
CICS Transaction Server for z/OS

CICS Distributed Transaction
Programming Guide
Version 3 Release 1

SC34-6438-01

���

CICS Transaction Server for z/OS

CICS Distributed Transaction
Programming Guide
Version 3 Release 1

SC34-6438-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
191.

Second edition (July 2010)

This edition applies to Version 3 Release 1 of CICS Transaction Server for z/OS, program number 5655-M15, and
to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

© Copyright IBM Corporation 1991, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . ix
What this book is about . ix
Who this book is for . ix
What is not covered by this book ix
What you need to know to understand this book ix
How to use this book . ix

Summary of changes . xi
Changes for CICS Transaction Server for z/OS, Version 2 Release 3 xi
Changes for CICS Transaction Server for z/OS, Version 2 Release 2 xi
Changes for CICS Transaction Server for z/OS, Version 2 Release 1 xi
Changes for CICS Transaction Server for OS/390, Version 1 Release 3 xi

Part 1. Concepts and design considerations 1

Chapter 1. Concepts of distributed transaction processing (DTP) 3
DTP’s place in the CICS intercommunication facilities 3
What is DTP? . 4

Conversations. 5
Sessions . 6

Distributed processes . 7
Maintaining data integrity . 8

Synchronization levels. 9

Chapter 2. Designing distributed processes 11
Structuring distributed transactions. 11

Avoiding performance problems. 11
Making maintenance easier 12
Going for reliability . 12
Protecting sensitive data . 12
Maintaining connectivity . 12
Safeguarding data integrity 12

Designing conversations . 14
Selecting the protocol . 15

APPC protocol . 16
Selecting the APPC interface. 16
Selecting the APPC conversation type 17
Using VTAM persistent session support 18
Writing programs for APPC conversations 19

Part 2. Writing programs for APPC mapped conversations 21

Chapter 3. APPC mapped conversation flow 23
Starting the conversation . 23

Conversation initiation . 23
Back-end transaction initiation 25
What happens if the back-end transaction fails to start 26

Transferring data on the conversation 27
Sending data to the partner transaction 27
Switching from sending to receiving data 28
Receiving data from the partner transaction 29
The CONVERSE command 31

© Copyright IBM Corp. 1991, 2010 iii

Communicating errors across a conversation 31
Requesting INVITE from the partner transaction. 31
Demanding INVITE from the partner transaction. 31

Safeguarding data integrity . 32
How to synchronize a conversation using CONFIRM commands 32
How to synchronize conversations using SYNCPOINT commands 34

Ending the conversation . 34
Normal termination of a conversation. 34
Emergency termination of a conversation 35
Unexpected termination of a conversation 35

Checking the outcome of a DTP command 36
Checking EIB fields and the conversation state 38

Summary of CICS commands for APPC mapped conversations 39

Chapter 4. State transitions in APPC mapped conversations 41
The state tables for APPC mapped conversations 41

How to use the state tables 41
Initial states . 50

Testing the conversation state 50

Part 3. Writing programs for MRO conversations 51

Chapter 5. MRO conversation flow 53
Starting the conversation . 53

Conversation initiation . 53
Back-end transaction initiation 55

Transferring data on the conversation 56
Sending data to the partner transaction 56
Switching from sending to receiving data 57
Receiving data from the partner transaction 57
The CONVERSE command 58

Safeguarding data integrity . 58
Ending the conversation . 59

Ending a conversation normally 59
Unexpected termination of a conversation 59

Checking the outcome of a DTP command 59
Checking EIB fields and the conversation state 61

Summary of commands for MRO conversations 61

Chapter 6. State transitions in MRO conversations 63
The state table for MRO conversations 63

How to use the state table. 63
Initial states . 66
Testing the conversation state 66

Part 4. Writing programs for APPC basic conversations 67

Chapter 7. APPC basic conversation flow 69
Starting the conversation . 69

Conversation initiation . 69
Back-end transaction initiation 71
What happens if the back-end transaction fails to start up 72

Sending data to the partner transaction 73
Switching from sending to receiving data 74

Receiving data from the partner transaction 75

iv CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Receiving data by the record. 76
Receiving data by the buffer 77

Communicating errors across a conversation 78
Requesting INVITE from the partner transaction. 78
Demanding INVITE from the partner transaction. 78

Safeguarding data integrity . 79
How to synchronize conversations using CONFIRM commands 79
How to synchronize conversations using SYNCPOINT commands 81

Ending the conversation . 81
Normal termination of a conversation. 81
Emergency termination of a conversation 82
Unexpected termination of a conversation 82

Checking the outcome of GDS commands. 83
Testing for request failure . 83
Testing indicators . 84
Checking CONVDATA fields and the conversation state 87

Summary of commands for APPC basic conversations 89

Chapter 8. State transitions in APPC basic conversations. 91
The state tables for APPC basic conversations 91

How to use the state tables 91
Initial states . 99
Testing the conversation state 99

Part 5. Writing programs for LUTYPE6.1 conversations 101

Chapter 9. LUTYPE6.1 conversation flow 103
Starting the conversation . 103

Conversation initiation . 103
Back-end transaction initiation 104

Transferring data on the conversation 104
Sending data to the partner transaction 104
Switching from sending to receiving data 104
Receiving data from the partner transaction 105
Waiting for a signal . 105
Combining sending and receiving 105
Communicating errors across a conversation 105
Safeguarding data integrity 105

Ending the conversation . 105
Ending a conversation normally 105
Unexpected termination of a conversation 106

Checking the outcome of a DTP command 106
Considerations for the front-end transaction 107

Session allocation . 107
The session identifier . 108

Summary of commands for LUTYPE6.1 conversations 109

Chapter 10. State transitions in LUTYPE6.1 conversations 111
The state table for LUTYPE6.1 conversations 111

How to use the state table 111
Initial states. 113
Testing the conversation state 114

Part 6. Syncpointing a distributed process 115

Contents v

Chapter 11. Syncpointing a distributed process 117
The SYNCPOINT command 117
The ISSUE PREPARE command 118
The SYNCPOINT ROLLBACK command 118
When a backout is required . 119
Synchronizing two CICS systems. 119

SYNCPOINT in response to SYNCPOINT 119
SYNCPOINT in response to ISSUE PREPARE 122
SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK 123
SYNCPOINT ROLLBACK in response to SYNCPOINT. 124
SYNCPOINT ROLLBACK in response to ISSUE PREPARE 125
ISSUE ERROR in response to SYNCPOINT 126
ISSUE ERROR in response to ISSUE PREPARE. 127
ISSUE ABEND in response to SYNCPOINT. 128
ISSUE ABEND in response to ISSUE PREPARE 129
Session failure in response to SYNCPOINT 130
Session failure in response to ISSUE PREPARE 132
Session failure in response to SYNCPOINT ROLLBACK 133

Synchronizing three or more CICS systems 134
SYNCPOINT in response to SYNCPOINT 134
SYNCPOINT ROLLBACK in response to SYNCPOINT. 137
Session failure and the indoubt period 139

What really flows between APPC systems 139

Part 7. Appendixes . 143

Appendix A. CICS mapping to the APPC architecture 145
Command mapping for APPC basic conversations 146

Return codes for APPC basic conversations. 151
Command mapping for APPC mapped conversations 153

Return codes for APPC mapped conversations 158
CICS deviations from the APPC architecture 159

Effects of CICS deviations on the transaction programmer 160

Appendix B. Migration of LUTYPE6.1 applications to APPC links 163
Migration mode . 163
State transitions in LUTYPE6.1 migration-mode conversations 165

Appendix C. Differences between APPC mapped and MRO conversations 171
Different treatment of command sequences 171
Using the LAST option . 172

The LAST option and syncpoint flows on APPC sessions 172
The LAST option and syncpoint flows on MRO sessions 172

Appendix D. Below the SNA interface 173
SNA indicators and records . 173

Request mode and responses 174
When SNA indicators are transmitted 174

Glossary . 175

Bibliography . 179
The CICS Transaction Server for z/OS library 179

The entitlement set . 179
PDF-only books . 179

Other CICS books . 181

vi CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Books from related libraries . 181
IMS . 181
Systems Application Architecture (SAA) 181
Systems Network Architecture (SNA) 181

Determining if a publication is current 182

Accessibility . 183

Index . 185

Notices . 191
Programming Interface Information 192
Trademarks. 192

Sending your comments to IBM 193

Contents vii

viii CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Preface

What this book is about
This book discusses the technique (called distributed transaction processing or
DTP) of spreading the functions of a transaction over several transaction programs
within a network. The book also provides guidance in producing application
programs that exchange data through distributed transaction processing (DTP) on
Advanced Program-to-Program Communication (APPC), multiregion operation
(MRO), and LUTYPE6.1 links.

Who this book is for
This book is for anyone who is involved in systems design and programming for
CICS® DTP applications.

What is not covered by this book
This book discusses only distributed transaction processing. The other basic
intercommunication facilities provided by CICS are described in the CICS
Intercommunication Guide.

Methods of accessing CICS programs and transactions from non-CICS
environments are described in the CICS External Interfaces Guide.

CICS Transaction Server for z/OS®’s support for the CICS Client family of
workstation products is described in the CICS Family: Communicating from CICS
on System/390®.

What you need to know to understand this book
It is assumed throughout this book that you have experience with writing application
programs for single CICS systems. The information contained here applies
specifically to multiple-system environments, and the concepts and facilities of
single CICS systems are, in general, taken for granted.

Readers will find it easier to understand the concepts discussed in this book if they
have read Part 1 of the CICS Intercommunication Guide.

How to use this book
Part 1, “Concepts and design considerations,” on page 1 is a very important
framework within which the rest of the book can be understood. You should
therefore start by reading this section to familiarize yourself with the concepts of
DTP and the things you have to think about when designing such applications.

Thereafter, you can use the appropriate parts of the book as guidance and
reference material for your particular task.

© Copyright IBM Corp. 1991, 2010 ix

x CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Summary of changes

This book is based on the CICS Distributed Transaction Programming Guide for
CICS Transaction Server for z/OS, Version 2 Release 1, SC34-5708-00. Changes
from that edition are marked by vertical bars in the left margin.

This part lists briefly the changes that have been made for the following recent
releases:

Changes for CICS Transaction Server for z/OS, Version 2 Release 3
There are no significant changes for this edition.

Changes for CICS Transaction Server for z/OS, Version 2 Release 2
There were no significant changes for this edition.

Changes for CICS Transaction Server for z/OS, Version 2 Release 1
There were no significant changes for this edition.

Changes for CICS Transaction Server for OS/390, Version 1 Release 3
There were no significant changes for this edition.

© Copyright IBM Corp. 1991, 2010 xi

xii CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Part 1. Concepts and design considerations

This part of the book describes the basic concepts of CICS distributed transaction
processing (DTP) and what you must consider when designing DTP applications.

Chapter 1, “Concepts of distributed transaction processing (DTP),” on page 3
defines DTP and discusses how conversation partners can work together.

Chapter 2, “Designing distributed processes,” on page 11 discusses the issues you
must think about in designing a DTP application.

© Copyright IBM Corp. 1991, 2010 1

2 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 1. Concepts of distributed transaction processing
(DTP)

This chapter explains what distributed transaction processing (DTP) is. It contains
the following topics:
v DTP’s place in the CICS intercommunication facilities
v “What is DTP?” on page 4
v “Distributed processes” on page 7
v “Maintaining data integrity” on page 8.

DTP’s place in the CICS intercommunication facilities
Today, an increasing number of organizations are connecting their information
systems together and distributing resources among them. To support this kind of
processing, applications need to be designed and developed to access resources
across multiple systems. So CICS provides the following basic intercommunication
facilities:

v Function shipping, which enables your application program to access resources
in another CICS system.

v Distributed program link, which enables a program in one CICS system to
issue a link command that invokes a program in another CICS system, waiting
for a RETURN.

v Asynchronous processing, which enables a CICS transaction to initiate a
transaction in another CICS system and pass data to it.

v Transaction routing, which enables a terminal connected to one CICS system
to run a transaction in another CICS system.

v Distributed transaction processing, which enables a CICS transaction to
communicate with a transaction running in another system. The transactions are
designed and coded specifically to communicate with each other, and in doing so
to use the intersystem link with maximum efficiency.

In addition, CICS provides the following methods of accessing CICS programs and
transactions from non-CICS environments:

v The CICS bridge

v The external CICS interface (EXCI)

v Transactional EXCI

v Support for DCE Remote Procedure Calls

v Support for ONC Remote Procedure Calls

v Inter-orb Protocol (IIOP)

v The Web interface.

This book discusses only distributed transaction processing. The other basic
intercommunication facilities are described in the CICS Intercommunication Guide.
Methods of accessing CICS programs and transactions from non-CICS
environments are described in the CICS External Interfaces Guide and the CICS
Internet Guide.

© Copyright IBM Corp. 1991, 2010 3

What is DTP?
DTP is one of the ways in which CICS allows processing to be split between
intercommunicating systems. Only DTP allows two or more communicating
application programs to run simultaneously in different systems and to pass data
back and forth between themselves—that is, to carry on a conversation.

Of the intercommunication facilities offered by CICS, DTP is the most flexible and
powerful, but also the most complex. This chapter introduces you to the basic
concepts involved in creating DTP applications. For a broad discussion of
intercommunication concepts, see CICS Intercommunication Guide.

DTP allows two or more partner programs in different systems to interact with each
other for some purpose. DTP enables a CICS transaction to communicate with one
or more transactions running in different systems. A group of such connected
transactions is called a distributed process.

The process can best be shown by discussing the operation of DTP between two
CICS systems, CICSA and CICSB. The configuration is shown in Figure 1.

1. A transaction (TRAA) is initiated on CICSA, for example, by a terminal operator
keying in a transaction ID and initial data.

2. To fulfill the request, the processing program X begins to execute on CICSA,
probably reading initial data from files, perhaps updating other files and writing
to print queues.

3. Without ending, program X asks CICSA to establish a communication session
with another CICS system, CICSB. CICSA responds to the request.

4. Also without ending, program X sends a message across the communication
session, asking CICSB to start a new transaction, TRBB. CICSB initiates
transaction TRBB by invoking program Y.

5. Program X now sends and receives messages, including data, to and from
program Y. Between sending and receiving messages, both program X and
program Y continue normal processing completely independently. When the two
programs communicate, their messages can consist of:

v Agreements on how to proceed with communication or how to end it. For
example, program X can tell program Y when it may transmit messages
across the session. At any time, both programs must know the state of their
communication, and thus, what actions are allowed. At any time, either
system may have actual control of the communication.

v Agreements to make permanent all changes made up to that point. This
allows the two programs to synchronize changes. For example, a dispatch
billing program on CICSA might wish to commit delivery and charging for a

CICSA CICSB

Transaction TRAA Transaction TRBB

Terminal Program X Program Y

Figure 1. DTP between two CICS transactions

4 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

stock item, but only when a warehouse program in CICSB confirms that it
has successfully allocated the stock item and adjusted the inventory file
accordingly.

v Agreements between CICSA and CICSB to cancel, rather than make
permanent, changes to data made since a given point. Such a cancelation (or
rollback) might occur when customers change their minds, for example.
Alternatively, it might occur because of uncertainty caused by failure of the
application, the system, the communication path, or the data source.

Although the two programs X and Y exist as independent units, it is clear that they
are designed to work as one. Of course, DTP is not limited to pairs of programs.
You can chain many programs together to distribute processing more widely. This is
discussed later in the book.

In the overview of the process given above, the location of program Y has not been
specified. Program X is a CICS program, but program Y need not be, because
CICS can establish sessions with non-CICS, LUTYPE6.1, MRO, or APPC partners.
This is discussed in Chapter 2, “Designing distributed processes,” on page 11.

The rest of this book considers the cases of CICS DTP with the following protocols:
v APPC mapped
v MRO
v APPC basic
v LUTYPE6.1.

Conversations
Although several programs can be involved in a single distributed process,
information transfer within the process is always between self-contained
communication pairs. The exchange of information between a pair of programs is
called a conversation. During a conversation, both programs are active; they send
data to and receive data from each other. The conversation is two-sided but at any
moment, each partner in the conversation has more or less control than the other.
According to its level of control (known as its conversation state), a program has
more or less choice in the commands that it can issue.

Conversation states
Thirteen conversation states have been defined for CICS DTP. The set of states
possible for a particular conversation depends on the protocol and synchronization
level used. (The concepts of protocol and synchronization level are explained in
“Selecting the protocol” on page 15 and “Maintaining data integrity” on page 8
respectively.) Table 1 shows which conversation states are defined for which
protocols and synchronization levels.

Table 1. The conversation states defined for different protocols. Yes and no indicate
whether the state is defined.

State
number

State name APPC
sync
level 0

APPC
sync
level 1

APPC
sync
level 2

MRO LUTYPE6.1
normal
mode

LUTYPE6.1
migration
mode

1 Allocated Yes Yes Yes Yes Yes Yes

2 Send Yes Yes Yes Yes Yes Yes

3 Pendreceive Yes Yes Yes No Yes Yes

4 Pendfree Yes Yes Yes Yes Yes Yes

5 Receive Yes Yes Yes Yes Yes Yes

Chapter 1. Concepts of distributed transaction processing (DTP) 5

Table 1. The conversation states defined for different protocols (continued). Yes and no
indicate whether the state is defined.

State
number

State name APPC
sync
level 0

APPC
sync
level 1

APPC
sync
level 2

MRO LUTYPE6.1
normal
mode

LUTYPE6.1
migration
mode

6 Confreceive No Yes Yes No No Yes

7 Confsend No Yes Yes No No Yes

8 Conffree No Yes Yes No No Yes

9 Syncreceive No No Yes Yes Yes Yes

10 Syncsend No No Yes No Yes Yes

11 Syncfree No No Yes Yes Yes Yes

12 Free Yes Yes Yes Yes Yes Yes

13 Rollback No No Yes Yes No Yes

By using a special CICS command (EXTRACT ATTRIBUTES STATE), or the STATE
option on a conversation command, a program can obtain a value that indicates its
own conversation state. CICS places such a value in a variable named by the
program; the variable is sometimes referred to as a state variable. Knowing the
current conversation state, the program then knows which commands are allowed.
If, for example, a conversation is in send state, the transaction can send data to
the partner. (The transaction can take other actions instead, as indicated in the
relevant state table.)

When a transaction issues a DTP command, this can cause the conversation state
to change. For example, a transaction can deliberately switch the conversation from
send state to receive state by issuing a command that invites the partner to send
data. When a conversation changes from one state to another, it is said to undergo
a state transition. The state tables in later chapters show how these transitions
take place.

Not only does the conversation state determine what commands are allowed, but
the state on one side of the conversation reflects the state on the other side. For
example, if one side is in send state, the other side is in either receive state,
confreceive state, or syncreceive state.

Sessions
A conversation takes place across a CICS resource called a session. One
transaction (known as the front-end transaction) asks CICS to allocate a session,
and then uses this session to request that the remote transaction (known as the
back-end transaction) be initiated. Then the two transactions, which can be
thought of as partners in the conversation, can “talk to” each other.

A session is a logical data path between two logical units. It is a shared resource
and is allocated to a transaction in response to a request from the transaction.
Resource definition determines the number of sessions available for allocation.
While a conversation is active, it has sole use of the session allocated to it.

A transaction starts a conversation by requesting the use of a session to a remote
system. When it obtains the session, the transaction can issue commands that
cause an attach request to be sent to the other system to activate the transaction
that is to be the conversation partner. A transaction can issue an attach request to
more than one other transaction.

6 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Distributed processes
A transaction can initiate other transactions, and hence, conversations. In a
complex process, a distinct hierarchy emerges, usually with the terminal-initiated
transaction at the top. Figure 2 shows a possible configuration. In this example,
transaction TRAA, in system CICSA, is initiated from a terminal. Transaction TRAA
attaches transaction TRBB to run in system CICSB. Transaction TRBB in turn
attaches transaction TRCC in system CICSC and transaction TRDD in system
CICSD. Both transactions TRCC and TRDD attach the same transaction SUBR in
system CICSE, thus giving rise to two copies of SUBR.

Notice that, for every transaction, there is only one inbound attach request, but that
there can be a number of outbound attach requests. The session that activates a
transaction is called its principal facility. A session that is allocated by a
transaction to activate another transaction is called its alternate facility. Therefore,
a transaction can have only one principal facility, but several alternate facilities.

When a transaction initiates a conversation, it is the front-end transaction on that
conversation. Its conversation partner is the back-end transaction on the same
conversation. It is normally the front-end transaction that dominates, and determines
the way the conversation goes. This style of processing is sometimes referred to as
the client/server model. (In some books, it is called master/slave.)

Alternatively, the front-end transaction and back-end transaction may switch control
between themselves. This style of processing is called peer-to-peer. As the name
implies, this model describes communication between equals. You are free to select
whichever model you need when designing your application; CICS supports both.

CICSA

Transaction TRAA

Terminal

CICSB

Transaction TRBB

CICSC CICSD

Transaction TRCC Transaction TRDD

CICSE

Transaction SUBR Transaction SUBR

Figure 2. DTP in a distributed process. (Arrowheads indicate attach requests).

Chapter 1. Concepts of distributed transaction processing (DTP) 7

Maintaining data integrity
You should design your application to cope with the things that can go wrong while
a transaction is running, for example, a session failing. The conversation protocol
helps you recover from errors and ensures that the two sides remain in step with
each other. This use of the protocol is called synchronization.

Synchronization allows you to protect recoverable resources such as transient data
queues and files, whether they are local or remote. Whatever goes wrong during
the running of a transaction should not leave the associated resources in an
inconsistent state.

An application program can cancel all changes made to recoverable resources
since the last known consistent state. This process is called rollback. The physical
process of recovering resources is called backout. The condition that exists as long
as there is no loss of consistency between distributed resources is called data
integrity.

Sometimes you may need to backout changes to resources, even though no error
conditions have arisen. Consider an order entry system. While entering an order for
a customer, an operator is told by the system that the customer’s credit limit would
be exceeded if the order went through. Because there is no use continuing until the
customer is consulted, the operator presses a PF key to abandon the order. The
transaction is programmed to respond by returning the data resources to the state
they were in at the start of the order transaction.

The point in a process where resources are declared to be in a known consistent
state is called a synchronization point, often shortened to syncpoint. Syncpoints
are implied at the beginning and end of a transaction. A transaction can define other
syncpoints by program command. All processing between two syncpoints belongs to
a unit of work (UOW). In a distributed process, this is also known as a distributed
unit of work.

When a transaction issues a syncpoint command, CICS commits all changes to
recoverable resources associated with that transaction. After the syncpoint, the
transaction can no longer back out changes made since the previous syncpoint.
They have become irreversible.

Although CICS can commit and backout changes to local and remote resources for
you, this service must be paid for in performance. If the recovery of resources
throughout a distributed process is not a problem (for example, in an inquiry-only
application), you can use simpler methods of synchronization.

8 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Synchronization levels
Systems Network Architecture (SNA) defines three levels of synchronization for
conversation using the APPC protocol:

v Level 0 – None

v Level 1 – Confirm

v Level 2 – Syncpoint1 .

At sync level 0, there is no CICS support for synchronization of remote resources
on connected systems. But it is still possible, under the control of the application to
achieve some degree of synchronization by interchanging data, using the SEND
and RECEIVE commands.

At sync level 1, you can use special commands for communication between the two
conversation partners. One transaction can confirm the continued presence and
readiness of the other. Both transactions are responsible for preserving the data
integrity of recoverable resources by issuing syncpoint requests at the appropriate
times.

At sync level 2, all syncpoint requests are automatically propagated across multiple
systems. CICS implies a syncpoint when it starts a transaction; that is, it initiates
logging of changes to recoverable resources, but no control flows take place. CICS
takes a syncpoint when one of the transactions terminates normally. One abending
transaction causes all to rollback. The transactions themselves can initiate
syncpoint or rollback requests. However, a syncpoint or rollback request is
propagated to another transaction only when the originating transaction is in
conversation with the other transaction, and sync level 2 has been selected.

Bear in mind that syncpoint and rollback are not limited to any one conversation
within a transaction. They are propagated on every conversation currently active at
sync level 2.

1. Sync level 2 is not supported on single-session connections.

Chapter 1. Concepts of distributed transaction processing (DTP) 9

10 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 2. Designing distributed processes

This chapter discusses the issues you must consider when designing distributed
processes to run under APPC or MRO. These issues include structuring distributed
processes and designing conversations.

It is assumed that you are already familiar with the issues involved in designing
applications in single CICS systems, as described in the CICS Application
Programming Guide.

The chapter contains the following topics:
v Structuring distributed transactions
v “Designing conversations” on page 14
v “APPC protocol” on page 16.

Structuring distributed transactions
As with many design problems, designing a DTP application involves dealing with
several conflicting objectives that must be carefully balanced against each other.
These include performance, ease of maintenance, reliability, security, connectivity to
existing functions, and recovery.

Avoiding performance problems
If performance is the highest priority, you should design your application so that
data is processed as close to its source as possible. This avoids unnecessary
transmission of data across the network. Alternatively, if processing can be
deferred, you may wish to consider batching data locally before transmitting.

To maintain performance across the intersystem connection, the conversation
should be freed as soon as possible — so that the session may be used by other
transactions. In particular, avoid holding a conversation across a terminal wait.

In terminal-attached transactions, pseudo-conversational design improves
performance by reducing the amount of time a transaction holds CICS resources.
This is because a terminal user is likely to take seconds or even minutes to
respond to any request for keyboard input. In contrast, the communication delay
associated with a conversation between partner transactions is likely to be only a
few milliseconds. It is therefore not necessary to terminate a front-end transaction
pending a response from a back-end transaction.

However, a front-end transaction can be terminal-initiated, in which case a
pseudo-conversational design may be appropriate. When input from the terminal
user is required, the front-end transaction and its conversations should be
terminated. After the terminal user has responded, the successor front-end
transaction can initiate a successor back-end transaction. If the first back-end
transaction needs to pass information to its successor, the information must either
be passed to the front-end transaction or stored locally (for example, in temporary
storage).

Stored information should be retrievable by identifiers that are not associated with
the particular session used by the conversation. The back-end transaction cannot
use a COMMAREA, a RETURN TRANSID, nor a TCTUA for this purpose. Instead,
it can construct the identifier of a temporary-storage queue by using information

© Copyright IBM Corp. 1991, 2010 11

obtained from the front-end transaction. The sysid of the principal facility, and the
identifier of the terminal to which the front-end transaction is attached, can be used.

Making maintenance easier
To correct errors or to adapt to the evolving needs of an organization, distributed
processes inevitably need to be modified. Whether these changes are made by the
original developers or by others, this task is likely to be easier if the distributed
processes are relatively simple. So consider minimizing the number of transactions
involved in a distributed process.

Going for reliability
If you are particularly concerned with reliability, consider minimizing the number of
transactions in the distributed process.

Protecting sensitive data
If the distributed process is to handle security-sensitive data, you could place this
data on a single system. This means that only one of the transactions needs
knowledge of how or where the sensitive data is stored. For guidance on
implementing security in CICS systems, see the CICS RACF® Security Guide.

Maintaining connectivity
If you require connectivity to transactions running in a back-level CICS system,
check the appropriate books for that release to ensure that the functions required
are compatible.

The following aspects of distributed process design differ from single-system
considerations:

Data conversion
For non-EBCDIC APPC logical units (for example, CICS OS/2), some data
conversion may be required on either receipt or sending of data.

Using multiple conversations
When using multiple, serial conversations, note that different conversation
identifiers may be provided to the transaction (by CICS). It is therefore not
advisable to use the conversation identifier for naming resources (for example,
temporary storage queues).

Safeguarding data integrity
If it is important for you to be able to recover your data when things go wrong,
design conversations for sync level 2, and keep the units of work as small as
possible. However, this is not always possible, because the size of a UOW is
determined largely by the function being performed. Remember that CICS syncpoint
processing has no information about the structure and purpose of your application.
As an application designer, you must ensure that syncpoints are taken at the right
time and place, and to good purpose. If you do, error conditions are unlikely to lead
to inconsistencies in recoverable data resources.

12 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Here is an example of a distributed application that transfers the contents of a
temporary storage queue from system A to system B, using a pair of transactions
(TRAA in system A, and TRBB in system B), and a conversation at synclevel 2.

1. Transaction TRAA in system A reads a record from the temporary storage
queue.

2. Transaction TRAA sends the record to system B, and waits for the response.

3. Transaction TRBB in system B receives the record from system A.

4. Transaction TRBB processes the record, and sends a response to system A.

5. Transaction TRAA receives the response, and deletes the record from the
temporary storage queue.

These steps are repeated as long as there are records remaining in the queue.
When the queue is empty:

1. Transaction TRAA sends a 'last record' indicator to system B.

2. Transaction TRBB sends a response to system A.

There are several points at which you may consider taking a syncpoint. Here are
the relative merits of taking a syncpoint at each of these points:

At the start of processing
Because a UOW starts at this point, a syncpoint has no effect. In fact, if
TRBB tries to take a syncpoint without having first issued a command to
receive data, it will be abended.

After transaction TRAA receives a response
A syncpoint at this point causes CICS to commit a record in system B
before it has been deleted from system A. If either system (or the
connection between them) fails before the distributed process is completed,
data may be duplicated.

Immediately after the record is deleted from the temporary storage queue
Because minimum processing is needed before resources are committed,
this may be a safe place to take a syncpoint if the queue is long or the
records are large. However, performance may be poor because a syncpoint
is taken for each record transmitted.

After transaction TRAA receives the response to the last-record indicator
If you take a syncpoint only when all records have been transmitted, an
earlier failure will mean that all data will have to be retransmitted. A
distributed process that syncpoints only at this stage will complete more
quickly than one that syncpoints after each record is processed, provided
no failure occurs. However, it will take longer to recover. If more than two
systems are involved in the process, this problem is made worse.

Bear in mind that too many conversations within one distributed transaction
complicates error recovery. A complex structure may sometimes be unavoidable,
but usually it means that the design could be improved if some thought is given to
simplifying the structure of the distributed transaction.

A UOW must be recoverable for the whole process of which it forms a part. All
changes made by both partners in every conversation must be backed out if the
UOW does not complete successfully. Syncpoints are not arbitrary divisions, but
must reflect the functions of the application. Units of work must be designed to
preserve consistent resources so that when a transaction fails, all resources are
restored to their correct state.

Chapter 2. Designing distributed processes 13

Before terminating a sync level-2 conversation, make sure that the partner
transaction is able to communicate any errors that it may have found. Not doing so
may jeopardize data integrity.

Designing conversations
Once the overall structure of the distributed process has been decided, you can
then start to design individual conversations. Designing a conversation involves
deciding what functions to put into the front-end transaction and into the back-end
transaction, and deciding what should be in a distributed unit of work. So you have
to make decisions about how to subdivide the work to be done for your application.

Because a conversation involves transferring data between two transactions, to
function correctly, each transaction must know what the other intends. For instance,
there is little point in the front-end transaction sending data if all the back-end
transaction is designed to do is print the weekly sales report. You must therefore
consider each front-end and back-end transaction pair as one software unit.

The sequences of commands you can issue on a conversation are governed by a
protocol designed to ensure that commands are not issued in inappropriate
circumstances. The protocol is based on the concept of a number of conversation
states. A conversation state applies only to one side of a single conversation and
not to a transaction as a whole. In each state, there are a number of commands
that might reasonably be issued. The command itself, together with its outcome,
may cause the conversation to change from one state to another.

To determine the conversation state, you can use either the STATE option on a
command or the EXTRACT ATTRIBUTES STATE command. Note, however, that
the STATE option is valid only for MRO and APPC sessions, not for LUTYPE6.1
sessions. For programming information about the state values returned by different
commands, see CICS Application Programming Reference.

When a conversation changes state, it is said to have undergone a state
transition, which generally makes a different set of commands available. The
available commands and state transitions are shown in a series of state tables.
Which state table you use depends on the protocol, sync level, application
programming interface (API), and conversation type that you choose. (Only the
APPC protocol gives you a choice of APIs and conversation types.)

“Maintaining data integrity” on page 8 contains guidance on selecting the sync level
for a conversation. Chapter 11, “Syncpointing a distributed process,” on page 117
discusses the synchronization commands and their effects.

The following sections discuss how you choose the protocol, the API, and the
conversation type. These sections also tell you where to find the state tables and
command descriptions relevant to the choice you have made.

14 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Selecting the protocol
CICS provides three different protocols:

v APPC (advanced program-to-program communication, sometimes referred to as
LUTYPE6.2)

v MRO (multiregion operation)

v LUTYPE6.1 (logical unit type 6.1).

These protocols define the rules under which two transactions can communicate
with each other.

Both APPC and LUTYPE6.1 are protocols defined by SNA. They are therefore more
widely available for communicating with non-CICS systems. LUTYPE6.1 is the
predecessor of APPC; so you should, if possible, avoid using LUTYPE6.1 for new
applications. However, some new applications may still need to use LUTYPE6.1 to
communicate with existing LUTYPE6.1 applications.

To help you migrate applications from LUTYPE6.1 to APPC, CICS provides a
migration path. For more information on this, see Appendix B, “Migration of
LUTYPE6.1 applications to APPC links,” on page 163.

Choosing between MRO and APPC can be quite simple. The options depend on
the configuration of your CICS complex and on the nature of the conversation
partner. MRO does not support communication with a partner in a non-CICS
system. Further, it supports communication between transactions running in CICS
systems in different MVS™ images only if the MVS images are in the same MVS
sysplex, and are joined by cross-system coupling facility (XCF) links; the MVS
images must be at IBM® MVS/ESA release level 5.1, or later. (For full details of the
hardware and software requirements for XCF/MRO, see the CICS
Intercommunication Guide.)

For communication with a partner in another CICS system, where the CICS
systems are either in the same MVS image, or in the same MVS/ESA 5.1 (or later)
sysplex, you can use either the MRO or the APPC protocol. There are good
performance reasons for using MRO. But if there is any possibility that the
distributed transactions will need to communicate with partners in other operating
systems, it is better to use APPC so that the transaction remains unchanged.

APPC application programs will not run under MRO. Even if both partners are in the
same MVS image, CICS will not use MRO facilities but will send conversation data
through the communications controller. That involves some VTAM® overhead. So
you must decide whether your application programs are to converse using APPC or
MRO and code them accordingly.

Table 2 on page 16 points out the main differences between the MRO and APPC
protocols.

Chapter 2. Designing distributed processes 15

Table 2. MRO protocol compared with APPC protocol

MRO APPC

Function is realized without using a
telecommunication access method.

Depends on VTAM or similar.

Non-standard architecture. SNA architecture.

CICS-to-CICS links only. Links to non-CICS systems possible.

Communicates within single MVS image, or
(using XCF/MRO) between MVS images in
same sysplex.

Communicates across multiple MVS images
or other operating systems.

Sync level 2 forced for the conversation. Sync level 0, 1, or 2 can be selected.

Program initialization parameter (PIP) data
not supported.

PIP data supported.

Data transmission not deferred. Deferred data transmission.

Partner transaction may be identified in data. Partner transaction defined by program
command.

Performance overhead over a single
application.

Even greater performance overhead over a
single application.

RECEIVE can be issued only in receive
state.

RECEIVE causes conversation turnaround
when issued in send state on mapped
conversations.

No ISSUE SIGNAL command. ISSUE SIGNAL command available.

WAIT command has no function. WAIT command causes transmission of
deferred data.

If you decide to use the APPC protocol, see the next section APPC protocol and
decide on which programming interface and which conversation type to use.

If you decide to use the MRO protocol, see Part 3, “Writing programs for MRO
conversations,” on page 51.

If you decide to use the LUTYPE6.1 protocol, see Part 5, “Writing programs for
LUTYPE6.1 conversations,” on page 101.

APPC protocol
If you choose to use APPC, you must decide which application programming
interface (API) to use; and then which conversation type (basic or mapped) to use.
See the following sections.

Selecting the APPC interface
CICS Transaction Server for z/OS, Version 3 Release 1 provides a choice of two
application programming interfaces (APIs) for coding your DTP conversations on
APPC sessions:

v CICS API, is the programming interface of the CICS implementation of the APPC
architecture. It consists of EXEC CICS commands.

v Common Programming Interface Communications (CPI Communications) is
the communications interface defined by the IBM Systems Application
Architecture® (SAA). It consists of a set of defined verbs in the form of program
calls, which are adapted for the language being used.

16 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

As an existing CICS user, you should not need to convert to the CPI
Communications interface unless you have decided to adopt it as standard. You
should continue to use EXEC CICS. However, to help you review the choices,
Table 3 makes a general comparison between the two methods.

Table 3. The CICS API compared with the CPI Communications interface

CICS API CPI Communications interface

Portability between different members of the
CICS family.

Portability between systems that support
SAA.

Basic conversations can be programmed
only in assembler and C language.

Basic conversations can be programmed in
any of the available SAA languages.

Sync levels 0, 1, and 2 supported. Sync levels 0, 1, and 2 supported, except for
transaction routing, for which only sync levels
0 and 1 are supported.

PIP data supported. PIP data not supported.

Can be used on the principal facility to a
transaction started by automatic transaction
initiation (ATI).

Cannot be used on the principal facility to a
transaction started by ATI.

Limited compatibility with MRO. No compatibility with MRO.

Commands similar to those used to
communicate with IBM 3270 terminals.

Commands similar to those used to define
the APPC architecture.

All parameters are passed on the relevant
command.

Parameter values are set by special
commands before the relevant command is
issued.

For further information about CPI Communications, see Common Programming
Interface Communications, SC26-4399.

It is possible to mix CPI Communications calls and EXEC CICS commands in the
same program, but not on the same side of the same conversation. It is possible to
implement a distributed transaction where one partner to a conversation uses CPI
Communications calls and the other uses the CICS API. To do this you have to
know how the APIs on both sides map to the APPC architecture. See Appendix A,
“CICS mapping to the APPC architecture,” on page 145.

Selecting the APPC conversation type
The communication commands you code in your application depend on whether
you intend to use basic or mapped conversations. CICS-to-CICS applications need
use only mapped conversations. Basic conversations (also referred to as
“unmapped”) are useful only when communicating with systems that do not support
mapped conversations. These include some APPC devices.

The two conversation types are similar. The main difference lies in the way user
data is formatted for transmission:

v In mapped conversations, the application merely sends the data to the partner.

v In basic conversations, the application has to add a few control bytes to convert
the data into an SNA-defined format called a generalized data stream (GDS).

The CICS API uses the EXEC CICS GDS commands for basic conversations and
terminal control type EXEC CICS commands for mapped conversations.

Chapter 2. Designing distributed processes 17

Table 4 summarizes the differences between mapped and basic conversations.
Note that it only applies to the CICS API.

Table 4. APPC conversations – mapped compared with basic

Mapped Basic

The conversation partners exchange only
data that is relevant to the application.

Both partners must package the user data in
GDS records before sending and unpack it
on receipt.

All commands use the EXEC Interface Block
for status reporting.

All commands use a RETCODE and
CONVDATA for status reporting.

The transaction can handle exception
conditions or let them default.

The transaction must test for exceptional
conditions in a RETCODE.

A RECEIVE command issued in send state
causes conversation turnaround.

A RECEIVE command is illegal in send state.

Transactions may be written in COBOL, PL/I,
C, or assembler.

Transactions may be written in C or
assembler.

By specifying the RTIMOUT option of the
PROFILE definition, you can cause a
conversation to time out if the partner does
not respond.

You cannot cause a conversation to time out
if the partner does not respond.

Using VTAM persistent session support
If you use VTAM persistent session support, after a CICS failure APPC sessions
are held in “recovery pending” state until CICS restarts, or until the timeout value
set on the PSDINT system initialization parameter expires.

If you enable persistent session support in the local CICS, DTP applications that
use APPC sessions defined as persistent are affected as follows:

v Remote partner programs can cause excessive queuing delays in the partner
system if they continue to issue commands on persistent APPC sessions after
this CICS has failed. There is no way for the partner to know that a persistent
sessions restart is in progress. However, there are various actions you can take
to reduce the risk of new work building up for a connection to a persisting CICS
Transaction Server for z/OS, Version 3 Release 1 system.

Actions on the partner system:

– In DTP applications, requests for sessions are instigated by EXEC CICS
ALLOCATE commands. Control the overall number of queued session
requests by using:

- The QUEUELIMIT and MAXQTIME options on the CONNECTION definition

- An XZIQUE global user exit program.

These methods are described in the CICS Intercommunication Guide.

– Control individual session requests by coding the NOQUEUE|NOSUSPEND
option on EXEC CICS ALLOCATE commands.

– Force mapped APPC RECEIVE or CONVERSE commands to time out if there
is any delay in receiving expected data, by coding the RTIMOUT option on
PROFILE definitions.

Action on this system:

– Code a PSDINT value that takes into account the number of your APPC
sessions to partner systems.

18 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

v After a restart, LU6.2 session names, in the range −AAA to −999, are allocated
on a “first free” basis (rather than on a “next in the sequence” followed by “last
free” basis). This may affect applications that use LU6.2 CONVIDs as external
qualifiers.

For further information about VTAM persistent session support, see the CICS
Recovery and Restart Guide.

Writing programs for APPC conversations
Depending on which APPC conversation type you select, see:

v Part 2, “Writing programs for APPC mapped conversations,” on page 21

v Part 4, “Writing programs for APPC basic conversations,” on page 67.

Chapter 2. Designing distributed processes 19

20 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Part 2. Writing programs for APPC mapped conversations

This is the first of four parts detailing the CICS APIs available for DTP
programming.

v Part 2, “Writing programs for APPC mapped conversations”

v Part 3, “Writing programs for MRO conversations,” on page 51

v Part 4, “Writing programs for APPC basic conversations,” on page 67

v Part 5, “Writing programs for LUTYPE6.1 conversations,” on page 101.

The different APIs are compared in Part 1, “Concepts and design considerations,”
on page 1.

Part 2 contains:

v Chapter 3, “APPC mapped conversation flow,” on page 23.

This advises you how to use the EXEC CICS API to write distributed transactions
that use APPC mapped conversations.

v Chapter 4, “State transitions in APPC mapped conversations,” on page 41.

This discusses the state transitions that occur when transactions use APPC
mapped conversations under the EXEC CICS API. The state transitions are
presented in the form of state tables showing which commands can be issued
while a conversation partner is in any given state. The tables also show how the
conversation state changes as a result of issuing a command.

© Copyright IBM Corp. 1991, 2010 21

22 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 3. APPC mapped conversation flow

This chapter introduces some of the DTP commands for APPC mapped
conversations. It introduces each command in the context of a typical conversation
flow and ends with a general discussion on how to test the responses from a DTP
command.

The chapter contains the following topics:
v Starting the conversation
v “Transferring data on the conversation” on page 27
v “Communicating errors across a conversation” on page 31
v “Safeguarding data integrity” on page 32
v “Ending the conversation” on page 34
v “Checking the outcome of a DTP command” on page 36
v “Summary of CICS commands for APPC mapped conversations” on page 39.

Starting the conversation
This section describes how to get a conversation started. The first two subsections
explain how the front-end transaction and the back-end transaction initiate the
conversation, and the third subsection considers the possibility of conversation
initiation failure. This section also contains program fragments illustrating the
commands described below and the suggested response code checking.

Conversation initiation
The front-end transaction is responsible for acquiring a session, specifying the
conversation characteristics and requesting the startup of the back-end transaction
in the remote system.

Allocating a session to the conversation
Initially, there is no conversation, and therefore no conversation state. By issuing an
ALLOCATE command, the front-end transaction acquires a session to start a new
conversation.

The RESP value returned should be checked to ensure that a session has been
allocated. If the session is successfully allocated, DFHRESP(NORMAL), the
conversation is in allocated state (state 1) and the session identifier (convid) in
EIBRSRCE must be saved immediately.

The convid must be used in subsequent commands for this conversation. Figure 3
on page 24 shows an example of an ALLOCATE command.

Note: If the remote system is using VTAM persistent session support, you may
need to code a timeout value on the ALLOCATE command. See “Using
VTAM persistent session support” on page 18.

Using ATI to allocate a session
Front-end transactions are often initiated from terminals. But it is also possible to
use the EXEC CICS START command to initiate a front-end transaction on an
APPC session. When this is done, and the front-end transaction is successfully
started, a conversation can continue as if an ALLOCATE command had been
issued. The only difference is that, when ATI is used, the APPC session is the
front-end transaction’s principal facility.

© Copyright IBM Corp. 1991, 2010 23

Connecting the partner transaction
When the front-end transaction has acquired a session, the next step is to initiate
the partner transaction. The state tables show that, in the allocated state (state 1),
one of the commands available is CONNECT PROCESS. This command is used to
attach the required back-end transaction. It should be noted that the results of the
CONNECT PROCESS are placed in the send buffer and are not sent immediately
to the partner system. Transmission occurs when the send buffer is flushed, either
by sending more data than fits in the send buffer or by issuing a WAIT CONVID
command.

A successful CONNECT PROCESS causes the conversation to switch to send
state (state 2). The program fragment in Figure 3 shows an example of a
CONNECT PROCESS command.

Note: For clarity, the EXEC CICS ALLOCATE and CONNECT PROCESS
commands shown in Figure 3 identify the partner LU and transaction
explicitly. To avoid doing this, you could use the PARTNER option of these
commands. This specifies a set of definitions that include the names of the
partner LU, the communication profile to be used on the session, and the
partner transaction. Thus, in Figure 3, the PARTNER option could be used
instead of SYSID on the EXEC CICS ALLOCATE command, and instead of
PROCNAME and PROCLENGTH on the EXEC CICS CONNECT PROCESS

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-CONVID PIC X(4).
02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.
02 WS-SYSID PIC X(4) VALUE 'SYSB'.
02 WS-PROC PIC X(4) VALUE 'BBBB'.
02 WS-LEN-PROCN PIC S9(4) COMP VALUE +4.
02 WS-SYNC-LVL PIC S9(4) COMP VALUE +2.

* ...
PROCEDURE DIVISION.
* ...

EXEC CICS ALLOCATE SYSID(WS-SYSID) RESP(WS-RESP)
END-EXEC.

IF WS-RESP = DFHRESP(NORMAL)
THEN MOVE EIBRSRCE TO WS-CONVID
ELSE

* ... No session allocated. Examine RESP code.
END-IF.

* ...
EXEC CICS CONNECT PROCESS CONVID(WS-CONVID)

STATE(WS-STATE) RESP(WS-RESP)
PROCNAME(WS-PROC)
PROCLENGTH(WS-LEN-PROCN)
SYNCLEVEL(WS-SYNC-LVL)

END-EXEC.
IF WS-RESP = DFHRESP(NORMAL)
THEN

* ... No errors. Check EIB flags.
ELSE

* ... Conversation not started. Examine RESP code.
END-IF.

Figure 3. Starting an APPC mapped conversation at sync level 2

24 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

command. The advantage of using PARTNER is that it makes your DTP
programs more maintainable: the details of each partner program can be
held in a single definition. For details of the PARTNER resource, see the
CICS Resource Definition Guide.

Initial data for the back-end transaction
While connecting the back-end transaction, the front-end transaction can send initial
data to it. This kind of data, called program initialization parameters (PIPs), is
placed in specially formatted structures and specified on the CONNECT PROCESS
command. The PIPLIST (along with PIPLENGTH) option of the CONNECT
PROCESS command is used to send PIPs to the back-end transaction.

To examine any PIPs received, the back-end transaction uses the EXTRACT
PROCESS command.

PIP data is used only by the two connected transactions and not by the CICS
systems. APPC systems other than CICS may not support PIP, or may support it
differently.

The PIP data must be formatted into one or more subfields according to the
SNA-architected rules. The content of each subfield is defined by the application
developer. You should format PIP data as follows:

CICS inserts information into the reserved fields to make the PIP architecturally
correct. The PIPLENGTH option must specify the total length of the PIP list and
must be between 4 and 32763.

Back-end transaction initiation
The back-end transaction is initiated as a result of the front end transaction’s
CONNECT PROCESS command. Initially, the back-end transaction should
determine the convid. This is not strictly necessary because the session is the
back-end transaction’s principal facility making the CONVID parameter optional for
DTP commands on this conversation. However, the convid is useful for audit trails.
Also, if the back-end transaction is involved in more than one conversation, always
specifying the CONVID option improves program readability and problem
determination.

Figure 5 on page 26 shows a fragment of a back-end transaction that obtains the
conversation identifier. The example uses the ASSIGN command for this purpose;
another way is to access the information in EIBTRMID.

The back-end transaction can also retrieve its transaction name by issuing the
EXTRACT PROCESS command. In the example shown in Figure 5, CICS places

L1 rr PIP1 L2 rr PIP2 Ln rr PIPn

Figure 4. Format of PIP data.

PIP data consists of one or more subfields; each subfield contains

v A halfword binary integer specifying the total length of the subfield in bytes

v A reserved halfword

v The PIP data itself

The length includes the length field itself and the length of the reserved field; that is, if the
PIP field is n bytes long, then the length field contains n + 4.

Chapter 3. APPC mapped conversation flow 25

the transaction name in WS-PROC and the length of the name in WS-LEN-PROCN.
With the EXTRACT PROCESS, the back-end transaction can also retrieve the sync
level at which the conversation was started. In the example, CICS places the sync
level in WS-SYNC-LVL.

Both the ASSIGN and the EXTRACT PROCESS commands are discussed here
only to give you some idea of what you can do in the back-end transaction. They
are not essential. The back-end transaction starts in receive state (state 5), and
must issue a RECEIVE command. By doing this, the back-end transaction receives
whatever data the front-end transaction has sent and allows CICS to raise EIB flags
and change the conversation state to reflect any request the front-end transaction
has issued.

What happens if the back-end transaction fails to start
It is possible that the back-end transaction fails to start. However there is a
transmission delay mechanism in APPC, which informs the front-end transaction of
this fact when the session has been active long enough for responses from the
back-end system to have been received. The front-end transaction is informed of
this via a TERMERR condition in response to a DTP command. EIBERR, EIBFREE,
and EIBERRCD are set (see Table 9 on page 36 for the possible values of
EIBERRCD).

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-CONVID PIC X(4).
02 WS-STATE PIC S9(7) COMP.
02 WS-SYSID PIC X(4) VALUE 'SYSB'.
02 WS-PROC PIC X(4) VALUE 'BBBB'.
02 WS-LEN-PROCN PIC S9(4) COMP VALUE +4.
02 WS-SYNC-LVL PIC S9(4) COMP VALUE +2.

* ...
01 FILLER.

02 WS-RECORD PIC X(100).
02 WS-MAX-LEN PIC S9(4) COMP VALUE +100.
02 WS-RCVD-LEN PIC S9(4) COMP VALUE +0.

* ...
PROCEDURE DIVISION.
* ...

EXEC CICS ASSIGN FACILITY(WS-CONVID) END-EXEC.
* ...
* Extract the conversation characteristics.
*

EXEC CICS EXTRACT PROCESS PROCNAME(WS-PROC)
PROCLENGTH(WS-LEN-PROCN)
SYNCLEVEL(WS-SYNC-LVL)

END-EXEC.
* ...
* Receive data from the front-end transaction.
*

EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RECORD) MAXLENGTH(WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)

END-EXEC.
*
* ... Check outcome of RECEIVE.
* ...

Figure 5. Startup of a back-end APPC mapped transaction at sync level 2

26 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Before sending data, the front-end transaction should find out whether the back-end
transaction has started successfully. One way of doing this is to issue a SEND
CONFIRM command directly after the CONNECT PROCESS command. This
causes the front-end transaction to suspend until the back-end transaction responds
or the failure notification described above is received. SEND CONFIRM is
discussed in “How to synchronize a conversation using CONFIRM commands” on
page 32.

Transferring data on the conversation
This section discusses how to pass data between the front- and back-end
transactions. The first subsection explains how to send data, the second describes
how to switch from sending to receiving data, and the third explains how to receive
data. This section also contains a program fragment illustrating the commands
described below and the suggested response code checking.

Sending data to the partner transaction
The SEND command is valid only in send state (state 2). Because a successful
simple SEND leaves the conversation in send state (state 2), it is possible to issue
a number of successive sends. The data from the simple SEND command is initially
stored in a local CICS buffer which is “flushed” either when this buffer is full or
when the transaction requests transmission. The transaction can request
transmission either by using a WAIT CONVID command or by using the WAIT
option on the SEND command. The reason data transmission is deferred is to
reduce the number of calls to the network. However, the application should use
WAIT if the partner transaction requires the data to continue processing.

An example of a simple SEND command can be seen in Figure 6 on page 28.

Chapter 3. APPC mapped conversation flow 27

Switching from sending to receiving data
The column for send state (state 2) in the state tables (see page 41) shows that
there are several ways of switching from send state (state 2) to receive state
(state 5).

One possibility is to use a RECEIVE command. The state tables show that CICS
supplies the INVITE and WAIT when a SEND is followed immediately by a
RECEIVE.

Another possibility is to use a SEND INVITE command. The state tables show that
after SEND INVITE the conversation switches to pendreceive state (state 3). The
column for state 3 shows that a WAIT CONVID command switches the conversation
to receive state (state 5).

Still another possibility is to specify the INVITE and WAIT options on the SEND
command. The state tables show that after SEND INVITE WAIT, the conversation
switches to receive state (state 5).

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-CONVID PIC X(4).
02 WS-STATE PIC S9(7) COMP.

* ...
01 FILLER.

02 WS-SEND-AREA PIC X(70).
02 WS-SEND-LEN PIC S9(4) COMP VALUE +70.

* ...
01 FILLER.

02 WS-RCVD-AREA PIC X(100).
02 WS-MAX-LEN PIC S9(4) COMP VALUE +100.
02 WS-RCVD-LEN PIC S9(4) COMP VALUE +0.

* ...
PROCEDURE DIVISION.
* ...

EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)
FROM(WS-SEND-AREA) LENGTH(WS-SEND-LEN)

END-EXEC.
* ... Check outcome of SEND.
* ...
*

EXEC CICS SEND CONVID(WS-CONVID) STATE(WS-STATE)
INVITE WAIT

END-EXEC.
* ...
* Receive data from the partner transaction.
*

EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RCVD-AREA) MAXLENGTH(WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)

END-EXEC.
*
* ... Check outcome of RECEIVE.
* ...

Figure 6. Transferring data on a conversation at sync level 2

28 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

An example of a SEND INVITE WAIT command can be seen in Figure 6 on page
28. Figure 7 illustrates the response-testing sequence after a SEND INVITE WAIT
with the STATE option. For more information on response testing, see “Checking
the outcome of a DTP command” on page 36.

Receiving data from the partner transaction
The RECEIVE command is used to receive data from the connected partner. The
rows in the state tables for the RECEIVE command show the EIB fields that should
be tested after issuing a RECEIVE command. As well as showing which field should
be tested, the state tables also show the order in which the tests should be made.

As an alternative to testing the EIB fields it is possible to test the resulting
conversation state; this is shown in Figure 8 on page 30. The conversation state
can be meaningfully tested only after issuing a command with the STATE option or
by using the EXTRACT ATTRIBUTES STATE command. Note that the RESP value
returned and EIBERR should always be tested. If EIBNODAT is set on (X'FF'), no
data has been received. For more information about response testing, see
“Checking the outcome of a DTP command” on page 36. For information about
testing the conversation state, see “Testing the conversation state” on page 50.

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-RESP PIC S9(7) COMP.
02 WS-STATE PIC S9(7) COMP.

* ...
PROCEDURE DIVISION.
* ...
* Check return code from SEND INVITE WAIT

IF WS-RESP = DFHRESP(NORMAL)
THEN

* ... Request successful
IF EIBERR = LOW-VALUES
THEN

* ... No errors, check state
IF WS-STATE = DFHVALUE(RECEIVE)
THEN

* ... SEND OK, continue processing
ELSE

* ... Logic error, should never happen
END-IF

ELSE
* ... Error indicated

EVALUATE WS-STATE
WHEN DFHVALUE(ROLLBACK)

* ... ROLLBACK received
WHEN DFHVALUE(RECEIVE)

* ... ISSUE ERROR received, reason in EIBERRCD
WHEN OTHER

* ... Logic error, should never happen
END-EVALUATE

END-IF
ELSE

* ... Examine RESP code for source of error.
END-IF.

Figure 7. Checking the outcome of a SEND INVITE WAIT command

Chapter 3. APPC mapped conversation flow 29

An example of a RECEIVE command with the STATE option can be seen in
Figure 6 on page 28. Figure 8 illustrates the response-testing and state-testing
sequence.

Note: In the same way as it is possible to send the INVITE, LAST, and CONFIRM
commands with data, it is also possible to receive them with data. It is also
possible to receive a syncpoint request with data. However, ISSUE ERROR,
ISSUE ABEND, and conversation failure are never received with data.

* ...
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.

* ...
PROCEDURE DIVISION.
* ...
* Check return code from RECEIVE

IF WS-RESP = DFHRESP(EOC)
OR WS-RESP = DFHRESP(NORMAL)
THEN

* ... Request successful
IF EIBERR = LOW-VALUES
THEN

* ... No errors, check state
EVALUATE WS-STATE

WHEN DFHVALUE(SYNCFREE)
* ... Partner issued SYNCPOINT and LAST

WHEN DFHVALUE(SYNCRECEIVE)
* ... Partner issued SYNCPOINT

WHEN DFHVALUE(SYNCSEND)
* ... Partner issued SYNCPOINT and INVITE

WHEN DFHVALUE(CONFFREE)
* ... Partner issued CONFIRM and LAST

WHEN DFHVALUE(CONFRECEIVE)
* ... Partner issued CONFIRM

WHEN DFHVALUE(CONFSEND)
* ... Partner issued CONFIRM and INVITE

WHEN DFHVALUE(FREE)
* ... Partner issued LAST or FREE

WHEN DFHVALUE(SEND)
* ... Partner issued INVITE

WHEN DFHVALUE(RECEIVE)
* ... No state change. Check EIBCOMPL.

WHEN OTHER
* ... Logic error, should never happen

END-EVALUATE.
ELSE

* ... Error indicated
EVALUATE WS-STATE

WHEN DFHVALUE(ROLLBACK)
* ... ROLLBACK received

WHEN DFHVALUE(RECEIVE)
* ... ISSUE ERROR received, reason in EIBERRCD

WHEN OTHER
* ... Logic error, should never happen

END-EVALUATE
END-IF

ELSE
* ... Examine RESP code for source of error

END-IF.

Figure 8. Checking the outcome of a RECEIVE command

30 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

The CONVERSE command
The CONVERSE command combines the functions SEND INVITE WAIT and
RECEIVE. This command is useful when one transaction needs a response from
the partner transaction to continue processing.

Communicating errors across a conversation
The APPC mapped API provides commands to enable transactions to pass error
notification across a conversation. There are three commands depending on the
severity of the error. The most severe, ISSUE ABEND, causes the conversation to
terminate abnormally and is described in “Emergency termination of a conversation”
on page 35. The other two commands are described below.

Requesting INVITE from the partner transaction
If a transaction is receiving data on a conversation and wishes to send, it can use
the ISSUE SIGNAL command to request that the partner transaction does a SEND
INVITE. When the ISSUE SIGNAL request is received, EIBSIG=X'FF' and the
SIGNAL condition is raised. It should be noted that on receipt of SIGNAL a
transaction is not obliged to issue SEND INVITE.

Demanding INVITE from the partner transaction
If a transaction needs to send an immediate error notification to the partner
transaction it can use the ISSUE ERROR command. This command is also one of
the preferred negative responses to SEND CONFIRM. However it should not be
used to reject ISSUE PREPARE, SYNCPOINT or SYNCPOINT ROLLBACK. When
the ISSUE ERROR is received, EIBERR=X'FF' and the first two bytes of
EIBERRCD are X'0889'. This error condition cannot be processed by HANDLE
CONDITION (or RESP).

If an ISSUE ERROR command is used in receive state (state 5), all incoming data
is purged until an INVITE, SYNCPOINT, or LAST command is received. If LAST is
received, no error indication is sent to the partner transaction, EIBFREE=X'FF' and
the conversation is switched to free state (state 12).

If LAST is not received, the conversation is switched to send state (state 2). It is
normal programming practice to communicate the reason for the ISSUE ERROR to
the partner transaction. The CONVERSE command could be used to send an
appropriate error message and receive a reply.

Because ISSUE ERROR is allowed in both send state (state 2) and receive state
(state 5), it is possible for both communicating transactions to use ISSUE ERROR
at the same time. When this occurs, only one of the ISSUE ERROR commands is
effective. The other is purged with incoming data. However both ISSUE ERROR
commands will appear to have completed successfully and the transaction whose
ISSUE ERROR was purged will pick up EIBERR=X'FF' on a subsequent command.

Chapter 3. APPC mapped conversation flow 31

Safeguarding data integrity
If it is important to safeguard data integrity across connected transactions, then the
CICS synchronization commands shown in Table 5 are available.

Table 5. Synchronization commands for APPC mapped conversations

Conversation sync
level

Commands

0 None

1 SEND CONFIRM
ISSUE CONFIRMATION

2 SEND CONFIRM
ISSUE CONFIRMATION
SYNCPOINT
ISSUE PREPARE
SYNCPOINT ROLLBACK
SRRCMIT2

SRRBACK2

The above commands are defined in the sections that follow.

How to synchronize a conversation using CONFIRM commands
A confirmation exchange affects a single specified conversation and involves only
two commands:

1. The conversation that is in send state (state 2) issues a SEND CONFIRM
command causing a request for confirmation to be sent to the partner
transaction. The transaction suspends awaiting a response.

2. The partner transaction receives a request for confirmation. It can then respond
positively by issuing an ISSUE CONFIRMATION command. Alternatively, it can
respond negatively by using the ISSUE ERROR or ISSUE ABEND commands.

The following sections describe these commands in more detail. The descriptions
refer to the state tables for sync levels 1 and 2.

Requesting confirmation
The CONFIRM option of the SEND command flushes the conversation send buffer;
that is, it causes a transmission to occur. When the conversation is in send state
(state 2), you can send data with the SEND CONFIRM command. You can also
specify either the INVITE or the LAST option.

The send state (state 2) column of the state table for APPC mapped conversations
at sync level 1 on page 44 shows what happens for the possible combinations of
the CONFIRM, INVITE, and LAST options. After a SEND CONFIRM command,
without the INVITE or LAST options, the conversation remains in send state (state
2). If the INVITE option is used, the conversation switches to receive state (state
5). If the LAST option is used, the conversation switches to free state (state 12).

A similar effect to SEND LAST CONFIRM can by achieved by using the command
sequence:

SEND LAST
SEND CONFIRM

2. SAA verbs for SYNCPOINT and SYNCPOINT ROLLBACK respectively.

32 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Note from the state tables that the SEND LAST puts the conversation into pendfree
state (state 4), so data cannot be sent with a SEND CONFIRM command used in
this way.

The form of command used depends on how the conversation is to continue if the
required confirmation is received. However, the response from SEND CONFIRM
must always be checked. See “Checking the response to SEND CONFIRM.”

Receiving and replying to a confirmation request
On receipt of a confirmation request, the EIB and conversation state will be set
depending on the request issued by the partner transaction. These together with the
contents of the EIBCONF, EIBRECV, and EIBFREE fields are shown in Table 6.

Table 6. Indications of a confirmation request

Command issued by partner
transaction

Conversation
state on receipt
of request

EIBCONF
on receipt
of request

EIBRECV
on receipt
of request

EIBFREE
on receipt
of request

SEND CONFIRM confreceive (state
6)

X'FF' X'FF' X'00'

SEND INVITE CONFIRM confsend (state 7) X'FF' X'00' X'00'

SEND LAST CONFIRM conffree (state 8) X'FF' X'00' X'FF'

There are three ways of replying:

1. Reply positively with an ISSUE CONFIRMATION command.

2. Reply negatively with an ISSUE ERROR command. This reply puts the
conversation into send state (state 2) regardless of the partner transaction
request.

3. Abnormally end the conversation with an ISSUE ABEND command. This makes
the conversation unusable and a FREE command must be issued immediately.

Checking the response to SEND CONFIRM
After issuing SEND [INVITE|LAST] CONFIRM, it is important to test EIBERR to
determine the partner’s response. Table 7 on page 34 shows how the partner’s
response is indicated by EIB flags and the conversation states.

Chapter 3. APPC mapped conversation flow 33

Table 7. Indications of responses to SEND CONFIRM

Command issued in reply
by partner transaction

Conversation state on
receipt of response

EIBERR on
receipt of
response

EIBFREE on
receipt of
response

ISSUE CONFIRMATION dependent on original SEND
[INVITE|LAST] CONFIRM
request

X'00' X'00'

ISSUE ERROR receive (state 5) X'FF' X'00'

ISSUE ABEND free (state 12) X'FF' X'FF'

If EIBERR=X'00', the partner has replied ISSUE CONFIRMATION.

If the partner replies ISSUE ERROR, this is indicated by EIBERR=X'FF' and the
first two bytes of EIBERRCD = X'0889'. When the partner replies ISSUE ERROR in
response to SEND LAST CONFIRM, the LAST option is ignored and the
conversation is not terminated. The conversation state is switched to receive state
(state 5).

If the partner replies ISSUE ABEND, your transaction will be abended AZCH. In
addition, EIBERR and EIBFREE are set, and the first two bytes of
EIBERRCD=X'0864'. The conversation is switched to free state.

How to synchronize conversations using SYNCPOINT commands
Data synchronization (the SYNCPOINT and SYNCPOINT ROLLBACK commands)
affects all connected conversations at sync level 2. The use of these commands in
DTP is described in Part 6, “Syncpointing a distributed process,” on page 115.

Ending the conversation
The following sections describe the different ways a conversation can end, either
unexpectedly or under transaction control. To end a conversation, one transaction
issues a request for termination and the other receives this request. Once this has
happened the conversation is unusable and both transactions must issue a FREE
command to release the session.

Normal termination of a conversation
The SEND LAST command is used to terminate a conversation. It should be used
in conjunction with either the WAIT or CONFIRM options, the SYNCPOINT
command, or the WAIT CONVID command (depending on the conversation sync
level). This is described in Table 8.

Table 8. Command sequences for ending a conversation

Sync level Command sequence

0 SEND LAST WAIT
FREE

1 SEND LAST CONFIRM
FREE

2 SEND LAST3

SYNCPOINT
FREE

34 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

From the state tables it can be seen that it is possible to end a conversation by
issuing the FREE command, provided the conversation is in send state (state 2).
This will generate an implicit SEND LAST WAIT command before the FREE is
executed and is therefore not recommended for conversations using sync levels 1
and 2.

Note: A distributed transaction should not end a conversation by issuing an EXEC
CICS RETURN command, but instead follow the sequence of commands
shown in Table 8 on page 34. The issue of an EXEC CICS RETURN could
lead to one or both transactions ending abnormally.

Emergency termination of a conversation
The ISSUE ABEND command provides a means of abnormally ending the
conversation. It is valid for all levels of synchronization, but should be avoided at
sync level 2, because its use at the wrong time can lead to a loss of data integrity.

ISSUE ABEND can be issued by either transaction, irrespective of whether it is in
send or receive state, at any time after the conversation has started. For a
conversation in send state (state 2), any deferred data that is waiting for
transmission is flushed before the ISSUE ABEND command is transmitted.

The transaction that issues the ISSUE ABEND command is not itself abended. It
must, however, issue a FREE command for the conversation unless it is designed
to terminate immediately.

If an ISSUE ABEND command is issued in receive state (state 5), CICS purges all
incoming data until an INVITE, syncpoint request, or LAST indicator is received. If
LAST is received, no abend indication is sent to the partner transaction.

If an ISSUE ABEND is received, CICS abends the transaction with abend code
AZCH, sets on EIBERR(=X'FF'),EIBFREE(=X'FF'), and places X'0864' in the first
two bytes of EIBERRCD.

Unexpected termination of a conversation
If a partner system fails, or a session goes out of service in the middle of a DTP
conversation, the conversation is terminated abnormally and the TERMERR
condition is raised on the next command that accesses the conversation. In
addition, EIBERR and EIBFREE are set on (X'FF') and EIBERRCD contains a value
representing the reason for the error, as follows:

X'08640001' - partner system with persistent session support has failed and
restarted
X'1008600B' - session has failed due to a protocol error
X'A0000100' - temporary session failure
X'A0010100' - RTIMOUT time-out value was exceeded.

3. It is important that the SEND LAST command for sync level 2 is not accompanied by WAIT or CONFIRM because either of these
options will cause the conversation to end before the subsequent syncpoint has propagated to the partner transaction. This may
mean that protected resources of one transaction could be committed while those in the partner transaction could be backed out.
The resulting state errors may also lead to the session being unbound.

Chapter 3. APPC mapped conversation flow 35

Checking the outcome of a DTP command
Checking the response from a DTP command can be separated into three stages:

1. Testing for request failure

2. Testing for indicators received on the conversation

3. Testing the conversation state.

Testing for request failure is the same as for other EXEC CICS commands in that
conditions are raised and can be handled using HANDLE CONDITION or RESP.
EIBRCODE will also contain an error code. Note that when an ISSUE ABEND has
been received, and it is to be handled, a HANDLE ABEND should be used rather
than a HANDLE CONDITION.

If the request has not failed, it is then possible to test for indicators received on the
conversation. These are returned to the application in the EIB. The following EIB
fields are relevant to all DTP commands:

EIBERR
when set to X'FF' indicates an error has occurred on the conversation. The
reason is in EIBERRCD. This could be as a result of an ISSUE ERROR, ISSUE
ABEND, or SYNCPOINT ROLLBACK command issued by the partner
transaction. EIBERR can be set as a result of any command that can be issued
while the conversation is in receive state (state 5) or following any command
that causes a transmission to the partner system. It is safest to test EIBERR in
conjunction with EIBFREE and EIBSYNRB after every DTP command.

EIBERRCD
contains the error code associated with EIBERR. If EIBERR is not set, this field
is not used.

EIBFREE
when set to X'FF' indicates that the partner transaction had ended the
conversation. It should be tested along with EIBERR and EIBSYNC to find out
exactly how to end the conversation.

EIBSIG
when set to X'FF' indicates the partner transaction or system has issued an
ISSUE SIGNAL command.

EIBSYNRB
when set to X'FF' indicates the partner transaction or system has issued a
SYNCPOINT ROLLBACK command. (This is relevant only for conversations at
sync level 2.)

Table 9 shows how these EIB fields interact.

Table 9. Interaction between some EIB fields—all DTP commands

EIB- ERR EIB- FREE EIB-
SYNRB

EIBERRCD Description

X'FF' X'00' X'00' X'08890000'
X'08890001'

The partner transaction has sent ISSUE ERROR

X'FF' X'00' X'00' X'08890100'
X'08890101'

The partner system has sent ISSUE ERROR

X'FF' X'FF' X'00' X'08640000' The partner transaction has sent ISSUE ABEND

X'FF' X'FF' X'00' X'08640001' The partner system has sent ISSUE ABEND

X'FF' X'FF' X'00' X'08640002' A partner resource has timed out

36 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 9. Interaction between some EIB fields—all DTP commands (continued)

EIB- ERR EIB- FREE EIB-
SYNRB

EIBERRCD Description

X'FF' X'FF' X'00' X'1008600B' The session has failed due to a protocol error

X'FF' X'FF' X'00' X'A0000100' A temporary session failure

X'FF' X'FF' X'00' X'A0010100' RTIMOUT has been triggered. (The task has timed out
while waiting for terminal input.)

X'FF' X'FF' X'00' X'10086032' The PIP data sent with the CONNECT PROCESS was
incorrectly specified

X'FF' X'FF' X'00' X'10086034' The partner system does not support mapped
conversations

X'FF' X'FF' X'00' X'080F6051' The partner transaction failed security check

X'FF' X'FF' X'00' X'10086041' The partner transaction does not support the sync level
requested on the CONNECT PROCESS

X'FF' X'FF' X'00' X'10086021' The partner transactions name is not recognized by the
partner system

X'FF' X'FF' X'00' X'084C0000' The partner system cannot start the partner transaction

X'FF' X'FF' X'00' X'084B6031' The partner system is temporarily unable to start the
partner transaction

X'FF' X'00' X'FF' X'08240000' The partner transaction or system has issued
SYNCPOINT ROLLBACK

X'00' X'00' — — The command completed successfully.

In addition, the following EIB fields are relevant only to the RECEIVE and
CONVERSE commands:

EIBCOMPL
when set to X'FF' indicates that all the data sent at one time has been received.
This field is used in conjunction with the RECEIVE NOTRUNCATE command.

EIBCONF
when set to X'FF' indicates that the partner transaction has issued a SEND
CONFIRM command and requires a response.

EIBEOC
when set to X'FF' indicates that an end-of-chain indicator has been received.
This field is normally associated with a successful RECEIVE command.

EIBNODAT
when set to X'FF' indicates that no application data has been received.

EIBRECV
is only used when EIBERR is not set. When EIBRECV is on (X'FF'), another
RECEIVE is required.

EIBSYNC
when set to X'FF' indicates that the partner transaction or system has requested
a syncpoint. (This is relevant only for conversations at sync level 2.)

Table 10 on page 38 shows how some of these EIB fields interact for RECEIVE and
CONVERSE commands.

Chapter 3. APPC mapped conversation flow 37

Table 10. Interaction between some EIB fields—RECEIVE and CONVERSE commands only

EIB- ERR EIB- FREE EIB- RECV EIB- SYNC EIB- CONF Description

X'00' X'00' X'00' X'00' X'00' The partner transaction or system has issued
SEND INVITE WAIT. The local program is now in
send state.

X'00' X'00' X'00' X'FF' X'00' The partner transaction or system has issued
SEND INVITE, followed by a SYNCPOINT. The
local program is now in syncsend state.

X'00' X'00' X'00' X'00' X'FF' The partner transaction or system has issued
SEND INVITE CONFIRM. The local program is now
in confsend state.

X'00' X'00' X'FF' X'00' X'00' The partner transaction or system has issued
SEND or SEND WAIT. The local program is in
receive state.

X'00' X'00' X'FF' X'FF' X'00' The partner transaction or system has issued a
SYNCPOINT. The local program is in syncreceive
state.

X'00' X'00' X'FF' X'00' X'FF' The partner transaction or system has issued a
SEND CONFIRM. The local program is in
confreceive state.

X'00' X'FF' X'00' X'00' X'00' The partner transaction or system has issued a
SEND LAST WAIT. The local program is in free
state.

X'00' X'FF' X'00' X'FF' X'00' The partner transaction or system has issued a
SEND LAST followed by a SYNCPOINT. The local
program is in syncfree state.

X'00' X'FF' X'00' X'00' X'FF' The partner transaction or system has issued a
SEND LAST CONFIRM. The local program is in
conffree state.

After analyzing the EIB fields, you can test the conversation state to determine
which DTP commands you can issue next. See Chapter 4, “State transitions in
APPC mapped conversations,” on page 41.

Checking EIB fields and the conversation state
Most of the information supplied by EIB indicator fields can also be obtained from
the conversation state. Although the conversation state is easier to test, you cannot
ignore EIBERR (and EIBERRCD).

For example, if after a SEND INVITE WAIT or a RECEIVE command has been
issued, the conversation is in receive state (state 5), only EIBERR indicates that
the partner transaction has sent an ISSUE ERROR. This is illustrated in Figure 7 on
page 29 and Figure 8 on page 30.

It should be noted that the state tables provided contain not only states and
commands issued, but also relevant EIB field settings. The order in which these EIB
fields are shown provides a sensible sequence of checks for an application.

38 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Summary of CICS commands for APPC mapped conversations
Table 11 shows the CICS commands used in APPC mapped conversations.

Table 11. Summary of CICS commands used in mapped conversations

Use to ... Sync
levels

CICS command Page

Acquire a session. 0,1,2 ALLOCATE 23

Initiate a conversation. 0,1,2 CONNECT PROCESS 24

Access session-related information. 0,1,2 EXTRACT PROCESS 25

Send data and control information to the
conversation partner.

0,1,2 SEND 27

Receive data from the conversation partner. 0,1,2 RECEIVE 29

Send and receive data on the conversation. 0,1,2 CONVERSE 31

Transmit any deferred data or control
indicators.

0,1,2 WAIT CONVID 27

Reply positively to SEND CONFIRM. 1,2 ISSUE
CONFIRMATION

33

Prepare a conversation partner for
syncpointing.

2 ISSUE PREPARE 118

Inform the conversation partner of a
program-detected error.

0,1,2 ISSUE ERROR 31

Signal an unusual condition to the conversation
partner, usually against the flow of data.

0,1,2 ISSUE SIGNAL 31

Inform the conversation partner that the
conversation should be abandoned.

0,1,2 ISSUE ABEND 35

Free the session. 0,1,2 FREE 34

Inform all conversation partners of readiness to
commit changes to recoverable resources.

2 SYNCPOINT 117

Inform conversation partners of the need to
back out changes to recoverable resources.

2 SYNCPOINT
ROLLBACK

118

For programming information about CICS commands, see the CICS Application
Programming Reference.

Chapter 3. APPC mapped conversation flow 39

40 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 4. State transitions in APPC mapped conversations

This chapter shows the state transitions that occur when transactions engage in
APPC mapped conversations under the EXEC CICS API. The state transitions are
presented in the form of state tables; and there is one table for each of the three
allowable sync levels. The state tables show which commands a transaction can
issue while the conversation is in any given state. They also show how the
conversation state changes as a result of any command.

The chapter contains the following topics:
v “The state tables for APPC mapped conversations”
v “Testing the conversation state” on page 50.

The state tables for APPC mapped conversations
The state tables provide the following information for writing a DTP program. Firstly,
they show which commands can be issued from each conversation state. Secondly,
they show the state transitions that can occur and the EIB fields that can be set as
a result of issuing a command.

How to use the state tables
The commands you can issue, coupled with the EIB flags that can be set after
execution, are shown in column 1 down the left side of each table. Alongside each
command, in column 2, the EIB fields shown are in the order in which the
application should test them. The possible conversation states are shown across
the top of the table. The states correspond to the columns of the table. The
intersection of row (command and EIB flag) and column (state) represents the state
transition, if any, that occurs when that command returning a particular EIB flag is
issued in that state.

A number at an intersection indicates the state number of the next state. Other
symbols represent other conditions, as follows:

Symbol Meaning

N/A Cannot occur.
× The EIB flag is any one that has not been covered in earlier rows, or it is

irrelevant (but see the note on EIBSIG if you want to use ISSUE SIGNAL).
Ab The command is not valid in this state. Issuing a command in a state in

which it is not valid usually causes an ATCV abend.
= Remains in current state.

End End of conversation.

© Copyright IBM Corp. 1991, 2010 41

Table 12. APPC mapped conversations at sync level 0, part 1

Command issued
EIB flag
returned4

ALLO-
CATED11

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

CONNECT PROCESS EIBERR
+ EIBFREE

12 Ab Ab Ab Ab N/A

CONNECT PROCESS 13 × 2 Ab Ab Ab Ab N/A
EXTRACT PROCESS5 × = = = = = N/A
EXTRACT ATTRIBUTES × = = = = = N/A

SEND (any valid form) EIBERR
+ EIBFREE

Ab 12 Ab Ab Ab N/A

SEND (any valid form) EIBERR Ab 5 Ab Ab Ab N/A

SEND INVITE WAIT × Ab 5 Ab Ab Ab N/A
SEND INVITE × Ab 3 Ab Ab Ab N/A
SEND LAST WAIT × Ab 12 Ab Ab Ab N/A
SEND LAST × Ab 4 Ab Ab Ab N/A
SEND WAIT × Ab = Ab Ab Ab N/A
SEND × Ab = Ab Ab Ab N/A

RECEIVE EIBERR
+ EIBFREE

Ab 127 1210 Ab 12 N/A

RECEIVE EIBERR Ab 57 510 Ab = N/A
RECEIVE EIBFREE Ab 127 1210 Ab 12 N/A

RECEIVE EIBRECV Ab 57 510 Ab = N/A
RECEIVE NOTRUNCATE6 EIBCOMPL6 Ab 57 510 Ab = N/A
RECEIVE × Ab =7 210 Ab 2 N/A

CONVERSE8 EIB flags and states as for RECEIVE

ISSUE ERROR EIBFREE Ab 12 12 Ab 12 N/A
ISSUE ERROR × Ab = 2 Ab 2 N/A
ISSUE ABEND × Ab 12 12 12 12 N/A
ISSUE SIGNAL12 × Ab = = Ab = N/A

WAIT CONVID × Ab = 5 12 Ab N/A
FREE × End End 9 Ab End Ab N/A

Note: See page 49 for footnotes.

42 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 13. APPC mapped conversations at sync level 0, part 2

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

N/A N/A N/A N/A N/A Ab N/A Immediately

N/A N/A N/A N/A N/A Ab N/A Immediately
N/A N/A N/A N/A N/A = N/A Immediately
N/A N/A N/A N/A N/A = N/A Immediately

N/A N/A N/A N/A N/A Ab N/A After error detected

N/A N/A N/A N/A N/A Ab N/A After error detected

N/A N/A N/A N/A N/A Ab N/A After data flows
N/A N/A N/A N/A N/A Ab N/A After data buffered
N/A N/A N/A N/A N/A Ab N/A After data flows
N/A N/A N/A N/A N/A Ab N/A After data buffered
N/A N/A N/A N/A N/A Ab N/A After data flows
N/A N/A N/A N/A N/A Ab N/A After data buffered

N/A N/A N/A N/A N/A Ab N/A After error detected

N/A N/A N/A N/A N/A Ab N/A After error detected
N/A N/A N/A N/A N/A Ab N/A After error detected

N/A N/A N/A N/A N/A Ab N/A When data available
N/A N/A N/A N/A N/A Ab N/A When data available
N/A N/A N/A N/A N/A Ab N/A When data available

States as for RECEIVE When data available

N/A N/A N/A N/A N/A Ab N/A After response from partner
N/A N/A N/A N/A N/A Ab N/A After response from partner
N/A N/A N/A N/A N/A Ab N/A Immediately
N/A N/A N/A N/A N/A Ab N/A Immediately

N/A N/A N/A N/A N/A Ab N/A Immediately
N/A N/A N/A N/A N/A End N/A Immediately

Chapter 4. State transitions in APPC mapped conversations 43

Table 14. APPC mapped conversations at sync level 1, part 1

Command issued
EIB flag
returned4

ALLO-
CATED11

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

CONNECT PROCESS EIBERR
+ EIBFREE

12 Ab Ab Ab Ab Ab

CONNECT PROCESS13 × 2 Ab Ab Ab Ab Ab
EXTRACT PROCESS5 × Ab = = = = =
EXTRACT ATTRIBUTES × = = = = = =

SEND (any valid form) EIBERR
+ EIBFREE

Ab 12 12 12 Ab Ab

SEND (any valid form) EIBERR Ab 5 5 5 Ab Ab

SEND INVITE WAIT × Ab 5 Ab Ab Ab Ab
SEND INVITE CONFIRM × Ab 5 Ab Ab Ab Ab
SEND INVITE × Ab 3 Ab Ab Ab Ab
SEND LAST WAIT × Ab 12 Ab Ab Ab Ab
SEND LAST CONFIRM × Ab 12 Ab Ab Ab Ab
SEND LAST × Ab 4 Ab Ab Ab Ab
SEND WAIT × Ab = Ab Ab Ab Ab
SEND CONFIRM × Ab = 5 1214 Ab Ab
SEND × Ab = Ab Ab Ab Ab

RECEIVE EIBERR
+ EIBFREE

Ab 127 1210 Ab 12 Ab

RECEIVE EIBERR Ab 57 510 Ab = Ab
RECEIVE EIBCONF

+ EIBFREE
Ab 87 810 Ab 8 Ab

RECEIVE EIBCONF
+ EIBRECV

Ab 67 610 Ab 6 Ab

RECEIVE EIBCONF Ab 77 710 Ab 7 Ab
RECEIVE EIBFREE Ab 127 1210 Ab 12 Ab

RECEIVE EIBRECV Ab 57 510 Ab = Ab
RECEIVE NOTRUNCATE6 EIBCOMPL6 Ab 57 510 Ab = Ab
RECEIVE × Ab =7 210 Ab 2 Ab

CONVERSE8 EIB flags and states as for RECEIVE

ISSUE CONFIRMATION × Ab Ab Ab Ab Ab 5
ISSUE ERROR EIBFREE Ab 12 12 Ab 12 12
ISSUE ERROR × Ab = 2 Ab 2 2
ISSUE ABEND × Ab 12 12 12 12 12
ISSUE SIGNAL12 × Ab = = Ab = =

WAIT CONVID × Ab = 5 12 Ab Ab
FREE × End End9 Ab End Ab Ab

Note: See page 49 for footnotes.

44 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 15. APPC mapped conversations at sync level 1, part 2

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

Ab Ab N/A N/A N/A Ab N/A Immediately

Ab Ab N/A N/A N/A Ab N/A Immediately
= = N/A N/A N/A = N/A Immediately
= = N/A N/A N/A = N/A Immediately

Ab Ab N/A N/A N/A Ab N/A After error flow detected

Ab Ab N/A N/A N/A Ab N/A After error flow detected

Ab Ab N/A N/A N/A Ab N/A After data flows
Ab Ab N/A N/A N/A Ab N/A After response from partner
Ab Ab N/A N/A N/A Ab N/A After data buffered
Ab Ab N/A N/A N/A Ab N/A After data flows
Ab Ab N/A N/A N/A Ab N/A After response from partner
Ab Ab N/A N/A N/A Ab N/A After data buffered
Ab Ab N/A N/A N/A Ab N/A After data flows
Ab Ab N/A N/A N/A Ab N/A After response from partner
Ab Ab N/A N/A N/A Ab N/A After data buffered

Ab Ab N/A N/A N/A Ab N/A After error detected

Ab Ab N/A N/A N/A Ab N/A After error detected
Ab Ab N/A N/A N/A Ab N/A After confirm flow detected

Ab Ab N/A N/A N/A Ab N/A After confirm flow detected

Ab Ab N/A N/A N/A Ab N/A After confirm flow detected
Ab Ab N/A N/A N/A Ab N/A After error detected

Ab Ab N/A N/A N/A Ab N/A When data available
Ab Ab N/A N/A N/A Ab N/A When data available
Ab Ab N/A N/A N/A Ab N/A When data available

States as for RECEIVE When data available

2 12 N/A N/A N/A Ab N/A Immediately
12 12 N/A N/A N/A Ab N/A After response from partner
2 2 N/A N/A N/A Ab N/A After response from partner
12 12 N/A N/A N/A Ab N/A Immediately
= = N/A N/A N/A Ab N/A Immediately

Ab Ab N/A N/A N/A Ab N/A Immediately
Ab Ab N/A N/A N/A End N/A Immediately

Chapter 4. State transitions in APPC mapped conversations 45

Table 16. APPC mapped conversations at sync level 2, part 1

Command issued
EIB flag
returned4

ALLO-
CATED11

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

CONNECT PROCESS EIBERR
+ EIBFREE

12 Ab Ab Ab Ab Ab

CONNECT PROCESS13 × 2 Ab Ab Ab Ab Ab
EXTRACT PROCESS5 × = = = = = =
EXTRACT ATTRIBUTES × = = = = = =

SEND (any valid form) EIBERR
+ EIBSYNRB

Ab 13 13 13 Ab Ab

SEND (any valid form) EIBERR
+ EIBFREE

Ab 12 12 12 Ab Ab

SEND (any valid form) EIBERR Ab 5 5 5 Ab Ab

SEND INVITE WAIT × Ab 5 Ab Ab Ab Ab
SEND INVITE CONFIRM × Ab 5 Ab Ab Ab Ab
SEND INVITE × Ab 3 Ab Ab Ab Ab
SEND LAST WAIT15 × Ab 12 Ab Ab Ab Ab
SEND LAST CONFIRM15 × Ab 12 Ab Ab Ab Ab
SEND LAST × Ab 4 Ab Ab Ab Ab
SEND WAIT × Ab = Ab Ab Ab Ab
SEND CONFIRM × Ab = 514 1214 Ab Ab
SEND × Ab = Ab Ab Ab Ab

RECEIVE EIBERR
+ EIBSYNRB

Ab 137 1310 Ab 13 Ab

RECEIVE EIBERR
+ EIBFREE

Ab 127 1210 Ab 12 Ab

RECEIVE EIBERR Ab 57 510 Ab = Ab
RECEIVE EIBSYNC

+ EIBFREE
Ab 117 1110 Ab 11 Ab

RECEIVE EIBSYNC
+ EIBRECV

Ab 97 910 Ab 9 Ab

RECEIVE EIBSYNC Ab 107 1010 Ab 10 Ab
RECEIVE EIBCONF

+ EIBFREE
Ab 87 810 Ab 8 Ab

RECEIVE EIBCONF
+ EIBRECV

Ab 67 610 Ab 6 Ab

RECEIVE EIBCONF Ab 77 710 Ab 7 Ab
RECEIVE EIBFREE Ab 127 1210 Ab 12 Ab

RECEIVE EIBRECV Ab 57 510 Ab = Ab
RECEIVE NOTRUNCATE6 EIBCOMPL6 Ab 57 510 Ab = Ab
RECEIVE × Ab =7 210 Ab 2 Ab

CONVERSE8 EIB flags and states as for RECEIVE

Note: See page 49 for footnotes.

46 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 17. APPC mapped conversations at sync level 2, part 2

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

Ab Ab Ab Ab Ab Ab Ab Immediately

Ab Ab Ab Ab Ab Ab Ab Immediately
= = = = = = = Immediately
= = = = = = = Immediately

Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab After data flows
Ab Ab Ab Ab Ab Ab Ab After response from partner
Ab Ab Ab Ab Ab Ab Ab After data buffered
Ab Ab Ab Ab Ab Ab Ab After data flows
Ab Ab Ab Ab Ab Ab Ab After response from partner
Ab Ab Ab Ab Ab Ab Ab After data buffered
Ab Ab Ab Ab Ab Ab Ab After data flows
Ab Ab Ab Ab Ab Ab Ab After response from partner
Ab Ab Ab Ab Ab Ab Ab After data buffered

Ab Ab Ab Ab Ab Ab Ab After rollback flow detected

Ab Ab Ab Ab Ab Ab Ab After error detected

Ab Ab Ab Ab Ab Ab Ab After error detected
Ab Ab Ab Ab Ab Ab Ab After sync flow detected

Ab Ab Ab Ab Ab Ab Ab After sync flow detected

Ab Ab Ab Ab Ab Ab Ab After sync flow detected
Ab Ab Ab Ab Ab Ab Ab After confirm flow detected

Ab Ab Ab Ab Ab Ab Ab After confirm flow detected

Ab Ab Ab Ab Ab Ab Ab After confirm flow detected
Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab When data available
Ab Ab Ab Ab Ab Ab Ab When data available
Ab Ab Ab Ab Ab Ab Ab When data available

States as for RECEIVE When data available

table continued......

Chapter 4. State transitions in APPC mapped conversations 47

Table 18. APPC mapped conversations at sync level 2, part 3

Command issued
EIB flag
returned4

ALLO-
CATED11

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

ISSUE CONFIRMATION × Ab Ab Ab Ab Ab 5
ISSUE ERROR EIBFREE Ab 12 12 Ab 12 12
ISSUE ERROR × Ab = 2 Ab 2 2
ISSUE ABEND × Ab 12 12 12 12 12
ISSUE SIGNAL12 × Ab = = Ab = =

ISSUE PREPARE EIBERR
+ EIBSYNRB

Ab19 13 13 13 Ab19 Ab19

ISSUE PREPARE EIBERR
+ EIBFREE

Ab19 12 12 12 Ab19 Ab19

ISSUE PREPARE EIBERR Ab19 5 5 5 Ab19 Ab19

ISSUE PREPARE × Ab19 1021 921 1121 Ab19 Ab19

SYNCPOINT17 EIBRLDBK = 2 or 518 2 or 518 2 or 518 Ab20 Ab20

SYNCPOINT17 × = = 5 12 Ab20 Ab20

SYNCPOINT ROLLBACK17 × = 2 or 518 2 or 518 2 or 518 2 or 518 2 or 518

WAIT CONVID × Ab = 5 12 Ab Ab
FREE × End End9 Ab End Ab Ab

4. EIBSIG has been omitted. This is because its use is optional and is entirely a matter of agreement between the two conversation
partners. In the worst case, it can occur at any time after every command that affects the EIB flags. However, used for the purpose
for which it was intended, it usually occurs after a SEND command. Its priority in the order of testing depends on the role you give
it in the application.

5. You can issue the EXTRACT PROCESS command from the back-end transaction only.

6. RECEIVE NOTRUNCATE returns a zero value in EIBCOMPL to indicate that the user buffer was too small to contain all the data
received from the partner transaction. Normally, you would continue to issue RECEIVE NOTRUNCATE commands until the last
section of data is passed to you, which is indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area
specified by the RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the LENGERR
condition.

7. Equivalent to SEND INVITE WAIT followed by RECEIVE.

8. Equivalent to SEND INVITE WAIT [FROM] followed by RECEIVE.

9. Equivalent to SEND LAST WAIT followed by FREE.

10. Equivalent to WAIT followed by RECEIVE.

11. Before a session is allocated, there is no conversation, and therefore no conversation state. The EXEC CICS ALLOCATE
command does not appear in the tables. This is because each ALLOCATE gets a session to start a new conversation and does
not affect any conversation that is already in progress. After ALLOCATE is successful, the front-end transaction starts the new
conversation in allocated state.

12. ISSUE SIGNAL sets the partner’s EIBSIG flag.

13. The back-end transaction starts in receive state after the front-end transaction has issued CONNECT PROCESS.

14. No data may be included with SEND CONFIRM.

15. Although CICS allows you to terminate a sync level-2 conversation using the SEND LAST WAIT or SEND LAST CONFIRM
commands, doing this deviates from the APPC architecture and should be avoided. See “CICS deviations from the APPC
architecture” on page 159.

48 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 19. APPC mapped conversations at sync level 2, part 4

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

2 12 Ab Ab Ab Ab Ab Immediately
12 12 12 12 12 Ab Ab After response from partner
2 2 2 2 2 Ab Ab After response from partner
12 12 12 12 12 Ab Ab Immediately
= = =16 =16 =16 Ab Ab Immediately

Ab Ab Ab Ab Ab Ab Ab After response from partner

Ab Ab Ab Ab Ab Ab Ab After error detected

Ab Ab Ab Ab Ab Ab Ab After error detected
Ab Ab Ab Ab Ab Ab Ab After response from partner

Ab20 Ab20 2 or 518 2 or 518 2 or 518 = Ab20 After response from partner
Ab20 Ab20 5 2 12 = Ab20 After response from partner

2 or 518 2 or 518 2 or 518 2 or 518 2 or 518 = 2 or 518 After rollback across UOW

Ab Ab Ab Ab Ab Ab Ab Immediately
Ab Ab Ab Ab Ab End Ab Immediately

16. Where APPC transaction routing is taking place, the ISSUE SIGNAL command is invalid in this state.

17. The commands SYNCPOINT and SYNCPOINT ROLLBACK do not relate to any particular conversation. They are propagated on
all the conversations that are currently active for the task, including MRO conversations.

18. The state of each conversation after rollback depends on several factors:

v The system you are communicating with. Some earlier versions of CICS handle rollback differently from CICS Transaction
Server for z/OS, Version 3 Release 1.

v The conversation state at the beginning of the current distributed unit of work. This state is the one adopted according to the
APPC architecture. CICS Transaction Server for z/OS, Version 3 Release 1 follows the architecture.

A conversation may be in free state after rollback if it has been terminated in one of these ways:

v Abnormally due to session failure or deallocate abend being received

v Because the partner transaction has issued a SEND LAST WAIT or FREE commands.

After a syncpoint or rollback, it is advisable to determine the conversation state before issuing any further commands against the
conversation.

19. This results, not in an ATCV abend, but in an INVREQ return code.

20. This causes an ASP2 abend, not an ATCV.

21. Although ISSUE PREPARE can return with the conversation in either syncsend state, syncreceive state, or syncfree state, the
only commands allowed on that conversation following an ISSUE PREPARE are SYNCPOINT and SYNCPOINT ROLLBACK. All
other commands abend ATCV.

Chapter 4. State transitions in APPC mapped conversations 49

Initial states
A front-end transaction in a conversation must issue an ALLOCATE command to
acquire a session. If the session is successfully allocated, the front-end
transaction’s side of the conversation goes into allocated state (state 1).

A back-end transaction is initially in receive state (state 5).

Testing the conversation state
There are two ways for a transaction to inquire on the current state of one of its
conversations.

The first is to use the EXEC CICS EXTRACT ATTRIBUTES STATE command and
the second is to use the STATE parameter on the DTP commands. In both cases
the current state is returned to the application in a CICS value data area (cvda).
Table 20 shows how the cvda codes relate to the conversation state. The table also
shows the symbolic names defined for these cvda values.

Table 20. The conversation states

States used in this book States used in DTP programs

State name State
number

Symbolic name cvda code

Allocated 1 DFHVALUE(ALLOCATED) 81

Send 2 DFHVALUE(SEND) 90

Pendreceive 3 DFHVALUE(PENDRECEIVE) 87

Pendfree 4 DFHVALUE(PENDFREE) 86

Receive 5 DFHVALUE(RECEIVE) 88

Confreceive 6 DFHVALUE(CONFRECEIVE) 83

Confsend 7 DFHVALUE(CONFSEND) 84

Conffree 8 DFHVALUE(CONFFREE) 82

Syncreceive 9 DFHVALUE(SYNCRECEIVE) 92

Syncsend 10 DFHVALUE(SYNCSEND) 93

Syncfree 11 DFHVALUE(SYNCFREE) 91

Free 12 DFHVALUE(FREE) 85

Rollback 13 DFHVALUE(ROLLBACK) 89

50 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Part 3. Writing programs for MRO conversations

This is the second of four parts detailing the CICS APIs available for DTP
programming.

v Part 2, “Writing programs for APPC mapped conversations,” on page 21

v Part 3, “Writing programs for MRO conversations”

v Part 4, “Writing programs for APPC basic conversations,” on page 67

v Part 5, “Writing programs for LUTYPE6.1 conversations,” on page 101.

The different APIs are compared in Part 1, “Concepts and design considerations,”
on page 1.

Part 3 contains:

v Chapter 5, “MRO conversation flow,” on page 53.

This advises you how to use the EXEC CICS API to write distributed transactions
that use MRO conversations.

v Chapter 6, “State transitions in MRO conversations,” on page 63.

This discusses the state transitions that occur when transactions use MRO
conversations under the EXEC CICS API. The state transitions are presented in
the form of a state table that shows which commands can be issued while the
conversation is in any given state. The table shows how the conversation state
changes as a result of issuing a command.

© Copyright IBM Corp. 1991, 2010 51

52 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 5. MRO conversation flow

This chapter introduces some of the MRO DTP commands. It introduces each
command in the context of a typical conversation flow and ends with a general
discussion on how to test the responses from a DTP command.

The chapter contains the following topics:
v Starting the conversation
v “Transferring data on the conversation” on page 56
v “Safeguarding data integrity” on page 58
v “Ending the conversation” on page 59
v “Checking the outcome of a DTP command” on page 59
v “Summary of commands for MRO conversations” on page 61.

Starting the conversation
This section describes how to get a conversation started. The first two subsections
explain how the front-end transaction and the back-end transaction initiate the
conversation. The third subsection discusses the possibility of conversation initiation
failure. This section also contains program fragments illustrating the commands
described and the suggested response code checks.

Conversation initiation
The front-end transaction is responsible for acquiring a session, specifying the
conversation characteristics and requesting the startup of the back-end transaction
in the partner system.

Allocating a session to the conversation
Initially, there is no conversation, and therefore no conversation state. By issuing an
ALLOCATE command, the front-end transaction acquires a session to start a new
conversation.

The RESP value returned should be checked to ensure that a session has been
allocated. If successfully allocated, DFHRESP(NORMAL), the conversation is in
allocated state (state 1) and the session identifier (convid) from EIBRSRCE must
be saved immediately.

The convid must be used in subsequent commands for this conversation. Figure 9
on page 54 shows a program fragment containing an example of the ALLOCATE
command. You will notice that the PROFILE option has been omitted from the
command.

If the PROFILE option is specified for an MRO link, CICS ignores it at execution
time. So none of the facilities selected through use of a profile (for example,
RTIMEOUT and JOURNALING) are available. The front-end transaction has no
control over its session processing options when an MRO session is being used.

A back-end transaction with an MRO session as its principal facility will be sent the
INBFMH parameter by CICS, regardless of the what the front-end transaction
specifies on the PROFILE option of the ALLOCATE command.

Using ATI to allocate a session
Front-end transactions are often initiated from terminals. But it is also possible to
use the EXEC CICS START command to initiate a front-end transaction on an MRO

© Copyright IBM Corp. 1991, 2010 53

session. When the front-end transaction is successfully started in this way, a
conversation can continue as if an ALLOCATE command had been issued. The only
difference is that an automatically-initiated front-end transaction has the MRO
session as its principal facility.

Connecting the partner transaction
When a session has been acquired, the next step is to cause the partner
transaction to be initiated. The state table shows that, in allocated state (state 1),
one of the commands available is SEND. Using this command, the back-end
transaction’s identifier can be specified in the first four bytes of the data which,
when transferred to the partner system, will be used to attach the required back-end
transaction. The send buffer containing the transaction identifier together with any
other data, will be flushed immediately and the front-end transaction will wait until a
response is received from the back end. Figure 9 shows an example in which a
transaction identifier is sent.

Alternatively, when a session has been acquired, the front-end transaction can build
and send an attach header with the first transmission of data. The attach header
can be built using the BUILD ATTACH command.

When using the BUILD ATTACH command, an eight-character name must be given
to the built attach header which can then be used in the ATTACHID option of the
first SEND (or CONVERSE) command. The back-end transaction identifier should
also be specified.

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-CONVID PIC X(4).
02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.
02 WS-SYSID PIC X(4) VALUE 'SYSB'.
02 WS-PROC PIC X(4) VALUE 'BBBB'.
02 WS-LEN-PROCN PIC S9(5) COMP VALUE +4.

* ...
PROCEDURE DIVISION.
* ...

EXEC CICS ALLOCATE SYSID(WS-SYSID) RESP(WS-RESP) END-EXEC.
IF WS-RESP = DFHRESP(NORMAL)
THEN MOVE EIBRSRCE TO WS-CONVID
ELSE

* ... No session allocated. Examine EIBRCODE.
END-IF.

* ...
EXEC CICS SEND CONVID(WS-CONV) RESP(WS-RESP) STATE(WS-STATE)

FROM(WS-PROC) LENGTH(WS-LEN-PROCN)
END-EXEC.
IF WS-RESP = DFHRESP(NORMAL)
THEN

* ... No errors, conversation started.
ELSE

* ... Conversation not started. Examine EIBRCODE.
END-IF.

Figure 9. Starting an MRO conversation

54 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Back-end transaction initiation
The back-end transaction is initiated either by an attach header received from the
partner system or by a transaction identifier included in the incoming data, and is
started with the session as its principal facility. Initially, the back-end transaction
should determine the convid from EIBTRMID. This is not strictly necessary because
the session is the back-end transaction’s principal facility making the CONVID
parameter optional for DTP commands on this conversation. However, the convid is
very useful for audit trails. Also, if the back-end transaction is involved in more than
one conversation, then always specifying the convid will improve program
readability and problem determination. Figure 10 shows a back-end transaction that
does obtain the convid.

When the back-end transaction receives data, the presence of an attach header is
indicated by either EIBATT or RESP(INBFMH). One of these is normally set after
the back-end transaction issues its first RECEIVE command. The EXTRACT
ATTACH command can be used to access session-related information from the
attach header (for example, the back-end transaction identifier) if required, but it is
not mandatory.

What happens if the back-end transaction fails to start
It is possible that the back-end transaction may fail to start up. This will result in the
front-end transaction abending. Message DFHIR3783 contains the reason for the
error.

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-CONVID PIC X(4).
02 WS-STATE PIC S9(7) COMP.

* ...
01 FILLER.

02 WS-RECORD PIC X(100).
02 WS-MAX-LEN PIC S9(5) COMP VALUE +100.
02 WS-RCVD-LEN PIC S9(5) COMP VALUE +0.

* ...
PROCEDURE DIVISION.
* ...

EXEC CICS ASSIGN FACILITY(WS-CONVID) END-EXEC.
* ...
* Receive data from the front-end transaction.
*

EXEC CICS RECEIVE CONVID(WS-CONVID) STATE(WS-STATE)
INTO(WS-RECORD) MAXLENGTH(WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)

END-EXEC.
*
* ... Check outcome of RECEIVE.
* ...

Figure 10. Startup of a back-end MRO transaction

Chapter 5. MRO conversation flow 55

Transferring data on the conversation
This section discusses how to pass data between the front-end and back-end
transactions. The first subsection explains how to send data, the second describes
how to switch from sending to receiving data, and the third explains how to receive
data. This section also includes an example program fragment, which illustrates the
commands described and the suggested response code checking.

Sending data to the partner transaction
The SEND command is used to send data to the connected partner. This command
is valid in allocated state (state 1) or send state (state 2). Because a successful
simple SEND completes in send state (state 2), it is possible to issue a number of
successive sends.

An example of a simple SEND command can be seen in Figure 11.

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-CONVID PIC X(4).
02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.

* ...
01 FILLER.

02 WS-SEND-AREA PIC X(70).
02 WS-SEND-LEN PIC S9(5) COMP VALUE +70.

* ...
01 FILLER.

02 WS-RCVD-AREA PIC X(100).
02 WS-MAX-LEN PIC S9(5) COMP VALUE +100.
02 WS-RCVD-LEN PIC S9(5) COMP VALUE +0.

* ...
PROCEDURE DIVISION.
* ...

EXEC CICS SEND CONVID(WS-CONVID) RESP(WS-RESP)
STATE(WS-STATE)
FROM(WS-SEND-AREA) LENGTH (WS-SEND-LEN)

END-EXEC.
* ... Check outcome of SEND.
* ...
*

EXEC CICS SEND INVITE CONVID(WS-CONVID)
RESP(WS-RESP) STATE(WS-STATE)

END-EXEC.
* ...
* Receive data from the partner transaction.
*

EXEC CICS RECEIVE CONVID(WS-CONVID)
RESP(WS-RESP) STATE(WS-STATE)
INTO(WS-RCVD-AREA) MAXLENGTH(WS-MAX-LEN)
NOTRUNCATE LENGTH(WS-RCVD-LEN)

END-EXEC.
*
* ... Check outcome of RECEIVE.
* ...

Figure 11. Transferring data on an MRO conversation

56 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Switching from sending to receiving data
The column for send state (state 2) in the state table in Chapter 6, “State
transitions in MRO conversations,” on page 63 shows that there is only one way of
switching from send state (state 2) to receive state (state 5). That is to use a
SEND INVITE command with or without the WAIT option. The state table shows
that after both SEND INVITE and SEND INVITE WAIT, the conversation switches
the current state to receive state (state 5).

An example of a SEND INVITE command can be seen in Figure 11 on page 56.

Receiving data from the partner transaction
The RECEIVE command is used to receive data from the connected partner. The
rows in the state tables for the RECEIVE command show the EIB fields that should
be tested after issuing a RECEIVE command. As well as showing which field should
be tested, the state table also shows the order in which the tests should be made.
Instead of testing some of the EIB fields, you can test the resulting conversation
state; this is shown in Figure 13 on page 58. Note that you should always test the
value returned by the RESP option.

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.

* ...
PROCEDURE DIVISION.
* ...
* Check return code from SEND INVITE

IF WS-RESP = DFHRESP(NORMAL)
THEN

* ... Request successful, check state
IF WS-STATE = DFHVALUE(RECEIVE)
THEN

* ... SEND OK, continue processing
ELSE

* ... Logic error, should never happen
END-IF

ELSE
* ... Examine EIBRCODE for source of error

END-IF.
* ...

Figure 12. Checking the outcome of a SEND INVITE command

Chapter 5. MRO conversation flow 57

Note: In the same way as it is possible to send the INVITE and LAST indicators
with data, it is also possible to receive them with data. Syncpoint requests
may also be received with data. However, indications of conversation failure
are never received with data.

The CONVERSE command
The CONVERSE command combines the functions SEND INVITE and RECEIVE.
This command is useful when one transaction needs a response from the partner
transaction to continue processing.

Safeguarding data integrity
If it is important to safeguard data integrity across connected transactions, then the
following synchronization commands are available:

SYNCPOINT
SYNCPOINT ROLLBACK
SRRCMIT (SAA verb for SYNCPOINT)
SRRBACK (SAA verb for SYNCPOINT ROLLBACK)

The use of these commands in DTP is described in Part 6, “Syncpointing a
distributed process,” on page 115.

* ...
DATA DIVISION.
WORKING-STORAGE SECTION.
* ...
01 FILLER.

02 WS-RESP PIC S9(8) COMP.
02 WS-STATE PIC S9(8) COMP.

* ...
PROCEDURE DIVISION.
* ...
* Check return code from RECEIVE

IF WS-RESP = DFHRESP(NORMAL)
THEN

* ... Request successful, check state
EVALUATE WS-STATE

WHEN DFHVALUE(ROLLBACK)
* ... Partner issued SYNCPOINT ROLLBACK

WHEN DFHVALUE(SYNCFREE)
* ... Partner issued SYNCPOINT and LAST

WHEN DFHVALUE(SYNCRECEIVE)
* ... Partner issued SYNCPOINT

WHEN DFHVALUE(FREE)
* ... Partner issued LAST

WHEN DFHVALUE(SEND)
* ... Partner issued INVITE

WHEN DFHVALUE(RECEIVE)
* ... Processing for receipt of data
* (including EIBCOMPL for incomplete data)

WHEN OTHER
* ... Logic error, should never happen

END-EVALUATE.
ELSE

* ... Examine EIBRCODE for source of error
END-IF.

* ...

Figure 13. Checking the outcome of a RECEIVE command

58 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Ending the conversation
The following sections describe the different ways a conversation can end, either
unexpectedly or under transaction control. To end a transaction, one transaction
issues a request for termination and the other receives this request. Once this has
happened the conversation is unusable and both transactions must issue a FREE
command to release the session.

Ending a conversation normally
The SEND LAST command is used to terminate a conversation. It should be used
in conjunction with either the WAIT option or the SYNCPOINT command, and
followed by the FREE command. However, SEND LAST WAIT causes the
conversation to end before any subsequent syncpoint can be propagated to the
partner transaction. This may mean that the protected resources in one system
could be committed whilst those in the other system could be backed out.

From the state table it can be seen that it is possible to end a conversation by
issuing the FREE command provided the conversation is in send state (state 2).
This generates an implicit SEND LAST WAIT command before the FREE is
executed and therefore is not recommended.

Note: A distributed transaction should not end a conversation by issuing an EXEC
CICS RETURN command, but instead follow the sequence of commands
described above. The issue of an EXEC CICS RETURN could lead to one or
both transactions ending abnormally.

Unexpected termination of a conversation
If a partner systems fails, or a session goes out of service in the middle of a DTP
conversation, the transaction is terminated abnormally.

Checking the outcome of a DTP command
Checking the response from a DTP command can be separated into three stages:

1. Testing for request failure

2. Testing for indicators received on the conversation

3. Testing the conversation state.

Testing for request failure is the same as for other EXEC CICS commands in that
conditions are raised and may be handled using HANDLE CONDITION or RESP.
EIBRCODE will also contain an error code.

If the request has not failed, it is possible to test for indicators received on the
conversation. These are returned to the application in the EIB. The following EIB
fields are relevant to all MRO DTP commands. (See the CICS Application
Programming Reference for programming information on the contents and format of
EIB fields.)

EIBFREE
when set to X'FF' indicates that the partner transaction has ended the
conversation. It should be tested in conjunction with EIBSYNC to determine
exactly how to end the conversation.

EIBSYNC
when set to X'FF' indicates the partner transaction has requested a syncpoint.

Chapter 5. MRO conversation flow 59

EIBSYNRB
when set to X'FF' indicates the partner transaction has issued a SYNCPOINT
ROLLBACK command.

Table 21 shows how these EIB fields interact.

Table 21. Interaction of some EIB fields

EIB- FREE EIB- SYNRB EIB- SYNC Description

X'00' X'FF' X'00' The partner transaction or system has
issued SYNCPOINT ROLLBACK.

X'FF' X'00' X'00' The partner transaction or system has
issued SEND LAST followed by a FREE
command.

X'FF' X'00' X'FF' The partner transaction or system has
issued SEND LAST followed by
SYNCPOINT. The local program should
reply with a SYNCPOINT command
followed by a FREE command.

X'00' X'00' X'FF' The partner transaction or system has
issued a SYNCPOINT.

In addition the following EIB fields are relevant only to the RECEIVE and
CONVERSE commands:

EIBATT
when set to X'FF' indicates that the data received contained an attach header.
The attach header is not passed to the application; however, EIBATT indicates
that an EXTRACT ATTACH command is appropriate.

EIBCOMPL
when set to X'FF' indicates that all the data sent at one time has been received.
This field is used in conjunction with the RECEIVE NOTRUNCATE command.

EIBFMH
when set to X'FF' indicates that the data passed to the application contains a
concatenated Function Management Header (FMH). This happens only when
the partner CICS transaction builds an FMH in the data and the FMH option on
the SEND command is specified.

EIBRECV
when set to X'00' indicates the partner transaction used the INVITE or LAST
option on its last SEND command. When set on (X'FF'), EIBRECV indicates
that another RECEIVE is required.

After the EIB fields have been analyzed, it is possible to test the conversation state
to determine which DTP commands may be issued next. See Chapter 6, “State
transitions in MRO conversations,” on page 63.

Note: CICS ignores the profile you specify on the PROFILE option of the
ALLOCATE for an MRO link and instead uses the default profile. This
enables FMHs to be sent and received and EIBATT or EIBFMH to be set
appropriately. The default profile DFHCICSA, used for the session allocated
by the front-end transaction, has INBFMH (ALL) specified. The default
principal facility profile DFHCICST used for the back-end transaction does
not have INBFMH (ALL) specified.

60 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Checking EIB fields and the conversation state
Most of the information supplied by the EIB indicator fields can be obtained from
the conversation state. However, there are some EIB fields that you cannot ignore.
For example, when the conversation remains in receive state (state 5) after a
RECEIVE command has been issued, only EIBFMH indicates that the partner
transaction has sent an FMH.

Note that the state table provided in Chapter 6, “State transitions in MRO
conversations,” on page 63 contains not only states and commands issued, but also
relevant EIB fields settings. The order in which the EIB fields are shown provides a
sensible sequence for checking them in an application.

Summary of commands for MRO conversations
Table 22 shows the commands used in MRO conversations.

Table 22. Summary of CICS commands used in MRO conversations

Use to ... Command Page

Acquire a session. ALLOCATE 53

Build an attach header. BUILD ATTACH 54

Access session-related information. EXTRACT ATTACH 55

Send data and control information to the
conversation partner.

SEND 56

Receive data from the conversation partner. RECEIVE 57

Send and receive data on the conversation. CONVERSE 58

Inform all conversation partners of readiness to
commit recoverable resources.

SYNCPOINT 117

Inform conversation partners of the need to back out
changes to recoverable resources.

SYNCPOINT ROLLBACK 118

Free the session. FREE 59

For programming information about CICS commands, see the CICS Application
Programming Reference.

Chapter 5. MRO conversation flow 61

62 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 6. State transitions in MRO conversations

This chapter shows the state transitions that occur when transactions engage in
MRO conversations. The state transitions are presented in the form of a state table.
The state table shows which commands a transaction can issue while the
conversation is in any given state. It also shows how the conversation state
changes as a result of any command.

The state table for MRO conversations
The state table provides the following information for writing a DTP program. Firstly,
it shows which commands can be issued from each conversation state. Secondly, it
shows the results of issuing a command in terms of state transactions and EIB
fields.

How to use the state table
The commands you can issue, coupled with the EIB flags that can be set after
execution, are shown down the left side of the table. These commands correspond
to the rows of the table. The possible conversation states are shown across the top
of the table. The states correspond to the columns of the table. The intersection of
row (command and EIB flag) and column (state) represents the state transition, if
any, that occurs when that command returning a particular EIB flag is issued in that
state. The order in which EIB flags are shown with a command is the order in which
you should test the EIB flags in your program.

A number at an intersection indicates the state number of the next state. Other
symbols represent other conditions, as follows:

Symbol Meaning

N/A Cannot occur.
× The EIB flag is any one that has not been covered in earlier rows, or it is

irrelevant.
Ab The command is not valid in this state. Issuing a command in a state in

which it is not valid usually causes an AZI1 abend.
= Remains in current state.

End End of conversation.

© Copyright IBM Corp. 1991, 2010 63

Table 23. MRO conversation states, part 1

Command issued
EIB flag
returned4

ALLO-
CATED11

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

BUILD ATTACH × = = N/A = Ab N/A
EXTRACT ATTACH × = = N/A = = N/A
EXTRACT ATTRIBUTES × = = N/A = = N/A

SEND INVITE WAIT23 × 5 5 N/A Ab Ab N/A
SEND INVITE × 5 5 N/A Ab Ab N/A
SEND LAST WAIT23 × 12 12 N/A Ab Ab N/A
SEND LAST × 4 4 N/A Ab Ab N/A
SEND × 2 = N/A Ab Ab N/A

RECEIVE EIBSYNC
+ EIBFREE
+ EIBCOMPL

Ab Ab N/A Ab 11 N/A

RECEIVE EIBSYNC
+ EIBRECV
+ EIBCOMPL

Ab Ab N/A Ab 9 N/A

RECEIVE EIBSYNRB
+ EIBCOMPL

Ab Ab N/A Ab 13 N/A

RECEIVE EIBFREE Ab Ab N/A Ab 12 N/A
RECEIVE EIBRECV Ab Ab N/A Ab = N/A
RECEIVE NOTRUNCATE24 EIBCOMPL24 Ab Ab N/A Ab = N/A
RECEIVE × Ab Ab N/A Ab 2 N/A

CONVERSE25 EIB flags and states as for RECEIVE but allowed in send state

SYNCPOINT29 EIBRLDBK = 2 or 528 N/A 2 or 528 Ab22 N/A
SYNCPOINT29 × = = N/A 12 Ab22 N/A

SYNCPOINT ROLLBACK29 × = 2 or 528 N/A 2 or 528 2 or 528 N/A

FREE × End26 End26 N/A End Ab N/A

22. This causes an ASP1 abend, not AZI1.

23. The option WAIT on the SEND command does not flush data on MRO conversations. But it may affect the move to the next
state.

24. RECEIVE NOTRUNCATE returns a zero value in EIBCOMPL to indicate that the user buffer was too small to contain all the data
received from the partner transaction. Normally, you would continue to issue RECEIVE NOTRUNCATE commands until the last
section of data is passed to you, which is indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area
specified by the RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the
LENGERR condition.

25. Equivalent to:

SEND INVITE [FROM]
RECEIVE

26. Equivalent to:

SEND LAST WAIT
FREE

64 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 24. MRO conversation states, part 2

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

N/A N/A = N/A = = = Immediately
N/A N/A = N/A = = = Immediately
N/A N/A = N/A = = = Immediately

N/A N/A Ab N/A Ab Ab Ab After data and CD flows
N/A N/A Ab N/A Ab Ab Ab After data and CD flows
N/A N/A Ab N/A Ab Ab Ab After data and EB flows
N/A N/A Ab N/A Ab Ab Ab After data flows
N/A N/A Ab N/A Ab Ab Ab After data flows

N/A N/A Ab N/A Ab Ab Ab After sync flow detected

N/A N/A Ab N/A Ab Ab Ab After sync flow detected

N/A N/A Ab N/A Ab Ab Ab After rollback flow detected

N/A N/A Ab N/A Ab Ab Ab After EB detected
N/A N/A Ab N/A Ab Ab Ab When data available
N/A N/A Ab N/A Ab Ab Ab When data available
N/A N/A Ab N/A Ab Ab Ab When data available

States as for RECEIVE When data available

N/A N/A 2 or 528 N/A 2 or 528 = Ab After response from partner
N/A N/A 5 N/A 12 = Ab After response from partner

N/A N/A 2 or 528 N/A 2 or 528 = 2 or 528 After rollback across UOW

N/A N/A Ab N/A Ab End Ab Immediately

27. Before a session is allocated, there is no conversation, and therefore no conversation state. The ALLOCATE command does not
appear in the table. This is because each ALLOCATE gets a session to start a new conversation and does not affect any
conversation that is already in progress. After ALLOCATE is successful, the front-end transaction starts the new conversation in
allocated state.

You select the partner transaction program by issuing a SEND command or a CONVERSE command. You have the choice of
identifying the transaction program either in the first four bytes of the user data or in the attach function management header built
by the BUILD ATTACH command.

The back-end transaction starts in receive state.

28. The state of each conversation after rollback depends on several factors:

v The system you are communicating with. Some earlier versions of CICS handle rollback differently from CICS Transaction
Server for z/OS, Version 3 Release 1.

v The conversation state at the beginning of the current distributed unit of work. This state is the one adopted according to the
APPC architecture. CICS Transaction Server for z/OS, Version 3 Release 1 follows the architecture.

Always use the EXTRACT ATTRIBUTES STATE command or the STATE option on the EXEC CICS commands to determine the
conversation state.

29. The commands SYNCPOINT and SYNCPOINT ROLLBACK do not relate to any particular conversation, but are propagated on
all the conversations that are currently active for the task, including APPC conversations.

Chapter 6. State transitions in MRO conversations 65

Initial states
A front-end transaction in a conversation must issue an ALLOCATE command to
acquire a session. If the session is successfully allocated, the front end’s side of the
conversation goes into allocated state (state 1).

A back-end transaction is initially in receive state (state 5).

Testing the conversation state
There are two ways for an application to inquire on the current conversation state.
The first is to use the EXEC CICS EXTRACT ATTRIBUTES STATE command and
the second is to use the STATE parameter on the DTP commands. In both cases
the current state is returned to the application in a CICS-value data area (cvda).
Table 25 shows how the cvda codes relate to the conversation state. It also shows
the symbolic names defined for the cvda values.

Table 25. The conversation states

States used in this book States used in DTP programs

State name State number Symbolic name cvda code

Allocated 1 DFHVALUE(ALLOCATED) 81

Send 2 DFHVALUE(SEND) 90

Pendfree 4 DFHVALUE(PENDFREE) 86

Receive 5 DFHVALUE(RECEIVE) 88

Syncreceive 9 DFHVALUE(SYNCRECEIVE) 92

Syncfree 11 DFHVALUE(SYNCFREE) 91

Free 12 DFHVALUE(FREE) 85

Rollback 13 DFHVALUE(ROLLBACK) 89

66 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Part 4. Writing programs for APPC basic conversations

This is the third of four parts detailing the CICS APIs available for DTP
programming.

v Part 2, “Writing programs for APPC mapped conversations,” on page 21

v Part 3, “Writing programs for MRO conversations,” on page 51

v Part 4, “Writing programs for APPC basic conversations”

v Part 5, “Writing programs for LUTYPE6.1 conversations,” on page 101.

The different APIs are compared in Part 1, “Concepts and design considerations,”
on page 1.

Part 4 contains:

v Chapter 7, “APPC basic conversation flow,” on page 69.

This describes how to write APPC basic conversations using the EXEC CICS
GDS interface. To use this interface, the application must insert the data to be
sent into GDS (generalized data stream) records and extract it from records
received. This part describes the format of GDS records and a possible strategy
for building them.

Note that CICS applications that use the APPC basic interface can be
written only in assembler language or C.

v Chapter 8, “State transitions in APPC basic conversations,” on page 91.

This discusses the state transitions that occur when transactions use APPC basic
conversations under the EXEC CICS GDS API. The state transitions are
presented in the form of state tables showing which commands can be issued
while a conversation partner is in any given state. The tables also show how the
conversation state changes as a result of issuing a command.

For further information about the APPC architecture, see Peer Protocols,
SC30-3269 and LU6.2 Reference: Verb Descriptions, GC30-3084. For information
about the mapping between APPC verbs and CICS commands, see Appendix A,
“CICS mapping to the APPC architecture,” on page 145.

© Copyright IBM Corp. 1991, 2010 67

68 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 7. APPC basic conversation flow

This chapter introduces some of the GDS commands. It introduces each command
in the context of a typical conversation flow and ends with a general discussion of
how to test the outcome of a GDS command. Although the examples are given in
assembler, it is also possible to write C programs for APPC basic conversations.

The chapter contains the following topics:
v Starting the conversation
v “Sending data to the partner transaction” on page 73
v “Receiving data from the partner transaction” on page 75
v “Communicating errors across a conversation” on page 78
v “Safeguarding data integrity” on page 79
v “Ending the conversation” on page 81
v “Checking the outcome of GDS commands” on page 83
v “Summary of commands for APPC basic conversations” on page 89.

Starting the conversation
This section describes how to get a conversation started. The first two subsections
explain how the front-end transaction and the back-end transaction initiate the
conversation, and the third subsection considers the possibility of conversation
initiation failure. This section also contains program fragments illustrating the
commands described and the suggested response code checking.

Conversation initiation
The front-end transaction is responsible for acquiring a session, specifying the
conversation characteristics, and requesting the startup of the back-end transaction
in the partner system.

Allocating a session to the conversation
Initially, there is no conversation, and therefore no conversation state. By issuing a
GDS ALLOCATE command, the front-end transaction acquires a session to start a
new conversation.

RETCODE should be checked to ensure that a session has really been allocated. If
successfully allocated (RETCODE = X'00'), the conversation is in allocated state
(state 1) and the session identifier (convid) is placed in the data area specified on
the CONVID parameter.

The convid must be used in subsequent commands for this conversation. Figure 14
on page 70 shows an example of a GDS ALLOCATE command.

Note: If the remote system is using VTAM persistent session support, you may
need to code a timeout value on the GDS ALLOCATE command. See “Using
VTAM persistent session support” on page 18.

Using ATI to allocate a session
Front-end transactions are often initiated from terminals. But it is also possible to
use the EXEC CICS START command to initiate a front-end transaction on an
APPC session. When this is done, and the front-end transaction is successfully
started, a conversation can continue as if a GDS ALLOCATE command had been
issued. The only difference is that, when ATI is used, the APPC session is the

© Copyright IBM Corp. 1991, 2010 69

front-end transaction’s principal facility.

Connecting the partner transaction
When the front-end transaction has acquired a session, the next step is to initiate
the partner transaction. The state tables show that, in the allocated state (state 1),
one of the commands available is GDS CONNECT PROCESS. This command is
used to attach the required back-end transaction. It should be noted that the results
of the GDS CONNECT PROCESS are placed in the send buffer and are not sent
immediately to the partner system. Transmission occurs when the send buffer is
flushed, either by sending more data than fits in the send buffer or by issuing a
GDS WAIT command.

A successful GDS CONNECT PROCESS causes the conversation state to switch to
send state (state 2). Figure 14 is a program fragment showing an example of a
GDS CONNECT PROCESS.

Note: For clarity, the EXEC CICS GDS ALLOCATE and GDS CONNECT
PROCESS commands shown in Figure 14 identify the partner LU and
transaction explicitly. To avoid doing this, you could use the PARTNER option
of these commands. This specifies a set of definitions that include the names
of the partner LU, the communication profile to be used on the session, and
the partner transaction. Thus, in Figure 14, the PARTNER option could be
used instead of SYSID on the EXEC CICS GDS ALLOCATE command, and
instead of PROCNAME and PROCLENGTH on the EXEC CICS GDS
CONNECT PROCESS command. The advantage of using PARTNER is that

* ...
EXEC CICS GDS ALLOCATE SYSID(WSYSID) CONVID(WCONVID) *

STATE(WSTATE) RETCODE(WRETC)
*
* Check outcome of GDS ALLOCATE
*

NC WRETC,WRETC
BNZ ALLOCERR No session allocated, check RETCODE

* ...
EXEC CICS GDS CONNECT PROCESS CONVID(WCONVID) STATE(WSTATE) *

PROCNAME(WPROC) *
PROCLENGTH(WLENPROC) *
SYNCLEVEL(WSYNCLVL) *

CONVDATA(WCDB) RETCODE(WRETC)
NC WRETC,WRETC
BNZ CONNERR Request failed, analyze RETCODE

* ... No errors, conversation started.
NC CDBERR,CDBERR
BNZ SESSERR Session failed, examine RETCODE.

* ... Start sending data.
* ...
WSTATE DS F
WRETC DS XL6
WCDB DS 0CL24

COPY DFHCDBLK
WCONVID DS CL4
WSYSID DC CL4'SYSB'
WPROC DC CL4'BBBB'
WLENPROC DC F'4'
WSYNCLVL DC F'2'
* ...

Figure 14. Starting an APPC basic conversation at sync level 2

70 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

it makes your DTP programs more maintainable: the details of each partner
program can be held in a single definition. For details of the PARTNER
resource, see the CICS Resource Definition Guide.

Initial data for the back-end transaction
While connecting the back-end transaction, the front-end transaction can send initial
data to it. This kind of data, called program initialization parameters (PIPs), is
placed in specially formatted structures and specified on the GDS CONNECT
PROCESS command. The PIPLIST (along with PIPLENGTH) option of the GDS
CONNECT PROCESS command is used to send PIPs to the back-end transaction.

To examine any PIPs received, the back-end transaction uses the GDS EXTRACT
PROCESS command.

PIP data is used only by the two connected transactions and not by the CICS
systems. APPC systems other than CICS may not support PIP, or may support it
differently.

The PIP data must be formatted into one or more subfields according to the
SNA-architected rules. The content of each subfield is defined by the application
developer. You should format PIP data as follows:

CICS inserts information in the reserved fields so that the PIP is architecturally
correct. The PIPLENGTH option must specify the total length of the PIP list and
must be between 4 and 32763.

Back-end transaction initiation
A back-end transaction is initiated as a result of the front end’s GDS CONNECT
PROCESS command. Initially the back-end transaction should determine the
convid. Figure 16 on page 72 shows a fragment of a back-end transaction that uses
the EXEC CICS GDS ASSIGN command to obtain the convid. The back-end
transaction can also obtain the transaction identifier and sync level used to start the
conversation. The GDS EXTRACT PROCESS command is used to obtain this
information.

The back-end transaction starts in receive state (state 5). So, after obtaining the
convid, the back-end transaction can issue a GDS RECEIVE command.

L1 rr PIP1 L2 rr PIP2 Ln rr PIPn

Figure 15. Format of PIP data.

PIP data consists of one or more subfields; each subfield contains

v A halfword binary integer specifying the total length of the subfield in bytes

v A reserved halfword

v The PIP data itself

The length includes the length field itself and the length of the reserved field; that is, if the
PIP field is n bytes long, then the length field contains n + 4.

Chapter 7. APPC basic conversation flow 71

What happens if the back-end transaction fails to start up
It is possible that the back-end transaction fails to start up. However, because of the
transmission delay mechanism in APPC, the front-end transaction is not informed of
this fact until the conversation has been active long enough for responses from the
back-end system to be received. The front-end transaction is informed of this via
CDBERR and CDBFREE. In addition, CDBERRCD is set as shown in Table 26.

Table 26. Some indications of back-end failure

CDBERRCD value Reason

10086032 The PIP data sent with the GDS CONNECT PROCESS was
incorrectly specified.

10086034 The partner system does not support basic conversations.

080F6051 The partner transaction failed security check.

10086041 The partner transaction does not support the sync level
requested on the GDS CONNECT PROCESS.

10086021 The partner system does not recognize the requested
transaction identifier.

084C0000 The partner system cannot start the partner transaction.

084B6031 The partner system is temporarily unable to start the partner
transaction.

Before sending data, the front-end transaction should find out whether the back end
transaction has started successfully. One way of doing this is to issue a GDS SEND
CONFIRM command directly after the GDS CONNECT PROCESS. This causes the
front-end transaction to be suspended until the back end transaction has responded
or the back-end system has sent the failure notification described above.

* ...
EXEC CICS GDS ASSIGN PRINCONVID(WCONVID) RETCODE(WRETC)

*
* ...
*

EXEC CICS GDS EXTRACT PROCESS CONVID(WCONVID) *
PROCNAME(WPROC) RETCODE(WRETC) *
PROCLENGTH(WLENPROC) *

SYNCLEVEL(WSYNCLVL)
* ...
* Receive first data from front-end transaction.
* ...
*
WSTATE DS F
WRETC DS XL6
WCDB DS 0CL24

COPY DFHCDBLK
WCONVID DS CL4
WPROC DS CL4
WLENPROC DS F
WSYNCLVL DS F
* ...

Figure 16. Startup of a back-end transaction

72 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Sending data to the partner transaction
To send data on an APPC basic conversation, an application must format the data
into generalized data stream (GDS) records. A GDS record contains a 16-bit
(2-byte) header followed by the application data. The 16 bits of the header consist
of the following fields:

Concatenation bit
This is the high-order bit of the first byte of the header. An application program
can use it to group records together logically. This bit does not affect the way
CICS processes the records.

LL This is the rest of the header (15 bits). It specifies the overall length of the data
(including the length of the header).

Figure 17 shows the format of GDS records.
Up to 32 765 bytes of application data can be accommodated in one GDS record.

Data formatted into GDS records can be transmitted by the GDS SEND command.
This command is valid only in send state (state 2).

Because a simple GDS SEND keeps the conversation in send state (state 2), you
can issue a number of successive sends. You need not issue a GDS SEND for
every record to be sent; you can send partial or multiple records at a time.
However, make sure that the last logical record is complete when you use the
INVITE, LAST, or CONFIRM options, and before you issue a syncpoint request.

Figure 18 is an example of the use of GDS SEND commands.

Concatenation bit
LL
Data

Value in LL

Figure 17. Format of GDS records

GDS SEND
GDS SEND
GDS SEND
GDS SEND INVITE WAIT

Record 1 Record 2 Record 3 Record 4

Figure 18. An example of the use of GDS SEND commands.

The data to be sent consists of four logical records:

1. A GDS SEND command is used to transmit the whole of record 1, and the first portion of
record 2.

2. A GDS SEND command is used to transmit the second portion of record 2.

3. A GDS SEND command is used to transmit the remaining portion of record 2, the whole
of record 3, and the first portion of record 4.

4. A GDS SEND INVITE WAIT command is used to transmit the remaining portion of record
4.

Chapter 7. APPC basic conversation flow 73

This flexibility also allows you to use separate GDS SEND commands for the GDS
header and the application data—a useful technique to avoid shifting data into
storage contiguous with its GDS header. The program fragment in Figure 19 uses
this technique.

The records from a simple GDS SEND command are initially stored in a local CICS
buffer which is “flushed” either when this buffer is full or when the transaction
requests transmission. The transaction can request transmission either by using a
GDS WAIT command or by using the WAIT option on the GDS SEND command.
The reason transmission is deferred is to reduce the number of calls to the network.
However, the application should use GDS WAIT if the partner transaction requires
the data to continue processing.

Switching from sending to receiving data
To switch from sending to receiving records, use a GDS SEND INVITE command
with the WAIT or CONFIRM option. This switches the conversation from send state
(state 2) to receive state (state 5). An example of a GDS SEND INVITE WAIT
command can be seen in Figure 19. Figure 25 on page 89 illustrates the
response-testing sequence.

* ...
LA R5,L'SENDHDR+LEN'SENDDATA Compute LL value
STH R5,SENDHDR Place length in LL
LA R5,L'SENDHDR Length of GDS header
ST R5,SENDLEN into send length field
EXEC CICS GDS SEND FROM(SENDHDR) FLENGTH(SENDLEN) *

CONVID(WCONVID) RETCODE(WRETC) *

STATE(WSTATE) CONVDATA(WCDB)
*
* ... Check outcome of the SEND
* ...

LA R5,L'SENDDATA Length of application data
ST R5,SENDLEN into send length field
EXEC CICS GDS SEND FROM(SENDDATA) FLENGTH(SENDLEN) *

CONVID(WCONVID) RETCODE(WRETC) *

STATE(WSTATE) CONVDATA(WCDB)
*
* ... Check outcome of the SEND
* ...

EXEC CICS GDS SEND INVITE WAIT *
CONVID(WCONVID) RETCODE(WRETC) *

STATE(WSTATE) CONVDATA(WCDB)
*
* ... Check outcome of SEND INVITE WAIT

* ...
*
WSTATE DS F
WRETC DS XL6
WCDB DS 0CL24

COPY DFHCDBLK
WCONVID DS CL4
SENDDATA DS CL100
SENDLEN DS F
SENDHDR DS H
* ...

Figure 19. Sending data on an APPC basic conversation

74 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

For further information on the CONFIRM option, see “How to synchronize
conversations using CONFIRM commands” on page 79.

Receiving data from the partner transaction
The GDS RECEIVE command is used to receive data from the connected partner
transaction. The rows in the state tables for the GDS RECEIVE command show the
CONVDATA fields that should be tested after issuing a GDS RECEIVE command.
As well as showing which fields should be tested, the state tables also show the
order in which the tests should be made. As an alternative to testing some of the
CONVDATA fields it is possible to test the resulting conversation state. This is
shown in Figure 24 on page 88. Note that both RETCODE and CDBERR should
always be tested.

The amount of data received is determined by:

v How much the conversation partner sent

v The value supplied on the MAXFLENGTH option

v Whether the LLID or BUFFER option is used.

The first factor is obvious: the application cannot receive more than is sent. The
value of MAXFLENGTH is an upper limit; CICS never returns more bytes than this
value specifies. The LLID and BUFFER options enable the application to specify
how CICS is to treat the data. This is described in Receiving data by the record and
“Receiving data by the buffer” on page 77.

In the same way as it is possible to send GDS records with the INVITE, LAST, or
CONFIRM option, it is also possible to receive them together. Syncpoint requests
can also be received with GDS records. However, GDS ISSUE ERROR, GDS
ISSUE ABEND, and indications of conversation failure are received by themselves
—never with GDS records.

An example of a GDS RECEIVE command can be seen in Figure 20 on page 76.
Figure 24 on page 88 illustrates the response testing sequence.

Chapter 7. APPC basic conversation flow 75

Receiving data by the record
If you specify the LLID option on a GDS RECEIVE command, the data is
considered as a series of GDS records. On each GDS RECEIVE request, data is
received from not more than one record. If the record is longer than the value
specified in the MAXFLENGTH option, two or more RECEIVE commands are
required to recover the whole record. CDBCOMPL is set on when the end of a GDS
record has been received. Consider the example shown in Figure 21 on page 77.

* ...
RECVLOOP DS 0H

LA R5,L'RECVHDR Length of GDS header
ST R5,RECVMAX as maximum receive length

* Receive GDS header from partner transaction
EXEC CICS GDS RECEIVE INTO(RECVHDR) MAXFLENGTH(RECVMAX) *

LLID FLENGTH(RECVLEN) *
CONVID(WCONVID) RETCODE(WRETC) *

STATE(WSTATE) CONVDATA(WCDB)
*
* ... Check outcome of the GDS RECEIVE
* ...

LA R5,L'RECVAREA Length of application buffer
ST R5,RECVMAX as maximum receive length

* Receive application data from partner transaction
EXEC CICS GDS RECEIVE INTO(RECVAREA) MAXFLENGTH(RECVMAX) *

LLID FLENGTH(RECVLEN) *
CONVID(WCONVID) RETCODE(WRETC) *

STATE(WSTATE) CONVDATA(WCDB)
* ...
* ... Check outcome of the GDS RECEIVE
* ... (including CDBCOMPL).

B RECVLOOP Loop while in receive state
* ...
*
WSTATE DS F
WRETC DS XL6
WCDB DS 0CL24

COPY DFHCDBLK
WCONVID DS CL4
RECVAREA DS CL100
RECVMAX DS F
RECVLEN DS F
RECVHDR DS H
* ...

Figure 20. Receiving data on an APPC basic conversation

76 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

The first RECEIVE command receives the front portion of the first record. The
length received is restricted by the MAXFLENGTH value (MAXFL1). The second
RECEIVE command receives the rest of the first logical record. Even though the
MAXFLENGTH value (MAXFL2) allows more data to be received, this cannot be
done without breaking the LL boundary rule. The third RECEIVE command is for
two bytes of data (the LL field). The fourth RECEIVE command receives the rest of
the second record.

The application can tell if a complete record has been received, because
CDBCOMPL is set (X'FF'). So, in the example given above, CDBCOMPL is set on
after the second and fourth RECEIVE commands. CDBCOMPL is set off (X'00')
after the first and third RECEIVE commands.

Receiving data by the buffer
Unlike the LLID option, the BUFFER option does not respect GDS record
boundaries. If the MAXFLENGTH value allows, bytes will be received for more than
one record. A GDS RECEIVE command with the BUFFER option recovers the
length of data specified in the MAXFLENGTH option, ignoring GDS record
boundaries. CICS does not return control to the application program until this length
of data has been received or the partner transaction sends the INVITE or LAST
option.

Figure 22 on page 78 shows the effect of the BUFFER option on the same four
RECEIVE commands discussed in “Receiving data by the record” on page 76.

MAXFL3

LL LL \\

MAXFL1 MAXFL2
MAXFL4

GDS RECEIVE LLID MAXFLENGTH(MAXFL1)
GDS RECEIVE LLID MAXFLENGTH(MAXFL2)
GDS RECEIVE LLID MAXFLENGTH(MAXFL3)
GDS RECEIVE LLID MAXFLENGTH(MAXFL4)

Figure 21. An example of the effect of the LLID option.

The data to be received consists of two logical records:

1. A GDS RECEIVE LLID command specifying MAXFLENGTH(maxfl1) is issued. This
returns the first portion of the first record. CDBCOMPL is set to X'00', indicating that a
complete record has not been received.

2. A GDS RECEIVE LLID comand specifying MAXFLENGTH(maxfl2) is issued; because
maxfl2 exceeds the length of the remaining data contained in the first logical record, the
remaining data from the record is returned. CDBCOMPL is set to X'FF', indicating that a
complete record has been received.

3. A GDS RECEIVE LLID command specifying MAXFLENGTH(maxfl3) is issued, where has
a value of 2. The LL field from the second logical record is returned. CDBCOMPL is set
to X'00', indicating that a complete record has not been received.

4. A GDS RECEIVE LLID command specifying MAXFLENGTH(maxfl4) is issued,
wheremaxfl4 is the length of the remaining data in the second logical record.
CDBCOMPL is set to X'FF', indicating that a complete record has been received.

Chapter 7. APPC basic conversation flow 77

Communicating errors across a conversation
The APPC basic API provides commands to enable transactions to pass error
notification across a conversation. There are three commands depending on the
severity of the error. The most severe, GDS ISSUE ABEND, causes the
conversation to terminate abnormally and is described in “Emergency termination of
a conversation” on page 82. The other two commands are described in the
following section.

Requesting INVITE from the partner transaction
If a transaction is receiving data on a conversation and wishes to send, it can use
the GDS ISSUE SIGNAL command to request that the partner transaction does a
GDS SEND INVITE. When the GDS ISSUE SIGNAL request is received, CDBSIG
is set (X'FF'). Note that on receipt of a signal, a transaction is not obliged to issue
GDS SEND INVITE.

Demanding INVITE from the partner transaction
If a transaction wishes to send an immediate error notification to the partner
transaction it can use the GDS ISSUE ERROR command. This command is also
one of the preferred negative responses to GDS SEND CONFIRM. However it
should not be used to reject GDS ISSUE PREPARE, SYNCPOINT or SYNCPOINT
ROLLBACK. When the GDS ISSUE ERROR is received, CDBERR is set (X'FF')
and the first two bytes of CDBERRCD are X'0889'.

MAXFL3

LL LL \\

MAXFL1 MAXFL2
MAXFL4

GDS RECEIVE BUFFER MAXFLENGTH(MAXFL1)
GDS RECEIVE BUFFER MAXFLENGTH(MAXFL2)
GDS RECEIVE BUFFER MAXFLENGTH(MAXFL3)
GDS RECEIVE BUFFER MAXFLENGTH(MAXFL4)

Figure 22. An example of the effect of the BUFFER option.

The data to be received consists of two logical records:

1. A GDS RECEIVE BUFFER command specifying MAXFLENGTH(maxfl1) is issued. This
returns the first portion of the first record.

2. A GDS RECEIVE BUFFER comand specifying MAXFLENGTH(maxfl2) is issued; because
maxfl2 exceeds the length of the remaining data contained in the first logical record, the
remaining data from the first record, and the first part of the second record (including the
LL field), are returned.

3. A GDS RECEIVE LLID command specifying MAXFLENGTH(maxfl3) is issued, where has
a value of 2. Two further bytes from the second logical record are returned.

4. A GDS RECEIVE LLID command specifying MAXFLENGTH(maxfl4) is issued,
wheremaxfl4exceeds the length of the remaining data in the second logical record. The
application waits until the partner transaction sends either enough data to satisfy the
RECEIVE request, or the INVITE or LAST option.

78 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

If a GDS ISSUE ERROR command is used in receive state (state 5), all incoming
data is purged until an INVITE, SYNCPOINT or LAST is received. If LAST is
received, no error indication is sent to the partner transaction, CDBFREE is set
(X'FF') and the conversation is switched to free state (state 12).

If LAST is not received, the conversation is switched to send state (state 2). It is
normal to communicate the reason for the error to the partner transaction. The GDS
SEND INVITE WAIT command could be used to send an appropriate error
message and then a GDS RECEIVE could be used to receive a reply.

Because GDS ISSUE ERROR is allowed in both send state (state 2) and receive
state (state 5), it is possible for both communicating transactions to use GDS
ISSUE ERROR at the same time. When this happens, only one of the GDS ISSUE
ERROR commands is effective. The other is purged with incoming data. However,
both commands will appear to have completed successfully and the transaction
whose GDS ISSUE ERROR was purged will pick up CDBERR (=X'FF') on a
subsequent command.

Safeguarding data integrity
If it is important to safeguard data integrity across connected transactions, then the
CICS synchronization commands shown in Table 27 are available.

Table 27. Synchronization commands for APPC basic applications

Conversation sync
level

Commands

0 None

1 GDS SEND CONFIRM
GDS ISSUE CONFIRMATION

2 GDS SEND CONFIRM
GDS ISSUE CONFIRMATION
SYNCPOINT
GDS ISSUE PREPARE
SYNCPOINT ROLLBACK
SRRCMIT30

SRRBACK30

These commands are defined in the following sections.

How to synchronize conversations using CONFIRM commands
A confirmation exchange affects a single, specified, conversation and involves only
two commands:

1. The transaction that is in send state (state 2) issues a GDS SEND CONFIRM
command causing a request for confirmation to be sent to the partner
transaction. The transaction is suspended awaiting a response.

2. The partner transaction receives a request for confirmation. It can then respond
positively by issuing a GDS ISSUE CONFIRMATION command. Alternatively, it
can respond negatively by using the GDS ISSUE ERROR or GDS ISSUE
ABEND commands.

30. SAA verbs for SYNCPOINT and SYNCPOINT ROLLBACK respectively.

Chapter 7. APPC basic conversation flow 79

The following sections describe these commands in more detail. The descriptions
refer to the state tables for sync levels 1 and 2.

Requesting confirmation
The CONFIRM option on the GDS SEND command flushes the conversation send
buffer; that is, it causes a real transmission to occur.

Data can be sent with the GDS SEND CONFIRM command. Either the INVITE or
the LAST option can also be specified.

The send state (state 2) column of the state table for APPC basic conversations at
sync level 1 on page 94 shows what happens for the possible combinations of the
CONFIRM, INVITE, and LAST options. After a GDS SEND CONFIRM command,
without the INVITE or LAST options, the conversation remains in send state (state
2). If the INVITE option is used, the conversation switches to receive state (state
5). If the LAST option is used, the conversation switches to free state (state 12).

A similar effect to GDS SEND LAST CONFIRM can by achieved by using the
command sequence:

GDS SEND LAST
GDS SEND CONFIRM

Note from the state tables that the GDS SEND LAST puts the conversation into
pendfree state (state 4), so data cannot be sent with a GDS SEND CONFIRM
command used in this way.

The form of command used depends on how the conversation is to continue if the
required confirmation is received. Whichever is used, the response from GDS
SEND CONFIRM must always be checked. (See “Checking the response to GDS
SEND CONFIRM” on page 81.)

Receiving and replying to a confirmation request
On receipt of a confirmation request, the CONVDATA and conversation state will be
set depending on the request issued by the partner transaction. These together with
the contents of the CDBCONF, CDBRECV, and CDBFREE fields are shown in
Table 28.

Table 28. How confirmation requests affect the state and flags

Command issued by partner
transaction

Conversation
state on receipt
of request

CDB-
CONF
on
receipt
of
request

CDB-
RECV
on
receipt
of
request

CDB-
FREE on
receipt
of
request

GDS SEND CONFIRM confreceive (state
6)

X'FF' X'FF' X'00'

GDS SEND INVITE CONFIRM confsend (state 7) X'FF' X'00' X'00'

GDS SEND LAST CONFIRM conffree (state 8) X'FF' X'00' X'FF'

There are three ways of replying:

1. Reply positively with a GDS ISSUE CONFIRMATION command.

2. Reply negatively with a GDS ISSUE ERROR command. This reply puts the
conversation into send state (state 2) regardless of the partner transaction
request.

80 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

3. Abnormally end the conversation with a GDS ISSUE ABEND command. This
makes the conversation unusable and a GDS FREE command must be issued
immediately.

Checking the response to GDS SEND CONFIRM
After issuing GDS SEND [INVITE|LAST] CONFIRM, it is important to test CDBERR
to determine the partner transaction’s response. Table 29 shows the response
received when the partner transaction issues different commands.

Table 29. Indicators of the partner transaction’s response

Command issued in reply
by partner transaction

Conversation state CDBERR CDBFREE

GDS ISSUE
CONFIRMATION

Dependent on original GDS
SEND [INVITE|LAST]
CONFIRM request

X'00' X'00'

GDS ISSUE ERROR Receive (state 5) X'FF' X'00'

GDS ISSUE ABEND Free (state 12) X'FF' X'FF'

If CDBERR=X'00', the partner transaction has replied GDS ISSUE
CONFIRMATION.

If the partner transaction replies GDS ISSUE ERROR, this is indicated by CDBERR
(=X'FF') and the first two bytes of CDBERRCD=X'0889'. When the partner
transaction replies GDS ISSUE ERROR in response to GDS SEND LAST
CONFIRM, the LAST option is ignored and the conversation is not terminated. The
conversation is switched to receive state (state 5).

If the partner transaction replies GDS ISSUE ABEND, both CDBERR and
CDBFREE are both set (X'FF'), and the first two bytes of CDBERRCD contain
X'0864'. The conversation is switched to free state (state 12).

How to synchronize conversations using SYNCPOINT commands
Data synchronization (SYNCPOINT and SYNCPOINT ROLLBACK) affects all
connected conversations at sync level 2. The use of these commands in DTP is
described in Part 6, “Syncpointing a distributed process,” on page 115.

Ending the conversation
The following sections describe the different ways a conversation can end, either
unexpectedly or under transaction control. To end a transaction, one transaction
issues a request for termination and the other receives this request. Once this has
happened the conversation is unusable and both transactions must issue a GDS
FREE command to release the session.

Normal termination of a conversation
The GDS SEND LAST command is used to terminate a conversation. It should be
used in conjunction with either the WAIT or CONFIRM options or the SYNCPOINT
command (depending on the conversation sync level). Table 30 on page 82
describes this.

Chapter 7. APPC basic conversation flow 81

Table 30. Terminating commands for different sync levels

Sync level Command sequence

0 GDS SEND LAST WAIT
GDS FREE

1 GDS SEND LAST CONFIRM
GDS FREE

2 GDS SEND LAST31

SYNCPOINT
GDS FREE

Note: A distributed transaction should not end a conversation by issuing an EXEC
CICS RETURN command, but instead follow the sequence of commands
shown in Table 30. The issue of an EXEC CICS RETURN could lead to one
or both transactions ending abnormally.

Emergency termination of a conversation
The GDS ISSUE ABEND command provides a means of abnormally ending the
conversation. It is valid for all levels of synchronization, but should be avoided at
sync level 2, because its use at the wrong time can lead to a loss of data integrity.

GDS ISSUE ABEND can be issued by either transaction, whether it is in send or
receive state, at any time after the conversation has started. For a transaction in
send state (state 2), any deferred data that is waiting for transmission is flushed
before the GDS ISSUE ABEND command is transmitted.

The transaction that issues the GDS ISSUE ABEND command is not itself abended.
It must, however, issue a FREE command for the conversation unless it is designed
to terminate immediately.

If a GDS ISSUE ABEND command is issued in receive state (state 5), CICS
purges all incoming data until an INVITE, syncpoint request, or LAST indicator is
received. If LAST is received, no abend indication is sent to the partner transaction.

If a GDS ISSUE ABEND is received, both CDBERR and CDBFREE set (X'FF'), the
first two bytes of CDBERRCD contain X'0864'. The only command that can be
subsequently issued for the conversation is GDS FREE.

Unexpected termination of a conversation
If a partner systems fails or a session goes out of service in the middle of a DTP
conversation, the conversation is terminated abnormally and the application
informed the next time a command accesses the session. In addition, both
CDBERR and CDBFREE are set on (X'FF'), and CDBERRCD contains one of the
following values representing the reason for the error.

X'08640001' - partner system with persistent session support has failed and
restarted
X'1008600B' - session has failed due to a protocol error
X'A0000100' - temporary session failure
X'A0010100' - RTIMOUT triggered.

31. It is important that the GDS SEND LAST command for sync level 2 is not accompanied by WAIT or CONFIRM because either of
these options will cause the conversation to end before the subsequent syncpoint has propagated to the partner transaction. This
may mean that protected resources of one transaction could be committed while those in the partner transaction could be backed
out. The resulting state errors may also lead to the session being unbound.

82 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Checking the outcome of GDS commands
The CICS exec interface block (EIB) is not affected by EXEC CICS GDS
commands, and no CICS conditions can be raised when EXEC CICS GDS
commands are executed. Instead, you must provide data areas in your application
to receive return codes and session status information.

The data areas required are:

v A 6-byte area to receive RETCODE information

v A 24-byte area to receive CONVDATA information.

Within the bounds of the programming language you are using, you can give these
areas any identifiers you like. They must be named explicitly in most EXEC CICS
GDS commands.

Checking the response from a GDS command can be separated into three stages:

1. Testing for request failure; this involves testing RETCODE.

2. Testing for indicators received on the conversation. These indicators are found
in CONVDATA.

3. Testing the conversation state.

Testing for request failure
The RETCODE area is used to detect any errors that occur when an EXEC CICS
GDS command is executed. These errors correspond to CICS exception conditions,
such as NOTALLOC, that can be raised when EXEC CICS commands are
executed.

These errors usually reflect failure of the request. Figure 23 on page 84 shows the
possible hexadecimal values for the first three bytes of RETCODE. These values
are structured so that the first byte indicates the general error description and
subsequent bytes provide the detail.

Chapter 7. APPC basic conversation flow 83

Testing indicators
When RETCODE shows a normal return code from a GDS command, the
CONVDATA area (where applicable) contains information on the indicators received
on the conversation. These indicators can be used to find out why the conversation
state is what it is.

The structure of the CONVDATA area is shown in Table 31.

Table 31. Structure of the conversation data block

Field name Length
(bytes)

Meaning

CDBCOMPL 1 X'FF' = data complete

CDBSYNC 1 X'FF' = SYNCPOINT required

CDBFREE 1 X'FF' = FREE required

CDBRECV 1 X'FF' = RECEIVE required

CDBSIG 1 X'FF' = SIGNAL received

00 Normal return code
01 ALLOCATE failure (applicable only to GDS ALLOCATE)
01 04 .. SYSBUSY, unknown modename, task cancelled
01 04 04 No bound contention winner available (SYSBUSY)
01 04 08 Modename not known on this system
01 04 0C Attempt to use reserved modename SNASVCMG, or no COS

table in VTAM for the modename
01 04 10 Task cancelled during queuing of ALLOCATE
01 04 14 The requested modegroup is closed
01 04 18 The requested modegroup is draining
01 08 .. SYSID is out of service
01 08 00 Connection out of service or in quiesce state, no usable

sessions in requested modegroup, or VTAM ACB is closed

01 08 04 Maximum number of queued ALLOCATE requests specified
on QUEUELIMIT CONNECTION parameter exceeded

01 08 08 ALLOCATE queue purged because MAXQTIME would be exceeded

01 0C .. SYSID is not known in TCT
01 0C 00 SYSID name is not known
01 0C 04 SYSID name is not that of an APPC connection
01 0C 14 NETNAME specified in PARTNER definition is not known
02 0C 00 PARTNER is not known
03 INVREQ error
03 00 .. Session is either not defined as APPC, in use by

CPI Communications, or (for EXTRACT PROCESS) not
the principal facility

03 04 .. GDS command issued on a conversation that is not basic
03 08 .. Command issued in wrong state
03 0C .. Sync level cannot be supported or cannot support the

command issued
03 10 .. LL error on a GDS SEND
03 14 .. SEND CONFIRM or ISSUE CONFIRMATION used at sync level 0
03 24 .. GDS ISSUE PREPARE used in wrong state
04 NOTALLOC error (CONVID specifies an unallocated session)
05 LENGERR error (FLENGTH, MAXFLENGTH, PROCLENGTH, PIPLENGTH,

or MAXPROCLEN error)
06 00 00 PROFILE specified in PARTNER definition is not known

Figure 23. RETCODE values

84 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 31. Structure of the conversation data block (continued)

Field name Length
(bytes)

Meaning

CDBCONF 1 X'FF' = CONFIRM received

CDBERR 1 X'FF' = ERROR received

CDBERRCD 4 Error code (when CDBERR set)

CDBSYNRB 1 X'FF' = SYNCPOINT ROLLBACK required

CDBRSVD 12 Reserved

These definitions are provided in copybook DFHCDBLK. There is one copybook for
C, which defines a typedef for the structure, and another copybook for assembler.
To provide the flexibility to enable your application to manage more than one
conversation at the same time, the assembler version does not contain a DSECT
statement.

The meanings of the CONVDATA fields are as follows:

CDBERR
when set to X'FF' indicates an error has occurred on the conversation. The
reason is in CDBERRCD. This could be as a result of a GDS ISSUE ERROR,
GDS ISSUE ABEND, or SYNCPOINT ROLLBACK command issued by the
partner transaction. CDBERR can be set as a result of any command that can
be issued while the conversation is in receive state (state 5), or following any
command that causes a transmission to the partner system. It is safest to test
CDBERR in conjunction with CDBFREE and CDBSYNRB after every GDS
command.

CDBERRCD
contains the reason for CDBERR. If CDBERR is not set, this field is not used.

CDBFREE
when set to X'FF' indicates that the partner transaction had ended the
conversation. It should be tested along with CDBERR and CDBSYNC to find
out exactly how to end the conversation.

CDBSIG
when set to X'FF' indicates the partner transaction or system has issued and
GDS ISSUE SIGNAL command.

CDBSYNRB
when set to X'FF' indicates the partner transaction or system has issued a
SYNCPOINT ROLLBACK command. (This is relevant only for conversations at
sync level 2.)

Table 32 shows how these CDB fields interact.

Table 32. Interaction between some CDB fields—all DTP commands

CDB- ERR CDB- FREE CDB-
SYNRB

CDBERRCD Description

X'FF' X'00' X'00' X'08890000'
X'08890001'

The partner transaction has sent GDS ISSUE ERROR

X'FF' X'00' X'00' X'08890100'
X'08890101'

The partner system has sent GDS ISSUE ERROR

X'FF' X'00' X'00' X'A0020000' Error in data received from partner

Chapter 7. APPC basic conversation flow 85

Table 32. Interaction between some CDB fields—all DTP commands (continued)

CDB- ERR CDB- FREE CDB-
SYNRB

CDBERRCD Description

X'FF' X'FF' X'00' X'08640000' The partner transaction has sent GDS ISSUE ABEND

X'FF' X'FF' X'00' X'08640001' The partner system has sent GDS ISSUE ABEND

X'FF' X'FF' X'00' X'08640002' A partner resource has timed out

X'FF' X'FF' X'00' X'1008600B' The session has failed due to a protocol error

X'FF' X'FF' X'00' X'A0000100' A temporary session failure

X'FF' X'FF' X'00' X'A0010100' RTIMOUT has triggered

X'FF' X'FF' X'00' X'10086032' The PIP data sent with the GDS CONNECT PROCESS
was incorrectly specified

X'FF' X'FF' X'00' X'10086034' The partner system does not support basic
conversations

X'FF' X'FF' X'00' X'080F6051' The partner transaction failed security check

X'FF' X'FF' X'00' X'10086041' The partner transaction does not support the sync level
requested on the GDS CONNECT PROCESS

X'FF' X'FF' X'00' X'10086021' The partner transactions name is not recognized by the
partner system

X'FF' X'FF' X'00' X'084C0000' The partner system cannot start partner transaction

X'FF' X'FF' X'00' X'084B6031' The partner system is temporarily unable to start the
partner transaction

X'FF' X'00' X'FF' X'08240000' The partner transaction or system has issued
SYNCPOINT ROLLBACK

X'00' X'00' — — The command completed successfully

In addition, the following CONVDATA fields are relevant only to GDS RECEIVE
commands:

CDBCOMPL
when set to X'FF' indicates that all the data sent at one time has been received.
This field is used in conjunction with the GDS RECEIVE LLID command.

CDBCONF
when set to X'FF' indicates that the partner transaction has issued a GDS
SEND CONFIRM command and requires a response.

CDBRECV
is only used when CDBERR is not set. When CDRECV is on (X'FF'), another
GDS RECEIVE is required.

CDBSYNC
when set to X'FF' indicates that the partner transaction or system has requested
a syncpoint. (This is relevant only for conversations at sync level 2.)

Table 33 shows how some of these CDB fields interact for RECEIVE commands.

Table 33. Interaction between some CDB fields—RECEIVE commands only

CDB- ERR CDB-
FREE

CDB-
RECV

CDB-
SYNC

CDB-
CONF

Description

X'00' X'00' X'00' X'00' X'00' The partner transaction or system has issued GDS
SEND INVITE WAIT. The local program is now in
send state.

86 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 33. Interaction between some CDB fields—RECEIVE commands only (continued)

CDB- ERR CDB-
FREE

CDB-
RECV

CDB-
SYNC

CDB-
CONF

Description

X'00' X'00' X'00' X'FF' X'00' The partner transaction or system has issued GDS
SEND INVITE, followed by a SYNCPOINT. The
local program is now in syncsend state.

X'00' X'00' X'00' X'00' X'FF' The partner transaction or system has issued GDS
SEND INVITE CONFIRM. The local program is now
in confsend state.

X'00' X'00' X'FF' X'00' X'00' The partner transaction or system has issued GDS
SEND or GDS SEND WAIT. The local program is in
receive state.

X'00' X'00' X'FF' X'FF' X'00' The partner transaction or system has issued a
SYNCPOINT. The local program is in syncreceive
state.

X'00' X'00' X'FF' X'00' X'FF' The partner transaction or system has issued a
GDS SEND CONFIRM. The local program is in
confreceive state.

X'00' X'FF' X'00' X'00' X'00' The partner transaction or system has issued a
GDS SEND LAST WAIT. The local program is in
free state.

X'00' X'FF' X'00' X'FF' X'00' The partner transaction or system has issued a
GDS SEND LAST followed by a SYNCPOINT. The
local program is in syncfree state.

X'00' X'FF' X'00' X'00' X'FF' The partner transaction or system has issued a
GDS SEND LAST CONFIRM. The local program is
in conffree state.

After analyzing the CONVDATA fields, you can test the conversation state to find
out which GDS commands you can issue next. See Chapter 8, “State transitions in
APPC basic conversations,” on page 91.

Checking CONVDATA fields and the conversation state
Most of the information supplied by the CONVDATA fields can also be obtained
from the conversation state. However, although the conversation state is easier to
test, you cannot ignore CDBERR (and CDBERRCD).

For example, if after a GDS SEND INVITE WAIT or a GDS RECEIVE command
has been issued, the conversation is in receive state (state 5), only CDBERR
indicates that the partner transaction has sent a GDS ISSUE ERROR. This is
illustrated in Figure 24 on page 88 and Figure 25 on page 89.

It should be noted that the state tables provided contain not only conversation
states and commands issued, but also relevant CONVDATA field settings. The order
in which these fields are shown provides a sensible sequence of checks for an
application.

Chapter 7. APPC basic conversation flow 87

* ...
* Check return code from RECEIVE

NC WRETC,WRETC
BNZ BADRET Request-related error, analyze

* ... Request successful
NC CDBERR,CDBERR
BNZ ERROR Error indicated, analyze

* ... No errors, check state
CLC WSTATE,DFHVALUE(SYNCFREE)
BE OKSYNFR Partner issued SYNCPOINT and LAST
CLC WSTATE,DFHVALUE(SYNCRECEIVE)
BE OKSYNRC Partner issued SYNCPOINT
CLC WSTATE,DFHVALUE(SYNCSEND)
BE OKSYNSE Partner issued SYNCPOINT and INVITE
CLC WSTATE,DFHVALUE(CONFFREE)
BE OKCONFR Partner issued CONFIRM and LAST
CLC WSTATE,DFHVALUE(CONFRECEIVE)
BE OKCONRC Partner issued CONFIRM
CLC WSTATE,DFHVALUE(CONFSEND)
BE OKCONSE Partner issued CONFIRM and INVITE
CLC WSTATE,DFHVALUE(FREE)
BE OKFREE Partner issued LAST
CLC WSTATE,DFHVALUE(SEND)
BE OKSEND Partner issued INVITE
CLC WSTATE,DFHVALUE(RECEIVE)
BE OKRECV Processing for receipt of data

* (including CDBCOMPL for incomplete data)

B LOGICERR Logic error, should never happen
* ...
ERROR DS 0H
* Error indicated

CLC WSTATE,DFHVALUE(ROLLBACK)
BE ERRRLBK ROLLBACK received
CLC WSTATE,DFHVALUE(FREE)
BE ERRFREE ISSUE ABEND & TERMERR received,

* reason in CDBERRCD
CLC WSTATE,DFHVALUE(RECEIVE)
BE ERRRECV ISSUE ERROR received, reason in CDBERRCD

B LOGICERR Logic error, should never happen
* ...
BADRET DS 0H
* ... Examine RETCODE for source of error
* ...
WSTATE DS F
WRETC DS XL6
WCDB DS 0CL24

COPY DFHCDBLK
* ...

Figure 24. Checking the outcome of a GDS RECEIVE command

88 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Summary of commands for APPC basic conversations
Table 34 shows the commands used in APPC basic conversations. For
programming information about these commands, see the CICS Application
Programming Reference.

Table 34. Summary of commands used in basic conversations

Use to ... Sync
levels

Command Page

Acquire a session to the partner system. 0,1,2 GDS ALLOCATE 69

Initiate a conversation with a named process on
the partner system.

0,1,2 GDS CONNECT
PROCESS

70

Obtain the session and connection identifiers of
the transaction’s principal facility.

0,1,2 GDS ASSIGN 71

Access session-related information in the attach
header that initiated the transaction.

0,1,2 GDS EXTRACT
PROCESS

71

Send data and control information to the
conversation partner.

0,1,2 GDS SEND 73

Receive data from the conversation partner. 0,1,2 GDS RECEIVE 75

* ...
* Check return code from SEND INVITE WAIT

NC WRETC,WRETC
BNZ BADRET Request-related error, analyze RETCODE

* ... Request successful
NC CDBERR,CDBERR
BNZ ERROR Error indicated, analyze state

* ... No errors, check state
CLC WSTATE,DFHVALUE(RECEIVE)
BE OKRECV Processing for receipt of data

* (including CDBCOMPL for incomplete data)

B LOGICERR Logic error, should never happen
* ...
ERROR DS 0H
* Error indicated

CLC WSTATE,DFHVALUE(ROLLBACK)
BE ERRRLBK ROLLBACK received
CLC WSTATE,DFHVALUE(FREE)
BE ERRFREE ISSUE ABEND & TERMERR received,

* reason in CDBERRCD
CLC WSTATE,DFHVALUE(RECEIVE)
BE ERRRECV ISSUE ERROR received, reason in CDBERRCD

B LOGICERR Logic error, should never happen
* ...
BADRET ... Examine RETCODE for source of error
* ...
*
WSTATE DS F
WRETC DS XL6
WCDB DS 0CL24

COPY DFHCDBLK
* ...

Figure 25. Checking the outcome of a GDS SEND INVITE WAIT command

Chapter 7. APPC basic conversation flow 89

Table 34. Summary of commands used in basic conversations (continued)

Use to ... Sync
levels

Command Page

Transmit any deferred data or control
indicators.

0,1,2 GDS WAIT 73

Reply positively to GDS SEND CONFIRM. 1,2 GDS ISSUE
CONFIRMATION

80

Prepare a conversation partner for
syncpointing.

2 GDS ISSUE PREPARE 118

Inform the conversation partner of a
program-detected error.

0,1,2 GDS ISSUE ERROR 80

Signal an unusual condition to the conversation
partner, usually against the flow of data.

0,1,2 GDS ISSUE SIGNAL 78

Inform the conversation partner that the
conversation should be abandoned.

0,1,2 GDS ISSUE ABEND 82

Free the session. 0,1,2 GDS FREE 81

Inform all a transaction’s conversation partners
that it is ready to commit its recoverable
resources.

2 SYNCPOINT 117

Inform all a transaction’s conversation partners
that it wants to back out changes to
recoverable resources.

2 SYNCPOINT
ROLLBACK

118

90 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 8. State transitions in APPC basic conversations

This chapter shows how the state changes when GDS commands are issued in
APPC basic conversations. The state transitions are presented in the form of state
tables showing which commands can be issued while the conversation is in any
given state. The tables also show how the conversation state changes as a result of
a command.

The state tables for APPC basic conversations
The state tables provide the following information for writing a DTP program. Firstly,
they show which commands can be issued from each conversation state. Secondly,
they show the state transitions that occur and the CDB flags raised when a
command is issued. CDB fields are used to return indicators from the conversation.
They are described in “Checking the outcome of GDS commands” on page 83.

How to use the state tables
The commands you can issue, coupled with the CDB flags that can be set after
execution, are shown in column 1 down the left side of the table. The possible
conversation states are shown across the top of the table. The states correspond to
the columns of the table. The intersection of a row (command and CDB flag) and a
column (state) represents the state transition, if any, that occurs when a particular
command, issued in a particular state, returns a particular CDB flag. The order in
which the CDB flags appear with a command also shows the order in which you
test the CDB flags in your program.

A number at an intersection indicates the next state. Other symbols represent other
conditions, as follows:

Symbol Meaning

N/A Cannot occur.
× The CDB flag is any one that has not been covered in earlier rows, or it is

irrelevant (but see the note on CDBSIG if you want to use GDS ISSUE
SIGNAL).

Ab The command is not valid in this state. Issuing a command in a state in
which it is not valid causes a bad response to be returned.

= Remains in current state.
End End of conversation.

© Copyright IBM Corp. 1991, 2010 91

Table 35. APPC basic conversations at sync level 0, part 1

Command issued
CDB flag
returned32

ALLO-
CATED34

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

GDS CONNECT PROCESS36 EIBERR
+ EIBFREE

12 Ab Ab Ab Ab N/A

GDS CONNECT PROCESS36 × 2 Ab Ab Ab Ab N/A
GDS EXTRACT PROCESS33 × = = = = = N/A
GDS EXTRACT ATTRIBUTES × = = = = = N/A

GDS SEND (any valid form) CDBERR
+ CDBFREE

Ab 12 Ab Ab Ab N/A

GDS SEND (any valid form) CDBERR Ab 5 Ab Ab Ab N/A

GDS SEND INVITE WAIT × Ab 5 Ab Ab Ab N/A
GDS SEND INVITE × Ab 3 Ab Ab Ab N/A
GDS SEND LAST WAIT × Ab 12 Ab Ab Ab N/A
GDS SEND LAST × Ab 4 Ab Ab Ab N/A
GDS SEND WAIT × Ab = Ab Ab Ab N/A
GDS SEND × Ab = Ab Ab Ab N/A

GDS RECEIVE CDBERR
+ CDBFREE

Ab Ab Ab Ab 12 N/A

GDS RECEIVE CDBERR Ab Ab Ab Ab = N/A
GDS RECEIVE CDBFREE Ab Ab Ab Ab 12 N/A

GDS RECEIVE CDBRECV Ab Ab Ab Ab = N/A
GDS RECEIVE LLID CDBCOMPL Ab Ab Ab Ab = N/A
GDS RECEIVE × Ab Ab Ab Ab 2 N/A

GDS ISSUE ERROR CDBFREE Ab 12 12 Ab 12 N/A
GDS ISSUE ERROR × Ab = 2 Ab 2 N/A
GDS ISSUE ABEND × Ab 12 12 12 12 N/A
GDS ISSUE SIGNAL35 × Ab = = Ab = N/A

GDS WAIT × Ab = 5 12 Ab N/A
GDS FREE × End Ab Ab End Ab N/A

Note: See page 98 for footnotes.

92 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 36. APPC basic conversations at sync level 0, part 2

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

N/A N/A N/A N/A N/A Ab N/A Immediately

N/A N/A N/A N/A N/A Ab N/A Immediately
N/A N/A N/A N/A N/A = N/A Immediately
N/A N/A N/A N/A N/A = N/A Immediately

N/A N/A N/A N/A N/A Ab N/A After error detected

N/A N/A N/A N/A N/A Ab N/A After error detected

N/A N/A N/A N/A N/A Ab N/A After data flows
N/A N/A N/A N/A N/A Ab N/A After data buffered
N/A N/A N/A N/A N/A Ab N/A After data flows
N/A N/A N/A N/A N/A Ab N/A After data buffered
N/A N/A N/A N/A N/A Ab N/A After data flows
N/A N/A N/A N/A N/A Ab N/A After data buffered

N/A N/A N/A N/A N/A Ab N/A After error detected

N/A N/A N/A N/A N/A Ab N/A After error detected
N/A N/A N/A N/A N/A Ab N/A After error detected

N/A N/A N/A N/A N/A Ab N/A When data available
N/A N/A N/A N/A N/A Ab N/A When data available
N/A N/A N/A N/A N/A Ab N/A When data available

N/A N/A N/A N/A N/A Ab N/A After response from partner
N/A N/A N/A N/A N/A Ab N/A After response from partner
N/A N/A N/A N/A N/A Ab N/A Immediately
N/A N/A N/A N/A N/A Ab N/A Immediately

N/A N/A N/A N/A N/A Ab N/A Immediately
N/A N/A N/A N/A N/A End N/A Immediately

Chapter 8. State transitions in APPC basic conversations 93

Table 37. APPC basic conversations at sync level 1, part 1

Command issued
CDB flag
returned32

ALLO-
CATED34

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

GDS CONNECT PROCESS36 EIBERR
+ EIBFREE

12 Ab Ab Ab Ab Ab

GDS CONNECT PROCESS36 × 2 Ab Ab Ab Ab Ab
GDS EXTRACT PROCESS33 × = = = = = =
GDS EXTRACT ATTRIBUTES × = = = = = =

GDS SEND (any valid form) CDBERR
+ CDBFREE

Ab 12 Ab 12 Ab Ab

GDS SEND (any valid form) CDBFREE Ab 12 Ab Ab Ab Ab

GDS SEND INVITE WAIT × Ab 5 Ab Ab Ab Ab
GDS SEND INVITE CONFIRM × Ab 5 Ab Ab Ab Ab
GDS SEND INVITE × Ab 3 Ab Ab Ab Ab
GDS SEND LAST WAIT × Ab 12 Ab Ab Ab Ab
GDS SEND LAST CONFIRM × Ab 12 Ab Ab Ab Ab
GDS SEND LAST × Ab 4 Ab Ab Ab Ab
GDS SEND WAIT × Ab = Ab Ab Ab Ab
GDS SEND CONFIRM × Ab = 537 1237 Ab Ab
GDS SEND × Ab = Ab Ab Ab Ab

GDS RECEIVE CDBERR
+ CDBFREE

Ab Ab Ab Ab 12 Ab

GDS RECEIVE CDBERR Ab Ab Ab Ab = Ab
GDS RECEIVE CDBCONF

+ CDBFREE
Ab Ab Ab Ab 8 Ab

GDS RECEIVE CDBCONF
+ CDBRECV

Ab Ab Ab Ab 6 Ab

GDS RECEIVE CDBCONF Ab Ab Ab Ab 7 Ab
GDS RECEIVE CDBFREE Ab Ab Ab Ab 12 Ab

GDS RECEIVE CDBRECV Ab Ab Ab Ab = Ab
GDS RECEIVE LLID CDBCOMPL Ab Ab Ab Ab = Ab
GDS RECEIVE × Ab Ab Ab Ab 2 Ab

GDS ISSUE CONFIRMATION × Ab Ab Ab Ab Ab 5
GDS ISSUE ERROR CDBFREE Ab 12 12 Ab 12 12
GDS ISSUE ERROR × Ab = 2 Ab 2 2
GDS ISSUE ABEND × Ab 12 12 12 12 12
GDS ISSUE SIGNAL35 × Ab = = Ab = =

GDS WAIT × Ab = 5 12 Ab Ab
GDS FREE × End Ab Ab End Ab Ab

Note: See page 98 for footnotes.

94 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

Ab Ab N/A N/A N/A Ab N/A Immediately

Ab Ab N/A N/A N/A Ab N/A Immediately
= = N/A N/A N/A = N/A Immediately
= = N/A N/A N/A = N/A Immediately

Ab Ab N/A N/A N/A Ab N/A After error flow detected

Ab Ab N/A N/A N/A Ab N/A After error flow detected

Ab Ab N/A N/A N/A Ab N/A After data flows
Ab Ab N/A N/A N/A Ab N/A After response from partner
Ab Ab N/A N/A N/A Ab N/A After data buffered
Ab Ab N/A N/A N/A Ab N/A After data flows
Ab Ab N/A N/A N/A Ab N/A After response from partner
Ab Ab N/A N/A N/A Ab N/A After data buffered
Ab Ab N/A N/A N/A Ab N/A After data flows
Ab Ab N/A N/A N/A Ab N/A After response from partner
Ab Ab N/A N/A N/A Ab N/A After data buffered

Ab Ab N/A N/A N/A Ab N/A After error detected

Ab Ab N/A N/A N/A Ab N/A After error detected
Ab Ab N/A N/A N/A Ab N/A After confirm flow detected

Ab Ab N/A N/A N/A Ab N/A After confirm flow detected

Ab Ab N/A N/A N/A Ab N/A After confirm flow detected
Ab Ab N/A N/A N/A Ab N/A After error detected

Ab Ab N/A N/A N/A Ab N/A When data available
Ab Ab N/A N/A N/A Ab N/A When data available
Ab Ab N/A N/A N/A Ab N/A When data available

2 12 N/A N/A N/A Ab N/A Immediately
12 12 N/A N/A N/A Ab N/A After response from partner
2 2 N/A N/A N/A Ab N/A After response from partner
12 12 N/A N/A N/A Ab N/A Immediately
= = N/A N/A N/A Ab N/A Immediately

Ab Ab N/A N/A N/A Ab N/A Immediately
Ab Ab N/A N/A N/A End N/A Immediately

Chapter 8. State transitions in APPC basic conversations 95

Table 38. APPC basic conversations at sync level 2, part 1

Command issued
CDB flag
returned32

ALLO-
CATED34

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

GDS CONNECT PROCESS36 EIBERR
+ EIBFREE

12 Ab Ab Ab Ab Ab

GDS CONNECT PROCESS36 × 2 Ab Ab Ab Ab Ab
GDS EXTRACT PROCESS33 × = = = = = =
GDS EXTRACT ATTRIBUTES × = = = = = =

GDS SEND (any valid form) CDBERR
+ CDBFREE

Ab 12 Ab 12 Ab Ab

GDS SEND (any valid form) CDBERR Ab 5 Ab 12 Ab Ab

GDS SEND INVITE WAIT × Ab 5 Ab Ab Ab Ab
GDS SEND INVITE CONFIRM × Ab 5 Ab Ab Ab Ab
GDS SEND INVITE × Ab 3 Ab Ab Ab Ab
GDS SEND LAST WAIT38 × Ab 12 Ab Ab Ab Ab
GDS SEND LAST CONFIRM38 × Ab 12 Ab Ab Ab Ab
GDS SEND LAST × Ab 4 Ab Ab Ab Ab
GDS SEND WAIT × Ab = Ab Ab Ab Ab
GDS SEND CONFIRM × Ab = 5 1237 Ab Ab
GDS SEND × Ab = Ab Ab Ab Ab

GDS RECEIVE CDBERR
+ CDBSYNRB

Ab Ab Ab Ab 13 Ab

GDS RECEIVE CDBERR
+ CDBFREE

Ab Ab Ab Ab 12 Ab

GDS RECEIVE CDBERR Ab Ab Ab Ab = Ab
GDS RECEIVE CDBSYNC

+ CDBFREE
Ab Ab Ab Ab 11 Ab

GDS RECEIVE CDBSYNC
+ CDBRECV

Ab Ab Ab Ab 9 Ab

GDS RECEIVE CDBSYNC Ab Ab Ab Ab 10 Ab
GDS RECEIVE CDBCONF

+ CDBFREE
Ab Ab Ab Ab 8 Ab

GDS RECEIVE CDBCONF
+ CDBRECV

Ab Ab Ab Ab 6 Ab

GDS RECEIVE CDBCONF Ab Ab Ab Ab 7 Ab
GDS RECEIVE CDBFREE Ab Ab Ab Ab 12 Ab

GDS RECEIVE CDBRECV Ab Ab Ab Ab = Ab
GDS RECEIVE LLID CDBCOMPL Ab Ab Ab Ab = Ab
GDS RECEIVE × Ab Ab Ab Ab 2 Ab

Note: See page 98 for footnotes.

96 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 39. APPC basic conversations at sync level 2, part 2

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

Ab Ab Ab Ab Ab Ab Ab Immediately

Ab Ab Ab Ab Ab Ab Ab Immediately
= = = = = = = Immediately
= = = = = = = Immediately

Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab After data flows
Ab Ab Ab Ab Ab Ab Ab After response from partner
Ab Ab Ab Ab Ab Ab Ab After data buffered
Ab Ab Ab Ab Ab Ab Ab After data flows
Ab Ab Ab Ab Ab Ab Ab After response from partner
Ab Ab Ab Ab Ab Ab Ab After data buffered
Ab Ab Ab Ab Ab Ab Ab After data flows
Ab Ab Ab Ab Ab Ab Ab After response from partner
Ab Ab Ab Ab Ab Ab Ab After data buffered

Ab Ab Ab Ab Ab Ab Ab After rollback flow detected

Ab Ab Ab Ab Ab Ab Ab After error detected

Ab Ab Ab Ab Ab Ab Ab After error detected
Ab Ab Ab Ab Ab Ab Ab After sync flow detected

Ab Ab Ab Ab Ab Ab Ab After sync flow detected

Ab Ab Ab Ab Ab Ab Ab After sync flow detected
Ab Ab Ab Ab Ab Ab Ab After confirm flow detected

Ab Ab Ab Ab Ab Ab Ab After confirm flow detected

Ab Ab Ab Ab Ab Ab Ab After confirm flow detected
Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab When data available
Ab Ab Ab Ab Ab Ab Ab When data available
Ab Ab Ab Ab Ab Ab Ab When data available

table continued ...

Chapter 8. State transitions in APPC basic conversations 97

Table 40. APPC basic conversations at sync level 2, part 3

Command issued
CDB flag
returned32

ALLO-
CATED34

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

GDS ISSUE CONFIRMATION × Ab Ab Ab Ab Ab 5
GDS ISSUE ERROR CDBFREE Ab 12 12 Ab 12 12
GDS ISSUE ERROR × Ab = 2 Ab 2 2
GDS ISSUE ABEND × Ab 12 12 12 12 12
GDS ISSUE SIGNAL × Ab = = Ab = =

GDS ISSUE PREPARE CDBERR
+ CDBSYNRB

Ab 13 13 13 Ab Ab

GDS ISSUE PREPARE CDBERR
+ CDBFREE

Ab 12 12 12 Ab Ab

GDS ISSUE PREPARE CDBERR Ab 5 5 5 Ab Ab
GDS ISSUE PREPARE × Ab 10 9 11 Ab Ab

SYNCPOINT40 EIBRLDBK = 2 or 539 2 or 539 2 or 539 Ab Ab
SYNCPOINT40 × = = 5 12 Ab Ab

SYNCPOINT ROLLBACK40 × = 2 or 539 2 or 539 2 or 539 2 or 539 2 or 539

GDS WAIT × Ab = 5 12 Ab Ab
GDS FREE × End Ab Ab End Ab Ab

32. CDBSIG has been omitted. This is because its use is optional and is entirely a matter of agreement between the two
conversation partners. In the worst case, it can occur at any time after every command that affects the CDB flags. However, used
for the purpose for which it was intended, it usually occurs after a GDS SEND command. Its priority in the order of testing
depends on the role you give it in the application.

33. You can issue the GDS EXTRACT PROCESS command from the back-end transaction transaction only.

34. Before a session is allocated, there is no conversation, and therefore no conversation state. The GDS ALLOCATE command does
not appear in the tables. This is because each GDS ALLOCATE gets a session to start a new conversation and does not affect
any conversation that is already in progress. After GDS ALLOCATE is successful, the front-end transaction starts the new
conversation in allocated state.

35. GDS ISSUE SIGNAL sets the partner transaction’s CDBSIG flag.

36. The back-end transaction starts in RECEIVE state after the front-end transaction has issued GDS CONNECT PROCESS.

37. No data may be included with GDS SEND CONFIRM.

38. Although CICS allows you to terminate a sync level-2 conversation using the GDS SEND LAST WAIT or GDS SEND LAST
CONFIRM commands, doing this deviates from the APPC architecture and should be avoided. See “CICS deviations from the
APPC architecture” on page 159.

98 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 41. APPC basic conversations at sync level 2, part 4

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

2 12 Ab Ab Ab Ab Ab Immediately
12 12 12 12 12 Ab Ab After response from partner
2 2 2 2 2 Ab Ab After response from partner
12 12 12 12 12 Ab Ab Immediately
= = = = = Ab Ab Immediately

Ab Ab Ab Ab Ab Ab Ab After response from partner

Ab Ab Ab Ab Ab Ab Ab After error detected

Ab Ab Ab Ab Ab Ab Ab After error detected
Ab Ab Ab Ab Ab Ab Ab After response from partner

Ab Ab 2 or 539 2 or 539 2 or 539 = Ab After response from partner
Ab Ab 5 2 12 = Ab After response from partner

2 or 539 2 or 539 2 or 539 2 or 539 2 or 539 Ab 2 or 539 After rollback across UOW

Ab Ab Ab Ab Ab Ab Ab Immediately
Ab Ab Ab Ab Ab End Ab Immediately

Initial states
The front-end transaction in a conversation must issue a GDS ALLOCATE
command to acquire a session. If the session is successfully allocated, the
front-end transaction’s side of the conversation goes into allocated state (state 1).

A back-end transaction is initially in receive state (state 5).

Testing the conversation state
There are two ways for an application to inquire on the current conversation state.
The first is to use the EXEC CICS GDS EXTRACT ATTRIBUTES STATE command
and the second is to use the STATE parameter on the GDS commands. In both
cases the current state is returned to the application in a CICS value data area
(cvda). Table 42 on page 100 shows how the cvda codes relate to the conversation
state. The table also shows the symbolic names defined for the cvda values.

39. The state of each conversation after rollback depends on several factors:

v The system you are communicating with. Some earlier versions of CICS handle rollback differently from CICS Transaction
Server for z/OS, Version 3 Release 1.

v The conversation state at the beginning of the current distributed unit of work This state is the one adopted according to the
APPC architecture. CICS Transaction Server for z/OS, Version 3 Release 1 follows the architecture.

A conversation may be in free state after rollback if the it has been terminated in one of these ways:

v Abnormally due to session failure or deallocate abend being received

v Because the partner transaction has issued a GDS SEND LAST WAIT or FREE command.

After a syncpoint or rollback, it is advisable to determine the conversation state before issuing any further commands against the
conversation.

40. The commands SYNCPOINT and SYNCPOINT ROLLBACK do not relate to any particular conversation. They are propagated on
all the conversations that are currently active for the task, including MRO conversations.

Chapter 8. State transitions in APPC basic conversations 99

Table 42. The conversation states

States used in this book States used in DTP programs

State name State
number

Symbolic name cvda code

Allocated 1 DFHVALUE(ALLOCATED) 81

Send 2 DFHVALUE(SEND) 90

Pendreceive 3 DFHVALUE(PENDRECEIVE) 87

Pendfree 4 DFHVALUE(PENDFREE) 86

Receive 5 DFHVALUE(RECEIVE) 88

Confreceive 6 DFHVALUE(CONFRECEIVE) 83

Confsend 7 DFHVALUE(CONFSEND) 84

Conffree 8 DFHVALUE(CONFFREE) 82

Syncreceive 9 DFHVALUE(SYNCRECEIVE) 92

Syncsend 10 DFHVALUE(SYNCSEND) 93

Syncfree 11 DFHVALUE(SYNCFREE) 91

Free 12 DFHVALUE(FREE) 85

Rollback 13 DFHVALUE(ROLLBACK) 89

100 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Part 5. Writing programs for LUTYPE6.1 conversations

This is the last of four parts detailing the CICS APIs available for DTP
programming.

v Part 2, “Writing programs for APPC mapped conversations,” on page 21

v Part 3, “Writing programs for MRO conversations,” on page 51

v Part 4, “Writing programs for APPC basic conversations,” on page 67

v Part 5, “Writing programs for LUTYPE6.1 conversations.”

The different APIs are compared in Part 1, “Concepts and design considerations,”
on page 1.

Part 5 contains:

v Chapter 9, “LUTYPE6.1 conversation flow,” on page 103.

This uses CICS-to-IMS™ communication as the basis for discussing LUTYPE6.1
DTP programming.

v Chapter 10, “State transitions in LUTYPE6.1 conversations,” on page 111. This
discusses the state transitions that occur when transactions use LUTYPE6.1
conversations under the EXEC CICS API. State transitions are presented in the
form of a state table showing which commands can be issued while the
conversation is in any given state. The state table also shows how the
conversation state changes as a result of issuing a command.

© Copyright IBM Corp. 1991, 2010 101

102 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 9. LUTYPE6.1 conversation flow

This chapter introduces some of the DTP commands for LUTYPE6.1 conversation
flow. It introduces each command in the context of a typical conversation flow and
ends with a general discussion on how to test the responses from a DTP command.

The chapter contains the following topics:
v Starting the conversation
v “Transferring data on the conversation” on page 104
v “Ending the conversation” on page 105
v “Checking the outcome of a DTP command” on page 106
v “Considerations for the front-end transaction” on page 107
v “Summary of commands for LUTYPE6.1 conversations” on page 109.

Starting the conversation
This section describes how to get a conversation started. The first two subsections
explain how the front-end transaction and the back-end transaction initiate the
conversation, and the final subsection discusses conversation initiation failure.

Conversation initiation
The front-end transaction is responsible for acquiring a session, specifying the
conversation characteristics, and requesting the startup of the back-end transaction
in the partner system.

Allocating a session to the conversation
Initially, there is no conversation, and therefore no conversation state. The front-end
transaction acquires a session to start a new conversation by issuing an
ALLOCATE command.

The RESP value should be checked to ensure that a session has been allocated. If
successful, the RESP value is DFHRESP(NORMAL), the conversation is in
allocated state (state 1) and the session identifier (convid) from EIBRSRCE must
be saved immediately. The convid must be used in subsequent commands for this
conversation.

If the front-end transaction is started by ATI in the local system, and is required to
hold a conversation with an LUTYPE6.1 session as its principal facility, the session
has already been allocated when the transaction starts. You can omit the SESSION
option from commands relating to the principal facility. If, however, you want to
name the session explicitly in these commands, you should obtain its name from
EIBTRMID.

Connecting the partner transaction
When a session has been acquired, the next step is to cause the partner
transaction to be initiated. The state table shows that, in allocated state (state 1),
one of the commands available is SEND. Using this command, the back-end
transaction identifiers can be specified in the first four bytes of the data which, when
transferred to the partner system, will attach the required back-end transaction. The
send buffer containing the transaction name together with any other data, will be
flushed immediately and the front-end transaction will wait until a response is
received from the back-end transaction.

© Copyright IBM Corp. 1991, 2010 103

Alternatively, when a session has been acquired, the front-end transaction can build
and send an attach header with the first transmission of data. The attach header
can be built using the BUILD ATTACH command.

When using the BUILD ATTACH command, you must give a name to the built
attach header which can then be used in the ATTACHID option of the first SEND (or
converse) command. The back-end transaction name should also be specified.

Back-end transaction initiation
The back-end transaction is initiated either by an attach header received from the
partner system or by a transaction name included in the incoming data, and is
started with the session as its principal facility. Initially, the back-end transaction
should determine the convid from EIBTRMID. This is not strictly necessary because
the session is the back-end transaction’s principal facility making the CONVID
parameter optional for DTP commands on this conversation. However, the convid is
very useful for audit trails. Also, if the back-end transaction is involved in more than
one conversation, then always specifying the convid improves program readability
and problem determination.

A CICS transaction can be the back-end transaction in CICS-to-IMS communication
only in the special case of SEND/RECEIVE asynchronous processing. The
transaction is initiated by an LUTYPE6.1 attach FMH received from the remote IMS
system, and is allowed to issue a single RECEIVE command only, possibly followed
by an EXTRACT ATTACH command.

What happens if the back-end transaction fails to start
It is possible that the back-end transaction may fail to start up. This will result in the
front-end transaction abending.

Transferring data on the conversation
This section discusses how to pass data between the front-end and back-end
transactions. The first subsection explains how to send data, the second describes
how to switch from sending to receiving data, and the third explains how to receive
data.

Sending data to the partner transaction
The SEND command is used to send data to the connected partner. This command
is valid in allocated state (state 1) or send state (state 2). Because a successful
simple SEND completes in send state (state 2), it is possible to issue a number of
successive sends.

Switching from sending to receiving data
The column for send state (state 2) in the state table shows that there is more than
one way of switching from send state (state 2) to receive state (state 5).

One possibility is to use a SEND INVITE command. The state table shows that
after SEND INVITE the conversation switches to pendreceive state (state 3). As
the column for state 3 shows, a WAIT TERMINAL command switches the
conversation to receive state (state 5).

Another possibility is to specify INVITE and WAIT on the SEND command. As the
state table shows, SEND INVITE WAIT switches the conversation to receive state
(state 5).

104 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Receiving data from the partner transaction
The RECEIVE command is used to receive data from the connected partner. The
rows in the state tables for the RECEIVE command show the EIB fields that should
be tested after issuing a RECEIVE command. As well as showing which field should
be tested, the state tables also shows the order in which the tests should be made.
Note that you should always test for RESP values.

The transaction whose side of the conversation is in receive state cannot change
to send state, but can request a change of direction by using the ISSUE SIGNAL
command. This causes the SIGNAL condition to be raised in the partner transaction
the next time it issues a SEND, RECEIVE, or CONVERSE command. The
application is responsible for determining the purpose of the SIGNAL condition and
responding appropriately.

Waiting for a signal
A transaction can wait for its partner to send a signal. This is done by issuing the
WAIT SIGNAL command and testing for the SIGNAL condition. The WAIT SIGNAL
command suspends the transaction until its partner responds with an ISSUE
SIGNAL command. This response activates the suspended transaction and raises
the SIGNAL condition.

Combining sending and receiving
The CONVERSE command combines the functions SEND INVITE and RECEIVE.
This command is useful when one transaction needs a response from the partner
transaction to continue processing.

Communicating errors across a conversation
If a transaction is receiving data on a conversation and needs to notify its partner of
an error, it can use the ISSUE SIGNAL command to request that the partner does a
SEND INVITE. When the ISSUE SIGNAL request is received, EIBSIG is set to
X'FF' and the SIGNAL condition is raised. Note that when a signal is received, the
transaction is not obliged to issue SEND INVITE.

Safeguarding data integrity
If it is important to safeguard data integrity across connected transactions, then the
following synchronization commands are available:

SYNCPOINT
SRRCMIT (SAA verb for SYNCPOINT)

The use of these commands in DTP is described in Chapter 11, “Syncpointing a
distributed process,” on page 117.

Ending the conversation
The following sections describe the different ways a conversation can end, either
unexpectedly or under transaction control. When under transaction control, one
transaction will issue a request for termination and the other will receive this
request. Once this has happened the conversation is unusable and both
transactions must issue a FREE command to release the session.

Ending a conversation normally
The SEND LAST command is used to terminate a conversation. It should be used
in conjunction with either the WAIT option or the SYNCPOINT command, and

Chapter 9. LUTYPE6.1 conversation flow 105

followed by the FREE command. However, SEND LAST WAIT will cause the
conversation to end before the subsequent syncpoint can be propagated to the
partner transaction. This may mean that the protected resources in one system
could be committed whilst those in the other system could be backed out.

From the state table it can be seen that it is possible to end a conversation by
issuing the FREE command provided the conversation is in send state (state 2).
This will generate an implicit SEND LAST WAIT command before the FREE is
executed and is therefore not recommended.

Note: A distributed transaction should not end a conversation by issuing an EXEC
CICS RETURN command, but instead follow the sequence of commands
described above. The issue of an EXEC CICS RETURN could lead to one or
both transactions ending abnormally.

Unexpected termination of a conversation
From time to time, partner systems do fail and sessions go out of service. If this
happens in the middle of a DTP conversation, the transaction will be terminated
abnormally.

Checking the outcome of a DTP command
Checking the response from a DTP command can be separated into two stages:

1. Testing for request failure

2. Testing for indicators received on the conversation.

Testing for request failure is the same as for other EXEC CICS commands in that
conditions are raised and may be handled using HANDLE CONDITION or RESP.
EIBRCODE will also contain an error code.

If the request has not failed, it is then possible to test for indicators received on the
conversation. These are returned to the application in the EIB. The following EIB
fields are relevant to all DTP commands. (See the CICS Application Programming
Reference for programming information on the contents and format of EIB fields.)

EIBFREE
when set to X'FF' indicates that the partner transaction has ended the
conversation. It should be tested in conjunction with EIBSYNC to determine
exactly how to end the conversation.

EIBSYNC
when set to X'FF' indicates the partner transaction/system has requested a
syncpoint.

Table 43 shows how these EIB fields interact.

Table 43. Interaction of some EIB fields

EIB- FREE EIB- SYNC Description

X'FF' X'00' The partner transaction or system has sent SEND LAST
followed by a FREE command.

X'FF' X'FF' The partner transaction or system has issued SEND LAST
followed by SYNCPOINT. The local program should reply
with a SYNCPOINT command followed by a FREE
command.

106 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 43. Interaction of some EIB fields (continued)

EIB- FREE EIB- SYNC Description

X'00' X'FF' The partner transactions or system has issued a
SYNCPOINT.

In addition, there is a group of EIB fields that are relevant only to the RECEIVE and
CONVERSE commands. These are:

EIBCOMPL
when set to X'FF' indicates that all the data sent at one time has been received.
This field is used in conjunction with the RECEIVE NOTRUNCATE command.

EIBRECV
when set to X'FF' indicates the partner transaction did not use the INVITE
option on its last SEND command.

EIBATT
when set to X'FF' indicates that the data received contained an attach header.
The attach header is not passed to the application; however, EIBATT indicates
that an EXTRACT ATTACH command is appropriate.

EIBFMH
when set to X'FF' indicates that the data passed to the application contains a
concentrated FMH. This happens only when the partner CICS transaction builds
an FMH in the data and the FMH option on the SEND command is specified.

Note: Profiles specifying INBFMH (ALL) must be used in the ALLOCATE
commands if FMHs are to be sent and received and EIBATT or EIBFMH to
be sent appropriately. The default profile DFHCICSA used for the session
allocated by the front-end transaction, has INBFMH (ALL) specified.
However, the default principal facility profile DFHCICST used for the
back-end transaction does not have INBFMH (ALL) specified.

Considerations for the front-end transaction
Except in the special case of the receiving transaction in SEND/RECEIVE
asynchronous processing, the CICS transaction is always the front-end transaction
in CICS-to-IMS DTP.

The front-end transaction is responsible for acquiring a session to the remote IMS
system and initiating the partner transaction.

Thereafter, the two transactions become equals. However, the front-end transaction
is usually designed as the client, or driving, transaction.

Session allocation
You acquire an LUTYPE6.1 session to a remote IMS system by means of the
ALLOCATE command, which has the following format:

ALLOCATE {SYSID(name)|SESSION(name)}
[PROFILE(name)]
[NOQUEUE]

You can use the SESSION option to request the use of a specific session to the
remote IMS system, or you can use the SYSID option to name the partner system
and allow CICS to select an available session. The use of the SESSION option is
not normally recommended, because it can result in an application program queuing

Chapter 9. LUTYPE6.1 conversation flow 107

on a specific session when others are available. In most cases, therefore, you use
the SYSID option to name the system with which the session is required.

If CICS cannot find the named system, or all sessions to that system are out of
service, it raises the SYSIDERR condition. If CICS cannot find the named session,
or that session is out of service, it raises the SESSIONERR condition.

The PROFILE option allows you to select a specified communication profile for an
LUTYPE6.1 session. The profile, which is set up during resource definition, contains
a set of terminal control processing options that are to be used for the session.

If you omit the PROFILE option, CICS uses the default profile DFHCICSA. This
profile specifies INBFMH(ALL), which means that incoming function management
headers are passed to your program and cause the INBFMH condition to be raised.

The NOQUEUE option allows you to specify explicitly that you do not want your
request for a session to be queued if a session is not available immediately. A
session is “not immediately available” in any of the following situations:

v All the sessions to the specified system are in use.

v The only available sessions are not bound (in which case CICS would have to
bind a session).

v The only available sessions are contention losers (in which case CICS would
have to bid to begin a bracket).

The action taken by CICS if a session is not immediately available depends on
whether you specify NOQUEUE and also on whether your application has executed
a HANDLE command for the SYSBUSY condition. The possible combinations are
shown below:

v HANDLE for SYSBUSY condition

– Control is returned immediately to the label specified in the HANDLE
command, whether or not you have specified NOQUEUE.

v No HANDLE for SYSBUSY condition

– If you have specified NOQUEUE, control is returned immediately to your
application program. A RESP value of DFHRESP(SYSBUSY) is returned. You
should test this field immediately after issuing the ALLOCATE command.

– If you have omitted the NOQUEUE option, CICS queues the request until a
session is available.

Whether a delay in acquiring a session is acceptable is dependent on your
application.

Similar considerations apply to an ALLOCATE command that specifies SESSION
rather than SYSID. The associated condition is SESSBUSY.

The session identifier
When a session has been allocated, the name by which it is known is available in
the EIBRSRCE field in the EIB. Because EIBRSRCE will probably be overwritten by
the next EXEC CICS command, you must acquire the session name immediately. It
is the name that you must use in the SESSION option of all subsequent commands
that relate to this session.

108 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Summary of commands for LUTYPE6.1 conversations
Table 44 shows the commands used in LUTYPE6.1 conversations. For
programming information about CICS commands, see the CICS Application
Programming Reference.

Table 44. Summary of commands used in LUTYPE6.1 conversations

Use to ... Command Page

Acquire a session. ALLOCATE 103

Build an attach header. BUILD ATTACH 103

Access session-related information. EXTRACT ATTACH 104

Send data and control information to the
conversation partner.

SEND 104

Receive data from the conversation partner. RECEIVE 105

Send and receive data on the conversation. CONVERSE 105

Inform all partners of readiness to commit
recoverable resources.

SYNCPOINT 117

Signal an unusual condition to the conversation
partner, usually against the flow of data.

ISSUE SIGNAL 105

Suspend processing until the SIGNAL condition is
raised.

WAIT SIGNAL 105

Ensure that CICS has transmitted any accumulated
data or data flow control indicators before further
processing.

WAIT TERMINAL 104

Free the session. FREE 105

Chapter 9. LUTYPE6.1 conversation flow 109

110 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 10. State transitions in LUTYPE6.1 conversations

This chapter shows the state transitions that occur when transactions engage in
LUTYPE6.1 conversations. The state transitions are presented in the form of a state
table. The state table shows which commands a transaction can issue while the
conversation is in any given state. It also shows how the conversation state
changes as a result of any command.

The state table for LUTYPE6.1 conversations
The state table provides the following information for writing a DTP program. Firstly,
it shows which commands can be issued from each conversation state. Secondly, it
shows the results of issuing a command in terms of state transactions and EIB
fields.

How to use the state table
The commands you can issue, coupled with the EIB flags that can be set after
execution, are shown in column 1 down the left side of the table. The possible
conversation states are shown across the top of the table. The states correspond to
the columns of the table. The intersection of row (command and EIB flag) and
column (state) represents the state transition, if any, that occurs when that
command returning a particular EIB flag is issued in that state.

A number at an intersection indicates the state number of the next state. Other
symbols represent other conditions, as follows:

Symbol Meaning

N/A Cannot occur.
× The EIB flag is any one that has not been covered in earlier rows, or it is

irrelevant.
Ab The command is not valid in this state. Issuing a command in a state in

which it is not valid usually causes an ATCV abend.
= Remains in current state.

End End of conversation.

© Copyright IBM Corp. 1991, 2010 111

Table 45. LUTYPE6.1 conversations, part 1

Command issued
EIB flag
returned

ALLO-
CATED44

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

BUILD ATTACH × = = = = = N/A
EXTRACT ATTACH × = = = = = N/A

SEND INVITE WAIT × 5 5 Ab Ab Ab N/A
SEND INVITE × 3 3 Ab Ab Ab N/A
SEND LAST WAIT × 12 12 Ab Ab Ab N/A
SEND LAST × 4 4 Ab Ab Ab N/A
SEND × = = Ab Ab Ab N/A

RECEIVE EIBSYNC +
EIBFREE

Ab 11 11 Ab 11 N/A

RECEIVE EIBSYNC +
EIBRECV

Ab 9 9 Ab 9 N/A

RECEIVE EIBSYNC Ab 10 10 Ab 10 N/A
RECEIVE EIBFREE Ab 12 12 Ab 12 N/A
RECEIVE EIBRECV Ab 5 5 Ab = N/A
RECEIVE NOTRUNCATE41 EIBCOMPL41 Ab 5 5 Ab = N/A
RECEIVE × Ab 2 2 Ab 2 N/A

CONVERSE42 EIB flags and states as for RECEIVE but allowed in send state

ISSUE SIGNAL45 × Ab = = = = N/A
WAIT SIGNAL × Ab = = = = N/A

SYNCPOINT46 × = = 5 12 Ab N/A

WAIT TERMINAL × = = 5 12 = N/A
FREE × End43 End43 Ab End Ab N/A

41. RECEIVE NOTRUNCATE returns a zero value in EIBCOMPL to indicate that the user buffer was too small to contain all the data
received from the partner transaction. Normally, you would continue to issue RECEIVE NOTRUNCATE commands until the last
section of data is passed to you, which is indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area
specified by the RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the
LENGERR condition.

42. Equivalent to:

SEND INVITE WAIT [FROM]
RECEIVE

43. Equivalent to:

SEND LAST WAIT
FREE

112 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 46. LUTYPE6.1 conversations, part 2

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

N/A N/A N/A = = = = Immediately
N/A N/A = = = = N/A Immediately

N/A N/A Ab Ab Ab Ab N/A After data and CD flows
N/A N/A Ab Ab Ab Ab N/A After data buffered
N/A N/A Ab Ab Ab Ab N/A After data and EB flows
N/A N/A Ab Ab Ab Ab N/A After data buffered
N/A N/A Ab Ab Ab Ab N/A After data buffered

N/A N/A Ab Ab Ab Ab N/A After sync flow detected

N/A N/A Ab Ab Ab Ab N/A After sync flow detected

N/A N/A Ab Ab Ab Ab N/A After sync flow detected
N/A N/A Ab Ab Ab Ab N/A After EB detected
N/A N/A Ab Ab Ab Ab N/A When data available
N/A N/A Ab Ab Ab Ab N/A When data available
N/A N/A Ab Ab Ab Ab N/A When data available

States as for RECEIVE When data available

N/A N/A = = = Ab N/A Immediately
N/A N/A = = = Ab N/A After response from partner

N/A N/A 5 2 12 = N/A After response from partner

N/A N/A Ab Ab Ab Ab N/A Immediately
N/A N/A Ab Ab Ab End N/A Immediately

Initial states
A front-end transaction can be initiated either from a transaction or by automatic
transaction initiation (ATI).

A terminal-initiated front-end transaction must issue an ALLOCATE command to
acquire a session. If the session is successfully allocated, the front-end
transaction’s side of the conversation goes into allocated state (state 1).

44. Before a session is allocated, there is no conversation, and therefore no conversation state. The EXEC CICS ALLOCATE
command does not appear in the table. This is because each ALLOCATE gets a session to start a new conversation and does
not affect any conversation that is already in progress. After ALLOCATE is successful, the front-end transaction starts the new
conversation in allocated state.

You select the partner transaction program by issuing a SEND command or a CONVERSE command. You have the choice of
identifying the transaction program either in the first four bytes of the user data or in the attach function management header built
by the BUILD ATTACH command.

The back-end transaction starts in RECEIVE state.

45. ISSUE SIGNAL sets the partner’s EIBSIG flag.

46. The SYNCPOINT command does not relate to any particular conversation. It is propagated on all the conversations that are
currently active for the task, including APPC and MRO conversations. All these conversations must be in send state or pendfree
state.

Chapter 10. State transitions in LUTYPE6.1 conversations 113

A front-end transaction started by ATI in the local system, with an LUTYPE6.1
session as its principal facility, already has a session allocated. Such a transaction
does not issue an ALLOCATE command, and its side of the conversation starts in
send state (state 2).

A back-end transaction is initially in receive state (state 5).

Testing the conversation state
There is no way for an application to check the conversation state directly. The
application must instead check RESP and the EIB fields after each command, and
must follow the rules shown in the state table.

114 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Part 6. Syncpointing a distributed process

This part discusses how to add syncpointing to a distributed process. The material
concentrates on the programming aspects of using the EXEC CICS SYNCPOINT
[ROLLBACK]47 command across APPC conversations at sync level 2 and MRO
conversations.

The information in this part is presented in a single chapter:

Chapter 11, “Syncpointing a distributed process,” on page 117.

47. The SAA equivalents for this syncpointing command (SRRCMIT and SRRBACK) are described in SAA Common Programming
Interface Resource Recovery Reference.

© Copyright IBM Corp. 1991, 2010 115

116 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Chapter 11. Syncpointing a distributed process

This chapter discusses how to include syncpointing in a distributed process. It
concentrates on the programming aspects of using the EXEC CICS SYNCPOINT
[ROLLBACK]48 command across APPC conversations (basic and mapped) at sync
level 2 and MRO conversations. This includes issuing syncpoint requests and
receiving them, because they are transmitted to all partners connected on
conversations at sync level 2. The chapter also describes how these partners are
given the opportunity to back out even though they have been requested to commit.

The chapter contains the following topics:
v The SYNCPOINT command
v “The ISSUE PREPARE command” on page 118
v “The SYNCPOINT ROLLBACK command” on page 118
v “When a backout is required” on page 119
v “Synchronizing two CICS systems” on page 119
v “Synchronizing three or more CICS systems” on page 134
v “What really flows between APPC systems” on page 139.

The SYNCPOINT command
The SYNCPOINT command is used to commit recoverable resources. In a DTP
environment, the effect of the SYNCPOINT command is propagated across all
conversations using sync level 2 or MRO. So, no matter how many DTP
transactions are connected by conversations at sync level 2, the distributed process
should be designed such that only one of the transactions initiates syncpoint activity
for the distributed unit of work. When issuing the SYNCPOINT command, this
transaction, known as the syncpoint initiator must be in send state (state 2),
pendreceive state (state 3), or pendfree state (state 4) on all its conversations at
sync level 2. Any transaction that receives the syncpoint request becomes a
syncpoint agent.

A syncpoint agent is in receive state on its conversation with the syncpoint initiator
and becomes aware of the syncpoint request by testing EIBSYNC (CDBSYNC in
the APPC basic interface) after issuing a RECEIVE command. If it decides to
respond positively by issuing SYNCPOINT, it must be in an appropriate state on all
the conversations with its own agents, for which it has become syncpoint initiator. If
an agent transaction responds negatively to a syncpoint request by issuing
SYNCPOINT ROLLBACK, the initiator sees EIBRLDBK set (X'FF'), which must be
tested on return from the SYNCPOINT command. (This is also true for APPC basic
conversations.)

Your transaction design should ensure that all participating transactions are in the
correct conversation state before a SYNCPOINT command is issued.

When a syncpoint agent receives the syncpoint request, it is given the opportunity
to respond positively (to commit recoverable resources) with a SYNCPOINT
command or negatively (to back out recoverable resources) with a SYNCPOINT
ROLLBACK command. For information on backing out recoverable resources, see
“The SYNCPOINT ROLLBACK command” on page 118.

48. The SAA equivalents for this syncpointing command (SRRCMIT and SRRBACK) are described in SAA Common Programming
Interface Resource Recovery Reference.

© Copyright IBM Corp. 1991, 2010 117

Examples of these commands are given in “Synchronizing two CICS systems” on
page 119 and “Synchronizing three or more CICS systems” on page 134.

The ISSUE PREPARE command
The ISSUE PREPARE (GDS ISSUE PREPARE for the APPC basic interface)
command is used to send the initial syncpoint flow to a selected partner on an
APPC conversation at sync level 2. Depending on the partner’s response, this
command can then be followed by a SYNCPOINT or SYNCPOINT ROLLBACK
command.

The reasons for using ISSUE PREPARE are as follows:

1. In complex DTP involving several conversing transactions, an ISSUE ERROR
command from one of the transactions may not reach the syncpoint initiator in
time to prevent it from issuing a SYNCPOINT command. This can lead to
complex backout procedures for the distributed unit of work.

Use ISSUE PREPARE as a way of flushing any error responses from the
network.

2. If one or more syncpoint agents are not completely “reliable”, use ISSUE
PREPARE to check the status of these agents before proceeding with a general
distributed syncpoint.

Receiving ISSUE PREPARE is exactly the same as receiving SYNCPOINT. The
partner program cannot detect any difference.

The SYNCPOINT ROLLBACK command
The SYNCPOINT ROLLBACK command is used to back out changes to
recoverable resources. In a DTP environment, the effect of the SYNCPOINT
command is propagated across all conversations using MRO or sync level 2. A
SYNCPOINT ROLLBACK command can be issued in any conversation state. If the
command is issued when a conversation is in receive state (state 5), incoming
data on that conversation is purged as described for the ISSUE ERROR and ISSUE
ABEND commands.

When a transaction receives a SYNCPOINT ROLLBACK in response to a syncpoint
request, the EIBRLDBK indicator is set. If SYNCPOINT ROLLBACK is received in
response to any other request, the EIBERR and EIBSYNRB indicators (CDBERR
and CDBSYNRB in the basic interface) are set.

The rules for determining the state after SYNCPOINT ROLLBACK depend on the
CICS release of the partner system. If the partner system is a release earlier than
CICS/ESA 3.2.1, the rollback initiator completes backout processing in send state
(state 2), and the partner completes in receive state (state 5). If the partner system
is CICS/ESA 3.2.1 or later, the conversation state of each partner is restored to the
state at the beginning of the distributed unit of work.

If a session failure or notification of a deallocate abend occurs during SYNCPOINT
ROLLBACK processing, the command still completes successfully. If the same thing
happens during SYNCPOINT processing, the command may complete successfully
with EIBRLDBK set. In such circumstances, the conversation on which the failure or
abend occurred will be in free state (state 12).

To avoid potential state problems, you can check the conversation state by using
the STATE option on the command following SYNCPOINT ROLLBACK. However, to

118 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

avoid the possibility of an abend, you are recommended to follow each
SYNCPOINT ROLLBACK command with an EXTRACT ATTRIBUTES STATE
command instead.

When a backout is required
A backout is required in the following circumstances:

v When SYNCPOINT ROLLBACK is received

v After ISSUE ABEND is sent

v After EIBERR and EIBFREE (CDBERR and CDBFREE in the basic interface) are
returned together.

The conversation state does not always reflect the requirement to back out.
However, CICS is aware of this requirement and converts the next SYNCPOINT
request to a SYNCPOINT ROLLBACK request. If no SYNCPOINT or SYNCPOINT
ROLLBACK request is issued before the end of the task, the task is abended
(ASPN), and all recoverable resources are backed out.

Synchronizing two CICS systems
This section gives examples of how to commit and back out changes to recoverable
resources made by two DTP transactions connected on a conversation using MRO
or sync level 2.

The examples illustrate the following scenarios:

v “SYNCPOINT in response to SYNCPOINT”

v “SYNCPOINT in response to ISSUE PREPARE” on page 122

v “SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK” on page
123

v “SYNCPOINT ROLLBACK in response to SYNCPOINT” on page 124

v “SYNCPOINT ROLLBACK in response to ISSUE PREPARE” on page 125

v “ISSUE ERROR in response to SYNCPOINT” on page 126

v “ISSUE ERROR in response to ISSUE PREPARE” on page 127

v “ISSUE ABEND in response to SYNCPOINT” on page 128

v “ISSUE ABEND in response to ISSUE PREPARE” on page 129

v “Session failure in response to SYNCPOINT” on page 130

v “Session failure in response to ISSUE PREPARE” on page 132

v “Session failure in response to SYNCPOINT ROLLBACK” on page 133.

SYNCPOINT in response to SYNCPOINT
Figure 26, Figure 27, and Figure 28 on page 122 illustrate the effect of SEND,
SEND INVITE, or SEND LAST preceding SYNCPOINT on an APPC mapped
conversation. The figures also show the conversation state before each command
and the state and EIB fields set after each command.

Chapter 11. Syncpointing a distributed process 119

Transaction A Transaction B

... ...
(state: send)
SEND CONVID(AB)
(state: send) (state: receive)
SYNCPOINT RECEIVE CONVID(AB)
(state: send) (state: syncreceive

+EIBSYNC, EIBRECV)
SYNCPOINT
(state: receive)

Figure 26. SYNCPOINT (in response to SEND followed by SYNCPOINT) on an APPC
mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues a SEND command; its conversation remains in send state.

2. Transaction B issues a RECEIVE command; it is suspended until data is received from
transaction A.

3. Transaction A issues a SYNCPOINT command; outstanding data, and the syncpoint
request, are transmitted. The transaction is suspended until the syncpoint response is
received from transaction B.

4. Transaction B's RECEIVE command completes; EIBSYNC and EIBRECV are set, and its
conversation is in syncreceive state.

5. Transaction B issues a SYNCPOINT command; the response is transmitted, and its
conversation is in receive state.

6. Transaction A's SYNCPOINT command completes, and its conversation is in send state.

120 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Transaction A Transaction B

... ...
(state: send)
SEND INVITE

CONVID(AB)
(state: pendreceive) (state: receive)
SYNCPOINT RECEIVE CONVID(AB)
(state: receive) (state: syncsend

+EIBSYNC)
SYNCPOINT
(state: send)

Figure 27. SYNCPOINT (in response to SEND INVITE followed by SYNCPOINT) on an
APPC mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues a SEND INVITE command; its conversation is now in pendreceive
state.

2. Transaction B issues a RECEIVE command; it is suspended until data is received from
transaction A.

3. Transaction A issues a SYNCPOINT command; outstanding data, the INVITE flag, and
the syncpoint request, are transmitted. The transaction is suspended until the syncpoint
response is received from transaction B.

4. Transaction B's RECEIVE command completes; EIBSYNC is set, and its conversation is
in syncsend state.

5. Transaction B issues a SYNCPOINT command; the response is transmitted, and its
conversation is in send state.

6. Transaction A's SYNCPOINT command completes, and its conversation is in receive
state.

Chapter 11. Syncpointing a distributed process 121

SYNCPOINT in response to ISSUE PREPARE
Figure 29 on page 123 illustrates a SYNCPOINT command being used in response
to ISSUE PREPARE on an APPC mapped conversation. The figure also shows the
conversation state before each command and the state and EIB fields set after
each command.

Note that it is also possible to use an ISSUE PREPARE command in pendreceive
state (state 3) and pendfree state (state 4).

Note also that, although the ISSUE PREPARE command in Figure 29 on page 123
returns with the conversation in syncsend state (state 10), the only commands
available for use on that conversation are SYNCPOINT and SYNCPOINT
ROLLBACK. All other commands abend ATCV.

Transaction A Transaction B

... ...
(state: send)
SEND LAST CONVID(AB)
(state: pendfree) (state: receive)
SYNCPOINT RECEIVE CONVID(AB)
(state: free) (state: syncfree

+EIBSYNC, EIBFREE)
SYNCPOINT
(state: free)

Figure 28. SYNCPOINT (in response to SEND LAST followed by SYNCPOINT) on an APPC
mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues a SEND LAST command; its conversation is now in pendfree state.

2. Transaction B issues a RECEIVE command; it is suspended until data is received from
transaction A.

3. Transaction A issues a SYNCPOINT command; outstanding data, the LAST flag, and the
syncpoint request, are transmitted. The transaction is suspended until the syncpoint
response is received from transaction B.

4. Transaction B's RECEIVE command completes; EIBSYNC and EIBFREE are set, and its
conversation is in syncfree state.

5. Transaction B issues a SYNCPOINT command; the response is transmitted, and its
conversation is in free state.

6. Transaction A's SYNCPOINT command completes, and its conversation is in free state.

122 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK
Figure 30 on page 124 illustrates a SYNCPOINT ROLLBACK command being used
in response to SYNCPOINT ROLLBACK on an APPC mapped conversation. The
figure also shows the conversation state before each command and the state and
EIB fields set after each command.

Transaction A Transaction B

... ...
(state: send)
ISSUE PREPARE (state: receive)

CONVID(AB) RECEIVE CONVID(AB)
(state: syncreceive

(state: syncsend) +EIBSYNC, EIBRECV)
SYNCPOINT SYNCPOINT
(state: send)

(state: receive)

Figure 29. SYNCPOINT in response to ISSUE PREPARE on an APPC mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues an ISSUE PREPARE command; the prepare request is transmitted,
and the transaction is suspended until a syncpoint request is received from transaction B

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. Transaction B issues a SYNCPOINT command; the syncpoint request is transmitted, and
the transaction is suspended until the syncpoint response is received from transaction A.

4. Transaction A's ISSUE PREPARE command completes; its conversation is in syncsend
state.

5. Transaction A issues a SYNCPOINT command; the response is transmitted, and its
conversation is in send state.

6. Transaction B's SYNCPOINT command completes, and its conversation is in receive
state.

Chapter 11. Syncpointing a distributed process 123

SYNCPOINT ROLLBACK in response to SYNCPOINT
Figure 31 on page 125 illustrates a SYNCPOINT ROLLBACK command being used
in response to SYNCPOINT on an APPC mapped conversation. The figure also
shows the conversation state before each command and the state and EIB fields
set after each command.

Transaction A Transaction B

... ...
(state: send) (state: receive)
SYNCPOINT ROLLBACK RECEIVE CONVID(AB)

(state: rollback
(state: same as when +EIBERR, EIBSYNRB)
unit of work began)

SYNCPOINT ROLLBACK
(state: same as when
unit of work began)

Figure 30. SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK on an APPC
mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues a SYNCPOINT ROLLBACK command; the rollback request is
transmitted, and the transaction is suspended until a rollback response is received from
transaction B

2. Transaction B issues a RECEIVE command which returns control immediately; EIBERR
and EIBSYNRB are set, and its conversation is in rollback state.

3. Transaction B issues a SYNCPOINT ROLLBACK command; the rollback response is
transmitted; transaction B's conversation is restored to the state it was in at the start of
the unit of work.

4. Transaction A's SYNCPOINT ROLLBACK command completes; its conversation is
restored to the state it was in at the start of the unit of work.

124 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

SYNCPOINT ROLLBACK in response to ISSUE PREPARE
Figure 32 on page 126 illustrates a SYNCPOINT ROLLBACK command being used
in response to ISSUE PREPARE on an APPC mapped conversation. The figure
also shows the conversation state before each command and the state and EIB
fields set after each command.

Transaction A Transaction B

... ...
(state: send) (state: receive)
SYNCPOINT RECEIVE CONVID(AB)

(state: syncreceive
(state: same as when +EIBSYNC, EIBRECV)
unit of work began
+EIBRLDBK) SYNCPOINT ROLLBACK

(state: same as when
unit of work began)

Figure 31. SYNCPOINT ROLLBACK in response to SYNCPOINT on an APPC mapped
conversation. In this figure, transaction A is communicating with transaction B using an APPC
mapped conversation. Initially, transaction A's conversation with B is in send state, and
transaction B's conversation with A is in receive state.
1. Transaction A issues a SYNCPOINT command; the syncpoint request is transmitted, and

the transaction is suspended until a response is received from transaction B.

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. Transaction B issues a SYNCPOINT ROLLBACK command; the rollback response is
transmitted; transaction B's conversation is restored to the state it was in at the start of
the unit of work.

4. Transaction A's SYNCPOINT command completes; EIBRLDBK is set; transaction A's
conversation is restored to the state it was in at the start of the unit of work.

Chapter 11. Syncpointing a distributed process 125

ISSUE ERROR in response to SYNCPOINT
Figure 33 on page 127 illustrates an ISSUE ERROR command being used in
response to SYNCPOINT on an APPC mapped conversation. The figure also shows
the conversation state before each command and the state and EIB fields set after
each command. You can also send ISSUE ERROR before receiving SYNCPOINT;
but this is not shown, because the results are the same.

It is pointless to use ISSUE ERROR as a response to SYNCPOINT, because this
causes the syncpoint initiator to discard all data transmitted with the ISSUE ERROR
by the syncpoint agent. To safeguard integrity, the syncpoint agent has to issue a
SYNCPOINT ROLLBACK command.

Note that if transaction A were running on a CICS release earlier than 3.2, the
results would be different. (See the Intercommunication Guide for the relevant
release.)

Transaction A Transaction B

... ...
(state: send) (state: receive)
ISSUE PREPARE RECEIVE CONVID(AB)

CONVID(AB) (state: syncreceive
(state: rollback +EIBSYNC, EIBRECV)
+EIBERR, EIBSYNRB)
SYNCPOINT ROLLBACK SYNCPOINT ROLLBACK
(state: same as when (state: same as when
unit of work began) unit of work began)

Figure 32. SYNCPOINT ROLLBACK in response to ISSUE PREPARE on an APPC mapped
conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues an ISSUE PREPARE command; the syncpoint request is
transmitted, and the transaction is suspended until a response is received from
transaction B.

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. Transaction B issues a SYNCPOINT ROLLBACK command; the rollback response is
transmitted; transaction B's conversation is restored to the state it was in at the start of
the unit of work.

4. Transaction A's ISSUE PREPARE command completes; EIBERR and EIBRLDBK are set;
transaction A's conversation is restored to the state it was in at the start of the unit of
work.

126 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

ISSUE ERROR in response to ISSUE PREPARE
Figure 34 on page 128 illustrates an ISSUE ERROR command being used in
response to ISSUE PREPARE on an APPC mapped conversation. The figure also
shows the conversation state before each command and the state and EIB fields
set after each command. You can also send ISSUE ERROR before receiving
ISSUE PREPARE; but this is not shown, because the results are the same.

Transaction A Transaction B

... ...
(state: send) (state: receive)
SYNCPOINT RECEIVE CONVID(AB)

(state: syncreceive
+EIBSYNC, EIBRECV)
ISSUE ERROR

CONVID (AB)
(state: send)
SEND INVITE WAIT

CONVID(AB)
(state: receive)
RECEIVE CONVID(AB)
(state: rollback
+EIBERR, EIBSYNRB)

(state: same as when SYNCPOINT ROLLBACK
unit of work began (state: same as when
+EIBRLDBK) unit of work began)

Figure 33. ISSUE ERROR in response to SYNCPOINT on an APPC mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues a SYNCPOINT command; the syncpoint request is transmitted, and
the transaction is suspended until a response is received from transaction B.

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. Transaction B issues an ISSUE ERROR command; its conversation is in send state.

4. Transaction B issues a SEND INVITE WAIT command; the error indication and the
INVITE flag are transmitted to transaction A; transaction B's conversation is in receive
state.

5. On behalf of transaction A, CICS sends a rollback request to transaction B.

6. Transaction B issues a RECEIVE command which returns control immediately; EIBERR
and EIBSYNRB are set, and its conversation is in rollback state.

7. Transaction B issues a SYNCPOINT ROLLBACK command; the rollback response is
transmitted; transaction B's conversation is restored to the state it was in at the start of
the unit of work.

8. Transaction A's SYNCPOINT command completes; EIBRLDBK is set; transaction A's
conversation is restored to the state it was in at the start of the unit of work.

Chapter 11. Syncpointing a distributed process 127

ISSUE ABEND in response to SYNCPOINT
Figure 35 on page 129 illustrates an ISSUE ABEND command being used in
response to SYNCPOINT on an APPC mapped conversation. The figure also shows
the conversation state before each command and the state and EIB fields set after
each command. You can also send ISSUE ABEND before receiving SYNCPOINT;
but this is not shown, because the results are the same.

Transaction A Transaction B

... ...
(state: send) (state: receive)
ISSUE PREPARE RECEIVE CONVID(AB)

CONVID(AB) (state: syncreceive
+EIBSYNC, EIBRECV)
ISSUE ERROR

CONVID (AB)
(state: send)

(state: receive WAIT CONVID(AB)
+EIBERR) (state: send)

Figure 34. ISSUE ERROR in response to ISSUE PREPARE on an APPC mapped
conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues an ISSUE PREPARE command; the syncpoint request is
transmitted, and the transaction is suspended until a response is received from
transaction B.

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. Transaction B issues an ISSUE ERROR command; its conversation is in send state.

4. Transaction B issues a WAIT command; the error indication is transmitted to transaction
A; transaction B's conversation is in send state.

5. Transaction A's ISSUE PREPARE command completes; EIBERR is set; transaction A's
conversation is in receive state.

128 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

ISSUE ABEND in response to ISSUE PREPARE
Figure 36 on page 130 illustrates an ISSUE ABEND command being used in
response to ISSUE PREPARE on an APPC mapped conversation. The figure also
shows the conversation state before each command and the state and EIB fields
set after each command. You can also send ISSUE ABEND before receiving ISSUE
PREPARE; but this is not shown, because the results are the same.

Transaction A Transaction B

... ...
(state: send) (state: receive)
SYNCPOINT RECEIVE CONVID(AB)
(abend: ASP3) (state: syncreceive

+EIBSYNC, EIBRECV)
ISSUE ABEND

CONVID (AB)
(state: free)
FREE CONVID(AB)

SYNCPOINT ROLLBACK

Figure 35. ISSUE ABEND in response to SYNCPOINT on an APPC mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues a SYNCPOINT command; the syncpoint request is transmitted, and
the transaction is suspended until a response is received from transaction B.

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. Transaction B issues an ISSUE ABEND command; theabend indication is transmitted;
transaction B's conversation is in free state.

4. Transaction A abends with code ASP3.

5. Transaction B issues a FREE command to free its conversation with transaction A.

6. Transaction B issues a SYNCPOINT ROLLBACK command in order that its resources
remain consistent with transaction A's resources.

Chapter 11. Syncpointing a distributed process 129

Session failure in response to SYNCPOINT
Figure 37 on page 131 and Figure 38 on page 132 illustrate what happens if the
session fails before or after a SYNCPOINT command issued in response to
SYNCPOINT on an APPC mapped conversation. The figures also show the
conversation state before each command and the state and EIB fields set after
each command.

Transaction A Transaction B

... ...
(state: send) (state: receive)
ISSUE PREPARE RECEIVE CONVID(AB)

CONVID(AB) (state: syncreceive
(state: free +EIBSYNC, EIBRECV)
+ EIBERR, EIBFREE) ISSUE ABEND
FREE CONVID(AB) CONVID(AB)

(state: free)
SYNCPOINT ROLLBACK FREE CONVID(AB)

SYNCPOINT ROLLBACK

Figure 36. ISSUE ABEND in response to ISSUE PREPARE on an APPC mapped
conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues an ISSUE PREPARE command; the syncpoint request is
transmitted, and the transaction is suspended until a response is received from
transaction B.

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. Transaction B issues an ISSUE ABEND command; theabend indication is transmitted;
transaction B's conversation is in free state.

4. Transaction A's ISSUE PREPARE command completes; EIBERR and EIBFREE are set;
transaction A's conversation is in free state.

From this point, the two transactions are independent of one another.

5. Transaction A issues a FREE command to free its conversation with transaction A.

6. Transaction A issues a SYNCPOINT ROLLBACK command in order that its resources
remain consistent with transaction A's resources.

7. Transaction B issues a FREE command to free its conversation with transaction A.

8. Transaction B issues a SYNCPOINT ROLLBACK command in order that its resources
remain consistent with transaction A's resources.

130 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Transaction A Transaction B

... ...
(state: send) (state: receive)
SYNCPOINT RECEIVE CONVID(AB)

(state: syncreceive
+EIBSYNC, EIBRECV)
SYNCPOINT

(abend: ASP3) (Conversation freed.
All subsequent cmds
on AB fail NOTALLOC)

session
failure

Figure 37. Session failure before SYNCPOINT in response to SYNCPOINT on an APPC
mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues a SYNCPOINT command; the syncpoint request is transmitted, and
the transaction is suspended until a response is received from transaction B.

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. The session between transaction A and transaction B fails.

From this point , the two transactions are independent of one another.

4. Transaction B issues a SYNCPOINT command; its conversation is freed, and a
NOTALLOC condiition is raised for any further commands that attempt to use the
conversation.

5. Transaction A abends with code ASP3.

Chapter 11. Syncpointing a distributed process 131

Session failure in response to ISSUE PREPARE
Figure 39 on page 133 illustrates what happens if the session fails after ISSUE
PREPARE is received by transaction B and before the SYNCPOINT response is
received by transaction A on an APPC mapped conversation. The figure also shows
the conversation state before each command and the state and EIB fields set after
each command.

Transaction A Transaction B

... ...
(state: send) (state: receive)
SYNCPOINT RECEIVE CONVID(AB)

(state: syncreceive
+EIBSYNC, EIBRECV)
SYNCPOINT
(state: receive)

(abend: ASP3)
RECEIVE CONVID(AB)
(state: free
+EIBERR, EIBFREE)
FREE CONVID(AB)

SYNCPOINT ROLLBACK
session
failure

Figure 38. Session failure after SYNCPOINT in response to SYNCPOINT on an APPC
mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues a SYNCPOINT command; the syncpoint request is transmitted, and
the transaction is suspended until a response is received from transaction B.

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. Transaction B issues a SYNCPOINT command; the response is transmitted, and its
conversation is in receive state.

4. The session between transaction A and transaction B fails.

From this point , the two transactions are independent of one another.

5. Transaction A abends with code ASP3.

6. Transaction B issues a RECEIVE command which returns control immediately; EIBERR
and EIBFREE are set, and its conversation is in free state.

7. Transaction B issues a FREE command to free its conversation with transaction A.

8. Transaction B issues a SYNCPOINT ROLLBACK command in order that its resources
remain consistent with transaction A's resources.

132 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Session failure in response to SYNCPOINT ROLLBACK
Figure 40 on page 134 illustrates what happens if the session fails after
SYNCPOINT ROLLBACK is received and before the response is issued on an
APPC mapped conversation. The figure also shows the conversation state before
each command and the state and EIB fields set after each command.

Transaction A Transaction B

... ...
(state: send) (state: receive)
ISSUE PREPARE RECEIVE CONVID(AB)

CONVID(AB) (state: syncreceive
+EIBSYNC, EIBRECV)
SYNCPOINT

(abend: ASP1) (state: receive)
RECEIVE CONVID(AB)
(state: free
+EIBERR, EIBFREE)
FREE CONVID(AB)

SYNCPOINT ROLLBACK
session
failure

Figure 39. Session failure during SYNCPOINT in response to ISSUE PREPARE on an APPC
mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues an ISSUE PREPARE command; the syncpoint request is
transmitted, and the transaction is suspended until a response is received from
transaction B.

2. Transaction B issues a RECEIVE command which returns control immediately; EIBSYNC
and EIBRECV are set, and its conversation is in syncreceive state.

3. The session between transaction A and transaction B fails.

From this point , the two transactions are independent of one another.

4. Transaction A abends with code ASP1.

5. Transaction B issues a SYNCPOINT command; its conversation is in receive state.

6. Transaction B issues a RECEIVE command which returns control immediately; EIBERR
and EIBFREE are set, and its conversation is in free state.

7. Transaction B issues a FREE command to free its conversation with transaction A.

8. Transaction B issues a SYNCPOINT ROLLBACK command in order that its resources
remain consistent with transaction A's resources.

Chapter 11. Syncpointing a distributed process 133

Synchronizing three or more CICS systems
This section gives examples of how to commit and back out recoverable resources
affected by three or more DTP transactions connected on conversations at sync
level 2.

SYNCPOINT in response to SYNCPOINT
Figure 41 on page 136 shows the sequence of events for a successful syncpoint
involving six conversing transactions:

Transaction A

v is in conversation with transactions B and D. Before the syncpoint, its
conversations with B and D are in send state.

v is the syncpoint initiator with respect to transactions B and D.

Transaction B

v is in conversation with transactions A, C, and E. Before the syncpoint, its
conversation with A is in receive state, and its conversations with C and
E are in send state.

v is a syncpoint agent of transaction A, and the syncpoint initiator with
respect to transactions C and E.

Transaction C

Transaction A Transaction B

... ...
(state: send) (state: receive)
SYNCPOINT ROLLBACK RECEIVE CONVID(AB)

(state: rollback
+EIBERR, EIBSYNRB)
SYNCPOINT ROLLBACK

(state: free)
(state: free)

session
failure

Figure 40. Session failure during SYNCPOINT ROLLBACK in response to SYNCPOINT
ROLLBACK on an APPC mapped conversation.

In this figure, transaction A is communicating with transaction B using an APPC mapped
conversation. Initially, transaction A's conversation with B is in send state, and transaction
B's conversation with A is in receive state.

1. Transaction A issues a SYNCPOINT ROLLBACK command; the rollback request is
transmitted, and the transaction is suspended until a rollback response is received from
transaction B

2. Transaction B issues a RECEIVE command which returns control immediately; EIBERR
and EIBSYNRB are set, and its conversation is in rollback state.

3. The session between transaction A and transaction B fails.

From this point , the two transactions are independent of one another.

4. Transaction B issues a SYNCPOINT ROLLBACK command; its conversation is in free
state.

5. Transaction A's SYNCPOINT ROLLBACK command completes; its conversation is in free
state.

134 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

v is in conversation with transaction B. Before the syncpoint, its
conversation with B is in receive state.

v is a syncpoint agent of transaction B.

Transaction D

v is in conversation with transactions A and F. Before the syncpoint, its
conversation with A is in receive state, and its conversation F is in send
state.

v is a syncpoint agent of transaction A, and the syncpoint initiator with
respect to transaction F.

Transaction E

v is in conversation with transaction B. Before the syncpoint, its
conversation with B is in receive state.

v is a syncpoint agent with respect to transaction B.

Transaction F

v is in conversation with transaction D. Before the syncpoint, its
conversation with D is in receive state.

v is the only syncpoint agent of transaction D.

It illustrates the states and actions that occur when transactions issue SYNCPOINT
requests. To write successful distributed applications you do not need to understand
all the data flows that take place during a distributed syncpoint. In this example, the
programmer is concerned only with issuing SYNCPOINT in response to finding a
conversation in syncreceive state (state 9).

Chapter 11. Syncpointing a distributed process 135

1. Transaction A, which is in send state (state 2) on its conversations with
transactions B and D, decides to end the distributed unit of work, and therefore
issues a SYNCPOINT command.

2. Transaction B sees that its half of its conversation with transaction A is in
syncreceive state (state 9), so it issues a SYNCPOINT command. Transaction
B is responding to a request from transaction A, but it also becomes the
syncpoint initiator for transactions C and E, and must ensure that its
conversations with these transactions are in a valid state for issuing a
SYNCPOINT command. In this example, they are both in send state (state 2).

3. Transaction C sees that its half of its conversation with transaction B is in
syncreceive state (state 9), so it issues a SYNCPOINT command.

4. Transaction E sees that its half of its conversation with transaction B is in
syncreceive state (state 9), so it issues a SYNCPOINT command.

5. Transaction D sees that its half of its conversation with transaction A is in
syncreceive state (state 9), so it issues a SYNCPOINT command. Transaction
D is responding to a request from transaction A, but it also becomes the
syncpoint initiator for transaction F, and must ensure that its conversation with
this transaction is in a valid state for issuing a SYNCPOINT command. In this
example, it is in send state (state 2).

6. Transaction F sees that its half of its conversation with transaction D is in
syncreceive state (state 9), so it issues a SYNCPOINT command.

Transaction A Transaction B
(initiator for (agent of A; Transaction C

B & D) initiator for C & E) (agent of B)

(states: (state: receive)
on AB - send (states: RECEIVE
on AD - send) on AB - receive (state:
SYNCPOINT on BC - send syncreceive)

on BE - send) SYNCPOINT
(states: RECEIVE (state: receive)
on AB - send (states:
on AD - send) on AB - syncreceive

on BC - send Transaction E
on BE - send) (agent of B)
SYNCPOINT
(states: (state: receive
on AB - receive RECEIVE
on BC - send (state syncreceive)
on BE - send) SYNCPOINT

(state: receive)

Transaction D
(last agent of A;
initiator for F)

(states:
on AD - receive Transaction F
on DF - send) (only agent of D)
RECEIVE
(states:
on AD - syncreceive (state: receive)
on DF - send) RECEIVE
SYNCPOINT (state:
(states: syncreceive)
on AD - receive SYNCPOINT
on DF - send) (state: receive)

Figure 41. A distributed syncpoint with all partners running on CICS Transaction Server for
z/OS, Version 3 Release 1

136 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

7. All the transactions have now indicated, by issuing SYNCPOINT commands,
that they are ready to commit their changes. This process begins with
transaction F, which has no agents and has responded to “request commit” by
issuing a SYNCPOINT command.

8. The distributed syncpoint is complete and control returns to transaction A
following the SYNCPOINT command.

The previous discussion of the SYNCPOINT command assumed that all the agent
transactions were ready to take a syncpoint by issuing SYNCPOINT when their
conversation entered syncreceive state (state 9).

If, however, an agent has detected an error, it can reject the syncpoint request with
one of the following commands:
v SYNCPOINT ROLLBACK (preferred response)
v ISSUE ERROR
v ISSUE ABEND

The SYNCPOINT ROLLBACK command enables a transaction to initiate a backout
operation across the entire distributed unit of work. When it is issued in response to
a syncpoint request, it has the following effects:

1. Any changes made to recoverable resources by the transaction that issues the
rollback request are backed out.

2. The syncpoint initiator is also backed out (EIBRLDBK set).

This causes the syncpoint initiator to initiate a backout operation across the
distributed unit of work.

SYNCPOINT ROLLBACK in response to SYNCPOINT
Figure 42 on page 138 shows the sequence of events for a syncpoint involving six
conversing transactions, when one of the agents determines that the distributed
transaction should be backed out. The topology, and initial states are the same as
in Figure 41 on page 136:

Transaction A

v is in conversation with transactions B and D. Before the syncpoint, its
conversations with B and D are in send state.

v is the syncpoint initiator with respect to transactions B and D.

Transaction B

v is in conversation with transactions A, C, and E. Before the syncpoint, its
conversation with A is in receive state, and its conversations with C and
E are in send state.

v is a syncpoint agent of transaction A, and the syncpoint initiator with
respect to transactions C and E.

Transaction C

v is in conversation with transaction B. Before the syncpoint, its
conversation with B is in receive state.

v is a syncpoint agent of transaction B.

Transaction D

v is in conversation with transactions A and F. Before the syncpoint, its
conversation with A is in receive state, and its conversation F is in send
state.

Chapter 11. Syncpointing a distributed process 137

v is a syncpoint agent of transaction A, and the syncpoint initiator with
respect to transaction F.

Transaction E

v is in conversation with transaction B. Before the syncpoint, its
conversation with B is in receive state.

v is a syncpoint agent with respect to transaction B.

Transaction F

v is in conversation with transaction D. Before the syncpoint, its
conversation with D is in receive state.

v is the only syncpoint agent of transaction D.

As in Figure 41 on page 136, transaction A (while in send state, state 2) issues the
SYNCPOINT command, and CICS initiates a chain of events. Here, however,
transaction E has detected an error that makes it unable to commit, and it issues
SYNCPOINT ROLLBACK when it detects that the conversation on its principal
facility is in syncreceive state (state 9, EIBSYNC is also set). This causes any
changes that transaction E has made to be backed out, and initiates a distributed
rollback.

Transaction A Transaction B
(initiator for (agent of A; Transaction C

B & D) initiator for C & E) (agent of B)

(states: (state: receive)
on AB - send (states: RECEIVE
on AD - send) on AB - receive (state syncreceive)
SYNCPOINT on BC - send SYNCPOINT

on BE - send) (state: receive
(states: RECEIVE EIBRLDBK set)
on AB - send (states:
on AD - send on AB - syncreceive
EIBRLDBK) on BC - send Transaction E

on BE - send) (agent of B)
SYNCPOINT
(states: (state: receive
on AB - receive RECEIVE
on BC - send (state syncreceive)
on BE - send SYNCPOINT ROLLBACK
EIBRLDBK set) (state: receive)

Transaction D
(last agent of A;
initiator for F)

(states:
on AD - receive Transaction F
on DF - send) (only agent of D)
RECEIVE
(states:
on AD - rollback (state: receive)
on DF - send) RECEIVE
SYNCPOINT ROLLBACK (state: rollback)
(states:
on AD - receive SYNCPOINT ROLLBACK
on DF - send) (state: receive)

Figure 42. Rollback during distributed syncpointing

138 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Transactions B, C and A are rolled back (EIBRLDBK set). Transaction D senses
that the conversation on its principal facility is in rollback state (state 13,
EIBSYNRB is also set), and issues a SYNCPOINT ROLLBACK command.
Transaction F too senses that the conversation on its principal facility is in rollback
state, and issues a SYNCPOINT ROLLBACK command. The distributed rollback is
now complete.

Session failure and the indoubt period
During the period between the sending of the syncpoint request to the partner
system and the receipt of the reply, the local system does not know whether the
partner system has committed the change. This is known as the indoubt period. If
the intersystem session fails during this period, the local CICS system cannot tell
whether the partner system has committed or backed out its resource changes.

This situation could occur for situations other than DTP and is discussed in the
“Recovery and restart” section of the CICS Intercommunication Guide.

What really flows between APPC systems
This section describes the commit protocols that flow between APPC systems
during a syncpoint. The arrows in the diagrams show the syncpoint flows in more
detail than in the figures earlier in this chapter.

First, consider a simple distributed process involving only one conversation, as in
Figure 43. Here is what happens:

1. The syncpoint initiator sends a “commit” request to the syncpoint agent.

2. The syncpoint agent commits all changes it made to recoverable resources, and
responds with “committed”.

3. The syncpoint initiator then commits its changes, and the UOW is complete.

When the syncpoint agent has a conversation with a third transaction, Figure 44 on
page 140 shows the flows that occur. Here is what happens:

1. The syncpoint initiator sends a “commit” request to its agent.

2. The agent becomes the initiator on the conversation to its agent, and sends a
“commit” request.

3. The second agent commits first and responds with “committed”.

4. The first agent commits and sends “committed” to the initiator.

5. The initiator commits.

System 1 System 2

... commit ...
SYNCPOINT RECEIVE

(EIBSYNC set)
committed

SYNCPOINT

Figure 43. Syncpoint flows in a single conversation

Chapter 11. Syncpointing a distributed process 139

When the syncpoint initiator has two concurrent conversations, the flows involved
are shown in Figure 45. Here is what happens:

1. The syncpoint initiator sends a “prepare” request to all its agents except one.

2. The agent receiving “prepare” responds by sending a “commit” request to the
initiator.

3. When all the “prepare” requests have been sent, and the “commit” requests
received, the initiator sends a “commit” request to its last agent.

4. The initiator receives “committed” from the last agent.

5. The initiator sends “committed” to the remaining agents.

6. The agents respond “forget” to indicate that they do not need to be
resynchronized.

If the syncpoint initiator decides to prepare the conversation with system 2 explicitly
before issuing a syncpoint, the flows involved are shown in Figure 46 on page 141.
In this case, the application program in system 1 issues an ISSUE PREPARE
command, followed by SYNCPOINT command, rather than just a SYNCPOINT
command; however, the flows across the links are exactly the same as those in the
previous example. Using the ISSUE PREPARE command gives the application the
opportunity to “change its mind” and rollback, depending on the response to ISSUE
PREPARE.

System 1 System 2 System 3
commit

SYNCPOINT RECEIVE
(EIBSYNC set)

commit
SYNCPOINT RECEIVE

(EIBSYNC set)
committed committed

SYNCPOINT

Figure 44. Syncpoint flows in concurrent conversations

System 1 System 2
1) prepare

SYNCPOINT RECEIVE
(EIBSYNC set)

2) commit
SYNCPOINT

5) committed

6) forget

System 3
3) commit

RECEIVE
(EIBSYNC set)

4) committed
SYNCPOINT

Figure 45. Syncpoint flows in concurrent conversations with one initiator. The initiator uses
only SYNCPOINT.

140 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

For further information on the flows in a distributed process, see the SNA
Reference: Peer Protocols book.

System 1 System 2
1) prepare

ISSUE PREPARE RECEIVE
(EIBSYNC set)

2) commit
SYNCPOINT

3) commit
SYNCPOINT

5) committed

6) forget

System 3

RECEIVE
(EIBSYNC set)

4) committed
SYNCPOINT

Figure 46. Syncpoint flows in concurrent conversations with one initiator. The initiator uses
ISSUE PREPARE before SYNCPOINT.

Chapter 11. Syncpointing a distributed process 141

142 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Part 7. Appendixes

© Copyright IBM Corp. 1991, 2010 143

144 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Appendix A. CICS mapping to the APPC architecture

This appendix shows how the APPC programming language (described in
Transaction Programmer’s Reference Manual for LU Type 6.2, GC30-3084) is
implemented by CICS.

The appendix contains three main sections:

1. “Command mapping for APPC basic conversations” on page 146

The CICS application programming interface for basic, or unmapped,
conversations is described in Chapter 8, “State transitions in APPC basic
conversations,” on page 91. These tables show how the APPC verbs map to the
EXEC CICS commands.

2. “Command mapping for APPC mapped conversations” on page 153

The CICS application programming interface for mapped conversations is
described in Chapter 4, “State transitions in APPC mapped conversations,” on
page 41. For programming information about the full syntax of EXEC CICS
commands for APPC mapped conversations, see the CICS Application
Programming Reference. These tables show how the APPC verbs map to the
EXEC CICS commands.

3. “CICS deviations from the APPC architecture” on page 159

How the CICS APIs differ from the APPC architecture and their effects on the
CICS application programmer are discussed.

For information on which APPC option sets are supported by CICS and which are
not, or on how CICS implements the APPC control operator verbs, see the CICS
Intercommunication Guide.

© Copyright IBM Corp. 1991, 2010 145

Command mapping for APPC basic conversations
The following tables show the mapping between APPC verbs and CICS commands
for basic conversations. See “Return codes for APPC basic conversations” on page
151 for details of the corresponding return code mapping.

ALLOCATE EXEC CICS GDS ALLOCATE
+ EXEC CICS GDS CONNECT PROCESS

LU_NAME(vble) SYSID on ALLOCATE

MODE_NAME(vble) MODENAME on ALLOCATE

MODE_NAME('SNASVCMG') MODENAME on ALLOCATE

TPN(vble) PROCNAME on CONNECT PROCESS (with
PROCLENGTH)

TYPE(BASIC_CONVERSATION) Supported by GDS

TYPE(MAPPED_CONVERSATION) Not supported

RETURN_CONTROL(WHEN_SESSION_ALLOCATED) Default on ALLOCATE

RETURN_CONTROL(WHEN_CONWINNER_ALLOCATED) Not supported

RETURN_CONTROL
(WHEN_CONVERSATION_GROUP_ALLOCATED)

Supported

RETURN_CONTROL(IMMEDIATE) NOQUEUE/NOSUSPEND on ALLOCATE

SYNC_LEVEL SYNCLEVEL on CONNECT PROCESS
0 ─ None
1 ─ Confirm
2 ─ Syncpoint

SECURITY(NONE) Not supported

SECURITY(SAME) Default on ALLOCATE

SECURITY(PGM(USED_ID(vble) Not supported

(PASSWORD(vble))) Not supported

PIP(NO) Supported by PIPLENGTH(0)

PIP(YES(vble1,vble2 ... vblen)) Supported by PIPLIST+PIPLENGTH

RESOURCE Returned by GDS ASSIGN

RETURN_CODE Supported

BACKOUT EXEC CICS SYNCPOINT ROLLBACK

RETURN_CODE Supported

CONFIRM EXEC CICS GDS CONFIRM

RESOURCE CONVID

RETURN_CODE Supported

REQUEST_TO_SEND_RECEIVED Returned in CDBSIG

CONFIRMED EXEC CICS GDS ISSUE CONFIRMATION

RESOURCE CONVID

RETURN_CODE Supported

146 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

DEALLOCATE EXEC CICS GDS SEND LAST
+ EXEC CICS SYNCPOINT
+ EXEC CICS GDS FREE

TYPE(SYNC_LEVEL) None EXEC CICS GDS SEND LAST WAIT
+ EXEC CICS GDS FREE

TYPE(SYNC_LEVEL) Confirm EXEC CICS GDS SEND LAST CONFIRM
+ EXEC CICS GDS FREE

TYPE(SYNC_LEVEL) Syncpt EXEC CICS GDS SEND LAST
+ EXEC CICS SYNCPOINT
+ EXEC CICS GDS FREE

TYPE(FLUSH) EXEC CICS GDS SEND LAST WAIT
+ EXEC CICS GDS FREE

TYPE(CONFIRM) EXEC CICS GDS SEND LAST CONFIRM
+ EXEC CICS GDS FREE

TYPE(ABEND_PROG)
Depends on setting of CDBFREE by
previous command:

CDBFREE = X'00 EXEC CICS GDS ISSUE ABEND
+ EXEC CICS GDS FREE

CDBFREE = X'FF EXEC CICS GDS FREE

TYPE(ABEND_SVC) Not supported at API (option set 11)

TYPE(ABEND_TIMER) Not supported at API (option set 11)

TYPE(LOCAL) EXEC CICS GDS FREE

LOG_DATA(vble) Not available at API. CICS inserts the
appropriate values

RETURN_CODE Supported

FLUSH EXEC CICS GDS WAIT

GET_ATTRIBUTES EXEC CICS GDS EXTRACT PROCESS
or EXEC CICS GDS ASSIGN
or EXEC CICS ASSIGN

RESOURCE CONVID

SYNC_LEVEL SYNCLEVEL on GDS EXTRACT PROCESS
0 ─ None
1 ─ Confirm
2 ─ Syncpoint

UOW_IDENTIFIER See note

OWN_FULLY_QUALIFIED_LU_NAME See note

PARTNER_LU_NAME GDS ASSIGN PRINSYSID

PARTNER_FULLY_QUALIFIED_LU_NAME See note

MODE_NAME See note

USERID ASSIGN USERID

Note: These values are not normally
required in CICS applications and are not
available at the API.

RETURN_CODE Supported

Appendix A. CICS mapping to the APPC architecture 147

GET_TYPE EXEC CICS GDS ASSIGN (+ return code
test)

RESOURCE PRINCONVID

TYPE(vble) RETCODE
clear = GDS (BASIC)
03 04 = wrong conversation level

POST_ON_RECEIPT Not supported

PREPARE_FOR_SYNCPT EXEC CICS GDS ISSUE PREPARE

RESOURCE CONVID

RETURN_CODE Supported

PREPARE_TO_RECEIVE EXEC CICS GDS SEND INVITE

TYPE(SYNC_LEVEL) none EXEC CICS GDS SEND INVITE WAIT

TYPE(SYNC_LEVEL) confirm EXEC CICS GDS SEND INVITE CONFIRM

TYPE(SYNC_LEVEL) syncpt EXEC CICS GDS SEND INVITE
+ EXEC CICS SYNCPOINT

TYPE(FLUSH) EXEC CICS GDS SEND INVITE WAIT

TYPE(CONFIRM) EXEC CICS GDS SEND INVITE CONFIRM

LOCKS(SHORT) Defaulted

LOCKS(LONG) Not supported

RETURN_CODE Supported

148 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

RECEIVE_AND_WAIT EXEC CICS GDS RECEIVE
(for both LL and BUFFER)

RESOURCE CONVID field

FILL(BUFFER) BUFFER option

FILL(LL) LLID option

LENGTH(vble) Input MAXFLENGTH option

LENGTH(vble) Output FLENGTH option

RETURN_CODE Supported

REQUEST_TO_SEND_RECEIVED Returned in CDBSIG

DATA INTO or SET option

WHAT_RECEIVED
CONFIRM
CONFIRM_DEALLOCATE
CONFIRM_SEND
DATA
DATA_COMPLETE
DATA_INCOMPLETE
LL_TRUNCATED
SEND
TAKE_SYNCPT
TAKE_SYNCPT_DEALLOCATE
TAKE_SYNCPT_SEND

CICS Settings
CDBCONF + CDBRECV
CDBCONF + CDBFREE
CDBCONF
FLENGTH field ¬= 0 [+ CDBRECV]
CDBCOMPL [+ CDBRECV]
¬CDBCOMPL [+ CDBRECV]
RETCODE = X'0310....'
¬CDBRECV
CDBSYNC + CDBRECV
CDBSYNC + CDBFREE
CDBSYNC

Notes:

1. Mapping of RECEIVE_AND_WAIT to EXEC CICS GDS RECEIVE is not always one to
one.

When a CICS RECEIVE command is issued, CICS returns all the information and data
(the DATA, the WHAT_RECEIVED flags, and the RETURN_CODE) at once. On
completion of a CICS command, more than one indicator may be set, as shown in the
WHAT_RECEIVED mapping above. It may be necessary to perform more than one
subsequent command to honor the actions required by the indicators. For this reason,
the action flags must be saved when they are received, and then acted on one by one.
If the same data area is used for CONVDATA on successive GDS commands, the flags
are overwritten and lost.

APPC does not work this way; a RECEIVE_AND_WAIT verb returns either data or
information about the conversation state (as indicated by WHAT_RECEIVED), but never
both.

It is necessary to program round this difference in philosophy when translating APPC
verbs into CICS commands.

2. APPC allows a RECEIVE_AND_WAIT to be issued immediately after an ALLOCATE
verb. When you are writing basic conversations in CICS, however, you must supply the
PREPARE_TO_RECEIVE explicitly, as follows:

ALLOCATE EXEC CICS GDS ALLOCATE
+EXEC CICS CONNECT PROCESS

(Required by CICS) EXEC CICS GDS SEND INVITE WAIT
RECEIVE_AND_WAIT EXEC CICS GDS RECEIVE

REQUEST_TO_SEND EXEC CICS GDS ISSUE SIGNAL

RESOURCE CONVID field

RETURN_CODE Supported

Appendix A. CICS mapping to the APPC architecture 149

SEND_DATA EXEC CICS GDS SEND

RESOURCE CONVID field

DATA FROM option

LENGTH FLENGTH option

RETURN_CODE Supported

REQUEST_TO_SEND_RECEIVED Returned in CDBSIG

ENCRYPT Not supported

SEND_ERROR EXEC CICS GDS ISSUE ERROR

RESOURCE CONVID field

TYPE(PROG) Default

TYPE(SVC) Not supported

LOG_DATA Not supported

RETURN_CODE Supported

REQUEST_TO_SEND_RECEIVED Returned in CDBSIG

SYNCPT EXEC CICS SYNCPOINT

RETURN_CODE Zero - Control returned to
program.

Non-zero - CICS takes action;
to backout the UOW (and
abend the task or set
EIBRLDBK).

Notes:

1. EXEC CICS SYNCPOINT is not a GDS command.

2. For certain specialized applications, the PREPARE flow (the first flow in syncpoint
exchanges) may be sent for a particular conversation by using the command:

EXEC CICS GDS ISSUE PREPARE

This enables any outstanding messages in the network (for example, SEND ERROR) to
be received before proceeding, or deciding not to proceed, with the full syncpoint.

TEST Check CDB flags

RETURN_CODE Not supported

TEST(POSTED) Check CDB flags

TEST(REQUEST_TO_SEND_RECEIVED) Check CDBSIG

WAIT Not supported

150 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Return codes for APPC basic conversations

APPC RETURN_CODE CICS return codes

OK CDBERR and RETCODE are zero

ALLOCATION_ERROR

Local allocation failures: CICS is unable to allocate a session for
an ALLOCATE command.

ALLOCATION_FAILURE_NO_RETRY RETCODE = 01....

The second and subsequent bytes give
further information

ALLOCATION_FAILURE_RETRY For temporary problems, CICS waits in
the ALLOCATE command until the problem
has cleared and then continues.

See also the UNSUCCESSFUL return code,
which relates to the NOQUEUE option on
the CICS ALLOCATE command.

Remote allocation failures: These are returned to the program after
the CONNECT PROCESS command has been
issued, and the partner system has been
unable to start the requested task. They
may be returned on any subsequent
command that relates to the session in
use

CONVERSATION_TYPE_MISMATCH CDBERRCD = 10086034

PIP_NOT_ALLOWED CDBERRCD = 10086031

PIP_NOT_SPECIFIED_CORRECTLY CDBERRCD = 10086032

SECURITY_NOT_VALID CDBERRCD = 080F6051

SYNC_LEVEL_NOT_SUPPORTED_BY_PGM CDBERRCD = 10086041

SYNC_LEVEL_NOT_SUPPORTED_BY_LU RETCODE = 030C

Note: CICS remembers SYNC_LEVEL
negotiated at bind time and does not
permit a request to be sent for a sync
level not supported by the remote LU.

TPN_NOT_RECOGNIZED CDBERRCD = 10086021

TRANS_PGM_NOT_AVAIL_NO_RETRY CDBERRCD = 084C0000

TRANS_PGM_NOT_AVAIL_RETRY CDBERRCD = 084B6031

BACKED_OUT CDBERRCD = 08240000

DEALLOCATE_ABEND_PROG CDBERRCD = 08640000

DEALLOCATE_ABEND_SVC CDBERRCD = 08640001

DEALLOCATE_ABEND_TIMER CDBERRCD = 08640002

DEALLOCATE_NORMAL CDBFREE + ¬CDBERR

PARAMETER_ERROR RETCODE = 01 0C ..

This return code relates ONLY to the
ALLOCATE command (for CICS). It is given
when an invalid LU name or MODE name has
been specified. The third byte gives
additional information.

Appendix A. CICS mapping to the APPC architecture 151

APPC RETURN_CODE CICS return codes

PROG_ERROR_NO_TRUNC CDBERRCD = 08890000 (RECEIVE Only)

PROG_ERROR_TRUNC CDBERRCD = 08890001

PROG_ERROR_PURGING CDBERRCD = 08890000

RESOURCE_FAILURE_RETRY CDBERRCD = A000

RESOURCE_FAILURE_NO_RETRY CDBERRCD = A000

SVC_ERROR_NO_TRUNC CDBERRCD = 08890100 (RECEIVE Only)

SVC_ERROR_TRUNC CDBERRCD = 08890101

SVC_ERROR_PURGING CDBERRCD = 08890100

UNSUCCESSFUL

This return code relates ONLY to the
APPC ALLOCATE verb with
RETURN_CONTROL(IMMEDIATE) specified.
This is implemented in CICS with the
NOQUEUE option on the ALLOCATE
command.

RETCODE = 01 04 04

Control returned to the program because
a session was not immediately available.

Note: In all cases, where a value for CDBERRCD is given, CDBERR will be set to X'FF'. It
is intended that the program should first test CDBERR and then examine CDBERRCD if
additional information is required.

152 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Command mapping for APPC mapped conversations
The following tables show the mapping between APPC verbs and CICS commands
for mapped conversations. See “Return codes for APPC mapped conversations” on
page 158 for details of the corresponding return code mapping.

MC_ALLOCATE EXEC CICS ALLOCATE
+ EXEC CICS CONNECT PROCESS

LU_NAME(vble) SYSID on ALLOCATE

MODE_NAME(vble) MODENAME on ALLOCATE

TPN(vble) PROCNAME on CONNECT PROCESS (with
PROCLENGTH)

RETURN_CONTROL(WHEN_SESSION_ALLOCATED) Default on ALLOCATE

RETURN_CONTROL(WHEN_CONWINNER_ALLOCATED) Not supported

RETURN_CONTROL
(WHEN_CONVERSATION_GROUP_ALLOCATED)

Not supported

RETURN_CONTROL(IMMEDIATE) NOQUEUE/NOSUSPEND on ALLOCATE

SYNC_LEVEL SYNCLEVEL on CONNECT PROCESS
0 ─ None
1 ─ Confirm
2 ─ Syncpoint

CONVERSATION_GROUP_ID Not supported

SECURITY(NONE) Not supported

SECURITY(SAME) Default on ALLOCATE

SECURITY(PGM(USED_ID(vble) Not supported

(PASSWORD(vble))) Not supported

PIP(NO) Supported by PIPLENGTH(0)

PIP(YES(vble1,vble2 ... vblen)) Supported by PIPLIST+PIPLENGTH

RESOURCE Returned in CONVID field

RETURN_CODE Supported

BACKOUT EXEC CICS SYNCPOINT ROLLBACK

RETURN_CODE Supported

MC_CONFIRM EXEC CICS CONFIRM

RESOURCE CONVID

RETURN_CODE Supported

REQUEST_TO_SEND_RECEIVED Returned in EIBSIG

MC_CONFIRMED EXEC CICS ISSUE CONFIRMATION

RESOURCE CONVID

RETURN_CODE Supported

Appendix A. CICS mapping to the APPC architecture 153

MC_DEALLOCATE EXEC CICS SEND LAST
+ EXEC CICS SYNCPOINT
+ EXEC CICS FREE

RESOURCE CONVID

TYPE(SYNC_LEVEL) None EXEC CICS SEND LAST WAIT
+ EXEC CICS FREE

TYPE(SYNC_LEVEL) Confirm EXEC CICS SEND LAST CONFIRM
+ EXEC CICS FREE

TYPE(SYNC_LEVEL) Syncpt EXEC CICS SEND LAST
+ EXEC CICS SYNCPOINT
+ EXEC CICS FREE

TYPE(FLUSH) EXEC CICS SEND LAST WAIT
+ EXEC CICS FREE

TYPE(CONFIRM) EXEC CICS SEND LAST CONFIRM
+ EXEC CICS GDS FREE

TYPE(ABEND_PROG)
Depends on setting of EIBFREE by
previous command:

EIBFREE = X'00 EXEC CICS ISSUE ABEND
+ EXEC CICS FREE

EIBFREE = X'FF EXEC CICS FREE

TYPE(LOCAL) EXEC CICS FREE

RETURN_CODE Supported

MC_FLUSH EXEC CICS WAIT
or EXEC CICS SEND WAIT

RESOURCE CONVID

RETURN_CODE Supported

MC_GET_ATTRIBUTES EXEC CICS EXTRACT PROCESS
or EXEC CICS ASSIGN

RESOURCE CONVID on EXTRACT PROCESS

SYNC_LEVEL SYNCLEVEL on EXTRACT PROCESS
0 ─ None
1 ─ Confirm
2 ─ Syncpoint

PARTNER_LU_NAME ASSIGN PRINSYSID

PARTNER_FULLY_QUALIFIED_LU_NAME See note

MODE_NAME See note

CONVERSATION_STATE(vble) STATE on EXTRACT PROCESS

CONVERSATION_CORRELATOR See note

CONVERSATION_GROUP_ID Not supported

Note: These values are not normally
required in CICS applications and are not
available at the API.

RETURN_CODE Supported

154 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

GET_TYPE (Examine EIBRSRCE)

RESOURCE EIBRSRCE

TYPE(vble) EIBRSRCE set - mapped
EIBRSRCE not set - not mapped

MC_POST_ON_RECEIPT Not supported

MC_PREPARE_FOR_SYNCPT EXEC CICS ISSUE PREPARE

RESOURCE CONVID

RETURN_CODE Supported

MC_PREPARE_TO_RECEIVE EXEC CICS SEND INVITE

TYPE(SYNC_LEVEL) none EXEC CICS SEND INVITE WAIT

TYPE(SYNC_LEVEL) confirm EXEC CICS SEND INVITE CONFIRM

TYPE(SYNC_LEVEL) syncpt EXEC CICS SEND INVITE
+ EXEC CICS SYNCPOINT

TYPE(FLUSH) EXEC CICS SEND INVITE WAIT

TYPE(CONFIRM) EXEC CICS SEND INVITE CONFIRM

LOCKS(SHORT) Defaulted

LOCKS(LONG) Not supported

RETURN_CODE Supported

Appendix A. CICS mapping to the APPC architecture 155

MC_RECEIVE_AND_WAIT EXEC CICS RECEIVE [NOTRUNCATE]

RESOURCE CONVID field

LENGTH(vble) Input MAXFLENGTH option

RETURN_CODE Supported

REQUEST_TO_SEND_RECEIVED Returned in EIBSIG

DATA INTO or SET option

MAP_NAME Not supported

WHAT_RECEIVED
CONFIRM
CONFIRM_DEALLOCATE
CONFIRM_SEND
DATA_COMPLETE
DATA_INCOMPLETE
DATA_TRUNCATED

FMH_DATA_COMPLETE
FMH_DATA_INCOMPLETE
FMH_DATA_TRUNCATED

SEND
TAKE_SYNCPT
TAKE_SYNCPT_DEALLOCATE
TAKE_SYNCPT_SEND

CICS Settings
EIBCONF + EIBRECV
EIBCONF + EIBFREE
EIBCONF
EIBCOMPL [+ EIBRECV]

¬EIBCOMPL [+ EIBRECV}
¬EIBCOMPL if NOTRUNCATE not

specified on RECEIVE
EIBFMH + EIBCOMPL [+ EIBRECV]
EIBFMH + ¬EIBCOMPL [+ EIBRECV]
EIBFMH + ¬EIBCOMPL [+ EIBRECV]
if NOTRUNCATE not specified
on RECEIVE

¬EIBRECV + no other flags
EIBSYNC + EIBRECV
EIBSYNC + EIBFREE
EIBSYNC

Notes:

1. Mapping of MC_RECEIVE_AND_WAIT to EXEC CICS RECEIVE is not always one to
one.

When a CICS RECEIVE command is issued, CICS returns all the information and data
(the DATA, the WHAT_RECEIVED flags, and the RETURN_CODE) at once. On
completion of a CICS command, more than one indicator may be set, as shown in the
WHAT_RECEIVED mapping above. It may be necessary to perform more than one
subsequent command to honor the actions required by the indicators. For this reason,
the action flags must be saved when they are received (because the EIB can be
overwritten by subsequent CICS commands), and then acted on one by one.

APPC does not work this way; an MC_RECEIVE_AND_WAIT verb returns either data or
information about the conversation state (as indicated by WHAT_RECEIVED), but never
both.

It is necessary to program round this difference in philosophy when translating APPC
verbs into CICS commands.

2. CICS EIBCOMPL settings are applicable only if NOTRUNCATE is specified on the CICS
RECEIVE command.

If NOTRUNCATE is specified, DATA_INCOMPLETE is indicated by a zero value in
EIBCOMPL. CICS will save the remaining data for retrieval by subsequent RECEIVE
NOTRUNCATE commands. EIBCOMPL is set when the last part of the data is passed
back.

If the NOTRUNCATE option is not specified, DATA_INCOMPLETE is indicated by the
CICS LENGERR condition, and the data remaining after the RECEIVE is discarded.

MC_REQUEST_TO_SEND EXEC CICS ISSUE SIGNAL

RESOURCE CONVID field

RETURN_CODE Supported

MC_SEND_DATA EXEC CICS SEND

156 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

RESOURCE CONVID field

DATA FROM option

LENGTH LENGTH option

FMH_DATA(NO) Default

FMH_DATA(YES) See note

MAP_NAME(NO) Not supported

MAP_NAME(YES) Not supported

ENCRYPT(NO) Not supported

ENCRYPT(YES) Not supported

RETURN_CODE Supported

REQUEST_TO_SEND_RECEIVED Returned in EIBSIG

Note: FMH_DATA(YES) permits the sending of LU6.1 FMHs within an APPC conversation
(for example, when running a CICS program which was originally written for use on LU6.1).
An LU6.1 FMH may be built either by using the EXEC CICS BUILD ATTACH command,
prior to issuing the EXEC CICS SEND command, or by building the FMH within the
program, putting it in the output area, and specifying the FMH option on the SEND
command. Either of these two actions is equivalent to specifying FMH_DATA(YES)

MC_SEND_ERROR EXEC CICS ISSUE ERROR

RESOURCE CONVID field

RETURN_CODE Supported

REQUEST_TO_SEND_RECEIVED Returned in EIBSIG

SYNCPT EXEC CICS SYNCPOINT

RETURN_CODE Zero - Control returned to program.
Non-zero - CICS takes action to backout

the UOW (and abend the task or set
EIBRLDBK).

Note: For certain specialized applications, the PREPARE flow (the first flow in syncpoint
exchanges) may be sent for a particular conversation by using the command:

EXEC CICS ISSUE PREPARE

This enables any outstanding messages in the network (for example, SEND ERROR) to be
received before proceeding, or deciding not to proceed, with the full syncpoint.

MC_TEST Check EIB flags

RESOURCE EIBRSRCE

TEST(POSTED) Check EIB flags

TEST(REQUEST_TO_SEND_RECEIVED) Check EIBSIG

RETURN_CODE Not supported

WAIT Not supported

Appendix A. CICS mapping to the APPC architecture 157

Return codes for APPC mapped conversations

APPC RETURN_CODE CICS return codes

OK EIBERR zero + INVREQ not raised

ALLOCATION_ERROR

Local allocation failures: CICS is unable to allocate a session for
an ALLOCATE command.

ALLOCATION_FAILURE_NO_RETRY SYSIDERR raised

The second and subsequent bytes of
EIBRCODE give further information

ALLOCATION_FAILURE_RETRY SYSBUSY raised if there is a HANDLE for
it. Otherwise, CICS queues the request
until a session is available

See also the UNSUCCESSFUL return code,
which relates to the NOQUEUE option on
the CICS ALLOCATE command.

Remote allocation failures: These will be returned to the program
after the CONNECT PROCESS command has
been issued, and the partner system has
been unable to start the requested task.
They may be returned on any subsequent
command that relates to the session in
use

CONVERSATION_TYPE_MISMATCH TERMERR (EIBERRCD = 10086034)

PIP_NOT_ALLOWED TERMERR (EIBERRCD = 10086031)

PIP_NOT_SPECIFIED_CORRECTLY TERMERR (EIBERRCD = 10086032)

SECURITY_NOT_VALID TERMERR (EIBERRCD = 080F6051)

SYNC_LEVEL_NOT_SUPPORTED_BY_PGM TERMERR (EIBERRCD = 10086041)

SYNC_LEVEL_NOT_SUPPORTED_BY_LU INVREQ (EIBRCODE = E000000C)

Note: CICS remembers SYNC_LEVEL
negotiated at bind time and does not
permit a request to be sent for a sync
level not supported by the remote LU.

TPN_NOT_RECOGNIZED TERMERR (EIBERRCD = 10086021)

TRANS_PGM_NOT_AVAIL_NO_RETRY TERMERR (EIBERRCD = 084C0000)

TRANS_PGM_NOT_AVAIL_RETRY TERMERR (EIBERRCD = 084B6031)

BACKED_OUT EIBSYNRB (EIBERRCD = 08240000)

DEALLOCATE_ABEND The transaction is abended with code
AZCH (EIBERRCD = 08640000)

DEALLOCATE_NORMAL EIBFREE + ¬EIBERR

FMH_DATA_NOT_SUPPORTED TERMERR (EIBERRCD = 08890100)

MAP_EXECUTION_FAILURE
MAP_NOT_FOUND
MAPPING_NOT_SUPPORTED

Not applicable. Map requests are not
sent because the option is not
supported.

PARAMETER_ERROR This return code relates ONLY to the
CICS ALLOCATE command. It is given when
an invalid LU name or MODE name has been
specified.

158 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

APPC RETURN_CODE CICS return codes

PARAMETER_ERROR (Invalid LU name) SYSIDERR (EIBRCODE = D0 04 ..
or D0 0C ..)

PARAMETER_ERROR (Invalid mode name) CBIDERR raised for invalid PROFILE on
ALLOCATE command.

PROG_ERROR_NO_TRUNC EIBERRCD = 08890000 (RECEIVE Only)

PROG_ERROR_PURGING CDBERRCD = 08890000

RESOURCE_FAILURE_RETRY EIBERRCD = A000

RESOURCE_FAILURE_NO_RETRY EIBERRCD = A000

UNSUCCESSFUL RETCODE = 01 04 04

This return code relates ONLY to the
APPC ALLOCATE verb with
RETURN_CONTROL(IMMEDIATE) specified.
This is implemented in CICS with the
NOQUEUE option on the ALLOCATE
command.

Control returned to the program because
a session was not immediately available.

Note: In all cases, where a value for EIBERRCD is given, EIBERR will be set to X'FF'. It is
intended that the program should first test EIBERR and then examine EIBERRCD if
additional information is required.

CICS deviations from the APPC architecture
CICS allows EXEC CICS commands to be issued on APPC conversations when a
backout (rollback) is required but the conversation is not in rollback state
(state 13).

When a session is being allocated, the back-end CICS system checks the incoming
bind request for valid combinations of CNOS (change number of sessions) and
parallel-sessions indicators. If CICS finds that parallel-sessions is specified but
CNOS is not, it sends a negative response to the bind request.

CICS allows a sync level-2 conversation to be terminated using the SEND LAST
WAIT or SEND LAST CONFIRM commands. However, doing this is a deviation
from the APPC architecture and should be avoided. Figure 47 on page 160
illustrates the problems that can be caused by not syncpointing a sync level-2
conversation.

Appendix A. CICS mapping to the APPC architecture 159

Because transaction AAAA ends the conversation using the SEND LAST WAIT
command, transaction BBBB cannot inform it that an error has occurred. The
ISSUE ABEND command causes the backout-required condition to be raised in
transaction BBBB; so a SYNCPOINT ROLLBACK is needed. Transaction AAAA
commits changes to its resources and data integrity is lost.

The resulting state errors may also lead to the session being unbound.

Effects of CICS deviations on the transaction programmer
Where CICS deviates from the APPC architecture, there may be some effect on
transaction programs running on products other than CICS and having

Transaction AAAA Transaction BBBB

...
CONNECT PROCESS
SYNCLEVEL(2)

...
SEND ...

RECEIVE

A serious error occurs

ISSUE ABEND
Suspends pending change
direction or end bracket.

SEND LAST WAIT Receives end bracket,
(without data) returns to free state.

SYNCPOINT ROLLBACK
Backs out changes to
recoverable resources.

FREE FREE
Changes committed. Changes backed out.

Figure 47. Losing data integrity on a sync level-2 conversation.

In this example, transaction AAAA in communicating with transaction BBBB:

1. Transaction AAAA issues a CONNECT PROCESS command, specifying
SYNCLEVEL(2).

2. Transaction AAAA issues a SEND command; the attach header and data is transmitted,
and transaction BBBB is started.

3. Transaction BBBB issues a RECEIVE command.

4. A serious error occurs in transaction BBBB.

5. Transaction BBBB issues an ISSUE ABEND command. The transaction is suspended
pending the receipt of a change direction or end bracket from transaction AAAA.

6. Transaction AAAA issues a SEND LAST WAIT command, with no data. The end bracket
is transmitted to transaction BBBB.

7. Transaction BBBB is resumed; the incoming end bracket puts the conversation into free
state.

From this point, the two transactions execute independently.

8. Transaction AAAA frees its conversation.

9. Transaction AAAA ends; its changes are committed.

10. Transaction BBBB issues a SYNCPOINT ROLLBACK command. Its changes are
backed out.

160 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

conversations with CICS transactions. The effects can be avoided by using the
following programming conventions (the verbs and return codes referred to here are
described in SNA Transaction Programmer’s Reference Manual for LU Type 6.2):

v When writing a transaction program that will converse with a CICS transaction
program, do not use the verb PREPARE_TO_RECEIVE with the
TYPE(CONFIRM) and LOCKS(LONG) parameters, or with the
TYPE(SYNC_LEVEL) and LOCKS(LONG) when the SYNC_LEVEL is CONFIRM.
Instead, use the LOCKS(SHORT) parameter to achieve the same function. The
LOCKS(LONG) parameter provides only a line-flow optimization.

v When writing a transaction program that will converse with a CICS transaction
program, do not depend on the distinction between the return codes
PROG_ERROR_PURGING and PROG_ERROR_NO_TRUNC, and between the
return codes SVC_ERROR_PURGING and SVC_ERROR_NO_TRUNC. Instead,
the CICS transaction program must be coded to send additional error information
after it issues the CICS EXEC ISSUE ERROR in order to describe the reason for
sending the error indication.

v When writing a transaction program that will run on CICS, do not depend on the
receipt of the sense data X'08890000' or X'08890100' to indicate the state of the
other end of the conversation when the partner transaction program sent the
error indication. Instead, the partner transaction program must be coded to send
additional error information after it sends the error indication in order to describe
the reason for sending the error indication.

v Because CICS may omit the negative response before an FMH-7
(ALLOCATION_ERROR), a transaction program in conversation with CICS can
receive an ALLOCATION_ERROR after the point where the partner transaction
appears to have been successfully allocated. The transaction program must
therefore be written to handle this possibility.

Appendix A. CICS mapping to the APPC architecture 161

162 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Appendix B. Migration of LUTYPE6.1 applications to APPC
links

If your installation is changing its CICS-to-CICS Intersystem communication (ISC)
links from LUTYPE6.1 to APPC (LUTYPE6.2), you may want to redesign some of
your existing ISC applications to take advantage of APPC function. Alternatively,
you can continue to run your existing applications in “migration” mode.

The appendix contains the following topics:
v Migration mode
v “State transitions in LUTYPE6.1 migration-mode conversations” on page 165.

Migration mode
In migration mode, the front-end and back-end transactions use LUTYPE6.1
commands just as if the session was an LUTYPE6.1 session. CICS takes data from
the transaction in the normal way, and formats it as an APPC mapped data stream
for transmission over the link. At the receiving side, CICS analyses the APPC
mapped data stream and presents the LUTYPE6.1 data and function management
headers to the receiving transaction.

In general, you will not have to modify existing CICS-to-CICS ISC applications to
enable them to run in migration mode on APPC links. A notable exception is the use
of the ALLOCATE SESSION command. If your installation previously had
individually defined ISC sessions, and your application used the ALLOCATE
SESSION command to acquire a specific session, you must change this command
to ALLOCATE SYSID.

The ISSUE SIGNAL command is valid for both LU types, but the WAIT SIGNAL
command is available only for LUTYPE6.1.

Table 47 on page 164 compares the commands that you can use for:
v LUTYPE6.1 applications on LUTYPE6.1 links
v LUTYPE6.1 applications on APPC links (migration mode)
v APPC applications on APPC links.

As Table 47 on page 164 shows, migration mode allows you to start adding new
function to an application (for example, using ISSUE ERROR or ISSUE ABEND)
without converting it entirely to APPC. You can also implement different sync levels
by modifying the application to use the CONNECT PROCESS command.
Applications not modified to use CONNECT PROCESS will use sync level 2. The
migration of an application towards the “pure” APPC level can thus be made
stepwise.

To aid migration, the SESSION and CONVID options can be used interchangeably.

If a migration-mode transaction abends, the architected APPC flows take place.
How this affects the connected transaction depends where the abend occurs and is
often different from what you would expect if the connection were native
LUTYPE6.1.

Because APPC uses different modules from LUTYPE6.1, the user exits XZCIN and
XZCOUT are not taken for APPC sessions. Any programs making use of these exits
on LUTYPE6.1 will need consideration.

© Copyright IBM Corp. 1991, 2010 163

Table 47. Migration of LUTYPE6.1 programs to APPC links

Operation Command LU6.1 Migration APPC

Obtain use of a session ALLOCATE SESSION yes no no

Obtain use of a session ALLOCATE SYSID yes yes yes

Build an LUTYPE6.1
attach FMH

BUILD ATTACHID yes yes no

Start a partner transaction SEND yes(1) yes(4) no

Start a partner transaction SEND ATTACHID yes(2) yes(5) no

Start a partner transaction SEND FMH yes(3) yes(6) no

Start a partner transaction CONNECT PROCESS no yes(7) yes(7)

Retrieve information
about how the transaction
was initiated

EXTRACT ATTACH yes yes no

EXTRACT PROCESS no yes yes

Send data SEND yes yes yes

Send further LUTYPE6.1
FMHs

SEND ATTACHID yes yes no

Send further LUTYPE6.1
FMHs

SEND FMH yes yes no

Receive LUTYPE6.1
FMHs

EXTRACT ATTACH yes yes no

Receive data RECEIVE yes yes yes

Send and receive data CONVERSE yes yes yes

Program error ISSUE ERROR no yes yes

Abend conversation ISSUE ABEND no yes yes

Request change of
direction

ISSUE SIGNAL yes yes yes

Await SIGNAL condition WAIT SIGNAL yes no no

Synchronize Level 0 no yes(8) yes

Synchronize Level 1 SEND CONFIRM
ISSUE CONFIRMATION

no no yes(8)
yes

yes yes

Synchronize Level 2 SEND CONFIRM
ISSUE CONFIRMATION
SYNCPOINT SYNCPOINT
ROLLBACK

no no
yes no

yes(8)
yes yes yes

yes yes
yes yes

164 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 47. Migration of LUTYPE6.1 programs to APPC links (continued)

Operation Command LU6.1 Migration APPC

Notes on migration of LUTYPE6.1 programs:

1. The CICS transaction identifier is included in the first four bytes of the data. No attach
FMH generated.

2. An LUTYPE6.1 attach FMH is generated.

3. An LUTYPE6.1 FMH provided by the application program is sent.

4. An APPC attach FMH is generated, but with no TPN (TPNL=0). The CICS transaction
identifier is included in the first four bytes of the data.

5. An APPC attach FMH and an LUTYPE6.1 attach FMH are generated.

6. An APPC attach FMH and an LUTYPE6.1 FMH (provided by the application program)
are sent.

7. An APPC attach FMH is generated.

8. Sync levels 0 and 1 can be used if CONNECT PROCESS has been used to define the
sync level in operation. If CONNECT PROCESS has not been used, sync level 2 is
assumed.

State transitions in LUTYPE6.1 migration-mode conversations
In this section, the state table shows the state transitions that occur when
transactions engage in LUTYPE6.1 conversations in migration mode. The state
table includes the commands available and the states returned when starting a
back-end transaction using the SEND [FMH|ATTACHID] command with the
transaction identifier imbedded in first four bytes of user data. For back-end
transactions started by CONNECT PROCESS, use the tables in Chapter 4, “State
transitions in APPC mapped conversations,” on page 41, but remember that the
BUILD ATTACH, SEND ATTACHID, SEND FMH, and EXTRACT ATTACH
commands are also available.

The commands you can issue, coupled with the EIB flags that can be set after
execution, are shown in column 1 down the left side of the table. The possible
conversation states are shown across the top of the table. The states correspond to
the columns of the table. The intersection of a row (command and EIB flag) and a
column (state) represents the state transition, if any, that occurs when a particular
command returning a particular EIB flag is issued in a particular state. A number at
an intersection indicates the state number of the next state. Other symbols
represent other conditions, as follows:

Symbol Meaning

N/A Cannot occur.
× The EIB flag is any one that has not been covered in earlier rows, or it is

irrelevant (but see the note on EIBSIG if you want to use ISSUE SIGNAL).
Ab The command is not valid in this state. Issuing a command in a state in

which it is not valid usually causes an ATCV abend.
= Remains in current state.

End End of conversation.

Appendix B. Migration of LUTYPE6.1 applications to APPC links 165

Table 48. LUTYPE6.1 conversations in migration mode, part 1

Command issued
EIB flag
returned49

ALLO-
CATED56

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

BUILD ATTACH × = = = = = =
EXTRACT ATTACH × Ab62 Ab62 Ab62 Ab62 = Ab62

EXTRACT PROCESS50 × Ab = = = = =
EXTRACT ATTRIBUTES × = = = = = =

SEND (any valid form) EIBERR
+ EIBSYNRB

Ab 13 13 13 Ab Ab

SEND (any valid form) EIBERR
+ EIBFREE

12 12 12 12 Ab Ab

SEND (any valid form) EIBERR Ab 5 5 5 Ab Ab

SEND INVITE WAIT × 5 5 Ab Ab Ab Ab
SEND INVITE CONFIRM × 5 5 Ab Ab Ab Ab
SEND INVITE × 3 3 Ab Ab Ab Ab
SEND LAST WAIT × 12 12 Ab Ab Ab Ab
SEND LAST CONFIRM × 12 12 Ab Ab Ab Ab
SEND LAST × 4 4 Ab Ab Ab Ab
SEND WAIT × 2 = Ab Ab Ab Ab
SEND CONFIRM × 2 = 559 1259 Ab Ab
SEND × 2 = Ab Ab Ab Ab

RECEIVE EIBERR
+ EIBSYNRB

Ab 1352 1355 Ab 13 Ab

RECEIVE EIBERR
+ EIBFREE

Ab 1252 1255 Ab 12 Ab

RECEIVE EIBERR Ab 552 555 Ab = Ab
RECEIVE EIBSYNC

+ EIBFREE
Ab 1152 1155 Ab 11 Ab

RECEIVE EIBSYNC
+ EIBRECV

Ab 952 955 Ab 9 Ab

RECEIVE EIBSYNC Ab 1052 1055 Ab 10 Ab
RECEIVE EIBCONF

+ EIBFREE
Ab 852 855 Ab 8 Ab

RECEIVE EIBCONF
+ EIBRECV

Ab 652 655 Ab 6 Ab

RECEIVE EIBCONF Ab 752 755 Ab 7 Ab
RECEIVE EIBFREE Ab 1252 1255 Ab 12 Ab

RECEIVE EIBRECV Ab 552 555 Ab = Ab
RECEIVE NOTRUNCATE51 EIBCOMPL51 Ab 552 555 Ab = Ab
RECEIVE × Ab =52 255 Ab 2 Ab

Note: See page 168 for footnotes.

166 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 49. LUTYPE6.1 conversations in migration mode, part 2

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

= = = = = = = Immediately
Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 Immediately
= = = = = = = Immediately
= = = = = = = Immediately

Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab After data flows
Ab Ab Ab Ab Ab Ab Ab After response from partner
Ab Ab Ab Ab Ab Ab Ab After data buffered
Ab Ab Ab Ab Ab Ab Ab After data flows
Ab Ab Ab Ab Ab Ab Ab After response from partner
Ab Ab Ab Ab Ab Ab Ab After data buffered
Ab Ab Ab Ab Ab Ab Ab After data flows
Ab Ab Ab Ab Ab Ab Ab After response from partner
Ab Ab Ab Ab Ab Ab Ab After data buffered

Ab Ab Ab Ab Ab Ab Ab After rollback flow detected

Ab Ab Ab Ab Ab Ab Ab After error detected

Ab Ab Ab Ab Ab Ab Ab After error detected
Ab Ab Ab Ab Ab Ab Ab After sync flow detected

Ab Ab Ab Ab Ab Ab Ab After sync flow detected

Ab Ab Ab Ab Ab Ab Ab After sync flow detected
Ab Ab Ab Ab Ab Ab Ab After confirm flow detected

Ab Ab Ab Ab Ab Ab Ab After confirm flow detected

Ab Ab Ab Ab Ab Ab Ab After confirm flow detected
Ab Ab Ab Ab Ab Ab Ab After error flow detected

Ab Ab Ab Ab Ab Ab Ab When data available
Ab Ab Ab Ab Ab Ab Ab When data available
Ab Ab Ab Ab Ab Ab Ab When data available

table continued

Appendix B. Migration of LUTYPE6.1 applications to APPC links 167

Table 50. LUTYPE6.1 conversations in migration mode, part 3

Command issued
EIB flag
returned49

ALLO-
CATED56

SEND PEND-
RECEIVE

PEND-
FREE

RECEIVE CONF-
RECEIVE

State 1 State 2 State 3 State 4 State 5 State 6

CONVERSE53 EIB flags and states as for RECEIVE

ISSUE CONFIRMATION × Ab Ab Ab Ab Ab 5
ISSUE ERROR EIBFREE Ab 12 12 Ab 12 12
ISSUE ERROR × Ab = 2 Ab 2 2
ISSUE ABEND × Ab 12 12 12 12 12
ISSUE SIGNAL57 × Ab = = Ab = =

ISSUE PREPARE EIBERR
+ EIBSYNRB

Ab62 13 13 13 Ab62 Ab62

ISSUE PREPARE EIBERR
+ EIBFREE

Ab62 12 12 12 Ab62 Ab62

ISSUE PREPARE EIBERR Ab62 5 5 5 Ab62 Ab62

ISSUE PREPARE × Ab62 1064 964 1164 Ab62 Ab62

SYNCPOINT60 EIBRLDBK = 2 or 561 2 or 561 2 or 561 Ab63 Ab63

SYNCPOINT60 × = = 5 12 Ab63 Ab63

SYNCPOINT ROLLBACK60 × = 2 or 561 2 or 561 2 or 561 2 or 561 2 or 561

WAIT × Ab = 5 12 Ab Ab
FREE × End End54 Ab End Ab Ab

49. EIBSIG has been omitted. This is because its use is optional and is entirely a matter of agreement between the two conversation
partners. In the worst case, it can occur at any time after every command that affects the EIB flags. However, used for the
purpose for which it was intended, it usually occurs after a SEND command. Its priority in the order of testing depends on the role
you give it in the application.

50. You can issue the EXTRACT PROCESS command from the back-end transaction only.

51. RECEIVE NOTRUNCATE returns a zero value in EIBCOMPL to indicate that the user buffer was too small to contain all the data
received from the partner transaction. Normally, you would continue to issue RECEIVE NOTRUNCATE commands until the last
section of data is passed to you, which is indicated by EIBCOMPL = X'FF'. If NOTRUNCATE is not specified, and the data area
specified by the RECEIVE command is too small to contain all the data received, CICS truncates the data and sets the
LENGERR condition.

52. Equivalent to SEND INVITE WAIT followed by RECEIVE.

53. Equivalent to SEND INVITE WAIT [FROM] followed by RECEIVE.

54. Equivalent to SEND LAST WAIT followed by FREE.

55. Equivalent to WAIT followed by RECEIVE.

56. Before a session is allocated, there is no conversation, and therefore no conversation state. The EXEC CICS ALLOCATE
command does not appear in the tables. This is because each ALLOCATE gets a session to start a new conversation and does
not affect any conversation that is already in progress. After ALLOCATE is successful, the front-end transaction starts the new
conversation in allocated state.

57. ISSUE SIGNAL sets the partner’s EIBSIG flag.

58. The back-end transaction starts in receive state.

59. No data may be included with SEND CONFIRM.

168 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Table 51. LUTYPE6.1 conversations in migration mode, part 4

CONF-
SEND

CONF-
FREE

SYNC-
RECEIVE

SYNC-
SEND

SYNC-
FREE

FREE ROLL-
BACK

Command returnsState 7 State 8 State 9 State 10 State 11 State 12 State 13

States as for RECEIVE When data available

2 12 Ab Ab Ab Ab Ab Immediately
12 12 12 12 12 Ab Ab After response from partner
2 2 2 2 2 Ab Ab After response from partner
12 12 12 12 12 Ab Ab Immediately
= = = = = Ab Ab Immediately

Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 After response from partner

Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 After error detected

Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 After error detected
Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 Ab62 After response from partner

Ab Ab 2 or 561 2 or 561 2 or 561 = Ab After response from partner
Ab Ab 2 2 12 = Ab After response from partner

2 or 561 2 or 561 2 or 561 2 or 561 2 or 561 = 2 or 561 After rollback across UOW

Ab Ab Ab Ab Ab Ab Ab Immediately
Ab Ab Ab Ab Ab End Ab Immediately

60. The commands SYNCPOINT and SYNCPOINT ROLLBACK do not relate to any particular conversation. They are propagated on
all the conversations that are currently active for the task, including MRO conversations. For the SYNCPOINT command, all these
conversations must be in send state.

61. The state of each conversation after rollback depends on several factors:

v The system you are communicating with. Some earlier versions of CICS handle rollback differently from CICS Transaction
Server for z/OS, Version 3 Release 1.

v The conversation state at the last syncpoint, or at the beginning of the conversation if there was no previous sync point. This
state is the one adopted according to the APPC architecture. CICS Transaction Server for z/OS, Version 3 Release 1 follows
the architecture.

62. This results, not in an ATCV abend, but in an INVREQ return code.

63. This causes an ASP2 abend, not an ATCV.

64. Although ISSUE PREPARE can return with the conversation in either syncsend state, syncreceive state, or syncfree state, the
only commands allowed on that conversation following an ISSUE PREPARE are SYNCPOINT and SYNCPOINT ROLLBACK. All
other commands abend ATCV.

Appendix B. Migration of LUTYPE6.1 applications to APPC links 169

170 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Appendix C. Differences between APPC mapped and MRO
conversations

When a SEND command is issued on an MRO session, CICS does not defer
sending the data, so control indicators cannot be added to the data after a SEND
command has been issued. The same command sequence may therefore require
more flows on an MRO session than it does on an APPC session but, if the
receiving transaction is correctly designed to be driven by the conversation state,
the same effects are achieved.

Different treatment of command sequences
Some of the differences between APPC mapped and MRO conversations are
shown in the command sequence in Table 52.

Table 52. How the same command sequence operates differently in APPC mapped and MRO
conversations

Commands APPC mapped MRO

EXEC CICS SEND
CONVID(REM1)
FROM(data1)
LENGTH(251)

sending is deferred data1 is sent

EXEC CICS
SYNCPOINT

syncpoint request added to
data1, and both are sent

syncpoint request is sent with
null data

EXEC CICS SEND
CONVID(REM1)
FROM(data2)
LENGTH(251)
INVITE

sending of data2, with INVITE,
is deferred

data2 with INVITE is sent

EXEC CICS WAIT
CONVID(REM1)

data2, with INVITE, is sent (nothing to send)

EXEC CICS RECEIVE
CONVID(REM1)

.

.
(INVITE received)

EXEC CICS SEND
CONVID(REM1)
FROM(data3)
LENGTH(251)
LAST

sending of data3, with LAST
indicator, is deferred

data3 is sent, but without
LAST indicator

EXEC CICS
SYNCPOINT

syncpoint request and LAST
indicator added to data3 and
sent

syncpoint request and LAST
indicator are sent with null
data

The WAIT option can, of course, be added to the SEND command to cause
immediate transmission on APPC links; for example:

© Copyright IBM Corp. 1991, 2010 171

SEND CONVID(REM1)
FROM(data2)
LENGTH(251)
INVITE
WAIT

RECEIVE SESSION(REM1)

There are no significant differences between the MRO and APPC mapped
implementations of this command sequence. However, with MRO, a SEND
command with the WAIT option causes CICS to suspend the transaction until the
partner system has received the data.

Unlike APPC, MRO allows only one outstanding SEND to be transmitted. This
means that when a transaction issue two successive SEND commands (without the
WAIT option) to transmit data, the second piece of data does not flow until the
partner system has received the first.

A further implementation difference arises between APPC mapped and MRO for
command sequences that contain an implicit change of direction. For MRO, a
RECEIVE command must not be issued unless the conversation is in receive state
(state 5).

Using the LAST option
The LAST option on the SEND command indicates the end of the conversation. No
further data flows can occur on the session, and the next action must be to free the
session. However, the session can still carry CICS syncpointing flows before it is
freed, provided the LAST request has not been flushed.

A syncpoint, whether on an APPC or MRO session, is initiated explicitly by a
SYNCPOINT command, or implicitly by a RETURN command. However, the
circumstances under which session syncpointing occurs, and the ways in which
syncpointing can be avoided on the session, differ for APPC and MRO.

The LAST option and syncpoint flows on APPC sessions
If an APPC mapped conversation has been terminated by a SEND LAST command,
without the WAIT option, transmission will have been deferred, and the syncpointing
activity causes the final transmission to occur with an added syncpoint request. The
conversation is thus automatically involved in the syncpoint.

If the conversation is not to be involved in the syncpoint (for example, because the
partner transaction does not access any recoverable resources), the transaction
must issue a SEND LAST WAIT command, or a FREE command, to force the
transmission before using a command that causes a syncpoint.

The LAST option and syncpoint flows on MRO sessions
If an MRO conversation is terminated by a SEND LAST command, without the
WAIT option, the WAIT implicit in all MRO commands is applied, and the data is
transmitted. However, in anticipation of subsequent syncpoint flows, CICS does not
send the LAST indicator with this data.

If the conversation is not to be involved in the syncpoint (for example, because the
partner transaction does not access any recoverable resources) you must specify
the WAIT option explicitly on the SEND LAST command to force the LAST indicator
to be sent with the data. Alternatively, you could follow the SEND LAST command
by a FREE command.

172 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Appendix D. Below the SNA interface

The information provided in the main chapters of this book enables a programmer
to construct valid command sequences for distributed processes. However, to
design high-performance distributed processes, you need some understanding of
the SNA protocols and corresponding data flow control (DFC) indicators that CICS
uses for DTP. You also need to understand how the DFC indicators relate to the
CICS commands and options. In addition, you need this knowledge to understand
the CICS trace.

Except for some commands that can cause transmissions “against the flow” (such
as ISSUE SIGNAL), the conversation flow and indicators set are dictated by the
transaction currently in send state (state 2).

SNA indicators and records
SNA indicators and records can be generated either explicitly as a result of a CICS
command, or automatically when CICS detects that they are needed. The most
common SNA indicators and records are described below:

Begin_bracket and conditional_end_bracket
The begin_bracket (BB) and condition_end_bracket (CEB) indicators in the
request header (RH) denote respectively the beginning and end of a
conversation between two transactions. Because the BB is generated
automatically at the start of a conversation, you need only consider the CEB.
The CEB is generated by a SEND with the LAST option, an ISSUE ABEND, a
FREE command, or task termination before the conversation is ended.

Function management headers
Function management headers (FMHs) are records sent on a conversation
which contain SNA control data. Several types of FMH are defined under SNA;
but only two (FMH5 and FMH7) are relevant to APPC DTP.

The FMH5, also known as the attach FMH, is sent with BB and contains the
information required to initiate the back-end transaction.

The FMH7 is issued by the ISSUE ERROR, ISSUE ABEND, and SYNCPOINT
ROLLBACK commands. In addition, if the back-end system rejects the FMH5,
an FMH7 is sent to the front-end transaction. The FMH7 contains a 4-byte
code, called the sense code, which describes the error. This code is set in
EIBERRCD (or CDBERRCD for basic conversations). The FMH7 may be
followed by log data. This log data is included in message DFHZN2701 on the
sending system and DFHZC3433 on the receiving system.

Change direction
The change direction (CD) indicator, found in the RH, switches the issuing
transaction from send state (state 2) to receive state (state 5). CD is
generated explicitly by either of the following:

v A SEND command with the INVITE option

v A CONVERSE command.

PS header (type 10)
PS headers (type 10) are records sent on a conversation which contain
syncpoint requests. These headers contain a 2-byte syncpoint request code (for
example, prepare, request commit, committed, and forget). In addition, the initial
record sent contains a 2-byte modifier specifying the conversation state after a
successful syncpoint exchange.

© Copyright IBM Corp. 1991, 2010 173

Request mode and responses
When data is sent, a response confirming receipt of the data is not normally
expected. This is because data is normally sent in RQE (request exception
response) mode, meaning that a response is required only if an error condition
needs to be transmitted. This response is called −RSP (negative response) and
might precede an FMH7. However, if data is sent with the CONFIRM option, the
data is sent in RQD (request definite response) mode. This means that the sending
transaction will suspend until a DR (definite response) or -RSP is received. The
partner transaction generates a DR with the ISSUE CONFIRMATION command.

When SNA indicators are transmitted
To optimize the use of ISC sessions, CICS defers output processing for SEND
commands. Deferred output often enables CICS to add SNA indicators to waiting
data before transmitting it. The number of transmissions on the session is thereby
reduced.

For APPC sessions, this reduction is achieved by accumulating as much data as
possible in a CICS buffer before actually transmitting it across the link. Thus the
data from a series of SEND commands is transmitted only when the buffer
becomes full or when transmission must be forced (for example, if SEND WAIT is
encountered).

Optimization of ISC transmission does not affect the number of data flows that the
application programming interface sees.

For more information on the APPC protocol, see the SNA LU6.2 Reference: Peer
Protocols book, SC31-6808.

174 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Glossary

This glossary contains definitions of those terms
and abbreviations that relate specifically to the
contents of this book. It also contains terms and
definitions from the IBM Dictionary of Computing,
published by McGraw-Hill.

If you do not find the term you are looking for,
refer to the Index or to the IBM Dictionary of
Computing.

ACB. Access method control block (VTAM).

ACF/NCP/VS. Advanced Communication
Facilities/Network Control Program/Virtual Storage.

ACF/VTAM. Advanced Communication Facilities,
Virtual Telecommunications Access Method. A set of
programs that control communication between terminals
and application programs running under VSE, OS/VS1,
and MVS.

Advanced Program-to-Program Communication
(APPC). The general term chosen for the LUTYPE6.2
protocol under Systems Network Architecture (SNA).

alternate facility. An IRC or SNA session that is
obtained by a transaction by means of an ALLOCATE
command. Contrast with principal facility.

APPC. Advanced Program-to-Program
Communication.

ATI. Automatic transaction initiation.

attach header. In SNA, a function management
header that causes a remote process or transaction to
be attached.

back-end transaction. In synchronous
transaction-to-transaction communication, a transaction
that is started by a front-end transaction.

backout. See dynamic transaction backout.

bind. In SNA products, a request to activate a session
between two logical units.

CDB. Conversation data block.

central processing complex (CPC). A single physical
processing system, such as the whole of an ES/9000
9021 Model 820, or one physical partition of such a
machine. A physical processing system consists of main
storage, and one or more central processing units
(CPUs), time-of-day (TOD) clocks, and channels, which
are in a single configuration. A CPC also includes
channel subsystems, service processors, and expanded
storage, where installed.

CICSplex. (1) A CICS complex. A CICSplex consists of
two or more regions that are linked using CICS
intercommunication facilities. The links can be either
intersystem communication (ISC) or multiregion
operation (MRO) links, but within a CICSplex are more
usually MRO. Typically, a CICSplex has at least one
terminal-owning region (TOR), more than one
application-owning region (AOR), and may have one or
more regions that own the resources that are accessed
by the AORs. (2) The largest set of CICS regions or
systems to be manipulated by a single CICSplex SM
entity.

CICSPlex® System Manager (CICSPlex SM). An IBM
CICS system-management product that provides a
single-system image and a single point of control for
one or more CICSplexes.

class of service (COS). An ACF/VTAM facility that
allows APPC sessions to have different characteristics
to provide a user with alternate routing, mixed traffic,
and trunking. Based on their class of service, sessions
can take different virtual routes, use different physical
links, and be of high or low priority to suit the traffic
carried on them.

Common Programming Interface (CPI). An SAA
standard specifying the languages, commands, and
calls that can be used in an SAA application program.

conversation. A sequence of exchanges between two
transactions over a session, delimited by SNA brackets.

conversation data block. An area used by a program
to obtain information about the outcome of a DTP
command on an APPC basic conversation.

COS. Class of service.

CPC. Central processing complex.

CPI. Common Programming Interface.

conversation. A sequence of exchanges between
transactions over a session, delimited by SNA brackets.

cross-system coupling facility (XCF). The MVS/ESA
cross-system coupling facility provides the services that
are needed to join multiple MVS images into a sysplex.
XCF services allow authorized programs in a
multisystem environment to communicate (send and
receive data) with programs in the same, or another,
MVS image. Multisystem applications can use the
services of XCF, including MVS components and
application subsystems (such as CICS), to communicate
across a sysplex. See the MVS/ESA Planning: Sysplex
Management manual, GC28-1620, for more information
about the use of XCF in a sysplex.

© Copyright IBM Corp. 1991, 2010 175

data link protocol. A set of rules for data
communication over a data link in terms of a
transmission code, a transmission mode, and control
and recovery procedures.

data security. Prevention of access to or use of stored
information without authorization.

distributed transaction processing (DTP). The
distribution of processing between transactions that
communicate synchronously with one another over
intersystem or interregion links.

DL/I. Data Language/I. An IBM database management
facility.

DTP. Distributed transaction processing.

dynamic transaction backout. The process of
canceling changes made to stored data by a transaction
following the failure of that transaction for whatever
reason.

EIB. EXEC interface block.

FMH. Function management header.

front-end transaction. In synchronous
transaction-to-transaction communication, the
transaction that acquires the session to another system
and initiates a transaction on that system. Contrast with
back-end transaction.

function management header (FMH). In SNA, one or
more headers optionally present in the leading request
unit (RU) of an RU chain. It allows one session partner
in a LU-LU session to send function management
information to the other.

function shipping. The process, transparent to the
application program, by which CICS accesses resources
when those resources are actually held on another
CICS system.

GDS. Generalized data stream.

generalized data stream (GDS). The data stream
used for conversations on APPC sessions.

host computer. The primary or controlling computer in
a data communication system.

IMS/VS. Information Management System/Virtual
Storage.

inquiry. A request for information from storage.

intercommunication facilities. A generic term
covering intersystem communication (ISC) and
multiregion operation (MRO).

interregion communication (IRC). The method by
which CICS implements multiregion operation (MRO).

intersystem communication (ISC). Communication
between separate systems by means of SNA
networking facilities or by means of the
application-to-application facilities of VTAM.

IRC. Interregion communication.

ISC. Intersystem communication.

local resource. In CICS intercommunication, a
resource that is owned by the local system.

local system. In CICS intercommunication, the CICS
system from whose point of view intercommunication is
being discussed.

logical unit (LU). A port through which a user gains
access to the services of a network.

LU. Logical unit.

LU-LU session. A session between two logical units in
an SNA network.

modegroup. A VTAM LOGMODE entry which can
specify (among other things) the class of service
required for a group of APPC sessions.

modename. The name of a modeset.

modeset. A group of APPC sessions specified in
CICS.

MRO. Multiregion operation.

multiregion operation (MRO). Communication
between CICS systems without the use of SNA
networking facilities. The systems must be in the same
operating system; or, if the XCF access method is used,
in the same MVS sysplex.

multitasking. Concurrent execution of application
programs within a CICS partition or region.

multithreading. Use, by several transactions, of a
single copy of an application program.

MVS. Multiple Virtual Storage. An alternative name for
OS/VS2 Release 3, or MVS/ESA.

MVS image. A single occurrence of the MVS/ESA
operating system that has the ability to process a
workload. One MVS image can occupy the whole of a
CPC, or one physical partition of a CPC, or one logical
partition of a CPC that is operating in PR/SM™ mode.

MVS sysplex. See sysplex.

network. A configuration connecting two or more
terminal installations.

network configuration. In SNA, the group of links,
nodes, machine features, devices, and programs that
make up a data processing system, a network, or a
communication system.

176 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Operating System/Virtual Storage (OS/VS). A
compatible extension of the IBM System/360 Operating
System that supports relocation hardware and the
extended control facilities of System/360.

OS/VS. Operating System/Virtual Storage.

PIP. Program initialization parameters.

principal facility. The terminal or logical unit that is
connected to a transaction at its initiation. Contrast with
alternate facility.

program initialization parameters (PIP). Specially
formatted data passed to a back-end transaction with
the CONNECT PROCESS command.

queue. A line or list formed by items in a system
waiting for service; for example, tasks to be performed
or messages to be transmitted in a message-switching
system.

RACF. The Resource Access Control Facility program
product. An external security management facility.

region. A section of the dynamic area that is allocated
to a job step or system task. In this manual, the term is
used to cover partitions and address spaces in addition
to regions.

remote resource. In CICS intercommunication, a
resource that is owned by a remote system.

remote system. In CICS intercommunication, a
system that the local CICS system accesses via
intersystem communication or multiregion operation.

resource. Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs.

rollback. A programmed return to a prior checkpoint.
In CICS, the cancelation by an application program of
the changes it has made to all recoverable resources
during the current unit of work.

RU. Request/response unit. In SNA, the basic unit of
information entering or leaving the transmission
subsystem. It may contain data, acknowledgements,
control commands, or responses to commands.

SAA. Systems Application Architecture.

security. Prevention of access to or use of data or
programs without authorization.

session. In CICS intersystem communication, an SNA
LU-LU session.

SNA. Systems Network Architecture.

subsystem. A secondary or subordinate system.

synchronization level. The level of synchronization
(0, 1, or 2) established for an APPC session.

syncpoint. Synchronization point. During transaction
processing, a reference point to which protected
resources can be restored if a failure occurs.

sync level. synchronization level.

sysplex. A systems complex, consisting of multiple
MVS images coupled together by hardware elements
and software services. When multiple MVS images are
coupled using XCF, which provides the services to form
a sysplex, they can be viewed as a single entity.

system. In CICS, an assembly of hardware and
software capable of providing the facilities of CICS for a
particular installation.

Systems Application Architecture (SAA). A set of
common standards and procedures for working with
IBM systems and data.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks. The structure of SNA allows the
end users to be independent of, and unaffected by, the
specific facilities used for information exchange.

task. (1) A unit of work for the processor; therefore the
basic multiprogramming unit under the control program.
(CICS runs as a task under VSE, OS/VS, MVS, or
MVS/ESA.) (2) Under CICS, the execution of a
transaction for a particular user. Contrast with
transaction.

TCT. Terminal control table.

temporary storage control. The CICS element that
provides temporary data storage facilities.

temporary storage table. A table describing
temporary storage queues and queue prefixes for which
CICS is to provide recovery.

terminal. In CICS, a device equipped with a keyboard
and some kind of display, capable of sending and
receiving information over a communication channel.

terminal control. The CICS element that controls all
CICS terminal activity.

terminal control table (TCT). A table describing a
configuration of terminals, logical units, or other CICS
systems in a CICS network with which the CICS system
can communicate.

terminal operator. The user of a terminal.

transaction. A transaction can be regarded as a unit
of processing (consisting of one or more application
programs) initiated by a single request, often from a

Glossary 177

terminal. A transaction may require the initiation of one
or more tasks for its execution. Contrast with task.

transaction backout. The cancelation, as a result of a
transaction failure, of all updates performed by a task.

transaction identifier. Synonym for transaction name.
For example, a group of up to four characters entered
by an operator when selecting a transaction.

transaction restart. The restart of a task after a
transaction backout.

transaction routing. A CICS facility that allows
terminals or logical units connected to one CICS region
to initiate and to communicate with transactions in
another CICS region within the same processor system
or in another CICS system connected by an APPC link.

transient data control. The CICS element that
controls sequential data files and intrapartition data.

unit of work (UOW). A sequence of actions that can
be regarded as logically-related for the purposes of
CICS error recovery mechanisms.

UOW. Unit of work.

VTAM. See ACF/VTAM.

XCF. Cross-system coupling facility.

178 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Bibliography

The CICS Transaction Server for z/OS library
The published information for CICS Transaction Server for z/OS is delivered in the
following forms:

The CICS Transaction Server for z/OS Information Center
The CICS Transaction Server for z/OS Information Center is the primary source
of user information for CICS Transaction Server. The Information Center
contains:

v Information for CICS Transaction Server in HTML format.

v Licensed and unlicensed CICS Transaction Server books provided as Adobe
Portable Document Format (PDF) files. You can use these files to print
hardcopy of the books. For more information, see “PDF-only books.”

v Information for related products in HTML format and PDF files.

One copy of the CICS Information Center, on a CD-ROM, is provided
automatically with the product. Further copies can be ordered, at no additional
charge, by specifying the Information Center feature number, 7014.

Licensed documentation is available only to licensees of the product. A version
of the Information Center that contains only unlicensed information is available
through the publications ordering system, order number SK3T-6945.

Entitlement hardcopy books
The following essential publications, in hardcopy form, are provided
automatically with the product. For more information, see “The entitlement set.”

The entitlement set
The entitlement set comprises the following hardcopy books, which are provided
automatically when you order CICS Transaction Server for z/OS, Version 3 Release
1:

Memo to Licensees, GI10-2559
CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Installation Guide, GC34-6426
CICS Transaction Server for z/OS Licensed Program Specification, GC34-6608

You can order further copies of the following books in the entitlement set, using the
order number quoted above:

CICS Transaction Server for z/OS Release Guide
CICS Transaction Server for z/OS Installation Guide
CICS Transaction Server for z/OS Licensed Program Specification

PDF-only books
The following books are available in the CICS Information Center as Adobe
Portable Document Format (PDF) files:

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Migration from CICS TS Version 2.3,
GC34-6425

© Copyright IBM Corp. 1991, 2010 179

CICS Transaction Server for z/OS Migration from CICS TS Version 1.3,
GC34-6423
CICS Transaction Server for z/OS Migration from CICS TS Version 2.2,
GC34-6424
CICS Transaction Server for z/OS Installation Guide, GC34-6426

Administration
CICS System Definition Guide, SC34-6428
CICS Customization Guide, SC34-6429
CICS Resource Definition Guide, SC34-6430
CICS Operations and Utilities Guide, SC34-6431
CICS Supplied Transactions, SC34-6432

Programming
CICS Application Programming Guide, SC34-6433
CICS Application Programming Reference, SC34-6434
CICS System Programming Reference, SC34-6435
CICS Front End Programming Interface User's Guide, SC34-6436
CICS C++ OO Class Libraries, SC34-6437
CICS Distributed Transaction Programming Guide, SC34-6438
CICS Business Transaction Services, SC34-6439
Java Applications in CICS, SC34-6440
JCICS Class Reference, SC34-6001

Diagnosis
CICS Problem Determination Guide, SC34-6441
CICS Messages and Codes, GC34-6442
CICS Diagnosis Reference, GC34-6899
CICS Data Areas, GC34-6902
CICS Trace Entries, SC34-6443
CICS Supplementary Data Areas, GC34-6905

Communication
CICS Intercommunication Guide, SC34-6448
CICS External Interfaces Guide, SC34-6449
CICS Internet Guide, SC34-6450

Special topics
CICS Recovery and Restart Guide, SC34-6451
CICS Performance Guide, SC34-6452
CICS IMS Database Control Guide, SC34-6453
CICS RACF Security Guide, SC34-6454
CICS Shared Data Tables Guide, SC34-6455
CICS DB2 Guide, SC34-6457
CICS Debugging Tools Interfaces Reference, GC34-6908

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-6459
CICSPlex SM User Interface Guide, SC34-6460
CICSPlex SM Web User Interface Guide, SC34-6461

Administration and Management
CICSPlex SM Administration, SC34-6462
CICSPlex SM Operations Views Reference, SC34-6463
CICSPlex SM Monitor Views Reference, SC34-6464
CICSPlex SM Managing Workloads, SC34-6465
CICSPlex SM Managing Resource Usage, SC34-6466
CICSPlex SM Managing Business Applications, SC34-6467

Programming
CICSPlex SM Application Programming Guide, SC34-6468
CICSPlex SM Application Programming Reference, SC34-6469

180 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Diagnosis
CICSPlex SM Resource Tables Reference, SC34-6470
CICSPlex SM Messages and Codes, GC34-6471
CICSPlex SM Problem Determination, GC34-6472

CICS family books
Communication

CICS Family: Interproduct Communication, SC34-6473
CICS Family: Communicating from CICS on System/390, SC34-6474

Licensed publications
The following licensed publications are not included in the unlicensed version of the
Information Center:

CICS Diagnosis Reference, GC34-6899
CICS Data Areas, GC34-6902
CICS Supplementary Data Areas, GC34-6905
CICS Debugging Tools Interfaces Reference, GC34-6908

Other CICS books
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 3 Release 1.

Designing and Programming CICS Applications SR23-9692
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway for z/OS Administration SC34-5528
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

Books from related libraries

IMS
v CICS/VS to IMS/VS Intersystem Communication Primer, SH19-6247 through

SH19-6254
v IMS/ESA Data Communication Administration Guide, SC26-3060
v IMS/ESA Operations Guide, SC26-8029

Systems Application Architecture (SAA)
v An Overview, GC26-4341
v Common Programming Interface: COBOL Reference, SC26-4354
v Common Programming Interface Communications, SC26-4399
v Common Programming Interface: C Reference, SC26-4353
v SAA Common Programming Interface Resource Recovery Reference,

SC31-6821
v Writing Applications: a Design Guide, SC26-4362

Systems Network Architecture (SNA)
v Concepts and Products, GC30-3072
v Format and Protocol Reference Manual: Architecture Logic, SC30-3112
v Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2,

SC30-3269

Bibliography 181

v Format and Protocol Reference Manual: Distribution Services, SC30-3098
v Formats, GA27-3136
v LU6.2 Reference: Peer Protocols, SC31-6808
v LU6.2 Reference: Verb Descriptions, GC30-3084
v Sessions Between Logical Units, GC20-1868
v Technical Overview, GC30-3073

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager® softcopy versions of a publication are
usually in step. However, due to the time required to print and distribute hardcopy
books, the BookManager version is more likely to have had last-minute changes
made to it before publication.

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each
reissue of the collection kit is indicated by an updated order number suffix (the -xx
part). For example, collection kit SK2T-0730-06 is more up-to-date than
SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a #
character) to the left of the changes.

182 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS system
in one of these ways:

v using a 3270 emulator logged on to CICS

v using a 3270 emulator logged on to TSO

v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1991, 2010 183

184 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Index

A
abend codes

ASP1 64, 133
ASP2 49, 169
ASP3 129, 131, 132
ASPN 119
ATCV 41, 111, 165
AZI1 63

abnormal termination
APPC basic conversations 78
APPC mapped conversations 31, 33
LUTYPE6.1 conversations 106
MRO conversations 59

ALLOCATE command
APPC basic conversations 84, 89
APPC mapped conversations 23, 39, 48
LUTYPE6.1 conversations 103, 107
MRO conversations 53, 60
PARTNER option 23

allocating a session
APPC basic conversations 69
APPC mapped conversations 23
using ATI 23, 69

alternate facility 7
API (application programming interface) 16, 17
APPC

data stream 73
generalized data stream 73
mapping to APPC architecture 145

APPC architecture
CICS mapping 146, 153
CICS mapping to 145
deviations 159

APPC basic conversations
abnormal termination 78, 79, 81
application programming 69
back-end transaction 69, 71, 98
CDB data 75
CICS mapping to APPC verbs 146
CONFIRM option

GDS SEND command 74
CONVDATA fields 84
conversation data block (CDB) 84
ending one 81
flushing a CICS buffer 74
front-end transaction 69
GDS ALLOCATE command 84, 89, 98
GDS ASSIGN command 71
GDS CONNECT PROCESS command 70, 89
GDS EXTRACT PROCESS command 71, 89
GDS FREE command 81, 82, 90
GDS ISSUE ABEND command 78
GDS ISSUE ERROR command 79
GDS ISSUE SIGNAL command 78
GDS RECEIVE command 75, 86
GDS SEND command 73, 74
GDS WAIT command 74

APPC basic conversations (continued)
INVITE option 74
RETCODE values 83
session data and error codes 83
starting 69
state transitions 91

APPC mapped conversations
abnormal termination 31
ALLOCATE command 23, 39, 48
ASSIGN command 25
attaching partner transactions 24
CICS mapping to APPC verbs 153
CONNECT PROCESS command 24, 39
CONVERSE command 31, 37, 39
ending one 34
EXTRACT PROCESS command 25, 39
FREE command 34, 35, 39
front-end transaction 23
ISSUE ABEND command 31
ISSUE CONFIRMATION command 32
ISSUE ERROR command 31
RECEIVE command 37
SEND command 27, 56
starting 23

application design 8, 11
application program development

APPC basic conversations 69
APPC mapped conversations 23
LUTYPE6.1 conversations 103
MRO conversations 53

application programming
APPC basic conversations 69, 75
APPC mapped conversations 23
CICS mapping to APPC verbs 145
LUTYPE6.1 conversations 103, 111
MRO conversations 53
MRO distributed transaction processing 53, 63

application programming interface (API) 16, 17
ASP1 abend 133

MRO conversations 64
ASP2 abend

APPC mapped conversations 49
LUTYPE6.1 conversations 169

ASP3 abend 129, 131, 132
ASPN abend 119
assembler language 17, 67, 85
ASSIGN command

APPC basic conversations 71
APPC mapped conversations 25
MRO conversations 55

asynchronous processing 3
ATCV abend

APPC mapped conversations 41
LUTYPE6.1 conversations 111, 165

ATI (automatic transaction initiation) 17
APPC basic conversations 69
APPC mapped conversations 23
LUTYPE6.1 conversations 103, 113

© Copyright IBM Corp. 1991, 2010 185

ATI (automatic transaction initiation) (continued)
MRO conversations 53

attach request 6
attaching partner transactions

APPC basic conversations 70
APPC mapped conversations 24
LUTYPE6.1 conversations 103
MRO conversations 54

automatic transaction initiation (ATI) 17
APPC basic conversations 69
APPC mapped conversations 23
LUTYPE6.1 conversations 103, 113
MRO conversations 53

AZI1 abend
MRO conversations 63

B
back-end transaction 6, 14

APPC basic conversations 69, 71, 98, 99
EXTRACT PROCESS command 48
failure to start 104
LUTYPE6.1 conversations 103, 163
MRO conversations 53

backing out changes 134, 137
performance effect 8
to recoverable resources 8, 118

backout 118, 134, 137
effect on performance 8
of recoverable resources 8

basic conversations 69
command sequences 89
CONVDATA fields 84
conversation design 75
RETCODE values 83
session data and error codes 83
state transitions 91
structured fields 75

BUFFER option
GDS RECEIVE command 77

BUILD ATTACH command
LUTYPE6.1 conversations 104, 109
MRO conversations 54, 61

C
C language 17, 67, 85
CDB data 18, 75, 80, 83
checking the conversation state of a transaction 30
CICS mapping to APPC architecture 145
CICS-CICS communication 17
CICS-IMS communication 103
CICS-to-CICS communication

application programming (LUTYPE6.1) 103
application programming (MRO) 53, 63

CICS-to-IMS communication 103
application programming (LUTYPE6.1) 111

CICS-to-IMS sessions
session allocation 107

client/server model 7

command sequences
APPC basic conversations 89

commands
APPC basic conversations 89
APPC mapped conversations 39
CICS-to-IMS sessions 109
LUTYPE6.1 conversations 109
MRO conversations 61
MRO mapped conversations 61

committing changes
to recoverable resources 117

CONFIRM option
GDS SEND command 74, 79
SEND command (APPC mapped) 32

CONNECT PROCESS command
APPC basic conversations 70
APPC mapped conversations 24, 39
PARTNER option 24
PIPLENGTH option 25
PIPLIST option 25

CONVDATA fields 84
conversation data block (CDB) 84

layout 85
conversation state 5
conversations

definition 5
CONVERSE command

APPC mapped conversations 31, 37, 39
LUTYPE6.1 conversations 105, 107, 109
MRO conversations 58, 60, 61

CONVID option 55, 69
APPC basic conversations 99
APPC mapped conversations 25, 27
GDS CONNECT PROCESS command 70
LUTYPE6.1 conversations 103, 104
mandatory 99
WAIT command 27

D
data integrity 8
data streams, generalized

GDS for APPC 73
deferred transmission 35, 39, 74, 82, 90

APPC mapped conversations 27
MRO sessions 171

designing for recovery 12
DFHCDBLK copybook 85
distributed process 7
distributed program link 3
distributed transaction processing (DTP) 3

application programming 53, 63, 103, 111
CICS-to-CICS (LUTYPE6.1) 111
CICS-to-CICS (MRO) 53, 63
CICS-to-IMS (LUTYPE6.1) 103

distributed unit of work 8
DTP (distributed transaction processing) 3
DTP command 6

186 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

E
EIB fields 41, 63, 111, 119

EIBATT
LUTYPE6.1 conversations 107
MRO conversations 55, 60

EIBCOMPL
APPC mapped conversations 37
LUTYPE6.1 conversations 107
MRO conversations 60

EIBCONF
APPC mapped conversations 33, 37

EIBEOC
APPC mapped conversations 37

EIBERR 118
APPC mapped conversations 26, 29, 31, 33, 36

EIBERRCD
APPC mapped conversations 26, 29, 31, 33, 36

EIBFMH
LUTYPE6.1 conversations 107
MRO conversations 60, 61

EIBFREE 119
APPC mapped conversations 26, 31, 33, 36
LUTYPE6.1 conversations 106
MRO conversations 59

EIBNODAT
APPC mapped conversations 29, 37

EIBRCODE
APPC mapped conversations 36
LUTYPE6.1 conversations 103, 105, 108
MRO conversations 59

EIBRECV
APPC mapped conversations 33, 37
LUTYPE6.1 conversations 107
MRO conversations 60

EIBRLDBK 118, 137, 139
EIBRSRCE

APPC mapped conversations 23
LUTYPE6.1 conversations 103, 108

EIBSIG 113
APPC mapped conversations 31, 36
LUTYPE6.1 conversations 105, 165

EIBSYNC 117, 138
APPC mapped conversations 37
LUTYPE6.1 conversations 106
MRO conversations 59, 60

EIBSYNRB 118, 139
APPC mapped conversations 36
MRO conversations 60

MRO conversations 57, 59
EIBATT flag

LUTYPE6.1 conversations 107
MRO conversations 55, 60

EIBCOMPL flag
APPC mapped conversations 37
LUTYPE6.1 conversations 107
MRO conversations 60

EIBCONF flag
APPC mapped conversations 33, 37

EIBEOC flag
APPC mapped conversations 37

EIBERR flag 118

EIBERR flag (continued)
APPC mapped conversations 26, 29

EIBERRCD field
APPC mapped conversations 26, 29, 31, 33, 36

EIBFMH flag
LUTYPE6.1 conversations 107
MRO conversations 60, 61

EIBFREE flag 119
APPC mapped conversations 26, 31, 33, 36
LUTYPE6.1 conversations 106
MRO conversations 59

EIBNODAT flag
APPC mapped conversations 29, 37

EIBRCODE field
APPC mapped conversations 36
LUTYPE6.1 conversations 103, 105, 106
MRO conversations 59

EIBRECV flag
APPC mapped conversations 33, 37
LUTYPE6.1 conversations 107
MRO conversations 60

EIBRLDBK flag 118, 137, 139
EIBRSRCE field 53

APPC mapped conversations 23
LUTYPE6.1 conversations 103, 108

EIBSIG flag 113
APPC mapped conversations 31, 36
LUTYPE6.1 conversations 105, 165

EIBSYNC flag 117, 138
APPC mapped conversations 37
LUTYPE6.1 conversations 106
MRO conversations 59, 60

EIBSYNRB flag 118, 139
APPC mapped conversations 36
MRO conversations 60

ending a conversation
APPC basic sessions 81
APPC mapped session 34
LUTYPE6.1 sessions 105
MRO session 59

EXTRACT ATTACH command
LUTYPE6.1 conversations 104, 107, 109
MRO conversations 55, 60, 61

EXTRACT ATTRIBUTES STATE command 6, 14
EXTRACT PROCESS command

APPC basic conversations 71, 89
APPC mapped conversations 25, 39

F
failures

back-end transaction 26, 55, 72, 104
conversation 23, 75
intersystem session 5, 13
notification of 27, 72

FMH (function management header) 104, 173
concatenated 60, 107

FREE command
APPC basic conversations 81, 82, 90
APPC mapped conversations 34, 35, 39
CICS-to-IMS sessions 109

Index 187

FREE command (continued)
LUTYPE6.1 conversations 105, 106, 109
MRO conversations 59, 60, 61

front-end transaction 6, 14
APPC basic conversations 69
APPC mapped conversations 23
LUTYPE6.1 conversations 103, 163
LUTYPE6.1 sessions (CICS-to-IMS) 107
MRO conversations 53

function management header (FMH) 104, 173
concatenated 60, 107

function shipping 3

G
GDS ALLOCATE command 84, 89

APPC basic conversations 69
PARTNER option 70

GDS ASSIGN command 71
GDS CONNECT PROCESS command 70, 89

PARTNER option 70
PIPLENGTH option 71
PIPLIST option 71

GDS EXTRACT PROCESS command 71, 89
GDS FREE command 81, 90
GDS ISSUE ABEND command 78
GDS ISSUE CONFIRMATION command 80
GDS ISSUE ERROR command 79
GDS ISSUE PREPARE command 118
GDS ISSUE SIGNAL command 78
GDS RECEIVE command 75, 86

BUFFER option 77
LLID option 76

GDS SEND command 73
GDS WAIT command 70, 74
generalized data stream (GDS)

GDS for APPC 73

H
header, function management 104, 107, 173

I
IMS 101, 103
integrity of data 8
INVITE option

GDS SEND command 74
SEND command (APPC mapped) 28
SEND command (LUTYPE6.1) 104
SEND command (MRO) 57

ISSUE ABEND command
APPC basic conversations 78
APPC mapped conversations 31

ISSUE CONFIRMATION command
APPC basic conversations 80
APPC mapped conversations 32

ISSUE ERROR command
APPC basic conversations 79
APPC mapped conversations 31

ISSUE PREPARE command 118

ISSUE SIGNAL command
APPC basic conversations 78
LUTYPE6.1 sessions (CICS-to-IMS) 109

L
LAST option

APPC sessions
with syncpointing 172

MRO sessions 172
with syncpointing 172

LLID option
GDS RECEIVE command 76

LUTYPE6.1 conversations
ALLOCATE command 103, 107, 109, 168
attaching partner transactions 103
back-end transaction 103, 163
BUILD ATTACH command 104
CICS-to-CICS application programming 111
CONVERSE command 105, 107, 109
CONVID option 103, 104
ending one 105
EXTRACT ATTACH command 104, 107, 109
FREE command 105, 106, 109
front-end transaction 103, 163
RECEIVE command 109
SEND command 104, 109

M
mapping to APPC architecture 145

basic (unmapped) conversations 146
mapped conversations 153

migration
LUTYPE6.1 programs on APPC links 163

migration mode 163
model

client/server 7
peer-to peer 7

MRO conversations
ALLOCATE command 53, 60, 61, 65
ASSIGN command 55
attaching partner transactions 54
back-end transaction 53
BUILD ATTACH command 54, 61
CONVERSE command 58, 60, 61
ending one 59
EXTRACT ATTACH command 55, 60, 61
FREE command 59, 60, 61
front-end transaction 53
RECEIVE command 60

Multi-Region Operation (MRO)
CICS-to-CICS application programming 53, 63, 103

N
NOQUEUE option

ALLOCATE command
LUTYPE6.1 sessions (CICS-to-IMS) 108

188 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

P
PARTNER option

ALLOCATE command 23
CONNECT PROCESS command 24
GDS ALLOCATE command 70
GDS CONNECT PROCESS command 70

peer-to-peer model 7
persistent session support, VTAM 18, 23, 69
PIP data

format of 25, 71
PIPLENGTH option

CONNECT PROCESS command 25
GDS CONNECT PROCESS command 71

PIPLIST option
CONNECT PROCESS command 25
GDS CONNECT PROCESS command 71

preparing a partner for syncpoint 118
principal facility 7
PROFILE option

ALLOCATE command
LUTYPE6.1 sessions (CICS-to-IMS) 108

ALLOCATE command (MRO) 53, 60
program development

APPC basic conversations 69
APPC mapped conversations 23
LUTYPE6.1 conversations 103
MRO conversations 53

programming
APPC basic conversations 69
APPC mapped conversations 23
LUTYPE6.1 conversations 103
MRO conversations 53

PSDINT, system initialization parameter 18

R
RECEIVE command

APPC basic conversations 75, 86
APPC mapped conversations 37
LUTYPE6.1 conversations 109
MRO conversations 60

recoverable resources 8
canceling changes to 8, 118
committing changes to 8, 117

RETCODE values 83
rollback 8
RTIMOUT attribute

PROFILE definition 35, 37

S
SEND command

APPC basic conversations 73
APPC mapped conversations 27, 28, 56
CONFIRM option

APPC mapped conversations 32
LUTYPE6.1 conversations 104, 109

session allocation
APPC basic conversations 69
LUTYPE6.1 conversations 107

SESSION option
ALLOCATE command (LUTYPE6.1) 107

sessions
allocating under ATI 23, 69
what they are 6

SNA (Systems Network Architecture) 9
starting a conversation

APPC basic 69
state of a conversation 5
STATE option 6, 14

GDS ALLOCATE command
APPC basic conversations 69

state tables
APPC basic conversations

sync level 0 92
sync level 1 94
sync level 2 96

APPC mapped conversations
sync level 0 42
sync level 1 44
sync level 2 46

LUTYPE6.1 conversations 112
migration mode 166

MRO conversations 64
state transitions

APPC basic conversations 91
state variable 6
sync level 9
synchronization 8

levels of 9
syncpoint 8

preparing a partner for 118
SYNCPOINT command 117
SYNCPOINT ROLLBACK command 118

APPC basic conversations 89
SYSID option

ALLOCATE command
LUTYPE6.1 sessions (CICS-to-IMS) 107

GDS ALLOCATE command
APPC basic conversations 69

system initialization parameters
PSDINT 18

Systems Network Architecture (SNA) 9

T
termination, abnormal

APPC basic conversations 78, 82
APPC mapped conversations 31, 33, 35
LUTYPE6.1 conversations 106
MRO conversations 59

testing the conversation state 50
transaction routing 3
transactions

back-end 6, 14
front-end 6, 14

U
unit of work (UOW) 8
UOW (unit of work) 8

Index 189

V
VTAM

persistent session support 18, 23, 69

W
WAIT command

APPC basic conversations 70, 74
APPC mapped conversations 24, 27
LUTYPE6.1 conversations 104, 109

WAIT option
GDS SEND command 74
LUTYPE6.1 conversations 105
SEND command

MRO conversations 59
SEND command (LUTYPE6.1) 104
SEND command (MRO) 57

WAIT option (APPC mapped)
SEND command 27

WAIT SIGNAL command 105

190 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

© Copyright IBM Corp. 1991, 2010 191

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

Programming Interface Information
This book is intended to help you understand how to program CICS systems to
communicate with each other and with other systems. This book documents
General-use Programming Interface and Associated Guidance Information provided
by CICS. General-use programming interfaces allow the customer to write programs
that obtain the services of CICS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and trademark
information at www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

192 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To ask questions, make comments about the functions of IBM products or systems,
or to request additional publications, contact your IBM representative or your IBM
authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–816151

– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:

– IBMLink: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1991, 2010 193

194 CICS TS for z/OS: CICS Distributed Transaction Programming Guide

����

Program Number: 5655-M15

SC34-6438-01

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
C

IC
S

T
S

fo
r

z/
O

S
C

IC
S

D
is

tr
ib

ut
ed

Tr
an

sa
ct

io
n

Pr
og

ra
m

m
in

g
G

ui
de

Ve
rs

io
n

3
R

el
ea

se
1

	Contents
	Preface
	What this book is about
	Who this book is for
	What is not covered by this book
	What you need to know to understand this book
	How to use this book

	Summary of changes
	Changes for CICS Transaction Server for z/OS, Version 2 Release 3
	Changes for CICS Transaction Server for z/OS, Version 2 Release 2
	Changes for CICS Transaction Server for z/OS, Version 2 Release 1
	Changes for CICS Transaction Server for OS/390, Version 1 Release 3

	Part 1. Concepts and design considerations
	Chapter 1. Concepts of distributed transaction processing (DTP)
	DTP’s place in the CICS intercommunication facilities
	What is DTP?
	Conversations
	Conversation states

	Sessions

	Distributed processes
	Maintaining data integrity
	Synchronization levels

	Chapter 2. Designing distributed processes
	Structuring distributed transactions
	Avoiding performance problems
	Making maintenance easier
	Going for reliability
	Protecting sensitive data
	Maintaining connectivity
	Safeguarding data integrity

	Designing conversations
	Selecting the protocol

	APPC protocol
	Selecting the APPC interface
	Selecting the APPC conversation type
	Using VTAM persistent session support
	Writing programs for APPC conversations

	Part 2. Writing programs for APPC mapped conversations
	Chapter 3. APPC mapped conversation flow
	Starting the conversation
	Conversation initiation
	Allocating a session to the conversation
	Using ATI to allocate a session
	Connecting the partner transaction
	Initial data for the back-end transaction

	Back-end transaction initiation
	What happens if the back-end transaction fails to start

	Transferring data on the conversation
	Sending data to the partner transaction
	Switching from sending to receiving data
	Receiving data from the partner transaction
	The CONVERSE command

	Communicating errors across a conversation
	Requesting INVITE from the partner transaction
	Demanding INVITE from the partner transaction

	Safeguarding data integrity
	How to synchronize a conversation using CONFIRM commands
	Requesting confirmation
	Receiving and replying to a confirmation request
	Checking the response to SEND CONFIRM

	How to synchronize conversations using SYNCPOINT commands

	Ending the conversation
	Normal termination of a conversation
	Emergency termination of a conversation
	Unexpected termination of a conversation

	Checking the outcome of a DTP command
	Checking EIB fields and the conversation state

	Summary of CICS commands for APPC mapped conversations

	Chapter 4. State transitions in APPC mapped conversations
	The state tables for APPC mapped conversations
	How to use the state tables
	Initial states

	Testing the conversation state

	Part 3. Writing programs for MRO conversations
	Chapter 5. MRO conversation flow
	Starting the conversation
	Conversation initiation
	Allocating a session to the conversation
	Using ATI to allocate a session
	Connecting the partner transaction

	Back-end transaction initiation
	What happens if the back-end transaction fails to start

	Transferring data on the conversation
	Sending data to the partner transaction
	Switching from sending to receiving data
	Receiving data from the partner transaction
	The CONVERSE command

	Safeguarding data integrity
	Ending the conversation
	Ending a conversation normally
	Unexpected termination of a conversation

	Checking the outcome of a DTP command
	Checking EIB fields and the conversation state

	Summary of commands for MRO conversations

	Chapter 6. State transitions in MRO conversations
	The state table for MRO conversations
	How to use the state table
	Initial states
	Testing the conversation state

	Part 4. Writing programs for APPC basic conversations
	Chapter 7. APPC basic conversation flow
	Starting the conversation
	Conversation initiation
	Allocating a session to the conversation
	Using ATI to allocate a session
	Connecting the partner transaction
	Initial data for the back-end transaction

	Back-end transaction initiation
	What happens if the back-end transaction fails to start up

	Sending data to the partner transaction
	Switching from sending to receiving data

	Receiving data from the partner transaction
	Receiving data by the record
	Receiving data by the buffer

	Communicating errors across a conversation
	Requesting INVITE from the partner transaction
	Demanding INVITE from the partner transaction

	Safeguarding data integrity
	How to synchronize conversations using CONFIRM commands
	Requesting confirmation
	Receiving and replying to a confirmation request
	Checking the response to GDS SEND CONFIRM

	How to synchronize conversations using SYNCPOINT commands

	Ending the conversation
	Normal termination of a conversation
	Emergency termination of a conversation
	Unexpected termination of a conversation

	Checking the outcome of GDS commands
	Testing for request failure
	Testing indicators
	Checking CONVDATA fields and the conversation state

	Summary of commands for APPC basic conversations

	Chapter 8. State transitions in APPC basic conversations
	The state tables for APPC basic conversations
	How to use the state tables
	Initial states
	Testing the conversation state

	Part 5. Writing programs for LUTYPE6.1 conversations
	Chapter 9. LUTYPE6.1 conversation flow
	Starting the conversation
	Conversation initiation
	Allocating a session to the conversation
	Connecting the partner transaction

	Back-end transaction initiation
	What happens if the back-end transaction fails to start

	Transferring data on the conversation
	Sending data to the partner transaction
	Switching from sending to receiving data
	Receiving data from the partner transaction
	Waiting for a signal
	Combining sending and receiving
	Communicating errors across a conversation
	Safeguarding data integrity

	Ending the conversation
	Ending a conversation normally
	Unexpected termination of a conversation

	Checking the outcome of a DTP command
	Considerations for the front-end transaction
	Session allocation
	The session identifier

	Summary of commands for LUTYPE6.1 conversations

	Chapter 10. State transitions in LUTYPE6.1 conversations
	The state table for LUTYPE6.1 conversations
	How to use the state table
	Initial states
	Testing the conversation state

	Part 6. Syncpointing a distributed process
	Chapter 11. Syncpointing a distributed process
	The SYNCPOINT command
	The ISSUE PREPARE command
	The SYNCPOINT ROLLBACK command
	When a backout is required
	Synchronizing two CICS systems
	SYNCPOINT in response to SYNCPOINT
	SYNCPOINT in response to ISSUE PREPARE
	SYNCPOINT ROLLBACK in response to SYNCPOINT ROLLBACK
	SYNCPOINT ROLLBACK in response to SYNCPOINT
	SYNCPOINT ROLLBACK in response to ISSUE PREPARE
	ISSUE ERROR in response to SYNCPOINT
	ISSUE ERROR in response to ISSUE PREPARE
	ISSUE ABEND in response to SYNCPOINT
	ISSUE ABEND in response to ISSUE PREPARE
	Session failure in response to SYNCPOINT
	Session failure in response to ISSUE PREPARE
	Session failure in response to SYNCPOINT ROLLBACK

	Synchronizing three or more CICS systems
	SYNCPOINT in response to SYNCPOINT
	SYNCPOINT ROLLBACK in response to SYNCPOINT
	Session failure and the indoubt period

	What really flows between APPC systems

	Part 7. Appendixes
	Appendix A. CICS mapping to the APPC architecture
	Command mapping for APPC basic conversations
	Return codes for APPC basic conversations

	Command mapping for APPC mapped conversations
	Return codes for APPC mapped conversations

	CICS deviations from the APPC architecture
	Effects of CICS deviations on the transaction programmer

	Appendix B. Migration of LUTYPE6.1 applications to APPC links
	Migration mode
	State transitions in LUTYPE6.1 migration-mode conversations

	Appendix C. Differences between APPC mapped and MRO conversations
	Different treatment of command sequences
	Using the LAST option
	The LAST option and syncpoint flows on APPC sessions
	The LAST option and syncpoint flows on MRO sessions

	Appendix D. Below the SNA interface
	SNA indicators and records
	Request mode and responses
	When SNA indicators are transmitted

	Glossary
	Bibliography
	The CICS Transaction Server for z/OS library
	The entitlement set
	PDF-only books
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	CICS family books
	Licensed publications

	Other CICS books
	Books from related libraries
	IMS
	Systems Application Architecture (SAA)
	Systems Network Architecture (SNA)

	Determining if a publication is current

	Accessibility
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

	Notices
	Programming Interface Information
	Trademarks

	Sending your comments to IBM

