CICS Transaction Server for z/OS

Version 4 Release 2

<|ll

Application Programming Guide

SC34-7158-01

CICS Transaction Server for z/OS

Version 4 Release 2

<|ll

Application Programming Guide

SC34-7158-01

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 795,

This edition applies to Version 4 Release 2 of CICS Transaction Server for z/OS (product number 5655-597) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1989, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

What this manualisabout xi

Who should read this manual . . .oLoxi
What you need to know to understand thls
manual T <
How to use this manual D |
Notes on terminology B
What is not covered in this manual Lxid

Changes in CICS Transaction Server
for z/OS, Version 4 Release 2. xiii

Part 1. Writing CICS applications . . 1

Chapter 1. Overview: Writing CICS
Applications . .

What is a CICS apphcatlon7 . .

CICS programs, transactions and tasks

CICS programming . . .

CICS programming commands .

EXEC interface block (EIB).

Translation . o

Testing for CICS . .

CICS programming roadmap

NN Ul Ul Ul Ww W

Part 2. Programming languages and
Language Environment 9

Chapter 2. Language Environment. . . 11

Language Environment callable services.12

Language Environment abend and condition

handling T ¢

Language EnV1ronment storage14

Mixing languages in Language Envrronment .. .15

Dynamic Link Libraries (DLLs).17

Defining runtime options for Language

Environment . . A V4
CEEBXITA and CEECSTX user exrts B L)
CICSVAR: CICS environment variable20

CEEBINT exit for Language Environment21

Chapter 3. Programming in COBOL . . 23

COBOL programming restrictions and requirements 24

Language Environment CBLPSHPOP option . . 27

Using the DL/I CALL interface.27
VS COBOL II programs28
Using based addressing with COBOL .. .29
Calling subprograms from COBOL programs . . . 30

Flow of control between programs and

subprograms . . .)

Rules for calling subprograms . N)
COBOL2 and COBOLS3 translator optlons36
CICS translator actions for COBOL programs . . . 37
Batch compilation for COBOL programs.39

© Copyright IBM Corp. 1989, 2011

Nested COBOL programs. . . Y
Upgrading OS/VS COBOL programs .

Chapter 4. Programming in C and C++ 49

C and C++ programming restrictions and

requirements 050
Passing arguments in C and C++53
Accessing the EIB fromCand C++55
Locale support for Cand C++56
XPLink and C and C++ programming56
XPLink uses X8 and X9 mode TCBs 57
Passing control between XPLink and non—XPLmk
objects . . . B 4
Global user exits and XPLmk P V4

Chapter 5. Programming in PL/1 59

PL/I programming restrictions and requirements. . 59
Language Environment coding requirements for

PL/I applications60
Fetched PL/I routines.62

Chapter 6. Programming in assembly
language.63

Assembly language programming restrictions and

requirements63
Language Environment codmg requlrements for

assembly language applications.64
Calling assembly language programs.67

Part 3. Translating, compiling,
installing and testing application
programs69

Chapter 7. Translation and compilation 71

The integrated CICS translator71
Using the integrated CICS translator72
Specifying CICS translator options.72

The translation process73

The CICS-supplied translators76
Dynamic invocation of the separate translator .76

Using a CICS translator85

Defining translator options87
Translator options table87

Using COPY statements -

The CICS-supplied interface modules ... 90

Using the EXEC interface modules . . .90
EXAMPLE Assembly language PROGRAM usmg
LEASM.93

Chapter 8. Installing appllcatlon

programs97
Program installation steps . . L. 97
Using dynamic program LIBRARY resources . . .98

iii

Examples of using dynamic LIBRARY resources 99
Defining MVS residence and addressing modes 108

Establishing a program's addressing mode . . 108
CICS address space considerations 109
Making programs permanently resident . . . 109
Running applications in the link pack area . . . 110
Running application programs in the RDSAs. . . 110
Assembler . . . N N U1
Cand C/++.1n
cosoL 00000 112
PL/To 113
Using BMS map sets in apphcatlon programs .. 113
Using the CICS-supplied procedures to install
application programs. 114
Installing programs in load hbrary secondary
extents. 115

Including the CICS—supphed 1nterface modules .. 115
Installing assembly language application programs 116

Installing COBOL application programs 118
Sample JCL to install COBOL apphcatlon
programs. 118
Installing PL/I apphcatlon programs B VX |
Installing C application programs . . . 122
Sample JCL to install C apphcatlon programs 124
Using your own job streams 126

Chapter 9. Installing map sets and
partitonsets 131

Installing map sets132
Types of mapsets.133
Installing physical map sets 134
Installing symbolic description map sets . . . 136
Installing physical and symbolic description
maps together137

Installing partition sets 140

Defining programs, map sets, and partltlon sets to

[(0 3 |

Chapter 10. Testing applications . . . 143
Preparing the application for testing. 144
Preparing the system for testing 144

Chapter 11. Execution diagnostic
facility (EDF). 147

Restrictions when using EDF 148
What does EDF display?150
The header151
The body. . . R 1|
Testing programs us1ng EDF e 1574
Interrupting program execution 157
Using EDF in single-screen mode. 158
Using EDF in dual-screen mode 160
EDF and remote transactions 160
EDF and non-terminal transactions 161
EDF and DTP programs.16l
Stopping EDF162
Over typing to make changes162
EDF responsesl64
Using EDF menu functions. 164

iV CICS TS for z/0S 4.2: Application Programming Guide

Chapter 12. Temporary storage
browse(CEBR)17

Using the CEBR transaction . . A VA
What does the CEBR transaction d1sp1ay7 N V)
Using the CEBR function keys.173
Using the CEBR commands 174

Using the CEBR transaction with trans1ent data 177

Chapter 13. Command-level
interpreter (CECI). 179

What does CECI display?179
The command line179
The status line180
The screenbody183
The message line 184
CECI options on function keys 184

UsingCECI.18

Defining variables.186

Saving commands.187

How CECI runs . . . 188

Shared storage: ENQ commands w1thout LENGTH

option.18

Chapter 14. Preparing to use
debuggers with CICS applications . . 191

Debugging profiles 192
Using debugging profiles to select programs for
debugging 193

Using generic parameters in debuggmg profiles 195

Chapter 15. Debugging CICS

applications from a workstation . . . 197
Preparing to debug applications from a

workstation197

Chapter 16. Using Debug Tool with
CICS applications 199

About Debug Tool. . . . o199
Preparing to debug apphcatlons w1th Debug Tool 199

Part 4. CICS application
programming techniques 201

Chapter 17. Application design. . . . 203

Pseudoconversational and conversational design 203

Terminal interruptibility205
How tasks are started205
Which transaction? 206
Separating business and presentatlon loglc ... 209
Multithreading: Reentrant, quasi-reentrant, and
threadsafe programs 210

Quasi-reentrant apphcatlon programs s VA

Threadsafe programs. 213

Making applications threadsafe 215

CONCURRENCY(REQUIRED) programs . . . 219

OPENAPI programs 220

Using the FORCEQR system 1n1t1ahzat10n

parameter . . oL 0222

Non-reentrant programs. . 223
Storing data within a transaction . . 223
Transaction work area (TWA) . . 224
User storage. .. 224
COMMAREA in LINK and XCTL commands 225
Channels in LINK and XCTL commands . . 225
Program storage . 226
Temporary storage queues . . 226
Intrapartition transient data . 228
GETMAIN SHARED command . 229
Your own data sets . . 229
Lengths of areas passed to CICS commands . . 229
Minimizing errors . . 230
Protecting CICS from apphcatron errors . 231
Testing applications . 231
Non-terminal transaction securlty . 232
Chapter 18. DeS|gn for performance 233
Program size . 233
Virtual storage . . 234
Reducing paging effects . 235
Exclusive control of resources . . 237
Operational control . 238
Operating system waits . . 239
The NOSUSPEND option . 239
Efficient sequential data set access . 240
Efficient logging . 241
Chapter 19. Sharing data across
transactions . . 243
Using the common work area (CWA) . 243
Protecting the CWA . . . 244
Using the TCTTE user area (TCTUA) .. 247
Using the COMMAREA in RETURN commands 247
Using a channel on RETURN commands . . 248
Using the display screen to share data . . 248
Chapter 20. Enhanced inter-program
data transfer using channels. . 251
Channels: quick start . . 251
Channels and containers. . 251
Basic examples . . . 252
Using channels: some typlcal scenarios . . 254
One channel, one program . . . 254
One channel, several programs (a component) 255
Several channels, one component. . 255
Multiple interactive components . . 256
Creating a channel . 257
The current channel . . . 258
Current channel example, w1th LINK commands 258
Current channel example, with XCTL
commands . 261
Current channel: START and RETURN
commands . . 262
The scope of a channel 263
Scope example, with LINK commands . . 263
Scope example, with LINK and XCTL
commands . . 265
Discovering which contamers were passed to a
program . . 266

Discovering which containers were returned from a

link. . . . 267
CICS read only contamers . . . 267
Designing a channel: Best practices . . 268
Constructing and using a channel: an example . 269
Channels and BTS activities . 270
Context . 271
Using channels from]CICS . 272
Dynamic routing with channels . 272
Data conversion . . 273
Why is data conversion needed7 . . 273
Preparing for code page conversion with
channels . . . 273
Data conversion with channels . 275
Benefits of channels . 279
Migrating from COMMAREAS to channels . 280
Migrating LINK commands that pass
COMMAREAS . . 281
Migrating XCTL commands that pass
COMMAREAs . . . 281
Migrating pseudoconversatlonal COMMAREAs
on RETURN commands . . 282
Migrating START data oL L0282
Migrating programs that use temporary storage
to pass data . . 283
Migrating dynam1cally—routed apphcatrons . 283
Chapter 21. Program control . . 285
Program linking . . 286
Application program loglcal levels . 286
Link to another program expecting return . . 286
Passing data to other programs . 287
COMMAREA . 287
Channels . . 289
INPUTMSG . . 289
Using mixed addressing modes . 291
Using LINK to pass data . 292
Using RETURN to pass data . 294
Chapter 22. Affinity . . 299
Types of affinity . . 300
Programming techniques and affmlty . 301
Programming techniques that avoid affinity . . 302
The COMMAREA . . 303
The TCTUA . . . 304
Using ENQ and DEQ commands w1th
ENQMODEL resource definitions. . 305
BTS containers . . 307
Programming techniques that create aff1n1t1es . 307
Using the common work area . . 307
Using GETMAIN SHARED storage . . . 308
Using the LOAD PROGRAM HOLD command 309
Sharing task-lifetime storage310
Using the WAIT EVENT command . . 312
Using ENQ and DEQ commands w1th0ut
ENQMODEL resource definitions. . 313
Programming techniques that might create
affinities . S . 314
Avoiding affmrtles when usmg temporary
storage . 314

Contents

A\

Using transient data . . 317
Avoiding affinities when usmg the RETRIEVE
WAIT and START commands . . . 318
Avoiding affinities when using the START and
CANCEL REQID commands 319
Avoiding affinities using the DELAY and
CANCEL REQID commands . . . 321
Avoiding affinities using the POST and
CANCEL REQID commands . . 323
Detecting inter-transaction affinities . . 324
Inter-transaction affinities caused by apphcatron
generators . 325
Duration and scope of 1nter—transact10n affmrtles 325
Affinity transaction groups . . . 325
Affinity relations and affinity hfetlmes . . 326
Chapter 23. Recovery de5|gn . 333
Journaling . 333
Journal records . . . 333
Journal output synchronrzatron . 333
Syncpointing . 335
Chapter 24. Dealing with exception
conditions. . . 339
Default CICS exception handlmg . 339
Handling exception conditions by in-line code . 340
How to use the RESP and RESP2 options . . 340
An example of exception handling in C .34
An example of exception handling in COBOL 343
Modifying default CICS exception handling . . 343
Using the HANDLE CONDITION command . . 345
RESP and NOHANDLE options . . 346
How CICS keeps track of what to do . 346
Using the HANDLE CONDITION ERROR
command . . 347
Using the IGNORE CONDITION command . . 348
Using the HANDLE ABEND command . 349
Using PUSH HANDLE and POP HANDLE
commands e . 349
Chapter 25. Abnormal termination
recovery e e e . 351
Creating a program-level abend exit. . 352
Retrying operations . 353
Trace . .o . 354
Trace entry pornts .o . 355
Monitoring application performance. . 356
Dump . . 356
Chapter 26. The QUERY SECURITY
command . . 359
Using the QUERY SECURITY command . 359
Chapter 27. CICS intercommunication 361
Design considerations . 361
Transaction routing . 362
Function shipping 362
Distributed program link (DPL) . . 363
Using the distributed program link functlon .. 364

Vi CICS TS for z/OS 4.2: Application Programming Guide

Examples of distributed program link . . 366
Programming considerations for distributed
program link . 370
Asynchronous processing . 375
Distributed transaction processmg (DTP) . 375
Common Programming Interface Communications
(CPI Communications) . 375
External CICS interface (EXCI) . 376
Part 5. Data mappings . 379
Chapter 28. Mapping and transforming
application data and XML . . 381
The CICS XML assistant. . 382
DFHLS2SC: high-level language to XML schema
conversion . 382
DFHSC2LS: XML schema to hrgh level language
conversion . 388
Mapping levels for the CICS assrstants . 396
High-level language and XML schema mapping 400
Variable arrays of elements . . . 427
Support for XML attributes. . 431
Support for <xsd:any> and xsd: anyType . 434
Support for <xsd:choice> . . 436
Support for <xsd:sequence> . 438
Support for substitution groups . . . 438
Support for abstract elements and abstract data
types . .. 440
How to handle varrably repeatmg content in
COBOL . 442
Support for variable- length Values and whlte
space 445
Generating mapprngs from language structures .. 447
Generating mappings from an XML schema . . 450
Transforming application data to XML . . 452
Transforming XML to application data . . 453
Querying XML from an application . . 454
Handling XML by data type . 455
Handling <xsd:any> data types . 456
Validating XML transformations . . 457
Part 6. Business services and
bundles . 459
Chapter 29. Creating business
services from CICS applications . . 461
Service Component Architecture (SCA). . 461
SCA composites and wiring . . 462
Best practices for creating and deployrng
composites . . . 464
Creating a channel based service . . 465
Creating an XML-based service . 467
CICS processing of services. . 468
Troubleshooting SCA problems . 470
Part 7. File control . 4n
Chapter 30. Understanding file control 473

VSAM data sets: KSDS, ESDS, RRDS . 473
Accessing files in RLS mode . 475
Identifying VSAM records . . 476
Key . . . 476
Relative record number (RRN) relatlve byte
address (RBA) and extended relative byte
address (XRBA) . 477
Upgrading to extended addressmg for ESDS . 478
Locking of VSAM records in recoverable files . 480
RLS Record level locking .o . 481
Exclusive locks and shared locks . . 481
Lock duration . . . 482
Active and retained states for locks . . 483
BDAM data sets . . . 484
Identifying BDAM records . . 485
CICS shared data tables . . 487
Coupling facility data tables . 487
Techniques for sharing data . 489
Transaction deadlocks . 492
VSAM-detected deadlocks (RLS only) . 493
Rules for avoiding deadlocks . . 494
Chapter 31. File control operations 495
Using CICS commands to read records . . 495
Direct reading (using READ command) . 495
Sequential reading (browsing) . . 498
Browsing records from BDAM data sets . 501
Skip-sequential processing . . . 502
Using CICS commands to update records . 502
The TOKEN option . 504
Conditional VSAM file update requests . 504
Updating records from BDAM data sets . 505
Using CICS commands to delete records . . 505
Updating and deleting records in a browse (VSAM
RLS only) . .ob0o6
Locks for UPDATE . 506
Using CICS commands to add records . . 507
CICS locking for writing to ESDS. . 508
Adding records to BDAM data sets . . 509
Efficient data set operations . . . 510
Efficient browsing (in non-RLS mode) . 511
Part 8. Terminal control . . 513
Chapter 32. Terminal access method
support . . 515
Chapter 33. Terminal control
commands . 517
Send /receive mode . . 517
Contention for the terminal. . 518
RETURN IMMEDIATE . . 518
Speaking out of turn . . 518
Interrupting . . 519
Terminal waits . . 519
Chapter 34. Using data transmission
commands . . 521
What you get on a RECEIVE . . 521

Chapter 35. Device control commands 523
Chapter 36. Terminal device support 525
Chapter 37. Finding out about your
terminal. e . . 529
EIB feedback on terminal control operatlons . . 530
Chapter 38. Using SNA . 533
Chaining input data . . 533
Chaining output data. . 533
Handling logical records. . 534
Response protocol . .o . 534
Using function management headers . 535
Inbound FMH . . 535
Outbound FMH . . 535
Preventing interruptions with bracket protocol . . 535
Chapter 39. Using sequential terminal
support . e . .« . . . 537
Coding considerations for sequentlal terminals . . 537
Print formatting . . 538
GOODNIGHT conventlon . . 538
Chapter 40. Using batch data
interchange . . 539
Chapter 41. Terminal control: design
for performance . 543
Chapter 42. The 3270 family of
terminals . 545
The 3270 buffer. . 545
The output datastream . . 545
3270 display fields. . 547
Display characteristics . 547
3270 field attributes . 548
Extended attributes . 550
Orders in the data stream . . 550
The start field order . . 551
The modify field order . . 551
The set buffer address order . 552
The set attribute order . 553
Outbound data stream example . . 553
Input from a 3270 terminal . . 556
Reading from a 3270 terminal . . 557
Inbound field format . . 558
Input data stream example . . 558
Unformatted mode . 559
Part 9. Interval control and task
control. . 561
Chapter 43. Interval control . 563
Expiration times . 564
Chapter 44. Task control . 567
Contents Vil

Controlling sequence of access to resources . 568
Part 10. Storage protection and
transaction isolation . 571
Chapter 45. CICS storage protection
and transaction isolation . 573
Storage control . . 573
Storage protection . . 574
Storage categories . . 575
Transaction isolation . . . 576
Defining the storage key for appl1cat1ons . . 577
System-wide storage areas . . . 577
Task lifetime storage . . . 577
Program working storage spec1f1cally for exrt
and PLT programs. . . 578
Passing data by a COMMAREA . 578
The GETMAIN command . . . 578
Selecting the execution and storage key . 579
User-key applications. . 580
CICS-key applications . . 581
Protection with transaction 1solat10n . 583
MVS subspaces. . 585
Part 11. Transient data and
temporary storage . 587
Chapter 46. Transient data control 589
Intrapartition transient data queues . . 589
Extrapartition queues. . 590
Indirect queues. . 591
Automatic transaction 1n1t1at10n (ATI) . 591
Chapter 47. Temporary storage
control . 593
Part 12. CICS documents . . 595
Chapter 48. Introduction to
documents and document templates . 597
Symbols and symbol lists . 598
Caching and refreshing of document templates .. 601
Code page conversion for documents . 602
Chapter 49. Setting up document
templates 605
Templates in a part1t1oned data set . .. 605
Templates in z/OS UNIX System Services f1les . . 605
Templates in CICS files, temporary storage, or
transient data . 606
Templates in CICS programs . 607
DFHDHTL - program template prolog and
epilog macro . 608
Templates in exit programs . . 609
Communication area for templates n ex1t
programs. . . 609
Using symbols in document templates . . 611

viii

CICS TS for z/OS 4.2: Application Programming Guide

Embedded template commands . . 612
Chapter 50. Programming with
documents and document templates . 615
Creating a document . . 615
Defining symbol values . . 616
Rules for specifying symbols and symbol l1sts . 618
Adding more data to a document . 621
Replacing data in a document . . . 622
Retrieving, storing and reusing a document . . 623
Deleting a document . . 626
Part 13. Named counter servers 627
Chapter 51. Overview: Named counter
servers . . . 629
The named counter f1elds . 629
Named counter pools. . . 630
Named counter options table . . 630
Chapter 52. Using the named counter
EXEC interface. . 633
Chapter 53. Using the named counter
CALL interface. Coe e . 635
Application programming considerations . . 635
Syntax. . . 636
Checking for result overflow . . 643
Example of DFHNCTR calls with null
parameters . . 643
Return codes . 644
Chapter 54. Named counter recovery 649
Part 14. Printing and spool files 651
Chapter 55. CICS support for prlntlng 653
Formatting for CICS printers . . 653
Requests for printed output . 654
CICS 3270 printers . . 654
CICS 3270 printer options . . . 655
PRINT option and print control b1t . . 656
ERASE option . . . 656
Line width options: L40, L64 L80 and
HONEOM . . 656
NLEOM option. . 657
FORMFEED . .o . 658
PRINTERCOMP option . . 658
Non-3270 CICS printers . . 659
SCS input . 659
Chapter 56. Using printers with CICS 661
Determining the characteristics of a CICS printer 661
Using CICS printers . . 662
Printing with a START command . 663
Printing with transient data . 663
Printing with BMS routing . . 664

Using Non-CICS printers . . 665
Formatting for non-CICS prmters . 665
Non-CICS printers: Delivering the data. . 665
Programming for non-CICS printers. . 666
Notifying the print application . 667

Printing display screens . . . 668

Chapter 57. CICS interface to JES . 671

Using the CICS interface to JES . 673
Spool interface restrictions . . 673

Creating output spool files . . 674
Using the MVS internal reader . 674

Reading input spool files . 675

Identifying spool files .o . 676

Examples of SPOOL commands . . 678

Part 15. Basic Mapplng Support

(BMS) . . 681

Chapter 58. Basic mapplng support 683

BMS support levels . 683

A BMS output example . . 685

Chapter 59. Creating the map . 689

Defining map fields: DFHMDF . 689

Defining the map: DFHMDI . 691

Defining the map set: DFHMSD . . 692

Writing BMS macros . . . 693

Assembling the map 695
Physical and symbolic map sets . . 695
The SDF II alternative . 696
Grouping maps into map sets . . 696
The Application Data Structure (ADS) . 697

Using complex fields 698
Composite fields: the GRPNAME optlon . . 698
Repeated fields: the OCCURS option . 699

Block data . . 700

Support for non-3270 termmals . . 701
Output considerations for non-3270 dev1ces .. 701
Differences on input 702
Special options for non-3270 termmals . . 702

Device-dependent maps . . . 703
Device dependent support . . 704
Finding out about your terminal . . 706

Chapter 60. Sending BMS mapped

output . 707

Acquiring and defmmg storage for the maps . . 707
BASE and STORAGE options . . 708

Initializing the output map . . . 709

Moving the variable data to the map . 709

Setting the display characteristics. . 710
Changing the attributes . . 711
Attribute value definitions: DFHBMSCA . 711

Chapter 61. Using the SEND MAP

command . - . 713

SEND MAP control options . 713

Merging the symbolic and phys1ca1 maps .
Building the output screen .

Positioning the cursor .
Sending invalid data and other errors .

Output disposition optlons TERMINAL, SET and

PAGING .
Using SET

Chapter 62. Receiving mapped data
An input-output example .
The symbolic input map.
Programming mapped input .
Using the RECEIVE MAP command
Getting storage for mapped input
Formatted screen input .
Modified data .
Upper case translation
Using the attention identifier . .
Using the HANDLE AID command .
Finding the cursor. .o
Processing the mapped mput .
Handling input errors
Sending mapped output after mapped mput
MAPFAIL and other exceptional conditions
Formatting other input .

Chapter 63. BMS logical messages
Building logical messages

The SEND PAGE command

RETAIN and RELEASE .

The AUTOPAGE option .

Terminal operator paging: the CSPG transactlon

Logical message recovery

Chapter 64. Cumulative output — the
ACCUM option. . .
Floating maps: how BMS places maps using
ACCUM . .
Page breaks: BMS overflow processmg
Map placement rules . . .
ASSIGN options for cumulatlve processmg
Input from a composite screen.
Performance considerations.
Minimizing path length .
Reducing message lengths .

Chapter 65. Text output .

The SEND TEXT command.
Text logical messages.

Text pages

Text lines . .

Header and trailer format .

SEND TEXT MAPPED and SEND TEXT NOEDIT

Chapter 66. Message routmg
Message destinations .
Route list format .
Message delivery .
Undeliverable messages

Contents

. 714
. 715
. 718

. 719

. 719
. 720

723

. 723
. 725
. 726
. 726
. 727
. 727
. 728
. 729
. 729
. 729
. 730
. 730
. 731
. 733
. 734
. 735

737

. 737
. 738
. 738
. 739

740

. 741

. 743

. 743
. 744
. 745
. 747
. 747
. 747
. 748
. 748

. 751
. 751
. 751
. 752
. 753
. 754

755

. 757
. 757
. 760
. 762
. 762

ix

Recoverable messages763

Message identification763
Programming considerations w1th routmg ... 764

Routing and page overflow. 764

Routing with SET 764

Interleaving a conversation w1th message

routing765

Chapter 67. The MAPPINGDEYV facility 767
Sample assembler MAPPINGDEV application . . 769

Chapter 68. Partition support 4

Uses for partitioned screens . . L. .. T2
Scrolling772
Dataentry772
Lookaside772
Data comparison773
Error messages.773

Partition definiton773
3290 character size774

Establishing partitioning. 774

Partition options for BMS SEND commands . . .775
Determining the active partition 775

Partition options for BMS RECEIVE commands . . 776
ASSIGN options for partitions. 776

Partitions and logical messages777
Partitions and routing . . . 777

Attention identifiers and exceptlon COIIdlthIIS .. 777

Terminal sharing778

Chapter 69. Support for speclal
hardware N £ 4°

X CICS TS for z/OS 4.2: Application Programming Guide

Logical device components.779
10/63 magnetic slot reader781
Field selection features781
Trigger field support782
Cursor and pen-detectable fields 782
Selection fields783
Attention fields. 783
BMS input from detectable flelds 784
Outboard formatting784

Chapter 70. BMS: design for
performance. . . . N £ 14
Page-building and routing operatlons79

Part 16. Appendixes 793

Notices.79
Trademarks79

Bibliography. 797
CICS books for CICS Transaction Server for z / os 797
CICSPlex SM books for CICS Transaction Server

forz/OS.798
Other CICS pubhcatlons L. 798
Other IBM publications798

Accessibility. 801

Index.803

What this manual is about

This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of Version 4 Release 2.

This manual gives guidance about the development of procedural application
programs that use the CICS® EXEC application programming interface to access
CICS services and resources; it complements the reference information in the CICS
Application Programming Reference manual. For guidance information on debugging
such CICS applications, see the CICS Problem Determination Guide. For guidance on
developing application programs using the Java language, see Java Applications in
CICS, and for guidance on using the CICS OO classes, see CICS C++ OO Class
Libraries.

Who should read this manual

This manual is mainly for experienced application programmers. Those who are
relatively new to CICS should be able to understand it. If you are a system
programmer or system analyst, you should still find it useful.

What you need to know to understand this manual

You must be able to program in COBOL, C, C++, PL/I, or assembler language, and
have a basic knowledge of CICS application programming, at the Designing and
Programming CICS Applications level.

How to use this manual

Read the parts covering what you need to know. (Each part has a full table of
contents to help you find what you want.) The manual is a guide, not a reference
manual. On your first reading, it probably helps to work through any one part of it
more or less from start to finish.

Notes on terminology

API refers to the CICS command-level application programming interface
unless otherwise stated.

ASM is sometimes used as the abbreviation for assembler language.

MVS™ refers to the operating system, which can be either an element of z/OS®,
0S/390%, or MVS/Enterprise System Architecture System Product
(MVS/ESA SP).

VTAM®
refers to ACF/VTAM.

In the sample programs described in this book, the dollar symbol ($) is used as a
national currency symbol and is assumed to be assigned the EBCDIC code point
X'5B'. In some countries a different currency symbol, for example the pound
symbol (£), or the yen symbol (¥), is assigned the same EBCDIC code point. In
these countries, the appropriate currency symbol should be used instead of the
dollar symbol.

© Copyright IBM Corp. 1989, 2011 xi

What is not covered in this manual

Guidance for usage of the CICS Front End Programming Interface is not discussed
in this manual. See the CICS Front End Programming Interface User’s Guide for
background information about FEPI design considerations and programming
information about its APL

Guidance for usage of the EXEC CICS WEB commands is not discussed in this
manual. See the CICS Internet Guide for this information.

Guidance for the use of object oriented programming languages and techniques is
not included in this manual. For guidance on developing application programs
using the Java language, see Java Applications in CICS, and for guidance on using
the CICS OO classes, see CICS C++ OO Class Libraries.

xil CICS TS for z/OS 4.2; Application Programming Guide

Changes in CICS Transaction Server for z/OS, Version 4
Release 2

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:

* CICS Transaction Server for z/OS What's New

* CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1
* CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2
* CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

Any technical changes that are made to the text after release are indicated by a
vertical bar (1) to the left of each new or changed line of information.

© Copyright IBM Corp. 1989, 2011 xiii

Xxiv CICS TS for z/OS 4.2: Application Programming Guide

Part 1. Writing CICS applications

© Copyright IBM Corp. 1989, 2011

2 CICS TS for z/OS 4.2: Application Programming Guide

Chapter 1. Overview: Writing CICS Applications

A brief introduction to CICS applications and the procedures for creating programs
to run in CICS.

What is a CICS application?

An application is a collection of related programs that together perform a business
operation, such as processing a product order or preparing a company payroll.
CICS applications execute under CICS control, using CICS services and interfaces
to access programs and files.

CICS is a transaction processing subsystem. That means that it provides services
for you to run applications online, by request, at the same time as many other
users are submitting requests to run the same applications, using the same files
and programs. CICS manages the sharing of resources; integrity of data and
prioritization of execution, with fast response.

CICS applications are traditionally run by submitting a transaction request.
Execution of the transaction consists of running one or more application programs
that implement the required function. In CICS documentation you may find CICS
application programs sometimes called programs, and sometimes the term
transaction is used to imply the processing done by the application programs.

You should note that the term transaction is now used extensively in the IT
industry to describe a unit of recovery or what CICS calls a unit of work. This is
typically a complete operation that is recoverable; it can be committed or backed
out as an entirety as a result of programmed command or system failure. In many
cases the scope of a CICS transaction is also a single unit of work, but you should
be aware of the difference in meaning when reading CICS documentation.

CICS programs, transactions and tasks

To develop and run CICS applications, you need to understand the relationship
between CICS programs, transactions and tasks.

These terms are used throughout CICS documentation and appear in many
commands:

Transaction

A transaction is a piece of processing initiated by a single request. This is
usually from an end-user at a terminal, but may also be made from a Web
page, from a remote workstation program, from an application in another
CICS system or triggered automatically at a predefined time. The |Interneﬂ
overview in the Internet Guidel and the [External interfaces overview in thel
External Interfaces Guidd describe different ways of running CICS
transactions.

A single transaction consists of one or more application programs that,
when run, carry out the processing needed.

However, the term transaction is used in CICS to mean both a single event
and all other transactions of the same type. You describe each transaction
type to CICS with a TRANSACTION resource definition. This definition

© Copyright IBM Corp. 1989, 2011 3

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtm/topics/overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtm/topics/overview.html

gives the transaction type a name (the transaction identifier, or TRANSID)
and tells CICS several things about the work to be done; such as what
program to invoke first, and what kind of authentication is required
throughout the execution of the transaction.

You run a transaction by submitting its TRANSID to CICS. CICS uses the
information recorded in the TRANSACTION definition to establish the
correct execution environment, and starts the first program.

The term transaction is now used extensively in the IT industry to describe
a unit of recovery or what CICS calls a unit of work. This is typically a
complete operation that is recoverable; it can be committed or backed out
as an entirety as a result of programmed command or system failure. In
many cases the scope of a CICS transaction is also a single unit of work,
but you should be aware of the difference in meaning when reading
non-CICS documentation.

Task You will also see the term task used extensively in CICS documentation.
This term also has a specific meaning in CICS. When CICS receives a
request to run a transaction, it starts a new task that is associated with this
one instance of the execution of the transaction type; that is, one execution
of a transaction, with a particular set of data, usually on behalf of a
particular user at a particular terminal. You can also consider it as
analogous to a thread. When the transaction completes, the task ends.

CICS programming

You write a CICS program in much the same way as you write any other program.
You can use COBOL, C, C++, Java, PL/I, or assembly language to write CICS
application programs. Most of the processing logic is expressed in standard
language statements, but you use CICS commands, or the Java and C++ class
libraries to request CICS services.

This information describes the use of the CICS command level programming

interface, EXEC CICS, that can be used in COBOL, C, C++, PL/I or assembler

programs. These commands are defined in detail in the . The following

programming information is also available:

e Programming in Java with the JCICS class library is described in
[programming using JCICY in Java Applications in CICS.

* Programming in C++ with the CICS C++ classes is described in the |[CICS C+
[OO Class Libraries| documentation.

* For information about writing Web applications to process HTTP requests and
responses, see [CICS Web support concepts and structured in the CICS Internet
Guide.

For further guidance on language use with CICS, see |Chapter 3, “Programming in|
COBOL,” on page 23,]]Chapter 4, “Programming in C and C++,” on page 49,| and
Chapter 5, “Programming in PL/I,” on page 59/

CICS allows you to use SQL statements, DLI requests, CPI statements, and the
CICS Front End Programming Interface (FEPI) commands in your program as well
as CICS commands. You need to consult additional manuals for information about
these:

* SQL: DB2 Universal Database for z/OS SQL Reference, SC26-9944, and DB2
Universal Database for z/OS Application Programming and SQL Guide, SC26-9933

4 CICS TS for z/OS 4.2: Application Programming Guide

* DL/: IMS: Application Programming: EXEC DLI Commands for CICS and IMS,
5C27-1288,and IMS: Application Programming: Database Manager, SC27-1286

e CPI: IBM SAA: CPI Reference manual and the SAA Common Programming Interface
for Resource Recovery Reference manual

* FEPI: CICS Front End Programming Interface User’s Guide

CICS programming commands

The general format of a CICS command is EXECUTE CICS (or EXEC CICS)
followed by the name of the required command and possibly one or more options.

You can write many application programs using the CICS command-level interface
without any knowledge of, or reference to, the fields in the CICS control blocks
and storage areas. However, you might need to get information that is valid
outside the local environment of your application program.

You can use ADDRESS and ASSIGN commands to access such information.

When using the ADDRESS and ASSIGN commands, various fields can be read but
should not be set or used in any other way. This means that you should not use
any of the CICS fields as arguments in CICS commands, because these fields may
be altered by the EXEC interface modules.

The INQUIRE, SET, and PERFORM commands allow application programs to
access information about CICS resources. These commands are known as system
programming commands. The application program can retrieve and modify
information for CICS data sets, terminals, system entries, mode names, system
attributes, programs, and transactions. These commands plus the spool commands
of the CICS interface to JES, are primarily for the use of the system programmer.

Related information

EXEC interface block (EIB)

In addition to the usual CICS control blocks, each task in a command-level
environment has a control block known as the EXEC interface block (EIB)
associated with it.

An application program can access all of the fields in the EIB by name. The EIB
contains information that is useful during the execution of an application program,
such as the transaction identifier, the time and date (initially when the task is
started, and subsequently, if updated by the application program using ASKTIME),
and the cursor position on a display device. The EIB also contains information that
is helpful when a dump is used to debug a program. For programming
information about EIB fields, see the CICS Application Programming Reference.

Translation

Most compilers (and assemblers) cannot process CICS commands directly. This
means that an additional step is needed to convert your program into executable
code. This step is called translation, and consists of converting CICS commands
into the language in which the rest of the program is coded, so that the compiler
(or assembler) can understand them.

Most compilers use the integrated CICS translator approach, where the compiler
interfaces with CICS at compile time to interpret CICS commands and convert

Chapter 1. Overview: Writing CICS Applications 5

them automatically to calls to CICS service routines. If you use the integrated CICS
translator approach then many of the translation tasks described in
ftranslation process” on page 73|are done at compile time for you, and you do not
need to execute the additional translator step.

Testing for CICS

A program has two ways to determine whether it is running in a CICS
environment: by using the C language iscics() function or by calling the DFH3QSS
program.

About this task

iscics
If you are adapting an existing C language program or writing a new program
that is designed to run outside CICS as well as under CICS, the C language
iscics() function can prove useful. It returns a non-zero value if your program

is currently running under CICS, or zero otherwise. This function is an
extension to the C library.

DFH3QSS
Your program can call the DFH3QSS program to query the CICS environment
and API capability. Link DFH3QSS statically into your own application. On
return, register 15 addresses a result structure that consists of a halfword
length (that includes itself) followed by a reserved halfword (currently zero)
followed by a bit string:

Bit 0 When set to 1, this means that the caller is running in a CICS
environment (on a CICS-managed TCB or one of its descendants).

Bit1 When set to 1, this means that the CICS API is available to the caller
(in the current PSW key, ASC-mode, AMODE, and cross-memory
environment).

The output structure remains accessible as long as the TCB under which the
request was issued has not terminated and DFH3QSS itself is still present in virtual
storage. Any change of execution state (such as PSW key, ASC-mode, AMODE, or
cross-memory environment) might affect the availability of the CICS API. Registers
are preserved.

CICS programming roadmap

Follow the steps in this roadmap to develop a CICS application that uses the EXEC
CICS command level programming interface.

Procedure

1. Design your application, identifying the CICS resources and services you will
use. See |Chapter 17, “Application design,” on page 203| and |Chapter 18,|
[“Design for performance,” on page 233|for guidance on designing CICS
applications.

2. Write your program in the language of your choice, including EXEC CICS
commands to request CICS services. See the CICS Application Programming
Reference for a list of CICS commands.

3. Translate and compile your program. If you are using a compiler that
incorporates [“The integrated CICS translator” on page 71} you will only need
to compile your program, and then install it in CICS, using the process
described in [‘Program installation steps” on page 97.| Otherwise, you will need

6 CICS TS for z/OS 4.2: Application Programming Guide

to define translator options for your program, using the process described in
[“Using a CICS translator” on page 85/and then translate and compile your
program, and install it in CICS, using the process described in
[installation steps” on page 97.|

. Define your program and related transaction to CICS. Use [PROGRAM resource|

[definitions| and [TRANSACTION resource definitions|as described in theCICS
Resource Definition Guide .

. Define and install any CICS resources that your program uses, such as files,
queues or terminals.

. Run your program. Enter the transaction identifier at a CICS terminal, or use
any of the methods described in the CICS External Interfaces Guide, or the CICS
Internet Guide.

Chapter 1. Overview: Writing CICS Applications 7

8 CICS TS for z/0S 4.2: Application Programming Guide

Part 2. Programming languages and Language Environment

Information for programmers about Language Environment®, and
language-specific guidance for programming in COBOL, C, PL/I, and assembly
language.

© Copyright IBM Corp. 1989, 2011

10 CICS TS for z/OS 4.2: Application Programming Guide

Chapter 2. Language Environment

Language Environment, supplied as an element of z/OS, provides a common set
of runtime libraries. Language Environment allows you to use only one runtime
environment for your applications, regardless of the programming language or
system resource needs, because most system dependencies have been removed.

Before the introduction of Language Environment, each of the high-level languages
(HLLs) provided a separate runtime environment. The runtime libraries provided
by Language Environment replace the runtime libraries that were provided with

older compilers such as VS COBOL 1II, OS PL/1, and C/370 . The common
environment offers two significant advantages:

* You can mix all the languages supported by CICS in a single program.

* The same Language Environment callable services are available to all programs.
For example:

— Alinked list created with storage obtained using Language Environment
callable services in a PL/I program can be processed later and the storage
freed using the callable services from a COBOL routine.

— The currency symbol used on a series of reports can be set in an Assembler
routine, even though the reports themselves are produced by COBOL
programs.

— System messages from programs written in different languages are all sent to
the same output destination.

See the z/OS Language Environment Concepts Guide for more information. Because of
these advantages, high-level language support under CICS depends upon
Language Environment.

CICS supports application programs compiled by a variety of compilers; for a list
of compilers that are supported in this release of CICS Transaction Server for
z/0S, see [High-level language support]

Most of the compilers supported by CICS and Language Environment are
Language Environment-conforming compilers, meaning that programs compiled by
these compilers can take advantage of all Language Environment facilities that are
available to a CICS region. CICS and Language Environment also support
programs compiled by some pre-Language Environment compilers, which do not
conform with Language Environment. However, CICS does not support all the
pre-Language Environment compilers that are supported by Language
Environment.

Applications compiled and linked with pre-Language Environment compilers
might run successfully using the runtime support provided by Language
Environment. These applications might not require recompiling or re-link-editing.
In some circumstances, you might need to adjust Language Environment runtime
options so that the applications run correctly. See the z/OS Language Environment
Run-Time Application Migration Guide and the Compiler and Run-Time Migration
Guide for the language in use, for further information.

The runtime libraries provided with pre-Language Environment compilers are not
supported. Do not include any Language libraries other than the Language

Environment libraries in your CICS startup JCL.

© Copyright IBM Corp. 1989, 2011 11

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.whatsnew.doc/regular_topics/hll_support.html

When modifying existing application programs, or writing new programs, you
must use a compiler supported by Language Environment. Your application
programs must be link-edited using the Language Environment SCEELKED library,
which means that the resulting application load module can run only under
Language Environment.

In CICS you can also create Assembler MAIN programs that conform to Language
(Chapter o)

Environment. For more information about Assembler programs, see
[“Programming in assembly language,” on page 63

Language Environment callable services

Language Environment provides callable services, which can be accessed by
programs running under CICS.

The callable services provided by Language Environment are classified in the
following categories:

Storage services
These allow you to allocate and free storage from the Language Environment
heaps.

Error handling services
These provide a common method of obtaining information to enable you to
process errors.

Message services
These provide a common method of handling and issuing messages.

Date and time
These allow you to read, calculate, and write values representing the date and
time. Language Environment offers unique pattern-matching capabilities that
let you process almost any date and time format contained in an input record
or produced by operating system services.

National language support
These allow you to customize Language Environment output (such as
messages, RPTOPTS reports, RPTSTG reports, and dumps) for a given country.

Locale
These allow you to customize culturally-sensitive output for a given national
language, country, and codeset by specifying a locale name.

General
These are a set of callable services that are not directly related to a specific
Language Environment function, for example, dump.

Mathematical
These allow you to perform standard mathematical computations.

These services are normally only available to programs compiled with Language
Environment-conforming compilers. As an exception, VS COBOL II programs can
make dynamic calls to the date and time callable services, but they cannot make
any other dynamic calls or any static calls to Language Environment callable
services.

For further information about the details of these services, see the z/OS Language

Environment Programming Guide.For information about the syntax required to call
any of the services, see the z/OS Language Environment Programming Reference.

12 CICS TS for z/OS 4.2: Application Programming Guide

Message and dump services

When the Language Environment services CEEMOUT (dispatch a message) and
CEE3DMP (generate dump) are running under CICS, both the messages and
dumps are sent to a transient data queue called CESE, and not to their usual
destinations.

The usual destinations for Language Environment messages and dumps are the
ddname specified in the MSGFILE runtime option for messages and the ddname

given in the fname argument of the CEE3DMP service for dumps. CICS ignores
both of these ddnames.

Language Environment abend and condition handling

Language Environment abend handling depends on the use of CICS HANDLE
ABEND. User-written condition handlers can be used when a CICS HANDLE
ABEND is not active. Language Environment is not involved in the handling of
CICS-defined exception conditions, or in the detection of attention identifiers
(AIDs).

Abend handling

When a CICS application is running under Language Environment, the action
taken when a task is scheduled for abnormal termination depends on whether a
CICS HANDLE ABEND is active or not active:

e When a HANDLE ABEND is active, the action defined in the CICS HANDLE
ABEND takes place. Language Environment condition handling does not gain
control for any abends or program interrupts, and any user-written condition
handlers that are established by CEEHDLR are ignored.

* When a CICS HANDLE ABEND is not active, Language Environment condition
handling gains control for abends and program interrupts if the runtime option
TRAP(ON) is specified. Normal Language Environment condition handling is
then performed. If TRAP(OFF) is specified, no error handling occurs and the
abend proceeds. For details of normal Language Environment condition
handling, see the z/OS Language Environment Programming Guide.

User-written Language Environment condition handlers

You can use the Language Environment runtime option USRHDLR to register a
user-written condition handler at the highest level. At a lower level, for example
after a subroutine CALL, you can use the CEEHDLR service to register a condition
handler for that level. This lower level handler is automatically unregistered on
return from the lower level. If desired you can explicitly unregister it by using the
CEEHDLU service. For an explanation of stack levels, and for details of the
USRHDLR runtime option and the CEEHDLR and CEEHDLU services, see the
z/OS Language Environment Programming Guide.

If you create a user-written Language Environment condition handler (other than
in COBOL), you can use most CICS commands, provided that they are coded with
a NOHANDLE, RESP, or RESP2 option, to prevent further conditions being raised
during execution of the condition handler. The only commands you cannot use are
the following, which must not appear in either the condition handler or any
program it calls:

* ABEND
« HANDLE ABEND

Chapter 2. Language Environment 13

« HANDLE AID

« HANDLE CONDITION
* IGNORE CONDITION
* POP HANDLE

* PUSH HANDLE

Unless you use the NOLINKAGE translator option, do not use the CICS translator
to translate a COBOL user-written condition handler that you have registered for a
routine using the CEEHDLR service. This is because the CICS translator adds two
extra arguments to the PROCEDURE DIVISION header of the COBOL program:
the EXEC Interface Block (EIB) and the COMMAREA. These arguments do not
match the arguments passed by Language Environment. A COBOL condition
handler cannot, therefore, contain any CICS commands.

However, a user-written condition handler can call a subroutine to perform CICS
commands (and this could be a COBOL routine). If you need to pass arguments to
this subroutine, place two dummy arguments before them in the caller. The called
subroutine must issue EXEC CICS ADDRESS EIB(DFHEIPTR) before executing any
other CICS commands.

For an application to use a user-written Language Environment condition handler,
the condition handler must be available at runtime (for example by using the
STEPLIB concatenation or LPA). Define such condition handlers in the CICS
system definition data set (CSD) for your CICS region, rather than using program
autoinstall. This includes the sample user-written condition handler CEEWUCHA.

For full details of the required interface to any Language Environment condition
handling routine, see the z/OS Language Environment Programming Guide.

CICS condition and attention identifier (AID) handling

Language Environment condition handling does not alter the behavior of
applications that use CICS HANDLE CONDITION or HANDLE AID commands.
Language Environment is not involved in the handling of CICS-defined exception
conditions, which are raised and handled only by CICS. Similarly, AID detection is
a CICS function unaffected by Language Environment.

Language Environment storage

Language Environment uses storage obtained from CICS for each run-unit. When
each program is first used, Language Environment tells CICS how much storage
the run unit work area (RUWA) requires. The allocation of storage depends on the
setting of the CICS system initialization parameter, RUWAPOOL.

If you specify RUWAPOOL=NO, at the start of each CICS link level, CICS issues a
GETMAIN for this storage and passes it to Language Environment to use for its
control blocks and for storage areas such as STACK, LIBSTACK, and HEAP. The
storage is acquired in the default key specified on the transaction. The storage is
freed (using FREEMAIN) when the program terminates.

If you specify RUWAPOOL=YES, the first run of a transaction is the same as with
RUWAPOOL=NO, but CICS keeps a history of the total storage for RUWAs that is
requested to run the transaction. This means that when the transaction is run
again, CICS issues a single GETMAIN for the total storage (and a single
FREEMAIN at task end), creating a RUWAPOOL. If the transaction follows the

14 CICS TS for z/OS 4.2: Application Programming Guide

same path, CICS allocates the storage from the RUWAPOOL, and no further
GETMAIN has to be issued. If more storage is required for RUWAs because of
different or extra CICS links, CICS issues a GETMAIN and updates the history, so
that next time the single GETMAIN (and FREEMAIN) is for the larger amount. For
transactions that issue a large number of CICS LINK commands, the performance
improvement can be considerable.

If you specify the CICS system initialization parameter AUTODST=YES, CICS
indicates to Language Environment that it is able to support dynamic storage
tuning.

If a program specifies a runtime option of ALL31(OFF) and Language Environment
needs to use storage below the 16MB line, two areas of storage are allocated, one
below 16MB and one above the 16MB line.

If necessary, any application can obtain CICSDATAKEY or USERDATAKEY storage
by using a CICS GETMAIN command. However, a program with an EXECKEY of
USER cannot use CICSDATAKEY storage.

Mixing languages in Language Environment

Language Environment enables you to build an application that is composed of
programs that have been written in different high-level source languages, and
assembly language.

Assembly language subroutines called from an HLL program are fairly
straightforward and not uncommon. A subroutine called from one HLL but written
in another needs much more careful consideration and involves interlanguage
communication (ILC). Language Environment defines an ILC application as one
built of two or more HLLs and, optionally, assembly language. See z/OS Language
Environment Writing Interlanguage Communication Applications for full information
about this subject.

Language Environment dictates that if there is any ILC within a run unit under
CICS, each compile unit must be compiled with a Language Environment-
conforming compiler. CICS supports three HLLs: C/C++, COBOL, and PL/I. We
consider the interfaces in pairs. If your application contains only two HLLs, consult
the appropriate section. If your application contains all three HLLs, consult those
sections corresponding to each of the interfaces within your application.

C/C++ and COBOL

The conditions under which Language Environment supports ILC between
routines written in C/C++ and COBOL depend on the following:

* Whether the language is C or C++.

* Which COBOL compiler is being used and whether DLL is specified as a
compiler option.

* Whether the call is static or dynamic.

* Whether the function being invoked is within the module or exported from a
DLL.

* Whether the program is reentrant.
* What, if any, #pragma linkage statement you have in your C program.
* Whether your C program exports functions or variables.

* What, if any, extern statement you have in your C++ program.

Chapter 2. Language Environment 15

The results of all this are specified in z/OS Language Environment Writing
Interlanguage Communication Applications. Consult this book if your application
mixes C/C++ and COBOL.

C/C++ and PL/I

Under CICS, if all the components of your C/C++ and PL/I application are
reentrant, Language Environment supports ILC between routines compiled by
C/C++ and PL/I as follows:

* C/C++ routines can statically call PL/I routines and PL/I routines can statically
call C/C++ routines.

e C/C++ routines can fetch() PL/I routines that have OPTIONS(FETCHABLE)
specified. If the called routine contains any CICS commands, then C/C++ must
pass the EIB and the COMMAREA as the first two parameters on the call
statement.

e PL/I routines can FETCH only those C/C++ routines that have not been
processed by the CICS translator. This is because during the dynamic call certain
static fields created by the translator cannot be correctly set.

COBOL and PL/I

Under CICS, Language Environment supports ILC between routines compiled with
Language Environment-supported COBOL and PL/I Compilers, as follows:

* COBOL routines can statically call PL/I routines, and PL/I routines can
statically call COBOL routines.

* COBOL programs can dynamically call PL/I routines that have
OPTIONS(FETCHABLE) specified and PL/I routines can FETCH COBOL
programs.

If the called routine contains any CICS commands then the calling routine must
pass the EIB and the COMMAREA as the first two parameters on the CALL
statement.

Assembly language

* You can make static or dynamic calls from any Language Environment-
conforming HLL program to a Language Environment-conforming assembly
language subroutine. Conversely, a Language Environment-conforming assembly
language routine can make a static call to any Language Environment-
conforming routine, and can dynamically load another routine, either assembly
language or HLL, by using either of the Language Environment macros
CEEFETCH or CEELOAD.

* You cannot delete (release) an ILC module that has been loaded using
CEELOAD.

* You can use the CEERELES macro to release an ILC module which has been
fetched using CEEFETCH.

* Use the language that fetched it to delete an assembly language routine. This
can only be done from C/C++, COBOL, and PL/], if there is no ILC with PL/I
in the module being released.

Additionally, you can make static calls from any Language Environment-

conforming HLL program or assembly language subroutine to a non-conforming
assembly language subroutine. However, a non-conforming assembly language

16 CICS TS for z/OS 4.2: Application Programming Guide

routine cannot make a static call to any Language Environment-conforming
routine, nor can it fetch or load a conforming routine, because it cannot use the
Language Environment macros.

For assembly language to call C or C++, you must include the following statement:
C #pragma linkage(,0S)

C++ extern "0S"
DL/I

If you are using DL/I in your ILC application under CICS, calls to DL/I, either by
an EXEC DLI statement or by a CALL xxxTDLI, can be made only in programs
with the same language as the main program.

Language Environment does not support CALL CEETDLI under CICS.

Dynamic Link Libraries (DLLSs)

The z/OS dynamic link library (DLL) facility provides a mechanism for packaging
programs and data into load modules (DLLs) that can be accessed from other
separate load modules.

A DLL can export symbols representing routines that can be called from outside
the DLL, and can import symbols representing routines or data or both in other
DLLs, avoiding the need to link the target routines into the same load module as
the referencing routine. When an application references a separate DLL for the first
time, the system automatically loads the DLL into memory.

You should define all potential DLL executable modules as PROGRAM resources
to CICS.

DLL support is available for applications under CICS where the code has been
compiled using any of the compilers listed in the z/OS Language Environment
Programming Guide. See that manual for more information on building and using
DLLs.

Defining runtime options for Language Environment

Language Environment provides runtime options to control your program's
processing. Under CICS, exactly which options apply to the execution of a
particular program depends not only on the program, but also on how it is run.

Java programs and programs initiated from the Web or through CICS IIOP services
use the Language Environment preinitialization module, CEEPIPL. This has its own
version of the CEEDOPT CSECT and such programs get their runtime options
from this CSECT.

For normal CICS tasks, such as those started from a terminal, use any of the
following methods listed to set the Language Environment runtime options. For
more information about the full order of precedence for Language Environment
runtime options see z/OS V1R11.0 Language Environment Programming Guide

Chapter 2. Language Environment 17

SA22-7561-10. The methods are shown in the order in which they are processed.
Each setting could be overridden by a following one. This is, in effect, a reverse
order of precedence.

1. The CEEDOPT CSECT built into CEECCICS contains the IBM® Language
Environment default runtime options. You can change these default runtime
options by using the CEEWCOPT sample job located in SCEESAMP. This
option is supported but using the CEEPRMxx parmlib member to specify
runtime options is the preferred and easiest method.

2. The CEEPRMxx parmlib member provides support for the CEECOPT option
group which is the preferred method for setting your default Language
Environment runtime options for CICS.

3. In the CEEROPT CSECT, where the region-wide default options are located.
This CSECT is link-edited into a load module of the same name and placed in
a data set in the DFHRPL library concatenation for the CICS job.

4. The user replaceable program DFHAPXPO (applies to XPLINK programs only).

5. In the CEEUOPT CSECT, where user-supplied application program-level
runtime options are located. This CSECT is linked with the application program
itself.

6. In the application source code using the programming language options
statements, as follows:

* In C programs, through the #pragma runopts statement in the program
source. For example:
#pragma runopts(rptstg(on))

* In PL/I programs, through the PLIXOPT declaration statement within the
program. For example:

DECLARE PLIXOPT CHARACTER(18) VARYING STATIC EXTERNAL
INIT('RPTOPTS(ON) NOSTAE');

Note: There is no source code mechanism that allows the setting of runtime
options within COBOL programs or within C++ programs.

7. In the Language Environment options specified in a debugging profile. For
more information, see ["Debugging profiles” on page 192)

In most installations, the first method in the previous list is unavailable to
application programmers, and the second is often unavailable. However,
application programmers can use method 4 or method 5. Choose one method only;
do not attempt to use both method 4 and method 5. For information about
generating a CEEUOPT CSECT to link with your application, see z/OS Language
Environment Customization.

Both CEEDOPT and CEEROPT are able to set any option so that it cannot be
overridden by a later specification.

For more information about how to specify Language Environment runtime
options and also for their meanings, see z/OS Language Environment Programming
Reference.

Runtime options ignored under CICS

Under CICS many of the Language Environment runtime option settings are
ignored. These are all the Fortran-only options plus the following:

e ABPERC
* AIXBLD

18 CICS TS for z/OS 4.2: Application Programming Guide

* CBLOPTS

« CBLQDA
 DEBUG

* EXECOPS

* INTERRUPT

* LIBRARY

* MSGFILE

* NONIPTSTACK
* PLITASKCOUNT
* POSIX (unless XPLINK or Java program)
* RTEREUS

* RTLS

* SIMVRD

« THREADHEAP
* VERSION

Determining which runtime options were used

If you want to know which Language Environment runtime options were in effect
when your program ran, specify the option RPTOPTS(ON). When the program
ends this produces a list of all the runtime options used. The list is written to the
CESE TD queue. The list contains not only the actual settings of the options, but
also their origin, that is, whether they are the default for the installation or the
region, or whether they were set by the programmer or in one of the exits.

Note: Do not use RPTOPTS(ON) in a production environment. There is significant
overhead and it causes a large amount of data to be written to the CESE queue.

Runtime options in child enclaves: performance considerations

Under CICS the execution of a CICS LINK command creates what Language
Environment calls a Child Enclave. A new environment is initialized and the child
enclave gets its runtime options. These runtime options are independent of those
options that existed in the creating enclave.

Frequent use of EXEC CICS LINK, and the individual setting of many runtime
options, could affect performance. A static or dynamic call does not incur these
overheads. If you must use CEEUOPT to specify options, specifying only those
options that are different from the defaults improves performance.

Something similar happens when a CICS XCTL command is executed. In this case
we do not get a child enclave, but the existing enclave is terminated and then
reinitialized with the runtime options determined for the new program. The same
performance considerations apply.

CEEBXITA and CEECSTX user exits

These two Language Environment user exits can change some of the Language
Environment runtime options.

* Setting the CEEAUE_A_OPTION return parameter of the CEEBXITA user exit
can change options (apart from the LIBRARY, RTLS, STACK, and VERSION
options).

Chapter 2. Language Environment 19

* In the storage tuning user exit, CEECSTX, the options STACK, LIBSTACK,
HEAP, ANYHEAP, and BELOWHEAP can be set.

The exits are called in the order in which they are listed above.

The storage tuning exit CEECSTX, like the CEEROPT CSECT, is region-wide, but
CEEBXITA is linked into every program.

Language Environment calls CEEBXITA the assembler exit, because, like CEECSTX,
it is invoked before the environment is fully established, and must therefore be
coded in assembler language.

Language Environment supplies a sample source version of CEEBXITA in the
SCEESAMP library (it returns to its caller for whatever reason it is called). You can
use this as it is or modify it for use as the installation default version. However,
you can link-edit a specifically tailored version of CEEBXITA with any application
program and this version is then used instead of the installation default version.
Take great care if you choose this method, because CEEBXITA is invoked for up to
five different reasons during the course of program execution, and an
application-specific version of CEEBXITA must be capable of handling all these
invocations.

If you write your own version of CEEBXITA, you must write it in assembler
language. You can use all CICS commands except the ones listed here, provided
you specify the NOHANDLE, RESP or RESP2 option, to prevent conditions being
raised during the execution of the exit. These are the commands that cannot be
used within CEEBXITA, or any routines called by CEEBXITA:

* ABEND

« HANDLE ABEND

* HANDLE AID

« HANDLE CONDITION
* IGNORE CONDITION
* POP HANDLE
 PUSH HANDLE

For more details on both CEEBXITA and CEECSTX, see z/OS Language Environment
Customization.

CICSVAR: CICS environment variable

CICS provides an environment variable called CICSVAR to allow the
CONCURRENCY and API program attributes to be closely associated with the
application program itself. You can specify this environment variable using the
Language Environment runtime option ENVAR.

CICSVAR can be used in a CEEDOPT CSECT to set an installation default, but it is
most useful when it is set in a CEEUOPT CSECT link-edited with an individual
program, or set by a #pragma statement in the source of a C or C++ program, or
set by a PLIXOPT statement in a PL/I program. For example, when a program has
been coded to threadsafe standards it can be defined as such without changing a
PROGRAM resource definition, or it can adhere to an installation-defined naming
standard to allow a program autoinstall exit to install it with the correct attributes.

CICSVAR can be used for Language Environment-conforming assembly language,
for PL/I, for COBOL, and for C and C++ programs (both those compiled with the

20 CICS TS for z/OS 4.2: Application Programming Guide

XPLINK option, and those compiled without it), if the programs have been
compiled using a Language Environment-conforming compiler. CICSVAR cannot
be used for assembly language programs that are not Language
Environment-conforming, or for Java programs.

The use of CICSVAR overrides the settings on a PROGRAM resource definition
installed through the standard RDO interfaces, or through program autoinstall.
Before the program is run for the first time, an INQUIRE PROGRAM command
shows the keyword settings from the program definition. When the application has
been run once, an INQUIRE PROGRAM command shows the settings with any
CICSVAR overrides applied.

CICSVAR can take one of four values, QUASIRENT, THREADSAFE, REQUIRED,
or OPENAPL

CICSVAR=QUASIRENT
Results in a program with the attributes CONCURRENCY(QUASIRENT)
and APIST(CICSAPI).

CICSVAR=THREADSAFE
Results in a program with the attributes CONCURRENCY(THREADSAFE)
and APIST(CICSAPI).

CICSVAR=REQUIRED
Results in a program with the attributes CONCURRENCY(REQUIRED)
and APIST(CICSAPI).

CICSVAR=OPENAPI
Results in a program with the attributes CONCURRENCY(REQUIRED)
and APIST(OPENAPI).

The following example shows the Language Environment runtime option ENVAR
coded in a CEEUOPT CSECT:

CEEUOPT CSECT

CEEUOPT AMODE ANY

CEEUOPT RMODE ANY

CEEXOPT ENVAR=('CICSVAR=THREADSAFE')
END

This code can be assembled and link-edited into a load module, and then the
CEEUOPT load module can be link-edited together with any language program
supported by Language Environment.

Alternatively, for C and C++ programs, add the following statement at the start of
the program source before any other C statements:

#pragma runopts (ENVAR(CICSVAR=THREADSAFE))

For PL/I programs add the following statement following the PL/I MAIN
procedure statement:

DCL PLIXOPT CHAR(25) VAR STATIC EXTERNAL INIT('ENVAR(CICSVAR=THREADSAFE)');

CEEBINT exit for Language Environment

All programs running under Language Environment invoke a subroutine called
CEEBINT at program initialization time, just after invocation of the CEEBXITA and
CEECSTX exits. The runtime environment is fully operational at this point.
Language Environment calls this program the High Level Language (HLL) user
exit.

Chapter 2. Language Environment 21

Language Environment provides a module containing this program in the
SCEELKED library (it returns to its caller) and this is, therefore, the installation
default version. However, you can also write and link-edit a tailored version in to
any program to replace the default.

Ordinary Language Environment coding rules apply to CEEBINT, and you can
write it in C, C++, PL/I, or Language Environment-conforming assembler
language. CEEBINT applies to COBOL programs just as any others, but it cannot
be written in COBOL or call COBOL programs. If CEEBINT introduces a second
HLL to a program, the rules for mixing HLLs described in ["Mixing languages in|
[Language Environment” on page 15 apply.

For more information on CEEBINT, see the z/OS Language Environment
Programming Guide.

22 CICS TS for z/OS 4.2: Application Programming Guide

Chapter 3. Programming in COBOL

Use this information to help you code, translate, and compile COBOL programs
that you want to use as CICS application programs.

High-level language support|lists the COBOL compilers that are supported by
CICS Transaction Server for z/OS, Version 4 Release 2, and their service status on
z/0OS.

All references to COBOL in CICS Transaction Server for z/OS, Version 4 Release 2
documentation imply the use of a supported Language Environment-conforming
compiler such as Enterprise COBOL for z/OS, unless stated otherwise. The only
COBOL compiler that has runtime support in CICS Transaction Server for z/OS,
Version 4 Release 2, but is not Language Environment-conforming, is the VS
COBOL II compiler.

See the Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide for
information about migrating between COBOL compilers.

Support for VS COBOL I

In CICS Transaction Server for z/OS, Version 4 Release 2, applications compiled
with a VS COBOL II compiler run using the Language Environment runtime
library routines. The runtime library provided with VS COBOL II is not supported.

[“'VS COBOL II programs” on page 28| lists some restrictions and considerations
associated with programs compiled with the VS COBOL II compiler.

The VS COBOL II compiler can adjust Language Environment runtime options to
allow these applications to run correctly. The Enterprise COBOL for z/OS: Compiler
and Run-Time Migration Guide has more information about running VS COBOL II
programs within the Language Environment runtime environment, and also about
converting VS COBOL II programs to Enterprise COBOL.

Support for OS/VS COBOL

In CICS Transaction Server for z/OS, Version 4 Release 2, runtime support for
OS/VS COBOL programs is withdrawn. If you attempt to use an OS/VS COBOL
program, the abend code ALIK is issued, and CICS abnormally terminates the task
and disables the program.

OS/VS COBOL programs must be upgraded to Language Environment-conforming
COBOL, and recompiled against a level of COBOL compiler supported by CICS.

See [“Upgrading OS/VS COBOL programs” on page 44 for notes on converting
OS/VS COBOL programs to Enterprise COBOL. The Enterprise COBOL for z/OS:
Compiler and Run-Time Migration Guide has more detailed information about
language differences, and describes facilities to help with conversion.

© Copyright IBM Corp. 1989, 2011 23

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.whatsnew.doc/regular_topics/hll_support.html

Support for OO COBOL

In CICS Transaction Server for z/0OS, Version 4 Release 2, COBOL class definitions
and methods (object-oriented COBOL) cannot be used. This restriction includes
both Java classes and COBOL classes.

Modules compiled in earlier CICS releases with the OOCOBOL translator option
cannot run in CICS Transaction Server for z/OS, Version 4 Release 2. The
OOCOBOL translator option was used for the older SOM-based (System Object
Manager-based) OO COBOL, and runtime support for this form of OO COBOL
was withdrawn in z/OS V1.2. The newer Java-based OO COBOL, which is used in
Enterprise COBOL, is not supported by the CICS translator.

If you have existing SOM-based OO COBOL programs, rewrite your OO COBOL

into procedural (non-OO) COBOL in order to use the Enterprise COBOL compiler.
Java-based OO COBOL is not compatible with SOM-based OO COBOL programs,
and is not intended as a migration path for SOM-based OO COBOL programs.

Working storage
With compiler option DATA(24), the working storage is allocated below the 16 MB

line. With compiler option DATA(31), the working storage is allocated above the 16
MB line.

COBOL programming restrictions and requirements

There are some restrictions and requirements for a COBOL program that is to be
used as a CICS application program.

By default, the CICS translator and the COBOL compiler do not detect the use of
COBOL words affected by the restrictions listed here. The use of a restricted word
in a CICS environment may cause a failure at execution time. However, COBOL
provides a reserved-word table, IGYCCICS, for CICS application programs. If you
specify the compiler option WORD(CICS), the compiler uses IGYCCICS, and
COBOL words that are not supported under CICS are flagged by the compiler with
an error message. (The COBOL words normally restricted by the default
IBM-supplied reserved-word table are also flagged.) See the Enterprise COBOL for
z/OS: Programming Guide for a current listing of the words which are restricted by
IGYCCICS.

Functions and statements that cannot be used

* You cannot use entry points in COBOL in CICS.

* You must use CICS commands for most input and output processing. Therefore,
do not describe files or code any OPEN, CLOSE, READ, START, REWRITE,

WRITE, or DELETE statements. Instead, use CICS commands to retrieve, update,
insert, and delete data.

* Do not use a format-1 ACCEPT statement in a CICS program. Format-2 ACCEPT
statements are supported by Language Environment enabled compilers.

* Do not use DISPLAY . .. UPON CONSOLE and DISPLAY . .. UPON
SYSPUNCH. DISPLAY to the system logical output device (SYSOUT,
SYSLIST,SYSLST) is supported.

* Do not use STOP “literal”.

¢ There are restrictions on the use of the SORT statement. See the Enterprise
COBOL for z/OS: Programming Guide for information. Do not use MERGE.

24 CICS TS for z/OS 4.2: Application Programming Guide

Do not use:
— USE declaratives.

— ENVIRONMENT DIVISION and FILE SECTION entries associated with data
management, because CICS handles data management. (These can be used
when they are associated with the limited SORT facility referenced above.)

— User-specified parameters to the main program.

Coding requirements

When a debugging line is to be used as a comment, it must not contain any
unmatched quotation marks.

Statements that produce variable-length areas, such as OCCURS DEPENDING
ON, should be used with caution within the WORKING-STORAGE SECTION.

Do not use EXEC CICS commands in a Declaratives Section.

If no IDENTIFICATION DIVISION is present, only the CICS commands are
expanded. If the IDENTIFICATION DIVISION only is present, only DFHEIVAR,
DFHEIBLK, and DFHCOMMAREA are produced.

For VS COBOL II programs with Language Environment runtime, the following
limits apply to the length of WORKING-STORAGE:

— When the compiler option DATA(24) is used, the limit is the available space
below the 16MB line.

— When the compiler option DATA(31) is used, the limit is 128 MB.

80 bytes are required for storage accounting and save areas, and this must be
included within the limits.

If the DLI option is specified and an ENTRY statement immediately follows the
PROCEDURE DIVISION header in an existing program, change the
PROGRAM-ID name to the ENTRY statement literal and delete the ENTRY
statement before calling the program in CICS.

If you use HANDLE CONDITION or HANDLE AID, you can avoid addressing
problems by using SET(ADDRESS OF A-DATA) or SET(A-POINTER) where
A-DATA is a structure in the LINKAGE SECTION and A-POINTER is defined
with the USAGE IS POINTER clause.

Language Environment coding requirements

If you are running CICS applications written in COBOL under Language
Environment for the first time, you may need to review the Language Environment
runtime options in use at your installation. In particular, if your applications are
not coded to ensure that the WORKING-STORAGE SECTION is properly
initialized (for example, cleared with binary zeros before sending maps), you
should use the STORAGE runtime option. See z/OS Language Environment
Programming Reference.for information about customizing Language Environment
runtime options.

31-bit addressing

For a COBOL program running above the 16 MB line, these restrictions apply for
31-bit addressing;:

If the receiving program is link-edited with AMODE(31), addresses passed to it
must be 31-bits long (or 24-bits long with the left-most byte set to zeros).

If the receiving program is link-edited with AMODE(24), addresses passed to it
must be 24-bits long.

Chapter 3. Programming in COBOL 25

Specify the DATA(24) compiler option for programs running in 31-bit addressing
mode that are passing data arguments to programs in 24-bit addressing mode. This
ensures that the data will be addressable by the called program.

Compiler options

* Do not use the following compiler options:
- DYNAM (if program is to be translated)
— NOLIB (if program is to be translated)
- NORENT

You may use the DLL compiler option.
* The following compiler options have no effect in a CICS environment:
- ADV
- AWO
- EXPORTALL
— FASTSRT
- NAME
- OOCOBOL
- OUTDD
- THREAD

* The use of the TEST(SYM,NOSEPARATE) compiler option results in a very large
increase in program size. Therefore, short-on-storage problems may occur when
using this option. You can achieve the same functionality with
TEST(SYM,SEPARATE) without an increase in program size. For more
information about the TEST compiler option, see the Enterprise COBOL for z/OS:
Programming Guide.

* Use TRUNC(OPT) for handling binary data items if they conform to the
PICTURE definitions. Otherwise, use TRUNC(OPT) as the compiler option and
USAGE COMP-5 for items where the binary value might be larger than the
PICTURE clause would allow. TRUNC(BIN) inhibits runtime performance, so
use this option only if you have no control over binary data items (such as those
created by a code generator). (TRUNC(STD) is the default.)

Note that if your application uses fields in the EIB, the DFHEIBLK copybook
defines fields such as EIBCALEN as PICTURE S9(4) USAGE
COMPUTATIONAL. Using the TRUNC(OPT) compiler option with the
DFHEIBLK copybook can result in the truncation of values greater than 9999 in
binary fields. To avoid truncation problems, you are recommended to use the
integrated translator which uses an updated version of the DFHEIBLK
copybook. The version of DFHEIBLK used by the integrated translator defines
all fields that would be affected by the TRUNC(OPT) or TRUNC(BIN) compile
option as USAGE COMP-5.

For more information about the TRUNC option, see the Enterprise COBOL for
z/OS: Customization Guide.

e The use of the RMODE(24) compiler option means that the program always
resides below the 16 MB line, so this is not recommended. RMODE(ANY) or
RMODE(AUTO) should be used instead. For more information about the
RMODE compiler option, see the Enterprise COBOL for z/OS: Programming Guide.

WITH DEBUGGING MODE

If a “D” is placed in column seven of the first line of a COBOL EXEC CICS
command, that “D” is also found in the translated CALL statements. This

26 CICS TS for z/OS 4.2: Application Programming Guide

translated command is only executed if WITH DEBUGGING MODE is specified. A
“D” placed on any line other than the first line of the EXEC CICS statement is not
required and is ignored by the translator.

Language Environment CBLPSHPOP option

The CBLPSHPOP runtime option controls whether Language Environment
automatically issues an EXEC CICS PUSH HANDLE command during
initialization and an EXEC CICS POP HANDLE command during termination
whenever a COBOL subroutine is called.

If your application makes many COBOL subroutine CALLs under CICS,
performance is better with CBLPSHPOP(OFF) than with CBLPSHPOP(ON). You
can set CBLPSHPOP on an individual transaction basis by using CEEUOPT, as
explained in [“Defining runtime options for Language Environment” on page 17|

However, because condition handling has not been stacked, be aware that:

* If your called routine raises a condition that causes CICS to attempt to pass
control to a condition handler in the calling routine, this is an error and your
transaction will be abnormally terminated.

* If you use any of the PUSHable CICS commands, HANDLE ABEND, HANDLE
AID, HANDLE CONDITION, or IGNORE CONDITION, within the called
routine, you will be changing the settings of your caller and this could lead to
later errors.

 If you call an assembler routine and need to suspend the current handles, and
then reinstate them, the assembler routine must request the push and pop
handles. The Language Environment does not do that automatically when a
COBOL program calls an assembler routine.

Using the DL/I CALL interface

If you have COBOL programs that use CALL DL/I, and you have not yet made
the following changes to them, you should now do so.

* Retain the user interface block (DLIUIB) declaration and at least one program
control block (PCB) declaration in the LINKAGE SECTION.

* Change the PCB call to specify the UIB directly, as follows:

CALL 'CBLTDLI' USING PCB-CALL
PSB-NAME
ADDRESS OF DLIUIB.

* Obtain the address of the required PCB from the address list in the UIB.

[Figure 1 on page 2§ illustrates the whole of the above process. The example in the
figure assumes that you have three PCBs defined in the PSB and want to use the
second PCB in the database CALL. Therefore, when setting up the ADDRESS
special register of the LINKAGE SECTION group item PCB, the program uses 2 to
index the working-storage table, PCB-ADDRESS-LIST. To use the nth PCB, you use
the number n to index PCB-ADDRESS-LIST.

Chapter 3. Programming in COBOL 27

WORKING-STORAGE SECTION.

*

77 PCB-CALL
77 GET-HOLD-UNIQUE
77 PSB-NAME
77 SSA1
01 DLI-IO-AREA.
02 DLI-IO-AREA1

LINKAGE SECTION.

*

COPY DLIUIB.

PIC X(4) VALUE 'PCB .
PIC X(4) VALUE 'GHU '.
PIC X(8) VALUE 'CBLPSB'.
PIC X(40) VALUE SPACES.

PIC X(99).

01 OVERLAY-DLIUIB REDEFINES DLIUIB.

02 PCBADDR
02 FILLER
01 PCB-ADDR-LIST.

USAGE IS POINTER.
PIC XX.

02 PCB-ADDRESS-LIST USAGE IS POINTER

OCCURS 10 TIMES.

01 PCB.
02 PCB-DBD-NAME PIC X(8).
02 PCB-SEG-LEVEL PIC XX.

02 PCB-STATUS-CODE PIC XX.

PROCEDURE DIVISION.
*SCHEDULE THE PSB AND ADDRESS THE UIB
CALL 'CBLTDLI" USING PCB-CALL PSB-NAME ADDRESS OF DLIUIB.

*

*MOVE VALUE OF UIBPCBAL, ADDRESS OF PCB ADDRESS LIST (HELD IN UIB)
*(REDEFINED AS PCBADDR, A POINTER VARIABLE), TO

*ADDRESS SPECIAL REGISTER OF PCB-ADDR-LIST TO PCBADDR.

SET ADDRESS OF PCB-ADDR-LIST TO PCBADDR.

*MOVE VALUE OF SECOND ITEM IN PCB-ADDRESS-LIST TO ADDRESS SPECIAL
*REGISTER OF PCB, DEFINED IN LINKAGE SECTION.

SET ADDRESS OF PCB

TO PCB-ADDRESS-LIST(2).

*PERFORM DATABASE CALLS

MOVE TO SSAL.

CALL 'CBLTDLI" USING GET-HOLD-UNIQUE PCB DLI-IO-AREA SSAL.
*CHECK SUCCESS OF CALLS

IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN

IF PCB-STATUS-CODE

...... error diagnostic code

IS NOT EQUAL SPACES THEN
...... error diagnostic code

Figure 1. Using the DL/I CALL interface

VS COBOL Il programs

Language Environment provides support for the execution of programs compiled
by the VS COBOL II compiler. The native runtime library for this compiler is not
supported. However, this compiler is not Language Environment-conforming (it is
a pre-Language Environment compiler), so some restrictions and considerations are
associated with its use.

For detailed information about upgrading VS COBOL II programs to Language
Environment support, see the Enterprise COBOL for z/OS: Compiler and Run-Time
Migration Guide.

Language Environment callable services

Programs compiled by Language Environment-conforming COBOL compilers can
use all Language Environment callable services, either dynamically or statically.

28 CICS TS for z/OS 4.2: Application Programming Guide

However, for CICS applications, the CEEMOUT (dispatch a message) and
CEE3DMP (generate dump) services differ, in that the messages and dumps are
sent to the CESE transient data queue rather than to the ddname specified in the
MSGFILE runtime option.

VS COBOL II programs can make dynamic calls to the date and time callable
services, but no other calls, either static or dynamic, to Language Environment
callable services are supported for VS COBOL II programs.

Re-linking VS COBOL Il programs

If object modules are not available for re-linking existing VS COBOL II programs
to use the runtime support provided by Language Environment, a sample job
stream for performing the task is provided in the IGZWRLKA member of the
SCEESAMP sample library.

CICS stub

Although COBOL programs linked with the old CICS stub, DFHECI, run under
Language Environment, it is advisable to use the DFHELII stub, and it is essential
to use the DFHELII stub in a mixed language environment. DFHECI must be
link-edited at the top of your application, but DFHELII can be linked anywhere in
the application.

Using CEEWUCHA

If you are adapting VS COBOL II programs to use the runtime support provided
by Language Environment, the sample user condition handler, CEEWUCHA,
supplied by Language Environment in the SCEESAMP library, can be used to
advantage. It functions as follows:

* It provides compatibility with existing VS COBOL II applications running under
CICS by allowing EXEC CICS HANDLE ABEND LABEL statements to get
control when a runtime detected error occurs.

* It converts all unhandled runtime detected errors to the corresponding user 1xxx
abend issued by VS COBOL II.

* It suppresses all IGZ0014W messages, which are generated when IGZETUN or
IGZEOPT is link-edited with a VS COBOL II application. (Performance is better
if the programs are not link-edited with IGZETUN or IGZEOPT.)

Ensure that the sample user condition handler, CEEWUCHA, is available at
runtime (for example by using the STEPLIB concatenation or LPA). Define the
condition handler in the CICS system definition data set (CSD) for your CICS
region, rather than using program autoinstall.

Using based addressing with COBOL

COBOL provides a simple method of obtaining addressability to CICS data areas
defined in the LINKAGE SECTION using pointer variables and the ADDRESS
special register.

CICS application programs need to access data dynamically when the data is in a
CICS internal area, and only the address is passed to the program. Examples are:

* CICS areas such as the CWA, TWA, and TCTTE user area (TCTUA), accessed
using the ADDRESS command.

Chapter 3. Programming in COBOL 29

* Input data, obtained by EXEC CICS commands such as READ and RECEIVE
with the SET option.

The ADDRESS special register holds the address of a record defined in the
LINKAGE SECTION with level 01 or 77. This register can be used in the SET
option of any command in ADDRESS mode. These commands include GETMAIN,
LOAD, READ, and READQ.

shows the use of ADDRESS special registers in COBOL. If the records in
the READ or REWRITE commands are of fixed length, no LENGTH option is
required. This example assumes variable-length records. After the read, you can get
the length of the record from the field named in the LENGTH option (here,
LRECL-REC1). In the REWRITE command, you must code a LENGTH option if
you want to replace the updated record with a record of a different length.

WORKING-STORAGE SECTION.

77 LRECL-RECI PIC S9(4) COMP.
LINKAGE SECTION.

01 REC-1.

02 FLAGL PIC X.

02 MAIN-DATA PIC X(5000).

02 OPTL-DATA PIC X(1000).

01 REC-2.

02 ...

PROCEDURE DIVISION.

EXEC CICS READ UPDATE...
SET(ADDRESS OF REC-1)
LENGTH(LRECL-REC1)
END-EXEC.

IF FLAGL EQUAL X'Y'

MOVE OPTL-DATA TO ...

EXEC CICS REWRITE...
FROM(REC-1)
END-EXEC.

Figure 2. Addressing CICS data areas in locate mode

Calling subprograms from COBOL programs

In a CICS system, when control is transferred from the active program to an
external program, but the transferring program remains active and control can be
returned to it, the program to which control is transferred is called a subprogram.
In COBOL, there are three ways of transferring control to a subprogram.

EXEC CICS LINK
The calling program contains a command in one of these forms:

EXEC CICS LINK PROGRAM('subpgname')
EXEC CICS LINK PROGRAM(name)

In the first form, the called subprogram is specified as an alphanumeric literal.
In the second form, name refers to the COBOL data area with length equal to
that required for the name of the subprogram.

Static COBOL call
The calling program contains a COBOL statement of the form:

CALL 'subpgname'

The called subprogram is explicitly named as a literal string.

30 CICS TS for z/0S 4.2: Application Programming Guide

Dynamic COBOL call
The calling program contains a COBOL statement of the form:

CALL identifier

The identifier is the name of a COBOL data area that must contain the name of
the called subprogram.

For information about the performance implications of using each of these
methods to call a subprogram, see the Enterprise COBOL for z/OS: Programming
Guide, and the IBM Enterprise COBOL Version 3 Release 1 Performance Tuning Paper.
The White Paper is available on the Web at www.ibm.com/software/ad/cobol/
Tibrary

COBOL programs can call programs in any language supported by CICS, statically
or dynamically. LINK or XCTL are not required for inter-language communication,
unless you want to use CICS functions such as COMMAREA. See
languages in Language Environment” on page 15 for more information about
inter-language communication.

The contents of any called or linked subprogram can be any function supported by
CICS for the language (including calls to external databases, for example, DB2®
and DL/I), with the exception that an assembler language subprogram cannot
CALL a lower level subprogram.

Flow of control between programs and subprograms

There are a number of possible flows between COBOL main programs and
subprograms.

A run unit is a running set of one or more programs that communicate with each
other by COBOL static or dynamic CALL statements. In a CICS environment, a run
unit is entered at the start of a CICS task, or invoked by a LINK or XCTL
command. A run unit can be defined as the execution of a program defined by a
PROGRAM resource definition, even though for dynamic CALL, the subsequent
PROGRAM definition is needed for the called program. When control is passed by
a XCTL command, the program receiving control cannot return control to the
calling program by a RETURN command or a GOBACK statement, and is
therefore not a subprogram.

Each LINK command creates a new CICS application logical level, the called
program being at a level one lower than the level of the calling program (CICS is
taken to be at level 0). [Figure 3 on page 32 shows logical levels and the effect of
RETURN commands and CALL statements in linked and called programs.

Chapter 3. Programming in COBOL 31

CICS Level
0
A A
A4
Program U
GOBACK >
STOP RUN >
EXEC CICS RETURN —» v
Run - Level
Unit CALL P Program V 1
A ... GOBACK
. EXEC CICS RETURN >
EXEC CICS LINK >
\ 4
Program W
GOBACK >
STOP RUN >
Run .
Unit [EXEC CICS RETURN > v
B ..
CALL > Program X
.. GOBACK
EXEC CICS RETURN >
EXEC CICS XCTL >
. Level
L 2
A
\ 4
o v
Program Y
CALL Program Z
.. GOBACK
TR D) “
GOBACK > STOP RUN >
Run . e
Unit STOP RUN > EXEC CICS RETURN >
C ..
LA, EXEC CICS RETURN »-

Figure 3. Flow of control between COBOL programs, run units, and CICS

A main, or level 1 program can use the COBOL GOBACK or STOP RUN
statements, or the CICS RETURN command to terminate and return to CICS. It can
use a COBOL CALL statement to call a subprogram at the same logical level (level
1), or a CICS LINK command to call a subprogram at a lower logical level. A
called subprogram at level 1 can return to the caller using the COBOL GOBACK
statement, or can terminate and return to CICS using EXEC CICS RETURN.

A subprogram executing at level 2 can use the COBOL GOBACK or STOP RUN
statements, or the CICS RETURN command to terminate and return to the level 1
calling program. It can use a COBOL CALL statement or a CICS XCTL command
to call a subprogram at the same level (level 2). A subprogram called using the
COBOL CALL at level 2 can return to the caller (at level 2) using the COBOL
GOBACK statement, or can return to the level 1 calling program using EXEC CICS

32 CICS TS for z/0S 4.2: Application Programming Guide

RETURN. A subprogram called using XCTL at level 2 can only return to the level 1
calling program, using GOBACK, STOP RUN or EXEC CICS RETURN.

See [Application program logical levels” on page 286 for more information about
program logical levels.

Rules for calling subprograms

These rules describe the requirements and behavior of subprograms called or
linked from a COBOL program. The rules which apply depend on how control is
transferred to the subprogram, whether by an EXEC CICS LINK command, a static
COBOL call, or a dynamic COBOL call.

Location of subprogram

EXEC CICS LINK
The subprogram can be remote.

Static or dynamic COBOL call
The subprogram must be local.

Translation

If a compiler with an integrated translator is used, translation is not required.

EXEC CICS LINK
The linked subprogram must be translated if it, or any subprogram invoked
from it, contains CICS function.

Static or dynamic COBOL call
The called subprogram must be translated if it contains CICS commands or
references to the EXEC interface block (DFHEIBLK) or to the CICS
communication area (DFHCOMMAREA).

Compilation

You must always use the NODYNAM compiler option (the default) when you
compile a COBOL program that is to run with CICS, even if the program issues
dynamic calls.

Link-editing

EXEC CICS LINK
The linked subprogram must be compiled and link-edited as a separate
program.

Static COBOL call
The called subprogram must be link-edited with the calling program to form a
single load module (but the programs can be compiled separately). This can
produce large program modules, and it also stops two programs that call the
same program from sharing a copy of that program.

Dynamic COBOL call
The called subprogram must be compiled and link-edited as a separate load
module. It can reside in the link pack area or in a library that is shared with
other CICS and non-CICS regions at the same time.

CICS CSD entries without program autoinstall

If you use program autoinstall, you do not require an entry in the CSD.

Chapter 3. Programming in COBOL 33

EXEC CICS LINK
The linked subprogram must be defined using RDO. If the linked subprogram
is unknown or unavailable, even though autoinstall is active, the LINK fails
with the PGMIDERR condition.

Static COBOL call
The calling program must be defined in the CSD. If program A calls program B
and then program B attempts to call program A, COBOL issues a message and
an abend (1015). The subprogram is part of the calling program so no CSD
entry is required.

Dynamic COBOL call
The calling program must be defined in the CSD. If program A calls program B
and then program B attempts to call program A, COBOL issues a message and
an abend (1015). The called subprogram must be defined in the CSD. If the
called subprogram cannot be loaded or is unavailable even though autoinstall
is active, COBOL issues a message and abends (1029).

Recursive calls in COBOL

If program A calls program B and program B attempts to call program A,
Language Environment issues message IGZ0064S to CEEMSG and an abend (4038).

If program A and program B have the RECURSIVE keyword on the
PROGRAM-ID, recursive calls are allowed.

Passing parameters to a subprogram

Data can be passed by any of the standard CICS methods (COMMAREA, TWA,
TCTUA, TS queues) if the called or linked subprogram is processed by the CICS
translator.

EXEC CICS LINK
If the COMMAREA is used, its address must be passed in the LINK command.
If the linked subprogram uses 24-bit addressing, and the COMMAREA is
above the 16 MB line, CICS copies it to below the 16 MB line, and recopies it
on return.

Static COBOL call
The CALL statement can pass DFHEIBLK and DFHCOMMAREA as the first
two parameters, if the called program is to issue EXEC CICS requests, or the
called program can issue EXEC CICS ADDRESS commands. The COMMAREA is
optional but if other parameters are passed, a dummy COMMAREA must also
be passed. The rules for nested programs can be different.

Dynamic COBOL call
The CALL statement can pass DFHEIBLK and DFHCOMMAREA as the first
two parameters, if the called program is to issue EXEC CICS requests, or the
called program can issue EXEC CICS ADDRESS commands. The COMMAREA is
optional but if other parameters are passed, a dummy COMMAREA must also
be passed. If the called subprogram uses 24-bit addressing and any parameter
is above the 16MB line, COBOL issues a message and abends (1033) .

Return from a subprogram

EXEC CICS LINK
The linked subprogram must return using either RETURN or a native
language return command such as the COBOL statement GOBACK.

34 CICS TS for z/0S 4.2: Application Programming Guide

Static or dynamic COBOL call
The called subprogram must return using a native language return statement
such as the COBOL statement GOBACK or EXIT PROGRAM. The use of
RETURN in the called subprogram terminates the calling program.

Storage

EXEC CICS LINK
On each entry to the linked subprogram, a new initialized copy of its
WORKING-STORAGE SECTION is provided, and the run unit is reinitialized
(in some circumstances, this can cause a performance degradation).

On each entry to the linked subprogram, a new initialized copy of its
LOCAL-STORAGE section is provided.

Static or dynamic COBOL call
On the first entry to the called subprogram within a CICS logical level, a new
initialized copy of its WORKING-STORAGE SECTION is provided. On
subsequent entries to the called subprogram at the same logical level, the same
WORKING STORAGE is provided in its last-used state, that is, no storage is
freed, acquired, or initialized. If performance is unsatisfactory with LINK
commands, COBOL calls might give improved results.

On every entry to the called subprogram in a CICS logical level, a new
initialized copy of its LOCAL-STORAGE SECTION is provided.

CICS condition, AID, and abend handling

EXEC CICS LINK
On entry to the called subprogram, no abend or condition handling is active.
Within the subprogram, the normal CICS rules apply. In order to establish an
abend or condition handling environment, that exists for the duration of the
subprogram, a new HANDLE command should be issued on entry to the
subprogram. The environment so created remains in effect until either a further
HANDLE command is issued, or the subprogram returns control to the caller.

Static or dynamic COBOL call
If the dynamically called COBOL program abends, CICS abend handling is not
invoked, and you might get a COBOL abend code (1013).

* If the dynamically called COBOL program abends, with Language
Environment and CBLPSHPOP ON, on entry to the called subprogram, no
abend or condition handling is active. Within the subprogram, the normal
CICS rules apply. On entry to the called subprogram, COBOL issues a PUSH
HANDLE to stack the calling program's condition or abend handlers. In
order to establish an abend or condition handling environment that exists
for the duration of the subprogram, a new HANDLE command should be
issued on entry to the subprogram. The environment that this creates
remains in effect until either a further HANDLE command is issued or the
subprogram returns control to the caller. When control is returned to the
calling program from the subprogram, COBOL unstacks the condition and
abend handlers using a POP HANDLE.

¢ If the dynamically called COBOL program abends, with CBLPSHPOP OFF,
the condition, AID, and abend handling for the calling program remain in
effect.

Chapter 3. Programming in COBOL 35

COBOL2 and COBOL3 translator options

In CICS Transaction Server for z/OS, Version 4 Release 2, you can choose between
the COBOL2 and COBOL3 CICS translator options for COBOL programs.

The ANSI85 translator option ceased to be available in CICS Transaction Server for
z/0S, Version 2 Release 2.

Modules compiled in earlier CICS releases with the OOCOBOL translator option
cannot execute in CICS Transaction Server for z/OS, Version 4 Release 2. The
OOCOBOL translator option was used for the older SOM-based (System Object
Manager-based) OO COBOL, and runtime support for this form of OO COBOL
was withdrawn in z/OS V1.2. The newer Java-based OO COBOL, which is used in
Enterprise COBOL, is not supported by the CICS translator.

The COBOL2 option is the default. It does not have the same effect on the
translator as it did in CICS Transaction Server for z/OS, Version 2 Release 1 and
earlier releases. COBOL2 instructs the translator to translate as COBOLS3, but in
addition to include declarations of temporary variables for use in EXEC CICS and
EXEC DLI requests.

Choose the COBOL2 option if you are re-translating old programs which were
written in such a way that they require the use of temporary variables. In
particular, note that the use of temporary variables might circumvent errors that
would normally occur when an argument value in a program is incorrectly
defined. The COBOL2 option in CICS Transaction Server for z/OS, Version 2
Release 1 and earlier releases provided declarations of temporary variables.
Because of this feature, incorrect definitions of argument values might be present,
but not noticeable at runtime, in programs that were originally translated with the
COBOL2 option in earlier releases of CICS Transaction Server. Translating these
programs with the COBOL3 option can reveal these errors for the first time. To
assist with upgrading to the newer releases of CICS, you may use the new
COBOL2 option to continue to circumvent the errors in the programs, rather than
correcting them.

If you are confident that your programs do not need the translator's temporary
variables, you may use COBOL3, which results in smaller working storage. The
COBOLS3 option includes all features of the older COBOL2 and ANSIS85 translator
options, except for declarations of temporary variables.

Note: COBOL2 and COBOL3 are mutually exclusive. If you specify both options
by different methods, the COBOL3 option is always used, regardless of where the
two options have been specified. If this happens, the translator issues a warning
message.

The CICS translator support in CICS Transaction Server for z/OS, Version 2
Release 2 and later versions and releases does not support the use of the CMPR2
compiler option previously available with old COBOL compilers. For information
on upgrading these COBOL programs to the NOCMPR?2 feature, see the Enterprise
COBOL for z/OS: Compiler and Run-Time Migration Guide.

For general information about translating your program and preparing it for
execution, see [Chapter 7, “Translation and compilation,” on page 71.|

36 CICS TS for z/0S 4.2: Application Programming Guide

CICS translator actions for COBOL programs

These notes describe specific translator action that is taken when the COBOL3
option is used. Processing with the COBOL2 option is the same in all respects,
except for declarations of temporary variables.

Literals intervening in blank lines

Blank lines can appear anywhere in a COBOL source program. A blank line
contains nothing but spaces between columns 7 and 72 inclusive.

If blank lines occur within literals in a COBOL source program, the translator
eliminates them from the translated output but includes them in the translated
listing.

Lower case characters

Lower case characters can occur anywhere in any COBOL word, including
user-defined names, system names, and reserved words. The translator listing and
output preserve the case of COBOL text as entered.

In addition, the translator accepts mixed case in:

* Translator options

* EXEC CICS commands, both for keywords and for arguments to keywords
¢ CBL and PROCESS statements

* Compiler directives such as EJECT and SKIP1

The translator does not translate lower case text into upper case. Some names in
COBOL text, for example file names and transaction IDs, must match with
externally defined names. Such names must always be entered in the same case as
the external definition.

If you specify the LINKAGE translator option, or allow it to default, a mixed-case
version of the EIB structure (DFHEIBLC) is inserted into the LINKAGE SECTION.

Sequence numbers containing any character

In a COBOL source program, the sequence number field can contain any character
in the computer's character set. The sequence number fields need not be in any
order and need not be unique.

REPLACE statement

COBOL programs can include the REPLACE statement, which allows the
replacement of identified text by defined substitution text. The text to be replaced
and inserted can be pseudo-text, an identifier, a literal, or a COBOL word.
REPLACE statements are processed after COPY statements.

If you process your COBOL source statements with the CICS-supplied translator,
the translator accepts REPLACE statements but does not translate text between
pseudo-text delimiters, with the exception of CICS built-in functions (DFHRESP
and DFHVALUE), which are translated wherever they occur. CICS commands
should not be placed between pseudo-text delimiters.

Chapter 3. Programming in COBOL 37

If you use the integrated translator, the translator accepts REPLACE statements
and does translate text between pseudo-text delimiters. CICS commands can be
placed between pseudo-text delimiters.

Reference modification

Reference modification supports a method of referencing a substring of a character
data item by specifying the starting (leftmost) position of the substring in the data
item and, optionally, the length of the substring. The acceptable formats are:

data-name (leftmost-character-position:)
data-name (leftmost-character-position: length)

Data-name can be subscripted or qualified or both. Both leftmost-character-position
and length can be arithmetic expressions. For more information about reference
modification, qualification and subscripting, see the Enterprise COBOL for z/OS:
Language Reference

The translator accepts reference modification wherever the name of a character
variable is permitted in a COBOL program or in an EXEC CICS command.

Note: If a CICS command uses reference modification in defining a data value, it
should include a LENGTH option to specify the data length, unless the
NOLENGTH translator option is used. Otherwise the translator generates a
COBOL call with a LENGTH register reference in the form:

LENGTH OF (reference modification)

This is rejected by the compiler.

Global variables

The GLOBAL clause is supported. A variable defined with the GLOBAL clause in a

top-level program (see ["Nested COBOL programs” on page 41) can be referred to
in any of its nested programs, whether directly or indirectly contained.

The translator accepts the GLOBAL keyword.
Comma and semicolon as delimiters

A separator comma is a comma followed by a space. A separator semicolon is a
semicolon followed by a space. A separator comma or a separator semicolon can
be used as a separator wherever a space alone can be used.

The translator accepts the use in COBOL statements of a separator comma or a
separator semicolon wherever a space can be used. For example, the translator
accepts the statement:

IDENTIFICATION; DIVISION

The translator does not support the use of the separator comma and separator
semicolon as delimiters in EXEC CICS commands. The only acceptable word
delimiter in an EXEC CICS command continues to be a space.

Symbolic character definition

Symbolic characters can be defined in the SPECIAL-NAMES paragraph after the
ALPHABET clause. A symbolic character is a program-defined word that
represents a 1-character figurative constant.

38 CICS TS for z/0S 4.2: Application Programming Guide

The translator accepts the use of symbolic characters as specified in the standard.

Note: In general, the compiler does not accept the use of figurative constants and
symbolic characters as arguments in CALL statements. For this reason, do not use
figurative constants or symbolic constants in EXEC CICS commands, which are
converted into CALL statements by the translator. There is one exception to this
restriction: a figurative constant is acceptable in an EXEC CICS command as an
argument to pass a value if it is of the correct data type. For example, a numeric
figurative constant can be used in the LENGTH option.

Batch compilation for COBOL programs

Separate COBOL programs can be compiled together as one input file. An END
PROGRAM header statement terminates each program and is optional for the last
program in the batch. The translator accepts separate COBOL programs in a single
input file, and interprets END PROGRAM header statements.

Translator options specified as parameters when invoking the translator are in
effect for the whole batch, but can be overridden for a unit of compilation by
options specified in the CBL or PROCESS card that initiates the unit.

The options for a unit of compilation are determined according to the following
order of priority:

1. Options fixed as installation non-user-modifiable options.

2. Options specified in the CBL or PROCESS card that initiates the unit.
3. Options specified when the translator is invoked.

4. Default options.

For more information about compilation, see [Chapter 8, “Installing application|
fprograms,” on page 97|

If you are using batch compilation, you must take some additional action to ensure
that compilation and linkage editing are successful, as follows:

* Include the compiler NAME option as a parameter in the JCL statement that
invokes the compiler or in a CBL statement for each top-level (non-nested)
program. This causes the inclusion of a NAME statement at the end of each
program. See [Figure 4 on page 40 for more information.

 Edit the compiler output to add INCLUDE and ORDER statements for the CICS
COBOL stub to each object module. These statements cause the linkage editor to
include the stub at the start of each load module. These statements can be
anywhere in the module, though by convention they are at the start. You might
find it convenient to place them at the end of the module, immediately before
each NAME statement. [Figure 5 on page 41| shows the output from
after editing in this way.

For batch compilation you must vary the procedure described in
[“Installing application programs,” on page 97| The following is a suggested
method:

1. Split the supplied cataloged procedure DFHYITVL into two procedures: PROC1
containing the translate and compilation steps (TRN and COB), and PROC2
containing the linkage editor steps COPYLINK and LKED.

2. In PROC1, add the NAME option to the parameters in the EXEC statement for
the compiler, which then looks like this:

Chapter 3. Programming in COBOL 39

//COB EXEC PGM=IGYCRCTL,REGION=..,
// PARM="....,NAME,....",

3. In PROC1, change the name and disposition of the compiler output data set
&&LOADSET. At least remove the initial && from the data set name and
change the disposition to CATLG. The SYSLIN statement should then read:

//SYSLIN DD DSN=LOADSET,DISP=(NEW,CATLG),
// UNIT=&WORK,SPACE=(80, (250,100))

4. Run PROCI.

NAME PROGC (R)

Figure 4. Compiler output before editing

5. Edit the compiler output in the data set LOADSET to add the INCLUDE and
ORDER statements as shown in [Figure 5 on page 41} If you use large numbers
of programs in batches, you should write a simple program or REXX EXEC to
insert the ORDER and INCLUDE statements.

6. In PROC2, add a DD statement for the library that includes the CICS stub. The
standard name of this library is CICSTS42.CICS.SDFHLOAD. The INCLUDE
statement for the stub refers to this library by the DD name. In
it is assumed you have used the DD name SYSLIB (or concatenated
this library to SYSLIB). The suggested statement is:

//SYSLIB DD DSN=CICSTS42.CICS.SDFHLOAD,
// DISP=SHR

7. In PROC2, replace the SYSLIN concatenation with the single statement:

//SYSLIN DD DSN=LOADSET,
// DISP=(OLD,DELETE)

In this statement it is assumed that you have renamed the compiler output data
set LOADSET.

8. Run PROC2.

40 CICS TS for z/OS 4.2: Application Programming Guide

....program a....

INCLUDE SYSLIB(DFHELIT)
ORDER DFHELII
NAME PROGA(R)

INCLUDE SYSLIB(DFHELII)
ORDER DFHELII
NAME PROGB(R)

INCLUDE SYSLIB(DFHELIT)
ORDER DFHELII
NAME PROGC(R)

Figure 5. Linkage editor input

Note: You are recommended to use the DFHELII stub, but DFHECI is still
supplied, and can be used.

Nested COBOL programs

COBOL programs can contain COBOL programs. Contained programs are included

immediately before the END PROGRAM statement of the containing program. A
contained program can also be a containing program, that is, it can itself contain

other programs. Each contained or containing program is terminated by an END
PROGRAM statement.

For an explanation of valid calls to nested programs and of the COMMON
attribute of a nested program, see the Enterprise COBOL for z/OS: Customization
Guide.

The CICS translator treats top-level and nested programs differently.

The translator translates a top-level program (a program that is not contained by
any other program) in the normal way, with one addition. The translator assigns
the GLOBAL attribute for all translator-generated variables in the
WORKING-STORAGE SECTION.

The translator translates nested or contained programs in a special way as follows:

* A DATA DIVISION and LINKAGE SECTION are added if they do not already
exist.

* Declarations for DFHEIBLK (EXEC interface block) and DFHCOMMAREA
(communication area) are inserted into the LINKAGE SECTION.

e EXEC CICS commands and CICS built-in functions are translated.
¢ The PROCEDURE DIVISION header is not modified.

* No translator-generated temporary variables, used for pre-call assignments, are
inserted in the WORKING-STORAGE SECTION.

The translator interprets that the input source starts with a top-level program if the
first non-comment record is any of the following:

e IDENTIFICATION DIVISION statement
e CBL card

Chapter 3. Programming in COBOL 41

e PROCESS card

If the first record is none of these, the translator treats the input as part of the
PROCEDURE DIVISION of a nested program. The first CBL or PROCESS card
indicates the start of a top-level program and of a new unit of compilation. Any
IDENTIFICATION DIVISION statements that are found before the first top-level
program indicate the start of a new nested program.

The practical effect of these rules is that nested programs cannot be held in
separate files and translated separately. A top-level program and all its directly and
indirectly contained programs constitute a single unit of compilation and must be
submitted together to the translator.

Comments in nested programs

The translator treats comments that follow an END PROGRAM statement as
belonging to the next program in the input source. Comments that precede an
IDENTIFICATION DIVISION statement appear in the listing after the
IDENTIFICATION DIVISION statement.

To avoid confusion always place comments:

» After the IDENTIFICATION DIVISION statement that initiates the program to
which they refer.

* Before the END PROGRAM statement that terminates the program to which
they refer.

If you are using a separate translator

If you are using a separate translator, and not using the integrated CICS translator,
for nested programs that contain EXEC CICS commands, you need to explicitly
code EIB and COMMAREA on the USING phrases on CALL and on the
PROCEDURE DIVISION, as described in this section.

If you are using the integrated CICS translator, this action is not necessary for
nested programs that contain EXEC CICS commands. The compiler, in effect,
declares DFHEIBLK and DFHCOMMAREA as global in the top-level program.
This means that explicit coding is not required.

If you are using a separate translator:

1. In each nested program that contains EXEC CICS commands, CICS built-in
functions, or references to the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the PROCEDURE DIVISION
header as follows:

PROCEDURE DIVISION USING DFHEIBLK
DFHCOMMAREA PARM1 PARMZ ...

2. In every call to a nested program that contains EXEC CICS commands, CICS
built-in functions, or references to the EIB or COMMAREA, code DFHEIBLK
and DFHCOMMAREA as the first two parameters of the CALL statement as
follows:

CALL 'PROGA' USING DFHEIBLK
DFHCOMMAREA PARM1 PARMZ ...

3. For every call that forms part of the control hierarchy between the top-level
program and a nested program that contains EXEC CICS commands, CICS
built-in functions, or references to the EIB or COMMAREA, code DFHEIBLK
and DFHCOMMAREA as the first two parameters of the CALL statement. In

42 CICS TS for z/0S 4.2: Application Programming Guide

the PROCEDURE DIVISION in the called programs code DFHEIBLK and
DFHCOMMAREA. This is necessary to allow addressability to the EIB and
COMMAREA to be passed to programs not directly contained by the top-level
program.

4. If it is not necessary to insert DFHEIBLK and DFHCOMMAREA in the
PROCEDURE DIVISION of a nested program for any of the reasons listed
above, calls to that program should not include DFHEIBLK and COMMAREA
in the parameter list of the CALL statement.

An example of a nested program
A unit of compilation consists of a top-level program W and three nested

programs, X, Y, and Z, all directly contained by W.

Program W
During initialization and termination, calls Y and Z to do initial CICS
processing and non-CICS file access. Calls X to do main processing.

Program X
Calls Z for non-CICS file access and Y for CICS processing.

Program Y
Issues CICS commands. Calls Z for non-CICS file access.

Program Z
Accesses files in batch mode.

PROGRAM W

PROGRAM X

PROGRAM Y PROGRAM Z

Figure 6. Nested program example—nesting structure

Applying the rules:

* Y must be COMMON to enable a call from X.

* Z must be COMMON to enable calls from X and Y.

* Y issues CICS commands, so if you are using a separate translator:

— All calls to Y must have DFHEIBLK and a COMMAREA as the first two
parameters.

- Y's PROCEDURE DIVISION header must have DFHEIBLK and
DFHCOMMAREA as the first two parameters.

* Though X does not access the EIB or the communication area, it calls Y, which
issues CICS commands. Therefore if you are using a separate translator, the call
to X must have DFHEIBLK and a COMMAREA as the first two parameters, and
X's PROCEDURE DIVISION header must have DFHEIBLK and
DFHCOMMAREA as its first two parameters.

[Figure 7 on page 44| illustrates these points.

Chapter 3. Programming in COBOL 43

IDENTIFICATION DIVISION.
PROGRAM-ID. W.

éROCEDURE DIVISION.
CALL Z.
CALL Y USING DFHEIBLK COMMAREA.
CALL X USING DFHEIBLK COMMAREA.

IDENTIFICATION DIVISION.
PROGRAM-ID. X.

PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA
CALL Z.
CALL Y USING DFHEIBLK COMMAREA.

END PROGRAM X.
IDENTIFICATION DIVISION.
PROGRAM-ID. Y IS COMMON.

PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA.
CALL Z.
EXEC CICS...

END PROGRAM Y.
IDENTIFICATION DIVISION.
PROGRAM-ID. Z IS COMMON.

PROCEDURE DIVISION.
END PROGRAM Z.

END PROGRAM W.

Figure 7. Nested program example: coding

Upgrading OS/VS COBOL programs

Runtime support for OS/VS COBOL programs is withdrawn and guidance is
provided to help you upgrade OS/VS COBOL programs to a supported level of
COBOL.

44 CICS TS for z/OS 4.2: Application Programming Guide

OS/VS COBOL programs must be upgraded to Language Environment conforming
COBOL, and recompiled against a level of COBOL compiler supported by CICS.
High-level language support|lists the COBOL compilers that are supported by
CICS Transaction Server for z/OS, Version 4 Release 2. Enterprise COBOL for z/OS
is the suggested compiler.

Many of the changes in the CICS-COBOL interface occur because Enterprise
COBOL simplifies the procedures.

Artificial assignments
Remove artificial assignments from an OCCURS DEPENDING ON object to itself.
Based addressing

Do not define and manipulate BLL cells. Review programs that use the CICS SET
option and BLL cells, and make the following changes:

* Remove, from the linkage section, the structure defining BLL cells, and the
FILLER field. See [Table 1 on page 46| for more information.

* Revise code that deals with chained storage areas to take advantage of the
ADDRESS special register and POINTER variables.

* Change every SET(BLL cell) option in CICS commands to SET(ADDRESS OF
A-DATA) or SET(A-POINTER) where A-DATA is a structure in the linkage
section and A-POINTER is defined with the USAGE IS POINTER clause.

¢ Remove all SERVICE RELOAD statements.

* Remove all program statements needed in OS/VS COBOL to address structures
in the linkage section longer than 4 KB:
ADD 4096, D-PTR1 GIVING D-PTR2

* Remove artificial paragraph names where BLL cells are used to address chained
storage areas.

* Review any program that uses BMS map data structures in its linkage section:

- In OS/VS COBOL programs, working storage is part of the compiled and
saved program. Placing the maps in the linkage section reduces the size of the
saved program, saving library space. In Enterprise COBOL, working storage
is not part of the compiled program but is acquired dynamically.

— If your map is in the linkage section, you can acquire and release the map
storage dynamically with CICS GETMAIN and FREEMAIN commands, which
helps you to optimize storage use, and can be useful in a long conversational
transaction.

— If your map is in the linkage section, issue a CICS GETMAIN command to
acquire storage for the map. With Enterprise COBOL, use the LENGTH
special register to determine how much storage you require:

EXEC CICS GETMAIN
SET(ADDRESS OF DATAREA)
LENGTH(LENGTH OF DATAREA)

Chapter 3. Programming in COBOL 45

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.whatsnew.doc/regular_topics/hll_support.html

Table 1. Addressing CICS data areas in locate mode

0OS/VS COBOL

Enterprise COBOL

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP.
LINKAGE SECTION.
01 BLLCELLS.
02 FILLER PIC S9(8) COMP.
02 BLL-REC1A PIC S9(8) COMP.
02 BLL-REC1B PIC S9(8) COMP.
02 BLL-REC2 PIC S9(8) COMP.
01 REC-1.
02 FLAG1 PIC X.
02 MAIN-DATA PIC X(5000).
02 OPTL-DATA PIC X(1000).
01 REC-2.
02

PROCEDURE DIVISION.
EXEC CICS READ UPDATE.

SET(BLL-REC1A)
LENGTH (LRECL-REC1)
END-EXEC.

SERVICE RELOAD REC-1.
IF FLAGL EQUAL X'01'
MOVE OPTL-DATA TO ...
EXEC CICS REWRITE...
FROM(REC-1)
LENGTH(LRECL-REC1)
END-EXEC.

ADD 4096 BLL-REC1A GIVING BLL-REC1B.

WORKING-STORAGE SECTION.
77 LRECL-RECL PIC S9(4) COMP.
LINKAGE SECTION.
01 REC-1.
02 FLAGL PIC X.
02 MAIN-DATA PIC X(5000).
02 OPTL-DATA PIC X(1000).
01 REC-2.
02 ...

PROCEDURE DIVISION.
EXEC CICS READ UPDATE

SET(ADDRESS OF REC-1)
LENGTH (LRECL-REC1)
END-EXEC.

IF FLAGL EQUAL X'01'
MOVE OPTL-DATA TO ...
EXEC CICS REWRITE

FROM(REC-1)
END-EXEC.

This table shows the replacement of BLL cells and SERVICE RELOAD in OS/VS
COBOL by the use of ADDRESS special registers in Enterprise COBOL. If the
records in the READ or REWRITE commands are fixed length, Enterprise COBOL
does not require a LENGTH option. This example assumes variable-length records.
After the read, you can get the length of the record from the field named in the
LENGTH option (here, LRECL-REC1). In the REWRITE command, you must code
a LENGTH option if you want to replace the updated record with a record of a
different length.

[Table 2 on page 47 shows the old and new methods of processing BMS maps in the
linkage section. In this example, it is assumed that the OS/VS COBOL program
has been compiled with the LANGLVL(1) option, and that the following map set
has been installed:
MAPSET1 DFHMSD TYPE=DSECT,

TERM=2780, LANG=COBOL,

STORAGE=AUTO,
MODE=IN

The new ADDRESS special register used in the example is described under
lpased addressing with COBOL” on page 29, The highlighted material describes the
contents of the MAP1 COBOL copybook.

46 CICS TS for z/OS 4.2: Application Programming Guide

Table 2. Addressing BMS map sets in the linkage section

OS/VS COBOL Language Environment conforming
COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 FLDO PIC X VALUE IS LOW-VALUE. 77 FLDO PIC X VALUE IS LOW-VALUE.
LINKAGE SECTION. LINKAGE SECTION.
01 BLLCELLS. COPY MAPSETL.

02 FILLER PIC S9(8) COMP. 01 MAP1

02 BLL-DATAA PIC S9(8) COMP. 02 FILLER PIC X(12).

01 DATA1 COPY MAPSETL. 02 FILLERIL COMP PIC S9(4).
PROCEDURE DIVISION. .
EXEC CICS GETMAIN LENGTH(1000)

SET(BLL-DATAA) 02 FIELD96 PIC X(20).
INITIMG(FLDO) PROCEDURE DIVISION.
END-EXEC. EXEC CICS GETMAIN

FLENGTH(LENGTH OF MAP1I)
SET(ADDRESS OF MAP1I)
INITIMG(FLDO)

END-EXEC.

Chapter 3. Programming in COBOL 47

48 CICS TS for z/OS 4.2: Application Programming Guide

Chapter 4. Programming in C and C++

Use this information to help you code, translate, and compile C and C++ programs
that you want to use as CICS application programs.

High-level language support|lists the C and C++ compilers that are supported by
CICS Transaction Server for z/OS, Version 4 Release 2, and their service status on
z/0S. All references to C and C++ in CICS Transaction Server for z/OS, Version 4
Release 2 documentation imply the use of a supported Language
Environment-conforming compiler, unless stated otherwise. All EXEC CICS
commands available in COBOL, PL/I, and assembler language applications are
also supported in C and C++ applications, except those commands related to
nonstructured exception handling.

C++ applications can also use the CICS C++ OO classes to access CICS services,
instead of the EXEC CICS interface. See |[C++ OO Class Libraries overview in C+H
0O Class Libraries|for more information about this interface. C++ supports
object-oriented programming and you can use this language in the same way as
you would use the C language. You must specify that the translator is to translate
C++ using the CPP option. C++ programs must also be defined with the
LANGUAGE(LE370) option.

Working storage

In C and C++, working storage consists of the stack and the heap. The location of
the stack and heap, with respect to the 16 MB line, is controlled by the
ANYWHERE and BELOW options on the stack and heap runtime options. The
default is that both the stack and heap are located above the 16 MB line.

Sample programs

A set of sample application programs is provided to show how EXEC CICS
commands can be used in a program written in the C or C++ language.

Table 3. Sample programs

Sample program Map set Map source Transaction ID
DFH$DMNU Operator DFH$DGA DFH$DMA DMNU

instruction (3270)

DFH$DALL Update (3270) DFH$DGB DFH$DMB DINQ, DADD, DUPD
DFH$DBRW Browse (3270) DFH$DGC DFH$DMC DBRW

DFH$DREN Order entry DFH$DGK DFH$DMK DORD

(3270)

DFH$DCOM Order entry DFH$DGL DFH$DML DORQ

queue print (3270)

DFH$DREP Report (3270) DFH$DGD DFH$DMD DREP

The transaction and program definitions are provided in group DFH$DFLA in the
CSD and can be installed using the command:

CEDA INSTALL GROUP(DFH$DFLA)

© Copyright IBM Corp. 1989, 2011 49

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.whatsnew.doc/regular_topics/hll_support.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhal/topics/dfhal_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhal/topics/dfhal_overview.html

The following record description files are provided as C or C++ language header
files:

* DFHS$DFIL: FILEA record descriptor
* DFHS$DLS86: L860 record descriptor

FLOAT compiler option

For z/OS V1.11 XL C (or C++) or later, specify either the FLOAT(NOAFP) compiler
option, or the FLOAT(AFP(VOLATILE)) compiler option.

* If your program makes little or no use of floating point, specify the
FLOAT(NOAFP) option. The program uses only the traditional four floating
point registers, and has less work to do when saving registers.

* If your program makes significant use of floating point, specify the FLOAT(AFP)
option or the FLOAT(NOVOLATILE) option. The program can use all 16 floating
point registers and CICS preserves the floating point registers used by the
program.

* If you specify the FLOAT(AFP(VOLATILE)) option, CICS, C, and C++ preserve
the floating point registers. Extra code is generated and can therefore degrade
performance.

C and C++ programming restrictions and requirements

There are some restrictions and requirements for a C or C++ program that is to be
used as a CICS application program.

Functions and commands that cannot be used

The EXEC CICS commands related to nonstructured exception handling:
* HANDLE ABEND LABEL(label)

* HANDLE AID

* HANDLE CONDITION

* IGNORE CONDITION

+ PUSH HANDLE

* POP HANDLE

are not supported in C and C++ applications. Use of these commands is diagnosed
by the translator. HANDLE ABEND PROGRAM commands are allowed.

CICS does not support the system() function, but two CICS commands, LINK and
XCTL, provide equivalent function.

CICS does not support extended precision floating point.

C++ does not support packed decimal data. The application has access to packed
decimal data using the character string data type. No C++ standard library
functions are available to perform arithmetic on this data, but you may write your
own. When using CICS commands that have options to specify time (such as the
DELAY or POST commands), you are recommended to use the HOURS,
MINUTES, and SECONDS options. You may define times using the TIME or
INTERVAL options, which are packed decimal data types, if you provide functions
to handle them in your application.

C and C++ do not support the use of CICS commands in macros.

50 CICS TS for z/OS 4.2: Application Programming Guide

Native C or C++ file operations operate only on files opened with type=memory
specified. I/O to CICS-supported access methods must use the CICS APL

All native C and C++ functions are allowed in the source program, but the
following functions are not recommended. Some are not executable and result in
return codes or pointers indicating that the function has failed. Some may work
but impact the performance or execution of CICS.

« CDUMP

+ CSNAP

* CTEST

* CTRACE

* CLOCK (The clock() function returns a value (time_t) of -1.)
 CTDLI

* SVC99

* SYSTEM

* SETLOCALE

Coding requirements

* You can enter all CICS keywords in mixed case, except for CICS keywords on
#pragma directives, which must be in upper case only.

¢ Where CICS expects a fixed-length character string such as a program name,
map name, or queue name, you must pad the literal with blanks up to the
required length if it is shorter than expected. For EXEC DLI commands, the
SEGMENT name is padded by the translator if a literal is passed.

* Take care not to use field names, which, though acceptable to the assembler,
cause the C or C++ compiler to abend. These include $, #, and @.

e C++ uses '/ /' for single line comments. Do not put a comment in the middle of
an EXEC CICS command. For instance, this example does not work:

EXEC CICS SEND TEXT FROM(errmsg)
LENGTH(msglen) // Send error message to screen
RESP(rcode)
RESP2(rcode2) ;

These examples are valid:
EXEC CICS SEND TEXT FROM(errmsg)

LENGTH(msglen)

RESP(rcode)

RESP2(rcode2) ; //Send error message to screen
EXEC CICS SEND TEXT FROM(errmsg)

LENGTH(msglen) /* Send error message to screen */

RESP(rcode)

RESP2(rcode2);
Condition handling

In a C or C++ application, every EXEC CICS command is treated as if it had the
NOHANDLE or RESP option specified. This means that the set of “system action”
transaction abends that result from a condition occurring but not being handled, is
not possible in a C or C++ application. Control always flows to the next
instruction, and it is up to the application to test for a normal response.

Chapter 4. Programming in C and C++ 51

COMMAREA

The address of the communication area is not passed as an argument to a C or
C++ main function. This means that C and C++ functions must use ADDRESS
COMMAREA to obtain the address of the communications area.

EIB

The address of the EXEC interface block (EIB) is not passed as an argument to a C
or C++ main function. This means that C_and C++ functions must use ADDRESS

EIB to obtain the address of the EIB. See[“Accessing the EIB from C and C++” on|
for more information.

LENGTH

If you do not specify the LENGTH option on commands that support LENGTH
(for example, READ, READNEXT, READPREV, and WRITE commands), the
translator does not supply a default value. In effect, NOLENGTH is implicit for C
programs.

OVERFLOW conditions

If you want any OVERFLOW condition to be indicated in the RESP field on return
from a SEND MAP command with the ACCUM option, you should specify the
NOFLUSH option.

AMODE

All C and C++ language programs running under CICS must be link-edited with
the attributes, AMODE(31), RMODE(ANY). They may reside above the 16MB line.

Consequently, when passing parameters to a program produced by the
Cross-System Product (CSP) interactive application generator, you must either:

* Pass parameters below 16MB, or
* Re-link the CSP load library with AMODE(31).

Return value

If you terminate a C or C++ program with an exit() function or the return
statement, instead of a CICS RETURN command, the value passed through the
exit() function is saved in the EIBRESP2 field of the EIB on return from the
program.

Note: If a program uses DPL to link to a program in another CICS region,
EIBRESP2 values from the remote region are not returned to the program doing
the DPL.

Data declarations

The following data declarations are provided by CICS for C and C++:

* Execution interface block definitions (EIB). The EIB declarations are enclosed in
#ifndef and #endif lines, and are included in all translated files. The C or C++
compiler ignores duplicated declarations. The inserted code contains definitions
of all the fields in the EIB, coded in C and C++.

52 CICS TS for z/OS 4.2: Application Programming Guide

e BMS screen attributes definitions: C and C++ versions of the DFHBMSCA,
DFHMSRCA, and DFHAID files are supplied by CICS, and may be included by
the application programmer when using BMS.

* DL/I support: a C language version of DFHDIB is included by the DLI
translator if the translator option has been specified. (You have to include
DLIUIB if the CALL DLI interface is used.)

Fetch function

Language Environment-conforming programs support the fetch() and release()
functions. Modules to be fetched must be defined as PROGRAM resources to CICS,
either explicitly or implicitly through autoinstall.

Locale functions

All locale functions are supported for locales that have been defined in the CSD.
CSD definitions for the IBM-supplied locales are provided in member CEECCSD of
the SCEESAMP library. The setlocale() function returns NULL if the locale is not
defined.

Debugging functions

The dump functions csnap(), cdump(), and ctrace() are supported. The output is
sent to the CESE transient data queue. The dump cannot be written if the queue
does not have a sufficient record length (LRECL). An LRECL of at least 161 is
recommended.

iscics function

If you are adapting an existing program or writing a new program that is designed
to run outside CICS as well as under CICS, the iscics() function may prove useful.
It returns a non-zero value if your program is currently running under CICS, or
zero otherwise. This function is an extension to the C library.

String handling functions

The string handling functions in the C or C++ standard library use a null character
as an end-of-string marker. Because CICS does not recognize a null as an
end-of-string marker, you must take care when using C or C++ functions, for
example stremp, to operate on CICS data areas.

argc and argv arguments

Two arguments, argc and argv, are normally passed to a C or C++ main function.
argc denotes how many variables have been passed; argv is an array of
zero-terminated variable strings. In CICS, the value of argc is 1, argv[0] is the
transaction ID, and argv[1] is NULL.

Passing arguments in C and C++

Arguments in C and C++ language are copied to the program stack at run time,
where they are read by the function. These arguments can either be values in their
own right, or they can be pointers to areas of memory that contain the data being
passed. Passing a pointer is also known as passing a value by reference.

Chapter 4. Programming in C and C++ 53

Other languages, such as COBOL and PL/I, usually pass their arguments by
reference, which means that the compiler passes a list of addresses pointing to the
arguments to be passed. This is the call interface supported by CICS. To pass an
argument by reference, you prefix the variable name with &, unless it is already a
pointer, as in the case when an array is being passed.

As part of the build process, the compiler may convert arguments from one data
type to another. For example, an argument of type char may be converted to type

short or type long.

When you send values from a C or C++ program to CICS, the translator takes the

necessary action to generate code that results in an argument list of the correct
format being passed to CICS. The translator does not always have enough
information to enable it to do this, but in general, if the argument is a
single-character or halfword variable, the translator makes a precall assignment to
a variable of the correct data type and passes the address of this temporary

variable in the call.

When you receive data from CICS, the translator prefixes the receiving variable
name with &, which causes the C or C++ compiler to pass it values by reference
rather than by value (with the exception of a character string name, which is left
unchanged). Without the addition of &, the compiler would copy the receiving
variable and then pass the address of the copy to CICS. Any promotion occurring
during this copying could result in data returned by CICS being lost.

shows the rules that apply when passing values as arguments in EXEC

CICS commands.

Table 4. Rules for passing values as arguments in EXEC CICS commands

Data type

Usage

Coding the argument

Character literal

Data-value (Sender)

The user must specify the character literal
directly. The translator takes care of any
required indirection.

Character variable
(char)

Data-area (Receiver)

The user must specify a pointer to the
variable, possibly by prefixing the variable
name with &.

Character variable
(char)

Data-value (Sender)

The user must specify the character variable
directly. The translator takes care of any
required indirection.

Character string
literal

Name (Sender)

The user can either code the string directly
as a literal string or use a pointer which
points to the first character of the string.

Character string
variable

Data-area (Receiver)
Name (Sender)

Whether receiving or sending, the argument
should be the name of the character array
containing the string—the address of the
first element of the array.

Integer variable
(short, long, or int)

Data-area (Receiver)

The user must specify a pointer to the
variable, possibly by prefixing the variable
name with &.

Integer variable
(short, long, or int)

Data-value (Sender)

The user must specify the name of the
variable. The translator looks after any
indirection that is required.

54 CICS TS for z/OS 4.2: Application Programming Guide

Table 4. Rules for passing values as arguments in EXEC CICS commands (continued)

Data type

Usage

Coding the argument

Integer constant
(short, long, or int)

Data-value (Sender)

The user must specify the integer constant
directly. The translator takes care of any
required indirection.

Structure or union

Data-area (Sender)
Data-area (Receiver)

The user must code the address of the start
of the structure or union, possibly by
prefixing its name with &.

Array (of anything)

Data-area (Receiver)
Data-value (Sender)

The translator does nothing. You must code
the address of the first member of the array.
This is normally done by coding the name
of the array, which the compiler interprets
as the address of the first member.

Pointer (to anything)

Ptr-ref (Receiver)
Data-area (Sender)

Whether receiving or sending, the argument
should be the name of the variable that
denotes the address of interest. The
translator takes care of the extra level of
indirection that is necessary to allow CICS
to update the pointer.

passed to CICS.

Note: Receiver is where data is being received from CICS; Sender is where data is being

Accessing the EIB from C and C++

The address of the EXEC interface block (EIB) is not passed as an argument to a C
or C++ main function. This means that C and C++ functions must use the
ADDRESS EIB command to obtain the address of the EIB.

You must code an ADDRESS EIB statement at the beginning of each application if
you want access to the EIB, or if you are using a command that includes the RESP

or RESP2 option.

Addressability is achieved by using the command:
EXEC CICS ADDRESS EIB(dfheiptr);

or by passing the EIB address or particular fields therein as arguments to the
CALL statement that invokes the external procedure.

If access to the EIB is required, an ADDRESS EIB command is required at the
beginning of each program.

Within a C or C++ application program, fields in the EIB are referred to in lower
case and fully qualified as, for example, “dfheiptr->eibtrnid”.

The following mapping of data types is used:

¢ Halfword binary integers are defined as “short int”

* Fullword binary integers are defined as “long int”

¢ Single-character fields are defined as “unsigned char”

¢ Character strings are defined as “unsigned char” arrays

Chapter 4. Programming in C and C++ 55

Locale support for C and C++

The CICS translator, by default, assumes that programs written in the C or C++
language have been edited with the EBCDIC Latin-1 code page IBM-1047.

If you have used an alternative code page, you can specify this in a pragma filetag
directive at the start of the application program. The pragma statement must be
the first non-comment statement in the program, and the filetag directive must be
specified before any other directive in the pragma statement. The CICS translator
scans for the presence of the filetag directive. The CICS translator only supports
the default code page IBM-1047, the Danish EBCDIC code page IBM-277, the
German EBCDIC code page IBM-273, and the Chinese EBCDIC code pages
IBM-935 and IBM-1388.

For example, if the program has been prepared with an editor using the German
EBCDIC code page, it should begin with the following directive:

??=pragma filetag ("IBM-273")

If your application program uses a mix of different code pages (for example, if you
are including header files edited in a code page different to that used for the
ordinary source files), all of the files must include the pragma filetag directive,
even if they are in the default code page IBM-1047.

Some older IBM C compilers which are no longer in service, but can still be used
with the CICS translator, might not support the use of the pragma filetag directive.
Check the documentation for your compiler if you are not sure whether your
compiler supports this.

XPLink and C and C++ programming

CICS provides support for C and C++ programs compiled with the XPLINK
option. All programs using CICS XPLink support must be reentrant and
threadsafe.

Extra Performance Linkage, normally abbreviated to XPLink, is a z/OS feature
which provides high performance subroutine call and return mechanisms. This
results in short and highly optimized execution path lengths.

Object Oriented programming is built upon the concept of sending 'messages' to
objects which result in that object performing some actions. The message sending
activity is implemented as a subroutine invocation. Subroutines, known as member
functions in C++ terminology, are normally small pieces of code. The characteristic
execution flow of a typical C++ program is of many subroutine invocations to
small pieces of code. Programs of this nature benefit from the XPLink optimization
technology.

MVS has a standard subroutine calling convention which can be traced back to the
early days of System/360. This convention was optimized for an environment in
which subroutines were more complex, there were relatively few of them, and they
were invoked relatively infrequently. Object oriented programming conventions
have changed this. Subroutines have become simpler but they are numerous, and
the frequency of subroutine invocations has increased by orders of magnitude. This
change in the size, numbers, and usage pattern, of subroutines made it desirable
that the system overhead involved be optimized. XPLink is the result of this
optimization.

56 CICS TS for z/OS 4.2: Application Programming Guide

To use XPLink, your C or C++ application code must be reentrant and threadsafe.
The same code instance can be executing on more than one MVS TCB and, without
threadsafe mechanisms to protect shared resources, the execution behavior of
application code is unpredictable. This cannot be too strongly emphasized.

If you plan to compile C and C++ programs for the CICS environment with the
XPLINK option, the application developer is expected to do the following to take
advantage of CICS XPLink support:

* Develop the code, strictly adhering to threadsafe programming principles and
techniques.

¢ Compile the C or C++ program with the XPLINK option set on.
¢ Indicate in the PROGRAM resource definition that the program is threadsafe.

* Consider the use of CICSVAR in CEEUOPT or in #pragma (see the note in
[“Defining runtime options for Language Environment” on page 17] for details).

All programs using CICS XPLink support must be reentrant and threadsafe. Only
the application developer can guarantee that the code for a particular application
satisfies these requirements.

XPLink uses X8 and X9 mode TCBs

CICS provides support for C and C++ programs compiled with the XPLINK option
by using the multiple TCB feature in the CICS Open Transaction Environment
(OTE) technology. X8 and X9 mode TCBs are defined to support XPLink tasks in
CICS key and USER key. Each instance of an XPLink program uses one X8 or X9
TCB.

CICS support for programs compiled with the XPLINK option requires only that
you show in the PROGRAM resource definition that the program is threadsafe.
This indication, and the XPLink “signature” in the load module, are the only
things required to put the task on an X8 or X9 TCB.

In the selection of a suitable TCB for a particular program, XPLink takes
precedence over the existence of the OPENAPI value for the API attribute on the
PROGRAM resource definition.

Passing control between XPLink and non-XPLink objects

Each transfer of control from XPLink objects to non-XPLink objects, or the reverse,
causes a switch between the QR TCB and an open TCB (either an X8 or an X9
TCB). In performance terms, TCB switching is costly, and you must take this
performance overhead into account.

An XPLink object can invoke a non-XPLink object using either the EXEC CICS
interface or the Language Environment interface.

A non-XPLink object can only invoke an XPLink object using the EXEC CICS
interface. Use of the Language Environment interface for such invocations is not
supported.

Global user exits and XPLink

The XPCFTCH and XPCTA exits are affected by the use of the XPLINK option.
CICS disregards any attempt by XPCFTCH to modify the entry point, and any
attempt by XPCTA to define a resume address. Other global user exits are
unaffected by XPLink support.

Chapter 4. Programming in C and C++ 57

XPCFTCH
When the exit XPCFTCH is invoked for a C or C++ program that was
compiled with the XPLINK option, a flag is set indicating that any
modified entry point address, if specified by the exit, will be ignored.

XPCTA
When the exit XPCTA is invoked for a C or C++ program that was
compiled with the XPLINK option, a flag is set indicating that a resume
address, if specified by the exit, will be ignored.

These activities are ignored because the batch Language Environment runtime used
for XPLink programs does not give control to CICS when a program abends, but
goes through its own abend handling. When control reaches CICS, the Language
Environment enclave has terminated, so CICS is unable to honor an entry point
address or a resume address.

If you have an application program that carries out these activities, you must find
other ways to manage these requirements, or conclude that the program is not a
suitable candidate for XPLINK optimization. One possible solution is to write a
Language Environment abnormal termination exit, as described in “Customizing
user exits” in the z/OS Language Environment Customization manual.

58 CICS TS for z/OS 4.2: Application Programming Guide

Chapter 5. Programming in PL/I

Use this information to help you code, translate, and compile PL/I programs that
you want to use as CICS application programs.

High-level language support|lists the PL/I Compilers that are supported by CICS
Transaction Server for z/OS, Version 4 Release 2, and their service status on z/OS.

All references to PL/I in CICS Transaction Server for z/0OS, Version 4 Release 2
documentation imply the use of a supported Language Environment-conforming
compiler, unless stated otherwise.

OPTIONS(MAIN) specification

If you specify the OPTIONS(MAIN) option in a PL/I application program, that
program can be the first program of a transaction, or control can be passed to it
with a LINK or XCTL command.

In PL/I application programs where the OPTIONS(MAIN) option is not specified,
it cannot be the first program in a transaction, nor can it have control passed to it
by an LINK or XCTL command, but it can be link-edited to a main program.

FLOAT compiler option

For Enterprise PL/I, specifying the FLOAT option controls the use of the
additional floating point registers.

* If your program makes little or no use of floating point, specify the
FLOAT(NOAFP) option. The program uses the traditional four floating point
registers, and has less work to do when saving registers.

* If your program makes significant use of floating point, specify the FLOAT(AFP)
option or the FLOAT(NOVOLATILE) option. The program can use all 16 floating
point registers, and CICS preserves the floating point registers used by the
program.

* If you specify the FLOAT(AFP(VOLATILE)) option, both CICS and PL/I
preserve the floating point registers. Extra code is generated and performance
can be affected as a result.

PL/I programming restrictions and requirements

There are some restrictions and requirements for a PL/I program that is to be used
as a CICS application program.

Functions and statements that cannot be used
* You cannot use the multitasking built-in functions:

COMPLETION
PRIORITY
STATUS

* You cannot use the multitasking options:

EVENT
PRIORITY
TASK

* You should not use the PL/I statements:

© Copyright IBM Corp. 1989, 2011 59

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.whatsnew.doc/regular_topics/hll_support.html

CLOSE DELAY

DELETE DISPLAY
EXIT GET
HALT LOCATE
OPEN PUT
READ REWRITE
STOP WRITE
UNLOCK

The FETCH and RELEASE statements are supported. You are provided with
EXEC CICS commands for the storage and retrieval of data, and for
communication with terminals. (However, you can use CLOSE, PUT, and OPEN,
for SYSPRINT.)

* You cannot use PL/I Sort/Merge.

* You cannot use static storage (except for read-only data).

Coding requirements

* If you declare a variable with the STATIC attribute and EXTERNAL attribute
you should also include the INITIAL attribute. If you do not, such a declaration
generates a common CSECT that cannot be handled by CICS.

* Do not define variables or structures with variable names that are the same as
variable names generated by the translator. These begin with DFH. Care must be
taken with the LIKE keyword to avoid implicitly generating such variable
names.

* All PROCEDURE statements must be in upper case, with the exception of the
PROCEDURE name, which may be in lower case.

* The suboptions of the XOPTS option of the *PROCESS statement must be in
upper case.

* You cannot use the PL/I 48-character set option in EXEC CICS statements.

* If a CICS command uses the SUBSTR built-in function in defining a data value,
it should include a LENGTH option to specify the data length, unless the
translator option NOLENGTH is specified. If it does not, the translator generates
a PL/I call including an invocation of the CSTG built-in function in the form:

CSTG(SUBSTR(..y.vs..))

This is rejected by the compiler.

Language Environment coding requirements for PL/lI applications

All PL/I programs are executed under the runtime support provided by Language
Environment. There are some additional coding requirements compared to
pre-Language Environment PL/I programs.

Language Environment runtime options, if needed, can be specified in a plixopt
character string. See [“Defining runtime options for Language Environment” on|
and the z/OS Language Environment Programming Reference for information
about customizing runtime options.

If you are converting a PL/I program that was previously compiled with a
non-Language Environment-conforming compiler, you must ensure that NOSTAE
and NOSPIE are not specified in a plixopt string, because either of these will cause
Language Environment to set TRAP (OFF). TRAP (ON) must be in effect for
applications to run successfully.

60 CICS TS for z/OS 4.2: Application Programming Guide

Entry point

CEESTART is the only entry point for PL/I applications running under Language
Environment. This entry point is set for programs compiled using Language
Environment-conforming compilers.

You can re-link object modules produced by non-Language Environment-
conforming compilers for running under Language Environment by using the
following linkage-editor statements:

INCLUDE SYSLIB(CEESTART)

INCLUDE SYSLIB(CEESGO10)

INCLUDE SYSLIB(DFHELII)

REPLACE PLISTART

CHANGE PLIMAIN(CEEMAIN)

INCLUDE mainprog

INCLUDE subprogl

ORDER CEESTART
ENTRY CEESTART
NAME progname (R)

The INCLUDE statement for the object modules must come immediately after the
CHANGE statement. There is also a requirement under Language Environment
that the main program must be included before any subroutines. (This requirement
did not exist for modules produced by non-conforming compilers.)

For Enterprise PL/I programs that are compiled with OPTIONS(FETCHABLE), the
binder ENTRY statement must be the name of the PROCEDURE.

Re-link utility for PL/I

If you have only the load module for a CICS program compiled by a
non-conforming compiler, there is a file of linkage editor input, IBMWRLKC,
specifically for CICS programs, located in the sample library SCEESAMP. This
input file replaces OS PL/I library routines in a non-conforming executable
program with Language Environment routines.

For more information about using IBMWRLKC, see the PL/I MVS & VM Compiler
and Runtime Migration Guide.

Communicating between conforming and non-conforming PL/I
routines

Language Environment-conforming PL/I programs can CALL a program that
appears in a FETCH or RELEASE statement and can RELEASE it subsequently.

You can link-edit non-Language Environment-conforming PL/I subroutines with a
Language Environment-conforming main program.

Static calls are supported from any version of PL/I, but dynamic calls are
supported only from Language Environment-conforming procedures.

Called subroutines can issue CICS commands if the address of the EIB is available
in the subroutine. You can achieve this either by passing the address of the EIB to
the subroutine, or by coding EXEC CICS ADDRESS EIB(DFHEIPTR) in the
subroutine before issuing any other CICS commands.

Chapter 5. Programming in PL/I 61

Abend handling

If a CICS PL/I program abends under Language Environment, your CICS abend
handlers are given a Language Environment abend code, rather than a PL/I abend
code.

To avoid changing your programs, you can modify the sample user condition
handler, CEEWUCHA, supplied by Language Environment in the SCEESAMP
library. This user condition handler can be made to return PL/I abend codes
instead of the Language Environment codes. Use the USRHDLR runtime option to
register it to do this. For details of this option see the z/OS Language Environment
Programming Guide.

Ensure that the sample user condition handler, CEEWUCHA, is available at
runtime (for example by using the STEPLIB concatenation or LPA). Define the
condition handler in the CICS system definition data set (CSD) for your CICS
region, rather than using program autoinstall.

Fetched PL/I routines

To enable a PL/I procedure to be fetched, code the option FETCHABLE in the
OPTIONS on the PROCEDURE statement.

The FETCHABLE option indicates that the procedure can only be invoked
dynamically. An OPTIONS(MAIN) procedure cannot be fetched; FETCHABLE and
MAIN are mutually exclusive options.

For Enterprise PL/I programs that are compiled with OPTIONS(FETCHABLE), the
binder ENTRY statement must be the name of the PROCEDURE.

Treat the FETCHABLE procedure like a normal CICS program: that is, link-edited
with any required subroutines, placed in the CICS application program library,
defined, and installed as a program, either in the CSD or using program
autoinstall.

Language Environment-conforming PL/I programs can CALL a program that
appears in a FETCH or RELEASE statement and can RELEASE it subsequently.

There were some restrictions on the PL/I for MVS & VM statements that could be
used in a fetched procedure. These restrictions are described in PL/I MVS & VM
Language Reference. Many of the restrictions were removed with VisualAge® PL/1.
See the VisualAge PL/I Compiler and Runtime Migration Guide.

No special considerations apply to the use of FETCH when both the fetching and
the fetched programs have the same AMODE attribute. Language Environment,
however, also supports the fetching of a load module that has an AMODE attribute
different to the program issuing the FETCH. In this case, Language Environment
performs the AMODE switch, and the following constraints apply:

* If any fetched module is to execute in 24-bit addressing mode, the fetching
module must have the RMODE(24) attribute regardless of its AMODE attribute.

* Any variables passed to a fetched routine must be addressable in the AMODE of
the fetched procedure.

62 CICS TS for z/OS 4.2: Application Programming Guide

Chapter 6. Programming in assembly language

Use this information to help you code assembly language programs that you want
to use as CICS application programs.

Working storage
Working storage for assembly language programs is allocated either above or

below the 16MB line, according to the value of the DATALOCATION parameter on the
PROGRAM definition in the CSD.

Assembly language programming restrictions and requirements

There are some restrictions and requirements for an assembly language program
that is used as a CICS application program.

Instructions that cannot be used

The following instructions cannot be used in an assembly language program that is
to be used as a CICS application program:

COM Identify blank common control section.
ICTL Input format control.

OPSYN
Equate operation code.

LEASM option

If an assembly language program is to be translated with the LEASM option, the
following restrictions apply:

* Register 2 cannot be used as a code base register.
* Register 12 is reserved by Language Environment to point to the Language

Environment common anchor area (CAA) and so cannot be used at all by the
program without being saved and restored as appropriate.

* Register 13 must be used as the only working storage base register.

* The program cannot be a Global User Exit program (GLUE) or a Task-Related
User Exit program (TRUE).

* The program must not use, or depend on, any AMODE(24) code.
BAKR instructions (branch and stack)

When using BAKR instructions (branch and stack) to provide linkage between
assembly language programs, take care that the linked-to program does not issue
EXEC CICS requests. If CICS receives control and performs a task switch before
the linked-to program returns by a PR instruction (program return), then other
tasks might be dispatched and issue further BAKR / PR calls. These modify the
linkage-stack and result in the wrong environment being restored when the
original task issues its PR instruction.

© Copyright IBM Corp. 1989, 2011 63

HANDLE ABEND LABEL

CICS does not allow the use of HANDLE ABEND LABEL in assembly language
programs that do not use DFHEIENT and DFHEIRET. Assembly language
programs that use the Language Environment stub CEESTART should either use
HANDLE ABEND PROGRAM or a Language Environment service such as
CEEHDLR. See [‘Language Environment abend and condition handling” on pagel
for information about CEEHDLR.

31-bit addressing

The following restrictions apply to an assembly language application program
executing in 31-bit mode:

¢ The interval control command WAIT EVENT is not supported when the
associated event control block (ECB) resides above the 16 MB line. Instead, you
can use the task control command WAIT EXTERNAL with the ECBLIST option.

¢ The COMMAREA option is restricted in a mixed addressing mode transaction
environment. For a discussion of the restriction, see [“Using mixed addressing]|
[modes” on page 291

Access registers

The following restrictions apply to an assembly language application program that

uses access registers to use the extended addressability of ESA /370 processors:

* You must be in primary addressing mode when invoking any CICS service. The
primary address-space must be the home address-space. All parameters passed
to CICS must reside in the primary address-space.

¢ CICS does not always preserve access registers. You must save them before you
invoke a CICS service, and restore them before using the access registers again.

For more guidance information about using access registers, see the z/0S MVS
Programming: Extended Addressability Guide.

64-bit registers

The following restriction applies to an assembly language application program that
uses 64-bit registers to use 64-bit addressing mode or 64-bit binary operations:

* CICS does not always preserve the high-order words of 64-bit registers. You

must save them before you invoke a CICS service, and restore them before using
the 64-bit registers again.

For more guidance information about using 64-bit addressing mode and 64-bit
binary operations, see the z/0S MVS Programming: Assembler Services Guide.

Language Environment coding requirements for assembly language

applications

Like HLL programs, assembly language programs are classified as either
conforming or non-conforming with respect to Language Environment. For
assembly language programs, conformance depends on the linkage and register
conventions observed, rather than the assembler used. By definition, a Language
Environment-conforming assembly language routine is defined as one coded using
the CEEENTRY and associated Language Environment macros.

64 CICS TS for z/OS 4.2: Application Programming Guide

Conformance governs the use of assembler programs by call from an HLL
program. Both conforming and non-conforming assembly language subroutines
may be called either statically or dynamically from C, C++, COBOL or PL/L
However, there are differences in register conventions and other requirements for
the two types. For example, to communicate properly with Language
Environment-conforming assembly language routines, you must observe certain
register conventions on entry to the assembly language routine, while it is running,
and on exit from the assembly language routine.

Rules for mixing languages, including assembly language, are discussed in
[“Mixing languages in Language Environment” on page 15|

For more detailed information, or for explanations of the terms used in this section,
see the z/OS Language Environment Programming Guide.

Conforming MAIN programs

If you are coding a new assembly language MAIN program that you want to

conform to the Language Environment interface, or if your assembly language

routine calls Language Environment services, observe the following:

* Use the macros provided by Language Environment. For a list of these macros,
see the z/OS Language Environment Programming Guide.

* Ensure that the CEEENTRY macro contains the option MAIN=YES. (MAIN=YES
is the default).

* Translate your assembly language routine with *ASM XOPTS(LEASM) or, if it
contains CICS commands, with *ASM XOPTS(LEASM NOPROLOG
NOEPILOG).

Conforming subroutines

If you are coding a new assembly language subroutine that you want to conform
to the Language Environment interface, or if your assembly language routine calls
Language Environment services, observe the following:

* Use the macros provided by Language Environment. For a list of these macros,
see the z/OS Language Environment Programming Guide.

* Ensure that the CEEENTRY macro contains the option MAIN=NO. (MAIN=YES
is the default).

* Translate your assembly language routine with *ASM XOPTS(NOPROLOG
NOEPILOG) if it contains CICS commands.

¢ Ensure that the CEEENTRY macro contains the option NAB=NO if your routine
is invoked by a static call from VS COBOL II. (NAB is Next Available Byte (of
storage). NAB=NO means that this field may not be available, so the
CEEENTRY macro generates code to find the available storage.)

Register conventions for entry into conforming routines

On entry into a Language Environment-conforming assembly language subroutine,
these registers must contain the following values when NAB=YES is specified on
the CEEENTRY macro:

RO Reserved
R1 Address of the parameter list, or zero

R12 Common anchor area (CAA) address

Chapter 6. Programming in assembly language 65

R13 Caller's dynamic storage area (DSA)
R14 Return address

R15 Entry point address

Language Environment-conforming HLLs generate code that follows these register
conventions, and the supplied macros do the same when you use them to write
your Language Environment-conforming assembly language routine. On entry to
an assembly language routine, CEEENTRY saves the caller's registers (R14 through
R12) in the DSA provided by the caller. It allocates a new DSA and sets the NAB
field correctly in this new DSA. The first halfword of the new DSA is set to binary
zero and the back chain in the second word is set to point to the caller's DSA.

Register conventions while a conforming routine is running

R13 must point to the routine's DSA at all times while the Language
Environment-conforming assembly language routine is running.

At any point in your code where you CALL another program, R12 must contain
the common anchor area (CAA) address, except in the following cases:

* When calling a COBOL program.

* When calling an assembly language routine that is not Language
Environment-conforming.

* When calling a Language Environment-conforming assembly language routine
that specifies NAB=NO on the CEEENTRY macro.

Register conventions for exit from conforming routines

On exit from a Language Environment-conforming assembly language routine, RO,
R1, R14, and R15 are undefined. All the other registers must have the contents they
had upon entry.

The CEEENTRY macro automatically sets a module to AMODE (ANY) and
RMODE (ANY). If you are converting an existing assembly language routine to be
Language Environment-conforming and the routine contains data management
macros coded using 24-bit addressing mode, then you should change the macros to
use 31-bit mode. If it is not possible to change all the modules making up a
program to use 31-bit addressing mode, and if none of the modules explicitly sets
RMODE (24), then you should set the program to be RMODE (24) during the
link-edit process.

Non-conforming assembly language routines running under
Language Environment

Observe the following conventions when running non-Language
Environment-conforming assembly language routines under Language
Environment:

* R13 must contain the address of the executing routine's register save area.
* The first two bytes of the register save area must be binary zeros.

* The register save area back chain must be set to a valid 31-bit address (the
high-order byte must be zero if it is a 24-bit address).

If your assembly language routine relies on C, C++, COBOL, or PL/I control
blocks (for example, a routine that tests flags or switches in these control blocks),

66 CICS TS for z/OS 4.2: Application Programming Guide

check that these control blocks have not changed under Language Environment.
For more information, see the Compiler and Run-Time Migration Guide for the
language in use.

Non-conforming assembly language routines cannot use Language Environment
callable services.

Calling assembly language programs

Assembly language application programs that contain commands can have their
own RDO program definition. Such programs can be invoked by COBOL, C, C++,
PL/1, or assembly language application programs using LINK or XCTL commands.
However, because programs that contain commands are invoked by a system
standard call, they can also be invoked by a COBOL, C, C++, or PL/I CALL
statement or by an assembly language CALL macro.

A single CICS application program, as defined in an RDO program definition, can
consist of separate CSECTs compiled or assembled separately, but linked together.

An assembly language application program that contains commands can be linked
with other assembly language programs, or with programs written in one or more
high-level languages (COBOL, C, C++, or PL/I). For more information about
mixing languages in an application load module, see [‘Mixing languages in|
[Language Environment” on page 15

If an assembly language program (that is link-edited separately) contains
command-level calls, and is called from a high-level language program, it requires
its own CICS interface stub. If the assembler program is link-edited with the
high-level language program that calls it, then the assembler program does not
need a stub. If you do provide one, the message MSGIEW024lI is issued, but this
can be ignored.

Because assembly language application programs containing commands are always
passed the parameters EIB and COMMAREA when invoked, the CALL statement
or macro must pass these two parameters followed, optionally, by other
parameters.

For example, the PL/I program in file PLITEST PLI calls the assembly language
program ASMPROG, which is in file ASMTEST ASSEMBLE. The PL/I program
passes three parameters to the assembly language program: the EIB, the
COMMAREA, and a message string.

PLIPROG:PROC OPTIONS(MAIN);
DCL ASMPROG ENTRY EXTERNAL;
DCL COMA CHAR(20), MSG CHAR(14) INIT('HELLO FROM PLI');
CALL ASMPROG (DFHEIBLK,COMA,MSG) ;
EXEC CICS RETURN;
END;

Figure 8. PLITEST PLI

The assembly language program performs an EXEC CICS SEND TEXT command,
which displays the message string passed from the PL/I program.

Chapter 6. Programming in assembly language 67

DFHEISTG DSECT
MSG DS CL14
MYRESP DS F
ASMPROG CSECT
L 5,8(1)
L 5,0(5)
MVC MSG,0(5)
EXEC CICS SEND TEXT FROM(MSG) LENGTH(14) RESP(MYRESP)
END

Figure 9. ASMTEST ASSEMBLE

You can use JCL procedures supplied by CICS to compile and link the application,
as follows:

1. Assemble and link ASMTEST using the DFHEITAL procedure:

//ASMPROG EXEC DFHEITAL
//TRN.SYSIN DD *
. program source ..
/*
//LKED.SYSIN DD =*
NAME ASMTEST(R)
/*

2. Compile and link PLITEST using the DFHYITPL procedure, and provide
linkage editor control statements that include the ASMTEST load module
created by the DFHEITAL procedure:

//PLIPROG EXEC DFHYITPL
//TRN.SYSIN DD *
. program source ...

/*
//LKED.SYSIN DD =*

INCLUDE SYSLIB(ASMTEST)

ENTRY CEESTART

NAME PLITEST(R)
/*

Note: Step 2 assumes that the ASMTEST load module created by DFHEITAL
was stored in a library included in the SYSLIB data set concatenation.

The load module created by the DFHYITPL procedure includes both the DFHEAI
stub (included by DFHEITAL) and the DFHELII stub (included by DFHYITPL).
This causes the linkage editor or binder program to issue a warning message
because both stubs contain an entry point named DFHEIL This message can be
ignored.

If you are writing your own JCL, you must include the DFHELII stub, because this
contains the entry points needed for all languages.

An assembly language application program that is called by another begins with
the DFHEIENT macro and ends with the DFHEIRET macro. The CICS translator
inserts these for you, so if the program contains EXEC CICS commands and is to
be passed to the translator, as in the example just given, you do not need to code
these macros.

68 CICS TS for z/OS 4.2: Application Programming Guide

Part 3. Translating, compiling, installing and testing
application programs

How to translate, compile and install application programs in CICS, and what
facilities are provided for testing applications.

© Copyright IBM Corp. 1989, 2011

69

70 CICS TS for z/OS 4.2: Application Programming Guide

Chapter 7. Translation and compilation

Most older compilers (and assemblers) cannot process CICS commands directly.
This means that an additional step is needed to convert your program into
executable code. This step is called translation, and consists of converting CICS
commands into the language in which the rest of the program is coded, so that the
compiler (or assembler) can understand them.

Modern compilers can use the integrated CICS translator approach, where the
compiler interfaces with CICS at compile time to interpret CICS commands and
convert them automatically to calls to CICS service routines. If you use the
integrated CICS translator approach then many of the translation tasks described
in ["The translation process” on page 73|are done at compile time for you, and you
do not need to execute the additional translator step.

This section describes:
+ |“The integrated CICS translator”]

* |“The translation process” on page 73|

+ [“The CICS-supplied translators” on page 76

+ |[“Using a CICS translator” on page 85|

+ |“Defining translator options” on page 87|

+ |[“Using COPY statements” on page 89

+ |[“The CICS-supplied interface modules” on page 90|

* [“Using the EXEC interface modules” on page 90|

The integrated CICS translator

Using the integrated translator, you can translate and compile your high-level
source code in a single step. Compilers that support the integrated translator scan
the application source and call the integrated translator at relevant points. The
integrated translator converts EXEC CICS commands into comments and generates
CALL statements appropriate to the language.

There are versions of the integrated translator for the following languages:
C
C++
COBOL
PL/I

With the integrated translator, application development is faster because there is no
separate translation step. It is also made easier because there is only one listing;
the original source statements and the CICS error messages are included in the
compiler listing. The CICS-supplied separate translators change the line numbers
in source programs, which means that with translator-generated calls you need an
intermediate listing that must be used when debugging an application program.

With the integrated translator, the process of translating and compiling is also less

error-prone because it is no longer necessary to translate included members
separately.

© Copyright IBM Corp. 1989, 2011 71

The Language Environment-conforming language compilers that support the
integrated translator scan the application source and call the integrated CICS
translator at relevant points.

The releases of the language compilers that support the integrated translator are
listed in [High-level language support] If you use any other compiler, including
Assembler, you must translate your program before compiling it.

Using the integrated CICS translator

The language compilers provide various procedures that you can use with the
integrated CICS translator. They are documented in the Programming Guides for
Enterprise COBOL for z/OS, C/C++ for z/OS, and for Enterprise PL/I for z/OS.

About this task

The procedure that you use needs to have CICSTS42.CICS.SDFHLOAD added to
the STEPLIB concatenation for the compile step and the link-edit step should
include the interface module DFHELII at the start of the step.

To use the integrated CICS translator for PL/I you must specify the compiler
option SYSTEM(CICS).

To use the integrated CICS translator for COBOL, the compiler options CICS, LIB,
NODYNAM, and RENT must be in effect. NODYNAM is not a restriction specific
to the integrated translator. DYNAM is not supported for code that is separately
translated and compiled. Do not use SIZE(MAX), because storage must be left in
the user region for integrated CICS translator services. Instead, use a value such as
SIZE(4000K), which should work for most programs.

To use the integrated CICS translator for C and C++, use the CICS option.

If you are running DB2 Version 7 or later and preparing a COBOL program using
a compiler with integrated translator, the compiler also provides an SQL statement
coprocessor (which produces a DBRM), so you do not need to use a separate DB2
precompiler. See the CICS DB2 Guide and the DB2 for z/OS Application Programming
and SQL Guide for more information on using the SQL statement coprocessor.

Specifying CICS translator options

You can specify CICS translator options when you use the PL/I, COBOL, or XL
C/C++ compiler.

About this task

For a description of all the translator options, see [‘Defining translator options” on|

Many translator options do not apply when using the integrated CICS translator,
for example those associated with translator listings. If these options are specified,
they are ignored. The EXCI option is not supported; the CICS option is assumed.

The following translator options can be used effectively with the integrated CICS
translator:

* APOST or QUOTE
e CPSM or NOCPSM

72 CICS TS for z/OS 4.2: Application Programming Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.whatsnew.doc/regular_topics/hll_support.html

* CICS

* DBCS

* DEBUG or NODEBUG

* DLI

* EDF or NOEDF

* FEPI or NOFEPI

* GRAPHIC

* LENGTH or NOLENGTH
e LINKAGE or NOLINKAGE
« NATLANG

- SP

* SYSEIB

Procedure
* To specify CICS translator options when using the PL/I compiler, specify the

compiler option PP(CICS), with the translator options enclosed in apostrophes
and inside parentheses. For example:

PP(CICS('optl opt2 optn ..."))

For more information about specifying PL/I compiler options, see Enterprise PL/I
for z/OS Programming Guide.

* To specify CICS translator options when using the COBOL compiler, specify the
compiler option CICS, with the translator options enclosed in apostrophes and
inside parentheses. For example:

CICS('optl opt2 optn ...")

Note: The XOPTS translator option must be changed to the CICS compiler
option. XOPTS is not accepted when using the integrated CICS translator.

For more information about specifying COBOL compiler options, see Enterprise
COBOL for z/OS: Programming Guide.

* To specify CICS translator options when using the XL C/C++ compiler, specify
the compiler option CICS, with the translator options inside parentheses and
separated by commas. For example:

CICS(optl,opt2,optn ...)
Alternatively, you can specify translator options on a #pragma statement in the
program source on the XOPTS or CICS keyword.

For more information about specifying C and C++ compiler options, see z/OS XL
C/C++ User’s Guide.

The translation process

For compilers without integrated translators, CICS provides a translator program
for each of the languages in which you may write, to handle both EXEC CICS and
EXEC DLI statements. For compilers with integrated translators, the compilers
interface with CICS to handle both EXEC CICS and EXEC DLI statements.

A language translator reads your source program and creates a new one; most

normal language statements remain unchanged, but CICS commands are translated
into CALL statements of the form required by the language in which you are

Chapter 7. Translation and compilation 73

coding. The calls invoke CICS-provided “EXEC” interface modules, which later get
link-edited into your load module, and these in turn invoke the requested services

at execution time.

There are three steps: translation, compilation (assembly), and link-edit.
shows these 3 steps.

SYSIN
(source
program)

CICS

Translation {

Command- SYSPRINT
level (translator
language listin
trar?sla?or SYSPUNCH 'sting)
(translated
\ source
program)
\
High-level High-level
language language
Compilation compiler compiler (or
(assembly) (or assembler) > assembler)
listing
Object
module
A4
Link-editor
(| Link-editor listing
Link Edit ¢

\ e E—

Figure 10. Preparing an application program

Load
library

The translators for all languages use one input and two output files:

SYSIN

(Translator input) is the file that contains your source program.

If the SYSIN file is defined as a fixed blocked data set, the maximum
record length that the data set can possess is 80 bytes. Passing a fixed
blocked data set with a record length of greater than 80 bytes to the
translator results in termination of translator execution. If the SYSIN file is
defined as a variable blocked data set, the maximum record length that the
data set can possess is 100 bytes. Passing a variable blocked data set with a
record length greater than 100 bytes to the translator causes the translator

to stop with an error.

74 CICS TS for z/OS 4.2: Application Programming Guide

SYSPUNCH
(Translated source) is the translated version of your source code, which
becomes the input to the compile (assemble) step. In this file, your source
has been changed as follows:

* The EXEC interface block (EIB) structure has been inserted.

* EXEC CICS, EXEC CPSM and EXEC DLI commands have been turned
into function call statements.

» CICS DFHRESP, EYUVALUE, and DFHVALUE built-in functions have
been processed.

* A data interchange block (DIB) structure and initialization call have been
inserted if the program contains EXEC DLI statements.

The CICS commands that get translated still appear in the source, but as
comments only. Generally the non-CICS statements are unchanged. The
output from the translator always goes to an 80 byte fixed-record length
data set.

SYSPRINT
(Translator listing) shows the number of messages produced by the
translator, and the highest severity code associated with any message. The

options used in translating your program also appear, unless these have
been suppressed with the NOOPTIONS option.

For COBOL, C, C++, and PL/I programs, SYSPRINT also contains the
messages themselves. In addition, if you specify the SOURCE option of the
translator, you also get an annotated listing of the source in SYSPRINT.
This listing contains almost the same information as the subsequent
compilation listing, and therefore many installations elect to omit it (the
NOSOURCE option). One item you may need from this listing which is
not present in the compile listing, however, is the line numbers, if the
translator is assigning them. Line numbers are one way to indicate points
in the code when you debug with the execution diagnostic facility (EDF). If
you specify the VBREF option, you also get a list of the commands in your
program, cross-referenced by line number, and you can use this as an
alternative to the source listing for EDF purposes.

For assembler language programs, SYSPRINT contains only the translator
options, the message count and maximum severity code. The messages
themselves are inserted into the SYSPUNCH file as comments after the
related statement. This causes the assembler to copy them through to the
assembler listing, where you can check them. You may also see MNOTEs
that are generated by the assembler as the result of problems encountered
by the translator.

Note: If you use EXEC SQL, you need additional steps to translate the SQL
statements and bind; see the Application Programming and SQL Guide for
information about these extra steps.

CICS provides a procedure to execute these steps in sequence for each of the
languages it supports. |“Using the CICS-supplied procedures to install application|
[programs” on page 114 describes how to use these procedures, and exactly what
they do.

You can control the translation process by specifying a number of options. For
example, if your program uses EXEC DLI calls, you need to tell the translator.

Chapter 7. Translation and compilation 75

The translator may produce error messages, and it is as important to check these
messages as it is to check the messages produced by the compiler and link-editor.
See [“The CICS-supplied translators”| for the location of these messages.

EXEC commands are translated into CALL statements that invoke CICS interface
modules. These modules get incorporated into your object module in the link-edit
step, and you see them in your link-edit output listing. You can read more about
these modules in|[“The CICS-supplied interface modules” on page 90.|

The CICS-supplied translators

The CICS-supplied translators are installed in the CICSTS42.CICS.SDFHLOAD
library.

The translators in the CICSTS42.CICS.SDFHLOAD library are:

Assembler DFHEAP1$
C DFHEDP1$
COBOL DFHECP1$
PL/I DFHEPP1$

Dynamic invocation of the separate translator

You can invoke the command-level language translator dynamically from a batch
assembler-language program using an ATTACH, CALL, LINK, or XCTL macro; or
from a C, PL/I, or COBOL program using CALL.

About this task

If you use ATTACH, LINK, or XCTL, use the appropriate translator load module,
DFHEXP1$, where x=A for assembler language, x=C for COBOL, x=D for C, or x=P
for PL/I.

If you use CALL, specify PREPROC as the entry point name to call the translator.

In all cases, pass the following address parameters to the translator:
e The address of the translator option list
* The address of a list of DD names used by the translator (this is optional)

These addresses must be in adjacent fullwords, aligned on a fullword boundary.
Register 1 must point to the first address in the list, and the high-order bit of the
last address must be set to one, to indicate the end of the list. This is true for both
one or two addresses.

Translator options

APOST
(COBOL only)

APOST indicates that literals are delineated by the apostrophe or a quotation
mark. QUOTE is the alternative, which indicates double quotation marks. The
same value must be specified for the translator step and the following compile
step.

The CICS-supplied COBOL copybooks are generated with a single quotation
mark (APOST). If you are using any CICS-supplied copybooks in your
application to interface to a CICS component, ensure that the APOST option is
in effect, not the QUOTE option.

76 CICS TS for z/OS 4.2: Application Programming Guide

CBLCARD
(COBOL only) Abbreviation: CBL

CBLCARD specifies that the translator is to generate a CBL statement.
CBLCARD is the default, the alternative is NOCBLCARD.

CICS
CICS specifies that the translator is to process EXEC CICS commands. It is the
default specification in the translator. CICS is also an old name for the XOPTS
keyword for specifying translator options, which means that you can specify
the CICS option explicitly either by including it in your XOPTS list or by using
it in place of XOPTS to name the list. The only way to indicate that there are
no CICS commands is to use the XOPTS keyword without the option CICS.
You must do this in a batch DL/I program using EXEC DLI commands. For
example, to translate a batch DL/I program written in Assembly language,
specify:
*ASM XOPTS (DLI)

To translate a batch program written in COBOL, containing EXEC API
commands, specify:

CBL XOPTS(EXCI)

CoBOL2
(COBOL only) Abbreviation: CO2

COBOL2 specifies that the translator is to generate temporary variables for use
in the translated EXEC statements. In all other respects, the program is
translated in the same manner as with the COBOL3 option. COBOL2 and
COBOLS3 are mutually exclusive. COBOL2 is the default for COBOL.

Note: If you specify COBOL2 and COBOL3 by different methods, the COBOL3
option is always used, regardless of where the two options have been
specified. If you specify both COBOL2 and COBOLS3, the translator issues a
warning message.

COBOL3
(COBOL only) Abbreviation: CO3

COBOLS3 specifies that the translator is to translate programs that are Language
Environment-conforming. COBOL3 and COBOL2 are mutually exclusive. For
information about which Language Environment-conforming compilers are
available; see the [Chapter 2, “Language Environment,” on page 11| topic.

CPP
(C++ only)

CPP specifies that the translator is to translate C++ programs for compilation
by a supported C++ compiler, such as IBM C/C++ for MVS.

CPSM
CPSM specifies that the translator is to process EXEC CPSM commands. The
alternative is NOCPSM, which is the default.

DBCS
(COBOL only)

DBCS specifies that the source program might contain double-byte characters.
The DBCS option causes the translator to treat hexadecimal codes X'0E' and
X'OF' as shift-out (SO) and shift-in (SI) codes, respectively, wherever they
appear in the program.

Chapter 7. Translation and compilation 77

For more detailed information about how to program in COBOL using DBCS,
see the section on DBCS character strings in Enterprise COBOL for z/OS:
Language Reference.

DEBUG
(COBOL, C, C++, and PL/I only)

DEBUG instructs the translator to produce code that passes the line number
through to CICS for use by the execution diagnostic facility (EDF). DEBUG is
the default, NODEBUG is the alternative.

DLI
DLI specifies that the translator is to process EXEC DLI commands. You must
specify it with the XOPTS option, that is, XOPTS(DLI).

EDF
EDF specifies that the execution diagnostic facility is to apply to the program.
EDF is the default, the alternative is NOEDF.

EPILOG
(Assembler language only)

EPILOG specifies that the translator is to insert the macro DFHEIRET at the
end of the program being translated. DFHEIRET returns control from the
issuing program to the program which invoked it. If you want to use any of
the options of the RETURN command, use RETURN and specify NOEPILOG.

EPILOG is the default, the alternative NOEPILOG prevents the translator
inserting the macro DFHEIRET. (See the CICS Application Programming Reference
for programming information about the DFHEIRET macro.)

EXCI
EXCI specifies that the translator is to process EXEC APl commands for the
External CICS Interface (EXCI). EXCI API commands must be used only in
batch programs, and so the EXCI translator option is mutually exclusive to the
CICS translator option, or any translator option that implies the CICS option.
An error message is produced if both CICS and EXCI are specified, or EXCI
and a translator option that implies CICS are specified.

The EXCI option is also mutually exclusive to the DLI option. EXEC API
commands for the External CICS Interface cannot be coded in batch programs
using EXEC DLI commands. An error message is produced if both EXCI and
DLI translator commands are specified.

The EXCI translator option is specified by XOPTS, that is, XOPTS(EXCI).

FEPI
FEPI allows access to the FEPI API commands of the CICS Front End
Programming Interface (FEPI). FEPI is only available if you have installed the
CICS Front End Programming Interface. The alternative is NOFEPI. For more
information about FEPI, see the CICS Front End Programming Interface User’s
Guide.

FLAG (I, W, E, or S)
(COBOL, C, C++, and PL/I only) Abbreviation: F

FLAG specifies the minimum severity of error in the translation which requires
a message to be listed.

I All messages.
W (Default) All except information messages.
E All except warning and information messages.

78 CICS TS for z/0S 4.2: Application Programming Guide

S Only severe and unrecoverable error messages.

GDS
(C, C++, and Assembly language only)

GDS specifies that the translator is to process CICS GDS (generalized data
stream) commands. For programming information about these commands, see
the CICS Application Programming Reference.

GRAPHIC
(PL/T only)

GRAPHIC specifies that the source program might contain double-byte
characters. The GRAPHIC option causes the translator to treat hexadecimal
codes X'0E' and X'OF' as shift-out (SO) and shift-in (SI) codes, respectively,
wherever they appear in the program.

It also prevents the translator from generating parameter lists that contain the
shift-out and shift-in values in hexadecimal form. Wherever these values
would ordinarily appear, the translator expresses them in binary form, so that
there are no unintended DBCS delimiters in the data stream that the compiler
receives.

If the compiler you are using supports DBCS, you need to prevent unintended
shift-out and shift-in codes, even if you are not using double-byte characters.
Prevent unintended shift-out and shift-in codes by specifying the GRAPHIC
option for the translator, so that it does not create them, or by specifying
NOGRAPHIC on the compile step, so that the compiler does not interpret
them as DBCS delimiters.

For more detailed information about how to program in PL/I using DBCS, see
the relevant language reference manual.

LEASM
(Assembler only)

LEASM instructs the translator to generate code for a Language
Environment-conforming Assembler MAIN program.

If the LEASM option is specified, the DFHEISTG, DFHEIENT, DFHEIRET, and
DFHEIEND macros expand differently to create a Language
Environment-conforming Assembler MAIN program, instead of the form of
macro expansion used for Assembler subroutines in a CICS environment. The
LEASM option allows customer programs that have used NOPROLOG and
NOEPILOG and coded their own DFHEIENT and other macros to take
advantage of Language Environment support without changing their program
source. For example, all programs that require more than one code base
register fall into this category because the translator does not support multiple
code base registers.

For an example of an Assembler program translated using the LEASM option,
see ['EXAMPLE Assembly language PROGRAM using LEASM” on page 93|

LENGTH
(COBOL, Assembler and PL/I only)

LENGTH instructs the translator to generate a default length if the LENGTH
option is omitted from a CICS command in the application program. The
alternative is NOLENGTH.

LINECOUNT (n)
Abbreviation: LC

Chapter 7. Translation and compilation 79

LINECOUNT specifies the number of lines to be included in each page of
translator listing, including heading and blank lines. The value of “n” must be
an integer in the range 1 through 255; if “n” is less than 5, only the heading
and one line of listing are included on each page. The default is 60.

LINKAGE
(COBOL only) Abbreviation: LIN

LINKAGE requests the translator to modify the LINKAGE SECTION and
PROCEDURE DIVISION statements in top-level programs according to the
existing rules.

This means that the translator inserts a USING DFHEIBLK DFHCOMMAREA
statement in the PROCEDURE DIVISION, if one does not exist, and ensures
that the LINKAGE SECTION (creating one if necessary) contains definitions for
DFHEIBLK and DFHCOMMAREA.

LINKAGE is the default, the alternative is NOLINKAGE.

MARGINS (m,n[,c])
(C, C++, and PL/I only) Abbreviation: MAR

MARGINS specifies the columns of each line or record of input that contain
language or CICS statements. The translator does not process data that is
outside these limits, though it does include it in the source listings.

The MARGINS option can also specify the position of an American National
Standard printer control character to format the listing produced when the
SOURCE option is specified; otherwise, the input records are listed without
any intervening blank lines. The margin parameters are:

m Column number of left margin.

n Column number of right margin. It must be greater than m.

Note: When used as a C or C++ compiler option, the asterisk (*) is
allowable for the second argument on the MARGIN option. For the
translator, however, a numeric value between 1 and 100 inclusive must
be specified. When the input data set has fixed-length records, the
maximum value allowable for the right margin is 80. When the input
data set has variable-length records, the maximum value allowable is
100.

c Column number of the American National Standard printer control
character. It must be outside the values specified for m and n. A zero
value for ¢ means no printer control character. If c is nonzero, only the
following printer control characters can appear in the source:

(blank)
Skip one line before printing.

0 Skip two lines before printing.
- Skip three lines before printing.
+ No skip before printing.

New page.

The default for C and C++ is MARGINS(1,72,0) for fixed-length records, and
for variable-length records it is the same as the record length (1,record
length,0). The default for PL/I is MARGINS(2,72,0) for fixed-length records,
and MARGINS(10,100,0) for variable-length records.

80 CICS TS for z/OS 4.2: Application Programming Guide

NATLANG (EN or KA)
NATLANG specifies what language is to be used for the translator message
output:

EN (Default) English.
KA Kanyji.

(Take care not to confuse this option with the NATLANG API option.)

NOCBLCARD
(COBOL only)

NOCBLCARD specifies that the translator is not to generate a CBL statement.
The compiler options that CICS requires are specified by the DFHYITVL
procedure. Ensure that RENT, NODYNAM, and LIB are specified.

NOCPSM
NOCPSM specifies that the translator is not to process EXEC CPSM
commands. NOCPSM is the default, the alternative is CPSM.

NODEBUG
(COBOL, C, C++, and PL/T only)

NODEBUG instructs the translator not to produce code that passes the line
number through to CICS for use by the execution diagnostic facility (EDF).

NOEDF

NOEDF specifies that the execution diagnostic facility is not to apply to the
program. There is no performance advantage in specifying NOEDE, but the
option can be useful to prevent commands in well-debugged subprograms

appearing on EDF displays.

NOEPILOG
(Assembly language only)

NOEPILOG instructs the translator not to insert the macro DFHEIRET at the
end of the program being translated. DFHEIRET returns control from the
issuing program to the program which invoked it. If you want to use any of
the options of the EXEC CICS RETURN command, use EXEC CICS RETURN and
specify NOEPILOG. NOEPILOG prevents the translator inserting the macro
DFHEIRET. The alternative is EPILOG, which is the default.

NOFEPI
NOFEPI disallows access to the FEPI API commands of the CICS Front End
Programming Interface (FEPI). NOFEPI is the default, the alternative is FEPL

NOLENGTH
(COBOL, Assembler and PL/I only)

NOLENGTH instructs the translator not to generate a default length if the
LENGTH option is omitted from a CICS command in the application program.
The default is LENGTH.

NOLINKAGE
(COBOL only)

NOLINKAGE requests the translator not to modify the LINKAGE SECTION
and PROCEDURE DIVISION statements to supply missing DFHEIBLK and
DFHCOMMAREA statements, or insert a definition of the EIB structure in the
LINKAGE section.

Chapter 7. Translation and compilation 81

The NOLINKAGE option means that you can provide COBOL copybooks to
define a COMMAREA and use the EXEC CICS ADDRESS command.

LINKAGE is the default.

NONUM
(COBOL only)

NONUM instructs the translator not to use the line numbers appearing in
columns one through six of each line of the program as the line number in its
diagnostic messages and cross-reference listing, but to generate its own line
numbers. NONUM is the default, the alternative is NUM.

NOOPSEQUENCE
(C, C++, and PL/I only) Abbreviation: NOS

NOOPSEQUENCE specifies the position of the sequence field in the translator
output records. The default for C and C++ is OPSEQUENCE(73,80) for
fixed-length records and NOOPSEQUENCE for variable-length records. For
PL/I, the default is OPSEQUENCE(73,80) for both types of records.

NOOPTIONS
Abbreviation: NOP

NOOPTIONS instructs the translator not to include a list of the options used
during this translation in its output listing.

NOPROLOG
(Assembly language only)

NOPROLOG instructs the translator not to insert the macros DFHEISTG,
DFHEIEND, and DFHEIENT into the program being assembled. These macros
define local program storage and execute at program entry.

NOSEQ
(COBOL only)

NOSEQ instructs the translator not to check the sequence field of the source
statements, in columns 1-6. The alternative, SEQ, is the default. If SEQ is
specified and a statement is not in sequence, it is flagged.

NOSEQUENCE
(C, C++, and PL/I only) Abbreviation: NSEQ

NOSEQUENCE specifies that statements in the translator input are not
sequence numbered and that the translator must assign its own line numbers.

The default for fixed-length records is SEQUENCE(73,80). For variable-length
records in C and C++, the default is NOSEQUENCE and for variable-length
records in PL/I the default is SEQUENCE(1,8).

NOSOURCE
NOSOURCE instructs the translator not to include a listing of the translated
source program in the translator listing.

NOSPIE
NOSPIE prevents the translator from trapping unrecoverable errors; instead, a
dump is produced. Use NOSPIE only when requested to do so by the IBM
support center.

NOVBREF
(COBOL, C, C++ and PL/I only)

82 CICS TS for z/OS 4.2: Application Programming Guide

NOVBREF instructs the translator not to include a cross-reference of
commands with line numbers in the translator listing. (NOVBREF used to be
called NOXREF; for compatibility, NOXREEF is still accepted.) NOVBREEF is the
default, the alternative is VBREFE.

NUM
(COBOL only)

NUM instructs the translator to use the line numbers appearing in columns
one through six of each line of the program as the line number in its diagnostic
messages and cross-reference listing. The alternative is NONUM, which is the
default.

OPMARGINS (m,n[,c])
(C, C++ and PL/I only) Abbreviation: OM

OPMARGINS specifies the translator output margins, that is, the margins of
the input to the following compiler. Normally these margins are the same as
the input margins for the translator. For a definition of input margins and the
meaning of “m”, “n”, and “c”, see MARGINS. The default for C and C++ is
OPMARGINS(1,72,0) and for PL/I, the default is OPMARGINS(2,72,0).

The maximum “n” value allowable for the OPMARGINS option is 80. The
output from the translator is always of a fixed-length record format.

If the OPMARGINS option is used to set the output from the translator to a
certain format, it might be necessary to change the input margins for the
compiler being used. If the OPMARGINS value is allowed to default, it is not
necessary to change the input margins for the compiler being used.

OPSEQUENCE (m,n)
(C, C++, and PL/I only) Abbreviation: OS

OPSEQUENCE specifies the position of the sequence field in the translator
output records. For the meaning of “m” and “n”, see SEQUENCE. The default
for C and C++ is OPSEQUENCE(73,80) for fixed-length records and
NOOPSEQUENCE for variable-length records. For PL/I, the default is
OPSEQUENCE(73,80) for both types of records.

OPTIONS
Abbreviation: OP

OPTIONS instructs the translator to include a list of the options used during
this translation in its output listing.

PROLOG
(Assembly language only)

PROLOG instructs the translator to insert the macros DFHEISTG, DFHEIEND,
and DFHEIENT into the program being assembled. These macros define local
program storage and execute at program entry.

(COBOL only) Abbreviation: Q

QUOTE indicates that literals are delineated by the double quotation mark (”).
The same value must be specified for the translator step and the following
compiler step.

The CICS-supplied COBOL copybooks are generated with a single quote
(APOST). If you are using any CICS-supplied copybooks in your application to
interface to a CICS component, ensure that the APOST option is in effect, not
the QUOTE option.

Chapter 7. Translation and compilation 83

SEQ
(COBOL only)

SEQ instructs the translator to check the sequence field of the source
statements, in columns 1-6. SEQ is the default—the alternative is NOSEQ. If a
statement is not in sequence, it is flagged.

SEQUENCE (m,n)
(C, C++, and PL/I only) Abbreviation: SEQ

SEQUENCE specifies that statements in the translator input are sequence
numbered and the columns in each line or record that contain the sequence
field. The translator uses this number as the line number in error messages and
cross-reference listings. No attempt is made to sort the input lines or records
into sequence. If no sequence field is specified, the translator assigns its own
line numbers. The SEQUENCE parameters are:

m Leftmost sequence number column.
n Rightmost sequence number column.

The sequence number field must not exceed eight characters and must not
overlap the source program (as specified in the MARGINS option).

The default for fixed-length records is SEQUENCE(73,80). For variable-length
records in C and C++, the default is NOSEQUENCE and for variable-length
records in PL/I the default is SEQUENCE(,8).

SOURCE
Abbreviation: S

SOURCE instructs the translator to include a listing of the translated source
program in the translator listing. SOURCE is the default—the alternative is
NOSOURCE.

SP SP must be specified for application programs that contain special (SP) CICS
commands or they are rejected at translate time. These commands are
ACQUIRE, COLLECT, CREATE, DISABLE, DISCARD, ENABLE, EXTRACT,
INQUIRE, PERFORM, RESYNC, and SET. Theses commands are used by
system programmers. For programming information about these commands,
see System commands|in the CICS Application Programming Reference.

SPACE(1 or 2 or 3)
(COBOL only)

SPACE indicates the type of spacing to be used in the output listing: SPACE(1)
specifies single spacing, SPACE(2) double spacing, and SPACE(3) triple
spacing. SPACE(3) is the default.

SPIE
SPIE specifies that the translator is to trap unrecoverable errors. SPIE is the
default—the alternative is NOSPIE.

SYSEIB
SYSEIB indicates that the program is to use the system EIB instead of the
application EIB. The SYSEIB option allows programs to execute CICS
commands without updating the application EIB, making that aspect of
execution transparent to the application. Use this option only in special
situations because it imposes restrictions on the programs using it. A program
translated with the SYSEIB option must:

* Execute in AMODE(31), as the system EIB is assumed to be located in
“TASKDATALOC(ANY)” storage.

84 CICS TS for z/OS 4.2: Application Programming Guide

* Obtain the address of the system EIB using the ADDRESS EIB command (if
the program is translated with the SYSEIB option, this command
automatically returns the address of the system EIB).

* The use of the SYSEIB option implies the use of the NOHANDLE option on

all CICS commands issued by the program. (Commands should use the
RESP option as required.)

VBREF
(COBOL, C, C++, and PL/I only)

VBREF specifies whether the translator is to include a cross-reference of
commands with line numbers in the translator listing. (VBREF used to be
called XREF, and is still accepted.)

Data definition (DD name) list

The DD name list must begin on a halfword boundary. The first two bytes contain
a binary count of the number of bytes in the list (excluding the count field). Each
entry in the list must occupy an 8-byte field.

The sequence of entries is:

Entry Entry
Standard Standard Entry Standard
DD name DD name DD name
1 not applicable |3 not applicable | 5 SYSIN
2 not applicable | 4 not applicable | 6 SYSPRINT
7 SYSPUNCH

If you omit an applicable entry, the translator uses the standard DD name. If you
use a DD name less than 8 bytes long, fill the field with blanks on the right. You
can omit an entry by placing X'FF' in the first byte. You can omit entries at the end
of the list entirely.

Using a CICS translator

A language translator reads your source program and creates a new one; most
normal language statements remain unchanged, but CICS commands are translated
into CALL statements of the form required by the language in which you are
coding.

About this task
The calls invoke CICS-provided “EXEC” interface modules, which later get
link-edited into your load module, and these in turn invoke the requested services

at execution time.

You can control the translation process by specifying translator options.

The translator options you can choose are listed in [“Defining translator options” on|
You can specify your choices in one of two ways:

* List them as suboptions of the XOPTS option on the statement that the compiler
(assembler) provides for specifying options. These statements are:

Language
Statement

Chapter 7. Translation and compilation 85

COBOL
CBL

COBOL
PROCESS

C #pragma
C++ #pragma
PL/I * PROCESS

Assembler
*ASM or *PROCESS!?

¢ List your options in the PARM operand of the EXEC job control statement for
the translate step. Most installations use catalogued procedures to translate,
compile (assemble) and link CICS programs, and therefore you specify this
PARM field in the EXEC job control statement that invokes the procedure.

For example, if the name of the procedure for COBOL programs is DFHYITVL,
and the name of the translate step within is TRN, you set translator options for
a COBOL program with a statement such as this one:

/] EXEC DFHEITCL,PARM.TRN=(VBREF,QUOTE,SPACE(2) ,NOCBLCARD)

If you specify an option by one method and the same option or an option that
conflicts by the other method, the specifications in the language statement override
those in the EXEC statement. Similarly, if you specify multiple values for a single
option or options that conflict on either type of statement, the last setting takes
precedence. Except for COBOL programs, these statements must precede each
source program; there is no way to batch the processing of multiple programs in
other languages.

Translator options may appear in any order, separated by one or more blanks or by
a comma. If you specify them on the language statement for options, they must
appear in parentheses following the XOPTS parameter, because other options are
ignored by the translator and passed through to the compiler. The following
COBOL example shows both translator and compiler options being passed
together:

CBL LIB XOPTS(QUOTE SPACE(2))

These examples show translator options being passed alone:

#pragma XOPTS(FLAG(W) SOURCE);
* PROCESS XOPTS(FLAG(W) SOURCE);
*ASM XOPTS (NOPROLOG NOEPILOG)

If you use the PARM operand of the EXEC job control statement to specify options,
the XOPTS keyword is unnecessary, because the only options permitted here are
translator options. However, you may use XOPTS, with or without its associated
parentheses. If you use XOPTS with parentheses, be sure to enclose all of the
translator options. For example, the following forms are valid:

PARM=(opl op2 .. opn)

PARM=(XOPTS opl op2 .. opn)

PARM=XOPTS (opl op2 .. opn)

but the following is not valid:
PARM=(XOPTS (opl op2) opn)

(For compatibility with previous releases, the keyword CICS can be used as an
alternative to XOPTS, except when you are translating batch EXEC DLI programs.)

86 CICS TS for z/OS 4.2: Application Programming Guide

Remember, if you alter the default margins for C or C++ #pragma card processing
using the PARM operand, the sequence margins should be altered too. You can do
this using the NOSEQUENCE option.

Note:

1. For assembler programs, *ASM statements contain translator options only. They
are treated as comments by the assembler. *PROCESS statements can contain
translator or assembler options for the High Level assembler, HLASM.

2. Translator and assembler options must not coexist on the same *PROCESS
statement.

3. *PROCESS and *ASM statements must be at the beginning of the input and no
assembler statements must appear before them. This includes comments and
statements such as “PRINT ON” and “EJECT”. Both *PROCESS and *ASM
statements can be included, in any order.

4. *PROCESS statements containing only translator options contain information
for the translator only and are not passed to the assembler

5. *PROCESS statements containing assembler options are placed in the translated
program.

Defining translator options

You can specify the translator options that apply to all languages except where
stated otherwise.

lists all the translator options, the program languages that apply, and any
valid abbreviations.

If your installation uses the CICS-provided procedures in the distributed form, the
default options are used. These are explicitly noted in the following option
descriptions. You can tell which options get used by default at your installation b
looking at the SYSPRINT translator listing output from the translate step (see
[CICS-supplied translators” on page 76)). If you want an option that is not the
default, you must specify it, as described in [‘Using a CICS translator” on page 85|

Translator options table

The translator options are shown, in tabular form, along with the program
languages to which they apply.

Table 5. Translator options applicable to programming language

Translator option
COBOL C C++ PL/1 Assembler

APOST or QUOTE

X
CBLCARD or NOCBLCARD

X
CICS

X X X X X
COBOL2

X
COBOL3

X

Chapter 7. Translation and compilation 87

Table 5. Translator options applicable to programming language (continued)

Translator option

COBOL C C++ PL/1 Assembler
CPP
X
CPSM or NOCPSM
X X X X X
DBCS
X
DEBUG or NODEBUG
X X X X
DLI
X X X X X
EDF or NOEDF
X X X X X
EPILOG or NOEPILOG
X
EXCI
X X X X X
FEPI or NOFEPI
X X X X X
FLAG(I or Wor E or S)
X X X X
GDS
X X X
GRAPHIC
X
LEASM
X
LENGTH or NOLENGTH
X X X
LINECOUNT(n)
X X X X X
LINKAGE or NOLINKAGE
X
MARGINS(m,n)
X X X
NATLANG
X X X X X
NUM or NONUM
X
OPMARGINS(m,n[,c])
X X X
OPSEQUENCE(m,n) or
NOOPSEQUENCE X X X
OPTIONS or NOOPTIONS
X X X X X

88 CICS TS for z/0S 4.2:

Application Programming Guide

Table 5. Translator options applicable to programming language (continued)

Translator option
COBOL C C++ PL/I Assembler
PROLOG or NOPROLOG
X
QUOTE or APOST
X
SEQ or NOSEQ
X
SEQUENCE(m,n) or NOSEQUENCE
X X X
SOURCE or NOSOURCE
X X X
SP
X X X X X
SPACE(1 or 2 or 3)
X
SPIE or NOSPIE
X X X X X
SYSEIB
X X X X X
VBREF or NOVBREF
X X X X

Using COPY statements

The compiler (or assembler) reads the translated version of your program as input,
rather than your original source. This affects what you see on your compiler
(assembler) listing. It also means that COPY statements in your source code must
not bring in untranslated CICS commands, because it is too late for the translator
to convert them.

About this task

If you are using a separate translator and the source within any copybook contains
CICS commands, you must translate it separately before translation and
compilation of the program in which it will be included. If you are using the
integrated CICS translator and the source within any copybook contains CICS
commands, you do not have to translate it separately before compilation of the
program in which it will be included.

The external program must always be passed through the CICS translator, or

compiled with a compiler that has an integrated CICS translator, even if all the
CICS commands are in included copybooks.

Chapter 7. Translation and compilation 89

The CICS-supplied interface modules

Each of your application programs to run under CICS requires one or more
interface modules (also known as stubs) to use CICS facilities.

Application programs require a stub to use the following facilities:
* The EXEC interface

* The CPI Communications facility

* The SAA Resource Recovery facility

+ The CICSPlex® SM application programming interface (for information about
CICSPlex SM stubs, see CICSPlex SM Application Programming Guide).

The EXEC interface modules

Each of your CICS application programs must contain an interface to CICS. This
takes the form of an EXEC interface module, used by the CICS high-level
programming interface. The module, installed in the CICSTS42.CICS.SDFHLOAD
library, must be link-edited with your application program to provide
communication between your code and the EXEC interface program, DFHEIP.

The CPI Communications interface module

Each of your CICS application programs that uses the Common Programming
Interface for Communications (CPI Communications) must contain an interface to
CPI Communications. This takes the form of an interface module, used by the
CICS high-level programming interface, common to all the programming
languages. The module, DFHCPLC, that is installed in the
CICSTS42.CICS.SDFHLOAD library, must be link-edited with each application
program that uses CPI Communications.

The SAA Resource Recovery interface module

Each of your CICS application programs that uses SAA Resource Recovery must
contain an interface to SAA Resource Recovery. This takes the form of an interface
module, used by the CICS high-level programming interface, common to all the
programming languages. The module, DFHCPLRR, that is installed in the
CICSTS42.CICS.SDFHLOAD library, must be link-edited with each application
program that uses the SAA Resource Recovery facility.

Using the EXEC interface modules

The CALL statements generated by the language translators invoke EXEC interface
modules that provide communication between your code and the CICS EXEC
interface program, DFHEIP.

A language translator reads your source program and creates a new one; normal
language statements remain unchanged, but CICS commands are translated into
CALL statements of the form required by the language in which you are coding.
The calls invoke CICS-provided “EXEC” interface modules or stubs , which is a
function-dependent piece of code used by the CICS high-level programming
interface. The stub, provided in the SDFHLOAD library, must be link-edited with
your application program to These stubs are invoked during execution of EXEC
CICS and EXEC DLI commands.

There are stubs for each programming language.

90 CICS TS for z/OS 4.2: Application Programming Guide

Table 6. Interface modules

Language Interface module name
ASSEMBLER DFHELII and DFHEAIO
DFHELIL

All HLL languages and Assembler MAIN
programs using the LEASM option

The CICS-supplied stub routines work with an internal programming interface, the
CICS command-level interface, which is never changed in an incompatible way.
Consequently, these stub modules are upward and downward compatible, and
CICS application modules never need to be re-linked to include a later level of any
of these stubs.

Except for DFHEAIQ, these stubs all provide the same function, which is to
provide a linkage from EXEC CICS commands to the required CICS service. The
stubs make this possible by providing various entry points that are called from the
translated EXEC CICS commands, and then executing a sequence of instructions that
pass control to the EXEC interface function of CICS.

DFHELII contains multiple entry points, most of which provide compatibility for
old versions of the CICS PL/I translator. It contains the entries DFHEXEC (for C
and C++ application programs), DFHEI1 (for COBOL and assembler), and
DFHEIO1 (for PL/I).

Each of these stubs begins with an 8 byte eyecatcher in the form DFHYxnnn,
where x indicates the language supported by the stub (for example, A represents
assembler, and I indicates that the stub is language independent), and nnn
indicates the CICS release from which the stub was included. The letter Y in the
eyecatcher indicates that the stub is read-only. Stubs supplied with very early
releases of CICS contained eyecatchers in the form DFHExxxx in which the letter E
denotes that the stub is not read-only. The eyecatcher for DFHELII in CICS
Transaction Server for z/OS, Version 4 Release 2 is DFHYI1670.

The eyecatcher can be helpful if you are trying to determine the CICS release at
which a CICS application load module was most recently linked.

COBOL

Each EXEC command is translated into a COBOL CALL statement that refers to
the entry DFHEIL.

The following example shows the output generated by the translator when
processing a simple EXEC CICS RETURN command:
*EXEC CICS RETURN END-EXEC

Call 'DFHEI1' using by content x'0e0800000600001000'
end-call.

The reference to DFHEIN1 is resolved by the inclusion of the DFHELII stub routine

in the linkage editor step of the CICS-supplied procedures such as DFHYITVL or
DFHZITCL.

Chapter 7. Translation and compilation 91

PL/

When translating PL/I programs each EXEC command generates a call to the entry
point DFHEIO1. This is done using a variable entry point DFHEIO that is associated
with the entry DFHEIO1. The translator enables this by inserting the following
statements near the start of each translated program:

DCL DFHEI@ ENTRY VARIABLE INIT(DFHEIO1) AUTO;
DCL DFHEIQ1 ENTRY OPTIONS(INTER ASSEMBLER);

The translator creates a unique entry name based on DFHEIO for each successfully
translated EXEC command. The following example shows the output generated by
the translator when processing a simple EXEC CICS RETURN command:

/* EXEC CICS RETURN TRANSID(NEXT) =*/

DO;

DCL DFHENTRY_B62D3C38_296F2687 BASED(ADDR(DFHEIO)) OPTIONS(INTER ASSEM

BLER) ENTRY(*,CHAR(4)):

CALL DFHENTRY_B62D3C38_296F2687 (' XXXXXXXXXXXXXXXXX' /* 'OE 08 80 00 03

00 00 10 00 FO FO FO FO FO FO F1 FO 'X =/, NEXT);

END;

In the example above, DFHENTRY_B62D3C38_296F2687 is based on the entry
variable DFHEIO that is associated with the real entry DFHEIO1. This technique
allows the translator to create a PL/I data descriptor list for each variable entry
name. The PL/I compiler can then check that variable names referenced in EXEC
commands are defined with attributes that are consistent with the attributes
defined by the translator in the data descriptor list. In this example,
ENTRY(*,CHAR(4)) specifies that the variable (named NEXT) associated with the
TRANSID option should be a character string with a length of four.

The reference to DFHEIO1 is resolved by the inclusion of the DFHELII stub routine
in the linkage editor step of one of the CICS-supplied procedures such as
DFHYITPL.

C and C++

In a C and C++ program,, each EXEC CICS command is translated by the
command translator into a call to the function DFHEXEC.

The translator enables this by inserting the following statements near the start of
each translated program:

#pragma linkage(DFHEXEC,0S) /* force 0S linkage =*/
void DFHEXEC(); /* function to call CICS =/

The following example shows the output generated by the translator when
processing a simple EXEC CICS RETURN command:

/* EXEC CICS RETURN =*/

{
DFHEXEC("\xOE\x08\x00\x2F\x00\x00\x10\x00\xFO\xFO\xFO\XxFO\xF1\xF8\xFO\xF0") ;
1

The reference to DFHEXEC is resolved by the inclusion of the DFHELII stub
routine in the linkage editor step of one of the CICS-supplied procedures such as
DFHYITDL, DFHZITDL, DFHZITEL, DFHZITFL, or DFHZITGL.

Assembly language

Each EXEC command is translated into an invocation of the DFHECALL macro.

92 CICS TS for z/OS 4.2: Application Programming Guide

The following example shows the output generated by the translator when
processing a simple EXEC CICS RETURN command:

* EXEC CICS RETURN
DFHECALL =X'0OE0800000800001000"

The assembly of the DFHECALL macro invocation shown above generates code
that builds a parameter list addressed by register 1, loads the address of entry
DFHEI1 in register 15, and issues a BALR instruction to call the stub routine.

DS OH

LA 1,DFHEITPL

LA 14,=x'0OE08000008001000"

ST 14,0(,1)

0I 0(1),x'8s0'

L 15,=V(DFHEI1)

BALR 14,15

The reference to DFHEI1 is resolved by the inclusion of the DFHEAI stub routine
in the linkage editor step of one of the CICS-supplied procedures such as
DFHEITAL. The eyecatcher for DFHEAI in CICS Transaction Server for z/OS,
Version 4 Release 2 is DFHYA670, with the release numbers indicating this stub
was supplied with CICS Transaction Server for z/OS, Version 4 Release 2.

The DFHEAIQ stub for assembler application programs is included by the
automatic call facility of the linkage editor or binder utility. It is called by code
generated by the DFHEIENT and DFHEIRET macros to obtain and free,
respectively, an assembler application program's dynamic storage area. This stub is
required only in assembler application programs; there are no stubs required or
supplied to provide an equivalent function for programs written in the high level
languages.

EXAMPLE Assembly language PROGRAM using LEASM

Use this example to learn how an assembler program is translated using the
LEASM option.

shows a simple CICS assembler program.

*ASM XOPTS (LEASM)
DFHEISTG DSECT
OUTAREA DS CL200 DATA OUTPUT AREA

*

EIASM

*

MSG1
MSG2

CSECT ,

MVC OUTAREA(40),MSG1

MVC OUTAREA(4),EIBTRMID

EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(43) FREEKB ERASE
EXEC CICS RECEIVE

MVC OUTAREA(13),MSG2

EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(13) FREEKB ERASE
EXEC CICS RETURN

DC C'xxxx: ASM program invoked. ENTER TO END.'
DC C'PROGRAM ENDED'
END

Figure 11. a simple CICS assembler program.

When translated and assembled, it expands to [Figure 12 on page 94}

Chapter 7. Translation and compilation 93

ASM XOPTS (LEASM)
DFHEIGBL ,,,LE

*,4DFHEIDL; SETB 0
*,&4DFHEIDB; SETB 0
*,4DFHEIRS; SETB 0
*,8DFHEILE; SETB 1
DFHEISTG DSECT

DFHEISTG

*

kkhkhkhkhkkhhhhhhkhkkxkx

DFHEISTG DSECT

USING *,DFHEIPLR

*

INSERTED BY TRANSLATOR

1 MEANS EXEC DLI IN PROGRAM
1 MEANS BATCH PROGRAM

1 MEANS RSECT

1 MEANS LE MAIN

INSERTED BY TRANSLATOR

B R e T T T R e S R R S R L R 2 e e L e e L e L 2 L e e

EXEC INTERFACE DYNAMIC STORAGE

*

hhhhhhhhhhhhhhhdhdhdhdddhkddhkrdhdkdhkkdkhk*x

EE R T R R R R R S R R S Rt L

* DYNAMIC

STORAGE

EXEC INTERFACE STORAGE @BBAC81A
ESTABLISH ADDRESSABILITY @BBACSIA
AREA (DSA) *

EE R R R R R R R R R R o R R T R R T T R S S S T S T Tt L

*

CEEDSA DS 0D
*
CEEDSAFLAGS DS XL2
CEEDSALNGC EQU X'1000'
CEEDSALNGP EQU X'0800'
CEEDSAEXIT EQU X'0008'
CEEDSAMEMD DS XL2
CEEDSABKC DS
CEEDSAFWC DS A
CEEDSAR14 DS F
CEEDSAR15 DS F
CEEDSARO DS F
CEEDSAR1 DS F
CEEDSAR2 DS F
CEEDSAR3 DS F
CEEDSAR4 DS F
CEEDSAR5 DS F
CEEDSAR6 DS F
CEEDSAR7 DS F
CEEDSAR8 DS F
CEEDSAR9 DS F
F
F
F
A
A
A
4
0
A
A
A

=

CEEDSAR10 DS
CEEDSAR11 DS
CEEDSAR12 DS
CEEDSALWS DS
CEEDSANAB DS
CEEDSAPNAB DS

DS
CEEDSATRAN DS
CEEDSARENT DS
CEEDSACILC DS
CEEDSAMODE DS

*

=T

DS 2F
CEEDSARMR DS A
*
*

DS F
CEEDSAAUTO DS 0D
CEEDSAEND DS 0D

CEEDSASZ EQU CEEDSAEND-CEEDSA
CEEDSA_STDCEEDSA EQU X'0000'

*
*
*

Just keep the same label for formulae

DSA flags

C library DSA

PL/I Tlibrary DSA

An Exit DSA
Member defined
Addr of DSA of caller
Addr of DSA of Tast called rtn
Save area for register 14
Save area for register 15
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register 10
Save area for register 11
Save area for register 12

OCOoONOUTPREWN—O

Addr of PL/I Language Working Space

Addr of next available byte
Addr of end-of-prolog NAB

HPL TxArea or

Program reentry address-IPAT
C to Fortran ILC save area
Return address of module that
caused the Tast mode switch

Addr of Tanguage specific
exception handler

Reserved
Automatic storage starts here
End of DSA

Size of DSA

flag values of standard CEE DSA

DFHEISA DS 18F
DFHEILWS DS F
DFHEINAB DS F
DFHEIRSO DS F
DFHEIR13 DS F

DAHEIRIESDSS for £/0OS 4.2: Application Pﬁfg&gﬁq\fﬁ&g Guide
EIB POINTER

DFHEIBP DS F
DFHEICAP DS F
DFHEIVOO DS H

NCUcCrTnDce? Nnc

SAVE AREA R14-R12 AT 12 OFF @BBAC81A
RESERVED @BBAC81A
RESERVED @BBAC81A
RESERVED @BBAC81A
REGISTER 13 @BBAC81A

@BBAC81A

(NOT USED IF BATCH)

COMMAREA POINTER (NOT USED IF BATCH)
HALFWORD TEMP USED BY DFHECALL

pDcecroyven

ADDACLQ1T AN

01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI

01-DFHEI
01-DFHEI

02-CEEDS

02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS

02-CEEDS
02-CEEDS

02-CEEDS
02-CEEDS
02-CEEDS

02-CEEDS
02-CEEDS

01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI

N1 NurcrT

Chapter 7. Translation and compilation 95

96 CICS TS for z/OS 4.2: Application Programming Guide

Chapter 8. Installing application programs

To install an application program to run under CICS you must translate and compile
your source statements and link-edit the resulting object modules into CICS
libraries. An application program generally means any user program that uses the
CICS command-level application programming interface (API).

Your application programs can also include the following:

SQL statements

DLI requests

Common programming interface (CPI) statements
SAA Resource Recovery statements

External CICS interface commands

Note: If you are developing application programs to use the CICS dynamic
transaction routing facility, use the CICS Interdependency Analyzer tool to detect
whether the programs are likely to cause intertransaction affinity. See [Chapter 22,

[“Affinity,” on page 299 for a description of intertransaction affinity.

This section includes:

* [“Program installation steps’]

+ |“Defining MVS residence and addressing modes” on page 10§

* [“Running application programs in the RDSAs” on page 110

+ |[“Using BMS map sets in application programs” on page 113

“Using the CICS-supplied procedures to install application programs” on page|

114

¢ |“Including the CICS-supplied interface modules” on page 115|

+ |“Installing assembly language application programs” on page 116|

* |"Installing COBOL application programs” on page 118|

* [“Installing PL/I application programs” on page 121|

« |"Installing C application programs” on page 122

+ |“Using your own job streams” on page 126

Program installation steps

There are a number of steps that need to be performed to install an application
program to run under CICS.

About this task

The steps are as follows:

Procedure

1.

If your compiler does not translate CICS commands, you must translate the
program source code to turn CICS commands into calls that are understood by
the compiler.

© Copyright IBM Corp. 1989, 2011 97

a. If your program does not use CICS commands and is invoked only by a
running transaction (and never directly by CICS task initiation), you do not
need a translator step.

b. You must also translate CICS command-level programs that access DL/I
services through either the DL/I CALL or EXEC DLI interfaces.
Applications that access DB2 services using the EXEC SQL interface need an
additional precompilation step.

2. Compile your program source to produce object code.
3. Link-edit the object module to produce a load module, which you store in an
application load library in the DFHRPL or dynamic LIBRARY concatenation.

You need additional INCLUDE statements for applications that access DB2
services using the EXEC SQL interface.

4. Create resource definition entries, in the CSD for any transaction that calls the
program, and install them.

5. Create a resource definition entry in the CSD for the program using one of the
following methods:

* Using program autoinstall.
 Using RDO.

Using dynamic program LIBRARY resources

For an application to run, the load module has to reside in a data set in a CICS
load LIBRARY concatenation.

CICS has two types of load LIBRARY concatenations:
¢ The static load LIBRARY concatenation: DFHRPL.
* One or more dynamically defined load LIBRARY concatenation.

Static LIBRARY concatenation- DFHRPL
The startup JCL defines the static load LIBRARY concatenation, DFHRPL,
to CICS. DFHRPL contains critical data sets, which must be available for
CICS to start up and run, and application program entities. When CICS is
running, changes to the DFHRPL data set names are not possible without
stopping and restarting CICS. Such changes are not usually an option in
today's continuous availability environment.

DFHRPL data set names must conform to the MVS data set naming
convention.

Dynamic program LIBRARY concatenation
You can define program LIBRARY concatenations to CICS dynamically. The
use of dynamic LIBRARY concatenations provides a number of advantages
for the system programmer and the organization:

* They contain one or more data sets from which program artifacts can be
loaded.

* You can bring new applications for deployment into service at any time
without affecting continuous availability.

* You can easily withdraw existing applications in dynamic LIBRARY
concatenations from service without affecting continuous availability.

* You can install patches to existing applications by installing them in a
LIBRARY concatenation with a higher ranking than the existing
LIBRARY, without affecting continuous availability.

* You can take offline data sets in dynamic LIBRARY concatenations for
compression without affecting continuous availability.

98 CICS TS for z/OS 4.2: Application Programming Guide

LIBRARY data set names must conform to the MVS data set naming
convention and you can use alias data sets.

You do not have to use dynamic program LIBRARY concatenations. You may use
DFHRPL. In fact, you must define the following data sets in DFHRPL

* SDFHLOAD

* Phase 1 PLT programs

* Non-SMS managed data sets
 Data sets with DISP other than SHR

You can install or create dynamic LIBRARY concatenations as either enabled or
disabled.

Enabled
When you install or create a LIBRARY with an enabled status of enabled,
CICS attempts to allocate and then concatenate the data sets, before finally
opening the LIBRARY concatenation. If any of these steps fails, those that
had already succeeded are undone and the LIBRARY is installed as
disabled. A message indicates the step that has failed.

Disabled
When you install or create a LIBRARY with an enabled status of disabled,
CICS does not attempt to allocate or concatenate the data sets. When the
data sets are available and the LIBRARY is ready for use, perform a SET
LIBRARY ENABLED command to allocate and concatenate the data sets
and open the LIBRARY.

If any of the enable steps in the SET LIBRARY ENABLED operation fails,
those that had already succeeded are undone and the LIBRARY remains
disabled. A message indicates the step that has failed.

The following examples help you to use dynamic program LIBRARY
concatenations.

Examples of using dynamic LIBRARY resources

You choose whether to adopt dynamic LIBRARY resources. You might use them in
a test environment, or a production environment, or both. You may decide to move
some data sets out of DFHRPL and define them dynamically and to use a
combination of DFHRPL and dynamic program LIBRARY resources.

Good candidates for defining in a dynamic LIBRARY are vendor packages or
in-house applications that are supplied in one or more data sets.

The following examples show how you can use dynamic program LIBRARY
concatenations to manage your programs.

Applying an emergency fix to a CICS system
Before you begin

Assumptions

* A version of an application being used by the CICS system has a problem that
needs correcting.

* An updated version of the application has been created.
* You cannot restart CICS at this time to apply the fix.

Chapter 8. Installing application programs 99

* The person who performs this action has the appropriate access authority.
About this task

Purpose

Install a temporary LIBRARY containing program fixes, to a CICS region.
Process

Procedure

1. Add programs and other artifacts which provide the fix to a PDS or PDSE data
set, or set of data sets.

2. Use the Business Application Services (BAS) component of CICSPlex SM, or use
CEDA or DFHCSDUP or EXEC CICS CREATE, to define a LIBRARY resource
that includes the data set, or data sets, containing the fixes. It must have a
ranking that places it above the LIBRARY containing the failing version of the
program in the search order. This might mean placing the LIBRARY before
DFHRPL in the search order.

3. If you did not use EXEC CICS CREATE to define the LIBRARY, install the new
LIBRARY resource using CEDA or the CICSPlex SM WUL

4. Issue a EXEC CICS SET PROGRAM NEWCOPY or EXEC CICS SET
PROGRAM PHASEIN command, or the equivalent via CICSPlex SM or CEMT ,
for the affected program or programs.

What to do next
Result

The CICS system continues to run and the corrected version of the application is
now in the search order before the problem version so that the fixed version is
used instead.

Installing a new application to a CICS system

Before you begin

Assumptions:

* The application has been provided in one or more PDS or PDSE data set. The
application could be a third party (vendor) product that is provided as a set of
application artifacts in one or more PDS or PDSE data set or a new in-house
application.

* You cannot restart CICS at this time, to apply the fix.
* The person who performs the action has the appropriate access authorization.

About this task
Purpose

Introduce a new application, which has been provided in one or more data sets,
into a running CICS system without affecting continuous availability.

Process

100 CICS TS for z/0S 4.2: Application Programming Guide

Procedure

1. Use the Business Application Services (BAS) component of CICSPlex SM, or use
CEDA or DFHCSDUP or EXEC CICS CREATE, to define a LIBRARY resource,
which includes the data set or data sets containing the new application.
Typically, the application will have no intersects with any existing LIBRARY
resources and can use the default ranking value.

2. If you did not use EXEC CICS CREATE to define the LIBRARY, install the new
LIBRARY resource using CEDA or the WUL

3. Define to CICS the programs, and map sets that make up the application and
transaction definition or definitions that reference it.

4. Install the programs and other definitions.
What to do next
Result

The new application is installed in the CICS production system and continuous
availability is maintained.

Installing a new application to a set of CICS systems

Before you begin

Assumptions:
* The application has been provided in one or more PDS or PDSE data sets.
* The application will be introduced to multiple CICS systems at the same time.

* You cannot restart the CICS regions at this time to add the new application or
the application is not critical to the running of CICS.

* The person who performs this action has the appropriate access authorization.
About this task

Purpose

Introduce a new application which has been provided in one or more data sets,
into a set of CICS systems in a CICSplex. Such systems are more likely to be in
production, although they could also be in a test or a development CICSplex.

Process

Procedure

1. Define a CICSPlex SM LIBRARY definition (LIBDEF), that includes the
application data set, using CICSPlex SM BAS.

2. Specify a ranking for the LIBRARY that reflects its ordering relative to other
LIBRARY resources in use in the CICS regions. Typically, the application will
have no intersects with any existing LIBRARY resources and can use the
default ranking value.

3. Install the new LIBDEF, specifying a target scope that covers the set of CICS
systems.

4. Define to CICS the programs, map sets and any other artifacts that make up
the application and transaction definition or definitions, that reference it.

5. Install the programs and other definitions into the set of CICS systems and
start to use them.

Chapter 8. Installing application programs 101

What to do next

Result

The CICS regions are running with the new application.

Restructuring CICS applications in the LIBRARY organization
Before you begin

Assumptions:

* All applications are currently in data sets defined as DD cards in the DFHRPL
concatenation.

* The person who performs the action has the appropriate access authorization.
About this task
Purpose

Restructure the organization of applications into LIBRARY resources, such that the
data set names relate to the applications they contain rather than to operational
suitability.

Process

Procedure

1. Determine the new allocation of applications to LIBRARY data sets and
whether you will have one LIBRARY for each application, or multiple
applications for each LIBRARY. You can choose to have one application per
LIBRARY to keep your system configuration straightforward and easier to
maintain. Also determine which applications require multiple data sets
concatenated together in the LIBRARY and which require single data sets.

2. Determine which applications will remain in DFHRPL and which will become
dynamic resources.

3. Decide which applications to be defined in dynamic LIBRARYSs are critical to
CICS startup and which are not critical to startup.

4. Define LIBRARY resources for each application, or set of applications if they
are to be grouped, that is to be a dynamic resource, using the Business
Application Services (BAS) component of CICSPlex SM, CEDA, DFHCSDUP, or
EXEC CICS CREATE.

a. Specify a ranking for each LIBRARY that reflects its ordering relative to
other LIBRARYs in use in the CICS region. Typically, the application will
have no intersects with any existing LIBRARYs, and can use the default
ranking value.

b. Specify a CRITICAL status for each LIBRARY that is critical to the running
of CICS, leaving the default status, NONCRITICAL, for those that are not.

C. Specify the names of the data sets in the LIBRARY.

5. Install the new LIBRARY resources using the CEDA INSTALL LIBRARY
command or the CICSPlex SM WUL

6. Remove the data sets containing applications that are in dynamic LIBRARY
concatenations from the DFHRPL concatenation on the next CICS restart.

102 CICS TS for z/0S 4.2: Application Programming Guide

7. Optionally, if you set the ranking to a value that placed the LIBRARY before
DFHRPL for testing purposes, reset the ranking for each LIBRARY to its
intended permanent value.

8. Install the new LIBRARY resources either during CICS restart using a GRPLIST
or BAS installation, or after CICS restart. At this stage, the system loads the
programs from the new LIBRARY resources because they are no longer in the
DFHRPL concatenation.

What to do next
Result

CICS runs as before, but with a better organized set of applications and it is easier
to keep track of where applications are and the CICS systems on which they are
installed on.

Taking a LIBRARY offline or removing an application from a
CICS system

Before you begin

Assumptions:

¢ The application is in a known data set or set of data sets in a dynamic LIBRARY
resource.

* The person who performs the action has the appropriate access authorization.
About this task
Purpose

Take a LIBRARY offline; for example to compress a PDS or remove an application
from a running CICS system.

Process

Procedure

1. Disable the LIBRARY using the EXEC CICS SET LIBRARYcommand, CEMT or
the WUL

2. When all uses of the application have completed, perform an operation to
cause the loaded copies of the programs to be removed, for example a SET
PROGRAM NEWCOPY, or let them fail at the next reload.

3. One reason for disabling the LIBRARY might be to compress the data set and
then re-enable the LIBRARY or reinstall the LIBRARY definition to start using
the application again. After re-enabling the LIBRARY, issue PROGRAM
NEWCOPY or PHASEIN to use the programs again.

What to do next
Result
While the LIBRARY is disabled, no new users can use the application, unless a

copy exists in another LIBRARY that comes after the disabled LIBRARY in the
search order, in which case it is loaded from there.

Chapter 8. Installing application programs 103

Switching between two LIBRARY concatenations
Before you begin

Assumptions:

* A LIBRARY containing the program or various program artifacts making up an
application is currently installed in CICS.

* A new version of the program or application is available in one or more PDS or
PDSE data sets.

* The person who performs this action has the appropriate access authorization.
About this task
Purpose

Introduce one LIBRARY to CICS and take another LIBRARY offline, so that a
program in the new LIBRARY is loaded to replace that program in the old
LIBRARY.

Process

Procedure

1. Define a CICSPlex SM LIBRARY definition (LIBDEF) that includes the new
application data set or data sets, using CICSPlex SM BAS.

2. Install the new LIBRARY.

3. Issue a PROGRAM NEWCOPY or PHASEIN command to start using the new
copy of the program or programs.

4. Disable the old LIBRARY resource and discard it, if it is not likely to be used
again.

5. Optionally, change the ranking of the new LIBRARY using CEMT SET
LIBRARY, the WUI, an SPI program, or the CICSPlex SM API, back to that of
the old LIBRARY.

What to do next

Result

CICS runs with the new LIBRARY and new version of the application.

Discovering information about LIBRARY resources in a CICS
system

Before you begin

Assumptions:
* CICS is running.

About this task
Purpose
Discover information about LIBRARY resources, such as the following:

¢ Which LIBRARY resources are installed in CICS.

104 CICS TS for z/0S 4.2: Application Programming Guide

¢ The current search order through the active LIBRARY resources in CICS; for
example, installed and enabled LIBRARY resources.

¢ The relative positions of two LIBRARY concatenations in the search order.
* Which LIBRARY resources are critical.
e The data sets that are defined to a LIBRARY concatenation.

Process

Procedure

Use the CICSPlex SM WUI or the CEMT INQUIRE LIBRARY command to inquire
on libraries. If you do not specify a LIBRARY or properties, this inquiry shows all
installed LIBRARY resources in the current search order. If you specify some
properties of the LIBRARY resources, a subset of installed LIBRARY resources are
shown. If a specific LIBRARY is specified, details for that LIBRARY are shown.
What to do next

Result

The inquiry shows the critical status and enablement status of the LIBRARY
resources, their rankings, and also their absolute position in the overall search
order. Disabled LIBRARY resources appear in the list but do not participate in the
search order. The detailed view of a LIBRARY shows the data sets in its
concatenation. If using the CICSPlex SM WUI, click the Number of DSNAMEs
field name to display the LIBRARY data set names records. You can issue inquiry
requests or commands to compare the search position numbers of two LIBRARY
concatenations to determine which is before the other in the overall search order.
Discovering LIBRARY information for programs in a CICS system
Before you begin

Assumptions:
¢ CICS is running.
e Programs are in use in the CICS system.

About this task

Purpose

Inquire on programs in the CICS system to discover the LIBRARY and data set in
that LIBRARY from which the program was loaded; for example, to validate that it
is loaded from the intended location.

Process

Procedure

Use the WUI or CEMT INQUIRE PROGRAM command to inquire on a program.
What to do next

Result

Chapter 8. Installing application programs 105

The program information returned includes the LIBRARY and data set from which
it was loaded:

* If the program was loaded from an installed LIBRARY, the LIBRARY and
LIBRARYDSN names are returned.

* If the program was loaded from a LIBRARY that has been disabled, the
LIBRARY name is returned but the LIBRARYDSN is blank.

e If the program was loaded from a LIBRARY that has been discarded, both
LIBRARY and LIBRARYDSN are blank.

* If the program has not been loaded, both LIBRARY and LIBRARYDSN are
blank.

s If the program was loaded from the LPA, both LIBRARY and LIBRARYDSN are
blank.

Amending the CRITICAL property of LIBRARY resource

Before you begin

Assumptions:
* CICS is running.
* At least one dynamic LIBRARY is active in the CICS system.

About this task

Purpose

Specify that a LIBRARY in one or more CICS regions is critical to CICS startup.
Process

Procedure

1. Use the CICSPlex SM WUI, CEMT, or the SPI to change the critical status of an
installed LIBRARY. This change takes effect at the next warm or emergency
start, when the critical status determines whether or not CICS startup continues
uninterrupted if any of the data sets in the LIBRARY concatenation are
unavailable or if any other problem prevents the LIBRARY from being
recovered as enabled.

2. For a permanent change to the CRITICAL status, use CICSPlex SM BAS or
CEDA to define LIBRARY definitions with the required critical status, and
install the definitions at each CICS cold or initial start using CICSPlex SM BAS
installation or GRPLIST installation.

What to do next

Result

The CICS behavior on restart changes depending on the critical setting for the
LIBRARY and the availability of the data sets in the LIBRARY.

Keeping track of changes to the LIBRARY configuration
Before you begin

Assumptions:
e CICS is running.

106 CICS TS for z/0S 4.2: Application Programming Guide

About this task
Purpose

Use the audit log to determine changes to the LIBRARY configuration in a CICS
system, such as the following:

* A new LIBRARY is installed.

* A LIBRARY is removed (discarded) from CICS.

* The ranking, critical status, or enablement status of a LIBRARY is changed.
¢ The overall LIBRARY search order is changed .

Process

Procedure

1. Examine the audit log, which is written to the CSLB transient data queue, to
see changes to a LIBRARY configuration in a CICS system and the resulting
LIBRARY search order.

2. Optionally, use a utility, developed in-house or by a vendor, to analyze and
interpret the audit log for this system or for multiple systems.

What to do next
Result

CICS continues running.
Tidying up the LIBRARY configuration
Before you begin

Assumptions:
¢ CICS is running.

About this task
Purpose

Tidy up LIBRARY concatenations that have been used to apply temporary fixes or
that contain application that are no longer used.

Process

Procedure

1. Study the names of LIBRARY resources installed in CICS and the audit log of
LIBRARY changes, to discover any LIBRARY resources used to apply
temporary fixes that are no longer required, or LIBRARY resources for
applications that are no longer used.

2. Discard any LIBRARY resources that are no longer required.

3. Delete the definitions of these LIBRARY resources, unless you believe that they
will be required in the future and operational procedures allow reuse of
LIBRARY definitions in this way.

Chapter 8. Installing application programs 107

What to do next
Result

CICS continues as before. The set of LIBRARY resources installed in the CICS
system are only those that are required for current applications used in the system.

Defining MVS residence and addressing modes

This section describes the effect of the MVS residence and addressing modes on
application programs, how you can change the modes, and how you can make
application programs permanently resident.

About this task

An application written to run on MVS/370 can run on any MVS system, if it is
link-edited with the AMODE(24) and RMODE(24) options.

A command-level program can reside above 16MB, and address areas above 16MB.
The program can contain EXEC CICS, EXEC DLI, and CALL DL/I commands.

Establishing a program's addressing mode
Every program that executes in MVS is assigned two attributes: an addressing

mode (AMODE), and a residency mode (RMODE). AMODE specifies the
addressing mode in which your program is designed to receive control.

About this task

Generally, your program is designed to execute in that mode, although you can
switch modes in the program, and have different AMODE attributes for different
entry points within a load module. The RMODE attribute indicates where in
virtual storage your program can reside. Valid AMODE and RMODE specifications

are:

AMODE(24) Specifies 24-bit addressing mode.

AMODE(31) Specifies 31-bit addressing mode.

AMODE(ANY) Specifies either 24- or 31-bit addressing mode.

RMODE(24) Indicates that the module must reside in virtual storage below 16MB.
You can specify RMODE(24) for 31-bit programs that have 24-bit
dependencies.

RMODE(ANY) Indicates that the module can reside anywhere in virtual storage.

Note: C or C++ language programs must be link-edited with AMODE(31).

If you do not specify any AMODE or RMODE attributes for your program, MVS
assigns the system defaults AMODE(24) and RMODE(24). To override these
defaults, you can specify AMODE and RMODE in one or more of the following
places. Assignments in this list overwrite assignments later in the list.

Procedure
1. On the link-edit MODE control statement:
MODE AMODE (31),RMODE (ANY)
2. Either of the following;:
* In the PARM string on the EXEC statement of the link-edit job step:

108 CICS TS for z/0S 4.2: Application Programming Guide

//LKED EXEC PGM=IEWL,PARM='AMODE(31),RMODE(ANY),.."

¢ On the LINK TSO command, which causes processing equivalent to that of
the EXEC statement in the link-edit step.

3. On AMODE or RMODE statements within the source code of an assembler
program. You can also set these modes in COBOL by means of the compiler
options; for information about COBOL compiler options, see the relevant
application programming guide for your COBOL compiler.

CICS address space considerations

The following table shows you the valid combinations of the AMODE and
RMODE attributes and their effects.

Table 7. Valid AMODE and RMODE specifications and their effects

AMODE RMODE | Residence Addressing
24 24 Below 16 MB 24 bit mode

31 24 Below 16 MB 31 bit mode
ANY 24 Below 16 MB 31 bit mode
31 ANY Above 16 MB 31 bit mode

The following example shows link-edit control statements for a program coded to
31 bit standards:

//LKED.SYSIN DD =

MODE AMODE (31) ,RMODE (ANY)

NAME anyname (R) ("anyname" is your load module name)
/*
//

Making programs permanently resident

If you define a program in the CSD with the resident attribute, RESIDENT(YES), it
is loaded on first reference. This applies to programs link-edited with either
RMODE(ANY) or RMODE(24). However, be aware that the storage compression
algorithm that CICS uses does not remove resident programs.

About this task

If there is not enough storage for a task to load a program, the task is suspended
until enough storage becomes available. If any of the DSAs get close to being short
on storage, CICS frees the storage occupied by programs that are not in use. For
more information about the dynamic storage areas in CICS, see
“CICS dynamic storage areas” in the CICS Performance Guide.

Instead of making RMODE(24) programs resident, you can make them
non-resident and use the library lookaside (LLA) function. The space occupied by
such a program is freed when its usage count reaches zero, making more virtual
storage available. LLA keeps its library directory in storage and stages (places)
copies of LLA-managed library modules in a data space that the virtual lookaside
facility (VLF) manages. CICS locates a program module from the LLA library
directory in storage, rather than searching program directories on DASD. When
CICS requests a staged module, LLA gets it from storage without any
input/output activity.

Chapter 8. Installing application programs 109

Running applications in the link pack area

Programs can reside in the link pack area (LPA) provided that they follow certain
requirements.

Assembler language, C, COBOL, or PL/I programs must be read-only and adhere
to the requirements as follows:

Assembler
Use the RENT assembler option.

C Use the RENT compiler option.

COBOL
Do not overwrite WORKING STORAGE. (The CICS translator generates a CBL
statement with the required compiler RENT option (unless you specify the
translator option NOCBLCARD).

PL/I
Do not overwrite STATIC storage. (The CICS translator inserts the required
REENTRANT option into the PROCEDURE statement.)

All programs must be link-edited with the RENT and REFR options.
If you want CICS to use modules that you have written to these standards, and

installed in the LPA, specify USELPACOPY(YES) on the program resource
definitions in the CSD.

Running application programs in the RDSAs

Programs that are eligible to reside above 16MB, and are read-only, can reside in
the CICS extended read-only DSA (ERDSA). Programs that are not eligible to reside
above 16MB, and are read-only, can reside in the CICS read-only DSA (RDSA)
below 16MB.

To be eligible for the ERDSA, programs must be:

* Properly written to read-only standards

* Written to 31-bit addressing standards

* Link-edited with the RENT attribute and the RMODE(ANY) residency attribute

Programs that are not eligible for the ERDSA, but are eligible for the RDSA,
programs must be:

* Properly written to read-only standards
* Link-edited with the RENT attribute

Note: When you are running CICS with RENTPGM=PROTECT specified as a system
initialization parameter, the RDSAs are allocated from key-0 read-only storage.

Programs link-edited with RENT and RMODE(ANY) are automatically loaded by
CICS into the ERDSA.

ERDSA requirements for the specific languages are described as follows.

110 CICS TS for z/OS 4.2: Application Programming Guide

Assembler

If you want CICS to load your assembler programs in the ERDSA, assemble and
link-edit them with the following options: the RENT assembler option, the link-edit
RENT attribute, and the RMODE(ANY) residency mode.

Note: If you specify these options, ensure that the program is truly read-only (that
is, does not modify itself in any way—for example, by writing to static storage),
otherwise storage exceptions occur. The program must also be written to 31-bit
addressing standards. See |Causes of protection exceptions|in the CICS Problem
Determination Guide for some possible causes of storage protection exceptions in
programs resident in the ERDSA.

The CICS-supplied procedure, DFHEITAL, has a LNKPARM parameter that
specifies the XREF and LIST options only. To link-edit an ERDSA-eligible program,
override LNKPARM from the calling job, specifying the RENT and RMODE(ANY)
options in addition to any others you require.

For example:

//ASMPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//EITAL EXEC DFHEITAL,

(other parameters as necessary)

// LNKPARM="LIST,XREF,RMODE (ANY) ,RENT"

Note: The CICS EXEC interface module for assembler programs (DFHEAI)
specifies AMODE(ANY) and RMODE(ANY). However, because the assembler
defaults your application to AMODE(24) and RMODE(24), the resulting load
module also becomes AMODE(24) and RMODE(24).

If you want your application program link-edited as AMODE(31) and
RMODE(ANY), you are recommended to use appropriate statements in your
assembler program. For example:

MYPROG CSECT
MYPROG AMODE 31
MYPROG RMODE ANY

There are two ways of setting AMODE and RMODE:
* You can set the required AMODE and RMODE specification by using link-edit
(or binder) control information in the JCL PARM keyword. For example:

//EITAL EXEC DFHEITAL,
LNKPARM="LIST,XREF,RENT,AMODE (31) ,RMODE (ANY) '

* Alternatively, you can use the MODE control statement in the SYSIN data set in
the link-edit, or the binder step in your JCL.

When using the binder, you may see unexpected warning messages about
conflicting AMODE and RMODE specifications.

C and C/++

If you want CICS to load your C and C++ programs into the ERDSA, compile and
link-edit them with the RENT compiler option.

The CICS-supplied procedures DFHYITDL or DFHYITFL (for C) and DFHYITEL or
DFHYITGL (for C++) have a LNKPARM parameter that specifies a number of
link-edit options. To link edit an ERDSA-eligible program, override this parameter
from the calling job, and add RENT to the other options you require. You do not

Chapter 8. Installing application programs 111

need to add the RMODE(ANY) option, because the CICS EXEC interface module
for C (DFHELII) is link-edited with AMODE(31) and RMODE(ANY). Therefore,
your program is link-edited as AMODE(31) and RMODE(ANY) automatically
when you include the CICS EXEC interface stub, see|"The CICS-supplied interface]
modules” on page 90|

The following sample job statements show the LNKPARM parameter with the
RENT option added:

//CPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//YITDL EXEC DFHYITDL,

(other parameters as necessary)

// LNKPARM="LIST,MAP,LET,XREF,RENT'

If you want to compile C or C++ code that contains sequence numbers, for
example the C or C++ sample programs distributed with CICS, then you must
override the CPARM parameter to specify SEQ. For example:
//EXAMPLE EXEC DFHYITEL,
// CPARM='/CXX OPT(1) SEQ NOMAR SOURCE'
//TRN.SYSIN DD =*
. source code goes here ...

/*
//LKED.SYSIN DD *

NAME EXAMPLE (R)
/*

COBOL

If you use the integrated CICS translator then the compile requires the RENT
compiler option, so no CBL card needs to be added during translation.

COBOL programs that use a separate translation step are automatically eligible for
the ERDSA, because:

* The translator option, CBLCARD (the default), causes the required compiler
option, RENT, to be included automatically on the CBL statement generated by
the CICS translator. If you use the translator option, NOCBLCARD, you can
specify the RENT option either on the PARM statement of the compile job step,
or by using the COBOL macro IGYCOPT to set installation-defined options.

* The COBOL compiler automatically generates code that conforms to read-only
and 31-bit addressing standards.

* The CICS EXEC interface module for COBOL (DFHELII) is link-edited with
AMODE(@31) and RMODE(ANY). Therefore, your program is link-edited as
AMODE(31) and RMODE(ANY) automatically when you include the CICS
EXEC interface interface stub, see I”The CICS-supplied interface modules” 0n|

You also need to specify the reentrant attribute to link-edit. The CICS-supplied
procedure, DFHYITVL, has a LNKPARM parameter that specifies a number of
link-edit options. To link-edit an ERDSA-eligible program, override this parameter
from the calling job, and add RENT to any other options you require. For example:

//COBPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//YITVL EXEC DFHYITVL,

(other parameters as necessary)

// LNKPARM="LIST,XREF,RENT'

112 CICS TS for z/OS 4.2: Application Programming Guide

PL/

CICS PL/I programs are generally eligible for the ERDSA, provided they do not
change static storage.

The following requirements are enforced, either by CICS or PL/I:

* The required REENTRANT option is included automatically, by the CICS
translator, on the PL/I PROCEDURE statement.

¢ The PL/I compiler automatically generates code that conforms to 31-bit
addressing standards.

* The CICS EXEC interface module for PL/I (DFHELII) is link-edited with
AMODE(@31) and RMODE(ANY). Therefore, your program is link-edited as
AMODE(31) and RMODE(ANY) automatically when you include the CICS
EXEC interface stub, see [The CICS-supplied interface modules” on page 90)

You also need to specify the reentrant attribute to the link-edit. The CICS-supplied
procedure, DFHYITPL, has a LNKPARM parameter that specifies a number of

link-edit options. To link-edit an ERDSA-eligible program, override this parameter
from the calling job, and add RENT to any other options you require. For example:

//PLIPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//YITPL EXEC DFHYITPL,

(other parameters as necessary)

// LNKPARM="LIST,XREF,RENT'

Note: Do not specify the RENT attribute on the link-edit step unless you have
ensured the program is truly read-only (and does not, for example, write to static

storage), otherwise storage exceptions will occur. See [Causes of protection|
in the CICS Problem Determination Guide for some possible causes of

storage protection exceptions in programs resident in the ERDSA.

Using BMS map sets in application programs

Use this list to help you use BMS map sets in application programs.
About this task

Before you install an application program to run under CICS:

* Create any BMS map sets used by the program, as described in
[“Installing map sets and partition sets,” on page 131}

* Include the physical map sets (used by BMS in its formatting activities) in a data
set that is in the DFHRPL or dynamic LIBRARY concatenation.

¢ Either include the symbolic map sets (copied into the application programs) in a
user copy library, or insert them directly into the application program source.

The DFHMAPS procedure writes the symbolic map set output to the library
specified on the DSCTLIB parameter, which defaults to the
CICSTS42.CICS.SDFHMAC library. If you want to include symbolic map sets in a
user copy library:

* Specify the library name by the DSCTLIB=name operand on the EXEC statement
for the DFHMAPS procedure used to install physical and symbolic map sets
together.

* Include a DD statement for the user copy library in the SYSLIB concatenation of
the job stream used to assemble and compile the application program.

Chapter 8. Installing application programs 113

If you choose to let the DFHMAPS procedure write the symbolic map sets to the
CICSTS42.CICS.SDFHMAC library (the default), include a DD statement for the
CICSTS42.CICS.SDFHMAC library in the SYSLIB concatenation of the job stream
used to compile the application program. This is not necessary for the
DFHEITAL procedure used to assemble assembly language programs, because
these jobs already include a DD statement for the CICSTS42.CICS.SDFHMAC
library in the SYSLIB concatenation.

* For PL/I, specify a library that has a block size of 32760 bytes. This is necessary
to overcome the blocksize restriction on the PL/I compiler.

For more information about installing map sets, see (Chapter 9, “Installing map sets

|and partition sets,” on page 131. |For information about writing programs to use

BMS services, sedChapter 58, “Basic mapping support,”

on page 683

Using the CICS-supplied procedures to install application programs

CICS supplies job control statements (JCL) for the translate (if required) , compile,
and link-edit steps, in separate cataloged procedures for each programming
language supported. After CICS is installed, you should copy these procedures,
installed in the CICSTS42.CICS.SDFHPROC library, into a procedure library.

Each procedure has a name of the form DFHwxTyL, where the variables w, x, and
y depend on the type of program (EXCI batch or CICS online), the type of
compiler, and the programming language. Using the preceding naming convention,

the procedure names are given in

Table 8

Table 8. Procedures for installing application programs

Language Language Environment-conforming non-Language
compilers Environment-conforming
compilers
Stand-alone |EXCI Integrated Stand-alone | EXCI
translator translator translator
Assembler |- - - DFHEITAL DFHEXTAL
C DFHYITDL DFHYXTDL |DFHZITDL - -
(see note (see note
pag) pag 5
C using the | DFHYITFL - DFHZITFL - -
XPLINK (see note (see note
compiler | [page 113 page 113
option
C++ DFHYITEL DFHYXTEL |DFHZITEL - -
(see note (see note
page 115) page 115)
C++ using | DFHYITGL - DFHZITGL - -
the XPLINK | (see note @ (see note
compiler pag) pag 3)
option
COBOL (see | DFHYITVL DFHYXTVL | DFHZITCL - -
note (see note [3 on]| (see note 2 on]
page 115) [page 115) [page 115)
PL/I (see DFHYITPL DFHYXTPL | DFHZITPL - -
note|5 o (see note 2 o see note
[page 115) [page 115) page 115)

114 CICS TS for z/OS 4.2: Application Programming Guide

Note:

1. DFHYITEL may also be used for C as long as you specify the correct name of
the C compiler on the COMPILER parameter.

2. The output library for the generated module is a PDSE (not a PDS).

3. A separate translator step must be used for EXCI COBOL programs as
translator options are ignored when using the integrated CICS translator.

4. DFHZITCL is the recommended procedure for compiling COBOL modules,
because it uses the version of the Enterprise COBOL compiler which includes
the integrated CICS translator. However, if the COBOL program is intended for
batch processing using the EXCI option, then the integrated translator cannot
be used.

5. DFHZITPL is the recommended procedure for compiling PL/I modules as it
uses the version of the Enterprise PL/I compiler which includes the integrated
CICS translator. However, if the PL/I program is intended for batch processing
using the EXCI option, then the integrated translator cannot be used.

6. For programs that issue EXEC DLI commands in a batch environment under
Language Environment (IMS™ routines), use the following special procedures:

DFHYBTPL
PL/I application programs

DFHYBTVL
COBOL application programs

Installing programs in load library secondary extents

CICS supports load library secondary extents that are created while CICS is
running. If you define libraries in the DFHRPL or dynamic LIBRARY concatenation
with primary and secondary extents, and secondary extents are added as a result
of link-editing into the load library while CICS is running, the CICS loader detects
the occurrence, closes, and then reopens the library. This means that you can
introduce new versions using the CEMT NEWCOPY command, even if the new
copy of the program has caused a new library extent.

However, this can increase the search time when loading modules from the
secondary extents. You should avoid using secondary extents if possible.

Note: If you are using DFHXITPL, the SYSLMOD DD statement in the binder
step must refer to a PDSE (not a PDS as for the older PL/I compilers).

Including the CICS-supplied interface modules

If you want to use CPI Communications or SAA® Resource Recovery in your
application program then you must make the appropriate interface modules
available to your program.

The CICS-supplied procedures to install your online application programs in a
CICS library specify the CICS library member that contains the INCLUDE
statement for the appropriate language EXEC interface module. For example, the
DFHYITVL procedure uses the following statements:

//COPYLINK EXEC PGM=IEBGENER,COND=(7,LT,COB)
//SYSUT1 DD DSN=&INDEX..SDFHSAMP (&STUB),DISP=SHR
//SYSUT2 DD DSN=&©LINK,DISP=(NEW,PASS),

/1l DCB=(LRECL=80,BLKSIZE=400,RECFM=FB),
/] UNIT=&WORK, SPACE= (400, (20,20))
//SYSPRINT DD SYSOUT=&0UTC

//SYSIN DD DUMMY

Chapter 8. Installing application programs 115

//SYSLIN DD DSN=&©LINK,DISP=(OLD,DELETE)
// DD DSN=&&LOADSET,DISP=(0OLD,DELETE)
// DD DDNAME=SYSIN

In this COBOL example, the symbolic parameter STUB defaults to DFHEILID. The
DFHEILID member contains the statement INCLUDE SYSLIB(DFHELII).

The supplied procedures for PL/I and C also refer to DFHEILID, which means that

the DFHELII stub is used.

If your application program is to use CPI Communications or the SAA Resource

Recovery facility, do one of the following:

* Add appropriate INCLUDE statements to the LKED.SYSIN override in the job
used to call the CICS-supplied procedure to install your application program.

Add the following INCLUDE statements:

— INCLUDE SYSLIB(DFHCPLC) if your program uses CPI Communications
— INCLUDE SYSLIB(DFHCPLRR) if your program uses SAA Resource Recovery

Warning messages can appear during the link-edit step, indicating DUPLICATE
definitions for the DFHEI1 entry. You can ignore these messages.

For more information about link-edit requirements, see [“Using your own job|

lstreams” on page 126,

Installing assembly language application programs

You can use the DFHEITAL or DFHEXTAL procedure to translate, assemble, and

link-edit application programs written in assembly language.

About this task

You can use the sample job control statements shown in to process
application programs written in assembly language. In the procedure name,
depends on whether your programs are CICS application programs or EXCI batch
programs. For the names of the CICS-supplied procedures, see|Table 8 on page 114

//jobname JOB accounting info,name,MSGLEVEL=1

// EXEC PROC=DFHEXTAL 1
//TRN.SYSIN DD *

*ASM XOPTS(translator options . . .) 2

assembly language source statements

/*
//LKED.SYSIN DD *
NAME anyname (R)
/*
//

where anyname is your load module name

Figure 13. Sample job control statements to call the DFHEXTAL procedures

Notes:

116 CICS TS for z/OS 4.2: Application Programming Guide

1 If you are installing a program into either of the read-only DSAs, see
lapplication programs in the RDSAs” on page 11(| for more details.

If you are installing a program that is to be used from the LPA, add:
* RENT to the PARM options in the EXEC statement for the ASM step of the
DFHEITAL procedure

* RENT and REFR options to the LNKPARM parameter on the call to the
DFHEITAL procedure

(See [“Running applications in the link pack area” on page 110.)

2 For information about the translator options you can include on the XOPTS
statement, see [“Defining translator options” on page 87|

shows the Assembler source program processed by the command level
translator to produce a translator listing and an output file. This output file is then
processed by the Assembler, with reference to CICS.SDFHMAC, to produce an
assembler listing and a further output file. This output file is then processed by the
linkage editor, with reference to CICS.SDFHLOAD to produce a linkage editor
listing and a load module that is stored in CICS.SDFHLOAD.

Assembler-language

source

Command-level
language translator

Translator
listing

H

Intermediate
+ storage

- Assembly

——— Assembler listing

Intermediate
+ storage

Linkage Editor
Linkage Editor listing

CICS.
SDFHLOAD

CICS.
SDFHLOAD

Figure 14. Installing assembly language programs using the DFHEITAL procedure

Chapter 8. Installing application programs 117

Installing COBOL application programs

This diagram shows you the flow of control in the cataloged procedures for
COBOL and PL/I programs that require a separate translator step. If you use an
integrated translator, there is no separate translator step. The high-level language
source and CICS.SDFHLOAD both input to the compiler, and a combined
translator and compiler listing is produced.

High-levellanguage

source

Command-level
language translator

Translator
listing

CICS.
SDFHLOAD

Intermediate
+ storage
DFHBMSCA c
ompiler
% High-level Iistingl
CICS. language compiler
SDFHCOB
or SDFHPL1 DFHEILIC
DFHEILIP
’ Intermediate
+ * storage
DFHECI
DFHEPI Linkage Editor

Linkage Editor »

-

CICS.
SDFHLOAD

Figure 15. Installing COBOL and PL/I programs

clcs. listing

SDFHLOAD

DFHPL10I

SYS1.PLIBASE
orCOBLIB

Sample JCL to install COBOL application programs

You can use the job control statements shown in these example to process COBOL
application programs with a separate or integrated translator.

The procedure name depends on whether it is a CICS application program or an
EXCI batch program. For the names of the CICS-supplied COBOL procedures, see
[Table 8 on page 114,

118 CICS TS for z/OS 4.2: Application Programming Guide

//jobname JOB accounting info,name,MSGLEVEL=1

// EXEC PROC=procname 1
//TRN.SYSIN DD * 2
CBL XOPTS(Translator options . . .) 3

COBOL source statements

/*

//LKED.SYSIN DD * 4
NAME anyname (R)

/*

//

where procname is the name of the procedure, and anyname is your load module name.

Figure 16. Sample job control statements to call the DFHYITVL or DFHYXTVL procedures

To use the procedure DFHZITCL to invoke the integrated translator, you can use
the job control statements shown in :

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITCL,PROGLIB=dsnname 1
//COBOL.SYSIN DD *

. COBOL source statements

/*
//LKED.SYSIN DD =*
NAME anyname (R)
/*
//

where anyname is your load module name.

Figure 17. Sample job control statements to use the DFHZITCL procedure

Notes for installing COBOL programs
1 Translator options:

Specify the COBOL3 or COBOL2 translator option according to the version of the
COBOL functionality required in the compile step.

Compiler options:

To compile a COBOL program, you need the compiler options RENT, NODYNAM,
and LIB.

If you use the translator option, CBLCARD (the default), the CICS translator
automatically generates a CBL statement containing these options. You can prevent
the generation of a CBL or PROCESS card by specifying the translator option
NOCBLCARD.

The PARM statement of the COB step in the CICS-supplied COBOL procedures
specifies values for the compiler options. For example:

//COB EXEC PGM=IGYCRCTL,REGION=®,
// PARM="'NODYNAM, LIB,0BJECT,RENT,APOST,MAP,XREF"

Chapter 8. Installing application programs 119

To compile a COBOL program with a compiler that has an integrated translator,
you also need to use the CICS compiler option to indicate that you want the
compiler to invoke the translator. The DFHZITCL procedure includes this compiler
option:

CBLPARM="NODYNAM, LIB,MAP,CICS("''COBOL3"")"

Note: If you specify CICS translator options for the integrated translator in the
PARM string, you need double apostrophes as shown in this example. If, however,
you specify the options in your source program, you need single apostrophes (for
example, you might have CBL CICS('COBOL3,SP') APOST as the CBL statement in
your source program.

The CICS-supplied COBOL procedures do not specify values for the SIZE and BUF
options. The defaults are SIZE=MAX, and BUF=4K. SIZE defines the amount of
virtual storage available to the compiler, and BUF defines the amount of dynamic
storage to be allocated to each compiler buffer work file. You can change these
options with a PARM.COB parameter in the EXEC statement that invokes the
procedure. For example:

EXEC PROC=procname ,PARM.COB="'SIZE=512K,BUF=16K,.,.,."

Change compiler options using any of the following methods:

e Opverride the PARM statement defined on the COB step of the CICS-supplied
COBOL procedures.

If you specify a PARM statement in the job that calls the procedure, it overrides
all the options specified in the procedure JCL. Ensure that all the options you
want are specified in the override, or in a CBL statement.

* Specify a CBL statement at the start of the source statements in the job stream
used to call the CICS-supplied COBOL procedures.

* Use the COBOL installation defaults macro, IGYCOPT. This macro is required if
you do not use a CBL statement (that is, you have specified the translator option
NOCBLCARD).

* Define a data set that contains the compiler options for your COBOL program,
this data set must include the CICS compiler option and it sub-parameters.

Code the SYSOPTF DD statement in one of the following ways:
// SYSOPTF DD DSNAME=dsname,UNIT=SYSDA,VOLUME=(subparms),DISP=SHR

In this code fragment, the compiler options are stored in the data set dsname.

//COBOL EXEC PGM=IGYCRCTL,REGION=4M,PARM=(OPTFILE)
//SYSOPTF DD =

APOST

LIB

TRUNC (OPT)

CICS('COBOL3,SP")

NODYNAM

RENT

LIST

MAP

XREF

OPT

TEST(ALL, SEPARATE)
//STEPLIB DD DSN=PP.COBOL390.V410.SIGYCOMP,DISP=SHR

In this code fragment, the compiler options are placed directly in the code, after
the OPTFILE parameter.

For more information about the SYSOPTF statement, see the Enterprise COBOL
for z/0OS Information Center:

120 CICS TS for z/0S 4.2: Application Programming Guide

For information about the translator option CBLCARD | NOCBLCARD, see
[“Defining translator options” on page 87 If you choose to use the NOCBLCARD
option, also specify the COBOL compiler option ALOWCBL=NO to prevent an
error message of IGYOS4006-E being issued. For more information about the
ALOWCBL compiler option, see the relevant Installation and Customization manual
for your version of COBOL.

2 If you have no input for the translator, you can specify DD DUMMY instead of DD =.
However, if you specify DD DUMMY, also code a suitable DCB operand. The
translator does not supply all the data control block information for the SYSIN
data set.

3 If the stand-alone translator supplied with CICS TS is used, the translator options
on the XOPTS statement override similar options in the CICS-supplied COBOL
procedures.

For information about the translator options you can include on the XOPTS
statement, see [“Defining translator options” on page 87

When the integrated CICS translator is used, the COBOL compiler recognizes only
the keyword CICS for defining translator options, not XOPTS.

4 You can ignore weak external references unresolved by the link-edit.

The link-edit job step requires access to the libraries containing the
environment-specific modules for CICS, and the Language Environment link-edit
modules, as appropriate. Override or change the names of these libraries if the
modules and library subroutines are installed in libraries with different names.

If you are installing a program into either of the read-only DSAs, see
lapplication programs in the RDSAs” on page 11(| for more details.

If you are installing a program that is to be used from the LPA, add the RENT and
REFR options to the LNKPARM parameter on the call to the CICS-supplied
COBOL procedures. For more information, see ['Running applications in the link]
fpack area” on page 110

Installing PL/I application programs

You can use the DFHYXTPL procedures to process PL/I applications with a
separate translator. The value of “x” depends on whether it is a CICS application
program or an EXCI batch program. The new DFHZITPL procedure can be used to
invoke the integrated translator.

[Figure 15 on page 118]illustrates the flow of control in the cataloged procedures for
PL/I programs.

For more information about preparing PL/I programs, see the PL/I Programming
Guide.

Chapter 8. Installing application programs 121

Installing C application programs

This diagram shows you the flow of control in the DFHYxTzL cataloged
procedures for C command-level programs that require a separate translator step.
If you use an integrated translator, there is no separate translator step. The
high-level language source and CICS.SDFHLOAD both input to the compiler, and
a combined translator and compiler listing is produced.

122 CICS TS for z/0S 4.2: Application Programming Guide

CICS.
SDFHLOAD

EDC.V1R2MO
SEDCHDRS
SEDCMSGS
(EDCMSGE)

SEDCLINK

SEDCCOMP
SEDCMSGS
(EDCMSGE)

EDC.V2R2M1
SIBMLINK

CICS.
SDFHLOAD

TN
N

DFHBMSCA
DFHAID

H
EDC.V1R2MO

High-levellanguage

source

Command-level
language translator

Translator

listing

Intermediate

v

High-level
language compiler

storage

Compiler

listing

v

Pre-linkage
editor

Intermediate
storage

Pre-linkage

editor
listing

DFHEILID
DFHELII

— Linkage Editor

—

Intermediate
storage

Linkage Editor

EDC.V1R2MO
SEDCBASE

TN
N

EDC.V2R2M1
SIBMBASE

Figure 18. Installing C programs using the DFHYxTzL procedure

CICS.
SDFHLOAD

There are translator, compiler, pre-linkage editor and linkage editor steps, each

listing

producing a listing and an intermediate file that is passed to the next step. C
libraries are referenced in the compiler, pre linkage editor, and linkage editor steps.

Note: When you choose the XPLINK compiler option, there is no pre-link step in

the diagram above.

Chapter 8. Installing application programs

123

Before you can install any C programs, you must have installed the C library and
compiler and generated CICS support for C. (See the CICS Transaction Server for
z/OS Installation Guide.)

Sample JCL to install C application programs

You can use the job control statements shown in these examples to process C
application programs. In the procedure name, x depends on whether your program
is a CICS application program or an EXCI batch program.

For the names of the CICS-supplied procedures, see [Table 8 on page 114}

//jobname JOB accounting info,name,MSGLEVEL=1

// EXEC PROC=DFHYxTzL 1
//TRN.SYSIN DD * 2
#pragma XOPTS(Translator options . . .) 3

C source statements

/*
//LKED.SYSIN DD *

NAME anyname (R)

/*
//

where anyname is your load module name.

Figure 19. Sample JCL to call the DFHYxTzL procedures

Notes for installing a C program

1.

Compiler options:You can code compiler options by using the parameter
override CPARM in the EXEC statement that invokes the procedure, or on a
#pragma options directive.
If you want to make your C or C++ source available to the DFHYITEL,
DFHZITEL or DFHYXTEL JCL procedures you must restrict the source input
margins. You can restrict the source input margins by:
* Altering the C or C++ source directly by specifying the following pragma
declaration:
#pragma margins(m, n)

where m and n are the columns where the C or C++ source is located. For
example #pragma margins(1,72).

* Altering the CPARM override options in the JCL procedure; specify SEQ or
NOSEQ depending on whether the source has sequence numbers or not.

If you have no input for the translator, you can specify DD DUMMY instead of DD
*. However, if you specify DD DUMMY, also code a suitable DCB operand. (The
translator does not supply all the data control block information for the SYSIN
data set.)

Translator options: For information about the translator options you can
include on the XOPTS statement, see [“Defining translator options” on page 87, .

If you are installing a program into either of the read-only DSAs, see
[application programs in the RDSAs” on page 110| for more details.

If you are installing a program that is to be used from the LPA, add the RENT
and REFR options to the LNKPARM parameter on the call to the DFHYxTzL
procedure. (See [‘Running applications in the link pack area” on page 110| for
more information.)

124 CICS TS for z/0S 4.2: Application Programming Guide

C language programs must be link-edited with AMODE(31), so the DFHYxTzL
procedures specify AMODE(31) by default.

Invoking the integrated CICS translator for XL C

To use the procedures to invoke the integrated translator for XL C, you can use the
job control statements shown in

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITxL,PROGLIB=dsnname 1
//C.SYSIN DD =
. C source statements
//LKED.SYSIN DD =
NAME anyname (R)

/1

where anyname is your load module name.

Figure 20. Sample JCL for integrated translator for XL C

1. Translator name: Specify DFHZITDL for C programs without XPLINK, or
DFHZITFL for C programs with XPLINK.

Invoking the integrated CICS translator for XL C++

To use the procedures to invoke the integrated translator for XL C++, you can use
the job control statements shown in

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITxL,PROGLIB=dsnname 1
//CPP.SYSIN DD =
. C++ source statements
//LKED.SYSIN DD =
NAME anyname (R)

/1

where anyname is your load module name.

Figure 21. Sample JCL for integrated translator for XL C++

1. Translator name: Specify DFHZITEL for C++ programs without XPLINK, or
DFHZITGL for C++ programs with XPLINK.

Including pre-translated code with your C source code

The translator can generate dfhexec or DFHEXEC. If both versions are present in
your program, error message IEW2456E is displayed. There are two ways to
prevent this error either recompile the old code containing dfhexec or use prelinker
RENAME control statement in the job.

Chapter 8. Installing application programs 125

About this task
The following sample JCL shows you how to use the RENAME control statement.

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC PROC=DFHYxTzL

//TRN.SYSIN DD *

#pragma XOPTS(Translator options . . .)

C source statements

/*
//PLKED.SYSLIN DD *
RENAME dfhexec DFHEI1
//LKED.SYSLIN DD *
NAME anyname (R)
/*
//

where anyname is your load module name

Figure 22. Sample JCL to rename dfhexec

Using your own job streams

If you want to write your own JCL to translate, assemble (or compile), and
link-edit your application programs, you can use the supplied cataloged
procedures as a model.

The procedures are installed in the CICSTS42.CICS.SDFHPROC library.

The rest of this section summarizes the important points about the translator and
each of the main categories of program. For simplicity, the following discussion
states that you load programs into CICSTS42.CICS.SDFHLOAD or IMS.PGMLIB. In
fact, you can use any libraries, but only when they are either included in the
DFHRPL or dynamic LIBRARY concatenation in the CICS job stream, or included
in the STEPLIB library concatenation in the batch job stream (for a stand-alone IMS
batch program).

Note: The IMS libraries referred to in the job streams are identified by IMS.libnam
(for example IMS.PGMLIB). If you use your own naming convention for IMS
libraries, please rename the IMS libraries accordingly.

Translator requirements

The CICS translator requires a minimum of 256 KB of virtual storage. You may
need to use the translator options CICS and DLL

Online programs that use EXEC CICS or EXEC DLI commands

1. Always use the translator option CICS. If the program issues EXEC DLI
commands, use the translator option DLI.

2. The link-edit input (defined by the SYSLIN DD statement) must include the
correct interface module before the object deck. Therefore, place an INCLUDE
statement for the interface module before the object deck. Also put ORDER
statements before the INCLUDE statements, and an ENTRY statement after all
the INCLUDE statements.

The interface modules are:

126 CICS TS for z/0S 4.2: Application Programming Guide

DFHEAI
Assembler

DFHELII
All HLL languages

In the CICS-supplied procedures, the input to the link-edit step (defined by the
SYSLIN DD statement) concatenates a library member with the object deck.
This member contains an INCLUDE statement for the required interface
module. For example, the DFHYITVL procedure concatenates the library
member DFHEILID, which contains the following INCLUDE statement:

INCLUDE SYSLIB(DFHELII)

3. Place the load module output from the link-edit (defined by the SYSLMOD DD
statement) in CICSTS42.CICS.SDFHLOAD, or your own program library.

[Figure 23 on page 128 shows sample JCL and an inline procedure, based on the
CICS-supplied procedure DFHYITVL, that can be used to install COBOL
application programs. The procedure does not include the COPYLINK step and
concatenation of the library member DFHEILID that contains the INCLUDE
statement for the required interface module (as included in the DFHYITVL
procedure). Instead, the JCL provides the following INCLUDE statement:

INCLUDE SYSLIB(DFHELII)

If this statement was not provided, the link-edit would return an error message for
unresolved external references, and the program output would be marked as not
executable.

Chapter 8. Installing application programs 127

//* The following JCL could be used to execute this procedure
/1%

//APPLPROG EXEC MYYITVL,

// INDEX="'CICSTS42.CICS

// PROGLIB="CICSTS42.CICS.SDFHLOAD',

// DSCTLIB="'CICSTS42.CICS.SDFHCOB',

// INDEX2="user.qualif'

// 0UTC=A, Class for print output
// REG=4M, Region size for all steps
// LNKPARM="LIST,XREF"', Link edit parameters

// WORK=SYSDA Unit for work data sets
//TRN.SYSIN DD =

/1% .

//* . Application program

/1% .

/1%

//LKED.SYSIN DD =
INCLUDE SYSLIB(DFHELII)
NAME anyname (R)

/1*

//MYYITVL PROC SUFFIX=1%, Suffix for translator module

// INDEX="CICSTS42.CICS', Qualifier(s) for CICS Tibraries

// PROGLIB="CICSTS42.CICS.SDFHLOAD', Name of o/p library

// DSCTLIB="'CICSTS42.CICS.SDFHCOB', Private macro/dsect

// AD370HLQ="SYS1', Qualifier(s) for AD/Cycle compiler
// LE370HLQ="SYS1", Qualifier(s) for Language Environment libraries
// OUTC=A, Class for print output

// REG=4M, Region size for all steps

// LNKPARM="LIST,XREF', Link edit parameters

// WORK=SYSDA Unit for work data sets

//*

//* This procedure contains 3 steps

//* 1. Exec the COBOL translator (using the supplied suffix 1$)
//* 2. Exec the COBOL compiler

//* 3. Linkedit the output into data set &PROGLIB

//TRN EXEC PGM=DFHECP &SUFFIX,,

// PARM="'COBOL3',

// REGION=®

//STEPLIB DD DSN=&INDEX..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&0UTC
//SYSPUNCH DD DSN=8&SYSCIN,

/] DISP=(,PASS),UNIT=&WORK,

/] DCB=BLKSIZE=400,

// SPACE=(400, (400,100))

/1%

//COB EXEC PGM=IGYCRCTL,REGION=8REG,

/! PARM="NODYNAM, LIB,0BJECT,RENT,APOST ,MAP, XREF

//STEPLIB DD DSN=&AD370HLQ..SIGYCOMP,DISP=SHR
//SYSLIB DD DSN=&DSCTLIB,DISP=SHR

// DD DSN=&INDEX..SDFHCOB,DISP=SHR
// DD DSN=&INDEX..SDFHMAC,DISP=SHR
// DD DSN=&INDEX..SDFHSAMP,DISP=SHR

//SYSPRINT DD SYSOUT=&0UTC

//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),
// UNIT=&WORK,SPACE=(80, (250,100))
//SYSUT1 DD UNIT=&WORK,SPACE=(460, (350,100))
//SYSUT2 DD UNIT=&WORK,SPACE=(460, (350,100))
//SYSUT3 DD UNIT=&WORK,SPACE=(460, (350,100))
//SYSUT4 DD UNIT=&WORK,SPACE=(460, (350,100))
//SYSUT5 DD UNIT=&WORK,SPACE=(460, (350,100))
//SYSUT6 DD UNIT=&WORK,SPACE=(460,(350,100))

/1%
//LKED EXEC PGM=IEWL,REGION=®,
// PARM="&LNKPARM',COND=(5,LT,COB)

1@ SLEBcs £8 f%§N:/&j§qE% - A ﬂ:h%ﬂ P ra%m Guide
DD DSN=&LE370HLQ..SCEELKED,DISP=SH

//SYSLMOD DD DSN=&PROGLIB,DISP=SHR

//SYSUT1 DD UNIT=&WORK,DCB=BLKSIZE=1024,
7/ CPACE=(1024 (200 20))

Online programs that use the CALL DLI interface

1.

Specify the translator option CICS, but not the translator option DLL

Note: For a program that does not use CICS commands and is only invoked by
a running transaction (and never directly by CICS task initiation), no translator
step is needed.

The interface module, DFHDLIAI, is automatically included by the link-edit. If

you use an INCLUDE statement in the link-edit input, place it after the object
deck.

Include copybook DLIUIB in your program.

Place the load module output from the link-edit (defined by the SYSLMOD DD
statement) in CICSTS42.CICS.SDFHLOAD, or a user-defined application
program library.

Batch or BMP programs that use EXEC DLI commands

1.

The translator option DLI is required. Do not specify the translator option
CICS.

The INCLUDE statement for the interface module must follow the object deck
in the input to the link-edit (defined by the SYSLIN DD statement). The
interface module, DFSLI000, which resides on IMS.RESLIB, is the same for all
programming languages. If you include CICSTS42.CICS.SDFHLOAD in the
input to the link-edit (defined by the SYSLIB DD statement), concatenate it
after IMS.RESLIB.

Place the load module output from the link-edit (defined by the SYSLMOD DD
statement) in IMS.PGMLIB, or a library concatenated in the STEPLIB DD
statement of the batch job stream.

Batch or BMP programs that use DL/ CALL commands

If you want to prepare assembler, COBOL, or PL/I programs that use the DL/I
CALL interface, do not use any of the CICS-supplied procedures. Programs that
contain CALL ASMTDLI, CALL CBLTDLI, or CALL PLITDLI should be assembled
or compiled, and link-edited, as IMS applications, and are not subject to any CICS
requirements. See the relevant IMS manual for information about how to prepare
application programs that use the DL/I CALL interface.

Chapter 8. Installing application programs 129

130 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 9. Installing map sets and partition sets

BMS macro
statements
defining
map set

Type=
MAP

Type=
DSECT

Use the basic mapping support (BMS) facility of CICS to assemble and link-edit
map sets and partition sets. You can use the BMS macros to install HTML

templates generated from BMS maps.

If your program uses BMS maps, you need to create the maps. The traditional
method for doing this is to code the map in BMS macros and assemble these
macros. You do the assembly twice, with different output options.

One assembly creates a set of definitions. You copy these definitions into your

program using the appropriate language statement, and they allow you to refer
to the fields in the map by name.

executes.

The process is illustrated in the following diagram:

Assembler

\/

L » | Assembler

I EEE—

Object
module
library

Link Editor

Figure 24. Preparing a map

>

Copy
library

Assembler
listing

_/—

Assembler
listing

~

Link edit
listing

~N L

CICS load
library

The second assembly creates an object module that is used when your program

Whatever way you produce maps, you need to create a map before you compile

(assemble) any program that uses it. In addition, if you change the map, you
typically need to recompile (reassemble) all programs that use it. Some changes

© Copyright IBM Corp. 1989, 2011

131

affect only the physical map and are not reflected in the corresponding symbolic
map used by the program. One of these is a change in field position that does not
alter the order of the fields. However, changes in data type, field length, field
sequence, and others do affect the symbolic map, and it is always safest to
recompile (reassemble).

CICS also supports the definition of BMS map sets and partition sets interactively
by using licensed programs such as the IBM Screen Definition Facility II (SDF II),
program number 5665-366. For more information about SDF II, see the Screen
Definition Facility 1I Primer for CICS/BMS Programs and Screen Definition Facility 11
General Information manuals.

CICS loads BMS map sets and partition sets above the 16 MB line if you specify
the residency mode for the map set or partition set as RMODE(ANY) in the
link-edit step. If you are using either map sets or partition sets from earlier releases
of CICS, you can load them above the 16 MB line by link-editing them again with
RMODE(ANY). For examples of link-edit steps specifying RMODE(ANY), see the
sample job streams in this section.

This section includes:

+ [“Installing map sets”]

* [“Installing partition sets” on page 140|

+ |“Defining programs, map sets, and partition sets to CICS” on page 141|

Related concepts

(Chapter 58, “Basic mapping support,” on page 683|

Basic mapping support (BMS) is an application programming interface between
CICS programs and terminal devices.

Related tasks

“Using the DEFEHMAPT procedure to install HTML templates from BMS maps” on|

page 13§|

The DFHMAPT procedure is similar to DFHMAPS, with an additional step that
installs HTML templates generated from the BMS maps.

Installing map sets

Use these examples to learn how to install physical map sets and symbolic
description map sets both separately and together.

This section first describes the types of map sets, how you define them, and how
CICS recognizes them. This is followed by a description of how to prepare physical
map sets and symbolic description map sets separately. Finally, there is a
description of how to prepare both physical and symbolic description map sets in
one job. In these descriptions, it is assumed that the SYSPARM parameter is used
to distinguish the two types of map sets.

See:

“Types of map sets” on page 133

» |“Installing physical map sets” on page 134|

+ [“Installing symbolic description map sets” on page 136|

“Installing physical and symbolic description maps together” on page 137

132 CICS TS for z/0S 4.2: Application Programming Guide

Types of map sets

To install a map set, you must prepare two types of map sets; a physical map set
and a symbolic description map set.

* A physical map set, used by BMS to translate data from the standard device
independent form used by application programs to the device-dependent form
required by terminals.

¢ A symbolic description map set, used in the application program to define the
standard device independent form of the user data. This is a DSECT in assembly
language, a data definition in COBOL, a BASED or AUTOMATIC structure in
PL/I, and a “struct” in C/370.

Physical map sets must be cataloged in the CICS load library. Symbolic description
map sets can be cataloged in a user copy library, or inserted directly into the
application program itself.

The map set definition macros are assembled twice; once to produce the physical
map set used by BMS in its formatting activities, and once to produce the symbolic
description map set that is copied into the application program.

Defining the type of map set you require

You can distinguish the two types of map set by using either the TYPE operand of
the DFHMSD macro or the SYSPARM operand on the EXEC statement of the job
used to assemble the map set.

If you use the SYSPARM operand for this purpose, the TYPE operand of the
DFHMSD macro is ignored. Using SYSPARM allows both the physical map set and
the symbolic description map set to be generated from the same unchanged set of
BMS map set definition macros.

Map sets can be assembled as either unaligned or aligned (an aligned map is one
in which the length field is aligned on a halfword boundary). Use unaligned maps
except in cases where an application package needs to use aligned maps.

The SYSPARM value alone determines whether the map set is aligned or
unaligned, and is specified on the EXEC PROC=DFHMAPS statement. The
SYSPARM operand can also be used to specify whether a physical map set or a
symbolic description map set (DSECT) is to be assembled, in which case it
overrides the TYPE operand. If neither operand is specified, an unaligned DSECT
is generated.

The TYPE operand of the DFHMSD macro can only define whether a physical or
symbolic description map set is required.

For the possible combinations of operands to generate the various types of map
set, see

Table 9. SYSPARM and DFHMSD operand combinations for map assembly

Type of map set SYSPARM operand of EXEC TYPE operand of
DFHMAPS statement DFHMSD macro
Aligned symbolic A Not specified
description map A DSECT
set (DSECT) ADSECT Any (takes SYSPARM)

Chapter 9. Installing map sets and partition sets 133

Table 9. SYSPARM and DFHMSD operand combinations for map assembly (continued)

Type of map set SYSPARM operand of EXEC TYPE operand of
DFHMAPS statement DFHMSD macro

Aligned A MAP
physical map set AMAP Any (takes SYSPARM)
Unaligned Not specified Not specified
symbolic Not specified DSECT
description map DSECT Any (takes SYSPARM)
set (DSECT)
Unaligned Not specified MAP
physical map set MAP Any (takes SYSPARM)

The physical map set indicates whether it was assembled for aligned or unaligned
maps. This information is tested at execution time, and the appropriate map
alignment used. Thus aligned and unaligned map sets can be mixed.

Using extended data stream terminals

You can use fixed extended data stream attributes by reassembling the physical
map set or for dynamic attribute medication, by reassembling both the physical,
and symbolic description map sets.

Applications and maps designed for the 3270 Information Display System run
unchanged on devices supporting extensions to the 3270 data stream such as color,
extended highlighting, programmed symbols, and validation. To use fixed
extended attributes such as color, you only need to reassemble the physical map
set. If dynamic attribute modification by the application program is needed, you
must reassemble both the physical and symbolic description map sets, and you
must reassemble or recompile the application program.

Installing physical map sets

These examples show you the assembler and linkage editor steps for installing
physical map sets and an example job stream.

[Figure 25 on page 135 shows the assembler and linkage editor steps for installing
physical map sets.

134 CICS TS for z/0S 4.2: Application Programming Guide

Macro statements
definingthe map set

> *

Assembler >

Assembly
listing

Linkage
Editor
input
(object)

'

Linkage Editor —

:
>

CICS.
SDFHLOAD

Linkage Editor
listing

Figure 25. Installing physical map sets

gives an example job stream for the assembly and link-editing of physical

map sets.

//PREP JOB ‘'accounting information',CLASS=A,MSGLEVEL=1

//STEP1 EXEC PROC=DFHASMVS,PARM.ASSEM="'SYSPARM(MAP) ' 1
//SYSPUNCH DD DSN=&&TEMP,DCB=(RECFM=FB,BLKSIZE=2960),
// SPACE=(2960,(10,10)) ,UNIT=SYSDA,DISP=(NEW, PASS)

//SYSIN DD *

Macro statements defining the map set

/*
//STEP2 ~ EXEC PROC=DFHLNKVS,PARM='LIST,LET,XREF' 2
//SYSLIN DD DSN=8&TEMP,DISP=(OLD,DELETE)
// DD =
MODE RMODE (ANY|24) 3
NAME mapsetname (R) 4
/*
/!

Figure 26. Assembling and link-editing a physical map set

Notes

1. For halfword-aligned length fields, specify the option SYSPARM(AMAP)

instead of SYSPARM(MAP).

2. Physical map sets are loaded into CICS-key storage, unless they are link-edited
with the RMODE(ANY) and RENT options. If they are link-edited with these
options, they are loaded into key-0 protected storage, if RENTPGM=PROTECT

is specified on the RENTPGM initialization parameter. However, it is

recommended that map sets (except for those that are only sent to 3270 or LU1
devices) should not be link-edited with the RENT or the REFR options because,

Chapter 9. Installing map sets and partition sets

135

in some cases, CICS modifies the map set. Generally, use the RENT or REFR
options for map sets that are only sent to 3270 or LU1 devices. For more
information about the storage protection facilities available in CICS, see
[protection in the Performance Guidel

3. The MODE statement specifies whether the map set is to be loaded above
(RMODE(ANY)) or below (RMODE(24)) the 16 MB line. RMODE(ANY)
indicates that CICS can load the map set anywhere in virtual storage, but tries
to load it above the 16 MB line, if possible.

4. Use the NAME statement to specify the name of the physical map set that BMS
loads into storage. If the map set is device-dependent, derive the map set name
by appending the device suffix to the original 1- to 7-character map set name
used in the application program. The suffixes to be appended for the various
terminals supported by CICS BMS depend on the parameter specified in the
TERM or SUFFIX operand of the DFHMSD macros used to define the map set.
To use a physical map set, you must define and install a resource definition for
it. You can do this either by using the program autoinstall function or by using
the CEDA DEFINE MAPSET and INSTALL commands. as described in [“Defining]
[programs, map sets, and partition sets to CICS” on page 141

Installing symbolic description map sets

These examples show you the steps for installing symbolic description map sets
using the DFHASMVS procedure.

Symbolic description map sets enable the application programmer to make

symbolic references to fields in the physical map set. [Figure 27|shows the
preparation of symbolic description map sets for BMS.

definingthe
symbolic map

> '

Assembler >

'

SYSPUNCH

‘ Macro statements

Assembly
listing

Figure 27. Installing symbolic description map sets using the DFHASMVS procedure

To use a symbolic description map set in a program, you must assemble the source
statements for the map set and obtain a punched copy of the storage definition
through SYSPUNCH. The first time this is done, you can direct the SYSPUNCH
output to SYSOUT=A to get a listing of the symbolic description map set. If many
map sets are to be used at your installation, or there are multiple users of common
map sets, establish a private user copy library for each language that you use.

When a symbolic description is prepared under the same name for more than one
programming language, a separate copy of the symbolic description map set must
be placed in each user copy library. You must ensure that the user copy libraries
are correctly concatenated with SYSLIB.

136 CICS TS for z/0S 4.2: Application Programming Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_storage_protection.html#dfha253
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_storage_protection.html#dfha253

You need only one symbolic description map set corresponding to all the different
suffixed versions of the physical map set. For example, to run the same application
on terminals with different screen sizes, you would:

1. Define two map sets each with the same fields, but positioned to suit the screen
sizes. Each map set has the same name but a different suffix, which would
match the suffix specified for the terminal.

2. Assemble and link-edit the different physical map sets separately, but create

only one symbolic description map set, because the symbolic description map
set would be the same for all physical map sets.

You can use the sample job stream in to obtain a listing of a symbolic
description map set. It applies to all the programming languages supported by
CICS.

//DSECT JOB ‘'accounting information',CLASS=A,MSGLEVEL=1
//ASM EXEC PROC=DFHASMVS,PARM.ASSEM="'SYSPARM(DSECT) "'
//SYSPUNCH DD SYSOUT=A

//SYSIN DD =

Macro statements defining the map set

/*
//

Figure 28. Listing of a symbolic description map set

If you want to assemble symbolic description map sets in which length fields are
halfword-aligned, change the EXEC statement of the sample job in to the
following:

//ASSEM EXEC PROC=DFHASMVS,PARM.ASSEM="'SYSPARM(ADSECT) "

To obtain a punched copy of a symbolic description map set, code the
//SYSPUNCH statement in the above example to direct output to the punch data
stream. For example:

//SYSPUNCH DD SYSOUT=B

To store a symbolic description map set in a private copy library, use job control
statements similar to the following:
//SYSPUNCH DD DSN=USER.MAPLIB.ASM(map set name),DISP=0LD

//SYSPUNCH DD DSN=USER.MAPLIB.COB(map set name),DISP=0LD
//SYSPUNCH DD DSN=USER.MAPLIB.PLI(map set name),DISP=0LD

Installing physical and symbolic description maps together

These examples show you the steps for installing physical and symbolic
description map sets using the DFHMAPS procedure.

[Figure 29 on page 138 shows the DEHMAPS procedure for installing physical and
symbolic description maps together. The DFHMAPS procedure consists of the
following four steps, shown in [Figure 29 on page 13

1. The BMS macros that you coded for the map set are added to a temporary
sequential data set.

2. The macros are assembled to create the physical map set. The MAP option is
coded in the SYSPARM global variable in the EXEC statement
(PARM='SYSPARM(MAP)).

3. The physical map set is link-edited to the CICS load library.

Chapter 9. Installing map sets and partition sets 137

4. Finally, the macros are assembled again, this time to produce the symbolic
description map set. In this step, DSECT is coded in the SYSPARM global
variable in the EXEC statement (PARM='SYSPARM(DSECT)"). Output is
directed to the destination specified in the //SYSPUNCH DD statement. In the
DFHMAPS procedure, that destination is the CICSTS42.CICS.SDFHMAC
library.

Macro statements
definingthe map set

Assembly

Assembler listing

—_—

Linkage
Editor
input
(object)

'

Linkage Editor —

Linkage Editor
listing

CICS.
SDFHLOAD

S
Macro statements Assembler

definingthe map set

Figure 29. Installing a physical map set and a symbolic description map set together

Using the DFHMAPT procedure to install HTML templates from
BMS maps

The DFHMAPT procedure is similar to DFHMAPS, with an additional step that
installs HTML templates generated from the BMS maps.

About this task

In this step, TEMPLATE is coded in the SYSPARM global variable in the EXEC
statement (PARM='SYSPARM(TEMPLATE)). In the DFHMAPT procedure, the
output is directed to CICSTS42.CICS.SDFHHTML.

If you want to use your own macro to customize HTML templates, and you do not
want to add your macro to the BMS source you should modify step ASMTEMPL:

1. Change the PARM parameter of the EXEC statement to
PARM="SYSPARM(TEMPLATE ,macro_name) ,DECK,NOOBJECT'
2. Add the library that contains your macro to the SYSLIB concatenation.

138 CICS TS for z/0S 4.2: Application Programming Guide

JCL to install physical and symbolic description maps
This example shows you the JCL job stream needed to install the physical map sets
and the symbolic description map sets together.

The load module from the assembly of the physical map set and the source
statements for the symbolic description map set can be produced in the same job
by using the sample job stream in

//PREPARE JOB 'accounting information',CLASS=A,MSGLEVEL=1
//ASSEM EXEC PROC=DFHMAPS,MAPNAME=mapsetname,RMODE=ANY|24 (see note)
//SYSUT1 Db =*

Macro statements defining the map set

/*
//

Figure 30. Installing physical and symbolic description maps together

Note: The RMODE statement specifies whether the map set is to be loaded above
(RMODE=ANY) or below (RMODE=24) the 16MB line. RMODE=ANY indicates
that CICS can load the map set anywhere in virtual storage, but tries to load it
above the 16MB line, if possible.

The DFHMAPS procedure produces map sets that are not halfword-aligned. If you
want the length fields in input maps to be halfword-aligned, you have to code
A=A on the EXEC statement. In the sample job in change the EXEC
statement to:

//ASSEM EXEC PROC=DFHMAPS,MAPNAME=mapsetname,A=A

This change results in the SYSPARM operands in the assembly steps being altered
to SYSPARM(AMAP) and SYSPARM(ADSECT) respectively.

The DFHMAPS procedure directs the symbolic description map set output
(SYSPUNCH) to the CICSTS42.CICS.SDFHMAC library. Override this by specifying
DSCTLIB=name on the EXEC statement, where “name” is the name of the chosen
user copy library.

Adding a CSECT to your map assembly
This example shows you how to add both a CSECT name and AMODE and
RMODE statements to your map assembly.

It is possible that you might need to generate your BMS maps with a CSECT. For
example, you might need to specify AMODE and RMODE options to ensure that
your maps reside above 16 MB, or you might need to use the DFSMS binder
IDENTIFY statement for reasons of change management. In this case, you need not
only include the appropriate CSECT at the front of your BMS macro statements,
but also add some conditional assembler statements to ensure that the CSECT
statement is not included in the symbolic description map. The following example
shows how you can add both a CSECT name and AMODE and RMODE
statements:

Chapter 9. Installing map sets and partition sets 139

//PREPARE JOB ‘'accounting information',CLASS=A,MSGLEVEL=1
//ASSEM EXEC PROC=DFHMAPS,MAPNAME=mapsetname,RMODE=ANY |24
//SYSUT1 DD =*

AIF ('&SYSPARM' EQ 'DSECT').SKIPSD

AIF ('&SYSPARM' EQ 'ADSECT').SKIPSD

ANYNAME CSECT Binder IDENTIFY requires CSECT name

ANYNAME AMODE 31

ANYNAME ~RMODE ANY

.SKIPSD ANOP ,

DFHOSTM DFHMSD TYPE=DSECT,MODE=INOUT,CTRL=FREEKB,LANG=COBOL, C
TIOAPFX=YES,TERM=3270-2 ,MAPATTS=(COLOR,HILIGHT), C
DSATTS=(COLOR,HILIGHT)

SPACE
DFHOSTM DFHMDI SIZE=(24,80)

SPACE
DFHMSD TYPE=FINAL
END

»
/1

Figure 31. Adding a CSECT to the map assembly

Installing partition sets

You can install partition sets in the same way as physical map sets. There is no
concept of a symbolic description partition set.

The job stream in is an example of the assembly and link-edit of partition
sets.

//PREP JOB ‘'accounting information',CLASS=A,MSGLEVEL=1
//STEP1 EXEC PROC=DFHASMVS

//SYSPUNCH DD DSN=&&TEMP,DCB=(RECFM=FB,BLKSIZE=2960),

// SPACE=(2960, (10,10)) ,UNIT=SYSDA,DISP=(NEW,PASS)
//SYSIN DD

Macro statements defining the partition set

/*
//STEP2 EXEC PROC=DFHLNKVS,PARM="'LIST,LET,XREF' 1
//SYSLIN DD DSN=8&TEMP,DISP=(OLD,DELETE)
/1 DD =
MODE RMODE (ANY |24) 2
NAME partitionsetname(R) 3
/*
/l

Figure 32. Assembling and link-editing a partition set

Notes

1. A partition set is loaded into CICS-key storage, unless it is link-edited with the
RMODE(ANY) and RENT options. If it is link-edited with these options, it is
loaded into key-0 protected storage, if RENTPGM=PROTECT is specified on the
RENTPGM system initialization parameter.
For more information about the storage protection facilities available in CICS,
see [Storage protection in the Performance Guide|

140 CICS TS for z/0S 4.2: Application Programming Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_storage_protection.html#dfha253

2. The MODE statement specifies whether the partition set is to be loaded above
(RMODE(ANY)) or below (RMODE(24)) the 16 MB line. RMODE(ANY)
indicates that CICS can load the partition set anywhere in virtual storage, but
tries to load it above the 16MB line, if possible.

3. Use the NAME statement to specify the name of the partition set which BMS
loads into storage. If the partition set is device-dependent, derive the partition
set name by appending the device suffix to the original 1- to 7-character
partition set name used in the application program. The suffixes that BMS
appends for the various terminals depend on the parameter specified in the
SUFFIX operand of the DFHPSD macro that defined the partition set.

For programming information giving a complete list of partition-set suffixes,
see the CICS Application Programming Reference.

To use a partition set, you must define and install a resource definition for it. You
can do this either by using the program autoinstall function or by using the CEDA
DEFINE PARTITIONSET and INSTALL commands, as described in the CICS Resource
Definition Guide.

Defining programs, map sets, and partition sets to CICS

To be able to use a program that you have installed in one of the load libraries
specified in your CICS startup JCL, the program, and any map sets and partition
sets that it uses, must be defined to CICS. To do this, CICS uses the resource
definitions MAPSET (for map sets), PARTITIONSET (for partition sets), and
PROGRAM (for programs).

About this task

You can create and install such resource definitions in any of the following ways:

* CICS can dynamically create, install, and catalog a definition for the program,
map set, or partition set when it is first loaded, by using the autoinstall for
programs function.

* You can create a specific resource definition for the program, map set, or
partition set and install that resource definition in your CICS region.

You can install resource definitions in either of the following ways:

— At CICS initialization, by including the resource definition group in the group
list specified on the GRPLIST system initialization parameter.

— While CICS is running, by the CEDA INSTALL command.

For information about defining programs to CICS, see the CICS Resource Definition
Guide.

Chapter 9. Installing map sets and partition sets 141

142 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 10. Testing applications

You can use the following methods to test CICS application programs. This
guidance does not relate to testing Java applications.

Single-thread testing

A single-thread test takes one application transaction at a time, in an otherwise
“empty” CICS system, and sees how it behaves. This enables you to test the
program logic, and also shows whether the basic CICS information (such as
resource definition) is correct. It is feasible to test this single application in one
CICS region while your normal, online production CICS system is active in
another.

Multithread testing

A multithread test involves several concurrently active transactions. Naturally,
all the transactions are in the same CICS region, so you can readily test the
ability of a new transaction to coexist with them.

You might find that a transaction that works perfectly in its single-thread
testing still fails in the multithread test. It might also cause other transactions
to fail, or even terminate CICS.

Regression testing

A regression test is used to make sure that all the transactions in a system
continue to do their processing in the same way both before and after changes
are applied to the system. This is to ensure that fixes applied to solve one
problem do not cause further problems. It is a good idea to build a set of
miniature files to perform your tests on, because it is much easier to examine a
small data file for changes.

A good regression test exercises all the code in every program; that is, it
explores all tests and possible conditions. As your system develops to include
more transactions, more possible conditions, and so on, add these to your test
system to keep it in step. The results of each test should match those from the
previous round of testing. Any discrepancies are grounds for suspicion. You
can compare terminal output, file changes, and log entries for validity.

Sequential terminal support (described in|Chapter 39, “Using sequentiall
fterminal support,” on page 537), can be useful for regression testing. When
you have a module that has worked for some time and is now being modified,
you need to rerun your old tests to ensure that the function still works.
Sequential terminal support makes it easy to maintain a “library” of old test
cases and to rerun them when needed.

Sequential terminal support allows you to test programs without having to use
a telecommunication device. System programmers can specify that sequential
devices be used as terminals (using the terminal control table (TCT)). These
sequential devices can be card readers, line printers, disk units, or magnetic
tape units. They can also be combinations of sequential devices such as:

* A card reader and line printer (CRLP)
* One or more disk or tape data sets as input

* One or more disk or tape data sets as output

You can prepare a stream of transaction test cases to do the basic testing of a
program module. As the testing progresses, you can generate additional

© Copyright IBM Corp. 1989, 2011 143

transaction streams to validate the multiprogramming capabilities of the
programs or to allow transaction test cases to run concurrently.

You have to do two main tasks before you can test and debug an application:

1.
2.

“Preparing the application for testing”]

“Preparing the system for testing”|

Preparing the application for testing

This list shows you what you need to consider when preparing the application and
system table entries.

1.

9.
10.
1.

12.

Translate, assemble or compile, and link-edit each program. Make sure that
there are no error messages on any of these three steps for any program
before you begin testing.

Use the DEBUG and EDF options on your translator step, so that you can use
translator statement numbers with execution diagnostic facility (EDF) displays.

Use the COBOL compiler options CLIST and DMAP so that you can relate
storage locations in dumps and EDF displays to the original COBOL source
statements, and find your variables in working storage.

Create a PROFILE resource definition for your transactions to use, and make
sure that the definition is installed.

Create a TRANSACTION resource definition for each transaction in your
application, and make sure that the definitions are installed.

If your system does not use program autoinstall, create a PROGRAM resource
definition for each program used in the application, and make sure that the
definitions are installed.

If your system does not use program autoinstall, create a MAPSET resource
definition for each map set in the application, and make sure that each
definition is installed.

Create a FILE resource definition for each file used, and make sure that each
definition is installed.

Build at least a test version of each of the files required.
Define each of the transient data queues to be used by the application.

Put job control DD cards in the startup job stream for each file used in the
application.

Prepare some test data.

Preparing the system for testing

This list shows you what you need to consider when preparing the system for

debugging.

1.

Make sure that EDF is available in your system, by including group DFHEDF
in the list you specify in the GRPLIST system initialization

Set up appropriate tracing options for your application. For details about
setting up tracing options, see the CICS Problem Determination Guide.

Make sure that transaction dumping is enabled for all transaction dump codes,
and that system dumping is enabled for all system dump codes. These are,
anyway, the default settings. For information about setting up dump options,
see the CICS Problem Determination Guide.

Be prepared to print the dumps. Have a DFHDU670 job stream or procedure
ready, and have the CICS dump data sets defined in your startup procedure.

144 CICS TS for z/0S 4.2: Application Programming Guide

5. Contact your system programmer for information about SDUMP data sets
available on your system and access to JCL for processing them.

6. Enable CICS to detect loops, by setting the ICVR parameter in the SIT to a
number greater than zero. Something between five and ten seconds (ICVR=5000
to ICVR=10000) is typically a workable value.

7. Generate statistics. For more information about using statistics, see the CICS
Performance Guide.

Chapter 10. Testing applications 145

146 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 11. Execution diagnostic facility (EDF)

You can use the execution diagnostic facility (EDF) to test an application program
online, without modifying the program or the program-preparation procedure. The
CICS execution diagnostic facility is supported by the CICS-supplied transaction,
CEDEF, which invokes the DFHEDFP program.

Note: You can also invoke CEDF indirectly through another CICS-supplied
transaction, CEDX, which enables you to specify the name of the transaction you
want to debug. When this section refers to the CEDF transaction (for example,
when it explains about CICS starting a new CEDF task below) remember that it
may have been invoked by the CEDX command.

The names of your programs should not begin with the letters “DFH"” because this
prefix is used for CICS system modules and samples. Attempting to use EDF on a
CICS-supplied transaction has no effect. However, you can use EDF with CICS
sample programs and some user-replaceable modules. (For example, you can use
EDF to debug DFHPEP.)

EDF intercepts the execution of CICS commands in the application program at
various points, allowing you to see what is happening. Each command is
displayed before execution, and most are displayed after execution is complete.
Screens sent by the application program are preserved, so you can converse with
the application program during testing, just as a user would on a production
system.

When a transaction runs under EDF control, EDF intercepts it at the following

points, allowing you to interact with it:

* At program initiation, after the EXEC interface block (EIB) has been updated,
but before the program is given control.

* At the start of the execution of each CICS command. This interrupt happens
after the initial trace entry has been made, but before the command has been
performed. Both standard CICS commands and the Front End Programming
Interface (FEPI) commands are intercepted. EXEC DLI and EXEC SQL
commands and any requests processed through the resource manager interface
are also intercepted at this point.

* At the end of the execution of every command except for ABEND, XCTL, and
RETURN commands (although these commands could raise an error condition
that EDF displays). EDF intercepts the transaction when it finishes processing
the command, but before the HANDLE CONDITION mechanism is invoked,
and before the response trace entry is made.

* At program termination.
¢ At normal task termination.
* When an ABEND occurs and after abnormal task termination.

If you want to work through an example of EDEF, see Designing and Programming
CICS Applications, which guides you through a sample EDF session.

Note: For a program translated with the option NOEDF, these intercept points still
apply, apart from before and after the execution of each command. For a program

© Copyright IBM Corp. 1989, 2011 147

with CEDF defined as NO on its resource definition or by the program autoinstall
exit, the program initiation and termination screens are suppressed as well.

Each time EDF interrupts the execution of the application program a new CEDF
task is started. Each CEDF task is short lived, lasting only long enough for the
appropriate display to be processed.

The terminal that you are using for the EDF interaction must be in transceive
(ATI/TTI) status and be able to send and receive data. This is the most common
status for display terminals, but you can find out by asking your system
programmer to check its status, or you can use CEMT.

For a transaction initiated at a terminal, you can use EDF on the same terminal as
the transaction you are testing, or on a different one. On the same terminal, you
must start by clearing the screen and entering the transaction code CEDE,
otherwise you may get unpredictable results. The message THIS TERMINAL: EDF
MODE ON is displayed at the top of an empty screen. You clear the screen again
and run your transaction in the normal way.

When you are using EDEF, the user task is not directly purgable. If you need to
terminate the task, first forcepurge the CEDF task, then attempt to press the Enter
key while the EDF screen is displayed. If pressing the Enter key brings no
response, forcepurge the CEDF task a second time. CEDF will terminate, and the
user transaction will receive an AED3 abend.

This chapter describes:

* [“Restrictions when using EDF”]
+ |“What does EDF display?” on page 150
s [“Testing programs using EDF” on page 157]

+ |[“Over typing to make changes” on page 162

+ |“Using EDF menu functions” on page 164|

Restrictions when using EDF

When you are using EDF to debug your application programs, you must be aware
of a number of restrictions.

Open TCBs and EDF
Even if your program typically runs using an OPEN TCB (L8, L9, X8, or
X9), CEDF forces the program to run on the QR TCB, because CEDF itself
is not threadsafe.

Parameter list stacking
CEDF only has one level of stacking for its copies of the EXEC CICS
parameter list. If an application calls an EXEC-capable global user exit or
user-replaceable module (URM), the parameter list for the EXEC CICS
commands issued by the global user exit or URM might overlay the
parameter list for EXEC CICS commands issued by the main program.

Security considerations

EDF is such a powerful tool that your installation might restrict its use
with attach-time security. The external security manager used by your
installation defines the security attributes for the EDF transaction. If you
are not authorized to use CEDEF, you cannot initiate the transaction.

148 CICS TS for z/0S 4.2: Application Programming Guide

Application prerequisites

User application programs that are to be debugged using EDF must be assembled
(or compiled) with the translator option EDF, which is the default. If you specify
NOEDF, the program cannot be debugged using EDF. There is no performance
advantage in specifying NOEDF, but the option can be useful to prevent
commands in already debugged subprograms appearing on EDF displays.

Application programs that are to be debugged using EDF must also have the
attribute CEDF(YES) in their resource definition, which is the default. If a program
is defined with CEDF(YES) and compiled with the translator option EDF, EDF
diagnostic screens are displayed for the program. If the program is defined with
CEDF(YES) but compiled with the translator option NOEDF, only the program
initiation and termination screens are displayed. If CEDF(NO) is specified, no EDF
screens are displayed.

If a program with the attribute CEDF(NO) links to a program with the attribute
CEDF(YES), it might not be possible to use EDF for the transaction. For example, if
the CICSPlex SM dynamic transaction routing program EYU9IXLOP is defined with
the attribute CEDF(NO), and the user-replaceable program EYUIWRAM (for
workload management processing) is defined with the attribute CEDF(YES), you
cannot use EDF to debug EYU9WRAM. For successful debugging of multiple
programs within a transaction, ensure that all the programs are defined with
CEDEF(YES).

Restrictions for single-screen mode

There are some restrictions on the use of EDF that make it preferable or even
necessary to use one particular screen mode:

* EDF can be used only in single-screen mode when running a remote transaction.
* VM PASSTHRU is not supported by EDF when testing in single-screen mode.

* In single-screen mode, the user transaction and CEDF must not specify message
journaling, because the messages interfere with the EDF displays. Message
journaling is controlled by the profile definition for each transaction.

* In single screen mode, do not specify PROTECT=YES in the profile definition of
the CEDF transaction. If this option is specified, message protection for the
CEDF transaction is ignored. The user transaction can still specify the
PROTECT=YES option even when running under CEDEFE. This restriction does
not apply to dual-screen mode.

e If a SEND LAST command is issued, EDF is ended before the command is
processed if you are using single-screen mode.

* To test an application program that uses screen partitions, or that does its own
request unit (RU) chaining, run in dual-screen mode.

* In single-screen mode, if the profile for the user transaction specifies
INBFMH=ALL or INBFMH=DIP, the profile for CEDF must have the same
INBFMH value. Otherwise the user transaction ends with the ADIR abend.
Dual-screen mode does not require the profiles to match in this respect.

e If the inbound reply mode is set to character to enable the attribute setting
keys, EDF disables the keys in single-screen mode.

* When using CECI under EDF in dual-screen mode, certain commands (for
example, ASSIGN and ADDRESS) are issued against the EDF terminal and not
the transaction terminal. See for information about how to
invoke CECI from CEDF

Chapter 11. Execution diagnostic facility (EDF) 149

* When using EDF in dual-screen mode, avoid starting a second task at the EDF
terminal, for example by issuing a START command. Because EDF is a
pseudoconversational transaction, it does not prevent a second task from starting
at the terminal it is using. This might lead to a deadlock in certain
circumstances.

* When using EDF screen suppression in dual screen mode, commands that cause
a long wait, such as DELAY, WAIT, or a second RECEIVE, might cause EDF to
appear as if it has finished. If the task ends abnormally, EDF is reactivated at the
monitoring terminal.

Restrictions for both screen modes

Other restrictions apply to both screen modes:
* If a transaction issues the FREE command, EDF is switched off without warning.

* EDF does not intercept calls to the CPI Communications interface (CPI-C) or the
SAA Resource Recovery interface (CPI-RR). You can test transactions that use
CPI calls under EDEF, but you cannot see EDF displays at the call points.

* When processing a SIGNON command, CEDF suppresses display of the
password or password phrase value to reduce the risk of accidental disclosure.

What does EDF display?

All EDF displays have the same general format, but the contents depend on the
point at which the task was interrupted. The display indicates which of these
interception points has been reached and shows information relevant to that point.

shows a typical display; occurring after execution of a SEND MAP

command.

' N
TRANSACTION: AC20 PROGRAM: DFHOVT1 TASK: 00032 APPLID: 1234567 DISPLAY:00
STATUS: COMMAND EXECUTION COMPLETE 1

EXEC CICS SEND MAP

MAP ('T1 ")

10 (R) 00)
LENGTH (154)

MAPSET ('DFHOT1 ')

CURSOR 2
TERMINAL

ERASE

NOFLUSH

NOHANDLE

OFFSET:X'002522" LINE: 00673 EIBFN=X'1804"

RESPONSE: NORMAL EIBRESP=0 3
ENTER: CONTINUE 4
F1 : UNDEFINED F2 : SWITCH HEX/CHAR F3 : END EDF SESSION
F4 : SUPPRESS DISPLAYS F5 : WORKING STORAGE F6 : USER DISPLAY
F7 : SCROLL BACK F8 : SCROLL FORWARD F9 : STOP CONDITIONS

\FlO: PREVIOUS DISPLAY F11: EIB DISPLAY F12: ABEND USER TASK)

Figure 33. Typical EDF display

Note: 1Header 2Body 3Message line 4Menu of functions

The display consists of a header, a body (the primary display area), a message line,
and a menu of functions you can select at this point. If the body does not fit on

150 CICS TS for z/0S 4.2: Application Programming Guide

one screen, EDF creates multiple screens, which you can scroll through using
function keys F7 and F8. The header, menu, and message areas are repeated on
each screen.

The header

The header of the display contains the following information; the identifier of the
transaction being executed, the name of the program being executed, the internal
task number assigned by CICS to the transaction, the applid of the CICS region
where the transaction is being executed, a display number, and the STATUS, that
is, the reason for the interception by EDFE.

The body

The body or main part of the display contains the information that varies with the
point of intercept. The following screens show you the body contents at program
initiation, at the start and the end of execution of a CICS command, at program

and task termination, and at abnormal termination.

At program initiation
This example shows you the display at program initiation. EDF displays the
COMMAREA (if any) and the contents of the principal fields in the EIB.

For programming information about these EIB fields, see the CICS Application
Programming Reference. If there isn't a COMMAREA, line 4 on the screen is left
blank and EIBCALEN has a value of zero.

STATUS:

COMMAREA
EIBTIME
EIBDATE
EIBTRNID
EIBTASKN
EIBTRMID

EIBCPOSN
EIBCALEN
EIBAID
EIBFN
EIBRCODE
EIBDS

+ EIBREQID

ENTER:
PF1 : UNDEFINED

CONTINUE

PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
\FFIO: PREVIOUS DISPLAY

Ve
TRANSACTION: AC20 PROGRAM: DFHOVT1 TASK: 00032 APPLID: 1234567 DISPLAY:00
PROGRAM INITIATION

3476559873
92920

91163

'AC20'

32

'S246'

4
10

X'7D!
X'0000"
X'000000000000"

AT X'032F059A'
AT X'032F059B'
AT X'032F059D'

PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF11: EIB DISPLAY PF12: UNDEFINED

Figure 34. Typical EDF display at program initiation

At the start of execution of a CICS command
This example shows you the display at the start of execution of a CICS command.
EDF displays the command, including keywords, options, and argument values.

A typical EDF display at start of execution of a CICS command is shown in

[Figure 35 on page 152} You can display the information in hexadecimal or character
form (and switch from one to the other) by pressing PF2. If character format is
requested, numeric arguments are shown in signed numeric character format.

Chapter 11. Execution diagnostic facility (EDF) 151

STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS SEND MAP
MAP ('T1 ")

LENGTH (154)
MAPSET ('DFHOTL ')
CURSOR

TERMINAL

ERASE

NOFLUSH

NOHANDLE

OFFSET:X'002522' LINE:00673 EIBFN=X'1804'

ENTER: CONTINUE

PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE
PF7 : SCROLL BACK PF8 : SCROLL FORWARD

\FFIO: PREVIOUS DISPLAY PF11: EIB DISPLAY

2 (P

-
TRANSACTION: AC20 PROGRAM: DFHOVT1 TASK: 00032 APPLID: 1234567 DISPLAY:00

PF3 : UNDEFINED

PF6 : USER DISPLAY
PF9 : STOP CONDITIONS
PF12: ABEND USER TASK

Figure 35. Typical EDF display at start of execution of a CICS command

shows a similar screen for the start of execution of an EXEC SQL

command running with DB2 version 2.3.

STATUS: ABOUT TO EXECUTE COMMAND
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL UPDATE
DBRM=TLOKO, STMT=00242, SECT=00001
IVAR 001: TYPE=CHAR, LEN=00010
DATA=X"'FOFOFOFOFOF1FOFOFOFO"

OFFSET:X'000298' LINE: UNKNOWN EIBFN= X'0A02'
ENTER: CONTINUE

PF1 : UNDEFINED PF2 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE
PF7 : SCROLL BACK PF8 : SCROLL FORWARD

\?Fl@: PREVIOUS DISPLAY PF11: EIB DISPLAY

e
TRANSACTION: LOKO PROGRAM: TLOKO TASK: 00082 APPLID:

1234567 DISPLAY:00

AT X'001E5A99'

PF3 : UNDEFINED

PF6 : USER DISPLAY
PF9 : STOP CONDITIONS
PF12: ABEND USER TASK

Figure 36. Typical SQL display at start of execution of a SQL command

In addition to options and values, the command is identified by its hexadecimal
offset within the program. If the program was translated with the DEBUG

translator option, the line number also a

ppears, as shown in [Figure 35| (See

[“Defining translator options” on page 87 for information about this option.)

At the start of an EXEC SQL or EXEC DLI command, the body of the EDF display
shows you the parameter list of the CALL to which your command translates. If a

DLI command generates multiple CALL
statement.

152 CICS TS for z/0S 4.2: Application Programming Guide

statements, you see only the last CALL

At the end of execution of a command

This example shows you the display at end of execution of a command. EDF
provides a display in the same format as at the start of the command. At this
point, you can see the effects of executing the command, in the values of the
variables returned or changed and in the response code.

EDF does not provide this display for the ABEND, XCTL, and RETURN
commands (although these commands could raise an error condition that EDF

displays). The completion screen corresponding to the about to execute screen in
[Figure 35 on page 152|is shown in

/}RANSACTION: AC20 PROGRAM: DFHOVT1 TASK: 00054 APPLID: 1234567 DISPLAY:00
STATUS: COMMAND EXECUTION COMPLETE

EXEC CICS SEND MAP

MAP ('T1 ")

) (" 00000000000000000000000000060006000600606000006A0000006A00AE ¥ o0a)
LENGTH (154)

MAPSET ('DFHOTL ')

CURSOR

TERMINAL

ERASE

NOFLUSH

NOHANDLE

OFFSET:X'002522' LINE:00673 EIBFN=X'1804"
RESPONSE: NORMAL EIBRESP=0

ENTER: CONTINUE

PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
\FFIO: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 37. Typical EDF display at completion of a CICS command

For CICS commands, response codes are described both by name (for example,
NORMAL or NOTFND) and by the corresponding EIBRESP value in decimal form.
For DL/I, the response code is a 2-character DL/I status code, and there is no
EIBRESP value. Programming information, including a list of EIBRESP codes, is in
the CICS Application Programming Reference, and DL/I codes are documented in the
Application Programming: EXEC DLI Commands.

[Figure 38 on page 154] and [Figure 39 on page 154] show typical screens for an EXEC
DLI command.

Chapter 11. Execution diagnostic facility (EDF) 153

/}RANSACTION: XDLI PROGRAM: UPDATE TASK: 00111 APPLID: 1234567 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT
USING PCB (+00003)

FIRST

SEGMENT ('A D)

INTO (! ")

SEGLENGTH (+00012)

FIRST

VARIABLE
+SEGMENT ('B)

OFFSET:X'000246' LINE: 00000510 EIBFN:X'000C"

RESPONSE: 'AD'

ENTER: CONTINUE

PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION

PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY

PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
\TFIO: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 38. Typical EDF display at completion of a DLI command (screen one)

/}RANSACTION: XDLI PROGRAM: UPDATE TASK: 00111 APPLID: 1234567 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT
+

FIRST

SEGMENT ('C ")
SEGLENGTH (+00010)

LOCKED

INTO ('SMITH ")

WHERE (ACCOUNT = '12345')
FIELDLENGTH (+00005)

OFFSET:X'000246' LINE: 00000510 EIBFN:X'000C'
RESPONSE: 'AD'

ENTER: CONTINUE

PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION

PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY

PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
\?Fl@: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 39. Typical EDF display at completion of a DLI command (screen two)

154 CICS TS for z/0S 4.2: Application Programming Guide

/~ ™
TRANSACTION: LOKO PROGRAM: TLOKO TASK: 00111 APPLID: 1234567 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL UPDATE
PLAN=TLOK®O, DBRM=TLOK®O, STMT=00242, SECT=00001
SQL COMMUNICATION AREA:
SQLCABC = 136 AT X'001E5A18'
SQLCODE = 000 AT X'001E5A1C"
SQLERRML = 000 AT X'001E5A20'
SQLERRMC g 0C AT X'001E5A22"
SQLERRP = 'DSN' AT X'001E5A68'
SQLERRD(1-6) = 000, 000, 00001, -1, 00000, 000 AT X'001E5A70'
SQLWARN(G-A) = ' : AT X'001E5A88"
SQLSTATE = 00000 AT X'Q01E5A93'
OFFSET:X'000298"' LINE: UNKNOWN EIBFN= X'OA02'
RESPONSE :
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK
. J
Figure 40. Typical SQL display at completion of an SQL command
At program and task termination
This example shows you the display at program termination and normal task
termination. There is no body information; all the pertinent information is in the
header.
IFigure 41| and |Figure 42 on page 156| show summarized screens for program and
task termination.
/~ ™
TRANSACTION: AC20 PROGRAM: DFHOVT1 TASK: 00054 APPLID: 1234567 DISPLAY:00
STATUS: PROGRAM TERMINATION
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11l: EIB DISPLAY PF12: ABEND USER TASK
N J
Figure 41. Typical EDF display at program termination
Chapter 11. Execution diagnostic facility (EDF) 155

-
TRANSACTION: AC20 TASK: 00054 APPLID: 1234567 DISPLAY: 00
STATUS: TASK TERMINATION

CONTINUE EDF? (ENTER YES OR NO) REPLY: YES
ENTER: CONTINUE

PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 42. Typical EDF display at task termination

At abnormal termination
This example shows you the display when an abend or abnormal task termination
occurs.

When an abend or abnormal task termination occurs, EDF displays the screens
shown in [Figure 43|and [Figure 44 on page 157}

/}RANSACTION: AC20 PROGRAM: DFHOVT1 TASK:00054 APPLID: 1234567 DISPLAY: 00

STATUS: AN ABEND HAS OCCURRED

COMMAREA = '1287656678'

EIBTIME = 135510

EIBDATE = 91163

EIBTRNID = 'AC20'

EIBTASKN =76

EIBTRMID = 'S232!

EIBCPOSN =4

EIBCALEN =10

EIBAID = X'7D! AT X'032F059A'

EIBFN = X'1804' SEND AT X'032F059B'

EIBRCODE = X'000000000000' AT X'032F059D'

EIBDS 5 U50000000 !
+ EIBREQID 3 Y56000000 !
ABEND : ABCD
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 43. Typical EDF display when an abend occurs

156 CICS TS for z/0S 4.2: Application Programming Guide

/}RANSACTION: AC20 TASK: 00054 APPLID: 1234567 DISPLAY: 00 A

STATUS: ABNORMAL TASK TERMINATION

COMMAREA = '2934564671

EIBTIME = 135510

EIBDATE = 91163

EIBTRNID = 'AC20'

EIBTASKN =76

EIBTRMID = 'S232'

EIBCPOSN =4

EIBCALEN =10

EIBAID = X'7D! AT X'032F059A'

EIBFN = X'1804' SEND AT X'032F059B'

EIBRCODE = X'000000000000' AT X'032F059D'

EIBDS 3 Y50000000 !
+ EIBREQID 3 U56000000 !
ABEND : ABCD
CONTINUE EDF? (ENTER YES OR NO) REPLY: YES
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS

\FFIO: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED)

Figure 44. Typical EDF display at abnormal task termination

The body displays the COMMAREA and the values of the fields in the EIB as well
as the following items:

e The abend code

* If the abend code is ASRA (that is, a program interrupt has occurred), the
program status word (PSW) at the time of interrupt, and the source of the
interrupt as indicated by the PSW

* If the PSW indicates that the instruction giving rise to the interrupt is within the
application program, the offset of that instruction relative to the main entry
point

Testing programs using EDF

You can run EDF by using either the CEDF or CEDX transaction. If you are testing
a nonterminal transaction, use the CEDX transaction, which enables you to specify
the name of the transaction. If you are testing a transaction that is associated with

a terminal, use the CEDF transaction.

You can typically select one of several methods for running EDEF, but there are a
few situations in which a specific method is required. For example, you must use
single-screen mode for remote transactions. See [“Restrictions when using EDF” on|
for other conditions that affect your choice.

Interrupting program execution

Using EDF, you can perform different operations at intercept points in your
program to help debug it.

The power of EDF lies in what you can do at each of the intercept points. For
example, you can:

* Change the argument values before a command is executed. For CICS
commands, you cannot change the command itself, or add or delete options, but
you can change the value associated with any option. You can also suppress
execution of the command entirely using NOOP. See [‘Over typing to make]
[changes” on page 162 for further details.

Chapter 11. Execution diagnostic facility (EDF) 157

* Change the results of a command, either by changing the argument values
returned by execution or by modifying the response code. This allows you to
test branches of the program that are hard to reach using ordinary test data (for
example, what happens on an input/output error). It also allows you to bypass
the effects of an error to check whether this eliminates a problem.

* Display the working storage of the program, the EXEC interface block (EIB), and
for DL/I programs, the DL/I interface block (DIB).

* Invoke the command interpreter (CECI). Under CECI you can execute
commands that are not present in the program to gain additional information or
change the execution environment.

* Display any other location in the CICS region.

* Change the working storage of the program and most fields in the EIB and the
DIB. EDF stops your task from interfering with other tasks by preventing you
from changing other areas of storage.

* Display the contents of temporary storage and transient data queues.

* Suppress EDF displays until one or more of a set of specific conditions is
fulfilled. This speeds up testing.

* Retrieve up to 10 previous EDF displays or saved screens.
* Switch off EDF mode and run the application normally.
* Stop the task with an abend.

The first two types of changes are made by overtyping values in the body of the
command displays. [“Over typing to make changes” on page 162 tells you how to
do this. You use the function keys in the menu for the others; [“Using EDF menul
ffunctions” on page 164 tells you exactly what you can do and how to go about it.

/}RANSACTION: DLID PROGRAM: DLID TASK: 00049 APPLID: IYAHZCIB DISPLAY:00 h
ADDRESS: 00000000
WORKING STORAGE IS NOT AVAILABLE
ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : BROWSE TEMP STORAGE PF3 : UNDEFINED
PF4 : EIB DISPLAY PF5 : INVOKE CECI PF6 : USER DISPLAY
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
\FFIO: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: REMEMBER DISPLAY)

Figure 45. Typical EDF display from which CECI can be invoked

Using EDF in single-screen mode

When you use EDF with just one terminal, the EDF inputs and outputs are
interleaved with those from the transaction.

This sounds complicated, but works quite easily in practice. The only noticeable
peculiarity is that when a SEND command is followed by a RECEIVE command,

158 CICS TS for z/0S 4.2: Application Programming Guide

the display sent by the SEND command appears twice: once when the SEND is
executed, and again when the RECEIVE is executed. It is not necessary to respond
to the first display, but if you do, EDF preserves anything that was entered from
the first display to the second.

You can start EDF in two ways:
* Entering transaction code CEDF from a cleared screen
* Pressing the appropriate function key (if one has been defined for EDF)

Next, you start the transaction to be tested by completing the following steps:
1. Press the CLEAR key to clear the screen.

2. Enter the transaction code of the transaction you want to test.

When both EDF and the user transaction are sharing the same terminal, EDF
restores the user transaction display at the following times:

* When the transaction requires input from the operator
* When you change the transaction display

* At the end of the transaction

* When you suppress the EDF displays

* When you request USER DISPLAY

To enable restoration, user displays are remembered at the following times:

1. At the start of task, before the first EDF screen for the task is displayed

2. Before the next EDF screen is displayed, if the user display has been changed
3. On leaving SCREEN SUPPRESS mode

If you use CEDF with an application program that has been translated with option
NOEDF, or one that has NO specified for CEDF in its resource definition, EDF
cannot ascertain when the display is changed by that application program.
Therefore EDF cannot save a copy of that display for later use. The next EDF
display overwrites any display sent by the application program and cannot be
restored.

Similarly, CEDF cannot restore the current display when it is about to be changed
by the application, or when the transaction requires input from the operator.
Therefore an output command to the principal facility from the application
program might result in random background information from a previous EDF
display appearing on the screen.

An input command can be executed against the previous EDF display, rather than
a display from the application program, or, if it is the first receive in the
transaction, it might require explicit input from the CEDF panel instead of being
satisfied by the contents of the initial TIOA.

These considerations apply to any screen 1/O operation performed by the
application program.

When EDF restores the transaction display, it does not sound the alarm or affect
the keyboard in the same way as the user transaction. The effect of the user
transaction options is seen when the SEND command is processed, but not when
the screen is restored. When you have NOEDF specified in single-screen mode,
take care that your program does not send and receive data because you will not
see it.

Chapter 11. Execution diagnostic facility (EDF) 159

When EDF restores the transaction display on a device that uses color,
programmed symbols, or extended highlighting, these attributes are no longer
present and the display is monochrome without the programmed symbols or
extended highlighting. Also, if the inbound reply mode in the application program
is set to character to enable the attribute-setting keys, EDF resets this mode,
causing these keys to be disabled. If these changes prevent your transaction from
executing properly, test in a dual-screen mode.

If you end your EDF session part way through the transaction, EDF restores the
screen with the keyboard locked if the most recent RECEIVE command has not
been followed by a SEND command; otherwise, the keyboard is unlocked.

Pseudoconversational programs

EDF makes a special provision for testing pseudoconversational transactions from
a single terminal. If the terminal came out of EDF mode between the several tasks
that make up a pseudoconversational transaction, it would be very hard to do any
debugging after the first task. So, when a task terminates, EDF asks the operator
whether EDF mode is to continue to the next task. If you are debugging a
pseudoconversational task, press Enter to accept the default, which is Yes. If you
have finished, reply No.

Using EDF in dual-screen mode

In dual-screen mode, you use one terminal for EDF interaction and another for
sending input to, and receiving output from, the transaction that is being tested.

You start by entering, at the EDF terminal, the transaction CEDF tttt, where fttt is
the name of the terminal on which the transaction is to be tested.

The message that CEDF gives in response to this transaction depends on whether
there is already a transaction running on the second terminal. If the second
terminal is not busy, the message displayed at the first terminal is:

TERMINAL tttt: EDF MODE ON

Nothing further happens until a transaction is started on the second terminal,
when the PROGRAM INITIATION display appears.

You can also use EDF in dual-screen mode to monitor a transaction that is already
running on the second terminal. If, for example, you believe a transaction at a
specific terminal might be looping, you can go to another terminal and enter a
CEDF transaction that names the terminal at which this transaction is running. The
message displayed at the first terminal is:

TERMINAL tttt: TRANSACTION RUNNING: EDF MODE ON

EDF picks up control at the next EXEC CICS command executed, and you can then
observe the sequence of commands that are causing the loop, assuming that at
least one EXEC CICS command is executed.

EDF and remote transactions

You cannot use EDF in dual-screen mode if the transaction that is being tested, or
the terminal that invokes it, is owned by another CICS region.

If a remote transaction ends abnormally while under EDF using a CRTE routing
session, EDF displays the abnormal task termination screen, followed by message
DFHAC2206 for the user transaction. The CRTE session is not affected by the user

160 CICS TS for z/0S 4.2: Application Programming Guide

task abend. Also, if you opted to continue with EDF after the abend, your terminal
remains in EDF mode within the CRTE routing session.

There is a difference in execution as well. For remote transactions, EDF purges its
memory of your session at the termination of each transaction, whether EDF is to
be continued or not. This means that any options you have set, and any saved

screens, are lost between the individual tasks in a pseudoconversational sequence.

EDF and non-terminal transactions

Use EDF to test transactions that execute without a terminal: for example,
transactions started by an EXEC CICS START command, or transactions initiated by a
transient data trigger-level. To test nonterminal transactions, use the CEDX trnx
command, where trnx is the transaction identifier.

To test a transaction using CEDX, the following conditions must be met:

¢ The terminal you use for the EDF displays, at which you enter the CEDX
command, must be logged on to the CICS region in which the specified
transaction is to execute.

¢ The CEDX command must be issued before the specified transaction is started
by CICS. Other instances of the same transaction that are already executing
when you issue the CEDX command are ignored.

When you use CEDX to debug a transaction, CICS controls the EDF operation by
modifying the definition of the transaction specified on the CEDX command, to
reference a special transaction class, DFEHEDFTC. When you switch off EDF (using
CEDX tranid,OFF) CICS modifies the transaction definition back to its normal
transaction class.

EDF and DTP programs

You can test a transaction that is using distributed transaction processing (DTP)
across a remote link by telling EDF to monitor the session on the link.

You can do this on either (or both) of the participating systems that are running
under CICS and have EDF installed. You cannot do this if the transaction has been
routed from another CICS region because you must use single-screen mode for
remote transactions.

For APPC and MRO links, you can name the system identifier (SYSID) of the
remote system:

CEDF sysid

This causes EDF to associate itself with any transaction attached across any session
belonging to the specified system.

For APPC, MRO, and LU6.1 links, you can use the session identifier that the
transaction is using;:

CEDF sessionid

You can determine the session identifier with the INQUIRE TERMINAL command,
but this means that the transaction must be running and must have reached the
point of establishing a session before you start EDF.

Chapter 11. Execution diagnostic facility (EDF) 161

If a transaction that uses distributed transaction processing also has a terminal
associated with it, or if you can invoke it from a terminal (even though it does not
use one), you can use EDF to test it in the ordinary way from that terminal.

When you have finished testing the transaction on the remote system, turn off EDF
on that system identifier or session identifier before logging off from CICS with
CESF. For example:

CEDF sysid,OFF

Failure to do this could cause another transaction using a link to that system to be
suspended.

EDF and distributed program link commands

You can use EDF, in single- or dual-terminal mode, to test a transaction that
includes a distributed program link (DPL) command. However, EDF displays only
the DPL command invocation and response screens. CICS commands issued by the
remote program are not displayed, but a remote abend, and the message a remote
abend has occurred, is returned to the EDF terminal, along with the SYSID of the
system from which the abend was received. After control is returned to your local
program, EDF continues to test as normal, but the program status word (PSW) is
not displayed if the abend is in a remote program.

Stopping EDF

If you want to end EDF control of a terminal, the method you use depends on
where you are in the testing.

If the transaction that is being tested is still executing and you want it to continue,
but without EDF, press the END EDF SESSION function key. If you have reached
the task termination intercept, EDF asks if you want to continue. If you do not,
overtype the reply as NO (YES is the default). If no transaction is executing at the
terminal, clear the screen and enter:

CEDF ,OFF
(The space and comma are required.)

If you are logging off from dual-screen mode, clear the screen and enter CEDF
tttt,OFF.

In all these cases, the message THIS TERMINAL: EDF MODE OFF is displayed at the
top of an empty screen.

Over typing to

make changes

Most of the changes you make with EDF involve changing information in memory.
You do this by typing over the information shown on the screen with the
information you want used instead. You can change any area where the cursor
stops when you use the tab keys, except for the menu area at the bottom.

When you change the screen, you must observe the following rules:

* On CICS command screens, any argument value can be over typed, but not the
keyword of the argument. An optional argument cannot be removed, nor can an
option be added or deleted.

* When you change an argument in the command display (as opposed to the
working storage screen), you can change only the part shown on the display. If

162 CICS TS for z/0S 4.2: Application Programming Guide

you attempt to over type beyond the value displayed, the changes are not made
and no diagnostic message is generated. If the argument is so long that only part
of it appears on the screen, you should change the area in working storage to
which the argument points. (To determine the address, display the argument in
hexadecimal format; the address of the argument location also appears.)

In character format, numeric values always have a sign field, which can be over
typed with a minus or a blank only.

When an argument is to be displayed in character format, some of the characters
might not be displayable (including lowercase characters). EDF replaces each
nondisplayable character with a period. When over typing a period, you must
be aware that the storage might in fact contain a character other than a period.
You should not over type any character with a period; if you do, the change is
ignored, and no diagnostic message is issued. If you need to over type a
character with a period, you can do so by switching the display to hexadecimal
format, using PF2, and over typing with X'4B'.

When storage is displayed in both character and hexadecimal format and
changes are made to both, the value of the hexadecimal field takes precedence
should the changes conflict; no diagnostic message is issued.

The arguments for some commands, such as HANDLE CONDITION, are

program labels rather than numeric or character data. The form in which EDF

displays (and accepts modifications to) these arguments depends on the

programming language in use:

— For COBOL, a null argument is displayed: for example, ERROR (), and
because of this, you cannot modify it.

— For C and C++, labels are not valid.

— For PL/I, the address of the label constant is used; for example, ERROR
(X'001D0016".

— For assembly language, the address of the program label is used; for example,
ERROR (X'00030C").

If no label value is specified on a HANDLE CONDITION command, EDF
displays the condition name alone without the parentheses.

The response field can be over typed with the name of any exception condition,
including ERROR, that can occur for the current function, or with the word
NORMAL. The effect when EDF continues is that the program takes whatever
action has been prescribed for the specified response. You can get the same effect
by changing the EIBRESP field in the EIB display to the corresponding values. If
you change the EIBRESP value or the response field on the command execution
complete screen, EIBRCODE is updated. EIBRESP appears on second EIB screen
and is the only one you can change (EIBRCODE protected). You can get the
same effect by changing the EIBRESP value on the EIB display; EDF changes
related values in the EIB and command screens accordingly if you do this.

If uppercase translation is not specified for the terminal you are using you must
take care to always enter uppercase characters.

Any command can be over typed with NOOP or NOP before processing; this
suppresses processing of the command. Use of the ERASE EOF key, or over
typing with blanks, gives the same effect. When the screen is redisplayed with
NOOP, the original verb line can be restored by erasing the whole verb line with
the ERASE EOF key and pressing the ENTER key.

When you over type a field representing a data area in your program, the change

is made directly in application program storage and is permanent. However, if you
change a field that represents a constant (a program literal), program storage is not
changed, because this might affect other parts of the program that use the same

Chapter 11. Execution diagnostic facility (EDF) 163

constant or other tasks using the program. The command is executed with the
changed data, but when the command is displayed after processing, the original
argument values reappear. For example, suppose you are testing a program
containing a command coded:

EXEC CICS SEND MAP('MENU') END-EXEC.

If you change the name MENU to MENU2 under EDF before executing the
command, the map used is MENU2, but the map displayed on the response is
MENU. (You can use the “previous display” key to verify that the map name you
used.) If you process the same command more than once, you must enter this type
of change each time.

EDF responses

You can use this list of rules to learn the EDF responses to any keyboard entry.

The rules are as follows, in the order shown:
1. If the CLEAR key is used, EDF redisplays the screen with any changes ignored.

2. If invalid changes are made, EDF accepts any valid changes and redisplays the
screen with a diagnostic message.

3. If the display number is changed, EDF accepts any other changes and shows
the requested display.

4. If a function key is used, EDF accepts any changes and performs the action
requested by the function key. Pressing ENTER with the cursor under a
function key definition in the menu at the bottom of the screen is the same as
pressing a function key.

5. If the ENTER key is pressed and the screen has been modified (other than the
REPLY field), EDF redisplays the screen with changes included.

6. If the ENTER key is pressed and the screen has not been modified (other than
the REPLY field), the effect differs according to the meaning of the ENTER key.
If the ENTER key means CONTINUE, the user transaction continues to execute.
If it means CURRENT DISPLAY, EDF redisplays the status display.

Using EDF menu functions

The function keys that you can use at any given time are displayed in a menu at
the bottom of every EDF display.

Functions that apply to all displays are always assigned to the same key, but
definitions of some keys depend on the display and the intercept point. To select
an option, press the indicated function key. Where a terminal has 24 function keys,
EDF treats PF13 through PF24 as duplicates of PF1 through PF12. If your terminal
has no PF keys, place the cursor under the option you want and press the ENTER
key.

ABEND USER TASK
Terminates the task being monitored. EDF asks you to confirm this action by
displaying the message ENTER ABEND CODE AND REQUEST ABEND AGAIN. After
entering the code at the position indicated by the cursor, you must request this
function again to abend the task with a transaction dump identified by the
specified code. If you enter NO, the task is abended without a dump and with
the 4-character default abend code of four question marks (???7?).

Abend codes beginning with the character A are reserved for use by CICS.
Using a CICS abend code might cause unpredictable results.

164 CICS TS for z/0S 4.2: Application Programming Guide

You cannot use this function if an abend is already in progress or the task is
terminating.

BROWSE TEMP STORAGE
Produces a display of the temporary storage queue CEBRxxxx, where xxxx is
the terminal identifier of the terminal running EDF. This function is only
available from the working storage (PF5) screen. You can use |CEBR commands|
to display or modify temporary storage queues and to read or write transient
data queues.

CONTINUE
Redisplays the current screen to incorporate any changes. If you made no
changes, CONTINUE causes the transaction under test to resume execution up
to the next intercept point. To continue, press ENTER.

CURRENT DISPLAY
Redisplays the current screen to incorporate any changes. If you made no
changes, EDF displays the command screen for the last intercept point. To
execute this function, press ENTER from the appropriate screen.

DIB DISPLAY
Shows the contents of the DL/I interface block (DIB). This function is only
available from the working-storage screen (PF5). See the Application
Programming: EXEC DLI Commands manual for information about DIB fields.

EIB DISPLAY
Displays the contents of the EIB. See [Figure 34 on page 151| for an example of
an EIB display. For programming information about the EIB, see the CICS
Application Programming Reference. If COMMAREA exists, EDF also displays its
address and one line of data in the dump format.

INVOKE CECI

Accesses CECI. This function is only available from the working storage (PF5)
screen. See [Figure 45 on page 158 for an example of the screen from which
CECI is invoked. You can then use CECI commands, discussed in
[‘Command-level interpreter (CECI),” on page 179] These CECI commands
include INQUIRE and SET commands against the resources referenced by the
original command before and after command execution. See
for restrictions when running CECI in dual-screen mode. The use of
CECI from this panel is like the use of CEBR within CEDFE.

END EDF SESSION
Ends the EDF control of the transaction. The transaction continues running
from that point but no longer runs in EDF mode.

NEXT DISPLAY
Is the reverse of PREVIOUS DISPLAY. When you have returned to a previous
display, this option causes the next one forward to be displayed and the
display number to increase by one.

PREVIOUS DISPLAY
Causes the previous display to be sent to the screen, unless you saved other
displays. The number of the display from the current intercept point is always
00. As you request previous displays, the display number decreases by 1 to -01
for the first previous display, -02 for the one before that, and so on, down to
the oldest display, -10. When no more previous screens are available, the
PREVIOUS option disappears from the menu, and the corresponding function
key becomes inoperative.

Chapter 11. Execution diagnostic facility (EDF) 165

REGISTERS AT ABEND
Displays storage containing the values of the registers if a local ASRA abend
occur. The layout of the storage is:

* Register values (0 through 15)
e PSW at abend (8 bytes)

In some cases, when a second program check occurs in the region before EDF
has captured the values of the registers, this function does not appear on the
menu of the abend display. If this situation occurs, a second test run generally
proves to be more informative.

REMEMBER DISPLAY
Places a display that would not typically be kept in memory, such as an EIB
display, in the EDF memory. EDF automatically saves the displays at the start
and completion of each command. The memory can hold up to 10 displays.
The displays are numbered in reverse chronological order (that is, -10 is the
oldest display, and -01 is the newest). All pages associated with the display are
kept in memory and can be scrolled when recalled. Note, however, that if you
save a working-storage display, only the screen on view is saved.

SCROLL BACK
Applies to an EIB, DIB, or command display that does not all fit on one screen.
When the screen on view is not the first one of the display, and there is a plus
sign (+) before the first option or field, you can view previous screens in the
display by selecting SCROLL BACK. See [Figure 34 on page 151| for an example.

SCROLL FORWARD
Applies to an EIB, DIB, or command display that does not all fit on one screen.
When the display does not fit, a plus sign (+) appears after the last option or
field in the display, to show that there are more screens. Using SCROLL
FORWARD displays the next screen.

SCROLL BACK FULL
Has the same function for displays of working storage as the SCROLL BACK
option for EIB and DIB displays. SCROLL BACK FULL gives a
working-storage display one full screen backward, showing addresses lower in
storage than those addresses on the current screen.

SCROLL FORWARD FULL
Has the same function for displays of working storage as the SCROLL
FORWARD option for EIB and DIB displays. SCROLL FORWARD FULL gives
a working-storage display one full screen forward, showing addresses higher
in storage than those addresses on the current screen.

SCROLL BACK HALF
Is like SCROLL BACK FULL, except that the display of working storage is
reversed by only half a screen.

SCROLL FORWARD HALF
Is like SCROLL FORWARD FULL, except that the display of working storage is
advanced by only half a screen.

STOP CONDITIONS
Produces the menu screen shown in [Figure 46 on page 1671 You use this screen
to tell EDF when to resume its displays after you have pressed the SUPPRESS
DISPLAYS key. You can use STOP CONDITIONS and SUPPRESS DISPLAYS
together to cut down on the interaction when you are checking a program that
you know is partly working.

166 CICS TS for z/0S 4.2: Application Programming Guide

Ve
TRANSACTION: AC20 PROGRAM: DFHOVT1 TASK: 0086 APPLID: 1234567 DISPLAY: 00

DISPLAY ON CONDITION:-

COMMAND : EXEC CIC

OFFSET: R’c00000 !

LINE NUMBER:

CICS EXCEPTION CONDITION: ERROR

ANY CICS CONDITION NO

TRANSACTION ABEND YES

NORMAL TASK TERMINATION YES

ABNORMAL TASK TERMINATION YES

DLI ERROR STATUS:

ANY DLI ERROR STATUS
ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : UNDEFINED PF8 : UNDEFINED PF9 : UNDEFINED

\FFIO: UNDEFINED PF11: UNDEFINED PF12: REMEMBER DISPLAY)

Figure 46. Typical EDF display for STOP CONDITIONS

You can specify any or all these events as STOP CONDITIONS:

A specific type of function and option, such as READNEXT file or ENQ
resource, is encountered, for example, FEPI ADD or GDS ASSIGN.

The command at a specific offset or on a specific line number (assuming that
the program has been translated with the DEBUG option) is encountered.
Any DL/I error status occurs, or a particular DLI error status occurs.

A specific exception condition occurs. If CICS exception condition is
specified as ERROR (the default), EDF redisplays a screen in response to any
ERROR condition (for example, NOTOPEN, EOF, or INVREQ). If you
specify a specific condition such as EOF, EDF redisplays the screen only
when an EOF condition arises, if ANY CICS CONDITION is left as the
default NO.

If this field is changed to YES, EDF overrides the CICS exception conditions
and redisplays a screen whenever any command results in a non-zero
EIBRESP value such as NOTOPEN, EOF, or QBUSY.

Any exception condition occurs for which the CICS action is to raise
ERROR; for example, INVREQ or NOTFND.

An abend occurs.
The task ends normally.
The task ends abnormally.

You do not always have to set STOP CONDITIONS in order to use the
SUPPRESS DISPLAYS function, because EDF sets a default in the following
fields on the assumption that you typically want to resume displays if any of
them occurs:

CICS exception condition
Transaction abend
Normal task termination

Abnormal task termination

Chapter 11. Execution diagnostic facility (EDF) 167

These options are described in [Figure 46 on page 167} You can turn off any of
the defaults that do not apply when you display the STOP CONDITIONS
menu, as well as adding conditions specific to your program.

When you use an offset for STOP CONDITIONS, you must specify the offset of
the BALR instruction corresponding to a command. The offset can be
determined from the code listing produced by the compiler or assembler. In
COBOL, C, C++, or PL/I, you must use the compiler option that produces the
assembler listing to determine the relevant BALR instruction.

When you use a line number, you must specify it exactly as it appears on the
listing, including leading zeros, and it must be the line on which a command
starts. If you have used the NUM or the SEQUENCE translator options, the
translator uses your line numbers as they appear in the source. Otherwise, the
translator assigns line numbers.

Line numbers can be found in the translator listing (SYSPRINT in the
translator step) if you have used either the SOURCE or VBREF translator
options. If you have used the DEBUG translator option, as you must to use
line numbers for STOP CONDITIONS, the line number also appears in your
compilation (assembly) listing, embedded in the translated form of the
command, as a parameter in the CALL statement.

You can tell EDF to stop suppressing displays at DL/I commands as well as at
CICS commands. Type over the qualifier “CICS” on the command line with
“DLI” and enter the type of DL/I command at which you want suppression to
stop. You must be running a DL/I program or have executed one earlier in the
same task. You can suppress DL/I commands as early as the program
initiation panel.

You can also stop suppression when a particular DL/I status code occurs. For
information about the status codes that you can use, see the list of codes in the
DL/I interface block (DIB) in the Application Programming: EXEC DLI Commands
manual.

SUPPRESS DISPLAYS
Suppresses all EDF displays until one of the specified STOP CONDITIONS
occurs. When the condition occurs, however, you still have access to the 10
previous command displays, even though they were not sent to the screen
when they were originally created.

SWITCH HEX/CHAR
Switches displays between character and hexadecimal form. The switch applies

only to the command display and does not affect previously remembered
displays, STOP CONDITIONS displays, or working storage displays.

In DL/I command displays which contain the WHERE option, only the key
values (the expressions following each comparison operator) can be converted
to hexadecimal.

UNDEFINED
Means that the indicated function key is not defined for the current display at
the current intercept point.

USER DISPLAY
Causes EDF to display what would be on the screen if the transaction was not
running in EDF mode. (You can use it only for single terminal checkout.) To
return to EDF after using this key, press the ENTER key.

WORKING STORAGE
Shows the contents of the working storage area in your program or of any

168 CICS TS for z/0S 4.2: Application Programming Guide

other address in the CICS region. shows a typical working storage

screen.

/~ N
TRANSACTION: AC20 PROGRAM: DFHOVT1 TASK: 00030 APPLID: 1234567 DISPLAY:00
ADDRESS: 035493F0 WORKING STORAGE
035493F0 000000 E3F14040 00000000 00010000 00000000 T1
03549400 000010 00000000 00000000 F1000000 00000000 llooooooo
03549410 000020 FOOOOOOO 0OOOOOOO FOOOOOOO 0000OLOO0 O....... Bocoaooo
03549420 000030 FOOOOO00 0OOOOOOO FOOOOOOO 00000000 O....... ®oocoooao
03549430 000040 00000000 00000000 00000000 0OOOOOOO cvvvvvnnn.
03549440 000050 D7C1D5D3 00000000 DIC5C3C4 00000000 PANL....RECD....
03549450 000060 D3C9E2E3 00000000 C8C5D3D7 00000000 LIST....HELP....
03549460 000070 84000000 00000000 A4000000 00000000 d....... Moocaooac
03549470 000080 82000000 00000000 C4000000 00000000 b....... Wooooooo
03549480 000090 E4000000 00000000 C2000000 00000000 U....... Bococoas
03549490 0000AG D5000000 00000000 E2000000 00000000 N....... Socaooao
035494A0 0000BO 7BOOOOOO 00000000 6COOO0O0 00OOOOOO #....... Boooooao
035494B0 0000CO 4A000000 00000000 F1000000 00000000 ¢....... looooooo
035494C0 0000DO F2000000 00000000 F3000000 00000000 2....... Soooooao
ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : BROWSE TEMP STORAGE PF3 : UNDEFINED
PF4 : EIB DISPLAY PF5 : INVOKE CECI PF6 : USER DISPLAY
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED

\FFlO: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: REMEMBER DISPLAY)

Figure 47. Typical EDF display for working storage

The working storage contents are displayed in a form like that of a dump listing;
that is, in both hexadecimal and character representation. The address of working
storage is displayed at the top of the screen. You can browse through the entire
area using the scroll commands, or you can enter a new address at the top of the
screen. This address can be anywhere within the CICS region. The working
storage display provides two additional scrolling keys, and a key to display the
EIB (the DIB if the command is a DL/I command).

The meaning of working storage depends on the programming language of the
application program, as follows:

COBOL
All data storage defined in the WORKING-STORAGE section of the program

C, C++ and PL/I
The dynamic storage area (DSA) of the current procedure

Assembler language
The storage defined in the current DFHEISTG DSECT

Assembler language programs do not always acquire working storage; it might not
be required, for example, if the program does not issue CICS commands. You
might get the message Register 13 does not address DFHEISTG when you LINK
to such a program. The message does not necessarily mean an error, but there is no
working storage to look at.

Except for COBOL programs, working storage starts with a standard format save
area; that is, registers 14 to 12 begin at offset 12 and register 13 is stored at offset 4.

Working storage can be changed at the screen; either the hexadecimal section or
the character section can be used. You can type over the ADDRESS field at the
head of the display with a hexadecimal address; storage starting at that address is
then displayed when you press ENTER. You can examine any location in the
ﬁress space. For more information, see [“Over typing to make changes” on paged
162.

Chapter 11. Execution diagnostic facility (EDF) 169

If you are examining program storage that is not part of the working storage of the
program currently running, which is unique to the particular transaction under
test, the corresponding field on the screen is protected to prevent you from
overwriting storage that might belong to or affect another task.

If the initial part of a working storage display line is blank, the blank portion is
not part of working storage. This situation can occur because the display is
doubleword aligned.

At the beginning and end of a task, working storage is not available. In these
circumstances, EDF generates a blank storage display so that you can still examine
any storage area in the region by typing over the address field.

If you terminate a PL/I or Language Environment program with an ordinary
non-CICS return, EDF does not intercept the return, and you are not able to see
working storage. If you use a RETURN command instead, you get an EDF display
before execution and at program termination.

If you are using a Language Environment-enabled program, working storage is

freed at program termination if the program is terminated using a non-CICS
return. In this case, working storage is not available for display.

170 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 12. Temporary storage browse (CEBR)

You can use the browse transaction (CEBR) to browse temporary storage queues
and delete them. You can also use the CEBR transaction to transfer the contents of
a transient data queue to temporary storage in order to look at them, and to
reestablish the transient data queue when you have finished.

The CEBR commands that perform these transfers allow you to add records to a
transient data queue and remove all records from a transient data queue.

Some installations restrict the use of the CEBR transaction, particularly in
production systems, to prevent modifications that were not intended or not
authorized. Installations also can protect individual resources, including temporary
storage and transient data queues. If you are using the CEBR transaction and
experience an abend described as a security failure, you probably have attempted
to access a queue to which your user ID is not authorized.

This chapter describes:

* [“Using the CEBR transaction”]

* [“What does the CEBR transaction display?” on page 172|
* [“Using the CEBR function keys” on page 173

+ |[“Using the CEBR commands” on page 174

+ |[“Using the CEBR transaction with transient data” on page 177

Using the CEBR transaction

You start the CEBR transaction by entering the transaction identifier CEBR,
followed by the name of the queue you want to browse.

You can enter a name of up to 16 characters. For example, to display the
temporary storage queue named AXBYQUEUENAMEI111 you type CEBR
AXBYQUEUENAME111 and press ENTER. If the queue name includes lower case
characters, ensure that upper case translation is suppressed for the terminal you
are using, and then enter the correct combination of upper and lower case
characters. CICS responds with a display of the queue, for example, as shown in
[Figure 48 on page 172

Alternatively, you can start the CEBR transaction from the CEDF transaction. You
do this by pressing PF5 from the initial CEDF screen (see IFigure 33 on page 15(1)
which takes you to the working-storage screen, and then pressing PF2 from that
screen to browse temporary storage (that is, invoke the CEBR transaction). CEBR
can also be started from CEMT I TSQ by entering 'b' at the queue to be browsed.
The CEBR transaction responds by displaying the temporary storage queue whose
name consists of the four letters CEBR followed by the four letters of your terminal
identifier. (CICS uses this same default queue name if you invoke the CEBR
transaction directly and do not supply a queue name.) The result of invoking the
CEBR transaction without a queue name or from an EDF session at terminal S21A
is shown in [Figure 49 on page 172 If you enter the CEBR transaction from the
CEDF transaction, you return to the EDF panel when you press PF3 from the
CEBR screen.

© Copyright IBM Corp. 1989, 2011 171

CEBR TSQ AXBYQUEUENAME111l SYSID CIJP REC 1 OF 3 coL 1 OF 5
ENTER COMMAND ===>

* TOP OF QUEUE w+ ok -
00001 HELLO
00002 HELLO
00003 HELLO

BOTTOM OF QUEUE

PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED

-

Figure 48. Typical CEBR display of temporary storage queue contents

Message line
Menu of options

CEBR TSQ AXBYQUEUEAME1AA SYSID CIJP REC 1 OF 0 CcoL 1 OF 1
ENTER COMMAND ===> 2
TOP OF QUEUE
* * BOTTOM OF QUEUE * *
TS QUEUE AXBYQUEUEAME1AA DOES NOT EXIST
PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
\\PFlO: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED
Header
2] Command area
H Body

Figure 49. Typical CEBR display of default temporary storage queue

What does the CEBR transaction display?

A CEBR transaction display consists of a header, a command area, a body (the
primary display area), a message line, and a menu of functions you can select at
this point.

172 CICS TS for z/0S 4.2: Application Programming Guide

The header

The header shows:
* The transaction being run, that is, CEBR.

* The identifier of the temporary storage queue (AXBYQUEUEAMEI111 in
[Figure 48 on page 172|and (AXBYQUEUEAME1AA in [Figure 49 on page 172).
You can overtype this field in the header if you want to switch the screen to
another queue. If the queue name includes lower case characters, ensure that
upper case translation is suppressed for the terminal you are using, and then
enter the correct combination of upper and lower case characters.

* The system name that corresponds to a temporary storage pool name or to a
remote system. If you have not specified one, the name of the local system is
displayed. You can overtype this field in the header if you want to browse a
shared or remote queue.

* The number of the highlighted record.

* The number of records in the queue (three in AXBYQUEUEAMEI111 and none in
AXBYQUEUEAME1AA)

* The position in each record at which the screen starts (position 1 in both cases)
and the length of the longest record (22 for queue AXBYQUEUEAMEI111 and
zero for queue AXBYQUEUEAME1AA).

The command area

The command area is where you enter commands that control what is to be
displayed and what function is to be performed.

These commands are described in [“Using the CEBR commands” on page 174 You
can also modify the screen with function keys shown in the menu of options at the
bottom of the screen. The function keys are explained in [‘Using the CEBR function|

The body

The body is where the queue records are shown. Each line of the screen
corresponds to one queue record.

If a record is too long for the line, it is truncated. You can change the portion of
the record that is displayed, however, so that you can see an entire record on
successive screens. If the queue contains more records than will fit on the screen,
you can page forward and backward through them, or specify at what record to
start the display, so that you can see all the records you want.

The message line

CEBR uses the message line between the body and menu to display messages to
the user.

For example, the “Does not exist” message shown in [Figure 49 on page 172,

Using the CEBR function keys

The function keys that you can use at any time are displayed at the bottom of
every CEBR transaction screen, and have the same meaning on all screens.

Chapter 12. Temporary storage browse (CEBR) 173

If your terminal does not have PF keys, you can simulate their use by placing the
cursor under the description and pressing ENTER. Where a terminal has 24
function keys, the CEBR transaction treats PF13 through PF24 as duplicates of PF1
through PF12 respectively.

PF1 HELP
Displays a help screen that lists all the commands you can use when the CEBR
transaction is running. You can return to the main screen by pressing ENTER.

PF2 SWITCH HEX/CHAR
Switches the screen from character to hexadecimal format, and back again.

PF3 TERMINATE BROWSE
Terminates the CEBR transaction. If you entered the CEBR transaction directly,
it frees up your terminal for the next transaction. If you entered from an EDF
session, it returns you to the working-storage screen from which you entered.
If you entered from CEMT I TSQ, it returns you to the CEMT screen.

PF4 VIEW TOP
Displays the first records in the queue and has the same effect as the TOP
command.

PF5 VIEW BOTTOM
Displays the last records in the queue and has the same effect as the BOTTOM
command.

PF6 REPEAT LAST FIND
Repeats the previous FIND command.

PF7 SCROLL BACK HALF
Moves the display backward by one-half the number of records that fit on the
screen, so that the records on the top half of the screen move to the bottom
half.

PF8 SCROLL FORWARD HALF
Advances the display by one-half the number of records that fit on the screen,
so that the records on the bottom half of the screen move to the top half.

PF9 VIEW RIGHT (or VIEW LEFT)
Changes the screen to show the columns immediately after (to the right of) or
before (to the left of) the columns currently on display. The key is not defined
if the entire record fits on one line of the screen. It moves you to the right until
the end of the record is reached, and then reverses to move left back to the
beginning of the record. You can also use the COLUMN command to change
the column at which the display begins.

PF10 SCROLL BACK FULL
Moves the screen backward by the number of records that fit on the screen, to
show the records immediately before those currently on display.

PF11 SCROLL FORWARD FULL
Advances the screen by the number of records that will fit on the screen, to
show the records immediately after those currently on display.

Using the CEBR commands

CEBR provides a number of commands that you can use to view and manipulate
the records in the temporary storage queue.

BOTTOM
(Abbreviation: B)

174 CICS TS for z/0S 4.2: Application Programming Guide

Shows the last records in the temporary storage queue (as many as fill up the
body of the screen, with the last record on the last line).

COLUMN nnnn

(Abbreviation: C nnnn)

Displays the records starting at character position (column) nnnn of each
record. The default starting position, assumed when you initiate the CEBR
transaction, is the first character in the record.

FIND /string

GET

(Abbreviation: F /string)

Finds the next occurrence of the specified string. The search starts in the record
after the current record. The current record is the one that is highlighted. In the
initial display of a queue, the current record is set to one, and therefore the
search begins at record two.

If the string is found, the record containing the string becomes the highlighted
line, and the display is changed to show this record on the second line. If you
cannot see the search string after a successful FIND, it is in columns of the
record beyond those on display; use the scroll key or the COLUMN command
to shift the display right or left to show the string.

For example:
FIND /05-02-93

locates the next occurrence of the string “05-02-93” The / character is a
delimiter. It does not have to be /, but it must not be a character that appears
in the search argument. For example, if the string you were looking for was
“05/02/93” instead of “05-02-93”, you could not use the following:

FIND /05/62/93

There is a slash in the search string. The following examples would work:
FIND X05/02/93 or FIND S05/07/93

Any delimiter except a / or one of the digits in the string works. If there are
any spaces in the search string, you must repeat the delimiter at the end of the
string. For example:

FIND /CLARE JACKSON/

The search string is not case-sensitive. When you have entered a FIND
command, you can repeat it (that is, find the next occurrence of the string) by
pressing PF6.

XXXX
(Abbreviation: G xxxx)

Transfers the named transient data queue to the end of the temporary storage
queue currently on display. This enables you to browse the contents of the
queue. xxxx must be either the name of an intrapartition transient data queue,
or the name of an extrapartition transient data queue that has been opened for
input. See|“Using the CEBR transaction with transient data” on page 177 for
more information about browsing transient data queues.

LINE nnnn

(Abbreviation: L nnnn)

Starts the body of the screen at the queue record one prior to nnnn, and sets
the current line to nnnn. (This arrangement causes a subsequent FIND
command to start the search after record nnnn.)

Chapter 12. Temporary storage browse (CEBR) 175

PURGE
Deletes the queue being browsed.

Do not use PURGE to delete the contents of an internally generated queue,
such as a BMS logical message.

Note: If you purge a recoverable temporary storage queue, no other task can
update that queue (add a record, change a record, or purge) until your task
ends.

PUT xxxx
(Abbreviation: P xxxx)

Copies the temporary storage queue that is being browsed to the named
transient data queue. xxxx must be either the name of an intrapartition
transient data queue, or the name of an extrapartition transient data queue that
has been opened for output. See[“Using the CEBR transaction with transient]
[data” on page 177 for more information about creating or restoring a transient
data queue.

QUEUE XXXXXXXXXXXXXXXX
(Abbreviation: Q xxxxxxxx)

Changes the name of the queue you are browsing. The value that you specify
can be in character format using up to 16 characters (for example, QUEUE
ABCDEFGHIJKLMNOP) or in hexadecimal format (for example, QUEUE
X'C1C2C3C4"). If the queue name includes lower case characters, ensure that
upper case translation is suppressed for the terminal you are using, and then
enter the correct combination of upper and lower case characters. The CEBR
transaction responds by displaying the data that is in the named queue.

You can also change the queue name by overtyping the current value in the
header.

SYSID xxxx
(Abbreviation: S xxxx)

Changes the name of the temporary storage pool or remote system where the
queue is to be found.

You can also change this name by overtyping the current SYSID value in the
header.

Note: If ISC is not active in the CICS system on which the CEBR transaction is
running then the SYSID will default to the local SYSID.

TERMINAL xxxx
(Abbreviation: TERM xxxx)

Changes the name of the queue you are browsing, but is tailored to
applications that use the convention of naming temporary storage queues that
are associated with a terminal by a constant in the first four characters and the
terminal name in the last four. The new queue name is formed from the first
four characters of the current queue name, followed by xxxx.

TOP
(Abbreviation: T)

Causes the CEBR transaction to start the display at the first record in the
queue.

176 CICS TS for z/0S 4.2: Application Programming Guide

Using the CEBR transaction with transient data

The GET command reads each record in the transient data queue that you specify
and writes it at the end of the temporary storage queue you are browsing, until the
transient data queue is empty. You can then view the records that were in the
transient data queue.

When you have finished your inspection, you can copy the temporary storage
queue back to the transient data queue (using the PUT command). This typically
leaves the transient data queue as you found it, but not always. Here are some
points you need to be aware of when using the GET and PUT commands:

* If you want to restore the transient data queue unchanged after you have
browsed it, make sure that the temporary storage queue on display at the time
of the GET command is empty. Otherwise, the existing temporary storage
records are copied to the transient data queue when the subsequent PUT
command is issued.

* After you get a transient data queue and before you put it back, other tasks can
write to that transient data queue. When you issue your PUT command, the
records in the temporary storage queue are copied after the new records, so that
the records in the queue are no longer in the order in which they were originally
created. Some applications depend on sequential processing of the records in a
queue.

» After you get a recoverable transient data queue, no other task can access that
queue until your transaction ends. If you entered the CEBR transaction from the
CEDF transaction, the CEDF transaction must end, although you can respond
“yes” to the “continue” question if you are debugging a pseudoconversational
sequence of transactions. If you invoked the CEBR transaction directly, you must
end it.

* Likewise, after you issue a PUT command to a recoverable transient data queue,
no other task can access that queue until your transaction ends.

The GET and PUT commands do not need to be used as a pair. You can add to a
transient data queue from a temporary storage queue with a PUT command at any
time. If you are debugging code that reads a transient data queue, you can create a
queue in temporary storage (with the CECI transaction, or the CEBR GET
command, or by program) and then refresh the transient data queue as many times
as you like from temporary storage. Similarly, you can empty a transient data
queue by using a GET command without a corresponding PUT command.

Chapter 12. Temporary storage browse (CEBR) 177

178 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 13. Command-level interpreter (CECI)

You can use the command-level interpreter (CECI) transaction to check the syntax
of CICS commands and process these commands interactively on a 3270 screen.
CECI allows you to follow through most of the commands to execution and
display the results.

CECI also provides you with a reference to the syntax of the whole of the CICS
command-level application programming and system programming interface.

CECI interacts with your test system to allow you to create or delete test data,
temporary storage queues, or to deliberately introduce wrong data to test out error
logic. You can also use CECI to repair corrupted database records on your
production system.

The interpreter is such a powerful tool that your installation can restrict its use
with attach-time security. (The external security manager used by your installation
defines the security attributes for the CECI and CECS transactions.) If this has been
done, and you are not authorized to use the interpreter transaction you select, you
will not be able to initiate the transaction.

This chapter describes:

+ |“What does CECI display?”|

* [“Using CECI” on page 185

* |“Saving commands” on page 187
+ [“How CECI runs” on page 18§|

What does CECI display?

All CECI screens have the same basic layout. CECI displays consist of the
command line, the status line, the screen body, the message line, and the CECI
option on function keys.

* |"The command line”]

* [“The status line” on page 180)

* |"The screen body” on page 183|

* |"The message line” on page 184]

* [“CECI options on function keys” on page 184

The command line

The command line is the first line of the screen. You enter the command you want
to process or whose syntax you want to check here. This can be the full or
abbreviated syntax.

The rules for entering and abbreviating the command are:
* The keywords EXEC CICS are optional.

* The options of a command can be abbreviated to the number of characters
sufficient to make them unique. Valid abbreviations are shown in uppercase
characters in syntax displays in the body of the screen.

© Copyright IBM Corp. 1989, 2011 179

* The quotes around character strings are optional, and all strings of characters are
treated as character-string constants unless they are preceded by an ampersand
(&), in which case they are treated as variables.

* Options of a command that receive a value from CICS when the command is
processed are called receivers, and need not be specified. The value received
from CICS is included in the syntax display, and stored in the variable if one has
been specified, after the command has been processed.

* If you issue a CECI command with two of the keywords in conflict, CECI
ignores the first keyword and issues an error message, such as this one, from a
READ command:

E INTO option conflicts with SET option and is ignored

* If you put a question mark in front of your command, the interpreter stops after
the syntax check, even if you have used the transaction code CECI. If you want
to proceed with execution, remove the question mark.

The following example shows the abbreviated form of a command. The file control
command:

EXEC CICS READ FILE('FILEA') RIDFLD('009000') INTO(&REC)

can be entered on the command input line, as:
READ FIL(FILEA) RID(009000)

or at a minimum, as:
READ F(FILEA) RI(009000)

In the first form, the INTO specification creates a variable, &REC, into which the
data is to be read. However, INTO is a receiver (as defined above) and you can
omit it. When you do, CICS creates a variable for you automatically.

The status line

As you go through the process of interpreting a command, CECI presents a
sequence of displays. The format of the body of the screen is essentially the same
for all; it shows the syntax of the command and the option values selected.

The status line on these screens tells you where you are in the processing of the
command, and is one of:

+ COMMAND SYNTAX CHECK

* ABOUT TO EXECUTE COMMAND

+ COMMAND EXECUTION COMPLETE

+ COMMAND NOT EXECUTED

From any of these screens, you can select additional displays. When you do, the
body of the screen shows the information requested, and the status line identifies
the display, which may be any of:

« EXPANDED AREA

* VARIABLES

* EXEC INTERFACE BLOCK
* SYNTAX MESSAGES

You can request them at any time during processing and then return to the
command interpretation sequence.

180 CICS TS for z/0S 4.2: Application Programming Guide

There is also one input field in the status line called NAME-=. This field is used to
create and name variables.

Command syntax check

When the status line shows command syntax check, it indicates that the command
entered on the command input line has been syntax checked but is not about to be
processed.

This is always the status if you enter CECS or if you precede your command with
a question mark. It is also the status when the syntax check of the command gives
severe error messages.

In addition, you get this status if you attempt to execute one of the commands that
the interpreter cannot execute. Although any command can be syntax-checked,
using either CECS or CECI, the interpreter cannot process the following commands
any further:

* EXEC CICS commands that depend upon an environment that the interpreter
does not provide:

— FREE

— FREEMAIN

- GETMAIN

- HANDLE ABEND

- HANDLE AID

- HANDLE CONDITION
— IGNORE CONDITION
- POP HANDLE

- PUSH HANDLE

— SEND LAST

— SEND PARTNSET

- WAITCICS

— WAIT EVENT

- WAIT EXTERNAL

¢ BMS commands that refer to partitions (because the display cannot be restored
after the screen is partitioned)

* EXEC DLI
* CPI Communication (CPI-C) commands

¢ SAA Resource Recovery interface (CPI-RR) commands

About to execute command
This example shows you the typical CECI display for about to execute command.

This display (as shown in [Figure 50 on page 182)) appears when none of the
reasons for stopping at command syntax check applies.

Chapter 13. Command-level interpreter (CECI) 181

s
READ FILE('FILEA') RIDFLD('009000')
STATUS: ABOUT TO EXECUTE COMMAND NAME=
EXEC CICS READ
File('FILEA ')
< SYsid() >
SEt() | Into()
< Length() >
RIdf1d('009000')
< Keylength() < GEneric > >
< RBa | RRn | DEBRec | DEBKey >
< GTeq | Equal >
< Update < Token() > >

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 50. Typical CECI display for about to execute command

If you press the ENTER key without changing the screen, CECI executes the
command. You can still modify it, however. If you do, CECI ignores the previous
command and processes the new one from scratch. This means that the next screen
displayed is command syntax check if the command cannot be executed or else
about to execute command if the command is correct.

CICS command completes
This example shows you the typical CECI display for command execution
complete.

This display (as shown in [Figure 51 on page 183) appears after the interpreter has
run a command, in response to the ENTER key from an unmodified about to
execute command screen.

182 CICS TS for z/0S 4.2: Application Programming Guide

<

ANNNANNANANNANNANANNANANNANMNANANNA

INQUIRE FILE NEXT
STATUS: COMMAND EXECUTION COMPLETE NAME=
EXEC CICS INquire File('DFHCSD ')

STArt | END | Next >

ACcessmethod(+0000000003) >

ADd(+0000000041) >

BAsedsname(') >
BLOCKFormat (+0000000016) >

BLOCKKeylen(-0000000001) >

BLOCKSize(-0000000001) >

BRowse(+0000000039) >
Cfdtpool (' ")

DETete(+0000000043) >

DIsposition(+0000000027) >

DSname('CFVO1.CICSO3.PSK.CSD) >
EMptystatus(+0000000032) >

ENAblestatus(+0000000033) >

EXclusive(+0000000001) >

Fwdrecstatus(+0000000361) >

Journalnum(+00000) >

RESPONSE: NORMAL EIBRESP=+0000000000 EIBRESP2=+0000000000

\\PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 51. Typical CECI display for command execution complete

The command has been processed and the results are displayed on the screen.

Any receivers, whether specified or not, together with their CICS-supplied values,
are displayed intensified.

The screen body

The body of the CECI screens contains information that is common to all three
displays.

The full syntax of the command is displayed. Options specified in the command
line or assumed by default are intensified, to show that they are used in executing
the command, as are any receivers. The < > brackets indicate that you can select an
option from within these brackets. If you make an error in your syntax, CECI
diagnoses it in the message area that follows the body, described in
line” on page 184]If there are too many diagnostic messages, the rest of the
messages can be displayed using PF9.

Arguments can be displayed in either character or hexadecimal format. You can
use PF2 to switch between formats. In character format, some characters are not
displayable (including lowercase characters on some terminals); CECI shows them
as periods. You need to switch to hexadecimal to show the real values, and you
need to use caution when modifying them.

If the value of an option is too long for the line, only the first part is displayed
followed by “...” to indicate there is more. You can display the full value by
positioning the cursor at the start of the option value and pressing Enter. This
action produces an expanded display.

If the command has more options than can fit on one screen, a plus sign (+)
appears at the left side of the last option of the current display to indicate that
there are more. An example of this is shown in [“CICS command completes” on|

You can display additional pages by scrolling with the PF keys.

Chapter 13. Command-level interpreter (CECI) 183

The message line

CECI uses the message line to display error messages. After execution of a
command, the message line shows the response code.

The S that precedes the message indicates that it is severe (bad enough to prevent
execution). There are also warning messages (flagged by W) and error messages
(flagged by E), which provide information without preventing execution. E
messages indicate option combinations unusual enough that they might not be
intended and warrant a review of the command before you proceed with
execution.

Where there are multiple error messages, CECI creates a separate display
containing all of them, and uses the message line to tell you how many there are,
and of what severity. You can get the message display with PF9.

[Figure 51 on page 183 shows the second use of the message line, to show the result
of executing a command. CECI provides the information in both text (NORMAL in
the example in [Figure 51 on page 183) and in decimal form (the EIBRESP and
EIBRESP2 value).

CECI options on function keys

The single line at the foot of the screen provides a menu indicating the effect of the
function keys for the display.

The function keys are described below. If the terminal has no function keys, the
same effect can be obtained by positioning the cursor under the required item in
the menu and pressing ENTER.

F1 HELP
displays a HELP panel giving more information on how to use the command
interpreter and on the meanings of the function keys.

F2 HEX
(SWITCH HEX/CHAR) switches the display between hexadecimal and
character format. This is a mode switch; all subsequent screens stay in the
chosen mode until the next time this key is pressed.

F3 END
(END SESSION) ends the current session of the interpreter.

F4 EIB
(EIB DISPLAY) shows the contents of the EXEC interface block (EIB).

F5 VAR
(VARIABLES) shows all the variables associated with the current command
interpreter session, giving the name, length, and value of each.

F6 USER
(USER DISPLAY) shows the current contents of the user display panel (that is,
what would appear on the terminal if the commands processed thus far had
been executed by an ordinary program rather than the interpreter). This key is
not meaningful until a terminal command is executed, such as SEND MAP.

F7 SBH
(SCROLL BACK HALF) scrolls the body half a screen backward.

F8 SFH
(SCROLL FORWARD HALF) scrolls the body half a screen forward.

184 CICS TS for z/0S 4.2: Application Programming Guide

F9 MSG
(DISPLAY MESSAGES) shows all the messages generated during the syntax
check of a command.

F10 SB
(SCROLL BACK) scrolls the body one full screen backward.

F11 SF
(SCROLL FORWARD) scrolls the body one full screen forward.

Using CECI

You start the command-level interpreter by entering either of two transaction
identifiers, CECS or CECI, followed by the name of the command you want to test.

You can list command options too, although you can also do this later. For
example:

CECS READ FILE('FILEA')

or
CECI READ FILE('FILEA')

CICS responds with a display of the command and its associated functions,
options, and arguments. If you leave out the command, CECI provides a list of
possible commands to get you started. You can use any of the commands
described for programming purposes in the [CICS command summary in CICS]
|Application Programming|and the CICS System Programming Reference.

If you use the transaction code CECS, the interpreter checks your command for
correct syntax. If you use CECI, you have the option of executing your command
when the syntax is correct. CICS uses two transaction identifiers to allow different
security to be assigned to syntax checking and execution.

Making changes

Until CICS executes a command, you can change it by changing the contents of the
command line, by changing the option values shown in the syntax display in the
body, or by changing the values of variables on the Variables screen. (You can still
make changes after a command is executed, but, unless they are in preparation for
another command, they have no effect.)

When you make your changes in the command line or on the Variables screen,
they last for the duration of the CECI transaction. If you make them in the body of
the syntax screen, however, they are temporary. They last only until the command
is executed and are not reflected in the command line.

Not all characters are displayable on all terminals. When the display is in character
rather than hexadecimal format, CECI shows these characters as periods (X'4B').
When you overtype a period, the current value might not be a period, but might
be an undisplayable character.

Furthermore, you cannot change a character to a period when the display is in
character mode. If you attempt this, CECI ignores your change, and does not issue
a diagnostic message. To make such a change, you have to switch the display to
hexadecimal and enter the value (X'4B') that represents a period.

Chapter 13. Command-level interpreter (CECI) 185

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp4_commandsummary.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp4_commandsummary.html

There is a restriction on changes in hexadecimal format as well. If you need to
change a character to a blank, you cannot enter the code (X'40') from a
hexadecimal display. Again, your change is ignored and CECI does not issue a
message. Instead, you must switch to character mode and blank out the character.

After every modification, CECI rechecks your syntax to ensure that no errors have
appeared. It restarts processing at the command syntax check if there are any
execution-stoppers, and at about to execute command if not. Only after you press
Enter on an unmodified about to execute command screen does CECI execute your
command.

Defining variables

You can define variables when the values of the options cause the command to
exceed the line length of the command input area or if you want to connect two
commands through option values.

To display the list of variables, press PF5. For each variable associated with the
current interpreter session, it shows the name, length, and value. The first three
variables displayed are created for you by CECI and always appear unless you
explicitly delete them. They are designed to help you create command lists, as well
as to serve as examples.

After these first three variables, you see any variables that you have created; for
example if you enter:

READ FILE('FILEA') RID('009000') INTO(&REC)

the &REC is displayed as a variable. See [‘Defining variables.”|

Typically, the value supplied for an option in the command line is taken as a
character string constant. However, you can specify a variable to represent this
value, as when you want to connect two commands through option values. For
example, to change a record with CECI, you might first enter:

EXEC CICS READ UPDATE INTO(&REC)
FILE('FILEA') RID('009000")

You can then modify the record by changing the variable &REC, and then enter:
EXEC CICS REWRITE FROM(&REC) FILE('FILEA')

The ampersand in the first position tells CECI that you are specifying a variable.

Creating variables with the required values and specifying the variable names in
the command overcomes the line length limitation. Variables can have a data type
of character, fullword, halfword, or packed decimal, and you can create them in
any of the following ways:

* By naming the variable in a receiver. The variable is created when the command
is processed. The data type and length are implied by the option.

* By adding new entries to the list of variables already defined. To create a new
variable, type its name and length in the appropriate columns on the first
unused line of the variables display, and then press ENTER. For character
variables, use the length with which the variable has been defined. For fullwords
or halfwords, type F or H. For packed variables, use the length in bytes,
preceded by a P.

186 CICS TS for z/0S 4.2: Application Programming Guide

Character variables are initialized to blanks. The others are initialized to zero in
the appropriate form. Once a variable is created, you can change the value by
modifying the data field on the variables display.

* By using the NAME field on the status line when you have produced an
expanded area display of a particular option. You do this by positioning the
cursor under the option on a syntax display and pressing ENTER. Then you
assign the variable name you want associated with the displayed option value
by typing it into the NAME field and pressing ENTER again.

* By copying an existing variable. You do this by obtaining an expanded area
display of the variable to be copied, overkeying the name displayed with the
name of the new variable, and pressing ENTER.

* By using the NAME field directly on a syntax display. This creates a character
variable whose contents are the character string on the command line, for use in
command lists as explained in [“Saving commands.”|

You can also delete a variable, although CECI discards all variables at session end.
To delete one before session end, position the cursor under the ampersand that
starts the name, press ERASE EOF, and then press ENTER.

Saving commands

Sometimes you might want to execute a command, or a series of commands, under
CECI, repeatedly. One technique for doing this is to create a temporary storage
queue containing the commands. You then alternate reading the command from
the queue and executing it.

CECI provides shortcuts both for creating the queue and for executing commands
from it. To create the queue:

1. Start a CECI session.

2. Enter the first (or next) command you want to save on the command line, put
&DFHC in the NAME field in the status line, and press ENTER. This action
causes the typical syntax check, and it also stores your command as the value
of &DFHC, which is the first of those three variables that CECI always defines
for you. If you select the variables display, you see that &DFHC is the value of
your command.

3. After the syntax is correct but before execution (on the about to execute
command screen), change the command line to &DFHW and press ENTER.
This causes CECI to use the value of &DFHW for the command to be executed.
&DFHW is the second of the variables CECI supplies, and it contains a
command to write the contents of variable &DFHC (that is, your command) to
the temporary storage queue named “ CItttt”, where “tttt” is the name of your
terminal and two blanks precede the letters “CI”.

4. Execute this WRITEQ command (through the command execution complete
screen). This stores your command on the queue.

5. If you want to save more than one command, repeat steps @ to@ for each.

When you want to execute the saved commands from the list, do the following;:

1. Enter &DFHR on the command line and press ENTER. &DFHR is the last of
the CECI-supplied variables, and it contains a command to read the queue that
was written earlier. Execute this command; it brings the first (next) of the
commands you saved into the variable &DFHC.

Chapter 13. Command-level interpreter (CECI) 187

2. Then enter &DFHC on the command line and press ENTER. CECI replaces the
command line with the value of &DFHC, which is your command. Press
ENTER to execute your command.

3. Repeat these two steps, alternating &DFHR and &DFHC on the command line,
until you have executed all the commands you saved.

You can vary this procedure to suit your needs. For example, you can skip
commands in the sequence by skipping step (2). You can change the options of the
saved command before executing it in the same way as a command entered
normally.

If you want to repeat execution of the saved sequence, you need to specify the
option ITEM(1) on the first execution of the READQ command, in order to
reposition your read to the beginning of the queue.

How CECI runs

The interpreter runs as a conversational transaction, using programs supplied by
CICS. Everything you do between the start of a session and the end is a single
logical unit of work in a single task.

Locks and enqueues produced by commands that you execute remain for the
duration of your session. If you read a record for update from a recoverable file,
for example, that record is not available to any other task until you end CECL

Abends

CECI runs all commands with the NOHANDLE option, so that execution errors do
not ordinarily cause abends.

CECI also issues a HANDLE ABEND command at the beginning of the session, so that
it does not lose control even if an abend occurs. Consequently, when you get one,
CECI handles it and there is no resource backout. If you are doing a series of
related updates to protected resources, make sure that you can complete all the
updates. If you cannot complete all the updates, use a SYNCPOINT ROLLBACK
command or an ABEND command with the CANCEL option to remove the effects of
your earlier commands on recoverable resources.

Exception conditions

For some commands, CECI might return exception conditions even when all
specified options are correct. These conditions return because, on some commands,
CECI uses options that you do not specify explicitly. For example, the ASSIGN
command always returns the exception condition INVREQ under CECI. Even
though CECI might return the information you requested correctly, it attempts to
get information from other options, some of which are invalid.

Program control commands
Because the interpreter is itself an application program, the interpretation of some
program control commands might produce different results from an application

program executing those commands. For example, an ABEND command is
intercepted unless you use the CANCEL option.

188 CICS TS for z/0S 4.2: Application Programming Guide

If you use a LINK command, the target program runs in the environment of the
interpreter. In particular, if you modify a user display during a linked-to program,
the interpreter is not aware of the changes.

Similarly, if you interpret an XCTL command, CECI passes control to the named
program and never gets control back, so the CECI session is ended.

Terminal sharing

When the command that is being interpreted is one that uses the same screen as
the interpreter, the command interpreter manages the sharing of the screen
between the interpreter display and the user display.

The user display is restored in the following situations:

* When the command that is being processed requires data from the operator

* When the command that is being processed is about to modify the user display
* When USER DISPLAY is requested

When a SEND command is followed by a RECEIVE command, the display sent by
the SEND command appears twice; once when the SEND command is processed
and again when the RECEIVE command is processed. You do not have to respond
to the SEND command, but if you do, the interpreter stores and displays it when
the screen is restored for the RECEIVE command.

When the interpreter restores the user display, it does not sound the alarm or affect
the keyboard in the same way as when a SEND command is processed.

Shared storage: ENQ commands without LENGTH option

Normally, when you use the EXEC CICS ENQ command without the LENGTH
option, the effect is to specify as the resource a data area with a specific location
(address) in storage. Multiple tasks can enqueue on this resource and must refer to
the same location in storage. CECI is not able to emulate this behavior, because it
uses its own working storage, rather than shared storage.

If you execute an ENQ command in CECI without the LENGTH option, CICS
enqueues on an address within storage owned by the CECI task. Other tasks,
whether CECI or not, cannot enqueue on this same storage. CECI does not provide
support for using shared storage for its variables.

It is not possible to emulate the desired behavior by specifying the storage address
as the RESOURCE option, and adding the LENGTH option, when the ENQ
command is executed in a CECI task, then specifying the same storage address
without the LENGTH option in another CECI or non-CECI task. When the
LENGTH option is specified, CICS enqueues on the value of the resource rather
than on its location. CICS therefore regards the enqueues with and without the
LENGTH option as different enqueues, and the tasks are not serialized as
intended.

When the LENGTH option is specified for the same ENQ command issued from
multiple tasks, the enqueue works as expected, because the location of the data

area (whether in storage owned by CECI or in other storage) does not matter when
the LENGTH option is specified.

Chapter 13. Command-level interpreter (CECI) 189

190 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 14. Preparing to use debuggers with CICS
applications

CICS supports the use of workstation-based and host-based debuggers for isolating
and fixing bugs, and for testing applications. Before you can use a debugger with
CICS applications, you must perform the following tasks.

Before you begin
About this task

Procedure

1. Choose between a workstation-based and host-based debugger. When you
debug an application program, you interact with the program through the
debugging tools. For example, you may want to examine storage, set
breakpoints, or step through your code. This interaction is a debugging session.
In CICS, you can choose the environment in which you conduct your
debugging session:

Workstation-based
A debugger client on the workstation provides a graphical user interface
which you use to perform the debugging tasks. The debugger client
communicates with a debugger server which runs on your CICS system,
and interacts with the program that is being debugged.

For more information, see [Chapter 15, “Debugging CICS applications|
[from a workstation,” on page 197

Host-based
A debugging tool running in your CICS system provides a terminal
interface which you use to perform the debugging tasks. The
debugging tool interacts directly with the application as it executes.

CICS supports Debug Tool for host-based debugging. For more
information, see [Chapter 16, “Using Debug Tool with CICY
[applications,” on page 199

Different application programs may have different debugging requirements (for
example, Java programs cannot be debugged in a host-based debugging
session). CICS lets different users use workstation-based and host-based
debugging concurrently in the same region.

2. Ensure that your application programs will be intercepted by the debugging
tool, and that others will not. Even in a test or development system, most of
your application programs will function correctly most of the time. And when
you are debugging, you will probably want to focus on one application at a
time. At the same time, your colleagues might want to debug different
applications. So you will need a way to specify those programs in your CICS
system that are to interact with your debugging session, and those that are to
interact with other users' debugging sessions, while letting most programs in
the system run normally.

Debugging profiles let you do all this. A debugging profile specifies a set of
application programs which are to be debugged together. When you make a
profile active, the programs it defines run under the control of the debugger,
using a debugging session that you have specified. When you make the profile

© Copyright IBM Corp. 1989, 2011 191

inactive, the programs run normally again, as do programs that are not referred
to in debugging profiles. Debugging profiles also let you define the
characteristics of the debugging session that you will use to debug a particular
program.

For more information, see [“Debugging profiles.”|

Prepare your programs for interacting with a debugger. CICS supports
application programs written in a variety of languages. The compiled language
programs (COBOL, PL/I, C, C++, and Language Environment-enabled
Assembler subroutines) run under the control of Language Environment; Java
programs run in a Java virtual machine (JVM). Because there are, essentially,
two different runtime environments for programs, there are two different ways
to make your programs interact with the debugger.

* For compiled language programs, you must decide when you compile your
programs that you want them to interact with the debugger, and specify the
appropriate compiler options. See the compiler documentation for more
information.

* For Java programs, you can decide at run time that you want them to
interact with the debugger, and specify the appropriate JVM options. See Java
Applications in CICS for more information.

Ensure that your CICS system is set up to support the debugging environment.
When you have debugging profiles in your CICS system, there is an overhead
in starting a program, even when all the profiles are inactive. This overhead,
although small, is unlikely to be acceptable in a high-performance production
system. In any case, you would not normally debug your applications in such a
system. Therefore, the use of debugging profiles is optional, and if you want to
use them, your system programmer will need to configure CICS accordingly.

Example

What to do next

Debugging profil

A
to

es

debugging profile specifies a set of one or more application programs which are
be debugged together.

For example:

All instances of program PYRL01 running in system CICS1
All Java classes with names beginning “setBankAccount”
All programs with names beginning “'PYRL" run by user APPDEV02

CICS uses the following information in the debugging profile to decide if an
instance of a program should run under the debugger's control. The parameters

sp

192 CICS TS for z/OS 4.2:

ecify:

The transaction under which the program is running

The terminal associated with the transaction. You can specify the terminal
identifier or the z/OS Communications Server netname.

The name of the program

For COBOL programs, the name of the compile unit (the program or class name)
For Java objects, and stateless CORBA objects, the class name

For enterprise beans, the bean name

For enterprise beans, and stateless CORBA objects, the method name

The userid of the signed-on user

The applid of the CICS region in which the transaction is running

Application Programming Guide

Many of the parameters can be generic, allowing you to specify a set of values
which begin with the same characters (for example, TRNO, TRN1, TRN2, TRNA,
TRNB, ...)

Debugging profiles contain the following additional information:

Status The status of the profile: active or inactive:
* When a profile is active, it is examined each time a program is started in
a region for which debugging is required.

Note: If you change a profile while it is active, the changes take effect
immediately: the next time a program is started, the changed parameters
are used to decide if the program should run under the debugger's
control.

* When a profile is inactive, it is ignored when a program is started.

Debugging display device settings
The debugging display device settings specify how you will interact with
the debugger:
* For a Java program, you can use a debugging tool on a workstation
¢ For a compiled language program, you can use:
a 3270 terminal
a debugging tool on a workstation

The JVM profile name
For Java programs only, you can specify the JVM profile that will be used
when a program is debugged

Debug Tool and Language Environment options
For compiled language programs only, you can specify options to be
passed to Debug Tool and Language Environment when a program is
debugged

You can create debugging profiles for the following sorts of program:
Compiled language programs
Java application programs
Enterprise beans
Stateless CORBA objects

The information stored in the profile is different for each type of program.

Profiles are stored in a CICS file which can be shared by more than one CICS
region. A profile that is shared by several CICS regions is either active or inactive
in all the regions: it cannot be active in some regions and inactive in others.

CICS provides a set of sample profiles which are optionally generated when your
system is set up to use debugging profiles. You can use these profiles as a starting
point for creating your own profiles.

Using debugging profiles to select programs for debugging

To select a program for debugging, you must create one or more debugging
profiles. Each profile specifies a number of parameters that CICS uses to decide if
an instance of a program should run under the debugger's control.

Profiles can be active or inactive: if one of the active profiles matches the program

instance, the program runs under the debugger's control. Inactive profiles are not
examined when CICS starts a program. Profiles are inactive when they are created.

Chapter 14. Preparing to use debuggers with CICS applications 193

is an example which shows how parameters in the debugging profiles are
ﬁ

used to select program instances for compiled language programs;|Table 11| shows
how parameters in a debugging profile are used to select the program instance for
a Java program.

Table 10. Examples of debugging profile parameters for compiled language programs

Debugging | Transaction |Terminal Program User Applid
profile

Profile 1 PRLA T001 PYRLO1 TESTERS5 CICSTST2
Profile 2 PRLA * PYRLO02 * *

Profile 3 PRL* * * * CICSTST3

Table 11. Example of a debugging profile for a Java program

Debugging |Transaction |Bean Method User Applid
profile

Profile 4 PRLA NewEmployee |setBasicSalary | TESTERS CICSTST2
This is how each profile controls which programs run under the debugger's
control:

Profile 1

In this example, all the parameters in the table are specified explicitly:
Program PYRLO1 will run under the debugger's control only if all these
conditions are satisfied:

* The transaction is PRLA

* The transaction was started by terminal input from terminal T001

* The transaction is being run by user TESTER5

* The transaction is running in region CICSTST2

Profile 2
In this example, some of the parameters in the table are generic parameters,
specified as *; generic parameters of this type match all values. This profile
specifies that every instance of program PYRL02 that runs under
transaction PRLA will be under the debugger's control.

Profile 3
This example contains another sort of generic parameter: PRL* matches all
values that start with the characters 'PRL'. This profile specifies that every
program that runs under a transaction whose ID starts with the characters
'PRL' in region CICSTST3 will be under the debugger's control.

Profile 4
Method setBasicSalary will run under the debugger's control only if all
these conditions are satisfied:

* The transaction is PRLA

* The method is a method of bean NewEmployee
* The transaction is being run by user TESTERS
* The transaction is running in region CICSTST2

You should choose the parameters that you specify in your debugging profiles

with care, to ensure that programs do not start under the debugger's control
unexpectedly:

194 CICS TS for z/0S 4.2: Application Programming Guide

* If you can do so, specify values for all, or most, of the parameters, to restrict
debugging to particular programs in particular circumstances. Use specific
values rather than generic values where possible.

* Whenever possible, specify the userid and applid explicitly in each debugging
profile.

* Although it is inadvisable to debug programs in a production region, there may
be times when you need to do so. On these occasions, use a debugging profile in
which all the parameters are specified explicitly.

* Activate debugging profiles only when you need to use them, and inactivate
them immediately after use.

Using generic parameters in debugging profiles

You can supply generic values for many of the parameters in your debugging
profiles. To specify generic parameters, use an asterisk (*) as a wildcard character.
You can use the wildcard character on its own, or at the end of a parameter.
Leaving a parameter blank is equivalent to specifying an asterisk.

About this task

For example:
* matches all possible values
TR* matches TR, TRA, TRAA and TRAQ
TRA* matches TRA, TRAA and TRAQ, but not TR

When wildcards are used, a starting program may match more than one active

profile. In this case, CICS selects the profile that is the best match, using the

following principles:

 All parameters must match, either exactly, or when wildcards are considered.

* The best match is a profile that contains no wildcards.

* The next best matches are profiles that contain *. Within this grouping, the best
matches are those that contain the smallest number of * characters, and the
greatest number of explicitly specified characters.

For example, considering transaction TRAA:
* TRAA is the best possible match (all characters match)
e TRA* is a better match than TR*

It is advisable to avoid complex use of wildcards in your debugging profiles, as it
is not always obvious which of many profiles will be the best match for a given
program instance. However, should you need to do so, you can use the
information in [Figure 52 on page 196| to work out exactly which of several profiles
will be the best match.

Chapter 14. Preparing to use debuggers with CICS applications 195

2.
3.
4.

For each field in turn:
1.

Count the number of characters (excluding * but including trailing blanks) for each
field (C)

Count the number of * characters (A)
Determine the length of the field (L)
Calculate M as C -(L * A). Note that M may be negative.

For each profile in turn, sum the values of M for all the fields (R).

The profile with the greatest value of R is the best match. If two or more matching
profiles have the same greatest value of R, CICS chooses one of them, basing its selection
on the sequence in which the profiles were created.

Figure 52. The debugging profile matching algorithm

196 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 15. Debugging CICS applications from a workstation

You can debug a CICS application using debugging tools that run on a
workstation.

There are two components to the debugging tools in this environment:

* The debugger client, which runs on the workstation. It is through the graphical
user interface (GUI) provided by the debugger client that you interact with the
application program. For example, you can use the debugger client to set
breakpoints, to step through your program, and to examine the variables used
by your program.

* The debugger server, which runs on the same system as the application program,
and communicates with the debugger client.

You can debug the following sorts of CICS applications using a debugger client on

a workstation:

* Applications written in a compiled language (COBOL, PL/I, C, C++)

* Language Environment-enabled Assembler subroutines

* Java applications running in a JVM

* Applications that use a combination of compiled language programs and Java
programs

You cannot debug PLT programs using a debugger client on a workstation.

You can use the following as your debugger client:
WebSphere® Studio Enterprise Developer
WebSphere Studio Application Developer

For compiled languages and Language Environment-enabled Assembler
subroutines, you can use the following products as your debugger server:

* Debug Tool

For Java programs, the debugger server is the Java Virtual Machine (JVM)
executing in debug mode.

Preparing to debug applications from a workstation

Before you can debug CICS applications using a workstation, your system
programmer must prepare your CICS region for debugging.

About this task
You must complete the following tasks:

Procedure

1. Install a suitable debugger client in your workstation. You can use the
following product as your debugger client:
WebSphere Studio Enterprise Developer
WebSphere Studio Application Developer

The documentation for these products contains the information you need to
install and use them.

© Copyright IBM Corp. 1989, 2011 197

2. Create one or more debugging profiles. A debugging profile specifies which
programs will run under the debugger's control.

Note: A debugging profile is not the same thing as a JVM profile. To debug a
Java application, you need both profiles.

3. If you want to debug programs that are written in COBOL, PL/I, C or C++; or
Language Environment-enabled Assembler subroutines, consider how you want
to conduct your debug session, and compile your programs with the
appropriate options. For more information, see Debug Tool for z/OS User’s Guide.

4. If you want to debug a Java program, you must ensure that it runs in a Java
virtual machine (JVM) that is enabled for debugging. To do this:

a. Create a JVM profile with parameters which enable the JVM for debugging.
See [Debugging an application that is running in a CICS JVM]in Java
Applications in CICS for more information.

b. Specify the JVM profile when you create a debugging profile for the Java
program. If you do not specify the JVM profile, the JVM uses the profile
specified in the PROGRAM definition.

5. Start the debugger client on your workstation.
6. If you are using WebSphere Studio as your debugger, set at least one
breakpoint in your program.

7. Activate the debugging profiles that define the program instances that you
want to debug. When you activate profiles for compiled language programs,
you must define debugging options that specify the attributes of the debugging
session that is started when the program runs.

Results

When you have completed all these steps, the programs that you have selected in
the final step will run under the control of a debugger.

198 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 16. Using Debug Tool with CICS applications

Debug Tool helps you test programs and examine, monitor, and control the
execution of application programs.

For detailed information about Debug Tool, see Debug Tool for z/OS User’s Guide.

About Debug Tool

Debug Tool helps you test programs and examine, monitor, and control the
execution of CICS application programs.

You can debug the following sorts of CICS applications using Debug Tool:

* Applications written in a compiled language (COBOL, PL/I, C, C++)

* Language Environment-enabled Assembler subroutines

* Applications that use a combination of compiled language programs and Java
programs. Debug Tool does not debug the Java portions of these applications

You cannot debug PLT programs using Debug Tool.

You can use Debug Tool in four ways:

Single terminal mode
Debug Tool displays its screens on the same terminal as the application

Dual terminal mode
Debug Tool displays its screens on a different terminal than the one used
by the application

Batch mode
Debug Tool does not have a terminal, but uses a commands file for input
and writes output to a log

Remote debug mode
Debug Tool works with a debugger client to display results on a
workstation

For more information about Debug Tool, see Debug Tool for z/OS User’s Guide.

Note: If you use Debug Tool in Single terminal mode, or Dual terminal mode, the
terminal which is used by Debug Tool must be a local terminal in the region where
the application is running: you cannot use a terminal on a terminal-owning region
to interact with Debug Tool in an application-owning region.

Preparing to debug applications with Debug Tool

Before you can debug CICS applications using Debug Tool, your system
programmer must prepare your CICS region for debugging.

Before you begin

See the CICS Application Programming Guide for more information.

© Copyright IBM Corp. 1989, 2011 199

About this task
You must then complete the following tasks:

Procedure

1. Consider how you want to conduct your debug session, and compile your
programs with the appropriate options. For more information, see Debug Tool
for z/OS User’s Guide.

2. Create one or more debugging profiles. A debugging profile specifies which
programs will run under the debugger's control.

3. Activate the debugging profiles that define the program instances that you
want to debug. When you activate the profiles, you must specify the display
device with which you will interact with the debugger.

Results

When you have completed all these steps, the programs that you have selected in
the final step will run under the control of Debug Tool.

200 CICS TS for z/0S 4.2: Application Programming Guide

Part 4. CICS application programming techniques

Concepts and techniques which you need to know to create programs for CICS.

© Copyright IBM Corp. 1989, 2011 201

202 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 17. Application design

Use these basic concepts to help you design CICS applications

Changes are suggested that can improve performance and efficiency, but further
guidance on programming for efficiency is provided in [Chapter 18, “Design for]
[performance,” on page 233)

The programming models implemented in CICS are inherited from those designed
for 3270s, and exhibit many of the characteristics of conversational,
terminal-oriented applications. There are basically three styles of programming
model:

e Terminal-initiated, that is, the conversational model
* Distributed program link (DPL), or the RPC model
¢ START, that is, the queuing model.

Once initiated, the applications typically use these and other methods of
continuing and distributing themselves, for example, with pseudoconversations,
RETURN IMMEDIATE or DTP. The main difference between these models is in the
way that they maintain state (for example, security), and hence state becomes an
integral part of the application design. This presents the biggest problem when you
attempt to convert to another application model.

A pseudoconversational model is mostly associated with terminal-initiated
transactions and was developed as an efficient implementation of the
conversational model. With increased use of 1-in and 1-out protocols such as
HTTP, it is becoming necessary to add the pseudoconversational characteristic to
the DPL or RPC model.

Pseudoconversational and conversational design

In a conversational transaction, the length of time spent in processing each of a
user's responses is extremely short when compared to the amount of time waiting
for the input. A conversational transaction is one that involves more than one input
from the terminal, so that the transaction and the user enter into a conversation. A
nonconversational transaction has only one input (the one that causes the
transaction to be invoked). It processes that input, responds to the terminal and
terminates.

Processor speeds, even allowing for accessing data sets, are considerably faster
than terminal transmission times, which are considerably faster than user response
times. This is especially true if users have to think about the entry or have to enter
many characters of input. Consequently, conversational transactions tie up storage
and other resources for much longer than nonconversational transactions.

A pseudoconversational transaction sequence contains a series of
nonconversational transactions that look to the user like a single conversational
transaction involving several screens of input. Each transaction in the sequence
handles one input, sends back the response, and terminates.

Before a pseudoconversational transaction terminates, it can pass data forward to
be used by the next transaction initiated from the same terminal, whenever that

© Copyright IBM Corp. 1989, 2011 203

transaction arrives. A pseudoconversational transaction can specify what the next
transaction is to be, using the TRANSID option of the RETURN command,
However, you should be aware that if another transaction is started for that device,
it may interrupt the pseudoconversational chain you have designed, unless you
specify the IMMEDIATE option on the RETURN command. In this case, the
transaction specified by the TRANSID command is attached regardless of any
other transactions queued for this terminal.

No transaction exists for the terminal from the time a response is written until the
user sends the next input and CICS starts the next transaction to respond to it.
Information that would normally be stored in the program between inputs is
passed from one transaction in the sequence to the next using the COMMAREA or
one of the other facilities that CICS provides for this purpose. (See
[“Sharing data across transactions,” on page 243 for details.)

There are two major issues to consider in choosing between conversational and
pseudoconversational programming.

* The effect of the transaction on contention resources, such as storage and
processor usage. Storage is required for control blocks, data areas, and programs
that make up a transaction, and the processor is required to start, process, and
terminate tasks. Conversational programs have a very high impact on storage,
because they last so long, relative to the sum of the transactions that make up an
equivalent pseudoconversational sequence. However, there is less processor
overhead, because only one transaction is initiated instead of one for every
input.

e The effect on exclusive-use resources, such as records in recoverable data sets,
recoverable transient data queues, enqueue items, and so on. Again, a
conversational transaction holds on to these resources for much longer than the
corresponding sequence of nonconversational transactions. From this point of
view, pseudoconversational transactions are better for quick responses, but
recovery and integrity implications may mean that you prefer to use
conversational transactions.

To summarize, although conversational tasks may be easier to write, they have
serious disadvantages—both in performance (especially the need for virtual
storage) and in their effect on the overall operability of the CICS systems
containing them. Processors are now larger, with more real storage and more
power than in the past, and this makes conversational tasks less painful in small
amounts; but if you use conversational applications, you may rapidly run into
virtual storage constraint. If you run application programs above the line, you will
probably encounter ENQ problems before running into virtual storage constraints.

CICS ensures that changes to recoverable resources (such as data sets, transient
data, and temporary storage) made by a unit of work (UOW) are made completely
or not at all. A UOW is equivalent to a transaction, unless that transaction issues
SYNCPOINT commands, in which case a UOW lasts between syncpoints. For a
more detailed description of syncpoints and UOWs, see [Recovery and restar{

in the CICS Recovery and Restart Guide.

When a transaction makes a change to a recoverable resource, CICS makes that
resource unavailable to any other transaction that wants to change it until the
original transaction has completed. In the case of a conversational transaction, the
resources in question may be unavailable to other terminals for relatively long
periods.

204 CICS TS for z/0S 4.2: Application Programming Guide

For example, if one user tries to update a particular record in a recoverable data
set, and another user tries to do so before the first one finishes, the second user's
transaction is suspended. This has advantages and disadvantages. You would not
want the second user to begin updating the record while the first user is changing
it, because one of them is working from what is about to become an obsolete
version of the record, and these changes erase the other user's changes. On the
other hand, you also do not want the second user to experience the long,
unexplained wait that occurs when that transaction attempts to READ for UPDATE
the record that is being changed.

If you use pseudoconversational transactions, however, the resources are only very
briefly unavailable (that is, during the short component transactions). However,
unless all recoverable resources can be updated in just one of these transactions,
recovery is impossible because UOWSs cannot extend across transactions. So, if you
cannot isolate updates to recoverable resources in this way, you must use
conversational transactions.

The previous example poses a further problem for pseudoconversational
transactions. Although you could confine all updating to the final transaction of
the sequence, there is nothing to prevent a second user from beginning an update
transaction against the same record while the first user is still entering changes.
This means that you need additional application logic to ensure integrity. You can
use some form of enqueuing, or you can have the transaction compare the original
version of the record with the current version before applying the update.

Terminal interruptibility

When a conversational task is running, CICS allows no other messages to be sent
to that terminal. Pseudoconversational applications can allow messages to come
through between message pairs of a conversation.

Conversational tasks have advantages and disadvantages. The advantage is that
unexpected messages (for example, broadcasts) cannot interrupt the user-machine
dialogue and, worse, corrupt the formatted screen. The disadvantage is that the
user cannot then be informed of important information, such as the intention of
the control operator to shut down CICS after 10 minutes. More importantly, the
failure of the user to terminate the conversation can prevent or delay a normal
CICS shutdown.

Pseudoconversational applications can allow messages, so notices like shutdown
warnings can be delivered. This might disturb the display screen contents, and can
sometimes interfere with transaction sequences controlled by the RETURN
command with the TRANSID option. Prevent this by using the IMMEDIATE
option, or by forcing the terminal into NOATI status during the middle of a linked
sequence of interactions.

How tasks are started

Work is started in CICS - that is, tasks are initiated - from unsolicited input, or by
automatic task initiation (ATI).

Automatic task initiation occurs when:

* An existing task asks CICS to create another one. The START command, the
IMMEDIATE option on a RETURN command (discussed in “RETURN|
IMMEDIATE” on page 518), and the SEND PAGE command (in [‘The SENDl
PAGE command” on page 738) all do this.

Chapter 17. Application design 205

+ CICS creates a task to process a transient data queue (see [“Automatic transaction|
[initiation (ATI)” on page 591).

* CICS creates a task to deliver a message sent by a BMS ROUTE request (see
[Chapter 66, “Message routing,” on page 757). The CSPG tasks you see after
using the CICS-supplied transaction CMSG are an example of this. CMSG uses a
ROUTE command which creates a CSPG transaction for each target terminal in
your destination list.

The primary mechanism for initiating tasks, however, is unsolicited input. When a
user transmits input from a terminal which is not the principal facility of an
existing task, CICS creates a task to process it. The terminal that sent the input
becomes the principal facility of the new task.

Principal facility
CICS allows a task to communicate directly with only one terminal,
namely its principal facility. CICS assigns the principal facility when it
initiates the task, and the task “owns” the facility for its duration. No other
task can use that terminal until the owning task ends. If a task needs to
communicate with a terminal other than its principal facility, it must do so
indirectly, by creating another task that has the terminal as its principal
facility. This requirement arises most commonly in connection with

printing, and how you can create such a task is explained in|“Using CICS
forinters” on page 662

Unsolicited inputs from other systems are handled in the same way: CICS creates a
task to process the input, and assigns the conversation over which the input
arrived as the principal facility. (Thus a conversation with another system may be
either a principal or alternate facility. In the case where a task in one CICS region
initiates a conversation with another CICS region, the conversation is an alternate
facility of the initiating task, but the principal facility of the partner task created by
the receiving system. By contrast, a terminal is always the principal facility.)

Alternate facility
Although a task may communicate directly with only one terminal, it can
also establish communications with one or more remote systems. It does
this by asking CICS to assign a conversation with that system to it as an
alternate facility. The task “owns” its alternate facilities in the same way
that it owns its principal facility. Ownership lasts from the point of
assignment until task end or until the task releases the facility.

Not all tasks have a principal facility. Tasks that result from unsolicited input
always do, by definition, but a task that comes about from automatic task initiation
may or may not need one. When it does, CICS waits to initiate the task until the
requested facility is available for assignment to the task.

Which transaction?

On receipt of an unsolicited input, how does CICS determine which transaction to
run? Typically the previous task with the same principal facility determines what
transaction CICS runs next, using the TRANSID option on its final RETURN.

This situation is almost always the case in a pseudoconversational transaction
sequence, and typically in menu-driven applications as well. Failing that, and in
any case to get a sequence started, CICS interprets the first few characters of the
input as a transaction code. However, it is more complicated than that; the exact
process goes as follows. The step numbers indicate the order in which the tests are

206 CICS TS for z/0S 4.2: Application Programming Guide

made and refer to a diagram of this logic.

|

0
Terminal Has query Initiate CQRY
defined as to been run to this
be queried? terminal? *
1
3270 Yes Initiate printing
print request
key?
2
Terminal Paging Yes Initiate CSPG
supported by command
paging? entered?

Initiate specified
| transaction

Transaction
specified by

Yes

Initiate specified
transaction

Transaction
specified by
TRANSID of
RETURN?

Yes

Initiate
Attach Yes transaction
FMH present? specified in
attach FMH

Initiate
PA, PF, LPA, TASKREQ= transaction
or OPID? specified? specified by

term input AID

No
-

. Initiate
Terminal Yes .
input begins | trans:}chon
with tranid? specified by

terminal input

* Global user exit XZCATT in
module DFHZATT is invoked

Send at these points.
“invalid tranid"

message
to terminal

*

Figure 53. Determining which transaction to execute

0. On the first input from a terminal, CICS sometimes schedules a
preliminary task before creating one to process the input. This task runs

Chapter 17. Application design 207

the CICS-supplied “query” transaction, CQRY, which causes the terminal to
transmit an encoded description of some of its hardware
characteristics—extended attributes, character sets, and so on.

CQRY allows the system programmer to simplify maintenance of the
terminal network by omitting these particulars from the terminal
definitions. It occurs only if the terminal definition so specifies, and has no
effect on the subsequent determination of what transaction to use to
process the input, which goes as follows.

1. If the terminal is a 3270 and the input is the “print request key”, the
CICS-supplied transaction that prints the contents of the screen, CSPD, is
initiated. See CICS print key in [“Printing display screens” on page 668| for
more information about this feature. For this purpose, a “3270 logical unit”
or any other device that accepts the 3270 data stream counts as a 3270.

2. If full BMS support is present, the terminal is of a type supported by BMS
terminal paging, and the input is a paging command, the CICS-supplied
transaction CSPG is initiated to process the request. BMS support levels are
explained in [“BMS support levels” on page 683)and the same section
contains a list of the terminals that BMS supports. The PGRET, SKRxxxx,
PGCHAIN, PGCOPY, and PGPURGE options in the system initialization
table define the paging commands. As paging requires full BMS, this step
is skipped if the CICS system contains less than that level.

3. If the terminal definition indicates that a specific transaction should be
used to process all unsolicited inputs from that terminal, the indicated
transaction is executed. (If present, this information appears in the
TRANSACTION attribute of the TERMINAL definition.)

4. If the previous task at the terminal specified the TRANSID option of the
RETURN command that ended it, the transaction named is executed.

5. If an attach function management header is present in the input, the attach
names in the header are converted to a four-character CICS transaction
identifier, and that transaction is executed.

6. If the terminal is a 3270, and the attention identifier is defined as a
transaction, that transaction is executed. Attention keys in
B270 terminal” on page 556/ explains attention identifiers. You define one as
a transaction identifier with the TASKREQ attribute of the corresponding
TRANSACTION definition.

7. If all the preceding tests fail, the initial characters of the input are used to
identify the transaction to be executed. The characters used are the first
ones (up to four) after any control information in the data stream and
before the first field separator character or the next 3270 Control Character
(X'00" to X'3F'). Field separators are defined in the FLDSEP option of the
system initialization table (the default is a blank).

If there are no such characters in the input, as occurs when you use the
CLEAR key, for example, or if there is no transaction definition that
matches the input, CICS cannot determine what transaction to execute and
sends an “invalid transaction identification” message to the terminal.

Note: This logic for deciding which transaction to execute applies only to tasks
initiated to process unsolicited inputs. For automatic transaction initiation, the
transaction is always known. You specify it in the TRANSID option when you
create a task with a START or RETURN IMMEDIATE. Similarly, you specify what

208 CICS TS for z/0S 4.2: Application Programming Guide

transaction should be used to process a transient data queue in the queue
definition. Tasks created to route messages always execute the CICS-supplied
transaction CSPG.

Separating business and presentation logic

EXEC CICS RECEIVE MAP
EXEC CICS READ UPDATE
EXEC CICS REWRITE

EXEC CICS SEND MAP

In general, it is good practice to split applications into a part containing the
business code that is reusable, and a part responsible for presentation to the client.
This technique enables you to improve performance by optimizing the parts
separately, and allows you to reuse your business logic with different forms of
presentation.

When separating the business and presentation logic, you need to consider the
following:

* Avoid affinities between the two parts of the application.

* Be aware of the DPL-restricted API; see CICS Application Programming Reference
for details.

* Be aware of hidden presentation dependencies, such as EIBTRMID usage.

illustrates a simple CICS application that accepts data from an end user,
updates a record in a file, and sends a response back to the end user. The
transaction that runs this program is the second in a pseudoconversation. The first
transaction has sent a BMS map to the end user's terminal, and the second
transaction reads the data with the EXEC CICS RECEIVE MAP command, updates
the record in the file, and sends the response with the EXEC CICS SEND MAP
command.

The EXEC CICS RECEIVE and EXEC CICS SEND MAP commands are part of the
transaction's presentation logic, while the EXEC CICS READ UPDATE and EXEC
CICS REWRITE commands are part of the business logic.

Figure 54. CICS functions in a single application program

EXEC CICS RECEIVE MAP
EXEC CICS LINK..

EXEC CICS SEND MAP

A sound principle of modular programming in CICS application design is to
separate the presentation logic from the business logic, and to use a
communication area and the EXEC CICS LINK command to make them into a
single transaction. [Figure 55| and [Figure 56 on page 210jllustrate this approach to
application design.

Figure 55. Presentation logic

Chapter 17. Application design 209

I:Z)'(EC CICS ADDRESS COMMAREA
IZZ).(EC CICS READ UPDATE

I:I).(EC CICS REWRITE

IZZ).(EC CICS RETURN..

Figure 56. Business logic

Once the business logic of a transaction has been isolated from the presentation
logic and given a communication area interface, it is available for reuse with
different presentation methods. For example, you could use [“Distributed program|
llink (DPL)” on page 363 to implement a two-tier model, or CICS Web support with
the CICS business logic interface, where the presentation logic is HTTP-based.

Multithreading: Reentrant, quasi-reentrant, and threadsafe programs

Multithreading is a technique that allows a single copy of an application program
to be processed by several transactions concurrently. For example, one transaction
can begin to execute an application program. When an EXEC CICS command is
reached, causing a CICS WAIT and call to the dispatcher, another transaction can
then execute the same copy of the application program.

Compare this technique with single-threading, which is the execution of a program
to completion: processing of the program by one transaction is completed before
another transaction can use it.

Multithreading requires that all CICS application programs be quasi-reentrant; that
is, they must be serially reusable between entry and exit points. CICS application
programs that use the EXEC CICS interface obey this rule automatically. For
COBOL, C, and C++ programs, reentrancy is ensured by a fresh copy of working
storage being obtained each time the program is invoked. You should always use
the RENT option on the compile or pre-link utility even for C and C++ programs
that do not have writable statics and are naturally reentrant. Temporary variables
and DFHEIPTR fields inserted by the CICS translator are usually defined as
writable static variables and require the RENT option. For these programs to stay
reentrant, variable data should not appear as static storage in PL/I, or as a DC in
the program CSECT in assembly language.

As well as requiring that your application programs are compiled and link-edited
as reentrant, CICS also identifies programs as being either quasi-reentrant or
threadsafe; these attributes are set on the PROGRAM resource definition. The
following table shows you the CONCURRENCY and API settings that are available
on the program, and the type of TCB that the application program is run on.

Table 12. Combination of PROGRAM CONCURRENCY and API settings and the type of
TCB used.

CONCURRENCY attribute API attribute CICS TCB

210 CICS TS for z/0S 4.2: Application Programming Guide

Table 12. Combination of PROGRAM CONCURRENCY and API settings and the type of

TCB used. (continued)

CONCURRENCY(QUASIRENT)

API(CICSAPI)

The application program
always runs under the CICS
quasi-reentrant (QR TCB). If a
switch to an open TCB occurs
for a resource manager, CICS
always returns to QR TCB
before returning to the
application.

CONCURRENCY(QUASIRENT)

API(OPENAPI)

Invalid combination. OPENAPI
programs cannot run on a QR
TCB.

CONCURRENCY(THREADSAFE)

API(CICSAPI)

The application program can
run on a QR TCB or an open
TCB. If a switch to an open
TCB occurs for a resource
manager, CICS stays on the
open TCB when returning to
the application. If a switch to
the QR TCB occurs, CICS stays
on QR TCB when returning to
the application.

CONCURRENCY(THREADSAFE)

API(OPENAPI)

Same as
CONCURRENCY(REQUIRED)
API(OPENAPI).

CONCURRENCY(REQUIRED)

API(CICSAPI)

The application program
always runs on an open TCB.
CICS services do not require
TCB key matching so the
application always runs on a L8
open TCB. An OPENAPI
resource manager uses an L8
TCB so no TCB switch is
required if it is invoked. If a
switch to the QR TCB occurs,
CICS returns to the open TCB
when returning to the
application.

CONCURRENCY(REQUIRED)

API(OPENAPI)

The application program
always runs on an open TCB.
The key of the TCB must match
the execution key of the
program. CICS uses an L9 TCB
if EXECKEY(USER) is set and
an L8 TCB if EXECKEY(CICS)
is set. If the application is user
key and an OPENAPI resource
manager is invoked then a
switch occurs from the L9 TCB
to the L8 TCB. CICS returns to
L9 TCB before returning to the
application. If a switch to the
QR TCB occurs, CICS returns
to the open TCB when
returning to the application.

Chapter 17. Application design 211

Quasi-reentrant application programs

A quasi-reentrant program is a program that is in a consistent state when control is
passed to it, both on entry, and before and after each EXEC CICS command. Such
quasi-reentrancy guarantees that each invocation of an application program is
unaffected by previous runs, or by concurrent multithreading through the program
by multiple CICS tasks.

CICS runs user programs under a CICS-managed task control block (TCB). If your
programs are defined as quasi-reentrant (on the CONCURRENCY attribute of the
program resource definition), CICS always invokes them under the CICS
quasi-reentrant (QR TCB). The requirements for a quasi-reentrant program in a
multithreading context are less stringent than if the program were to run
concurrently on multiple TCBs.

CICS requires that an application program is reentrant so that it guarantees
consistent conditions. In practice, an application program might not be truly
reentrant; CICS expects “quasi-reentrancy”.

For example, application programs could modify their executable code, or the
variables defined within the program storage, but these changes must be undone,
or the code and variables reinitialized, before there is any possibility of the task
losing control and another task running the same program.

CICS quasi-reentrant user programs (application programs, user-replaceable
modules, global user exits, and task-related user exits) are given control by the
CICS dispatcher under the QR TCB. When running under this TCB, a program can
be sure that no other quasi-reentrant program can run until it relinquishes control
during a CICS request, at which point the user task is suspended, leaving the
program still “in use”. The same program can then be reinvoked for another task,
which means the application program can be in use concurrently by more than one
task, although only one task at a time can be running.

To ensure that programs cannot interfere with each other's working storage, CICS
obtains a separate copy of working storage every time an application program
runs. For example, if a user application program is being used by 11 user tasks,
there are 11 copies of working storage in the appropriate dynamic storage area
(DSA).

Quasi-reentrancy allows programs to access globally shared resources, for example
the CICS common work area (CWA), without the need to protect those resources
from concurrent access by other programs. Such resources are effectively locked
exclusively to the running program, until it issues its next CICS request. For
example, an application can update a field in the CWA without using compare and
swap (CS) instructions or locking (enqueuing on) the resource.

Note: The CICS QR TCB provides protection through exclusive control of global
resources only if all user tasks that access those resources run under the QR TCB.
It does not provide automatic protection from other tasks that run concurrently
under another open TCB.

Take care if a program involves lengthy calculations: because an application
program retains control from one EXEC CICS command to the next, the processing
of other transactions on the QR TCB is excluded. However, you can use the
task-control SUSPEND command to allow other transaction processing to proceed;
see [Chapter 44, “Task control,” on page 567 for details. Runaway task time interval

212 CICS TS for z/0S 4.2: Application Programming Guide

is controlled by the transaction definition and the system initialization parameter
ICVR. CICS purges a task that does not return control before expiry of the specified
interval.

Threadsafe programs

In the CICS open transaction environment (OTE), when application programs,

task-related user exits (TRUESs), global user exit programs, and user-replaceable
modules are defined to CICS as threadsafe, they can run concurrently on open
TCBs in the open transaction environment (OTE).

Accessing the open transaction environment

Applications that involve a task-related user exit (TRUE) enabled using the
OPENAPI option on the ENABLE PROGRAM command are automatically involved with
the open transaction environment. These applications can gain performance
benefits from being threadsafe. The CICS DB2 task-related user exit used by CICS
applications that access DB2 resources is an open API TRUE, so CICS DB2
applications can gain performance benefits from being threadsafe. For more details
about threadsafe programming for CICS DB2 applications, see [Enabling CICS DB2|

applications to use the open transaction environment (OTE) through threadsafe|

programming in the DB2 Guide]

For other user application programs, PLT programs, user replaceable modules, or
task-related user exits, you can opt to use the open transaction environment by
defining them as OPENAPI programs, in which case they must be threadsafe. For
more details about threadsafe programming for OPENAPI programs, see

[program

If you define your program as CONCURRENCY(REQUIRED) it always runs on an
open TCB. The type of open TCB used depends on the API setting. For CICSAPI
programs, CICS uses an L8 open TCB regardless of the execution key of the
program. For OPENAPI programs, CICS uses an L9 TCB if EXECKEY(USER) is set
and an L8 TCB if EXECKEY(CICS) is set. REQUIRED is applicable to user
application programs, PLT programs, and user replaceable modules. For global
user exit programs and task-related user exit programs, if you specify
CONCURRENCY(REQUIRED), CICS treats the program as if you had specified
CONCURRENCY(THREADSAFE).

Global user exits cannot be defined as OPENAPI programs, but if you use the
THREADSAFE option on the ENABLE PROGRAM command for a global user exit, it is
enabled as a threadsafe program and can run on the same open TCB as an
application that uses it. If the ENABLE PROGRAM command does not specify the
CONCURRENCY or API options then the options on the program definition are
used.

Serialization techniques

An application that is running on an open TCB cannot rely on quasi-reentrancy to
protect shared resources from concurrent access by another program. Furthermore,
quasi-reentrant programs might also be placed at risk if they access shared
resources that can also be accessed by a user task running concurrently under an
open TCB. The techniques used by user programs to access shared resources must
therefore take into account the possibility of simultaneous access by other
programs.

Chapter 17. Application design 213

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6i.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6i.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6i.html

To gain the performance benefits of the open transaction environment while
maintaining the integrity of shared resources, serialization techniques must be used
to prohibit concurrent access to shared resources. Programs that use appropriate
serialization techniques when accessing shared resources are described as
threadsafe.

For most resources, such as files, transient data queues, temporary storage queues,
and DB2 tables, CICS processing automatically ensures access in a threadsafe
manner. Some of the CICS commands that operate on these resources are coded to
use appropriate serialization techniques that allow them to run on open TCBs; that
is, they are threadsafe commands. Where this is not the case, CICS ensures
threadsafe processing by forcing a switch to the QR TCB, so that access to the
resources is serialized regardless of the behavior of the command.

For any other resources that are accessed directly by user programs, such as shared
storage, it is the responsibility of the user program to ensure threadsafe processing.
For information about threadsafe programming for user application programs, see
Making applications threadsafe|.

TCB switching

Threadsafe programs achieve performance benefits by remaining on an open TCB,
rather than switching between the open TCB and the QR TCB. When a program is
defined as threadsafe and is running on an open TCB, TCB switching from the
open TCB to the QR TCB occurs in the following circumstances:

* If the program issues any EXEC CICS commands that are not threadsafe, CICS
switches back from the open TCB to the QR TCB to run the nonthreadsafe code.
If the program is defined as OPENAPI or CONCURRENCY(REQUIRED), CICS
then switches back to the open TCB to continue running the application logic. If
the program is not defined as OPENAPI or CONCURRENCY(REQUIRED), it
continues to run on the QR TCB. For a CICS DB2 application, if the program is
not defined as OPENAPI or CONCURRENCY (REQUIRED) and does not make
any further DB2 requests, the switch back to the QR TCB is a disadvantage
because it increases the usage of your QR TCB for the time taken to run any
remaining application code. However, if the program makes any further DB2
requests, CICS must switch back again to the open TCB.

¢ If the program calls a task-related user exit program that is not defined as
threadsafe, CICS switches back to the QR TCB and gives control to the
task-related user exit program. When the task-related user exit program
completes processing, the situation is the same as after a nonthreadsafe EXEC
CICS command: an OPENAPI or CONCURRENCY(REQUIRED) program
switches back to the open TCB, and a program not defined as OPENAPI or
CONCURRENCY(REQUIRED) continues to run on the QR TCB.

* When the program issues a threadsafe CICS command or makes a DB2 request,
a global user exit might be invoked as part of the processing for the command
or request. If a global user exit program is used that is not defined as threadsafe,
CICS switches back to the QR TCB and gives control to the global user exit
program. When the user exit program completes processing, CICS switches back
to the open TCB to continue processing the threadsafe CICS command or to
complete the DB2 request.

* When the program completes, CICS switches back to the QR TCB for task
termination. This switch is always necessary.

214 CICS TS for z/0S 4.2: Application Programming Guide

Threadsafe considerations for statically or dynamically called
routines

If you define a program with CONCURRENCY(THREADSAFE) or
CONCURRENCY(REQUIRED), all routines that are statically or dynamically called
from that program (for example, COBOL routines) must also be coded to
threadsafe standards.

When an EXEC CICS LINK command is used to link from one program to another,
the program link stack level is incremented. However, a routine that is statically
called, or dynamically called, does not involve passing through the CICS command
level interface, and so does not cause the program link stack level to be
incremented. With COBOL routines, for a static call a simple branch and link is
involved to an address that is resolved at link-edit time. For a dynamic call,
although there is a program definition involved, this is required only to allow
Language Environment to load the program. After that, a simple branch and link is
executed. So when a routine is called by either of these methods, CICS does not
regard this as a change of program. The program that called the routine is still
considered to be executing, and so the program definition for that program is still
considered to be the current one.

If the program definition for the calling program states
CONCURRENCY(THREADSAFE) or CONCURRENCY(REQUIRED), the called
routine must also comply with this specification. Programs with the
CONCURRENCY(THREADSAFE) or CONCURRENCY(REQUIRED) attribute
remain on an open TCB when they return from a DB2 call, and this is not
appropriate for a program that is not threadsafe. For example, consider the
situation where the initial program of a transaction, program A, issues a dynamic
call to program B, which is a COBOL routine. Because the CICS command level
interface was not involved, CICS is unaware of the call to program B, and
considers the current program to be program A. Program B issues a DB2 call. On
return from the DB2 call, CICS must determine whether the program can remain
on the open TCB, or whether the program must switch back to the QR TCB to
ensure threadsafe processing. To do this, CICS examines the CONCURRENCY
attribute of what it considers to be the current program, which is program A. If
program A is defined as CONCURRENCY(THREADSAFE) or
CONCURRENCY(REQUIRED), then processing can continue on the open TCB. In
this scenario program B is executing, so if processing is to continue safely, program
B must be coded to threadsafe standards.

Making applications threadsafe

When you make an application program threadsafe, you can use the open
transaction environment, avoid TCB switching, and gain performance benefits.

Before you begin

To use threadsafe application programs, ensure that the system initialization
parameter FORCEQR is not set to YES. FORCEQR forces programs defined as threadsafe
to run on the QR TCB, and it might be set to YES as a temporary measure while
problems connected with threadsafe-defined programs are investigated and
resolved.

Also, select an appropriate setting for the system initialization parameter FCQRONLY

in your file-owning CICS regions. If FCQRONLY is set to YES, CICS forces all file
control requests in the CICS region to run on the QR TCB.

Chapter 17. Application design 215

* If you use IPIC connections to function ship file control requests to remote CICS
TS 4.2 or later regions, to improve performance for those connections set
FCQRONLY to NO in the file-owning regions.

* If you use only MRO links or ISC over SNA connections, or your file-owning
regions are earlier than CICS TS 4.2, set FCQRONLY to YES in the file-owning
regions.

If you are using CICS intercommunication to make requests for functions or
programs to run in remote CICS systems, choose IP interconnectivity (IPIC) over
TCP/IP connections between the CICS systems to provide optimal support for
threadsafe applications. With IPIC connections, CICS uses an open TCB to run the
mirror program that manages the request on the remote CICS system, providing
improved throughput. With other connection types, CICS does not use an open
TCB to run the mirror program. The EXEC CICS LINK command, used for
distributed program link (DPL), is threadsafe for IPIC connections to remote CICS
regions where a long-running mirror is used, but not for other connection types.

About this task

[Threadsafe programs|explains what it means for a program to be threadsafe, and
the circumstances when TCB switching takes place between open TCBs and the QR
TCB.

Procedure

To make an application program threadsafe and enable it to remain on an open
TCB:

1. Define the program to CICS as threadsafe, by specifying
CONCURRENCY(THREADSAFE) in the PROGRAM resource definition. For a
program that is defined as OPENAPI, CICS requires the
CONCURRENCY(THREADSAFE) option. Only code that has been defined as
threadsafe is permitted to run on open TCBs. By defining a program to CICS as
threadsafe, you are specifying only that the application logic is threadsafe, not
that all the EXEC CICS commands included in the program are threadsafe.
CICS can ensure that EXEC CICS commands are processed safely by using TCB
switching, but, to permit your program to run on an open TCB, CICS needs
you to guarantee that your application logic is threadsafe.

Alternatively, you can define the program as CONCURRENCY(REQUIRED) to
enable your program to run from the start on an open TCB. Programs defined
as CONCURRENCY(REQUIRED) must be coded to threadsafe standards as
they must always run on an open TCB. The type of open TCB used depends on
the API setting.

2. Ensure that the program logic, that is, the native language code between the
EXEC CICS commands, is threadsafe. If you define a program to CICS as
threadsafe but include application logic that is not threadsafe, the results are
unpredictable, and CICS cannot protect your program from the possible
consequences. To make your program logic threadsafe, you must use
appropriate serialization techniques when accessing shared resources, to
prohibit concurrent access to those resources. When you use EXEC CICS
commands to access resources such as files, transient data queues, temporary
storage queues, and DB2 tables, CICS ensures threadsafe processing, but for
any resources that are accessed directly by user programs, such as shared
storage, the user program must ensure threadsafe processing.

a. Typical examples of shared storage are the CICS CWA, the global work
areas for global user exits, and storage acquired explicitly by the application

216 CICS TS for z/0S 4.2: Application Programming Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_concepts_threadsafe.html

program with the shared option. Check whether your application programs
use these types of shared storage by looking for occurrences of the
following EXEC CICS commands:

* ADDRESS CWA
* EXTRACT EXIT
* GETMAIN SHARED

The load module scanner utility includes a sample table, DFHEIDTH, to
help you identify CICS commands that give access to shared storage.
Although some of these commands are themselves threadsafe, they all give
access to global storage areas, so the application logic that follows these
commands and uses the global storage areas has the potential to be
nonthreadsafe. To ensure that it is threadsafe, an application program must
include the necessary synchronization logic to guard against concurrent
update.

Tip: When identifying programs that use shared resources, also include any
program that modifies itself. Such a program is effectively sharing storage
and you must consider it at risk.

. Techniques that you can use to provide threadsafe processing when
accessing a shared resource are as follows:

* Retry access, if the resource has been changed concurrently by another
program, using the compare and swap instruction.

* Enqueue on the resource, to obtain exclusive control and ensure that no
other program can access the resource, using one of the following
techniques:

— An EXEC CICS ENQ command, in an application program.

— An XPI ENQUEUE function call to the CICS enqueue (NQ) domain, in
a global user exit program.

— An MVS service such as ENQ, in an open API task-related user exit
only when L8 TCBs are enabled for use. Note that the use of MVS
services in an application that can run under the QR TCB might result
in performance degradation because of the TCB being placed in a wait.

* Perform accesses to shared resources only in a program that is defined as
quasi-reentrant, by linking to the quasi-reentrant program using the
EXEC CICS LINK command. This technique applies to threadsafe
application programs and open API task-related user exits only. A
linked-to program defined as quasi-reentrant runs under the QR TCB and
can take advantage of the serialization provided by CICS
quasi-reentrancy. Note that, even in quasi-reentrant mode, serialization is
provided only for as long as the program retains control and does not
wait.

* Place all transactions that access the shared resource into a restricted
transaction class (TRANCLASS), one that is defined with the number of
active tasks specified as MAXACTIVE(1). This approach effectively
provides a very coarse locking mechanism, but might have a severe
impact on performance.

Note: Although the term threadsafe is defined in the context of individual
programs, a user application as a whole can be considered threadsafe only
if all the application programs that access shared resources obey the rules. A
program that is written correctly to threadsafe standards cannot safely
update shared resources if another program that accesses the same
resources does not obey the threadsafe rules.

Chapter 17. Application design 217

3. For best performance, ensure that the program uses only threadsafe EXEC CICS
commands. If you include a nonthreadsafe EXEC CICS command in a program
that is defined as threadsafe and running on an open TCB, CICS switches back
from the open TCB to the QR TCB to ensure that the command is processed
safely. The results of your application are not affected, but its performance
might be affected. The commands that are threadsafe are indicated in the
command descriptions of the CICS API and SPI command topics with the
statement "This command is threadsafe". They are also listed in|Threadsaf
commands in CICS Application Programming| and [Threadsafe SPI|
commandsthe appendix of the CICS System Programming Reference. The load
module scanner utility includes a sample table, DFHEIDNT, to help identify
any CICS commands in your applications that are not threadsafe.

Tip: As well as checking EXEC CICS commands that you code explicitly, be
aware of high-level language constructs or Language Environment callable
services used by your program that result in using CICS services. CICS services
used in this way might involve nonthreadsafe CICS commands, and cause a
switch back to the QR TCB. In particular, the COBOL statement DISPLAY
UPON SYSOUT, some types of PL/I and C++ output, and the Language
Environment callable services CEEMOUT and CEE3DMP write data to the
Language Environment transient data destinations CESE and CESO. This
operation involves an EXEC CICS WRITE TD command, which is not
threadsafe.

4. If any user exit programs are in the execution path used by the program, for
best performance ensure that they are also coded to threadsafe standards and
defined to CICS as threadsafe. These exits might be dynamic plan exits, global
user exits, or task-related user exits. Also check that user exit programs
supplied by any vendor software are coded to threadsafe standards and
defined to CICS as threadsafe. A threadsafe user exit program can be used on
the same open TCB as a threadsafe application that calls it, and it can use
non-CICS APIs without having to create and manage subtask TCBs, and exploit
the open transaction environment for itself. If any user exit programs in the
execution path used by the program are not threadsafe, CICS switches to the
QR TCB to run them, which might be detrimental to the application's
performance.

a. Be aware of the following important user exits:

* The global user exits XEIIN and XEIOUT are called before and after
EXEC CICS commands.

* The global user exit XPCFTCH is called before a program defined to
CICS receives control.

* For CICS DB2 requests, the CICS DB2 task-related user exit DFHD2EX1 is
threadsafe. Other important exits for CICS DB2 requests include the
default dynamic plan exit DSNCUEXT, which is not defined as
threadsafe, the alternative dynamic plan exit DFHD2PXT, which is
defined as threadsafe, and the global user exits XRMIIN and XRMIOUT.

* Global user exits might be called in a remote CICS region under mirror
transactions when you function ship requests. If you use IPIC connections
to ship file control requests to file-owning regions, any global user exit
programs for file control must be enabled as threadsafe programs for the
best performance.

b. To define a user exit program to CICS as threadsafe, you can specify
appropriate attributes in its PROGRAM resource definition.

* For a task-related user exit program, specifty OPENAPI and
THREADSAFE, or just THREADSAFE.

218 CICS TS for z/0S 4.2: Application Programming Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp4_threadsafelist.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp4_threadsafelist.html

* For a global user exit program, you cannot use OPENAP]I, but you can
specify THREADSAFE.

If you specify CONCURRENCY(REQUIRED) on a global user exit program
or task-related user exit program, CICS treats the program as if you had
specified CONCURRENCY(THREADSAFE).

C. As an alternative way to define a user exit program to CICS as threadsafe,
you can specify appropriate options when you enable it using the EXEC CICS
ENABLE PROGRAM command.

* For a task-related user exit program, specify OPENAPI, or
THREADSAFE.

* For a global user exit program, you cannot use OPENAP]I, but you can
specify THREADSAFE.

When you enable an exit program using the OPENAPI or THREADSAFE
option, it indicates to CICS that the program logic is threadsafe, so CICS
overrides the CONCURRENCY setting on the program definition for the
exit and treats the exit program as threadsafe.

d. To define a first-phase PLT global user exit program as threadsafe, specify
THREADSAFE on the EXEC CICS ENABLE PROGRAM command. To ensure that
global user exit programs (such as those that run at the recovery exit points)
are available as early as possible during CICS initialization, it is common
practice to enable them from first-phase PLT programs. Because first-phase
PLT programs run so early in CICS initialization, you cannot use installed
PROGRAM resource definitions or the program autoinstall user program to
define the exit programs. CICS automatically installs exit programs that are
enabled from first-phase PLT programs with
CONCURRENCY(QUASIRENT). However, the setting on the EXEC CICS
ENABLE PROGRAM command overrides the CONCURRENCY(QUASIRENT)
setting on the system-autoinstalled program definition.

CONCURRENCY(REQUIRED) programs

Defining an application program as CONCURRENCY(REQUIRED) means that
from the start of the program, it always runs on an open task control block (open
TCB) instead of the main CICS quasi-reentrant TCB (QR TCB). If CICS must switch
to the QR TCB to process an EXEC CICS command, CICS switches back to the open
TCB before returning control to the application program.

The type of open TCB used depends on what APIs the program is to use:

* If the program uses only CICS supported APIs (including access to external
resource managers such as DB2, IMS, and WebSphere MQ) then it must be
defined with program attribute API(CICSAPI). In this case CICS always uses an
L8 open TCB, irrespective of the execution key of the program, because CICS
commands do not rely on the key of the TCB.

* If the program is to use other non-CICS APIs then it must be defined with
program attribute API(OPENAPI). In this case CICS uses an L9 TCB or an L8
TCB depending on the execution key of the program. This is to allow the
non-CICS APIs to operate correctly.

Global user exits cannot be defined as CONCURRENCY(REQUIRED), but if you
enable them using the THREADSAFE option on the ENABLE PROGRAM
command, they can run on an open TCB when necessary.

Existing threadsafe CICS-DB2 applications, which have taken advantage of the
performance gains of being able to run on the same TCB as the DB2 call by being
defined as THREADSAFE CICSAP]I, can be further enhanced by defining them as

Chapter 17. Application design 219

REQUIRED CICSAPI. This definition means that the programs can run on an L8
open TCB from the start without waiting for the first DB2 call to move them on to
the open TCB. Achieving additional benefit depends on how many, if any,
non-threadsafe CICS commands the application executes.

OPENAPI programs

The open transaction environment (OTE) is an environment where CICS
application code can use non-CICS services inside the CICS address space, without
interference from other transactions. You can use the OTE by defining user
application programs, PLT programs, user replaceable modules, or task-related
user exits (TRUEs) as OPENAPI programs, by using the OPENAPI attribute in the
PROGRAM resource definitions.

Defining a program as an OPENAPI program by using the attribute
API(OPENAPI) means that from the start of the program, it always runs on an L8
or L9 mode open task control block (open TCB) instead of the main CICS
quasi-reentrant TCB (QR TCB). Global user exits cannot be defined as OPENAPI
programs, but if you enable them using the THREADSAFE option on the ENABLE
PROGRAM command, they can be run on an open TCB when necessary.

Moving application workloads off the QR TCB onto multiple open TCBs gives the
possibility of achieving better throughput, particularly with CPU-intensive
programs. You can use other non-CICS APlIs, but you must note that the use of
non-CICS APIs within CICS is entirely at the discretion and risk of the user. No
testing of non-CICS APIs within CICS has been undertaken and the use of such
APIs is not supported by IBM Service.

OPENAPI programs must be threadsafe in order to run on an open TCB. The
requirements for a threadsafe program are as follows:

1. The program must be defined to CICS as CONCURRENCY(REQUIRED)
meaning that the program is required to run on an open TCB.

2. The logic of the program, that is, the native language code between the EXEC
CICS commands, must be threadsafe. If you define a program to CICS to run
on an open TCB but include application logic that is not threadsafe, the results
are unpredictable, and CICS is not able to protect you from the possible
consequences.

3. For best performance, the program must use only threadsafe EXEC CICS
commands. If you include a non-threadsafe EXEC CICS command in a program
that is running on an open TCB, CICS switches back from the open TCB to the
QR TCB to ensure that the command is processed safely. The TCB switching
might be detrimental to the performance of the application.

4. For best performance, any user exit programs in the execution path used by the
program must also be coded to threadsafe standards and defined to CICS as
threadsafe. If any user exit programs in the execution path used by the
program are not threadsafe, CICS switches to the QR TCB to run them, which
might be detrimental to the performance of the application.

[“Threadsafe programs” on page 213| explains the requirements for threadsafe
programs in more detail.

OPENAPI programs have some additional obligations and restrictions. For
example, they must ensure that all non-CICS resources acquired specifically on
behalf of the terminating task are freed, and they must not use certain MVS system
services. [“Threadsafe restrictions for OPENAPI programs” on page 221 explains
these requirements.

220 CICS TS for z/0S 4.2: Application Programming Guide

Candidate programs for defining as REQUIRED OPENAPI (assuming their
application logic is threadsafe) are those programs that want to use other
non-CICSAPIs at their own risk.

TCBs for OPENAPI programs

The following TCBs are used for OPENAPI programs:

¢ L8 mode TCBs are used for CICS key OPENAPI application programs, including
some CICS programs that run on L8 TCBs for processing web services requests,
parsing XML, and accessing z/OS UNIX files for CICS web support.

* L9 mode TCBs are used for user key OPENAPI application programs.

The MAXOPENTCBS system initialization parameter controls the number of L8 and L9
TCBs in the pool of L8- and L9-mode open TCBs.

L8 mode TCBs are also used when programs need access to a resource manager
through a TRUE enabled by using the OPENAPI option on the ENABLE
PROGRAM command. An open API TRUE is given control under an L8 mode
TCB, and can use non-CICS APIs without creating subtask TCBs. The CICS DB2
TRUE operates in OPENAPI mode (it is an open API TRUE), so the CICS DB2
attachment facility uses L8 TCBs for DB2 request processing.

The use of OPENAPI programs can cause more TCB switching than ordinary
threadsafe programs. If the OPENAPI program uses any EXEC CICS commands or
user exit programs that are not threadsafe, causing a switch to the QR TCB, there
is an extra switch, because CICS switches back to the open TCB to continue
running the application logic. Additional TCB switching might be involved because
of the requirement for the key of the TCB to be correct for OPENAPI programs.
OPENAPI TRUEs always run in CICS key on an L8 TCB, so, for example, if a user
key OPENAPI program runs on an L9 TCB but makes a DB2 call, CICS switches to
an L8 TCB to call DB2, then returns to the L9 TCB to continue running the
program. Because of this switching, CICS DB2 applications are normally defined as
(CICSAPI) threadsafe programs, rather than as OPENAPI programs. CICS key
CICS DB2 applications can be defined as OPENAPI programs if required.

Threadsafe restrictions for OPENAPI programs
An OPENAPI program, although freed from the constraints imposed by the QR

TCB, still has obligations both to the CICS system as a whole and to future users
of the L8 or L9 TCB it is using.

An L8 or L9 TCB is dedicated for use by the CICS task to which it is allocated, but
once the CICS task has completed, the TCB is returned to the dispatcher-managed
pool of such TCBs, provided it is still in a "clean " state. (An unclean TCB in this
context means that the task using the L8 or L9 mode TCB suffered an unhandled
abend in an OPENAPI program. It does not mean that the program has broken the
threadsafe restrictions, which CICS would not detect.) Note that the TCB is not
dedicated for use by a particular OPENAPI program, but is used by all OPENAPI
programs and OPENAPI TRUEs invoked by the CICS task to which the L8 mode
TCB is allocated. Also, if an application program invoking an OPENAPI program
is coded to threadsafe standards, and defined to CICS as threadsafe, it continues to
execute on the L8 mode TCB on return from the program.

An OPENAPI program must not treat the executing open TCB environment in
such a way that it causes problems for:

* Application program logic that could run on the open TCB
¢ OPENAPI TRUE:s called by the same task

Chapter 17. Application design 221

Future tasks that might use the open TCB
CICS management code.

At your own risk, if your OPENAPI program decides to use other (non CICS)
APIs, you must be aware of the following:

When invoking CICS services, or when returning to CICS, an OPENAPI
program must ensure it restores the MVS programming environment as it was
on entry to the program. This includes cross-memory mode, ASC mode, request
block (RB) level, linkage stack level, TCB dispatching priority, in addition to
cancelling any ESTAEs added.

At CICS task termination, an OPENAPI program must ensure it leaves the open
TCB in a state suitable to be reused by another CICS transaction. In particular, it
must ensure that all non-CICS resources acquired specifically on behalf of the
terminating task are freed. Such resources might include:

— Dynamically allocated data sets
— Open ACBs or DCBs

— STIMERM requests

— MVS managed storage

— ENQ requests

- Attached subtasks

— Loaded modules

— Owned data spaces

— Added access list entries

— Name/token pairs

— Fixed pages

— Security settings (TCBSENV must be set to zero)

An OPENAPI program must not use the following MVS system services that
will affect overall CICS operation:

- CHKPT

- ESPIE

- QEDIT

— SPIE

- STIMER

- TTIMER

- XCTL / XCTLX

— Any TSO/E services.

An OPENAPI program must not invoke under the L8 or L9 mode TCB a
Language Environment program that is using MVS Language Environment
services, because L8 and L9 mode TCBs are initialized for Language
Environment using CICS services.

Using the FORCEQR system initialization parameter

Running applications with programs defined as threadsafe to use OTE (for
example, in CICS DB2 applications) could cause problems if one or more programs
is not threadsafe. If this happens, you can force all your applications programs on
to the QR TCB using the FORCEQR system initialization parameter.

This could be useful in a production region, where you cannot afford to have
applications out of service while you investigate the problem.

222 CICS TS for z/0S 4.2: Application Programming Guide

The default for this parameter is FORCEQR=NO, which means that CICS honors
the CONCURRENCY attribute on your program resource definitions. As a
temporary measure, while you investigate and resolve problems connected with
threadsafe-defined programs, you can set FORCEQR=YES. Remember to change
this back to FORCEQR=NO when you are ready for your programs to resume use
of open TCBs under the OTE.

Non-reentrant programs

There is nothing to prevent non-reentrant application programs being executed by
CICS. However, such an application program would not provide consistent results
in a multi-threading environment.

To use non-reentrant application programs, or tables or control blocks that are
modifiable by the execution of associated application programs, specify the
RELOAD(YES) option on their resource definition. RELOAD(YES) results in a fresh
copy of the program or module being loaded into storage for each request. This
option ensures that multithreading tasks that access a non- reentrant program or
table each work from their own copy of the program, and are unaffected by
changes made to another version of the program by other concurrent tasks running
in the CICS region.

For information about RELOAD(YES), see PROGRAM definition attributes|in the
CICS Resource Definition Guide.

CICS loads any program link-edited with the RENT attributes into a CICS
read-only dynamic storage area (DSA). CICS uses the RDSA for RMODE(24)
programs, and the ERDSA for RMODE(ANY) programs.By default, the storage for
these DSAs is allocated from read-only key-0 protected storage, protecting any
modules loaded into them from all except programs running in key-zero or
supervisor state.(If CICS initializes with the RENTPGM=NOPROTECT system
initialization parameter, it does not use read-only key-0 storage, and use CICS-key
storage instead.)

If you want to execute a non-reentrant program or module, it must be loaded into
a non-read-only DSA. The SDSA and ESDSA are user-key storage areas for
non-reentrant user-key programs and modules.

For more information about CICS DSAs, refer to|CICS dynamic storage areas in the|
[Performance Guide}

Storing data within a transaction

CICS provides a variety of facilities for storing data within and between
transactions. Each one differs according to how available it leaves data to other
programs within a transaction and to other transactions; in the way it is
implemented; and in its overhead, recovery, and enqueuing characteristics.

Storage facilities that exist for the lifetime of a transaction include:

* Transaction work area (TWA)

 User storage (by a GETMAIN command issued without the SHARED option)
« COMMAREA

¢ Program storage

Chapter 17. Application design 223

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht367.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht367.html

All of these areas are main storage facilities and come from the same basic
source—the dynamic storage areas (DSAs) and extended dynamic storage areas
(EDSAs). None of them is recoverable, and none can be protected by resource
security keys. They differ, however, in accessibility and duration, and therefore
each meets a different set of storage needs.

Transaction work area (TWA)

The transaction work area (TWA) is allocated when a transaction is initiated, and is
initialized to binary zeroes. It lasts for the entire duration of the transaction, and is
accessible to all local programs in the transaction.

Any remote programs that are linked by a distributed program link command do
not have access to the TWA of the client transaction. The size of the TWA is
determined by the TWASIZE option on the transaction resource definition. If this
size is nonzero, the TWA is always allocated. See the CICS Resource Definition Guide
for more information about determining the TWASIZE.

Processor overhead associated with using the TWA is minimal. You do not need a
GETMAIN command to access it, and you address it using a single ADDRESS
command. The TASKDATAKEY option governs whether the TWA is obtained in
CICS-key or user-key storage. (See [“Storage control” on page 573 for a full
explanation of CICS-key and user-key storage.) The TASKDATALOC option of the
transaction definition governs whether the acquired storage can be above the 16MB
line or not.

The TWA is suitable for quite small data storage requirements and for larger
requirements that are both relatively fixed in size and are used more or less for the
duration of the transaction. Because the TWA exists for the entire transaction, a
large TWA size has much greater effect for conversational than for
nonconversational transactions.

User storage

User storage is available to all the programs in a transaction, but some effort is
required to pass it between programs using LINK or XCTL commands. Its size is
not fixed, and it can be obtained (using GETMAIN commands) just when the
transaction requires it and returned as soon as it is not needed.

User storage is useful for large storage requirements that are variable in size or are
shorter-lived than the transaction.

See [“Storage control” on page 573| for information about how USERDATAKEY and
CICSDATAKEY override the TASKDATAKEY option of the GETMAIN command.

The SHARED option of the GETMAIN command causes the acquired storage to be
retained after the end of the task. The storage can be passed in the communication
area from one task to the next at the same terminal. The first task returns the
address of the communication area in the COMMAREA option of the RETURN
command. The second task accesses the address in the COMMAREA option of the
ADDRESS command. You must use the SHARED option of the GETMAIN
command to ensure that your storage is in common storage.

The amount of processor overhead involved in a GETMAIN command means that

you should not use it for a small amount of storage. You should use the TWA for
the smaller amounts or group them into a larger request. Although the storage

224 CICS TS for z/0S 4.2: Application Programming Guide

acquired by a GETMAIN command can be held longer when using combined
requests, the processor overhead and the reference set size are both reduced.

COMMAREA in LINK and XCTL commands

A communication area (COMMAREA) is a facility used to transfer information
between two programs within a transaction or between two transactions from the
same terminal.

For information about using COMMAREA between transactions, see
ICOMMAREA in RETURN commands” on page 247

Information in COMMAREA is available only to the two participating programs,
unless those programs take explicit steps to make the data available to other
programs that may be invoked later in the transaction. When one program links to
another, the COMMAREA may be any data area to which the linking program has
access. It is often in the working storage or LINKAGE SECTION of that program.
In this area, the linking program can both pass data to the program it is invoking
and receive results from that program.

When a program transfers control (an XCTL command) to another, CICS may copy
the specified COMMAREA into a new area of storage, because the invoking
program and its control blocks may no longer be available after it transfers control.
In either case, the address of the area is passed to the program that is receiving
control, and the CICS command-level interface sets up addressability. See

(Chapter 21, “Program control,” on page 285|for further information. When XCTL is
used, CICS ensures that any COMMAREA is addressable by the program that
receives it, by copying it below the 16MB line.

The COMMAREA is copied to USERKEY storage where necessary, depending on
the addressing mode and EXECKEY attributes of the receiving program. See
[“Storage control” on page 573|for more information about EXECKEY.

CICS contains algorithms designed to reduce the number of bytes to be
transmitted. The algorithms remove some trailing binary zeros from the
COMMAREA before transmission and restore them after transmission. The
operation of these algorithms is transparent to the application programs, which
always see the full-size COMMAREA.

The overhead for using COMMAREA in an LINK command is minimal; it is
slightly more with the XCTL and RETURN commands, when CICS creates the
COMMAREA from a larger area of storage used by the program.

Channels in LINK and XCTL commands

Instead of using a communication area (COMMAREA), a more modern method of
transferring data between CICS programs is to use a channel.

Channels have several advantages over COMMAREASs - see ["Benefits of channels”]
To pass a channel on a LINK or XCTL command, you use the
CHANNEL option in place of the COMMAREA option.

Channels are described in |Chapter 20, “Enhanced inter-program data transfer using]
Ichannels,” on page 251

Chapter 17. Application design 225

Program storage

CICS creates a separate copy of the variable area of a CICS program for each
transaction using the program. This area is known as program storage.

This area is called the WORKING-STORAGE SECTION in COBOL, automatic
storage in C, C++, and PL/I, and the DFHEISTG section in assembler language.
Like the TWA, this area is of fixed size and is allocated by CICS without you
having to issue a GETMAIN command. The EXEC CICS interface sets up
addressability automatically. Unlike the TWA, however, this storage lasts only
while the program is being run, not for the duration of the transaction. This makes
it useful for data areas that are not required outside the program and that are
either small or, if large, are fixed in size and are required for all or most of the
execution time of the program.

Temporary storage queues

Temporary storage is the primary CICS facility for storing data that must be
available to multiple transactions. Data items in temporary storage are kept in
temporary storage queues. The items can be retrieved by the originating task, or by
any other task, by using the symbolic name assigned to the temporary storage
queue.

A temporary storage queue containing multiple items can be thought of as a small
data set. Specific items (logical records) in a queue are referred to by relative
position numbers. The items can be addressed either sequentially or directly, by
item number. If a queue contains only a single item, it can be thought of as a
named scratchpad area.

Temporary storage queues are identified by symbolic names of up to 16 characters.
To avoid conflicts caused by duplicate names, establish a naming convention. For
example, the operator identifier or terminal identifier could be used as a suffix to
each programmer-supplied symbolic name. The fact that temporary storage queues
can be named as they are created provides a powerful form of direct access to
saved data. You can access scratchpad areas for resources such as terminals and
data set records by including the terminal name or record key in the queue name.

Compared with other methods to pass data from task to task, temporary storage
queues can require more processor use. You use an EXEC CICS command for
every interaction with temporary storage queues, and CICS must find or insert the
data by using its internal index. The processor use with main temporary storage is
therefore greater than with the CWA or TCTUA. With auxiliary storage, there is
typically data set I/O as well. Shared temporary storage pools require temporary
storage servers, and applications must access the coupling facility to retrieve the
data.

However, temporary storage queues have a number of advantages over other
methods to pass data. You do not need to allocate temporary storage until it is
required. You keep it only as long as it is required, and the item size is not fixed
until you issue the command that creates it. Temporary storage queues are
therefore a good choice for relatively high-volume data and data that varies in
length or duration. Resource protection is also available for temporary storage
queues.

Temporary storage queues remain in storage until they are deleted by the
originating task, by any other task, or on an initial or cold start. Your application

can use the DELETEQ TS command to delete temporary storage queues at the end of

226 CICS TS for z/0S 4.2: Application Programming Guide

their useful life. If your application cannot always delete temporary storage
queues, consider setting up automatic deletion. You can make CICS automatically
delete non-recoverable temporary storage queues in main storage or auxiliary
storage if they have not been accessed recently. The expiry interval in your
TSMODEL resource definitions controls automatic deletion.

Selecting a location for temporary storage queues

Temporary storage for a CICS region can be in main storage, auxiliary storage, or
shared temporary storage pools in a z/OS coupling facility. For an overview of the
different temporary storage locations and the features available for temporary
storage queues in each location, see [CICS temporary storage overview in the|

[Performance Guide

An application uses the WRITEQ TS command to write the first item of data to a
temporary storage queue. The command specifies the symbolic name of the
temporary storage queue. If this name matches an installed TSMODEL resource
definition, CICS creates the temporary storage queue in the temporary storage
location specified by the TSMODEL resource definition. If there is no matching
TSMODEL resource definition, CICS uses the temporary storage location that the
application specifies on the WRITEQ TS command. The default location is auxiliary
temporary storage.

To choose where your temporary storage queues are located, consider these factors:

Lifetime and frequency of use

* Main temporary storage is more appropriate for temporary storage
queues that are needed for short periods of time, or that are accessed
frequently.

* Auxiliary temporary storage and shared temporary storage pools are
more appropriate for temporary storage queues that have a relatively
long lifetime, or are accessed infrequently. You could use a cutoff point
of a 1 second lifetime to decide whether queues go in main storage, or
auxiliary or coupling facility storage.

Recovery

* Temporary storage queues in main storage cannot be defined as
recoverable.

* Temporary storage queues in auxiliary storage can be defined as
recoverable.

* CICS recovery is not available for temporary storage queues in shared
temporary storage pools. However, the coupling facility is not affected
by a CICS restart, so temporary storage queues in shared temporary
storage pools can be considered persistent.

Automatic deletion
You can specify that CICS deletes eligible temporary storage queues
automatically when they are no longer required, by adding an expiry
interval to the corresponding temporary storage models.

* You can set an expiry interval for temporary storage queues in main
storage.

* You can set an expiry interval for nonrecoverable queues in auxiliary
temporary storage. Recoverable queues cannot be deleted automatically.

¢ Temporary storage queues in shared temporary storage pools cannot be
deleted automatically.

Chapter 17. Application design 227

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_tempstor_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_tempstor_overview.html

Storage type
Main temporary storage is in the CICS region, and if the CICS region
operates without transaction isolation, is in 64-bit storage. In this situation,
if you do not require recoverable temporary storage, you can specify that
an application uses main temporary storage. As a result, there is less
pressure on space in 31-bit storage, and reduced 1/0 activity to write data
to disk.

Locking and waits for temporary storage queues

The CICS temporary storage domain can process multiple requests concurrently,
but it serializes requests made for the same temporary storage queue. The queue is
locked for the duration of each request.

Only one transaction at a time can write to or delete a recoverable temporary
storage queue. If you choose to make queues recoverable, bear in mind the
probability of enqueues.

If a task tries to write to temporary storage and there is no space available, CICS
normally suspends it. The task can regain control using either a HANDLE CONDITION
NOSPACE command, or the RESP or NOHANDLE option on the WRITEQ TS command. If
suspended, the task is not resumed until some other task frees the necessary space
in main storage or the VSAM data set. This situation can produce unexplained
response delays, especially if the waiting task owns exclusive-use resources, so all
other tasks needing those resources must also wait.

Related reference

[+ [WRITEQ TS in CICS Application Programming]

[+ [READQ TS in CICS Application Programming]

[+ [DELETEQ TS in CICS Application Programming]

[+ [TSMODEL resources in the Resource Definition Guide]

Intrapartition transient data

Intrapartition transient data consists of queues of data, kept together in a single
data set, with an index that CICS maintains in main storage.

Intrapartition transient data has some characteristics in common with auxiliary
temporary storage. (See [“Efficient sequential data set access” on page 24(| for
information about extrapartition transient data.)

You can use transient data for many of the purposes for which you would use
auxiliary temporary storage, but there are some important differences.

* Transient data does not have the same dynamic characteristics as temporary
storage. Unlike temporary storage queues, transient data queues cannot be
created at the time data is written by an application program. However,
transient data queues can be defined and installed using RDO while CICS is
running.

* Transient data queues must be read sequentially. Each item can be read only
once. After a transaction reads an item, that item is removed from the queue and
is not available to any other transaction. In contrast, items in temporary storage
queues may be read either sequentially or directly (by item number). They can
be read any number of times and are not removed from the queue until the
entire queue is purged.

228 CICS TS for z/0S 4.2: Application Programming Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_writeqts.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_readqts.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_deleteqts.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/tsmodel/dfha4_overview.html

These two characteristics make transient data inappropriate for scratch-pad data
but suitable for queued data such as audit trails and output to be printed. In
fact, for data that is read sequentially once, transient data is preferable to
temporary storage.

* Items in a temporary storage queue can be changed; items in transient data
queues cannot.

* Transient data queues are always written to a data set. (There is no form of
transient data that corresponds to main temporary storage.)

* You can define transient data queues so that writing items to the queue causes a
specific transaction to be initiated (for example, to process the queue).
Temporary storage has nothing that corresponds to this “trigger” mechanism,
although you may be able to use a START command to perform a similar
function.

* Transient data has more recovery options than temporary storage. Transient data
queues can be physically or logically recoverable.

* Because the commands for intrapartition and extrapartition transient data are
identical, you can switch between the two types of data set. To do this, change
only the transient data queue definitions and not your application programs
themselves. Temporary storage has no corresponding function of this kind.

GETMAIN SHARED command

Storage acquired using the SHARED option of the GETMAIN command is not
released when the acquiring task ends. This enables one task to leave data in
storage for use by another task.

The storage is not released until a FREEMAIN command is issued, either by the
acquiring task or by another task.

Your own data sets

You can also use your own data sets to save data between transactions. This
method probably has the largest overhead in terms of instructions processed,
buffers, control blocks, and user programming requirements, but does provide
extra functions and flexibility.

Not only can you define data sets as recoverable resources, but you can log
changes to them for forward recovery. You can specify the number of strings for
the data set, as well as on the temporary storage and transient data sets, to ensure
against access contention, and you can use resource security.

Lengths of areas passed to CICS commands

When a CICS command includes a LENGTH option, it typically accepts the length
as a signed halfword binary value. The use of a signed halfword binary value
places a theoretical upper limit of 32 KB on the length. In practice, the limits are
lower and vary for each command.

The limits depend on data set definitions, recoverability requirements, buffer sizes,
and local networking characteristics.

LENGTH options

In COBOL, C, C++, PL/I, and assembly language, the translator deals with
lengths.

Chapter 17. Application design 229

See the CICS Application Programming Reference for programming information,
including details of when you need to specify the LENGTH option. You should not
let the length specified in CICS command options exceed 24 KB, if possible.

Many commands involve the transfer of data between the application program and
CICS. In all cases, the length of the data to be transferred must be provided by the
application program.

In most cases, the LENGTH option must be specified if the SET option is used; the
syntax of each command and its associated options show whether this rule applies.

There are options on the WAIT EXTERNAL command and a number of QUERY
SECURITY commands that give the resource status or definition. CICS supplies the
values associated with these options, hence the name, CICS-value data areas. The
options are shown in the syntax of the commands with the term “cvda” in
parentheses. For programming information about CVDAs, see the CICS Application
Programming Reference.

For journal commands, the restrictions apply to the sum of the LENGTH and
PEXLENG values. See [“Journaling” on page 333/

Journal records

For journal records, the journal buffer size can impose a limit lower than 64 KB.
The limit applies to the sum of the LENGTH and PFXLENG values.

Data set definitions

For temporary storage, transient data, and file control, the data set definitions can
impose limits lower than 24 KB.

For details, see [Defining data sets|in the CICS System Definition Guide (for
information about creating data sets), and [FILE resource definitions|in the CICS
Resource Definition Guide (for information about resource definition for files).

Recommendation

For any command in any system, 32,000 bytes is a good working limit for
LENGTH specifications. Subject to user-specified record and buffer sizes, this limit
is unlikely either to cause an error or to place a constraint on applications.

Note: The value in the LENGTH option must never exceed the length of the data
area addressed by the command.

Minimizing errors

Use these techniques to help you make your applications error-free. Some of these
suggestions apply not only to programming, but also to operations and systems.

What often happens is that, when two application systems that run perfectly by
themselves are run together, performance goes down and you begin experiencing
“lockouts” or waits. The scope of each system has not been defined enough.

The key points in a well-designed application system are:

At all levels, each function is defined clearly with inputs and outputs well-stated

230 CICS TS for z/0S 4.2: Application Programming Guide

* Resources that the system uses are adequately defined
* Interactions with other systems are known

Protecting CICS from application errors

Use these storage tools and techniques to minimize errors in your application
programs.

About this task

* You can use the storage protection facility to prevent CICS code and control
blocks from being overwritten by your application programs. You can choose
whether to use this facility by using CICS system initialization parameters. For
more information about this facility, see Storage protection in the Performance|

* Consider using standards that avoid problems that can be caused by techniques
such as the use of GETMAIN commands.

Testing applications
General rules which apply to testing applications:

About this task

* Do not test on a production CICS system—use a test system, where you can
isolate errors without affecting live databases.

* Have the testing done by someone other than the application developer, if
possible.

* Document the data you use for testing.

* Test your applications several times. See [Chapter 10, “Testing applications,” on|

age 143| for more information about testing applications.

+ Use the CEDF transaction for initial testing. See|Chapter 11, “Execution|
[diagnostic facility (EDF),” on page 147| for more information about using CEDF.

* Use stress or volume testing to catch problems not found in a single-user
environment. A good tool for this is Teleprocessing Network Simulator (TPNS,
licensed program number 5740-XT4).

TPNS is a telecommunications testing package that enables you to test and
evaluate application programs before you install them. You can use TPNS for
testing logic, user exit routines, message logging, data encryption, and
device-dependencies, if these are used in application programs in your
organization. It is useful in investigating system performance and response
times, stress testing, and evaluating TP network design. For further information,
see the TPNS General Information manual.

* Test whether the application can handle correct data and incorrect data.
* Test against complete copies of the related databases.

» Consider using multiregion operation. (See [Multiregion operation|in the CICS
Intercommunication Guide for more information.)

* Before you move an application to the production system, run a final set of tests
against a copy of the production database to catch any errors.

In particular, look for destroyed storage chains.
Assembly language programs (if not addressing data areas properly) can be harder

to identify because they can alter something that affects (and abends) another
transaction.

Chapter 17. Application design 231

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_storage_protection.html#dfha253
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_storage_protection.html#dfha253

For more information about solving a problem, see[Approaches to problem|

in the CICS Problem Determination Guide.

Non-terminal transaction security

CICS can protect resources used in non-terminal transactions against unauthorized
use.

These transactions are of three types:

 Transactions that are started by a START command and that do not specify a
terminal ID.

 Transactions that are started, without a terminal, as a result of the trigger level
being reached for an intrapartition transient data queue.

* The CICS internal transaction (CPLT), which runs during CICS startup, to
execute programs specified in the program list table (PLT). This transaction
executes both first and second phases of PLTs.

Also, resource security checking can now be carried out for PLT programs that are
run during CICS shutdown. PLT shutdown programs execute as part of the
transaction that requests the shutdown, and therefore run under the authorization
of the user issuing the shutdown command.

The START command handles security for non-terminal transactions started by the
START command.

A surrogate user who is authorized to attach a transaction for another user, or
cause it to be attached, or who inherits all the resource access authorizations for
that transaction, can act for the user.

CICS can issue up to three surrogate user security checks on a single START
command, depending on the circumstances:

1. The userid of the transaction that issues the START command, if USERID is
specified

2. The userid of the CEDF transaction, if the transaction that issues the START
command is being run in CEDF dual-screen mode

3. The CICS region userid of the remote system, if the START command is
function shipped to another CICS system and link security is in effect.

A separate surrogate user security check is done for each of these userids, as
required, before the transaction is attached.

For programming information about the USERID option, USERIDERR condition,

and INVREQ, and NOTAUTH conditions, see the CICS Application Programming
Reference.

232 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 18. Design for performance

You can change the design of your application program to improve performance
and efficiency.

e |“Program size”l

« |“Virtual storage” on page 234

* [“Exclusive control of resources” on page 237]

* |“Operational control” on page 238§

» |“Operating system waits” on page 239|
* [“The NOSUSPEND option” on page 239
« |“Efficient sequential data set access” on page 240)|

* |“Efficient logging” on page 241|

Other aspects of application design are addressed in [Chapter 17, “Application|
ldesien,” on page 203)|

If you have a performance problem that applies in a particular situation, try to
isolate the changes you make so that their effects apply only in that situation. After
fixing the problem and testing the changes, use them in your most commonly-used
programs and transactions, where the effects on performance are most noticeable.

Program size

The early emphasis on small programs led CICS programmers to break up
programs into units that were as small as possible, and to transfer control using
the XCTL command, or link using the LINK command, between them.

In current systems, however, it is not always better to break up programs into such
small units, because there is CICS processing overhead for each transfer and, for
LINK commands, there is also storage overhead for the register save areas (RSAs).

For modestly-sized blocks of code that are processed sequentially, inline code is
most efficient. The exceptions to this rule are blocks of code that are:

* Fairly long and used independently at several different points in the application

* Subject to frequent change (in which case, you balance the overhead of LINK or
XCTL commands with ease of maintenance)

* Infrequently used, such as error recovery logic and code to handle uncommon
data combinations

If you have a block of code that for one of these reasons, has to be written as a
subroutine, the best way of dealing with this from a performance viewpoint is to
use a closed subroutine within the invoking program (for example, code that is
dealt with by a PERFORM command in COBOL). If it is needed by other
programs, it should be a separate program. A separate program can be called, with
a CALL statement (macro), or it can be kept separate and processed using an
XCTL or a LINK command. Execution overhead is least for a CALL, because no
CICS services are invoked; for example, the working storage of the program being
called is not copied. A called program, however, must be linked into the calling
one and so cannot be shared by other programs that need it unless you use special
COBOL, C, or PL/I facilities. A called subroutine is loaded as part of each program

© Copyright IBM Corp. 1989, 2011 233

that CALLs it and hence uses more storage. Thus, subsequent transactions using
the program may or may not have the changes in the working storage made to the
called program. This depends entirely on whether CICS has loaded a new copy of
the program into storage.

Overhead (but also flexibility) is highest with the XCTL and LINK commands.
Both processor and storage requirements are much greater for a LINK command
than for an XCTL command. Therefore, if the invoking program does not need to
have control returned to it after the invoked program is processed, it should use an
XCTL command.

The load module resulting from any application program can occupy up to two
gigabytes of main storage. Clearly, there is an extra cost associated with loading
and initializing very large load modules, and CICS dynamic storage limits (EDSA)
would need to be set correspondingly high. You should, if possible, avoid the use
of large load modules. However large applications written in an object-oriented
language, such as C++, can easily exceed 16M in size. Experience with C++ classes
bound into a single DLL is that performance of the classes is degraded if the single
DLL is reorganized into two or more DLLs. This is due to the processing required
to resolve function references between multiple DLLs.

You may get an abend code of APCG if your program occupies all the available
storage in the dynamic storage area (DSA).

Virtual storage

By careful design, you can minimize the amount of virtual storage used, and
reduce your application's overhead.

A truly conversational CICS task is one that converses with the terminal user for
several or many interactions, by issuing a terminal read request after each write
(for example, using either a SEND command followed by a RECEIVE command, or
a CONVERSE command). This means that the task spends most of its extended life
waiting for the next input from the terminal user.

Any CICS task requires some virtual storage throughout its life and, in a
conversational task, some of this virtual storage is carried over the periods when
the task is waiting for terminal I/O. The storage areas involved include the TCA
and associated task control blocks (including EIS or EIB) and the storage required
for all programs that are in use when any terminal read request is issued. Also
included are the work areas (such as copies of COBOL working storage) associated
with this task's use of those programs.

With careful design, you can sometimes arrange for only one very small program
to be retained during the period of the conversation. The storage needed could be
shared by other users. You must multiply the rest of the virtual storage

requirement by the number of concurrent conversational sessions using that code.

By contrast, a pseudoconversational sequence of tasks requires almost all of its
virtual storage only for the period spent processing message pairs. Typically, this
takes a period of 1-3 seconds in each minute (the rest being time waiting for
operator input). The overall requirement for multiple concurrent users is thus
perhaps five percent of that needed for conversational tasks. However, you should
allow for data areas that are passed from each task to the next. This may be a
COMMAREA of a few bytes or a large area of temporary storage. If it is the latter,
you are normally recommended to use temporary storage on disk rather than in

234 CICS TS for z/0S 4.2: Application Programming Guide

main storage, but that means adding extra temporary storage I/O overhead in a
pseudoconversational setup, which you do not need with conversational
processing.

The extra virtual storage you need for conversational applications usually means
that you need a correspondingly greater amount of real storage. The paging you
need to control storage involves additional overhead and virtual storage. The
adverse effects of paging increase as transaction rates go up, and so you should
minimize its use as much as possible. See [“Reducing paging effects”] for
information about doing so.

Reducing paging effects

Reducing paging effects is a technique used by CICS in a virtual-storage
environment. The key objective of programming in this environment is the
reduction of page faults. A page fault occurs when a program refers to instructions
or data that do not reside in real storage, in which case the page in virtual storage
that contains the instructions or data referred to must be paged into real storage.
The more paging required, the lower the overall system performance.

About this task

Although an application program may be able to communicate directly with the
operating system, the results of such action are unpredictable and can degrade
performance.

An understanding of the following terms is necessary for writing application
programs to be run in a virtual-storage environment:

Locality of reference
The consistent reference, during the execution of the application program,
to instructions and data within a relatively small number of pages
(compared to the total number of pages in a program) for relatively long
periods.

Working set
The number and combination of pages of a program needed during a
given period.

Reference set
Direct reference to the required pages, without intermediate storage
references that retrieve useless data.

Locality of reference

Keep the instructions processed and data used in a program within a relatively
small number of pages (4096 byte segments). This quality in a program is known
as “locality of reference”.

About this task

You can do this by:
¢ Making the execution of the program as linear as possible.

* Keeping any subroutines you use in the normal execution sequence as close as
possible to the code that invokes them.

* Placing code inline, even if you have to repeat it, if you have a short subroutine
that is called from only a few places.

Chapter 18. Design for performance 235

* Separating error-handling and other infrequently processed code from the main
flow of the program.

* Separating data used by such code from data used in normal execution.

* Defining data items (especially arrays and other large structures) in the order in
which they are referred to.

* Defining the elements within a data structure in the approximate order in which
they are referred to. For example, in PL/I, all the elements of one row are
stored, then the next row, and so on. Define an array so that you can process it
by row rather than by column.

¢ Initializing data as close as possible to where it is first used.

* Avoiding COBOL variable MOVE operations because these expand into
subroutine calls.

* Issuing as few GETMAIN commands as possible. It is better for the program to
add up its requirements and do one GETMAIN command than to do several
smaller ones, unless the durations of these requirements vary greatly.

* Avoiding use of the INITIMG option on a GETMAIN command, if possible. It
causes an immediate page reference to the storage that is obtained, which might
otherwise not occur until much later in the program, when there are other
references to the same area.

Note: Some of the previous suggestions can conflict with your installation's
programming standards if these are aimed at the readability and maintainability of
the code, rather than speed of execution in a virtual storage environment. Some
structured programming methods, in particular modular programming techniques,
make extensive use of the PERFORM command in COBOL (and the equivalent
programming techniques in C, PL/I, and assembly language) to make the structure
of the program clear. This can also result in more exceptions to sequential
processing than are found in a nonstructured program. Nevertheless, the much
greater productivity associated with structured code can be worth the possible loss
of locality of reference.

Working set
The working set is the number and combination of pages of a program needed
during a given period.

About this task

To minimize the size of the working set, the amount of storage that a program
refers to in a given period should be as small as possible. You can do this by:

* Writing modular programs and structuring the modules according to frequency
and anticipated time of reference. Do not modularize merely for the sake of size;
consider duplicate code inline as opposed to subroutines or separate modules.

* Using separate subprograms whenever the flow of the program suggests that
execution is not be sequential.

* Not tying up main storage awaiting a reply from a terminal user.

* Using command-level file control locate-mode input/output rather than
move-mode.

* In COBOL programs, specifying constants as literals in the PROCEDURE
DIVISION, rather than as data variables in the WORKING STORAGE section.

* In C, C++, and PL/I programs, using static storage for constant data.

* Avoiding the use of LINK commands where possible, because they generate
requests for main storage.

236 CICS TS for z/0S 4.2: Application Programming Guide

Reference set

Try to keep the overall number of pages that a program uses during normal
operation as small as possible. These pages are termed the reference set, and they
give an indication of the real storage requirement of the program.

About this task

The reference set can be reduced by:

* Specifying constants in COBOL programs as literals in the PROCEDURE
DIVISION, rather than as data variables in the WORKING STORAGE SECTION.
The reason for this is that there is a separate copy of working storage for every
task executing the program, whereas literals are considered part of the program
itself, of which only one copy is used in CICS.

 Using static storage in C, C++, and PL/I for data that is genuinely constant, for
the same reason as in the previous point.

* Reusing data areas in the program as much as possible. You can do this with the
REDEFINES clause in COBOL, the union clause in C and C++, based storage in
PL/1, and ORG or equivalents in assembly language. In particular, if you have a
map set that uses only one map at a time, code the DFHMSD map set definition
without specifying either the STORAGE=AUTO or the BASE operand. This
allows the maps in the map set to redefine one another.

Refer to data directly by:
* Avoiding long searches for data in tables

* Using data structures that can be addressed directly, such as arrays, rather than
structures that must be searched, such as chains

* Avoiding methods that simulate indirect addressing

No attempt should be made to use overlays (paging techniques) in an application
program. System paging is provided automatically and has superior performance.
The design of an application program for a virtual storage environment is like that
for a real environment. The system should have all modules resident so that code
on pages not referred to need not be paged in.

If the program is dynamic, the entire program must be loaded across adjacent
pages before execution begins. Dynamic programs can be purged from storage if
they are not being used and an unsatisfied storage request exists. Allowing
sufficient dynamic area to prevent purging is more expensive than making them
resident, because a dynamic program does not share unused space on a page with
another program.

Exclusive control of resources

The fundamental and powerful recovery facilities that CICS provides have
performance implications. You can adopt various approaches to reduce contention
delays for resources.

CICS serializes updates to recoverable resources so that if a transaction fails, its
changes to those resources can be backed out independently of those made by any
other transaction. Consequently, a transaction updating a recoverable resource gets
control of that resource until it terminates or indicates that it wants to commit
those changes with a SYNCPOINT command. Other transactions requiring the
same resource must wait until the first transaction finishes with it.

Chapter 18. Design for performance 237

The primary resources that produce these locking delays are data sets, DL/I
databases, temporary storage, and transient data queues. The unit where protection
is based is the individual record (key) for data sets, the program specification block
(PSB) for DL/I databases, and the queue name for temporary storage. For transient
data, the “read” end of the queue is considered a separate resource from the
“write” end (that is, one transaction can read from a queue while another is
writing to it).

To reduce transaction delays from contention for resource ownership, the length of
time between the claiming of the resource and its release (the end of the UOW)
should be minimized. In particular, conversational transactions should not own a
critical resource across a terminal read.

Note: Even for unrecoverable data sets, VSAM prevents two transactions from
reading the same record for update at the same time. This enqueue ends as soon as
the update is complete, however, rather than at the end of the UOW. Even this
protection for a BDAM data set, can be relinquished by defining them with “no
exclusive control” (SERVREQ=NOEXCTL) in the file control table.

This protection scheme can also produce deadlocks as well as delays, unless
specific conventions are observed. If two transactions update more than one
recoverable resource, they should always update the resources in the same order. If
they each update two data sets, for example, data set “A” should be updated
before data set “B” in all transactions. Similarly, if transactions update several
records in a single data set, they should always do so in some predictable order
(low key to high, or conversely). You might also consider including the TOKEN
keyword with each READ UPDATE command. See [“The TOKEN option” on page]
for information about the TOKEN keyword. Transient data, temporary storage,
and user journals must be included among such resources. [Locking resources in|
lapplication programs|in the CICS Recovery and Restart Guide contains further
information about the extent of resource protection.

It might be appropriate here to note the difference between CICS data sets on a
VSAM control interval, and VSAM internal locks on the data set. Because CICS has
no information about VSAM enqueue, a SHARE OPTION 4 control interval that is
updated simultaneously from batch and CICS can result in, at best, reduced
performance and, at worst, an undetectable deadlock situation between batch and
CICS. You should avoid such simultaneous updates between batch and CICS. In
any case, if a data set is updated by both batch and CICS, CICS is unable to ensure
data integrity.

Operational control

You can use a number of operational techniques to influence the performance and
efficiency of the CICS system.

MXT

The CICS system initialization parameter MXT specifies the maximum number
of user tasks that can exist in a CICS system at the same time. MXT is
invaluable for avoiding short-on-storage (SOS) conditions and for controlling
contention for resources in CICS systems. It works by delaying the creation of
user tasks to process input messages, if there are already too many activities in
the CICS system. In particular, the virtual storage occupied by a message
awaiting processing is usually much less than that needed for the task to
process it, so you save virtual storage by delaying the processing of the
message until you can do so quickly.

238 CICS TS for z/0S 4.2: Application Programming Guide

Transaction classes are useful in limiting the number of tasks of a particular
user-defined type, or class, if these are heavy resource users.

Runaway tasks

CICS only resets a task's runaway time (ICVR) when a task is suspended. An
EXEC CICS command cannot be guaranteed to cause a task to suspend during
processing because of the unique nature of each CICS implementation. The
runaway time may be exceeded causing a task to abend AICA. This abend can
be prevented by coding an EXEC CICS SUSPEND command in the application
This causes the dispatcher to suspend the task that issued the request and
allow any task of higher priority to run. If there is no task ready to run, the
program that issued the suspend is resumed. For further information about
abend AICA, see [Investigating loops that are not detected by CICY in the CICS
Problem Determination Guide.

Auxiliary trace

Use auxiliary trace to review your application programs. For example, it can
show up any obviously unnecessary code, such as a data set browse from the
beginning of a data set instead of after a SETL, too many or too large
GETMAIN commands, failure to release storage when it is no longer needed,
unintentional logic loops, and failure to unlock records held for exclusive
control that are no longer needed.

Operating system waits

You should avoid using facilities that cause operating system waits. All CICS
activity stops when one of these waits occurs, and all transactions suffer response
delays.

The chief sources of operating system waits are:

« Extrapartition transient data sets. (See |“Efficient sequential data set access” on|
‘

* Those COBOL, C, C++, and PL/I language facilities that you should not use in
CICS programs and for which CICS generally provides alternative facilities. For
guidance information about the language restrictions, see F fhapter 3]
“Programming in COBOL,” on page 23)|Chapter 4, “Programming in C and|
C++,” on page 49)and [Chapter 5, “Programming in PL/I,” on page 59.|

* SVCs and assembler language macros that invoke operating system services,
such as write-to-operator (WTO).

The NOSUSPEND option

On a number of commands, the default action is to suspend the application until
the required resource becomes available. On these commands, you can use the
NOSUSPEND option to inhibit this waiting and cause an immediate return to the
instruction in the application program following the command.

The default action for the ENQBUSY, NOJBUFSP, NOSPACE, NOSTG, QBUSY,
SESSBUSY, and SYSBUSY conditions is to suspend the execution of the application
until the required resource (for example, storage) becomes available, and then
resume processing the command. The commands that can give rise to these
conditions are: ALLOCATE, ENQ, GETMAIN, WRITE JOURNALNAME, WRITE
JOURNALNUM, READQ TD, and WRITEQ TS.

Chapter 18. Design for performance 239

On these commands, you can use the NOSUSPEND option (also known as the
NOQUEUE option in the case of the ALLOCATE command) to inhibit this waiting
and cause an immediate return to the instruction in the application program
following the command.

CICS maintains a table of conditions referred to by the HANDLE CONDITION
and IGNORE CONDITION commands in a COBOL application program.

Restriction: HANDLE CONDITION and IGNORE CONDITION commands are
not supported for C and C++ programs.

Execution of these commands either updates the existing entry, or causes a new
entry to be made if the condition has not yet been the subject of such a command.
Each entry indicates one of the three states described below:

* A label is currently specified, as follows:
HANDLE CONDITION condition(label)

* The condition is to be ignored, as follows:
IGNORE CONDITION

* No label is currently specified, as follows:
HANDLE CONDITION

When the condition occurs, the following tests are made:

1. If the command has the NOHANDLE or RESP option, control returns to the
next instruction in the application program. Otherwise, the condition table is
scanned to see what to do.

2. If an entry for the condition exists, this determines the action.

3. If no entry exists and the default action for this condition is to suspend
execution:

* If the command has the NOSUSPEND or NOQUEUE option, control returns
to the next instruction.

* If the command does not have one of these options, the task is suspended.

4. If no entry exists and the default action for this condition is to abend, a second
search is made looking for the ERROR condition:

* If found, this entry determines the action.
e If ERROR is searched for and not found, the task is abended.

Efficient sequential data set access

CICS provides a number of different sequential processing options. Each has
different performance characteristics.

Temporary storage and intrapartition transient data queues (already discussed in
“Temporary storage queues” on page 226/and in [“Intrapartition transient data” on|
page 228) are the most efficient to use, but they must be created and processed
entirely within CICS.

Extrapartition transient data is the CICS way of handling standard sequential
(QSAM/BSAM) data sets. It is the least efficient of the three forms of sequential
support listed, because CICS has to issue operating system waits to process the
data sets, as it does when handling BDAM. Moreover, extrapartition transient data
sets are not recoverable. VSAM ESDSs, on the other hand, are recoverable within
limitations, and processing is more efficient. The recovery limitation is that records

240 CICS TS for z/0S 4.2: Application Programming Guide

added to an ESDS during an uncompleted UOW cannot be removed physically
during the backout process, because of VSAM restrictions. They can, however, be
flagged as deleted by a user exit routine.

CICS journals provide another good alternative to extrapartition transient data,
although only for output data sets. Journals are managed by the MVS system
logger, but flexible processing options permit very efficient processing. Each
journal command specifies operation characteristics, for example, synchronous or
asynchronous, whereas extrapartition operations are governed entirely by the
parameters in the transient data queue definition.

Transactions should journal asynchronously, if possible, to minimize task waits in
connection with journaling. However, if integrity considerations require that the
journal records be physically written before end of task, you must use a
synchronous write. If there are several journal writes, the transaction should use
asynchronous writes for all but the last logical record, so that the logical records
for the task are written with a minimum number of physical I/Os and only one
wait.

You can use journals for input (in batch) as well as output (online) while CICS is
running. The supplied batch utility DFHJUP can be used for access to journal data,
for example, by printing or copying. Note that reading a journal in batch involves
the following restrictions:

* Access to MVS system logger log stream data is provided through a subsystem
interface, LOGR.

¢ Reading records from a journal is possible offline by means of a batch job only.

Efficient logging

CICS provides options to log some or all types of activity against a data set.

Logging updates enables you to reconstruct data sets from backup copies, if
necessary. You might also want to log reads for security reasons. Again, you have
to balance the need for data integrity and security against the performance effects
of logging. These are the actual operations needed to do the logging and the
possible delays caused because of the exclusive control that logging implies.

Chapter 18. Design for performance 241

242 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 19. Sharing data across transactions

CICS has several facilities for sharing data across transactions. You can use the
Common Work Area (CWA), the TCTTE user area (TCTUA), the COMMAREA, the
display screen, channels, or containers.

Data stored in the TCTUA and the CWA is available to any transaction in the
system. Subject to resource security and storage protection restrictions, any
transaction can write to them and any transaction can read them.

The use of some of these facilities might cause inter-transaction affinities. See
IChapter 22, “Affinity,” on page 299 for more information about transaction
affinities.

This section describes:

* [“Using the common work area (CWA)"]

+ |[“Using the TCTTE user area (TICTUA)” on page 247]

* [“Using the COMMAREA in RETURN commands” on page 247
+ |[“Using a channel on RETURN commands” on page 248|

* [“Using the display screen to share data” on page 248|

Using the common work area (CWA)

The common work area (CWA) is a single control block that is allocated at system
startup time and exists for the duration of that CICS session. The size is fixed, as
specified in the system initialization parameter, WRKAREA.

The CWA has the following characteristics:

* There is almost no overhead in storing or retrieving data from the CWA.
Command-level programs must issue one ADDRESS command to get the
address of the area but, after that, they can access it directly.

¢ Data in the CWA is not recovered if a transaction or the system fails.
* It is not subject to resource security.

e CICS does not regulate use of the CWA. All programs in all applications that use
the CWA must follow the same rules for shared use. These are usually set down
by the system programmers, in cooperation with application developers, and
require all programs to use the same “copy” module to describe the layout of
the area.

You must not exceed the length of the CWA, because this causes a storage
violation. Furthermore, you must ensure that the data used in one transaction
does not overlay data used in another. One way to protect CWA data is to use
the storage protection facility that protects the CWA from being written to by
user-key applications. Seel“Protecting the CWA” on page 244| for more
information.

* The CWA is especially suitable for small amounts of data, such as status
information, that are read or updated frequently by multiple programs in an
application.

* The CWA is not suitable for large-volume or short-lived data because it is
always allocated.

© Copyright IBM Corp. 1989, 2011 243

Protecting the CWA

CWA

The CWAKEY system initialization parameter allows you to specify whether the
CWA is to be allocated from CICS-key or user-key storage.

See (CWAKEY parameter] CICS System Definition Guidefor details about the
CWAKEY parameter.

If you want to restrict write access to the CWA, you can specify CWAKEY=CICS.
This means that CICS allocates the CWA from CICS-key storage, restricting
application programs defined with EXECKEY(USER) to read-only access to the
CWA. The only programs allowed to write to a CWA allocated from CICS-key
storage are those you define with EXECKEY(CICS).

Programs that run in CICS key can also write to CICS storage, ensure that such
programs are thoroughly tested to make sure that they do not overwrite CICS
storage.

To give preference to protecting CICS rather than the CWA, specify
CWAKEY=USER for the CWA, and EXECKEY(USER) for all programs that write to
the CWA. This ensures that if a program exceeds the length of the CWA it does not
overwrite CICS storage. For more information about storage protection, see
[“Storage control” on page 573

illustrates a particular use of the CWA where the CWA itself is protected
from user-key application programs by CWAKEY=CICS.

(defined with

CWAKEY=CICS)

appll_id

—»ptr_refl

A 4

Application
Storage Area

applz_id

—»ptr_ref2

(for appll)
(obtained from
CICS-key storage)

Application
Storage Area

(for appl2)
(obtained from
user-key storage)

The CWA is initialized by an AMODE(31) PLTPI program,
which obtains storage for application-related
tables, and stores the addresses of the GETMAINed
storage in the CWA.

Figure 57. Example of use of CWA in CICS-key storage. This illustrates how the CWA can be used to reference
storage that is obtained in user-key or CICS-key storage for use by application programs, while the CWA itself is
protected by being in CICS-key storage.

In this illustration, the CWA is not used directly to store application data and
constants. The CWA contains pairs of application identifiers and associated
addresses, with the address fields containing the addresses of data areas that hold
the application-related data. For protection, the CWA is defined with
CWAKEY=CICS, therefore the program which in this illustration is a program
defined in the program list table post initialization (PLTPI) list, and that loads the

244 CICS TS for z/0S 4.2: Application Programming Guide

CWA with addresses and application identifiers must be defined with
EXECKEY(CICS). Any application programs requiring access to the CWA should be
defined with EXECKEY(USER), ensuring the CWA is protected from overwriting
by application programs. In [Figure 57 on page 244] one of the data areas is
obtained from CICS-key storage, while the other is obtained from user-key storage.

In the sample code shown in [Figure 58 on page 246 the program list table
post-initialization (PLTPI) program is setting up the application data areas, with
pointers to the data stored in the CWA.

This example illustrates how to create global data for use by application programs,
with addresses of the data stored in the CWA—for example, by a PLTPI program.
The first data area is obtained from CICS-key storage, which is the default on a
GETMAIN command issued by a PLTPI program, the second from user-key
storage by specifying the USERDATAKEY option. The CWA itself is in CICS-key
storage, and PLTPROG is defined with EXECKEY(CICS).

Chapter 19. Sharing data across transactions 245

ID DIVISION.

PROGRAM-ID. PLTPROG.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

77 APPLID PIC X(8) VALUE SPACES.
77 SYSID PIC X(4) VALUE SPACES.
01 COMM-DATA.

03 AREA-PTR USAGE IS POINTER.

03 AREA-LENGTH PIC S9(8) COMP.

LINKAGE SECTION.
01 COMMON-WORK-AREA.

03 APPL-1-ID PIC X(4).
03 APPL-1-PTR USAGE IS POINTER.
03 APPL-2-ID PIC X(4).
03 APPL-2-PTR USAGE IS POINTER.

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.
* Obtain APPLID and SYSID values
EXEC CICS ASSIGN APPLID(APPLID)
SYSID(SYSID)
END-EXEC.
* Set up addressability to the CWA
EXEC CICS ADDRESS
CWA (ADDRESS OF COMMON-WORK-AREA)
END-EXEC.
* Get 12KB of CICS-key storage for the first application ('APP1')
MOVE 12288 TO AREA-LENGTH.
EXEC CICS GETMAIN SET(AREA-PTR)
FLENGTH (AREA-LENGTH)
SHARED
END-EXEC.
* Initialize CWA fields and link to Toad program
* for storage area 1.
MOVE 'APP1' TO APPL-1-ID.
SET APPL-1-PTR TO AREA-PTR.
EXEC CICS LINK PROGRAM('LOADTAB1')
COMMAREA (COMM-DATA)
END-EXEC.

* Get 2KB of user-key storage for the second application ('APP2')
MOVE 2048 TO AREA-LENGTH.
EXEC CICS GETMAIN SET(AREA-PTR)
FLENGTH (AREA-LENGTH)
SHARED
USERDATAKEY
END-EXEC.
* Initialize CWA fields and link to Toad program
* for storage area 2.
MOVE 'APP2' TO APPL-2-ID.
SET APPL-2-PTR TO AREA-PTR.
EXEC CICS LINK PROGRAM('LOADTAB2')
COMMAREA (COMM-DATA)
END-EXEC.
EXEC CICS RETURN
END-EXEC.
MAIN-PROCESSING-EXIT.
GOBACK.

Figure 58. Sample code for loading the CWA

246 CICS TS for z/0S 4.2: Application Programming Guide

Using the TCTTE user area (TCTUA)

The TCT user area (TCTUA) is an optional extension to the terminal control table
entry (TCTTE). Each entry in the TCT specifies whether this extension is present
and, if so, how long it is (by means of the USERAREALEN attribute of the
TYPETERM resource definition used for the terminal).

See|Autoinstalling model terminal definitions|in the CICS Resource Definition
Guidefor more information about the TYPETERM resource definition.

The system initialization parameters TCTUALOC and TCTUAKEY specify the

location and storage key for all TCTUAs.

* TCTUALOC=BELOW or ANY specifies whether you want 24- or 31-bit
addressability to the TCTUAs, and whether TCTCUAs must be stored below the
16MB line or may be either above or below the line.

* TCTUAKEY=USER or CICS specifies whether you want the TCTUAs allocated
from user-key or CICS-key storage.

TCTUAs have the following characteristics in common with the CWA:
* Minimal processor overhead (only one ADDRESS command needed)
* No recovery

* No resource security

* No regulation of use by CICS

* Fixed length

* Unsuitability for large-volume or short-lived data

Unlike the CWA, however, the TCTUA for a particular terminal is usually shared
only among transactions using that terminal. It is therefore useful for storing small
amounts of data of fairly standard length between a series of transactions in a
pseudoconversational sequence. Another difference is that it is not necessarily
permanently allocated, because the TCTUA only exists while the TCTTE is set up.
For non-autoinstall terminals the TCTUA is allocated from system startup; for
autoinstall terminals the TCTUA is allocated when the TCTTE is generated.

Using the TCTUA in this way does not require special discipline among using
transactions, because data is always read by the transaction following the one that
wrote it. However, if you use TCTUAs to store longer-term data (for example,
terminal or operator information needed by an entire application), they require the
same care as the CWA to ensure that data used in one transaction does not overlay
data used in another. You should not exceed the length of the allocated TCTUA,
because this produces a storage violation.

Using the COMMAREA in RETURN commands

The COMMAREA option of the RETURN command is designed specifically for
passing data between successive transactions in a pseudoconversational sequence.
It is implemented as a special form of user storage, although the EXEC interface,
rather than the application program, issues the GETMAIN, and FREEMAIN
requests.

The COMMAREA is allocated from the CICS shared subpool in main storage, and

is addressed by the TCTTE, between tasks of a pseudoconversational application.
The COMMAREA is freed unless it is passed to the next task.

Chapter 19. Sharing data across transactions 247

The first program in the next task has automatic addressability to the passed
COMMAREA, as if the program had been invoked by either a LINK command or
an XCTL command (see ["COMMAREA in LINK and XCTL commands” on page]
. You can also use the COMMAREA option of the ADDRESS command to
obtain the address of the COMMAREA.

For a COMMAREA passed between successive transactions in a
pseudoconversational sequence in a distributed environment, z/OS
Communications Server for SNA imposes a limit of 32KB on the size of the total
data length. This limit applies to the entire transmitted package, which includes
control data added by Communications Server. The amount of control data
increases if the transmission uses intermediate links.

To summarize:

* Processor overhead is low (equivalent to using COMMAREA with an XCTL
command and approximately equal to using main temporary storage).

e It is not recoverable.
* There is no resource security.

* It is not suitable for large amounts of data (because main storage is used, and it
is held until the terminal user responds).

* As with using COMMAREA to transfer data between programes, it is available
only to the first program in a transaction, unless that program explicitly passes
the data or its address to succeeding programs.

Using a channel on RETURN commands

Instead of using a communication area (COMMAREA), a more modern method of
passing data to the next program in a pseudoconversation is to use a channel.

Channels have several advantages over COMMAREAs - see [‘Benefits of channels”|
To pass a channel on a RETURN command, you use the CHANNEL
option in place of the COMMAREA option.

Channels are described in [Chapter 20, “Enhanced inter-program data transfer using]
fchannels,” on page 251

Using the display screen to share data

Data can be stored between pseudoconversational transactions from a 3270 display
terminal on the display screen itself.

For example, errors made by users in data entry are highlighted (with highlights or
messages) by the transaction processing the data. The next transaction identifier is
then set to point to itself (so that it processes the corrected entry), and returns to
CICS.

The transaction has two ways of using the valid data. It can save it (for example,
in COMMAREA), and pass it on for the next time it is run. In this case, the
transaction must merge the changed data on the screen with the data from
previous entries. Alternatively, it can save the data on the screen by not turning off
the modified data tags of the keyed fields.

Saving the data on the screen is easy to code, but it is not secure. You are not
recommended to save screens that contain large amounts of data as errors can

248 CICS TS for z/0S 4.2: Application Programming Guide

occur because of the additional network traffic needed to resend the unchanged
data. (This restriction does not apply to locally attached terminals.)

Secondly, if the user presses the CLEAR key, the screen data is lost, and the
transaction must be able to recover from this. This can be avoided by defining the
CLEAR key to mean CANCEL or QUIT, if appropriate for the application
concerned.

Data other than keyed data can also be stored on the screen. This data can be

protected from changes (except those caused by CLEAR) and can be nondisplay, if
necessary.

Chapter 19. Sharing data across transactions 249

250 CICS TS for z/0S 4.2: Application Programming Guide

Chapter 20. Enhanced inter-program data transfer using
channels

Channels provide an improved method of transferring data between programs, in
amounts that far exceed the 32 KB limit that applies to COMMAREAs.

This section contains:

« |“Channels: quick start”]

» ["Using channels: some typical scenarios” on page 254|

* [“Creating a channel” on page 257

+ [“The current channel” on page 258|

« [“The scope of a channel” on page 263

* |“Discovering which containers were passed to a program” on page 266
* |“Discovering which containers were returned from a link” on page 267
+ |“CICS read only containers” on page 267

+ |“Designing a channel: Best practices” on page 26|

+ [“Constructing and using a channel: an example” on page 269|

* [“Channels and BTS activities” on page 270|

+ |[“Using channels from JCICS” on page 272|

* [“Dynamic routing with channels” on page 272|

* [“Data conversion” on page 273

* [“Benefits of channels” on page 279

* [“Migrating from COMMAREAs to channels” on page 280

Channels: quick start

A brief introduction to channels and containers.

Channels and containers

Containers are named blocks of data designed for passing information between
programs. Programs can pass any number of containers between each other.
Containers are grouped together in sets called channels. A channel is analogous to a
parameter list.

To create named containers and assign them to a channel, a program uses EXEC
CICS PUT CONTAINER(container-name) CHANNEL(channel-name) commands. It can then
pass the channel and its containers to a second program using the
CHANNEL(channel-name) option of the EXEC CICS LINK, XCTL, START, or RETURN
commands.

The second program can read containers passed to it using the EXEC CICS GET
CONTAINER(container-name) command. This command reads the named container
belonging to the channel that the program was invoked with.

If the second program is called by a LINK command, it can also return containers
to the calling program. It can do this by creating new containers, or by reusing
existing containers.

Channels and containers are visible only to the program that creates them and the

programs they are passed to. When these programs terminate, CICS automatically
destroys the containers and their storage.

© Copyright IBM Corp. 1989, 2011 251

Channel containers are not recoverable. Pseudoconversational transactions started
using RETURN TRANSID CHANNEL() cannot be restarted. If you have to use
recoverable containers, use CICS business transaction services (BTS) containers.

Basic examples

A simple example of a program that creates a channel and passes it to second
program.

[Figure 59 on page 253{ shows a COBOL program, CLIENT1, that:

1. Uses PUT CONTAINER(container-name) CHANNEL(channel-name) commands to
create a channel called inqcustrec and add two containers, custno and
branchno, to it; these contain a customer number and a branch number,
respectively.

2. Uses a LINK PROGRAM(program-name) CHANNEL (channel-name) command to
link to program SERVERI, passing the inqcustrec channel.

3. Uses a GET CONTAINER(container-name) CHANNEL(channel-name) command
to retrieve the customer record returned by SERVERL. The customer record is in
the custrec container of the inqcustrec channel.

Note that the same COBOL copybook, INQINTC, is used by both the client and
server programs. Line 3 and lines 5 through 7 of the copybook represent the
INQUIRY-CHANNEL and its containers. These lines are not strictly necessary to the
working of the programs, because channels and containers are created by being
named on, for example, PUT CONTAINER commands; they do not have to be defined.
However, the inclusion of these lines in the copybook used by both programs
makes for easier maintenance; they record the names of the containers used.

Recommendation

For ease of maintenance of a client/server application that uses a channel, create a
copybook that records the names of the containers used and defines the data fields
that map to the containers. Include the copybook in both the client and the server

program.

Note: This example shows two COBOL programs. The same techniques can be
used in any of the other languages supported by CICS. However, for COBOL
programs only, if the server program uses the SET option (instead of INTO) on the
EXEC CICS GET CONTAINER command, the structure of the storage pointed to by SET
must be defined in the LINKAGE section of the program. This means that you will
require two copybooks rather than one. The first, in the WORKING-STORAGE
section of the program, names the channel and containers used. The second, in the
LINKAGE section, defines the storage structure.

252 CICS TS for z/0S 4.2: Application Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. CLIENTI.

WORKING-STORAGE SECTION.

COPY INQINTC
copybook INQINTC
Channel name
01 INQUIRY-CHANNEL PIC X(16) VALUE 'ingcustrec'.
Container names
01 CUSTOMER-NO PIC X(16) VALUE 'custno'.
01 BRANCH-NO PIC X(16) VALUE 'branchno'.
01 CUSTOMER-RECORD PIC X(16) VALUE 'custrec'.
Define the data fields used by the program
01 CUSTNO PIC X(8).
01 BRANCHNO PIC X(5).
01 CREC.
02 CUSTNAME PIC X(80).
02 CUSTADDR1 PIC X(80).
02 CUSTADDR2 PIC X(80).
02 CUSTADDR3 PIC X(80).

L R R R T R S I

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.

*

*

INITIALISE CUSTOMER RECORD
. CREATE CUSTNO and BRANCHNO

GET CUSTOMER RECORD

* X ok

EXEC CICS PUT CONTAINER(CUSTOMER-NO) CHANNEL(INQUIRY-CHANNEL)
FROM(CUSTNO) FLENGTH(LENGTH OF CUSTNO)
END-EXEC

EXEC CICS PUT CONTAINER(BRANCH-NO) CHANNEL (INQUIRY-CHANNEL)
FROM(BRANCHNO) FLENGTH(LENGTH OF BRANCHNO)
END-EXEC

EXEC CICS LINK PROGRAM('SERVER1') CHANNEL (INQUIRY-CHANNEL) END-EXEC

EXEC CICS GET CONTAINER(CUSTOMER-RECORD) CHANNEL (INQUIRY-CHANNEL)
INTO(CREC) END-EXEC

*

* PROCESS CUSTOMER RECORD

*
. FURTHER PROCESSING USING CUSTNAME and CUSTADDRI etc...
EXEC CICS RETURN END-EXEC
EXIT.

Figure 59. A simple example of a program that creates a channel and passes it to a second
program

[Figure 60 on page 254 shows the SERVER] program linked to by CLIENT1. SERVER1
retrieves the data from the custno and branchno containers it has been passed, and
uses it to locate the full customer record in its database. It then creates a new
container, custrec, on the same channel, and returns the customer record in it.

Note that the programmer hasn't specified the CHANNEL keyword on the GET and
PUT commands in SERVERI: if the channel isn't specified explicitly, the current
channel is used—that is, the channel that the program was invoked with.

Chapter 20. Enhanced inter-program data transfer using channels 253

IDENTIFICATION DIVISION.
PROGRAM-ID. SERVERI.

WORKING-STORAGE SECTION.

COPY INQINTC
copybook INQINTC
Channel name
01 INQUIRY-CHANNEL PIC X(16) VALUE 'ingcustrec'.
Container names
01 CUSTOMER-NO PIC X(16) VALUE 'custno'.
01 BRANCH-NO PIC X(16) VALUE 'branchno'.
01 CUSTOMER-RECORD PIC X(16) VALUE 'custrec'.
Define the data fields used by the program
01 CUSTNO PIC X(8).
01 BRANCHNO PIC X(5).
01 CREC.
02 CUSTNAME PIC X(80).
02 CUSTADDR1 PIC X(80).
02 CUSTADDR2 PIC X(80).
02 CUSTADDR3 PIC X(80).

L R I R S R TR I S I

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.

EXEC CICS GET CONTAINER(CUSTOMER-NO)
INTO(CUSTNO) END-EXEC
EXEC CICS GET CONTAINER(BRANCH-NO)
INTO(BRANCHNO) END-EXEC
. USE CUSTNO AND BRANCHNO TO FIND CREC IN A DATABASE
EXEC CICS PUT CONTAINER(CUSTOMER-RECORD)
FROM(CREC)
FLENGTH(LENGTH OF CREC) END-EXEC
EXEC CICS RETURN END-EXEC
EXIT.

Figure 60. A simple example of a linked to program that retrieves data from the channel it

has been passed. This program is linked-to by program CLIENT1 shown in

Using channels: some typical scenarios

Channels and containers provide a powerful way to pass data between programs.
These scenarios show some examples of how channels can be used.

One channel, one program

This example shows a stand-alone program with a single channel.

[Figure 61 on page 255 shows the simplest scenario—a “stand-alone” program with
a single channel with which it can be invoked.

254 CICS TS for z/0S 4.2: Application Programming Guide

EXEC CICS LINK PROGRAM('payr') _’

CHANNEL ('payroll')

PAYR program

Figure 61. A stand-alone program with a single channel

One channel, several programs (a component)

This example shows a set of related programs (a component) invoked through a
single channel.

In there is a single channel to the top-level program in a set of
inter-related programs. The set of programs within the shaded area can be
regarded as a “component”. The client program “sees” only the external channel
and has no knowledge of the processing that takes place nor of the existence of the
back-end programs.

Inside the component, the programs can pass the channel between themselves.
Alternatively, a component program could, for example, pass a subset of the

original channel, by creating a new channel and adding one or more containers
from the original channel.

o N

CH —— —_

EXEC CICS LINK PROGRAM ('payr') — —— \

CHANNEL ('payroll")

<

Figure 62. A “component”—a set of related programs invoked through a single external channel. “CH” indicates that
the programs within the component can pass channels between themselves.

Several channels, one component

This example shows a set of related programs (a component) which can be
invoked through two alternative channels.

As in the previous example, we have a set of inter-related programs that can be
regarded as a component. However, this time there are two, alternative, external

Chapter 20. Enhanced inter-program data transfer using channels 255

channels with which the component can be invoked. The top-level program in the
component issues an EXEC CICS ASSIGN CHANNEL command to determine
which channel it has been invoked with, and tailors its processing accordingly.

The “loose coupling” between the client program and the component permits easy
evolution. That is, the client and the component can be upgraded at different
times. For example, first the component could be upgraded to handle a third
channel, consisting of a different set of containers from the first, or second
channels. Next, the client program could be upgraded (or a new client written) to
pass the third channel.

EXEC CICS LINK PROGRAM('payr')
CHANNEL ('payrol1-2003") --‘~

EXEC CICS ASSIGN
CHANNEL (ch-name)

/
s

EXEC CICS LINK PROGRAM ('payr')
CHANNEL ('payroll-2004")

A

Figure 63. Multiple external channels to the same component. “CH” indicates that the programs within the component
can pass channels between themselves.

Multiple interactive components

This example shows how multiple components can interact through their channels.

[Figure 64 on page 257 shows a “Human resources” component and a “Payroll”
component, each with a channel with which it can be invoked. The Payroll
component is invoked from both a stand-alone program and the Human resources
component.

256 CICS TS for z/0S 4.2: Application Programming Guide

EXEC CICS LINK PROGRAM ('payr') /
CHANNEL ('payroll') /

- ~ N

CH —
EXEC CICS PUT e
CONTAINER. . . %
EXEC CICS LINK 4 CH H
PROGRAM ('payy')]
CHANNEL ('payyoll’') p— |
— X, Containers
CH —

K / Human resources componentJ

\

N e

Containers

»

/

Payroll component /

Figure 64. Multiple components which interact through their channels

Creating a channel

You can create a channel by naming it on one of a number of APl commands. If
the channel does not exist, within the current program scope, CICS creates it.

About this task

You create a channel by naming it on one of the following commands:
LINK PROGRAM CHANNEL
MOVE CONTAINER CHANNEL TOCHANNEL
PUT CONTAINER CHANNEL
RETURN TRANSID CHANNEL
START TRANSID CHANNEL
XCTL PROGRAM CHANNEL

The most straightforward way to create a channel, and populate it with containers
of data, is to issue a succession of EXEC CICS PUT CONTAINER(container-name)
CHANNEL(channel-name) FROM(data_area) commands. The first PUT command
creates the channel (if it does not exist), and adds a container to it; the subsequent
commands add further containers to the channel. If the containers exist, their
contents are overwritten by the new data.

An alternative way to add containers to a channel is to move them from another
channel. To do this, use the following command:

EXEC CICS MOVE CONTAINER(container-name) AS(container-new-name)
CHANNEL (channel-namel) TOCHANNEL (channel-name?2)

Chapter 20. Enhanced inter-program data transfer using channels 257

Note:

1. If the CHANNEL or TOCHANNEL option is not specified, the current channel is
implied.
2. The source channel must be in program scope.

3. If the target channel does not exist, within the current program scope, it is
created.

4. If the source container does not exist, an error occurs.

5. If the target container does not exist, it is created; if the target container exists,
its contents are overwritten.

6. When a channel is created it exists until the task that created it terminates. For
example, if a long running task performs many PUT CONTAINER commands
to different unique channels, then all the channels that are created do not
release the main storage acquired by the GETMAIN command until the task
ends. You must design your applications accordingly to prevent your regions
becoming short on storage.

You can use MOVE CONTAINER, instead of GET CONTAINER and PUT
CONTAINER, as a more efficient way of transferring data between channels.

If the channel named on the following commands does not exist, within the
current program scope, an empty channel is created:

» EXEC CICS LINK PROGRAM CHANNEL(channel-name)

* EXEC CICS RETURN TRANSID CHANNEL(channel-name)

* EXEC CICS START TRANSID CHANNEL(channel-name)

* EXEC CICS XCTL PROGRAM CHANNEL(channel-name)

The current channel

A program's current channel is the channel - if there is one - with which it was
invoked. These examples show how the current channel and its containers are
passed between programs.

The program can create other channels. However, the current channel, for a
particular invocation of a particular program, does not change. It is analogous to a
parameter list.

Current channel example, with LINK commands

This example shows how a program passes the current channel and its containers
to another program using the EXEC CICS LINK command.

The following figure illustrates the origin of a program's current channel. It shows
five interactive programs. Program A is a top-level program started by, for
example, a terminal end user. It is not started by a program and does not have a
current channel.

B, C, D, and E are second-, third-, fourth-, and fifth-level programs.
Program B's current channel is X, passed by the CHANNEL option on the EXEC
CICS LINK command issued by program A. Program B modifies channel X by

adding one container and deleting another.

Program C's current channel is also X, passed by the CHANNEL option on the
EXEC CICS LINK command issued by program B.

258 CICS TS for z/0S 4.2: Application Programming Guide

Program D has no current channel, because C does not pass it one.

Program E's current channel is Y, passed by the CHANNEL option on the EXEC
CICS LINK command issued by D.

Chapter 20. Enhanced inter-program data transfer using channels 259

Current CH: none

PROG A
PUT CONTAINER (ON CHANNEL (X) FROM (areal)
PUT CONTAINER CHANNEL (X) FROM (area?2)

(ONE)
(TWO)
LINK PROGRAM (B) CHANNEL (X)

v

Current CH: X

PROG B

PUT CONTAINER (THREE) FROM(area-a)
DELETE CONTAINER (TWO)
LINK PROGRAM (C) CHANNEL (X)

RETURN

|

Current CH: X

PROG C

LINK PROGRAM (D)

RETURN

v

Current CH: none
PROG D

PUT CONTAINER (first) CHANNEL (Y) FROM(al)
PUT CONTAINER (second) CHANNEL(Y) FROM(a2)
LINK PROGRAM (E) CHANNEL (Y)

RETURN

v

Current CH: Y
PROG E

RETURN

Figure 65. Current channel: example with LINK commands

The following table lists the name of the current channel (if any) of each of the five
programs shown in the previous figure.

260 CICS TS for z/0S 4.2: Application Programming Guide

Table 13. The current channels of interactive programs—example with LINK commands

Prog. Current | Issues commands Comments
CH
. Program A creates channel X and passes it to
EXEC CICS PUT CONTAINER(ONE) program B.
CHANNEL(X) FROM(areal)
EXEC CICS PUT CONTAINER(TWO) Note that, by the time control is returned to
A None CHANNEL (X) FROM(area2) program A by program B, the X channel has
EXEC CICS LINK PROGRAM(B) CHANNEL(X) been modified—it does not contain the same
set of containers as when it was created by
program A. (Container TWO has been deleted
and container THREE added by program B.)
. Program B modifies channel X (its current
EXEC CICS PUT CONTAINER(THREE) channel) by adding and deleting containers,
FROM(area-a) and passes the modified channel to program C.
B X EXEC CICS DELETE CONTAINER(TWO)
EXEC CICS LINK PROGRAM(C) CHANNEL(X) Program B does not need to specify the
CHANNEL option on the PUT CONTAINER
. and DELETE CONTAINER commands; its
EXEC CICS RETURN current channel is implied.
. Program C links to program D, but does not
EXEC CICS LINK PROGRAM(D) pass it a channel.
C X
EXEC CICS RETURN
. Program D creates a new channel, Y, which it
EXEC CICS PUT CONTAINER(first) passes to program E.
CHANNEL (Y) FROM(al)
EXEC CICS PUT CONTAINER(second)
D None CHANNEL(Y) FROM(a2)
EXEC CICS LINK PROGRAM(E) CHANNEL(Y)
EXEC CICS RETURN
. Program E performs some processing on the
E Y RETURN data it's been passed and returns.

Current channel example, with XCTL commands

This example shows how a program passes the current channel and its containers
to another program using the EXEC CICS XCTL command.

[Figure 66 on page 262| shows four interactive programs. Al is a top-level program

started by, for example, a terminal end user. It is not started by a program and
does not have a current channel. B1, B2, and B3 are all second-level programs.

Bl's current channel is X, passed by the CHANNEL option on the EXEC CICS
LINK command issued by Al.

B2 has no current channel, because B1 does not pass it one.

B3's current channel is Y, passed by the CHANNEL option on the EXEC CICS
XCTL command issued by B2.

When B3 returns, channel Y and its containers are deleted by CICS.

Chapter 20. Enhanced inter-program data transfer using channels

261

Current CH: none

PROG Al
LINK PROGRAM (B1) CHANNEL (X)
XCTL PROGRAM (B3)
CHANNEL (Y)
Current CH: X Current CH: none Current CH: Y
PROG Bl XCTL PROGRAM(B2) PROG B2 PROG B3

>

Figure 66. Current channels—example, with XCTL commands

The following table lists the name of the current channel (if any) of each of the
four programs shown in

Table 14. The current channels of interactive programs—example

Program Current Issues command
channel
Al None EXEC CICS LINK PROGRAM(B1) CHANNEL(X)
B1 X EXEC CICS XCTL PROGRAM(B2)
B2 None EXEC CICS XCTL PROGRAM(B3) CHANNEL(Y)
B3 Y EXEC CICS RETURN

Current channel: START and RETURN commands

As well as the LINK and XCTL commands, you can pass channels on the START and
RETURN commands.

EXEC CICS START TRANSID(tranid) CHANNEL(channel-name)
The program that implements the started transaction (or the first program, if
there are more than one) is passed the channel, which becomes its current
channel.

262 CICS TS for z/0S 4.2: Application Programming Guide

EXEC CICS RETURN TRANSID(tranid) CHANNEL (channel-name)
The CHANNEL option is valid only:
¢ On pseudoconversational RETURNs—that is, on RETURN commands that
specify, on the TRANSID option, the next transaction to be run at the user
terminal.
* If issued by a program at the highest logical level—that is, a program that
returns control to CICS.

The program that implements the next transaction is passed the channel, which
becomes its current channel.

The scope of a channel

The scope of a channel is the code from which it can be accessed. These examples
show the scope of each channel in the diagram.

Scope example, with LINK commands

This example adds to the diagram from “Current channel example, with LINK
commands” to show the scope of each channel.

The following figure shows the same five interactive programs previously
described.

The scope of the X channel—the code from which it can be accessed—is programs
A, B, and C.

The scope of the Y channel is programs D and E.
Note that, by the time control is returned to program A by program B, the X

channel has been modified—it does not contain the same set of containers as when
it was created by program A.

Chapter 20. Enhanced inter-program data transfer using channels 263

Current Channel: none

PUT CONTAINER (ONE) CHANNEL (X) FROM(areal)
' PUT CONTAINER (TWO) CHANNEL (X) FROM (area2) '
' LINK PROGRAM (B) CHANNEL (X))

Scope of Channel X

v

! Current Channel: X ;
: PROG B
PUT CONTAINER (THREE) FROM (area-a)

' DELETE CONTAINER (TWO))
' LINK PROGRAM(C) CHANNEL (X) :

! ;ETURN ;
‘ £ ‘
: + :

Current Channel: X

PROG C

) LINK PROGRAM (D) ;

i RETURN :

Current Channel: none

PROG D
Scope of Channel Y :

N PUT CONTAINER (first) CHANNEL(Y) FROM(al) | !
PUT CONTAINER (second) CHANNEL(Y) FROM(a2)
LINK PROGRAM (E) CHANNEL (Y)

RETURN

v

Current Channel: Y
PROG E

RETURN

Figure 67. The scope of a channel—example showing LINK commands

The following table lists the name and scope of the current channel (if any) of each
of the five programs shown in the previous figure.

264 CICS TS for z/0S 4.2: Application Programming Guide

Table 15. The scope of a channel—example with LINK commands

Program Current channel Scope of channel
A None Not applicable
B X A, B, C
C X A, B, C
D None Not applicable
E Y D, E

Scope example, with LINK and XCTL commands

This example adds to the diagram from “Current channel example, with XCTL
commands” to show the scope of each channel.

[Figure 68 on page 266| shows the same four interactive programs previously

described, plus a third-level program, C1, that is invoked by an EXEC CICS LINK
command from program B1.

The scope of the X channel is restricted to Al and B1.

The scope of the Y channel is B2 and B3.

The scope of the Z channel is Bl and C1.

Note that, by the time control is returned to program Al by program B3, it is

possible that the X channel can have been modified by program B1, it might not
contain the same set of containers as when it was created by Al.

Chapter 20. Enhanced inter-program data transfer using channels

265

Channel X scope
Channel Y scope
Channel Z scope

X and Z scope =

oo
(1] |

LINK PROGRAM (B1)

Cdrﬁert C ‘: b(‘

XCTL PROGRAM (B2)

CHANNEL (X)

Current CH: none

PROG Al

LINK PROGRAM(C1)

Current CH: Z

PROG C1

Figure 68. The scope of a channel—example showing LINK and XCTL commands

XCTL PROGRAM (B3)

CHANNEL (Z)

The following table lists the name and scope of the current channel (if any) of each
of the five programs shown in

Table 16. The scope of a channel—example with LINK and XCTL commands

Program Current channel Scope of channel
Al None Not applicable
Bl X Al and B1
B2 None Not applicable
B3 Y B2 and B3
C1 Z Bl and C1

Discovering which containers were passed to a program

When a program is invoked, it can determine the names of the channel, and any
containers that were passed to it.

266 CICS TS for z/OS 4.2: Application Programming Guide

Typically, programs that exchange a channel are written to handle that channel.
That is, both client and server programs know the name of the channel, and the
names and number of the containers in the channel. However, if, for example, a
server program or component is written to handle more than one channel, on
invocation it must discover which of the possible channels were passed to it.

A program can discover its current channel—that is, the channel with which it was
invoked—by issuing an EXEC CICS ASSIGN CHANNEL command. (If there is no
current channel, the command returns blanks.)

The program can also (should it need to) get the names of the containers in its
current channel by browsing. Typically, this is not necessary. A program written to
handle several channels is often coded to be aware of the names and number of
the containers in each possible channel.

To get the names of the containers in the current channel, use the browse
commands:

* EXEC CICS STARTBROWSE CONTAINER BROWSETOKEN(data-area) .
* EXEC CICS GETNEXT CONTAINER(data-area) BROWSETOKEN (token).
* EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(token).

Having retrieved the name of its current channel and, if necessary, the names of
the containers in the channel, a server program can adjust its processing to suit the
kind of data that was passed to it.

Discovering which containers were returned from a link

Following a LINK command, a program can discover the names of the containers
returned by the program that was linked to.

A program creates a channel, which it passes to a second program by means of an
EXEC CICS LINK PROGRAM(program-name) CHANNEL(channel-name) command.
The second program performs some processing on the data that was passed to it,

and returns the results in the same channel (its current channel).

On return, the first program knows the name of the channel which has been

returned, but not necessarily the names of the containers in the channel. (Does the

returned channel contain the same containers as the passed channel, or has the

second program deleted some or created others?) The first program can discover

the container-names by browsing. To do this, it uses the commands:

» EXEC CICS STARTBROWSE CONTAINER BROWSETOKEN (data-area)
CHANNEL(channel-name).

» EXEC CICS GETNEXT CONTAINER(data-area) BROWSETOKEN(token).

* EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(token).

CICS read only containers

CICS can create channels and containers for its own use, and pass them to user
programs. In some cases CICS marks these containers as read only, so that the user
program cannot modify data which CICS needs on return from the user program.

User programs cannot create read only containers.
You cannot overwrite, move, or delete a read only container. Thus, if you specify a

read only container on a PUT CONTAINER, MOVE CONTAINER, or DELETE
CONTAINER command an INVREQ condition occurs.

Chapter 20. Enhanced inter-program data transfer using channels 267

Designing a channel: Best practices

You can use containers to pass data in the same way as communication areas
(COMMAREASs) have traditionally been used. However, channels have several
advantages over COMMAREAs and it is advisable to design your channels to
make the most of these advantages.

About this task

At the end of a DPL call, input containers that have not been changed by the
server program are not returned to the client. Input containers whose contents
have been changed by the server program, and containers created by the server
program, are returned. Therefore, for optimal DPL performance, follow these best
practices:

* Use separate containers for input and output data.

* Ensure that the server program, not the client, creates the output containers.

* Use separate containers for read-only and read-write data.

* If a structure is optional, make it a separate container.

¢ Use dedicated containers for error information.

The following general tips on designing a channel include, and expand on, the
recommendations to achieve optimal DPL performance.

 Use separate containers for input and output data. This provides the following
benefits:

— Better encapsulation of the data, making your programs easier to maintain.

— Greater efficiency when a channel is passed on a DPL call, because smaller
containers flow in each direction.

* Ensure that the server program, not the client, creates the output containers. If
the client creates them, empty containers are sent to the server region.

* Use separate containers for read-only and read-write data. This provides the
following benefits:

— A simplification of your copybook structure, making your programs easier to
understand.

— Avoidance of the problems with REORDER overlays.

— Greater transmission efficiency between CICS regions, because read-only
containers sent to a server region will not be returned.

* Use separate containers for each structure. This provides the following benefits:

— Better encapsulation of the data, making your programs easier to understand
and maintain.

— Greater ease in changing one of the structures, because you do not need to
recompile the entire component.

— The ability to pass a subset of the channel to subcomponents, by using the
MOVE CONTAINER command to move containers between channels.

* If a structure is optional, make it a separate container. This leads to greater
efficiency, because the structure is passed only if the container is present.

* Use dedicated containers for error information. This provides the following
benefits:

— Easier identification of error information.
— Greater efficiency, for the following reasons:

- The structure containing the error information is passed back only if an
error occurs.

268 CICS TS for z/0S 4.2: Application Programming Guide

- It is more efficient to check for the presence of an error container by issuing
a GET CONTAINER((known-error-container-name) command (and possibly
receiving a NOTFOUND condition) than it is to initiate a browse of the
containers in the channel.

* When you need to pass data of different types, for example, character data in
codepagel and character data in codepage?, use separate containers for each
type, rather than one container with a complicated structure. This improves your
ability to move between different code pages.

* When you need to pass a large amount of data, split it between multiple
containers, rather than put it all into one container.

When a channel is passed to a remote program or transaction, passing a large
amount of data might affect performance. This is particularly true if the local
and remote regions are connected by an ISC, rather than MRO, connection.

Attention: Take care not to create so many large containers that you limit the
amount of storage available to other applications.

¢ Channels and containers use storage below 2 GB (below the bar) and some
64-bit (above-the-bar) storage. Their use of 64-bit storage influences the value
that you choose for the z/OS MEMLIMIT parameter that applies to the CICS
region. You must also allow for other CICS facilities that use 64-bit storage. For
more information, see [Estimating, checking, and setting MEMLIMIT in the]
[Performance Guidé|

Related concepts

[“Migrating from COMMAREASs to channels” on page 280

CICS application programs that use traditional communications areas
(COMMAREAS5) to exchange data can continue to work as before. If you want to
migrate to channels, here are examples of how to migrate several types of existing
application to use channels and containers rather than COMMAREAs.

Related reference

[“Benefits of channels” on page 279
The channel/container model has several advantages over the communication
areas (COMMAREAs) traditionally used by CICS programs to exchange data.

Constructing and using a channel: an example

In this example, a client program constructs a channel, passes it to a server
program, and retrieves the server's output. The server program retrieves data from
the channel's containers, and returns output to the client.

[Figure 69 on page 270| shows a CICS client program that:

1. Uses EXEC CICS PUT CONTAINER commands to construct (and put data in) a
set of containers. The containers are all part of the same named
channel—"“payrol1-2004".

2. Issues an EXEC CICS LINK command to invoke the PAYR server program,
passing it the payro11-2004 channel.

3. Issues an EXEC CICS GET CONTAINER command to retrieve the server's
program output, which it knows will be in the status container of the
payrol1-2004 channel.

Chapter 20. Enhanced inter-program data transfer using channels 269

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_dsa_memlimit.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_dsa_memlimit.html

* create the employee container on the payrol1-2004 channel
EXEC CICS PUT CONTAINER('employee') CHANNEL('payrol1-2004') FROM('John Doe')

* create the wage container on the payrol1-2004 channel
EXEC CICS PUT CONTAINER('wage') CHANNEL('payrol1-2004') FROM('100")

* invoke the payroll service, passing the payrol1-2004 channel
EXEC CICS LINK PROGRAM('PAYR') CHANNEL('payrol1-2004')

* examine the status returned on the payrol1-2004 channel
EXEC CICS GET CONTAINER('status') CHANNEL('payrol1-2004') INTO(stat)

Figure 69. How a client program can construct a channel, pass it to a server program, and
retrieve the server's output

shows part of the PAYR server program invoked by the client. The server
program:

1. Queries the channel with which it's been invoked.

2. Issues EXEC CICS GET CONTAINER commands to retrieve the input from the
employee and wage containers of the payrol1-2004 channel.

3. Processes the input data.

4. Issues an EXEC CICS PUT CONTAINER command to return its output in the
status container of the payrol1-2004 channel.

"PAYR", CICS COBOL server program

* discover which channel I've been invoked with
EXEC CICS ASSIGN CHANNEL(ch_name)

WHEN ch_name 'payrol1-2004'
* my current channel is "payrol1-2004"
* get the employee passed into this program
EXEC CICS GET CONTAINER('employee') INTO(emp)
* get the wage for this employee
EXEC CICS GET CONTAINER('wage') INTO(wge)

* process the input data

* return the status to the caller by creating the status container
* on the payroll channel and putting a value in it
EXEC CICS PUT CONTAINER('status') FROM('OK"')

WHEN ch_name 'payrol1-2005'

* my current channel is "payroll1-2005"

Figure 70. How a server program can query the channel it's been passed, retrieve data from
the channel's containers, and return output to the caller

Channels and BTS activities

The PUT, GET, MOVE, and DELETE CONTAINER commands used to build and
interact with a channel are similar to those used in CICS business transaction
services (BTS) applications.

Thus, programmers with experience of BTS will find it easy to use containers in
non-BTS applications. Furthermore, server programs that use containers can be

270 CICS TS for z/0S 4.2: Application Programming Guide

called from both channel and BTS

applications. An example of this is shown in

CICS Channel program

* create the employee container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('employee')
CHANNEL ('payroll-2004"') FROM('John Doe')

* create the wage container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('wage')
CHANNEL ('payroll-2004') FROM('100"'")

* invoke the payroll service,
* passing the payroll-2004 Channel

CICS BTS program

DEFINE ACTIVITY ('payroll')
PROGRAM ('payact')

* create the employee container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER ('employee')
ACTIVITY ('payroll-2004"') FROM('John Doe')

* create the wage container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('wage')
ACTIVITY ('payroll-2004"') FROM('100"')

* invoke the payroll service,
* passing the payroll-2004 Channel

EXEC CICS LINK PROGRAM('PAYR')
CHANNEL ('payroll-2004")

* examine the status returned on

* the payroll-2004 Channel

EXEC CICS GET CONTAINER ('status')
CHANNEL ('payroll-2004"') INTO(stat)

EXEC CICS LINK ACTIVITY ('payroll-2004")

* examine the status returned on

* the payroll-2004 Channel

EXEC CICS GET CONTAINER('status')
ACTIVITY ('payroll-2004") INTO(stat)

Simple client uses a Channel to
pass containers to the service

BTS event-driven wrapper controls
a more sophisticated application

Program PAYACT

» EXEC CICS RETRIEVE EVENT (...

WHEN('....

A A 4

EXEC CICS LINK PROGRAM('payr')

Program PAYR

INTO (emp)

* return the status to the caller
EXEC CICS PUT CONTAINER('status')
FROM('OK")

* get the employee passed into this program
EXEC CICS GET CONTAINER('employee')

Container-aware programs can
be called from both Channel
and BTS applications

Figure 71. Channels and BTS activities

Context

A program that issues container commands can be used, without change, as part of
a channel application or as part of a BTS activity.

For a program to be used in both a channel and a BTS context, the container
commands that it issues must not specify any options that identify them as either
channel or BTS commands. The options to be avoided on each of the container

commands are:

DELETE CONTAINER

Chapter 20.

Enhanced inter-program data transfer using channels 271

ACQACTIVITY (BTS-specific)
ACQPROCESS (BTS-specific)
ACTIVITY (BTS-specific)
CHANNEL (channel-specific)
PROCESS (BTS-specific)

GET CONTAINER
ACQACTIVITY (BTS-specific)
ACQPROCESS (BTS-specific)
ACTIVITY (BTS-specific)
CHANNEL (channel-specific)
INTOCCSID (channel-specific)
PROCESS (BTS-specific)

MOVE CONTAINER
FROMACTIVITY (BTS-specific)
CHANNEL (channel-specific)
FROMPROCESS (BTS-specific)
TOACTIVITY (BTS-specific)
TOCHANNEL (channel-specific)
TOPROCESS (BTS-specific)

PUT CONTAINER

ACQACTIVITY (BTS-specific)
ACQPROCESS (BTS-specific)
ACTIVITY (BTS-specific)
CHANNEL (channel-specific)
DATATYPE (channel-specific)
FROMCCSID (channel-specific)
PROCESS (BTS-specific)

When a container command is executed, CICS analyzes the context (channel, BTS,
or neither) in which it occurs, in order to determine how to process the command.
To determine the context, CICS uses the following sequence of tests:

1. Channel: does the program have a current channel?
2. BTS: is the program part of a BTS activity?

3. None: the program has no current channel and is not part of a BTS activity. It
therefore has no context in which to execute container commands. The
command is rejected with an INVREQ condition and a RESP2 value of 4.

Using channels from JCICS

CICS provides JCICS classes that CICS Java programs can use to pass and receive
channels

For information about using channels with JCICS, see [Channels and containers| in
Java Applications in CICS.

Dynamic routing with channels

EXEC CICS LINK and EXEC CICS START commands, which can pass channels,
can be dynamically routed

. Thus the following types of channel-related request can be dynamically routed:
¢ Program-link (DPL) requests

* Transactions started by terminal-related START requests

* Non-terminal-related START requests

272 CICS TS for z/0S 4.2: Application Programming Guide

The routing program is passed, in the DYRCHANL field of its communication
area, the name of the channel, if any, associated with the program-link or START
command. The DYRCHANIL field applies only to the three types of request listed
above. For other types of request, or if there is no channel associated with the
request, it contains blanks.

Note: The routing program's communication area is mapped by the DFHDYPDS
DSECT.

Note that the routing program is given the name of the channel, not its address,
and so is unable to use the DYRCHANL field to inspect or change the contents of
the containers.

When a LINK or START command passes a COMMAREA rather than a channel,
the routing program can, depending on the type of request, inspect or change the
COMMAREA's contents. For LINK requests and transactions started by
terminal-related START requests (which are handled by the dynamic routing
program) but not for non-terminal-related START requests (which are handled by
the distributed routing program) the routing program is given, in the DYRACMAA
field of DFHDYPDS, the address of the application's COMMAREA, and can inspect
and change its contents.

To give the routing program the same kind of functionality with channels, an
application that uses a channel can create, within the channel, a special container
named DFHROUTE. If the application issues a LINK or terminal-related START
request (but not a non-terminal-related START request) that is to be dynamically
routed, the dynamic routing program is given, in the DYRACMAA field of
DFHDYPDS, the address of the DFHROUTE container, and can inspect and change
its contents.

If you are migrating a program to pass a channel rather than a COMMAREA, you
could use its existing COMMAREA structure to map DFHROUTE.

Related information

[[ntroduction to CICS dynamic routing]

[Writing a dynamic routing program|

Data conversion

Application programs that use channels and containers frequently need to convert
data from one code page to another.

Why is data conversion needed?

Here are some cases in which data conversion is necessary:

* When character data is passed between platforms that use different encoding
standards; for example, EBCDIC and ASCIIL

* When you want to change the encoding of some character data from one Coded
Character Set Identifier (CCSID) to another. For an explanation of CCSIDs, and a
list of the CCSIDs supported by CICS, see[CICS-supported conversions in the]
[ntercommunication Guide}

Preparing for code page conversion with channels

CICS supports character conversions with the z/OS conversion services.

Chapter 20. Enhanced inter-program data transfer using channels 273

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.intercommunication.doc/topics/dfht8kn.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.intercommunication.doc/topics/dfht8kn.html

Before you begin

If you are preparing for code page conversions involving Unicode data, you might
want to read the information about enabling Unicode data conversion in the CICS
Transaction Server for z/OS Installation Guide.

About this task

The conversion of data to or from either UTF-8 or UTF-16 and EBCDIC and ASCII
code pages, depends on the selection of suitable conversion images. Conversion
between the UTF-8 and UTF-16 forms of Unicode is also supported.

Appendix F of the z/OS Support for Unicode: Using Conversion Services manual -SA22
-7649 records those conversions which are supported though these services. These
are not limited to Unicode, but include the ability to convert between a broad
range of character encodings, including EBCDIC, ASCII, and Unicode.

Note:

1. The conversion between 037 and 500, as used, for example, with the WebSphere
MQ transport is an EBCDIC to EBCDIC conversion brought about by small
differences in the character encodings used by CICS and WebSphere MQ.

2. You need to be aware that not all points in each code page have direct
counterparts in other code pages. The EBCDIC character NL is one such
example. Java and z/OS conversion services might differ in the conversions
that they perform. "Technotes”, and other Internet discussions might offer
guidance on particular points. It is also worth observing that programming
communities are themselves divided on the question of what is the more
appropriate conversion in particular circumstances.

CICS now supports any of these character conversions by using the z/OS
conversion services. However, those conversions that earlier releases of CICS
carried out using a set of tables, continue to be supported in that manner. It is only
if CICS TS 3.1 is asked to carry out a conversion between a pair of CCSIDs that are
unsupported via these tables, that it attempts the conversion using the z/OS
services.

Ensuring that required conversion images are available
Those CCSIDs used as part of CICS applications must be made known to
the system programmers responsible for maintaining the z/OS Conversion
Image, so that specific conversions are available to the CICS regions where
these applications execute.

Handling CCSID 1200
CICS supports conversions involving UTF-16 data using any of the
following CCSID's: 1200, 1201, and 1202. The z/OS conversion services
permit CCSID 1200, in its big-endian form, to be used, but does not
contain support for the little-endian form or for CCSIDs 1201 or 1202. CICS
transforms any source data that is identified in any of these unsupported
forms to the big-endian form of 1200 before passing the data to z/OS for
conversion. If the target data is one of the unsupported forms then CICS
receives the data as the big-endian form of 1200 and transforms it to the
required CCSID. If the target CCSID is 1200 then CICS assumes the
encoding to be in big-endian form. If the conversion is between any of
these CCSIDs then CICS will carry out the transformation without calling
the z/OS conversion services.

274 CICS TS for z/0S 4.2: Application Programming Guide

When setting up the z/OS conversion image for conversions involving any
of these forms of UTF-16 then CCSID 1200 must be specified. CCSIDs 1201
and 1202 will not be recognized by z/OS when attempting to create a
conversion image.

CICS respects the byte order marker for inbound conversions, but is not
able to retain that information when handling a related outbound
conversion. All outbound data for CCSID 1200 is UTF16-BE. Application
programmers need to know about this and perform their own BE to LE
conversions if they so require.

Sharing a conversion image

* Unless the PTF for APAR OA05744 is applied, do not specify a search
order for those conversions, installed into the z/OS image which are
intended for use by CICS.

* If the same conversions are needed for COBOL you must define the
conversion image with two separate statements:

— one with no search order, and
— the other explicitly specifying a search order of 'RECLM'".

for example:

CONVERSION 850,037;
CONVERSION 850,037 ,RECLM;

With the APAR installed, CICS and COBOL can use the supported
conversions which specify the default search order implicitly or explicitly,
removing the need to provide two control statements in the image
generation file.

Java programs
Code page conversion facilities exist within Java, so it is not necessary to
duplicate these in CICS. The conversion facilities described here do not
extend to Java programs. For an example, see [Putting data into a container]
in Java Applications in CICS.

Data conversion with channels

Applications that use channels to exchange data use a simple data conversion
model. Frequently, no conversion is required and, when it is, a single programming
instruction can be used to tell CICS to handle it automatically.

Note the following:

¢ Usually, when a (non-Java) CICS TS program calls another (non-Java) CICS TS
program, no data conversion is required, because both programs use EBCDIC
encoding. For example, if a CICS TS C-language program calls a CICS TS
COBOL program, passing it some containers holding character data, the only
reason for using data conversion would be the unusual one of wanting to
change the CCSID of the data.

* The data conversion model used by channel applications is much simpler than
that used by COMMAREA applications. Applications that use COMMAREAs to
exchange data use the traditional data conversion model described in the CICS
Family: Communicating from CICS on System/390° manual. Conversion is done
under the control of the system programmer, using the DFHCNYV conversion
table, the DFHCCNYV conversion program and, optionally, the DFHUCNV
user-replaceable conversion program.

Chapter 20. Enhanced inter-program data transfer using channels 275

In contrast, the data in channel containers is converted under the control of the
application programmer, using APl commands.

¢ The application programmer is responsible only for the conversion of user
data—that is, the data in containers created by his application programs. System
data is converted automatically by CICS, where necessary.

* The application programmer is concerned only with the conversion of character
data. The conversion of binary data (between big-endian and little-endian) is not
supported.

* Your applications can use the container API as a simple means of converting
character data from one code page to another.

For data conversion purposes, CICS recognizes two types of data:

CHAR
Character data—that is, a text string. The data in the container is converted
(if necessary) to the code page of the application that retrieves it. If the
application that retrieves the data is a client on an ASCII-based system, this
will be an ASCII code page. If it is a CICS Transaction Server for z/OS
application, it will be an EBCDIC code page.

All the data in a container is converted as if it were a single character
string. For single-byte character set (SBCS) code pages, a structure
consisting of several character fields is equivalent to a single-byte character
string. However, for double-byte character set (DBCS) code pages this is
not the case. If you use DBCS code pages, to ensure that data conversion

works correctly you must put each character string into a separate
container. For more information about DBCS, see the IBM Glossary
BIT All non-character data—that is, everything that is not designated as being

of type CHAR. The data in the container cannot be converted. This is the
default value.

There are two ways to specify the code page for data conversion of the data in a
container:

* As a Coded Character Set Identifier, or CCSID. A CCSID is a decimal number
which identifies a particular code page. For example, the CCSID for the ASCII
character set ISO 8859-1 is 819.

* As an IANA-registered charset name for the code page. This is an alphanumeric
name which can be specified in charset= values in HI'TP headers. For example,
the JANA charset names supported by CICS for ISO 8859-1 are is0-8859-1 and
iso_8859-1.

If the application programmer does not specify a code page for data conversion,
CICS uses the default code page for the whole of the local CICS region, which is
specified on the LOCALCCSID system initialization parameter.

The API commands used for data conversion are:

EXEC CICS PUT CONTAINER [CHANNEL] [DATATYPE] [FROMCCSID | FROMCODEPAGE]

EXEC CICS GET CONTAINER [CHANNEL] [INTOCCSID | INTOCODEPAGE]

276 CICS TS for z/0S 4.2: Application Programming Guide

http://www-01.ibm.com/software/globalization/terminology/d.html#x2001652

How to cause CICS to convert character data automatically

The DATATYPE(DFHVALUE(CHAR)) option of the PUT CONTAINER command
can be used to specify that a container holds character data eligible for conversion.
If the client and server platforms are different the GET CONTAINER command
converts the data automatically.

About this task

Procedure

1. In the client program, use the DATATYPE(DFHVALUE(CHAR)) option of the
PUT CONTAINER command to specify that a container holds character data
and that the data is eligible for conversion. For example:

EXEC CICS PUT CONTAINER(cont name) CHANNEL('payroll')
FROM(datal) DATATYPE(DFHVALUE (CHAR))

There is no need to specify the FROMCCSID or FROMCODEPAGE option
unless the data is not in the default CCSID of the client platform. (For CICS TS
regions, the default CCSID is specified on the LOCALCCSID system
initialization parameter.) The default CCSID is implied.

2. In the server program, issue a GET CONTAINER command to retrieve the data
from the program's current channel:

EXEC CICS GET CONTAINER(cont name) INTO(data _areal)

The data is returned in the default CCSID of the server platform. There is no
need to specify the INTOCCSID or INTOCODEPAGE option unless you want
the data to be converted to a CCSID other than the default. If the client and
server platforms are different, data conversion takes place automatically.

3. In the server program, issue a PUT CONTAINER command to return a value
to the client:

EXEC CICS PUT CONTAINER(status) FROM(data_area?)
DATATYPE (DFHVALUE (CHAR))

The DATATYPE(DFHVALUE(CHAR)) option specifies that the container holds
character data and that the data is eligible for conversion. There is no need to
specify the FROMCCSID or FROMCODEPAGE option unless the data is not in
the default CCSID of the server platform.

4. In the client program, issue a GET CONTAINER command to retrieve the
status returned by the server program:

EXEC CICS GET CONTAINER(status) CHANNEL('payroll')
INTO(status_area)

The status is returned in the default CCSID of the client platform. There is no
need to specify the INTOCCSID or INTOCODEPAGE option unless you want
the data to be converted to a CCSID other than the default. If the client and
server platforms are different, data conversion takes place automatically.

Results

Using containers to do code page conversion
Your applications can use the container API as a simple means of converting
character data from one code page to another.

About this task

The following example converts data from codepagel to codepage?:

Chapter 20. Enhanced inter-program data transfer using channels 277

EXEC CICS PUT CONTAINER(temp) DATATYPE(DFHVALUE (CHAR))
FROMCCSID(codepagel) FROM(input-data)

EXEC CICS GET CONTAINER(temp) INTOCCSID(codepage?2)
SET(data-ptr) FLENGTH(data-len)

The following example converts data from the region's default EBCDIC code page
to a specified UTF8 code page:
EXEC CICS PUT CONTAINER(temp) DATATYPE (DFHVALUE (CHAR))

FROM(ebcdic-data)

EXEC CICS GET CONTAINER(temp) INTOCCSID(uth_Ccsid)
SET(utf8-data-ptr) FLENGTH(utf8-data-len)

When using the container API in this way, bear the following in mind:

* On GET CONTAINER commands, use the SET option, rather than INTO, unless
the converted length is known. (You can retrieve the length of the converted
data by issuing a GET CONTAINER(cont_name) NODATA FLENGTH(len)
command.)

* If you prefer to specify a supported IJANA charset name for the code pages,
rather than the decimal CCSIDs, or if you want to specify a CCSID
alphanumerically, use the FROMCODEPAGE and INTOCODEPAGE options
instead of the FROMCCSID and INTOCCSID options.

* To avoid a storage overhead, after conversion copy the converted data and
delete the container.

* To avoid shipping the channel, use a temporary channel. For more information
about temporary storage and use of channels, see |Avoiding affinities when|
[using temporary storage” on page 314/

 All-to-all conversion is not possible. That is, a code page conversion error occurs
if a specified code page and the channel's code page are an unsupported
combination.

A SOAP example

You can use a CICS TS SOAP application to retrieve a UTF-8 or UTF-16 message
from a socket or WebSphere MQ message queue, put a message into a container in
UTE-8 format, put EBCDIC data structures into other containers on the same
channel, or make a distributed program link (DPL) call to a handler program on a
back end AOR, passing the channel.

The back end handler program, also running on CICS TS, can use EXEC CICS GET
CONTAINER commands to retrieve the EBCDIC data structures or the messages. It
can get the messages in UTF-8 or UTF-16, or in its own or the region's EBCDIC
code page. Similarly, it can use EXEC CICS PUT CONTAINER commands to place
data into the containers, in UTF-8, UTF-16, or EBCDIC.

To retrieve one of the messages in the region's EBCDIC code page, the handler can
issue the command:

EXEC CICS GET CONTAINER(input msg) INTO(msg)

Because the INTOCCSID and INTOCODEPAGE options are not specified, the
message data is automatically converted to the region's EBCDIC code page. (This
assumes that the PUT CONTAINER command used to store the message data in
the channel specified a DATATYPE of CHAR; if it specified a DATATYPE of BIT,
the default, no conversion is possible.)

To return some output in the region's EBCDIC code page, the handler can issue the
command:

278 CICS TS for z/0S 4.2: Application Programming Guide

EXEC CICS PUT CONTAINER(output) FROM(output msg)

Because CHAR is not specified, no data conversion is permitted. Because the
FROMCCSID and FROMCODEPAGE options are not specified