-area)
specifies a data-area to receive any text returned by the server to describe the
status code. The text is known as a reason phrase. Examples are "OK"
(accompanying a 200 status code), or "Bad Request" (accompanying a 400
status code). The STATUSLEN option gives the length allowed for the text.

STATUSLEN(data-value)
specifies, as a fullword binary value, the length of the data-area to receive any
text returned by the server to describe the status code (the STATUSTEXT
option). The text is known as a reason phrase. Most reason phrases
recommended for HTTP are short, but a data-area length of 256 characters is
suggested here, in case the server replaces the recommended reason phrase
with more detailed information.

WEB CONVERSE
Send an HTTP request by CICS as an HTTP client, and receive a response from
the server, using a single command. An alternative to the WEB SEND and WEB
RECEIVE commands for CICS as an HTTP client.

98 Release Guide

Description

WEB CONVERSE enables an application program to compose and send an HTTP
client request, and receive a response from the server. A session token must be
included on this command.

v The HTTP client request is made using a connection that has been opened
using the WEB OPEN command. The WEB CONVERSE command can be used
in place of the WEB SEND command to compose and send the request.

v The response from the server is received by CICS Web support and passed to
the application. The WEB CONVERSE command can be used in place of the
WEB RECEIVE command to make the application program wait for and receive
the HTTP response. The headers for the HTTP response can be examined
separately using the WEB READ HTTPHEADER command or the HTTP header
browsing commands.

Note: The RTIMOUT value specified for the transaction that starts the user
application indicates the time that the application is prepared to wait to
receive the incoming message. (RTIMOUT is specified on the transaction
profile definition). When the period specified by RTIMOUT expires, CICS
returns a TIMEDOUT response to the application. An RTIMOUT value of

WEB CONVERSE

�� WEB CONVERSE SESSTOKEN(data-value) �

�
PATH(data-area) PATHLENGTH(data-value)
URIMAP(data-value)

METHOD(cvda) �

�
MEDIATYPE(data-area)

�

�
QUERYSTRING(data-area) QUERYSTRLEN(data-value)

�

�
DOCTOKEN(data-value)
FROM(data-area) FROMLENGTH(data-value)

ACTION(cvda)
�

�
CLOSESTATUS(cvda)

INTO(data-area)
SET(ptr-ref)

TOLENGTH(data-area) �

�
MAXLENGTH(data-value) NOTRUNCATE STATUSCODE(data-area)

�

�
STATUSTEXT(data-area) STATUSLEN(data-value)

�

�
CHARACTERSET(data-value) CLIENTCONV(cvda)

��

Conditions: IOERR, INVREQ, LENGERR, NOTAUTH, NOTFND, NOTOPEN,
TIMEDOUT, TOKENERR

This command is threadsafe.

Chapter 3. Support for HTTP client requests from CICS applications 99

zero means that the application is prepared to wait indefinitely. The default
setting for RTIMOUT on transaction profile definitions is zero, so it is
important to check and change that setting for applications that are
making HTTP client requests.

The WEB CONVERSE command does not support chunked transfer-coding for the
request, because this requires a sequence of send actions, and the WEB
CONVERSE command provides a single send action. If you want to send a
chunked message, use the WEB SEND command to send it, and the WEB
RECEIVE command to receive it. If the server sends a chunked response, this can
be received using the WEB CONVERSE command.

The WEB CONVERSE command cannot be used after the connection to the server
has been closed. If you need to test whether the server has requested termination
of the connection, use the WEB READ HTTPHEADER command to look for the
Connection: close header in the last message from the server.

The WEB CONVERSE command performs a single send action and a single
receive action, and it is designed to be used in place of a WEB SEND command
and a WEB RECEIVE command. You may use WEB SEND and WEB RECEIVE
commands, and WEB CONVERSE commands, in relation to the same connection
(that is, with the same SESSTOKEN). However, if you are pipelining requests (that
is, sending a sequence of requests without waiting for a response), you must not
follow a WEB SEND command with a WEB CONVERSE command. CICS checks at
program run time that each WEB SEND command has a subsequent WEB
RECEIVE command before any WEB CONVERSE command is issued. For
example, if you use the WEB SEND command three times to issue a pipelined
sequence of requests, you must use the WEB RECEIVE command three times to
receive the responses for those requests, before you may use the WEB
CONVERSE command.

Options for sending the HTTP client request

ACTION(cvda)
This option is used to specify how the message should be sent out. The CVDA
value that applies for CICS as an HTTP client is:

EXPECT
makes CICS send an Expect header along with the request line and
headers for the request, and await a 100-Continue response before
sending the message body to the server. If a response other than
100-Continue is received, CICS informs the application program and
cancels the send. If no response is received after a period of waiting,
CICS sends the message body anyway.

This option must only be used if your request has a message body.

CLOSESTATUS(cvda)
specifies whether or not a Connection header with the "close" connection option
(Connection: close) should be included on the request. The default is that the
header is not included. The CVDA values are:

CLOSE
makes CICS write a Connection: close header for this request. The
header notifies the server that the connection should be closed after the
server has sent its response to the request. (For a server at HTTP/1.0
level, CICS achieves the same effect by omitting the Connection:
Keep-Alive header.)

100 Release Guide

NOCLOSE
means that the Connection: close header is not used for this request. If
the server is identified as HTTP/1.0, CICS sends a Connection header
with the "Keep-Alive" connection option (Connection: Keep-Alive), to
notify that a persistent connection is desired.

DOCTOKEN(data-value)
specifies the 16-byte binary token of a document to be sent as the message
body. The document must be created using the CICS Document interface
(EXEC CICS DOCUMENT CREATE, INSERT, and SET commands), as
described in the CICS Application Programming Guide. The FROM option
provides an alternative way to create a message body.

CICS documents cannot be converted to the UTF-8 and UTF-16 character
encodings.

FROM(data-area)
specifies a buffer of data which holds the message body. The message body is
built by the application program. When you specify the FROM option, use the
FROMLENGTH option to specify the length of the buffer of data. The
DOCTOKEN option provides an alternative way to create the message body.

FROMLENGTH(data-area)
specifies the length, as a fullword binary value, of the buffer of data supplied on
the FROM option (the message body). It is important to state this value
correctly, because an incorrect data length can cause problems for the recipient
of the message.

MEDIATYPE(data-area)
specifies the data content of any request body, for example text/xml. The
media type is up to 56 alphanumeric characters, including appropriate
punctuation, but not spaces. CICS checks that the format of the media type is
correct, but does not check the validity of the media type against the data
content. CICS uses this information to produce the Content-Type header for the
message.

For requests which require a body, you must specify the MEDIATYPE option.
There is no default. However, if the required Content-Type header needs to
contain spaces or more than 56 characters, the application can provide it using
the WEB WRITE HTTPHEADER command. In this case, do not specify the
MEDIATYPE option.

The MEDIATYPE option is used for both the sending and receiving functions of
the WEB CONVERSE command. If it is specified with a value, the value is used
to construct the Content-Type header in the request, and the same field is used
to receive the media type of the response that is returned by the server. If it is
specified without a value, it is used only to receive the media type of the
response.

METHOD(cvda)
specifies the HTTP method for the request.

The GET, HEAD, POST, PUT, TRACE, OPTIONS, and DELETE methods are
supported by this command. However, some HTTP servers, particularly
HTTP/1.0 servers, might not implement all of these methods.

CICS bars the sending of a message body for methods where it is
inappropriate, and requires it for methods where it is appropriate.The CVDA
values are:

GET Obtain a resource from the server. A request body is not allowed.

Chapter 3. Support for HTTP client requests from CICS applications 101

#

#
#

#
#
#
#
#

HEAD Obtain the HTTP headers, but not the response body, for a resource. A
request body is not allowed.

POST Send data to a server. A request body is required.

PUT Create or modify a resource on the server. A request body is required.

TRACE
Trace the route of your request to the server. A request body is not
allowed.

OPTIONS
Obtain information about the server. A request body is allowed, but
there is no defined purpose for the body. If you do use a request body,
then you must specify a media type.

DELETE
Delete a resource on the server. A request body is not allowed.

PATH(data-area)
specifies the path information for the specific resource within the server that the
application needs to access.

If the URIMAP option was used to specify an existing URIMAP definition on the
WEB OPEN command for this connection, the path specified in that URIMAP
definition is the default path for the WEB SEND command. In these
circumstances, if you do not specify path information on the WEB SEND
command, the path from the URIMAP definition is used. If you specify a
different path from that given in the URIMAP definition, this overrides the path
from the URIMAP definition.

If the URIMAP option was not used on the WEB OPEN command, there is no
default path, and you must provide path information. Path information can be
extracted from a known URL using the WEB PARSE URL command.

As an alternative to using the PATH option to provide the path information, you
can use the URIMAP option on the WEB CONVERSE command to specify a
URIMAP definition from which the path information is taken directly.

PATHLENGTH(data-value)
specifies the length of the path, as a fullword binary value. If you are providing
path information using the PATH option, you need to specify the PATHLENGTH
option. Path length information is returned if you use the WEB PARSE URL
command to parse a URL.

QUERYSTRING(data-area)
specifies a query string that is to be supplied to the server as part of the
request. You do not need to include a question mark (?) at the beginning of the
query string; if you do not include it, CICS supplies it for you automatically when
constructing the request. If you include escaped characters in the query string,
CICS passes them to the server in their escaped format.

QUERYSTRLEN(data-value)
specifies the length of the query string supplied on the QUERYSTRING option,
as a fullword binary value.

SESSTOKEN(data-value)
specifies the session token, an 8-byte binary value that uniquely identifies this
connection between CICS and a server. This value is returned by a WEB OPEN
command for CICS as an HTTP client. "Session tokens" in the CICS Internet
Guide explains the use of the session token.

102 Release Guide

URIMAP(data-value)
specifies the name (up to 8 characters, in mixed case) of a URIMAP definition
that provides the path information for the specific resource within the server that
the application needs to access. The URIMAP definition must be for CICS as
an HTTP client (with USAGE(CLIENT) specified). Its HOST attribute must be
the same as the HOST attribute of the URIMAP definition that was specified on
the WEB OPEN command for this connection, or the same as the host name
specified in the HOST option on the WEB OPEN command for this connection.
A URIMAP definition specified on the WEB CONVERSE command applies only
to this request.

If the URIMAP option is specified, do not specify the PATH or PATHLENGTH
options.

Options for receiving the server's response

INTO(data-area)
specifies the buffer that is to contain the data being received.

MAXLENGTH(data-value)
specifies the maximum amount, as a fullword binary value, of data that CICS is
to pass to the application. The MAXLENGTH option applies even when the
INTO option is specified for receiving data. If the data has been sent using
chunked transfer-coding, CICS assembles the chunks into a single message
before passing it to the application, so the MAXLENGTH option applies to the
total length of the chunked message, rather than to each individual chunk. The
data is measured after any code page conversion has taken place.

MEDIATYPE(data-area)
specifies a 56-character data-area to receive the media type (that is, the type of
data content) for the body, for example text/xml.

The MEDIATYPE option is used for both the sending and receiving functions of
the WEB CONVERSE command. If it is specified with a value, the value is used
to construct the Content-Type header in the request, and the same field is used
to receive the media type of the response that is returned by the server. If it is
specified without a value, it is used only to receive the media type of the
response.

NOTRUNCATE
specifies that when the data available exceeds the length requested on the
MAXLENGTH option, the remaining data is not to be discarded immediately but
is to be retained for retrieval by subsequent RECEIVE commands. (If no further
RECEIVE commands are issued, the data is discarded during transaction
termination.)

A single RECEIVE command using the SET option and without the
MAXLENGTH option receives all the remaining data, whatever its length.
Alternatively, you can use a series of RECEIVE commands with the
NOTRUNCATE option to receive the remaining data in appropriate chunks.
Keep issuing the RECEIVE command until you are no longer getting a
LENGERR response.

SET(ptr-ref)
specifies a pointer reference that is to be set to the address of data received.
The pointer reference is valid until the next receive command or the end of
task.

STATUSCODE(data-area)
specifies a data-area to receive the HTTP status code sent by the server. The

Chapter 3. Support for HTTP client requests from CICS applications 103

code is a binary halfword value. Examples are 200 (normal) or 404 (not found).
Receiving the status code is optional, but you should always receive and check
the status code in the following circumstances:

v If you intend to make an identical request to the server, now or during a
future connection.

v If you intend to make further requests to the server using this connection.

v If your application is carrying out any further processing that depends on the
information you receive in the response.

STATUSTEXT(data-area)
specifies a data-area to receive any text returned by the server to describe the
status code. The text is known as a reason phrase. Examples are "OK"
(accompanying a 200 status code), or "Bad Request" (accompanying a 400
status code). The STATUSLEN option gives the length allowed for the text.

STATUSLEN(data-value)
specifies, as a fullword binary value, the length of the data-area to receive any
text returned by the server to describe the status code (the STATUSTEXT
option). The text is known as a reason phrase. Most reason phrases
recommended for HTTP are short, but a data-area length of 256 characters is
suggested here, in case the server replaces the recommended reason phrase
with more detailed information.

TOLENGTH(data-area)
specifies a fullword binary variable which is set to the amount of data that CICS
has returned to the application.

v If the NOTRUNCATE option is not specified, any further data present in the
message has now been discarded. A LENGERR response with a RESP2
value of 57 is returned if further data was present.

v If the NOTRUNCATE option is specified, any additional data is retained. A
LENGERR response with a RESP2 value of 36 is returned if additional data
is available. The description for the NOTRUNCATE option tells you what to
do in this case.

This option is the equivalent of the LENGTH option on the WEB RECEIVE
command.

Options for converting items sent and received

CHARACTERSET(data-value)
specifies the character set into which CICS translates the entity body of the
HTTP request before sending. The name of the character set can consist of up
to 40 alphanumeric characters, including appropriate punctuation. CICS does
not support all the character sets named by IANA.

For conversion of the request body to take place, the CLIENTCONV option
must be allowed to default to CLICONVERT, or specified as NOINCONVERT.
Specifying NOCLICONVERT or NOOUTCONVERT suppresses conversion of
the request body. If conversion is requested, ISO-8859-1 is used as the default
if the CHARACTERSET attribute is not specified.

CLIENTCONV(cvda)
specifies whether or not CICS translates the entity body of the HTTP request
before sending, and translates the entity body of the server's response. The
default is that the entity body is converted both when the request is sent out,
and when the response is received (CLICONVERT).

v For the request body, you can use the CHARACTERSET option on this
command to specify a character set that is suitable for the server. If

104 Release Guide

conversion is requested (or happens as the default) but you do not specify a
character set, the default is that CICS converts the entity body to the
ISO-8859-1 character set.

v For the response body, you do not need to specify the character set used by
the server. CICS identifies this by examining the Content-Type header of the
message. If the header does not provide this information, or if the named
character set is not supported by CICS for code page conversion, the
ISO-8859-1 character set is used.

v For the application's code page, the default code page for the local CICS
region (as specified in the LOCALCCSID system initialization parameter) is
used, or an alternative EBCDIC code page that you specified on the WEB
OPEN COMMAND.

CVDA values are:

CLICONVERT
CICS converts the entity body of the request into the character set that
you identify for the server, and converts the entity body of the response
into a code page suitable for the application.

NOINCONVERT
CICS converts the entity body of the request into the character set that
you identify for the server. However, CICS does not convert the entity
body of the response, and it is passed to the application in the
character set used by the server.

NOOUTCONVERT
CICS does not convert the entity body of the request, and it is sent to
the server in the code page used by the application. However, CICS
does convert the entity body of the response into a code page suitable
for the application.

NOCLICONVERT
CICS does not convert the entity body of the request, and it is sent to
the server in the code page used by the application. CICS does not
convert the entity body of the response, and it is passed to the
application in the character set used by the server.

Changes to options on EXEC CICS WEB commands
The SESSTOKEN option is added to the EXEC CICS WEB commands for HTTP
headers, so that the commands can be used for CICS as an HTTP client.

The SESSTOKEN option is added to the following commands:

v WEB WRITE HTTPHEADER

v WEB READ HTTPHEADER

v WEB STARTBROWSE HTTPHEADER

v WEB READNEXT HTTPHEADER

v WEB ENDBROWSE HTTPHEADER

SESSTOKEN(data-value)
For CICS as an HTTP client, this option is required. It specifies the session
token, an 8-byte binary value that uniquely identifies a connection between
CICS and a server. This value is returned by a WEB OPEN command for CICS
as an HTTP client.“Session tokens” on page 85 explains the use of the session
token.

Chapter 3. Support for HTTP client requests from CICS applications 105

Changes to the JCICS API

Note: To get this function, apply the PTF for APAR PK04303.

The JCICS application programming interface is extended to support the client
functions of the following CICS commands:

WEB OPEN

WEB CLOSE

WEB SEND

WEB RECEIVE

WEB CONVERSE

WEB READ HTTPHEADER

WEB WRITE HTTPHEADER

WEB STARTBROWSE HTTPHEADER

WEB READNEXT HTTPHEADER

WEB ENDBROWSE HTTPHEADER

Changes to global user exits

There are two new global user exits for CICS as an HTTP client: XWBOPEN in the
WEB OPEN command, and XWBSNDO in the WEB SEND command. (Note that
XWBSNDO only applies when the WEB SEND command is used for CICS as an
HTTP client, and not for CICS as an HTTP server.)

HTTP client open exit XWBOPEN
XWBOPEN enables systems administrators to specify proxy servers that should be
used for HTTP requests by CICS as an HTTP client, and to apply a security policy
to the host name specified for those requests. XWBOPEN is called during
processing of an EXEC CICS WEB OPEN command, which is used by an
application program to open a connection with a server.

The EXEC CICS WEB OPEN command instructs the CICS Web domain to open a
connection with a server. XWBOPEN is called before the connection is opened. The
host name for the connection (for example, www.example.com), which is specified by
the HOST option on the EXEC CICS WEB OPEN command, is passed as the
UEPHOST parameter to the user exit program for checking. At this point, the user
exit program can be used for two purposes:

v To determine whether the HTTP request needs to use a proxy server, and
return the name of any proxy server that is required. If a proxy server is
needed, return code UERCPROX is used, and the name of the proxy server is
returned to the CICS Web domain (in the buffer identified by UEPPROXY) and
used to make the connection to the server. If no proxy server is needed, return
code UERCNORM is used.

v To apply a security policy to the host name. Return code UERCBARR
indicates that access to the host is not permitted. If access to the host is not
permitted, an INVREQ response is returned to the WEB OPEN command, and
the application programmer should abandon the attempt to open that connection.
If you want to apply a security policy for individual resources, as well as (or
instead of) for the host, the XWBSNDO user exit on the EXEC CICS WEB SEND
and EXEC CICS WEB CONVERSE commands can be used to apply a security
policy to the path component of the URL.

106 Release Guide

The XWBOPEN user exit does not support the use of EXEC CICS commands.

The sample programs DFH$WBPI and DFH$WBEX, and the associated copybook
DFH$WBGA, show you how to set up proxy server information or a security policy
in a global work area. For example, if all the requests from your CICS system
should use a single proxy server, you can specify the proxy server name as an
initialization parameter. If you use a number of proxy servers or want to apply a
security policy to different host names, you could load or build a table that matches
host names to appropriate proxy servers or marks them as barred, which could then
be used as a look-up table during processing of the EXEC CICS WEB OPEN
command. The sample programs can be run during program list table post
initialization (PLTPI) processing, or at any point before you expect the EXEC CICS
WEB OPEN command to be used.

Exit XWBOPEN

When invoked
During processing of an EXEC CICS WEB OPEN command.

Exit-specific parameters

UEPHOST (Input supplied by CICS)
The address of a field containing the host name specified in the HOST
option of the WEB OPEN command.

Note: The host name is converted into lower case when it is saved in
this field. Your user exit program should take this into account
when matching the host name.

UEPHOSTL (Input supplied by CICS)
The address of a field containing the halfword length of the host name.

UEPPROXY (Output supplied by user exit)
The address of a field containing the address that points to the proxy
server name. On input to the user exit program, the parameter is set to
the address of a field containing the address of a 2046-byte area. You
can place the proxy server name in this area, and leave the address in
UEPPROXY unchanged. Alternatively, you can place the proxy server
name in your own area, and replace the address in UEPPROXY with
the address of a field containing the address of your own area.

UEPPROXYL (Output supplied by user exit)
The address of a field containing the halfword length of the proxy server
name.

Return codes

UERCNORM
A proxy server is not needed for this HTTP request, and the host name
is not barred.

UERCPROX
A proxy server is needed for this HTTP request. UEPPROXY has been
set to the name of the required proxy server, and UEPPROXYL has
been set to the length of the proxy server name.

UERCBARR
The host name of the server is barred.

UERCERR
An error occurred in exit processing.

Chapter 3. Support for HTTP client requests from CICS applications 107

XPI calls
All XPI calls can be used.

API and SPI commands
No EXEC CICS commands can be used.

HTTP client send exit XWBSNDO
XWBSNDO enables systems administrators to specify a security policy for HTTP
requests by CICS as an HTTP client. XWBSNDO is called during processing of an
EXEC CICS WEB SEND or EXEC CICS WEB CONVERSE command. The host
name and path information are passed to the exit, and a security policy can be
applied to either or both of these components.

The XWBOPEN exit on the WEB OPEN command can be used to bar access to a
whole host, and the XWBSNDO exit can be used to do the same or to bar access
to specific paths within a host. If you want to bar access to a whole host, doing this
with the XWBOPEN exit saves time, because the application program is not able to
open the connection and so does not waste time creating the request that should
be sent. The host name is provided to the XWBSNDO exit with the primary
intention of allowing you to differentiate between identical paths used by different
hosts.

If chunked transfer-coding is being used for the HTTP request, XWBSNDO is only
called on the first WEB SEND command for the chunked message.

The XWBSNDO user exit does not support the use of EXEC CICS commands.

The host is passed to the user exit program as the UEPHOST parameter, and the
path is passed as the UEPPATH parameter. Return code UERCNORM indicates
that the path is permitted, and return code UERCBARR indicates that the path is
not permitted. If the path is not permitted, an INVREQ response is returned to the
WEB SEND or WEB CONVERSE command, and the application programmer
should handle this by closing the connection with a WEB CLOSE command.

Exit XWBSNDO

When invoked
During processing of an EXEC CICS WEB SEND or EXEC CICS WEB
CONVERSE command for an HTTP request by CICS as an HTTP client. A
client request is indicated by the use of the SESSTOKEN parameter on the
WEB SEND command.

Exit-specific parameters

UEPHOST
The address of a field containing the host name specified in the HOST
option of the WEB OPEN command for the connection.

Note: The host name is converted into lower case when it is saved in
this field. Your user exit program should take this into account
when matching the host name.

UEPHOSTL
The address of a field containing the halfword length of the host name.

UEPPATH
The address of a field containing the path specified in the PATH option
of the WEB SEND command. The path is in mixed case, as it was
specified.

108 Release Guide

UEPPATHL
The address of a field containing the halfword length of the path.

Return codes

UERCNORM
The path is permitted.

UERCBARR
The path is not permitted.

XPI calls
All XPI calls can be used.

API and SPI commands
No EXEC CICS commands can be used.

Changes to monitoring

The following fields are added to the DFHWEBB group of performance-class
monitoring records:

331 (TYPE-A, 'WBREDOCT', 4 BYTES)
The number of CICS Web support READ HTTPHEADER requests issued
by the user task when CICS is an HTTP client.

332 (TYPE-A, 'WBWRTOCT', 4 BYTES)
The number of CICS Web support WRITE HTTPHEADER requests issued
by the user task when CICS is an HTTP client.

333 (TYPE-A, 'WBRCVIN1', 4 BYTES)
The number of CICS Web support RECEIVE and CONVERSE requests
issued by the user task when CICS is an HTTP client.

334 (TYPE-A, 'WBCHRIN1', 4 BYTES)
The number of bytes received by the CICS Web support RECEIVE and
CONVERSE requests issued by the user task when CICS is an HTTP
client. This includes the HTTP headers for the response.

335 (TYPE-A, 'WBSNDOU1, 4 BYTES)
The number of CICS Web support SEND and CONVERSE requests issued
by the user task when CICS is an HTTP client.

336 (TYPE-A, 'WBCHROU1', 4 BYTES)
The number of bytes sent by the CICS Web support SEND and
CONVERSE requests issued by the user task when CICS is an HTTP
client. This includes the HTTP headers for the request.

337 (TYPE-A, 'WBPARSCT', 4 BYTES)
The number of CICS Web support PARSE URL requests issued by the user
task.

338 (TYPE-A, 'WBBRWOCT', 4 BYTES)
The number of CICS Web support BROWSE HTTPHEADER requests
(STARTBROWSE, READNEXT, and ENDBROWSE) issued by the user task
when CICS is an HTTP client.

Note: When requests are made using the WEB CONVERSE command, this
increments both the Send and Receive request counts (WBSNDOU1 and
WBRCVIN1) and the counts of characters sent and received (WBCHRIN1
and WBCHROU1).

Chapter 3. Support for HTTP client requests from CICS applications 109

110 Release Guide

Chapter 4. CICS Web support upgrade to HTTP/1.1

CICS Web support now supports HTTP/1.1.

Releases of CICS before CICS Transaction Server for z/OS, Version 3 Release 1
supported HTTP/1.0. CICS Web support is now enhanced to handle and provide
features of the HTTP/1.1 specification, including chunked transfer-coding, pipelining,
and persistent connections.

CICS Web support is conditionally compliant with the HTTP/1.1 specification, as
described in the Internet Society and IETF (Internet Engineering Task Force)
Request for Comments document RFC 2616, Hypertext Transfer Protocol -
HTTP/1.1. (RFC 2616 is available to download from http://www.ietf.org/rfc/
rfc2616.txt.) Conditional compliance with the HTTP/1.1 specification means that
CICS satisfies all the "MUST" level requirements, but not all the "SHOULD" level
requirements, that are detailed in the HTTP/1.1 specification, where these
requirements are relevant to the functions actually provided by CICS itself. Your
user application programs share the responsibility for compliance in the actions that
they perform, and guidance is provided to help you make your application programs
compliant, when you are ready to do that.

New behavior for CICS TS Version 3
v CICS checks inbound messages for compliance with HTTP/1.1, and handles or

rejects non-compliant messages.

v CICS follows the HTTP/1.1 rules for comparison of URLs.

v CICS provides a suitable HTTP version number in the start line of outbound
messages.

v On outbound HTTP/1.1 messages, CICS supplies the HTTP headers that should
normally be present for the message to be compliant with HTTP/1.1:

– Content-Length (for client request or server response).

– Content-Type (for client request or server response).

– Date (for client request or server response).

– Host (for client request).

– Last-Modified (for static server response with HFS file only).

– Server (for server response).

– TE (for client request).

– Transfer-Encoding (for client request or server response).

– User-Agent (for client request).

v CICS takes action on the Expect header for both inbound and outbound
requests.

v CICS handles OPTIONS requests from Web clients and makes an appropriate
response.

v CICS handles TRACE requests from Web clients and makes an appropriate
response.

v CICS accepts inbound messages with chunked transfer-coding and assembles
them for you, and supports your use of chunked transfer-coding to send
outbound messages.

v CICS supports pipelining for both inbound and outbound messages.

v CICS supports virtual hosting (multiple host names at the same IP address),
based on your URIMAP definitions.

© Copyright IBM Corp. 2004, 2010 111

Changed behavior, compared to CICS TS Version 2
v Connections are now persistent by default.

v CICS handles a wider range of error situations and unsupported messages.

HTTP functions not supported by CICS Web support

The HTTP/1.1 specification (RFC 2616) defines various roles for the parties that
make use of the HTTP protocol. CICS Web support provides HTTP services that
are appropriate for an origin server, for a client, and for a user agent (although a
human user might not be involved for every HTTP client request).

The HTTP/1.1 specification also includes requirements that relate to roles which are
not relevant to CICS Web support, and these can be ignored:

v CICS does not act as a proxy.

v CICS does not act as a gateway (an intermediary for another server) or a tunnel
(a relay between HTTP connections).

v CICS does not provide caching facilities, or provide support for user-written
caching facilities.

v CICS is not designed for use as a Web browser.

Benefits of CICS Web support upgrade to HTTP/1.1

The CICS Web support upgrade to HTTP/1.1 provides the following benefits:

v Conditional compliance with the HTTP/1.1 specification (RFC 2616) means that
CICS Transaction Server for z/OS, Version 3 Release 1 can interact easily and
correctly with a wider range of services and clients on the Internet.

v Persistent connections are now the default for connections between CICS and a
server or Web client. Persistent connections improve network performance
because a new connection does not have to be established for each request.

v Support for pipelining means that CICS applications can send a sequence of
multiple requests to a server, without waiting for an acknowledgement after each
item. CICS Web support also ensures correct handling for pipelined requests
from a Web client to CICS.

v Chunked transfer-coding (known as chunking for short) allows dynamically
produced content, or a large amount of content, to be transferred in convenient
segments, while still enabling the recipient to verify that it has received the
complete message. CICS can receive items sent in this way, and a user-written
application program can send out items in this way.

v CICS automatically creates virtual hosts using your URIMAP definitions, enabling
you to provide multiple host names at the same IP address.

v CICS supports requests by Web clients and by CICS applications with all the
HTTP methods defined by the HTTP/1.1 specification, and also provides
automatic handling and responses for requests from Web clients with OPTIONS
and TRACE methods.

Requirements
There are no special hardware or software requirements to support this function.

112 Release Guide

Related information

Chapter 27, “The CICS operating environment,” on page 355

New HTTP functionality
CICS Web support includes new areas of function.

v Chunked transfer-coding, or chunking

v Pipelining

v Persistent connections

v Virtual hosting

Chunked transfer-coding
Chunked transfer-coding, also known as chunking, involves transferring the body of
a message as a series of chunks, each with its own chunk size header. The end of
the message is indicated by a chunk with zero length and an empty line.

This defined process means that an application-generated entity body, or a large
entity body, can be sent in convenient segments. The client or server knows the
chunked message is complete when the zero length chunk is received.

The body of a chunked message can be followed by an optional trailer that contains
supplementary HTTP headers, known as trailing headers. Clients and servers are
not required to accept trailers, so the supplementary HTTP headers should only
provide non-essential information, unless a server knows that a client accepts
trailers.

To use chunked transfer-coding, both the client and server must be using HTTP/1.1.
A chunked message cannot be sent to an HTTP/1.0 client. The requirements that
apply to chunked transfer-coding and the use of trailing headers are defined in the
HTTP/1.1 specification (RFC 2616).

How CICS Web support handles chunked transfer-coding
Messages using chunked transfer-coding can be sent and received by CICS.

CICS as an HTTP server can receive a chunked message as a request, or send
one as a response. CICS as an HTTP client can send a chunked message as a
request, or receive one as a response. CICS Web support handles these different
cases as follows:

v When CICS as an HTTP server receives a chunked message as an HTTP
request, CICS Web support recognizes the chunked encoding. It waits until all
the chunks are received (indicated by the receipt of a chunk with zero length),
and assembles the chunks to form a complete message. The assembled
message body can be received by a user application program using the WEB
RECEIVE command.

– You can limit the total amount of data that CICS accepts for a single chunked
message, using the MAXDATALEN option on the TCPIPSERVICE resource
definition that relates to the port on which the request arrives.

– When CICS is an HTTP server, the timeout value for receiving a chunked
message is set by the SOCKETCLOSE attribute of the TCPIPSERVICE
definition.

– Trailing headers from the chunked message can be read using the HTTP
header commands. The Trailer header identifies the names of the headers
that were present as trailing headers. If you are using an analyzer program in

Chapter 4. CICS Web support upgrade to HTTP/1.1 113

the processing path for the request, note that trailing headers are not passed
to the analyzer program along with the main request headers.

v When CICS as an HTTP client receives a chunked message as a response to an
application program's request, the chunks are also assembled before being
passed to the application program as an entity body, and any trailing headers
can be read using the HTTP header commands. You can specify how long the
application will wait to receive the response, using the RTIMOUT attribute of the
transaction profile definition for the transaction ID that relates to the application
program.

v When CICS sends a chunked message, either as an HTTP server (response) or
as an HTTP client (request), the application program can specify chunked
transfer-coding by using the CHUNKING(CHUNKYES) option on the WEB SEND
command for each chunk of the message. The message can be divided up in
whatever way is most convenient for the application program. CICS sends each
chunk of the message, adding appropriate HTTP headers to indicate to the
recipient that chunked transfer-coding is being used. The application program
issues WEB SEND with CHUNKING(CHUNKEND), to indicate the end of the
message. CICS then sends an empty chunk (containing a blank line) to end the
chunked message, along with any trailing headers that are wanted.

Pipelining
Pipelining involves a client sending multiple HTTP requests to a server without
waiting for a response. Responses must then be returned from the server in the
same sequence that the requests were received.

It is the requester's responsibility to ensure that the requests are idempotent.
Idempotency means that the same result is always obtained when all, or part, of the
series of requests is repeated. This ensures that if there is an error in connecting
with the server, the client may retry the series of requests, even though it does not
know if the server has implemented all, some, or none of the requests.

The HTTP/1.1 specification (RFC 2616) defines the rules about idempotency for
HTTP requests.

If you plan on pipelining requests, check that the request sequence could be
terminated at any point, and re-started from the beginning, without causing a logical
error. If this is not the case, make the requests individually and await confirmation
after each request.

How CICS Web support handles pipelining
A pipelined request sequence can be sent and received by CICS. CICS as an
HTTP server can receive a pipelined request sequence from a Web client, and
CICS as an HTTP client can send a pipelined request sequence to a server.

CICS Web support handles pipelined request sequences, and the responses to
them, as follows:

v When CICS as an HTTP server receives a pipelined sequence of HTTP
requests, the requests are processed serially. Each transaction handles a single
request and provides a response. The remaining requests in the pipelined
message sequence are held by CICS until the response to the previous request
is sent, and then a new transaction is initiated to process each further request.

v When CICS as an HTTP client sends a pipelined request sequence, pipelining is
enabled automatically. Each HTTP request is sent immediately, so the application

114 Release Guide

program can send multiple HTTP requests before it receives any response.
When the last message in the pipelined sequence has been sent, the application
can begin to receive the responses.

v When CICS as an HTTP client receives HTTP responses to a pipelined request
sequence, the responses are returned to the application program in the order
that CICS receives them from the server.

For CICS as an HTTP client, it is the application program's responsibility to ensure
that any pipelined sequence of requests is idempotent.

Persistent connections
Persistent connections are connections between a Web client and a server that can
be reused for more than one exchange of a request and a response.

In HTTP/1.0, the default action for the server was to close the connection when it
had received a request from the Web client and sent a response. If the Web client
wanted the server to keep the connection open, it had to send a Connection:
Keep-Alive header on the request.

For HTTP/1.1, persistent connections are the default. When a connection is made
between a Web client and a server, the server should keep the connection open by
default. The connection should only be closed if the Web client requests closure by
sending a Connection: close header, or if the server's timeout setting is reached, or
if the server encounters an error.

Persistent connections improve network performance because a new connection
does not have to be established for each request. Establishing a new connection
consumes significant additional network resources compared to making a request
using an existing connection.

How CICS Web support handles persistent connections
Persistent connections are the default behaviour for CICS Web support.

Before CICS TS 3.1, the connection behavior was that CICS would normally close
the connection when data had been received from the Web client, unless the Web
client sent a Connection: Keep-Alive header.

Now, when a connection is made between a Web client and CICS as an HTTP
server, or between CICS as an HTTP client and a server, CICS attempts to keep
the connection open by default.

When CICS is the HTTP server, the persistent connection is closed if:

v The user-written application that is handling the request closes the connection
(by specifying the CLOSESTATUS(CLOSE) option on the WEB SEND
command).

v The Web client closes the connection (notified by a Connection: close header).

v The Web client is an HTTP/1.0 client that does not send a Connection:
Keep-Alive header.

v The timeout period is reached (indicating that the connection has failed, or that
the Web client has deliberately exited the connection).

Otherwise, CICS leaves the persistent connection open for the Web client to send
further requests. If there is a persistent connection with the client, CICS keeps the
connection open after an error response is sent through a Web error program. The

Chapter 4. CICS Web support upgrade to HTTP/1.1 115

exception is where CICS selects the 501 (Method Not Implemented) status code for
the response, in which case the connection is closed by CICS.

With a TCPIPSERVICE resource definition for CICS Web support, the
SOCKETCLOSE attribute of the TCPIPSERVICE definition should not be specified
as zero. A zero setting for SOCKETCLOSE means that CICS as an HTTP server
closes the connection immediately after receiving data from the Web client, unless
further data is waiting. This means that persistent connections cannot be
maintained.

When CICS is the HTTP client, the persistent connection is closed if:

v The server closes the connection (notified by an HTTP/1.1 server sending a
Connection: close header, or an HTTP/1.0 server failing to send a Connection:
Keep-Alive header).

v The user application program closes the connection (by specifying the
CLOSESTATUS(CLOSE) option on the WEB SEND or WEB CONVERSE
command, or by issuing a WEB CLOSE command).

v End of task is reached and the connection has not yet been closed.

Virtual hosting
HTTP includes the concept of virtual hosting, where a single HTTP server can
represent multiple hosts at the same IP address.

A DNS server can allocate several different host names to the same IP address.
When an HTTP client makes a request to a particular host, it uses the DNS server
to locate the IP address corresponding to that host name, and sends the request to
that IP address.

In HTTP/1.0 the host name did not appear in the HTTP message; it was lost after
the IP address had been resolved. This meant that if more than one set of
resources was held on the server represented by the IP address, the server would
have difficulty distinguishing which resources belonged to which host.

However, HTTP/1.1 requests provide the host name in the request (usually in a
Host header). The presence of the host name in the message enables the HTTP
server to direct requests containing different host names to the appropriate
resources for each host. This feature of HTTP is known as virtual hosting. CICS
Web support provides support for virtual hosting through the use of URIMAP
definitions.

Administering virtual hosting
CICS supports virtual hosting through the URIMAP resource definition object.

Each URIMAP definition that you set up for CICS as an HTTP server (with
USAGE(SERVER) in the URIMAP definition), includes the host name that the Web
client is expected to supply in its request. CICS automatically creates virtual hosts
for you, by grouping together into a single data structure all the URIMAP definitions
in a CICS region that specify the same host name and the same TCPIPSERVICE
definition. URIMAP definitions that specify no TCPIPSERVICE definition, and
therefore apply to all of them, are added to all the data structures that specify a
matching host name, so these URIMAP definitions might be part of more than one
data structure. Each of these groups of URIMAP definitions then forms a virtual
host that can be managed as a single unit.

116 Release Guide

You can use the following CICS commands to manage the virtual hosts that CICS
has created from your URIMAP definitions:

v The INQUIRE HOST command is used to inquire on the status of a virtual host.
The command tells you the host name of the virtual host, the TCPIPSERVICE
definition with which it is associated (or if it is associated with every
TCPIPSERVICE definition in the CICS region), and whether it is enabled or
disabled.

v The SET HOST command is used to set the status of a virtual host to enabled or
disabled. Disabling a virtual host means that all the URIMAP definitions that
make up the virtual host cannot be accessed by applications. (However, note that
a URIMAP definition that has been disabled in this way cannot be discarded.)
When a virtual host is disabled, CICS returns an HTTP 503 response (Service
Unavailable) to the Web client.

v The virtual host browsing commands are used to browse the virtual hosts in the
CICS system.

The statistics program DFH0STAT includes a report showing the virtual hosts that
CICS has created.

CICS automatically deletes virtual hosts if all the URIMAP definitions that made up
the virtual host have been deleted. If you do not want to manage the virtual hosts
that CICS has created for you, then you can ignore them, and manage at the level
of your URIMAP definitions.

You can also process virtual hosts using an analyzer program. The host name for
an HTTP request is passed to the analyzer program, and you can code the
program to provide a host-dependent response to the request. However, virtual
hosts that are set up in this way cannot be managed using the INQUIRE HOST,
SET HOST and virtual host browsing commands.

Changes to CICS externals

Changes to resource definition
Changes to TCPIPSERVICE resource definition

The TCPIPSERVICE has a new attribute:

MAXDATALEN(32|number)
Defines the maximum length of data that can be received by CICS as an HTTP
server, on the HTTP protocol or the USER protocol. The default value is 32K.
The minimum is 3K, and the maximum is 524288K. To increase security for
CICS Web support, specify this option on every TCPIPSERVICE definition for
the HTTP protocol. It helps to guard against denial of service attacks involving
the transmission of large amounts of data.

A new USER option is available on the PROTOCOL attribute. Processing for all
non-HTTP requests must now be carried out under the USER protocol. No parsing
is carried out for messages received on the USER protocol, and requests that have
been divided up for transmission across the network are not automatically
assembled. This is the same behavior as when handling non-HTTP messages in
earlier CICS releases.

PROTOCOL(ECI|HTTP|IIOP|USER)
Specifies the application level protocol used on the TCP/IP port.

ECI The CICS ECI protocol is used.

Chapter 4. CICS Web support upgrade to HTTP/1.1 117

HTTP HTTP protocol is used. HTTP protocol is handled by CICS Web
support. CICS performs basic acceptance checks for messages sent
and received using this protocol. This protocol is required for the
well-known ports 80 (used for HTTP without SSL) and 443 (used for
HTTP with SSL).

IIOP IIOP protocol is used. Specify IIOP for TCPIPSERVICEs that are to
accept inbound requests for enterprise beans.

USER The user-defined protocol is used. Messages are processed as
non-HTTP messages. They are flagged as non-HTTP and passed
unchanged to the analyzer program for the TCPIPSERVICE. CICS Web
support facilities are used for handling the request, but no acceptance
checks are carried out for messages sent and received using this
protocol. Processing for all non-HTTP requests must be carried out
under the USER protocol, so that they are protected from the basic
acceptance checks which CICS carries out for requests using the HTTP
protocol. If an HTTP message is handled by the USER protocol, you
are responsible for checking its validity.

The attributes of the TCPIPSERVICE resource definition that are used when
PROTOCOL is set to USER, are the same as those used when PROTOCOL is set
to HTTP. URIMAP definitions are not used with the USER protocol.

The new CICS-supplied transaction CWXU, the CICS Web user-defined protocol
attach transaction, is the default when the protocol is defined as USER. CWXU
executes program DFHWBXN.

The SOCKETCLOSE attribute is now described as follows. Note that
SOCKETCLOSE should not be specified as 0 for the HTTP protocol.

SOCKETCLOSE(NO|hhmmsss)
Specifies if, and for how long, CICS should wait before closing the socket, after
issuing a receive for incoming data on that socket.

NO The socket is left open until it is closed by the client, or by a user
application program in CICS.

hhmmss
The period of time (in HHMMSS format) after which CICS is to time out
the socket. Choose a value that is appropriate to the responsiveness of
the client, and the reliability of your network. Specifying 000000 closes
the socket immediately if no data is available for any RECEIVEs other
than the first one.

If you are using a TCPIPSERVICE for CICS Web Support with the HTTP
protocol, SOCKETCLOSE(0) should not be specified. A zero setting for
SOCKETCLOSE means that CICS closes the connection immediately after
receiving data from the Web client, unless further data is waiting. This means
that persistent connections cannot be maintained.

If you specify PROTOCOL(ECI) you must specify SOCKETCLOSE(NO).

The SOCKETCLOSE attribute does not apply to the first RECEIVE issued after
a connection is made. On the first RECEIVE request, for the HTTP, USER and
ECI protocols, CICS waits for data for 30 seconds before closing the socket.
For the IIOP protocol, CICS waits indefinitely.

118 Release Guide

After the TCPIPSERVICE is installed, you cannot change this value using
CEMT; you must set the TCPIPSERVICE out of service, then re-install the
TCPIPSERVICE with the modified definition.

Changes to the application programming interface (HTTP/1.1 support)
New and changed commands

The following EXEC CICS WEB commands are enhanced when used by CICS as
an HTTP server:

v EXEC CICS WEB SEND

v EXEC CICS WEB RECEIVE

CICS Web support is designed to allow Web-aware application programs that used
these commands before CICS Transaction Server for z/OS, Version 3 Release 1 to
work unchanged, until you choose to migrate them to take advantage of the
enhancements that are now available.

The options that were available on the WEB SEND command before CICS
Transaction Server for z/OS, Version 3 Release 1 are CLNTCODEPAGE,
DOCTOKEN, LENGTH, STATUSCODE and STATUSTEXT. In CICS Transaction
Server for z/OS, Version 3 Release 1:

v The name and function of the options DOCTOKEN, STATUSCODE and
STATUSTEXT is unchanged.

v The options CLNTCODEPAGE and LENGTH are supported for migration
purposes only, and their function is replaced by the new options
CHARACTERSET and STATUSLEN respectively.

v Some new options are available for enhanced functionality.

The options that were available on the WEB RECEIVE command before CICS
Transaction Server for z/OS, Version 3 Release 1 are CLNTCODEPAGE,
HOSTCODEPAGE,INTO, LENGTH, MAXLENGTH, NOTRUNCATE, SET, and
TYPE. In CICS Transaction Server for z/OS, Version 3 Release 1:

v The name and function of the options INTO, LENGTH, MAXLENGTH,
NOTRUNCATE, SET, and TYPE is unchanged.

v The option HOSTCODEPAGE can still be used, but it is no longer required, and
CICS can provide a default if it is not specified.

v The option CLNTCODEPAGE is supported for migration purposes only, and its
function is replaced by the new option CHARACTERSET.

v Some new options are available for enhanced functionality.

The EXEC CICS WEB SEND and WEB RECEIVE commands also have a new
range of options when used by CICS as an HTTP client, which is described in
“Changes to the application programming interface (HTTP client requests)” on page
86.

The following EXEC CICS commands are provided or enhanced for both CICS as
an HTTP server, and CICS as an HTTP client:

v EXEC CICS WEB PARSE URL

v EXEC CICS WEB EXTRACT

v EXEC CICS CONVERTTIME

v EXEC CICS FORMATTIME

Chapter 4. CICS Web support upgrade to HTTP/1.1 119

These commands are described in “Changes to the application programming
interface (General CICS Web support enhancements)” on page 146.

A new MAXDATALEN option is added to the EXTRACT TCPIP command:

MAXDATALEN(data-area)
specifies a fullword binary field to contain the setting for the maximum length of
data that can be received by CICS as an HTTP server.

WEB SEND (Server)
Send an HTTP response, or a non-HTTP message.

Description

WEB SEND for CICS as an HTTP server selects an item for delivery by CICS Web
support or the CICS business logic interface, and specifies options for sending it.
The item can be:

v A response to an HTTP request that was made by a Web client, to CICS as an
HTTP server.

v A non-HTTP message handled by CICS Web support facilities, with the
user-defined (USER) protocol on the TCPIPSERVICE definition.

v A response to a request from another application that has used the CICS
business logic interface to contact the program directly, rather than going through
the CICS HTTP listener.

WEB SEND (CICS as an HTTP server)

�� WEB SEND �

� DOCTOKEN(data-value)
FROM(data-area) FROMLENGTH(data-value)

CHUNKING(cvda)

�

�
MEDIATYPE(data-value) SERVERCONV(cvda)

�

�
CHARACTERSET(data-value)
CLNTCODEPAGE(data-value)

HOSTCODEPAGE(data-value)
�

�
STATUSCODE(data-value)

�

�
STATUSTEXT(data-area) STATUSLEN(data-value)

LENGTH(data-value)
ACTION(cvda)

�

�
CLOSESTATUS(cvda)

��

Conditions: IOERR, INVREQ, NOTFND

This command is threadsafe.

120 Release Guide

Only one response can be sent during a task. This can be a standard response
using one WEB SEND command, or a chunked response using a sequence of
WEB SEND commands.

Each time a request from a Web client is received, CICS starts a new task to
process the request.

Options

ACTION(cvda)
specifies how the message should be sent out. The CVDA values that apply for
CICS as an HTTP server are:

IMMEDIATE
sends the response immediately to the Web client. If CHUNKING is
specified, the IMMEDIATE option is assumed. For message sends that
do not use chunked transfer-coding, EVENTUAL is the default, which
sends the response at end of task.

EVENTUAL
sends the response to the Web client at end of task. If CHUNKING is
specified, the EVENTUAL option is ignored. This option produces the
same behaviour as CICS Web support had in releases before CICS
Transaction Server for z/OS, Version 3 Release 1, and it is the default
for CICS as an HTTP server.

CHARACTERSET(data-value)
specifies a character set into which CICS translates the entity body of the item
sent by the command before sending. The name of the character set can
consist of up to 40 alphanumeric characters, including appropriate punctuation.
CICS does not support all the character sets named by IANA.

When the CHARACTERSET option is specified,
SERVERCONV(SRVCONVERT) is assumed, so code page conversion of the
entity body takes place. As an alternative to selecting the character set yourself,
specifying either SERVERCONV(SRVCONVERT), or HOSTCODEPAGE (if
allowed), or both, and omitting CHARACTERSET, lets CICS determine a
suitable character set for the message body.

If you omit all of the code page conversion options, no code page conversion
takes place.

CHUNKING(cvda)
is used for controlling the message send when the message is being sent in
chunks (known as chunked transfer-coding). The default when the option is not
specified is that chunked transfer-coding is not in use. Chunked transfer-coding
is only acceptable to HTTP/1.1 clients, and it cannot be used with HTTP/1.0
clients or non-HTTP messages.

The content of a chunked message can be divided into chunks in whatever way
is most convenient for the application program. The body of a chunked
message cannot be formed directly from CICS documents, so the DOCTOKEN
option cannot be used.

Use a separate WEB SEND command with CHUNKING(CHUNKYES) for each
chunk of the message. Use the FROM option to specify the chunk of data, and
the FROMLENGTH option to specify the length of the chunk. Other options for
the message, such as the CLOSESTATUS option, can be specified on the first

Chapter 4. CICS Web support upgrade to HTTP/1.1 121

WEB SEND command of the sequence (which sends the first chunk), but do
not specify them on subsequent commands (which send the second and
subsequent chunks).

When you have sent the last chunk of the data, specify a further WEB SEND
command with CHUNKING(CHUNKEND) and no FROM or FROMLENGTH
option. CICS then sends an empty chunk to the recipient to complete the
chunked message.

CVDA values are:

CHUNKNO
Chunked transfer-coding is not used for the message. This is the
default if the CHUNKING option is not specified.

CHUNKYES
Chunked transfer-coding is in progress. The data specified by the
FROM option represents a chunk of the message.

CHUNKEND
Chunked transfer-coding is complete. No data is specified for this send.
CICS sends an empty chunk to the recipient to complete the chunked
message.

CLNTCODEPAGE(data-value)
This option is supported for migration purposes only. CHARACTERSET
replaces it. The action taken by CICS is the same for both keywords. This
means that code page conversion does take place when CLNTCODEPAGE is
specified, even if the SERVERCONV option is not specified. Code page
conversion does not take place if all the code page conversion options are
omitted.

CLOSESTATUS(cvda)
specifies whether or not CICS closes the connection after sending the
message. The default is that the connection is not closed. The CVDA values
are:

CLOSE
CICS writes a Connection header with the "close" connection option
(Connection: close) for this response, and closes the connection with
the Web client after sending the response. The header notifies the Web
client of the closure. (For a Web client at HTTP/1.0 level, CICS
achieves the same effect by omitting the Connection: Keep-Alive
header.)

If chunked transfer-coding is in use, the CLOSESTATUS(CLOSE)
option can be specified on the first chunk of the message, to inform the
Web client that the connection is closed after the chunked message is
complete.

NOCLOSE
means that the Connection: close header is not used for this response,
and the connection is kept open. If the Web client is identified as
HTTP/1.0 and has sent a Connection header with the "Keep-Alive"
connection option (Connection: Keep-Alive), CICS sends the same
header, to notify that a persistent connection will be maintained.

DOCTOKEN(data-value)
specifies the 16-byte binary token of a document to be sent as the message
body. The document is created using the CICS Document interface (EXEC
CICS DOCUMENT CREATE, INSERT, and SET commands), as described in

122 Release Guide

the CICS Application Programming Guide. The FROM option provides an
alternative way to create a message body.

The body of a chunked message cannot be formed from CICS documents, so
the DOCTOKEN option cannot be used for chunked transfer-coding.

CICS documents cannot be converted to the UTF-8 and UTF-16 character
encodings.

FROM(data-area)
specifies a buffer of data which holds the complete message body, or a chunk
of the message body. The message body is built by the application program.
When you specify the FROM option, use the FROMLENGTH option to specify
the length of the buffer of data. The DOCTOKEN option provides an alternative
way to create the message body, but that option cannot be used for the body of
a chunked message.

FROMLENGTH(data-value)
specifies the length, as a fullword binary value, of the buffer of data supplied on
the FROM option. It is important to state this value correctly, because an
incorrect data length can cause problems for the recipient of the message.

HOSTCODEPAGE(data-value)
specifies the 8-character name of the CICS (host) code page that was used by
the application program for the entity body of the response. When the
HOSTCODEPAGE option is specified, SERVERCONV(SRVCONVERT) is
assumed, so code page conversion of the entity body takes place. Specifying
either SERVERCONV(SRVCONVERT), or CHARACTERSET, or both, and
omitting HOSTCODEPAGE, lets CICS identify the host code page.

If a CICS document is used to form the response body (DOCTOKEN option),
do not specify the HOSTCODEPAGE option, because CICS identifies the host
code page from the CICS document domain's record of the host code pages for
the document.

If a buffer of data is used to form the response body (FROM option), you may
need to specify HOSTCODEPAGE. The default if this option is not present is
the default code page for the local CICS region, as set in the LOCALCCSID
system initialization parameter. If you require code page conversion but your
application has used a different code page, use HOSTCODEPAGE to specify it.

LENGTH(data-value)
This option is supported for migration purposes only. STATUSLEN replaces it.

MEDIATYPE(data-value)
specifies the data content of the message body, for example text/xml. The
media type is up to 56 alphanumeric characters, including appropriate
punctuation, but not spaces.. CICS checks that the format of the media type is
correct, but does not check the validity of the media type against the data
content. CICS does not provide a default.

SERVERCONV(cvda)
specifies whether or not CICS translates the entity body of the item sent by the
command before sending, from the code page used by the application, to a
character set suitable for the recipient. You can use the CHARACTERSET and
HOSTCODEPAGE options on this command to specify the character set and
code page that are used. If you specify either of these options, code page
conversion (SRVCONVERT) is assumed. Alternatively, you can omit either or
both of these options, specify SERVERCONV(SRVCONVERT) and let CICS
determine a suitable character set and code page.

Chapter 4. CICS Web support upgrade to HTTP/1.1 123

#

SRVCONVERT
CICS converts the entity body of the message.

NOSRVCONVERT
CICS does not convert the entity body of the HTTP request, and it is
sent to the server in the code page used by the application. If you
specify NOSRVCONVERT, you cannot specify the CHARACTERSET or
HOSTCODEPAGE options.

Note: If you omit all of the code page conversion options (SERVERCONV,
CLNTCODEPAGE, CHARACTERSET, HOSTCODEPAGE), no code
page conversion takes place.

STATUSCODE(data-value)
specifies a standard HTTP status code determined by the application program,
which is to be inserted on the status line of the HTTP response. The code is a
halfword binary value. Examples are 200 (normal response) or 404 (not found).
If this option is not specified, CICS supplies a default of 200.

For status codes 204, 205, and 304, a message body is not allowed, and CICS
returns an error response to the command if you attempt to include one. Other
than that, CICS does not check that your use of the status code is appropriate.

STATUSLEN(data-value)
specifies the length, as a fullword binary value, of the string supplied on the
STATUSTEXT option.

STATUSTEXT(data-area)
specifies a data-area containing human-readable text to describe the reason for
the status code. The text is known as a reason phrase. Examples are "OK"
(accompanying a 200 status code), or "Bad Request" (accompanying a 400
status code).

WEB RECEIVE (Server)
Receive an HTTP request, or a non-HTTP message.

WEB RECEIVE (CICS as an HTTP server)

�� WEB RECEIVE INTO(data-area)
SET(ptr-ref)

LENGTH(data-area) �

�
MAXLENGTH(data-value) NOTRUNCATE TYPE(cvda)

�

�
SERVERCONV(cvda) CHARACTERSET(data-value)

CLNTCODEPAGE(data-value)

�

�
HOSTCODEPAGE(data-value)

��

Conditions: INVREQ, LENGERR, NOTFND

This command is threadsafe.

124 Release Guide

Description

WEB RECEIVE receives the body of an HTTP request, or all the data for a
non-HTTP message, into an application-supplied buffer. The headers for an HTTP
request can be examined separately using the WEB HTTPHEADER commands.
The item received by the WEB RECEIVE command can be:

v The body of an HTTP request that a Web client has made to CICS as an HTTP
server.

v A non-HTTP message handled by CICS Web support facilities, with the
user-defined (USER) protocol on the TCPIPSERVICE definition.

v A request from another application that has used the CICS business logic
interface to contact the application program directly, rather than going through the
CICS HTTP listener.

The data is returned in its escaped form. The type of code page conversion used
for incoming data received by the CICS application program can be specified on
this command. If you omit all of the code page conversion options (SERVERCONV,
CLNTCODEPAGE, CHARACTERSET, HOSTCODEPAGE), no code page
conversion takes place.

Options

CHARACTERSET(data-value)
specifies the character set that was used by the Web client for the entity body
of the received item. The name of the character set can consist of up to 40
alphanumeric characters, including appropriate punctuation. CICS does not
support all the character sets named by IANA.

When the CHARACTERSET option is specified,
SERVERCONV(SRVCONVERT) is assumed, so code page conversion of the
entity body takes place. As an alternative to identifying the character set
yourself, specifying either SERVERCONV(SRVCONVERT), or
HOSTCODEPAGE, or both, and omitting CHARACTERSET, lets CICS identify
the character set for the message body.

CLNTCODEPAGE(data-value)
This option is supported for migration purposes only. CHARACTERSET
replaces it. The action taken by CICS is the same for both keywords. This
means that code page conversion does take place when CLNTCODEPAGE or
HOSTCODEPAGE is specified, even if the SERVERCONV option is not
specified.

HOSTCODEPAGE(data-value)
specifies the 8-character name of the CICS (host) code page used by the
application program, into which the entity body of the received item should be
converted from the character set in which it was received from the Web client.
When the HOSTCODEPAGE option is specified,
SERVERCONV(SRVCONVERT) is assumed, so code page conversion of the
entity body takes place. Specifying either SERVERCONV(SRVCONVERT), or
CHARACTERSET, or both, and omitting HOSTCODEPAGE, lets CICS
determine the host code page.

The default if this option is not specified is the default code page for the local
CICS region, as specified in the LOCALCCSID system initialization parameter.

INTO(data-area)
specifies the buffer that is to contain the data being received.

Chapter 4. CICS Web support upgrade to HTTP/1.1 125

LENGTH(data-area)
specifies a fullword binary variable which is set to the amount of data that CICS
has returned to the application.

v If the NOTRUNCATE option is not specified, any further data present in the
message has now been discarded. A LENGERR response with a RESP2
value of 57 is returned if further data was present.

v If the NOTRUNCATE option is specified, any additional data is retained. A
LENGERR response with a RESP2 value of 36 is returned if additional data
is available. The description for the NOTRUNCATE option tells you what to
do in this case.

MAXLENGTH(data-value)
specifies the maximum amount, as a fullword binary value, of data that CICS is
to pass to the application. The MAXLENGTH option applies whether the INTO
or the SET option is specified for receiving data. If the data has been sent using
chunked transfer-coding, CICS assembles the chunks into a single message
before passing it to the application, so the MAXLENGTH option applies to the
total length of the chunked message, rather than to each individual chunk. The
data is measured after any code page conversion has taken place.

NOTRUNCATE
specifies that when the data available exceeds the length requested on the
MAXLENGTH option, the remaining data is not to be discarded immediately but
is to be retained for retrieval by subsequent RECEIVE commands. (If no further
RECEIVE commands are issued, the data is discarded during transaction
termination.)

A single RECEIVE command using the SET option and without the
MAXLENGTH option receives all the remaining data, whatever its length.
Alternatively, you can use a series of RECEIVE commands with the
NOTRUNCATE option to receive the remaining data in appropriate chunks.
Keep issuing the RECEIVE command until you are no longer getting a
LENGERR response.

SERVERCONV(cvda)
specifies whether or not CICS translates the entity body of the item received,
from the character set used by the Web client, to a code page suitable for the
application. You can use the CHARACTERSET and HOSTCODEPAGE options
on this command to specify the character set and code page that are used. If
you specify either of these options, code page conversion (SRVCONVERT) is
assumed. Alternatively, you can omit either or both of these options, specify
SERVERCONV(SRVCONVERT) and let CICS determine a suitable character
set and code page.

SRVCONVERT
CICS converts the entity body of the message.

NOSRVCONVERT
CICS does not convert the entity body of the item, and it is passed to
the application in the character set used by the Web client. If you
specify NOSRVCONVERT, you cannot specify the CHARACTERSET or
HOSTCODEPAGE options.

SET(ptr-ref)
specifies a pointer reference that is to be set to the address of data received.
The pointer reference is valid until the next receive command or the end of
task.

126 Release Guide

TYPE(cvda)
returns the type of request received. CVDA values are:

HTTPYES
indicates an HTTP request.

HTTPNO
indicates a non-HTTP request.

In CICS Transaction Server for z/OS, Version 3, HTTP requests and non-HTTP
requests use different protocols, which are specified on TCPIPSERVICE
definitions, and must therefore use different ports. Non-HTTP requests use the
user-defined (USER) protocol. You might use the TYPE option to distinguish
between the request types if you specify the same user-written application
program for responding to both HTTP and non-HTTP requests.

Changes to the system programming interface

The MAXDATALEN option is added to the CREATE TCPIPSERVICE, INQUIRE
TCPIPSERVICE and SET TCPIPSERVICE commands:

MAXDATALEN(32|number)
specifies the maximum length of data, in kilobytes, that may be received by
CICS as an HTTP server. The default value is 32. The minimum is 3, and the
maximum is 524288.

Also on the CREATE TCPIPSERVICE and INQUIRE TCPIPSERVICE commands,
the new option USER, meaning the user-defined protocol, is available on the
PROTOCOL attribute.

The new CICS-supplied transaction CWXU, the CICS Web user-defined protocol
attach transaction, is the transaction to be specified when the protocol is defined as
USER. CWXU executes program DFHWBXN.

On the CREATE TCPIPSERVICE command, note that for the HTTP protocol, 0
should not be specified for the SOCKETCLOSE option, because this setting means
that persistent connections cannot be maintained.

The following commands are provided to manage virtual hosts:

v INQUIRE HOST

v SET HOST

CICS automatically manages the creation and deletion of virtual hosts, based on
the URIMAP definitions in your CICS region.

INQUIRE HOST
Retrieve information about virtual hosts in the local system.

Chapter 4. CICS Web support upgrade to HTTP/1.1 127

#
#
#
#
#
#

Description

The INQUIRE HOST command allows you to retrieve information about a particular
virtual host in the local CICS region. Virtual hosting in the CICS Internet Guide
explains what virtual hosts are. Virtual hosts are based on the URIMAP resource
definition object. CICS automatically creates virtual hosts for you, by grouping
together into a single data structure all the URIMAP definitions in a CICS region
that specify the same host name and the same TCPIPSERVICE. URIMAP
definitions that specify no TCPIPSERVICE, and therefore apply to all of them, are
added to all the data structures that specify a matching host name, so these
URIMAP definitions might be part of more than one data structure.

Browsing

You can also browse through all the virtual hosts that exist in the region, using the
browse options (START, NEXT, and END) on INQUIRE HOST commands. See
Browsing resource definitions for general information about browsing, including
syntax, exception conditions, and examples.

Options

HOST(data-value)
specifies the name of a virtual host. The name of each virtual host is taken from
the host name specified in the URIMAP definitions that make up the virtual
host. For example, if your CICS region contained URIMAP definitions that
specified a host name of www.example.com, CICS would create a virtual host
with the name www.example.com. A host name in a URIMAP definition can be
up to 120 characters.

ENABLESTATUS(cvda)
returns a CVDA value indicating the status of this virtual host. CVDA values are:

ENABLED
The virtual host is enabled.

DISABLED
The virtual host is disabled. The URIMAP definitions that make up the
virtual host cannot be accessed by applications.

TCPIPSERVICE(data-area)
returns the 1- to 8-character name of the TCPIPSERVICE definition that
specifies the inbound port to which this virtual host relates. If this definition is
not given, the virtual host relates to all TCPIPSERVICE definitions.

INQUIRE HOST

�� INQUIRE HOST(data-area)
ENABLESTATUS(cvda)

�

�
TCPIPSERVICE(data-area)

��

Conditions: END, ILLOGIC, INVREQ, NOTAUTH, NOTFND

This command is threadsafe.

128 Release Guide

dfha80w.dita#dfha80w

SET HOST
Sets the status of a virtual host to enabled or disabled.

Description

The SET HOST command is used to set the status of a virtual host to enabled or
disabled. Disabling a virtual host means that all the URIMAP definitions that make
up the virtual host cannot be accessed by applications. When a virtual host is
disabled, CICS returns a HTTP response with a 503 (Service Unavailable) status
code to Web clients.

When the INQUIRE URIMAP command is used to inquire on an individual URIMAP
definition, a special status DISABLEDHOST is returned to indicate that the virtual
host is disabled. You do not need to change the disabled status of the URIMAP
definitions individually; the SET HOST command can be used to re-enable all the
URIMAP definitions that make up the virtual host. However, note that a URIMAP
definition with the DISABLEDHOST status cannot be discarded. If you want to
discard the definition, it must be disabled individually (using the SET URIMAP
command).

Options

HOST(data-area)
specifies the name of a virtual host. The name of each virtual host is taken from
the host name specified in the URIMAP definitions that make up the virtual
host. For example, if your CICS region contained URIMAP definitions that
specified a host name of www.example.com, CICS would create a virtual host
with the name www.example.com. A host name in a URIMAP definition can be
up to 120 characters.

ENABLESTATUS(cvda)
CVDA values are:

ENABLED
The URIMAP definitions that make up the virtual host can be accessed
by applications.

DISABLED
The URIMAP definitions that make up the virtual host cannot be
accessed by applications.

SET HOST

�� SET HOST(data-area)
ENABLESTATUS(cvda)

��

Conditions: NOTAUTH, NOTFND

This command is threadsafe.

Chapter 4. CICS Web support upgrade to HTTP/1.1 129

Changes to CEMT

The INQUIRE HOST and SET HOST commands are added to the CEMT
transaction. CICS Supplied Transactions has information about these commands.

Changes to statistics

A new statistic Maxdata (field name SOR_MAXDATA_LENGTH) is added to the
TCP/IP Services resource statistics. This statistic shows the MAXDATALEN settings
for the TCPIPSERVICE definitions. TCP/IP Services resource statistics are collected
by the COLLECT STATISTICS command using the TCPIPSERVICE keyword, and
are mapped by the DFHSORDS DSECT.

The statistics program DFH0STAT includes a new report showing the virtual hosts
that CICS has created from your URIMAP definitions. The Virtual Hosts report
displays the name of each virtual host, whether it is enabled or disabled, and the
name of the TCPIPSERVICE definition with which it is associated. If no
TCPIPSERVICE definition is shown, the virtual host is associated with every
TCPIPSERVICE definition in the CICS region.

130 Release Guide

Chapter 5. General enhancements to CICS Web support

Enhancements to CICS Web support include improved capability for processing
HTTP requests and responses when CICS is an HTTP server, improvements to the
way CICS Web support handles code page conversion, and better support for
HTTP time and date formats.

Improved support for processing HTTP requests and responses

The URIMAP definition is a new CICS resource which provides an improved and
more powerful facility for processing HTTP requests and responses when CICS is
an HTTP server. The new URIMAP resource definition means that:

v As well as providing dynamic responses to a Web client using an application
program, you can provide static responses using content from an HFS file or
CICS document template.

v You can handle HTTP requests with greater transparency.

v You can carry out online administration for HTTP requests.

v The use of an analyzer program to handle HTTP requests is optional.

CICS API support for analyzing HTTP requests and responses is extended. The
EXEC CICS WEB EXTRACT command is enhanced to extract more information
from requests, and the new EXEC CICS WEB PARSE URL command enables you
to analyze any URL and extract information for reuse.

The EXEC CICS WEB SEND and WEB RECEIVE commands used by CICS as an
HTTP server are enhanced to give you more control and capability when receiving
requests from a Web client and sending responses. For example, you can now use
a buffer of data to provide the message body for a response (as an alternative to
using a CICS document), and you can specify options to determine when the
response is sent and whether CICS should signal the client to end its connection
after receiving the response. The changes to these commands are described in
Chapter 4, “CICS Web support upgrade to HTTP/1.1,” on page 111.

Improved support for code pages

The code page conversion for CICS Web support is improved, and you no longer
need to set up a code page conversion table (DFHCNV) for use with CICS Web
support.

The UTF-8 and UTF-16 character encodings are now available for code page
conversion in CICS.

Support for HTTP time and date format

A new CICS API command, CONVERTTIME, converts common date and time
stamp formats used on the Internet into the CICS ABSTIME format. Options are
added to the EXEC CICS FORMATTIME command to convert the ABSTIME format
into a date and time stamp string that is suitable for use on the Internet.

Benefits of CICS Web support enhancements

The enhancements to CICS Web support provide the following benefits:

© Copyright IBM Corp. 2004, 2010 131

v CICS as an HTTP server can be managed more easily by using URIMAP
resource definitions instead of, or as well as, an analyzer program. URIMAP
definitions can be used to assign an HTTP request directly to a user application
program, and you can administer them online.

v Using URIMAP definitions, you can make CICS automatically provide static
responses to a Web client, so you do not need to write and invoke an application
program to provide this type of response. The static response can be formed
from a CICS document template or a z/OS UNIX System Services HFS file, and
the response can incorporate data from a Web client's query string.

v The UTF-8 and UTF-16 character encodings are available for code page
conversion. The code page conversion process for CICS Web support is
improved, and you no longer need to set up a code page conversion table
(DFHCNV) for use with CICS Web support.

v The CICS API supports translation between date and time stamp formats used
on the Internet, and the CICS ABSTIME format.

Terminology
The following terminology is used in connection with the enhancements to CICS
Web support:

CICS as an HTTP server
The process where CICS receives HTTP requests from Web clients, and
sends responses. A user application program may be used to process the
request and provide the response, or a static response may be specified
using a URIMAP definition.

CICS as an HTTP client
The process where a user application program sends requests through
CICS to HTTP servers, and receives responses.

Static response
An HTTP response that is constructed by CICS from a document template
or HFS file specified by a URIMAP definition.

Application-generated response
An HTTP response that is built dynamically by a user application program.
This can be either a Web-aware application program or a non-Web-aware
application program.

Web-aware application program
An application program that uses the EXEC CICS WEB application
programming interface commands to receive a Web client's request and
send an HTTP response.

Non-Web-aware application program
For CICS Web support, an application program that does not use the EXEC
CICS WEB application programming interface commands. These programs
can be enabled for the Web using a converter program, which translates
the Web client's request into acceptable input, and composes an HTTP
response based on the program's output.

Web client
Any client application that makes an HTTP request to CICS as an HTTP
server. This might be a Web browser that displays responses to a human
user, or an automatic user agent (such as an information gatherer for a
search engine), or an application program (such as a CICS application that
makes HTTP client requests).

132 Release Guide

Chunked transfer-coding (also known as chunking)
The process where the body of an HTTP message is transferred as a
series of chunks, each with its own chunk size header.

Pipelining
The process where a client sends multiple HTTP requests to a server
without waiting for a response. Responses must then be returned from the
server in the same sequence that the requests were received.

Idempotency
A property of an individual HTTP method or a pipelined sequence of
requests. If a method is idempotent, the same result is always obtained
when you repeat the same request with that method. If a request sequence
is idempotent, the same result is always obtained when all, or part, of the
series of requests is repeated.

Persistent connection
A connection between a Web client and an HTTP server which can be
reused for more than one exchange of a request and a response.

URL A URL (Uniform Resource Locator) is a specific type of URI (Universal
Resource Identifier). A URI can name any resource, whereas a URL
normally locates an existing resource on the Internet.

Virtual hosting
The situation where a single HTTP server can represent multiple hosts at
the same IP address. Each host name that is provided in this way is known
as a virtual host.

Requirements
There are no special hardware or software requirements to support this function.

Related information

Chapter 27, “The CICS operating environment,” on page 355

HTTP request and response processing for CICS as an HTTP server
HTTP requests for CICS as an HTTP server are initiated by a Web client that
makes a request to CICS. CICS provides the Web client with responses to the
requests it makes. The responses can be created from a static document identified
by a URIMAP resource definition, or they can be created dynamically by a user
application program.

This figure contains a high-resolution graphic that is not supported in this display
format. To view the graphic, please use the CICS Information Center.

Processing for CICS as an HTTP server takes place as follows:

1. CICS receives a TCP/IP connection request. The CICS Sockets domain uses
the TCPIPSERVICE resource definition for the port to determine that the
request should be processed by CICS Web support.

2. CICS matches the URL for the request to a URIMAP definition, if available.
If a successful match is made, the URIMAP definition tells CICS how to process
the request.

3. If the URIMAP definition specifies redirection, CICS redirects the Web
client to the specified URL. CICS composes the redirection message and
transmits it to the Web client.

Chapter 5. General enhancements to CICS Web support 133

4. If the URIMAP definition specifies a static response, CICS forms and
supplies the response. CICS uses a document template or a z/OS UNIX
System Services HFS file, together with appropriate HTTP headers, to form an
HTTP response. The response undergoes appropriate code page conversion,
and CICS then transmits the response to the Web client.

5. An analyzer program may be run, if the URIMAP definition specifies its
use, or if no matching URIMAP definition is found. The analyzer program
can interpret the request dynamically, or it can be used for monitoring or audit
purposes.

6. An application program is executed to service the request. You can specify
the application program using a URIMAP definition, or using an analyzer
program. A Web-aware application program, using the EXEC CICS WEB and
EXEC CICS DOCUMENT application programming interfaces, can be used to
handle the request and construct a response. A non-Web-aware application
program can be enabled for the Web using either a converter program (which
translates the Web client's request into acceptable input, and composes an
HTTP response based on the program's output), or a Web-aware application
program that calls the non-Web aware program and uses its output.

7. CICS generates some required HTTP headers and adds them to the
message. Appropriate headers are generated depending on the HTTP version
for the response.

8. CICS transmits the complete HTTP response to the Web client. If the Web
client supports persistent connections, CICS keeps the connection open for
further possible HTTP requests, until the user application or Web client requests
closure or the timeout period is reached.

During this process, code page conversion is usually needed when messages enter
and leave the CICS environment, so that CICS Web support processing and
user-written applications (which typically use an EBCDIC encoding) can
communicate with Web clients (which typically use an ASCII encoding).

Unicode UTF-8 and UTF-16 code page conversion in CICS Web
support

CICS Web support can now handle code page conversion to, from and between the
Unicode UTF-8 and UTF-16 character encodings.

Code page conversion for UTF-8 and UTF-16 uses conversion services provided by
z/OS. The conversion facility must be enabled in your z/OS system, as described in
z/OS Support for Unicode: Using Conversion Services.

Code page conversion is usually needed so that CICS Web support processing and
user-written applications, which typically use an EBCDIC encoding, can
communicate with Web clients, which typically use an ASCII encoding. Inbound
messages are converted to an EBCDIC encoding for the application to process, and
outbound messages generated by the application are converted from an EBCDIC
encoding into a suitable character set for the Web client.

The UTF-8 and UTF-16 character encodings can be used for the message body of
an item that CICS receives from, or sends to, the Internet. You can convert to and
from the UTF-8 and UTF-16 character encodings with any of the EBCDIC code
pages that CICS supports.

134 Release Guide

Note that CICS documents and document templates cannot be converted to the
UTF-8 and UTF-16 character encodings. If you want to send an outbound message
in these character encodings, use the FROM option on the WEB SEND or WEB
CONVERSE command to specify a buffer of data to form the message body, rather
than using the DOCTOKEN option to specify a CICS document.

Handling HTTP date and time stamp formats
An application program that interacts with the Web through CICS might need to
produce the correct date and time stamp format in HTTP headers. Application
programs might also need to work with date and time stamp information received
from the Web. The CONVERTTIME and FORMATTIME commands enable you to
handle common architected date and time stamp string formats used for HTTP.

You can use the CONVERTTIME command to convert an architected date and time
stamp string to ABSTIME. You do not need to identify the format of the date and
time stamp; the CONVERTTIME command recognizes and converts three different
date and time stamp formats which are commonly used on the Internet.

You can use the FORMATTIME command to convert the current date and time (in
ABSTIME format), or a date and time produced by the application program (such as
an expiry date), into the RFC 1123 format.

Changes to CICS externals

Changes to resource definition
New attribute HFSFILE on DOCTEMPLATE resource definition

This attribute enables a z/OS UNIX System Services HFS file to be used as a
document template.

HFSFILE(hfsfile)
When the template resides in a z/OS UNIX System Services HFS file, this
specifies the fully qualified (absolute) or relative name of the HFS file. The
name can be specified as an absolute name including all directories and
beginning with a slash, for example, /u/facts/images/bluefish.jpg.
Alternatively, it can be specified as a name relative to the HOME directory of
the CICS region userid, for example, facts/images/bluefish.jpg. Up to 255
characters can be used. The CICS region must have permissions to access
z/OS UNIX, and it must have permission to access the HFS directory containing
the file, and the file itself.

URIMAP resource definitions
URIMAP definitions are resource definitions that match the URIs of HTTP or Web
service requests, and provide information on how to process the requests.

URIMAP definitions are used to provide three different Web-related facilities in
CICS:

1. Requests from a Web client, to CICS as an HTTP server. URIMAP definitions
for requests for CICS as an HTTP server have a USAGE attribute of SERVER.
These URIMAP definitions match the URLs of HTTP requests that CICS
expects to receive from a Web client, and they define how CICS should provide
a response to each request. You can use a URIMAP definition to tell CICS to:

v Provide a static response to the HTTP request, using a document template
or z/OS UNIX System Services HFS file.

Chapter 5. General enhancements to CICS Web support 135

v Provide a dynamic response to the HTTP request, using an application
program.

2. Requests to a server, from CICS as an HTTP client. URIMAP definitions for
requests from CICS as an HTTP client have a USAGE attribute of CLIENT.
These URIMAP definitions specify URLs that are used when a user application,
acting as a Web client, makes a request through CICS Web support to an HTTP
server. Setting up a URIMAP definition for this purpose means that you can
avoid identifying the URL in your application program.

3. Web service requests. URIMAP definitions for Web service requests have a
USAGE attribute of PIPELINE. These URIMAP definitions associate a URI for
an inbound Web service request (that is, a request by which a client invokes a
Web service in CICS) with a PIPELINE or WEBSERVICE resource that
specifies the processing to be performed.

For CICS as an HTTP server, URIMAP definitions incorporate most of the functions
that were previously provided by the analyzer program associated with the
TCPIPSERVICE definition. An analyzer program may still be involved in the
processing path if required.

URIMAP definition attributes:

136 Release Guide

�� URIMAP(name) GROUP(groupname)
DESCRIPTION(text)

�

�
STATUS(ENABLED)

STATUS(DISABLED)
PATH(path)

SCHEME(HTTP)

SCHEME(HTTPS)
�

�
USAGE(SERVER) SERVER attributes

USAGE(CLIENT) CLIENT attributes
USAGE(PIPELINE) PIPELINE attributes

��

SERVER attributes:

HOST(hostname)
HOST(*) TCPIPSERVICE(name)

�

�
MEDIATYPE(type) CHARACTERSET(characterset) HOSTCODEPAGE(codepage) TEMPLATENAME(name)

HFSFILE(name)
ANALYZER(YES)

ANALYZER(NO) CONVERTER(name) TRANSACTION(name) PROGRAM(name) USERID(id)

�

�
REDIRECTTYPE(NONE)

LOCATION(url)
REDIRECTTYPE(TEMPORARY)
REDIRECTTYPE(PERMANENT)

CLIENT attributes:

HOST(hostname)
CERTIFICATE(label) CIPHERS(value)

PIPELINE attributes:

HOST(hostname)
HOST(*)

PIPELINE(name)
WEBSERVICE(name)

�

�
TCPIPSERVICE(name) TRANSACTION(name) USERID(id)

�

�
REDIRECTTYPE(NONE)

LOCATION(url)
REDIRECTTYPE(TEMPORARY)
REDIRECTTYPE(PERMANENT)

ANALYZER({NO|YES})
This attribute is for USAGE(SERVER), where an application-generated
response is to be provided. (For USAGE(CLIENT) or USAGE(PIPELINE), the
attribute is forced to NO.) It specifies whether an analyzer program is to be
used in processing the HTTP request. The analyzer that can be run using this
attribute is the analyzer associated with the TCPIPSERVICE definition or
definitions to which this URIMAP definition relates. (An analyzer program must
be in the local CICS region.) YES runs the analyzer. NO means that the
analyzer is not used.

Chapter 5. General enhancements to CICS Web support 137

##

#

##

Acceptable characters:

A-Z 0-9 $ @ #

Unless you are using the CREATE command, any lowercase characters you enter are
converted to uppercase.

CERTIFICATE(label)
This attribute is for USAGE(CLIENT). It specifies the label of the X.509
certificate that is to be used as the SSL client certificate during the SSL
handshake. Certificate labels can be up to 32 characters long. This attribute is
only used when the URI specified by the URIMAP definition is to be used for an
HTTPS request made by CICS as a client. It is up to the server to request a
SSL client certificate, and if this happens, CICS supplies the certificate label
which is specified in the URIMAP definition. If this attribute is omitted, the
default certificate defined in the key ring for the CICS region user ID is used.
The certificate must be stored in a key ring in the external security manager's
database.

CIPHERS(value)
This attribute is for USAGE(CLIENT).

Specifies a string of up to 56 hexadecimal digits that is interpreted as a list of
up to 28 2-digit cipher suite codes. When you use CEDA is to define the
resource, CICS automatically initializes the attribute with a default list of
acceptable codes, depending on the level of encryption that is specified by the
ENCRYPTION system initialization parameter.

v For ENCRYPTION=WEAK, the default value is 03060102

v For ENCRYPTION=MEDIUM, the initial value is 0903060102

v For ENCRYPTION=STRONG, the initial value is 0504352F0A0903060102

You can reorder the cipher codes or remove them from the initial list. However,
you cannot add cipher codes that are not in the default list for the specified
encryption level. To reset the value to the default list of codes, delete all of the
cipher suite codes and the field will automatically repopulate with the default list.

CHARACTERSET(characterset)
This attribute is for USAGE(SERVER), where a static response is to be
provided. It specifies the 1-40 character name of the character set into which
CICS converts the entity body of the response that is sent to the Web client.
CICS does not support all the character sets named by IANA. The value of this
attribute is included in the Content-Type header of the response.

CHARACTERSET must be specified if a static response is being provided and
the MEDIATYPE attribute specifies a text type.

CONVERTER(name)
This attribute is for USAGE(SERVER), where an application-generated
response is to be provided. It specifies the 1-8 character name of a converter
program that is to be run to perform conversion or other processing on the
request and response. Typically, a converter program transforms the HTTP
request into a COMMAREA that can be used by an application program, and
transforms the output into an HTTP response. The converter program can be
any converter program that is available in the local CICS region.

138 Release Guide

#
#

Acceptable characters:

A-Z 0-9 $ @ #

Unless you are using the CREATE command, any lowercase characters you enter are
converted to uppercase.

DESCRIPTION(text)
You can provide a description of the resource you are defining in this field. The
description text can be up to 58 characters in length. There are no restrictions
on the characters that you can use. However, if you use parentheses, ensure
that for each left parenthesis there is a matching right one. If you use the
CREATE command, for each single apostrophe in the text, code two
apostrophes.

GROUP(groupname)
Every resource definition must have a GROUP name. The resource definition
becomes a member of the group and is installed in the CICS system when the
group is installed.

Acceptable characters:

A-Z 0-9 $ @ #

Any lower case characters you enter are converted to upper case.

The GROUP name can be up to eight characters in length. Lowercase
characters are treated as uppercase characters. Do not use group names
beginning with DFH, because these characters are reserved for use by CICS.

HFSFILE(name)
This attribute is for USAGE(SERVER), where a static response is to be
provided. It specifies the fully qualified (absolute) or relative name of a z/OS
UNIX System Services HFS file that forms the body of the static response
which is sent to the HTTP request from the Web client. The name can be
specified as an absolute path including all directories and beginning with a
slash, for example, /u/facts/images/bluefish.jpg. Alternatively, it can be
specified as a path relative to the HOME directory of the CICS region userid, for
example, facts/images/bluefish.jpg. Up to 255 characters can be used.

Acceptable characters:

A-Z a-z 0-9 . / _ # @

The value specified must be a valid name for an HFS file:
v The name must not contain imbedded space characters
v The name must not contain consecutive instances of the / character

The name is case-sensitive.

Note: Resource level security is not applied to items delivered as a static
response. If you need to apply access controls based on a user ID to an
item delivered in this way, you need to deliver the material as an
application-generated response instead.

If you want to use path matching, include an asterisk as a wildcard character at
the end of the path for the HFS file, and also at the end of the path specified by
the PATH attribute. CICS takes the portion of each HTTP request's path that is
covered by the wildcard character, and substitutes this as the last part of the file
path.

Chapter 5. General enhancements to CICS Web support 139

##

#
#

For example, you could create a URIMAP definition with the PATH attribute
specified as:
findout/pictures/*

and the HFSFILE attribute specified as:
/u/facts/images/*

The URIMAP definition is used to process an incoming HTTP request
http://www.example.com/findout/pictures/bluefish.jpg

CICS appends bluefish.jpg to the HFS file path specified in the URIMAP
definition in place of the asterisk, so that the HFS file
/u/facts/images/bluefish.jpg

is used as the static response.

Note: You cannot use an asterisk alone in the HFSFILE specification. At least
one level of the directory structure must be specified.

A query string cannot be substituted into an HFS file (unless you define the
HFS file as a CICS document template, and specify it using the
TEMPLATENAME option instead of the HFSFILE option).

HOST(hostname|*)
This attribute is for all USAGE options. It specifies the host component of the
URI to which the URIMAP definition applies, which can be up to 116 characters.
An example of a host name is www.example.com.

The HOST attribute must be present, and must contain only alphanumeric
characters, hyphens (-) or periods (.). Hexadecimal escape sequences cannot
be used in a host name. CICS validates this at define time. The host name can
be entered in any case, but it is converted to lower case in the URIMAP
definition.

An IPv4 address can be used as a host name, but IPv6 addresses are not
supported.

When USAGE(SERVER) or USAGE(PIPELINE) is specified, a single asterisk
can be used as the HOST attribute. This makes the URIMAP definition match
any host name. An asterisk cannot be used as a wildcard in the HOST attribute
along with any other characters.

For URIMAP definitions relating to CICS as an HTTP client, USAGE(CLIENT), if
you need to specify a port number in the URL for the request to the server,
include it in the HOST attribute, together with the colon preceding it. You only
need to specify the port number if it is other than the default for the scheme (80
for HTTP without SSL, or 443 for HTTPS, HTTP with SSL).

HOSTCODEPAGE(codepage)
This attribute is for USAGE(SERVER), where a static response is to be
provided. It specifies the 1-10 character name of the IBM code page (EBCDIC)
in which the text document that forms the static response is encoded. This
information is needed by CICS to perform code page conversion for the entity
body of the static response.

HOSTCODEPAGE must be specified if a static response is being provided and
the MEDIATYPE attribute specifies a text type.

LOCATION(url)
This attribute is for USAGE(SERVER) and USAGE(PIPELINE). It specifies a

140 Release Guide

#

#
#
#
#

URL of up to 255 characters to which the client's request should be redirected.
This must be a complete URL, including scheme, host, and path components,
and appropriate delimiters. CICS does not check that the URL is valid, so you
must ensure that the destination exists and that the URL is specified correctly.

The description for the PATH attribute lists the characters that should be
excluded from a URL. These characters must not be used in the LOCATION
attribute. The exception is the # character, which can be used in the LOCATION
attribute as a separator before a fragment identifier which follows the URL.

The REDIRECTTYPE attribute is used to specify the type of redirection. If
temporary or permanent redirection is specified, the URL in the LOCATION
attribute is used for redirection. If no redirection is specified, the URL in the
LOCATION attribute is ignored. You can use the SET URIMAP command to
change the REDIRECTTYPE attribute and the LOCATION attribute.

MEDIATYPE(type)
This attribute is for USAGE(SERVER), where a static response is to be
provided. It specifies the media type (data content) of the static response that
CICS provides to the HTTP request, for example image/jpg, text/html or
text/xml. Up to 56 characters can be used. The media type must contain
exactly one forward slash (/). The media type can be entered in any case, but it
is converted to lower case in the URIMAP definition.

The name for each formally recognized type of data content is defined by IANA.
A list is available at http://www.iana.org/assignments/media-types/. CICS creates
a Content-Type header for the response using the value of this attribute.

There is no default for this attribute, and it must be specified. If the
MEDIATYPE attribute specifies a text type (such as a type that begins with
text/, or a type that contains +xml), the CHARACTERSET and
HOSTCODEPAGE attributes must also be specified so that code page
conversion can take place. Text media types are identified by RFC 3023, which
is available at http://www.ietf.org/rfc/rfc3023.txt.

For a dynamic (application-generated) response, this attribute is not used. The
media type for the response is specified by the WEB SEND command.

PATH(path)
This attribute is for all USAGE options. It specifies the path component of
the URI to which the URIMAP definition applies, which can be up to 255
characters. An example of a path is software/htp/cics/index.html. The
minimum possible path is a / (forward slash), which represents the root of the
URL structure for the specified host name.

The PATH attribute is specified in mixed case, and the case is preserved in the
URIMAP definition. The PATH attribute must contain only the characters allowed
in URIs. Specifically, the characters < > # % “ { } | \ ^ [] ` and imbedded blanks
should be excluded (except that % should be allowed when it introduces a valid
hexadecimal escape sequence: that is, when it is followed by two valid
hexadecimal digits in upper or lower case). The tilde character (~) cannot be
specified in CICS and must be replaced by the corresponding hexadecimal
escape sequence (%7E). CICS validates the use of characters at define time.

For URIMAP definitions relating to CICS as an HTTP server and Web services,
if you want the URIMAP definition to match more than one path, you can use
an asterisk as a wildcard character at the end of the path. For example,
specifying the path /software/htp/cics/* would make the URIMAP definition
match all requests whose path begins with the string to the left of the asterisk.
Specifying a path of /* makes the URIMAP definition match any requests

Chapter 5. General enhancements to CICS Web support 141

#
#
#
#

directed to the host named in the HOST attribute. If an HTTP request is
matched by more than one URIMAP definition, the most specific match is taken.

If a query component is present, and you want to apply the URIMAP definition
to that specific query alone, you can include this as part of the path component.
Include the question mark at the beginning of the string. The query string must
contain only the characters allowed in URIs. A query string may not itself
include an asterisk as a wildcard, but it may follow a path that includes an
asterisk as a wildcard. If you do not include a query string in the URIMAP
definition, any query string that is present in the HTTP request is automatically
ignored for matching purposes.

For URIMAP definitions for CICS as an HTTP client, you cannot use an asterisk
as a wildcard; you must specify the complete path for the request. If the
URIMAP definition is referenced on a WEB OPEN command, this path
becomes the default path for WEB SEND commands relating to that
connection. If the URIMAP definition is referenced on a WEB SEND command,
the path is used for that WEB SEND command, but note that the host attribute
for that URIMAP definition must match the host specified on the WEB OPEN
command for the connection.

PIPELINE(name)
This attribute is for USAGE(PIPELINE). When a client makes an inbound
Web service request to CICS with the URI specified by this URIMAP definition,
PIPELINE specifies the 1-8 character name of the PIPELINE resource definition
for the Web service. The PIPELINE resource definition provides information
about the message handlers which act on the service request from the client.

Acceptable characters:

A-Z 0-9 $ @ #

Unless you are using the CREATE command, any lowercase characters you enter are
converted to uppercase.

PROGRAM(name)
This attribute is for USAGE(SERVER), where an application-generated
response is to be provided. It specifies the 1-8 character name of the user
application program that composes the HTTP response. For CICS as an HTTP
server, this attribute is required unless an analyzer or converter program is
specified, or a template name or HFS file is specified, or redirection is specified.

Acceptable characters:

A-Z 0-9 $ @ #

Unless you are using the CREATE command, any lowercase characters you enter are
converted to uppercase.

REDIRECTTYPE({NONE|TEMPORARY|PERMANENT})
This attribute is for USAGE(SERVER) and USAGE(PIPELINE). It specifies
the type of redirection for requests that match this URIMAP definition. The URL
specified by the LOCATION attribute is used for redirection when required.

v NONE means that requests are not redirected. Any URL specified by the
LOCATION attribute is ignored.

v TEMPORARY means that requests are redirected on a temporary basis. The
URL specified by the LOCATION attribute is used for redirection, and the
status code used for the response is 302 (Found).

142 Release Guide

v PERMANENT means that requests are redirected permanently. The URL
specified by the LOCATION attribute is used for redirection, and the status
code used for the response is 301 (Moved Permanently).

You can use the SET URIMAP command to change the REDIRECTTYPE
attribute and the LOCATION attribute.

SCHEME({HTTP|HTTPS})
This attribute is for all USAGE options. It specifies the scheme component of
the URI to which the URIMAP definition applies, which is either HTTP (without
SSL) or HTTPS (with SSL). Do not include the delimiters :// (colon and two
forward slashes) that follow the scheme component in the URI.

Note: A URIMAP specifying the HTTP scheme accepts Web client requests
made using either the HTTP scheme, or the HTTPS scheme. A URIMAP
specifying the HTTPS scheme accepts only Web client requests made
using the HTTPS scheme.

STATUS({ENABLED|DISABLED})
This attribute is for all USAGE options. It specifies whether the URIMAP
definition is to be installed in an enabled or disabled state. The default is
enabled.

TCPIPSERVICE(name)
This attribute is for USAGE(SERVER) and USAGE(PIPELINE). It specifies
the 1- to 8-character name of a TCPIPSERVICE resource definition, with
PROTOCOL(HTTP), that defines an inbound port to which this URIMAP
definition relates. If this attribute is not specified, the URIMAP definition applies
to a request on any inbound ports.

Acceptable characters:

A-Z 0-9 $ @ #

Unless you are using the CREATE command, any lowercase characters you enter are
converted to uppercase.

When a URIMAP definition with HTTPS as the scheme matches a request that
a Web client is making, CICS checks that the inbound port used by the request
is using SSL. If SSL is not specified for the port, the request is rejected with a
403 (Forbidden) status code. When the URIMAP definition applies to all
inbound ports, this check ensures that a Web client cannot use an unsecured
port to access a secured resource. No check is carried out for a URIMAP
definition that specifies HTTP as the scheme, so Web clients can use either
unsecured or secured (SSL) ports to access these resources.

TEMPLATENAME(name)
This attribute is for USAGE(SERVER), where a static response is to be
provided. It specifies the 1-48 character name of a CICS document template
that forms the body of the static response that is sent to the HTTP request from
the Web client. It must be defined using a DOCTEMPLATE resource definition,
and the TEMPLATENAME attribute of that definition specifies the name that is
used in the URIMAP definition. See the Application Programming Guide for
instructions on forming a CICS document template.

Acceptable characters:

A-Z a-z 0-9 $ @ # . / - _ % & ¢ ? ! : | " = ¬ , ; < >

Chapter 5. General enhancements to CICS Web support 143

Note: Resource level security is not applied to items delivered as a static
response. If you need to apply access controls based on a user ID to an
item delivered in this way, you need to deliver the material as an
application-generated response instead.

If you want to use path matching, include an asterisk as a wildcard character at
the end of the name of the CICS document template, and also at the end of the
path specified by the PATH attribute. CICS takes the portion of each HTTP
request's path that is covered by the wildcard character, and substitutes this as
the last part of the template name.

For example, you could create a URIMAP definition with the PATH attribute
specified as:
findout/about/*

and the TEMPLATENAME attribute specified as:
templates.facts.*

The URIMAP definition is used to process an incoming HTTP request
http://www.example.com/findout/about/fish.html

CICS appends fish.html to the template name specified in the URIMAP
definition in place of the asterisk, so that the template
templates.facts.fish.html

is used to form the static response.

Note: Specifying an asterisk alone for the TEMPLATENAME attribute means
that the selected template will have the same name as the part of the
URL that corresponds to the wildcard character in the PATH attribute.

When the TEMPLATENAME attribute is specified, if a query string is present on
the URI, but is not used in the PATH attribute, CICS automatically passes the
content of the query string into the named CICS document template as a
symbol list. If you want to use the content of the query string in the document
template, you need to include appropriate variables in your document template
to be substituted for the content of the query string.

TRANSACTION(name)
This attribute is for USAGE(SERVER), where an application-generated
response is to be provided, and USAGE(PIPELINE). It specifies the 1-4
character name of an alias transaction that is to be used to run the user
application that composes the HTTP response, or to start the pipeline.

Acceptable characters:

A-Z a-z 0-9 $ @ # . / - _ % & ¢ ? ! : | " = ¬ , ; < >

The default alias transaction is CWBA for USAGE(SERVER), or CPIH for
USAGE(PIPELINE). You can select a different transaction name for the
purposes of security, monitoring and accounting, or transaction class limitation.
Whatever name you choose for the alias transaction, it must always run the
same program, which is determined by the USAGE attribute. For
USAGE(SERVER), the program is DFHWBA, which links to the application
program named in the PROGRAM attribute of the URIMAP definition (or named
by the analyzer program). For USAGE(PIPELINE), the program is DFHPIDSH,
which starts the pipeline named in the PIPELINE attribute (and the Web service
named in the WEBSERVICE attribute, if specified).

144 Release Guide

URIMAP(name)
specifies the name of this URIMAP definition. The name can be up to eight
characters in length. The attribute is specified in mixed case, and the case is
preserved in the URIMAP definition.

Acceptable characters:

A-Z 0-9 $ @ #

USAGE({SERVER|CLIENT|PIPELINE})
Specifies whether this URIMAP definition is for CICS as an HTTP server
(SERVER), CICS as an HTTP client (CLIENT), or a Web service (PIPELINE).
The USAGE attribute governs which other attributes in the URIMAP definition
can be used.

Specifying SERVER creates a URIMAP definition for CICS as an HTTP server.
This type of URIMAP definition is used to map the URI of an incoming HTTP
request from a Web client, to CICS resources. An application-generated
response or a static response can be provided.

Specifying CLIENT creates a URIMAP definition for CICS as an HTTP client.
This type of URIMAP definition is used when CICS makes a request for an
HTTP resource on a server, so that you can avoid identifying the URI in your
application program.

Specifying PIPELINE creates a URIMAP definition for a Web service. This type
of URIMAP definition is used for an inbound Web service request (that is, a
request by which a client invokes a Web service in CICS). The URI of the
incoming request is associated with WEBSERVICE and PIPELINE resources,
which specify the processing that is to be performed on the message.

USERID(id)
This attribute is for USAGE(SERVER), where an application-generated
response is to be provided, and USAGE(PIPELINE). It specifies the 1-8
character user ID under which the alias transaction is attached. A user ID that
you specify in the URIMAP definition is overridden by any user ID that is
obtained directly from the client, using authentication procedures which are
specified by the AUTHENTICATE attribute of the TCPIPSERVICE definition for
the connection. If ANALYZER(YES) is specified, a user ID from a URIMAP
definition or from the client can be changed by the analyzer program, or the
analyzer program can set a user ID. If no user ID is specified by any of these
means, the default user ID is the CICS default user.

WEBSERVICE(name)
This attribute is for USAGE(PIPELINE). When a client makes an inbound
Web service request to CICS with the URI specified by this URIMAP definition,
WEBSERVICE specifies the name of the Web service. This can be the 1-8
character name of a WEBSERVICE resource definition, or a name up to 32
characters (in mixed case) representing a Web service generated by the CICS
Web services assistant.

Acceptable characters:

A-Z a-z 0-9 $ @ # . / - _ % & ¢ ? ! : | " = ¬ , ; < >

A Web service definition defines aspects of the run time environment for a CICS
application program deployed in a Web services setting, where the mapping
between application data structure and SOAP messages has been generated
using CICS-supplied tools.

Chapter 5. General enhancements to CICS Web support 145

Changes to the application programming interface (General CICS Web
support enhancements)

New and changed commands

There are new EXEC CICS WEB commands for CICS as an HTTP client. Also,
some commands have been modified for CICS as an HTTP client, but are
unchanged for CICS as an HTTP server. The new and changed client commands
are described in “Changes to the application programming interface (HTTP client
requests)” on page 86.

The EXEC CICS WEB SEND and EXEC CICS WEB RECEIVE commands are
enhanced for HTTP/1.1 support when used by CICS as an HTTP server, and are
described in “Changes to the application programming interface (HTTP/1.1 support)”
on page 119.

The following new EXEC CICS commands can be used for both CICS as an HTTP
server, and CICS as an HTTP client:

v EXEC CICS WEB PARSE URL

v EXEC CICS CONVERTTIME

The following EXEC CICS commands have been modified for both CICS as an
HTTP server, and CICS as an HTTP client:

v EXEC CICS WEB EXTRACT

v EXEC CICS FORMATTIME

WEB PARSE URL
Breaks down a URL string into its component parts.

Description

WEB PARSE URL enables you to break down a URL string into its component
parts: scheme, host, port, path and query string. You can use this process to

WEB PARSE URL

�� WEB PARSE URL(data-value) URLLENGTH(data-value) �

�
SCHEMENAME(data-area) HOST(data-area) HOSTLENGTH(data-area)

�

�
PORTNUMBER(data-area) PATH(data-area) PATHLENGTH(data-area)

�

�
QUERYSTRING(data-area) QUERYSTRLEN(data-area)

��

Conditions: INVREQ, LENGERR

This command is threadsafe.

146 Release Guide

examine the construction of the URL, and to separate out the components. The
returned information can be used in the WEB OPEN command to open a client
connection to the host named in the URL.

Any escape sequences found in the URL are checked for validity. An escape
sequence consists of the percent character (%) followed by two hexadecimal
characters. Valid hexadecimal characters are the digits 0 to 9 and the letters A to F.

Note that where the string input to the WEB PARSE URL command has been
delimited in the correct way for a URL, the command does not detect invalid
content, such as a host name that does not represent an existing host on the
Internet, or a character that is not permitted in a URL.

Options

HOST(data-area)
returns the host component of the URL. This can be either an alphanumeric
host name or a numeric IP address. If a port number was specified explicitly in
the URL, this is returned separately as the PORTNUMBER option.

An IPv4 address can be used as a host name in the WEB OPEN command, but
IPv6 addresses are not supported. IPv6 addresses are rejected as invalid by
the WEB PARSE URL command because they do not conform to the expected
structure.

HOSTLENGTH(data-area)
specifies the length of the buffer supplied on the HOST option, as a fullword
binary variable, and is set to the actual length of the data returned to the
application (the host name). 116 characters is suggested as an appropriate size
to specify for this data-area. If the data exceeds the buffer length, a LENGERR
condition is raised and the data is truncated.

PATH(data-area)
returns the path component of the URL.

PATHLENGTH(data-area)
specifies the length of the buffer supplied on the PATH option, as a fullword
binary variable, and is set to the actual length of the data returned to the
application (the path component of the URL). 256 characters is suggested as
an appropriate size to specify for this data-area. If the data exceeds the buffer
length, a LENGERR condition is raised and the data is truncated.

PORTNUMBER(data-area)
returns (as a fullword binary data area) the port number that is specified in, or
appropriate for, the URL. Port numbers are sometimes specified explicitly in a
URL, following the host name. However, well-known port numbers for a service
are normally omitted from a URL. If the port number is not present in the URL,
the WEB PARSE URL command identifies and returns it based on the scheme.
For HTTP, the well-known port number is 80, and for HTTPS, the well-known
port number is 443. If a port number is returned which is not the default for the
scheme, you need to specify the port number explicitly to gain access to the
URL (for example, if you are using this information in a WEB OPEN command).

QUERYSTRING(data-area)
returns the query string from the URL. The query string is the value or values
encoded after the question mark (?) delimiting the end of the path. The query
string is returned in its escaped form.

QUERYSTRLEN(data-area)
specifies the length of the buffer supplied on the QUERYSTRING option, as a

Chapter 5. General enhancements to CICS Web support 147

fullword binary variable, and is set to the actual length of the data returned to
the application (the query string). 256 characters is suggested as an appropriate
size to specify for this data-area. If the data exceeds the buffer length, a
LENGERR condition is raised and the data is truncated.

SCHEMENAME(data-area)
returns the scheme component of the URL, as a 16-character data area. Only
the HTTP and HTTPS schemes (the HTTP protocol with and without SSL) are
supported by CICS and can be used in a WEB OPEN command.

The scheme name is always returned in upper case.

URL(data-value)
specifies the complete URL string.

URLLENGTH(data-value)
specifies the length of the buffer containing the URL string, as a fullword binary
value.

WEB EXTRACT
Obtain information about an HTTP request that has been made to CICS as an
HTTP server, or about a connection between an Internet server and CICS as an
HTTP client.

WEB EXTRACT (CICS as an HTTP server)

�� WEB EXTRACT
SCHEME(cvda)

�

�
HOST(data-area) HOSTLENGTH(data-value)

�

�
HTTPMETHOD(data-area) METHODLENGTH(data-area)

�

�
HTTPVERSION(data-area) VERSIONLEN(data-area)

�

�
PATH(data-area) PATHLENGTH(data-area) PORTNUMBER(data-area)

�

�
QUERYSTRING(data-area) QUERYSTRLEN(data-area) REQUESTTYPE(cvda)

��

Conditions: ILLOGIC, INVREQ, LENGERR, NOTOPEN

This command is threadsafe.

148 Release Guide

#

Options

HOST(data-area)
For CICS as an HTTP server, this option specifies a buffer to contain the host
component of the URL, as specified either in the Host header field for the
request, or in the request line (if an absolute URI was used for the request).
The port number is presented separately using the PORTNUMBER option.

For CICS as an HTTP client (with the SESSTOKEN option), this option
specifies a buffer to contain the host name of the server in the connection
identified by the SESSTOKEN option. The port number is presented separately
using the PORTNUMBER option.

HOSTLENGTH(data-area)
specifies the length of the buffer supplied on the HOST option, as a fullword
binary variable, and is set to the actual length of the data returned to the
application. 116 characters is an appropriate size to specify for this data-area. If
the data exceeds the buffer length, a LENGERR condition is raised and the
data is truncated.

HTTPMETHOD(data-area)
For CICS as an HTTP server, this option specifies a buffer to contain the HTTP
method string on the request line of the message.

This option is not relevant for CICS as an HTTP client.

HTTPVERSION(data-area)
For CICS as an HTTP server, this option specifies a buffer to contain the HTTP
version for the Web client, as stated on its request.

For CICS as an HTTP client (with the SESSTOKEN option), this option
specifies a buffer to contain the HTTP version of the server in the connection
identifed by the SESSTOKEN option.

"1.1" indicates HTTP/1.1, and "1.0" indicates HTTP/1.0.

WEB EXTRACT (CICS as an HTTP client)

�� WEB EXTRACT SESSTOKEN(data-area)
SCHEME(cvda)

�

�
HOST(data-area) HOSTLENGTH(data-value)

�

�
HTTPVERSION(data-area) VERSIONLEN(data-area)

�

�
PATH(data-area) PATHLENGTH(data-area) PORTNUMBER(data-area)

�

�
URIMAP(data-area)

��

Conditions: ILLOGIC, INVREQ, LENGERR, NOTOPEN

This command is threadsafe.

Chapter 5. General enhancements to CICS Web support 149

Note: CICS does not make any special provision for a server or Web client that
is below HTTP/1.0 level. CICS behaves as though they were at
HTTP/1.0 level, and returns "1.0" as the HTTP version.

If your application program writes HTTP headers that might be unsuitable for a
Web client or server at HTTP/1.0 level, or if you intend to send chunked
information to the Web client or server (which cannot be received by a client or
server at HTTP/1.0 level), your application program should check the HTTP
version information.

METHODLENGTH(data-area)
specifies the length of the buffer supplied on the HTTPMETHOD option, as a
fullword binary variable, and is set to the actual length of the data returned to
the application. If the data exceeds the buffer length, a LENGERR condition is
raised and the data is truncated.

PATH(data-area)
For CICS as an HTTP server, this option specifies a buffer to contain the path
specified in the request line of the message.

For CICS as an HTTP client (with the SESSTOKEN option), this option
specifies a buffer to contain the default path that applies to requests made
using the connection. If a URIMAP definition was specified on the WEB OPEN
command for the connection, the default path is the path specified in the
URIMAP definition. Otherwise, the default path is a single forward slash.

PATHLENGTH(data-area)
specifies the length of the buffer supplied on the PATH option, as a fullword
binary variable, and is set to the actual length of the data returned to the
application. 256 characters is an appropriate size to specify for this data-area. If
the data exceeds the buffer length, a LENGERR condition is raised and the
data is truncated.

PORTNUMBER(data-area)
For CICS as an HTTP server, this option returns a data area containing the port
number specified in the request line of the message.

For CICS as an HTTP client (with the SESSTOKEN option), this option returns
a data containing the port number used to access the server in the connection
specified by the SESSTOKEN option.

The value returned in the data area is a fullword binary value.

Well-known port numbers for a service are normally omitted from the URL. If
the port number is not present in the URL, the WEB EXTRACT command
identifies and returns it based on the scheme. For HTTP, the well-known port
number is 80, and for HTTPS, the well-known port number is 443. If a port
number is returned which is not the default for the scheme, you need to specify
the port number explicitly to gain access to the URL (for example, if you are
using this information in a WEB OPEN command).

QUERYSTRING(data-area)
For CICS as an HTTP server, this option specifies a buffer to contain the query
string on the request line of the message. The query string is the value or
values encoded after the question mark (?) delimiting the end of the path. The
query string is returned in its escaped form.

This option is not relevant for CICS as an HTTP client.

QUERYSTRLEN(data-area)
specifies the length of the buffer supplied on the QUERY option, as a fullword
binary variable, and is set to the actual length of the data returned to the

150 Release Guide

application (the query string). 256 characters is an appropriate size to specify
for this data-area. If the data exceeds the buffer length, a LENGERR condition
is raised and the data is truncated.

REQUESTTYPE(cvda)
For CICS as an HTTP server, this option specifies the type of request received.
This option is not relevant for CICS as an HTTP client. CVDA values are:

HTTPYES
indicates an HTTP request.

HTTPNO
indicates a non-HTTP request.

SCHEME(cvda)
For both CICS as an HTTP server, and CICS as an HTTP client (with the
SESSTOKEN option), this option returns the scheme used for the connection
between CICS and the Web client or server. CVDA values are:

HTTP is the HTTP protocol, without SSL.

HTTPS
is the HTTPS protocol, which is HTTP with SSL.

SESSTOKEN(data-value)
For CICS as an HTTP client, this option is required. It specifies the session
token, an 8-byte binary value that uniquely identifies a connection between
CICS and a server. This value is returned by a WEB OPEN command for CICS
as an HTTP client. "Session tokens" in the CICS Internet Guide explains the
use of the session token. For the WEB EXTRACT command, information is
returned about the specified connection.

This option is not relevant for CICS as an HTTP server.

URIMAP(data-value)
For CICS as an HTTP client (with the SESSTOKEN option), this option returns
the 8-character name (in mixed case) of any URIMAP definition that was
specified on the WEB OPEN command to open the connection specified by the
SESSTOKEN option. The INQUIRE URIMAP command can be used to find
information about the attributes of this URIMAP definition.

This option is not relevant for CICS as an HTTP server.

VERSIONLEN(data-area)
specifies the length of the buffer supplied on the HTTPVERSION option, as a
fullword binary variable, and is set to the actual length of the data returned to
the application.

Chapter 5. General enhancements to CICS Web support 151

CONVERTTIME
Converts an architected date and time stamp string to the ABSTIME format.

Description

CONVERTTIME analyzes three different date and time stamp formats which are
commonly used on the Internet, and converts them to the ABSTIME (absolute date
and time) format.

ABSTIME format gives the time, in packed decimal, since 00:00 on 1 January 1900
(in milliseconds rounded to the nearest hundredth of a second). The FORMATTIME
command can be used to change this into other formats.

The architected date and time stamp string formats recognized by the
CONVERTTIME command are:

RFC 1123 format
The preferred standard format for date and time stamps for the HTTP
protocol, as specified in RFC 1123. An example of a date and time stamp in
this format is "Tue, 01 Apr 2003 10:01:02 GMT".

RFC 850 format
An older date and time stamp format for the Internet. An example of a date
and time stamp in this format is "Tuesday, 01-Apr-03 10:01:02 GMT".

Important: Because the year has only two digits in this format, CICS uses
the assumption that the years are in the range 1970 to 2069. In
the example above, CICS would assume that the date of the
document was 1 April 2003. Given the date and time stamp
"Thursday, 13-Feb-98 15:30:00 GMT", CICS would assume that
the date of the document was 13 February 1998. Be aware of
this when coding your application, if you think that you could
receive date and time stamps in this format.

ASCtime format
A date and time stamp format output from the C ASCtime function. An
example of a date and time stamp in this format is "Tue Apr 1 10:01:02
2003".

Options

DATESTRING(data-area)
specifies a 64-character data-area to contain the architected date and time
stamp string. You can supply a string in any of the formats recognized by the
command, and you do not need to specify which format is used.If the date and

CONVERTTIME

�� CONVERTTIME DATESTRING(data-area) ABSTIME(data-area) ��

Conditions: INVREQ, LENGERR

This command is threadsafe.

152 Release Guide

#

time stamp string is in the RFC 1123 format, which is always at GMT, the date
and time are converted to local time for the ABSTIME which is returned.

ABSTIME(data-area)
specifies a data-area to receive the converted date and time stamp in ABSTIME
format. For the format of this data-area, see the description of the ASKTIME
command. If the date and time stamp was not in a recognized format, no
ABSTIME is returned.

Changes to options on EXEC CICS WEB commands
The DATESTRING and STRINGFORMAT options are added to the FORMATTIME
command to return a date and time stamp in a format for use on the Internet.

FORMATTIME

The DATESTRING and STRINGFORMAT options are added to the EXEC CICS
FORMATTIME command. These options enable you to convert a date and time
stamp in ABSTIME format to an architected date and time stamp string. The only
format provided by the STRINGFORMAT option at present is the format that
complies with the RFC 1123 standard, which is suitable for use on the Internet.

DATESTRING(data-area)
specifies the 64-character user field where CICS is to return the architected
date and time stamp string in the format specified by the STRINGFORMAT
option. If STRINGFORMAT is not specified, the default format provided is the
RFC 1123 format (RFC1123).

STRINGFORMAT(cvda)
specifies the format for the architected date and time stamp string returned in
DATESTRING. The only CVDA value available at present is:

RFC1123
specifies the RFC 1123 format, which is suitable for use on the Internet.
This date and time stamp string contains the day, date, and 24-hour
clock time at GMT, for example "Tue, 01 Apr 2003 10:01:02 GMT".

Changes to the system programming interface

The HFSFILE option is added to the INQUIRE DOCTEMPLATE and CREATE
DOCTEMPLATE commands:

HFSFILE(filename)
specifies the fully qualified (absolute) or relative name of the HFS file of the
z/OS UNIX System Services HFS file where the template resides. This can be
up to 255 characters in length.

The following commands are provided to manage URIMAP definitions:

v CREATE URIMAP

v DISCARD URIMAP

v INQUIRE URIMAP

v SET URIMAP

CREATE URIMAP command
Use the CREATE URIMAP command to dynamically create a URIMAP in your CICS
region. The attributes you can specify on this command are described in: “URIMAP
definition attributes” on page 136.

Chapter 5. General enhancements to CICS Web support 153

#
#

DISCARD URIMAP command
Use the DISCARD URIMAP to remove a URIMAP from your CICS region. The
URIMAP must be disabled before it can be discarded.

INQUIRE URIMAP
Retrieve information about URIMAP resources in the local system.

Description

The INQUIRE URIMAP command allows you to retrieve information about a
particular URIMAP definition. The USAGE attribute of a URIMAP definition
determines which other attributes are specified in that URIMAP definition, and
sometimes determines the meaning of a particular attribute.

Browsing

You can also browse through all the URIMAP definitions installed in the region,
using the browse options (START, NEXT, and END) on INQUIRE URIMAP
commands.

INQUIRE URIMAP

�� INQUIRE URIMAP(data-area) �

ENABLESTATUS(cvda)
USAGE(cvda)
HOST(data-area)
PATH(data-area)
MEDIATYPE(data-area)
CHARACTERSET(data-area)
HOSTCODEPAGE(data-area)
TEMPLATENAME(data-area)
HFSFILE(data-area)
TCPIPSERVICE(data-area)
ANALYZERSTAT(cvda)
CONVERTER(data-area)
TRANSACTION(data-area)
PROGRAM(data-area)
PIPELINE(data-area)
WEBSERVICE(data-area)
USERID(data-area)
CERTIFICATE(data-area)
CIPHERS(data-area)
NUMCIPHERS(data-area)
REDIRECTTYPE(cvda)
LOCATION(data-area)

��

Conditions: END, ILLOGIC, NOTAUTH, NOTFND

This command is threadsafe.

154 Release Guide

Options

URIMAP(data-value)
specifies the 8-character name of a URIMAP definition.

ANALYZERSTAT(cvda)
returns a CVDA value indicating whether the analyzer program associated with
the TCPIPSERVICE definition is to be run. CVDA values are:

ANALYZER
The analyzer program is to be run.

NOANALYZER
The analyzer program is not to be run.

This attribute is for USAGE(SERVER). For all other usage types it is forced to
NO.

CERTIFICATE(data-area)
returns a 32-character data area containing the label of the certificate that is to
be used as the SSL client certificate for the HTTP request by CICS as an HTTP
client. This attribute is for USAGE(CLIENT).

CHARACTERSET(data-area)
returns a 40-character data area containing the name of the character set to be
used for the static response. This attribute is for USAGE(SERVER).

CIPHERS(data-area)
returns a 56-character data area containing the list of cipher suites specified for
the URIMAP definition. The list of cipher suites is used to negotiate SSL
connections. This attribute is for USAGE(CLIENT).

CONVERTER(data-area)
returns the 8-character name of a converter program that performs conversion
or other processing for CICS as an HTTP server. This attribute is for
USAGE(SERVER).

ENABLESTATUS(cvda)
returns a CVDA value indicating the status of this URIMAP definition. CVDA
values are:

ENABLED
The URIMAP definition is enabled.

DISABLED
The URIMAP definition is disabled. A URIMAP definition with this status
can be discarded.

DISABLEDHOST
The URIMAP definition is unavailable because the virtual host of which
it is a part has been disabled. The SET HOST command can be used
to re-enable all the URIMAP definitions that make up the virtual host. A
URIMAP definition with this status cannot be discarded.

HFSFILE(data-area)
returns a 255-character data area containing fully qualified (absolute) or relative
name of a z/OS UNIX System Services HFS file that forms a static response.
This attribute is for USAGE(SERVER).

HOST(data-area)
returns a 116-character data area containing the host component of the URI to
which the URIMAP definition applies (for example, www.example.com). This
attribute is for any usage type.

Chapter 5. General enhancements to CICS Web support 155

HOSTCODEPAGE(data-area)
returns a 10-character data area containing the 1-10 character name of the IBM
code page (EBCDIC) in which the text document that forms the static response
is encoded. This attribute is for USAGE(SERVER).

LOCATION(data-area)
returns a 255-character area containing a URL to which matching HTTP
requests from Web clients are redirected. Redirection is activated by the setting
specified by the REDIRECTTYPE option. This attribute is for USAGE(SERVER)
or USAGE(PIPELINE).

MEDIATYPE(data-area)
returns a 56-character data area containing a description of the data content of
the static response. This attribute is for USAGE(SERVER).

NUMCIPHERS(data-area)
returns a halfword binary value containing the number of cipher codes in the
CIPHERS list. The ciphers are used to negotiate encryption levels as part of the
SSL handshake. This attribute is for USAGE(CLIENT).

PATH(data-area)
returns a 255-character data area containing the path component of the URL to
which the URIMAP definition applies (for example, software/htp/cics/index.html).
This attribute is for any usage type.

PIPELINE(data-area)
returns the 8-character name of the PIPELINE resource definition for the Web
service. The PIPELINE resource definition provides information about the
message handlers which act on the service request from the client. This
attribute is for USAGE(PIPELINE).

PROGRAM(data-area)
returns the 8-character name of the application program that composes an
application-generated response to the HTTP request. This attribute is for
USAGE(SERVER).

SCHEME(cvda)
returns a CVDA value indicating the scheme component of the URI. CVDA
values are:

HTTP HTTP without SSL.

HTTPS
HTTP with SSL.

This attribute is for any usage type.

TCPIPSERVICE(data-area)
returns the 1- to 8-character name of the TCPIPSERVICE definition that
specifies an inbound port to which this URIMAP definition relates. If this is not
specified, the URIMAP definition applies to a request on any inbound ports.
This attribute is for USAGE(SERVER) or USAGE(PIPELINE).

TEMPLATENAME(data-area)
returns a 48-character data area containing the name of a CICS document
template that is used to form a static response. This attribute is for
USAGE(SERVER).

TRANSACTION(data-area)
returns the 4-character name of an alias transaction to run the user application
that composes a response to the HTTP request. This attribute is for
USAGE(SERVER) or USAGE(PIPELINE).

156 Release Guide

REDIRECTTYPE(cvda)
returns a CVDA value indicating the type of redirection for requests that match
this URIMAP definition. The URL for redirection is specified by the LOCATION
option. This attribute is for USAGE(SERVER) or USAGE(PIPELINE). CVDA
values are:

NONE Requests are not redirected. Any URL specified by the LOCATION
option is ignored.

TEMPORARY
Requests are redirected on a temporary basis. The status code used
for the response is 302 (Found).

PERMANENT
Requests are redirected permanently. The status code used for the
response is 301 (Moved Permanently).

USAGE(cvda)
returns a CVDA value indicating the purpose of this URIMAP definition. CVDA
values are:

SERVER
A URIMAP definition for CICS as an HTTP server. This type of URIMAP
definition is used to map the URL of an incoming HTTP request from a
Web client, to CICS resources. An application-generated response or a
static response can be provided.

CLIENT
A URIMAP definition for CICS as an HTTP client. This type of URIMAP
definition is used when CICS makes a client request for an HTTP
resource on a server.

PIPELINE
A URIMAP definition for a Web service. This type of URIMAP definition
is used to specify the processing that is to be performed on a request
by which a client invokes a Web service in CICS.

USERID(data-area)
returns the 8-character user ID under which the alias transaction is attached.
This attribute is for USAGE(SERVER) or USAGE(PIPELINE).

WEBSERVICE(data-area)
returns the name of a Web service. This can be the 1-8 character name of a
WEBSERVICE resource definition, or a name up to 32 characters representing
a Web service generated by the CICS Web services assistant. This defines
aspects of the run time environment for a CICS application program deployed in
a Web services setting. This attribute is for USAGE(PIPELINE).

SET URIMAP
Enables or disables a URIMAP definition, and applies or removes redirection for a
URIMAP definition.

Chapter 5. General enhancements to CICS Web support 157

Description

The SET URIMAP command allows you to:

v Enable or disable a URIMAP definition.

v Set redirection for matching HTTP requests, and specify a URL to which the
requests are redirected. You can use this command to apply redirection to an
existing URIMAP definition, for example if the application that would normally
respond to the HTTP request is unavailable. You can also use this command to
remove redirection from a URIMAP definition.

Options

ENABLESTATUS(cvda)
Sets the URIMAP definition to enabled or disabled status. CVDA values are:

ENABLED
The URIMAP definition can be accessed by applications.

DISABLED
The URIMAP definition cannot be accessed by applications. A URIMAP
definition has to be disabled before it can be reinstalled or discarded.

LOCATION(data-area)
Specifies a URL of up to 255 characters, to which matching HTTP requests
from Web clients can be redirected. This must be a complete URL, including
scheme, host, and path components, and appropriate delimiters. CICS does not
check that the URL is valid, so you must ensure that the destination exists and
that the URL is specified correctly.

The REDIRECTTYPE option is used to specify the type of redirection. If
temporary or permanent redirection is specified, the URL in the LOCATION
attribute is used for redirection. If NONE is specified, the URL in the LOCATION
option is ignored.

REDIRECTTYPE(cvda)
Specifies the type of redirection for requests that match this URIMAP definition.
The URL for redirection is specified by the LOCATION option. CVDA values are:

NONE Requests are not redirected. Any URL specified by the LOCATION
option is ignored.

TEMPORARY
Requests are redirected on a temporary basis. The HTTP status code
used for the response is 302 (Found).

SET URIMAP

�� SET URIMAP(data-area)
ENABLESTATUS(cvda)

�

�
REDIRECTTYPE(cvda) LOCATION(data-area)

��

Conditions: INVREQ, NOTAUTH, NOTFND

This command is threadsafe.

158 Release Guide

PERMANENT
Requests are redirected permanently. The HTTP status code used for
the response is 301 (Moved Permanently).

Changes to CEMT

The following new commands are added to the CEMT transaction:

v INQUIRE URIMAP

v SET URIMAP

v DISCARD URIMAP

v INQUIRE HOST

v SET HOST

There are changes to the following commands:

v INQUIRE TCPIPSERVICE

v SET TCPIPSERVICE

v INQUIRE DOCTEMPLATE

CICS Supplied Transactions has information about these new and changed
commands.

Changes to CICS-supplied transactions
New CICS-supplied transaction CWXU

In CICS Transaction Server for z/OS, Version 3 Release 1, processing for HTTP
requests and processing for non-HTTP requests are kept separate. This ensures
that CICS can perform basic acceptance checks on HTTP requests and responses,
as described in Chapter 4, “CICS Web support upgrade to HTTP/1.1,” on page 111,
and that non-HTTP requests are not subjected to these checks. Processing for
non-HTTP requests must now be carried out under the user-defined (USER)
protocol, which is specified on the TCPIPSERVICE definition for the port that
receives the requests.

The new CICS-supplied transaction CWXU, the CICS Web user-defined protocol
attach transaction, is the default when the protocol is defined as USER. CWXU
executes the CICS program DFHWBXN. The DFHCURDI sample includes a sample
definition for CWXU. An alternative transaction that executes DFHWBXN may be
used, with the exception of the other default transactions that are defined for
protocols on the TCPIPSERVICE resource definition.

CWXU is a RACF Category 1 transaction.

Changes to CWXN

There are several changes to the processing carried out by the CICS-supplied
transaction CWXN, the Web attach transaction. The most significant of these are:

v If a matching URIMAP definition is found for an HTTP request, CWXN now
invokes the analyzer program only if instructed to do so by the URIMAP
definition.

v Where the HTTP version of the request is HTTP/1.1, CWXN carries out some of
the responsibilities of an HTTP server by performing some basic acceptance

Chapter 5. General enhancements to CICS Web support 159

checks on the request. In response to these checks, CWXN might take action to
return a response to the request without involving a user-written application
program.

v CWXN pre-processes chunked and pipelined messages received from a Web
client, so that user-written applications do not have to perform this processing.

– Chunked messages are single messages split up and sent as a series of
smaller messages (chunks). CWXN receives and assembles the chunks of the
message to create a single HTTP request. CWXN checks that the message is
complete before passing it to the user application. The user application can
then process the request like any other HTTP request.

– Pipelined messages are multiple messages sent in sequence, where the
sender does not wait for a response after each message sent. A server must
respond to these messages in the order that they are received. To ensure
this, CWXN holds pipelined requests and releases them one at a time to the
user application. The user application must send a response to the first
request before receiving the next request from CWXN.

v Persistent connections are now the default behavior. The connection is only
closed if the Web client requests closure, or if the timeout period is reached, or if
the Web client is an HTTP/1.0 client that does not send a Keep-Alive header.

v Before CICS Transaction Server for z/OS, Version 3 Release 1, if a Web client
and CICS had a persistent connection, the CWXN transaction would remain in
the system for the duration of the persistent connection. Now, the CWXN
transaction terminates after each request from the Web client has been passed
to the alias transaction (CWBA or another transaction), or after the static
response has been delivered. The Sockets listener task monitors the socket and
initiates a new instance of CWXN for each request on the persistent connection.
This behavior, known as an asynchronous receive, avoids the possibility of a
deadlock in a situation where the maximum task specification (MXT) has been
reached. It also means that the maximum number of concurrent connections
between CICS and Web clients is no longer limited by the MXT value, but can in
theory be up to 64000. In terms of system activity, if you used persistent
connections before CICS Transaction Server for z/OS, Version 3 Release 1, you
should now see an increased transaction rate, but a decrease in the number of
concurrent tasks.

Priorities for CICS Web support transactions (CWXN, CWXU,
CWBA or other alias transactions)

If you set the priority of the CWXN or CWXU transaction higher than the priority of
the alias transactions used for application-generated responses (such as CWBA),
this can result in a build-up of requests that have been received but not yet
processed, which may lead to a short-on-storage situation.

The default priorities for the CWXN or CWXU transaction are set to 1, and the
default priority for the CICS-supplied CWBA transaction is also set to 1. You can
adjust these priorities depending on your workload. Make sure the priorities of the
alias transactions used for application-generated responses (like CWBA) are equal
to, or higher than, the priority of the transactions associated with Web attach tasks
(like CWXN or CWXU). Bear this in mind if you are setting up your own transaction
definitions in place of the CICS-supplied defaults.

160 Release Guide

Changes to user-replaceable programs
Changes to analyzer programs

Use of an analyzer program for CICS Web support processing for individual HTTP
requests is now optional. URIMAP definitions can be used to match the URLs of
requests to the application program that processes them, and they can specify the
use of a converter program and an alias transaction. If these are the only tasks
performed by an analyzer program in your existing CICS Web support architecture,
you can replace its function in request processing paths with a URIMAP definition.

You might have an existing analyzer program from an earlier CICS release that
provides additional functions which you require during request processing, such as
passing data to a converter program, or modifying code page conversion for
non-Web-aware application programs that use a converter program. If this is the
case, you can continue to use an analyzer program instead of a URIMAP definition
for the relevant requests, or you can combine it with a URIMAP definition (by
specifying the ANALYZER(YES) option).

When an analyzer program is used with a URIMAP definition, elements of the
URIMAP definition (such as the name of the application program that handles the
request) are passed to the analyzer program as input. An existing or new analyzer
program can be used to make dynamic changes to these elements. You can also
use an analyzer program to introduce monitoring or audit actions into the process.

An analyzer program must still be specified for each TCPIPSERVICE resource
definition that is used for CICS Web support. The analyzer program specified for a
TCPIPSERVICE definition is invoked to handle an HTTP request if CICS does not
find a matching URIMAP definition for the request. This could be caused by a user
error in typing a request URL, or because the appropriate URIMAP definition is not
installed. (If the URIMAP definition exists but is disabled, the request is handled by
the Web error program, not the analyzer program.)

A new CICS-supplied default analyzer program is provided to supply this error
handling function for TCPIPSERVICE resource definitions that are used for CICS
Web support. DFHWBAAX takes no action if a matching URIMAP definition is
found. If no match is found, it gives control to the new user-replaceable Web error
program DFHWBERX to produce an error response. DFHWBAAX is suitable for use
where all of the requests using the port are handled using URIMAP definitions. It
does not provide support for requests using the URL format that CICS Web support
used before CICS TS 3.1.

The CICS-supplied sample analyzer program DFHWBADX is still provided.
DFHWBADX, or your own customized version of it, is suitable for use if you need to
provide basic support for both requests using URIMAP definitions, and requests
using the URL format that CICS Web support used before CICS TS 3.1.

As supplied, DFHWBADX does not perform any analysis of a request when a
matching URIMAP definition has been found for the request, even if the URIMAP
specifies ANALYZER(YES). This means that the settings specified in the URIMAP
definition for the alias transaction, converter program and application program are
automatically accepted and used to determine subsequent processing stages.
DFHWBADX uses the wbra_urimap input parameter to test for the presence of a
URIMAP definition.

Chapter 5. General enhancements to CICS Web support 161

There are several changes to the input and output parameters specified in an
analyzer program's COMMAREA:

v A new input parameter wbra_urimap is provided to identify when a matching
URIMAP definition is involved in the processing path for the request.

v New input parameters wbra_hostname_ptr, wbra_hostname_length,
wbra_querystring_ptr, and wbra_querystring_length provide the host name and
query string specified on the Web client's request. An analyzer program can
examine this information in addition to the path component of the URL to decide
on subsequent processing stages, and to distinguish between virtual hosts
(multiple hosts at the same IP address).

v The parameters wbra_alias_tranid, wbra_converter_program,
wbra_server_program and wbra_userid are now input parameters as well as
output parameters. When a URIMAP definition is used, the TRANSACTION,
CONVERTER, PROGRAM, and USERID attributes (respectively) of the URIMAP
definition are passed to the analyzer program as these input parameters, and the
analyzer program can choose to override these.

v Two new output parameters are provided for code page conversion. The
character set used by the Web client can be specified by the wbra_characterset
parameter, and the wbra_hostcodepage parameter specifies the host code page
suitable for the application program. CICS uses these parameters to carry out
code page conversion before passing the request to the converter program (if
used) or to the application. The output parameters are functionally equivalent to
the existing wbra_dfhcnv_key parameter, with the important difference that using
the new parameters means you do not have to create entries in the code page
conversion table (DFHCNV). You can simply specify the character set and host
code page, and CICS determines the appropriate conversion template. If your
existing analyzer program uses the wbra_dfhcnv_key parameter, then until you
change to the new parameters or remove the analyzer program from the
processing path for requests, you need to retain the relevant DFHCNV entries for
migration purposes.

v A new output parameter wbra_commarea is provided to indicate where an
application that does not use the EXEC CICS WEB API commands requires
pre-CICS TS Version 3 compatibility processing. This flag is for existing
applications in the specific circumstance where the Web client needs a response
that is identical with the response it would have received before CICS TS Version
3. Setting this flag means that:

– CICS does not add any response headers that would not have been used
before CICS TS Version 3.

– If error processing is required, CICS sends an error response that is suitable
for, and labeled as, an HTTP/1.0 response, regardless of the HTTP version of
the Web client. CICS would normally reply to a HTTP/1.1 client with an
HTTP/1.1 error response, but this might mislead the client into thinking that
the application would normally send a response at HTTP/1.1 level.

A URIMAP definition may be set up for the request, but it must specify the
analyzer program.

Analyzer programs cannot be invoked when CICS is an HTTP client, or for Web
service processing; they can only be invoked when CICS is an HTTP server.

Changes to invocation of the converter program

Use of the converter program for CICS Web support processing for HTTP requests
is still optional. Converter programs are primarily for use with application programs
which were not originally coded for use with the Web, and need to receive input in

162 Release Guide

the form of a COMMAREA. They can be used to convert output from one or more
of these application programs into an HTTP message. Web-aware application
programs, which are coded using the EXEC CICS WEB and EXEC CICS
DOCUMENT application programming interfaces, should not require this conversion
to take place.

The URIMAP definition can specify that a converter program is to carry out relevant
processing for HTTP requests. The PROGRAM attribute of the URIMAP definition is
passed to the converter program, and the converter program can choose to
override it. If an analyzer program is used in CICS Web support processing, the
analyzer program can also specify a converter program, and can pass data to the
converter program in a COMMAREA or user token. If your existing analyzer
program passes data to a converter program in this way, note that this function
cannot be replicated by a URIMAP definition.

A converter program is not able to specify code page conversion settings for a
request that it receives in a COMMAREA. If a converter program is specified in a
URIMAP definition, and the headers for the Web client's request indicate that the
message body is text, CICS converts the message body supplied in the
COMMAREA using the following standard settings:

v For the character set, if the Web client's request has a Content-Type header
naming a character set supported by CICS, that character set is used. If the Web
client's request has no Content-Type header or the named character set is
unsupported, the ISO-8859-1 character set is used.

v For the host code page, CICS uses the default code page for the local CICS
region, as specified in the LOCALCCSID system initialization parameter.

If these standard settings are not suitable, or if code page conversion is not wanted,
an analyzer program must be used in the processing path to specify alternative
settings.

The converter program cannot be invoked when CICS is an HTTP client, or for Web
service processing; it can only be invoked when CICS is an HTTP server.

Changes to the Web error program

When a request error or an abend occurs in the CICS Web support process for
CICS as an HTTP server, a user-replaceable Web error program provides an error
response to the Web client. A Web error program receives or obtains information
about the error situation. The program can customize the default HTTP response
(including status code and status text) that CICS plans to send to the Web client, or
build its own HTTP response, and return it to CICS for sending.

A new user-replaceable Web error transaction program, DFHWBERX, is supplied.
DFHWBERX is used when the new CICS-supplied default analyzer DFHWBAAX is
specified as the analyzer program on the TCPIPSERVICE definition, and no
matching URIMAP definition is found for a request. In this situation, DFHWBAAX
specifies DFHWBERX as the application program to handle the request.
DFHWBERX could also be specified in another analyzer program, or as the
PROGRAM attribute in a URIMAP definition if an error response is always wanted
for the request.

DFHWBERX provides error handling as follows:

v If the request is a POST request with media type text/xml, it is assumed to be
a SOAP 1.1 request, and a SOAP 1.1 fault response is returned.

Chapter 5. General enhancements to CICS Web support 163

v If the request is a POST request with media type application/soap+xml, it is
assumed to be a SOAP 1.2 request, and a SOAP 1.2 fault response is returned.

v All other requests are assumed to be a standard HTTP request, so a suitable
HTTP response is composed and returned with a 404 (Not Found) status code.

The EXEC CICS WEB and DOCUMENT application programming interfaces are
available from DFHWBERX. It does not use information provided in a COMMAREA,
but instead uses the EXEC CICS commands to obtain information about the Web
client's request and create and send the error response.

The Web error program DFHWBEP, which was available before CICS TS 3.1, is
used in all other situations where a Web error program is required. You might have
customized the Web error program DFHWBEP in an earlier CICS release. CICS
now uses additional status codes, and uses some existing status codes in a wider
range of situations. You should be aware of this if you have made modifications to
DFHWBEP to customize the responses associated with each status code. The
EXEC CICS WEB and DOCUMENT application programming interfaces are not
available from DFHWBEP. DFHWBEP uses a COMMAREA-based interface where a
complete HTTP response is created as a buffer of data.

In the COMMAREA passed to a Web error program, there is a new input parameter
wbep_activity, which specifies the type of processing that was in progress when
the error occurred. 0 indicates server processing, and 2 indicates pipeline
processing.

Changes to statistics

New global statistics and resource statistics are produced for the URIMAP resource
definition object. The global statistics show usage counts for different CICS Web
support operations involving URIMAP definitions, such as successful matches and
unsuccessful match attempts, redirection, or delivery of a dynamic or static
response. The resource statistics show attributes and relevant usage counts for
individual URIMAP definitions.

The statistics are collected by the PERFORM STATISTICS and EXTRACT
STATISTICS commands, using the URIMAP keyword. The DSECTs are
DFHWBRDS (for resource statistics) and DFHWBGDS (for global statistics).
DFHSTUP and DFH0STAT include new reports for these statistics.

Changes to CICS utilities
Statistics utility program DFHSTUP

DFHSTUP supports the changes to statistics described in “Changes to statistics.”

You can now code the URIMAP resource type on the SELECT TYPE and IGNORE
TYPE control parameters for DFHSTUP.

Changes to problem determination
New messages and trace points, and one new abend code, are introduced for the
enhancements to CICS Web support. Any information received by CICS as Warning
headers in HTTP messages is collected and written to the TD queue CWBW.

164 Release Guide

Warning messages in HTTP headers

If the Warning header is present on an HTTP message, it normally contains
information that is intended to be read by a user. If CICS Web support receives a
message with a Warning header, the text associated with the header, and the IP
address of the sender, is written to the transient data queue CWBW. (CWBW is
indirected to CSSL.) If you receive too many warning headers, you can remove the
CWBW transient data queue to suppress these records.

Messages

New DFHWBxxxx messages are introduced as a result of the enhancements to
CICS Web support. All new and changed messages are described in the CICS
Messages and Codes manual.

Abend codes

One new abend code is introduced, AWBP. It is used when a Web-aware
application for CICS as an HTTP server is sending a chunked message, but fails to
send the final empty chunk to complete the message.

Trace

New CICS trace points are added to the WB domain trace for the enhancements to
CICS Web support. The new trace points are in the range WB 0419 to WB 0C07.

To control the output of CICS trace information, use CICS trace control in the
normal way.

Security
Security for new SPI and CEMT commands

New predefined RACF resource names control access to the following resources
using the SPI and CEMT:

HOST

URIMAP

New category 1 transaction

The new CWXU transaction is for CICS internal use, and should not be invoked
from a user terminal. For security purposes, it is a category 1 transaction.

New global user exits

When CICS is an HTTP client, the new global user exits XWBOPEN (on the WEB
OPEN command) and XWBSNDO (on the WEB SEND command) enable you to
apply a security policy to the host name and path specified for outbound HTTP
client requests from CICS. “Changes to global user exits” on page 106 describes
these new exits.

Security for static responses by CICS as an HTTP server

You can deliver CICS documents and HFS files as static responses to requests
from Web clients, by setting up URIMAP definitions that supply the response

Chapter 5. General enhancements to CICS Web support 165

#

#
#

without calling a user-written application program. When you deliver items as a
static response, HTTP basic authentication does not operate. This means that
resource level security, with access controls based on a user ID, cannot be applied
to items delivered as a static response. If the items require authentication or
resource level security, you need to deliver the material as an application-generated
response. When an application-generated response is used, basic authentication
can be used, and the user ID from basic authentication can be applied to the alias
transaction that covers processing by the user-written application program, so you
can grant or deny access to the specific resources and commands used by the
application program.

Migration

Migration of existing CICS Web support applications

CICS Transaction Server for z/OS, Version 3 Release 1 is designed to support your
existing CICS Web support architecture for both Web-aware and non-Web-aware
application programs. The EXEC CICS WEB API command changes are designed
to allow existing Web-aware application programs that send and receive HTTP
messages to work unchanged, until you choose to migrate them to take advantage
of the enhancements that are now available. If you continue to use existing CICS
Web support applications, note these migration points:

v If you are using CICS Web support to process non-HTTP requests, specify
the new USER protocol on the TCPIPSERVICE definition that defines the
port for these requests. This also applies to HTTP requests with nonstandard
request methods, which are now rejected if they are received on the HTTP
protocol (previously, they were accepted and processed as non-HTTP).
Processing for all non-HTTP requests must now be carried out under the USER
protocol, so that they are not subjected to the basic acceptance checks which
CICS carries out for requests using the HTTP protocol. The requests are flagged
as non-HTTP and passed unchanged to the analyzer program for the
TCPIPSERVICE. CICS Web support facilities are used for handling the request,
but no acceptance checks are carried out for messages sent and received using
this protocol.

Note: Because only one active TCPIPSERVICE definition can exist for each
port, non-HTTP requests can no longer use the same port as HTTP
requests. The well-known port numbers 80 (for HTTP) and 443 (for
HTTPS) must have the HTTP protocol and therefore cannot accept
non-HTTP requests. Web clients must specify any changed port in the
URL for their requests.

v Check the settings for your TCPIPSERVICE resource definitions with the
HTTP protocol.

1. The SOCKETCLOSE attribute must no longer have a zero setting
(SOCKETCLOSE(0)). A zero setting for SOCKETCLOSE means that CICS
closes the connection immediately after receiving data from the Web client,
unless further data is waiting. This means that persistent connections cannot
be maintained. A non-zero setting for SOCKETCLOSE enables persistent
connections with both HTTP/1.1 clients, and HTTP/1.0 clients (where the
client supports this).

2. The new MAXDATALEN option should be specified to limit the maximum
length of data that may be received by CICS as an HTTP server. This setting
helps to guard against denial of service attacks involving the transmission of
large amounts of data.

166 Release Guide

#
#
#
#
#
#
#
#
#
#

3. If you are using SSL, there are some changes to the security options
available on the TCPIPSERVICE resource definition.

v The analyzer program now allows you to supply codepage conversion
parameters to CICS Web Support instead of supplying the name of a
DFHCNV table entry. If you want to continue to use an analyzer program that
you coded in an earlier CICS release to reference DFHCNV, you must either
continue to supply the entries in the code page conversion table, or change the
analyzer program. Changing the analyzer program involves coding two new
output parameters to specify the client and server code pages, in place of the
output parameter that specified the name of a DFHCNV entry. If you do this, you
do not need to migrate your DFHCNV entries.

v If you have modified the user-replaceable Web error program DFHWBEP to
customize the HTTP responses provided in error situations, be aware that
CICS now uses additional status codes, and uses some existing status
codes in a wider range of situations.

1. Check that your program is using an appropriate range of input parameters to
identify the situation to which the customized response applies, rather than
relying on the status code alone. The error code, abend code, message
number, response and reason codes, or program name can be used to
identify the situation that has given rise to the HTTP response. If these
checks are not made, you might find that where CICS is using the status
code for a new purpose, an inappropriately customized response is returned.

2. Check that your program includes logic to pass through unchanged any
HTTP responses with status codes that are not known to the program.

v The DFHWBCLI interface is still supported in CICS Transaction Server for
z/OS, Version 3 Release 1. To gain enhanced functionality, you can migrate
HTTP client applications that used the DFHWBCLI interface, to use the EXEC
CICS WEB API commands for client requests (with the SESSTOKEN option).
One important difference to note is that in the EXEC CICS WEB API, the use of
a proxy server is specified by a user exit on the WEB OPEN command
(XWBOPEN), and the URL of the proxy server is supplied by that user exit.
Chapter 3, “Support for HTTP client requests from CICS applications,” on page
83 describes how HTTP client requests can now be made.

Migration to the new CICS Web support function

CICS Web support in CICS Transaction Server for z/OS, Version 3 Release 1 has
many enhancements to provide automatic and administrator control of functions that
were previously handled by user-replaceable programs. In particular, you are
recommended to investigate migration possibilities for the following elements of
your CICS Web support architecture:

v You should usually be able to replace the request processing functions of an
existing analyzer program with URIMAP resource definitions, which can be
changed and controlled using CICS system programming commands. URIMAP
definitions can be used to match the URLs of requests and map them to
application programs, and specify a converter program and alias transaction. If
your analyzer program is customized to provide additional functions, you can
continue to use it instead of a URIMAP definition, or you can combine it with a
URIMAP definition. While migrating to the use of URIMAPs:

1. You can introduce URIMAP resource definitions progressively for a small
number of requests at a time. Depending on the type of processing carried
out by your analyzer program, and the type of application that handles the
request, you can choose whether or not to continue using the analyzer
program in the processing path for each request.

Chapter 5. General enhancements to CICS Web support 167

2. You might prefer to select and publish new URLs for requests handled by
URIMAP resource definitions, rather than retaining your existing URLs. When
you are ready to discontinue the use of the old processing path for a request,
you can set up a URIMAP definition to permanently redirect requests from
the old URL to the new URL.

3. Ensure that the analyzer program specified on the TCPIPSERVICE definition
still contains basic error handling procedures, even if it is no longer involved
in the processing path for requests. The analyzer program must still be
present, and it receives requests if URIMAP matching fails.

v For application programs that do not use the EXEC CICS WEB API commands
but produce an HTTP response in a COMMAREA, CICS Web support is not able
to assist with assembling the message structure correctly, or to carry out its full
range of checks on the response. To take advantage of all the available CICS
Web support facilities, it is recommended that you plan to convert these
applications to Web-aware application programs that use the WEB API
commands.

v URIMAP resource definitions can be used to deliver the contents of a CICS
document or HFS file as a static response, or to deliver a redirection response,
without involving a user-written application program. You could consider using
this mechanism, instead of an application program, for simple responses that do
not involve dynamic processing.

v Check that code page conversion is operating in the most efficient way. With
minor changes to your application, you can take advantage of new CICS Web
support facilities to:

– Avoid setting up and using a code page conversion table (DFHCNV) for CICS
Web support.

– Allow CICS to identify and use the Web client's character set for code page
conversion, rather than specifying this yourself.

– Use the local system default (LOCALCCSID system initialization parameter) to
identify the application program's code page, rather than specifying this
yourself.

– Convert to and from the UTF-8 and UTF-16 character sets.

CICSPlex SM support

The CPSM Web User Interface (WUI) is accessed by Web browsers. The interface
accepts both HTTP/1.0 and HTTP/1.1 level requests, but provides only HTTP/1.0
responses. Web browsers that are used to access the CPSM WUI should be able
to accept and understand HTTP/1.0 responses.

Changes to CICSPlex SM end user interface views

Changes have been made to the following EUI views:

v “TCPDEF view”

v “DOCDEF view” on page 169

v “DOCTEMP view” on page 169

TCPDEF view

The following attributes have been added to the TCPDEF view:

PROTOCOL CVDA (USER)
Protocol

168 Release Guide

MAXDATALEN
Defines the maximum length of data that can be received on an inbound
request or a response to an outbound request.

The PRIVACY attribute in this view is no longer valid in CICS Transaction Server
3.1 and will be ignored.

DOCTEMP view

The following attributes have been added to the DOCTEMP view:

HFSFILE
A UNIX System Services HFS file to be used as a document template.

TEMPLATETYPE CVDA (HFS)
Document template type

DOCDEF view

A new attribute has been added to the DOCDEF view:

HFSFILE
A UNIX System Services HFS file to be used as a document template.

The attribute TEMPLATETYPE has been removed.

Changes to CICSPlex SM application programming interface
New resource tables

The following have been introduced:

v “URIMAP resource table”

v “URIMPDEF resource table” on page 171

v “URIMPGBL resource table” on page 172

v “HOST resource table” on page 173

URIMAP resource table

The URIMAP resource table has the following SPI attributes:

URIMAP
URIMAP name

ENABLESTATUS
Shows the CVDA value that indicates whether the map is to be installed in
ENABLED or DISABLED state.

USAGE
Shows the CVDA value of Server, Client, or Pipeline indicating whether the
map is respectively for CICS as an HTTP server, CICS as an HTTP client,
or Web services.

SCHEME
Shows the CVDA value which indicates whether the scheme component of
the URI to which the URI map applies is without SSL (HTTP) or with SSL
(HTTPS).

HOST Shows the 116-character host component of the URI to which the map
applies.

Chapter 5. General enhancements to CICS Web support 169

#
#

#
#

PATH Shows the 255-character path component of the URI to which the map
applies.

MEDIATYPE
Shows the 56-character data content of the static response that CICS
provides to the inbound HTTP request.

CHARACTERSET
Shows the 40-character name of the character set to which CICS converts
the static response that is sent to the inbound HTTP request.

HOSTCODEPAGE
Shows the 10-character name of the IBM codepage (EBCDIC) in which the
text document that forms the static response is encoded.

TEMPLATENAME
Shows the 48-character name of a CICS document template that forms the
static response.

HFSFILE
Shows the 255-character fully-qualified name of the UNIX system services
HFS file which forms the static response sent to an inbound HTTP request.

TCPIPSERVICE
Shows the 8-character name of the TCPIPSERVICE resource definition that
defines the inbound port to which the URI map applies.

ANALYZER
Shows the CVDA value (YES or NO) which shows whether or not an
analyzer program is to be involved in processing the inbound HTTP
request.

CONVERTER
Shows the 8-character name of a converter program which is to process
the content of the request.

TRANSACTION
Shows the 4-character name of an alias transaction used to run the user
application that composes a response.

PROGRAM
Shows the 8-character name of the user application program or XML
service that specifies the service that deals with the request.

PIPELINE
Shows the 8-character name of the Pipeline that specifies the service that
deals with the request.

WEBSERVICE
Shows the 32-character name of the Web service that specifies the service
that deals with the request.

USERID
Shows the 8-character user-ID used to attach the alias transaction.

CERTIFICATE
Shows the 32-character label of the certificate to be used as the SSL client
certificate when the URI is used for an outbound HTTPS request.

CIPHERS
Shows a string of up to 56 hexadecimal digits that is interpreted as a list of
up to 28 2-digit cipher suite codes used for outbound SSL requests.

170 Release Guide

#
#

NUMCIPHERS
Number of SSL cipher suite codes

LOCATION
Shows the 255-character URI to which the inbound HTTP request should
be redirected.

REDIRECTTYPE
Shows the CVDA value (NONE, TEMPORARY or PERMANENT) for the
type of redirection.

MAPREFCOUNT
URI map reference count

MATCHDISABLD
URI map host or path disabled

MATCHREDIREC
URI map host or path redirect

URIMPDEF resource table

The URIMPDEF resource table includes the following RDO attributes:

URIMAP
URI map definition name

STATUS
Shows the CVDA value that indicates whether the map is to be installed in
ENABLED or DISABLED state.

USAGE
Shows the CVDA value of Server, Client, or Pipeline indicating whether the
map is respectively for CICS as an HTTP server, CICS as an HTTP client,
or Web services.

SCHEME
Shows the CVDA value which indicates whether the scheme component of
the URI to which the URI map applies is without SSL (HTTP) or with SSL
(HTTPS).

HOST Shows the 116-character host component of the URI to which the map
applies.

PATH Shows the 255-character path component of the URI to which the map
applies.

MEDIATYPE
Shows the 40-character data content of the static response that CICS
provides to the inbound HTTP request.

CHARACTERSET
Shows the 40-character name of the character set to which CICS converts
the static response that is sent to the inbound HTTP request.

HOSTCODEPAGE
Shows the 10-character name of the IBM codepage (EBCDIC) in which the
text document that forms the static response is encoded.

TEMPLATENAME
Shows the 48-character name of a CICS document template that forms the
static response.

Chapter 5. General enhancements to CICS Web support 171

HFSFILE
Shows the 255-character fully-qualified name of the UNIX system services
HFS file which forms the static response sent to an inbound HTTP request.

TCPIPSERVICE
Shows the 8-character name of the TCPIPSERVICE resource definition that
defines the inbound port to which the URI map applies.

ANALYZER
Shows the CVDA value (YES or NO) which shows whether or not an
analyzer program is to be involved in processing the inbound HTTP
request.

CONVERTER
Shows the 8-character name of a converter program which is to process
the content of the request.

TRANSACTION
Shows the 4-character name of an alias transaction used to run the user
application that composes a response.

PROGRAM
Shows the 8-character name of the user application program or XML
service that specifies the service that deals with the request.

PIPELINE
Shows the 8-character name of the Pipeline that specifies the service that
deals with the request.

WEBSERVICE
Shows the 32-character name of the Web service that specifies the service
that deals with the request.

USERID
Shows the 8-character user ID used to attach the alias transaction.

CERTIFICATE
Shows the 32-character certificate label to be used as the SSL client
certificate when the URI is used for an outbound HTTPS request.

CIPHERS
Shows a string of up to 56 hexadecimal digits that is interpreted as a list of
up to 28 2-digit cipher suite codes used for outbound SSL requests.

LOCATION
Shows the 255-character URI to which the inbound HTTP request should
be redirected.

REDIRECTTYPE
Shows the CVDA value (NONE, TEMPORARY or PERMANENT) for the
type of redirection.

URIMPGBL resource table

The URIMPGBL resource table includes the following attributes:

MAPREFCOUNT
URI map reference count

MATCHDISABLD
URI map host or path disabled

172 Release Guide

#
#

NOMATCHCOUNT
URI map host or path no match count

MATCHCOUNT
URI map host or path match count

MATCHREDIREC
URI map host or path redirect

MATCHANALYZE
URI map host or path match analyzer

STATICONTENT
URI map static content

DYNAMCONTENT
URI map dynamic content

PIPELINEREQS
URI map pipeline requests

SCHEMEHTTP
URI map scheme (HTTP) requests

SCHEMEHTTPS
URI map scheme (HTTPS) requests

HOSTDISABLED
Host disabled count

HOST resource table

The HOST resource table has the following attributes:

HOSTNAME
Host name

ENABLESTATUS
Shows the CVDA value that indicates whether the host is to be installed in
ENABLED or DISABLED state.

Changes to resource tables

Changes have been made to the following:

v “TCPDEF resource table”

v “DOCTEMP resource table” on page 174

v “DOCDEF resource table” on page 174

v “TASK resource table” on page 174

TCPDEF resource table

The TCPDEF resource table has the following additional attributes:

PROTOCOL CVDA (USER)
Protocol

MAXDATALEN
Defines the maximum length of data that may be received or sent

The PRIVACY attribute in this resource table is no longer valid in CICS Transaction
Server 3.1 (or later versions) and will be ignored.

Chapter 5. General enhancements to CICS Web support 173

#
#

DOCTEMP resource table

The DOCTEMP resource table has the following additional attributes:

HFSFILE
UNIX Sytem Service Hierarchical File System template file

TEMPLATETYPE
Document template type

DOCDEF resource table

The DOCDEF resource table includes the following attribute:

HFSFILE
Hierarchical File System template file

TASK resource table

The TASK resource table includes the following attributes:

TMRWBRDL
Shows the data length of data read from the repository

TMRWBWDL
Shows the data length of data written to the repository

Changes to CICSPlex SM Web User Interface
New WUI views

The following WUI views have been introduced:

v “URI mapping definitions view”

v “URI map view” on page 175

v “URI map global view” on page 175

v “Host view” on page 175

URI mapping definitions view

A definitional view set has been introduced called URI mapping definitions,
associated with the new URIMPDEF resource table. The view name for this tabular
view is EYUSTARTURIMPDEF.TABULAR and the existing EYUSTARTADMRES
menu has been extended to include it.

To open the URI mapping definitions view, do the following:

1. Click Administration views from the Main menu

2. Click Basic CICS resource administration views (or, alternatively, click Fully
functional Business Application Services (BAS) administration views)

3. Click CICS resource definitions

4. Scroll down and click URI mapping definitions

The URI mapping definition view is displayed This view includes the following five
action buttons:

v Create

v Update

v Remove

174 Release Guide

v Install

v Add to Resource group

See the attributes of the URIMPDEF resource table listed in“URIMPDEF resource
table” on page 171 for field details.

URI map view

A new view has been introduced called URI map, associated with the new URIMAP
resource table. The view name for this tabular view is
EYUSTARTURIMAP.TABULAR and the existing EYUSTARTTCPIPS menu has been
extended to include it.

To open the URI map view, do the following:

1. Click CICS operations view from the Main menu

2. Scroll down and click TCP/IP service operations views

3. Click URI map

The URI map view is displayed. This view includes the following four action
buttons:

v Set attributes

v Enable

v Disable

v Discard

For attribute details of the URIMAP resource table see “URIMAP resource table” on
page 169

URI map global view

A new view has been introduced called URI map global, associated with the new
URIMPGBL resource table. The view name for this tabular view is
EYUSTARTURIMPGBL.DETAILED and the existing EYUSTARTTCPIPS menu has
been extended to include it.

To open the URI map global view, do the following:

1. Click CICS operations view from the Main menu

2. Scroll down and click TCP/IP service operations views

3. Click URI map global

4. Select a CICS system name to open the URI map global detailed view

The URI map global view is displayed. For attribute details of the URIMPGBL
resource table see “URIMPGBL resource table” on page 172.

Host view

A new view has been introduced called Host, associated with the new HOST
resource table. The view name for this tabular view is EYUSTARTHOST.TABULAR
and the existing EYUSTARTTCPIPS menu has been extended to include it.

To open the Host view, do the following:

1. Click CICS operations view from the Main menu

2. Scroll down and click TCP/IP service operations views

3. Click Host

Chapter 5. General enhancements to CICS Web support 175

The Host view is displayed.

For attribute details of the HOST resource table see “HOST resource table” on page
173.

Changes to the WUI views

Changes have been made to the following views:

v “TCP/IP Service definition view”

v “Document template definition view”

v “Document template view”

v “TCP/IP usage view”

TCP/IP Service definition view

The following attributes have been added to the TCPDEF (EYUSTARTTCPDEF)
view:

PROTOCOL CVDA (USER)
Protocol

MAXDATALEN
Defines the maximum length of data that can be received on an inbound
request or a response to an outbound request.

The PRIVACY attribute in this view is no longer valid in CICS Transaction Server
3.1 and will be ignored.

Document template definition view

The following attribute has been added to the DOCDEF
(EYUSTARTDOCDEF.DETAILED) view:

HFSFILE
A UNIX System Services HFS file to be used as a document template.

Document template view

The following attributes have been added to the DOCTEMP
(EYUSTARTDOCTEMP.DETAILED) view:

HFSFILE
A UNIX System Services HFS file to be used as a document template.

TEMPLATETYPE CVDA (HFS)
Document template type

TCP/IP usage view

The following attributes have been added to the TCP/IP usage view in the Active
task view set (EYUSTARTTASK.DETAIL7), within the Task operations view:

TMRWBRDL
Shows the data length of data read from the repository

TMRWBWDL
Shows the data length of data written to the repository

176 Release Guide

Chapter 6. Improvements to Internet security

An overview of the enhancements to security.

The improvements to security cover a variety of areas and are summarized as
follows:

v Support for the TLS 1.0 protocol and AES cipher suites

v Scalability through an increased number of simultaneous SSL connections

v Support for certificate revocation lists

v SSL caching across CICS regions in a sysplex

v Specifying minimum as well as maximum encryption negotiation levels

Note: CICS supports both SSL and TLS security protocols in this release. For
clarity, the term SSL is used to refer to both protocols in the documentation,
except where a specific point about either protocol is required.

Benefits of improvements to Internet security

There are a range of benefits that come from the improvements to security.

CICS now supports the Transport Layer Security (TLS) 1.0 protocol as well as SSL
3.0, allowing you to use the new AES cipher suites that offer 128-bit and 256-bit
encryption.

There are improvements to the performance of SSL to support new functions such
as Web Services. The number of simultaneous SSL connections that can be used
in the system at one time has increased to achieve better throughput.

There is more flexibility in controlling the encryption negotiation between client and
server. You can specify a minimum as well as a maximum encryption level in CICS
for negotiating with particular users.

CICS can now check all certificates against a certificate revocation list (CRL) when
negotiating with clients. Any connections using revoked certificates are closed
immediately.

You can specify whether you want to share session IDs across a sysplex by using
the SSL cache. CICS performs a partial SSL handshake if the client has negotiated
with CICS previously. Sharing the cache across a number of CICS regions
improves the performance of SSL negotiation and connection throughput.

Security terminology

The following terminology is used to describe the enhancements to Internet security
in CICS.

Transport Layer Security (TLS)
A security protocol that is used to provide secure communication over the
Internet. The specification is documented in RFC2246.

cipher suite
A combination of an encryption algorithm, encryption key length and MAC
algorithm that is negotiated during an SSL handshake.

© Copyright IBM Corp. 2004, 2010 177

Message Authentication Code (MAC)
A cryptographically secure hash code that is associated with each message
sent over an SSL connection.

MAC algorithm
A cryptographic algorithm that calculates a message authentication code.
SSL uses the MD5 and SHA algorithms.

SSL cache
The cache that is used by SSL to store session id information about its
encryption negotiation with clients. If a client has previously securely
connected to CICS using SSL, only a partial handshake is performed to
establish the SSL connection.

certificate revocation list
A list of revoked certificates that is provided by independent bodies called
certificate authorities. If a certificate has been withdrawn, it is added to a
certificate revocation list. These lists can be cross-referenced during the
SSL handshake negotiation when the client and server try to authenticate
one another.

SP mode
The TCB mode that owns the initial pthread-owning task. The initial
pthread-owning task owns all the pthreads that are used by S8 TCBs.

SSL pool
The pool that contains and manages the S8 TCBs in a CICS region.

SSL handshake
An exchange of information that takes place between a client and server
when a connection is established. The handshake involves the negotiation
of which encryption algorithms to use, and authentication of one another.

Requirements
Hardware

zSeries® cryptographic hardware is required to fully benefit from the performance
improvements to SSL encryption, which relies upon the z/OS Integrated
Cryptographic Facility (ICSF).

Software

The System SSL Security Level 3 feature for z/OS is required to use cipher suites
with 128-bit encryption or above.

Transport Layer Security protocol
The Transport Layer Security (TLS) 1.0 protocol is a standard security protocol, that
provides secure communication over the Internet.

CICS supports two security protocols that can be used to provide secure
communication over the Internet. The first is the Secure Sockets Layer (SSL) 3.0
protocol. The second is the Transport Layer Security (TLS) 1.0 protocol, which is
the latest industry standard SSL protocol and is based on SSL 3.0. The TLS 1.0
specification is documented in RFC2246 and is available on the Internet at
www.rfc-editor.org/rfcsearch.html. Any connections that require encryption will
automatically use the TLS protocol, unless the client specifically requires SSL 3.0.

178 Release Guide

#
#

#
#
#
#
#
#
#

http://www.rfc-editor.org/rfcsearch.html

The primary aim of TLS is to make the Secure Sockets Layer more secure and to
make the specification of the protocol more precise and complete. TLS provides the
following enhancements over SSL 3.0:

Key-Hashing for Message Authentication
TLS uses Key-Hashing for Message Authentication Code (HMAC), which
ensures that a record cannot be altered while travelling over an open
network such as the Internet. SSL Version 3.0 also provides keyed
message authentication, but HMAC is considered more secure than the
(Message Authentication Code) MAC function that SSL Version 3.0 uses.

Enhanced Pseudorandom Function (PRF)
PRF is used for generating key data. In TLS, the PRF is defined with the
HMAC. The PRF uses two hash algorithms in a way that guarantees its
security. If either algorithm is exposed then the data remains secure as long
as the second algorithm is not exposed.

Improved finished message verification
Both TLS 1.0 and SSL 3.0 provide a finished message to both endpoints
that authenticates that the exchanged messages were not altered. However,
TLS bases this finished message on the PRF and HMAC values, which is
more secure than SSL Version 3.0.

Consistent certificate handling
Unlike SSL 3.0, TLS attempts specify the type of certificate which must be
exchanged between TLS implementations.

Specific alert messages
TLS provides more specific and additional alerts to indicate problems that
either session endpoint detects. TLS also documents when certain alerts
should be sent.

Improvements to SSL performance
There are changes to the implementation of S8 TCBs to improve the number and
performance of SSL connections in CICS.

CICS uses the open transaction environment (OTE) to manage SSL connections.
Each SSL connection uses an S8 TCB, which now runs as a UNIX pthread. There
is also a new open TCB mode called SP, that is used for socket pthread owning
tasks. All of the S8 TCBs run within a single enclave, which is owned by the SP
TCB and also contains the SSL cache. This provides the benefit of saving storage
below the line, allowing many more simultaneous SSL connections in CICS than
previous releases.

The S8 TCBs are contained in an SSL pool, which is managed by the CICS
dispatcher. The S8 TCBS are allocated from the new SSL pool, but are only locked
to a transaction for the period that it needs to perform SSL functions. After the SSL
negotiation is complete, the TCB is released back into the SSL pool to be reused.
The MAXSSLTCBS system initialization parameter specifies the maximum number
of S8 open TCBs in the SSL pool. The default value is 8, but you can specify up to
1024.

You can monitor the performance of the SSL pool and the S8 TCBs using the
dispatcher reports from DFH0STAT and DFHSTUP. The statistics include
information on how often the maximum number of S8 TCBs are reached, the delay
before a TCB is allocated and the actual number of TCBs in the SSL pool.

Chapter 6. Improvements to Internet security 179

#
#
#

#
#
#
#
#
#

#
#
#
#
#

#
#
#
#
#

#
#
#

#
#
#
#

Using certificate revocation lists
You can configure CICS to use certificate revocation lists (CRLs) to check the
validity of client certificates being used in SSL negotiations.

To use certificate revocation lists, you must install and configure an LDAP server.
Details on how to perform these tasks can be found in z/OS V1R4.0 Security
Server LDAP Server Admin and Use.

Certificate revocation lists are available from certificate authorities such as Verisign.
They are kept in CRL repositories that are available on the world wide web and can
be downloaded and stored in an LDAP server. To populate the LDAP server and
update certificate revocation lists, use the CICS-supplied transaction CCRL. You
can run the CCRL transaction from a terminal or using a START command. To
include CRLs in your LDAP server, follow these steps:

1. Configure the LDAP server to specify which certificate authorities you want to
use.

2. Specify the name of the RACF profile that authorizes CICS to access the CRLs
in the LDAP server using the CRLPROFILE system initialization parameter.

3. Run the CCRL transaction.

The SSL cache
The SSL cache is used to store session ids from the negotiation between clients
and CICS.

The SSL cache allows CICS to perform partial handshakes with clients that it has
previously authenticated. In a local CICS region, the SSL cache is part of the
enclave for the S8 TCBs. You have the option of sharing the SSL cache across a
sysplex if this is appropriate for your CICS system. You can use sysplex caching if
you have multiple CICS socket-owning regions that accept SSL connections at the
same IP address.

If you want to share the cache between regions, activate the system SSL started
task GSKSRVR and use the system initialization parameter SSLCACHE. The
default is to use the local region cache, but you can change this by specifying the
option SYSPLEX. CICS will use the SSL cache in the coupling facility instead to
store session ids.

Customizing encryption negotiations
You can select the cipher suites that are used in the encryption negotiation process
to set a minimum level as well as a maximum level of encryption.

The CIPHERS attribute on the resource definitions TCPIPSERVICE,
CORBASERVER, and URIMAP specifies the cipher suites that can be used for
each encryption level. The default value of the attribute is the list of 2-digit cipher
codes that are used in encryption negotiations. You have the option of customizing
this list of cipher suites to include your order of preference for the encryption levels
at which CICS should negotiate with clients. You can also choose to remove cipher
suites from the list. This is particularly useful if you want to ensure that only a very
high level of encryption is used. You can do this as follows:

1. Select the resource definition that you want to change.

180 Release Guide

#
#

2. The CIPHERS attribute displays the default value. For example, if the system
initialization parameter ENCRYPTION=STRONG, the default value in z/OS 1.9
is 050435363738392F303132330A1613100D0915120F0C03060201.

3. Edit the attribute value to remove and reorder the cipher suites. For example,
you could specify 352F0A0504.

4. Save the resource definition.

Specifying 352F0A0504 means that CICS will not negotiate below 128-bit encryption
for connections using this resource. Each of the 2-digit codes in the attribute, for
example 35, 2F, 0A and so on, refer to cipher suites that have at least a 128-bit
encryption. CICS will start by trying to negotiate using the AES cipher suites 35 and
2F, because these are first in the list of cipher codes. If the client does not have this
level of encryption, CICS will close the connection.

Note that you cannot include cipher suites that are not in the default values for that
level of encryption. For example, if you have a MEDIUM level of encryption
specified, you cannot add the AES cipher suites 35 and 2F to the CIPHERS
attribute.

Changes to CICS externals

Changes to system initialization parameters

There are new and changed system initialization parameters for the improvements
to Internet security. The changed parameters are:

ENCRYPTION={STRONG|WEAK|MEDIUM}
Specifies the cipher suites that CICS uses for secure TCP/IP connections. For
compatibility with previous releases, ENCRYPTION=NORMAL is accepted as
an equivalent to ENCRYPTION=MEDIUM.

STRONG
Specifies that CICS should use only the following cipher suites:

Cipher suite Encryption
algorithm

Key length MAC algorithm

01 No encryption MD5

02 No encryption SHA

03 RC4 40 bits MD5

04 RC4 128 bits MD5

05 RC4 128 bits SHA

06 RC2 40 bits MD5

09 DES 56 bits SHA

0A Triple DES 168 bits SHA

2F AES 128 bits SHA

35 AES 256 bits SHA

Chapter 6. Improvements to Internet security 181

Cipher suite Encryption
algorithm

Key length MAC algorithm

The terms used in this table are:

MD5 Message Digest algorithm

SHA Secure Hash algorithm

RC2, RC4
Rivest encryption

DES Data Encryption Standard

Triple DES
DES applied three times

AES Advanced Encryption Standard

WEAK
Specifies that CICS should use only the following cipher suites:

Cipher suite Encryption
algorithm

Key length MAC algorithm

01 No encryption MD5

02 No encryption SHA

03 RC4 40 bits MD5

06 RC2 40 bits MD5

The terms used in this table are:

MD5 Message Digest algorithm

SHA Secure Hash algorithm

RC2, RC4
Rivest encryption

MEDIUM
Specifies that CICS should use only the following cipher suites:

Cipher suite Encryption
algorithm

Key length MAC algorithm

01 No encryption MD5

02 No encryption SHA

03 RC4 40 bits MD5

06 RC2 40 bits MD5

09 DES 56 bits SHA

The terms used in this table are:

MD5 Message Digest algorithm

SHA Secure Hash algorithm

RC2, RC4
Rivest encryption

DES Data Encryption Standard

The parameter SSLTCBS is obsolete. Use the following new parameter instead:

182 Release Guide

MAXSSLTCBS={8|number}
Specifies the maximum number of S8 TCBs that can run in the SSL pool. The
default is 8, but you can specify up to 1024 TCBs.

The new system initialization parameters are:

CRLPROFILE=profilename
Specifies the name of the RACF profile that CICS should use to access the
LDAP server that contains certificate revocation lists (CRLs). Specifying this
parameter means that CICS checks each client certificate during the SSL
negotiation for a revoked status. If the certificate is revoked, CICS closes the
connection immediately.

SSLCACHE={CICS|SYSPLEX}
Specifies whether SSL is to use the local or sysplex caching of session ids.
Sysplex caching is useful where multiple CICS socket-owning regions accept
SSL connections at the same IP address.

Changes to resource definition
TCPIPSERVICE and CORBASERVER definitions

A new attribute, CIPHERS, has been added to the TCPIPSERVICE and
CORBASERVER resource definitions. It can also be specified in the new URIMAP
resource definition. See URIMAP resource definitions for more information. The
CIPHERS list of cipher suite codes is only used when the sockets connection that is
established for the resource uses the SSL or TLS security protocols. For a
TCPIPSERVICE definition, the CIPHERS list is used for inbound socket
connections. For a CORBASERVER definition, the CIPHERS list is used for
outbound socket connections.

CIPHERS=value
The value specifies a string of up to 56 hexadecimal digits that is interpreted as
a list of up to 28 2-digit cipher suite codes. The list of acceptable codes is
dependent on the ENCRYPTION system initialization parameter.

v For ENCRYPTION=WEAK, the default value is 03060102

v For ENCRYPTION=MEDIUM, the default value is 0903060102

v For ENCRYPTION=STRONG, the default value is 0504352F0A0903060201

You can reorder the cipher codes or remove them from the default list.
However, you cannot add cipher codes that are not in the default list for the
specified encryption level. The ENCRYPTION system initialization parameter
determines the cipher suite codes that are allowed for each encryption level.

The PRIVACY attribute of the TCPIPSERVICE resource definition reflects the
CIPHERS attribute value. Since the default value of the CIPHERS attribute is
the complete list of cipher suites, removing some of the cipher codes can
change the PRIVACY attribute.

v If you remove cipher suites 01 and 02 to specify that CICS should only
negotiate with clients that have encryption, the PRIVACY attribute value
changes to REQUIRED.

v If you remove all of the cipher suites except cipher suites 01 and 02 to
specify that CICS should only negotiate with clients that have no encryption,
the PRIVACY attribute changes to NOTSUPPORTED.

v If you have any other combination of cipher suites specified, including the
default, the PRIVACY attribute value is SUPPORTED.

Chapter 6. Improvements to Internet security 183

#
#
#
#
#
#

#

Similar constraints apply to the OUTPRIVACY attribute of the CORBASERVER
resource definition.

Changes to the system programming interface

The EXEC CICS commands INQUIRE TCPIPSERVICE, INQUIRE CORBASERVER
and the new command INQUIRE URIMAP now include two security options.

CIPHERS(char56)
Returns the list of cipher suites that is specified in the attribute CIPHERS for
the resource definitions TCPIPSERVICE, CORBASERVER and URIMAP. This
list of cipher suites are used to negotiate SSL connections. For example, if you
were using weak encryption, the default value would be 03060102.

NUMCIPHERS(halfword)
Returns the number of cipher suites that are used to negotiate encryption levels
as part of the SSL handshake.

The EXEC CICS command INQUIRE TCPIP also has two security options.

CRLPROFILE(char246)
Returns the name of the RACF profile that is specified in the CRLPROFILE
system initialization parameter. The RACF profile contains the LDAP server
name, userid and password that CICS should use to access the certificate
revocation lists.

SSLCACHE(cvda)
returns a CVDA value indicating which cache is being used by SSL to store
session ids. CVDA values are:

CICS
The local SSL cache for the CICS region is being used by SSL

SYSPLEX
The SSL cache in the coupling facility is being used by SSL.

There are changes to the INQUIRE DISPATCHER and SET DISPATCHER
commands to handle the SSL TCB pool. The following two options have been
added:

MAXSSLTCBS(fullword)
returns the maximum number of S8 TCBs allowed in the SSL pool, as specified
in the MAXSSLTCBS system initialization parameter.

ACTSSLTCBS(fullword)
returns the actual number of S8 TCBs in the SSL pool.

Changes to CICS-supplied transactions
CCRL transaction

Use the CCRL transaction to create and update the certificate revocation lists
(CRLs) that are stored in an LDAP server. You only need to use CCRL if you are
implementing SSL in your CICS regions and want each connection checked for a
revoked certificate during the SSL handshake.

The CCRL transaction specifies the location of CRL repositories on the world wide
web. CICS downloads the lists from the CRL repository at the specified URL and
stores it in the LDAP server. You can specify more than one URL if you need to
access multiple CRL repositories.

184 Release Guide

#
#
#
#

#

#
#
#
#
#

Before you run the CCRL transaction, you must have the following set up in CICS:

v An LDAP server that is set up and configured to store the certificate revocation
lists. .

v The CRLPROFILE system initialization parameter is defined with the name of the
RACF profile that specifies information for accessing the certificate revocation
lists on the LDAP server.

You can run the CCRL transaction from a terminal or from a START command. If
you want to schedule regular updates, use the START command option.

To run the transaction from a terminal, ensure that your terminal accepts mixed
case characters. Enter the following command: CCRL url-list where url-list is a
space-delimited list of URLs that contain the certificate revocation lists that you
want to download. You will then be prompted to provide the administrator
distinguished name and password for the LDAP server. This allows CICS to update
the LDAP server with the downloaded CRLs.

To run the transaction from a START command, using the following syntax:
EXEC CICS START TRANSID(CCRL)
FROM('admin://adminDN:adminPW url-list')
LENGTH(url-list-length)
[INTERVAL(hhmmss)|TIME(hhmmss)]

where adminDN:adminPW is the distinguished name and password of the LDAP
server,url-list is a space-delimited list of URLs that contain the certificate revocation
lists that you want to download, url-list-length is the length of the URL list including
the LDAP admin distinguished name and password, and hhmmss is the interval or
expiration time at which the CCRL transaction is scheduled to run.

For example, you could specify:
EXEC CICS START TRANSID(CCRL)
FROM('admin://cn=ldapadmin:cics31ldap http://crl.CertificateAuthority.com/CRLList1.crl

http://crl.CertificateAuthority.com/CRLList2.crl')
LENGTH(132) INTERVAL(960000)

This would schedule the CCRL transaction to run in 96 hours and download
certificate revocation lists from two specified URLs.

Changes to CEMT

There are changes to the following commands:

v INQUIRE TCPIPSERVICE

v INQUIRE CORBASERVER

v INQUIRE TCPIP

v INQUIRE DISPATCHER

v SET DISPATCHER

CICS Supplied Transactions has information about these changed commands.

Changes to global user exits
Within the global user exit parameter list, the TCB indicators list now includes an
entry for the SP TCB mode. For a full list see the Customization Guide.

Chapter 6. Improvements to Internet security 185

#
#
#

Changes to monitoring

New monitoring fields have been added to monitor the MAXSSLTCBS delay time
and the Change mode delay time.

DFHTASK

247 (TYPE-S, 'DSCHMDLY', 8 BYTES)

The elapsed time the user task waited for redispatch after a CICS Dispatcher
change-TCB mode request was issued by or on behalf of the user task. For
example, a change-TCB mode request from a CICS L8 or S8 mode TCB back to
the CICS QR mode TCB may have to wait for the QR TCB because another task is
currently dispatched on the QR TCB.

Note: This field is a component of the task suspend time, SUSPTIME (014), field.

281 (TYPE-S, 'MAXSTDLY', 8 BYTES)

The elapsed time in which the user task waited to obtain a CICS SSL TCB (S8
mode), because the CICS system had reached the limit set by the system
initialization parameter MAXSSLTCBS. The S8 mode open TCBs are used
exclusively by SSL pthreads.

Note: This field is a component of the task suspend time, SUSPTIME (014), field.

Changes to statistics

The changes to statistics include reporting on the new SP TCB mode and the new
SSL TCB pool. There are also changes to the statistics utility program DFHSTUP
and to the statistics sample programs DFH0STAT and DFH0STXR, that will report
the additional TCB mode and pool. TCPIP global statistics also report whether SSL
caching is taking place locally or across a sysplex.

Changes to CICS utilities

There are changes to the statistics utility program DFHSTUP to report both the
additional TCB mode and TCB pool.

Changes to problem determination

The message DFHSO0123 has a new insert that is used when CICS identifies a
revoked certificate during an encryption negotiation. CICS closes the connection
immediately and issues the message.

A new message DFHSO0128 is issued when the RACF profile specified in the
CRLPROFILE system initialization parameter is inaccessible. This could be because
the CICS region userid is not authorized to access the information in the profile or
the named profile does not exist or is incomplete. CICS continues to initialize
without CRL support.

A new message DFHSO0129 is issued when the LDAP server that is specified in
the RACF profile for certificate revocation lists becomes inactive. CICS continues to
initialize and CRL support is disabled. CRL support can only be re-enabled by
recycling CICS.

186 Release Guide

#
#
#
#
#

#
#
#
#

Security

Security has been enhanced through support for the new AES ciphers and higher
encryption keylengths. You can also restrict the minimum encryption level for
negotiations between clients and CICS by editing the default values of cipher suites
that are used in SSL connections.

The ENCRYPTION system initialization parameter default value is now STRONG,
raising the level of security in CICS when using SSL.

The security category for the CCRL transaction is category 2.

Migration

Migration of existing functions

The default setting for the ENCRYPTION system initialization parameter has
changed to STRONG. If you have no high encryption ciphers installed (security
level 3) on z/OS, then you need to downgrade the default setting for the
ENCRYPTION system initialization parameter. The NORMAL setting that has been
used as the default in previous releases, has changed to MEDIUM for this release
of CICS. For migration purposes, NORMAL is accepted as an alternative to
MEDIUM.

The SSLTCBS system initialization parameter is now obsolete and has been
replaced by MAXSSLTCBS. MAXSSLTCBS controls the maximum number of S8
TCBs that are allowed to run concurrently in the open transaction environment
(OTE) TCB pool for SSL.

Migration to the new function

You can exploit the CIPHERS attribute to better control the encryption negotiation
process between CICS and clients. You can use the CRLPROFILE and SSLCACHE
system initialization parameters to verify certificates in the SSL handshake and
improve the performance of the handshake through sharing the SSL cache across
CICS regions.

Coexistence

CICS continues to support SSL v3.0 as well as the new TLS 1.0 protocol.

CICSPlex SM support

There are a number of changes to CICSPlex SM interfaces and API to match the
new support for SSL enhancements.

Changes to CICSPlex SM end user interface views

There are no new end user interface views in CICS Transaction Server for z/OS,
Version 3 Release 1. However, changes have been made to match the new support
for SSL, to the following views:

v “EJCODEF view” on page 188

Chapter 6. Improvements to Internet security 187

v “TCPDEF view”

v “EJCOSE view”

v “TCPIPS view”

EJCODEF view

The following attribute has been added to the EJCODEF view:

CIPHERS
SSL cipher suite codes

The OUTPRIVACY attribute in this view is no longer valid in CICS Transaction
Server 3.1 and, although it can be seen, it will be ignored.

TCPDEF view

The following attribute has been added to the TCPDEF view:

CIPHERS
SSL cipher suite codes

The PRIVACY attribute in this view is no longer valid in CICS Transaction Server
3.1 and, although it can be seen, it will be ignored.

EJCOSE view

The following attributes have been added to the EJCOSE view:

CIPHERS
SSL cipher suite codes

NUMCIPHERS
The number of cipher suites that are used to negotiate encryption levels.

TCPIPS view

The following attributes have been added to the TCPIPS view:

CIPHERS
SSL cipher suite codes

NUMCIPHERS
The number of cipher suites that are used to negotiate encryption levels.

Changes to the CICSPlex SM application programming interface

Changes have been made to the following resource tables:

v “EJCODEF resource table” on page 189

v “TCPDEF resource table” on page 189

v “EJCOSE resource table” on page 189

v “TCPIPS resource table” on page 189

v “TCPIPGBL resource table” on page 189

v “TASK resource table” on page 189

v “CICSRGN resource table” on page 189

188 Release Guide

EJCODEF resource table

A new attribute is added to the EJCODEF resource table:

CIPHERS
Shows the 56-characters list of SSL cipher suite codes

TCPDEF resource table

A new attribute is added to the TCPDEF resource table:

CIPHERS
Shows the 56-characters list of SSL cipher suite codes

EJCOSE resource table

New attributes are added to the EJCOSE resource table:

CIPHERS
Shows the 56-characters list of SSL cipher suite codes

NUMCIPHERS
The number of cipher suites that are used to negotiate encryption levels.

TCPIPS resource table

New attributes are added to the TCPIPS resource table:

CIPHERS
Shows the 56-characters list of SSL cipher suite codes

NUMCIPHERS
The number of cipher suites that are used to negotiate encryption levels.

TCPIPGBL resource table

New attributes are added to the TCPIPGBL resource table:

CRLPROFILE
Name of the RACF profile that specifies the LDAP server that contains
certificate revocation lists (CRLs) and authorizes CICS to access them.

SSLCACHE
SSL cache type - local or sysplex

TASK resource table

New attributes are added to the TASK resource table:

TMRSTDLY
Shows the 8-byte time the task waited for redispatch after the Dispatcher
change-TCB mode request was issued

TMRCMDLY
Shows the 8-byte time the task waited to obtain a CICS SSL TCB, because
the system had reached the limit set by MAXSSLTCBS

CICSRGN resource table

The CICSRGN resource table includes the following SPI attributes:

Chapter 6. Improvements to Internet security 189

#
#
#

MAXSSLTCBS
Shows the current maximum number of TCBs in the SSL OTE pool.

ACTSSLTCBS
Shows the number of currently allocated SSL pool TCBs.

Changes to CICSPlex SM Web User Interface

Changes have been made to the following views:

v “CorbaServer definition view”

v “TCP/IP Service Definition view”

v “CorbaServer view”

v “TCP/IP service view”

v “TCP/IP global status view” on page 191

v “Clocks and timings view” on page 191

v “CICS region view” on page 191

CorbaServer definition view

The following attribute has been added to the EJCODEF (EYUSTARTEJCODEF)
view:

CIPHERS
SSL cipher suite codes

The OUTPRIVACY attribute in this view is no longer valid in CICS TS 3.1 and,
although it can be viewed, it will be ignored.

TCP/IP Service Definition view

The following attribute has been added to the TCPDEF (EYUSTARTTCPDEF) view:

CIPHERS
SSL cipher suite codes

The PRIVACY attribute in this view is no longer valid in CICS TS 3.1 and, although
it can be viewed, it will be ignored.

CorbaServer view

The following attributes have been added to the EJCOSE
(EYUSTARTEJCOSE.DETAILED) view:

CIPHERS
SSL cipher suite codes

NUMCIPHERS
The number of cipher suites that are used to negotiate encryption levels

TCP/IP service view

The following attributes have been added to the TCPIPS
(EYUSTARTTCPIPS.DETAILED) view:

CIPHERS
SSL cipher suite codes

190 Release Guide

NUMCIPHERS
The number of cipher suites that are used to negotiate encryption levels

TCP/IP global status view

The following attributes have been added to the TCPIPGBL
(EYUSTARTTCPIPGBL.DETAILED) view:

CRLPROFILE
Name of the RACF profile that specifies the LDAP server that contains
certificate revocation lists (CRLs) and authorizes CICS to access them.

SSLCACHE
Whether SSL is to use local or sysplex-wide caching of session ids

Clocks and timings view

The following attributes have been added to the Clocks and timings view, one of the
Active task view set (EYUSTARTTASK.DETAIL2) within the Task operations view:

TMRCMDLY
CICS TCB Change Mode delay time

TMRSTDLY
Maximum CICS SSL TCB delay time

CICS region view

The following statistics attributes have been added to the CICSRGN
(EYUSTARTCICSRGN.DETAILED) view:

MAXSSLTCBS
Shows the current maximum number of TCBs in the SSL OTE pool.

ACTSSLTCBS
Shows the number of currently allocated SSL pool TCBs.

Chapter 6. Improvements to Internet security 191

#
#
#

192 Release Guide

Part 3. Application transformation

CICS Transaction Server for z/OS, Version 3 Release 1 provides a range of new
functions that enable you to enhance your existing applications, and to construct
new applications, using contemporary programming languages, constructs, and
tools.

© Copyright IBM Corp. 2004, 2010 193

194 Release Guide

Chapter 7. Enhanced inter-program data transfer: channels as
modern-day COMMAREAs

Traditionally, CICS programs have used communication areas (COMMAREAs) to
exchange data. In CICS Transaction Server for z/OS, Version 3 Release 1,
channels and containers provide an improved method of transferring data between
programs, in amounts that far exceed the 32KB limit that applies to COMMAREAs.

v A container is a named block of data designed for passing information between
programs.

v Containers are grouped together in sets called channels. A channel is a standard
mechanism for exchanging data between CICS programs, and is analogous to a
parameter list. A channel can be used on the LINK, START, XCTL, and RETURN
commands, and with local and remote transactions. There is no limit to the
number of containers that can be added to a channel, and the size of each
container is limited only by the amount of storage available.

Benefits of channels

The channel/container model has several advantages over the communication
areas (COMMAREAs) traditionally used by CICS programs to exchange data. For
example:

v Unlike COMMAREAs, channels are not limited in size to 32KB. There is no limit
to the number of containers that can be added to a channel, and the size of
individual containers is limited only by the amount of storage that you have
available.

Take care not to create so many large containers that you limit the amount of
storage available to other applications.

v Because a channel can comprise multiple containers, it can be used to pass data
in a more structured way. In contrast, a COMMAREA is a monolithic block of
data.

v Unlike COMMAREAs, channels don't require the programs that use them to know
the exact size of the data returned.

v A channel is a standard mechanism for exchanging data between CICS
programs. A channel can be passed on LINK, START, XCTL, and RETURN
commands. Distributed program link (DPL) is supported, and the transactions
started by START CHANNEL and RETURN TRANSID commands may be
remote.

v Channels can be used by CICS application programs written in any of the
CICS-supported languages. For example, a Java client program on one CICS
region can use a channel to exchange data with a COBOL server program on a
back-end AOR.

v A server program can be written to handle multiple channels. It can, for example:
1. Discover, dynamically, the channel that it was invoked with
2. Browse the containers in the channel
3. Vary its processing according to the channel it's been passed

v You can build “components” from sets of related programs invoked through one
or more channels.

v The loose coupling between clients and components permits easy evolution.
Clients and components can be upgraded at different times. For example, first a
component could be upgraded to handle a new channel, then the client program
upgraded (or a new client written) to use the new channel.

© Copyright IBM Corp. 2004, 2010 195

#
#

v The programmer is relieved of storage management concerns. CICS
automatically destroys containers (and their storage) when they go out of scope.

v The data conversion model used by channel applications is much simpler than
that used by COMMAREA applications. Also, whereas in COMMAREA
applications data conversion is controlled by the system programmer, in channel
applications it is controlled by the application programmer, using simple API
commands.

v Programmers with experience of CICS business transaction services (BTS) will
find it easy to use containers in non-BTS applications.

v Programs that use containers can be called from both channel and BTS
applications.

v Non-BTS applications that use containers can be migrated into full BTS
applications. (They form a migration route to BTS.)

This topic has listed some of the many benefits of channels. However, channels
may not be the best solution in all cases. When designing an application, there are
one or two implications of using channels that you should be aware of:

v When a channel is to be passed to a remote program or transaction, passing a
large amount of data may affect performance. This is particularly true if the local
and remote regions are connected by an ISC, rather than MRO, connection.

v A channel may use more storage than a COMMAREA designed to pass the
same data. This is because:

1. Container data can be held in more than one place.

2. COMMAREAs are accessed by pointer, whereas the data in containers is
copied between programs.

Terminology
channel

A group of containers, used to pass data between programs. A channel is
analogous to a parameter list.

container
A named block of data used to pass information between programs. You
can think of it as a “named communication area (COMMAREA)”. Programs
can pass any number of containers between each other. Containers are
grouped together in sets called channels.

current channel
The channel, if any, with which a program is invoked. The current channel,
for a particular invocation of a particular program, does not change.

Channels: quick start

Containers and channels
Containers are named blocks of data designed for passing information between
programs. You can think of them as “named communication areas (COMMAREAs)”.
Programs can pass any number of containers between each other and the size of
the containers is limited only by the amount of storage available.

Containers are grouped together in sets called channels. A channel is analogous to
a parameter list.

196 Release Guide

#
#
#

#
#
#

#
#

#

#
#

To create named containers and assign them to a channel, a program uses EXEC
CICS PUT CONTAINER(container-name) CHANNEL(channel-name) commands. It
can then pass the channel (and its containers) to a second program using the
CHANNEL(channel-name) option of the EXEC CICS LINK, XCTL, START, or
RETURN commands.

The second program can read containers passed to it using the EXEC CICS GET
CONTAINER(container-name) command. This command reads the named container
belonging to the channel that the program was invoked with.

If the second program is invoked by a LINK command, it can also return containers
to the calling program. It can do this by creating new containers, or by reusing
existing containers.

Channels and containers are visible only to the program that creates them and the
programs they are passed to. When these programs terminate, CICS automatically
destroys the containers and their storage.

Channel containers are not recoverable. If you need to use recoverable containers,
use CICS business transaction services (BTS) containers. The relationship between
channel and BTS containers is described in “Channels and BTS activities” on page
214.

Basic examples
Figure 17 on page 199 shows a COBOL program, CLIENT1, that:

1. Uses PUT CONTAINER(container-name) CHANNEL(channel-name) commands
to create a channel called inqcustrec and add two containers, custno and
branchno, to it; these contain a customer number and a branch number,
respectively.

2. Uses a LINK PROGRAM(program-name) CHANNEL(channel-name) command
to link to program SERVER1, passing the inqcustrec channel.

3. Uses a GET CONTAINER(container-name) CHANNEL(channel-name) command
to retrieve the customer record returned by SERVER1. The customer record is in
the custrec container of the inqcustrec channel.

Note that the same COBOL copybook, INQINTC, is used by both the client and
server programs. Line 3 and lines 5 through 7 of the copybook represent the
INQUIRY-CHANNEL and its containers. These lines are not strictly necessary to the
working of the programs, because containers and channels are created simply by
being named (on, for example, PUT CONTAINER commands); they do not have to
be defined. However, the inclusion of these lines in the copybook used by both
programs makes for easier maintenance; they record the names of the containers
used.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 197

Recommendation

For ease of maintenance of a client/server application that uses a channel, create a
copybook that records the names of the containers used and defines the data fields
that map to the containers. Include the copybook in both the client and the server
program.

Note: This example shows two COBOL programs. The same techniques can be
used in any of the other languages supported by CICS. However, for COBOL
programs only, if the server program uses the SET option (instead of INTO)
on the EXEC CICS GET CONTAINER command, the structure of the storage
pointed to by SET must be defined in the LINKAGE section of the program.
This means that you will require two copybooks rather than one. The first, in
the WORKING-STORAGE section of the program, names the channel and
containers used. The second, in the LINKAGE section, defines the storage
structure.

* copybook INQINTC
* Channel name

01 INQUIRY-CHANNEL PIC X(16) VALUE 'inqcustrec'.
* Container names

01 CUSTOMER-NO PIC X(16) VALUE 'custno'.
01 BRANCH-NO PIC X(16) VALUE 'branchno'.
01 CUSTOMER-RECORD PIC X(16) VALUE 'custrec'.

* Define the data fields used by the program
01 CUSTNO PIC X(8).
01 BRANCHNO PIC X(5).
01 CREC.

02 CUSTNAME PIC X(80).
02 CUSTADDR1 PIC X(80).
02 CUSTADDR2 PIC X(80).
02 CUSTADDR3 PIC X(80).

Figure 16. Copybook INQINTC

198 Release Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Figure 18 on page 200 shows the SERVER1 program linked to by CLIENT1. SERVER1
retrieves the data from the custno and branchno containers it has been passed, and
uses it to locate the full customer record in its database. It then creates a new
container, custrec, on the same channel, and returns the customer record in it.

Note that the programmer hasn't specified the CHANNEL keyword on the GET and PUT
commands in SERVER1: if the channel isn't specified explicitly, the current channel is
used—that is, the channel that the program was invoked with.

IDENTIFICATION DIVISION.
PROGRAM-ID. CLIENT1.

WORKING-STORAGE SECTION.

COPY INQINTC

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.

*
* INITIALISE CUSTOMER RECORD
*

... CREATE CUSTNO and BRANCHNO
*
* GET CUSTOMER RECORD
*

EXEC CICS PUT CONTAINER(CUSTOMER-NO) CHANNEL(INQUIRY-CHANNEL)
FROM(CUSTNO) FLENGTH(LENGTH OF CUSTNO)
END-EXEC

EXEC CICS PUT CONTAINER(BRANCH-NO) CHANNEL(INQUIRY-CHANNEL)
FROM(BRANCHNO) FLENGTH(LENGTH OF BRANCHNO)
END-EXEC

EXEC CICS LINK PROGRAM('SERVER1') CHANNEL(INQUIRY-CHANNEL) END-EXEC

EXEC CICS GET CONTAINER(CUSTOMER-RECORD) CHANNEL(INQUIRY-CHANNEL)
INTO(CREC) END-EXEC

*
* PROCESS CUSTOMER RECORD
*

... FURTHER PROCESSING USING CUSTNAME and CUSTADDR1 etc...

EXEC CICS RETURN END-EXEC

EXIT.

Figure 17. A simple example of a program that creates a channel and passes it to a second
program

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 199

Using channels: some typical scenarios
Channels and containers provide a powerful way to pass data between programs.
This section contains some examples of how channels can be used.

One channel, one program
Figure 19 shows the simplest scenario—a standalone program with a single
channel with which the program can be invoked.

One channel, several programs (a component)
In Figure 20 on page 201, there is a single channel to the top-level program in a set
of inter-related programs. The set of programs within the shaded area can be
regarded as a component. The client program “sees” only the external channel and
has no knowledge of the processing that takes place nor of the existence of the
back-end programs.

IDENTIFICATION DIVISION.
PROGRAM-ID. SERVER1.

WORKING-STORAGE SECTION.

COPY INQINTC

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.

EXEC CICS GET CONTAINER(CUSTOMER-NO)
INTO(CUSTNO) END-EXEC

EXEC CICS GET CONTAINER(BRANCH-NO)
INTO(BRANCHNO) END-EXEC

... USE CUSTNO AND BRANCHNO TO FIND CREC IN A DATABASE

EXEC CICS PUT CONTAINER(CUSTOMER-RECORD)
FROM(CREC)
FLENGTH(LENGTH OF CREC) END-EXEC

EXEC CICS RETURN END-EXEC

EXIT.

Figure 18. A simple example of a linked to program that retrieves data from the channel it
has been passed. This program is linked-to by program CLIENT1 shown in Figure 17 on
page 199.

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll')

PAYR program

Figure 19. A standalone program with a single channel

200 Release Guide

Inside the component, the programs can pass the channel between themselves.
Alternatively, a component program could, for example, pass a subset of the
original channel, by creating a new channel and adding one or more containers
from the original channel.

Several channels, one component
As in Figure 20, we have a set of inter-related programs that can be regarded as a
component. However, this time there are two, alternative, external channels with
which the component can be invoked. The top-level program in the component
issues an EXEC CICS ASSIGN CHANNEL command to determine which channel it
has been invoked with, and tailors its processing accordingly.

The “loose coupling” between the client program and the component permits easy
evolution. That is, the client and the component can be upgraded at different times.
For example, first the component could be upgraded to handle a third channel,
consisting of a different set of containers from the first or second channels. Next,
the client program could be upgraded (or a new client written) to pass the third
channel.

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll')

CH

CH

CH

Figure 20. A “component”—a set of related programs invoked through a single external channel. “CH” indicates that
the programs within the component can pass channels between themselves.

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll)-2003'

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll)-2004'

CH

CH
CH

EXEC CICS ASSIGN

CHANNEL(ch-name)

:

:

Figure 21. Multiple external channels to the same component. “CH” indicates that the programs within the component
may pass channels between themselves.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 201

Multiple interactive components
Figure 22 shows a “Human resources” component and a “Payroll” component, each
with a channel with which it can be invoked. The Payroll component is invoked from
both a standalone program and the Human resources component.

Creating a channel

You create a channel by naming it on one of the following commands:
EXEC CICS LINK PROGRAM CHANNEL
EXEC CICS MOVE CONTAINER CHANNEL TOCHANNEL
EXEC CICS PUT CONTAINER CHANNEL
EXEC CICS RETURN TRANSID CHANNEL
EXEC CICS START TRANSID CHANNEL
EXEC CICS XCTL PROGRAM CHANNEL

If the channel doesn't already exist, within the current program scope, it is created.

The most straightforward way to create a channel, and populate it with containers of
data, is to issue a succession of EXEC CICS PUT CONTAINER(container-name)
CHANNEL(channel-name) FROM(data_area) commands. The first PUT command
creates the channel (if it doesn't already exist), and adds a container to it; the
subsequent commands add further containers to the channel. If the containers
already exist, their contents are overwritten by the new data.

An alternative way to add containers to a channel is to move them from another
channel. To do this, use the following command:

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll')

EXEC CICS PUT

CONTAINER...

EXEC CICS LINK

PROGRAM('payr')

CHANNEL('payroll')

Human resources component

Payroll component

CH

CHCH

CH

Containers

Containers

Figure 22. Multiple components which interact through their channels

202 Release Guide

EXEC CICS MOVE CONTAINER(container-name) AS(container-new-name)
CHANNEL(channel-name1) TOCHANNEL(channel-name2)

Note:

1. If the CHANNEL or TOCHANNEL option isn't specified, the current channel is
implied—see “The current channel.”

2. The source channel must be in program scope.

3. If the target channel doesn't already exist, within the current program
scope, it is created.

4. If the source container doesn't exist, an error occurs.

5. If the target container doesn't already exist, it is created; if it already
exists, its contents are overwritten.

You can use MOVE CONTAINER, instead of GET CONTAINER and PUT
CONTAINER, as a more efficient way of transferring data between channels.

If the channel named on the following commands doesn't already exist, within the
current program scope, an empty channel is created:
v EXEC CICS LINK PROGRAM CHANNEL(channel-name)
v EXEC CICS RETURN TRANSID CHANNEL(channel-name)
v EXEC CICS START TRANSID CHANNEL(channel-name)
v EXEC CICS XCTL PROGRAM CHANNEL(channel-name)

The current channel
A program's current channel is the channel (if any) with which it was invoked. The
program can create other channels. However, the current channel, for a particular
invocation of a particular program, does not change. It is analogous to a parameter
list.

Current channel example, with LINK commands
Figure 23 on page 204 illustrates the origin of a program's current channel. It shows
five interactive programs. Program A is a top-level program started by, for example,
a terminal end user. It isn't started by a program and doesn't have a current
channel.

B, C, D, and E are second-, third-, fourth-, and fifth-level programs, respectively.

Program B's current channel is X, passed by the CHANNEL option on the EXEC
CICS LINK command issued by program A. Program B modifies channel X by
adding one container and deleting another.

Program C's current channel is also X, passed by the CHANNEL option on the
EXEC CICS LINK command issued by program B.

Program D has no current channel, because C doesn't pass it one.

Program E's current channel is Y, passed by the CHANNEL option on the EXEC
CICS LINK command issued by D.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 203

Table 1 on page 205 lists the name of the current channel (if any) of each of the
five programs shown in Figure 23.

LINK PROGRAM(E) INTERFACE(Y)

PROG A

Current CH: none

:

PUT CONTAINER(THREE) FROM(area-a)

DELETE CONTAINER(TWO)

LINK PROGRAM(C) CHANNEL(X)

:

:

RETURN

PROG B

Current CH: X

PROG D

:

PUT CONTAINER(first) CHANNEL(Y) FROM(a1)

PUT CONTAINER(second) CHANNEL(Y) FROM(a2)

LINK PROGRAM(E) CHANNEL(Y)

:

RETURN

Current CH: none

PROG C

Current CH: X

:

LINK PROGRAM(D)

:

:

RETURN

PROG E

Current CH: Y

:

:

RETURN

PUT CONTAINER(ONE) CHANNEL(X) FROM(area1)

PUT CONTAINER(TWO) CHANNEL(X) FROM(area2)

LINK PROGRAM(B) CHANNEL(X)

:

:

Figure 23. Current channels—example with LINK commands

204 Release Guide

Table 1. The current channels of interactive programs—example with LINK commands

Prog. Current
CH

Issues commands Comments

A None

.
EXEC CICS PUT CONTAINER(ONE)

CHANNEL(X) FROM(area1)
EXEC CICS PUT CONTAINER(TWO)

CHANNEL(X) FROM(area2)
EXEC CICS LINK PROGRAM(B) CHANNEL(X)
.

Program A creates channel X and passes it to
program B.

Note that, by the time control is returned to
program A by program B, the X channel has
been modified—it doesn't contain the same set
of containers as when it was created by
program A. (Container TWO has been deleted
and container THREE added by program B.)

B X

.
EXEC CICS PUT CONTAINER(THREE)

FROM(area-a)
EXEC CICS DELETE CONTAINER(TWO)
EXEC CICS LINK PROGRAM(C) CHANNEL(X)
.
.
EXEC CICS RETURN

Program B modifies channel X (its current
channel) by adding and deleting containers, and
passes the modified channel to program C.

Program B doesn't need to specify the
CHANNEL option on the PUT CONTAINER and
DELETE CONTAINER commands; its current
channel is implied.

C X

.
EXEC CICS LINK PROGRAM(D)
.
.
EXEC CICS RETURN

Program C links to program D, but does not
pass it a channel.

D None

.
EXEC CICS PUT CONTAINER(first)

CHANNEL(Y) FROM(a1)
EXEC CICS PUT CONTAINER(second)

CHANNEL(Y) FROM(a2)
EXEC CICS LINK PROGRAM(E) CHANNEL(Y)
.
.
EXEC CICS RETURN

Program D creates a new channel, Y, which it
passes to program E.

E Y
.
RETURN
.

Program E performs some processing on the
data it's been passed and returns.

Current channel example, with XCTL commands
Figure 24 on page 206 shows four interactive programs. A1 is a top-level program
started by, for example, a terminal end user. It isn't started by a program and
doesn't have a current channel. B1, B2, and B3 are all second-level programs.

B1's current channel is X, passed by the CHANNEL option on the EXEC CICS LINK
command issued by A1.

B2 has no current channel, because B1 doesn't pass it one.

B3's current channel is Y, passed by the CHANNEL option on the EXEC CICS
XCTL command issued by B2.

When B3 returns, channel Y and its containers are deleted by CICS.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 205

Table 2 lists the name of the current channel (if any) of each of the four programs
shown in Figure 24.

Table 2. The current channels of interactive programs—example

Program Current
channel

Issues command

A1 None
.
EXEC CICS LINK PROGRAM(B1) CHANNEL(X)
.

B1 X
.
EXEC CICS XCTL PROGRAM(B2)
.

B2 None
.
EXEC CICS XCTL PROGRAM(B3) CHANNEL(Y)
.

B3 Y
.
EXEC CICS RETURN
.

Current channel: START and RETURN commands
Besides EXEC CICS LINK and XCTL, two other commands can be used to invoke
a program and pass it a channel:

EXEC CICS START TRANSID(tranid) CHANNEL(channel-name)
The program that implements the started transaction (or the first program, if
there are more than one) is passed the channel, which becomes its current
channel.

PROG A1

Current CH: none

PROG B2

Current CH: none

PROG B3

Current CH: Y

LINK PROGRAM(B1) CHANNEL(X)

XCTL PROGRAM(B2)

XCTL PROGRAM(B3)

CHANNEL(Y)

RETURN

Current CH: X

PROG B1

Figure 24. Current channels—example, with XCTL commands

206 Release Guide

EXEC CICS RETURN TRANSID(tranid) CHANNEL(channel-name)
The CHANNEL option is valid only:
v On pseudoconversational RETURNs—that is, on RETURN commands that

specify, on the TRANSID option, the next transaction to be run at the user
terminal.

v If issued by a program at the highest logical level—that is, a program that
returns control to CICS.

The program that implements the next transaction is passed the channel, which
becomes its current channel.

The scope of a channel
The scope of a channel is the code from which it can be accessed.

Scope example, with LINK commands
Figure 25 on page 208 shows the same five interactive programs described in
“Current channel example, with LINK commands” on page 203.

The scope of the X channel—the code from which it can be accessed—is programs
A, B, and C.

The scope of the Y channel is programs D and E.

Note that, by the time control is returned to program A by program B, the X channel
has been modified—it doesn't contain the same set of containers as when it was
created by program A.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 207

Table 3 on page 209 lists the name and scope of the current channel (if any) of
each of the five programs shown in Figure 25.

LINK PROGRAM(E) INTERFACE(Y)

PUT CONTAINER(ONE) CHANNEL(X) FROM(area1)

PUT CONTAINER(TWO) CHANNEL(X) FROM(area2)

LINK PROGRAM(B) CHANNEL(X)

:

:

PROG A

Current Channel: none

:

PUT CONTAINER(THREE) FROM(area-a)

DELETE CONTAINER(TWO)

LINK PROGRAM(C) CHANNEL(X)

:

:

RETURN

PROG B

Current Channel: X

PROG D

:

PUT CONTAINER(first) CHANNEL(Y) FROM(a1)

PUT CONTAINER(second) CHANNEL(Y) FROM(a2)

LINK PROGRAM(E) CHANNEL(Y)

:

RETURN

Current Channel: none

Scope of Channel X

Scope of Channel Y

PROG C

Current Channel: X

:

LINK PROGRAM(D)

:

:

RETURN

PROG E

Current Channel: Y

:

:

RETURN

Figure 25. The scope of a channel—example showing LINK commands

208 Release Guide

Table 3. The scope of a channel—example with LINK commands

Program Current channel Scope of channel

A None Not applicable

B X A, B, C

C X A, B, C

D None Not applicable

E Y D, E

Scope example, with LINK and XCTL commands
Figure 26 on page 210 shows the same four interactive programs described in
“Current channel example, with XCTL commands” on page 205, plus a third-level
program, C1, that is invoked by an EXEC CICS LINK command from program B1.

The scope of the X channel is restricted to A1 and B1.

The scope of the Y channel is B2 and B3.

The scope of the Z channel is B1 and C1.

Note that, by the time control is returned to program A1 by program B3, it's possible
that the X channel may have been modified by program B1—it might not contain
the same set of containers as when it was created by A1.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 209

Table 4 lists the name and scope of the current channel (if any) of each of the five
programs shown in Figure 26.

Table 4. The scope of a channel—example with LINK and XCTL commands

Program Current channel Scope of channel

A1 None Not applicable

B1 X A1 and B1

B2 None Not applicable

B3 Y B2 and B3

C1 Z B1 and C1

PROG A1

Current CH: none

PROG B2

Current CH: none

PROG B3

Current CH: Y

LINK PROGRAM(B1) CHANNEL(X)

XCTL PROGRAM(B2)

LINK PROGRAM(C1) CHANNEL(Z)

XCTL PROGRAM(B3)

CHANNEL(Y)

RETURN

Current CH: Z

PROG C1

Channel X scope =

Channel Y scope =

Channel Z scope =

X and Z scope =

PROG B1

Current CH: X

Figure 26. The scope of a channel—example showing LINK and XCTL commands

210 Release Guide

Discovering which containers were passed to a program
Typically, programs that exchange a channel are written to handle that channel.
That is, both client and server programs know the name of the channel, and the
names and number of the containers in the channel. However, if, for example, a
server program or component is written to handle more than one channel, on
invocation it must discover which of the possible channels it's been passed.

A program can discover its current channel—that is, the channel with which it was
invoked—by issuing an EXEC CICS ASSIGN CHANNEL command. (If there is no
current channel, the command returns blanks.)

The program can also (should it need to) get the names of the containers in its
current channel by browsing. Typically, this is not necessary. A program written to
handle several channels is often coded to be aware of the names and number of
the containers in each possible channel.

To get the names of the containers in the current channel, use the browse
commands:
v EXEC CICS STARTBROWSE CONTAINER BROWSETOKEN(data-area) .
v EXEC CICS GETNEXT CONTAINER(data-area) BROWSETOKEN(token).
v EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(token).

Having retrieved the name of its current channel and, if necessary, the names of
the containers in the channel, a server program can adjust its processing to suit the
kind of data that it's been passed.

Discovering which containers were returned from a link
A program creates a channel, which it passes to a second program by means of an
EXEC CICS LINK PROGRAM(program-name) CHANNEL(channel-name)
command. The second program performs some processing on the data it's been
passed, and returns the results in the same channel (its current channel).

On return, the first program knows the name of the channel which has been
returned, but not necessarily the names of the containers in the channel. (Does the
returned channel contain the same containers as the passed channel, or has the
second program deleted some or created others?) The first program can discover
the container-names by browsing. To do this, it uses the commands:
v EXEC CICS STARTBROWSE CONTAINER BROWSETOKEN(data-area)

CHANNEL(channel-name).
v EXEC CICS GETNEXT CONTAINER(data-area) BROWSETOKEN(token).
v EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(token).

CICS read only containers
CICS can create channels and containers for its own use, and pass them to user
programs. In some cases CICS marks these containers as read only, so that the
user program cannot modify data which CICS needs on return from the user
program.

User programs cannot create read only containers.

You cannot overwrite, move, or delete a read only container. Thus, if you specify a
read only container on a PUT CONTAINER, MOVE CONTAINER, or DELETE
CONTAINER command an INVREQ condition occurs.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 211

Designing a channel: best practices

It's possible to use containers to pass data in the same way as communication
areas (COMMAREAs) have traditionally been used. However, channels have
several advantages over COMMAREAs (see “Benefits of channels” on page 195)
and it pays to design your channels to make the most of these improvements.

At the end of a DPL call, input containers that have not been changed by the
server program are not returned to the client. Input containers whose contents
have been changed by the server program, and containers created by the server
program, are returned. Therefore, for optimal DPL performance:
v Use separate containers for input and output data.
v The server program, not the client, should create the output containers.
v Use separate containers for read-only and read-write data.
v If a structure is optional, make it a separate container.
v Use dedicated containers for error information.

Here are some general tips on designing a channel. They include and expand on
the recommendations for achieving optimal DPL performance.

v Use separate containers for input and output data. This leads to:

– Better encapsulation of the data, making your programs easier to maintain.

– Greater efficiency when a channel is passed on a DPL call, because smaller
containers flow in each direction.

v The server program, not the client, should create the output containers. If the
client creates them, empty containers will be sent to the server region.

v Use separate containers for read-only and read-write data. This leads to:

– A simplification of your copybook structure, making your programs easier to
understand.

– Avoidance of the problems with REORDER overlays.

– Greater transmission efficiency between CICS regions, because read-only
containers sent to a server region will not be returned.

v Use separate containers for each structure. This leads to:

– Better encapsulation of the data, making your programs easier to understand
and maintain.

– Greater ease in changing one of the structures, because you don't need to
recompile the entire component.

– The ability to pass a subset of the channel to sub-components, by using the
MOVE CONTAINER command to move containers between channels.

v If a structure is optional, make it a separate container. This leads to greater
efficiency, because the structure is passed only if the container is present.

v Use dedicated containers for error information. This leads to:

– Better documentation of what is error information.

– Greater efficiency, because:

1. The structure containing the error information is passed back only if an
error occurs.

2. It is more efficient to check for the presence of an error container by
issuing a GET CONTAINER(known-error-container-name) command (and
possibly receiving a NOTFOUND condition) than it is to initiate a browse
of the containers in the channel.

v When you need to pass data of different types—for example, character data in
codepage1 and character data in codepage2—use separate containers for each

212 Release Guide

#
#

type, rather than one container with a complicated structure. This improves your
ability to move between different code pages.

v When you need to pass a large amount of data, split it between multiple
containers, rather than put it all into one container.

When a channel is passed to a remote program or transaction, passing a large
amount of data may affect performance. This is particularly true if the local and
remote regions are connected by an ISC, rather than MRO, connection.

CAUTION:
Take care not to create so many large containers that you limit the amount
of storage available to other applications.

For information about migrating programs that use COMMAREAs to use channels
instead, see “Migrating from COMMAREAs to channels” on page 246.

Constructing and using a channel: an example
Figure 27 shows a CICS client program that:

1. Uses EXEC CICS PUT CONTAINER commands to construct (and put data in) a
set of containers. The containers are all part of the same named
channel—“payroll-2004”.

2. Issues an EXEC CICS LINK command to invoke the PAYR server program,
passing it the payroll-2004 channel.

3. Issues an EXEC CICS GET CONTAINER command to retrieve the server's
program output, which it knows will be in the status container of the
payroll-2004 channel.

Figure 28 on page 214 shows part of the PAYR server program invoked by the client.
The server program:

1. Queries the channel with which it's been invoked.

2. Issues EXEC CICS GET CONTAINER commands to retrieve the input from the
employee and wage containers of the payroll-2004 channel.

3. Processes the input data.

4. Issues an EXEC CICS PUT CONTAINER command to return its output in the
status container of the payroll-2004 channel.

* create the employee container on the payroll-2004 channel
EXEC CICS PUT CONTAINER('employee') CHANNEL('payroll-2004') FROM('John Doe')

* create the wage container on the payroll-2004 channel
EXEC CICS PUT CONTAINER('wage') CHANNEL('payroll-2004') FROM('100')

* invoke the payroll service, passing the payroll-2004 channel
EXEC CICS LINK PROGRAM('PAYR') CHANNEL('payroll-2004')

* examine the status returned on the payroll-2004 channel
EXEC CICS GET CONTAINER('status') CHANNEL('payroll-2004') INTO(stat)

Figure 27. How a client program can construct a channel, pass it to a server program, and
retrieve the server's output

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 213

#
#

Channels and BTS activities
The PUT, GET, MOVE, and DELETE CONTAINER commands used to build and
interact with a channel are similar to those used in CICS business transaction
services (BTS) applications. Thus, programmers with experience of BTS will find it
easy to use containers in non-BTS applications. Furthermore, server programs that
use containers can be called from both channel and BTS applications. An example
of this is shown in Figure 29 on page 215.

"PAYR", CICS COBOL server program

* discover which channel I've been invoked with
EXEC CICS ASSIGN CHANNEL(ch_name)
:
WHEN ch_name 'payroll-2004'

* my current channel is "payroll-2004"
* get the employee passed into this program
EXEC CICS GET CONTAINER('employee') INTO(emp)
* get the wage for this employee
EXEC CICS GET CONTAINER('wage') INTO(wge)
:
* process the input data
:
:
* return the status to the caller by creating the status container
* on the payroll channel and putting a value in it
EXEC CICS PUT CONTAINER('status') FROM('OK')
:
:

WHEN ch_name 'payroll-2005'
* my current channel is "payroll-2005"
:
:
:

Figure 28. How a server program can query the channel it's been passed, retrieve data from
the channel's containers, and return output to the caller

214 Release Guide

Context
As shown in Figure 29, a program that issues container commands can be used,
without change, as part of a channel application or as part of a BTS activity.

For a program to be used in both a channel and a BTS context, the container
commands that it issues must not specify any options that identify them as either
channel or BTS commands. The options to be avoided on each of the container
commands are:

DELETE CONTAINER
ACQACTIVITY (BTS-specific)

* create the employee container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('employee')

CHANNEL('payroll-2004') FROM('John Doe')

* create the wage container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('wage')

CHANNEL('payroll-2004') FROM('100')

* invoke the payroll service,

* passing the payroll-2004 Channel

EXEC CICS LINK PROGRAM('PAYR')

CHANNEL('payroll-2004')

* examine the status returned on

* the payroll-2004 Channel

EXEC CICS GET CONTAINER('status')

CHANNEL('payroll-2004') INTO(stat)

CICS Channel program

* create the employee container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('employee')

ACTIVITY('payroll-2004') FROM('John Doe')

* create the wage container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('wage')

ACTIVITY('payroll-2004') FROM('100')

* invoke the payroll service,

* passing the payroll-2004 Channel

EXEC CICS LINK ACTIVITY('payroll-2004')

* examine the status returned on

* the payroll-2004 Channel

EXEC CICS GET CONTAINER('status')

ACTIVITY('payroll-2004') INTO(stat)

CICS BTS program

DEFINE ACTIVITY('payroll')

PROGRAM('payact')

Program PAYACT

EXEC CICS RETRIEVE EVENT(...

WHEN('....

EXEC CICS LINK PROGRAM('payr')

Program PAYR

* get the employee passed into this program

EXEC CICS GET CONTAINER('employee')

INTO(emp)

:

:

* return the status to the caller

EXEC CICS PUT CONTAINER('status')

FROM('OK')

BTS event-driven wrapper controls

a more sophisticated application

Simple client uses a Channel to

pass containers to the service

Container-aware programs can

be called from both Channel

and BTS applications

Figure 29. Channels and BTS activities

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 215

ACQPROCESS (BTS-specific)
ACTIVITY (BTS-specific)
CHANNEL (channel-specific)
PROCESS (BTS-specific)

GET CONTAINER
ACQACTIVITY (BTS-specific)
ACQPROCESS (BTS-specific)
ACTIVITY (BTS-specific)
CHANNEL (channel-specific)
INTOCCSID (channel-specific)
PROCESS (BTS-specific)

MOVE CONTAINER
FROMACTIVITY (BTS-specific)
CHANNEL (channel-specific)
FROMPROCESS (BTS-specific)
TOACTIVITY (BTS-specific)
TOCHANNEL (channel-specific)
TOPROCESS (BTS-specific)

PUT CONTAINER
ACQACTIVITY (BTS-specific)
ACQPROCESS (BTS-specific)
ACTIVITY (BTS-specific)
CHANNEL (channel-specific)
DATATYPE (channel-specific)
FROMCCSID (channel-specific)
PROCESS (BTS-specific)

When a container command is executed, CICS analyzes the context (channel, BTS,
or neither) in which it occurs, in order to determine how to process the command.
To determine the context, CICS uses the following sequence of tests:

1. Channel: does the program have a current channel?

2. BTS: is the program part of a BTS activity?

3. None: the program has no current channel and is not part of a BTS activity. It
therefore has no context in which to execute container commands. The
command is rejected with an INVREQ condition and a RESP2 value of 4.

Using channels from JCICS
CICS provides the following JCICS classes that CICS Java programs can use to
pass and receive channels:
v com.ibm.cics.server.Channel
v com.ibm.cics.server.Container
v com.ibm.cics.server.ContainerIterator

CICS also provides the following exception classes for handling errors:
v com.ibm.cics.server.CCSIDErrorException
v com.ibm.cics.server.ChannelErrorException
v com.ibm.cics.server.ContainerErrorException

Creating channels and containers in JCICS
To create a channel, use the createChannel() method of the Task class. For
example:

216 Release Guide

Task t=Task.getTask();
Channel custData = t.createChannel("Customer_Data");

The string supplied to the createChannel method is the name by which the Channel
object is known to CICS. (The name is padded with spaces to 16 characters, to
conform to CICS naming conventions.)

To create a new container in the channel, use the Channel's createContainer()
method. For example:
Container custRec = custData.createContainer("Customer_Record");

The string supplied to the createContainer() method is the name by which the
Container object is known to CICS. (The name is padded with spaces to 16
characters, if necessary, to conform to CICS naming conventions.) If a container of
the same name already exists in this channel, a ContainerErrorException is
thrown.

Putting data into a container
To put data into a Container object, use the Container.put() method. Data can be
added to a container as a byte array or a string. For example:
String custNo = "00054321";
byte[] custRecIn = custNo.getBytes();
custRec.put(custRecIn);

Or simply:
custRec.put("00054321");

Passing a channel to another program or task
To pass a channel on a program-link or transfer program control (XCTL) call, use
the link() and xctl() methods of the Program class, respectively:
programX.link(custData);

programY.xctl(custData);

To set the next channel on a program-return call, use the setNextChannel() method
of the TerminalPrincipalFacility class:
terminalPF.setNextChannel(custData);

To pass a channel on a START request, use the issue method of the StartRequest
class:
startrequest.issue(custData);

Receiving the current channel
It is not necessary for a program to receive its current channel explicitly—see
“Browsing the current channel” on page 218. However, a program can get its
current channel from the current task; this enables it to extract containers by name:
Task t = Task.getTask();
Channel custData = t.getCurrentChannel();
if (custData != null) {

Container custRec = custData.getContainer("Customer_Record");
} else {

System.out.println("There is no Current Channel");
}

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 217

Getting data from a container
Use the Container.get() method to read the data in a container into a byte array:
byte[] custInfo = custRec.get();

Browsing the current channel
A JCICS program that is passed a channel can access all of the Container objects
without receiving the channel explicitly. To do this, it uses a ContainerIterator
object. (The ContainerIterator class implements the java.util.Iterator
interface.) When a Task object is instantiated from the current task, its
containerIterator() method returns an Iterator for the current channel, or null if
there is no current channel. For example:
Task t = Task.getTask();
ContainerIterator ci = t.containerIterator();
While (ci.hasNext()) {

Container custData = ci.next();
// Process the container...

}

A JCICS example
Figure 30 shows a Java class called Payroll that calls a COBOL server program
named PAYR. The Payroll class uses the JCICS com.ibm.cics.server.Channel and
com.ibm.cics.server.Container classes to do the same things that a non-Java
client program would use EXEC CICS commands to do.

import com.ibm.cics.server.*;
public class Payroll {

...
Task t=Task.getTask();

// create the payroll_2004 channel
Channel payroll_2004 = t.createChannel("payroll-2004");

// create the employee container
Container employee = payroll_2004.createContainer("employee");

// put the employee name into the container
employee.put("John Doe");

// create the wage container
Container wage = payroll_2004.createContainer("wage");

// put the wage into the container
wage.put("2000");

// Link to the PAYROLL program, passing the payroll_2004 channel
Program p = new Program();
p.setName("PAYR");
p.link(payroll_2004);

// Get the status container which has been returned
Container status = payroll_2004.getContainer("status");

// Get the status information
byte[] payrollStatus = status.get();
...

}

Figure 30. Java class that uses the JCICS com.ibm.cics.server.Channel and
com.ibm.cics.server.Container classes to pass a channel to a COBOL server program

218 Release Guide

Dynamic routing with channels
EXEC CICS LINK and EXEC CICS START commands, which can pass either
COMMAREAs or channels, can be dynamically routed. Thus the following types of
channel-related request can be dynamically routed:
v Program-link (DPL) requests
v Transactions started by terminal-related START requests
v Non-terminal-related START requests

If there is a channel associated with a dynamically-routed program-link or START
command, the channel’s name is passed to the routing program, in the DYRCHANL
field of its communication area. The DYRCHANL field applies only to the three
types of request listed above. For other types of request, or if there is no channel
associated with the request, it contains blanks.

Note: The routing program’s communication area is mapped by the DFHDYPDS
DSECT.

Note that the routing program is given the name of the channel, not its address,
and so is unable to use the DYRCHANL field to inspect or change the contents of
the containers.

When a LINK or START command passes a COMMAREA rather than a channel,
the routing program can, depending on the type of request, inspect or change the
COMMAREA’s contents. For LINK requests and transactions started by
terminal-related START requests (which are handled by the dynamic routing
program) but not for non-terminal-related START requests (which are handled by
the distributed routing program), the routing program is given, in the DYRACMAA
field of DFHDYPDS, the address of the application’s COMMAREA, and can inspect
and change its contents.

To give the routing program the same kind of functionality with channels, an
application that uses a channel can create, within the channel, a special container
named DFHROUTE. If the application issues a LINK or terminal-related START
request (but not a non-terminal-related START request) that is to be dynamically
routed, the dynamic routing program is given, in the DYRACMAA field of
DFHDYPDS, the address of the DFHROUTE container, and can inspect and
change its contents.

If you are changing a program to pass a channel rather than a COMMAREA, you
could use its existing COMMAREA structure to map DFHROUTE.

For introductory information about dynamic and distributed routing, see the CICS
Intercommunication Guide. For information about writing a dynamic or distributed
routing program, see the CICS Customization Guide.

Data conversion

Why is data conversion needed?
Here are some cases in which data conversion is necessary:

v When character data is passed between platforms that use different encoding
standards—for example, EBCDIC and ASCII.

v When you want to change the encoding of some character data from one Coded
Character Set Identifier (CCSID) to another.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 219

Data conversion with channels
Applications that use channels to exchange data use a simple data conversion
model. Frequently, no conversion is required and, when it is, a single programming
instruction can be used to tell CICS to handle it automatically.

Note the following:

v Usually, when a (non-Java) CICS TS program calls another (non-Java) CICS TS
program, no data conversion is required, because both programs use EBCDIC
encoding. For example, if a CICS TS C-language program calls a CICS TS
COBOL program, passing it some containers holding character data, the only
reason for using data conversion would be the unusual one of wanting to change
the CCSID of the data.

v The data conversion model used by channel applications is much simpler than
that used by COMMAREA applications. Applications that use COMMAREAs to
exchange data use the traditional data conversion model described in the CICS
Family: Communicating from CICS on System/390® manual. Conversion is done
under the control of the system programmer, using the DFHCNV conversion
table, the DFHCCNV conversion program and, optionally, the DFHUCNV
user-replaceable conversion program.

In contrast, the data in channel containers is converted under the control of the
application programmer, using API commands.

v The application programmer is responsible only for the conversion of user
data—that is, the data in containers created by his application programs. System
data is converted automatically by CICS, where necessary.

v The application programmer is concerned only with the conversion of character
data. The conversion of binary data (between big-endian and little-endian) is not
supported.

v Your applications can use the container API as a simple means of converting
character data from one code page to another—see “Using containers to do code
page conversion” on page 221.

For data conversion purposes, CICS recognizes two types of data:

CHAR Character data—that is, a text string. The data in the container is converted
(if necessary) to the code page of the application that retrieves it. If the
application that retrieves the data is a client on an ASCII-based system, this
will be an ASCII code page. If it is a CICS Transaction Server for z/OS
application, it will be an EBCDIC code page.

All the data in a container is converted as if it were a single character
string. For single-byte character set (SBCS) code pages, a structure
consisting of several character fields is equivalent to a single-byte character
string. However, for double-byte character set (DBCS) code pages this is
not the case. If you use DBCS code pages, to ensure that data conversion
works correctly you must put each character string into a separate
container.

BIT All non-character data—that is, everything that is not designated as being of
type CHAR. The data in the container cannot be converted. This is the
default value.

The API commands used for data conversion are:
v

EXEC CICS PUT CONTAINER [CHANNEL] [DATATYPE] [FROMCCSID]
v

220 Release Guide

EXEC CICS GET CONTAINER [CHANNEL] [INTOCCSID]

For detailed information about the PUT CONTAINER (CHANNEL) command, see
“PUT CONTAINER (CHANNEL)” on page 228. For detailed information about the
GET CONTAINER (CHANNEL) command, see “GET CONTAINER (CHANNEL)” on
page 224.

How to cause CICS to convert character data automatically
1. In the client program, use the DATATYPE(DFHVALUE(CHAR)) option of the

PUT CONTAINER command to specify that a container holds character data
and that the data is eligible for conversion. For example:
EXEC CICS PUT CONTAINER(cont_name) CHANNEL('payroll')

FROM(data1) DATATYPE(DFHVALUE(CHAR))

There is no need to specify the FROMCCSID option unless the data is not in
the default CCSID of the client platform. (For CICS TS regions, the default
CCSID is specified on the LOCALCCSID system initialization parameter.) The
default CCSID is implied.

2. In the server program, issue a GET CONTAINER command to retrieve the data
from the program's current channel:
EXEC CICS GET CONTAINER(cont_name) INTO(data_area1)

The data is returned in the default CCSID of the server platform. There is no
need to specify the INTOCCSID option unless you want the data to be
converted to a CCSID other than the default. If the client and server platforms
are different, data conversion takes place automatically.

3. In the server program, issue a PUT CONTAINER command to return a value to
the client:
EXEC CICS PUT CONTAINER(status) FROM(data_area2)

DATATYPE(DFHVALUE(CHAR))

The DATATYPE(DFHVALUE(CHAR)) option specifies that the container holds
character data and that the data is eligible for conversion. There is no need to
specify the FROMCCSID option unless the data is not in the default CCSID of
the server platform.

4. In the client program, issue a GET CONTAINER command to retrieve the status
returned by the server program:
EXEC CICS GET CONTAINER(status) CHANNEL('payroll')

INTO(status_area)

The status is returned in the default CCSID of the client platform. There is no
need to specify the INTOCCSID option unless you want the data to be
converted to a CCSID other than the default. If the client and server platforms
are different, data conversion takes place automatically.

Using containers to do code page conversion

Your applications can use the container API as a simple means of converting
character data from one code page to another. The following example converts data
from codepage1 to codepage2:
EXEC CICS PUT CONTAINER(temp) DATATYPE(DFHVALUE(CHAR))

FROMCCSID(codepage1) FROM(input-data)
EXEC CICS GET CONTAINER(temp) INTOCCSID(codepage2)

SET(data-ptr) FLENGTH(data-len)

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 221

The following example converts data from the region's default EBCDIC code page
to a specified UTF8 code page:
EXEC CICS PUT CONTAINER(temp) DATATYPE(DFHVALUE(CHAR))

FROM(ebcdic-data)
EXEC CICS GET CONTAINER(temp) INTOCCSID(utf8_ccsid)

SET(utf8-data-ptr) FLENGTH(utf8-data-len)

When using the container API in this way, bear the following in mind:

v On GET CONTAINER commands, use the SET option, rather than INTO, unless
the converted length is known. (You can retrieve the length of the converted data
by issuing a GET CONTAINER(cont_name) NODATA FLENGTH(len) command.)

v To avoid a storage overhead, after conversion copy the converted data and
delete the container.

v To avoid shipping the channel, use a temporary channel.

v All-to-all conversion is not possible. That is, a code page conversion error occurs
if a specified code page and the channel's code page are an unsupported
combination.

A SOAP example
A CICS TS SOAP application:

1. Retrieves a UTF8 or UTF16 message from a socket or MQ message queue.

2. Puts the message into a container, in UTF8 format.

3. Puts EBCDIC data structures into other containers on the same channel.

4. Makes a distributed program link (DPL) call to a handler program on a back-end
AOR, passing the channel.

The back-end handler program, also running on CICS TS, can use EXEC CICS
GET CONTAINER commands to retrieve the EBCDIC data structures or the
messages. It can get the messages in UTF8 or UTF16, or in its own or the region's
EBCDIC code page. Similarly, it can use EXEC CICS PUT CONTAINER commands
to place data into the containers, in UTF8, UTF16, or EBCDIC.

To retrieve one of the messages in the region's EBCDIC code page, the handler
can issue the command:
EXEC CICS GET CONTAINER(input_msg) INTO(msg)

Because the INTOCCSID option is not specified, the message data is automatically
converted to the region's EBCDIC code page. (This assumes that the PUT
CONTAINER command used to store the message data in the channel specified a
DATATYPE of CHAR; if it specified a DATATYPE of BIT, the default, no conversion
is possible.)

To return some output in the region's EBCDIC code page, the handler can issue the
command:
EXEC CICS PUT CONTAINER(output) FROM(output_msg)

Because CHAR is not specified, no data conversion will be permitted. Because the
FROMCCSID option is not specified, the message data is taken to be in the
region's EBCDIC code page.

To retrieve one of the messages in UTF8, the handler can issue the command:
EXEC CICS GET CONTAINER(input_msg) INTO(msg) INTOCCSID(utf8)

222 Release Guide

The INTOCCSID option is necessary to prevent automatic conversion of the data to
the region's EBCDIC code page.

To return some output in UTF8, the server program can issue the command:
EXEC CICS PUT CONTAINER(output) FROM(output_msg) FROMCCSID(utf8)

The FROMCCSID option specifies that the message data is currently in UTF8
format. Because CHAR is not specified, no data conversion will be permitted.

Requirements
There are no special hardware or software requirements to support this function.

Related information

Chapter 27, “The CICS operating environment,” on page 355

Changes to CICS externals

Changes to the application programming interface
New commands

There are five new commands for working with containers and channels. For more
information, see:

“DELETE CONTAINER (CHANNEL)” on page 224

“GET CONTAINER (CHANNEL)” on page 224

“MOVE CONTAINER (CHANNEL)” on page 227

“PUT CONTAINER (CHANNEL)” on page 228

“START CHANNEL” on page 231

Changed commands

The following application programming commands have been modified.

EXEC CICS DELETE CONTAINER (BTS)

EXEC CICS ENDBROWSE CONTAINER

EXEC CICS GET CONTAINER (BTS)

EXEC CICS GETNEXT CONTAINER

EXEC CICS HANDLE ABEND

EXEC CICS LINK PROGRAM

EXEC CICS MOVE CONTAINER (BTS)

EXEC CICS PUT CONTAINER (BTS)

EXEC CICS RETURN

EXEC CICS STARTBROWSE CONTAINER

EXEC CICS XCTL

For more information, see “Modified API commands” on page 234.

New API commands

The following new application programming commands have been introduced:

v EXEC CICS DELETE CONTAINER (CHANNEL)

v EXEC CICS GET CONTAINER (CHANNEL)

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 223

v EXEC CICS MOVE CONTAINER (CHANNEL)

v EXEC CICS PUT CONTAINER (CHANNEL)

v EXEC CICS START CHANNEL

DELETE CONTAINER (CHANNEL):

Delete a named channel container.

Description

DELETE CONTAINER (CHANNEL) deletes a container from a channel and
discards any data that it contains.

The container is identified by name and by the channel for which it is a
container—the channel that “owns” it. The channel that owns the container can be
identified:

v Explicitly, by specifying the CHANNEL option.

v Implicitly, by omitting the CHANNEL option. If this is omitted, the current channel
is implied.

Options

CHANNEL(data-value)
specifies the name (1–16 characters) of the channel that owns the container.

CONTAINER(data-value)
specifies the name (1–16 characters) of the container to be deleted.

GET CONTAINER (CHANNEL):

Retrieve data from a named channel container.

DELETE CONTAINER (CHANNEL)

�� DELETE CONTAINER(data-value)
CHANNEL(data-value)

��

Conditions: CHANNELERR, CONTAINERERR, INVREQ

This command is threadsafe.

224 Release Guide

Description

GET CONTAINER (CHANNEL) reads the data associated with a specified channel
container.

The container which holds the data is identified by name and by the channel for
which it is a container—the channel that “owns” it. The channel that owns the
container can be identified:

v Explicitly, by specifying the CHANNEL option.

v Implicitly, by omitting the CHANNEL option. If this is omitted, the current channel
is implied.

Options

CHANNEL(data-value)
specifies the name (1–16 characters) of the channel that owns the container.

CONTAINER(data-value)
specifies the name (1–16 characters) of the container that holds the data to be
retrieved.

FLENGTH(data-area)
As an input field, FLENGTH specifies, as a fullword binary value, the length of
the data to be read. As an output field, FLENGTH returns the length of the data
in the container. Whether FLENGTH is an input or an output field depends on
which of the INTO, SET, or NODATA options you specify.

INTO option specified
FLENGTH is both an input and an output field.

On input, FLENGTH specifies the maximum length of the data that the
program accepts. If the value specified is less than zero, zero is
assumed. If the length of the data exceeds the value specified, the data
is truncated to that value and the LENGERR condition occurs.

FLENGTH need not be specified if the length can be generated by the
compiler from the INTO variable. If you specify both INTO and
FLENGTH, FLENGTH specifies the maximum length of the data that
the program accepts.

GET CONTAINER (CHANNEL)

�� GET CONTAINER(data-value)
CHANNEL(data-value)

�

� INTO(data-area)
SET(ptr-ref)
NODATA

FLENGTH(data-area) INTOCCSID(data-value)
��

Conditions: CCSIDERR, CHANNELERR, CONTAINERERR, INVREQ,
LENGERR

This command is threadsafe.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 225

On output (that is, on completion of the retrieval operation) CICS sets
the data area, if specified, to the actual length of the data in the
container. If the container holds character data that has been converted
from one CCSID to another, this is the length of the data after
conversion.

SET or NODATA option specified
FLENGTH is an output-only field. It must be specified and must be
specified as a data-area.

On completion of the retrieval operation, the data area is set to the
actual length of the data in the container. If the container holds
character data that has been converted from one CCSID to another,
this is the length of the data after conversion.

INTO(data-area)
specifies the data area into which the retrieved data is to be placed.

INTOCCSID(data-value)
specifies, as a fullword binary number, the Coded Character Set Identifier
(CCSID) into which the character data in the container is to be converted. For
CICS Transaction Server for z/OS applications, this is typically an EBCDIC
CCSID. (However, it is possible to specify an ASCII CCSID if, for example, you
want to retrieve ASCII data without it being automatically converted to EBCDIC.)

If INTOCCSID is not specified, its value defaults to the CCSID of the region.
The default CCSID of the region is specified on the LOCALCCSID system
initialization parameter.

Only character data can be converted, and only then if a DATATYPE of CHAR
was specified on the PUT CONTAINER command used to place the data in the
container.

For more information about data conversion with channels, see the CICS
Application Programming Guide.

For an explanation of CCSIDs, and a list of the CCSIDs supported by CICS,
see the CICS Family: Communicating from CICS on System/390 manual.

NODATA
specifies that no data is to be retrieved. Use this option to discover the length of
the data in the container (returned in FLENGTH).

The length of character data may change if data conversion takes place.
Therefore, if character data is to be converted into any CCSID other than that of
this region, when you specify NODATA you should also specify INTOCCSID.
This ensures that the correct length of the converted data is returned in
FLENGTH.

SET(ptr-ref)
specifies a data area in which the address of the retrieved data is returned.

The data area is maintained by CICS until any of the following occurs:

v A subsequent GET CONTAINER command with the SET option, for the same
container in the same channel, is issued by any program that can access this
storage.

v The container is deleted by a DELETE CONTAINER command.

v The container is moved by a MOVE CONTAINER command.

v The channel goes out of program scope.

226 Release Guide

Beware of linking to other programs that might issue one of the above
commands.

Do not issue a FREEMAIN command to release this storage.

If your application needs to keep the data it should move it into its own storage.

MOVE CONTAINER (CHANNEL):

Move a container (and its contents) from one channel to another.

Description

MOVE CONTAINER (CHANNEL) moves a container from one channel to another.
After the move, the source container no longer exists.

The source and target containers are identified by name and by the channels that
own them. The channel that owns the source container can be identified:

v Explicitly, by specifying the CHANNEL option.

v Implicitly, by omitting the CHANNEL option. If this is omitted, the current channel
is implied.

Similarly, the channel that owns the target container can be identified:

v Explicitly, by specifying the TOCHANNEL option.

v Implicitly, by omitting the TOCHANNEL option. If this is omitted, the current
channel is implied.

You can move a container:
v From one channel to another.
v Within the same channel—for example, from the current channel to the current

channel. This has the effect of renaming the container.

You can use MOVE CONTAINER, instead of GET CONTAINER and PUT
CONTAINER, as a more efficient way of transferring data between channels.

Note:

1. The source channel must be within the scope of the program that issues
the MOVE CONTAINER command.

2. If the target channel does not exist, within the scope of the program that
issues the MOVE CONTAINER command, it is created.

MOVE CONTAINER (CHANNEL)

�� MOVE CONTAINER(data-value) AS(data-value)
CHANNEL(data-value)

�

�
TOCHANNEL(data-value)

��

Conditions: CHANNELERR, CONTAINERERR, INVREQ

This command is threadsafe.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 227

3. If the source container does not exist, an error occurs.

4. If the target container does not already exist, it is created. If the target
container already exists, its previous contents are overwritten.

5. If you try to overwrite a container with itself, nothing happens. That is, if
you specify the same value for the CONTAINER and AS options, and
either omit both the CHANNEL and TOCHANNEL options or give them
the same value, so that the same channel is specified, the source
container is not changed and not deleted. No error condition is raised.

Options

AS(data-value)
specifies the name (1–16 characters) of the target container. If the target
container already exists, its contents are overwritten.

The acceptable characters are A-Z a-z 0-9 $ @ # / % & ? ! : | " = ¬ , ; < > . -
and _. Leading and embedded blank characters are not permitted. If the name
supplied is less than 16 characters, it is padded with trailing blanks up to 16
characters.

Container names are always in EBCDIC. The allowable set of characters for
container names, listed above, includes some characters that do not have the
same representation in all EBCDIC code pages. We therefore recommend that,
if containers are to be shipped between regions, the characters used in naming
them should be restricted to A-Z a-z 0-9 & : = , ; < > . - and _.

CHANNEL(data-value)
specifies the name (1–16 characters) of the channel that owns the source
container. If this option is not specified, the current channel is implied.

CONTAINER(data-value)
specifies the name (1–16 characters) of the source container that is to be
moved.

TOCHANNEL(data-value)
specifies the name (1–16 characters) of the channel that owns the target
container. If you are specifying a new channel, remember that the acceptable
characters are A-Z a-z 0-9 $ @ # / % & ? ! : | " = ¬ , ; < > . - and _. Leading
and embedded blank characters are not permitted. If the name supplied is less
than 16 characters, it is padded with trailing blanks up to 16 characters.

channel names are always in EBCDIC. The allowable set of characters for
channel names, listed above, includes some characters that do not have the
same representation in all EBCDIC code pages. We therefore recommend that,
if channels are to be shipped between regions, the characters used in naming
them should be restricted to A-Z a-z 0-9 & : = , ; < > . - and _.

If this option is not specified, the current channel is implied.

PUT CONTAINER (CHANNEL):

Place data in a named channel container.

228 Release Guide

#

#

Description

PUT CONTAINER (CHANNEL) places data in a container associated with a
specified channel.

The container is identified by name. The channel that owns the container can be
identified:

v Explicitly, by specifying the CHANNEL option.

v Implicitly, by omitting the CHANNEL option. If this is omitted, the current channel
is implied.

Note:

1. There is no limit to the number of containers that can be associated with
a channel.

2. The size of individual containers is limited only by the amount of storage
available.

CAUTION:
Take care not to create so many large containers that you limit the
amount of storage available to other applications.

3. If the named container does not already exist, it is created. If the named
container already exists, its previous contents are overwritten.

4. If the named channel does not already exist, it is created.

Options

CHANNEL(data-value)
specifies the name (1–16 characters) of the channel that owns the container.
The acceptable characters are A-Z a-z 0-9 $ @ # / % & ? ! : | " = , ; < > . - and
_. Leading and embedded blank characters are not permitted. If the name
supplied is less than 16 characters, it is padded with trailing blanks up to 16
characters.

Channel names are always in EBCDIC. The allowable set of characters for
channel names, listed above, includes some characters that do not have the
same representation in all EBCDIC code pages. We therefore recommend that,

PUT CONTAINER (CHANNEL)

�� PUT CONTAINER(data-value)
CHANNEL(data-value)

FROM(data-area) �

�
FLENGTH(data-value)

BIT

DATATYPE(cvda)
CHAR

FROMCCSID(data-value)
��

Conditions: CCSIDERR, CHANNELERR, CONTAINERERR, INVREQ,
LENGERR

This command is threadsafe.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 229

if channels are to be shipped between regions, the characters used in naming
them should be restricted to A-Z a-z 0-9 & : = , ; < > . - and _.

CONTAINER(data-value)
specifies the name (1–16 characters) of the container into which data is to be
placed.

The acceptable characters are A-Z a-z 0-9 $ @ # / % & ? ! : | " = , ; < > . - and
_. Leading and embedded blank characters are not permitted. If the name
supplied is less than 16 characters, it is padded with trailing blanks up to 16
characters.

Do not use container names beginning with “DFH”, unless requested to do so
by CICS.

Container names are always in EBCDIC. The allowable set of characters for
container names, listed above, includes some characters that do not have the
same representation in all EBCDIC code pages. We therefore recommend that,
if containers are to be shipped between regions, the characters used in naming
them should be restricted to A-Z 0-9 & : = , ; < > . - and _.

DATATYPE(cvda)
specifies the type of data to be put into the container. This option applies only
to new containers. If the container already exists its data-type was established
when it was created and cannot be changed. CVDA values are:

BIT Bit data. The data in the container cannot be converted. This is the
default value, unless FROMCCSID is specified.

CHAR Character data. The data in the container is converted (if necessary) to
the code page of the application that created the channel. If the channel
was created by a client application on an ASCII-based system, this will
be an ASCII code page. If it was created by a CICS Transaction Server
for z/OS application, it will be an EBCDIC code page. Conversion is
only necessary if the client and server programs run on different
platforms.

All the data in a container is converted as if it were a single character
string. For SBCS code pages, a structure consisting of several
character fields is equivalent to a single-byte character string. However,
for DBCS code pages this is not the case. If you use DBCS code
pages, to ensure that data conversion works correctly you must put
each character string into a separate container.

For CHAR containers, the data is stored in the Coded Character Set
Identifier (CCSID) specified on the original PUT CONTAINER command
that created the container. If the FROMCCSID option was not specified
on the original PUT CONTAINER command, the data is stored in the
region's default CCSID (or, for CICS-created channels, in the CCSID of
the channel). The data on all future PUT CONTAINER CHANNEL
commands for this container is converted into this same CCSID. If you
want to avoid this, the application program should delete the existing
container before issuing the new PUT CONTAINER command, thus
recreating the container.

A DATATYPE of CHAR must be specified if the container contains character
data and the channel will be passed from CICS Transaction Server for z/OS to
an ASCII system. If the container contains binary data, or the channel will not
be passed to an ASCII system, DATATYPE is an optional parameter.

230 Release Guide

#

#
#
#
#
#
#
#
#
#
#

It is not possible to change the data-type of an existing container by means of a
PUT CONTAINER command. For example, if a container is created with a
data-type of BIT and a subsequent PUT CONTAINER command specifies a
data-type of CHAR, for the same container, an INVREQ condition is raised. If
you do need to replace an existing container by one of a different data-type,
you must first explicitly delete the existing container.

For more information about data conversion with channels, see the CICS
Application Programming Guide.

FLENGTH(data-value)
specifies, as a fullword binary value, the length of the data area from which
data is to be read.

FROM(data-area)
specifies the data area from which the data is written to the container.

FROMCCSID(data-value)
specifies, as a fullword decimal number, the current Coded Character Set
Identifier (CCSID) of the character data to be put into the container. For CICS
Transaction Server for z/OS applications, this is typically an EBCDIC CCSID.
(However, it is possible to specify an ASCII CCSID, if you want to pass ASCII
data.)

FROMCCSID is effective only on the PUT CONTAINER command that creates
the container. This is because, for CHAR containers, the data is stored in the
CCSID specified on the original PUT CONTAINER command that created the
container. If you want to use a different CCSID, the application program should
delete the existing container before issuing the new PUT CONTAINER
command, thus recreating the container.

If FROMCCSID is specified, DATATYPE(DFHVALUE(CHAR)) is implied.

If FROMCCSID is not specified, its value defaults to the CCSID of the region
(or, for CICS-created channels, the CCSID of the channel). The default CCSID
of the region is specified on the LOCALCCSID system initialization parameter.

For an explanation of CCSIDs, and a list of the CCSIDs supported by CICS,
see the CICS Family: Communicating from CICS on System/390 manual.

START CHANNEL:

Start a task, passing it a channel.

START CHANNEL

�� START TRANSID(name) CHANNEL(name)
TERMID(name)
USERID(data-value)

�

�
SYSID(systemname)

��

Conditions: CHANNELERR, INVREQ, ISCINVREQ, NOTAUTH, RESUNAVAIL,
SYSIDERR, TERMIDERR, TRANSIDERR, USERIDERR

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 231

#
#
#
#
#
#

#

Description

START CHANNEL starts a task, on a local or remote system, passing it a channel.

Typically, the starting task uses the channel to pass data to the started task
(although in some circumstances the channel may be empty—see the description of
the CHANNEL option). The starting task may also specify a terminal to be used by
the started task as its principal facility.

The started task can, for example:

1. Use an ASSIGN CHANNEL command to discover the name of the channel it's
been passed

2. Use STARTBROWSE CONTAINER CHANNEL and GETNEXT CONTAINER
commands to browse the containers in the channel

3. Use GET CONTAINER CHANNEL commands to access the data in the
containers

Some constraints have to be satisfied before the transaction to be executed can be
started, as follows:

v If the TERMID option is specified, the named terminal must exist and be
available. If the named terminal does not exist, the START is discarded.

v START CHANNEL does not support IMS—that is, you cannot use START
CHANNEL to start a transaction on a remote IMS system.

Each START CHANNEL command results in a separate task being started.

Dynamically routed transactions started by START commands

Some transactions started by a subset of START commands can be dynamically
routed to a remote region.

START failures without exception conditions

There are some circumstances in which a START command is executed without
error, but the started task never takes place:

v When the transaction or its initial program is disabled at the time CICS attempts
to create the task.

v When the START specifies a terminal that is not defined (and cannot be located
by the XICTENF or XALTENF exits) at the time CICS attempts to create the task.

v You get a TERMIDERR condition if the requested terminal does not exist at the
time of the START. However, if the terminal becomes unavailable subsequently,
as occurs if the user logs off, your START request is discarded and no
TERMIDERR occurs.

These exposures result from the delay between the execution of the START and
the time of task creation. Even on a START CHANNEL request, when the START is
always immediate, CICS may delay creating the task, either because the required
terminal is not free or because of other system constraints.

You can use INQUIRE commands to ensure that the transaction and program are
enabled at the time of the START command, but either may become disabled
before task creation.

232 Release Guide

Options

CHANNEL(name)
specifies the name (1–16 characters) of a channel that is to be made available
to the started task. The acceptable characters are A-Z a-z 0-9 $ @ # / % & ? ! :
| " = ¬ , ; < > . - and _. Leading and embedded blank characters are not
permitted. If the name supplied is less than 16 characters, it is padded with
trailing blanks up to 16 characters.

Channel names are always in EBCDIC. The allowable set of characters for
channel names, listed above, includes some characters that do not have the
same representation in all EBCDIC code pages. We therefore recommend that,
if channels are to be shipped between regions, the characters used in naming
them should be restricted to A-Z a-z 0-9 & : = , ; < > . - and _.

The program that issues the START command may:
v Have created the channel by means of one or more PUT CONTAINER

CHANNEL commands
v Specify its current channel, by name
v Name a non-existent channel, in which case a new, empty, channel is

created

The started task is given a copy of the channel's containers (and the data they
contain). The copy is made when the START command is issued.

SYSID(systemname)
specifies the name of the system to which the request is directed.

TERMID(name)
specifies the symbolic identifier (1–4 alphanumeric characters) of the principal
facility associated with a transaction to be started as a result of a START
command. This principal facility can be either a terminal (the usual case) or an
APPC session. Where an APPC session is specified, the connection (or
modeset) name is used instead of a terminal identifier. This option is required
when the transaction to be started must communicate with a terminal; it should
be omitted otherwise.

The terminal identifier must be defined as either a local or a remote terminal on
the system in which the START command is executed.

TRANSID(name)
specifies the symbolic identifier (1–4 characters) of the transaction to be
executed by a task started as the result of a START command.

If SYSID is specified, and names a remote system, the transaction is assumed
to be on that system irrespective of whether or not the transaction definition is
defined as remote in the PCT. Otherwise the transaction definition is used to
find out whether the transaction is on a local or a remote system.

USERID(data-value)
Specifies the userid under whose authority the started transaction is to run, if
the started transaction is not associated with a terminal (that is, when TERMID
is not specified). This is referred to as userid1.

If you omit both TERMID and USERID, CICS uses instead the userid under
which the transaction that issues the START command is running. This is
referred to as userid2.

By using either userid1 or userid2 CICS ensures that a started transaction
always runs under a valid userid, which must be authorized to all the resources
referenced by the started transaction.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 233

#

CICS performs a surrogate security check against userid2 to verify that this
user is authorized to userid1. If userid2 is not authorized, CICS returns a
NOTAUTH condition. The surrogate check is not done here if USERID is
omitted.

Modified API commands

The following application programming commands have been modified:

EXEC CICS ASSIGN
The CHANNEL option is added and the STARTCODE option changed:

Options

CHANNEL(data-area)
Returns the 16-character name of the program's current channel, if one
exists; otherwise blanks.

STARTCODE(data-area)
Returns a 2-character value indicating how the transaction that issued
the request was started. Changed values are:

Code Transaction started by

S START command that did not pass data in the FROM option. It
may or may not have passed a channel.

SD START command that passed data in the FROM option.

EXEC CICS DELETE CONTAINER (BTS)
There are no syntax changes. The description has been changed to emphasize
that the command applies only to BTS, and not channel, containers.

EXEC CICS ENDBROWSE CONTAINER
There are no syntax changes, but the command can now be used with channel,
as well as BTS, containers.

EXEC CICS GET CONTAINER (BTS)
There is a new RESP2 value on the INVREQ condition:

Conditions

INVREQ
RESP2 values:

2 The INTOCCSID option was specified without the CHANNEL
option, and there is no current channel (because the program
that issued the command was not passed one.) INTOCCSID is
valid only on GET CONTAINER commands that specify
(explicitly or implicitly) a channel. It is not valid on GET
CONTAINER (BTS) commands.

EXEC CICS GETNEXT CONTAINER
There are no syntax changes, but the command can now be used with channel,
as well as BTS, containers.

EXEC CICS HANDLE ABEND
The program specified to handle the abend is passed the current channel, if
one exists; or the communications area (COMMAREA), if one has been
established. Previously, it could be passed only the COMMAREA.

EXEC CICS LINK PROGRAM
The CHANNEL option and the CHANNELERR condition are added:

Options

234 Release Guide

CHANNEL(name)
specifies the name (1–16 characters) of a channel that is to be made
available to the invoked program. The acceptable characters are A-Z
a-z 0-9 $ @ # / % & ? ! : | " = ¬ , ; < > . - and _. Leading and
embedded blank characters are not permitted. If the name supplied is
less than 16 characters, it is padded with trailing blanks up to 16
characters.

Channel names are always in EBCDIC. The allowable set of characters
for channel names, listed above, includes some characters that do not
have the same representation in all EBCDIC code pages. We therefore
recommend that, if channels are to be shipped between regions, the
characters used in naming them should be restricted to A-Z a-z 0-9 & :
= , ; < > . - and _.

The program that issues the LINK command may:
v Have created the channel by means of one or more PUT

CONTAINER CHANNEL commands
v Specify its current channel, by name
v Name a non-existent channel, in which case a new, empty, channel

is created

Conditions

CHANNELERR
RESP2 values:

1 The name specified on the CHANNEL option contains an illegal
character or combination of characters.

EXEC CICS MOVE CONTAINER (BTS)
There are no syntax changes. The description has been changed to emphasize
that the command applies only to BTS, and not CHANNEL, containers.

EXEC CICS PUT CONTAINER (BTS)
There are two new RESP2 values on the INVREQ condition.

Conditions

INVREQ
RESP2 values:

1 The DATATYPE option was specified without the CHANNEL
option, and there is no current channel (because the program
that issued the command was not passed one.) DATATYPE is
valid only on PUT CONTAINER commands that specify
(explicitly or implicitly) a channel. It is not valid on PUT
CONTAINER (BTS) commands.

2 The FROMCCSID option was specified without the CHANNEL
option, and there is no current channel (because the program
that issued the command was not passed one.) FROMCCSID is
valid only on PUT CONTAINER commands that specify
(explicitly or implicitly) a channel. It is not valid on PUT
CONTAINER (BTS) commands.

EXEC CICS RETURN
The CHANNEL option and the CHANNELERR condition are added:

Options

CHANNEL(name)
specifies the name (1–16 characters) of a channel that is to be made

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 235

#

available to the next program that receives control. The acceptable
characters are A-Z a-z 0-9 $ @ # / % & ? ! : | " = ¬ , ; < > . - and _.
Leading and embedded blank characters are not permitted. If the name
supplied is less than 16 characters, it is padded with trailing blanks up
to 16 characters.

Channel names are always in EBCDIC. The allowable set of characters
for channel names, listed above, includes some characters that do not
have the same representation in all EBCDIC code pages. We therefore
recommend that, if a channel is to be shipped between regions (that is,
if the transaction named on the TRANSID option is remote), the
characters used in naming it should be restricted to A-Z a-z 0-9 & : = , ;
< > . - and _.

The program that issues the RETURN command may:
v Have created the channel by means of one or more PUT

CONTAINER CHANNEL commands
v Specify its current channel, by name
v Name a non-existent channel, in which case a new, empty, channel

is created

This option is valid only on a RETURN command issued by a program
at the highest logical level; that is, a program returning control to CICS.

Conditions

CHANNELERR
RESP2 values:

1 The name specified on the CHANNEL option contains an illegal
character or combination of characters.

EXEC CICS STARTBROWSE CONTAINER
The CHANNEL option and the CHANNELERR condition are added:

Options

CHANNEL(data-value)
specifies the name (1–16 characters) of the channel whose containers
are to be browsed. This must be the name of either the current channel
or of a channel created by the program that issues the
STARTBROWSE CONTAINER command.

If this option is not specified, and the current context is channel, the
current channel's containers are browsed.

Conditions

CHANNELERR
RESP2 values:

2 The channel specified on the CHANNEL option could not be
found.

EXEC CICS XCTL
The CHANNEL option and the CHANNELERR condition are added:

Options

CHANNEL(name)
specifies the name (1–16 characters) of a channel that is to be made
available to the invoked program. The acceptable characters are A-Z
a-z 0-9 $ @ # / % & ? ! : | " = ¬ , ; < > . - and _. Leading and

236 Release Guide

#

embedded blank characters are not permitted. If the name supplied is
less than 16 characters, it is padded with trailing blanks up to 16
characters.

Channel names are always in EBCDIC. The allowable set of characters
for channel names, listed above, includes some characters that do not
have the same representation in all EBCDIC code pages. We therefore
recommend that, if channels are to be shipped between regions, the
characters used in naming them should be restricted to A-Z 0-9 & : = , ;
< > . - and _.

The program that issues the XCTL command may:
v Have created the channel by means of one or more PUT

CONTAINER CHANNEL commands
v Specify its current channel, by name
v Name a non-existent channel, in which case a new, empty, channel

is created

Conditions

CHANNELERR
RESP2 values:

1 The name specified on the CHANNEL option contains an illegal
character or combination of characters.

Changes to the JCICS API

Note: You can use JCICS commands—including channel- and container-related
commands—when writing CICS enterprise beans. However, CICS doesn't
support the transmission of channels over IIOP request streams. This means
that you cannot, for example, pass a channel to an enterprise bean on a
remote region.

New JCICS classes

The following new JCICS classes are introduced:
v com.ibm.cics.server.CCSIDErrorException
v com.ibm.cics.server.Channel
v com.ibm.cics.server.ChannelErrorException
v com.ibm.cics.server.Container
v com.ibm.cics.server.ContainerErrorException
v com.ibm.cics.server.ContainerIterator

Modified JCICS classes

The following JCICS classes are changed:
v Program
v StartRequest
v Task
v TerminalPrincipalFacility

Changes to global user exits

Global user exit programs cannot access containers created by application
programs. They can, however, create their own channels and pass them to
programs which they call.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 237

Minor changes to the following exits are described in the CICS Customization
Guide:
v XFCAREQ
v XFCAREQC
v XFCREQ
v XFCREQC
v XICEREQ
v XICEREQC
v XNQEREQ
v XNQEREQC
v XPCREQ
v XPCREQC
v XTDEREQ
v XTDEREQC
v XTSEREQ
v XTSEREQC

Changes to task-related user exits

Task-related user exit programs (TRUEs) cannot access containers created by
application programs. They can, however, create their own channels and pass them
to programs which they call.

Changes to user-replaceable programs

User-replaceable programs cannot access containers created by application code.
They can, however, create their own channels and pass them to programs which
they call.

The dynamic and distributed routing programs

There are several changes to the DFHDYPDS communications area passed to the
dynamic and distributed routing programs:

DYRACMAA (existing field: dynamic routing program)
This field applies to the routing of:
v Terminal-initiated transactions
v Transactions started by terminal-related START commands
v Program-link (DPL) requests

For the routing of these types of request, DYRACMAA contains one of the
following:

v If the user application employs a communications area (COMMAREA), the
31-bit address of the application’s COMMAREA

v If the user application employs a channel and has created, within the
channel, a container named DFHROUTE, the 31-bit address of the
DFHROUTE container

v If the user application has no COMMAREA and no DFHROUTE container,
null characters

For the routing of all other types of request, DYRACMAA contains null
characters.

For the routing of the three types of eligible request listed above, if the user
application employs a COMMAREA:

v When your dynamic routing program is invoked for routing (DYRFUNC=0),
the address is that of the input communications area (if any). Likewise, when

238 Release Guide

your routing program is invoked because of a route-selection error or for
notification (DYRFUNC=1 and 3, respectively), the address is that of the
input communications area.

v When your routing program is invoked because a previously-routed
transaction or link request has terminated normally (DYRFUNC=2), the
address is that of the output communications area (if any). Routed
applications can use their output communications area to pass information to
the dynamic routing program.

When your routing program is invoked because the routed transaction has
abended (DYRFUNC=4), the information in the communications area, or in the
DFHROUTE container, is not meaningful.

Your routing program can alter the data in any application’s communications
area, or DFHROUTE container, addressed by DYRACMAA.

DYRACMAA (existing field: distributed routing program; no change)
is not used by the distributed routing program. On invocation, it is set to zeroes.

DYRACMAL (existing field: dynamic routing program)
This field applies to the routing of:
v Terminal-initiated transactions
v Transactions started by terminal-related START commands
v Program-link (DPL) requests

For the routing of these types of request, DYRACMAL contains one of the
following numerical values:

v If the user application employs a COMMAREA, the length, in bytes, of the
application’s COMMAREA

v If the user application employs a channel and has created, within the
channel, a container named DFHROUTE, the length, in bytes, of the data in
the DFHROUTE container

v If the user application has no COMMAREA and no DFHROUTE container,
zero

For the routing of all other types of request, DYRACMAL contains zero.

DYRACMAL (existing field: distributed routing program; no change)
is not used by the distributed routing program. On invocation, it is set to zeroes.

DYRCHANL (new field)
is the name of the channel, if any, associated with the program-link or START
command. This field applies only to the routing of DPL requests,
non-terminal-related START requests, and transactions started by
terminal-related START requests. For other types of request, or if there is no
channel associated with the command, this field contains blanks.

Note that the routing program is given the name of the channel, not its address,
and so is unable to use the contents of this field to inspect or change the
contents of the containers. For information about how the routing program can
inspect or change the contents of the application’s containers, see “Dynamic
routing with channels” on page 219 and the description of the DYRACMAA field.

DYRLEVEL (existing field)
is the level of CICS required in the target AOR to successfully process the
routed request. A new value is added:

X'03' CICS TS for z/OS Version 3.1. Currently, may be set only for:
v DPL requests that have a channel associated with them
v START requests that have a channel associated with them

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 239

v Method requests for enterprise beans and CORBA stateless objects

DYRTYPE (existing field)
contains the type of request for which the routing program is invoked. Three
new values are added:

9 A program-link request with a channel.

The dynamic routing program is invoked to route the request.

A A transaction started by a terminal-related EXEC CICS START
command, where there is a channel associated with the START.

The dynamic routing program is invoked to route the transaction.

B A non-terminal-related START request with a channel.

The distributed routing program is invoked to route the request.

The meaning of the following existing values has changed. (The changes to the
existing descriptions are indicated in bold):

2 A transaction started by a terminal-related EXEC CICS START
command, where there is no data and no channel associated with the
START.

3 A transaction started by a terminal-related EXEC CICS START
command, where there is data associated with the START but no
channel.

4 A program-link request without a channel.

6 A non-terminal-related START request, with or without data but with no
channel.

DYRVER (existing field)
is the version number of the dynamic routing program interface. For CICS
Transaction Server for z/OS, Version 3 Release 1, the number is “10”.

Changes to monitoring

Some new fields are added to performance-class monitoring records. There is one
new group, DFHCHNL, plus additions to the DFHPROG and DFHTASK groups.

All the new fields can be excluded from monitoring records by coding DFHMCT
TYPE=RECORD entries in the monitoring control table (MCT).

Performance data in group DFHCHNL

Group DFHCHNL contains the following performance data:

321 (TYPE-A, 'PGTOTCCT', 4 BYTES)
The number of CICS requests for channel containers issued by the user task.

322 (TYPE-A, 'PGBRWCCT', 4 BYTES)
The number of CICS browse requests for channel containers issued by the user
task.

323 (TYPE-A, 'PGGETCCT', 4 BYTES)
The number of GET CONTAINER requests for channel containers issued by the
user task.

240 Release Guide

324 (TYPE-A, 'PGPUTCCT', 4 BYTES)
The number of PUT CONTAINER requests for channel containers issued by the
user task.

325 (TYPE-A, 'PGMOVCCT', 4 BYTES)
The number of MOVE CONTAINER requests for channel containers issued by
the user task.

326 (TYPE-A, 'PGGETCDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the GET
CONTAINER CHANNEL commands issued by the user task.

327 (TYPE-A, 'PGPUTCDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the PUT
CONTAINER CHANNEL commands issued by the user task.

Performance data in group DFHPROG

The following new fields are added to group DFHPROG:

286 (TYPE-A, 'PCDLCSDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the distributed
program link (DPL) requests, with the CHANNEL option, issued by the user
task. This total includes the length of any headers to the data.

287 (TYPE-A, 'PCDLCRDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all DPL RETURN
CHANNEL commands issued by the user task. This total includes the length of
any headers to the data.

306 (TYPE-A, 'PCLNKCCT', 4 BYTES)
Number of local program LINK requests, with the CHANNEL option, issued by
the user task.

307 (TYPE-A, 'PCXCLCCT', 4 BYTES)
Number of program XCTL requests issued with the CHANNEL option by the
user task.

308 (TYPE-A, 'PCDPLCCT', 4 BYTES)
Number of program distributed program link (DPL) requests issued with the
CHANNEL option by the user task.

309 (TYPE-A, 'PCRTNCCT', 4 BYTES)
Number of remote pseudoconversational RETURN requests, with the
CHANNEL option, issued by the user task.

310 (TYPE-A, 'PCRTNCDL', 4 BYTES)
The total length, in bytes, of the data in the containers of all the remote
pseudoconversational RETURN CHANNEL commands issued by the user task.
This total includes the length of any headers to the data.

Performance data in group DFHTASK

The following new fields are added to group DFHTASK:

065 (TYPE-A, 'ICSTACCT', 4 BYTES)
Total number of local interval control START requests, with the CHANNEL
option, issued by the user task.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 241

345 (TYPE-A, 'ICSTACDL', 4 BYTES)
Total length, in bytes, of the data in the containers of all the locally-executed
START CHANNEL requests issued by the user task. This total includes the
length of any headers to the data.

346 (TYPE-A, 'ICSTRCCT', 4 BYTES)
Total number of interval control START CHANNEL requests, to be executed on
remote systems, issued by the user task.

347 (TYPE-A, 'ICSTRCDL', 4 BYTES)
Total length, in bytes, of the data in the containers of all the remotely-executed
START CHANNEL requests issued by the user task. This total includes the
length of any headers to the data.

Changes to statistics

There are new statistics for channel data flowing across a connection. These
statistics are mapped by the DFHA14DS DSECT. They are shown in the DFHSTUP
“ISC/IRC system entry: Resource statistics” report, and in the DFH0STAT
“Connections and Modenames Report”.

Table 5. New Fields in the Connections and Modenames Report

Field Heading Description

Terminal-sharing channel
requests

The number of terminal-sharing requests, with channels.

Source field: A14ESTTC_CHANNEL

Terminal-sharing channel
requests: bytes sent

The number of bytes sent on terminal-sharing channel
requests. This is the total amount of data sent on the
connection, including any control information.

Source field: A14ESTTC_CHANNEL_SENT

Terminal-sharing channel
requests: bytes received

The number of bytes received on terminal-sharing channel
requests. This is the total amount of data received on the
connection, including any control information.

Source field: A14ESTTC_CHANNEL_RCVD

Program control LINK
requests, with channels

The number of program control LINK requests, with
channels, function-shipped across the connection.

Source field: A14ESTPC_CHANNEL

LINK channel requests: bytes
sent

The number of bytes sent on LINK channel requests. This is
the total amount of data sent on the connection, including
any control information.

Source field: A14ESTPC_CHANNEL_SENT

LINK channel requests: bytes
received

The number of bytes received on LINK channel requests.
This is the total amount of data received on the connection,
including any control information.

Source field: A14ESTPC_CHANNEL_RCVD

Interval control START
requests, with channels

The number of interval control START requests, with
channels, function-shipped across the connection.

Source field: A14ESTIC_CHANNEL

242 Release Guide

Table 5. New Fields in the Connections and Modenames Report (continued)

Field Heading Description

START channel requests:
bytes sent

The number of bytes sent on START channel requests. This
is the total amount of data sent on the connection, including
any control information.

Source field: A14ESTIC_CHANNEL_SENT

START channel requests:
bytes received

The number of bytes received on START channel requests.
This is the total amount of data received on the connection,
including any control information.

Source field: A14ESTIC_CHANNEL_RCVD

Changes to sample programs

Two C language programs from the IIOP Bank Account sample application
(transaction BNKQ) have been modified to show how a channel can be passed on
EXEC CICS LINK and RETURN commands. DFH$IIBQ, the top-level program, and
DFH$IICC, the program it links to, have been modified to use the channel/container
model rather than the COMMAREA model. Comments in the code show the
changes that have been made.

Changes to problem determination
Changes to problem determination

Messages

New messages are introduced as a result of enhanced inter-program data transfer.
All new and changed messages are described in the CICS Messages and Codes
manual.

Abend codes

Some new abend codes are introduced, and some existing codes are removed.

New abend codes:

AEYF (CICS TS for z/OS Version 3.1 only):
Explanation

Storage violation by CICS.

A transaction has requested that CICS access a storage area that the transaction
itself could not access. This occurred when an invalid storage area was passed to
CICS on a PUT CONTAINER or a GET CONTAINER command. The error can
occur when:

v Either the FROM or INTO address is specified incorrectly.

v The FLENGTH value specifies a value large enough to cause the area to include
storage which the transaction cannot access.

A common cause of this error is specifying the address of a halfword area in the
FLENGTH parameter, which expects a fullword area. This error can arise when a
program which previously used COMMAREAs (which have halfword lengths) has
been modified to use containers (which have fullword lengths).

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 243

System Action

The transaction is abnormally terminated with a CICS transaction dump.

User Response

Examine the trace to find the trace entry for entry to DFHEISR, and then identify
the parameter in error. If the abend is handled, EXEC CICS ASSIGN ASRASTG,
ASRAKEY, ASRASPC, and ASRAREGS give additional information about the
abend. At the time of the abend, register 2 points to the storage area at fault.

You will most likely need to do the following:

v Correct the program in error that issued the EXEC CICS PUT CONTAINER or
EXEC CICS GET CONTAINER command. Ensure that it supplies the address of
a valid storage area and that it supplies an FLENGTH such that no part of the
storage area is inaccessible to the transaction. Ensure that FLENGTH refers to a
fullword length.

You may also need to consider changing one or more of the following:

v If storage protection is active, change the EXECKEY option, on the CEDA
definition of the program that issued the EXEC CICS command, from USER to
CICS.

v If storage protection is active, change the TASKDATAKEY attributes on the
transaction definition from CICS to USER.

v If transaction isolation is active, change the ISOLATE attribute on the transaction
definition from YES to NO.

Module

DFHSRP

AITI (CICS TS for z/OS Version 3.1 only):
Explanation

A mirror transaction processing a START CHANNEL or LINK CHANNEL request
has failed while trying to receive data from, or send data to, a connected CICS
system. Because a channel may include a considerable amount of data, many calls
to terminal control may be required to transmit channel data. DFHMIRS calls
program DFHAPCR to perform all the inter-system transmission of channel data.
Terminal control has detected an error in one of these calls. The error could be a
read time out, or a more serious error in the flows that prevented CICS from
correctly processing the data.

System Action

The transaction is terminated. The mirror task is abnormally terminated with a CICS
transaction dump.

User Response

If the error was a time out, determine why the remote region has not responded.
Examine the trace to determine why the GETMAIN failed. If the CICS region was
short on storage, take the necessary steps to correct this. If the region was not
short on storage, you may need help from IBM to resolve this problem.

244 Release Guide

Module

DFHADDRM

AXGA (CICS TS for z/OS Version 3.1 only):
Explanation

Program DFHAPCR has returned an unexpected response. DFHAPCR performs
the following functions:

v Extracts the contents of all containers making up a channel and transmits them
to a remote system

v Recreates the channel and containers from inbound data received from a remote
system

DFHAPCR has either detected an error in inbound data or has received an
unexpected response while extracting or recreating channel data.

System Action

The transaction is abnormally terminated with a CICS transaction dump.

User Response

Look for any related CICS messages and abends to determine if there has been a
prior failure in Program Manager, which manages containers. Look for exception
trace entries from Program Manager or DFHAPCR to determine the cause of the
error.

Module

DFHXTP

AXTS (CICS TS for z/OS Version 3.1 only):
Explanation

An attempt was made to pass channel and container data between the transactions
in a pseudoconversation, but the next transaction in the pseudoconversation resides
in a CICS region that does not support channels and containers.

System Action

The transaction is abnormally terminated with a CICS transaction dump.

User Response

If your application uses channels and containers to pass data between transactions
in a pseudoconversation, ensure that all the transactions in the pseudoconversation
reside in CICS TS for z/OS Version 3.1, or later, regions.

Module

DFHXTP

AXTU (CICS TS for z/OS Version 3.1 only):

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 245

Explanation

Program DFHAPCR has returned an unexpected response. DFHAPCR performs
the following functions:

v Extracts the contents of all containers making up a channel and transmits them
to a remote system

v Recreates the channel and containers from inbound data received from a remote
system

DFHAPCR has either detected an error in inbound data or has received an
unexpected response while extracting or recreating channel data.

System Action

The transaction is abnormally terminated with a CICS transaction dump.

User Response

Look for any related CICS messages and abends to determine if there has been a
prior failure in Program Manager, which manages containers. Look for exception
trace entries from Program Manager or DFHAPCR to determine the cause of the
error.

Module

DFHXTP

Other abend codes:

For compatibility purposes, the following new abend codes have been added to
CICS TS for z/OS, Version 2.2 and CICS TS for z/OS, Version 2.3. They do not
apply to CICS TS for z/OS, Version 3.1. If, in the future, you migrate a CICS TS for
z/OS, Version 2.2 or CICS TS for z/OS, Version 2.3 region to CICS TS for z/OS,
Version 3.1, be aware that these abend codes do not occur in CICS TS for z/OS,
Version 3.1.
v AXF9
v AXTT

Trace

The CICS trace points related to the new function are AP 0785 and AP 4E20—AP
4E22.

To control the output of CICS trace information, use CICS trace control in the
normal way.

Migrating from COMMAREAs to channels

Migration of existing functions
v CICS application programs that use traditional communications areas

(COMMAREAS) to exchange data continue to work as before.

v If you employ a user-written dynamic or distributed routing program for workload
management, rather than CICSPlex SM, you must modify your program to
handle the new values that it may be passed in the DYRLEVEL, DYRTYPE, and

246 Release Guide

DYRVER fields of the DFHDYPDS communications area—see “The dynamic and
distributed routing programs” on page 238.

Migration to the new function

This section describes how you can migrate several types of existing application to
use channels and containers rather than communication areas (COMMAREAs).

It’s possible to replace a COMMAREA by a channel with a single container. While
this may seem the simplest way to move from COMMAREAs to channels and
containers, it’s not good practice to do this.

Also, be aware that a channel may use more storage than a COMMAREA designed
to pass the same data. (See “Designing a channel: best practices” on page 212.)

Because you’re taking the time to change your application programs to exploit this
new function, you should implement the “best practices” for channels and
containers—see “Designing a channel: best practices” on page 212. Channels have
several advantages over COMMAREAs (see “Benefits of channels” on page 195)
and it pays to design your channels to make the most of these improvements.

Migrating LINK commands that pass COMMAREAs

To migrate two programs which use a COMMAREA on a LINK command to
exchange a structure, change the instructions shown in Table 6.

Table 6. Migrating LINK commands that pass COMMAREAs

Program Before After

PROG1 EXEC CICS LINK PROGRAM(PROG2)
COMMAREA(structure)

EXEC CICS PUT CONTAINER(structure-name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS LINK PROGRAM(PROG2)
CHANNEL(channel-name)

...
EXEC CICS GET CONTAINER(structure-name)

CHANNEL(channel-name)
INTO(structure)

PROG2 EXEC CICS ADDRESS
COMMAREA(structure-ptr)

...
RETURN

EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

...
EXEC CICS PUT CONTAINER(structure-name)

FROM(structure)
RETURN

Note: In the COMMAREA example, PROG2, having put data in the COMMAREA,
has only to issue a RETURN command to return the data to PROG1. In the
channel example, to return data PROG2 must issue a PUT CONTAINER
command before the RETURN.

Migrating XCTL commands that pass COMMAREAs

To migrate two programs which use a COMMAREA on an XCTL command to pass
a structure, change the instructions shown in Table 7 on page 248.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 247

#
#

Table 7. Migrating XCTL commands that pass COMMAREAs

Program Before After

PROG1 EXEC CICS XCTL PROGRAM(PROG2)
COMMAREA(structure)

EXEC CICS PUT CONTAINER(structure-name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS XCTL PROGRAM(PROG2)
CHANNEL(channel-name)

...

PROG2 EXEC CICS ADDRESS
COMMAREA(structure-ptr)

...

EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

...

Migrating pseudoconversational COMMAREAs on RETURN
commands

To migrate two programs which use COMMAREAs to exchange a structure as part
of a pseudoconversation, change the instructions shown in Table 8.

Table 8. Migrating pseudoconversational COMMAREAs on RETURN commands

Program Before After

PROG1 EXEC CICS RETURN TRANSID(PROG2)
COMMAREA(structure)

EXEC CICS PUT CONTAINER(structure-name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS RETURN TRANSID(TRAN2)
CHANNEL(channel-name)

PROG2 EXEC CICS ADDRESS
COMMAREA(structure-ptr)

EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

Migrating START data

To migrate two programs which use START data to exchange a structure, change
the instructions shown in Table 9.

Table 9. Migrating START data
Program Before After

PROG1 EXEC CICS START TRANSID(TRAN2)
FROM(structure)

EXEC CICS PUT CONTAINER(structure-name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS START TRANSID(TRAN2)
CHANNEL(channel-name)

PROG2 EXEC CICS RETRIEVE INTO(structure) EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

Note that the new version of PROG2 is the same as that in the
pseudoconversational example.

Migrating programs that use temporary storage to pass data

In previous releases, because the size of COMMAREAs is limited to 32K and
channels were not available, some applications used temporary storage queues
(TSQs) to pass more than 32K of data from one program to another. Typically, this
involved multiple writes to and reads from a TSQ.

If you migrate one of these applications to use channels, be aware that:

v If the TS queue used by your existing application is in main storage, the storage
requirements of the new, migrated, application are likely to be similar to those of
the existing application.

248 Release Guide

#

#
#
#
#

#

#
#
#

v If the TS queue used by your existing application is in auxiliary storage, the
storage requirements of the migrated application are likely to be greater than
those of the existing application. This is because container data is held in storage
rather than being written to disk.

Migrating dynamically-routed applications
EXEC CICS LINK and EXEC CICS START commands, which can pass either
COMMAREAs or channels, can be dynamically routed.

When a LINK or START command passes a COMMAREA rather than a channel,
the routing program can, depending on the type of request, inspect or change the
COMMAREA’s contents. For LINK requests and transactions started by
terminal-related START requests (which are handled by the dynamic routing
program) but not for non-terminal-related START requests (which are handled by
the distributed routing program) the routing program is given, in the DYRACMAA
field of its communication area, the address of the application’s COMMAREA, and
can inspect and change its contents.

Note: The routing program’s communication area is mapped by the DFHDYPDS
DSECT.

If you migrate a dynamically-routed EXEC CICS LINK or START command to use a
channel rather than a COMMAREA, the routing program is passed, in the
DYRCHANL field of DFHDYPDS, the name of the channel. Note that the routing
program is given the name of the channel, not its address, and so is unable to use
the DYRCHANL field to inspect or change the contents of the channel’s containers.

To give the routing program the same kind of functionality with channels, an
application that uses a channel can create, within the channel, a special container
named DFHROUTE. If the application issues a LINK or terminal-related START
request (but not a non-terminal-related START request) that is to be dynamically
routed, the dynamic routing program is given, in the DYRACMAA field of
DFHDYPDS, the address of the DFHROUTE container, and can inspect and
change its contents.

If you are migrating a program to pass a channel rather than a COMMAREA, you
could use its existing COMMAREA structure to map DFHROUTE.

For introductory information about dynamic and distributed routing, see the CICS
Intercommunication Guide. For information about writing a dynamic or distributed
routing program, see the CICS Customization Guide.

Coexistence
Coexistence with other CICS products

A CICS TS 3.1 program can invoke a program on a remote CICS region and pass it
a channel. For this to work successfully, the remote region must also be at the
CICS TS 3.1 level.

Although pre-CICS TS 3.1 regions do not support channels, you can get them to
tolerate channels by applying an APAR. By “tolerate” we mean that, if the back-level
CICS region is passed a channel, it will return a meaningful abend code.

If a CICS TS 3.1 application tries to send a channel to a back-level region to which
the appropriate APAR has been applied, the 3.1 transaction abends with a

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 249

#
#
#
#

meaningful abend code. If a CICS TS 3.1 application tries to send a channel to a
back-level region to which the appropriate APAR has not been applied, the results
are unpredictable.

The following list shows the back-level CICS products that tolerate channels, with
the APAR that must be applied in each case:

CICS Transaction Server for z/OS, Version 2 Release 3
APAR PQ92437

CICS Transaction Server for z/OS, Version 2 Release 2
APAR PQ92437

CICS Transaction Server for OS/390®, Version 1 Release 3
APAR PQ93048

CICS Transaction Sever for VSE/ESA Release 1.1
APAR PQ83049

CICSPlex SM support

The CICSPlex SM routing program, EYU9XLOP, has been modified to handle the
new values that may be passed in the DYRLEVEL, DYRTYPE, and DYRVER fields
of its communications area—see “The dynamic and distributed routing programs” on
page 238. When invoked to route any of the following types of request, if there is a
channel associated with the request EYU9XLOP routes the request to a CICS TS
3.1 region, if one is available:
v A transaction started by a terminal-related START command
v A non-terminal-related START request
v A program-link request

Changes to CICSPlex SM application programming interface

Changes have been made to the following :

v “TASK resource table”

v “CONNECT resource table” on page 251

TASK resource table

The TASK resource table has been extended to include the following new monitor
and statistics attributes:

TMRPGCTC
Total number of channel container commands

TMRPGBCC
Number of Browse channel container commands

TMRPGGCC
Number of GET channel container commands

TMRPGPCC
Number of PUT channel container commands

TMRPGMCC
Number of MOVE channel container commands

250 Release Guide

TMRPGGCL
Total length in bytes of the data in the containers of all the GET
CONTAINER CHANNEL commands

TMRPGPCL
Total length in bytes of the data in the containers of all the PUT
CONTAINER CHANNEL commands

TMRPGCCC
number of containers created for channel containers

TMRPCDLL
Total length in bytes of the data in the containers of all the DPL requests
with the CHANNEL option

TMRPCDRL
Total length in bytes of the data in the containers of all DPL RETURN
CHANNEL commands

TMRPCLCC
Number of program LINK requests with CHANNEL option

TMRPCXCC
Number of program XCTL requests with CHANNEL option

TMRPCDCC
Number of program distributed program link (DPL) requests with the
CHANNEL option

TMRPCRCC
Number of pseudoconversational RETURN requests with the CHANNEL
option

TMRPCRCL
Total length in bytes of the data in the containers of all the
pseudoconversational RETURN CHANNEL commands

TMRICSCC
Total number of local interval control START requests issued with the
CHANNEL option

TMRICSCD
Total length, in bytes, of the data in the containers of all local interval
control START requests with the CHANNEL option

TMRICSRC
Total number of remote interval control START requests issued with the
CHANNEL option

TMRICSRD
Total length, in bytes, of the data in the containers of all remote interval
control START requests with the CHANNEL option

CONNECT resource table

The CONNECT resource table has been extended to include the following new
monitor and statistics attributes:

ESTPCCHNL
Number of program control LINK requests, with channels, for function
shipping.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 251

ESTPCCHNSENT
Number of bytes sent on LINK channel requests. This is the total amount of
data sent on the connection, including any control information.

ESTPCCHNRCVD
Number of bytes received on LINK channel requests. This is the total
amount of data received on the connection, including any control
information.

ESTICCHNL
Number of interval control START requests, with channels, for function
shipping.

ESTICCHNSENT
Number of bytes sent on START channel requests. This is the total amount
of data sent on the connection, including any control information.

ESTICCHNRCVD
Number of bytes received on START channel requests. This is the total
amount of data received on the connection including any control
information.

ESTTCCHNL
Number of terminal-sharing channel requests.

ESTTCCHNSENT
Number of bytes sent on terminal-sharing channel requests. This is the total
amount of data sent on the connection, including any control information.

ESTTCCHNRCVD
Number of bytes received on terminal-sharing channel requests. This is the
total amount of data received on the connection, including any control
information.

Changes to CICSPlex SM Web User Interface
New WUI views

The following WUI views have been introduced:

v “Channel usage view”

v “Function ships view” on page 253

Channel usage view

There is a new detailed view in the Active task view set called Channel usage,
which is associated with the TASK resource table.

To open the Channel usage view, do the following:

1. Click Active tasks from the Main menu

2. Select a Task ID to open the Active task detailed view

3. Scroll down and click Channel usage

The new Active task view is displayed. The view name for this Active task is
EYUSTARTTASK.DETAIL10. See “TASK resource table” on page 250 for attribute
details of the fields displayed in the Channel usage view.

252 Release Guide

Function ships view

There is a new detailed view in the ISC/MRO connections view set called
Function ships, which is associated with the CONNECT resource table.

To open the Function ships view, do the following:

1. Click on CICS operations views from the main menu

2. Click Connection operations views

3. Select ISC and MRO connections

4. Click on a Connection ID to open the ISC/MRO connections detailed view

5. Scroll down and click Function ships to open a new ISC/MRO connections
view

The view name for this ISC/MRO connections is EYUSTARTCONNECT.DETAIL3.
See “CONNECT resource table” on page 251 for attribute details of the new fields
displayed in the Function ships detailed view.

Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 253

254 Release Guide

Chapter 8. OPENAPI Support

CICS extends the use of Open Transaction Environment (OTE) functionality by
providing support for OPENAPI application programs. Prior to this, OPENAPI
function was available only to task related user exits (TRUEs).

OPENAPI support allows an application not only to define itself as threadsafe,
(meaning it is capable of running on any TCB that CICS deems suitable, either the
QR TCB, or an open TCB) but more than that, namely that the application must run
on an OPEN TCB rather than on the QR TCB.

The use of OPENAPI programs allows application workloads to be moved off the
QR TCB onto multiple open TCBs. If you choose to use OPENAPI programs as a
way of running workloads using other (non CICS) APIs remember that the use of
other (non CICS) APIs within CICS is entirely at the discretion and risk of the
user. No testing of other (non CICS) APIs within CICS has been undertaken
and use of such APIs is not supported by IBM Service.

In either case you must also be aware that OPENAPI programs still have
obligations to the CICS system as a whole. See the CICS Application Programming
Guide.

A new keyword (API) on the PROGRAM resource definition which takes one of two
values CICSAPI or OPENAPI, where CICSAPI is the default. A setting of
API(OPENAPI) mandates a setting of CONCURRENCY(THREADSAFE) meaning
the application must be coded to threadsafe standards so its application logic is
capable of executing with integrity when executed in parallel on multiple TCBs.
CICS will handle the threadsafety aspects of any CICS APIs issued from such
programs. The new program option applies to user application programs, PLT
programs, user replaceable modules and task related user exits. It is ignored for
global user exits.

The difference between a CICSAPI QUASIRENT program, a CICSAPI
THREADSAFE program and an OPENAPI THREADSAFE program is explained in
terms of where it runs:

v A CICSAPI QUASIRENT program only issues CICS APIs and its application logic
is not threadsafe. It always runs on the QR TCB.

v A CICSAPI THREADSAFE program is capable of running on either the QR TCB
or an open TCB because its application logic is threadsafe. Such a program runs
on the QR TCB until some event moves it to an open TCB. A call to an
OPENAPI TRUE, such as a DB2 call, is an example of an event that would move
a CICSAPI THREADSAFE program to an open TCB. After transferring to an
open TCB, the program remains there until something forces it back to the QR
TCB, for example a non threadsafe CICS API call. If this happens the program
remains on the QR TCB until something (perhaps another DB2 call) forces it
back to the open TCB once more.

A CICSAPI program only uses CICS APIs which are implemented in a way that is
independent of the key of the TCB in use. Applications can run successfully in
user key or CICS key irrespective of the key of the TCB. So they can run on the
QR TCB, an L8 or an L9 TCB.

v An OPENAPI THREADSAFE program always runs on an open TCB, and does
so from the start of the program. It is capable of running on an open TCB
because its application logic is threadsafe. If use of a non threadsafe CICS

© Copyright IBM Corp. 2004, 2010 255

command forces a switch to QR TCB, then CICS switches back to the open TCB
again before returning control to the application.

An OPENAPI program can potentially use other (non CICS) APIs, and such APIs
generally require the key of the TCB to match the execution key. Therefore user
key programs run on L9 TCBs and CICS key programs run on L8 TCBs.

Use of OPENAPI programs can cause more TCB switching than threadsafe
CICSAPI programs because of the requirement for the key of the TCB to be correct
for OPENAPI programs, because non-threadsafe CICS calls cause a double TCB
switch, and because OPENAPI TRUEs always run in CICS key on an L8 TCB.
Therefore, for example, a user key OPENAPI program runs on an L9 TCB but if it
makes a DB2 call, CICS switches to an L8 TCB to call DB2, then returns to the L9
for the application.

It is highly recommended that existing user key threadsafe CICS-DB2 applications,
which have taken advantage of the performance gains of being able to run on the
same TCB as the DB2 call, remain defined as CICSAPI THREADSAFE
applications. If other functionality is wanted which requires OPENAPI, a separate
program should be used.

Candidate programs for defining as OPENAPI THREADSAFE (assuming their
application logic is threadsafe) include:

v Programs which use CICS threadsafe APIs only (to avoid the double TCB switch)
or only limited non threadsafe CICS commands

v CICS key CICS-DB2 applications

v CPU intensive programs

v Programs wishing to use other (non CICS) APIs at their own risk

Benefits of OPENAPI Support

The main reason for providing support for OPENAPI programs is to allow you to
move application workloads off the QR TCB onto multiple open TCBs. This allows
the possibility of better utilization of machine resources to achieve better
throughput.

Another reason that you might want to use OPENAPI programs could be to allow
the use of other (non CICS) APIs.

Use of other APIs is possible because, if an open TCB is blocked by an operating
system wait, then only the single application is affected not the whole of CICS,
which would be the case if they executed under the QR TCB. Such OPENAPI
programs are not permitted to execute on the QR TCB precisely because of this
risk of blocking the TCB by an operating system wait and thus affecting the whole
of CICS.

v Use of other (non CICS) APIs within CICS is entirely at the discretion and
risk of the user. No testing of other (non CICS) APIs within CICS has been
undertaken and use of such APIs is not supported by IBM Service.

Requirements
OPENAPI Support has no particular requirements for hardware, software or
resource usage beyond the general requirements of this release of CICS.

256 Release Guide

Changes to CICS externals

Changes to system initialization parameters

OPENAPI Support changes the description of the FORCEQR system initialization
parameter to limit its relevance to CICSAPI programs, because it does not apply to
OPENAPI programs. For the full text of the revised description of FORCEQR, see
the CICS System Definition Guide.

OPENAPI Support changes the description of the MAXOPENTCBS system
initialization parameter to embrace the requirements of OPENAPI and L9 TCBs. For
the full text of the revised description of MAXOPENTCBS, see the CICS System
Definition Guide.

Changes to resource definition

OPENAPI Support introduces a new attribute API to the PROGRAM resource
definition.

API has two possible values CICSAPI and OPENAPI. For the full description of the
API attribute, and the revised syntax of the PROGRAM definition, see the CICS
Resource Definition Guide.

Changes to the application programming interface

This topic deals with:
v Obligations of OPENAPI programs, and
v Restrictions when using EDF

Obligations of OPENAPI programs

An OPENAPI program, although freed from the constraints imposed by the QR
TCB, nevertheless does have obligations both to the CICS system as a whole and
to future users of the L8 or L9 TCB it is using. An L8 or L9 TCB is dedicated for use
by the CICS task to which it is allocated, but once the CICS task has completed,
the TCB is returned to the dispatcher-managed pool of such TCBs, provided it is
still in a clean state (An unclean TCB in this context means that the task using the
L8 or L9 mode TCB suffered an unhandled abend in an OPENAPI program. It does
not mean that the program has broken the threadsafe restrictions, which CICS
would not detect). Note that the TCB is not dedicated for use by a particular
OPENAPI program, but is used by all OPENAPI programs and OPENAPI TRUEs
invoked by the CICS task to which the L8 mode TCB is allocated. Also, if an
application program invoking an OPENAPI program is coded to threadsafe
standards, and defined to CICS as threadsafe, it continues to execute on the L8
mode TCB on return from the program.

Threadsafe restrictions:

An OPENAPI program must not treat the executing open TCB environment
in such a way that it causes problems for:

v Application program logic that could run on the open TCB

v OPENAPI TRUEs called by the same task

v Future tasks that might use the open TCB

v CICS management code.

Chapter 8. OPENAPI Support 257

At your own risk, if your OPENAPI program decides to use other (non
CICS) APIs, you must be aware of the following:

v When invoking CICS services, or when returning to CICS, an OPENAPI
program must ensure it restores the MVS™ programming environment as
it was on entry to the program. This includes cross-memory mode, ASC
mode, request block (RB) level, linkage stack level, TCB dispatching
priority, in addition to cancelling any ESTAEs added.

v At CICS task termination, an OPENAPI program must ensure it leaves
the open TCB in a state suitable to be reused by another CICS
transaction. In particular, it must ensure that all non-CICS resources
acquired specifically on behalf of the terminating task are freed. Such
resources might include:

– Dynamically allocated data sets

– Open ACBs or DCBs

– STIMERM requests

– MVS managed storage

– ENQ requests

– Attached subtasks

– Loaded modules

– Owned data spaces

– Added access list entries

– Name/token pairs

– Fixed pages

– Security settings (TCBSENV must be set to zero)

v An OPENAPI program must not use the following MVS system services
that will affect overall CICS operation:

– CHKPT

– ESPIE

– QEDIT

– SPIE

– STIMER

– TTIMER

– XCTL / XCTLX

– Any TSO/E services.

v An OPENAPI program must not invoke under the L8 or L9 mode TCB a
Language Environment program that is using MVS Language
Environment services, because L8 and L9 mode TCBs are initialized for
Language Environment using CICS services.

Restrictions when using EDF

OPEN TCBs and EDF

Even if your program would normally run using an OPEN TCB (L8, L9, X8,
or X9) CEDF forces the program to run on the QR TCB, because CEDF
itself is not threadsafe.

Changes to the system programming interface

OPENAPI Support has led to changes to the SPI as follows:

258 Release Guide

INQUIRE DISPATCHER
The descriptions of ACTOPENTCBS and MAXOPENTCBS in the INQUIRE
DISPATCHER command are changed to embrace L9 mode TCBs and to
refer to OPENAPI programs. For the full text of the revised descriptions,
see the CICS System Programming Reference.

INQUIRE EXITPROGRAM
A new value CICSAPI for the APIST option in the INQUIRE
EXITPROGRAM command is introduced. CICSAPI is synonymous with the
previous value BASEAPI. For the full text of the revised descriptions, see
the CICS System Programming Reference.

INQUIRE PROGRAM
A new option APIST is added to the INQUIRE PROGRAM command.
APIST enables you to specify CICSAPI or OPENAPI. For the full text of the
description of APIST, see the CICS System Programming Reference.

INQUIRE SYSTEM
The description of FORCEQR in the INQUIRE SYSTEM command is
changed to limit its relevance to CICSAPI programs, because it does not
apply to OPENAPI programs. For the full text of the revised descriptions,
see the CICS System Programming Reference.

SET DISPATCHER
The descriptions of MAXOPENTCBS in the SET DISPATCHER command is
changed to embrace L9 mode TCBs . For the full text of the revised
descriptions, see the CICS System Programming Reference.

SET SYSTEM
The description of the CVDA value FORCE for the option FORCEQR in the
SET SYSTEM command is changed to limit its relevance to CICSAPI
programs, because it does not apply to OPENAPI programs. For the full
text of the revised descriptions, see the CICS System Programming
Reference.

Changes to CEMT

OPENAPI Support has led to the following changes:

CEMT INQUIRE DISPATCHER
The descriptions of ACTOPENTCBS and MAXOPENTCBS in the CEMT
INQUIRE DISPATCHER command are changed to embrace L9 mode TCBs
and to refer to OPENAPI programs. For the full text of the revised
descriptions, see CICS Supplied Transactions.

CEMT INQUIRE PROGRAM
A new option APIST is added to the CEMT INQUIRE PROGRAM command.
APIST enables you to specify CICSAPI or OPENAPI. For the full text of the
description of APIST, see CICS Supplied Transactions.

CEMT INQUIRE SYSTEM
The description of FORCEQR in the CEMT INQUIRE SYSTEM command is
changed to limit its relevance to CICSAPI programs, because it does not
apply to OPENAPI programs. For the full text of the revised descriptions,
see CICS Supplied Transactions.

CEMT SET DISPATCHER
The descriptions of MAXOPENTCBS in the CEMT SET DISPATCHER
command is changed to embrace L9 mode TCBs . For the full text of the
revised descriptions, see CICS Supplied Transactions.

Chapter 8. OPENAPI Support 259

CEMT SET SYSTEM
The description of the value FORCE for the option FORCEQR in the CEMT
SET SYSTEM command is changed to limit its relevance to CICSAPI
programs, because it does not apply to OPENAPI programs. For the full
text of the revised descriptions, see CICS Supplied Transactions.

260 Release Guide

Chapter 9. XPLink Support

Extra Performance Linkage, (from here on it is abbreviated to XPLink), is a z/OS
feature which provides high performance subroutine call and return mechanisms.
This results in short and highly optimized execution path lengths.

Object Oriented programming is built upon the concept of sending 'messages' to
objects which result in that object performing some actions. The message sending
activity is implemented as a subroutine invocation. Subroutines, known as member
functions in C++ terminology, are normally small pieces of code. The characteristic
execution flow of a typical C++ program is, of many subroutine invocations to small
pieces of code. Programs of this nature benefit from the XPLink optimization
technology.

MVS has a standard subroutine calling convention which can be traced back to the
early days of System/360. This convention was optimized for an environment in
which subroutines were more complex, there were relatively few of them, and they
were invoked relatively infrequently. Object oriented programming conventions have
changed this. Subroutines have become simpler but they are numerous, and the
frequency of subroutine invocations have increased by orders of magnitude. This
change in the size, numbers, and usage pattern, of subroutines made it desirable
that the system overhead involved be optimized. XPLink is the result of this
optimization.

Note:

For z/OS 1.4 and above, and CICS 3.1 and above, the advice here that you
CAN use the XPLINK compiler option with CICS application programs,
overrides z/OS advice to the contrary.

z/OS manuals for C and C++ advise you that the XPLINK compiler option is
not available to CICS application programs, because that used to be the
case. Although these manuals are now being changed, you may be working
with a copy of one of these manuals produced before this change.

XPLink, and the X8 and X9 TCBs

CICS provides support for C and C++ programs compiled with the XPLINK option
by using the multiple TCB feature in the CICS Open Transaction Environment
(OTE) technology. X8 and X9 mode TCBs are defined to support XPLink tasks in
CICS key and USER key respectively. Each instance of an XPLink program uses
one X8 or X9 TCB.

To use XPLink, your C or C++ application code must be reentrant and threadsafe.
The same code instance can be executing on more than one MVS TCB and,
without threadsafe mechanisms to protect shared resources, the execution behavior
of application code is unpredictable. This cannot be too strongly emphasized.

Writing C and C++ programs, which are to be compiled with the
XPLINK option, for the CICS environment

The application developer is expected to do the following to take advantage of
CICS XPLink support;

© Copyright IBM Corp. 2004, 2010 261

v Develop the code, strictly adhering to threadsafe programming principles and
techniques

v Compile the C or C++ program with the XPLINK option set on

v Indicate in the PROGRAM resource definition that the program is threadsafe

v Consider the use of CICSVAR in CEEUOPT or in #pragma (see the CICS
Application Programming Guide for details).

All programs using CICS XPLink support must be re-entrant and threadsafe. Only
the application developer can guarantee that the code for a particular application
satisfies these requirements.

Passing control between XPLink and non-XPLink objects

Each transfer of control from XPLink objects to non-XPLink objects, or the reverse,
causes a switch between the QR TCB and an open TCB, (either an X8 or an X9
TCB). In performance terms, TCB switching is costly, you must take this
performance overhead into account.

An XPLink object can invoke a non-XPLink object using either the EXEC CICS
interface or the Language Environment interface.

A non-XPLink object can only invoke an XPLink object using the EXEC CICS
interface. Use of the Language Environment interface for such invocations is not
supported.

Changing CICS definitions to obtain CICS support for objects
compiled with the XPLINK option

CICS support for programs compiled with the XPLINK option requires only that you
show in the PROGRAM resource definition that the program is threadsafe. This
indication, and the XPLink “signature” in the load module, are the only things
required to put the task on an X8 or X9 TCB.

In the selection of a suitable TCB for a particular program, XPLink takes
precedence over the existence of the OPENAPI value for the API attribute on the
PROGRAM resource definition.

Benefits of XPLink Support

XPLink Support provides both performance and functional benefits:

v The performance benefits arise from the optimized subroutine linkage technology.

v The functional benefits arise because
– you can start developing common modules or DLLs which can be used or

invoked by programs running under CICS, under TSO/Batch, under IMS™ or
under Unix System Services.

– C++ developers are also able to more fully utilize the C++ Standard Template
Library.

Together these generate greater potential for C/C++ code reusability.

Requirements
XPLink Support has no particular requirements for hardware, software or resource
usage beyond the general requirements of this release of CICS.

262 Release Guide

Programming style

All programs using CICS XPLink support must be re-entrant and thread safe.

Changes to CICS externals

Changes to installation

With support for the XPLINK compiler option for C and C++ programs, there are
changes to the way that the libraries required for Language Environment must be
defined to CICS.

v The library SCEERUN2 must be defined in both the STEPLIB and DFHRPL
concatenations.

For more information, see “Installing CICS support for Language Environment” in
the Installation Guide. For further information, see the CICS System Programming
Reference.

Changes to system initialization parameters

There is a new system initialization parameter for XPLink Support. The new
parameter is MAXXPTCBS.

MAXXPTCBS={5∨number}
Specifies the maximum number of open X8 and X9 TCBs that can exist
concurrently in the CICS region. X8 and X9 are the TCBs that are used to run
C and C++ programs which are compiled with the XPLINK compiler option. X8
TCBs are used for programs in CICS key, and X9 mode TCBs are used for
programs in user key.

A CICS task is allowed as many X8 and X9 TCBs as it requires, and these
TCBs are only kept until program termination

Changes to resource definition

There are no changes to resource definition for XPLink Support. However you must
ensure that programs compiled with the XPLink flag set, have the CONCURRENCY
attribute set to THREADSAFE in the corresponding program definition.

Changes to the application programming interface
EXEC CICS HANDLE

C and C++ code is restricted to only use EXEC CICS HANDLE ABEND PROGRAM
from all the APIs in the EXEC CICS HANDLE 'family'. This restriction continues with
XPLink support and is policed by the C and C++ translators.

Other EXEC CICS restrictions

EXEC CICS RETURN, EXEC CICS XCTL and EXEC CICS SEND PAGE RELEASE
cause a direct transfer of control from user code to CICS. In C++ these APIs should
be used with great care so that the destructors of C++ objects will still get driven
appropriately. Failure to drive object destructors can cause storage to leak, open
files to be left open, locks to stay locked, and other problems. It is standard practice
in C++ to obtain resources during object construction and to release the resource
during object destruction. The destructors of stack allocated objects are

Chapter 9. XPLink Support 263

automatically invoked when they go out of scope. Some C++ objects may also be
statically constructed that is they are constructed before the 'main' function is
entered and destroyed when the 'main' function ends or the 'exit' call is invoked.

Multithreading

Because C and C++ CICS application programs which are compiled with the
XPLink flag, and meet the other criteria described here, run on their own TCBs,
application developers might assume that the full set of C, C++ and POSIX APIs
are also available to them. That is not so.

CICS application programs which are written in C or C++ should not make use of
multithreading techniques in their application code. You are advised not to use
these techniques.

By multithreading techniques, we mean those forms of coding that create multiple
execution paths within the application, for example the use of fork() statements or of
pthreads. They are untested in the CICS environment and are considered by CICS
to be unsupported. IBM will not accept any problem reports that might be
associated with the use of such techniques.

OPEN TCBs and EDF

Even if your program would normally run using an OPEN TCB (L8, L9, X8, or X9)
CEDF forces use of the QR TCB, because CEDF itself is not threadsafe.

Changes to the system programming interface
INQUIRE DISPATCHER

The EXEC CICS INQUIRE DISPATCHER command is changed to include the
ACTXPTCBS and MAXXPTCBS options.

ACTXPTCBS(value)
displays the number of X8 and X9 mode open TCBs that are currently
active (that is, allocated to a user task).

MAXXPTCBS(value)
displays the maximum number of X8 and X9 mode open TCBs that can
exist concurrently in the CICS region. The value can be in the range 1-999.
You can reset this value by overtyping it with a different value.

INQUIRE PROGRAM

The EXEC CICS INQUIRE PROGRAM command is changed to include the XPLink
value for the Runtime option.

Runtime
displays information about the runtime environment of the program. The new
value in this list is:

XPLink
The program is a C or C++ program which has been compiled using
the XPLINK option.

.

264 Release Guide

SET DISPATCHER

The EXEC CICS SET DISPATCHER command is changed to include the
MAXXPTCBS option.

MAXXPTCBS(value)
specifies the maximum number of X8 and X9 mode open TCBs that can
exist concurrently in the CICS region. The value specified can be in the
range 1 to 999. If you reduce MAXXPTCBS from its previously defined
value, and the new value is less than the number of open TCBs currently
allocated, CICS detaches TCBs to achieve the new limit only when they are
freed by user tasks. Transactions are not abended to allow TCBs to be
detached to achieve the new limit. If there are tasks queued waiting for an
X8 or X9 mode TCB and you increase MAXXPTCBS from its previously
defined value, CICS attaches a new TCB to resume each queued task, up
to the new limit.

Changes to CEMT
CEMT INQUIRE DISPATCHER

The CEMT INQUIRE DISPATCHER command is changed to include the
ACTXPTCBS and MAXXPTCBS options.

ACTXPTCBS(value)
displays the number of X8 and X9 mode open TCBs that are currently
active (that is, allocated to a user task).

MAXXPTCBS(value)
displays the maximum number of X8 and X9 mode open TCBs that can
exist concurrently in the CICS region. The value can be in the range 1-999.
You can reset this value by overtyping it with a different value.

CEMT INQUIRE PROGRAM

The CEMT INQUIRE PROGRAM command is changed to include the XPLink value
for the Runtime option.

Runtime
displays information about the runtime environment of the program. The new
value in this list is:

XPLink
The program is a C or C++ program which has been compiled using
the XPLINK option.

.

CEMT SET DISPATCHER

The CEMT SET DISPATCHER command is changed to include the MAXXPTCBS
option.

MAXXPTCBS(value)
specifies the maximum number of X8 and X9 mode open TCBs that can
exist concurrently in the CICS region. The value specified can be in the
range 1 to 999. If you reduce MAXXPTCBS from its previously defined
value, and the new value is less than the number of open TCBs currently
allocated, CICS detaches TCBs to achieve the new limit only when they are

Chapter 9. XPLink Support 265

freed by user tasks. Transactions are not abended to allow TCBs to be
detached to achieve the new limit. If there are tasks queued waiting for an
X8 or X9 mode TCB and you increase MAXXPTCBS from its previously
defined value, CICS attaches a new TCB to resume each queued task, up
to the new limit.

Changes to global user exits
XPCFTCH

When the exit XPCFTCH is invoked from a C or C++ programs that was compiled
with the XPLINK option, a flag is set indicating that any modified entry point
address, if specified by the exit, will be ignored.

XPCTA

When the exit XPCTA is invoked from a C or C++ programs that was compiled with
the XPLINK option, a flag is set indicating that a resume address, if specified by the
exit, will be ignored.

DFHUEPAR

Two symbolic values, UEPTX8 and UEPTX9, are added to the table of TCB
indicators in DFHUEPAR.

Changes to user-replaceable programs

A New user-replaceable program DFHAPXPO is provided.

DFHAPXPO is loaded during the PIPI preinitialization phase of each Language
Environment enclave where C or C++ programs compiled with the XPLINK option
are to be run. It allows you to alter the default Language Environment run-time
options. See the z/OS Version 1.4 Language Environment Programming Guide,
SC22-7561, for details of the Language Environment options that can be reset. The
program must be written in Assembler language.

Changes to monitoring

In the topic “A note about wait (suspend) times” in the “CICS Performance Guide”, a
new item is added to the Table, as follows:

Table 10. Performance class wait (suspend) fields

Field-Id Group Name Description

282 DFHTASK CICS MAXXPTCBS delay time

New fields are added to performance-class monitoring records. These are additions
to group DFHTASK, and there are some changes to the description of existing
items in that group:

New items

271 (TYPE-S, “X8CPUT”, 8 BYTES)
The processor time during which the user task was dispatched by the
CICS dispatcher domain on a CICS X8 mode TCB. When a transaction
invokes a C or C++ program that was compiled with the XPLINK option,
and that is defined with EXECKEY=CICS, it is allocated and uses a

266 Release Guide

CICS X8 mode TCB. (An X8 mode TCB can also be allocated if the
program is defined with EXECKEY=USER, but the storage protection
facility is inactive.) Once a task has been allocated a X8 mode TCB,
that same TCB remains associated with the task until the program
completes.

272 (TYPE-S, “X9CPUT”, 8 BYTES)
The processor time during which the user task was dispatched by the
CICS dispatcher domain on a CICS X9 mode TCB. When a transaction
invokes a C or C++ program that was compiled with the XPLINK option,
and that is defined with EXECKEY=USER, it is allocated and uses a
CICS X9 mode TCB. (If the storage protection facility is inactive, an X8
mode TCB is used instead of an X9 mode TCB.) Once a task has been
allocated an X9 mode TCB, that same TCB remains associated with the
task until the program completes

282 (TYPE-S, “MAXXTDLY”, 8 BYTES)
The elapsed time in which the user task waited to obtain a CICS XP
TCB (X8 or X9 mode), because the CICS system had reached the limit
set by the system parameter, MAXXPTCBS. The X8 and X9 mode open
TCBs are used exclusively by C and C++ programs that were compiled
with the XPLINK option.

Note: This field is a component of the task suspend time field,
SUSPTIME (group name: DFHTASK, field id: 014).

Changed items

007 (TYPE-S, “USRDISPT”, 8 BYTES)
X8, and X9 are added to the list of TCB modes.

008 (TYPE-S, “USRCPUT”, 8 BYTES)
X8, and X9 are added to the list of TCB modes.

262 (TYPE-S,'KY8DISPT',8 BYTES)
To the list of items that make up the total elapsed time,

v When a transaction invokes a C or C++ program that was compiled
with the XPLINK option, and that is defined with EXECKEY=CICS, it
is allocated a CICS X8 mode TCB, and dispatched on that TCB. The
TCB remains associated with the task until the program ends.

is added.

263 (TYPE-S,'KY8CPUT',8 BYTES)
To the list of items that make up the processor time,

v When a transaction invokes a C or C++ program that was compiled
with the XPLINK option, and that is defined with EXECKEY=CICS, it
is allocated a CICS X8 mode TCB, and dispatched on that TCB. The
TCB remains associated with the task until the program ends.

is added.

264 (TYPE-S, “KY9DISPT”, 8 BYTES)
To the list of items that make up the total elapsed time,

v When a transaction invokes a C or C++ program that was compiled
with the XPLINK option, and that is defined with EXECKEY=USER, it
is allocated a CICS X9 mode TCB, and dispatched on that TCB. The
TCB remains associated with the task until the program ends.

is added.

Chapter 9. XPLink Support 267

265 (TYPE-S, “KY9CPUT”, 8 BYTES)
To the list of items that make up the processor time,

v When a transaction invokes a C or C++ program that was compiled
with the XPLINK option, and that is defined with EXECKEY=USER, it
is allocated a CICS X9 mode TCB, and dispatched on that TCB. The
TCB remains associated with the task until the program ends.

is added.

All the new fields, and the changed fields, can be excluded from monitoring records
by coding DFHMCT TYPE=RECORD entries in the monitoring control table (MCT).

Changes to statistics

There are changes to “Dispatcher domain: TCB Mode statistics” which are mapped
by the DFHDSGDS DSECT.

The changes add the X8 and X9 mode TCBs, and the XP pool of TCBs, to the
descriptions of the items in this table.

Table 11. Changed Fields in the Dispatcher domain: TCB Mode statistics

DFHSTUP
name

Field name Description

TCB Mode DSGTCBNM is the name of the CICS dispatcher TCB
mode, either QR, RO, CO, SZ, RP, FO,
SL, SO, S8, D2, JM, L8, L9, J8, J9, X8, or
X9..

Reset characteristic: not reset

TCB Pool DSGTCBMP is the name of the TCB pool in which this
CICS dispatcher TCB mode is defined,
either N/A, OPEN, JVM, or XP.

Reset characteristic: not reset

Migration

Migration of existing functions

No action is needed to continue using C and C++ without XPLink.

Migration to the new function

To take advantage of the support that is now available for the XPLink compiler
option for C and C++ programs, consider the following points:

v Ensure that your C or C++ program is reentrant, and threadsafe, or modify it so
that it conforms to these standards, see “Migration planning for threadsafe
programming and the open transaction environment (OTE)” in the Migration
Guide

268 Release Guide

v If your program uses the XPCFTCH or XPCTA exits, take note of the advice in
“Global User exits and XPLink” in the CICS Application Programming Guide that:

– CICS disregards any attempt by XPCFTCH to modify the entry point

– CICS disregards any attempt by XPCTA to define a resume address

You must find other ways to manage such requirements, or conclude that this
program is not a suitable candidate for XPLINK optimization.

v Recompile the program using the XPLINK compiler option.

v Update the concurrency attribute of the PROGRAM resource definition for this
program, setting the value to threadsafe.

CICSPlex SM support

There are a number of changes to the CICSPlex SM Web User Interface and API to
match the new support for XPLINK C++.

Changes to the CICSPlex SM application programming interface
Changes to resource tables

Changes have been made to the following resource tables:

v “PROGRAM resource table”

v “PROGDEF resource table”

v “TASK resource table”

v “CICSRGN resource table”

PROGRAM resource table

The PROGRAM resource table includes the following attributes:

RUNTIME
Shows the CVDA (XPLINK) value 1068

APIST Shows the CVDA value that indicates the API status of CICSAPI or
OPENAPI

PROGDEF resource table

The PROGDEF resource table includes the following attribute:

API Shows the EYUDA values of CICSAPI or OPENAPI

TASK resource table

The TASK resource table includes the following attribute:

TMRL9CPU
Shows the user task L9 mode CPU time

CICSRGN resource table

The CICSRGN resource table includes the following SPI attributes:

MAXXPTCBS
Shows the current maximum number of TCBs in the XPLink OTE X8/X9
mode pool.

Chapter 9. XPLink Support 269

#
#

ACTXPTCBS
Shows the actual number of TCBs in the XPLink OTE X8/X9 mode pool.

The existing DISPATCHER SPI attributes MAXHPTCBS and ACTHPTCBS are no
longer supported and are flagged NOTVALID.

Changes to CICSPlex SM Web User Interface

Changes have been made to the following WUI views:

v “Program view”

v “Program Definition view”

v “CPU and TCB information view”

v “CICS region view”

Program view

The following attribute has been added to the Program
(EYUSTARTPROG.DETAILED) view:

APIST API status

Program Definition view

The following attribute has been added to the Program Definition
(EYUSTARTPROGDEF.DETAILED) view:

API Application programming interfaces

CPU and TCB information view

The following attribute has been added to the CPU and TCB information view, one
of the Active tasks view set (EYUSTARTTASK.DETAIL9) within the Task operations
view:

TMRL9CPU
User task L9 mode CPU time

CICS region view

The following attributes have been added to the CICS region
(EYUSTARTCICSRGN.DETAILED) view:

MAXXPTCBS
Shows the current maximum number of TCBs in the XPLink OTE X8/X9
mode pool.

ACTXPTCBS
Shows the actual number of TCBs in the XPLink OTE X8/X9 mode pool.

The existing DISPATCHER SPI attributes MAXHPTCBS and ACTHPTCBS are no
longer supported and are flagged NOTVALID.

270 Release Guide

Chapter 10. Support for Language Environment conforming
assembler MAIN programs

You can now produce assembler MAIN programs which are Language Environment
conforming.

Until now, the only way to use Language Environment conforming assembler
programs within CICS was to use a call from a COBOL, PLI, or C Language
Environment conforming program and linkedit the assembler program with the
high-level language (HLL) program. This made the assembler program a Language
Environment subroutine. It had to have MAIN=NO on CEEENTRY. The user had to
specify NOPROLOG and NOEPILOG and then code the CEEENTRY and
CEETERM calls separately. A CICS PROGRAM resource could not be defined as
both ASM and LE370.

CICS now supports the coding of Language Environment conforming assembler
MAIN programs. A new translator option LEASM causes Language Environment
function to be used to set up the program's environment. Such programs must be
linkedited with stub DFHELII rather than DFHEAI.

This support also enables use of the Debugger for Assembler programs.

Benefits of Support for Language Environment conforming assembler
MAIN programs

Support for Language Environment conforming assembler MAIN programs extends
the availability of Language Environment use, and it makes Debugger support
available with such programs.

Requirements
Support for Language Environment conforming assembler MAIN programs has no
particular requirements for hardware, software or resource usage beyond the
general requirements of this release of CICS.

Changes to CICS externals

Changes to resource definition

The Language attribute of the PROGRAM resource definition has changed
descriptions of some of the values that can be specified.

Language({COBOL|ASSEMBLER|LE370|PLI})
specifies the program language:

ASSEMBLER
This is an assembler language program which was not translated
using the LEASM translator option. LEASM is used to translate
those assembler programs which are to be Language
Environment-conforming MAIN programs..

LE370 The program exploits multi-language support, has been compiled by
a Language Environment-conforming compiler, or it is an assembler

© Copyright IBM Corp. 2004, 2010 271

MAIN program which was translated using the LEASM option to
produce a Language Environment-conforming program.

Changes to the application programming interface
Language restrictions

When programming in assembler and planning to translate your program using the
LEASM option, these restrictions are added to those which apply for all assembler
programs.

v Register 2 cannot be used as a code base register.

v Register 12 is reserved by Language Environment to point to the Language
Environment common anchor area (CAA) and so cannot be used at all by the
program without being saved and restored as appropriate.

v Register 13 must be used as the one and only working storage base register.

v The program cannot be a Global User Exit program (GLUE) or a Task-Related
User Exit program (TRUE).

v The program must not use, or depend on, any AMODE(24) code.

Translator options

A new translator option LEASM (valid only for assembler programs) allows you to
specify that this program is to be translated using the macros that will make it a
Language Environment-conforming program, ready for assembly as a MAIN
program.

Specification of LEASM results in the setting of a new assembler global &DFHEILE.
A fourth positional parameter LE has been added to the DFHEIGBL macro that the
translator inserts at the top of every output file. DFHEIGBL changes to set
&DFHEILE on if LEASM is specified.

The translator sets a value (X'12') for the language in ARG0 when LEASM has
been specified. The output from the translator will be identical to that produced
without specifying LEASM in every other way.

If &DFHEILE is set, the DFHEISTG, DFHEIENT, DFHEIRET and DFHEIEND
macros expand differently to create an LE environment rather than a normal CICS
environment. This allows your programs that have used NOPROLOG and
NOEPILOG and coded their own DFHEIENT and other macros to take advantage
of Language Environment support without changing their program source. For
example, all programs that require more than one code base register fall into this
category because the translator does not support multiple code base registers.

DFHEISTG
If &DFHEILE is set, the statement CEEDSA SECTYPE=OS will be added at
the top of DFHEISTG, immediately after the DSECT statement. This causes
the standard Language Environment DSA to be included, without a DSECT
statement.

DFHEIENT
DFHEIENT generates a Language Environment CEEENTRY macro that
sets up code addressability and working storage, rather than using the
standard CICS methods.

Code addressability
DFHEIENT has a CODEREG parameter that defaults to 3. When

272 Release Guide

the translator option LEASM is specified, the CEEENTRY is
generated by DFHEIENT with the BASE parameter a straight copy
of the CODEREG value.

CEEENTRY does not allow the use of registers 2 or 12 for code
addressability. Register 12 must always contain the address of the
Language Environment CAA during execution of a Language
Environment program. Register 2 is not generally used as a code
base because it is modified by instructions such as TRT.
DFHEIENT will generate an error message if Register 2 or Register
12 is specified on CODEREG in a program translated using the
LEASM option.

Working storage addressability
DFHEIENT has a DATAREG parameter that defaults to 13.
CEEENTRY doesn't allow anything other than R13 for working
storage, and does not support multiple working storage registers.
DFHEIENT disallows the use of anything other than 13 for
DATAREG in a program translated using the LEASM option.

DFHEIRET
Generates CEETERM RC=0 for a program translated using the LEASM
option.

EXAMPLE LEASM PROGRAM

Here is a simple CICS assembler program.

When translated and assembled, it becomes:

*ASM XOPTS(LEASM)
DFHEISTG DSECT
OUTAREA DS CL200 DATA OUTPUT AREA
*
EIASM CSECT ,

MVC OUTAREA(40),MSG1
MVC OUTAREA(4),EIBTRMID
EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(43) FREEKB ERASE
EXEC CICS RECEIVE
MVC OUTAREA(13),MSG2
EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(13) FREEKB ERASE
EXEC CICS RETURN

*
MSG1 DC C'xxxx: ASM program invoked. ENTER TO END.'
MSG2 DC C'PROGRAM ENDED'

END

Chapter 10. Support for Language Environment conforming assembler MAIN programs 273

*ASM XOPTS(LEASM)
DFHEIGBL ,,,LE INSERTED BY TRANSLATOR

*,&DFHEIDL; SETB 0 1 MEANS EXEC DLI IN PROGRAM 01-DFHEI
*,&DFHEIDB; SETB 0 1 MEANS BATCH PROGRAM 01-DFHEI
*,&DFHEIRS; SETB 0 1 MEANS RSECT 01-DFHEI
*,&DFHEILE; SETB 1 1 MEANS LE MAIN 01-DFHEI
DFHEISTG DSECT

DFHEISTG INSERTED BY TRANSLATOR

* EXEC INTERFACE DYNAMIC STORAGE *

DFHEISTG DSECT EXEC INTERFACE STORAGE @BBAC81A 01-DFHEI

USING *,DFHEIPLR ESTABLISH ADDRESSABILITY @BBAC81A 01-DFHEI
*
**
* D Y N A M I C S T O R A G E A R E A (D S A) *
**
*
CEEDSA DS 0D Just keep the same label for formulae 02-CEEDS
*
CEEDSAFLAGS DS XL2 DSA flags 02-CEEDS
CEEDSALNGC EQU X'1000' C library DSA 02-CEEDS
CEEDSALNGP EQU X'0800' PL/I library DSA 02-CEEDS
CEEDSAEXIT EQU X'0008' An Exit DSA 02-CEEDS
CEEDSAMEMD DS XL2 Member defined 02-CEEDS
CEEDSABKC DS A Addr of DSA of caller 02-CEEDS
CEEDSAFWC DS A Addr of DSA of last called rtn 02-CEEDS

274 Release Guide

* *
* CONTROL BLOCK NAME = DFHEIBLK *
* *
* NAME OF MATCHING PL/AS CONTROL BLOCK = None *
* *
* DESCRIPTIVE NAME = %PRODUCT EXEC Interface Block. *
* *
* @BANNER_START 02 *
* Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5697-E93 *
* *
* (C) Copyright IBM Corp. 1990, 1993 *
* *
* *
* *
* *
* @BANNER_END *
* *
* STATUS = %XA20 *
* *
* FUNCTION = EXEC Interface Block. *
* *
* The exec interface block contains information on the *
* transaction identifier, the time and date, and the cursor *
* position on a display device. Some of the other fields are *
* set indicating the next action that a program should take *
* in certain circumstances. *
* DFHEIBLK also contains information that will be helpful *
* when a dump is being used to debug a program. *
* This control block is included automatically by an *
* application program using the command-level interface. *
* EISEIBA in the EIS addresses the EIB. *
* *
* *
* *
* NOTES : *
* DEPENDENCIES = S/370 *
* MODULE TYPE = Control block definition *
* PROCESSOR = Assembler *
* *
*-- *
* *
* CHANGE ACTIVITY : *
* £SEG(DFHEIBLK),COMP(COMMAND),PROD(%PRODUCT) : *
* *
* PN= REASON REL YYMMDD HDXXIII : REMARKS *
* £L1= 550 %0G 900515 HDFSPC : Add an EIB length equate *
* £D1= I05119 %B1 930226 HDDHDMA : Correct comments for date field *
* £P1= M60581 %B0 900116 HDAEGB : Change for PLXMAP to data areas *
* *

* EXEC INTERFACE BLOCK *

DFHEIBLK DSECT EXEC INTERFACE BLOCK @BBAC81A 01-DFHEI

USING *,DFHEIBR @BBAC81A 01-DFHEI

Chapter 10. Support for Language Environment conforming assembler MAIN programs 275

EIBTIME DS PL4 TIME IN 0HHMMSS FORMAT @BBAC81A 01-DFHEI
EIBDATE DS PL4 DATE IN 0CYYDDD+ FORMAT, @D1C 01-DFHEI
* where C is the century @D1A
* indicator (0=1900, 1=2000), @D1A
* YY is the year, DDD is the @D1A
* day number and '+' is the @D1A
* sign byte (positive) @D1A
EIBTRNID DS CL4 TRANSACTION IDENTIFIER @BBAC81A 01-DFHEI
EIBTASKN DS PL4 TASK NUMBER @BBAC81A 01-DFHEI
EIBTRMID DS CL4 TERMINAL IDENTIFIER @BBAC81A 01-DFHEI
EIBRSVD1 DS H RESERVED @BBAC81A 01-DFHEI
EIBCPOSN DS H CURSOR POSITION @BBAC81A 01-DFHEI
EIBCALEN DS H COMMAREA LENGTH @BBAC81A 01-DFHEI
EIBAID DS CL1 ATTENTION IDENTIFIER @BBAC81A 01-DFHEI
EIBFN DS CL2 FUNCTION CODE @BBAC81A 01-DFHEI
EIBRCODE DS CL6 RESPONSE CODE @BBAC81A 01-DFHEI
EIBDS DS CL8 DATASET NAME @BBAC81A 01-DFHEI
EIBREQID DS CL8 REQUEST IDENTIFIER @BBAC81A 01-DFHEI
EIBRSRCE DS CL8 RESOURCE NAME @BBDIA0U 01-DFHEI
EIBSYNC DS C X'FF' SYNCPOINT REQUESTED @BBDIA0U 01-DFHEI
EIBFREE DS C X'FF' FREE REQUESTED @BBDIA0U 01-DFHEI
EIBRECV DS C X'FF' RECEIVE REQUIRED @BBDIA0U 01-DFHEI
EIBSEND DS C RESERVED @BM13417 01-DFHEI
EIBATT DS C X'FF' ATTACH RECEIVED @BBDIA0U 01-DFHEI
EIBEOC DS C X'FF' EOC RECEIVED @BBDIA0U 01-DFHEI
EIBFMH DS C X'FF' FMHS RECEIVED @BBDIA0U 01-DFHEI
EIBCOMPL DS C X'FF' DATA COMPLETE 01-DFHEI
EIBSIG DS C X'FF' SIGNAL RECEIVED 01-DFHEI
EIBCONF DS C X'FF' CONFIRM REQUESTED 01-DFHEI
EIBERR DS C X'FF' ERROR RECEIVED 01-DFHEI
EIBERRCD DS CL4 ERROR CODE RECEIVED 01-DFHEI
EIBSYNRB DS C X'FF' SYNC ROLLBACK REQ'D 01-DFHEI
EIBNODAT DS C X'FF' NO APPL DATA RECEIVED 01-DFHEI
EIBRESP DS F INTERNAL CONDITION NUMBER 01-DFHEI
EIBRESP2 DS F MORE DETAILS ON SOME RESPONSES 01-DFHEI
EIBRLDBK DS CL1 ROLLED BACK 01-DFHEI
*
EIBLENG EQU *-EIBTIME Length of EIB @L1A 01-DFHEI

* END OF EXEC INTERFACE BLOCK *

DFHEIBR EQU 11 EIB REGISTER @BA02936 01-DFHEI

@01A 02-CEEEN

276 Release Guide

* PROLOG CODE FOR EXEC INTERFACE *

*&DFHEICS; CEEENTRY PPA=DFHPPA,MAIN=YES,PLIST=OS,
* BASE=&CODEREG;,
* AUTO=(DFHEIEND-DFHEISTG)
TESTLE CSECT , 02-CEEEN
TESTLE RMODE ANY 02-CEEEN
TESTLE AMODE ANY 02-CEEEN

ENTRY TESTLE 02-CEEEN
PUSH USING 02-CEEEN
DROP , @02A 02-CEEEN
USING *,15 02-CEEEN
B CEEZ0007 02-CEEEN
DC X'00C3C5C5' 02-CEEEN

CEEY0007 DC A((((DFHEIEND-DFHEISTG)+7)/8)*8) X02-CEEEN
. Size of automatic storage.

DC A(DFHPPA-TESTLE) . Address of PPA for this program 02-CEEEN
B 1(,15) 02-CEEEN

CEEZ0007 EQU * 02-CEEEN
STM 14,12,CEEDSAR14-CEEDSA(13) 02-CEEEN
L 2,CEEINPL0007 5@01D @01C 02-CEEEN
L 15,CEEINT0007 @01C 02-CEEEN
DROP 15 @01A 02-CEEEN
BALR 14,15 02-CEEEN
LR 2,1 02-CEEEN
L 14,752(,12) 02-CEEEN
OI 8(14),X'80' 02-CEEEN
BALR 3,0 @01A 02-CEEEN
USING *,3
L 3,CEEOEPV0007 @01A 02-CEEEN
POP USING @01A 02-CEEEN
USING TESTLE,3 @01A 02-CEEEN
L 1,CEEDSANAB-CEEDSA(,13) Get the current NAB 02-CEEEN
L 0,CEEY0007 02-CEEEN
ALR 0,1 Compute new value. 02-CEEEN
CL 0,CEECAAEOS-CEECAA(,12) Compare with EOS. 02-CEEEN
BNH CEEX0007 02-CEEEN
L 15,CEECAAGETS-CEECAA(,12) Get address overflow routine 02-CEEEN
BALR 14,15 Get another stack segment. 02-CEEEN
LR 1,15 02-CEEEN
B CEEX0007 Branch around statics @01A 02-CEEEN

CEEINPL0007 DC A(CEEINPL) @01A 02-CEEEN
CEEINT0007 DC V(CEEINT) @01A 02-CEEEN
CEEOEPV0007 DC A(TESTLE) @01A 02-CEEEN
CEEX0007 EQU * 02-CEEEN

ST 13,CEEDSABKC-CEEDSA(,1) Set back chain. 02-CEEEN
ST 0,CEEDSANAB-CEEDSA(,1) Set new NAB value 02-CEEEN
XC CEEDSAFLAGS-CEEDSA(,1),CEEDSAFLAGS-CEEDSA(1) . Clear 02-CEEEN
ST 1,CEEDSAFWC-CEEDSA(,13) Set forward chain. 02-CEEEN
LR 13,1 Set save area address 02-CEEEN
USING CEEDSA,13 Addresability to SF V1R2M0 02-CEEEN
MVC CEEDSALWS,CEECAALWS-CEECAA(12) Get LWS addr V1R2M0 02-CEEEN
LR 1,2 02-CEEEN
BAL 1,*+8 @L2A 01-DFHEI

Chapter 10. Support for Language Environment conforming assembler MAIN programs 277

* The following gives an assembler message if DFHEISTG is too big @P7A
DS 0S((DFHEISTG+65264-DFHEIEND-4096)/4096) @04C 01-DFHEI
DC AL2(DFHEIEND-DFHEISTG) LENGTH OF STORAGE @L2A 01-DFHEI
DC H'0' Parameter list version number @P6C 01-DFHEI

* ESTABLISH DATA ADDRESSIBILITY *

DFHEIPLR EQU 13 PARAMETER LIST REGISTER @BBAC81A 01-DFHEI

LR DFHEIPLR,15 @BBAC81A 01-DFHEI
USING DFHEISTG,13 @BBAC81A 01-DFHEI
MVC DFHEIBP(L'DFHEIBP+L'DFHEICAP),0(1) @D3AX01-DFHEI

COPY EIB AND CA PTRS @D3A

* ESTABLISH EIB ADDRESSIBILITY *

L DFHEIBR,DFHEIBP @BBAC81A 01-DFHEI
USING DFHEIBLK,DFHEIBR @BBAC81A 01-DFHEI

* END OF PROLOG CODE FOR EXEC INTERFACE *

MVC OUTAREA(40),MSG1
MVC OUTAREA(4),EIBTRMID

* EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(43) FREEKB ERASE
DFHECALL =X'180660000800C20000082204000020',,(______RF,OUTAREA*

),(FB_2,=Y(43))

DS 0H 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X'180660000800C20000082204000020' 01-DFHEC
SR 15,15 01-DFHEC
LA 0,OUTAREA 01-DFHEC
STM 14,0,0(1) 01-DFHEC
LA 14,=Y(43) 01-DFHEC
ST 14,12(,1) 01-DFHEC
OI 12(1),X'80' LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

* EXEC CICS RECEIVE

DFHECALL =X'040200000800000014000040000000'

278 Release Guide

DS 0H 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X'040200000800000014000040000000' 01-DFHEC
ST 14,0(,1) 01-DFHEC
OI 0(1),X'80' LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

MVC OUTAREA(13),MSG2

* EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(13) FREEKB ERASE
DFHECALL =X'180660000800C20000082204000020',,(______RF,OUTAREA*

),(FB_2,=Y(13))

DS 0H 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X'180660000800C20000082204000020' 01-DFHEC
SR 15,15 01-DFHEC
LA 0,OUTAREA 01-DFHEC
STM 14,0,0(1) 01-DFHEC
LA 14,=Y(13) 01-DFHEC
ST 14,12(,1) 01-DFHEC
OI 12(1),X'80' LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

* EXEC CICS RETURN

DFHECALL =X'0E0800000800001000'

DS 0H 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X'0E0800000800001000' 01-DFHEC
ST 14,0(,1) 01-DFHEC
OI 0(1),X'80' LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

*
MSG1 DC C'xxxx: ASM program invoked. ENTER TO END.'
MSG2 DC C'PROGRAM ENDED'

DFHEIRET INSERTED BY TRANSLATOR

* EPILOG CODE FOR EXEC INTERFACE *

DS 0H @BBAC81A 01-DFHEI
LA 1,CEET0014 Get address of termination list 02-CEETE
L 15,=V(CEETREC) Get address of termination rtn 02-CEETE
BALR 14,15 Call termination routine. 02-CEETE

CEET0014 DC A(*+8) Parm 1 02-CEETE
DC A(*+8+X'80000000') Parm 2 02-CEETE
DC A(0) Enc_Modifier 02-CEETE
DC A(0) Return code. 02-CEETE

CEEMAIN CSECT 02-CEETE
CEEMAIN RMODE ANY 02-CEETE
CEEMAIN AMODE ANY 02-CEETE

DC A(TESTLE) @04A 02-CEETE
DC F'0' 02-CEETE

TESTLE CSECT 02-CEETE

* END OF EPILOG CODE FOR EXEC INTERFACE *

Chapter 10. Support for Language Environment conforming assembler MAIN programs 279

LTORG , @BBAC81A 01-DFHEI
=V(DFHEI1)
=V(CEETREC)
=Y(43)
=Y(13)
=X'180660000800C20000082204000020'
=X'040200000800000014000040000000'
=X'0E0800000800001000'

DS 0H @F8E1S @L1C 01-DFHEI
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR

*
**
* P R O G R A M P R O L O G A R E A 1 (P P A 1) *
**
*
PPA10018 DS 0F 02-CEEPP
DFHPPA DS 0F 02-CEEPP

DC AL1(PPANL0018-*) Offset to the entry name length 02-CEEPP
DC X'CE' Language Environment Indicator. 02-CEEPP
DC B'10100000' . PPA flags 02-CEEPP

* Bit 0 0 = Internal Procedure
* 1 = External Procedure
* Bit 1 0 = Primary Entry Point
* 1 = Secondary Entry Point
* Bit 2 0 = Block doesn't have a DSA
* 1 = Block has a DSA
* Bit 3 0 = compiled object
* 1 = library object
* Bit 4 0 = sampling interrupts to library
* 1 = sampling interrupts to code
* Bit 5 0 = not an exit DSA
* 1 = Exit DSA
* Bit 6 0 = own exception model
* 1 = inherited (callers) exception model
* Bit 7 Reserved

DC X'00' Member flags 02-CEEPP
DC A(PPA20018) Addr of Compile Unit Block (PPA2) 02-CEEPP
DC A(0) 02-CEEPP
DC A(0) Data Descriptors for this entry point 02-CEEPP
DS 0H 02-CEEPP

PPANL0018 DC AL2(6) . Length of Entry Point Name 02-CEEPP
DC CL6'TESTLE' . Entry Point Name 02-CEEPP

CEEINPL DS 0D 02-CEEPP
DC A(PPA2M0018) 02-CEEPP
DC A(CEEINPLSTST-CEEINPL) 02-CEEPP

CEEINPLSTST DS 0F 02-CEEPP
DC X'00' Control Level @01A 02-CEEPP
DC X'00' ENCLAVE=NO @01A 02-CEEPP
DC X'00' @01A 02-CEEPP
DC X'07' Number of items. @01C 02-CEEPP
DC A(PPA2M0018) . A of A(first entry point in comp unit) 02-CEEPP
DC V(CEESTART) . A(Address of CEESTART) 02-CEEPP
DC V(CEEBETBL) 02-CEEPP
DC A(15) . Memeber id 02-CEEPP
DC A(0) 02-CEEPP
DC XL4'00070000' . EXECOPS(ON), PLIST 02-CEEPP
DS 0H 02-CEEPP

*

280 Release Guide

Changes to global user exits

Assembler programs translated with the LEASM option cannot be used as global
user exit programs.

LEASM is used to produce Language Environment conforming MAIN programs in
assembler.

Changes to task-related user exits

Assembler programs translated with the LEASM option cannot be used as
task-related user exit programs.

**
* P R O G R A M P R O L O G A R E A 2 (P P A 2) *
**
*

EXTRN CEESTART 02-CEEPP
PPA20018 DS 0F 02-CEEPP

DC AL1(15) Member ID 02-CEEPP
DC AL1(0) Sub ID 02-CEEPP
DC AL1(0) Member defined 02-CEEPP
DC AL1(1) Level of PPAx control blocks 02-CEEPP

PPA2S0018 DC A(CEESTART) A(CEESTART for this load module) 02-CEEPP
DC A(0) A(Compile Debug Information (CDI)) 02-CEEPP
DC A(CEETIMES-PPA20018) A(Offset to time stamp) 02-CEEPP

PPA2M0018 DC A(TESTLE) . A(first entry point in comp. unit) 02-CEEPP
*
**
* T I M E S T A M P *
**
*
* Time Stamp
*,Time Stamp = 2004/06/17 08:51:00 02-CEEPP
*,Version 1 Release 1 Modification 0 02-CEEPP
CEETIMES DS 0F 02-CEEPP

DC CL4'2004' Year 02-CEEPP
DC CL2'06' Month 02-CEEPP
DC CL2'17' Day 02-CEEPP
DC CL2'08' Hours 02-CEEPP
DC CL2'51' Minutes 02-CEEPP
DC CL2'00' Seconds 02-CEEPP
DC CL2'1' Version 02-CEEPP
DC CL2'1' Release 02-CEEPP
DC CL2'0' Modification 02-CEEPP

* C O M M O N A N C H O R A R E A (C A A) *

LEPTRLEN EQU 4 03-CEEDN
*
CEECAA DSECT , CAA mapping 02-CEECA

(Definition of LE CAA removed)

* TERMINATE DEFINITION OF DYNAMIC STORAGE *
DFHEISTG DSECT @BBAC81A 01-DFHEI

ORG 01-DFHEI
DFHEIEND DS 0X END OF DYNAMIC STORAGE @BBAC81A 01-DFHEI

END

Chapter 10. Support for Language Environment conforming assembler MAIN programs 281

LEASM is used to produce Language Environment conforming MAIN programs in
assembler.

282 Release Guide

Part 4. Enterprise management

The CICSPlex SM element of CICS Transaction Server for z/OS, Version 3
Release 1 provides new capabilities that enable effective management of large
runtime configurations by the use of modern user interfaces, so that you can meet
your demanding service level objectives.

© Copyright IBM Corp. 2004, 2010 283

284 Release Guide

Chapter 11. CICSPlex SM Web User Interface enhancements

The CICSPlex SM Web User Interface has been improved to make it more powerful
and more usable. The Web User Interface is now functionally equivalent to the
CICSPlex SM TSO end user interface, and is now the primary method of accessing
CICSPlex SM.

User favorites
All WUI users now have the ability to save tabular and detail views on an
ad-hoc basis to an easily accessible and editable menu of favorites. This
allows you to reach frequently used views with just one click. Administrators
have the additional authority to update the favorites of other users.

For more information, see “User favorites” on page 286

User group profiles
Administrators are now able to create profiles for groups of users. These
profiles contain information such as default context, scope, CMAS context,
menu and result set warning count. In this way administrators can configure
the WUI in different ways to suit different groups of users in order to
present an interface that is more tailored to individual needs.

For more information, see “User group profiles” on page 290

Business application services redesign
The design of the business application services section of the WUI, used to
manage CICS resource definitions, has been improved and simplified and
should now be more familiar to users of CICS RDO.

For more information, see “Business application services redesign” on page
293

Record count warnings
The WUI can now be tailored to issue warnings before it opens a view that
will generate large numbers of records. Following a warning you have the
opportunity to alter the filters on the view in order to reduce the number of
results returned. This improves WUI performance by reducing unnecessary
waits.

For more information, see “Record count warnings” on page 296

Filter confirmation
The WUI view editor has been improved to enable you to include a filter
confirmation panel before a view opens when you are creating or updating
views. This means that when navigating to such a view, users will have the
opportunity to amend filter content regardless of the size of result set that
will be returned.

For more information, see “Filter confirmation” on page 297

Dynamic selection lists
The WUI now generates lists of potential values for various attributes in
input panels. This enhances the usability of the interface by allowing you to
select from a list of valid values, rather than having to remember them.

For more information, see “Dynamic selection lists” on page 298

Improved screen design
Several improvements have been made to maximize the use of screen
space in WUI views and menus:

© Copyright IBM Corp. 2004, 2010 285

v The use of screen space on detail views has been improved by providing
the ability to display the information in two columns rather than one. You
can design your own two-column detail views using the view editor.

v The amount of white space on tabular views has been reduced by
removing the Select All and Deselect All buttons, replacing them with
icons that reside in the Record heading of the table.

v You can now collapse filters in order to provide more screen space for
data. Collapsed filters can be expanded whenever necessary.

For more information, see “Improved screen design” on page 299

Requirements
There are no special hardware or software requirements to support this function.

Related information

Chapter 27, “The CICS operating environment,” on page 355

Changes to CICSPlex SM

User favorites
This topic describes the new user favorites feature of the CICSPlex SM Web User
Interface.

User favorites give individual users of the WUI the ability to save selected WUI
screens to a special menu where they can be accessed quickly and easily. A set of
favorites always relates to an individual user only and not to user groups. However
a similar result can be achieved for groups of users by using the new user group
profile facility in conjunction with the view editor (see “User group profiles” on page
290 for guidance).

The information for user favorites is held in a new object called 'user'. The user
object holds a menu group that contains hyperlinks for the favorites of a user. There
are two ways of creating a user object:

v It can be created the first time a user creates a favorite. When a user creates a

favorite by clicking on the icon, the WUI searches for a user object that
has an ID matching the user's ID. If a matching user object cannot be found, the
WUI server automatically creates a matching user object for that user.

v It can be created by an administrator in the user editor. See “Creating and
managing favorites for other WUI users” on page 288 for more information.

Managing favorites with the favorites editor
This topic describes how you can use the new Web User Interface favorites editor
to manage your own user favorites.

As well as being able to add views to your own favorites list using the icon,
you can also work with your favorites using the favorites editor. To open this editor,
click on Favorites editor in the Special section of the WUI navigation frame. This
opens the editor in a new browser window as shown in Figure 31 on page 287.

286 Release Guide

To modify a favorite select a radio button and click on one of the four buttons at the
bottom of the view.

1. To edit a screen, click Edit. Select the favorite you want to edit from the list,
then click OK to open the Components of Favorite screen. From this screen
you can choose to alter the menu's title and annotation, or destination. Select
Destination to update its context and scope settings and filter settings.

2. To move the position of an item on the favorites list, click Move. Select one of
your favorites from the list and click OK. This opens the Move Favorite screen.
Choose the new position for the selected item and click OK again to make the
change.

3. To copy a favorite screen, click Copy. Select one of your favorites from the list
and click OK. This opens a Copy Favorite screen like the one shown in shown
in Figure 32 on page 288.

Figure 31. The favorites editor

Chapter 11. CICSPlex SM Web User Interface enhancements 287

Now you can give the copy a new title. Select its position on your favorites list
by selecting the existing favorite from the list above which the new copy will be
positioned. If you want to position the new copy at the bottom of the list, do not
select an existing favorite. Click OK to confirm the operation.

4. To delete a favorite, click Delete. Select one of your favorites from the list and
click OK to confirm.

The favorites editor allows you to edit your own list of favorites. It does not allow
you to manage the favorites of other users. Only WUI administrators with access to
the user editor have the authority to do this.

Creating and managing favorites for other WUI users
This topic describes how administrators can use the new Web User Interface user
editor to manage the favorites of other users.

In order to create and manage the favorites of other users you need to be a WUI
administrator with at least update access to the new ESM facility profile
EYUWUI.wui_server_applid.USER.

Figure 33 on page 289 illustrates screens in the user editor used to edit user
favorites.

Figure 32. Copy Favorite screen

288 Release Guide

If you have the necessary access, the hyperlink that launches the user editor
appears in the navigation frame along with the view editor hyperlinks . Clicking on
this hyperlink launches a new browser window displaying the CICSPlex SM Web
User Interface User Editor screen. To work with favorites, select Users. This
opens the User Editor screen. This screen gives you the following options:

Create
Use this option to create a new user object in the repository. Each user
needs a user object to hold a list of favorites. The WUI automatically
creates a user object the first time a user creates a favorite (if one does not
already exist), so most existing users will already have one.

Edit Use this option to work with the favorites of an existing user. It allows you
to create, move, copy, edit and delete a user's favorites.

Delete Use this option to delete a user object from the repository. This also deletes
any existing favorites for that user.

This is how you would use the user editor to create a new user object and add
some favorites:

1. Create the new user object

a. Starting at the User Editor screen, click Create to open the Create New
User screen.

User Groups
Users

Create

Edit

Delete

Finish

User Editor

OK

Create New User

User name

Cancel

OK Cancel

Edit User
Select:

OK Cancel

Confirm User Delete

User:

OK Cancel

Delete User
Select:

Save

Favorites Editor
Create
Move
Copy
Edit

Delete

Abandon

Figure 33. User screens in the user editor

Chapter 11. CICSPlex SM Web User Interface enhancements 289

b. Type in the new user ID. User IDs are restricted to a maximum of eight
characters. Valid characters are A-Z , 0-9, # , $ and @.

c. Click OK. This confirms the operation and opens the Favorites Editor
screen used to create and manage a user's list of favorites.

2. Create a new favorite item.

a. In the Favorites Editor screen, click Create. This opens the edit screen that
is used by the view editor for editing detail items. From this screen you can
perform most of the actions on a favorite that you can on a menu item in the
view editor.

b. Complete this screen by giving the new favorite a title and type in the target
view or menu, the context and scope settings, and the filter settings.

c. Click Save. This saves the updates in the repository and returns you to the
User Editor screen. If you click Abandon, all of your changes, including the
new user object, are discarded.

3. Create more favorites and add them to the new user object.

a. From the User Editor screen, click Edit This opens the Edit User screen

b. Select the newly created user ID and click OK. This takes you back to the
Favorite Editor screen.

c. Create a new favorite item as before, and save your updates. Repeat this
step for each favorite you want to add to the new user object.

Related tasks

“Managing favorites with the favorites editor” on page 286
This topic describes how you can use the new Web User Interface favorites editor
to manage your own user favorites.

User group profiles
This topic describes the new user group profiles feature of the CICSPlex SM Web
User Interface (WUI).

This new feature enables administrators to create profiles for groups of WUI users.
What individual users see and do when they log on to the WUI can be controlled by
the user group profile to which they belong enabling the WUI to be tailored to the
needs of various groups of users. You can, for example, use the view editor to
create a new WUI menu containing only operations views and make this the default
menu for a group of users. This would provide a simplified operational WUI for
users who only need to carry out this kind of task.

A user group profile can contain the following information:

v Result set warning count (see “Record count warnings” on page 296)

v Name of the default main menu

v Name of the default navigation menu

v Default context

v Default scope

v Default CMAS context

If a profile does not have some of these values specified; for example, if the default
menu value is blank, the corresponding WUI parameter value specified in the JCL is
used. This is also the case for any invalid values set in the profile, for example if
the specified default menu does not exist.

290 Release Guide

User group profiles are created and managed using a new editing facility, the user
editor, which can be accessed by administrators with the necessary authority from
the WUI main menu. See “Creating and managing user group profiles” for more
information.

To facilitate this a new type of object called a user group has been introduced. User
group objects, like view and menu objects, can be imported and exported using the
COVC transaction.

User group profiles can be used only if security is active in the WUI. A user group
object relates to a user group name in the external security manager (ESM). When
a user signs on to the WUI the signon procedure gets the accessor environment
element (ACEE) from the ESM for the user. The ACEE is used to retrieve the user's
default group. The default group name is then used to obtain a corresponding group
object in the WUI. If there is no corresponding group object found in the WUI cache
when the user signs on, the default values specified in the WUI parameters in the
JCL are used for that user.

Note: In the ESM user groups can contain only the following characters:
v A through Z (you can enter lowercase characters but they are folded to

uppercase)
v 0 through 9
v # (X'23'), $ (X'24') and @ (X'40')

In order to manage user group profiles an administrator needs update access to a
new ESM facility profile named EYUWUI.wui_server_applid.USER where
wui_server_applid is the application ID of the WUI server to which this profile
relates.

Setting up a new user group involves the following steps:

1. Creating a new user group profile in the WUI using the user editor (see
“Creating and managing user group profiles” for guidance.

2. Creating a user group with the same name in the ESM.

3. Setting the user group as one or more users' default user group in the ESM.

Creating and managing user group profiles
This topic describes how to create and manage Web User Interface (WUI) user
group profiles.

User group profiles are created and managed using a new WUI editing facility
called the user editor.

The hyperlink that launches the user editor appears in the navigation frame along
with the view editor hyperlinks. A signed on user can see a user editor hyperlink
only if he or she has at least update access to a the new ESM facility profile
EYUWUI.wui_server_applid.USER. Clicking on this hyperlink launches a new browser
window that uses a set of new views created for the user editor.

When you launch the user editor you can choose to edit user groups or users. The
diagram in Figure 34 on page 292 illustrates the relationships between the screens
in the user group section of the user editor.

Chapter 11. CICSPlex SM Web User Interface enhancements 291

Using the user editor is straightforward. For example to create a new profile follow
this procedure:

1. Navigate to the Create New User Group screen:

a. Click User Editor in the navigation frame to open a new CICSPlex SM Web
User Interface User editor window.

b. Click User Groups to open the User Group Editor screen. This screen
gives you options to create, edit or delete a profile.

c. Click Create to open the Create New User Group screen.

2. Name the new group profile:

a. Type in the name of the new group. (This will need to match a user group
name defined in the ESM.) Names are restricted to a maximum of eight
characters. As in the ESM, the allowed characters are A-Z (upper case) 0-9,
#, $ and @

b. Click OK. This confirms the operation and opens the Edit User Group
Profile screen.

3. Type in the user group details. See “User group profiles” on page 290 for a
description of this information.

4. Click Save to create the new profile or Abandon to cancel the operation.

Save

User Group:

Edit User Group Profile

Warning record count

Default main manu

Default navigation menu

Default context

Default scope

Default CMAS context

Abandon

OK

OK

OK
OK

Create New User Group

Name

Cancel

Cancel

Cancel
Cancel

User Groups
Users

Create

Edit

Delete

Finish

User Group Editor

Confirm Group Delete

User Group:

Edit User Group
Select:

Delete User Group
Select:

Figure 34. User group screens in the user editor

292 Release Guide

To edit a group, click on Edit in the User Group Editor screen to open the Edit
User Group screen and select an existing group. This opens an Edit User Group
Profile screen containing details of the selected group. Make your changes and
click Save to update the profile or Abandon to cancel the operation.

To delete a group, click on Delete in the User Group Editor screen to open the
Delete User Group screen and select an existing group. Click OK to open the
Confirm User Group Delete screen and OK again to confirm the operation.

Business application services redesign
This topic describes improvements to the design of the business application
services views and menus used for CICS resource definitions in the WUI.

In the new WUI design BAS functions are separated into basic and fully functional
view menus. To access BAS functions from the WUI main menu click
Administration views. At the bottom of the Administration views are two new
sub-menus:

Basic CICS resource administration views
This provides a simplified RDO-like model of BAS including resource
definitions, resource groups and resource descriptions but not resource
assignments.

Fully functional Business Application Services (BAS) administration views
In addition to the basic model this also includes links to resource
assignment views aimed at more advanced users. This adds more power
and flexibility to the management of resource definitions.

Chapter 11. CICSPlex SM Web User Interface enhancements 293

Links from both menus are split into three groups:

Definitions
Includes the following links:
CICS resource definitions

Menu containing links to definition views for each resource type.
Resource groups

Link to definitional view for managing resource group definitions.
Associated actions are Create, Update, Remove, Install and Add to
Resource description.

Resource assignments (fully functional menu only)
Link to definitional view for creating and managing resource
assignments. Associated actions are Create, Update, Remove and
Add to Resource description.

Resource descriptions
Link to definitional view for creating and managing resource
descriptions. Associated actions are Create, Update, Remove,
Install and Replace.

Associations
Includes the following links:
CICS resource definitions in resource group

Link to a new view as shown in Figure 36 on page 295, which is
supported by the new RESINGRP resource table. This replaces the
Resources in resource group set of views (one for each resource

Figure 35. Detail of new CICS resource definition BAS menus

294 Release Guide

type) of previous releases.

The view includes a Remove action button allowing you to remove
an association between a resource definition and its parent
resource group. There is no create action with this view. Adding a
resource to a group is carried out while defining the resource itself

Resource groups in description
Link to definitional view for managing the associations between
resource groups and resource descriptions. Associated actions are
Create, Update and Remove.

Resource assignment in description (fully functional menu only)
Link to definitional view for managing the associations between
resource assignments and resource descriptions. Associated
actions are Create, Update and Remove.

CICS system links
Link to definitional view for managing CICS system link definitions.
Associated actions are Create, Remove and Install.

Resources deployed by...
Includes the following links to views displaying active CICS resources:
Resource description

Link to a tabular view displaying deployed resources selected by
resource description.

Resource assignment (fully functional menu only)
Link to a tabular view displaying deployed resources selected by
resource assignment.

Figure 36. CICS resource definitions in resource group tabular view

Chapter 11. CICSPlex SM Web User Interface enhancements 295

CICS system
Link to a tabular view displaying deployed resources selected by
CICS system.

Record count warnings
This topic describes how the WUI can issue warnings if the expected number of
records to be returned in certain views exceeds a set threshold.

This new feature is designed to issue a warning if a request to open certain views
will result in a larger than expected amount of data. This provides an opportunity to
alter the filters on these views and confirm or cancel the request before the request
is executed.

This feature applies to the views associated with the following resources:

CMDT FEPINODE PROGRAM

CONNECT FEPIPOOL REMFILE

DB2CONN FEPITRGT REMTDQ

DB2ENTRY INDTDQ REMTRAN

DB2TRN INTRATDQ RQMODEL

DOCTEMP JOURNAL SMFJRNL

DSKJRNL JRNLNAME SYSDUMP

DSNAME LOCFILE TAPEJRNL

ENQMODEL LOCTRAN TCPIPS

EXITGLUE MODENAME TERMNL

EXITTRUE PARTNER TRAN

EXTRATDQ PROCTYP TRANDUMP

FEPICONN PROFILE TSMODEL

There are two ways of specifying the number of records required to trigger the
warning mechanism:

v Set a value for the new DEFAULTWARNCNT WUI server initialization parameter
during WUI server configuration. DEFAULTWARNCNT can take an integer value
in the range of 0 to 99999999. This is an optional parameter.

v Set a warning record count value in a user group profile. This allows WUI
administrators to set a value for all the members of a WUI user group. See
“Creating and managing user group profiles” on page 291 for more information.

In both cases the default value is 0 meaning that no warnings are issued.

A value set in a user group takes precedence over a value set in the
DEFAULTWARNCNT parameter. Before a warning is issued the WUI checks to
determine whether or not the signed on user is associated with a user group (this
can occur only if the WUI is running with security switched on). If so, the WUI uses
any value for the warning count specified in that user group. If the user does not
belong to a user group, or no maximum value is set, the WUI checks the
initialization parameters and uses any value set there. If no value has been
specified, the default of 0 is used.

If the value for the warning count is greater than 0, the WUI checks the size of the
potential set of records to be returned. This gives an indication of the maximum

296 Release Guide

number of records that could be returned. It is not always accurate because any
filters other than that associated with the first part of the primary key field are not
taken into account. If this potential value is greater than the value of the warning
count, a warning screen like the one in Figure 37 is displayed. If the returned value
is less than or equal to the warning count value, the WUI view is displayed in the
usual way.

Clicking Refresh drives a new request. This allows you to alter the primary key
field, which is included in the Warning count screen, to test a new filter value in
order to produce a smaller set of results. Any other filters remain in place from the
original request. If the set of results returned is not below the warning count limit,
the warning count screen is redisplayed with the original warning count message. If
the size is below the warning count limit, the warning count screen is redisplayed.

Clicking OK at the bottom of the screen performs the current request regardless of
the number of results to be returned.

Clicking Cancel is the equivalent of pressing the back link on the browser; the
previous screen is redisplayed.

Filter confirmation
This topic describes the new filter confirmation feature of the CICSPlex SM Web
User Interface.

It is now possible for you to specify filter criteria before the WUI retrieves the data
for a view in a similar way to the TSO EUI.

When designing your own views in the view editor you now have the option to
specify that a filter confirmation screen should be displayed before the data retrieval
is executed. The views supplied with the WUI are not affected by this change. A

Figure 37. Warning count screen

Chapter 11. CICSPlex SM Web User Interface enhancements 297

typical filter confirmation screen is shown in Figure 38.

You can override the filter values in the confirmation screen by overtyping the fields
and clicking OK.

Note: Filter confirmation is always applied before any result set warnings are
processed.

Dynamic selection lists
This topic describes the new dynamic selection lists feature of the CICSPlex SM
Web User Interface (WUI).

The WUI is now capable of generating dynamic selection lists in a similar way to
the TSO EUI. Fields capable of generating a selection list, are marked with the icon

to the right of the text input box. For resource input fields, clicking the icon
opens a screen like this:

Figure 38. Filter confirmation screen

298 Release Guide

The valid values are displayed on the screen in tabular form sorted by resource
type. To make a selection from the list you just select a radio button and click OK.

Selection list screens include an entry field containing the value currently being
used to filter the list. To use a new filter, type a new value in the entry field and click
Refresh.

Only attributes and parameters in entry fields in task guides, tabular and detail
views are capable of generating selection lists. Filters and context and scope fields
are not able to generate selection lists.

The selection list screen for metadata attributes requests show all, or a filtered
subset, of the attributes for a base table sorted by attribute name. They are used
mainly for evaluation definition creation.

You can reduce the number of values displayed in a selection list by specifying filter
values. These filters differ from filters as they normally occur in the WUI because
they use only the = (equals) operator. You can type a generic value as the value for
the attribute using the wildcard symbols *(asterisk) and + (plus sign) in the usual
way, for example, DW*. On a selection list screen you can then alter the values
displayed in the list by modifying the filter value that appears in the box at the top of
the screen.

Note: If you type in a value that does not contain generic characters, this value is
still used as the filter regardless of whether any values will be displayed in
the selection list. This differs from the current EUI behavior, which would
produce a list of all available values if no values are produced when it is
supplied with an attribute that does not contain wild cards.

Improved screen design
This topic describes new features that improve the usability and appearance of WUI
views and menus.

Figure 39. Resource selection list screen

Chapter 11. CICSPlex SM Web User Interface enhancements 299

Two-column detailed views
The introduction of two-column detailed views increases the amount of data
that can be displayed on your screen and reduces the need for screen
scrolling. Here is an example of a two-column view:

You can create two-column detailed views using the view editor. See
“Creating two-column detailed views” on page 302 for guidance.

Figure 40. Part of a two-column detail view

300 Release Guide

Expand and collapse filters
Filters on tabular views can take up large amounts of screen space
restricting the data that can be displayed. You can now mitigate this by
collapsing the filters when you are not altering them. You can expand them
again when you want to change them. Figure 41 shows part of a tabular
view with the filters expanded.

To collapse the filter, click the collapse (minus sign) icon at the top left of
the filter area.

Figure 42 shows the same screen with the filters collapsed. The amount of
information displayed is the same but the data fields run across the screen.

To expand the filters, click the expand filter (plus sign) icon.

In order to determine whether filters should be displayed in their expanded
or collapsed state by default use this new optional WUI server initialization
parameter:

FILTERSTYLE(EXPAND/COLLAPSE)

If you do not specify this parameter, the WUI displays filters in the
expanded state by default.

When you navigate away from a view with filters in a non-default state and
view some other screen, the filter area in the new view reverts to the
default filter setting as specified in the FILTERSTYLE parameter.

If you navigate away from a tabular view and then immediately return, the
filter area remains in the state you left it in when the view was last
displayed.

Figure 41. Expanded filter area of a tabular view

Figure 42. Collapsed filter area

Chapter 11. CICSPlex SM Web User Interface enhancements 301

Select all and deselect all icons
In order to improve the utilization of space on tabular views, the Select all
and Deselect all buttons used in previous releases to select or deselect all
resources matching given criteria have been replaced by the following
icons:

Select all

Deselect all

Both icons are located in tabular views in the second row of the column
labeled Record (in the same table row as the sort and summary icons).

The functionality of the select all and deselect all options is otherwise
unchanged.

Creating two-column detailed views
This topic explains how to create and update two-column detailed views using the
WUI view editor.

The WUI view editor has been updated to enable the creation and update of
two-column detailed views. The Add View screen of the view editor has been
updated to include a new view type called Two column detail form. The Detail
form type of previous releases has been renamed One column detail form.

The process of creating a new view is much the same as in previous releases. This
is an outline of the steps you need to follow to add a new two-column detailed view
to an existing view set:

1. Open the view editor and navigate to the Add View screen.

a. From the Main menu navigation panel, click View editor > View sets >
Edit. This opens the Open View Set screen.

b. Select the view set to which your new detailed view will belong and click
OK.

Note: Remember, it is not possible to change an IBM-supplied view set or
view unless you copy and rename it first.

This opens the View Set Contents screen, which contains a list of the
views currently belonging to the selected view set.

c. Click Add at the bottom of the screen. This opens the Add View screen,
which is used to create a new view for the selected view set.

2. Name the new view and define its type.

a. Type in a name for your new view in the View name field.

b. Select Two column detail form from the list of view types.

c. Select Key attributes from the list of pre-fill options and click OK. This
opens the Detailed Form Components screen.

3. Add an attribute to the left column

When you choose to add an item to a two-column detailed view, the new
element is placed in the left column. In order to maintain left-right alignment a
white space element is automatically placed in the right column opposite the
new item.

a. Select Form contents. This opens a Form Contents screen similar to the
one in Figure 43 on page 303. Notice it contains a Space element type,
which is necessary in the creation of two column screens in order to balance

302 Release Guide

the right and left columns.

b. Click Append. This opens the Form Item Type screen.

c. Select Attribute field and click OK to open the Form Attribute Field
screen.

d. Select an attribute from the list and click OK to open the Form Item
Components screen.

e. Complete the definition of the new attribute by:
v Typing in the attribute title and any annotation
v Selecting the display options; either normal or graphical
v Adding any view links.

f. Click Finish to add the new attribute to your new view. This takes you back
to the Form Contents screen.

4. Add another attribute to the right hand column of the view.

In order to add an element to the right hand column, you need to select a white
space element and then edit it to change it to the type of element required:

a. Select the white space element created in step 3 and click Edit. This opens
the Form Item Type screen again.

b. Select the type of element you want to add to the right hand column and
follow the procedure outlined in step 3 to define it.

Click Finish to add the right hand element to the view

You can repeat steps 3 and 4 as many times as necessary to add more
elements to the left and right columns.

If you want to remove an item from the right hand column, select it and click
Delete. This converts the item back to a white space element.

Note: You cannot delete an individual white space element but you can remove
adjacent elements in both columns by clicking Delete row.

Figure 43. Form Contents screen for a two-column detailed view

Chapter 11. CICSPlex SM Web User Interface enhancements 303

5. Complete the view definition.

a. Click OK on the Form Contents screen to return to the Detailed Form
Components screen.

b. Now add the rest of the components of the new view including a title, action
buttons, filters, context and scope and so on.

c. When you have added all the required components, click OK to save the
new view and return to the View Set Contents screen.

Changes to CICSPlex SM API
Some changes have been made to the CICSPlex SM API to support the new
business application services design.

API changes in support of business application services
redesign

A new resource table named RESINGRP is introduced. The RESINGRP resource
describes the membership of resource definitions in a resource group. It has the
following attributes:

Table 12. RESINGRP resource table attributes

Name Data type Source Length Sum Description

CHANGETIME DATETIME CPSM 8 MAX Last time the
definition was
changed

RESGROUP-1 CHAR CPSM 8 DIF Resource group name

RESNAME-2 CHAR CPSM 8 DIF Resource definition
name

RESVER-3 BINARY CPSM 1 AVG Resource definition
version

RESTYPE-4 CHAR CPSM 8 DIF Resource definition
type

DESCRIPTION CHAR CPSM 58 DIF Resource definition
description

Messages
A number of new messages have been added to the CICSPlex SM Web User
Interface.

New Web User Interface client messages

EYUVC1258W EYUVC1289W EYUVC1293I EYUVC1294I

EYUVC1310I EYUVC1311I EYUVC1312W EYUVC1313E

EYUVC1314I EYUVC1321E

New Web User Interface editor messages

EYUVE0111E EYUVE0142I EYUVE0144I EYUVE0760I

EYUVE0761I EYUVE0821I EYUVE0949I EYUVE0950E

EYUVE0951E EYUVE0952E EYUVE0953E EYUVE0954E

304 Release Guide

EYUVE0956I EYUVE0957E EYUVE0958E EYUVE0959E

EYUVE0960E EYUVE0961I EYUVE0962I EYUVE0963E

EYUVE0964E EYUVE0965E EYUVE0969I EYUVE0970E

EYUVE0971E EYUVE0972E EYUVE0973E EYUVE0974E

EYUVE0975E EYUVE0976E EYUVE0977E EYUVE0978I

EYUVE0979I EYUVE0980E EYUVE0981E EYUVE0982E

EYUVE0983I EYUVE0984E EYUVE0985E

Chapter 11. CICSPlex SM Web User Interface enhancements 305

306 Release Guide

Chapter 12. Enhancements to CICSPlex SM batched
repository update facility

New methods have been introduced to provide alternatives to the existing TSO
end-user interface BATCHREP command for submitting batched updates to a
specified CICSPlex SM repository.

The alternative ways of accessing BATCHREP are as follows:

v A new BATCHREP resource table available as an object for reference by the
CPSM API

v WUI support of the new BATCHREP resource table

v A batch utility program that provides a BATCHREP facility

The WUI support and the batch utility exploit the use of the new BATCHREP
resource table as an object referenced by the CPSM API.

Benefits of the enhancements to CICSPlex SM batched
repository-update facility

The introduction of these alternatives to the use of the CICSPlex SM TSO end-user
interface provides:

v Improved accessibility of CPSM BATCHREP facilities through a new BATCHREP
view in the WUI

v Extension of access to CPSM BATCHREP facilities to a new z/OS job step utility
and to a CPSM API program

v Provision of a batch utility enabling definitions to be maintained from a job step
and thereby allowing maintenance to be integrated into library control systems

Requirements
There are no special hardware or software requirements to support this function.

Related information

Chapter 27, “The CICS operating environment,” on page 355

Batch utility program
The new batch utility program runs as a z/OS job step and connects to the CMAS
whose repository is to be updated. Batched repository updates are submitted to run
in that CMAS. The utility can initiate EXECUTE and CHECK actions. The CMAS
must be at CICS Transaction Server for z/OS Version 3.1.

Changes to CICSPlex SM application programming interface

The BATCHREP resource table can now be used with the CICSPlex SM API.

Two actions have been added to the BATCHREP resource table:

EXECUTE
Submits batched repository updates to run in a specified CMAS. The
CONTEXT option on the CONNECT command of the CICSPlex SM API is
used to specify the name of the CMAS.

© Copyright IBM Corp. 2004, 2010 307

CHECK
Checks the commands specified in the batched repository-update facility
input file.

The input parameter fields for these actions match the external attributes as shown
in Table 13:

Table 13. BATCHREP resource table attributes

Name Datatype Source Length Summary Description

(INPUTDSN-1) CHAR CPSM 44 DIF Input dataset name

(INPUTMEMBER-2) CHAR CPSM 8 DIF Input member name

PRINTCLASS CHAR CPSM 1 DIF Output print class

PRINTNODE CHAR CPSM 8 DIF Destination print node

OUTPUTUSER CHAR CPSM 8 DIF Output user ID

Changes to the CICSPlex SM Web User Interface

A new WUI view called Batch Repository Update Job (EYUSTARTBATCHREP) has
been added to the Administration Views menu (EYUSTARTADMIN). To access the
new view from this menu click Batched repository update job under the
Administration views heading. The new view is equivalent to the TSO EUI
BATCHREP view.

To submit batched repository updates using the WUI you must:

v Ensure that the WUI server is connected to the CMAS that is associated with the
data repository you want to update.

v Select a record and click the Check or Execute button

v Enter the input parameters that are equivalent to those required by the TSO EUI
BATCHREP view.

Messages

A number of new data repository messages have been added:

New data repository messages

EYUXD0901E EYUXD0902E EYUXD0903E EYUXD0904E

EYUXD0905E EYUXD0906E EYUXD0907E EYUXD0908I

EYUXD0909I EYUXD0910E EYUXD0911E EYUXD0912E

EYUXD0913E EYUXD0914E EYUXD0915E EYUXD0916E

Security

Existing CICSPlex SM security features that support the use of an external security
manager can still be used to implement access controls on the use of the new z/OS
job step utility, the API programs that reference the BATCHREP resource table, and
the use of the WUI to reference the BATCHREP view.

308 Release Guide

Migration

The new WUI or CPSM API access to BATCHREP, or the z/OS job step utility for
BATCHREP are facilities to use as alternatives to the existing TSO EUI BATCHREP
facility.

The CMAS to which the utility connects must be at CICSPlex SM Version 3.1

Chapter 12. Enhancements to CICSPlex SM batched repository update facility 309

310 Release Guide

Part 5. Miscellaneous changes

This part describes new and changed function in CICS Transaction Server for z/OS,
Version 3 Release 1 that are outside the scope of the three themes for the release.

© Copyright IBM Corp. 2004, 2010 311

312 Release Guide

Chapter 13. New installation process

This topic draws your attention to a new installation process for CICS.

This release of CICS Transaction Server is installed using the SMP/E RECEIVE,
APPLY, and ACCEPT commands. The SMP/E dialogs may be used to accomplish
the SMP/E installation steps.

The process is described in the CICS TS 3.1 Program Directory. It is in line with
IBM Corporate Standards, and may be familiar to those who have installed other
z/OS products.

The traditional method, DFHISTAR, of installing CICS Transaction Server is still
available. The Program Directory indicates where information about DFHISTAR may
be found in the Installation Guide.

Benefits of the new installation process

The SMP/E RECEIVE, APPLY, and ACCEPT process for installation is an IBM
Corporate Standard. It may be familiar to those who have installed other z/OS
products.

© Copyright IBM Corp. 2004, 2010 313

314 Release Guide

Chapter 14. EXTRACT STATISTICS command

A new SPI command, EXTRACT STATISTICS, handles statistics for URIMAP,
PIPELINE, and WEBSERVICE resources.

Use the EXTRACT STATISTICS command to retrieve the current statistics for a
single resource, or global statistics for a class of resources.

The EXTRACT STATISTICS command performs a function equivalent to COLLECT
STATISTICS, for the URIMAP, PIPELINE, and WEBSERVICE resources. To collect
statistics for other resources use the existing COLLECT STATISTICS command.

The syntax of the EXTRACT STATISTICS differs from that of COLLECT
STATISTICS.

Benefits of the EXTRACT STATISTICS command

All CICS SPI commands are restricted in the number of distinct options they can
support. As new resources have been added to CICS over time, the limit has been
reached for the COLLECT STATISTICS command, and it is not possible to
accommodate the new URIMAP, PIPELINE, and WEBSERVICE resources on the
existing command.

The EXTRACT STATISTICS command uses the RESTYPE option, with a CVDA, to
specify a CICS resource. As a result, there is no limit on the number of resources
that the command can potentially support, although in this release, only the three
new resources are supported

Changes to CICS externals

Changes to the system programming interface
The EXTRACT STATISTICS command

The EXTRACT STATISTICS is added to CICS to supplement the function of the
COLLECT STATISTICS command.

For the PIPELINE, URIMAP, and WEBSERVICE resources, use EXTRACT
STATISTICS to retrieve the current statistics for a single resource, or global
statistics for a class of resources. EXTRACT STATISTICS only deals with these
three resources. To COLLECT STATISTICS for other resources, continue to use the
COLLECT STATISTICS command.

EXTRACT STATISTICS performs a function equivalent to COLLECT STATISTICS
for the resources URIMAP, PIPELINE, and WEBSERVICE, because these could not
be provided by extending COLLECT STATISTICS (due to a design limitation of that
command). When compared to COLLECT STATISTICS, the syntax of EXTRACT
STATISTICS is different and provides for unlimited future expansion.

© Copyright IBM Corp. 2004, 2010 315

Extract STATISTICS

�� EXTRACT STATISTICS RESTYPE(cvda)
RESID(data-area)

RESIDLEN(data-value)

�

� SET(ptr-ref)
LASTRESET(data-area)
LASTRESETHRS(data-area) LASTRESETMIN(data-area) LASTRESETSEC(data-area)

��

Conditions: INVREQ, IOERR, LENGERR, NOTAUTH, NOTFND

Description

The EXTRACT STATISTICS command returns to the invoking application the
current statistics for a particular resource, or overall statistics for the resources of a
given type.

The statistics that CICS gives you are those that have been accumulated after the
expiry of the last statistics extraction interval, end-of-day expiry, or requested reset.
(Statistics already written to the SMF data set cannot be accessed.) The EXTRACT
STATISTICS command does not cause the statistics counters to be reset.

CICS obtains enough storage for the data returned from this command, and returns
a pointer to this area. The first two bytes of the area contain its length. This storage
can be reused by subsequent EXTRACT STATISTICS commands, so you should
store elsewhere any data that is required beyond the next issue of the command.
CICS releases this storage at task termination.

Not all resource types provide both global and specific statistics. Table 14 tells you
which statistics are available for each resource type, and gives the copybook name
for each set of available statistics. The copybooks define the format of the returned
statistics. Where no copybook name is given in the global statistics column, global
statistics are not available for the resource type; similarly, where there is no entry in
the specific statistics column, you cannot get statistics for an individual resource.

Table 14. Resource types and statistics

Resource type CVDA RESIDLEN Statistic type Global
statistics

Specific
statistics

PIPELINE 1124 Char(8) PIPELINE -- DFHPIRDS

URIMAP 1173 Char(8) URIMAP DFHWBGDS DFHWBRDS

WEBSERVICE 1174 Char(32) WEBSERVICE -- DFHPIWDS

Copybooks are provided in ASSEMBLER, COBOL, and PL/I. (There is no copybook
for C.) The names of the copybooks are the same in each language. You can find
them in the following libraries:

ASSEMBLER CICSTS31.CICS.SDFHMAC

COBOL CICSTS31.CICS.SDFHCOB

PL/I CICSTS31.CICS.SDFHPL1

316 Release Guide

Note: Some of the copybooks contain packed fields. Before these fields are used,
they should be checked for hexadecimal zeros. The COBOL versions of the
fields have been redefined as numeric with a suffix of -R for this purpose.

Options

LASTRESET(data-area)
returns a 4-byte packed decimal field giving the time at which the counters for
the requested statistics were last reset. This is usually the time of the expiry of
the last interval. The last reset time is always returned in local time.

There are two formats for the reset time:

v A composite (packed decimal format 0hhmmss+), which you obtain by using
the LASTRESET option.

v Separate hours, minutes, and seconds, which you obtain by specifying the
LASTRESETHRS, LASTRESETMIN, and LASTRESETSEC options
respectively.

LASTRESETHRS(data-area)
returns a fullword binary field giving the hours component of the time at which
the counters for the requested statistics were last reset (see the LASTRESET
option).

LASTRESETMIN(data-area)
returns a fullword binary field giving the minutes component of the time at which
the counters for the requested statistics were last reset (see the LASTRESET
option).

LASTRESETSEC(data-area)
returns a fullword binary field giving the seconds component of the time at
which the counters for the requested statistics were last reset (see the
LASTRESET option).

RESID(data-area)
specifies the name of the resource for which statistics are being extracted. The
absence of this keyword means that global statistics are to be extracted.

RESIDLEN(data-value)
specifies the length of the RESID data area. If omitted, the default value is the
length given in Table 14 on page 316.

RESTYPE(cvda)
requests statistics for a particular resource type depending on the CVDA
supplied. Valid CVDA values are:

PIPELINE
requests statistics for a PIPELINE; RESID identifies the particular
PIPELINE.

URIMAP
requests statistics for a URIMAP; RESID identifies the particular
URIMAP.

WEBSERVICE
requests statistics for a WEBSERVICE; RESID identifies the particular
WEBSERVICE.

SET(ptr-ref)
specifies a pointer reference to be set to the address of the data area
containing the returned statistics. The first 2 bytes of the data area contain the
length of the data area in halfword binary form.

Chapter 14. EXTRACT STATISTICS command 317

318 Release Guide

Chapter 15. Support for mixed case passwords

When the security manager used with CICS supports the use of mixed case
passwords, CICS Transaction Server for z/OS, Version 3 Release 1 does not
convert passwords to uppercase before passing them to the security manager.

There are several places where you can enter a password in CICS:

Resource definitions
The following resource definitions have a PASSWORD attribute:

FILE
TCPIPSERVICE
TERMINAL

API commands
The following commands have a PASSWORD option:

CHANGE PASSWORD
VERIFY PASSWORD
SIGNON

The signon transaction (CESN)
The transaction offers two fields where passwords may be entered:

Password
New password

In all these cases, the way CICS handles these passwords depends upon whether
the external security manager used with CICS supports mixed case passwords, or
not:

v If the security manager supports mixed case passwords, then CICS passes the
password you specify to the security manager unchanged.

v If not, then CICS converts the password to uppercase before passing it to the
security manager.

© Copyright IBM Corp. 2004, 2010 319

320 Release Guide

Chapter 16. Codepage conversion changes

CICS is enhanced to provide a means of converting between EBCDIC or ASCII and
Unicode data. Conversion can occur in either direction.

v These conversions make use of the z/OS Unicode conversion services. Typically
such conversions take place as part of the processing of HTTP requests or the
new CONTAINER API commands introduced in CICS TS 3.1.

v CICS already supports the conversion of data between any of the range of
EBCDIC and ASCII codepage combinations listed in CICS Family:
Communicating from CICS on System/390.

v This support is extended to permit the conversion of data between any of them
and either UTF-8 or UTF-16. Conversion between the UTF-8 and UTF-16 forms
of Unicode is also supported.

To use the data conversion methods described here, as opposed to those offered
by earlier releases of CICS, you must be communicating your data using channels
or containers, as described in the CICS Application Programming Guide.

CICS documents and document templates cannot be converted to or from the
UTF-8 and UTF-16 character encodings. This restriction applies whether they are
used as a static response in CICS Web support, retrieved by CICS in response to
EXEC CICS WEB API commands, or retrieved by an application program using an
EXEC CICS DOCUMENT RETRIEVE command.

Appendix F of the z/OS Support for Unicode: Using Conversion Services manual
-SA22 -7649 records those conversions which are supported though these services.
These are not limited to Unicode, but include the ability to convert between a broad
range of character encodings, including EBCDIC, ASCII and Unicode.

Note: The conversion between 037 and 500, as used, for example, with the MQ
transport is an EBCDIC to EBCDIC conversion brought about by small
differences in the character encodings used by CICS and MQ.

CICS now supports any of these character conversions by making use of the z/OS
conversion services. However, those conversions that earlier releases of CICS
carried out using a set of tables, continue to be supported in that manner. It is only
if CICS TS 3.1 is asked to carry out a conversion between a pair of CCSIDs that
are unsupported via these tables, that it attempts the conversion using the z/OS
services.

Benefits of Codepage conversion changes

CICS is now able to:

v accept UTF-8 and UTF-16 data as inputs

v convert received data to another encoding format, and

v subsequently convert results back to the appropriate UTF form on return.

The range of codepage pairs available for conversions is considerably extended.

Data for conversion is expected to come primarily from HTML, XHTML, and XML,
but the new function is not limited to these, input data, from any interface that
observes conventions for identifying itself as UTF, is processed with suitable
conversion.

© Copyright IBM Corp. 2004, 2010 321

Terminology

The following terms have been added to the CICS Glossary.

CCSID
See "coded character set identifier".

coded character set identifier
A 16-bit number identifying a specific set of encoding scheme identifier,
character set identifier(s), code page identifier(s), and additional
coding-related required information, that uniquely identifies the coded
graphic character representation used. Acronym: CCSID.

UNICODE
A universal character encoding standard that supports the interchange,
processing, and display of text that is written in any of the languages of the
modern world. It also supports many classical and historical texts in a
number of languages. The Unicode standard has a 16-bit international
character set defined by ISO 10646.

Requirements

The hardware and software requirements for these enhancements to Codepage
conversion are the same as for CICS TS generally.

CICS implements these enhancements by making use of the z/OS Unicode
conversion services, provided by z/OS.

Changes to CICS externals

Changes to installation

No changes are needed as part of the CICS installation process. However, if you
have requirements which depend on support for the conversion of UTF-8 or UTF-16
data, you must enable the z/OS conversion services and install a conversion image
which specifies the conversions that you want CICS to perform.

Refer to the instructions in the z/OS Support for Unicode: Using Conversion
Services manual SA22-7649 to find out the steps needed to set up and configure
conversions supported though the operating system services.

If z/OS conversion services are not enabled, a message is issued by CICS to
indicate this. That message can be suppressed if you do not need these services.

v If the message is encountered when starting a CICS region that is expected to
make use of these services, then an IPL is necessary to enable the z/OS
conversion services.

To discover the status of z/OS conversion services after an IPL, use one of these
commands from an MVS console:

/D UNI To show whether z/OS conversion services were enabled.

/D UNI,ALL
To show whether z/OS conversion services were enabled, and which
conversions are supported by the system.

322 Release Guide

For details of this, see the z/OS Support for Unicode: Using Conversion Services
manual SA22-7649

Changes to system initialization parameters

There is a new system initialization for the enhancement to Data Conversion. The
new parameter is:

LOCALCCSID={037|CCSID}
Specifies the default CCSID for the local region.

The CCSID is a value of up to 8 characters. If CCSID value is not specified, the
default LOCALCCSID is set to 037. For lists of valid CCSIDs, .see

v CICS Family: Communicating from CICS on System/390, and

v Appendix F of the z/OS Support for Unicode: Using Conversion Services
manual -SA22 -7649 .

Changes to application programming

The following information is added to the CICS Application Programming Guide.

Data conversions within CICS using z/OS Unicode conversion services adds to the
data conversion support that is provided for any of the range of EBCDIC and ASCII
codepage combinations listed in CICS Family: Communicating from CICS on
System/390.

Conversions involving Unicode typically take place as part of the processing of
HTTP requests or the use of the CONTAINER API commands introduced in CICS
TS 3.1. The conversion of data to or from either UTF-8 or UTF-16 and EBCDIC and
ASCII codepages, depends on the selection of suitable conversion images.
Conversion between the UTF-8 and UTF-16 forms of Unicode is also supported.

To use the data conversion methods described here, as opposed to those offered
by earlier releases of CICS, you must be communicating your data using channels
or containers, as described in the CICS Application Programming Guide.

CICS documents and document templates cannot be converted to or from the
UTF-8 and UTF-16 character encodings. This restriction applies whether they are
used as a static response in CICS Web support, retrieved by CICS in response to
EXEC CICS WEB API commands, or retrieved by an application program using an
EXEC CICS DOCUMENT RETRIEVE command.

Appendix F of the z/OS Support for Unicode: Using Conversion Services manual
-SA22 -7649 records those conversions which are supported though these services.
CICS now supports any of these character conversions by making use of the z/OS
conversion services.

Ensuring that required conversion images are available
Those CCSIDs used as part of CICS applications must be made known to
the System Programmers responsible for maintaining the z/OS Conversion
Image, so that specific conversions are available to the CICS regions where
these applications execute.

Handling CCSID 1200

CICS supports conversions involving UTF-16 data using any of the
following CCSID's: 1200, 1201, and 1202. The z/OS conversion services

Chapter 16. Codepage conversion changes 323

permit CCSID 1200, in its big-endian form, to be used, but does not contain
support for the little-endian form or for CCSIDs 1201 or 1202. CICS
transforms any source data that is identified in any of these unsupported
forms to the big-endian form of 1200 before passing the data to z/OS for
conversion. If the target data is one of the unsupported forms then CICS
receives the data as the big-endian form of 1200 and transforms it to the
required CCSID. If the target CCSID is 1200 then CICS assumes the
encoding to be in big-endian form. If the conversion is between any of
these CCSIDs then CICS will carry out the transformation without calling
the z/OS conversion services.

When setting up the z/OS conversion image for conversions involving any
of these forms of UTF-16 then CCSID 1200 must be specified. CCSIDs
1201 and 1202 will not be recognised by z/OS when attempting to create a
conversion image.

CICS respects the byte order marker for inbound conversions, but is not
able to retain that information when handling a related outbound
conversion. All outbound data for CCSID 1200 is UTF16-BE. Application
programmers need to know about this and perform their own BE to LE
conversions if they so require.

Sharing a conversion image

v Unless the PTF for APAR OA05744 is applied, do not specify a search
order for those conversions, installed into the z/OS image which are
intended for use by CICS.

v If the same conversions are needed for COBOL you must define the
conversion image with two separate statements:

– one with no search order, and

– the other explicitly specifying a search order of 'RECLM'.

for example:.

CONVERSION 850,037;
CONVERSION 850,037,RECLM;

With the APAR installed, CICS and COBOL can make use of those
supported conversions which specify the default search order implicitly or
explicitly, removing the need to provide two control statements in the image
generation file.

JAVA programs
Codepage conversion facilities exist within JAVA, So it is not neccessary to
duplicate these in CICS. The conversion facilities described here do not
extend to JAVA programs. For an example, see Java applications in CICS.

Changes to CICS utilities
Dump formatters

There is a new component within the AP domain which shows the new control
blocks. The component identifier is CV.

Changes to problem determination

Messages

324 Release Guide

Two new messages are issued resulting from failures in invoking the z/OS
conversion services.

v A console message is issued during CICS initialisation to indicate that Unicode
conversion is not supported by this CICS region because the services are not
enabled.

v A message is issued to report that a particular conversion between two specific
CCSIDs is not supported by this system.

Abends
v No new abend codes are introduced.
v Disaster responses are percolated back to the caller of the new function, by the

recovery routines in DFHCCNVG.

Chapter 16. Codepage conversion changes 325

326 Release Guide

Chapter 17. Simplified definition of default code pages

The default client or server code pages can be defined in the system initialization
table in order to reduce the number of conversion tables required to configure a
CICSplex.

Whenever data is passed between CICS and another system, some or all of the
data may have to be converted from ASCII to EBCDIC format, or vice versa. Data
conversion is facilitated by the DFHCNV conversion table, which contains a
conversion template for each resource for which conversion is required.

Certain distributed components of a CICSplex such as CICS Transaction Gateway
for z/OS and CICS Transaction Server for Windows do not provide an override for
the default client code page specified in the conversion table. Because conversion
tables do not have a suffix, two tables can be required, each residing on a different
library and differing only in the default code page.

In order to reduce the number of conversion tables required, you can now specify
that the default client or server code page is defined in the system initialization
table.

For the client code page:

1. In the DFHCNV TYPE=ENTRY and TYPE=SELECT macros, specify the value
SYSDEF for the CLINTCP parameter.

2. In the system initialization table, set a default client code page by specifying a
value for the CLINTCP parameter. You can use any value supported for the
CLINTCP parameter on the DFHCNV macro. The default is CLINTCP=437.

For the server code page:

1. In the DFHCNV TYPE=ENTRY and TYPE=SELECT macros, specify the value
SYSDEF for the SRVERCP parameter.

2. In the system initialization table, set a default server code page by specifying a
value for the SRVERCP parameter. You can use any value supported for the
SRVERCP parameter on the DFHCNV macro. The default is SRVERCP=037.

Benefits of improved defaults for code pages in data conversion
templates

The ability to define code page defaults in the system initialization table instead of
directly in DFHCNV macros can simplify the definition and management of a
CICSplex by reducing the number of DFHCNV conversion tables that have to be
maintained.

Requirements
There are no special hardware or software requirements.

© Copyright IBM Corp. 2004, 2010 327

Changes to CICS externals

Changes to system initialization parameters
In order to define default client and server code pages in the system initialization
table, two new system initialization parameters are introduced: CLINTCP and
SRVERCP, matching the existing DFHCNV macro parameters of the same name.

New system initialization parameters

CLINTCP={437|codepage}
Specifies the default client code page to be used by the DFHCNV data
conversion table but is used only if the CLINTCP parameter in the DFHCNV
macro is set to SYSDEF. The codepage is a field of up to 8 characters and can
take the values supported by the CLINTCP parameter in the DFHCNV macro.

SRVERCP={037|codepage}
Specifies the default server code page to be used by the DFHCNV data
conversion table but only if the SRVERCP parameter in the DFHCNV macro is
set to SYSDEF. The codepage is a field of up to 8 characters and can take the
values supported by the SRVERCP parameter in the DFHCNV macro.

Changes to user-replaceable programs
New DFHCNV macro parameter operand

The new operand SYSDEF has been added to the TYPE=INITIAL and
TYPE=ENTRY macro parameters CLINTCP and SRVERCP. These macros define
the user-replaceable data conversion table DFHCNV.

v The DFHCNV TYPE=INITIAL macro defines the beginning of the conversion
table. It gives a list of valid code pages.

v The DFHCNV TYPE=ENTRY macro specifies a name and type to uniquely
identify a data resource. There must be one for each resource for which
conversion is required.

The format of the changed parameters is now as follows:

CLINTCP={437|SYSDEF|nnnn [, nnnn, ...]}
The first operand defines the default client code page to be used when the
CLINTCP and CDEPAGE operands are omitted from a DFHCNV TYPE=ENTRY
macro.

SYSDEF specifies that the default client code page is determined by the system
initialization table parameter CLINTCP.

You can specify further code pages; they are validated but are not used.

SRVERCP={037|SYSDEF|nnnn [, nnnn, ...]}
The first operand defines the default client code page to be used when the
SRVERCP and CDEPAGE operands are omitted from a DFHCNV
TYPE=ENTRY macro.

SYSDEF specifies that the default client code page is determined by the system
initialization table parameter SRVERCP.

You can specify further code pages; they are validated but are not used.

328 Release Guide

Chapter 18. 64-Bit Addressing Toleration changes

CICS can now provide meaningful information when those tasks, which make use
of 64-bit addressing architecture, abend.

CICS does not support 64-bit addressing execution, but programs can use storage
at addresses which are only available when CICS is running on 64-bit architecture
machines. These changes provide an extension to the CICS abend capture
mechanisms so that the contents of the full 64-bit general purpose registers is
captured.

Benefits of 64-Bit Addressing Toleration changes

Customers developing 64-bit addressing code, now have access to more
information when a task abends.

Requirements
The hardware and software requirements for these enhancements are the same as
those for the rest of this release of CICS TS.

Changes to CICS externals

Changes to CICS utilities
Dump formatters

The CICS dump formatter displays the contents of the 64-bit General Purpose
Registers captured when the abend occurred.

Changes to problem determination

The contents of the full 64-bit general purpose register file are captured and made
available to you.

There are no new Messages, Abend codes, or trace points.

© Copyright IBM Corp. 2004, 2010 329

330 Release Guide

Chapter 19. Support for revoked user IDs

When the command EXEC CICS VERIFY PASSWORD is issued, CICS now
enforces the revoked status of a user ID or a user's group connection. For example,
if a user has tried to log on too many times, the id is revoked and the user cannot
access the system or resources.

© Copyright IBM Corp. 2004, 2010 331

#
#
#
#

332 Release Guide

Part 6. Discontinued function

Some functions which were supported in CICS Transaction Server for z/OS, Version
2 have been discontinued, or reduced in scope in CICS Transaction Server for
z/OS, Version 3 Release 1.

© Copyright IBM Corp. 2004, 2010 333

334 Release Guide

Chapter 20. Withdrawal of runtime support for OS/VS COBOL
programs

Run-time support for OS/VS COBOL programs is withdrawn.

OS/VS COBOL programs, which had runtime support in CICS Transaction Server
for z/OS, Version 2, cannot run under CICS TS for z/OS, Version 3.

OS/VS COBOL programs must be upgraded to Language Environment conforming
COBOL, and recompiled against a level of COBOL compiler supported by CICS.
Enterprise COBOL for z/OS and OS/390 Version 3 is the recommended compiler.

Chapter 29, “High-level language support,” on page 363 and the CICS Application
Programming Guide for CICS TS for z/OS, Version 3 have information about
supported compilers for COBOL and other languages. Appendix B of the CICS
Application Programming Guide provides assistance with converting OS/VS COBOL
programs to Language Environment conforming COBOL.

A new abend code ALIK indicates an attempt to use an OS/VS COBOL program. In
this situation, CICS abnormally terminates the task and disables the program, and
CICS processing continues.

© Copyright IBM Corp. 2004, 2010 335

336 Release Guide

Chapter 21. Changes to BTAM and TCAM support

CICS support for the Basic Telecommunications Access Method (BTAM) is
discontinued in CICS Transaction Server for z/OS, Version 3 Release 1. Support for
the Telecommunications Access Method (TCAM) is limited to indirect support for the
DCB interface.

Withdrawal of BTAM support
CICS Transaction Server for z/OS, Version 3 Release 1 does not support the Basic
Telecommunication Access Method (BTAM).

For several CICS releases, BTAM terminals have been supported only indirectly:
that is, by transaction routing from a back-level terminal-owning region (TOR) to
which the terminals were attached. In CICS TS for z/OS, Version 3.1, this indirect
support is removed. BTAM is no longer supported and all references to it have been
removed.

This means that, if you have a network of BTAM terminals connected to a
back-level CICS TOR, you will not be able (as you were in previous CICS releases)
to route transactions from them to a CICS TS for z/OS, Version 3.1
application-owning region (AOR). You must either upgrade your terminals or route
to a previous version of CICS.

Changes in CICS support for TCAM
CICS Transaction Server for z/OS, Version 3 Release 1 does not support the
TCAM/ACB interface. It supports the TCAM/DCB interface indirectly.

For several CICS releases, the ACB interface of TCAM has been supported only
indirectly: that is, by transaction routing from a back-level terminal-owning region
(TOR) to which the terminals were attached. In CICS TS for z/OS, Version 3.1, this
indirect support is removed.

In previous CICS releases, the DCB interface of TCAM has been fully supported.
That is:

1. TCAM/DCB could be used to connect terminals to a current-level CICS TOR.

2. Transactions started by TCAM/DCB-connected terminals could be routed to a
current-level CICS AOR.

In CICS TS for z/OS, Version 3.1, only the second operation is supported.

As a result of these changes:

v If you have a network of terminals connected by the ACB interface of TCAM to a
back-level CICS TOR, you will not be able (as you were in previous CICS
releases) to route transactions from them to a CICS TS for z/OS, Version 3.1
AOR. You must migrate your connections to use TCAM/DCB or (preferably)
ACF/VTAM, or route to a previous version of CICS. (All terminals that support
TCAM/ACB also support ACF/VTAM.)

v If you have a network of terminals connected by the DCB interface of TCAM to,
for example, a CICS TS 2.3 TOR, you will not be able to migrate the TOR to
CICS TS for z/OS, Version 3.1. To do so, you must migrate your connections to
use ACF/VTAM.

© Copyright IBM Corp. 2004, 2010 337

v If you have a network of terminals connected by the DCB interface of TCAM to a
back-level CICS TOR, you will (as in previous CICS releases) be able to route
transactions from them to a CICS TS for z/OS, Version 3.1 AOR. However, you
are recommended to migrate your connections to use ACF/VTAM.

Changes to CICS externals

Changes to system initialization parameters

The TCAM={NO | YES} system initialization parameter is now obsolete and is
retained only for compatibility with previous CICS releases. If it is specified, it is
rejected with a message and TCAM=NO is assumed.

Changes to resource definition

CICS no longer supports BTAM terminals, even indirectly. Thus you can no longer
define BTAM terminals, even as remote resources.

CICS no longer supports local TCAM terminals. Therefore the following resource
definition macros can no longer be used to define local TCAM terminals:
v DFHTCT TYPE=SCSDI
v DFHTCT TYPE=LINE
v DFHTCT TYPE=TERMINAL

It is still possible to define remote TCAM terminals. You can do this using either of
the following:

v A single DFHTCT TYPE=REMOTE macro.

v A DFHTCT TYPE=REGION macro, followed by a DFHTCT TYPE=LINE and a
DFHTCT TYPE=TERMINAL macro. CICS uses only the remote attributes of the
DFHTCT TYPE=LINE and DFHTCT TYPE=TERMINAL macros.

Changes to the application programming interface

The following, BTAM-related, EXEC CICS API commands are obsolete:
v CONVERSE (SYSTEM/3)
v CONVERSE (SYSTEM/7)
v CONVERSE (2741)
v CONVERSE (2770)
v CONVERSE (2780)
v CONVERSE (3600 BTAM)
v CONVERSE (3735)
v CONVERSE (3740)
v ISSUE COPY (3270 display)
v RECEIVE (SYSTEM/3)
v RECEIVE (SYSTEM/7)
v RECEIVE (2741)
v RECEIVE (3600 BTAM)
v RECEIVE (3735)
v RECEIVE (3740)
v SEND (SYSTEM/3)
v SEND (SYSTEM/7)
v SEND (2741)
v SEND (3600 BTAM)
v SEND (3735)

338 Release Guide

v SEND (3740)

Changes to global user exits

The following global user exits in the terminal control program (which were invoked
on TCAM input and output events) are no longer called:
v XTCTIN
v XTCTOUT

Changes to user-replaceable programs

Because local TCAM terminals are no longer supported, the terminal error program
is not invoked for TCAM terminals. It is still invoked for sequential devices.

Changes to sample programs

The DFHSPTM1 and DFHSPTM2 sample TCAM programs are no longer supplied
with CICS.

Migration

If you have a network of BTAM terminals connected to a back-level CICS
terminal-owning region (TOR), you will not be able (as you were in previous CICS
releases) to route transactions from them to a CICS TS for z/OS, Version 3.1
application-owning region (AOR). You must either upgrade your terminals or route
to a previous version of CICS.

If you have a network of terminals connected by the ACB interface of TCAM to a
back-level CICS TOR, you will not be able (as you were in previous CICS releases)
to route transactions from them to a CICS TS for z/OS, Version 3.1 AOR. You must
migrate your connections to use TCAM/DCB or (preferably) ACF/VTAM, or route to
a previous version of CICS. (All terminals that support TCAM/ACB also support
ACF/VTAM.)

If you have a network of terminals connected by the DCB interface of TCAM to, for
example, a CICS TS 2.3 TOR, you will not be able to migrate the TOR to CICS TS
for z/OS, Version 3.1. To do so, you must migrate your connections to use
ACF/VTAM.

If you have a network of terminals connected by the DCB interface of TCAM to a
back-level CICS TOR, you will (as in previous CICS releases) be able to route
transactions from them to a CICS TS for z/OS, Version 3.1 AOR. However, you are
recommended to migrate your connections to use ACF/VTAM.

Coexistence

CICS TS for z/OS, Version 3.1 does not support transaction routing or function
shipping from BTAM terminals attached to a pre-CICS TS 3.1 terminal-owning
region.

CICS TS for z/OS, Version 3.1 does not support transaction routing or function
shipping from terminals attached by TCAM/ACB to a pre-CICS TS 3.1
terminal-owning region.

Chapter 21. Changes to BTAM and TCAM support 339

CICS TS for z/OS, Version 3.1 does support transaction routing and function
shipping from terminals attached by TCAM/DCB to a pre-CICS TS 3.1
terminal-owning region.

340 Release Guide

Chapter 22. Withdrawal of support for 1-byte console id

Support for defining terminals using the 1-byte console id is withdrawn. The
CONSOLE attribute on the TERMINAL resource definition is obsolete, but is
supported to provide compatibility with earlier releases of CICS.

You can define terminals using the CONSNAME(name) attribute on the TERMINAL
resource definition.

CICSPlex SM support

The 1-byte console ID is no longer in use, and support for it has been removed.

Changes to CICSPlex SM application programming interface
TERMDEF resource table

The CONSOLE attribute in the TERMDEF resource table is no longer valid in CICS
Transaction Server for z/OS, Version 3 Release 1 or later releases.

Changes to CICSPlex SM end user interface views
The following change has been made:

TERMDEF view

The TERMDEF view remains unchanged although the following attribute is no
longer valid in CICS Transaction Server for z/OS, Version 3 Release 1, or later
releases.

CONSOLE
Consol ID

Changes to CICSPlex SM Web User Interface
The following change has been made:

Terminal Definition view

The TERMDEF (EYUSTARTTERMDEF) view remains unchanged although the
following attribute is no longer valid in CICS Transaction Server for z/OS, Version 3
Release 1, or later releases.

CONSOLE
Consol ID

Messages
BBMZA094E CAS (SSID) INVALID REPLY

The removal of the 1-byte console ID means that CICSPlex SM message
BBMZA094E now goes to all active consoles, rather than simply the console that
replied to message BBMZA094E. The text of the message is unchanged.

© Copyright IBM Corp. 2004, 2010 341

#
#
#

342 Release Guide

Chapter 23. Withdrawal of the CICS Connector for CICS TS

Support for the CICS Connector for CICS TS, introduced in CICS TS for z/OS,
Version 2.1, is withdrawn.

A CICS connector is a software component that allows a Java client application to
invoke a CICS application. CICS TS for z/OS, Version 2.3 introduced a new CICS
connector, the CCI Connector for CICS TS, that performs a similar role to the CICS
Connector for CICS TS—that is, it enables a Java program or enterprise bean
running on CICS Transaction Server for z/OS to link to a CICS server program.
However, whereas the old CICS Connector for CICS TS implemented the
IBM-proprietary Common Connector Framework (CCF) interface, the new CCI
Connector for CICS TS implements the industry-standard Common Client Interface
(CCI) defined by the J2EE Connector Architecture Specification, Version 1.0.

Since CICS TS for z/OS, Version 2.3 it has been recommended that:

v When writing new connector applications, you use the CCI Connector for CICS
TS rather than the CICS Connector for CICS TS

v You migrate any existing applications that use the CICS Connector for CICS TS
to use the CCI Connector for CICS TS instead

Because runtime support for the CICS Connector for CICS TS is withdrawn in CICS
TS for z/OS, Version 3.1, these recommendations have now become mandatory.

Note: In previous releases, it was possible to program the CICS Connector for
CICS TS in either of two ways: using the high-level CCF API or the
lower-level, CICS-specific, external call interface (ECI) of the CICS
Transaction Gateway API. The ECI base classes are no longer supplied with
CICS.

For advice on using the CCI Connector for CICS TS in new applications, and on
migrating existing applications that use the CICS Connector for CICS TS to use the
CCI Connector for CICS TS instead, see Java Applications in CICS.

© Copyright IBM Corp. 2004, 2010 343

344 Release Guide

Chapter 24. Withdrawal of run-time support for Java program
objects and hot-pooling

Run-time support for Java program objects and for hot-pooling (HPJ) is withdrawn.

In CICS TS 1.3, as an alternative to running Java programs in a Java Virtual
Machine (JVM), VisualAge® for Java, Enterprise Edition for OS/390 (ET/390) could
be used to bind Java bytecode into OS/390 executable files, known as Java
program objects. The Java program objects were stored in OS/390 PDSE libraries
and executed by CICS in a Language Environment run-unit, or enclave. The Java
run-time component of ET/390 provided this run-time support in the CICS region.

The Language Environment enclave could be built and initialized for each
invocation, in which case the Java program object was executed under the QR
TCB. Alternatively, to reduce performance overheads, a preinitialized and persistent
enclave could be reused for multiple invocations of the program. This feature was
known as hot-pooling. When hot-pooling was specified for a Java program object,
CICS used the PIPI preinitialization services of z/OS Language Environment to
build the enclave, and executed the Java program object in the CICS region under
the control of an open transaction environment (OTE) task control block (TCB) in
H8 mode.

In CICS TS for z/OS, Version 2.3, run-time support was provided for existing
hpj-compiled Java program objects, but no support was provided for developing
new Java program objects nor for modifying existing Java program objects. In CICS
TS for z/OS, Version 3.1, run-time support for hpj-compiled Java program objects is
withdrawn.

You must migrate any hpj-compiled Java program objects to run in a Java Virtual
Machine (JVM). The CICS Migration Guide explains how to do this. For information
about the CICS JVM and about Java programming for CICS, see Java Applications
in CICS.

If you attempt to execute a Java program object in CICS TS for z/OS, Version 3.1,
an ALIG abend is issued.

The open TCB mode H8, which was used for hot-pooling Java program objects, no
longer exists.

Changes to CICS externals

Changes to system initialization parameters

The system initialization parameter MAXHPTCBS is removed. MAXHPTCBS
controlled the open TCB mode H8.

Changes to resource definition
v The HOTPOOL attribute is removed from the PROGRAM resource definition. The

attribute was used to specify whether or not the Java program object was to be
run in a preinitialized Language Environment enclave reused by multiple
invocations of the program, under control of an H8 TCB.

© Copyright IBM Corp. 2004, 2010 345

v The sample application program group DFH$JAVA is removed. This group
contained the resource definitions needed for the sample applications for Java
support using VisualAge for Java, Enterprise Edition for OS/390. The same
sample applications are defined for use with a JVM by the DFH$JVM group.

v DFHTASK field 278, CICS MAXHPTCBS delay time, is removed from the
DFHMCT TYPE=RECORD macro.

Changes to the application programming interface

The RESP2 value 43, which was used to qualify the INVREQ response to EXEC
CICS LINK and XCTL commands, and to the BTS commands LINK ACQPROCESS
and LINK ACTIVITY, is removed.

43 A LINK (or an XCTL) has been attempted to a hot-pooled Java program
object while there is already a hot-pooled program on the link stack.

Changes to the system programming interface
v The HOTPOOL option is removed from the EXEC CICS CREATE PROGRAM

command.

v The HOTPOOLING option is removed from the EXEC CICS INQUIRE
PROGRAM command.

v The HOTPOOLING option is removed from the EXEC CICS SET PROGRAM
command.

v The ACTHPTCBS and MAXHPTCBS options are removed from the EXEC CICS
INQUIRE DISPATCHER command. These options were used to inquire on the
number of H8 mode open TCBs currently allocated to user tasks, and the
maximum number of H8 mode open TCBs that CICS was allowed to attach and
maintain.

v The MAXHPTCBS option is removed from the EXEC CICS SET DISPATCHER
command.

v The CVDAs HOTPOOL (1065) and NOTHOTPOOL (1066) are deleted.

Changes to CEMT
v The HOTPOOLING field is removed from the CEMT INQUIRE PROGRAM

display.

v The HOTPOOL and NOTHOTPOOL options are removed from the CEMT SET
PROGRAM command.

v The ACTHPTCBS and MAXHPTCBS fields are removed from the CEMT
INQUIRE DISPATCHER display.

v The MAXHPTCBS option is removed from the CEMT SET DISPATCHER
command.

Changes to global user exits

The global user exit task indicator field, addressed by UEPGIND, which is part of
the DFHUEPAR standard parameter list, no longer includes the symbolic value
UEPTH8. UEPTH8 represented the open TCB mode H8.

Changes to the exit programming interface (XPI)

The HOTPOOL option is removed from the DFHPGISX calls INQUIRE PROGRAM
and SET PROGRAM.

346 Release Guide

Changes to user-replaceable programs

The user-replaceable programs DFHAPH8O and DFHJHPAT are removed.

v DFHAPH8O was provided to allow you to alter the default Language
Environment run-time options for the Language Environment enclave where a
Java program object was to be run.

v DFHJHPAT was optional and could be used for your own purposes, such as
tracing. It was called before a Java program object was invoked.

Changes to monitoring

The monitoring data field 278 in group DFHTASK is removed. The open TCB mode
H8, which was used for hot-pooling Java program objects and was controlled by
MAXHPTCBS, no longer exists.

Changes to statistics

The TCB mode H8 is no longer displayed in the TCB Mode statistics. TCB Mode
statistics are mapped by the DSGTCBM DSECT within the DFHDSGDS DSECT.

Changes to problem determination
v The trace entries for Java hot-pooling (AP 19A0 to AP 19C4) are removed.

v Messages DFHAP1219 to DFHAP1225 are removed.

v Abends AJH0 to AJHF are removed.

v The resource type HP_POOL is no longer a cause of dispatcher waits.

If you attempt to execute a Java program object in CICS TS for z/OS, Version 3.1,
an ALIG abend is issued.

CICSPlex SM support
The removal of run-time support for Java program objects and for hot-pooling (HPJ)
have resulted in a number of changes to the CICSPlex SM interfaces.

Changes to CICSPlex SM end user interface views

There are no new end user interface views in CICS Transaction Server for z/OS,
Version 3 Release 1. However, changes have been made to the following existing
screens:

v PROGDEF - The attribute HOTPOOLING is no longer valid but is still displayed.

v PROGRAM - The attribute HOTPOOLING has been removed.

Changes to the CICSPlex SM application programming interface

The removal of the run-time support for Java program objects and for hot-pooling
(HPJ) has resulted in the following changes:

v “CICSRGN resource table” on page 348

v “PROGRAM resource table” on page 348

v “PROGDEF resource table” on page 348

Chapter 24. Withdrawal of run-time support for Java program objects and hot-pooling 347

CICSRGN resource table

The existing HOTPOOLING statistic is no longer valid in CICS TS 3.1.

PROGRAM resource table

The SPI attribute HOTPOOLING is no longer valid in CICS TS 3.1.

PROGDEF resource table

The attribute HOTPOOLING is no longer valid in CICS TS 3.1.

Changes to the CICSPlex SM Web User Interface

Changes have been made to the following views:

v “Program Definition view”

v “Program view”

Program Definition view

The attribute HOTPOOLING is no longer valid in CICS TS for z/OS, V3.1 but the
PROGDEF (EYUSTARTPROGDEF.DETAILED) view remains the same.

Program view

The attribute HOTPOOLING is no longer valid in CICS TS for z/OS, V3.1 but the
PROGRAM (EYUSTARTPROGRAM.DETAILED) view remains the same.

348 Release Guide

Chapter 25. Removal of CICSPlex SM support for Windows
remote MAS

Previous releases of CICSPlex SM have supported the CICS for Windows
component of TXSeries, Version 4.3.0.4 and TXSeries, Version 5.0 (also known as
NT 4.3 and NT 5.0) in the management of a remote managed application system
(RMAS). This support is no longer necessary and the CICSPlex SM TXSeries agent
has been removed for CICS Transaction Server for z/OS, Version 3.1 and later
releases. Therefore, it is no longer possible to set up a CICSPlex SM remote MAS
agent for Windows.

Customers who wish to do so can continue to use the CICS Transaction Servers
2.3 or 2.2 for TXSeries support in CICSPlex SM.

© Copyright IBM Corp. 2004, 2010 349

350 Release Guide

Chapter 26. Withdrawal of the CICS Transaction Affinities
Utility

The CICS Transaction Affinities Utility is not supplied with CICS TS for z/OS,
Version 3.1. Its functions of detecting and reporting transaction affinities are now
provided by the CICS Interdependency Analyzer, which is a more sophisticated tool.

Using the CICS Interdependency Analyzer, you can:

v Identify the sets of resources used by individual CICS transactions, and their
relationships to other resources. This enables you to understand the make-up of
your application set: you can see what a CICS region contains; what resources a
transaction needs in order to run; which programs use which resources; and
which resources are no longer used. Thus your ability to maintain, enhance,
modify, or redistribute your applications is much improved.

v Identify possible transaction affinities. Affinities require particular groups of
transactions to be run either in the same CICS region, or in a particular region.
The ability to identify transaction affinities is useful in a dynamic routing
environment: you need to know of any restrictions that prevent particular
transactions being routed to particular application-owning regions (AORs); or that
require particular transactions to be routed to particular AORs.

For more information about the CICS Interdependency Analyzer, see the CICS
Interdependency Analyzer User's Guide and Reference.

© Copyright IBM Corp. 2004, 2010 351

352 Release Guide

Part 7. General Information

© Copyright IBM Corp. 2004, 2010 353

354 Release Guide

Chapter 27. The CICS operating environment

This topic gives some information about related products that you need in order to
use the CICS and CICSPlex SM elements of CICS Transaction Server for z/OS.

Hardware requirements
Processors

The basic requirement is for a processor that supports the prerequisite operating
system and has sufficient processor storage to meet the requirements of z/OS V1.4,
CICS TS for z/OS, Version 3.1, the application programs, the access methods, and
all other software being run. This includes the IBM eServer™ zSeries 990.

Parallel Sysplex® support

A Parallel Sysplex environment is required by each of the data-sharing facilities
supported by CICS, and by the MVS system logger's log stream merging facility.
This requires:

v One or more coupling facilities with their associated coupling links installed

v An IBM sysplex timer to provide a common external time source

v Sufficient DASD paths to support the number of central processor complexes
(CPCs) in the sysplex. The DASD paths can be provided either by DASD
controllers with enough paths to dedicate one to each CPC in the sysplex, or by
an ESCON® director.

CICS support for data sharing can be used to access data in IMS databases, DB2
databases, VSAM data sets, CICS temporary storage, coupling facility data tables,
and named counters.

Cryptographic hardware

zSeries cryptographic hardware is required:

v To exploit the WS-Security capability.

v To fully benefit from the performance improvements to SSL encryption.

Both functions rely upon the z/OS Integrated Cryptographic Services Facility (ICSF).

Katakana Terminal Devices

Because CICS has to issue certain messages in mixed-case, the product is not
supported with displays or terminal emulators that are restricted to the
non-extended single-byte character set (SBCS) Katakana part of code page 930.

Software Requirements
Note that the Program Directory (GI10-6427) will normally contain the most
up-to-date information on software requirements.

Operating environment

CICS TS for z/OS, Version 3.1 requires z/OS V1.4, or later. Note that it will not
initialize in an environment with a lower level of operating system installed.

© Copyright IBM Corp. 2004, 2010 355

The Language Environment library SCEERUN must be available to CICS during
CICS initialization, by inclusion in either the STEPLIB concatenation or the
LNKLIST. Language Environment services are used by a number of CICS functions.

For Java application programs or enterprise beans, the IBM SDK for z/OS, Java 2
Technology Edition, featuring persistent reusable JVM technology, Version 1.4,
program 5655-I56. This must be at the V1.4.2 level.

v The IBM SDK for z/OS, Java 2 Technology Edition, Version 1.4, is available, at
no charge, on tape or by download from: http://www.s390.ibm.com/java/.

v Note that IBM 64-Bit SDK For z/OS, Java 2 Technology Edition, Version 1.4,
program number 5655-M30, does not provide the required function.

For WS-Security support, the IBM XML Toolkit for z/OS V1.9 is required. This is a
no-charge product, program number 5655-J51. You can download the toolkit from
the following site: http://www.ibm.com/servers/eserver/zseries/software/xml/.

v You must install version 1.9. Later versions do not work with Web Services
Security support in CICS.

v The toolkit is an MVS feature and should be installed in the SMP/E zone for
MVS.

v Specify a valid keyring on the KEYRING system initialization parameter.

v Apply the PTFs for APARs PK65352 and PK97657 to CICS, which change the
required version of the toolkit from V1.7 to V1.9.

For deployment of enterprise beans, WebSphere Application Server V5.0, or later, is
required.

v The component to be used is the Application Server Toolkit (ASTK) for Windows.
Note that the Application Assembly Tool (AAT), provided with early deliveries of
V5.0, is not supported.

v Note also that the ASTK is also included in WebSphere Studio Enterprise
Developer V5.1.

JNDI support for enterprise beans can be provided by the LDAP server provided in
SecureWay™ Security Server and licensed as part of the base z/OS operating
system. CICS TS V3.1 will interoperate with WebSphere Application Server (any
platform) V5 and V6. This applies directly for customers using RMI/IIOP for
interoperability; and via CICS Transaction Gateway V5.0 or later for those using
JCA.

For developing Java programs (including enterprise beans) for use with CICS TS
V3.1, the members of the WebSphere Studio family V5, and Rational® Application
Developer V6, are supported.

The System SSL Security Level 3 feature for z/OS is required to use cipher suites
with 128-bit encryption or above.

Other supported products

The following levels of other products are supported for use with CICS TS for z/OS,
Version 3.1:

v IMS Database Manager V7 (5655-B01)

v IMS Database Manager V8 (5655-C56)

v IMS Database Manager V9 (5655-J38)

v DB2 Universal Database™ Server for OS/390 V6.1 (5645-DB2)

356 Release Guide

#
#
#

#
#

#
#

#

#
#

http://www.s390.ibm.com/java/
http://www.ibm.com/servers/eserver/zseries/software/xml/

– For SQLJ/JDBC support, with PTF for APAR PQ84783

– Does not support DB2 Group Attach

v DB2 Universal Database Server for OS/390 V7.1 (5675-DB2)

– For SQLJ/JDBC support, with PTFs for APARs PQ84783 and 86525

– For DB2 Group Attach, with APARs PQ44614, PQ45691, and PQ45692

v DB2 Universal Database for z/OS V8.1 (5625-DB2)

– For SQLJ/JDBC support, with PTFs for APARs PQ84783 and 86525

v WebSphere MQ for z/OS V5.3 (5655-F10)

v Tivoli® Decision Support for OS/390 (5698-ID9) V1.7, with PTF for APAR
PK07001 applied

v Tivoli Business Systems Manager V3.1

v CICS Universal Client Version 5.0, or later

v CICS Transaction Gateway Version 5.0, or later

Information Center environment

The Information Center, as a server, is supported on:

v Windows 2000 and Windows XP

v AIX® V5.1, or later

v Linux® on Intel® (RedHat and Suse)

For browsing the Information Center, you will need a browser that supports HTML
4.0 and the Document Object Model (DOM) standard. Suitable browsers include:

Microsoft® Internet Explorer Version 6.0

Netscape Navigator V7.0

Mozilla V1.0

running on Windows 2000 or Windows XP.

To read PDF files shipped with the Information Center, you will need Adobe Acrobat
Reader 5.0 or 6.0. The files have been generated using Adobe Acrobat Distiller 6.0
at the Acrobat 6.0 (PDF 1.5) level. They can be read using Adobe Acrobat Reader
5.0, but Reader 6.0 is necessary if you need the accessibility features of Distiller
6.0.

Support for CICS Tools and related products
CICS Interdependency Analyzer

The following can be used with CICS TS for z/OS, Version 3.1:
CICS Interdependency Analyzer for z/OS V1.3, with PTF for APAR PQ95065.

The following do not run with CICS TS for z/OS, Version 3.1:
CICS Interdependency Analyzer for z/OS V1.1.
CICS Interdependency Analyzer for z/OS V1.2.

CICS Performance Analyzer

CICS Performance Analyzer for z/OS V1.3 does not support SMF 110 data from
CICS TS for z/OS, Version 3.1.

Chapter 27. The CICS operating environment 357

#
#

CICS Performance Monitor

CICS Performance Monitor for z/OS V1.1 does not support CICS TS for z/OS,
Version 3.1.

CICS Performance Monitor for z/OS V1.2, with service applied, provides toleration
support for CICS TS for z/OS, Version 3.1, at the CICS TS for z/OS, Version 2.3
level.

Tivoli OMEGAMON®

The following support CICS TS for z/OS, Version 3.1. However, this support does
not include exploitation of the new function of CICS TS for z/OS, Version 3.1.

Tivoli OMEGAMON II® for CICS V520.
Tivoli OMEGAMON XE for CICS V100.
Tivoli OMEGAMON XE for CICSplex V220, with service applied.

CICS VSAM Recovery

The following provides recovery support for VSAM files processed by CICS TS for
z/OS, Version 3.1:

CICS VSAM Recovery V3.2.
CICS VSAM Recovery V3.3.

CICS Business Event Publisher

CICS Business Event Publisher for MQSeries® Version 1.2, with service applied,
can be used with CICS TS for z/OS, Version 3.1.

CICS Online Transmission Time Optimizer

CICS Online Transmission Time Optimizer for z/OS V1.1 can be used with CICS TS
for z/OS, Version 3.1.

Session Manager

The following can be used with CICS TS for z/OS, Version 3.1:
Session Manager for z/OS V1.1.
Session Manager for z/OS V1.2.

CICS VSAM Transparency

CICS VSAM Transparency for z/OS V1.1 can be used with CICS TS for z/OS,
Version 3.1.

CICS VSAM Copy

CICS VSAM Copy for z/OS V1.1, with service applied, can be used with CICS TS
for z/OS, Version 3.1.

CICS Batch Application Control

CICS Batch Application Control for z/OS V1.1, with service applied, can be used
with CICS TS for z/OS, Version 3.1.

358 Release Guide

MQSeries Integrator Agent

MQSeries Integrator Agent for CICS Transaction Server V1.1 does not run with
CICS TS for z/OS, Version 3.1.

Fault Analyzer

The following can be used with CICS TS for z/OS, Version 3.1:
Fault Analyzer for z/OS and OS/390 V3.1, with PTF UQ77156 for APAR
PQ74048.
Fault Analyzer for z/OS V4.1.
Fault Analyzer for z/OS V5.1.

Debug Tool

The following can be used with CICS TS for z/OS, Version 3.1:
Debug Tool for z/OS V5.1, with PTF UQ88297 for APAR PQ94401.

Compatibility
z/OS conversion services

Unlike previous levels of CICS Transaction Server, CICS TS V3 can use z/OS
services to perform conversions beyond those supported by CICS TS in previous
releases. An example is conversions to and from Unicode, which might be required
to support Web services. This requires z/OS to have the initial conversion image
installed, which can only be done on a system IPL. If it is wished to install CICS TS
V3 without a re-IPL of z/OS, this can be done provided the initial conversion image
is installed during a previous system IPL. The conversion image does not include
any code from CICS TS; it can also be refreshed without any need for a further IPL.

JVM modes in CICS

Customers using Java programs in CICS TS V3.1 are recommended to use
continuous mode. Support for continuous mode was introduced in CICS TS V2.3; in
order to bring CICS use of Java into line with standard practices, support for
resettable mode will be removed in a future release of CICS TS.

SOAP for CICS feature

Applications developed to use the SOAP for CICS feature will continue to run with
CICS TS V3.1. However, customers are recommended to migrate to the Web
services support capabilities of CICS TS V3.1 because support for the SOAP for
CICS Feature support will cease when support of CICS TS V2.3 ceases.

Common Connector Framework (CCF)

The Common Connector Framework (CCF), which was the predecessor interface to
the Common Client Interface (CCI), is not supported by CICS TS V3.1. The
intention to remove this support was indicated in the announcement of CICS TS
V2.3.

ECI Base Classes (ECIREQUEST)

The ECI Base Classes (ECIREQUEST, which were introduced for compatibility with
the CICS Transaction Gateway), are not included in CICS TS V3.1. The

Chapter 27. The CICS operating environment 359

#

#

#
#
#
#

recommended replacement is the COMMON CLIENT INTERFACE CONNECTOR
FOR CICS TS (CCI Connector for CICS TS), introduced in CICS TS V2.3, when it
was announced that ECIREQUEST would be removed.

Transaction Affinities utility

CICS TS V3.1 does not include the detector and reporter components previously
provided as part of the CICS Transaction Affinities utility. These components are
now incorporated in IBM CICS Interdependency Analyzer for z/OS V1.3, announced
in August 2004, which has the capability of analyzing both interdependencies and
affinities. The load library scanner component of the CICS Transaction Affinities
utility remains in CICS TS V3.1, and can produce reports on application programs
which have potential affinities.

360 Release Guide

Chapter 28. Threadsafe application programming interface
commands

Most new commands in CICS Transaction Server for z/OS, Version 3 Release 1 are
threadsafe. Additionally, some existing commands have been made threadsafe in
this release.

New commands that are threadsafe
CONVERTTIME
DELETE CONTAINER (CHANNEL)
GET CONTAINER (CHANNEL)
INVOKE WEBSERVICE
MOVE CONTAINER
PUT CONTAINER (CHANNEL)
SOAPFAULT ADD
SOAPFAULT CREATE
SOAPFAULT DELETE
WEB CONVERSE
WEB CLOSE
WEB OPEN
WEB PARSE URL
WEB RECEIVE (Client)
WEB SEND (Client)

Existing commands that are now threadsafe
WEB ENDBROWSE FORMFIELD
WEB ENDBROWSE HTTPHEADER
WEB EXTRACT
WEB READ FORMFIELD
WEB READ HTTPHEADER
WEB READNEXT FORMFIELD
WEB READNEXT HTTPHEADER
WEB RECEIVE (Server)
WEB RETRIEVE
WEB SEND (Server)
WEB STARTBROWSE FORMFIELD
WEB STARTBROWSE HTTPHEADER
WEB WRITE HTTPHEADER

New commands that are not threadsafe
START CHANNEL

© Copyright IBM Corp. 2004, 2010 361

362 Release Guide

Chapter 29. High-level language support

This reference topic describes the high-level programming languages supported by
CICS, and provides information about which release of each language is supported
in current releases of CICS.

COBOL Compilers

Compiler Program
number

Compiler in
service

CICS translator
support

CICS run time
support

Use of IBM
Distributed
Debugger
(see note 1
on page
364)

Use with
WebSphere
Studio
Enterprise
Developer

OS/VS
COBOL

5740-CB1 No CICS TS V1.3:
Supported

CICS TS V2.2,
CICS TS V2.3,
CICS TS V3.1: Not
supported

CICS TS V1.3,
CICS TS V2.2,
CICS TS V2.3: The
Language
Environment
component of z/OS
is required;
applications will run
unchanged.

CICS TS V3.1: Not
supported

No No

VS COBOL
II

5668-023
5668-958

No CICS TS V1.3:
Supported with the
COBOL2 option

CICS TS V2.2,
CICS TS V2.3,
CICS TS V3.1:
Supported with the
COBOL2 and
COBOL3 options.

CICS TS V1.3,
CICS TS V2.2: The
Language
Environment
component of z/OS
is required;
applications will run
unchanged.

CICS TS V2.3,
CICS TS V3.1: The
Language
Environment
component of z/OS
is required; CICS
will use the
Language
Environment
runtime exclusively.
Application
behavior might
change.

Yes, with
restrictions

No

SAA
AD/Cycle®

COBOL/370

5688-197
5668-958

No CICS TS V1.3:
Supported with the
COBOL2 option

CICS TS V2.2,
CICS TS V2.3,
CICS TS V3.1:
Supported with the
COBOL2
andCOBOL3
options.

Language
Environment

Yes, with
restrictions

No

COBOL for
MVS and VM

5688-197 No CICS TS V1.3:
Supported with the
COBOL2 option

CICS TS V2.2,
CICS TS V2.3,
CICS TS V3.1:
Supported with the
COBOL2 and
COBOL3 options.

Language
Environment

Yes, with
restrictions

No

© Copyright IBM Corp. 2004, 2010 363

Compiler Program
number

Compiler in
service

CICS translator
support

CICS run time
support

Use of IBM
Distributed
Debugger
(see note 1)

Use with
WebSphere
Studio
Enterprise
Developer

COBOL for
OS/390 and
VM V2

5648-A25 Yes CICS TS V1.3:
Supported with the
COBOL2 option

CICS TS V2.2,
CICS TS V2.3,
CICS TS V3.1:
Supported with the
COBOL2 and
COBOL3 options.

Language
Environment

Yes, with
restrictions

No

COBOL for
OS/390 and
VM V2

5648-A25
(with PTF for
APAR
PQ45462)

Yes Can use the
integrated translator
(see note 2)

Language
Environment

Yes, with
restrictions

Yes, with
restrictions

Enterprise
COBOL for
z/OS and
OS/390 V3

5655-G53 Yes Can use the
integrated translator
(see note 2)

Language
Environment

Yes Yes

Notes:

1. IBM Distributed Debugger is available as a component of WebSphere
Studio Enterprise Developer V5, and other IBM products.

For more information, refer to: http://www.ibm.com/software/awdtools/
debugger/.

2. The integrated translator function requires IBM COBOL for OS/390 and
VM Version 2 Release 2, with PTF for APAR PQ45462, or Enterprise
COBOL for z/OS and OS/390 Version 3.

PL/I compilers

Compiler Program
number

Compiler in
service

CICS
translator
support

CICS run time
support

Use of IBM
Distributed
Debugger
(see note 1
on page 365)

Use with
WebSphere
Studio
Enterprise
Developer

OS PL/I
Optimizing
Compiler V1

5724-PLI No Yes CICS TS V1.3,
CICS TS V2.2,
CICS TS V2.3:
The Language
Environment
component of
z/OS is
required;
applications
will run
unchanged.

CICS TS V3.1:
Not supported.

Yes, with
restrictions

No

OS PL/I
Optimizing
Compiler V2

5668-909
5668-910
5668-911

No Yes CICS TS V1.3,
CICS TS V2.2,
CICS TS V2.3:
The Language
Environment
component of
z/OS is
required;
applications
will run
unchanged.

CICS TS V3.1:
Not supported.

Yes, with
restrictions

No

364 Release Guide

#
#
#

#
#

#
#

http://www.ibm.com/software/awdtools/debugger/
http://www.ibm.com/software/awdtools/debugger/

Compiler Program
number

Compiler in
service

CICS
translator
support

CICS run time
support

Use of IBM
Distributed
Debugger
(see note 1)

Use with
WebSphere
Studio
Enterprise
Developer

SAA AD/Cycle
PL/I for MVS
and VM

5688-235 No Yes (see note
2)

Language
Environment

Yes, with
restrictions

No

PL/I for MVS
and VM V1

5688-235 No Yes (see note
2)

Language
Environment

Yes, with
restrictions

No

VisualAge PL/I
for OS/390 V2

5655-B22 No Yes (see note
2)

Language
Environment

Yes, with
restrictions

No

Enterprise PL/I
for z/OS and
OS/390 V3

5655-H31 Yes Can use
integrated
translator (see
note 2)

Language
Environment

Yes Yes

Notes:

1. IBM Distributed Debugger is available as a component of WebSphere
Studio Enterprise Developer V5, and other IBM products.

For more information, refer to: http://www.ibm.com/software/awdtools/
debugger/.

2. The integrated translator function requires VisualAge PL/I for 3 OS/390,
Version 2 Release 2.1, with PTF for APAR PQ45562, or Enterprise PL/I
for z/OS and OS/390 Version 3.

C and C++ Compilers

Compiler Program
number

Compiler in
service

CICS
translator
support

CICS run time
support

Use of IBM
Distributed
Debugger
(see note 1
on page 366)

Use with
WebSphere
Studio
Enterprise
Developer

C/370™ V1 5688-040 No Yes CICS TS V1.3,
CICS TS V2.2,
CICS TS V2.3:
The Language
Environment
component of
z/OS is
required;
applications
will run
unchanged.

CICS TS V3.1:
Not supported.

Yes, with
restrictions

No

C/370 V2 5688-187
5688-188

No Yes CICS TS V1.3,
CICS TS V2.2,
CICS TS V2.3:
The Language
Environment
component of
z/OS is
required;
applications
will run
unchanged.

CICS TS V3.1:
Not supported.

Yes, with
restrictions

No

SAA AD/Cycle
C/370

5688-216 No Yes Language
Environment

Yes, with
restrictions

No

C/C++ for
MVS/ESA

5655-121 No Yes Language
Environment

Yes, with
restrictions

No

Chapter 29. High-level language support 365

#
#

#
#

http://www.ibm.com/software/awdtools/debugger/
http://www.ibm.com/software/awdtools/debugger/

Compiler Program
number

Compiler in
service

CICS
translator
support

CICS run time
support

Use of IBM
Distributed
Debugger
(see note 1)

Use with
WebSphere
Studio
Enterprise
Developer

C/C++ for
OS/390

Component of
5647-A01

Yes Yes Language
Environment

Yes, with
restrictions

No

C/C++ for
z/OS and
OS/390

Component of
5694-A01

Yes Yes Language
Environment

Yes No

z/OS V1.7 XL
C/C++

5694-A01 Yes Yes. The
compiler
provides
support for the
CICS
integrated
translator

Language
Environment

Yes No

Notes:

1. IBM Distributed Debugger is available as a component of WebSphere
Studio Enterprise Developer V5, and other IBM products.

For more information, refer to: http://www.ibm.com/software/awdtools/
debugger/.

Java Support

Compiler or
JVM

Program
number

In service CICS
translator
support

CICS run time
support

Use of IBM
Distributed
Debugger
(see note 1
on page 367)

Use with
WebSphere
Studio
Enterprise
Developer

VisualAge for
Java,
Enterprise
Edition V2 -
Enterprise
Toolkit for
OS/390 (see
note 2 on page
367)

5655-JAV No CICS TS V1.3,
CICS TS V2.2,
CICS TS V2.3,
CICS TS V3.1:
No translator
required - use
the JCICS
classes.

Language
Environment

Yes, with
restrictions

No

Java for
OS/390 at
SDK 1.1.8

Yes CICS TS V1.3
only: No
translator
required - use
the JCICS
classes.

CICS TS V2.2,
CICS TS V2.3,
CICS TS V3.1:
Not supported

Language
Environment

Yes Yes

Developer Kit
for OS/390,
Java 2
Technology
Edition, V1.3.1

5655-D35 Yes CICS TS V2.2
only: No
translator
required - use
the JCICS
classes.

CICS TS V1.3,
CICS TS V2.3,
CICS TS V3.1:
Not supported

Language
Environment

Yes Yes

366 Release Guide

http://www.ibm.com/software/awdtools/debugger/
http://www.ibm.com/software/awdtools/debugger/

Compiler or
JVM

Program
number

In service CICS
translator
support

CICS run time
support

Use of IBM
Distributed
Debugger
(see note 1)

Use with
WebSphere
Studio
Enterprise
Developer

SDK for z/OS,
Java 2
Technology
Edition, V1.4.2

5655-I56 Yes CICS TS V2.3,
CICS TS V3.1:
No translator
required - use
the JCICS
classes.

CICS TS V1.3,
CICS TS V2.2:
Not supported

Language
Environment

Yes Yes

Notes:

1. IBM Distributed Debugger is available as a component of WebSphere
Studio Enterprise Developer V5, and other IBM products.

For more information, refer to: http://www.ibm.com/software/awdtools/
debugger/.

2. Java program objects are programs compiled with the VisualAge for
Java Enterprise Toolkit for OS/390 (ET/390) byte-code binder (they are
compiled with the hpj command, and are sometimes referred to as
compiled Java programs or as HPJ programs).

Chapter 29. High-level language support 367

http://www.ibm.com/software/awdtools/debugger/
http://www.ibm.com/software/awdtools/debugger/

368 Release Guide

Part 8. Publications

© Copyright IBM Corp. 2004, 2010 369

370 Release Guide

Chapter 30. The Eclipse information center

In CICS Transaction Server for z/OS, Version 3 Release 1, the CICS Information
Center runs within the Eclipse help system, a framework that contains a number of
documentation plug-ins that make up the information center. The new look and feel
of the information center, in particular the welcome page, is now consistent with
other product information centers.

The CICS TS 3.1. documentation is contained in a single plug-in. You also have the
option of installing any or all of the CICS tooling products - there is one plug-in per
tooling product. The information center, also known as a help system, runs in two
modes. You can start it locally on your workstation, or you can start it as a server
with remote access via a browser.

You can access information about the latest functionality in CICS, find out about
highlights of the product and link to CICS resources on the Web from the new
Welcome page.

Using the Contents pane, you can access information on CICS by functional area or
by looking for a user goal that matches the task you are performing. You can also
view the books in HTML and PDF by selecting Library and PDFs.

The following features are implemented in this release of the information center:

v Extension of platform support to Linux, Linux on zSeries and z/OS.

v What's New section

v Information roadmaps

v Learning paths

v Searching and lookups

v Troubleshooting and support

v Bookmarks

v User preferences

v Revised navigation

Benefits of the Eclipse information center

The move to an Eclipse framework brings the benefit of support for additional
platforms. You can now run the information center locally on a Linux RedHat or
Linux SuSE workstation. In addition, the information center now runs as a server on
Linux RedHat for zSeries, Linux SuSE for zSeries and z/OS. This allows you
greater flexibility for where you host your information center. For a complete list of
supported platforms, see “Requirements” on page 372.

The installation of the information center has been greatly simplified, so there is no
longer a GUI installation. The readme file that is provided with the information
center explains how to install the Eclipse help system. The structure of Eclipse
means that you can put multiple documentation plug-ins into one help system,
including plug-ins from other products. This enables you to customize the
information that is contained in your information center. In addition, you can
integrate the CICS documentation plug-in into an Eclipse-based IDE.

© Copyright IBM Corp. 2004, 2010 371

Searching the CICS documentation has improved, as Eclipse uses the Lucene
search engine. NetQuestion is no longer required. When you search in the
information center, each instance of the string query is now highlighted in the HTML
content.

A number of navigation improvements have been made to the information center.
Two new features are learning paths and information roadmaps. A learning path is a
sequence of topics that help you learn about new functions more quickly. An
information roadmap is a single topic that contains a comprehensive set of links
about a functional area of CICS. The information roadmaps are designed to help
you find useful resources both in the information center and on the Web, as well as
providing guidance on what information is provided at each link.

There is also a Troubleshooting and Support section in the navigation that provides
you with help on how to search knowledge bases, get fixes from IBM and report
problems. Of particular benefit, is the Web search topic that allows you to query the
CICS support Web site to look for solutions to problems. This topic also includes a
Google search facility. In addition, key technotes from multiple releases are
provided to help you quickly troubleshoot problems.

Terminology
This topic contains the terminology used by the Eclipse information center.

plug-in
A self-contained software component that modifies (adds or changes)
function in a particular software system. When a user adds a plug-in to a
software system, the original software system remains intact. In the case of
documentation plug-ins, the plug-in contains all of the files relating to
product documentation and how it is viewed in Eclipse.

learning path
A sequence of information center topics that helps new users learn about a
functional area of the product

information roadmap
A topic that contains a comprehensive set of links to information resources
in the information center and on the Web, along with guidance on where
each link takes the user.

local mode
The implementation of the information center on a workstation, using the
IC_local_start file. The information center automatically launches in the
system default browser.

server mode
The implementation of the information center on a server, using the
IC_server_start file. The information center runs on a specific port, and
users access the information center remotely using their browsers.

Requirements

The information center requires the following operating systems to run:

v Windows 2000

v Windows XP

v AIX 5.2 and 5.3

v Linux RedHat Enterprise 3.0

372 Release Guide

v Linux SuSE Enterprise 3.0

v Linux RedHat Enterprise 8 and 9 for zSeries

v Linux SuSE Enterprise 8 and 9 for zSeries

v z/OS 1.4 or later

Please note that support for the information center on Linux for zSeries and z/OS is
only offered in server mode.

The CICS TS 3.1 Information Center uses a Java Runtime Environment (JRE). A
JRE for each platform is provided with the information center, except for z/OS. If
you want to run an information center on z/OS, you need to use the JRE provided
with the operating system.

To get the best results when viewing the information center, it is recommended that
you use one of the following browsers:

v Microsoft Internet Explorer 6.0

v Mozilla 1.7

What's New section
The What's New section is a new navigation structure that contains all of the
information relating to the new release, and is fully integrated with the rest of the
information center.

To access information that describes the new features of CICS, you can use the
links on the welcome page of the information center as a starting point. The
information is divided into the three themes of the release: CICS integration,
Application transformation, and Enterprise management. You can also use the
navigation by expanding the What's New section to find the particular function you
are looking for.

Information Roadmaps
An information roadmap is a single topic that contains links to a variety of resources
on a particular functional area of CICS.

Each roadmap is divided into sections, which are summarized in a table of contents
at the top of the topic. Sections cover areas such as basic skills, installation,
migration, administration, application development, and security. The links in each
section indicate whether a resource is internal or external to the information center,
as well as providing a brief summary of what the resource contains. Resources
include information center topics, redbooks, tutorials, white papers and articles. At
the end of each roadmap is an education section that contains further reading, links
to courses and educational material.

There are three information roadmaps in the information center. They cover the
following functions:

v Web Services

v CICSPlex System Manager

v Java support and programming in CICS

You can access the information roadmaps directly from the welcome page of the
information center, or expand the navigation in the Contents pane.

Chapter 30. The Eclipse information center 373

Learning paths
A learning path is a set of topics that help you learn about an area of CICS.

Each learning path has an introduction that explains the objectives and the intended
audience. A learning path is designed to be read sequentially, but the introduction
contains all of the steps in the learning path, so that you can start at any point if
you need to. Button navigation is provided at the bottom of each topic to move
through the path. There are also links to further information, so that you can leave
the path at any time to find out more about a particular function or concept. At the
end of the learning path is a summary topic. It summarizes what you have learned
and provides useful links to further reading and subsequent tasks in the information
center.

The learning paths for this release cover the following areas:

v Web Services

v Installing CICSPlex SM: the WUI scenario

Techniques for searching in the information center
You can use several methods to search the information center, depending on the
information that you are looking for and the mode that the information center is
using to run.

To perform a search in the information center, enter a query in the Search field.
The Contents pane displays the top 500 ranked results. Click on a search result to
view the topic. The words from your query are highlighted.

To toggle between the navigation tree and the search results list, click the Contents

tab () or the Search results tab () at the bottom on the Contents pane.

Searching for exact words or phrases

You can identify a search phrase as an exact string by enclosing it in double
quotation marks. For example, "log file" searches for the string log file, not the
separate words log and file. Without the quotation marks, the search term is
interpreted as log AND file.

In English and German only, the search engine "stems" other forms of a single
search word. For example, a search for the word challenge, will also find the word
challenging. Use the double quotation marks when you do not want stemming.

Searching with wildcards

You can use the following wildcard characters:

v * Asterisk - for multiple unknown or variable characters in the term. For example
the search term par* returns partly, participate, partial, and other words beginning
with par.

v ? Question mark - for a single unknown or variable character. For example, the
search term par? returns part but not partial or partly.

374 Release Guide

Searching with Boolean operators (AND, OR, NOT)

You can insert the binary operators: AND, OR, and NOT in your search term. For
example:

database AND "log file" : To narrow your search to include topics that must contain
both of the terms database and "log file".

database OR "log file" :To widen your search for topics that contain either database
or "log file".

database NOT "log file" : Searches for topics that contain database without log file.

Narrowing your search scope

By default, all topics shown in the Contents pane are searched. However, you can
narrow your searches to a particular set of topics. If you are running the information
center locally, you can narrow your searches using a search list and save search
lists to use again later.

To create a search list:

1. Click the Search scope: link next to the Search field. The Select Search Scope
window opens.

2. Select Search only the following topics and select the New push button. The
New Search List windows opens.

3. In the Topics to search list, select the navigation categories that you want to
include in your search. You can expand categories to select only certain
subcategories.

4. In the List name: text field, enter an appropriate name for your search list and
select the OK button.

You can use the search list that you have created to search the topics for your
search expression.

If you are running the information center on a server, you can narrow your searches
to a particular section of the navigation using the Advanced search: link next to
the Search field.

Searching for messages, commands, and parameters

To help you quickly find a specific reference item in the documentation, such as a
message or command, a lookup facility is provided in the navigation. Select Find
commands, messages, parameters and more in the navigation to use the lookup
facility. This facility does not use the Lucene search engine, but instead uses an
index. You can search in the following areas:

v API commands

v API parameters

v SPI commands

v SPI parameter

v CICS transactions

v Messages and codes

v Trace entries

v Resource definitions

Chapter 30. The Eclipse information center 375

v System initialization parameters

v Glossary terms

v Figure titles

v Table titles

Navigating the information center
To navigate around the information center, you can select or expand the links in the
Contents pane. You can also use features such as synchronization and keyboard
shortcuts.

The Contents pane () on the left side of the help window displays topic titles in
a table of contents or navigation tree structure. You can either click on the topic
titles to display content in the main panel on the right, or you can expand the
navigation to view the nested sections. If you opt to use the links in the HTML

topics, you can use the Back () and Forward () buttons to navigate within
the history of viewed topics.

Each HTML topic contains a set of links, located at the bottom of the topic, that are
designed to help you navigate to related information. In addition, many of the topics
contain button navigation that take you to the contents table of the book that the
topic belongs to, the next and previous topic in the book and finally the index.

If you perform a search and want to return to the table of contents, select the

Contents tab () at the bottom of the pane. At any time, you can use the tabs at
the bottom of the pane to move between the navigation and the results of the last
search.

Synchronizing the table of contents

When you follow a link within a topic, the navigation tree does not automatically
change to display and highlight the new topic. To see where the new topic fits in the

navigation tree and synchronize the two views, click the Refresh button () or

the Show in Table of Contents () button. The topic title for the currently
displayed topic will be highlighted in the navigation tree.

Navigating using the keyboard

Use the following key combinations to navigate through the information center:

v To go to the next link, button or topic node from inside a panel in the information
center, press Tab.

v To expand and collapse a node in the tree, press the Right and Left arrows.

v To move to the next topic node, press the Down arrow or Tab.

v To move to the previous topic node, press the Up arrow or Shift+Tab.

v To scroll all the way up or down, press Home or End.

v To go back, press Alt+Left arrow; to go forward, press Alt+Right arrow.

v To go to the next pane, press Ctrl+Tab.

v To move to the previous pane, press Shift+Ctrl+Tab.

v To print the active pane, press Ctrl+P.

376 Release Guide

Bookmarking a topic
There are two ways to bookmark topics in the information center. The method for
bookmarking topics depends on whether you are running the information center
locally or on a server.

When you are running the information center locally on your workstation, you can
bookmark a selected topic by following these steps:

1. Select the Bookmark button above the main panel () . This will place a
bookmark in the Bookmarks panel.

2. Click on the Bookmarks view icon () at the bottom of the Contents pane.
The Contents pane will be replaced by the Bookmarks pane to display all of
your bookmarks. The topic you selected will be at the bottom of the list of
bookmarks.

If you want to delete the bookmark, select it and then use the Delete key.

When you are accessing the information center on a server, you can use the
browser to bookmark a topic.

User Preferences
The user preferences allow you to customize certain aspects of the information
center functionality.

The user preferences are interactive tables, accessible syntax diagrams and a
text/image option. These preferences are now available from the Product and
information center overview section of the navigation.

Chapter 30. The Eclipse information center 377

378 Release Guide

Chapter 31. The CICS Transaction Server for z/OS library

The CICS Transaction Server for z/OS Information Center is the primary source of
user information for CICS Transaction Server. A small subset (the entitlement set) of
the CICS TS publications is available as hardcopy.

The Information Center contains:

v Information for CICS Transaction Server in HTML format.

v Licensed and unlicensed CICS Transaction Server books provided as Adobe
Portable Document Format (PDF) files. You can use these files to print hardcopy
of the books.

v Information for related products in HTML format and PDF files.

One copy of the CICS Information Center, on a CD-ROM, is provided automatically
with the product. Further copies can be ordered, at no additional charge, by
specifying the Information Center feature number, 7014. You will also receive a
small set of essential hardcopy books.

Licensed documentation is available only to licensees of the product. A version of
the Information Center that contains only unlicensed information is available through
the publications ordering system, order number SK3T-6945.

Books available as hardcopy
When you order CICS Transaction Server for z/OS, Version 3 Release 1, you will
receive a small number of hardcopy books.

The hardcopy books are:
Memo to Licensees, GI10-2559
CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Licensed Program Specification, GC34-6608

You can order further copies of the following books, using the order number quoted
above:

CICS Transaction Server for z/OS Release Guide
CICS Transaction Server for z/OS Installation Guide
CICS Transaction Server for z/OS Licensed Program Specification

PDF-only books
The licensed and unlicensed CICS Transaction Server books are provided in the
CICS Information Center as Adobe Portable Document Format (PDF) files. You can
use these files to print hardcopy of the books.

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Migration from CICS TS Version 1.3,
GC34-6423
CICS Transaction Server for z/OS Migration from CICS TS Version 2.2,
GC34-6424

© Copyright IBM Corp. 2004, 2010 379

CICS Transaction Server for z/OS Migration from CICS TS Version 2.3,
GC34-6425
CICS Transaction Server for z/OS Installation Guide, GC34-6426

Access to CICS
CICS Internet Guide, SC34-6450

CICS Web Services Guide, SC34-6458

Administration
CICS System Definition Guide, SC34-6428
CICS Customization Guide, SC34-6429
CICS Resource Definition Guide, SC34-6430
CICS Operations and Utilities Guide, SC34-6431
CICS RACF Security Guide, SC34-6454
CICS Supplied Transactions, SC34-6432

Programming
CICS Application Programming Guide, SC34-6433
CICS Application Programming Reference, SC34-6434
CICS System Programming Reference, SC34-6435
CICS Front End Programming Interface User's Guide, SC34-6436
CICS C++ OO Class Libraries, SC34-6437
CICS Distributed Transaction Programming Guide, SC34-6438
CICS Business Transaction Services, SC34-6439
Java Applications in CICS, SC34-6440
JCICS Class Reference, SC34-6001

Diagnosis
CICS Problem Determination Guide, SC34-6441
CICS Performance Guide, SC34-6452
CICS Messages and Codes, SC34-6442
CICS Diagnosis Reference, LY33-6110
CICS Recovery and Restart Guide, SC34-6451
CICS Data Areas, LY33-6107
CICS Trace Entries, SC34-6443
CICS Supplementary Data Areas, LY33-6108
CICS Debugging Tools Interfaces Reference, LY33-6109

Communication
CICS Intercommunication Guide, SC34-6448
CICS External Interfaces Guide, SC34-6449

Databases
CICS DB2 Guide, SC34-6457

CICS IMS Database Control Guide, SC34-6453

CICS Shared Data Tables Guide, SC34-6455

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-6459
CICSPlex SM User Interface Guide, SC34-6460
CICSPlex SM Web User Interface Guide, SC34-6461

380 Release Guide

Administration and Management
CICSPlex SM Administration, SC34-6462
CICSPlex SM Operations Views Reference, SC34-6463
CICSPlex SM Monitor Views Reference, SC34-6464
CICSPlex SM Managing Workloads, SC34-6465
CICSPlex SM Managing Resource Usage, SC34-6466
CICSPlex SM Managing Business Applications, SC34-6467

Programming
CICSPlex SM Application Programming Guide, SC34-6468
CICSPlex SM Application Programming Reference, SC34-6469

Diagnosis
CICSPlex SM Resource Tables Reference, SC34-6470
CICSPlex SM Messages and Codes, GC34-6471
CICSPlex SM Problem Determination, GC34-6472

CICS family books
Communication

CICS Family: Interproduct Communication, SC34-6473
CICS Family: Communicating from CICS on System/390, SC34-6474

Licensed publications
The following licensed publications are not included in the unlicensed version of the
Information Center:

CICS Diagnosis Reference, LY33-6102
CICS Data Areas, LY33-6103
CICS Supplementary Data Areas, LY33-6104
CICS Debugging Tools Interfaces Reference, LY33-6105

Chapter 31. The CICS Transaction Server for z/OS library 381

382 Release Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS system
in one of these ways:

v using a 3270 emulator logged on to CICS

v using a 3270 emulator logged on to TSO

v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

Some accessibility features may not be available when using the application
assembly tools for enterprise beans (ATK and AAT), which are components of
WebSphere Application Server. You should consult the documentation that comes
with WebSphere Application Server to determine which accessibility features are
available when using these tools.

If you use the resource manager for enterprise beans to work with EJB resources,
the accessibility features are those that your Web browser provides. In particular,
note that the help that is presented when you allow the mouse pointer to hover over
part of the display, is also available through the help function on that panel.

© Copyright IBM Corp. 2004, 2010 383

384 Release Guide

Index

Special characters
> 32K COMMAREAs (channels)

DELETE CONTAINER (CHANNEL) command 224
GET CONTAINER (CHANNEL) command 225
MOVE CONTAINER (CHANNEL) command 227
PUT CONTAINER (CHANNEL) command 229
START CHANNEL command 231

A
abend codes 243
ABSTIME option

CONVERTTIME command 153
ACTION option

WEB CONVERSE command 100
WEB SEND command (Client) 92
WEB SEND command (Server) 121

ANALYZER attribute
URIMAP definition 137

analyzer program 133
chunked transfer-coding 113

analyzer programs 161
DFHWBAAX 161
DFHWBADX 161

ANALYZERSTAT option
INQUIRE URIMAP command 155

API (application programming interface)
JCICS changes 237
modified API commands 234
new API commands 223

API changes
CICSPlex SM 304, 307

API command
EXTRACT STATISTICS 315

application programming interface (API)
JCICS changes 237
modified API commands 234
new API commands 223

application programming interface, CICSPlex SM
changed resource tables

CICSRGN 188, 269, 347
CONNECT 250
DOCDEF 169
DOCTEMP 169
EJCODEF 188
EJCOSE 188
PROGDEF 269, 347
PROGRAM 269, 347
TASK 169, 188, 250, 269
TCPDEF 169, 188
TCPIPGBL 188
TCPIPS 188
TERMDEF 341
WORKREQ 77

new resource tables
HOST 169
PIPEDEF 77

application programming interface, CICSPlex SM
(continued)

new resource tables (continued)
PIPELINE 77
URIMAP 169
URIMPDEF 169
URIMPGBL 169
WEBSERV 77
WEBSVDEF 77

AS option
MOVE CONTAINER (CHANNEL) command 228

assistant, Web services 36

B
BAS 293
batch utility

Web services assistant 36
BATCHREP resource table 307
benefits 195
big COMMAREAs 195, 196, 200, 216, 223
big COMMAREAs (channels)

DELETE CONTAINER (CHANNEL) command 224
big COMMAREAs, channels 224, 225, 227, 229, 231
BINDING option

INQUIRE WEBSERVICE command 67
BTS activities 214
business application services 293

C
CCRL transaction 180
CERTIFICATE attribute

URIMAP definition 138
CERTIFICATE option

INQUIRE URIMAP command 155
WEB OPEN command 87

certificate revocation list 180
changes to CICS externals

abend codes 243
API 223
CICS sample programs 243
messages 243
monitoring 240
problem determination 243
statistics 242
trace points 246
user-replaceable programs 238

channel commands
DELETE CONTAINER (CHANNEL) 224
GET CONTAINER (CHANNEL) 225
MOVE CONTAINER (CHANNEL) 227
PUT CONTAINER (CHANNEL) 229
START CHANNEL 231

CHANNEL option
ASSIGN command 234
DELETE CONTAINER (CHANNEL) command 224

© Copyright IBM Corp. 2004, 2010 385

CHANNEL option (continued)
GET CONTAINER (CHANNEL) command 225
LINK command 235
MOVE CONTAINER (CHANNEL) command 228
PUT CONTAINER (CHANNEL) command 229
RETURN command 235
START TRANSID (CHANNEL) command 233
XCTL command 236

CHANNELERR condition
LINK command 235
RETURN command 236
XCTL command 237

channels
as large COMMAREAs 195
basic examples 197
benefits of 195
compared to BTS activities 214
constructing 213
creating 202, 216
current 203, 206
designing 212
discovering which containers a program's been

passed 211
discovering which containers were returned from a

link 211
dynamic and distributed routing 219, 249
overview 195
read only containers 211
scope of 207
typical scenarios

multiple interactive components 202
one channel—one program 200
one channel—several programs 200
several channels, one component 201

using from JCICS 216
channels as large COMMAREAs 195, 196, 200, 216,

223, 224, 225, 227, 229, 231
CHARACTERSET attribute

URIMAP definition 138
CHARACTERSET option

INQUIRE URIMAP command 155
WEB CONVERSE command 104
WEB RECEIVE command (Server) 125
WEB SEND command (Client) 92
WEB SEND command (Server) 121

chunked transfer-coding 113
chunking 113
CHUNKING option

WEB SEND command (Client) 92
WEB SEND command (Server) 121

CICS as an HTTP client
pipelined requests 114

CICS resource definition 293
CICS Web support

chunked transfer-coding 113
persistent connections 115
pipelining 114
User exits XWBOPEN, XWBSNDO 106, 108
virtual hosting 116

CICS Web support commands
CONVERSE WEB 98

CICS Web support commands (continued)
WEB CLOSE 90
WEB CONVERSE 98
WEB EXTRACT 148
WEB OPEN 87
WEB PARSE URL 146
WEB RECEIVE 124
WEB RECEIVE (Client) 96
WEB SEND (Client) 91
WEB SEND (Server) 120

CICSPlex SM
API changes 304, 307
BATCHREP facility 307
business application services (BAS) 293
filter confirmation 297
new messages 304, 308
remote MAS 349
result set warning counts 296
selection lists 298
user favorites 286, 288
user group profiles 290, 291
Web User Interface 308

CICSPlex SM, application programming interface
changed resource tables

CICSRGN 188, 269, 347
CONNECT 250
DOCDEF 169
DOCTEMP 169
EJCODEF 188
EJCOSE 188
PROGDEF 269, 347
PROGRAM 269, 347
TASK 169, 188, 250, 269
TCPDEF 169, 188
TCPIPGBL 188
TCPIPS 188
TERMDEF 341
WORKREQ 77

new resource tables
HOST 169
PIPEDEF 77
PIPELINE 77
URIMAP 169
URIMPDEF 169
URIMPGBL 169
WEBSERV 77
WEBSVDEF 77

CICSPlex SM, end user interface
changed views

DOCDEF 168
DOCTEMP 168
EJCODEF 187
EJCOSE 187
PROGDEF 347
PROGRAM 347
TCPDEF 168, 187
TCPIPS 187
TERMDEF 341

CIPHERS attribute
URIMAP definition 138

386 Release Guide

CIPHERS option
INQUIRE URIMAP command 155
WEB OPEN command 87

CLIENTCONV option
WEB CONVERSE command 104
WEB RECEIVE command (Client) 97
WEB SEND command (Client) 93

CLNTCODEPAGE option
WEB RECEIVE command (Server) 125
WEB SEND command (Server) 122

CLOSESTATUS option
WEB CONVERSE command 100
WEB SEND command (Client) 93
WEB SEND command (Server) 122

CODEPAGE option
WEB OPEN command 88

COMMAREAs > 32K 195, 196, 216, 223
compliance with standards 28
components

multiple, interactive 202
one channel—several programs 200
several channels, one component 201

configuration file, pipeline 52
connection

persistent 115
constructing a channel 213
container commands

DELETE CONTAINER (CHANNEL) 224
GET CONTAINER (CHANNEL) 225
MOVE CONTAINER (CHANNEL) 227
PUT CONTAINER (CHANNEL) 229

CONTAINER option
DELETE CONTAINER (CHANNEL) command 224
GET CONTAINER (CHANNEL) command 225
INQUIRE WEBSERVICE command 68
MOVE CONTAINER (CHANNEL) command 228
PUT CONTAINER (CHANNEL) command 230

containers
basic examples 197
context, BTS or channel 215
creating 216
designing a channel 212
discovering which a program's been passed 211
discovering which were returned from a link 211
overview 195
read only 211
using from JCICS 216

context
of containers, BTS or channel 215

CONVERSE WEB command 98
CONVERTER attribute

URIMAP definition 138
CONVERTER option

INQUIRE URIMAP command 155
converter program 133
converter programs 162
CONVERTTIME command 152
creating a channel 202
CRL (certificate revocation list) 180
current channel 203

overview 206

CVDA values
CHUNKEND

WEB SEND command (Client) 93
WEB SEND command (Server) 122

CHUNKNO
WEB SEND command (Client) 92
WEB SEND command (Server) 122

CHUNKYES
WEB SEND command (Client) 92
WEB SEND command (Server) 122

CLICONVERT
WEB CONVERSE command 105
WEB RECEIVE command (Client) 97
WEB SEND command (Client) 93

CLIENT
INQUIRE URIMAP command 157

CLOSE
WEB CONVERSE command 100
WEB SEND command (Client) 93
WEB SEND command (Server) 122

DELETE
WEB CONVERSE command 95, 102

DISABLED
INQUIRE HOST command 128
INQUIRE URIMAP command 155, 156
SET HOST command 129
SET URIMAP command 158

DISABLEDHOST
INQUIRE URIMAP command 155

ENABLED
INQUIRE HOST command 128
INQUIRE URIMAP command 155, 156
SET HOST command 129
SET URIMAP command 158

EVENTUAL
WEB SEND command (Server) 121

EXPECT
WEB CONVERSE command 100
WEB SEND command (Client) 92

GET
WEB CONVERSE command 101, 102
WEB SEND command (Client) 94

HEAD
WEB CONVERSE command 102
WEB SEND command (Client) 94

HTTP
WEB EXTRACT command 151
WEB OPEN command 89

HTTPNO
WEB EXTRACT command 151
WEB RECEIVE command (Server) 127

HTTPS
WEB EXTRACT command 151
WEB OPEN command 89

HTTPYES
WEB EXTRACT command 151
WEB RECEIVE command (Server) 127

IMMEDIATE
WEB SEND command (Server) 121

NO
INQUIRE URIMAP command 155

Index 387

CVDA values (continued)
NOCLICONVERT

WEB CONVERSE command 105
WEB RECEIVE command (Client) 97
WEB SEND command (Client) 93

NOCLOSE
WEB CONVERSE command 101
WEB SEND command (Client) 93
WEB SEND command (Server) 122

NOINCONVERT
WEB CONVERSE command 105

NONE
INQUIRE URIMAP command 157
SET URIMAP command 158

NOOUTCONVERT
WEB CONVERSE command 105

NOSRVCONVERT
WEB RECEIVE command (Server) 126
WEB SEND command (Server) 124

OPTIONS
WEB CONVERSE command 102
WEB SEND command (Client) 95

PERM
INQUIRE URIMAP command 157

PERMANENT
SET URIMAP command 159

PIPELINE
INQUIRE URIMAP command 157

PUT
WEB CONVERSE command 102
WEB SEND command (Client) 94

RFC1123
FORMATTIME command 153

SERVER
INQUIRE URIMAP command 157

SRVCONVERT
WEB RECEIVE command (Server) 126
WEB SEND command (Server) 124

TEMP
INQUIRE URIMAP command 157

TEMPORARY
SET URIMAP command 158

TRACE
WEB CONVERSE command 102
WEB SEND command (Client) 95

YES
INQUIRE URIMAP command 155

D
data conversion 219

and channels 219
code pages 327

data repository
new messages 308

DATATYPE option
PUT CONTAINER (CHANNEL) command 230

DATESTRING option
CONVERTTIME command 152
FORMATTIME command 153

DEFAULTWARNCNT WUI parameter 296

DELETE CONTAINER (CHANNEL) command 224
deselect all icon 302
designing a channel 212
detail views

two colum 300
DFHCNV 327

changes to macros 328
DFHLS2WS

cataloged procedure 37
DFHWBAAX 161
DFHWBAAX, default analyzer program

Server HTTP processing 133
DFHWBADX 161
DFHWBADX, sample analyzer program

Server HTTP processing 133
DFHWBEP (Web error program) 163
DFHWBERX (Web error transaction program) 163
DFHWS2LS

cataloged procedure 44
diagram

syntax xii
discovering which containers a program's been

passed 211
discovering which containers were returned from a

link 211
distributed routing program 238
DNS server 116
DOCTOKEN option

WEB CONVERSE command 101
WEB SEND command (Client) 94
WEB SEND command (Server) 122

dynamic routing program 238
dynamic routing with channels 219, 249
dynamic selection lists 298

E
ENABLESTATUS option

INQUIRE HOST command 128
INQUIRE URIMAP command 155
SET HOST command 129
SET URIMAP command 158

end user interface, CICSPlex SM
changed views

DOCDEF 168
DOCTEMP 168
EJCODEF 187
EJCOSE 187
PROGDEF 347
PROGRAM 347
TCPDEF 168, 187
TCPIPS 187
TERMDEF 341

ENDPOINT option
INQUIRE WEBSERVICE command 68

examples
basic 197
CICS client program that contructs a channel 213
CICS server program that uses a channel 214
Java client program that contructs and uses a

channel 218

388 Release Guide

examples (continued)
multiple interactive components 202
one channel—one program 200
one channel—several programs 200
several channels, one component 201
simple client program compared to a BTS

activity 214
EXTRACT STATISTICS command 315

F
favorites 286, 288
favorites editor 286
filter confirmation 297
filters

expanding and collapsing 301
FILTERSTYLE initialization parameter 301
FLENGTH option

GET CONTAINER (CHANNEL) command 225
PUT CONTAINER (CHANNEL) command 231

FROM option
PUT CONTAINER (CHANNEL) command 231
WEB CONVERSE command 101
WEB SEND command (Client) 94
WEB SEND command (Server) 123

FROMCCSID option
PUT CONTAINER (CHANNEL) command 231

FROMLENGTH option
WEB CONVERSE command 101
WEB SEND command (Client) 94
WEB SEND command (Server) 123

G
GET CONTAINER (CHANNEL) command 225

H
hardware prerequisites 355
HFSFILE attribute

URIMAP definition 139
HFSFILE option

INQUIRE URIMAP command 155
high level language structure

converting to WSDL 37
HOST attribute

URIMAP definition 140
HOST option

INQUIRE HOST command 128, 129
INQUIRE URIMAP command 155
WEB EXTRACT command 149
WEB OPEN command 88
WEB PARSE URL command 147

HOSTCODEPAGE attribute
URIMAP definition 140

HOSTCODEPAGE option
INQUIRE URIMAP command 156
WEB RECEIVE command (Server) 125
WEB SEND command (Server) 123

HOSTLENGTH option
WEB EXTRACT command 149

HOSTLENGTH option (continued)
WEB OPEN command 88
WEB PARSE URL command 147

HTTP client open exit XWBOPEN 106
HTTP request and response processing

chunked transfer-coding 113
CICS as an HTTP client 83
CICS as an HTTP server 133
persistent connections 115
pipelining 114

HTTPMETHOD option
WEB EXTRACT command 149

HTTPRNUM option
WEB OPEN command 88

HTTPVERSION option
WEB EXTRACT command 149

HTTPVNUM option
WEB OPEN command 88

I
idempotency 114
information center

bookmarking 377
information roadmap 373
learning path 374
requirements 372
searching techniques 374

information centernavigating 376
INQUIRE HOST command 127
INQUIRE URIMAP command 154
INQUIRE WEBSERVICE command 67
Installation

new process 313
INTO option

GET CONTAINER (CHANNEL) command 226
WEB CONVERSE command 103
WEB RECEIVE command (Client) 97
WEB RECEIVE command (Server) 125

INTOCCSID option
GET CONTAINER (CHANNEL) command 226

INVOKE WEBSERVICE command 60

J
JCICS

and channels 216
browsing the current channel 218
changes 237
creating channels 216
creating containers 216
example program 218
getting data from a container 218
receiving the current channel 217

L
language structure

converting to WSDL 37
large COMMAREAs 195, 196, 200, 216, 223

Index 389

large COMMAREAs, channels 224, 225, 227, 229,
231

LASTMODTIME option
INQUIRE WEBSERVICE command 68

LASTRESET option
EXTRACT STATISTICS command 317

LASTRESETHRS option
EXTRACT STATISTICS command 317

LASTRESETMIN option
EXTRACT STATISTICS command 317

LASTRESETSEC option
EXTRACT STATISTICS command 317

LENGTH option
WEB RECEIVE command (Client) 97
WEB RECEIVE command (Server) 126
WEB SEND command (Server) 123

LOCATION attribute
URIMAP definition 140

LOCATION option
INQUIRE URIMAP command 156
SET URIMAP command 158

M
MAXLENGTH option

WEB CONVERSE command 103
WEB RECEIVE command (Client) 97
WEB RECEIVE command (Server) 126

MEDIATYPE attribute
URIMAP definition 141

MEDIATYPE option
INQUIRE URIMAP command 156
WEB CONVERSE command 101, 103
WEB RECEIVE command (Client) 97
WEB SEND command (Client) 94
WEB SEND command (Server) 123

messages 243, 304, 308
METHOD option

WEB CONVERSE command 101
WEB SEND command (Client) 94

METHODLENGTH option
WEB EXTRACT command 150

migrating programs that use temporary storage to pass
data 248

migration 248
exploiting the new function 247
without exploiting the new function 246

mixed case
password 319

monitoring 240
MOVE CONTAINER (CHANNEL) command 227

N
new API commsand

EXTRACT STATISTICS 315
NODATA option

GET CONTAINER (CHANNEL) command 226
Non-Web-aware application program 133
notation

syntax xii

NOTRUNCATE option
WEB CONVERSE command 103
WEB RECEIVE command (Client) 97
WEB RECEIVE command (Server) 126

NUMCIPHERS option
INQUIRE URIMAP command 156
WEB OPEN command 88

O
overview

basic examples 197
channels 196
channels and BTS activities 214
components 200
constructing a channel 213
containers 196
creating a channel 202
current channel 203
data conversion 219
designing a channel 212
discovering which containers a program's been

passed 211
discovering which containers were returned from a

link 211
dynamic routing with channels 219, 249
read only containers 211
scope of a channel 207
typical scenarios 200
using channels from JCICS 216

P
password

mixed case 319
PATH attribute

URIMAP definition 141
PATH option

INQUIRE URIMAP command 156
WEB CONVERSE command 102
WEB EXTRACT command 150
WEB PARSE URL command 147
WEB SEND command (Client) 95

PATHLENGTH option
WEB CONVERSE command 102
WEB EXTRACT command 150
WEB PARSE URL command 147
WEB SEND command (Client) 95

persistent connections 115
CICS as an HTTP client 85

PGMINTERFACE option
INQUIRE WEBSERVICE command 68

PIPELINE attribute
URIMAP definition 142

pipeline configuration file 52
PIPELINE CVDA value

EXTRACT STATISTICS command 317
PIPELINE definition

SHELF attribute 56
WSDIR attribute 57

390 Release Guide

PIPELINE option
INQUIRE URIMAP command 156
INQUIRE WEBSERVICE command 68

PIPELINE resource definition 55
pipelining 114
plus 32K COMMAREAs 195, 196, 216, 223
plus 32K COMMAREAs (channels)

DELETE CONTAINER (CHANNEL) command 224
GET CONTAINER (CHANNEL) command 225
MOVE CONTAINER (CHANNEL) command 227
PUT CONTAINER (CHANNEL) command 229
START CHANNEL command 231

PORTNUMBER option
WEB EXTRACT command 150
WEB OPEN command 89
WEB PARSE URL command 147

prerequisite hardware 355
prerequisites

hardware 355
problem determination

abend codes 243
messages 243
trace points 246

PROGRAM attribute
URIMAP definition 142

PROGRAM option
INQUIRE URIMAP command 156
INQUIRE WEBSERVICE command 68

programs, sample 243
pthreads 179
PUT CONTAINER (CHANNEL) command 229

Q
QUERYSTRING option

WEB EXTRACT command 150
WEB PARSE URL command 147
WEB SEND command 102
WEB SEND command (Client) 95

QUERYSTRLEN option
WEB EXTRACT command 150
WEB PARSE URL command 147
WEB SEND command 102
WEB SEND command (Client) 95

R
read only containers 211
REDIRECTTYPE attribute

URIMAP definition 142
REDIRECTTYPE option

INQUIRE URIMAP command 157
SET URIMAP command 158

release summary 3
remote MAS 349
REQUESTTYPE option

WEB EXTRACT command 151
requirements, hardware 355
RESID option

EXTRACT STATISTICS command 317
resource assignment views 293

RESTYPE option
EXTRACT STATISTICS command 317

result set warning counts 296
revoked user ID 331

S
sample programs 243
scenarios

multiple interactive components 202
one channel—one program 200
one channel—several programs 200
several channels, one component 201

SCHEME attribute
URIMAP definition 143

SCHEME option
INQUIRE URIMAP command 156
WEB EXTRACT command 151
WEB OPEN command 89

SCHEMENAME option
WEB PARSE URL command 148

scope of a channel 207
security

new ESM facility profile 291
select all icon 302
SERVERCONV option

WEB RECEIVE command (Server) 126
WEB SEND command (Server) 123

session token 83, 85
SESSTOKEN option 105

WEB CLOSE command 91
WEB CONVERSE command 102
WEB EXTRACT command 151
WEB OPEN command 89
WEB RECEIVE command (Client) 98
WEB SEND command (Client) 95

SET HOST command 129
SET option

EXTRACT STATISTICS command 317
GET CONTAINER (CHANNEL) command 226
WEB CONVERSE command 103
WEB RECEIVE command (Client) 98
WEB RECEIVE command (Server) 126

SET URIMAP command 158
SET WEBSERVICE command 69
SHELF attribute

PIPELINE definition 56
SOAP Message Security 26
SOAPFAULT ADD command 61
SOAPFAULT CREATE command 62
SOAPFAULT DELETE command 64
specifications 24
SSL connection improvements 179
SSL pool 179
standards 24

compliance 28
START CHANNEL command 231
STARTCODE option

ASSIGN command 234
STATE option

INQUIRE WEBSERVICE command 68

Index 391

statistics 242
STATUS attribute

URIMAP definition 143
STATUSCODE option

WEB CONVERSE command 103
WEB RECEIVE command (Client) 98
WEB SEND command (Server) 124

STATUSLEN option
WEB CONVERSE command 104
WEB RECEIVE command (Client) 98
WEB SEND command (Server) 124

STATUSTEXT option
WEB CONVERSE command 104
WEB RECEIVE command (Client) 98
WEB SEND command (Server) 124

STRINGFORMAT option
FORMATTIME command 153

summary of CICS TS 3.1 3
syntax notation xii
SYSDEF operand 328
SYSID option

START TRANSID (CHANNEL) command 233
system initialization parameters

CLINTCP 328
SRVERCP 328

T
TCPIPSERVICE attribute

URIMAP definition 143
TCPIPSERVICE option

INQUIRE URIMAP command 128, 156
TCPIPSERVICE resource definition

persistent connections 115
Server HTTP processing 133
virtual hosting 116

TEMPLATENAME attribute
URIMAP definition 143

TEMPLATENAME option
INQUIRE URIMAP command 156

temporary storage, used to pass data 248
TERMID option

START TRANSID (CHANNEL) command 233
threadsafe API commands

new in this release 361
TLS (Transport Layer Security) 178
TOCHANNEL option

MOVE CONTAINER (CHANNEL) command 228
TOLENGTH option

WEB CONVERSE command 104
trace points 246
trailer 113
trailing headers 113
TRANSACTION attribute

URIMAP definition 144
TRANSACTION option

INQUIRE URIMAP command 156
TRANSID option

START TRANSID (CHANNEL) command 233
Transport Layer Security protocol 178

two-column detail views
creating 302

two-column detailed views
deleting items 303

TXSeries 349
TYPE option

WEB RECEIVE command (Server) 127

U
URIMAP attribute

URIMAP definition 145
URIMAP CVDA value

EXTRACT STATISTICS command 317
URIMAP definition

ANALYZER attribute 137
CERTIFICATE attribute 138
CHARACTERSET attribute 138
CIPHERS attribute 138
CONVERTER attribute 138
HFSFILE attribute 139
HOST attribute 140
HOSTCODEPAGE attribute 140
LOCATION attribute 140
MEDIATYPE attribute 141
PATH attribute 141
PIPELINE attribute 142
PROGRAM attribute 142
REDIRECTTYPE attribute 142
SCHEME attribute 143
STATUS attribute 143
TCPIPSERVICE attribute 143
TEMPLATENAME attribute 143
TRANSACTION attribute 144
URIMAP attribute 145
USAGE attribute 145
USERID attribute 145
WEBSERVICE attribute 145

URIMAP option
INQUIRE URIMAP command 155
INQUIRE WEBSERVICE command 69
WEB EXTRACT command 151
WEB OPEN command 89, 95, 103

URIMAP resource definition 135
attributes 136
for CICS as an HTTP client 83
for CICS as an HTTP server 133
virtual hosting 116

URL option
WEB PARSE URL command 148

URLLENGTH option
WEB PARSE URL command 148

USAGE attribute
URIMAP definition 145

USAGE option
INQUIRE URIMAP command 157

user editor 288
user favorites 286

managing 286, 288
user group profiles 290

creating 292

392 Release Guide

user group profiles (continued)
creating and managing 291

user objects 286, 289
user-replaceable programs

distributed routing program 238
dynamic routing program 238

USERID attribute
URIMAP definition 145

USERID option
INQUIRE URIMAP command 157
START TRANSID (CHANNEL) command 233

UsernameToken Profile 1.0 27
using channels from JCICS 216
utility program

Web services assistant 36

V
VALIDATIONST option

INQUIRE WEBSERVICE command 69, 70
VERSIONLEN option

WEB EXTRACT command 151
views, changed

end user interface, CICSPlex SM
DOCDEF 168
DOCTEMP 168
EJCODEF 187
EJCOSE 187
PROGDEF 347
PROGRAM 347
TCPDEF 168, 187
TCPIPS 187
TERMDEF 341

Web User Interface
CICS region 190
Clocks and timings 190
CorbaServer 190
CorbaServer definition 190
CPU and TCB information 270
Document template 174
Document template definition 174
Program 270, 348
Program Definition 270, 348
TCP/IP global status 190
TCP/IP service 190
TCP/IP service definition 174
TCP/IP Service Definition 190
TCP/IP usage 174
Terminal Definition 341
Work Request 79

views, new
Web User Interface

Channel usage 252
Function ships 252
Host 174
Pipeline 79
Pipeline definitions 79
URI map 174
URI map global 174
URI mapping definition 174
Web service 79

views, new (continued)
Web User Interface (continued)

Web service definition 79
virtual hosting 116

W
WEB CLOSE command 90
WEB CONVERSE command 98
Web error program 163
WEB EXTRACT command 148
WEB OPEN command 87
WEB PARSE URL command 146
WEB RECEIVE command (Client) 96
WEB RECEIVE command (Server) 124
WEB SEND command (Client) 91
WEB SEND command (Server) 120
Web services

overview 11
Web services assistant 36
Web Services Security: SOAP Message Security 26
Web Services Security: UsernameToken Profile 1.0 27
Web Services Security: X.509 Certificate Token Profile

1.0 27
Web User Interface 308

batch repository update job 308
changed views

CICS region 190
Clocks and timings 190
CorbaServer 190
CorbaServer definition 190
CPU and TCB information 270
Document template 174
Document template definition 174
Program 270, 348
Program Definition 270, 348
TCP/IP global status 190
TCP/IP service 190
TCP/IP service definition 174
TCP/IP Service Definition 190
TCP/IP usage 174
Terminal Definition 341
Work Request 79

CICS resource definition 293
filter confirmation 297
FILTERSTYLE initialization parameter 301
new messages 304
new views

Channel usage 252
Function ships 252
Host 174
Pipeline 79
Pipeline definitions 79
URI map 174
URI map global 174
URI mapping definition 174
Web service 79
Web service definition 79

result set warning counts 296
screen design 300
selection lists 298

Index 393

Web User Interface (continued)
two-column detailed views 302
user favorites 286, 288
user group profiles 290, 291

Web-aware application program 133
WEBSERVICE attribute

URIMAP definition 145
WEBSERVICE CVDA value

EXTRACT STATISTICS command 317
WEBSERVICE option

INQUIRE URIMAP command 157
INQUIRE WEBSERVICE command 69, 70

WEBSERVICE resource definition 57
WSBIND option

INQUIRE WEBSERVICE command 69
WSDIR attribute

PIPELINE definition 57
WSDL

and application data structure 22
converting to language structure 44

WSDLFILE option
INQUIRE WEBSERVICE command 69

WSS: SOAP Message Security 26
WSS: UsernameToken Profile 1.0 27
WSS: X.509 Certificate Token Profile 1.0 27

X
X.509 Certificate Token Profile 1.0 27
XWBOPEN user exit 106
XWBSNDO user exit 108

394 Release Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

© Copyright IBM Corp. 2004, 2010 395

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and trademark
information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

396 Release Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To ask questions, make comments about the functions of IBM products or systems,
or to request additional publications, contact your IBM representative or your IBM
authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–816151

– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:

– IBMLink: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2004, 2010 397

398 Release Guide

����

Program Number: 5655-M15

GC34-6421-08

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
C

IC
S

Tr
an

sa
ct

io
n

Se
rv

er
fo

r
z/

O
S

R
el

ea
se

G
ui

de
Ve

rs
io

n
3

R
el

ea
se

1

	Contents
	Preface
	What this book is about
	Who this book is for
	What you need to know to understand this book
	Notes on terminology
	Syntax notation

	Part 1. Summary of CICS Transaction Server for z/OS, Version 3 Release 1
	Chapter 1. Summary of CICS Transaction Server for z/OS, Version 3 Release 1
	CICS integration
	Application transformation
	Enterprise management
	Miscellaneous changes
	Discontinued function
	The CICS Information Center

	Part 2. CICS integration
	Chapter 2. Web services in CICS
	How Web services can help your business
	Web services terminology
	Requirements
	How CICS supports Web services
	Message handlers and pipelines
	Transport-related handlers
	Interrupting the flow
	A service provider pipeline
	A service requester pipeline
	CICS pipelines and SOAP

	SOAP messages and the application data structure
	WSDL and the application data structure
	The Web service binding file
	External standards
	Extensible Markup Language Version 1.0
	SOAP 1.1 and 1.2
	Web Services Description Language Version 1.1
	Web Services Coordination Version 1.0
	Web Services Atomic Transaction Version 1.0
	WS-I Basic Profile Version 1.1
	WS-I Simple SOAP Binding Profile Version 1.0
	Web Services Security: SOAP Message Security
	Web Services Security: UsernameToken Profile 1.0
	Web Services Security: X.509 Certificate Token Profile 1.0
	XML Encryption Syntax and Processing
	XML-Signature Syntax and Processing
	CICS compliance with Web services standards

	Planning to use Web services
	Planning a service provider application
	Planning a service requester application

	The CICS Web services assistant
	DFHLS2WS: high level language to WSDL conversion
	DFHWS2LS: WSDL to high level language conversion

	The pipeline configuration file
	Changes to CICS externals
	Changes to resource definition
	PIPELINE resource definitions
	WEBSERVICE resource definitions

	Changes to the application programming interface
	INVOKE WEBSERVICE
	SOAPFAULT ADD
	SOAPFAULT CREATE
	SOAPFAULT DELETE

	Changes to the system programming interface
	CREATE PIPELINE command
	CREATE WEBSERVICE command
	DISCARD PIPELINE command
	DISCARD WEBSERVICE command
	INQUIRE PIPELINE command
	INQUIRE WORKREQUEST command
	PERFORM PIPELINE command
	PERFORM STATISTICS RECORD command
	SET PIPELINE command
	SET WORKREQUEST command
	INQUIRE WEBSERVICE
	SET WEBSERVICE

	Changes to CEMT
	Changes to the JCICS API
	Changes to CICS-supplied transactions
	Changes to statistics
	Changes to sample programs
	Changes to CICS utilities
	Changes to problem determination

	Security
	Migration and coexistence
	Migration of existing functions
	Coexistence

	CICSPlex SM support
	Changes to the CICSPlex SM application programming interface
	Changes to CICSPlex SM Web User Interface

	Chapter 3. Support for HTTP client requests from CICS applications
	Benefits of support for HTTP client requests from CICS applications
	Requirements
	HTTP request and response processing for CICS as an HTTP client
	Session tokens

	Changes to CICS externals
	Changes to resource definition
	Changes to the application programming interface (HTTP client requests)
	WEB OPEN
	WEB CLOSE
	WEB SEND (Client)
	WEB RECEIVE (Client)
	WEB CONVERSE
	Changes to options on EXEC CICS WEB commands

	Changes to the JCICS API
	Changes to global user exits
	HTTP client open exit XWBOPEN
	HTTP client send exit XWBSNDO

	Changes to monitoring

	Chapter 4. CICS Web support upgrade to HTTP/1.1
	Benefits of CICS Web support upgrade to HTTP/1.1
	Requirements
	New HTTP functionality
	Chunked transfer-coding
	How CICS Web support handles chunked transfer-coding

	Pipelining
	How CICS Web support handles pipelining

	Persistent connections
	How CICS Web support handles persistent connections

	Virtual hosting
	Administering virtual hosting

	Changes to CICS externals
	Changes to resource definition
	Changes to the application programming interface (HTTP/1.1 support)
	WEB SEND (Server)
	WEB RECEIVE (Server)

	Changes to the system programming interface
	INQUIRE HOST
	SET HOST

	Changes to CEMT
	Changes to statistics

	Chapter 5. General enhancements to CICS Web support
	Benefits of CICS Web support enhancements
	Terminology
	Requirements
	HTTP request and response processing for CICS as an HTTP server
	Unicode UTF-8 and UTF-16 code page conversion in CICS Web support
	Handling HTTP date and time stamp formats
	Changes to CICS externals
	Changes to resource definition
	URIMAP resource definitions

	Changes to the application programming interface (General CICS Web support enhancements)
	WEB PARSE URL
	WEB EXTRACT
	CONVERTTIME
	Changes to options on EXEC CICS WEB commands

	Changes to the system programming interface
	CREATE URIMAP command
	DISCARD URIMAP command
	INQUIRE URIMAP
	SET URIMAP

	Changes to CEMT
	Changes to CICS-supplied transactions
	Changes to user-replaceable programs
	Changes to statistics
	Changes to CICS utilities
	Changes to problem determination

	Security
	Migration
	Migration of existing CICS Web support applications
	Migration to the new CICS Web support function

	CICSPlex SM support
	Changes to CICSPlex SM end user interface views
	Changes to CICSPlex SM application programming interface
	Changes to CICSPlex SM Web User Interface

	Chapter 6. Improvements to Internet security
	Benefits of improvements to Internet security
	Security terminology
	Requirements
	Transport Layer Security protocol
	Improvements to SSL performance
	Using certificate revocation lists
	The SSL cache
	Customizing encryption negotiations
	Changes to CICS externals
	Changes to system initialization parameters
	Changes to resource definition
	Changes to the system programming interface
	Changes to CICS-supplied transactions
	Changes to CEMT

	Changes to global user exits
	Changes to monitoring
	Changes to statistics
	Changes to CICS utilities
	Changes to problem determination

	Security
	Migration
	Migration of existing functions
	Migration to the new function

	Coexistence
	CICSPlex SM support
	Changes to CICSPlex SM end user interface views
	Changes to the CICSPlex SM application programming interface
	Changes to CICSPlex SM Web User Interface

	Part 3. Application transformation
	Chapter 7. Enhanced inter-program data transfer: channels as modern-day COMMAREAs
	Benefits of channels
	Terminology
	Channels: quick start
	Containers and channels
	Basic examples

	Using channels: some typical scenarios
	One channel, one program
	One channel, several programs (a component)
	Several channels, one component
	Multiple interactive components

	Creating a channel
	The current channel
	Current channel example, with LINK commands
	Current channel example, with XCTL commands
	Current channel: START and RETURN commands

	The scope of a channel
	Scope example, with LINK commands
	Scope example, with LINK and XCTL commands

	Discovering which containers were passed to a program
	Discovering which containers were returned from a link
	CICS read only containers
	Designing a channel: best practices
	Constructing and using a channel: an example
	Channels and BTS activities
	Context

	Using channels from JCICS
	Creating channels and containers in JCICS
	Putting data into a container
	Passing a channel to another program or task
	Receiving the current channel
	Getting data from a container
	Browsing the current channel
	A JCICS example

	Dynamic routing with channels
	Data conversion
	Why is data conversion needed?
	Data conversion with channels
	How to cause CICS to convert character data automatically
	Using containers to do code page conversion
	A SOAP example

	Requirements
	Changes to CICS externals
	Changes to the application programming interface
	New API commands
	Modified API commands

	Changes to the JCICS API
	New JCICS classes
	Modified JCICS classes

	Changes to global user exits
	Changes to task-related user exits
	Changes to user-replaceable programs
	The dynamic and distributed routing programs

	Changes to monitoring
	Performance data in group DFHCHNL
	Performance data in group DFHPROG
	Performance data in group DFHTASK

	Changes to statistics
	Changes to sample programs
	Changes to problem determination
	Messages
	Abend codes
	Trace

	Migrating from COMMAREAs to channels
	Migration of existing functions
	Migration to the new function
	Migrating LINK commands that pass COMMAREAs
	Migrating XCTL commands that pass COMMAREAs
	Migrating pseudoconversational COMMAREAs on RETURN commands
	Migrating START data
	Migrating programs that use temporary storage to pass data
	Migrating dynamically-routed applications

	Coexistence
	CICSPlex SM support
	Changes to CICSPlex SM application programming interface
	Changes to CICSPlex SM Web User Interface

	Chapter 8. OPENAPI Support
	Benefits of OPENAPI Support
	Requirements
	Changes to CICS externals
	Changes to system initialization parameters
	Changes to resource definition
	Changes to the application programming interface
	Changes to the system programming interface
	Changes to CEMT

	Chapter 9. XPLink Support
	Benefits of XPLink Support
	Requirements
	Changes to CICS externals
	Changes to installation
	Changes to system initialization parameters
	Changes to resource definition
	Changes to the application programming interface
	Changes to the system programming interface
	Changes to CEMT
	Changes to global user exits
	Changes to user-replaceable programs
	Changes to monitoring
	Changes to statistics

	Migration
	Migration of existing functions
	Migration to the new function

	CICSPlex SM support
	Changes to the CICSPlex SM application programming interface
	Changes to CICSPlex SM Web User Interface

	Chapter 10. Support for Language Environment conforming assembler MAIN programs
	Benefits of Support for Language Environment conforming assembler MAIN programs
	Requirements
	Changes to CICS externals
	Changes to resource definition
	Changes to the application programming interface
	Changes to global user exits
	Changes to task-related user exits

	Part 4. Enterprise management
	Chapter 11. CICSPlex SM Web User Interface enhancements
	Requirements
	Changes to CICSPlex SM
	User favorites
	Managing favorites with the favorites editor
	Creating and managing favorites for other WUI users

	User group profiles
	Creating and managing user group profiles

	Business application services redesign
	Record count warnings
	Filter confirmation
	Dynamic selection lists
	Improved screen design
	Creating two-column detailed views

	Changes to CICSPlex SM API
	Messages

	Chapter 12. Enhancements to CICSPlex SM batched repository update facility
	Benefits of the enhancements to CICSPlex SM batched repository-update facility
	Requirements
	Batch utility program
	Changes to CICSPlex SM application programming interface
	Changes to the CICSPlex SM Web User Interface
	Messages
	Security
	Migration

	Part 5. Miscellaneous changes
	Chapter 13. New installation process
	Benefits of the new installation process

	Chapter 14. EXTRACT STATISTICS command
	Benefits of the EXTRACT STATISTICS command
	Changes to CICS externals
	Changes to the system programming interface

	Chapter 15. Support for mixed case passwords
	Chapter 16. Codepage conversion changes
	Benefits of Codepage conversion changes
	Terminology
	Requirements
	Changes to CICS externals
	Changes to installation
	Changes to system initialization parameters
	Changes to application programming
	Changes to CICS utilities
	Changes to problem determination

	Chapter 17. Simplified definition of default code pages
	Benefits of improved defaults for code pages in data conversion templates
	Requirements
	Changes to CICS externals
	Changes to system initialization parameters
	Changes to user-replaceable programs

	Chapter 18. 64-Bit Addressing Toleration changes
	Benefits of 64-Bit Addressing Toleration changes
	Requirements
	Changes to CICS externals
	Changes to CICS utilities
	Changes to problem determination

	Chapter 19. Support for revoked user IDs
	Part 6. Discontinued function
	Chapter 20. Withdrawal of runtime support for OS/VS COBOL programs
	Chapter 21. Changes to BTAM and TCAM support
	Changes to CICS externals
	Changes to system initialization parameters
	Changes to resource definition
	Changes to the application programming interface
	Changes to global user exits
	Changes to user-replaceable programs
	Changes to sample programs

	Migration
	Coexistence

	Chapter 22. Withdrawal of support for 1-byte console id
	CICSPlex SM support
	Changes to CICSPlex SM application programming interface
	Changes to CICSPlex SM end user interface views
	Changes to CICSPlex SM Web User Interface
	Messages

	Chapter 23. Withdrawal of the CICS Connector for CICS TS
	Chapter 24. Withdrawal of run-time support for Java program objects and hot-pooling
	Changes to CICS externals
	Changes to system initialization parameters
	Changes to resource definition
	Changes to the application programming interface
	Changes to the system programming interface
	Changes to CEMT
	Changes to global user exits
	Changes to the exit programming interface (XPI)
	Changes to user-replaceable programs
	Changes to monitoring
	Changes to statistics
	Changes to problem determination

	CICSPlex SM support
	Changes to CICSPlex SM end user interface views
	Changes to the CICSPlex SM application programming interface
	Changes to the CICSPlex SM Web User Interface

	Chapter 25. Removal of CICSPlex SM support for Windows remote MAS
	Chapter 26. Withdrawal of the CICS Transaction Affinities Utility
	Part 7. General Information
	Chapter 27. The CICS operating environment
	Hardware requirements
	Software Requirements
	Support for CICS Tools and related products
	Compatibility

	Chapter 28. Threadsafe application programming interface commands
	Chapter 29. High-level language support
	Part 8. Publications
	Chapter 30. The Eclipse information center
	Benefits of the Eclipse information center
	Terminology
	Requirements
	What's New section
	Information Roadmaps
	Learning paths
	Techniques for searching in the information center
	Navigating the information center
	Bookmarking a topic
	User Preferences

	Chapter 31. The CICS Transaction Server for z/OS library
	Books available as hardcopy
	PDF-only books
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	CICS family books

	Licensed publications

	Accessibility
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Notices
	Trademarks

	Sending your comments to IBM

