
CICS Transaction Server for z/OS
Version 4 Release 1

Front End Programming Interface User's
Guide

SC34-7027-02

���

CICS Transaction Server for z/OS
Version 4 Release 1

Front End Programming Interface User's
Guide

SC34-7027-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 265.

This edition applies to Version 4 Release 1 of CICS Transaction Server for z/OS (product number 5655-S97) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1992, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface vii
What this manual is about vii
Who this manual is for vii
What you need to know to understand this manual vii
Notes on terminology vii
CICS syntax notation viii

Changes in CICS Transaction Server for
z/OS, Version 4 Release 1 xi

Part 1. FEPI concepts and facilities 1

Chapter 1. Introducing FEPI 3
Problems FEPI can solve 3
How FEPI fits into your system 4

Chapter 2. Planning to use the Front
End Programming Interface 7
Hardware and software requirements 7
System integrity 7
Storage 7
Installation 8

Chapter 3. Configuring your system for
FEPI 9

Chapter 4. FEPI functions and services 11
Introducing FEPI functions 11

Samples 12
FEPI programming commands 12

High-level FEPI commands 12
Data-stream-level commands 13
Specialized-level commands 13
List of commands 13

Setup and resources 14
FEPI resources 14

CICS FEPI application programs 15
Terminals supported 16
FEPI Security 16

Signon security 16
Command security 17

Problem determination, customization, and
performance 17

Part 2. FEPI installation and
administration 19

Chapter 5. Planning for FEPI 21
Analysis and planning. 21

Back-end applications and systems 21
Names of nodes and targets 21
Operator control requirements 22

Journaling requirements 22
Signon and signoff procedures 22
Special event handling. 22
Using pools for control reasons 23
Using pools for functional reasons 23
Number of nodes 23
Setup program organization 24

Organizing your pools and property sets 24
Organizing pools 24
Organizing property sets 24

Workload balancing in a sysplex 26
Planning FEPI storage 26

Chapter 6. Getting started with FEPI . . 29
The installation process 29

A note about loading FEPI modules into the LPA 29
Updating CICS definitions 29
Installing FEPI resource definitions 30
Starting CICS 30

Chapter 7. Configuring FEPI 33
Configuring CICS 33
Configuring VTAM 34

Availability of network resources 35
Selection of FEPI session parameters 35
Pacing of FEPI sessions 36

Configuring the back-end systems 37
The configuration programs you should write . . . 38

Writing configuration programs 38
Writing setup programs 40
Running setup programs 41
Varying the resources installed by the setup
program 41
An example FEPI configuration. 42
Writing monitoring programs 46
Handling unexpected events. 46
Handling CLSDST(PASS) 48
Writing operator transactions 50
Other functions 50
Global user exit programs 50

Chapter 8. FEPI operation 53
Controlling FEPI resources 53

SERVSTATUS. 53
ACQSTATUS 53
LASTACQCODE 55
INSTLSTATUS 55
WAITCONVNUM 55
STATE 55

FEPI performance 55
Using CICS monitoring 56
Using statistics data 56

Shutdown 57
Normal shutdown 57
Immediate shutdown 58

© Copyright IBM Corp. 1992, 2011 iii

Forced shutdown 58
Using FEPI with XRF 58

XRF and VTAM 58
FEPI resource definition and XRF 59
XRF takeover of front-end system 59
XRF takeover of back-end system 60

Using FEPI with VTAM persistent sessions 62
Restart of front-end system using persistent
sessions 62
Restart of back-end system using persistent
sessions 62

Chapter 9. Operator control of FEPI . . 65
CEMT - master terminal transaction 65
CEMT DISCARD 65
CEMT INQUIRE FECONNECTION 66
CEMT INQUIRE FENODE 69
CEMT INQUIRE FEPOOL 71
CEMT INQUIRE FEPROPSET 73
CEMT INQUIRE FETARGET 73
CEMT SET FECONNECTION 75
CEMT SET FENODE 76
CEMT SET FEPOOL 77
CEMT SET FETARGET 77
VTAM commands 78

Chapter 10. Customizing FEPI. 81
Front End Programming Interface exits XSZARQ
and XSZBRQ 81

XSZBRQ 81
XSZARQ 83
The UEPSZACT and UEPSZACN exit-specific
parameters 83
Using XMEOUT to control message output . . . 84

FEPI journaling 85
FEPI journal operation. 85
Printing FEPI journal records 86

Chapter 11. FEPI system programming
reference. 89
The FEPI SPI commands 89

Command format 90
Errors and exception conditions 90

FEPI ADD POOL 91
FEPI DELETE POOL 93
FEPI DISCARD NODELIST 94
FEPI DISCARD POOL 94
FEPI DISCARD PROPERTYSET 95
FEPI DISCARD TARGETLIST 95
FEPI INQUIRE CONNECTION. 96
FEPI INQUIRE NODE 99
FEPI INQUIRE POOL 101
FEPI INQUIRE PROPERTYSET 105
FEPI INQUIRE TARGET 108
FEPI INSTALL NODELIST 109
FEPI INSTALL POOL. 111
FEPI INSTALL PROPERTYSET 113
FEPI INSTALL TARGETLIST 117
FEPI SET CONNECTION 118
FEPI SET NODE 120

FEPI SET POOL 121
FEPI SET TARGET 122
FEPI SP NOOP 123
Transient data queue records 123

Fields 124

Chapter 12. FEPI problem
determination 127
Debugging FEPI applications 127
FEPI dump 127

Using CICS dump facilities to investigate FEPI
problems 129

FEPI trace 130
Taking and interpreting trace entries 131

FEPI messages 131
FEPI abends 132

Restart 132
Message DFHSZ4099E 132
Message DFHSZ4155I 133

Reporting a FEPI problem to IBM 133

Part 3. FEPI application
programming. 135

Chapter 13. Basics of FEPI
programming 137
Communication and conversations 137
Structure and design 138

Programming 139

Chapter 14. FEPI key stroke and
screen-image applications 141
General sequence of commands 141
Sending key stroke data 142

Error handling 143
Receiving field-by-field 144

Command completion 144
Error handling 145

Multiple attentions 145
Sending screen-image data 146
Receiving screen-image data 147

Command completion and errors. 148
Extracting field data 148
CONVERSE 148

Chapter 15. FEPI data stream
applications 149
When to use the data stream interface 149
General sequence of commands 150
Receiving. 150

Command completion 151
Error handling 153
Sending 153
CONVERSE 153
SLU2 mode considerations 154
SLU P mode considerations 155

Chapter 16. FEPI application design 157

iv CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Programs 157
Access program 157
Begin-session handler 158
Unsolicited-data handler 158
End-session handler 159

Application organization 159
Application style 159
Started tasks. 160
Conversations 161

Signon security 164
How to use PassTickets 164
Benefits 165
Requirements 165

Error handling 165
Time-outs 166
Lost session 166
Previous SEND failed 166
Communication errors 167
Bypass by user exit 167
Unknown conversation ID 167
Operator/system action 167
Shutdown 167

System considerations 168
IMS considerations 168
Performance 171

Chapter 17. Specialized FEPI
functions 173
Set and test sequence number (STSN) 173
DRx responses 174
SNA commands 174

Part 4. FEPI application
programming reference 175

Chapter 18. The FEPI API commands 177
Command format 178
Errors and exception conditions 178

Chapter 19. FEPI ALLOCATE
PASSCONVID 181

Chapter 20. FEPI ALLOCATE POOL 183

Chapter 21. FEPI AP NOOP 185

Chapter 22. FEPI CONVERSE
DATASTREAM 187

Chapter 23. FEPI CONVERSE
FORMATTED. 193

Chapter 24. FEPI EXTRACT CONV . . 199

Chapter 25. FEPI EXTRACT FIELD . . 201

Chapter 26. FEPI EXTRACT STSN . . 205

Chapter 27. FEPI FREE 207

Chapter 28. FEPI ISSUE 209

Chapter 29. FEPI RECEIVE
DATASTREAM 213

Chapter 30. FEPI RECEIVE
FORMATTED. 217

Chapter 31. FEPI REQUEST
PASSTICKET 221

Chapter 32. FEPI SEND DATASTREAM 223

Chapter 33. FEPI SEND FORMATTED 225

Chapter 34. FEPI START. 227

Chapter 35. Start data 229
Fields 229

Chapter 36. Data formats 231

Chapter 37. Ending status 233

Part 5. Appendixes 235

Appendix A. FEPI sample programs 237
List of samples 237
VS COBOL II Sample Restrictions 239
Installing the samples 239
Using the samples 240

The back-end CICS program 240
The back-end IMS program. 241

Description of the samples 242
Setup program 242
Monitor and unsolicited data-handler 243
Begin session 245
Key stroke CONVERSE 246
Screen image SEND and START 247
Screen image RECEIVE and EXTRACT FIELD 249
3270 data stream passthrough 250
End-session handler 250
SLU P one-out one-in. 251
SLU P pseudoconversational 252
STSN handler 254

Appendix B. CVDA and RESP2 values
for FEPI commands. 255
FEPI CVDAs and numeric values in alphabetic
sequence 255
FEPI CVDAs and numeric values in numeric
sequence 257
FEPI RESP2 values 260

Contents v

Notices 265
Trademarks 266

Bibliography. 267
CICS books for CICS Transaction Server for z/OS 267
CICSPlex SM books for CICS Transaction Server
for z/OS 268

Other CICS publications 268

Accessibility 269

Index 271

vi CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Preface

What this manual is about
This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of Version 4 Release 1.

This manual describes the Front End Programming Interface (FEPI) of CICS®

Transaction Server for z/OS®, Version 3 Release 2.

Who this manual is for
This manual is intended primarily for CICS system programmers and
administrators responsible for installing and configuring FEPI, and for application
programmers responsible for writing FEPI “front-end” application programs.

What you need to know to understand this manual
To configure FEPI, you need to be familiar with all aspects of CICS administration
(such as system definition, resource definition, customization, and operations) and
the programming interface to CICS. For information about CICS system definition,
see the CICS System Definition Guide. For information about defining resources to
CICS, see the CICS Resource Definition Guide. For programming information about
customizing CICS, see the CICS Customization Guide. For programming information
about EXEC CICS commands, see the CICS Application Programming Reference and
the CICS System Programming Reference. You should also be familiar with the IBM®

ACF/VTAM telecommunication access method and, if you are accessing IMS™

back-end systems, with IBM IMS administration.

To write FEPI “front-end” applications, you need to know how to write programs
in at least one of the programming languages that CICS supports. More
importantly, you also need knowledge of data communication and protocols. And,
if you will be accessing IMS back-end systems, you must also be familiar with
using IMS and writing IMS applications.

Notes on terminology
In this manual, VTAM® refers to ACF/VTAM. The term “CICS”, without any
qualification, refers to the CICS element of IBM CICS Transaction Server for z/OS.

CICS Transaction Server for z/OS, Version 4 Release 1 supports CICS applications
written in:
v Assembler language
v C
v C++
v COBOL
v PL/I

In this book, the phrase “the languages supported by CICS” refers to the above
languages.

KB equals 1024 bytes; MB equals 1024 KB.

© Copyright IBM Corp. 1992, 2011 vii

The following terms have different meanings for FEPI, CICS, IMS, and VTAM:

application
FEPI uses application in the normal sense of a program or suite of
programs that do work. VTAM uses application for programs that
communicate directly using VTAM; in a FEPI environment, this means the
back-end systems on one hand, and FEPI on the other.

conversation
A FEPI conversation is not the same as an IMS conversation, although they
would normally coincide, and it is not related to CICS conversational
mode. It is analogous to a CICS APPC conversation.

inbound, input
In FEPI and CICS usage, these describe data received by a program from
elsewhere. From the point-of-view of the back-end system, this data is
outbound or output to a terminal.

message
VTAM and IMS use message to refer to any data transmission, and not just
to data displayed for a user's attention.

node In VTAM and IMS, a node is a named point in a network. In FEPI, nodes
are those points (VTAM nodes) that are the secondary LU terminals
simulated by FEPI.

outbound, output
In FEPI and CICS usage, these describe data sent by a program to
somewhere else. From the point-of-view of the back-end system, this data
is inbound or input from a terminal.

secondary
In VTAM, secondary describes one of the partners of an LU-LU pair; the
terminals simulated by FEPI are secondary LUs. This is not the same as the
CICS usage of secondary.

CICS syntax notation
The syntax of CICS commands is presented in a standard way.

The EXEC CICS that always precedes each command’s keyword is not included; nor
is the “END_EXEC” statement used in COBOL or the semicolon (;) used in PL/I
and C that you must code at the end of each CICS command. In the C language, a
null character can be used as an end-of-string marker, but CICS does not recognize
this; you must never, therefore, have a comma or period followed by a space
(X'40') in the middle of a coding line.

You interpret the syntax by following the arrows from left to right. The
conventions are:

Symbol Action

�� A
B
C

��
A set of alternatives—one of which you must code.

viii CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Symbol Action

��
A
B
C

��
A set of alternatives—one of which you may code.

�� �

A
B
C

��

A set of alternatives—any of which you may code.

��
A

B
��

Alternatives where A is the default.

�� Name ��

Name:

A
B

Use with the named section in place of its name.

Punctuation and
uppercase characters

Code exactly as shown.

Lowercase characters Code your own text, as appropriate (for example, name).

Preface ix

x CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Changes in CICS Transaction Server for z/OS, Version 4
Release 1

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 2.3

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 1992, 2011 xi

xii CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Part 1. FEPI concepts and facilities

This part of the book gives an overview of FEPI, and some general information
about functions, services, and implementing applications.
v Chapter 1, “Introducing FEPI,” on page 3 explains what FEPI is and what

problems it solves; it also describes some planning considerations.
v Chapter 4, “FEPI functions and services,” on page 11 describes the various types

of FEPI commands and introduces the concepts and functions used by FEPI
applications.

© Copyright IBM Corp. 1992, 2011 1

2 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 1. Introducing FEPI

The Front End Programming Interface is an integral part of CICS. The function is
called a front-end programming interface because it enables you to write CICS
application programs that access other CICS or IMS programs. In other words, it
provides a front end to those programs. The interface simulates the terminals that
the other programs use.

This section contains the following topics:
v “Problems FEPI can solve”
v “How FEPI fits into your system” on page 4
v Chapter 2, “Planning to use the Front End Programming Interface,” on page 7.

Problems FEPI can solve
Many users have CICS and IMS applications that they want to use differently; for
example, to extend their use by incorporating them into other applications. But
they cannot change the way the applications are used because they cannot change
the application programs.

FEPI allows existing CICS and IMS application programs to be used in different
ways, in different combinations, in different environments, and on different
systems, without changing them, because it provides a simple integrated interface
to these programs. FEPI also lets you write new programs that add function to old
programs.

There are many reasons why existing application programs can’t be changed.
Perhaps the application was bought in a package, so that you don’t have the
source. Perhaps someone else owns the application; perhaps it runs on someone
else’s system. Perhaps the source has been lost, and there’s no one around who
knows the program well enough. Perhaps the program logic is so complex that any
changes are considered too dangerous.

Or perhaps it is an application that was written for one specific environment, such
as IBM 3270 information display systems, and you want to use it for another, or
you want to extend its function. You don’t want to change the application, because
it must still work with the 3270s.

To get around this, you can run the existing application unchanged and provide a
front-end program to interface to it. Using FEPI, a front-end program can simulate
a terminal. This means the program can gain access to applications written to
support that terminal. That program can then use the existing applications, and the
existing application is unaware that anything has changed.

Therefore, the existing application can be used differently without being changed
in any way. The changes are in the simulating program. For example, newly
written applications can collect data from several existing applications. The existing
applications can be on the same system as the simulating program, or on a
different system.

© Copyright IBM Corp. 1992, 2011 3

Advantages over alternative solutions

There are other ways of accessing existing programs differently, but they all have
their drawbacks.

Can CICS multiregion operation (MRO) or intersystem communication (ISC) be
used to access remote applications?

Yes, but using MRO or ISC often requires some changes to the existing
application—for example, to change the type of terminal supported or to
provide an interface that uses a communication area.

Can VTAM program-to-program support be used?
Yes, if your programmers can write an access program to issue the
appropriate VTAM calls. But these VTAM calls cannot be part of a CICS
application program.

How FEPI fits into your system
FEPI allows CICS front-end application programs to communicate with unchanged
back-end applications running on CICS or IMS systems that are local or remote.
The back-end applications continue to work just as if they are being accessed from
the type of terminal they were originally written for.

A FEPI application is a CICS application that is designed to use FEPI to
communicate with existing back-end applications. It is also known as a terminal
front-end program.

The front end is the system on which the FEPI application runs, and the back end is
the system on which the existing application runs. (They can run in the same CICS
region.)

Figure 1 on page 5 shows the relationship between FEPI and other components of
your system. Note, particularly, the unchanged applications in the lower part of
the figure, and the new CICS FEPI application near the top. To an existing
application, the front-end application looks like a terminal.

4 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

new
application

setup
functionCICS

CICS FEPI

VTAM

front end

back end

3270 3270

Simulated
terminals

VTAM

IMS

UNCHANGED
application A

UNCHANGED
application B

CICS

VTAM

Key:

Conceptual
data flow

User-supplied
program

IBM-supplied
program

Figure 1. Structure of FEPI and application programs

Chapter 1. Introducing FEPI 5

6 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 2. Planning to use the Front End Programming
Interface

This section explains what hardware and software you need to use the Front End
Programming Interface (FEPI), what MVS™ system integrity is involved, what
resources you need, and what to consider when installing FEPI and customizing
your system.

Hardware and software requirements
There are different requirements for the front-end and the back-end.

Front-end requirements

For front-end systems, FEPI is an integral part of CICS Transaction Server for
z/OS. Other hardware and software requirements are the same as for CICS
Transaction Server for z/OS.

Extra 37x5 controllers and network control programs (NCPs) may be needed to
provide the necessary intersystem connections.

Back-end requirements

Applications running on the following, and subsequent compatible releases, are
supported:
v CICS Transaction Server for z/OS
v IMS Version 9.1 or higher

FEPI provides simulation for two very common classes of terminals on these
systems:
v 3270-types for CICS and IMS applications (using LU 2 protocol)
v A family of programmable terminals, including the 4700, accessed through an

LU 0 protocol (called SLU P), for IMS applications.

System integrity
All application programs that use FEPI run in problem-program mode in user-key
storage. No part of FEPI needs to be authorized to run.

IBM accepts authorized program analysis reports (APARs) where the installation of
the FEPI function introduces an exposure to the system integrity of MVS. Refer to
the MVS Integrity Programming Announcement dated 21 October 1981.

Storage
Some storage below the 16 MB line is required, but the bulk resides above the 16
MB line in storage managed by CICS.

For details, see “Planning FEPI storage” on page 26.

© Copyright IBM Corp. 1992, 2011 7

There are no inherent resource limits in FEPI. It is limited only by what is
configured and the available system storage.

Installation
FEPI is distributed through normal IBM Program Library channels.

It is a part of CICS and cannot be ordered separately. See Chapter 6, “Getting
started with FEPI,” on page 29 for more information.

8 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 3. Configuring your system for FEPI

You need to configure your system specifically for CICS FEPI, for new application
programs, and possibly for existing applications.

About this task

You might need to adapt your VTAM setup, your CICS system, and CICS FEPI to
use the interface effectively.

Procedure
1. Change the default value of the FEPI system initialization parameter to YES

(the default is NO). The FEPI system initialization parameter controls whether
FEPI is available or not. When the CICS region starts, FEPI runs as a system
transaction that is started automatically. You do not need to be start or stop it
independently.

2. Write a setup program to configure FEPI with the necessary resources when
commands are issued from a front-end application program. FEPI does not use
a configuration file or CICS RDO. The setup program can get the configuration
data from a file or from whatever source it identifies.

3. Define CICS FEPI applications to CICS in the normal way.
4. Optional: Define simulated terminals for FEPI to use.

© Copyright IBM Corp. 1992, 2011 9

10 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 4. FEPI functions and services

The Front End Programming Interface (FEPI) function provides access, by means of
simulated terminals, to CICS and IMS applications available through a
communication network.

The functions and services provided by FEPI enable you to write application
program to provide a front end to other CICS and IMS applications without
having to change those applications in any way. This is done by simulating a
terminal in session.

Introducing FEPI functions
An application program using FEPI can provide a front end to other CICS or IMS
applications. Because this is done by simulating a terminal in session with the
non-FEPI application, that application does not have to be changed in any way.

Thus you can write FEPI applications that provide a single integrated interface to
previously disparate applications. The scope and usability of your CICS and IMS
applications can be extended by using them in combination, in different
environments, or on different systems.

Because a FEPI application communicates with other applications that can run in
different systems, it is necessary to distinguish between systems and identify the
direction of data flows. The convention is:

Front-end
The front-end system is the one in which the FEPI application runs.

Back-end
Back-end identifies the system in which the other CICS or IMS applications
run. (This is equivalent to “partner” system, used elsewhere by CICS.)

Outbound
Identifies data sent by the FEPI application to the back-end application.

Inbound
Identifies data received by the FEPI application from the back-end
application.

FEPI provides a programming interface. Its functions can be invoked only through
that interface, which is an extension to the EXEC CICS programming interface. All
FEPI requests are made by issuing EXEC CICS FEPI commands; all the commands
have the qualifier FEPI. The languages supported by the EXEC CICS programming
interface (Assembler, COBOL, C, PL/I) can be used. For educational and initial
development purposes, you could use CECI, rather than formally writing a
program.

All functions are available in the normal way to all applications, except that some
functions are intended for system programmers, and their use can be restricted. All
the other facilities that you can use with CICS applications, such as the execution
diagnostic facility (EDF) and the command interpreter transaction, CECI, are
available.

© Copyright IBM Corp. 1992, 2011 11

Samples
To help you develop your own CICS FEPI applications, and to show you what
FEPI can do, FEPI includes detailed samples. They form an integrated set, and
include a program that sets up the FEPI configuration needed to run the other
samples.

The samples are supplied in source format in the SDFHSAMP library, and include
two back-end application programs, that show many of the principles and
techniques discussed in the FEPI programming section. Although the samples are
copyrighted, you may use and copy them freely for educational purposes to help
you write FEPI applications.

The names of the samples have the form DFH0xZyy. Z shows that the sample is a
FEPI sample and x identifies the source language of the sample. A for Assembler
language, C for C, P for PL/I, and V for COBOL. yy identifies the specific program.

FEPI programming commands
EXEC CICS FEPI commands provide several ways of developing CICS FEPI
applications.

The commands are at three logical levels:

High-level:
a straightforward interface for normal 3270 applications

Data stream-level:
for use with IMS SLU P applications and more complicated 3270
applications

Specialized-level:
for access to complex VTAM communication functions and events,
designed for use by vendors and experienced CICS FEPI application
developers.

High-level FEPI commands
The high-level front-end programming interface consists of two interfaces for
everyday use: key stroke and screen-image, collectively known as formatted data. They
allow programmers to build their own CICS FEPI applications in a straightforward
manner. However, the programmer must understand data communication and
protocols.

See Chapter 14, “FEPI key stroke and screen-image applications,” on page 141 for
details.

The key stroke interface
The key stroke interface allows programmers writing in any of the CICS-supported
languages, to specify the keys that an operator might press while using an existing
application. The key strokes are specified using easily coded mnemonics; no
hexadecimal values are required.

The screen-image interface
The screen-image interface allows programmers writing in any language supported
by CICS, to define the contents of a 3270 screen, using a data structure appropriate
to the programming language.

12 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

It uses a buffer with one byte for each screen position (for example, 1920 bytes for
a 24 × 80 character screen). This buffer can be defined in any way that suits the
application program and the programming language. It is passed as a complete
screen buffer to the back-end application.

In both cases, key stroke and screen-image, the data received from the back-end
application is presented as a screen image.

Data-stream-level commands
For many applications, the key stroke and screen-image interfaces should be quite
adequate.

However, where they are not, FEPI data-stream-level commands give an
application complete control of the 3270 data stream. These commands are also
needed for SLU P applications, which can use only this interface. FEPI does not
buffer or interpret the data stream; it is presented as it arrives from the back-end
application, and the front-end application must be prepared to handle whatever is
presented. Similarly, data sent by the front-end application is transmitted without
verification.

A detailed knowledge of data communication and protocols and of data stream
format is required.

See Chapter 15, “FEPI data stream applications,” on page 149 for details.

Specialized-level commands
A number of specialized functions can be accessed through FEPI.

These specialized functions are as follows:

STSN for SLU P applications:
Set and test sequence number (STSN) is a communication protocol used to
check and control transmissions. FEPI normally handles all necessary STSN
processing automatically. However, FEPI also provides access to STSN
information for those applications that need to control sequence number
data.

Application access to definite responses:
When a flow is received, the receiving LU can choose what response to
return to the sending LU. FEPI normally handles this automatically, but
also provides facilities for applications to determine this flow.

Other VTAM facilities:
Some applications use a VTAM facility known as CLSDST(PASS); this can
be used in more sophisticated CICS FEPI application programming.

See Chapter 17, “Specialized FEPI functions,” on page 173 for details.

List of commands
All the logical levels use more or less the same set of commands, though the
options used may vary.

The EXEC CICS FEPI application programming commands are:

ALLOCATE
Establishes communication with a back-end application

Chapter 4. FEPI functions and services 13

FREE Frees communication with a back-end application

SEND Sends data from a CICS FEPI application to a back-end application

RECEIVE
Receives data into a CICS FEPI application from a back-end application

CONVERSE
Sends data to and receives data from a back-end application

ISSUE Sends control data to a back-end application

EXTRACT
Gets field data and attributes, set-and-test-sequence-number (STSN) data,
or conversation status

START
Schedules a CICS transaction to handle inbound data.

Setup and resources
Besides the application programming functions that communicate with back-end
applications, FEPI also provides system programming functions that define and
inquire about FEPI resources and perform control functions.

Defining and configuring FEPI resources is called setup program. The EXEC CICS
FEPI commands that provide these functions are:

INSTALL, ADD
Sets up communication resources

DISCARD, DELETE
Discards communication resources

INQUIRE
Queries FEPI resource status

SET Controls FEPI resources.

The setup functions are usually performed by a customer-written transaction that
is started from a second-phase program list table post initialization (PLTPI)
program. See “The configuration programs you should write” on page 38.

FEPI resources can be controlled, like other CICS resources, using the CEMT SET and
CEMT INQUIRE functions. CECI can also be used. See Chapter 9, “Operator control of
FEPI,” on page 65.

FEPI resources
There are four types of FEPI resource: pool, property set, target, and node. The
relationships between them are listed below.

Pool A collection of nodes and targets

Property set
Defines the characteristics of a pool

CICS1, CICS2, IMS1, IMS 2...
Back-end systems

Node 1, Node 2, Node 3...
Simulated terminals

14 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

A FEPI pool can have one or more nodes and one or more targets. The same nodes
and targets can be in any number of pools, except that the same node-target pair (a
connection) cannot occur in more than one pool.

A CICS FEPI application can reach a target only by specifying a pool, which
defines the set of nodes that can be used to make the connection, and the
characteristics of the communication.

A target and an open node in the same pool are ‘connected’; when bound, they are
‘in session’. To bind means to establish a session on a connection, to make it ready to
allow communication.

The process of communicating with a back-end system is called a conversation; it is
the fundamental entity that a FEPI application deals with. Only one conversation
can use a connection at one time, although any number can do so consecutively.
For efficiency, the session on the connection is kept bound between conversations,
unless you choose otherwise. Furthermore, a conversation is owned by the task
that establishes it; no other task can use it.

Note: The use of the term conversation does not mean that the back-end or
front-end application has to be conversational, in the CICS meaning of the term.

The resources are further explained in Chapter 7, “Configuring FEPI,” on page 33
and the more complex relationships possible between them are illustrated in “An
example FEPI configuration” on page 42.

CICS FEPI application programs
A CICS FEPI application consists of several distinct logical functions.

These logical functions are as follows:

Access programs:
Communicate with the back-end applications

Begin-session handler:
Handles begin-session processing

End-session handler:
Handles end-session processing

STSN handler:
Assists message synchronization

Unsolicited-data handler:
Handles unsolicited inbound data

Monitor:
Handles unexpected events such as the loss of a session or errors in setup.

These functions can be in separate programs, or contained in one program. The
need for each function depends on the requirements of the application; in many
cases default processing is all that you need. You might need several styles of each
function, again depending on the requirements of your application.

The application programmer always writes the access programs. The system
programmer usually writes the monitors to handle the unexpected events that FEPI
reports to transient data queues such as CSZX. As for the other functions,
sometimes the system programmer writes them providing, perhaps, just one

Chapter 4. FEPI functions and services 15

instance of each, so that they are common to everyone. (This approach has the
advantage that adherence to standard procedures—for such things as signon and
signoff—is enforced.) In other installations, the application programmers provide
them.

In many cases, writing a CICS FEPI application is straightforward. However, some
applications need more sophisticated programming. The programmer not only has
to understand all the displays and protocols of the back-end application and
system (CICS or IMS), but must also understand the detailed data-stream
protocols. For further information, see Chapter 16, “FEPI application design,” on
page 157.

Terminals supported
To access back-end applications, FEPI has VTAM secondary logical unit (SLU)
support, so that CICS FEPI applications can simulate certain logical unit (LU)
types. FEPI uses VTAM program-to-program support to provide this function, and
to communicate between front-end and back-end applications.

Note: FEPI cannot send VTAM logon data.

FEPI provides simulation support for two families of terminals. The names SLU2
and SLU P are used to identify the two types of support:

SLU2 for the 3270 family of terminals, used in many CICS and IMS applications.
See the 3270 Data Stream Programmer’s Reference.

SLU P
for a family of programmable terminals, including the 4700, accessed
through an LU 0 protocol, for IMS applications. This protocol is defined in
IMS/VS Programming Guide for Remote SNA Systems (for IMS/VS Version 2)
or IMS/ESA Customization Guide (for IMS/ESA® Version 3 and later).

Data-stream-level and specialized-level commands can be used with both families
of terminals, but the high-level commands, which use formatted data, are only for
SLU2.

The mode of a conversation must be either SLU2 or SLU P; it cannot be mixed.
For SLU2 conversations, formatted data or data stream data can be used, but
cannot be mixed in the same conversation. The mode and data type are controlled
by the pool used, which is set up by the system programmer.

These terminals are supported only when they are used to communicate with CICS
or IMS systems.

FEPI Security
This section introduces FEPI security.

Signon security
Because FEPI is a terminal emulator, the back-end system “sees” the front-end as a
terminal rather than a system; it cannot differentiate between FEPI emulation and a
real device.

Thus, CICS bind, link, and attach-time security are not applicable to FEPI
connections. If security is enabled in the back-end system, in order for your FEPI

16 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

application to access protected resources the emulated terminal must be signed on
to the back-end. The alternative is that you do not use CICS security with
FEPI—that is, you make all the back-end transactions accessed by FEPI available to
the CICS default user. This option is clearly unacceptable; it means that you must
either run a security risk or deprive your FEPI applications of access to sensitive
data.

When signing on to a back-end system, FEPI applications can ask the external
security manager (ESM) to supply a password substitute, or PassTicket. Using
PassTickets to sign on means that FEPI applications do not need to store user
passwords (which is risky), or ask users to reenter them (which is irritating). For
information about implementing signon security, see “Signon security” on page
164.

Command security
You can restrict access to the FEPI system programming commands by defining
operator profiles to your ESM.

For details of how to do this, see “Command-level security” on page 30. All
application programming commands are generally available.

Problem determination, customization, and performance
The following functions are provided by FEPI.
v Debugging tools, trace, dump routines, and messages are available to help you

determine the source of an error. These areas are described in Chapter 12, “FEPI
problem determination,” on page 127.

v Two CICS global user exits are available for you to use with FEPI. They are
described in Front End Programming Interface exits.

v Data that flows to and from CICS FEPI applications can be journaled for audit
trails. For details, see “FEPI journaling” on page 85.

v You can use CICS monitoring and statistics data to help you tune FEPI
applications, and to control the resources that they use. For details, see “Using
CICS monitoring” on page 56.

Chapter 4. FEPI functions and services 17

18 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Part 2. FEPI installation and administration

This section is intended for system programmers and administrators responsible
for installing and configuring FEPI.

It contains the following topics:
v Chapter 5, “Planning for FEPI,” on page 21 lists the things you need to consider

when organizing your FEPI nodes, pools, and property sets.
v Chapter 6, “Getting started with FEPI,” on page 29 describes how to install FEPI.
v Chapter 7, “Configuring FEPI,” on page 33 describes the tasks required to

implement your planned FEPI system.
v Chapter 8, “FEPI operation,” on page 53 describes how FEPI operates.
v Chapter 9, “Operator control of FEPI,” on page 65 describes the CICS-supplied

transactions and VTAM commands that operators can use to control FEPI
resources.

v Chapter 10, “Customizing FEPI,” on page 81 describes how to use the FEPI
global user exits and journaling function.

v Chapter 11, “FEPI system programming reference,” on page 89 describes the
FEPI system programming commands that are used to control FEPI resources.

v Chapter 12, “FEPI problem determination,” on page 127 describes how to
identify the source of errors that affect your FEPI applications.

© Copyright IBM Corp. 1992, 2011 19

20 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 5. Planning for FEPI

This section is about planning your system and FEPI configuration.

To understand it, you need to be familiar with the basic FEPI concepts and
terminology described in Part 1, “FEPI concepts and facilities,” on page 1. You
must also be familiar with all aspects of CICS administration and operations; if
you plan to use IMS, you also need to be familiar with IMS administration and
operations.

The section contains the following topics:
v “Analysis and planning”
v “Organizing your pools and property sets” on page 24
v “Workload balancing in a sysplex” on page 26
v “Planning FEPI storage” on page 26.

Analysis and planning
When you are planning to implement FEPI, you must consider the configuration
requirements, how to organize your pools, their properties, and the connections.
1. You must consider the following:

v Details of the back-end applications and systems
v Names of nodes and targets
v Operator control requirements
v Journaling requirements
v Signon and signoff procedures
v Special event handling
v Pools required for control reasons
v Pools required for functional reasons
v Number of nodes
v Setup program organization.

2. Decide how to organize your pools, their properties, and the connections.

Back-end applications and systems
You need to know whether the back-end systems are CICS or IMS, the terminal
types they use, and the timing and volume of transactions expected.

Also, are there any restrictions on the use of the terminals? For example:
v Is a specific terminal required, or can any terminal be used?
v Is a specific LU or terminal type defined in the target application; for example, a

3278 model 3?

Names of nodes and targets
Decide on a naming convention for your nodes and targets.

© Copyright IBM Corp. 1992, 2011 21

Decide which VTAM node names are available for use by FEPI as simulated
terminals. Remember that FEPI nodes are VTAM APPL definitions, not logical
units (LUs). Do not use names starting with “DFH”.

The back-end system already has defined VTAM primary PLU names (applids)
which you must use. However, you can define your own local target names to
associate with these applids. This means that FEPI applications are not affected if
an applid is changed; you associate the local name with the new back-end target
name. Do not use names starting with “DFH”.

Operator control requirements
The CEMT INQUIRE and SET master terminal transactions can be used to view
and amend the state of FEPI resources.

CEMT DISCARD can be used to remove resources from FEPI. This is described in
Chapter 9, “Operator control of FEPI,” on page 65. If you decide you need extra
functions for operators, you will need to write appropriate programs.

Journaling requirements
Journaling is available if you need it.

Among the reasons for using FEPI journaling are:
v To create audit trails
v To monitor performance
v To control message security.

For further information, see “FEPI journaling” on page 85.

Signon and signoff procedures
You need to know if there are any specific requirements for signon and signoff to
back-end systems. Central control might be required, or applications could perform
signon and signoff individually.

Special event handling
In addition to signon and signoff, you must consider what special event handling
is required and whether it should be handled by central functions or by
applications individually.

The special event handling you must consider are as follows:
v The receipt of unsolicited data
v Unexpected events
v Beginning a session
v Ending a conversation or session
v Shutdown of the front-end CICS system.

If some sort of enforcement is required, or you want central provision for
convenience, commonality, or the upholding of conventions and standards, you
must supply a set of standard handlers. Otherwise, the application programs must
handle each event. If you need special back-end processing when CICS shuts
down, you need an end-session handler.

22 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Unexpected events (including errors in setup) are reported to a transient data (TD)
queue, so that a monitoring transaction can be triggered to handle them; they also
send a message to the FEPI message log CSZL. You must decide how to handle
these events, and which queues to use.

For more detailed information about the design and structure of applications,
including information about using the various event handlers, see Chapter 16,
“FEPI application design,” on page 157.

If you want central control over the range of FEPI commands that applications are
permitted to issue, you can use the XSZBRQ global user exit, which is described in
Front End Programming Interface exits.

Using pools for control reasons
You can use pools for a number of control purposes.

For example, you could define them so as to:
v Restrict users and applications to particular targets or nodes, or restrict access to

some targets to particular times of day.
v Force specific begin-session and end-session effects.
v Split resources among different types of back-end requests, according to (for

example) priority, or to the department issuing the request. By doing this, you
can ensure that there is always a set of connections to a target for time-sensitive
requests, while other connections handle long-running requests that are not
time-sensitive.

v Ration the use of connections, especially for long-running requests, so that each
set of users has access to only a limited number of connections.

v Ease signon considerations.

Using pools for functional reasons
Pools determine the data format and special event handlers used by your FEPI
applications. These attributes may be specified by the application programmer, or
they may be imposed by the system programmer for central control, especially of
signon and signoff.

If you need several types of special event handling, you might need to define your
own pool-specific transient data queues, as well as the default queues.

Number of nodes

The number of nodes required depends on:
v How the pools are structured
v How much storage is available
v How many concurrent sessions are required to a particular target.

The number of concurrent sessions to a particular target may depend on the
volumes of data to be transmitted and the speed of the network.

Although a node can have only one session with a particular target at a time, it
can communicate with several different targets concurrently, and several nodes can
communicate with the same target concurrently.

Chapter 5. Planning for FEPI 23

Setup program organization
You must decide how to organize your setup program; for example, your setup
program could consist of a single module, or a set of related modules.

You must also make the following decisions:
v Whether your programs should take replaceable parameters or fixed values. You

might use mainly fixed programs, with a flexible program for one-off changes.
v When programs are to be run - started from a second-phase PLTPI program,

under operator control, or at set times of the day.
v Where the definitions required by the setup program are to be obtained - from

panel entry, from a file, or by other means.

Organizing your pools and property sets
When you have done the analysis work described in the previous section, you can
decide how to organize your pools, their properties, and the connections between
nodes and targets.

Organizing pools
There are several ways of organizing your pools.

About this task
v If possible, restrict each pool to a single target, but specify as many nodes as you

believe you need to satisfy concurrent access to the target. The reasons for taking
this approach are:
– It avoids the need for the front-end application to specify a target.
– It makes it easier to avoid duplicate connection definitions.
– Because a connection is created for every node-target combination within a

pool, having large numbers of both nodes and targets within the same pool
may generate more resources than are required.

– The overhead associated with a pool is very small. Therefore there is no
reason not to define many pools.

– The expected concurrent usage of each target may be different. If you have
more than one target in the pool, it becomes difficult to estimate the number
of nodes required.

v You can define a pool containing only one node and one target. This lets a FEPI
application allocate a specific session, which is necessary if the target system
associates any special qualities with a particular terminal ID. You can use the
XSZBRQ global user exit to control access to the pool.

v You can define pools that use different nodes to reference the same target. By
making each pool available to a different group of users, you can eliminate
competition for resources. Alternatively, you could use each pool to support a
different set of properties, according to application requirements.

v If you plan to use the VTAM CLSDST(PASS) command, other considerations might
apply. See “Handling CLSDST(PASS)” on page 48.

Do not use names starting with “DFH” for pools.

Organizing property sets
Property sets allow you to define the properties of pools (such as the data format
and special functions they use) separately from the definition of the pool itself.

24 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

You can use a single property set to define any number of pools. You must define
as many property sets as you need to satisfy every unique pool requirement.
Because the overhead associated with a property set is very small, there is no
reason why you should not define a large number of them.

The properties are:

Device attributes
This specifies which family the simulated terminal belongs to, SLU2 or SLU P.
For SLU2, it also determines the presentation size of the display (24 x 80, 32 x
80, and so on), and whether it supports extended attributes such as color.

Many back-end applications can be run with any terminal type, so you can use
the default device type (SLU2, 3278 model 2). But if you have applications that
demand particular terminal types, you need to define pools with the
appropriate device types.

Data handling
This specifies which command level to use (high-level with formatted data, or
data stream), how much data can be handled, and how contention is to be
handled.

High-level is simpler to use and suits many front-end applications; applications
that require sophisticated functions or use SLU P, and those performing a
simple pass-through, need the more complex data-stream-level. In most cases
the default data size of 4096 is adequate; increase it only if you know there are
large amounts of data to send and receive in a single command. Set contention
handling so that the front end wins—as for a real terminal—unless you have
some particular reason for not doing so.

Session management
This specifies whether begin-session and end-session are to be handled by
special transactions, and whether initial inbound data is expected. For SLU P,
it also includes whether message resynchronization (“set and test sequence
number” (STSN)) is to be handled.

The use of event handlers was introduced on page “Signon and signoff
procedures” on page 22; it is generally preferable to use specially written
transactions for session management, rather than to leave it to be handled
individually by applications.

If a back-end system sends initial data (a “good morning” message) you must
specify this as a property of the pool, so that FEPI waits for the data to arrive
and ensures that the front-end application receives it; otherwise the results will
be unpredictable. For SLU2, IMS always sends initial data; CICS might or
might not do so, depending on your system definition.

FEPI does all the necessary STSN handling automatically, but you can specify a
transaction to handle it yourself.

Unexpected events
This specifies how unsolicited data and other unexpected events (including
setup errors) are to be handled.

General considerations of the need for transactions and queues have been
discussed earlier in this section. If you choose not to handle unsolicited data in
your own transaction, you can tell FEPI how to handle it for you—positively
or negatively; if the back-end system is IMS, you must specify that FEPI
should respond positively. All unexpected events are logged in the FEPI
message log (CSZL), even if you specify no unexpected event queue.

Chapter 5. Planning for FEPI 25

Journaling
This specifies what sort of data journaling is required, and which journal to
use.

Do not use names starting with “DFH” for property sets.

Workload balancing in a sysplex
In an MVS sysplex, you can create a CICSplex consisting of sets of
functionally-equivalent CICS terminal-owning regions (TORs) and
application-owning regions (AORs). If the FEPI back-end system is a TOR in such
a CICSplex, you can use the VTAM generic resource function to perform workload
balancing across the available TORs.

A VTAM application program such as CICS can be known to VTAM by a generic
resource name, as well as by the specific network name defined on its VTAM
APPL definition statement. A number of CICS regions can use the same generic
resource name.

A FEPI application, wishing to start a session with a CICSplex that has several
terminal-owning regions, names a target that you have defined as the generic
resource name of the TORs. Using the generic resource name, VTAM is able to
select one of the CICS TORs to be the target for that session. For this mechanism to
operate, the TORs must all register to VTAM under the same generic resource
name. VTAM is able to perform dynamic workload balancing of the terminal
sessions across the available terminal-owning regions.

For information about defining FEPI targets as VTAM generic resource names, see
the APPLLIST option of the FEPI INSTALL TARGETLIST system programming
command. For further information about VTAM generic resources, see the CICS
Intercommunication Guide.

Planning FEPI storage
FEPI does not require any additional MVS storage beyond that recommended for
basic CICS.

As for dynamic storage, the storage used by FEPI is allocated exclusively from
CDSA and ECDSA; CDSA usage is only that required to support VTAM
processing. The following information allows you to estimate the storage
requirements of a particular FEPI configuration.

Table 1. Dynamic storage requirements (in bytes)

Item ECDSA CDSA

Basic 80K

For each node 288 180

For each node that is currently
available for communication

192

For each target 236

For each pool 272 + 64 x (number of nodes in pool) +
64 x (number of targets in pool)

For each property set 176

26 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Table 1. Dynamic storage requirements (in bytes) (continued)

Item ECDSA CDSA

For each connection (note 1) 432 if using data stream data 688 if
using formatted data

For each connection that is currently
available for communication

384 + additional value from Table 2 if
using formatted data

For each current conversation 128

For each command in progress 2.5K + size of user data (Note 2)

Note:

1. The number of connections is (number of nodes in pool) x (number of targets in pool)
for each pool.

2. This is the data that is to be sent and received, or used for defining resources. If global
user exits are used, twice the data size is needed; similarly if journaling is used.

For each connection that is currently available for communication and that uses
formatted data, additional ECDSA storage is required; the amount depends on the
device type and capabilities defined, as shown in Table 2.

Table 2. Connection storage requirements (in bytes) by device type and function

Device type Basic Additional
for color
support

Additional for
extended data
stream
support

Maximum

327x model 2 3840 1920 5760 11520

327x model 3 5120 2560 7680 15360

327x model 4 6880 3440 10320 20640

327x model 5 7128 3564 10692 21384

You should add some contingency (say 10%) to your final estimate.

Chapter 5. Planning for FEPI 27

28 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 6. Getting started with FEPI

FEPI is installed automatically when you install CICS. However, to make it
operative you need to install some additional resources.

The installation process
The FEPI installation process has a number of steps.

These steps are as follows:
1. Updating CICS resource definitions
2. Installing FEPI resource definitions
3. Starting CICS.

A note about loading FEPI modules into the LPA
Any of the FEPI modules can be loaded in the MVS Link Pack Area (LPA).

However, as with CICS modules in general, it is not recommended that you do so.
For information about installing modules in the LPA, see the CICS Transaction
Server for z/OS Installation Guide.

Updating CICS definitions
The RDO group DFHFEPI, which is on the product tape, contains resource
definitions for the FEPI programs and the FEPI transaction CSZI. FEPI programs
are prefixed with DFHSZ.

DFHFEPI is included in the default startup group list, DFHLIST.

Use the CEDA transaction:
v To define your FEPI application programs
v If you have installed FEPI modules in the LPA, modify the definitions of the

modules in the CICS system definition file (the CSD), so that they specify
USELPACOPY(YES).

Transient data queues
Sample definitions for the transient data (TD) queues required by FEPI are
supplied in group DFHDCTG. You can use the sample definitions, or create your
own, together with any extra queues that you need.

The required queues are:

CSZL The FEPI message log. You can define CSZL as an intrapartition,
extrapartition, or indirect queue. Note that CSZL must be defined as
non-recoverable.

It is recommended that you define CSZL as an indirect queue, pointing to
CSSL.

CSZX The queue for information about unexpected events (including setup
errors) that do not relate to specific pools. You can define CSZX as an
intrapartition, extrapartition, or indirect queue. Note, however, that it must
be defined as non-recoverable.

© Copyright IBM Corp. 1992, 2011 29

It is recommended that you define CSZX as an intrapartition queue, with a
trigger level of 1, so that each event is processed immediately it is
reported. (You must also, of course, write and install the event-handling
transaction that is to be triggered.)

Any pool-specific TD queues that you require
Such queues receive information about events that affect specific pools.
They can be defined as intrapartition, extrapartition, or indirect queues.
Note, however, that they must be defined as non-recoverable.

It is recommended that you define pool-specific queues as intrapartition
queues with trigger levels of 1, so that each event is processed immediately
it is reported.

For information about defining transient data queues, see the CICS Resource
Definition Guide.

System initialization parameter, FEPI=YES|NO
Code FEPI=YES, to specify that FEPI is available.

(The default is FEPI=NO.) For information about setting system initialization
parameters, see ../com.ibm.cics.ts.doc/dfha2/parameters/dfha2_fepi.dita, in the
CICS System Definition Guide.

Command-level security
If your installation uses CICS command-level security, you can restrict access to the
EXEC CICS FEPI system programming commands (and to the equivalent
commands that you can issue with the CEMT master terminal transaction) by
defining access authorizations to your external security manager (ESM).

The commands you can protect in this way are those listed in Chapter 11, “FEPI
system programming reference,” on page 89 and in the CEMT section of Chapter 9,
“Operator control of FEPI,” on page 65. You cannot restrict access to the FEPI
application programming commands (as listed in Part 4, “FEPI application
programming reference,” on page 175).

To protect the FEPI system programming commands, use the resource identifier
‘FEPIRESOURCE’ when defining resource profiles to the ESM. Note that, if you
use command security, you must ensure that authorized users of CEMT are also
authorized to use the FEPI commands.

For RACF® users, details of how to define resource profiles to the ESM are in the
z/OS Security Server RACF Security Administrator's Guide. For information about
using RACF with CICS, see ../com.ibm.cics.ts.doc/dfht5/topics/
dfht5_overview.dita, in the CICS RACF Security Guide. Users of other security
managers must refer to the documentation for their own product.

Installing FEPI resource definitions
Ensure that the RDO group DFHFEPI is in your startup group list. (DFHFEPI is in
the DFHLIST startup group list, so this should have been done automatically when
you installed CICS.)

About this task

Starting CICS
Start your CICS region.

30 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

This is described in ../com.ibm.cics.ts.doc/dfha2/topics/
dfha2_cics_startup.dita#dfha24z, in the CICS System Definition Guide.

Chapter 6. Getting started with FEPI 31

32 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 7. Configuring FEPI

When you have completed the planning work to understand how to set up FEPI in
your system, you can carry out the configuration tasks.

Before you begin

To configure FEPI, you need to be familiar with all aspects of CICS administration
(such as system definition, customization, resource definition, and operations) and
the programming interface to CICS. You should also be familiar with VTAM and, if
you are accessing IMS back-end systems, with IMS administration.

About this task

The stage needs to be set just so.

Procedure
1. Define your FEPI applications to CICS
2. Define nodes to VTAM
3. Define simulated terminals to the back-end systems
4. Write the following for FEPI itself:

a. A setup program, to install your FEPI resources.
b. A monitoring program, to handle unexpected events.
c. Optional: Global user exit programs, common functions and transactions for

operator control and administration.

What to do next

This section contains the following topics:
v “Configuring CICS”
v “Configuring VTAM” on page 34
v “Configuring the back-end systems” on page 37
v “The configuration programs you should write” on page 38.
Related information

Introduction to system programming commands
CICS API commands

Configuring CICS

Before you begin

Chapter 6, “Getting started with FEPI,” on page 29 covers everything that FEPI
itself requires: the RDO group DFHFEPI in the startup group list; definitions of the
transient data queues CSZL and CSZX; and any required security access controls.

About this task

Now you have to define your FEPI applications to CICS in the usual way. This
includes the setup programs, any common functions, and any additional transient

© Copyright IBM Corp. 1992, 2011 33

data queues that you need for handling pool-specific events. Note that, in an
intercommunication environment, FEPI itself must be run in the
application-owning region (AOR) and all transactions that FEPI may start must run
locally. This is because FEPI commands cannot be function shipped.

Procedure
1. Define transactions that are to be started by FEPI (the event handlers and

pseudoconversational access programs) as CICS started tasks, with
SPURGE=NO and TPURGE=NO to prevent them from being accidentally
canceled by CICS

2. Define any additional transient data queues. See “Transient data queues” on
page 29 for details of the queues.

3. Before starting CICS, you should ensure that your system has enough storage
available to support your FEPI configuration: for details see “Planning FEPI
storage” on page 26.

4. If you are using a setup transaction to install your FEPI nodes, targets, and
pools that is started by a program list table (PLT) program, you need to include
your PLT program in the second part of the program list table post
initialization (PLTPI) list. This process is described in “Running setup
programs” on page 41. If you use this method, you need to include your PLT
program in the second part of the program list table post initialization (PLTPI)
list.

What to do next

For information about coding entries in the PLTPI list, see the CICS Resource
Definition Guide.
Related concepts

PLT — program list table

Configuring VTAM
For FEPI to communicate with the network, some information must be defined to
VTAM.

Procedure
1. Each FEPI node (simulated secondary LU terminal) must have a VTAM

application minor node definition. The name of this minor node must be the
same as the node name specified on the FEPI INSTALL NODELIST command. For
example, the FEPI node called ‘FEPI0001’ would require the following
application minor node definition in VTAM:
DG4FEPI1 APPL ACBNAME=FEPI0001

2. If your network uses a naming convention to manage network resources, you
can allow a network-independent name to be used by specifying it on the
ACBNAME keyword of the VTAM APPL statement. If this is not the case, you
can simplify the definition of the VTAM application minor node by omitting
the ACBNAME keyword (which means that the margin-name, DG4FEPI1 in the
example, must be the same as the FEPI node name).
FEPI does not impose any additional restrictions on the naming of nodes, other
than that the names should not begin with “DFH”; apart from this, any values
acceptable to VTAM are acceptable to FEPI.

34 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

3. If you require password protection of the minor nodes, you can use the PRTCT
keyword of the VTAM APPL statement to specify a password of 1–8 characters.
The password must then be specified on the corresponding FEPI INSTALL
NODELIST command.

4. If you are defining multiple FEPI nodes, you can place them all in a single
member (also known as a VTAM application major node) or in several
members. You can also add them to an existing VTAM application major node.
How you choose to organize the VTAM definitions can depend on how your
installation manages its network resources, or how you plan to manage the
FEPI configuration. VTAM application minor node definition statements are
stored collectively as one or more members of an MVS partitioned data set
(usually SYS1.VTAMLST), accessed by VTAM via the VTAMLST data-definition
statement in the VTAM startup JCL.

What to do next

For general information about configuring VTAM, see the VTAM Network
Implementation Guide and the VTAM Resource Definition Reference.

Availability of network resources
For FEPI to communicate with the network using a node, both the application
minor node and the defining major node must be active, and the minor node must
be in a connectable condition.

If FEPI is initialized before VTAM, and is instructed to acquire this node, it retries
the VTAM OPEN request several times. Similarly, if a target application is
unavailable, FEPI makes another attempt at session initiation. After this, the
operator will need to intervene to establish connectivity.

Selection of FEPI session parameters
When FEPI establishes a session with a back-end system, it searches the VTAM
LOGON mode (logmode) table for an entry that corresponds to the simulated
device type specified on the FEPI INSTALL PROPERTYSET command used to
define the pool to which the node-target connection belongs.

If it finds such an entry, it uses it to set the parameters for the session. Suitable
mode table entries for FEPI are in the LOGON mode table ISTINCLM. Table 3
shows how entries in ISTINCLM correspond to FEPI device types.

Table 3. Relation of FEPI device-types to ISTINCLM mode table entries

DEVICE CVDA on
FEPI INSTALL
PROPERTYSET

Mode table entry in
ISTINCLM

Session parameters

T3278M2 D4A32782 LU2 3278 model 2

T3278M3 D4A32783 LU2 3278 model 3

T3278M4 D4A32784 LU2 3278 model 4

T3278M5 D4A32785 LU2 3278 model 5

T3279M2 SNX32702 LU2 3279 model 2

T3279M3 SNX32703 LU2 3279 model 3

T3279M4 SNX32704 LU2 3279 model 4

T3279M5 SNX32705 LU2 3279 model 5

TPS55M2 SNX32702 LU2 PS/55, 24 lines

Chapter 7. Configuring FEPI 35

Table 3. Relation of FEPI device-types to ISTINCLM mode table entries (continued)

DEVICE CVDA on
FEPI INSTALL
PROPERTYSET

Mode table entry in
ISTINCLM

Session parameters

TPS55M3 SNX32703 LU2 PS/55, 32 lines

TPS55M4 SNX32703 LU2 PS/55, 43 lines

LUP IBM3600 Secondary LU P (IMS protocol LU 0)

Note: The mode entries are fixed by FEPI; you cannot use any other entries.

If ISTINCLM is defined as your default LOGON mode table, no additional definitions are
required, and FEPI sessions use the characteristics that these entries specify. If you have
defined a different default table, which does not contain the supplied entries, or if
you want to associate a different set of characteristics with the names listed above
(for example, class-of-service or pacing specifications), then you must provide the
required entries in a customized mode table. This must be associated with the
node via the MODETAB keyword of the VTAM APPL statement used to define the
node to VTAM. For example:
DG4FEPI1 APPL ACBNAME=FEPI0001,MODETAB=mode-table-name

Note:

1. If you choose to define your own mode table, it needs to contain only those
entries that differ from the set supplied in the default mode table (for example,
ISTINCLM). If VTAM cannot find a given entry in the node-specific mode
table, it automatically searches the system default table for an entry of the same
name.

2. FEPI establishes the presentation space size of a terminal, based on the session
parameters received in response to the session request, not on any fixed
dimension implied by the device type specified for the pool (although the
device type does establish a default value when a default BIND is received).

3. An externally initiated session (one started by the primary LU or by the
operator through the VARY LOGON command) can specify any entry name in
the mode table. If you expect to make use of external session initiation, it is
advisable to specify the DLOGMOD keyword on the APPL statement used to
define the node in question. This keyword identifies the mode table entry to be
used in those cases where the session initiation request did not specify session
parameters. It can be specified regardless of whether the MODETAB keyword
is used. For example:
DG4FEPI1 APPL ACBNAME=FEPI0001,

MODETAB=mode-table-name,DLOGMOD=mode-table-entry-name

4. If you define your own mode entries, ensure that all the parameters in an entry
are appropriate. These logmode entries should be explicitly named in the APPL
statements as described in note 3.

Pacing of FEPI sessions
The pacing values used for FEPI sessions should be consistent with whatever
installation standards are in effect for other LU2 and SLU P sessions in the
network.

36 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Configuring the back-end systems
The only configuration that you must perform for the back-end systems is to
provide and manage simulated terminals (LUs) for FEPI to use. These terminals
are defined to the back-end CICS or IMS system just like real terminals. They can
be explicitly defined or autoinstalled as required.

About this task

The simulated terminals do not have to be defined to VTAM in the back-end
system, where they appear as real terminals on that system. VTAM uses the
various network definitions to determine how and where to route data; it can be
routed locally, cross-domain, or cross-network. The LU name corresponds to the
front-end node name. Similarly, the VTAM applid of the back-end system
corresponds to the applid in the FEPI target definition. The diagram of the sample
configuration in Figure 2 on page 43 illustrates these relationships.

If your back-end systems use the extended recovery facility (XRF), you must use
their generic APPLIDs, rather than specific ones, in your FEPI target definitions.
See “Using FEPI with XRF” on page 58.

Procedure
v If you are configuring CICS as the back-end system, the following terminal

definitions (TYPETERMs) are acceptable:
– DFHLU2E2
– DFHLU2E3
– DFHLU2E4
– DFHLU2E5
– DFHLU2M2
– DFHLU2M3
– DFHLU2M4
– DFHLU2M5

These definitions match the VTAM mode table entries shown in Table 3 on page
35. You must create your own TYPETERMs for 3279 model 5 and PS/55 devices,
if required, because no such definitions are supplied by CICS. For information
about defining terminals to CICS, see the CICS Resource Definition Guide.

v If you are configuring IMS as the back-end system, use the following settings on
the TYPE or TERMINAL system definition macros:
1. Required: NAME must match the NODE name specified to and used by FEPI
2. Required: MODETBL must specify the correct LOGMODE.

The following nondefault settings are recommended. (FEPI will support the
default settings as well.)
1. Specify OPTIONS=OPTACK for more efficient communication.
2. Specify OPTIONS=FORCRESP so transactions are run in response mode. If

you let this default, you might get nonresponse mode regardless of how the
transactions are defined.

3. Specify OPTIONS=NORELRQ to make IMS ignore external requests for the
node.

4. Specify OPTIONS=BID to indicate that the VTAM BID command should
always precede output messages that occur while between brackets.

Chapter 7. Configuring FEPI 37

5. Specify OUTBUF=nnn to set a bigger output buffer than the default of 256
bytes.

The following example defines some IMS terminals for use by FEPI. You might
need to customize it for use in your own IMS environment.
TYPE UNITYPE=SLUTYPEP,MODETBL=IBM3600, x
OPTIONS=(OPTACK,FORCRESP,NORELRQ,BID),OUTBUF=512
TERMINAL NAME=IMSLUP01
NAME IMSLUP01
TERMINAL NAME=IMSLUP02
NAME IMSLUP02
TERMINAL NAME=IMSLUP03
NAME IMSLUP03
TERMINAL NAME=IMSLUP04
NAME IMSLUP04

The configuration programs you should write
You must write a setup program to define your FEPI nodes, targets, property sets,
and pools.

You can also choose to write:
v A monitoring program to handle unexpected events (including setup errors)
v Any common functions not provided by individual FEPI applications
v One or more global user exit programs
v Some specialized operator transactions, to simplify the control of FEPI resources.

A number of samples have been provided to give you an example of the types of
programs that you can write. See Appendix A, “FEPI sample programs,” on page
237 for details.

Writing configuration programs
FEPI programs are CICS applications, and so all aspects of CICS programming
apply.

Before you begin

You should familiarize yourself with the guidance about writing CICS application
programs. See the CICS Transaction Server for z/OS Application Programming
Guide. Particularly relevant are the sections about designing efficient applications
and dealing with exception conditions in the CICS Application Programming Guide.

About this task

To write a configuration program, use the FEPI system programming commands.
They are an extension of the EXEC CICS commands and have similar names and
similar functions. The FEPI commands also have similar keywords, but they are
distinguished by having “FEPI” as a prefix.

Procedure
1. You can use the following system programming commands in your

configuration program:

Definition:

EXEC CICS FEPI INSTALL
Define communication resources

38 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

EXEC CICS FEPI ADD
Add resources to a pool

EXEC CICS FEPI DELETE
Remove targets or nodes from a pool

EXEC CICS FEPI DISCARD
Remove communication resources completely from FEPI.

Operations:

EXEC CICS FEPI INQUIRE
Query FEPI status and resources

EXEC CICS FEPI SET
Control FEPI resources.

2. When translating your programs, you must specify the FEPI option, which
instructs the translator to process FEPI commands. You do not need the SP
option.

3. Select whether your FEPI configuration programs are AMODE(24) or
AMODE(31). The configuration programs can issue FEPI commands in either
24- or 31-bit addressing mode, and reside above or below the 16MB line.

4. Consider how your configuration program should handle exception conditions.
Related information

CICS API commands

Exception conditions
As with all CICS commands, FEPI commands might produce exception conditions
that you can check using the RESP option, or capture using HANDLE
CONDITION. Most FEPI command errors return INVREQ. The particular error in
each case is uniquely identified by the RESP2 value.

All the FEPI exception conditions and RESP2 values are listed in Chapter 11, “FEPI
system programming reference,” on page 89. There are copy books that contain
declarations for the RESP2 values:
v DFHSZAPA for Assembler language
v DFHSZAPO for COBOL
v DFHSZAPP for PL/I
v DFHSZAPC for C.

For the system programming commands, errors are reported as unexpected events
to the CSZX or other transient data queue, and to the FEPI message log CSZL, as
well as by exception conditions on the command.

If there is an error, the command does nothing, and output values are not changed.
Some commands operate on a list of resources; an error in one resource does not
prevent the command from operating on the other resources in the list.

You can use EDF and CECI to debug FEPI programs. Because FEPI commands can
be quite long, you will probably find the NAME field of CECI useful.

All resource names used by FEPI are a fixed length of 8 characters; they must be
padded with blanks if necessary. For commands that use lists, make sure that the
list field is a multiple of 8 characters long and that the number option is set
correctly; neither the translator nor CECI checks these and unpredictable results
could occur if they are wrong.

Chapter 7. Configuring FEPI 39

Writing setup programs
There are many considerations in designing setup programs, and so there is no
single recommended way of writing them. However, there are certain functions
that your setup program must perform.

About this task

On the distribution tape, the following sample setup programs are provided:
v An Assembler language sample setup program with filename DFH0AZXS
v A COBOL sample setup program with filename DFH0VZXS
v A C sample setup program with filename DFH0CZXS.

These programs install resources to make FEPI function with the other sample
programs. They show you one way of writing setup programs.

Your setup programs must:

Procedure
1. Install all node names that are available for FEPI.
2. Install all targets that FEPI is permitted to access.
3. Install properties. See “Organizing property sets” on page 24 for guidance on

what choices to make. In defining the properties of connections in pools, the
following options must be set:

Device attributes
DEVICE

Data handling
FORMAT, MAXFLENGTH, CONTENTION

Session management
BEGINSESSION, ENDSESSION, INITIALDATA, STSN

Unexpected events
EXCEPTIONQ, UNSOLDATA, UNSOLDATACK

Journaling
MSGJRNL, FJOURNALNUM, FJOURNALNAME

4. Install pools.
5. Associate nodes and targets with the pools to define connections.

What to do next

In addition to a setup program, you may need a corresponding program to deal
with deleting and discarding resources.

By default, FEPI resources are available for use as soon as they are installed or
associated with a pool. For control, performance, or other reasons, you might want
to override this; if so, you must provide a further program (or operations
procedure) to bring the resources into service when you require them.

Many of the FEPI commands used by your setup program can use lists; using lists
helps to improve performance. If some items in a list fail, errors (both
programming errors and resource problems) are reported to your monitoring
program, not to the setup program. If you want to track the errors in the setup
program itself, without using the monitoring program, restrict your lists to a single

40 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

item. Errors are then reported on the command itself.

Running setup programs
The setup program is typically initiated by a program list table (PLT) program.

About this task

Using this method, the setup program is run automatically at every CICS startup,
including an XRF takeover. Follow this procedure:

Procedure
1. Write your setup program.
2. Define it to CICS, using RDO, and associate it with a transaction. You can

define your setup program statically, or allow it to be installed automatically
(autoinstalled) when it is invoked. For details of the CICS autoinstall facility for
programs, see the CICS Resource Definition Guide.

3. Write a PLT program containing the command:
EXEC CICS START TRANSID(tranid) INTERVAL(1)

where tranid is the ID of your setup transaction. (For programming
information about writing PLT programs, see the CICS Customization Guide.)

4. Define your PLT program to CICS, and include it in the second part of the
program list table post initialization (PLTPI) list. For information about coding
entries in the PLTPI list, see the CICS Resource Definition Guide.)

What to do next

There may be a good reason for you to decide not to use the PLT to start the setup
transaction. For example, you may want to have several, time-sensitive, setup
programs, each having a corresponding discard program. If you decide not to use
the PLT, you must arrange to start the setup transactions manually.

You should restrict access to the setup programs, because they are of a sensitive
nature.
Related concepts

PLT — program list table

Varying the resources installed by the setup program
Unless your setup program contains some conditional logic, you always get the
same set of FEPI resources installed. This may be exactly what you require, but if
not, here are a few techniques that might prove useful.

Checking startup type

Your setup program can determine how the CICS system started by issuing an
EXEC CICS INQUIRE SYSTEM STARTUP command. It could use this to install different
sets of FEPI resources for warm and cold starts.

Recording the status of resources

If you install all your FEPI resources at CICS startup, and then alter their
accessibility, consider writing a non-terminal transaction that runs frequently and
uses the FEPI INQUIRE commands to determine the status of each FEPI resource.

Chapter 7. Configuring FEPI 41

Write these to a recoverable temporary storage file. (You could, for example, use an
XSZARQ global user exit program to log changes to FEPI resources.) At restart
time, your setup program can read the file to determine the required access
settings.

Using timed actions

You could take advantage of CICS automatic transaction initiation (ATI) at
specified times to control FEPI resources. If you want to terminate FEPI access to
another system at a specific time each day, schedule a transaction to run at the
required time. When this transaction runs it can either make the required FEPI
resources unavailable for access, or discard them. Because FEPI resources remain
available for use by current tasks in this circumstance, this has no effect on existing
FEPI users.

You could use timed initiation in a similar way to make FEPI resources available.

Using event handlers

Another way of controlling FEPI resources is to use the begin-session and
end-session event handlers. (See “Other functions” on page 50.)

These handlers are invoked when a conversation starts and ends. Although they
are primarily designed to handle signon and signoff to the back-end systems, you
can take advantage of the fact that all FEPI functions are available to them. So you
can use them to control access to back-end systems by either installing or
discarding FEPI resources.

For example, suppose you want to ensure that no FEPI application is waiting for a
connection to a back-end system. In the handlers, issue FEPI INQUIRE POOL
commands, and look at the WAITCONVNUM option, which returns the number of FEPI
applications waiting for a connection. If this option exceeds a certain trigger value,
issue FEPI commands to increase the number of connections (that is, add nodes,
define new pools, and so on).

This technique can be extended to provide tuning of FEPI access to back-end
systems.

An example FEPI configuration

An example configuration is given in Table 4 on page 43. Next, the target lists and
node lists used in the example are given. Then there are the definitions used to
achieve this configuration. Figure 2 on page 43 is a diagrammatic representation of
the configuration.

42 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Note that this is not the configuration the sample programs use; it illustrates as
many aspects of configuration as possible.

Table 4. Resources used in the example FEPI configuration

Pool name GRPB GRPC GRPD GRPE GRPF

Property set SLUP SLU2M3I SLU2M3I SLU2M2I SLU2M2C

Target names IMSB IMSA IMSB IMSA IMSA IMSB CICSA

N10

N11

N12

N20

N10

N11

N12

N20

N30

N10

N11

N12

N20

N30

VTAM
APPLID

C1

VTAM
APPLID

I1

VTAM
APPLID

I2

Back endLUs

N10

N11

N12

N20

N30

FEPI definitions

TARGET (CICSA)
APPLID(C1)

TARGET (IMSA)
APPLID(I1)

TARGET (IMSB)
APPLID(I2)

VTAM
application
minor nodes

ACBNAME
=FEPI
node name

Front end

GRPF

GRPF

GRPF

GRPF

GRPD

GRPD

GRPD

GRPE

GRPC

GRPB
GRPB

GRPB

GRPE

GRPC

Connections

CICS System
with FEPI

CICS System

IMS System

IMS System

connections in pool GRPF
connections in pool GRPE
connections in pool GRPD
connections in pool GRPC
connections in pool GRPB

Figure 2. The example FEPI configuration - a diagrammatic representation

Chapter 7. Configuring FEPI 43

Table 4. Resources used in the example FEPI configuration (continued)

Node names N10 N11
N12

N30 N10 N11
N12

N20 N10 N11
N12 N20

Device type LUP T3278M3 T3278M3 T3278M2 T3278M2

Logmode name IBM3600 D4A32783 D4A32783 D4A32782 D4A32782

Exceptional events
queue name

IEXEPTP IEXEPT2 IEXEPT2 IEXEPT2 CEXEPT2

Unsolicited-data
transaction name or
response

IUP IU2 IU2 IU2 Negative

Begin-session
transaction name

ISIP ISI2 ISI2 ISI2 CSI2

End-session transaction
name

none IXI2 IXI2 IXI2 CXI2

STSN transaction name ISTP n/a n/a n/a n/a

Initial inbound data No Yes Yes Yes Yes

Sample lists
Here are the target lists and node lists used in the sample configuration, padded to
eight bytes per item.

TLIST ’CICSA IMSA IMSB ’

TLISTA
’IMSA ’

TLISTB
’CICSA ’

TLISTC
’IMSA IMSB ’

TLISTD
’IMSB ’

NLIST
’N10 N11 N12 N20 N30 ’

NLISTA
’N10 N11 N12 ’

NLISTB
’N20 ’

NLISTC
’N30 ’

NLISTD
’N10 N11 N12 N20 ’

The following is the list of VTAM application names of the back-end CICS and
IMS systems with which FEPI applications will communicate.

PLIST ’C1 I1 I2 ’

Sample definitions
The following definitions illustrate the various possibilities when defining FEPI
resources.

44 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Define the back-end subsystems you want FEPI to access:

This defines the logical names (targets) that FEPI uses to refer to back-end systems
(in this case CICSA, IMSA, and IMSB as given in TLIST), and relates them to their
VTAM names (C1, I1, and I2 as given in PLIST).
EXEC CICS FEPI INSTALL TARGETLIST(TLIST) TARGETNUM(3)

APPLLIST(PLIST)

Define the VTAM minor nodes available to FEPI:

The names are N10, N11, N12, N20, and N30, as given in NLIST.
EXEC CICS FEPI INSTALL NODELIST(NLIST) NODENUM(5)

Define properties:

The properties define the characteristics of the connections.

SLU P connections
EXEC CICS FEPI INSTALL PROPERTYSET(SLUP)

LUP /* Device type (SLU P) */
BEGINSESSION(ISIP) /* Begin session handler */
STSN(ISTP) /* STSN transaction */
EXCEPTIONQ(IEXEPTP) /* Exception report TD queue */
UNSOLDATA(IUP) /* Unsolicited-data transaction */
NOTINBOUND /* No "good morning" message */

SLU2 24 x 80 connections to IMS
EXEC CICS FEPI INSTALL PROPERTYSET(SLU2M2I)

T3278M2 /* Device type (3278 model 2, 24 x 80) */
BEGINSESSION(ISI2) /* Begin session handler */
EXCEPTIONQ(IEXEPT2) /* Exception report TD queue */
UNSOLDATA(IU2) /* Unsolicited-data transaction */
INBOUND /* Initial data */
ENDSESSION(IXI2) /* End session handler */

SLU2 32 x 80 connections to IMS
EXEC CICS FEPI INSTALL PROPERTYSET(SLU2M3I)

T3278M3 /* Device type (3278 model 3, 32 x 80) */
BEGINSESSION(ISI2) /* Begin session handler */
EXCEPTIONQ(IEXEPT2) /* Exception report TD queue */
UNSOLDATA(IU2) /* Unsolicited-data transaction */
INBOUND /* Initial data */
ENDSESSION(IXI2) /* End session handler */

SLU2 24 x 80 connections to CICS
EXEC CICS FEPI INSTALL PROPERTYSET(SLU2M2C)

T3278M2 /* Device type (3278 model 2, 24 x 80) */
BEGINSESSION(CSI2) /* Begin session handler */
EXCEPTIONQ(CEXEPT2) /* Exception report TD queue */
NEGATIVE /* Response to unsolicited data */
INBOUND /* "Good morning" message */
ENDSESSION(CXI2) /* End session handler */

Define the pools of connections:

The pools define connections between targets and nodes; they specify which nodes
can be used to access which target, and what properties the connection has.
EXEC CICS FEPI INSTALL POOL(GRPB) PROPERTYSET(SLUP)

TARGETLIST(TLISTD) TARGETNUM(1)
NODELIST(NLISTA) NODENUM(3)

Chapter 7. Configuring FEPI 45

EXEC CICS FEPI INSTALL POOL(GRPC) PROPERTYSET(SLU2M3I)
TARGETLIST(TLISTC) TARGETNUM(2)
NODELIST(NLISTC) NODENUM(1)

EXEC CICS FEPI INSTALL POOL(GRPD) PROPERTYSET(SLU2M3I)
TARGETLIST(TLISTA) TARGETNUM(1)
NODELIST(NLISTA) NODENUM(3)

EXEC CICS FEPI INSTALL POOL(GRPE) PROPERTYSET(SLU2M2I)
TARGETLIST(TLISTC) TARGETNUM(2)
NODELIST(NLISTB) NODENUM(1)

EXEC CICS FEPI INSTALL POOL(GRPF) PROPERTYSET(SLU2M2C)
TARGETLIST(TLISTB) TARGETNUM(1)
NODELIST(NLISTD) NODENUM(4)

Writing monitoring programs
You must write a monitoring program to handle unexpected events that are
reported by FEPI and errors returned by system programming commands.

FEPI reports these events by writing a record to a transient data (TD) queue. You
can define pool-specific TD queues for FEPI, where information about events that
relate to specific pools is reported. (There is also a common FEPI TD queue, CSZX,
where events that do not relate to specific pools are reported.) Note that, if a
pool-specific event occurs, and you have not defined a corresponding queue,
information about the event is lost. Also, FEPI TD queues must be defined as
NONRECOVERABLE; if a queue is ‘recoverable’, FEPI does not write to it, and
discards any information about unexpected events.

Typically, you would arrange for the monitoring program to be triggered whenever
an item is placed in a TD queue. (Define the queue with a trigger level of 1.) A
single monitoring program can service several queues, by using EXEC CICS
ASSIGN QNAME to check which queue triggered it. According to the nature of the
event, the monitoring program might write a message, log the event, or embark on
a full conversation.

For example, using this method, whenever a session is lost, the monitoring
program is invoked. The TD queue data provides information about what
happened. Your monitoring program can obtain this in the usual way with EXEC
CICS READQ TD. The following copy books describe the structure of the data:
v DFHSZAPA for Assembler language
v DFHSZAPO for COBOL
v DFHSZAPP for PL/I
v DFHSZAPC for C.

Your program may then choose to reestablish the lost session, to reinitialize, and so
on. It may also set indicators for the application programs if contact with a target
has been lost altogether.

Monitoring programs are written using the techniques and commands discussed in
Part 3, “FEPI application programming,” on page 135. See also the overview of the
sample monitoring program in “Monitor and unsolicited data-handler” on page
243.

Handling unexpected events
This section suggests some actions your monitoring program could take after
various types of unexpected event.

46 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

The type of event is indicated by the EVENTTYPE area in the TD queue record. In
most cases, the EVENTVALUE area gives specific details of the failure; the values
are the same as the RESP2 values listed in “FEPI RESP2 values” on page 260.

Events in CSZX TD queue records
The CSZX TD queue records report a number of events relating to FEPI resources
and sessions.

INSTALLFAIL
A FEPI resource has failed to be installed. This is probably because you are
trying to install a duplicate name. This might indicate either a logic error
or a possible security violation.

Recommended action: Report possible application logic error, for
investigation.

DISCARDFAIL
A FEPI resource has not been discarded. This is probably because you are
trying to discard a nonexistent object. This might indicate a logic error.

Recommended action: Report possible application logic error, for
investigation.

SETFAIL
A FEPI resource has rejected a SET request. This is probably because you
are trying to manipulate a resource that does not exist. However, there is
also the possibility of rejection due to VTAM considerations. So SETFAIL
might indicate either a logic error or a network failure.

Recommended action: Schedule a transaction to repeat the operation (if
not a logic error).

ACQFAIL
A FEPI resource has failed to be acquired. This is probably because of a
network failure, and so FEPI automatically retries the acquire request
several times at intervals; the count in EVENTDATA shows whether there
will be any more retries. However, there is also the possibility of an error
in either the VTAM definition or the back-end system definition of the
object.

Recommended action: After FEPI stops retrying, suggest investigating the
condition of the resource from a VTAM viewpoint. The VTAM sense code
describing the problem is in EVENTDATA. See the appropriate VTAM
manual for more information. For nodes, this is the VTAM Programming
manual; for connections, VTAM Messages and Codes. Further information is
in the SNA Formats manual.

SESSION
An unsolicited bind was received, probably because of a CLSDST(PASS).
See “Handling CLSDST(PASS)” on page 48.

Events in pool-specific TD queue records
Pool-specific TD queue records report a number of events relating to problems
with connections and pool definitions.

SESSIONLOST
An active connection has failed. This is probably due to the back-end
system failing. However, this error is also generated if an operator cancels
an active connection.

Recommended action: Suggest that the operator:

Chapter 7. Configuring FEPI 47

v Investigate the condition of the connection from a VTAM viewpoint. The
VTAM sense code that describes the problem is in EVENTDATA. See the
VTAM Messages and Codes and SNA Formats manuals for more details.

v See whether the back-end system is still running.
v Check that the back-end system has not “closed” the FEPI simulated

terminal.

SESSIONFAIL
A connection has failed to start. This is probably due to a setup
inconsistency or to a failure of the back-end system, and so FEPI
automatically retries the acquire request several times at intervals; the
count in EVENTDATA shows whether there will be any more retries.
However, this failure is also generated if an operator has canceled the
connection.

Recommended action: After FEPI stops retrying, suggest the operator:
v Investigate the condition of the connection from a VTAM viewpoint. The

VTAM sense code that describes the problem is in EVENTDATA. See the
VTAM Messages and Codes and SNA Formats manuals for more details.

v See whether the back-end system is still running.
v Check that the back-end system has not “closed” the FEPI simulated

terminal.
v Check that the terminal type definition in the back-end matches the FEPI

device type.

ADDFAIL
An attempt to add a target or node to a pool has failed. The probable
cause of this error is an attempt to add a resource that is already in the
pool. This indicates a possible logic error.

Recommended action: Report possible application logic error, for
investigation.

DELETEFAIL
An attempt to delete a target or node from a pool has failed. This is
probably caused by an attempt to delete a resource that is not in the pool,
indicating a possible logic error.

Recommended action: Report possible application logic error, for
investigation.

Handling CLSDST(PASS)
A back-end system can end a network session with a VTAM CLSDST(PASS)
request.

This indicates that the back-end will reestablish a session with the front-end using
a different PLU name (a third-party PLU). The front-end system detects
reestablishment of the session by receiving an unsolicited bind request; so when
the back-end system ends a session, it is important for it to indicate that an
unsolicited bind is to be expected.

Note: To determine whether a lost session was caused by a CLSDST(PASS)
request, a FEPI application can issue a FEPI INQUIRE CONNECTION command.
If the value of LASTACQCODE is X'32020000', the back-end system issued a
CLSDST(PASS) to unbind the session.

The three most likely scenarios are described in the following sections.

48 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Unsolicited bind not expected
FEPI unconditionally rejects the bind request.

Third-party PLU name known and unsolicited bind expected
The prospective PLU names must be defined to FEPI as targets.

You might need to restrict access to the pools that include these targets to make
sure the connection is not already in use when the CLSDST(PASS) takes place. The
simplest way to configure this is to define a pool containing the node and all the
targets it can be placed in session with. Install all connections except the initial one
with an ACQSTATUS of RELEASED so the back-end system can successfully
acquire the session. No other special processing is required and no TD queue
record is written in this case.

Third-party PLU name not known and unsolicited bind expected
The necessary resource definitions must be managed dynamically.

Note: Managing the resource definitions dynamically (described under
“Conversation in progress”) is the only method that allows the conversation to
persist across the CLSDST(PASS).

When FEPI receives the unsolicited bind, it writes a record to the CSZX TD queue,
with an EVENTTYPE of SESSION, and with the third-party PLU name in the
TARGET area. At this point, the bind has not been accepted or rejected. A VTAM
display for either the back-end or the front-end system would show the connection
to be in a PSESST/B state. You are responsible for managing these TD queue
records and making the necessary FEPI configuration updates so that processing
can continue. If no action is taken, the session remains in this state until a VTAM
VARY NET,TERM command is issued to terminate the session request.

There are two cases, according to whether or not there is a conversation in
progress on the connection when the CLSDST(PASS) occurs. (This can be
determined from the STATE option of the FEPI INQUIRE CONNECTION
command.) In both cases, you need to determine which pool has the connection
that the CLSDST(PASS) applies to, because the TD queue record does not report
either the pool or the old target name. If the node is used in only one pool, the old
target name can be found easily by browsing connections using FEPI INQUIRE
CONNECTION; if not, use some other technique, such as the USERDATA option
of the FEPI SET commands.

Conversation in progress:

Nodes for which this kind of processing is required should be defined in pools
containing only the node and the initial target, because of the nature of the
processing involved.

About this task

The monitor program should:
1. Install a new pool with the same properties as the current one.
2. Install a new target whose PLU name is the third-party PLU name given in the

TARGET area of the TD queue record.
3. Add the target to the new pool. This should be the only target in that pool.

Chapter 7. Configuring FEPI 49

4. Delete the node identified in the TD queue record from the pool in which it
currently exists. If necessary, to ensure continuity, the monitor program can add
another node to the pool before deleting the old node.

5. Add the node to the newly created pool. The new connection is now
established.

When the session ends, the connection reverts to a RELEASED state. If necessary,
use an end-session handler to perform any necessary cleanup, such as reversing
the process described above.

The front-end application must also anticipate CLSDST(PASS) processing. See “Lost
session” on page 166 for more details.

Conversation not in progress:

The CLSDST(PASS) occurred as a result of trying to acquire a connection.

About this task

The monitor program should:
1. Install a new target whose PLU name is the third-party PLU name given in the

TARGET area of the TD queue record.
2. Add the target to the pool, specifying a desired connection acquire status of

ACQUIRED. The new connection is now established.

If necessary, use an end-session handler to cleanup the dynamically defined
targets. These connections always become RELEASED when the session ends and
can be left for reuse, if required.

Writing operator transactions
You might find it useful to write some specialized operator transactions of your
own to control FEPI resources.

For more information, see “Controlling FEPI resources” on page 53.

Other functions
The other functions you might need to write for FEPI itself are the begin-session,
end-session, and unsolicited-data handlers.

These are extensions of the FEPI application programs, and are described in Part 3,
“FEPI application programming,” on page 135. If you write them as common
functions, you need to know what the application programs do. Alternatively, the
application programmer may write them.

Global user exit programs

There are two global user exits:

XSZBRQ
Invoked before a FEPI command is executed

XSZARQ
Invoked after a FEPI command is executed.

50 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

XSZBRQ is passed the parameters input to the command, and can be used to
monitor commands, to bypass commands that violate installation conventions, or
to change the parameters of a command, subject to the rules applying to global
user exits. XSZARQ is passed the parameters output from the command.

For details of the FEPI global user exits, see Front End Programming Interface
exits. For programming information about writing and using global user exit
programs, see The user exit programming interface (XPI), in the CICS Customization
Guide.

Chapter 7. Configuring FEPI 51

52 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 8. FEPI operation

This section describes how FEPI operates. It includes information on controlling
FEPI resources, performance, and shutdown. It also describes using FEPI with XRF
and VTAM persistent sessions.

The section contains the following topics:
v “Controlling FEPI resources”
v “FEPI performance” on page 55
v “Shutdown” on page 57
v “Using FEPI with XRF” on page 58
v “Using FEPI with VTAM persistent sessions” on page 62.

Controlling FEPI resources
The FEPI INQUIRE and SET functions can be carried out by a program, or by
using the master terminal transaction, CEMT. You may find it useful to write some
specialized operator transactions of your own.

The FEPI INQUIRE command (and its CEMT equivalent) tells you what resources
are defined and their statuses. The only thing you cannot do directly is determine
which nodes and targets are in a particular pool. Do this using CEMT to inquire
about the connections in a particular pool:
CEMT I FECONNECTION POOL(poolname)

To do this from an application program, browse all connections and select those in
the pool you want.

Here are the resource statuses of most interest:

SERVSTATUS
SERVSTATUS is used with connections, nodes, pools, and targets.

It specifies the service status of the resource—that is, whether it can be used for a
conversation. The service status can be set to INSERVICE to allow usage, or to
OUTSERVICE to stop usage for any new conversation. Note that setting OUTSERVICE
does not end any existing conversations that are using the resource; the status is
GOINGOUT until the existing conversations end.

ACQSTATUS
ACQSTATUS is used with connections and nodes.

It specifies the “acquire status” of the resource. For a connection, this means
whether it should have a session established (bound) or ended (unbound). For a
node, it means whether the VTAM ACB for the node should be opened or closed.
The acquire status can be set to ACQUIRED (a status of ACQUIRING indicates that the
acquisition has not yet been completed), or to RELEASED.

Setting RELEASED does not end any existing conversations that are using the
resource; the acquire status is RELEASING until the existing conversations end.

© Copyright IBM Corp. 1992, 2011 53

However, for connections, a conversation that is unowned and in a “pending” state
(see “STATE” on page 55) is ended immediately if the acquire state is set to
RELEASED; this means that connections being used by a failed application can be
recovered.

ACQUIRING and RELEASING are shown as BEING ACQUIRED and BEING
RELEASED by CEMT.

Network and other problems can cause connections to become stuck in a
RELEASING or ACQUIRING state, in which case the operator might need to
intervene using VTAM operator commands.

If a FEPI connection remains in a RELEASING state for longer than expected, try
the following:
1. Note the node and target associated with the connection; use CEMT INQUIRE

FETARGET to find the VTAM application name that the target represents.
2. Issue the VTAM command

D NET,E,ID=nodename

to find out the state of network session associated with the connection.
3. Note the session status. See the VTAM Programming manual for an explanation

of the status. If no session exists and a subsequent INQUIRE of the connection
status using CEMT shows the state still as BEING RELEASED, there has been a
system failure; you should collect diagnostic information.

4. If the session is in ‘session takedown processing’, you can use the VTAM
command
D NET,SESSION

to find out what signals are needed to complete processing.
5. If you can resolve the problem using commands on the back-end system,

attempt to do so.
6. If there is no other way to resolve the session status, you can use the VTAM

command
V NET,TERM

to end the network procedure in progress. FEPI will then be able to complete
processing.

It is not so easy to find out when an ACQUIRING state has persisted for too long.
However, if you cannot determine why the session has not been established, follow
the procedure described above. If no session is active for the connection, FEPI is
currently waiting for the retry interval to expire. The system log should contain
VTAM messages explaining why the session cannot be established. The
LACQCODE option of CEMT INQUIRE FECONNECTION gives the reason code
VTAM provided for the last session failure.

Also be sure to check that the node on which the connection depends is properly
acquired; if not, resolve whatever problem is indicated by the LACQCODE option
for the node.

Note that, under normal circumstances, after a FEPI FREE RELEASE command has
been issued the session does not remain in RELEASED state, because FEPI

54 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

automatically tries to reacquire the session. However, if a FEPI SET CONNECTION
ACQSTATUS(RELEASED) command is issued before the FREE RELEASE, the
session remains in RELEASED state.

LASTACQCODE
The INQUIRE CONNECTION or INQUIRE NODE commands can use the option
LASTACQCODE (LACQCODE in CEMT), which returns the result of the last
acquire request.

This is the sense code from the last VTAM operation, where zero indicates success.
For a full explanation of VTAM sense codes, see the appropriate VTAM manual:
for nodes, this is VTAM Programming; for connections, VTAM Messages and Codes.
Further information is in the SNA Formats manual.

INSTLSTATUS
INSTLSTATUS is used with connections, nodes, pools, and targets. It specifies
whether the resource is installed, or is in the process of being discarded, waiting
for the conversations that are using it to end.

WAITCONVNUM
WAITCONVNUM shows how many conversations are currently waiting to start
using a connection or pool.

If WAITCONVNUM is nonzero for significant periods of time, it might mean that
you need to allocate extra resources to meet the demand. Or it might mean that
applications are holding on to resources for too long.

STATE
STATE is used with connections.

It shows the state of the conversation that is using a connection. See State for the
values that STATE can have.

If any of the “pending” states (PENDSTSN, PENDBEGIN, PENDDATA,
PENDSTART, PENDFREE, PENDRELEASE, PENDUNSOL, or PENDPASS) is
shown, it indicates that the conversation is unowned, pending the event or task
shown. If a “pending” state persists, it is likely that the application has failed in
some way; you should consider resetting the connection by issuing a FEPI SET
CONNECTION RELEASED command.

FEPI performance
You cannot tune FEPI itself—it is already optimized for speed of response.

However, you can influence the performance of FEPI application programs.

FEPI runs under a separate CICS task control block (TCB) and CICS permits only
one application program to issue a FEPI command at a time. This is a major
influence on FEPI performance. Although many application programs can have
FEPI commands being processed at any time, only one application can issue a FEPI
command.

In a lightly loaded system, this means that CICS does not run FEPI until a
command is issued. Thus, performance is impacted by the overhead of starting up

Chapter 8. FEPI operation 55

the TCB so that the FEPI command can be processed. In a heavily loaded system,
this overhead is not present, because the TCB is already active processing earlier
FEPI commands. This is in contrast to a traditional CICS system, where a lightly
loaded system may perform better than a heavily loaded one.

FEPI tries to minimize this overhead by issuing timer requests that ensure that the
TCB is not inactive for more than one second.

There are three main principles that should be used in FEPI applications to provide
the best performance:
1. Each FEPI command generates a CICS WAIT even if no network transmission

is involved, and so the number of commands issued should be minimized.
2. Data transmission should be kept to a minimum.
3. Session disconnection should be avoided.

Techniques to use in application programs in support of these principles are given
in “Performance” on page 171.

As to FEPI system programming, command usage can be reduced by using lists of
resources on a command where possible. However, when a command using a list
results in a VTAM operation, you could:
v “Flood” VTAM by requesting too many operations at once
v “Flood” the back-end system with requests for session initiation
v “Flood” the front-end system with started begin- or end-session transactions.

So you must carefully evaluate the benefits of using lists.

Using CICS monitoring
CICS monitoring data can help with performance tuning and resource planning for
applications that use FEPI.

By default, CICS performance class monitoring records include the following data
about the user task:
v The number and type of requests made to FEPI
v The time spent waiting for requests to FEPI to complete
v The number of requests to FEPI that are timed out.

For detailed information about the FEPI-related fields in performance class
monitoring records, see Performance data in group DFHFEPI, in the CICS
Performance Guide. For information about using the DFHMCT TYPE=RECORD
macro to control which FEPI fields are monitored, see the Monitoring control table,
in the CICS Resource Definition Guide.

Using statistics data
CICS statistics can help with performance tuning and resource planning for
applications that use FEPI.

The standard CICS statistics reports contain data about usage of:
v FEPI pools
v FEPI connections
v FEPI targets.

56 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

To obtain the current statistics for a FEPI pool, connection, or target, a utility
program can issue an EXEC CICS COLLECT STATISTICS command. For example, the
command EXEC CICS COLLECT STATISTICS SET(pointer) POOL(GRPD) returns the
current statistics for the 'GRPD' pool. To map the returned statistics, your utility
program should include the appropriate CICS-supplied copybook:

DFHA22DS
FEPI pool statistics

DFHA23DS
FEPI connection statistics

DFHA24DS
FEPI target statistics.

The copybooks are supplied in COBOL, PL/I, and assembler language.

To cause all FEPI statistics to be written immediately to the SMF statistics data set,
you can use either the EXEC CICS or the CEMT version of the PERFORM STATISTICS
RECORD FEPI command. For details of the CEMT COLLECT STATISTICS and PERFORM
STATISTICS RECORD commands, see CEMT - master terminal transaction, in the
CICS Supplied Transactions; for programming information about the equivalent EXEC
CICS commands, see the CICS System Programming Reference.

To format and print FEPI-related statistics in the DFHSTATS data set, you can use
the CICS-supplied utility program, DFHSTUP. To print only the FEPI statistics,
specify the command parameter SELECT TYPE=FEPI. For information about how to
use the DFHSTUP program, see Statistics utility program (DFHSTUP), in the CICS
Operations and Utilities Guide. For detailed information about fields in the FEPI
statistics records, see FEPI statistics, in the CICS Performance Guide.

Shutdown
FEPI shutdown is triggered as part of CICS shutdown—you cannot shut down
FEPI alone.

There are three forms of shutdown:
v Normal
v Immediate
v Forced.

Normal shutdown
A normal shutdown of CICS causes FEPI to shut down normally - active
transactions are allowed to terminate. When all active conversations have ended,
and all FEPI resources have been discarded, FEPI shuts down.

While FEPI is shutting down, no new conversations can be started, but existing
owned conversations continue. However, these cannot use the FEPI START or FEPI
FREE PASS commands. Existing unowned conversations are ended immediately.
Any FEPI transactions that you want to be able to start during CICS shutdown
must be defined in the transaction list table (XLT).

If an end-session handler is invoked at the end of conversations, it is told that the
session is to be ended because of CICS shutdown. The handler can choose to
perform additional back-end operations that might be needed because of the
shutdown. If you require this function, make sure the end-session handler

Chapter 8. FEPI operation 57

transaction is defined in the transaction list table (XLT), and that it does not
adversely affect the performance of CICS shutdown. (For details of how to define
entries in the XLT, see the CICS Resource Definition Guide.)

CICS normal shutdown waits until FEPI shutdown has completed before
continuing processing. So if you know when CICS shutdown is to occur, you
should initiate FEPI DISCARD operations before starting CICS termination.
Removing FEPI resources as they become inactive allows existing FEPI
conversations to continue, but prevents new ones from starting. You could achieve
the same effect by setting the status of FEPI resources to OUTSERVICE,RELEASED.

If shutdown is not proceeding, then before you force it to continue, consider
carefully whether the problem is due to:
v A back-end system taking a long time to respond. In this case, do not attempt to

speed things up—you may generate integrity errors in the back-end system.
v A FEPI failure. In this case, issue the following commands, pausing after each

step to see whether CICS is still waiting:
1. CEMT DISCARD FExxxx(*), to remove all FEPI resources
2. CEMT SET FECONNECTION(*) OUTSERVICE RELEASED, to end any

waiting conversations
3. CEMT SET TASK(nnn) FORCE, to end any running FEPI transactions
4. Attempt to issue VTAM VARY NET,INACT,FORCE commands from the system

console to terminate connections.

If CICS shutdown still does not proceed, you cannot perform a warm shutdown.
Try issuing a CEMT P SHUT IMMEDIATE command. If this fails, you must cancel CICS.

Immediate shutdown
An immediate shutdown of CICS immediately terminates FEPI. There is nothing
you can do to influence this process.

Forced shutdown
A forced shutdown of CICS immediately terminates FEPI. There is nothing you can
do to influence this process.

Using FEPI with XRF
This section discusses FEPI in a CICS extended recovery facility (XRF)
environment.

To understand it, you need to have read the CICS/ESA Version 3.3 XRF Guide, and
to be familiar with CICS XRF VTAM USERVAR processing—the VTAM
Programming manual contains relevant material.

The effect of an XRF takeover of a CICS back-end system with which FEPI is in
communication is described. Although IMS XRF processing is not discussed here,
the same considerations apply.

XRF and VTAM
FEPI uses VTAM secondary LU support for communication and the simulated
terminals defined to the back-end CICS system behave in a different way to real
devices.

58 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

In an XRF environment, the simulated terminals in the back-end system cannot
behave as VTAM class 1 terminals because there is no 3745/3725/3720 controller
acting as the boundary network node (BNN). They behave like VTAM class 2
terminals, which is the default setting for CICS and IMS terminal definitions.
Consequently, simulated terminals do not support VTAM XRF, and CICS XRF
facilities are provided by tracking mechanisms that are explained in the CICS/ESA
Version 3.3 XRF Guide.

When a FEPI connection is acquired, the back-end CICS generates a TCTTE (if one
is not present already) using autoinstall. At this point, in a CICS XRF environment,
the active CICS informs the alternate that a terminal has been defined. If the active
is then taken over, the alternate knows which terminals are defined, and can take
actions to recover the links.

As part of takeover processing, a VTAM BIND is issued to reestablish the session
with each simulated terminal. However, FEPI also has detected that the connection
has ended, and attempts to contact the (new active) back-end system by issuing a
similar bind. This results in a bind race. The outcome of this bind race depends on
the circumstances of the exchange. However, the bind issued by the new active
CICS will probably be rejected, and the FEPI bind accepted. This results in
DFHZCxxxx messages being produced during the takeover (see “Connections with
a conversation—with data flow” on page 61). If FEPI reestablishes the connection,
these messages can be ignored. You can remove these bind races by defining the
back-end CICS terminal so it behaves as a VTAM class 3 terminal (no XRF
support). To define the simulated terminals as class 3, specify
RECOVOPTION=NONE in CICS, or BACKUP=NO in IMS.

FEPI resource definition and XRF
In an XRF environment, the applid specified on the FEPI INSTALL TARGETLIST
command must be the generic applid of the back-end system.

Specifying either the primary or secondary applid of the target results in
processing errors. If you use the generic applid, FEPI is able to cater for the
back-end system undergoing an XRF takeover.

However, you can define a pool that contains the specific applids of both the active
and alternate systems. In this case, the alternate targets cannot be contacted until
an XRF takeover has been performed. Similarly, the active targets cannot be
contacted after takeover. If you define pools in this way (perhaps to provide
backup support without XRF), you should manage the ACQUIRED-RELEASED
status yourself, to minimize FEPI retry processing.

XRF takeover of front-end system
This section describes what happens when the CICS system running FEPI
undergoes an XRF takeover.

Effect on back-end transactions
Each back-end transaction is abended, due to the loss of the simulated
terminal—which is usually the principal facility for the task. Consequently, the
ATNI (or equivalent) abend processing is unable to send the usual message
indicating a transaction abend to the principal facility.

Transactions that attempt to handle terminal control errors should already be
written to cope with this circumstance, and you should not need to alter them.

Chapter 8. FEPI operation 59

Effect on back-end terminals
FEPI is acting as the “terminal”, so an XRF takeover of the FEPI system results in
the loss of the “terminal” in the back-end system. CICS takes the usual actions for
the loss of a (real) terminal. There are three cases to consider:

“Terminals” without a conversation:

If you are using autoinstall, the TCTTEs representing these “terminals” are deleted
after a delay; if the delay is long enough, the alternate front-end CICS may
reestablish the sessions before the TCTTEs are deleted.

“Terminals” with a conversation—no data flow:

If you are using autoinstall, the TCTTEs representing these “terminals” are deleted
after a delay; if the delay is long enough, the alternate front-end CICS may
reestablish the sessions before the TCTTEs are deleted.

“Terminals” with a conversation—with data flow:

These “terminals” are usually running a transaction when the “terminal” is lost.
This results in the transaction being abended with the normal CICS abend code for
a terminal failure (usually ‘ATNI’). The abend is usually accompanied by a
DFHZCxxxx message indicating that the “terminal” has suffered an unrecoverable
failure.

You may have to modify your node error program to prevent retry loops, but
normally the default action (not to retry) is taken. When node error processing
ends, if autoinstall is used, the “terminal” is deleted.

Effect on the alternate FEPI CICS system
The alternate FEPI CICS takes over operation of the failed CICS in the normal
fashion. However, FEPI resources are not recovered automatically after an XRF
takeover.

FEPI restarts at a late stage of takeover, after all RDO resources have been
reinstalled. Nevertheless, when the second phase of the PLTPI list is entered, FEPI
is ready to receive commands. Therefore, if you follow the recommendation to start
your FEPI setup transaction from a PLTPI program, FEPI resources are reinstalled
as part of the takeover. If you do not run your setup transaction in this way, then
after a takeover you must arrange for it to be run manually, so that your FEPI
resources are reinstalled.

However you handle resource definition in an XRF-environment, you must be
prepared to cope with the possibility that FEPI resources have been manipulated in
the failed CICS, so that the environment after takeover is not the same as that
immediately before takeover. For example, resources may have been installed or
deleted, or SERVSTATUS or ACQSTATUS values altered, after your setup
transaction was run in the failed CICS.

XRF takeover of back-end system
This section describes what happens when the CICS back-end system with which
FEPI is communicating undergoes an XRF takeover.

Effect on FEPI application programs
FEPI application programs are unable to distinguish between a loss of session due
to an XRF takeover of the back-end system, and one due to a FEPI failure.

60 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

In both cases, a typical RESP2 value of ‘215’ (‘Session lost’) is returned on the next
FEPI command issued after the takeover has started. Alternatively, the application
may get an indication of a state error, meaning that the command cannot be issued
because the connection is not active. The application should immediately issue a
FEPI FREE command to free the conversation.

If an end-session handler is active, it gets invoked, even though the conversation
has ended.

If the application program believes that the back-end is undergoing an XRF
takeover, it should reissue a FEPI ALLOCATE command for the back-end. When
the takeover is complete, and FEPI has reestablished contact, the FEPI ALLOCATE
completes successfully (together with any specified begin-session processing). If the
TIMEOUT option is used, consider its setting in relation to how long you expect
the alternate back-end system to take to complete takeover.

It is the responsibility of the application program to perform any processing in the
new active back-end system necessitated by the XRF takeover.

Effect on FEPI connections
In general, FEPI successfully copes with the XRF takeover of a back-end system
with which it is communicating.

However, when the new active back-end system attempts to establish its terminal
sessions, communication with FEPI may result in some strange terminal control
messages. You should ignore these until FEPI has had time to contact the back-end
system.

While FEPI is attempting to reestablish contact with the back-end system:
v Connections are in ACQUIRING state, with a last acquire code of (probably)

X'320C0000'.
v Message DFHSZ4155I may be produced, with reason codes (typically

X'320C0000' or X'81062900') showing that FEPI is attempting to reestablish
contact with the back-end system.

There are three cases to consider:

Connections without a conversation:

These connections reestablish contact with the new active back-end when the
back-end’s ACB is opened.

Connections with a conversation—no data flow:

These connections reestablish contact with the new active back-end when the
back-end’s ACB is opened. You may get some messages in the back-end system
indicating that the TCTTE was deleted and reinstalled.

Connections with a conversation—with data flow:

These connections generate errors in the back-end system when it attempts to
reestablish contact with the “terminal”.

You may see messages DFHZC3492E, DFHZC2411E, DFHZC3422E, DFHZC3437I,
or DFHZC3462I being generated—all of which say that the standby back-end could
not reestablish contact with the “terminal”. However, as long as the conversation

Chapter 8. FEPI operation 61

that was running on the connection has been freed, FEPI subsequently
reestablishes contact and reinstalls the “terminal”.

Using FEPI with VTAM persistent sessions
When creating FEPI applications, you need to be aware of the possible effects of
the use of VTAM persistent sessions in the front- or back-end systems.

For information about CICS support for VTAM persistent sessions, see the CICS
Recovery and Restart Guide.

Restart of front-end system using persistent sessions
Using persistent sessions in the front-end does not give FEPI any additional
recoverability benefits. FEPI is always cold started; thus, to FEPI, the effect of
restarting a front-end system for which persistent sessions support is enabled is
indistinguishable from a cold start of CICS.

Restart of back-end system using persistent sessions
In the back-end system, there are terminal definitions that are used when the FEPI
simulated terminals establish sessions with the target.

These definitions may be hard-coded, or may be autoinstall model definitions. If
the terminal definitions have been set up to use persistent session support, and the
back-end system is restarted within the persistent session delay interval, the
terminal sessions are recovered.

Effect on FEPI application programs
It is likely that FEPI application programmers have little say in the way that
persistent session support is used in the back-end system.

They therefore need to be aware of the different ways in which terminal sessions
can be recovered, so that their applications cater for all possibilities. If the back-end
(target) is a CICS Transaction Server for z/OS, Version 3 Release 2 system, the way
in which a session is recovered depends on the setting of the RECOVOPTION and
RECOVNOTIFY options of the TYPETERM definition.

RECOVOPTION(SYSDEFAULT)
On restart within the persistent session delay interval, CICS selects the
optimum procedure to recover a session.

For LU2, if the session is busy and CICS is in send mode, CICS sends an end
bracket. If the session is busy and CICS is not in send mode, CICS sends an
SNA CLEAR request to reset the conversation state.

If a FEPI conversation is in progress when the target system terminates, your
application could see one of the following:
v A timeout on a RECEIVE, CONVERSE, or START command, while it waits

for the target to restart.
Deal with this in the normal way for a timeout.

v A FEPI RECEIVE or CONVERSE command completes as a result of the end
bracket sent by CICS. The RU on this data flow may be empty or may
contain a user-defined message, depending on the value of the
RECOVNOTIFY option.
Your application may need to perform some backout processing.

62 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

v An INVREQ response with a RESP2 value of 230 on a FEPI SEND,
RECEIVE, CONVERSE, ISSUE, or START command, indicating that an SNA
CLEAR was received.
Your application may need to perform some backout processing.

You must also consider the value specified for RECOVNOTIFY:

RECOVNOTIFY(MESSAGE)
A message (defined in the BMS maps DFHXRC3 and DFHXRC4) is sent to
the “terminal”. Your FEPI application must contain logic to deal with this
data flow.

If there is no active conversation at the time of restart, the flow is received
as unsolicited data at the FEPI front-end.

RECOVNOTIFY(TRANSACTION)
A transaction is initiated in the target. The default is the Good Morning
transaction. Your application must contain logic to deal with this data flow.

If there is no active conversation at the time of restart, the flow is received
as unsolicited data at the FEPI front-end.

RECOVNOTIFY(NONE)
The “terminal” is not notified that a restart has occurred. Your application
need take no special action.

RECOVOPTION(CLEARCONV)
On restart within the persistent session delay interval, CICS sends an SNA
CLEAR request to reset the conversation states. The CLEAR is sent only if the
session was busy at the time of system restart. If a FEPI conversation is in
progress when the target system terminates, your application could see one of
the following:
v A timeout on a RECEIVE, CONVERSE, or START command, while it waits

for the target to restart.
Deal with this in the normal way for a timeout.

v An INVREQ response with a RESP2 value of 230 on a FEPI SEND,
RECEIVE, CONVERSE, ISSUE, or START command, indicating that an SNA
CLEAR was received.
Your application may need to perform some backout processing.

You must also consider the value specified for RECOVNOTIFY. The possible
values are as described above, for RECOVOPTION(SYSDEFAULT).

RECOVOPTION(RELEASESESS)
On restart within the persistent session delay interval, CICS sends an UNBIND
request to release an active session. The request is sent only if the session was
busy at the time of system restart.

If a FEPI conversation is in progress when the target system terminates, your
application could see one of the following:
v A timeout on a RECEIVE, CONVERSE, or START command, while it waits

for the target CICS to restart.
Deal with this in the normal way for a timeout.

v An INVREQ response with a RESP2 value of 215 on any FEPI command,
indicating a 'session lost' condition.
Deal with this in the normal way for a session loss.

RECOVOPTION(UNCONDREL)
On restart within the persistent session delay interval, CICS sends an UNBIND

Chapter 8. FEPI operation 63

request to release an active session. The request is sent whether or not the
session was busy at the time of system restart.

If a FEPI conversation is in progress when the target system terminates, your
application could see either of the symptoms described for
RECOVOPTION(RELEASESESS).

RECOVOPTION(NONE)
Even if the system is restarted within the persistent session delay interval, the
session is not recovered—it has no persistent session support.

Deal with this in the normal way for a session loss.

64 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 9. Operator control of FEPI

Two CICS-supplied transactions, CEMT and CETR, provide operator control of
FEPI: you can use the CEMT INQUIRE, SET, and DISCARD commands to control FEPI
resources such as nodes, targets, and pools; and the CETR transaction to control
FEPI trace.

You can also use VTAM commands to manage communication with target systems.

FEPI application programs, and the CICS resources they use, are controlled just
like other CICS applications and resources.

CEMT - master terminal transaction
The CEMT transaction has a range of commands that support FEPI.

These commands, which are described below, work exactly like other CEMT
commands - for example, in supporting resource selection by families (AB*, for
example), lists (AB,CD,EF, for example), and by subdefining groups. Note that
4-character option names are used in the display.

CEMT DISCARD
The CEMT DISCARD command removes targets, nodes, pools, or property sets
completely from FEPI.

Syntax

Press the Clear key to clear the screen. Type CEMT DISCARD (the minimum
abbreviation is CEMT DISC), followed by any one of:
v FENODE(nodename)

v FEPOOL(poolname)

v FEPROPSET(propsetname)

v FETARGET(targetname).

For example, cemt disc fen(fepnode1) removes the node fepnode1 from FEPI.

Typing ? at the beginning of either the first or second line gives a syntax prompt.

CEMT DISCARD

�� CEMT DISCard FENode (nodename)
FEPOol (poolname)
FEPRopset (propsetname)
FETarget (targetname)

��

Options

FENode(nodename)
The name of the FEPI node to be discarded.

© Copyright IBM Corp. 1992, 2011 65

FEPOol(poolname)
The name of the FEPI pool to be discarded.

FEPRopset(propsetname)
The name of the FEPI property set to be discarded.

FETarget(targetname)
The name of the FEPI target to be discarded.

CEMT INQUIRE FECONNECTION
Display information about FEPI connections.

Description

INQUIRE FECONNECTION displays information about the state of FEPI
connections. A connection is identified by specifying the target and node. The
results are given in order of target within the node. Family selection can be used
for TARGET and NODE, but list selection cannot be used.

Input

Press the Clear key to clear the screen. There are two ways of commencing this
transaction:
v Type CEMT INQUIRE FECONNECTION (the minimum abbreviation is CEMT I FEC). You

get a display that lists the current status.
v Type CEMT INQUIRE FECONNECTION (CEMT I FEC) followed by as many of the other

attributes as are necessary to limit the range of information that you require. For
example, if you enter cemt i fec p(pool5) acq, the resulting display will show
you the details of all FEPI connections in pool5 on which sessions are bound.

You can tab to the highlighted fields and overtype them with new values.

CEMT INQUIRE FECONNECTION

�� CEMT Inquire FEConnection �

�
ALl

NODe (nodename) Target (targetname)

�

�
Pool (poolname) INSTalled

NOTinstalled
INSErvice
Outservice

ACquired
Released

�

�
State (value) Waitconvnum (value)

�

�
Lacqcode (value)

��

66 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

ALl
is the default. Information about all connections is given, unless you specify a
selection.

NODe(nodename)
is the 8-character name of a node. Information is restricted to connections of
which this node forms part.

Target(targetname)
is the 8-character name of a target. Information is restricted to connections of
which this target forms part.

Sample screen

Displayed fields

Node(value)
displays the 8-character name of a node identifying a connection.

Target(value)
displays the 8-character name of a target identifying a connection.

Pool(poolname)
displays the 8-character name of a pool of connections.

Installed|Notinstalled
displays a value identifying the install state of the connection. The values are:

Installed
The connection is in a pool that has been defined by INSTALL and is
available for use.

Notinstalled
The connection is in a pool, or involves a node or target that is being
discarded, but is still in use.

Inservice|Outservice
displays a value identifying the service state of the connection. The values are:

Inservice
The connection is in service and can be used in a conversation. If
OUTSERVICE state has been requested but has not yet completed, a
‘GOING OUT’ message is shown.

Outservice
The connection is out of service and cannot be used for any
conversation.

Acquired|Released
displays a value identifying whether a session on the connection is bound. The
values are:

CEMT IN FEC
STATUS: RESULTS - OVERTYPE TO MODIFY
Node(NODE1) Targ(TARGETA) Pool(POOL5) Inst Inse Rele

Stat(NOCONV) Wait(00000) Lacq(X’08570002’)
Node(NODE1) Targ(TARGETB) Pool(POOL5) Inst Inse Rele

Stat(NOCONV) Wait(00000) Lacq(X’08570002’)
Node(NODE1) Targ(TARGET3) Pool(POOL3) Inst Inse Rele

Stat(NOCONV) Wait(00000) Lacq(X’08570002’)

Figure 3. CEMT INQUIRE FECONNECTION screen

Chapter 9. Operator control of FEPI 67

Acquired
A session is bound on the connection. If RELEASED state has been
requested but has not yet completed, a ‘BEING RELEASED’ message is
shown. If this persists, you might need to use VTAM commands to
recover the connection.

Released
Sessions involving the connection have been unbound. If ACQUIRED
state has been requested but has not yet completed, a ‘BEING
ACQUIRED’ message is shown. If this persists, you might need to use
VTAM commands to recover the connection.

State(value)
displays a 12-character value identifying the state of the conversation using the
connection. The values are:

APPLICATION
A normal application task owns the conversation

BEGINSESSION
A begin-session handling task owns the conversation

FREE An end-session handling task owns the conversation, following a FEPI
FREE command

NOCONV
No conversation is active on the connection

PENDBEGIN
A begin-session handling task has been scheduled

PENDDATA
FEPI is waiting for inbound data, following a FEPI START command

PENDFREE
An end-session handling task has been scheduled, following a FEPI
FREE command

PENDPASS
The conversation is unowned, following a FEPI FREE PASS command

PENDRELEASE
An end-session handling task has been scheduled, following an unbind
request

PENDSTART
Inbound data having arrived, a task specified by FEPI START has been
scheduled

PENDSTSN
An STSN-handling task has been scheduled

PENDUNSOL
An unsolicited-data handling task has been scheduled

RELEASE
An end-session handling task owns the conversation, following an
unbind request

STSN An STSN-handling task owns the conversation

UNSOLDATA
An unsolicited-data handling task owns the conversation.

68 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

The “pending” states indicate the conversation is unowned, pending the event
or task indicated. If a “pending” state persists, it is likely that the application
has failed in some way; you should consider resetting the connection by
issuing a CEMT SET FECONNECTION RELEASED command.

Waitconvnum(value)
displays a value identifying the number of conversations that are waiting to
start using a connection. (If a conversation could use any one of several
connections, it is counted as waiting on each one.)

Lacqcode(value)
displays a hexadecimal value indicating the result of the last acquire request
for the node; that is, the sense code from the last VTAM REQSESS, a zero
indicating success. For information about VTAM sense codes, see either the
VTAM Messages and Codes or the SNA Formats manual.

CEMT INQUIRE FENODE
Display information about a FEPI node.

Input

Press the Clear key to clear the screen. There are two ways of commencing this
transaction:
v Type CEMT INQUIRE FENODE (the minimum abbreviation is CEMT I FEN). You get a

display that lists the current status.
v Type CEMT INQUIRE FENODE (CEMT I FEN) followed by as many of the other

attributes as are necessary to limit the range of information that you require. For
example, if you enter cemt i fen inst, the resulting display will show you the
details of all FEPI nodes that have been installed and are ready for use.

You can tab to the highlighted fields and overtype them with new values.

CEMT INQUIRE FENODE

�� CEMT Inquire FENode
ALl

(nodename) INSTalled
Notinstalled

INSErvice
Outservice

�

�
ACquired
Released

Lacqcode (value)
��

ALl
is the default. Information about all nodes is given, unless you specify a node.

nodename
is the 8-character name of the node to be queried.

Chapter 9. Operator control of FEPI 69

Sample screen

Displayed fields

Feno
indicates that this panel relates to an FENODE inquiry.

(value)
displays the 8-character name of a node.

Installed|Notinstalled
displays a value identifying the install state of the node. The values are:

Installed
The node has been defined by INSTALL and is available for use.

Notinstalled
The node is being discarded, but is still in use.

Inservice|Outservice
displays a value identifying the service state of the node. The values are:

Inservice
The node is in service and can be used in a conversation. If
OUTSERVICE state has been requested but has not yet completed, a
‘GOING OUT’ message is shown.

Outservice
The node is out of service and cannot be used for any conversation.

Acquired|Released
displays a value identifying whether the state of the VTAM ACB for the node.
The values are:

Acquired
The VTAM ACB for the node is open and the VTAM ‘set logon start’
command has completed. If RELEASED state has been requested but
has not yet completed, a ‘BEING RELEASED’ message is shown. If this
persists, you might need to use VTAM commands to recover the node.

Released
The VTAM ACB is closed. If ACQUIRED state has been requested but
has not yet completed, a ‘BEING ACQUIRED’ message is shown. If
this persists, you might need to use VTAM commands to recover the
node.

Lacqcode(value)
displays a hexadecimal value indicating the result of the last acquire request
for the node; that is, the sense code from the last VTAM OPEN ACB, a zero
indicating success. For information about VTAM sense codes, see either the
VTAM Messages and Codes or the SNA Formats manual.

CEMT IN FEN
STATUS: RESULTS - OVERTYPE TO MODIFY
Feno(NODE1) Inst Inse Acqu Lacq(X’00000000’)
Feno(NODE2) Inst Inse Acqu Lacq(X’00000000’)
Feno(NODE3) Inst Inse Acqu Lacq(X’00000000’)
Feno(NODE4) Inst Inse Acqu Lacq(X’00000000’)

Figure 4. CEMT INQUIRE FENODE screen

70 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

CEMT INQUIRE FEPOOL
Display information about the state of FEPI pools of connections.

Input

Press the Clear key to clear the screen. There are two ways of commencing this
transaction:
v Type CEMT INQUIRE FEPOOL (the minimum abbreviation is CEMT I FEPO). You get a

display that lists the current status.
v Type CEMT INQUIRE FEPOOL (CEMT I FEPO) followed by as many of the other

attributes as are necessary to limit the range of information that you require. For
example, if you enter cemt i fepo inse, the resulting display will show you the
details of all FEPI pools that are in service and can be used by conversations.

You can tab to the highlighted ‘service state’ field and overtype it with a new
value.

CEMT Inquire FEPOol

�� CEMT Inquire FEPOol
All

(poolname) INSTalled
Notinstalled

INSErvice
Outservice

�

�
Device (value) Waitconvnum (value)

��

All
is the default. Information about all pools is given, unless you specify a pool to
be queried.

poolname
specifies the name of a pool of connections.

Sample screen

Displayed fields

Fepo
indicates that this panel relates to an FEPOOL inquiry.

(value)
displays the 8-character name of a pool of connections.

CEMT IN FEPO
STATUS: RESULTS - OVERTYPE TO MODIFY
Fepo(POOL3) Inst Inse Devi(T3278M4) Wait(00000)
Fepo(POOL5) Inst Inse Devi(T3278M2) Wait(00000)

Figure 5. CEMT INQUIRE FEPOOL screen

Chapter 9. Operator control of FEPI 71

Installed|Notinstalled
displays a value identifying the install state of the pool. The values are:

Installed
The pool has been defined by INSTALL and is available for use.

Notinstalled
The pool is being discarded, but is still in use.

Inservice|Outservice
displays a value identifying the service state of the pool. The values are:

Inservice
The pool is in service and can be used in a conversation. If
OUTSERVICE state has been requested but has not yet completed, a
‘GOING OUT’ message is shown.

Outservice
The pool is out of service and cannot be used for any conversation.

Device(value)
displays a value identifying the mode of conversation and the type of device.
The values are:

T3278M2
SLU2 mode, 3278 Model 2

T3278M3
SLU2 mode, 3278 Model 3

T3278M4
SLU2 mode, 3278 Model 4

T3278M5
SLU2 mode, 3278 Model 5

T3279M2
SLU2 mode, 3279 Model 2B

T3279M3
SLU2 mode, 3279 Model 3B

T3279M4
SLU2 mode, 3279 Model 4B

T3279M5
SLU2 mode, 3279 Model 5B

TPS55M2
SLU2 mode, PS/55, 24 lines

TPS55M3
SLU2 mode, PS/55, 32 lines

TPS55M4
SLU2 mode, PS/55, 43 lines

LUP SLU P mode, all cases

Waitconvnum(value)
displays a value identifying the number of conversations that are waiting to
start using a connection in the pool.

72 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

CEMT INQUIRE FEPROPSET
Display information about a set of FEPI properties.

Input

Press the Clear key to clear the screen. There are two ways of commencing this
transaction:
v Type CEMT INQUIRE FEPROPSET (the minimum abbreviation is CEMT I FEPR). You

get a display that lists all FEPI property sets that are currently installed.
v Type CEMT INQUIRE FEPROPSET (CEMT I FEPR) followed by the name of a

particular property set. For example, if you enter cemt i fepr (feprop1), the
resulting display will show you whether or not the FEPI property set feprop1 is
installed. (If it is not installed, you get a 'NOT FOUND' response.)

CEMT INQUIRE FEPROPSET

�� CEMT Inquire FEPRopset
All

(propsetname)
��

All
is the default. Information about all property sets is given, unless you specify a
particular one.

propsetname
is the name of the property set to be queried.

Sample screen

Displayed fields

Fepr
indicates that this panel relates to an FEPROPSET inquiry.

(value)
displays the 8-character name identifying a property set.

CEMT INQUIRE FETARGET
Display information about the state of FEPI targets.

Input

Press the Clear key to clear the screen. There are two ways of commencing this
transaction:

CEMT IN FEPR
STATUS: RESULTS
Fepr(PROP1)
Fepr(PROP2)
Fepr(PROP3)
Fepr(PROP4)

Figure 6. CEMT INQUIRE FEPROPSET screen

Chapter 9. Operator control of FEPI 73

v Type CEMT INQUIRE FETARGET (the minimum abbreviation is CEMT I FET). You get
a display that lists the current status.

v Type CEMT INQUIRE FETARGET (CEMT I FET) followed by as many of the other
attributes as are necessary to limit the range of information that you require. For
example, if you enter cemt i fet inse, the resulting display will show you the
details of all FEPI targets that are in service.

You can tab to the highlighted ‘service state’ field and overtype it with a new
value.

CEMT INQUIRE FETARGET

�� CEMT Inquire FETarget
ALl

(targetname) APpl (applname)
�

�
INSTalled
Notinstalled

INSErvice
Outservice

��

ALl
is the default. Information about all targets is given, unless you specify the
target to be queried.

targetname
is the name of the target to be queried.

Sample screen

Displayed fields

Feta
indicates that this panel relates to an FETARGET inquiry.

(value)
displays the 8-character name identifying a target.

Appl(applname)
displays the 8-character VTAM application name of the back-end system that
the target represents.

Installed|Notinstalled
displays a value identifying the install state of the target. The values are:

Installed
The target has been defined by INSTALL and is available for use.

CEMT IN FET
STATUS: RESULTS - OVERTYPE TO MODIFY
Feta(TARGETA) Appl(APPL5) Inst Inse
Feta(TARGETB) Appl(APPL6) Inst Inse
Feta(TARGET1) Appl(APPL1) Inst Inse
Feta(TARGET2) Appl(APPL2) Inst Inse
Feta(TARGET3) Appl(APPL3) Inst Inse
Feta(TARGET4) Appl(APPL4) Inst Inse

Figure 7. CEMT INQUIRE FETARGET screen

74 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Notinstalled
The target is being discarded, but is still in use.

Inservice|Outservice
displays a value identifying the service state of the target. The values are:

Inservice
The target is in service and can be used in a conversation. If
OUTSERVICE state has been requested but has not yet completed, a
‘GOING OUT’ message is shown.

Outservice
The target is out of service and cannot be used for any conversation.

CEMT SET FECONNECTION
Change the state of FEPI connections. Family selection can be used for TARGET
and NODE, but list selection cannot be used.

Syntax

Press the Clear key to clear the screen. There are two ways of commencing this
transaction:
v Type CEMT SET FECONNECTION (the minimum abbreviation is CEMT S FEC) with

either TARGET(targetname) NODE(nodename) or ALL. You get a display that lists the
current status, similar to that obtained by CEMT INQUIRE FECONNECTION.
You can tab to the highlighted fields and overtype them with new values.

v Type CEMT SET FECONNECTION (CEMT S FEC) with either TARGET(targetname)
NODE(nodename) or ALL, followed by one or more attribute settings that you want
to change. For example, cemt s fec al ac causes sessions to be bound for all
FEPI connections.

Typing ? at the beginning of either the first or second line gives a syntax prompt.
Resetting the values takes effect immediately.

CEMT SET FECONNECTION

�� CEMT Set FEConnection Target (targetname) NODe (nodename)
ALl

�

�
INSErvice
Outservice

ACquired
Released

��

Options

ACquired
specifies that the connection is to have a session established (that is, ‘bound’).
The state is ACQUIRING until this is completed.

ALl
specifies that any change you request is made to all connections that you are
authorized to access.

INSErvice
specifies that the connection is to be put in service and can be used in a
conversation.

Chapter 9. Operator control of FEPI 75

NODe(nodename)
specifies the 8-character name of the node identifying a connection.

Outservice
specifies that the connection is to be put out of service and not to be used for
any new conversations, though existing conversations are unaffected. The
service state is GOINGOUT until these conversations end.

Released
specifies that the connection is to have its session ended (that is, ‘unbound’),
when usage of the connection by all owned conversations ends. (An unowned
conversation on the connection is ended immediately.) The state is
RELEASING until this is completed.

Target(targetname)
specifies the 8-character name of the target identifying a connection.

CEMT SET FENODE
Change the state of FEPI nodes.

Syntax

Press the Clear key to clear the screen. There are two ways of commencing this
transaction:
v Type CEMT SET FENODE (the minimum abbreviation is CEMT S FEN) with either a

nodename or ALL. You get a display that lists the current status, similar to that
obtained by CEMT INQUIRE FENODE. You can tab to the highlighted fields
and overtype them with new values.

v Type CEMT SET FENODE (CEMT S FEN) with either a nodename or ALL, followed by
one or more attribute settings that you want to change. For example, cemt s fen
al ac causes the VTAM ACBs for all FEPI nodes to be opened, and ‘set logon
start’ to be done.

Typing ? at the beginning of either the first or second line gives a syntax prompt.
Resetting the values takes effect immediately.

CEMT Set FENode

�� CEMT Set FENode (nodename)
ALl INSErvice

Outservice
ACquired
Released

��

Options

ACquired
specifies that the VTAM ACB for the node should be opened, and ‘set logon
start’ is to be done. The state is ACQUIRING until this is completed.

ALl
specifies that any change you request is made to all nodes that you are
authorized to access.

INSErvice
specifies that the node is in service and can be used in a conversation.

(nodename)
specifies the 8-character name of the node whose state is to be changed.

76 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Outservice
specifies that the node is to be put out of service and not to be used for any
new conversations, though existing conversations are unaffected. The service
state is GOINGOUT until these conversations end.

Released
specifies that the VTAM ACB for the node is to be closed, when usage of the
node by any conversation ends. The state is RELEASING until this is
completed.

CEMT SET FEPOOL
Change the state of FEPI pools of connections.

Syntax

Press the Clear key to clear the screen. There are two ways of commencing this
transaction:
v Type CEMT SET FEPOOL (the minimum abbreviation is CEMT S FEPO) with either a

poolname or ALL. You get a display that lists the current status, similar to that
obtained by CEMT INQUIRE FEPOOL. You can tab to the highlighted ‘service
state’ field and overtype it with a new value.

v Type CEMT SET FEPOOL (CEMT S FEPO) with either a poolname or ALL, followed by a
service state setting. For example, cemt s fepo fepool1 i specifies that the
fepool1 pool is in service and available for use by a conversation.

Typing ? at the beginning of either the first or second line gives a syntax prompt.
Resetting the values takes effect immediately.

CEMT SET FEPOOL

�� CEMT Set FEPOol (poolname)
All INSErvice

Outservice

��

Options

All
specifies that any change you request is made to all pools that you are
authorized to access.

INSErvice
specifies that the pool is in service and can be used in a conversation.

Outservice
specifies that the pool is to be put out of service and not be used for any new
conversations, though existing conversations are unaffected. The service state is
GOINGOUT until these conversations end.

(poolname)
specifies the pool of connections to be changed.

CEMT SET FETARGET
Change the state of FEPI targets.

Chapter 9. Operator control of FEPI 77

Syntax

Press the Clear key to clear the screen. There are two ways of commencing this
transaction:
v Type CEMT SET FETARGET (the minimum abbreviation is CEMT S FET) with either a

targetname or ALL. You get a display that lists the current status, similar to that
obtained by CEMT INQUIRE FETARGET. You can tab to the highlighted ‘service
state’ field and overtype it with a new value.

v Type CEMT SET FETARGET (CEMT S FET) with either a targetname or ALL, followed
by a service state setting. For example, cemt s fet fetarg1 i specifies that the
fetarg1 target is in service and available for use by a conversation.

Typing ? at the beginning of either the first or second line gives a syntax prompt.
Resetting the values takes effect immediately.

CEMT Set FETarget

�� CEMT Set FETarget (targetname)
All INSErvice

Outservice

��

Options

All
specifies that any change you request is made to all targets that you are
authorized to access.

INSErvice
specifies that the target is in service and can be used in a conversation.

Outservice
specifies that the target is out of service and cannot be used for any new
conversations, though existing conversations are unaffected. The service state is
GOINGOUT until these conversations end.

(targetname)
specifies the 8-character name of the target to be changed.

VTAM commands
In addition to the resource control facilities provided by FEPI, you can use specific
VTAM commands to manage communication with target systems.

They are particularly useful where there are problems in acquiring or releasing
sessions; see “ACQSTATUS” on page 53.

These commands are fully described in the VTAM Operations manual, but are
summarized here. You can:
v Use the VTAM DISPLAY command to inquire about the status of the FEPI nodes

(acting as SLUs) and the target systems. It should normally be necessary to use
this command only when you experience problems in communicating with a
particular target. Note that to understand the displays you require some
knowledge of how VTAM operates. VTAM messages are explained in the VTAM
Messages and Codes manual.

v Use the VTAM VARY command to control the availability of resources within
the network. In the case of FEPI, you can use it to force the closure of a node

78 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

regardless of whether it is being used in an active conversation. This is achieved
by making the VTAM node inactive. However, any pending request to change to
a state of RELEASED or OUTSERVICE is able to complete. A subsequent VARY
ACTIVE command makes the node available for use again (if its state is still
INSERVICE).

v Use the VTAM VARY TERM command to terminate individual
connections—that is, to end the session between a particular PLU (target) and
SLU (FEPI) pair.

v Use the VTAM DISPLAY SESSIONS command to diagnose problems in
establishing sessions. To use this command, you require an understanding of
VTAM session processing.

Chapter 9. Operator control of FEPI 79

80 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 10. Customizing FEPI

This section outlines the customization features of FEPI.

It contains:
v “FEPI journaling” on page 85.

It assumes that you are aware of the customization features of CICS (programming
information about these is in the CICS Customization Guide).

This section contains Product-sensitive Programming Interface information.

Front End Programming Interface exits XSZARQ and XSZBRQ
If you have installed the Front End Programming Interface (FEPI), you can use
global user exits XSZARQ and XSZBRQ before and after FEPI commands.

XSZBRQ
Invoked before a FEPI command is executed (but after the syntax of the
command has been validated, and therefore after EDF processing).

XSZARQ
Invoked immediately after a FEPI command has completed (before EDF
processing).

Note that both the FEPI application programming and system programming
commands cause XSZBRQ and XSZARQ to be invoked, but the latter do not
provide the exit programs with any meaningful information.

You cannot use exit programming interface (XPI) calls or EXEC CICS commands in
programs invoked from these exits. The exits allow you to monitor the FEPI
commands and data being processed; you can inhibit commands, and modify
specific command options. You could use them for:
v Monitoring the issue of FEPI commands
v Load balancing
v External security on application programming commands.

XSZBRQ
XSZBRQ is invoked before a FEPI command is executed; the input parameters for
the command are passed to the exit program.

The majority of the information passed is read-only, but you can write a program
to update specific parameters. FEPI does not check the validity of the new values
for the updated parameters. In addition, your exit program can decide whether the
request is to be processed or bypassed. You could use XSZBRQ, for example, to log
commands, to bypass commands that violate the conventions of your installation,
or to reroute commands by changing their specified targets or pools.

Together, UEPSZALP and UEPSZALT contain the information necessary to initiate
a conversation.

© Copyright IBM Corp. 1992, 2011 81

When invoked
Invoked by FEPI before a FEPI command runs, but after syntax and
semantic checking.

Exit-specific parameters

UEPSZACT
A 2-byte field that identifies the command. The values are given in
Table 5 on page 84.

UEPSZCNV
An 8-character field containing the conversation ID (CONVID) for
the command. Applicable on FEPI ALLOCATE, SEND, RECEIVE,
CONVERSE, EXTRACT, ISSUE, START, and FREE commands.

UEPSZALP
An 8-character field containing the name of the pool (POOL).
Modifiable and applicable on FEPI ALLOCATE and CONVERSE
commands.

UEPSZALT
An 8-character field containing the name of the target (TARGET).
Modifiable and applicable on FEPI ALLOCATE and CONVERSE
commands.

UEPSZTIM
Fullword binary field containing the time-out value (TIMEOUT).
Modifiable and applicable on FEPI ALLOCATE, RECEIVE,
CONVERSE, and START commands.

UEPSZSND
Address of the ‘send’ data-area (FROM). Applicable on FEPI
CONVERSE and SEND commands.

UEPSZSNL
Fullword binary field containing the length of the ‘send’ data
(FROMFLENGTH, FLENGTH). Applicable on FEPI CONVERSE
and SEND commands.

UEPSZSTT
A 4-character field containing the transaction ID (TRANSID).
Modifiable and applicable on FEPI START commands.

UEPSZSTM
A 4-character field containing the terminal ID (TERMID).
Modifiable and applicable on FEPI START commands.

UEPSZSNK
A 1-bit flag field indicating whether data is in key stroke format
(KEYSTROKE). Applicable on FEPI CONVERSE FORMATTED and
SEND FORMATTED commands. It can contain the following
values:

UEPSZSNK_OFF
Not key stroke format.

UEPSZSNK_ON
Key stroke format.

UEPSZSNE
A 1-character field containing the key stroke escape character
(ESCAPE). Applicable on FEPI CONVERSE FORMATTED and
SEND FORMATTED commands.

82 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Return codes

UERCNORM
Continue processing.

UERCBYP
Do not process the request; return INVREQ to the application.

Note: Your exit program cannot bypass events (like CICS
shutdown or end-of-task).

XPI calls
Do not use XPI calls.

XSZARQ
XSZARQ is invoked immediately after a FEPI command has been executed; the
exit program is passed the parameters that are output from the command. All of
the information passed is read-only.

When invoked
Invoked by FEPI immediately after a FEPI command has been processed.

Exit-specific parameters

UEPSZACN
A 2-byte field that identifies the command. The values are given in
Table 5 on page 84.

UEPSZCON
An 8-character field containing the conversation ID (CONVID) for
the command. Applicable on FEPI ALLOCATE, SEND, RECEIVE,
CONVERSE, EXTRACT, ISSUE, START, and FREE commands.

UEPSZRP2
Fullword containing the response code for the command (RESP2).

UEPSZRVD
Address of the ‘receive’ data-area (INTO). Applicable on FEPI
RECEIVE, CONVERSE, and EXTRACT FIELD commands.

UEPSZRVL
Fullword binary data field containing the length of the receive data
(FLENGTH, TOFLENGTH). Applicable on FEPI RECEIVE,
CONVERSE, and EXTRACT FIELD commands.

Return code

UERCNORM
Continue processing.

XPI calls
Do not use any XPI calls.

The UEPSZACT and UEPSZACN exit-specific parameters
Both XSZBRQ and XSZARQ are passed a parameter (UEPSZACT for XSZBRQ,
and UEPSZACN for XSZARQ) indicating the command or event being processed.

Table 5 on page 84. relates the hexadecimal values passed in UEPSZACT and
UEPSZACN to the FEPI commands they represent.

Chapter 10. Customizing FEPI 83

Table 5. Settings of UEPSZACT for exit XSZBRQ and UEPSZACN for exit XSZARQ

Name Setting (hex) FEPI command or event

UEPSZNOA 820E AP NOOP
UEPSZOAL 8210 ALLOCATE
UEPSZOCF 8212 CONVERSE FORMATTED
UEPSZOCD 8214 CONVERSE DATASTREAM
UEPSZOXC 8216 EXTRACT CONV
UEPSZOXF 8218 EXTRACT FIELD
UEPSZOXS 821A EXTRACT STSN
UEPSZOFR 821C FREE
UEPSZOSU 821E ISSUE
UEPSZORF 8220 RECEIVE FORMATTED
UEPSZORD 8222 RECEIVE DATASTREAM
UEPSZOSF 8224 SEND FORMATTED
UEPSZOSD 8226 SEND DATASTREAM
UEPSZOST 8228 START
UEPSZSDN 8402 CICS normal shutdown 1
UEPSZSDI 8404 CICS immediate shutdown 1
UEPSZSDF 8406 CICS forced shutdown 1
UEPSZEOT 8408 CICS end-of-task 1
UEPSZNOS 840E SP NOOP
UEPSZOQY 8422 INQUIRE PROPERTYSET
UEPSZOIY 8428 INSTALL PROPERTYSET
UEPSZODY 8430 DISCARD PROPERTYSET
UEPSZOQN 8442 INQUIRE NODE
UEPSZOTN 8444 SET NODE
UEPSZOIN 8448 INSTALL NODELIST
UEPSZOAD 844A ADD POOL
UEPSZODE 844C DELETE POOL
UEPSZODN 8450 DISCARD NODELIST
UEPSZOQP 8462 INQUIRE POOL
UEPSZOTP 8464 SET POOL
UEPSZOIP 8468 INSTALL POOL
UEPSZODP 8470 DISCARD POOL
UEPSZOQT 8482 INQUIRE TARGET
UEPSZOTT 8484 SET TARGET
UEPSZOIT 8488 INSTALL TARGETLIST
UEPSZODT 8490 DISCARD TARGETLIST
UEPSZOQC 84A2 INQUIRE CONNECTION
UEPSZOTC 84A4 SET CONNECTION
Note:

v 1 These events are generated internally by CICS; you cannot bypass them.

Using XMEOUT to control message output
You can use the XMEOUT global user exit, in the CICS message domain, to
suppress or reroute FEPI messages.

Note, however, that error conditions that generate a message also generate a
transient data queue record. It is more efficient to handle such events using a
monitoring program, through the TD queue, than by duplicating a message and
then acting on it.

84 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

FEPI journaling
This section describes the format of FEPI journal records, and how to print them.

For background information about CICS journaling, you should refer to Reading
log streams using batch jobs, in the CICS Operations and Utilities Guide; for
programming information, see CICS logging and journaling, in the CICS
Customization Guide.
Related tasks

Reading log streams using batch jobs (for example, DFHJUP)

FEPI journal operation
You can request FEPI to write inbound, outbound, or both inbound and outbound
data to a specified CICS user journal; you cannot write to the system log. This is
done using the MSGJRNL, FJOURNALNUM, and FJOURNALNAME options in
your property set definitions.

Of the various reasons for using CICS journaling, the following are particularly
relevant to FEPI processing:
v Creating audit trails
v Monitoring performance
v Controlling message security.

Table 6 shows the types of FEPI data that can be journaled.

Table 6. FEPI journaled data

FEPI command Data flow Type

SEND Outbound Data stream Formatted, screen image
Formatted, key stroke

RECEIVE Inbound Data stream Formatted, screen image

CONVERSE Outbound Data stream Formatted, screen image
Formatted, key stroke

CONVERSE Inbound Data stream Formatted, screen image

EXTRACT FIELD Inbound Extract field data

The records journaled by FEPI are identified in the usual way by module and
function identifiers. These are listed in Table 7.

Table 7. FEPI journal record identifiers

Identifier-type Name Value Type of data

Module identifier MODIDFEP X'5D' Identifies FEPI records in the
journal

Function identifiers FIDFEPIN
FIDFEPOU

X'F0'
X'F1'

Identifies FEPI inbound data
Identifies FEPI outbound data

In order to identify the conversation for which the data was journaled, FEPI
provides a prefix area in the journal record.

Chapter 10. Customizing FEPI 85

Printing FEPI journal records
Each FEPI journal record contains a prefix area which contains FEPI-related
information.

You can select FEPI journal records in the following ways, using a batch job like
the CICS-supplied utility program DFHJUP:
v Print or copy selected journal records from CICS log streams or SMF data sets,

as specified by control statement input
v Select and print journal records on the basis of their sequential position in the

log stream or SMF data set
v Select and print journal records as determined by data contained within the

records themselves, such as the contents of time, date, or identification fields
v Allow EXIT routines to process any selected journal records
v Print or copy an entire log stream or SMF data set.

The FEPI prefix area lies within the API user header, as shown in Figure 8.

CL_UH_LENGTH
4-byte length of header

CL_UH_JOURNAL_TYPE
2-byte journal type

Reserved
2-byte reserved field

CL_UH_PREFIX_LENGTH
4-byte length of prefix

Prefix area
The variable length prefix

User data
Variable length user data

User dataPrefix areaPrefix length

Journal type

2 44 2

Header length
CL_UH_LENGTH

CL_UH_JOURNAL_TYPE

CL_UH_PREFIX_LENGTH
Reserved

Variable lengthFixed length

Figure 8. Format of the API user header, showing the position of the prefix area

86 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

The exact format of this FEPI prefix area is shown in Figure 9.

UP_MODFN
1-byte module function.

UP_SVMID
1-byte module identifier.

UP_FEPDF
1-byte data function.

Field UP_FEPDF can take any of the following values:

Table 8. Values of UP_FEPDF

Field name Value Meaning

UP_FEPDD 1 Data stream

UP_FEPDS 2 Formatted, screen image

UP_FEPDK 3 Formatted, keystroke

UP_FEPDE 4 Extract field data

UP_FEPES
1-byte escape character for keystroke.

Reserved
2-byte reserved field.

UP_FEPPL
8-byte pool name.

UP_FEPTG
8-byte target name.

Fixed length

481 8 821 11

Module identifier
UP_ SVMID

Module function
UP_ MODFN

UP_ FEPDF

UP_ FEPES

ReservedEscape character
for keystroke

Pool name
UP_ FEPPL

Reserved

Target name
UP_ FEPTG

Conversation identifier
UP_ FEPCV

Data function

Figure 9. Format of the FEPI prefix area

Chapter 10. Customizing FEPI 87

UP_FEPCV
8-byte conversation identifier.

Reserved
4-byte reserved field.

See the CICS Operations and Utilities Guide for examples of ways in which you can
use the CICS-supplied utility program, DFHJUP, to select FEPI records for printing.

See the CICS Customization Guide for details on the structure of journal records.
Related tasks

Reading log streams using batch jobs (for example, DFHJUP)

88 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 11. FEPI system programming reference

This section describes the FEPI system programming commands that you use for
FEPI configuration and operation.

(Application programming commands such as ALLOCATE, CONVERSE, and
EXTRACT are described in Part 4, “FEPI application programming reference,” on
page 175.)

The section contains the following topics:
v “The FEPI SPI commands”
v “Transient data queue records” on page 123.

The FEPI SPI commands
The FEPI system programming commands are an addition to the system
programming group of EXEC CICS commands and have the same features and
properties.

The notation used to describe the syntax of FEPI commands is the same as that
used to describe all system programming commands in CICS. To use these
commands, you must be familiar with:
v The format of EXEC CICS commands
v Input and output values, and CVDAs
v The use of the RESP, RESP2, and NOHANDLE options
v Security checking
v The use of INQUIRE and SET commands
v Browsing.

Unlike other CICS system programming commands, the FEPI system programming
commands do not need the ‘SP’ translator option. However, you do need to specify
the ‘FEPI’ translator option.

The FEPI INQUIRE and SET commands work in the same way as other CICS
INQUIRE and SET commands. They allow you to look at named FEPI resource
definitions, browse sets of related definitions, and modify some of the defined
values.

FEPI commands can be issued in either 24-bit or 31-bit addressing mode, by
programs that reside either above or below the 16MB line. No information is
passed through the EXEC interface block (EIB) except that, as for all CICS
commands, the EIBRESP, EIBRESP2, EIBFN, and EIBRCODE fields are set.

Arguments and data types

The text used to identify arguments indicates the type of data represented by the
argument and whether it is a value used by the command, or an area in which the
command returns data. For example:

© Copyright IBM Corp. 1992, 2011 89

v POOL(8-character data-value) indicates that the argument is, or identifies, a
string of eight characters, and that the string is passed to the command as an
input value.

v ACQNUM(fullword binary data-area) indicates that the argument is a
user-defined fullword data area in which the command can return a binary
number as an output value.

Exceptionally, arguments that are lists have to be data areas, even though they are
input values.

Command format

The general format of a command is:
EXEC CICS FEPI command option(argument)...

where:

command
Is the command name (for example, ADD)

option Is an option name (for example, POOL)

argument
Is the source or destination for data, as required for the specified option,
that is passed to or returned from the command.

The way that you terminate the command is determined by the programming
language that you use—COBOL, for example, requires an END-EXEC statement.

Errors and exception conditions
All FEPI commands support the RESP and RESP2 options to signal successful
completion or an exception condition. Alternatively, you can use HANDLE
CONDITION to trap errors.

Most FEPI command errors give the ‘INVREQ’ exception condition. The particular
error in each case is uniquely identified by the RESP2 value.

Both RESP and RESP2 take, as an argument, the name of a user-defined fullword
binary data area. Possible values of the RESP2 option are given in the description
of each of the commands and a full list is given in “FEPI RESP2 values” on page
260. The following copy books provide declarations for the RESP2 values:
v DFHSZAPA for assembler language
v DFHSZAPO for COBOL
v DFHSZAPP for PL/I
v DFHSZAPC for C.

The following conditions and RESP2 values can occur for any system
programming command:

Condition RESP2 Meaning
INVREQ 10 Command bypassed by user exit.
INVREQ 11 FEPI not installed, or not active.
INVREQ 12 CICS shutting down, command not allowed.
INVREQ 13 FEPI unavailable.
INVREQ 14 FEPI busy or cannot get storage.

90 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Condition RESP2 Meaning
INVREQ 15 Unknown command.
INVREQ 16 Internal error.
INVREQ 17 FEPI cannot get storage for user exit.
INVREQ 18 Command failed through operator or system action.
NOTAUTH 100 Not authorized for this command.

If there is an error, the command does nothing, and the output arguments are not
changed.

By their nature, some commands (for example, FEPI SET NODE INSERVICE)
initiate a function and return before the function has completed. Errors in the
execution of the function cannot be reported as an exception condition on the
command. Such errors are reported by writing a record to a transient data (TD)
queue and a message to the message log CSZL. See “Transient data queue records”
on page 123 for details.

List processing
Commands that operate on a list of resources can fail for some of the resources in
the list, but succeed for others. If this happens, a ‘list error’ is returned on the
command. A record is written to a TD queue for each of the resources for which
the command failed.

Even if the command fails for all of the resources in the list, it may still be partially
successful if other parameters are valid. For example, a FEPI INSTALL POOL
command installs a valid pool even if the array of node names specified on the
NODELIST parameter does not exist.

FEPI ADD POOL
Add targets or nodes to an existing pool.

FEPI ADD POOL

�� FEPI ADD POOL (data-value)
ACQUIRED

ACQSTATUS (cvda)
RELEASED

�

�
NODELIST (data-area) NODENUM (data-value)

�

�
INSERVICE

SERVSTATUS (cvda)
OUTSERVICE

�

�
TARGETLIST (data-area) TARGETNUM (data-value)

��

Chapter 11. FEPI system programming reference 91

Description

FEPI ADD POOL adds targets or nodes, or both, to an existing pool, thereby creating
new connections in the pool. The targets or nodes must not be in the pool already.
You can specify initial service and acquire states for these new connections. The
command completes when the resources have been added to the pool but without
waiting for the requested states to be achieved.

Options

ACQSTATUS(cvda)
specifies the initial acquire state of the connections being created. All the new
connections have the same state. The relevant CVDA values are:

ACQUIRED
The connections are to have sessions established (that is, be ‘bound’).

RELEASED
The connections are not to have sessions established (that is, be left
‘unbound’).

NODELIST(data-area)
specifies a contiguous array of 8-character node names to be added to the pool.
They must already be defined by FEPI INSTALL NODELIST, but can have any
service state.

NODENUM(fullword binary data-value)
specifies the number of names in the NODELIST, in the range 0–256.

POOL(8-character data-value)
specifies the name of the pool to which the targets or nodes, or both, are being
added.

SERVSTATUS(cvda)
specifies the initial service state of the connections being created. All the new
connections have the same state. The relevant CVDA values are:

INSERVICE
The connections are to be in service, and so can be used in a
conversation.

OUTSERVICE
The connections are to be out of service and cannot be used for any
conversation.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names to be added to the
pool. They must already be defined by FEPI INSTALL TARGETLIST, but can
be in any service state.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the range 0–256.

Conditions

INVREQ
RESP2 values:

110 SERVSTATUS value not valid.

111 ACQSTATUS value not valid.

115 POOL name unknown.

92 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

116 TARGET name unknown.

117 NODE name unknown.

119 The command failed for one or more items in the list.

130 TARGETNUM value is out of range.

131 NODENUM value is out of range.

173 NODE name already exists in the specified pool.

174 TARGET name already exists in the specified pool.

175 Connection already exists.

FEPI DELETE POOL
Remove targets or nodes from a specified FEPI pool.

FEPI DELETE POOL

�� FEPI DELETE POOL (data-value) �

�
NODELIST (data-area) NODENUM (data-value)

�

�
TARGETLIST (data-area) TARGETNUM (data-value)

��

Description

FEPI DELETE POOL removes targets or nodes, or both, from a specified pool,
thereby removing connections from the pool. The targets or nodes must be in the
pool already. The command completes immediately, without waiting for the
necessary deletions to be achieved. When the connections are deleted, they are no
longer defined to FEPI.

Options

NODELIST(data-area)
specifies a contiguous array of 8-character node names that are to be deleted
from the pool.

NODENUM(fullword binary data-value)
specifies the number of names in the NODELIST, in the range 0–256.

POOL(8-character data-value)
specifies the name of the pool from which targets or nodes are to be removed.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names that are to be deleted
from the pool.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the range 0–256.

Conditions

INVREQ
RESP2 values:

115 POOL name unknown.

Chapter 11. FEPI system programming reference 93

116 TARGET name unknown.

117 NODE name unknown.

119 The command failed for one or more items in the list.

130 TARGETNUM value out of range.

131 NODENUM value out of range.

FEPI DISCARD NODELIST
Remove nodes from FEPI.

FEPI DISCARD NODELIST

�� FEPI DISCARD NODELIST (data-area) NODENUM (data-value) ��

Description

FEPI DISCARD NODELIST removes nodes completely from FEPI. The state of
each node to be discarded is set to OUTSERVICE RELEASED (see “FEPI SET
NODE” on page 120). When this state is achieved, the node is deleted from any
pool that it is in. The nodes are then discarded so that they are no longer defined
to FEPI. The command completes immediately without waiting for the necessary
service and acquire states to be achieved.

Options

NODELIST(data-area)
specifies a contiguous array of 8-character node names that are to be discarded.

NODENUM(fullword binary data-value)
specifies the number of names in NODELIST, in the range 1–256.

Conditions

INVREQ
RESP2 values:

117 NODE name unknown.

119 The command failed for one or more items in the list.

131 NODENUM value out of range.

FEPI DISCARD POOL
Remove a pool of connections.

FEPI DISCARD POOL

�� FEPI DISCARD POOL (data-value) ��

Description

FEPI DISCARD POOL removes a pool of connections completely from FEPI. The
state of the connections in the pool is set to OUTSERVICE RELEASED (see “FEPI
SET CONNECTION” on page 118), and the state of the pool is set to OUTSERVICE

94 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

(see “FEPI SET POOL” on page 121). When these states have been achieved, the
pool and its connections are discarded, so that they are no longer defined to FEPI.
The command completes immediately, without waiting for the necessary service
and acquire states to be achieved.

Options

POOL(8-character data-value)
specifies the name of the pool to be discarded.

Conditions

INVREQ
RESP2 values:

115 POOL name unknown.

FEPI DISCARD PROPERTYSET
Remove a set of properties.

FEPI DISCARD PROPERTYSET

�� FEPI DISCARD PROPERTYSET (data-value) ��

Description

FEPI DISCARD PROPERTYSET removes a set of properties. The properties are
discarded immediately so that they are no longer defined to FEPI, but any pool
that was installed using the properties is not affected.

Options

PROPERTYSET(8-character data-value)
Specifies the name of the set of properties to be discarded.

Conditions

INVREQ
RESP2 values:

171 PROPERTYSET name unknown.

FEPI DISCARD TARGETLIST
Remove targets from FEPI.

FEPI DISCARD TARGETLIST

�� FEPI DISCARD TARGETLIST (data-area) TARGETNUM (data-value) ��

Description

FEPI DISCARD TARGETLIST removes targets completely from FEPI. The state of
the targets to be discarded is set to OUTSERVICE (see “FEPI SET TARGET” on
page 122). When this state has been achieved, the targets are deleted from any pool
they are in, and are then discarded, so that they are no longer defined to FEPI. The

Chapter 11. FEPI system programming reference 95

command completes immediately, without waiting for the necessary service and
acquire states to be achieved.

Options

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names that are to be
discarded.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the range 1–256.

Conditions

INVREQ
RESP2 values:

116 TARGET name unknown.

119 The command failed for one or more items in the list.

130 TARGETNUM value out of range.

FEPI INQUIRE CONNECTION
Inquire on a FEPI connection.

FEPI INQUIRE CONNECTION

�� FEPI INQUIRE CONNECTION NODE (data-value) TARGET (data-value) �

�
ACQNUM (data-area) ACQSTATUS (cvda)

�

�
CONVNUM (data-area) INSTLSTATUS (cvda)

�

�
LASTACQCODE (data-area) POOL (data-area)

�

�
SERVSTATUS (cvda) STATE (cvda)

�

�
USERDATA (data-area) WAITCONVNUM (data-area)

��

Description

FEPI INQUIRE CONNECTION returns information about a FEPI connection. A
connection is identified by specifying its target and node.

The following commands allow you to browse all FEPI connections.
FEPI INQUIRE CONNECTION START
FEPI INQUIRE CONNECTION NEXTNODE|NEXTTARGET
NODE(8-character data-area)
TARGET(8-character data-area)
[The options are as for FEPI INQUIRE CONNECTION]
FEPI INQUIRE CONNECTION END

Conditions: INVREQ, NOTAUTH

96 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

The next connection for which information is returned depends on whether
NEXTNODE or NEXTTARGET is specified. If NEXTNODE is specified, the
information returned is for:
v The next node connected to the current target
v If there are no more nodes connected to the current target, then the first node

connected to the next target.

If NEXTTARGET is specified, the information returned is for:
v The next target connected to the current node
v If there are no more targets connected to the current node, then the first target

connected to the next node.

Options

ACQNUM(fullword binary data-area)
returns the number of times that the connection has been acquired.

ACQSTATUS(cvda)
returns the acquire state; that is, whether a session on the connection is bound
or not. The relevant CVDA values are:

ACQUIRED
The session is bound.

ACQUIRING
A state of ACQUIRED has been requested but binding a session has not
yet been completed.

RELEASED
No session is bound.

RELEASING
A state of RELEASED has been requested but unbinding the session has
not yet been completed.

If ACQUIRING or RELEASING persist, the operator might need to intervene
using VTAM commands to recover the connection.

CONVNUM(fullword binary data-area)
returns the number of conversations that have used the connection.

INSTLSTATUS(cvda)
returns the install state of the connection. The relevant CVDA values are:

INSTALLED
The connection is in a pool defined by INSTALL and is available for
use.

NOTINSTALLED
The connection is in a pool, or involves a node or target that is being
discarded but is still in use.

LASTACQCODE(fullword binary data-area)
returns the result of the last acquire request for the connection; that is, the
sense code from the last VTAM REQSESS, zero indicating success.

Note: CLSDST(PASS)—X'32020000'—can be returned in this field. This is the
unbind flow received by CICS during CLSDST(PASS) processing.

For details of VTAM sense codes, see the VTAM Messages and Codes manual, or
SNA Formats manual.

Chapter 11. FEPI system programming reference 97

NODE(8-character data-value/8-character data-area)
is the node identifying the connection.

POOL(8-character data-area)
returns the name of the pool that defines the connection.

SERVSTATUS(cvda)
returns the service state of the connection. The relevant CVDA values are:

INSERVICE
The connection is in service and can be used in a conversation.

OUTSERVICE
The connection is out of service and cannot be used for any new
conversation, but a conversation using the connection is unaffected.
The service state is GOINGOUT until any such conversation ends.

GOINGOUT
A state of OUTSERVICE has been requested but the connection is still
being used by some conversation.

STATE(cvda)
returns the state of the conversation using the connection. The relevant CVDA
values are:

NOCONV
No conversation is active on the connection.

PENDSTSN
An STSN-handling task has been scheduled.

STSN An STSN-handling task owns the conversation.

PENDBEGIN
A begin-session handling task has been scheduled.

BEGINSESSION
A begin-session handling task owns the conversation.

APPLICATION
A normal application task owns the conversation.

PENDDATA
FEPI is waiting for inbound data, following a FEPI START command.

PENDSTART
Inbound data having arrived, a task specified by FEPI START has been
scheduled.

PENDFREE
An end-session handling task has been scheduled, following a FEPI
FREE command.

FREE An end-session handling task owns the conversation, following a FEPI
FREE command.

PENDRELEASE
An end-session handling task has been scheduled, following an unbind
request.

RELEASE
An end-session handling task owns the conversation, following an
unbind request.

98 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

PENDUNSOL
An unsolicited-data handling task has been scheduled.

UNSOLDATA
An unsolicited-data handling task owns the conversation.

PENDPASS
The conversation is unowned, following a FEPI FREE PASS command.

The ‘pending’ states indicate that the conversation is unowned, pending the
event or task indicated; the state ceases to be pending when a task issues a
FEPI ALLOCATE PASSCONVID command. If a ‘pending’ state persists, it is
likely that the application has failed in some way; you should consider
resetting the connection by issuing FEPI SET CONNECTION RELEASED.

TARGET(8-character data-value/8-character data-area)
is the target identifying the connection.

USERDATA(64-character data-area)
returns the user data for the connection. If no user data has been set, nulls are
returned.

WAITCONVNUM(fullword binary data-area)
returns the number of conversations that are waiting to start using the
connection. Note that, if a conversation could use any one of several
connections, it is counted as waiting on each one.

Conditions

ILLOGIC
RESP2 values:

1 For START: browse of this resource type is already in progress. For
NEXT or INQUIRE: END was not issued.

END
RESP2 values:

2 For NEXT: all resource definitions have been retrieved.

INVREQ
RESP2 values:

116 TARGET name unknown.

117 NODE name unknown.

118 Connection unknown (TARGET and NODE names known, but not in a
common pool).

FEPI INQUIRE NODE
Inquire on a FEPI node.

FEPI INQUIRE NODE

�� FEPI INQUIRE NODE (data-value)
ACQNUM (data-area)

�

�
ACQSTATUS (cvda) INSTLSTATUS (cvda)

�

Chapter 11. FEPI system programming reference 99

�
LASTACQCODE (data-area) SERVSTATUS (cvda)

�

�
USERDATA (data-area)

��

Description

FEPI INQUIRE NODE returns information about a FEPI node.

The following commands allow you to browse all FEPI NODE definitions.
FEPI INQUIRE NODE START
FEPI INQUIRE NODE(8-character data-area) NEXT
[The options are as for FEPI INQUIRE NODE]
FEPI INQUIRE NODE END

Options

ACQNUM(fullword binary data-area)
returns the number of times that the node has been acquired.

ACQSTATUS(cvda)
returns the acquire state—that is, whether the VTAM ACB is opened or closed.
The relevant CVDA values are:

ACQUIRED
The VTAM ACB for the node is open and ‘set logon start’ has
completed.

ACQUIRING
A state of ACQUIRED has been requested but opening the VTAM ACB
for the node and issuing ‘set logon start’ has not yet been completed.

RELEASED
Sessions on any connections involving the node have been unbound
and the VTAM ACB has been closed.

RELEASING
A state of RELEASED has been requested but closing the VTAM ACB for
the node has not yet been completed.

If ACQUIRING or RELEASING persist, the operator might need to intervene
using VTAM commands to recover the node.

INSTLSTATUS(cvda)
returns the install state of the node. The relevant CVDA values are:

INSTALLED
The node has been defined by INSTALL and is available for use.

NOTINSTALLED
The node is being discarded, but is still in use.

LASTACQCODE(fullword binary data-area)
returns the result of the last acquire request for the node; that is, the return
code from the last VTAM OPEN ACB, zero indicating success. For details of
VTAM return codes, see the VTAM Programming manual.

NODE(8-character data-value/8-character data-area)
is the name of the node.

100 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

SERVSTATUS(cvda)
returns the service state of the node. The relevant CVDA values are:

INSERVICE
The node is in service and can be used in a conversation.

OUTSERVICE
The node is out of service and cannot be used for any conversation.

GOINGOUT
A state of OUTSERVICE has been requested but the node is still being
used by a conversation.

USERDATA(64-character data-area)
returns the user data for the node. If no user data has been set, nulls are
returned.

Conditions

ILLOGIC
RESP2 value:

1 For START: browse of this resource type is already in progress. For
NEXT or END: START was not issued.

END
RESP2 value:

2 For NEXT: all resource definitions have been retrieved.

INVREQ
RESP2 value:

117 NODE name unknown.

FEPI INQUIRE POOL
Inquire on a FEPI pool.

FEPI INQUIRE POOL

�� FEPI INQUIRE POOL (data-value)
BEGINSESSION (data-area)

�

�
CONTENTION (cvda) DEVICE (cvda)

�

�
ENDSESSION (data-area) EXCEPTIONQ (data-area)

�

�
FJOURNALNAME (data-area)
FJOURNALNUM (data-area)

FORMAT (cvda)
�

�
INITIALDATA (cvda) INSTLSTATUS (cvda)

�

�
MAXFLENGTH (data-area) MSGJRNL (cvda)

�

Chapter 11. FEPI system programming reference 101

�
PROPERTYSET (data-area) SERVSTATUS (cvda)

�

�
STSN (data-area) UNSOLDATA (data-area)

�

�
UNSOLDATACK (cvda) USERDATA (data-area)

�

�
WAITCONVNUM (data-area)

��

Description

FEPI INQUIRE POOL returns information about a FEPI pool of connections.

The following commands allow you to browse all FEPI POOL definitions.
FEPI INQUIRE POOL START
FEPI INQUIRE POOL(8-character data-area) NEXT
[The options are as for FEPI INQUIRE POOL]
FEPI INQUIRE POOL END

Options

BEGINSESSION(4-character data-area)
returns the name of the transaction performing begin-session processing, or
blanks if no transaction was specified.

CONTENTION(cvda)
returns a value that specifies what happens when a FEPI SEND command is
issued and there is inbound data with ‘begin bracket’. The relevant CVDA
values are:

LOSE FEPI SEND command fails; a FEPI RECEIVE must be issued to get the
inbound data.

WIN FEPI SEND command succeeds; inbound data is rejected with a
negative response.

DEVICE(cvda)
returns a value that identifies the mode of conversation and the type of device.
Defined values are:

T3278M2
SLU2 mode, 3278 Model 2

T3278M3
SLU2 mode, 3278 Model 3

T3278M4
SLU2 mode, 3278 Model 4

T3278M5
SLU2 mode, 3278 Model 5

T3279M2
SLU2 mode, 3279 Model 2B

T3279M3
SLU2 mode, 3279 Model 3B

102 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

T3279M4
SLU2 mode, 3279 Model 4B

T3279M5
SLU2 mode, 3279 Model 5B

TPS55M2
SLU2 mode, PS/55, 24 lines

TPS55M3
SLU2 mode, PS/55, 32 lines

TPS55M4
SLU2 mode, PS/55, 43 lines

LUP SLU P mode, all cases.

ENDSESSION(4-character data-area)
returns the name of the transaction performing end-session processing, or
blanks if no transaction was specified.

EXCEPTIONQ(4-character data-area)
returns the name of the TD queue to which exceptional events are notified, or
blanks if no queue was specified.

FJOURNALNAME(8-character data-area)
returns the 1- to 8-character name of the journal where data is to be logged.

FJOURNALNUM(fullword binary data-area)
returns the number of the journal where data is to be logged.

FORMAT(cvda)
returns a value that identifies the data format. The relevant CVDA values are:

FORMATTED
Formatted operation

DATASTREAM
Data stream operation

NOTAPPLIC
Option is not applicable for the specified pool.

INITIALDATA(cvda)
returns a value indicating whether initial inbound data is expected when a
session is started. The relevant CVDA values are:

NOTINBOUND
No inbound data expected

INBOUND
Inbound data expected.

INSTLSTATUS(cvda)
returns the install state of the pool. The relevant CVDA values are:

INSTALLED
The pool has been defined by INSTALL and is available for use.

NOTINSTALLED
The pool is being discarded, but is still in use.

MAXFLENGTH(fullword binary data-area)
returns the maximum length of data that can be returned on any FEPI

Chapter 11. FEPI system programming reference 103

RECEIVE, CONVERSE, or EXTRACT FIELD command for a conversation, or
that can be sent by any FEPI SEND or CONVERSE command for a
conversation.

MSGJRNL(cvda)
returns a value indicating whether journaling is performed for inbound and
outbound data. The relevant CVDA values are:

NOMSGJRNL
No journaling is to be performed.

INPUT
Inbound data is journaled.

OUTPUT
Outbound data is journaled.

INOUT
Inbound and outbound data are journaled.

POOL(8-character data-value/8-character data-area)
is the name of the pool.

PROPERTYSET(8-character data-area)
returns the name of the set of properties with which the pool was installed.

SERVSTATUS(cvda)
returns the service state of the pool. The relevant CVDA values are:

INSERVICE
The pool is in service and can be used in a conversation.

OUTSERVICE
The pool is out of service and cannot be used for any conversation.

GOINGOUT
A state of OUTSERVICE has been requested but the pool is still being
used by some conversation.

STSN(4-character data-area)
returns the name of the transaction handling STSN data, or blanks if no
transaction was specified.

UNSOLDATA(4-character data-area)
returns the name of the transaction handling unsolicited data (data received
outside a conversation), or blanks if no transaction was specified.

UNSOLDATACK(cvda)
if there is no unsolicited data processing, this indicates what acknowledgment
FEPI gives to a BID. The relevant CVDA values are:

NEGATIVE
Negative response X'0813', BID not accepted

POSITIVE
Positive response, BID accepted and subsequent data is accepted and
discarded

NOTAPPLIC
Option is not applicable for the specified pool.

USERDATA(64-character data-area)
returns the user data for the pool. If no user data has been set, nulls are
returned.

104 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

WAITCONVNUM(fullword binary data-area)
returns the number of conversations that are waiting to start using a
connection in the pool.

Conditions

ILLOGIC
RESP2 value:

1 For START: browse of this resource type is already in progress. For
NEXT or END: START was not issued.

END
RESP2 value:

2 For NEXT: all resource definitions have been retrieved.

INVREQ
RESP2 value:

115 POOL name unknown.

FEPI INQUIRE PROPERTYSET
Inquire on a FEPI property set.

FEPI INQUIRE PROPERTYSET

�� FEPI INQUIRE PROPERTYSET (data-value) �

�
BEGINSESSION (data-area) CONTENTION (cvda)

�

�
DEVICE (cvda) ENDSESSION (data-area)

�

�
EXCEPTIONQ (data-area) FJOURNALNAME (data-area)

FJOURNALNUM (data-area)

�

�
FORMAT (cvda) INITIALDATA (cvda)

�

�
MAXFLENGTH (data-area) MSGJRNL (cvda)

�

�
STSN (data-area) UNSOLDATA (data-area)

�

�
UNSOLDATACK (cvda)

��

Description

FEPI INQUIRE PROPERTYSET returns information about a FEPI property set.

The following commands allow you to browse all FEPI PROPERTYSET definitions:

Chapter 11. FEPI system programming reference 105

FEPI INQUIRE PROPERTYSET START
FEPI INQUIRE PROPERTYSET(8-character data-area) NEXT
[The options are as for FEPI INQUIRE PROPERTYSET]
FEPI INQUIRE PROPERTYSET END

Options

BEGINSESSION(4-character data-area)
returns the name of the transaction performing begin-session processing, or
blanks if no transaction was specified.

CONTENTION(cvda)
returns a value that specifies what happens when a FEPI SEND command is
issued and there is inbound data with ‘begin bracket’. The relevant CVDA
values are:

LOSE FEPI SEND command fails; a FEPI RECEIVE must be issued to get the
inbound data.

WIN FEPI SEND command succeeds; inbound data is rejected with a
negative response.

DEVICE(cvda)
returns a value that identifies the mode of conversation and the type of device.
Defined values are:

T3278M2
SLU2 mode, 3278 Model 2

T3278M3
SLU2 mode, 3278 Model 3

T3278M4
SLU2 mode, 3278 Model 4

T3278M5
SLU2 mode, 3278 Model 5

T3279M2
SLU2 mode, 3279 Model 2B

T3279M3
SLU2 mode, 3279 Model 3B

T3279M4
SLU2 mode, 3279 Model 4B

T3279M5
SLU2 mode, 3279 Model 5B

TPS55M2
SLU2 mode, PS/55, 24 lines

TPS55M3
SLU2 mode, PS/55, 32 lines

TPS55M4
SLU2 mode, PS/55, 43 lines

LUP SLU P mode, all cases.

ENDSESSION(4-character data-area)
returns the name of the transaction performing end-session processing, or
blanks if no transaction was specified.

106 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

EXCEPTIONQ(4-character data-area)
returns the name of the TD queue to which exceptional events are notified, or
blanks if no queue was specified.

FJOURNALNAME(8-character data-area)
returns the 1- to 8-character name of the journal where data is to be logged.

FJOURNALNUM(fullword binary data-area)
returns the number of the journal where data is to be logged.

FORMAT(cvda)
returns a value that identifies the data format. The relevant CVDA values are:

FORMATTED
Formatted operation

DATASTREAM
Data stream operation

NOTAPPLIC
Option is not applicable for the specified pool.

INITIALDATA(cvda)
returns a value indicating whether initial inbound data is expected when a
session is started. The relevant CVDA values are:

NOTINBOUND
No inbound data expected

INBOUND
Inbound data expected.

MAXFLENGTH(fullword binary data-area)
returns the maximum length of data that can be returned on any FEPI
RECEIVE, CONVERSE, or EXTRACT FIELD command for a conversation, or
that can be sent by any FEPI SEND or CONVERSE command for a
conversation.

MSGJRNL(cvda)
returns a value indicating whether journaling is performed for inbound and
outbound data. The relevant CVDA values are:

NOMSGJRNL
No journaling is to be performed.

INPUT
Inbound data is journaled.

OUTPUT
Outbound data is journaled.

INOUT
Inbound and outbound data are journaled.

PROPERTYSET(8-character data-value/8-character data-area)
is the name of the set of properties.

STSN(4-character data-area)
returns the name of the transaction handling STSN data (SLU P mode only), or
blanks if no transaction was specified.

UNSOLDATA(4-character data-area)
returns the name of the transaction handling unsolicited data (data received
outside a conversation), or blanks if no transaction was specified.

Chapter 11. FEPI system programming reference 107

UNSOLDATACK(cvda)
indicates what acknowledgment FEPI gives to a BID, if there is no
unsolicited-data processing. The relevant CVDA values are:

NEGATIVE
Negative response X'0813', BID not accepted

POSITIVE
Positive response, BID accepted and subsequent data is accepted and
discarded

NOTAPPLIC
Option is not applicable for the specified pool.

Conditions

ILLOGIC
RESP2 value:

1 For START: browse of this resource type is already in progress. For
NEXT or END: START was not issued.

END
RESP2 value:

2 For NEXT: all resource definitions have been retrieved.

INVREQ
RESP2 value:

171 PROPERTYSET name unknown.

FEPI INQUIRE TARGET
Inquire on a FEPI target.

FEPI INQUIRE TARGET

�� FEPI INQUIRE TARGET (data-value)
APPL (data-area)

�

�
INSTLSTATUS (cvda) SERVSTATUS (cvda)

�

�
USERDATA (data-area)

��

Description

FEPI INQUIRE TARGET returns information about a FEPI target.

The following commands allow you to browse all FEPI TARGET definitions.
FEPI INQUIRE TARGET START
FEPI INQUIRE TARGET(8-character data-area) NEXT
[The options are as for FEPI INQUIRE TARGET]
FEPI INQUIRE TARGET END

108 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Options

APPL(8-character data-area)
returns the VTAM application name of the back-end system that the target
system represents.

INSTLSTATUS(cvda)
returns the install state of the target. The relevant CVDA values are:

INSTALLED
The target has been defined by INSTALL and is available for use.

NOTINSTALLED
The target is being discarded but is still in use.

SERVSTATUS(cvda)
returns the service state of the target. The relevant CVDA values are:

INSERVICE
The target is in service and can be used in a conversation.

OUTSERVICE
The target is out of service and cannot be used for any conversation.

GOINGOUT
A state of OUTSERVICE has been requested but the target is still being
used by some conversation.

TARGET(8-character data-value/8-character data-area)
is the name of the target.

USERDATA(64-character data-area)
returns the user data for the target. If no user data has been set, nulls are
returned.

Conditions

ILLOGIC
RESP2 value:

1 For START: browse of this resource type is already in progress. For
NEXT or END: START was not issued.

END
RESP2 value:

2 For NEXT: all resource definitions have been retrieved.

INVREQ
RESP2 value:

116 TARGET name unknown.

FEPI INSTALL NODELIST
Define new nodes to FEPI.

FEPI INSTALL NODELIST

�� FEPI INSTALL NODELIST (data-area) NODENUM (data-value) �

Chapter 11. FEPI system programming reference 109

�
ACQUIRED

ACQSTATUS (cvda)
RELEASED

PASSWORDLIST (data-area)
�

�
INSERVICE

SERVSTATUS (cvda)
OUTSERVICE

��

Description

FEPI INSTALL NODELIST defines new nodes to FEPI. You may specify initial
service and acquire states for these new nodes. A node cannot be used for a
conversation until it has been acquired, put in service, and added to a pool so that
it is connected to a target. The command completes when the nodes have been
defined without waiting for the requested states to be achieved.

Options

ACQSTATUS(cvda)
specifies the initial acquire state of the nodes being defined. All nodes in the
list have the same state. The relevant CVDA values are:

ACQUIRED
The VTAM ACB for the node is to be opened and ‘set logon start’ is to
be done.

RELEASED
The VTAM ACB for the node is not to be opened.

NODELIST(data-area)
specifies a contiguous array of 8-character node names (that is, VTAM
application minor node names in the front-end) to be defined. Names must not
contain null characters (X'00'), leading blanks, or embedded blanks.

NODENUM(fullword binary data-value)
specifies the number of names in NODELIST, in the range 1–256.

PASSWORDLIST(data-value)
specifies a contiguous array of 8-character passwords. They correspond
one-to-one with the node names in NODELIST. The passwords are those that
VTAM requires to access the application minor nodes. They are not required if
passwords are not used. You can use a value of 8 null characters (X'00') to
indicate ‘no password’.

SERVSTATUS(cvda)
specifies the initial service state of the nodes being defined. All nodes in the
list have the same state. The relevant CVDA values are:

INSERVICE
The nodes are in service and can be used in a conversation.

OUTSERVICE
The nodes are out of service and cannot be used for any conversation.

Conditions

INVREQ
RESP2 values:

110 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

11 FEPI not installed or not active.

110 SERVSTATUS value not valid.

111 ACQSTATUS value not valid.

119 The command failed for one or more items in the list.

131 NODENUM value out of range.

163 NODE name not valid.

173 NODE name already exists.

176 The VTAM OPEN ACB failed.

FEPI INSTALL POOL
Define a new pool of connections.

FEPI INSTALL POOL

�� FEPI INSTALL POOL (data-value) PROPERTYSET (data-value) �

�
ACQUIRED

ACQSTATUS (cvda)
RELEASED

�

�
NODELIST (data-area) NODENUM (data-value)

�

�
INSERVICE

SERVSTATUS (cvda)
OUTSERVICE

�

�
TARGETLIST (data-area) TARGETNUM (data-value)

��

Description

FEPI INSTALL POOL defines a new pool of connections to FEPI. Any targets and
nodes specified in the command are added to it, thereby creating new connections
in the pool. You may specify an initial service state for the pool, and initial service
and acquire states for any new connections. A pool cannot be used for a
conversation until it has been put in service. The command completes when the
pool has been created and any resources added; it does not wait for the requested
states to be achieved.

Options

ACQSTATUS(cvda)
specifies the initial acquire state of the connections being created. All the new
connections have the same state. The relevant CVDA values are:

ACQUIRED
The connections are to have sessions established (that is, ‘bound’).

Chapter 11. FEPI system programming reference 111

RELEASED
The connections are not to have sessions established (that is, left
‘unbound’).

NODELIST(data-area)
specifies a contiguous array of 8-character node names. They must already be
defined by FEPI INSTALL NODELIST.

NODENUM(fullword binary data-value)
specifies the number of names in NODELIST, in the range 0–256.

POOL(8-character data-value)
specifies the name of the pool to be defined. The name must not contain null
characters (X'00'), leading blanks, or embedded blanks.

PROPERTYSET(8-character data-value)
specifies the name of the set of properties for the pool, which must have been
installed already.

SERVSTATUS(cvda)
specifies the initial service state of the pool being defined and of the
connections being created. All the new connections have the same state. The
relevant CVDA values are:

INSERVICE
The pool and any connections are in service and can be used in a
conversation.

OUTSERVICE
The pool and any connections are out of service and cannot be used
for any conversation.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names. They must already be
defined by FEPI INSTALL TARGETLIST.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the range 0–256.

Conditions

INVREQ
RESP2 values:

11 FEPI not installed or not active.

110 SERVSTATUS value not valid.

111 ACQSTATUS value not valid.

116 TARGET name unknown.

117 NODE name unknown.

119 The command failed for one or more items in the list.

130 TARGETNUM value out of range.

131 NODENUM value out of range.

162 POOL name not valid.

171 PROPERTYSET name unknown.

172 POOL name already exists.

175 The connection already exists.

112 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

FEPI INSTALL PROPERTYSET
Define a new set of properties.

FEPI INSTALL PROPERTYSET

�� FEPI INSTALL PROPERTYSET (data-value) �

�
BEGINSESSION (data-value)

LOSE

CONTENTION (cvda)
WIN

�

�
T3278M2

DEVICE (cvda)
T3278M3
T3278M4
T3278M5
T3279M2
T3279M3
T3279M4
T3279M5
TPS55M2
TPS55M3
TPS55M4
LUP

ENDSESSION (data-value)
�

�
EXCEPTIONQ (data-value) FJOURNALNAME (data-value)

FJOURNALNUM (data-value)

�

�
FORMATTED

FORMAT (cvda)
DATASTREAM

NOTINBOUND

INITIALDATA (cvda)
INBOUND

�

�
MAXFLENGTH (data-value)

NOMSGJRNL

MSGJRNL (cvda)
INPUT
OUTPUT
INOUT

�

�
STSN (data-value)

�

�
NEGATIVE

UNSOLDATA (data-value) UNSOLDATACK (cvda)
POSITIVE

��

Chapter 11. FEPI system programming reference 113

Description

FEPI INSTALL PROPERTYSET defines a new set of properties to FEPI, which can
be applied to any subsequently defined pool.

Options

Note: Specifying a blank value for BEGINSESSION, ENDSESSION, EXCEPTIONQ,
STSN, or UNSOLDATA has the same effect as omitting the option.

BEGINSESSION(4-character data-value)
specifies the name of the transaction to perform begin-session processing,
immediately after a session has been established (‘bound’). If omitted, there is
to be no user-supplied begin-session processing.

CONTENTION(cvda)
specifies what happens when a FEPI SEND command is issued and there is
inbound data with begin-bracket. The relevant CVDA values are:

LOSE The FEPI SEND command fails; a FEPI RECEIVE must be issued to get
the inbound data.

WIN The FEPI SEND command succeeds; inbound data is rejected with a
negative response.

DEVICE(cvda)
specifies the LU mode and device type that is to be simulated. The relevant
CVDA values are:

T3278M2
SLU2 mode, 3278 Model 2

T3278M3
SLU2 mode, 3278 Model 3

T3278M4
SLU2 mode, 3278 Model 4

T3278M5
SLU2 mode, 3278 Model 5

T3279M2
SLU2 mode, 3279 Model 2B

T3279M3
SLU2 mode, 3279 Model 3B

T3279M4
SLU2 mode, 3279 Model 4B

T3279M5
SLU2 mode, 3279 Model 5B

TPS55M2
SLU2 mode, PS/55, 24 lines

TPS55M3
SLU2 mode, PS/55, 32 lines

TPS55M4
SLU2 mode, PS/55, 43 lines

LUP SLU P mode, all cases.

114 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

ENDSESSION(4-character data-value)
specifies the name of the transaction to perform end-session processing, when
a conversation is ended (by a FEPI FREE command) or when a session is to be
ended (‘unbound’). If omitted, there is to be no user-supplied end-session
processing.

EXCEPTIONQ(4-character data-value)
specifies the name of the TD queue to which pool-specific exceptional events
are to be notified. If EXCEPTIONQ is omitted, there is to be no user-supplied
exceptional event processing.

FJOURNALNAME(8-character data-value)
specifies the 1- to 8-character name of the journal where data is to be logged.
You are not permitted to specify DFHLOG or DFHSHUNT, the primary and
secondary system logs. If the value is zero or omitted, no journaling is done.

FJOURNALNUM(fullword binary data-value)
specifies the number of the journal where data is to be logged, in the range 1
through 99. Specifying a value here implies the journal name 'DFHJnn, where
nn is the journal number. If the value is zero or omitted, no journaling is done.

FORMAT(cvda)
specifies, for SLU2 mode, the data mode to be used. The relevant CVDA values
are:

FORMATTED
Formatted operation. Character attributes are not supported on
outbound data and ignored on inbound data.

DATASTREAM
Data stream operation.

This option is not valid for SLU P operation.

INITIALDATA(cvda)
specifies whether initial inbound data is expected when a session is started.
The relevant CVDA values are:

NOTINBOUND
No inbound data is expected.

INBOUND
Inbound data is expected.

If the target is a back-end IMS system, you should specify INBOUND. See
“Begin-session handler” on page 158.

MAXFLENGTH(fullword binary data-value)
specifies the maximum length of data that can be returned on any FEPI
RECEIVE, CONVERSE, or EXTRACT FIELD command for a conversation, or
that can be sent by any FEPI SEND or CONVERSE command for a
conversation. This value helps FEPI use storage more efficiently, so should be
set no larger than is necessary. It must be in the range 128–1 048 576. If
MAXFLENGTH is not specified, 4096 is used.

MSGJRNL(cvda)
specifies the required journaling of data to and from the back-end system. The
relevant CVDA values are:

NOMSGJRNL
No journaling

Chapter 11. FEPI system programming reference 115

INPUT
Journal inbound data

OUTPUT
Journal outbound data

INOUT
Journal inbound and outbound data.

PROPERTYSET(8-character data-value)
specifies the name of the set of properties to be defined. The name must not
contain null characters (X'00'), leading blanks, or embedded blanks.

STSN(4-character data-value)
specifies the name of the transaction to be started to handle ‘set and test
sequence number’ (STSN), for SLU P mode only. If omitted, there is to be no
user-supplied STSN-handling; FEPI handles STSN automatically.

UNSOLDATA(4-character data-value)
specifies the name of the transaction to handle unsolicited data (data received
outside a conversation). If omitted, there is to be no user-supplied
unsolicited-data processing; FEPI treats unsolicited data as specified by
UNSOLDATACK.

UNSOLDATACK(cvda)
if there is to be no unsolicited-data processing, this specifies what
acknowledgment FEPI is to give to a BID. The relevant CVDA values are:

NEGATIVE
Negative response X'0813', BID not accepted

POSITIVE
Positive response, BID accepted and subsequent data is accepted and
discarded.

Conditions

INVREQ
RESP2 values:

11 FEPI not installed or not active.

140 DEVICE value not valid.

141 CONTENTION value not valid.

142 INITIALDATA value not valid.

143 UNSOLDATACK value not valid.

144 MSGJRNL value not valid.

150 FORMAT value not valid or is unsuitable for the LU mode and device
type specified by the DEVICE value.

153 STSN name not valid or STSN is not allowed for the LU mode and
device type specified by the DEVICE value.

154 BEGINSESSION name not valid.

155 UNSOLDATA name not valid.

156 EXCEPTIONQ name not valid.

157 FJOURNALNUM value not valid.

158 MAXFLENGTH value not valid.

116 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

159 ENDSESSION name not valid.

160 PROPERTYSET name not valid.

170 PROPERTYSET name already exists.

178 FJOURNALNAME value not valid.

FEPI INSTALL TARGETLIST
Define new targets to FEPI.

FEPI INSTALL TARGETLIST

�� FEPI INSTALL TARGETLIST (data-area) APPLLIST (data-area) �

� TARGETNUM (data-value)
INSERVICE

SERVSTATUS (cvda)
OUTSERVICE

��

Description

FEPI INSTALL TARGETLIST defines new targets to FEPI. You can specify an initial
service state for these new targets. A target cannot be used for a conversation until
it has been put in service, and has been added to a pool so that it is connected to a
node. The command completes when the targets have been installed without
waiting for the requested states to be achieved.

Options

APPLLIST(data-area)
specifies a contiguous array of 8-character primary logical unit (PLU) names.
These are the VTAM application names (APPLID) of the back-end CICS or IMS
systems with which FEPI applications are to communicate; they correspond
one-to-one with the target names in TARGETLIST. The names must not contain
null characters (X'00'), leading blanks, or embedded blanks. Each name must
be unique within the list; duplicate names result in an INVREQ condition
being returned.

If a target specified in TARGETLIST is a CICS terminal-owning region that is a
member of a VTAM generic resource group, you can specify in APPLLIST its
generic resource name. This enables you to use the VTAM generic resource
function to balance sessions across the available TORs. See “Workload
balancing in a sysplex” on page 26.

SERVSTATUS(cvda)
specifies the initial service state of the targets being defined. All the targets in
the list have the same state. The relevant CVDA values are:

INSERVICE
The target is in service and can be used in a conversation.

OUTSERVICE
The target is out of service and cannot be used for any conversation.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names to be defined. A target
name is the logical FEPI front-end name of a back-end system. The names

Chapter 11. FEPI system programming reference 117

must not contain null characters (X'00'), leading blanks, or embedded blanks.
Each name must be unique within the list; duplicate names result in an
INVREQ condition being returned.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the range 1–256.

Conditions

INVREQ
RESP2 values:

11 FEPI not installed or not active.

110 SERVSTATUS value not valid.

119 The command failed for one or more items in the list.

130 TARGETNUM value out of range.

164 TARGET name not valid.

167 Application name not valid.

174 TARGET name already exists.

177 Application name already exists.

FEPI SET CONNECTION
Set a FEPI connection.

FEPI SET CONNECTION

�� FEPI SET CONNECTION �

� NODE (data-value)
NODELIST (data-area) NODENUM (data-value)

�

� TARGET (data-value)
TARGETLIST (data-area) TARGETNUM (data-value)

�

�
ACQSTATUS (cvda)
ACQUIRED
RELEASED

SERVSTATUS (cvda)
INSERVICE
OUTSERVICE

�

�
USERDATA (data-value)

��

Description

FEPI SET CONNECTION controls the use of FEPI connections. Lists may be used
to set more than one connection at a time; all connections in the list are set to the
same state. The command completes immediately, although the requested settings
may not be achieved until later.

Options

ACQSTATUS(cvda)
specifies the acquire state of the connection; that is, whether a session should
be established (‘bound’) or not (‘unbound’). The relevant CVDA values are:

118 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

ACQUIRED
The connection is to have a session established (that is, ‘bound’). The
state is ACQUIRING until this is completed.

RELEASED
The connection is to have its session ended (that is, ‘unbound’), when
usage of the connection by all owned conversations ends. (An
unowned conversation on the connection is ended immediately. See the
STATE option of “FEPI INQUIRE CONNECTION” on page 96.) The
state is RELEASING until this is completed.

If this option is not coded, the acquire state is not changed.

NODE(8-character data-value)
specifies the node name that identifies a connection.

NODELIST(data-area)
specifies a contiguous array of 8-character node names identifying connections.

NODENUM(fullword binary data-value)
specifies the number of node names in NODELIST, in the range 1–256.

SERVSTATUS(cvda)
specifies the service state of the connection; that is, whether the connection can
be used for a conversation or not. The relevant CVDA values are:

INSERVICE
Allows usage of the connection in a conversation.

OUTSERVICE
Stops usage of a connection for any new conversation, although
existing conversations are unaffected. The service state is GOINGOUT
until these conversations end.

If this option is not coded, the service state is not changed.

TARGET(8-character data-value)
Specifies the target name that identifies a connection.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names identifying a
connection or connections.

TARGETNUM(fullword binary data-value)
specifies the number of target names in TARGETLIST, in the 1–256.

USERDATA(64-character data-value)
Specifies optional user data relating to the connections; it is not used by FEPI.
It replaces any previous user data that was set.

Conditions

INVREQ
RESP2 values:

110 SERVSTATUS value not valid.

111 ACQSTATUS value not valid.

116 TARGET name unknown.

117 NODE name unknown.

118 Unknown connection (TARGET and NODE names are known but not
connected in any pool).

Chapter 11. FEPI system programming reference 119

119 The command failed for one or more items in the list.

130 TARGETNUM value out of range.

131 NODENUM value out of range.

FEPI SET NODE
Control the use of FEPI nodes.

FEPI SET NODE

�� FEPI SET NODE (data-value)
NODELIST (data-area) NODENUM (data-value)

�

�
ACQSTATUS (cvda)
ACQUIRED
RELEASED

SERVSTATUS (cvda)
INSERVICE
OUTSERVICE

�

�
USERDATA (data-value)

��

Description

FEPI SET NODE controls the use of FEPI nodes. Lists may be used to set more
than one node at a time; all nodes in the list are set to the same state. The function
completes immediately, although the requested settings may not be achieved until
later.

Options

ACQSTATUS(cvda)
specifies the acquire state of the node; that is, whether its VTAM ACB should
be opened or closed. The relevant CVDA values are:

ACQUIRED
The VTAM ACB for the node is to be opened and ‘set logon start’ is to
be done. The state is ACQUIRING until this is completed.

RELEASED
The VTAM ACB for the node is to be closed when usage of the node
by any conversation ends. The state is RELEASING until this is
completed.

If this option is not coded, the acquire state is not changed.

NODE(8-character data-value)
specifies the node to be set.

NODELIST(data-area)
specifies a contiguous array of 8-character node names to be set.

NODENUM(fullword binary data-value)
specifies the number of node names in NODELIST, in the range 1–256.

SERVSTATUS(cvda)
specifies the service state of the node; that is, whether the node can be used for
a conversation or not. The relevant CVDA values are:

120 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

INSERVICE
Allows usage of the node in a conversation.

OUTSERVICE
Stops usage of a node for any new conversation, although existing
conversations are unaffected. The service state is GOINGOUT until these
conversations end.

If this option is not coded, the service state is not changed.

USERDATA(64-character data-value)
Specifies optional user data relating to the nodes; it is not used by FEPI. It
replaces any previous user data that was set.

Conditions

INVREQ
RESP2 values:

110 SERVSTATUS value not valid.

111 ACQSTATUS value not valid.

117 NODE name unknown.

119 The command failed for one or more items in the list.

131 NODENUM value is out of range.

174 The VTAM OPEN ACB failed.

FEPI SET POOL
Set the use of FEPI pools.

FEPI SET POOL

�� FEPI SET POOL (data-value)
POOLLIST (data-area) POOLNUM (data-value)

�

�
SERVSTATUS (cvda)
INSERVICE
OUTSERVICE

USERDATA (data-value)
��

Description

FEPI SET POOL controls the use of FEPI pools. Lists may be used to set more than
one pool at a time; all pools in the list are set to the same state. The function
completes immediately, although the requested settings may not be achieved until
later.

Options

POOL(8-character data-value)
specifies the pool to be set.

POOLLIST(data-area)
specifies a contiguous array of 8-character pool names to be set.

POOLNUM(fullword binary data value)
specifies the number of pool names in POOLLIST, in the range 1–256.

Chapter 11. FEPI system programming reference 121

SERVSTATUS(cvda)
specifies the service state of the pool; that is, whether the pool can be used for
a conversation or not. The relevant CVDA values are:

INSERVICE
Allows usage of the pool in a conversation.

OUTSERVICE
Stops usage of a pool for any new conversation, although existing
conversations are unaffected. The service state is GOINGOUT until these
conversations end.

If this option is not coded, the service state is not changed.

USERDATA(64-character data-value)
Specifies optional user data relating to the pools; it is not used by FEPI. It
replaces any previous user data that was set.

Conditions

INVREQ
RESP2 values:

110 SERVSTATUS value not valid.

115 POOL name unknown.

119 The command failed for one or more items in the list.

132 POOLNUM value is out of range.

FEPI SET TARGET
Set the use of FEPI targets.

FEPI SET TARGET

�� FEPI SET TARGET (data-value)
TARGETLIST (data-area) TARGETNUM (data-value)

�

�
SERVSTATUS (cvda)
INSERVICE
OUTSERVICE

USERDATA (data-value)
��

Description

FEPI SET TARGET controls the use of FEPI targets. Lists may be used to set more
than one target at a time; all targets in the list are set to the same state. The
function completes immediately, although the requested settings may not be
achieved until later.

Options

SERVSTATUS(cvda)
specifies the service state of the target; that is, whether the target can be used
for a conversation or not. The relevant CVDA values are:

INSERVICE
Allows usage of the target in a conversation.

122 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

OUTSERVICE
Stops usage of a target for any new conversation, although existing
conversations are unaffected. The service state is GOINGOUT until these
conversations end.

If this option is not coded, the service state is not changed.

TARGET(8-character data-value)
specifies the name of the target to be set.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names to be set.

TARGETNUM(fullword binary data-value)
specifies the number of target names in TARGETLIST, in the 1–256.

USERDATA(64-character data-value)
Specifies optional user data relating to the targets; it is not used by FEPI. It
replaces any previous user data that was set.

Conditions

INVREQ
RESP2 values:

110 SERVSTATUS value not valid.

116 TARGET name unknown.

119 The command failed for one or more items in the list.

130 TARGETNUM value is out of range.

FEPI SP NOOP

FEPI SP NOOP

�� FEPI SP NOOP ��

Description

FEPI SP NOOP has no effect.

Options

None.

Conditions

None specific to this command.

Transient data queue records
In response to various unexpected events, FEPI writes a record, describing the
event and its circumstances, to a transient data (TD) queue.

Such events include:
v Errors in functions initiated by a system programming command
v Errors for items in a list on a system programming command

Chapter 11. FEPI system programming reference 123

v Events unrelated to any command.

If the event relates to a specific pool, the record is written to the queue specified
by EXCEPTIONQ for that pool; if EXCEPTIONQ was not specified, no record is
written. If the event does not relate to a specific pool, the record is written to
queue CSZX. In all cases, if the appropriate TD queue does not exist or if it is not
defined as non-recoverable, the record is lost.

The format of the record is as follows. The copy books DFHSZAPA, DFHSZAPO,
DFHSZAPC, and DFHSZAPP (according to your programming language) provide
declarations for this record structure.

DATATYPE Fullword binary data-area
EVENTTYPE CVDA
EVENTVALUE Fullword binary data-area
EVENTDATA 8-character data-area
Reserved 4-character data-area
POOL 8-character data-area
TARGET 8-character data-area
NODE 8-character data-area
CONVID 8-character data-area
DEVICE CVDA
FORMAT CVDA
Reserved 8-character data-area.

Fields
CONVID(8-character data-area)

the conversation ID for which the event occurred; null if not applicable.

DATATYPE(fullword binary data-area)
identifies the type and structure of the data. A value of 2 indicates FEPI TD
queue data.

DEVICE(cvda)
the device type of the conversation for which the event occurred (the values
are as for FEPI INQUIRE POOL); zero if not applicable.

EVENTDATA(8-character data-area)
contains data about the event:

Event Data
ACQFAIL 2 fullword binary numbers:

v VTAM reason code

v Count
SESSIONFAIL 2 fullword binary numbers:

v VTAM reason code

v Count
SESSIONLOST 2 fullword binary numbers:

v VTAM reason code

v Count
Others Nulls

124 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

If the count is nonzero, it indicates the number of times the node acquire or
session start has failed; it will be tried again. A zero count indicates that
several failures have occurred and that there will be no further attempts to
acquire the node or start the session.

EVENTTYPE(cvda)
indicates what the event was.

Exceptional events queued to common TD queue CSZX:

ACQFAIL A node could not be acquired (its VTAM ACB could not be
opened).

DISCARDFAIL A resource in a list could not be discarded by FEPI DISCARD.
INSTALLFAIL A resource in a list could not be installed by FEPI INSTALL.
SESSION An unsolicited bind was received.
SETFAIL A connection or resource in a list could not be set by FEPI SET

or FEPI INSTALL.

Exceptional events queued to pool-specific TD queue:

ADDFAIL A connection in a list could not be added to the pool by FEPI
ADD.

DELETEFAIL A connection in a list could not be deleted from the pool by
FEPI DELETE.

SESSIONFAIL Session could not be started.
SESSIONLOST Active session was lost.

EVENTVALUE(fullword binary data area)
provides further information about the event. Values are:

Event Value
ACQFAIL 0
ADDFAIL The RESP2 value describing the failure, as given in the

description of the FEPI ADD command
DELETEFAIL The RESP2 value describing the failure, as given in the

description of the FEPI DELETE command
DISCARDFAIL The RESP2 value describing the failure, as given in the

description of the FEPI DISCARD command
INSTALLFAIL The RESP2 value describing the failure, as given in the

description of the FEPI INSTALL command
SESSION 0
SESSIONFAIL The RESP2 value describing the communication failure; it can be

any of the RESP2 values in the range 182–199.
SESSIONLOST The RESP2 value describing the communication failure; it can be

any of the RESP2 values in the range 182–199.
SETFAIL The RESP2 value describing the failure, as given in the

description of the FEPI SET command

FORMAT(cvda)
the data format of the conversation for which the event occurred (the values
being as for FEPI INQUIRE POOL); zero if not applicable.

NODE(8-character data-area)
the name of the node for which the event occurred; nulls if not applicable.

POOL(8-character data-area)
the name of the pool for which the event occurred; nulls if not applicable.

Chapter 11. FEPI system programming reference 125

TARGET(8-character data-area)
the name of the target for which the event occurred; nulls if not applicable. For
the SESSION event, it is the VTAM application name of the back-end system,
rather than the FEPI target name.

Reserved
nulls.

126 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 12. FEPI problem determination

This section contains guidance information to help you identify the source of errors
that affect your FEPI applications.

For information about using CICS debugging tools, trace, and dump, see the CICS
Problem Determination Guide.

This section contains Diagnosis, Modification or Tuning information. It contains the
following topics:
v “Debugging FEPI applications”
v “FEPI dump”
v “FEPI trace” on page 130
v “FEPI messages” on page 131
v “FEPI abends” on page 132
v “Reporting a FEPI problem to IBM” on page 133.

Debugging FEPI applications
The CICS execution diagnostic facility (EDF) helps users of the EXEC CICS
interface to step through the EXEC CICS commands of an application program.

EDF can be used in just the same way to debug programs that use the EXEC CICS
FEPI commands.

FEPI dump
CICS dump routines are available for FEPI. These routines are under the control of
the usual CICS selection mechanisms.

You generate interpretation of the FEPI areas of a CICS dump by specifying the SZ
keyword from within the interactive problem control system (IPCS). SZ can take
the following values:

SZ value
What is printed

0 No FEPI areas are interpreted.

1 All FEPI areas are interpreted, excluding the stacks.

2 All FEPI areas are interpreted, including the stacks.

If you are looking at a FEPI problem, first ensure the SZ TCB is active, and the
FEPI Resource Manager is running. Look at the kernel and dispatcher prints to
verify their presence.

If the SZ TCB is present, and the FEPI Resource Manager is running, the problem
is probably caused by a wait or an abend. In the case of a wait, the dispatcher and
kernel prints should show where it is located.

After looking at any FEPI trace entries, you should direct your attention to the
output from the ‘SZ=2’ dump formatting keyword. This displays all known FEPI

© Copyright IBM Corp. 1992, 2011 127

control blocks. If you think a storage violation has occurred, use the dump storage
manager options to display the contents of the FEPI storage subpools.

Here are some things that might help you identify a problem when you read the
dump:
v Were any errors reported during interpretation? If so, this may indicate a corrupt

address pointer or a broken chain.
v Follow all the pointers to associated control blocks (such as the conversation

pointed to by the connection). Is this pointer correct? If not, this probably
indicates corruption.

v Are there the expected numbers of nodes, targets, property sets, and pools? If
not, this can indicate a broken chain or an unauthorized deletion.

v Does each pool contain the expected number of connections (that is, the number
of nodes multiplied by the number of targets)? If not, this may indicate the
failure of a FEPI ADD command.

v Has each node been successfully acquired? If not, there is the possibility of
VTAM definition errors. The ACB and RPL may contain VTAM sense
information—perhaps a VTAM major node is inactive.

v Is there successful communication with a target? If not, have APPLID and
PASSWORD been correctly specified? If they are correct, is the back-end system
running?

v Are there any queued ALLOCATE commands? If so, this indicates that there are
not enough connections for the pool to process FEPI conversations without
queuing. This may be acceptable, or not, depending on your configuration.

v Are the event handlers being run? If not, have they been correctly defined to
CICS using RDO?

v Are the event handlers being recursively invoked? If so, this indicates a problem
with a FEPI FREE command, a storage violation, or an internal logic error.

v Is information being correctly sent to the specified transient data queues? If not,
are the queues defined as unrecoverable? Investigation of the DCT may help
here.

v Are transactions being triggered from the TDQs? If not, are the transactions
correctly defined to CICS?

v Is there a current conversation? If so, this conversation may be causing the error.
Is the data correct? Is there any VTAM sense information in the RPL?

v Are the surrogate terminals correct? If not, the links between the nodes, pools,
and targets may have become corrupted.

v Are FEPI SEND or FEPI RECEIVE commands failing due to state errors? If so,
look at the conversation and see if the states are correct. If they are not, the
conversation has become out of step with the VTAM flow.

v Is unexpected data being sent or received in formatted conversations? If so, there
may be corrupt FEPI data. Look at FEPI’s internal terminal character buffer.

v Look at the queues. Are there any requests that look as if they have got stuck? If
so, the FEPI work chains may be corrupt. However, it may be that the flow to
satisfy the requests has not yet happened. If you think it should have happened,
there may be communication problems.

v Look at the FREE queue. The last VTAM event may be shown. If so, does it
correspond with what you expected?

128 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

v Is the behavior of a pool correct? If not, it is possible that the property set used
to define the pool is incorrect. However, if the property set is shown, it could
have been re-created since the pool was defined—treat property set definitions
with care.

v Are there any outstanding timer events that should have run? If so, this may
indicate a chaining failure.

v Has a timer-dependent action been delayed? If so, this could indicate that the
TIMEOUT parameter on the command was incorrect.

v Are you receiving all the data you expect? If not, have you set the correct
end-of-flow condition on the FEPI RECEIVE (or CONVERSE) command?

v Are there many transactions waiting on FEPI? If so, either back-end systems are
not responding, or the FEPI Resource Manager has failed.

v Has a VTAM dump been taken? If so, this may indicate a failure in one of the
VTAM exits.

Using CICS dump facilities to investigate FEPI problems
This section describes how FEPI relates to the rest of CICS, and how its presence is
revealed by the other CICS dump formatting commands.

The problem determination process for FEPI is driven from the usual CICS dump
interpretation routines. The following sections describe what to look for in the
major CICS areas.

Dispatcher
You should see a task (CSZI) running under the SZ task control block.

(However, note that CSZI can run under the QR TCB while executing certain CICS
functions, such as starting transactions and writing to transient data queues.) If
CSZI is not present, then either FEPI is not in the system, or the FEPI Resource
Manager has failed.

Application programs waiting for responses from the FEPI Resource Manager are
shown as waiting on FEPI. (For details of FEPI waits, see the CICS Problem
Determination Guide.)

Interval control
Any transactions that have been started by the FEPI Resource Manager, but not yet
run, appear in the interval control section.

Kernel
In the kernel, you should find a running task named KETCB SZ representing the
SZ TCB that FEPI uses. If KETCB SZ is not present, then either FEPI is not in the
system, or the TCB has abended.

You should find the CSZI task either running or waiting. If CSZI is not present,
then either FEPI is not in the system, or the FEPI Resource Manager has failed.

If an abend has occurred, the usual information is available. The location of the
abend is indicated by the failing module, as follows:

DFHESZ
The application programming EXEC stub

DFHEIQSZ
The system programming EXEC stub

Chapter 12. FEPI problem determination 129

DFHSZATR
The FEPI adapter

DFHSZRMP
The FEPI Resource Manager.

Storage manager
You can use the storage manager dump facilities to display the contents of the
subpools used by FEPI.

If you suspect a storage violation, a comparison of the contents of these subpools
with the areas interpreted by a FEPI dump might show where the corruption has
occurred.

Table 9. FEPI storage subpools

Name Type Chained Above or
below 16MB

line?

Usage

SZSPFCAC Fixed Yes Below ACBs

SZSPFCCD Fixed Yes Any Connections

SZSPFCCM Fixed Yes Any Common area

SZSPFCCV Fixed Yes Any Conversations

SZSPVUDA VAR Yes Any Various data areas

SZSPFCDS Fixed Yes Any Device support
extensions

SZSPFCDT Fixed Yes Any Device-type control
areas

SZSPFCNB Fixed Yes Any NIBs

SZSPFCND Fixed Yes Any Nodes

SZSPFCPD Fixed Yes Any Pools

SZSPFCPS Fixed Yes Any Property sets

SZSPFCRP Fixed Yes Any RPLs

SZSPFCRQ Fixed Yes Any Requests

SZSPFCSR Fixed Yes Any Surrogates

SZSPFCTD Fixed Yes Any Targets

SZSPFCWE Fixed Yes Any DQEs

FEPI trace
There are appropriate trace entries in the CICS trace table which are under the
control of the usual CICS mechanisms.

FEPI trace entries are listed in the CICS Trace Entries manual.

FEPI generates exception and event trace entries - the latter under control of the
‘SZ’ component code. Points AP 1200 through AP 16FF are reserved for use by
FEPI, although not all of these are used.

130 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Taking and interpreting trace entries
FEPI supports only one level of tracing. At CICS initialization, you can specify the
default levels of standard and special tracing using the STNTR, SPCTR, STNTRSZ, and
SPCTRSZ system initialization parameters.

About this task

These parameters are described in the CICS System Definition Guide. Exception trace
entries are always taken.

To take trace entries, you can either:

Procedure
1. You can start tracing using either of these methods:

v Use the CETR transaction. The FEPI component code on the CETR
“Component Trace Options” panel is ‘SZ’. Specify ‘SZ 1’ to turn on FEPI
tracing.
You can use the selection features of the CETR transaction to limit tracing to
specific transactions rather than using the SZ component. If you do this, you
can control the tracing of application programs. The FEPI Resource Manager,
running as the CSZI transaction, is unaffected, because trace selection is
applied only at transaction start.

v Use the following command: SET TRACETYPE SZ.
2. Check if there are any exception trace entries. Their presence indicates that a

problem has been detected. Exception trace entries are either initialization
errors or storage management errors.
a. Initialization errors result from checks made when CSZI starts, to prevent a

second instance of the FEPI Resource Manager.
b. Storage errors result from GETMAIN or FREEMAIN errors, and are usually

caused by a lack of CICS storage.
3. Other trace entries are the usual module entry and exit traces, together with a

few points indicating that important processing events have occurred (such as
the FEPI Resource Manager becoming idle).

What to do next

If you are using DFHTRAP under the guidance of IBM support, note that the FEPI
Resource Manager runs under the SZ TCB. Therefore, do not do anything that
could force an MVS task switch to any other TCB.

FEPI messages
Messages produced by FEPI have exactly the same format (DFHSZ...) as other
CICS messages. They are all sent to the FEPI message log (the CSZL transient data
queue); some are also sent to the operator.

FEPI messages are documented in the CICS Messages and Codes manual, and are
also available through the CMAC transaction.

Chapter 12. FEPI problem determination 131

FEPI abends
FEPI does not (deliberately) issue either CICS transaction abends or MVS abends.

However, an unexpected failure can occur in the following places:
v In a FEPI application program when INVREQ is returned
v In the EXEC stubs
v In the FEPI adapter
v In the FEPI Resource Manager transaction (CSZI) code
v In a VTAM exit routine.

These abends have different results, as shown in Table 10.

Table 10. Types of abend issued by FEPI

Point of failure Result

Application The usual transaction abend for the error condition.

EXEC stubs The usual transaction abend for a failure within CICS management
modules. An example of this is an ‘operation’ program check,
which generates a CICS AKEA abend, which in turn generates an
ASRA abend.

FEPI adapter The usual transaction abend for a failure within CICS management
modules. An example of this is an ‘operation’ program check,
which generates a CICS AKEA abend, which in turn generates an
ASRA abend.

FEPI Resource
Manager

No direct effect on the application program, because the abend
occurs under the CSZI Resource Manager task. This probably
results in a DFHSZ4099E message (see “Message DFHSZ4099E”),
and the failure of the Resource Manager. An example of this is an
‘operation’ program check, which generates a CICS AKEA abend,
which in turn generates an ASRA abend. Any CICS FEPI
transactions are left waiting on the FEPI_RQE resource (for details
of FEPI waits, see the CICS Problem Determination Guide.

VTAM exit A VTAM abend; a VTAM dump is taken. Because the exit lies
within the FEPI Resource Manager, the CICS abend handling
routines are activated to process a “normal” failure in the Resource
Manager.

Restart
An abend in an application program, an EXEC stub, or the FEPI adapter affects
only the active CICS task that issued the FEPI command; other FEPI programs
continue as normal.

If an abend affects the SZ TCB, CICS makes that TCB unavailable for use, while
keeping the other CICS TCBs active and accessible. This means that FEPI functions
can be restored only by restarting the CICS system.

Message DFHSZ4099E
This message indicates that the abend exit routine within the FEPI adapter has
trapped an abend within the FEPI Resource Manager.

As soon as an abend within the Resource Manager is detected, the FEPI state (in
the FEPI static area) is set to ‘Failed’. If possible, message DFHSZ4099E is issued,

132 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

together with a SNAP dump, to indicate that FEPI has failed. However, in some
circumstances it is not possible to issue DFHSZ4099E, and a system dump is
generated instead.

Any FEPI transactions are left waiting on the FEPI_RQE resource (for details of
FEPI waits, see the CICS Problem Determination Guide. These waits never get posted,
so the transactions suspend. You must issue a CEMT FORCEPURGE command to
remove these suspended transactions from the system.

Attention: It is strongly recommended that the CSZI transaction is initiated only
as part of CICS system initialization. Do not attempt to restart the CSZI transaction
after a failure, other than by restarting CICS.

Message DFHSZ4155I
This message indicates that a connection has ended, and gives a reason code taken
from the VTAM control blocks. The reason code may be returned in the
LASTACQCODE option of a CEMT or FEPI INQUIRE command, depending on
the operation which generated DFHSZ4155I.

DFHSZ4155I does not always indicate a problem; if you took positive action to end
the connection, DFHSZ4155I merely confirms that VTAM did as you requested.
However, if the connection ended unexpectedly, the reason code tells you why.

To determine what the reason code means, refer to the VTAM Programming
manual.

Reporting a FEPI problem to IBM
When reporting a problem to IBM Support, you must provide details of the CICS
system in which FEPI is installed.

About this task

You must provide the following information:
v All listings from the CICS job, including the CICS job log and JCL
v A print of all reports sent to the CSZL transient data queue
v A full system dump (including the CSA and LSQA)
v Any relevant transaction dumps
v All trace entries (you may need to re-create the problem with SZ trace active)
v A listing of the application program that detected the problem
v Listings of the programs used to configure your FEPI system
v Listings of any active CICS global user exit programs (not only the FEPI ones)
v Prints of user journals, if FEPI journaling was active when the problem occurred.

The following materials might also be required:
v A VTAM trace showing the data flows
v A trace of the back-end system showing what data streams were received from

FEPI application programs
v A VTAM status display showing the status of FEPI connections
v Any dumps or logs produced by the back-end system.

Chapter 12. FEPI problem determination 133

134 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Part 3. FEPI application programming

This part of the book is primarily for application programmers and includes
reference information for FEPI application programming commands.
v Chapter 13, “Basics of FEPI programming,” on page 137 introduces FEPI

programming and the commands that are used.
v Chapter 14, “FEPI key stroke and screen-image applications,” on page 141

discusses the high-level interface for FEPI applications.
v Chapter 15, “FEPI data stream applications,” on page 149 describes the low-level

interface for FEPI applications.
v Chapter 16, “FEPI application design,” on page 157 describes the programs

comprising a FEPI application and various design aspects such as conversation
ownership, handling errors, and specific requirements for CICS and IMS
back-end systems.

v Chapter 17, “Specialized FEPI functions,” on page 173 describes control
functions, normally handled by FEPI, that can be taken over by FEPI
applications.

v Part 4, “FEPI application programming reference,” on page 175 contains
reference information for the FEPI commands that are used in application
programs.

© Copyright IBM Corp. 1992, 2011 135

136 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 13. Basics of FEPI programming

This section introduces FEPI programming and the FEPI commands that you can
use.

Before reading this section you should be familiar with the FEPI concepts and
facilities described in Chapter 1, “Introducing FEPI,” on page 3 and Chapter 4,
“FEPI functions and services,” on page 11.

To write FEPI front-end applications, you need to know how to write programs in
at least one of the programming languages that CICS supports. More importantly,
you also need knowledge of data communication and protocols. And, if you will
be accessing IMS back-end systems, you must also be familiar with using IMS and
writing IMS applications.

The applications that you write using FEPI are normal CICS transactions with the
familiar EXEC CICS commands. These FEPI applications use the FEPI subset of
EXEC CICS application programming commands to:
v Allocate a connection from a pool
v Communicate with a back-end application using this connection
v Free the connection when finished.

The section contains the following topics:
v “Communication and conversations”
v “Structure and design” on page 138.

Communication and conversations
A FEPI application runs in a front-end CICS system and accesses applications in a
back-end CICS or IMS system. FEPI lets it do this by simulating a terminal
connected to the back-end system; this means that it has to act just like a real
terminal and terminal operator.

Note: The highlighted terms in this section are defined in Chapter 4, “FEPI
functions and services,” on page 11.

The back-end systems are known as targets and the connections to them are
arranged in pools that define the properties controlling communication. Targets,
pools, and properties are defined by your system programmer, who can tell you
which targets and pools to use and what properties they have.

When a connection has been established, on successful completion of a bind, the
connection is in session and it can be allocated by FEPI for a conversation with
the back-end system.

Conversations are the basis of all FEPI applications and, depending upon the needs
of your application, may be used in several ways (see Chapter 16, “FEPI
application design,” on page 157):
v A single conversation for all transactions on a back-end system
v A different conversation for each transaction or associated series of transactions
v A special conversation to handle unusual events.

© Copyright IBM Corp. 1992, 2011 137

The task that started the conversation owns it and other tasks cannot issue
commands for it; however, the owning task can transfer ownership to another task.
You can have as many conversations as you like at a time with various targets:
they can be consecutive or, much more usefully, interleaved.

FEPI simulates a 3270-type terminal (SLU2 mode) for both CICS and IMS systems;
it also supports the SLU P mode that is used by IMS for programmable terminals
such as the 4700 family. The mode to be used, SLU2 or SLU P, is a property of the
pool being used. Your application cannot change the mode of a conversation.

The data that you send and receive can be formatted or data stream and, as with
mode, the data type is a property of the pool being used:

Formatted
A high-level data interface for SLU2 mode. The data sent by the FEPI
application can be either key stroke format or screen-image format; data
received by the application is in screen-image format.

Data stream
A low-level data interface for more sophisticated SLU2 mode applications
and for use with SLU P mode. The data sent and received by the FEPI
application is the data stream; applications using this format have access to
some very specialized VTAM communication functions.

The same basic set of FEPI commands is used for all modes and data types and
protocols, but the command options and keywords are generally different.

Structure and design
In addition to your main access program that handles communication with the
back-end system, you might need to provide programs for other functions.

These functions are as follows:

Begin session
Handle begin-session processing.

Unsolicited data
Handle unsolicited inbound data that arrives when there is no
conversation.

End session
Handle end of conversation and end of session processing.

These functions could be combined in one program or implemented in separate
programs with individual transaction names. There may be any number of each
function, again according to your requirements and preferences. Suggestions about
the various possibilities are given later.

As the application programmer, you will always write the main access programs.
Sometimes the system programmer provides any special functions that are
required; otherwise you would be responsible for these. Even if you are writing
only the main access program, you need to be aware of what these special
functions do and how they affect how you communicate with the back-end system.
Because the use of these special functions is controlled by the pools that you use,
you need to liase with the system programmers or administrators who set them
up.

138 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Several different styles of access program are possible:

One-out one-in conversational
One program performs the complete conversation with the target and each
conversation has a single transmission to and from the back-end system.

Conversational
One program performs the complete conversation with the target with
multiple transmissions to and from the back-end system, waiting each time
for the inbound data.

Pseudoconversational
Here, one program sends data to the target and requests CICS to start
another program when the inbound data arrives.

The section beginning with Chapter 14, “FEPI key stroke and screen-image
applications,” on page 141 and ending with Chapter 17, “Specialized FEPI
functions,” on page 173 describes the various features of writing application
programs. A set of sample programs is available to help you to get started; these
are supplied as source code on the distribution tape. For details, see Appendix A,
“FEPI sample programs,” on page 237.

Programming
FEPI programs are CICS applications, so all aspects of CICS programming apply.
The FEPI application programming commands are an extension of the EXEC CICS
commands. They have similar names and similar functions. The FEPI commands
also have similar keywords, but they are distinguished by having FEPI as a prefix.

Your FEPI application programs can be AMODE(24) or AMODE(31) - that is, they
can issue FEPI commands in either 24- or 31-bit addressing mode, and reside
above or below the 16MB line.

The application programming commands are:

EXEC CICS FEPI ALLOCATE
Starts a conversation with a back-end system.

EXEC CICS FEPI FREE
Ends the conversation with a back-end system.

EXEC CICS FEPI REQUEST PASSTICKET
Requests the external security manager to supply a password substitute.

EXEC CICS FEPI SEND
Sends data to the back-end system.

EXEC CICS FEPI RECEIVE
Receives data from the back-end system.

EXEC CICS FEPI CONVERSE
Sends data to and receives data from the back-end system.

EXEC CICS FEPI ISSUE
Sends control data to the back-end system.

EXEC CICS FEPI EXTRACT
Gets field data and attributes, set-and-test sequence number (STSN) data,
or information about a conversation.

EXEC CICS FEPI START
Schedules a CICS transaction to handle inbound data.

Chapter 13. Basics of FEPI programming 139

Note that, when translating your programs, you must specify the FEPI option; this
instructs the translator to process FEPI commands.

For general information about writing CICS application programs, see the CICS
Application Programming Guide. For programming information (including command
formats, argument values, details on the translation of programs, and language
considerations), see the CICS Application Programming Reference. Particularly
relevant are the sections in the CICS Application Programming Guide about designing
efficient applications and dealing with exception conditions.
Related information

CICS API commands
Designing efficient applications
Dealing with exception conditions

Exception conditions
As with all CICS commands, FEPI commands may produce exception conditions
that you can check using the RESP option, or capture using HANDLE
CONDITION.

Most FEPI command errors return INVREQ. The particular error in each case is
uniquely identified by the RESP2 value. All the FEPI exception conditions and
RESP2 values are listed in Part 4, “FEPI application programming reference,” on
page 175. There are copy books that contain declarations for the RESP2 values:
v DFHSZAPA for Assembler language
v DFHSZAPO for COBOL
v DFHSZAPP for PL/I
v DFHSZAPC for C.

If there is an error, the command does nothing, and output values are not changed.
Note, however, that commands such as FEPI SEND may have transferred data
before the condition is recognized.

You can use EDF and CECI to debug FEPI programs. Because FEPI commands can
be quite long, you will probably find the NAME field of CECI useful.

140 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 14. FEPI key stroke and screen-image applications

This section discusses the key stroke and screen-image data interfaces for FEPI
applications.

The examples given in this section are confined to simple conversational
applications. However, you can use this data interface whatever the application
structure. See Chapter 16, “FEPI application design,” on page 157 for further
possibilities together with full details of conversations, error handling, and system
considerations.

The key stroke and screen-image data interface is suitable for a wide range of
applications, and is simpler to use than the alternative data stream interface.
However, there are certain types of application for which you cannot use
screen-image data. For more details, see Chapter 15, “FEPI data stream
applications,” on page 149.

You can send both key stroke and screen-image data in the same conversation. The
inbound data format is the same for both: a screen-image, that you can also access
field-by-field.

You must have general knowledge of data communication and protocols.

The section contains the following topics:
v “General sequence of commands”
v “Sending key stroke data” on page 142
v “Receiving field-by-field” on page 144
v “Multiple attentions” on page 145
v “Sending screen-image data” on page 146
v “Receiving screen-image data” on page 147
v “Extracting field data” on page 148
v “CONVERSE” on page 148.

General sequence of commands
The following diagram illustrates the general sequence of FEPI commands that you
use with key stroke and screen-image data.

That is, a FEPI SEND, multiple FEPI RECEIVES that complete when all the data
has been received, followed by another FEPI SEND.

© Copyright IBM Corp. 1992, 2011 141

Note: The diagram does not show any processing of the data, nor where you
might enter, or leave, the loop. This information is explained more fully in
Chapter 16, “FEPI application design,” on page 157.

Sending key stroke data
Sending key strokes is the easiest way of sending data.

Your program acts in the same way as the keyboard operator, with FEPI letting the
program “press keys” just as the operator does.

A sample program illustrates the techniques used; see “Key stroke CONVERSE” on
page 246.

The data can contain any combination of data characters together with
manipulative, special, and attention key values representing almost every keyboard
key. Data characters are represented as themselves. Manipulative, special, and
attention key values are represented by escape sequences, comprising an escape
character followed by a 2-character code. For example, using '&' for the escape
character, you might send the following sequence to insert AB in one field, type
IJKL into another field, and press PF7 to complete the input operation:

&HO&T2&R1&INAB&RS&N4IJKL&EF&07

Home
Tab, twice

Cursor right
Insert

AB
Reset

Newline, 4 times
IJKL

Erase—EOF
PF7

FEPI SEND without attention As many as you want, or NONE
to build up data to send
Screen Image: AID=X'00'
Key stroke: No final attention key

FEPI SEND with attention Exactly ONE, to send the data

FEPI RECEIVE Get the data

What ENDSTATUS? You must loop until you
eventually receive all the
data. This often comes
with the first FEPI RECEIVEOther EB CD

142 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

If the sequence were in a character string named KEY-SCRIPT, you would send it
with:

EXEC CICS FEPI SEND FORMATTED
CONVID(....)
KEYSTROKES
FROM(KEY-SCRIPT)
FLENGTH(30)

In full, the escape sequences are:

Manipulative keys Special keys Attention keys

&HO home

&Ln cursor left, n times

&Rn cursor right, n times

&Un cursor up, n times

&Dn cursor down, n
times

&Tn tab, n times

&Bn backtab, n times

&Nn newline, n times
(n = 1–9)

&IN insert

&DL delete

&RS reset

&EF erase to end of field

&EI erase input

&FM field mark

&DU DUP

&ES escape character

&SO shift out

&SI shift in

&MS start secure MSR

&AT attention

&An PAn (n = 1–3)

&nn PFnn (nn = 01–24,
any leading 0 must
be specified)

&CL clear

&CS cursor select (light
pen)

&EN enter

&ME end secure MSR

You can choose an alternative escape character.

Data characters must have values ≥X'40', so nulls (X'00') are not supported as such,
although they can be generated using the erase or delete keys. Key strokes
following an attempt to type into a protected field are ignored until RESET is
keyed.

For magnetic stripe reader support, the sequence &MS...data...&ME represents
passing a secure magnetic stripe card through the reader. Nonsecure cards have to
be simulated by entering the data in the normal way.

The cursor position is set by your key strokes, rather than specifying where the
cursor is placed. If your first key stroke is always the HOME key (&HO), you will
have the cursor in a known starting position.

You can choose to send all the data with one command, or to use several
commands to build up the data. The last (or only) command should have an
attention key as its final key stroke, to send the data. There should be no other
attention keys.

Alternatively, if you are not interested in the received data, you can ignore it by
sending key strokes with multiple attention keys, as described in “Multiple
attentions” on page 145.

Error handling
Apart from communication errors caused externally, there are two likely sorts of
error that you might get.

Chapter 14. FEPI key stroke and screen-image applications 143

These two sorts of errors are as follows:
v Bad command sequencing; that is, you have issued a FEPI SEND when one was

not expected. A FEPI SEND must not follow a FEPI SEND with a final attention
key, or a FEPI RECEIVE that did not indicate ‘change direction’.

v Incorrect data; that is, your key strokes are improper. You may have:
– Sent data, characters, or escape sequences that are not valid.
– Got into an ‘input inhibited’ situation and not reset it.
– Broken the rules for double-byte character set (DBCS) data.
– Failed a validation test, if there are fields with one of the validation attributes.

Many of these data errors cannot be detected until the data is processed, because
they depend on the previous data. This means that any key strokes preceding the
error will already have taken effect—they cannot be removed by FEPI.

The FEPI SEND can also fail if, following end bracket, the back-end sends BID to
send more data and your pool has CONTENTION(LOSE). You must then receive
the new back-end data first.

Receiving field-by-field
Receiving data field-by-field is the easiest way of receiving data.

In the simplest case you would issue a FEPI RECEIVE command without
specifying an INTO data area. FEPI gets the data from the back-end system and
builds the resulting screen image internally. The cursor position is returned by the
CURSOR option. Information about the number of lines, columns, and fields in the
screen image is returned by the LINES, COLUMNS, and FIELDS options.

To get the data, you issue the FEPI EXTRACT FIELD command for each individual
field that you want. As well as the data, you can find out the attribute settings for
the field, and its length and position. The attribute values are defined in the
DFHBMSCA copy book, as is used with BMS. You can issue as many FEPI
EXTRACT FIELD commands as you need, for whichever fields you want. You can
issue more than one for each field, for example, if you want to get the data and
attributes separately. It is generally preferable to use the FIELDLOC option rather
than FIELDNUM. There may be spurious attributes between each displayed field
which make determining field numbers difficult.

A sample program illustrates the techniques used; see “Screen image RECEIVE and
EXTRACT FIELD” on page 249.

Command completion
The FEPI RECEIVE command completes on ‘end of chain’.

This normally coincides with ‘change direction’ or ‘end bracket’, meaning that all
data has been received. In some cases, however, back-end applications may send
data to you in several sections (chains), each causing a screen update, so you must
keep on receiving data until ‘change direction’ or ‘end bracket’ is indicated.

In all cases, the ENDSTATUS option is set to indicate what the completion
conditions were. Where several conditions occur together, ENDSTATUS shows the
most significant one. The values of ENDSTATUS and their associated meanings are
shown in Table 11 on page 145.

144 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Table 11. ENDSTATUS values and associated meanings for formatted data

ENDSTATUS End bracket Change
direction

End of chain Next command
expected

EB Y - Y Any

CD - Y Y FEPI SEND or
CONVERSE

LIC - - Y FEPI RECEIVE

Note: Y=Condition indicated.

When ‘end bracket’ is received, the session is in contention state, and either end
may try to transmit data next. Some back-end systems use ‘end bracket’ in the
middle of a series of transmissions to allow the terminal to break in if it wants,
and they may use ‘end bracket’ instead of ‘change direction’ at the end of the flow.
This is particularly true of IMS. CICS usually sends ‘change direction’ eventually,
although it may send ‘end bracket’ indicators intermediately.

Using your knowledge of the back-end application and system, you must check
the data that you have already received, to determine whether more data is to be
expected or the transmission is complete. If more data is expected, you should
issue another FEPI RECEIVE command; if the transmission is complete, it is the
front-end application’s turn to send data.

You should always use the TIMEOUT option on a FEPI RECEIVE command; see
“Time-outs” on page 166.

Error handling
Apart from communication errors caused externally, the most likely error you
might get is due to bad command sequencing. That is, you have issued a FEPI
RECEIVE command when a FEPI SEND command is expected.

A FEPI RECEIVE command must not follow a FEPI SEND command without
attention, or a FEPI RECEIVE command that indicated ‘change direction’.

Another likely error is ‘previous SEND failed’. This might be an external
communication error, or the back-end system might have responded negatively—as
IMS does, for example, if you try to run an unknown transaction. The sense data
which you can get using FEPI EXTRACT CONV tells you which error it is, and, where
the back-end system has responded negatively, you issue another FEPI RECEIVE
command to get the data.

Multiple attentions
In certain circumstances you might not have any interest in the immediate result of
the data you send, but only in a later result, after you have sent more data.

If this is the case, you can construct a single key stroke sequence, comprising all
the sets of data to send, each with its own attention key, and then send the whole
lot in one operation.

At each attention key, FEPI sends your data to the back-end system and receives
the results internally, until ‘change direction’ or ‘end bracket’ is indicated. Then
FEPI sends the next set of key strokes. Using multiple attentions improves
performance but, if the intermediate results are not what you expect, FEPI has no

Chapter 14. FEPI key stroke and screen-image applications 145

way of knowing this and carries on sending your key strokes. This can lead to
unexpected effects, or to the failure of the command with a data error. In the latter
case, all the key strokes and back-end system interactions preceding the error have
already taken effect and you may find it difficult to determine the state of the
back-end system. Further, no time-out can be specified for the intermediate
receives, and so, if there is a communication problem, your application may be
suspended indefinitely.

If the last set of key strokes ends with an attention key, you must issue a FEPI
RECEIVE command to get the final result. If the last set of key strokes does not
end with an attention key, you can issue another FEPI SEND command, with yet
more key strokes.

Sending screen-image data
Sending screen-image data is an alternative to sending key stroke data. In general,
this would be the screen image that you received modified to reflect the changes
that would be the result of an operator action.

A sample COBOL program, DFH0VZTS, illustrates the techniques used; see
“Screen image SEND and START” on page 247.

The data is exactly what you would expect: an image of the screen that you want
to send. That is, 24 rows of 80 bytes (or whatever your screen size is) of data,
corresponding byte-for-byte with the screen. For example, in a COBOL program
containing this data description:

01 SCREEN-IMAGE PIC X(1920).
01 SCREEN-FIELDS REDEFINES SCREEN-IMAGE.

05 LINE-1 PIC X(80).
05 FILLER REDEFINES LINE-1.

10 FILLER PIC X(20).
10 CUST-NO PIC X(12).
10 FILLER PIC X(48).

05 LINE-2 PIC X(80).
05 LINE-3 PIC X(80).
05 LINE-4 PIC X(80).
05 FILLER REDEFINES LINE-4.

10 FILLER PIC X(12).
10 CUST-NAME PIC X(32).
10 FILLER PIC X(36).

you would put the required data into the fields and send the screen image using:
EXEC CICS FEPI SEND FORMATTED

CONVID(....)
FROM(SCREEN-IMAGE) FLENGTH(1920)
AID(PF2)

where AID specifies which attention key was pressed on the simulated terminal.

Data bytes are represented as themselves; you must set any nulls (X'00') that are
needed to fill a field. In a protected field, the data bytes must be the same as in the
current, simulated terminal buffer that FEPI holds. In the case of attribute bytes, it
does not matter what values you put, because you have no control over their
positions or settings, any more than a terminal operator does. However, if the
value is X'01', FEPI sets the modified data tag (MDT) for the field, even if its data
has not changed. (If the data has changed, FEPI sets the MDT automatically.)

146 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

You do not have to send a complete screen image. If your changes are confined to
the first few lines, you need only send those few lines. The data you send is taken
as starting from the top left position of the screen.

Note: If you are using the C programming language, remember that a screen
image probably contains null characters. Take care if you are handling the screen
image as a string.

The cursor position can be set using the CURSOR option.

You can choose to send all the data with one command, or to use several
commands to build up the data. The last (or only) command must have an
attention identifier (AID) specified, using the AID option, to send the data. The
other commands must have an AID value of X'00'. Definitions for the AID values
are in the DFHAID copy book, as is used with BMS.

Note: The COBOL and assembler versions of the DFHAID copybook are different.
Therefore, you cannot copy unmodified SEND commands from the DFH0VZTS
sample program, which is supplied in COBOL only, to a user-written assembler
program.

Error handling

The errors you can get are similar to those for key stroke data. Your screen-image
data has other ways of being incorrect. In place of escape sequences not being
valid, or ‘input inhibited’, you might have cursor or AID settings not valid, or
changed data in a protected field. Many of these data errors cannot be detected
until the data is processed. This means that some of the changes will have taken
effect already - they cannot be removed by FEPI.

Receiving screen-image data
If you specify an INTO data area on a FEPI RECEIVE command, the data you
receive is the screen image; 24 rows of 80 bytes (or whatever your screen size is)
corresponding byte-for-byte with the screen.

Data bytes are represented as themselves. In positions corresponding to attribute
bytes, X'FF' appears.

You need only get the first few lines of the screen if that is all that you are
interested in.

After you have processed the data, you will probably use the same screen image,
modified as required, on a subsequent screen-image send.

Even though you got a screen image, you can use the FEPI EXTRACT FIELD
command as well if you want, for any particular fields that you require, just as
described in “Receiving field-by-field” on page 144. In particular, the FEPI
EXTRACT FIELD command is the only way you can determine the value of the
field attributes.

A sample program illustrates the techniques you can use; see “Key stroke
CONVERSE” on page 246.

Chapter 14. FEPI key stroke and screen-image applications 147

Note: If you are using the C programming language, remember that a screen
image probably contains null characters. Take care if you are handling the screen
image as a string.

Command completion and errors
As far as completion and errors are concerned, a FEPI RECEIVE command with an
INTO data area is just like one without.

So, if you do not get ‘change direction’ or ‘end bracket’, you have to issue another
FEPI RECEIVE command before you can send your screen image back, and even
‘end bracket’ might require further FEPI RECEIVE commands.

Extracting field data
It is not only after a FEPI RECEIVE command that you can issue a FEPI EXTRACT
FIELD command. You can issue this command anywhere in the conversation to
find out about the current screen image that FEPI holds for the simulated terminal.

This can be particularly useful where a FEPI SEND command has failed or given
unexpected results, to discover what happened.

CONVERSE
FEPI CONVERSE can be used instead of a FEPI SEND with attention and the first
(or only) FEPI RECEIVE.

It is more efficient than issuing two separate commands and is allowed anywhere
that FEPI SEND is allowed. The effects are exactly as if the two commands had
been issued.

The ending conditions are identical to those for FEPI RECEIVE, unless you use the
POOL option to get a temporary conversation. In this case, it ends on the first
occurrence of either ‘Change direction’ or ‘End bracket’ and does not end at ‘end
of chain’ alone.

Error handling

You must plan which command is expected next:
v If the receive part of the FEPI CONVERSE command fails, the send will have

already been done, and so a FEPI RECEIVE command is expected next.
v If the send part fails, the receive is not done, and, if the initial send was

expected, a FEPI SEND or CONVERSE command is expected next.

148 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 15. FEPI data stream applications

This section discusses the low-level data stream interface for FEPI applications.

The examples it contains are confined to simple conversational applications.
However, you can use this data interface whatever the application structure; see
Chapter 16, “FEPI application design,” on page 157 for all the possibilities, together
with details of conversations, error handling, and system considerations.

The section contains the following topics:
v “When to use the data stream interface”
v “General sequence of commands” on page 150
v “Receiving” on page 150
v “Sending” on page 153
v “CONVERSE” on page 153
v “SLU2 mode considerations” on page 154
v “SLU P mode considerations” on page 155.

When to use the data stream interface

You can use the data stream interface for the following types of applications:
v With passthrough; that is where the application passes data through, usually to

the user’s terminal, without doing anything to it.
v With SLU P.
v Where the formatted interface does not provide the detailed function that you

need.
v For handling non-3270 LU2 devices.
v With non-response mode IMS transactions.

The 3270 data stream interface is especially useful when creating FEPI applications
that require little or no manipulation of the inbound (screen) data, because it is
already in a form suitable for sending to a real terminal. If interpretation or
reformatting of the inbound data is required, however, it can be significantly more
difficult to operate on a 3270 data stream.

An example of an application suited to the 3270 data stream interface is a
passthrough program, as illustrated by the sample program “3270 data stream
passthrough” on page 250. Such programs can also be used to determine the flows
and screen layouts of back-end systems when you are developing FEPI
applications that, for example, drive signon or menu selection sequences and
manipulate screens or dialogs.

You must be fully conversant with the data stream and data stream protocols as
detailed in the books in the following list, and with how the back-end system uses
them:
v 3270 Data Stream Programming Reference

v 3274 Functional Description

v SNA Formats

© Copyright IBM Corp. 1992, 2011 149

v VTAM Programming

v IMS/ESA Programming Guide for Remote SNA Systems

v IMS/VS Version 2 Programming Guide for Remote SNA Systems.

The application program is entirely responsible for the integrity of the data stream
that uses this interface. FEPI performs no checking or interpretation on the data
stream that is sent to or received from the back-end system, and makes no attempt
to manipulate data into RU sizes that the sender or receiver can handle; the
application program must be prepared to handle whatever data is presented to it.
For example, with SLU2 mode, it must be prepared to handle READ commands,
and WRITE STRUCTURED FIELD commands, in addition to the normal WRITE
commands.

General sequence of commands
The following diagram illustrates the general sequence of FEPI commands that you
use with data stream.

That is, a FEPI SEND, multiple FEPI RECEIVE commands that complete when all
the data has been received, followed by another FEPI SEND.

Note: The diagram does not show any processing of the data, nor where you
might enter, or leave, the loop. This information is explained more fully in
Chapter 16, “FEPI application design,” on page 157.

Receiving
You can choose whether to process data in small segments or all at once.

Your choice depends upon various factors including:
v Processing convenience
v The amount of data that you expect

FEPI SEND without INVITE As many as you want, or
NONE, to build up data
to send

FEPI SEND with INVITE Exactly ONE, to send the
data

FEPI RECEIVE Get the data: The FEPI
RECEIVEs can have different
endings requested each time

What ENDSTATUS? You must loop until you
eventually receive all the
data

Other EB CD

150 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

v The size of the data area that you can use
v What you are doing with the data
v How the back-end application operates
v Whether you want to handle responses (see Chapter 17, “Specialized FEPI

functions,” on page 173 for this feature).

The data is a standard inbound data stream, exactly as is sent to the simulated
terminal from VTAM. It is quite possible that there will be occasions on which you
will receive no data; for example, when the back-end system needs to set a
protocol indicator.

Command completion
The FEPI RECEIVE command can be specified, or defaulted, to end in one of several
ways.

You can end the command using one of the following valid values:

RU On the first to occur of:
v INTO data area full
v End of request unit.

CHAIN
On the first to occur of:
v INTO data area full
v End of chain.

UNTILCDEB
On the first to occur of:
v INTO data area full
v End of chain with definite response request
v ‘Change direction’ indicated
v ‘End bracket’ indicated.

Note: Using UNTILCDEB is not recommended, because you may have the
difficult task of splitting data back into its constituent chains in order to
process it.

In all cases, the ENDSTATUS option is set to indicate what the completion
conditions were. Where several conditions occur together, ENDSTATUS shows the
most significant one. The values of ENDSTATUS and their associated meanings are
shown in Table 12.

Table 12. ENDSTATUS values and associated meanings for data stream

ENDSTATUS Command
options

End bracket Change
direction

End chain End
RU

INTO
area
full

Next command
expected

EB RU, CHAIN,
UNTILCDEB

Y - Y Y - Any

CD RU, CHAIN,
UNTILCDEB

- Y Y Y - FEPI SEND or
CONVERSE

LIC RU, CHAIN,
UNTILCDEB

- - Y Y - FEPI RECEIVE

RU RU - - - Y - FEPI RECEIVE

Chapter 15. FEPI data stream applications 151

Table 12. ENDSTATUS values and associated meanings for data stream (continued)

ENDSTATUS Command
options

End bracket Change
direction

End chain End
RU

INTO
area
full

Next command
expected

MORE RU, CHAIN,
UNTILCDEB

- - - - Y FEPI RECEIVE

Note: Y=Condition indicated.

FEPI RECEIVE commands must continue to be issued until ‘change direction’ or
‘end bracket’ is indicated. You cannot start sending data until all inbound data has
been received. If an ENDSTATUS of MORE is indicated, the data stream is not
necessarily self-contained and should not be processed until the remainder of the
information is received. The value returned for REMFLENGTH might indicate how
much more information is to come.

When ‘end bracket’ is received, the session is in contention state, and either end
may try to transmit data next. Some back-end systems use ‘end bracket’ in the
middle of a series of transmissions to allow the terminal to break in if it wants,
and they may use ‘end bracket’ instead of ‘change direction’ at the end of the flow.
This is particularly true of IMS. CICS usually sends ‘change direction’ eventually,
although it may send ‘end bracket’ indicators intermediately.

Using your knowledge of the back-end application and system, you must check
the data that you have already received, to find out whether more data is to be
expected or the transmission is complete. If more data is expected, you should
issue another FEPI RECEIVE command; if the transmission is complete, it is the
front-end application’s turn to send data.

A problem arises where the application is the passthrough type, because it does
not look at the received data. There are various ways of handling this:
1. Request data conditionally from both ends–which cannot generally be done,

and particularly not in the most typical case where the passthrough is directly
to a front-end terminal.

2. Wait for data from both ends at once. This can be done where the passthrough
is directly to a front-end terminal and the transaction is pseudoconversational
for both CICS and FEPI. See “Started tasks” on page 160.

3. Ask each end at intervals if there is data waiting (for the back-end system by
using FEPI RECEIVE with TIMEOUT); this is often not possible, as in the case
where the passthrough is directly to a front-end terminal.

4. Forego a strict passthrough technique and check the data.
5. Assume that a transmission with ‘end bracket’ and no data means that more

data is to come.
6. Issue another FEPI RECEIVE with TIMEOUT in case more data is to come,

which has the disadvantage of introducing a delay.

Note: The last two cases involve an element of risk because the wrong
assumptions can be made.

You should always use the TIMEOUT option on a FEPI RECEIVE command; see
“Time-outs” on page 166.

152 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Error handling
Apart from VTAM and back-end communication errors caused externally or, more
probably, by errors in the outbound data stream that you sent previously, the most
likely cause of an error condition is an incorrect sequence of commands.

That is, you have issued a FEPI RECEIVE when a FEPI SEND is expected. A FEPI
RECEIVE must not follow a FEPI SEND without INVITE, or a FEPI RECEIVE that
indicated ‘change direction’.

Another likely error is ‘previous SEND failed’. This may be an external
communication error, or it may be that the back-end system has responded
negatively–as IMS does, for example, if you try to run an unknown transaction.
The sense data which you can get using FEPI EXTRACT CONV tells you which
error it is, and in the latter case you issue another FEPI RECEIVE to get the data.

See “3270 data stream passthrough” on page 250 and “SLU P
pseudoconversational” on page 252 for sample programs illustrating some of the
programming techniques.

Sending
You can choose to send an entire stream of data, or you can break it up into
smaller units, finishing with a FEPI SEND with INVITE.

INVITE indicates that this is the last data to send, and that inbound data should be
expected next. The data is sent with ‘last in chain’ and ‘change direction’.
Otherwise, further FEPI SENDS are to be expected. It is the application program’s
responsibility to ensure that the amount of data sent on a request does not exceed
the capacity of the receiving LU.

Error handling

Apart from VTAM errors caused, most probably, by errors in the outbound data
stream that you sent previously, the most likely cause of an error condition is an
incorrect sequence of commands. That is, you have issued a FEPI SEND when one
was not expected. A FEPI SEND must not follow a FEPI SEND with INVITE, or a
FEPI RECEIVE that did not indicate ‘change direction’.

The FEPI SEND can also fail if, following ‘end bracket’, the back-end system sends
BID to send more data and your pool has CONTENTION(LOSE). You must then
receive the new back-end data first.

See “3270 data stream passthrough” on page 250 and “SLU P
pseudoconversational” on page 252 for sample programs illustrating some of the
programming techniques.

CONVERSE
FEPI CONVERSE can be used instead of a FEPI SEND with INVITE and the first
(or only) FEPI RECEIVE. It is more efficient than issuing two separate commands
and is allowed anywhere that FEPI SEND is allowed. The effects are exactly as if
the two commands had been issued.

Chapter 15. FEPI data stream applications 153

The ending conditions are identical to those for FEPI RECEIVE, unless you use the
POOL option to get a temporary conversation. In this case, it ends on the first to
occur of:
v INTO data area full
v ‘Change direction’ indicated
v ‘End bracket’ indicated,

and not at ‘end of chain’ alone. Further, if there is any residual data to receive, it is
lost.

With regard to errors, you need to take into consideration which command is
expected next:
v If the receive part of the FEPI CONVERSE command fails, the send will have

already been done, and so a FEPI RECEIVE command is expected next.
v If the send part fails, the receive is not done, and, if the initial send was

expected, a FEPI SEND or CONVERSE command is expected next.

SLU2 mode considerations
It is necessary, when sending outbound 3270 data streams, to ensure that a
three-byte prefix containing the attention identifier (AID) and cursor address is
inserted at the front of the data.

Similarly, the first two bytes of inbound data typically contain the 3270 command
code and write control character (WCC). The lengths supplied or returned on the
FEPI SEND, RECEIVE, or CONVERSE DATASTREAM commands include the
length of the prefix.

AID values are the same as the CICS values and, in passthrough applications, can
be taken from EIBAID. The cursor address however is a buffer address and cannot
be taken from EIBCPOSN. 3270 buffer addresses can be 12-, 14-, or 16-bit addresses
depending on the device. 12-bit addressing is the most difficult to convert to or
from, but it is very common; an address conversion table and an algorithm are
contained in the 3270 Information Display System 3274 Control Unit Reference
Summary.

The inbound 3270 command is most likely to be a WRITE or ERASE WRITE and
is, therefore, followed by a WCC then orders and data. However, this is not
guaranteed and the inbound command should be inspected to determine what it
is, what, if anything, should follow it, and how it should be handled. For example,
the application may choose to perform an EXEC CICS SEND TEXT from the
inbound data and may, therefore, require to know whether to append the ERASE
keyword. The various READ commands (such as READ BUFFER and READ
MODIFIED) and all the WRITE STRUCTURED FIELD commands (a common one
being READ PARTITION with QUERY) need special handling.

If you receive more than one chain (using the UNTILCDEB option), you have to
find each inbound command yourself, so this is not recommended unless you
know that the back-end system only sends a single chain.

For further information, refer to the 3270 Information Display System Data Stream
Programmer’s Reference.

154 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

SLU P mode considerations
Two sample programs illustrate some of the programming techniques for SLU P
mode.

For details, see “SLU P pseudoconversational” on page 252 and “SLU P one-out
one-in” on page 251.

Chapter 15. FEPI data stream applications 155

156 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 16. FEPI application design

This section describes the programs comprising a FEPI application and the basic
design aspects. It also discusses signon security, error handling, and system
considerations, including performance.

The section contains the following topics:
v “Programs”
v “Application organization” on page 159
v “Signon security” on page 164
v “Error handling” on page 165
v “System considerations” on page 168.

Programs
A FEPI application consists of a number of programs.

These programs are as follows:
v Access
v Begin-session handler
v Unsolicited-data handler
v End-session handler.

Access program
The main purpose of an access program is to start a conversation, communicate
with the back-end application, and end the conversation.

It must also be able to handle exception cases such as edit errors, transactions that
are not valid, or security violations, and it might need to manage signon/signoff
sequences. It might also need to handle begin-session and end-session
requirements, if special handlers are not provided. The SESSNSTATUS option of
FEPI ALLOCATE tells you if a new session has been started, or if you are reusing
an existing session.

For many FEPI applications, particularly where formatted data is used, the access
program is not complex. However, you do need to be fully conversant with
everything that the back-end application might do. Your application must behave
just like the real terminal and operator, and you must send and receive data in the
correct sequence. Within a conversation, any data received is passed to the
application that owns the conversation; FEPI cannot determine whether it is the
data or screen image that was expected or, for example, a message reporting an
abnormal end. Although the FEPI application needs to handle these cases, the
access program need not test for all possibilities. The suggested method is to test
only for the expected data or screen image and use a special error-handling
program if the test fails.

Other applications may require more sophisticated programming. In some cases,
you not only have to understand all the displays and protocols of the back-end

© Copyright IBM Corp. 1992, 2011 157

application, but must also be conversant with the detailed data stream protocols.
Applications may have to be custom-written for each device and type of target that
is to be supported.

Syncpoints are not needed and not applicable in FEPI because communication
environments do not provide any recoverable units of work. It is up to you to
provide the syncpoints and any recovery of data that you need. For particularly
critical operations with the back-end applications, you may find that using
“definite responses” is helpful; see “DRx responses” on page 174.

Begin-session handler
The begin-session handler transaction is started by FEPI when a connection is
acquired. This transaction handles any functions that are required to initialize the
session.

Typical tasks are as follows:
v Handling device queries.
v Handling any initial inbound data, or “good morning” message, following the

bind.
v Signing on to the back-end system.

Device queries are sent by the back-end system (particularly CICS) if the terminal
definitions so demand. You would normally reply ‘null’ (as illustrated by the
begin-session sample program), or with some particular terminal properties that
you want. Note, if you want to match the terminal properties to those of the real
front-end terminal that an application is using, you cannot use a begin-session
handler; each application will have to do its own begin-session handling.

When a back-end system sends a message after a successful bind, the connection
should be in a pool where the INITIALDATA property is set to INBOUND. For
SLU2, IMS always sends such a message; CICS may or may not do so depending
on the way your system is defined. This extends the process of acquiring a
connection to include receiving the data. Note that, if INBOUND is specified, the
begin-session handler (or each application program, if there is no begin session
handler) must issue a FEPI RECEIVE command to get the data and then send a
suitable reply to the back-end system.

Remember that handling this initial data is just like handling any other back-end
data: you must cope with whatever the back-end system may send, and handle
and reply to it accordingly.

Security requirements in the back-end system might make it more appropriate for
sign-on to be part of the access program. (Information about implementing signon
security is in “Signon security” on page 164.)

There is a sample begin-session handler program; see “Begin session” on page 245.

Unsolicited-data handler
The unsolicited-data handler transaction is started by FEPI if inbound data arrives
on a connection for which there is no current conversation.

Unsolicited data can occur when:
v A target sends more data than the application expected.

158 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

v The access program times out, or the conversation is ended, before the data
arrives.

v Asynchronous IMS output such as:
– Message from previous input that could not be processed at the time of

receipt by IMS
– Reassignment of a logical terminal that has a message queued.

With IMS, this type of unsolicited data does not usually occur in SLU2 mode
because IMS only sends messages in reply to explicit requests from the terminal.

v Asynchronous CICS output such as that sent by ATI.

The unsolicited data should all be received by the handler, even if it is only to be
discarded. Otherwise, although FEPI eventually discards the data, it also ends and
restarts the session, which is inefficient.

There is a sample unsolicited-data handler program; see “Monitor and unsolicited
data-handler” on page 243.

End-session handler
The end-session handler transaction is started by FEPI when a conversation ends
or a session is to be unbound.

This could be used as follows:
v To set the session to a known state, perhaps by signing off from the back-end

system, ready for the next conversation.
v When the conversation ends, to force (or prevent) unbind and the subsequent

starting of a new session (overriding what the access program specified).
v To perform special action on CICS shutdown in the front-end system.

There is a sample end-session handler program; see “End-session handler” on page
250.

Note: The end-session handler transaction runs under the CICS region userid.

Application organization
This section discusses application styles, started tasks, and conversations.

The three application styles can be mixed as desired. If there are enough
connections available, you can have as many conversations as you like at a time
with various targets: they can be consecutive or, much more usefully, interleaved.
For example, if you need data from four different applications, you could overlap
the processing by sending all four requests for data before you start waiting for a
response.

Application style
Your FEPI application can have one of three conversational styles.

One-out one-in conversational

One transaction performs the complete conversation with the back-end application
in a single send and receive operation. This is the simplest style, if the required

Chapter 16. FEPI application design 159

data can be obtained from the back-end application in this way. The transaction
can be reduced to a single FEPI CONVERSE command using a temporary
conversation.

By freeing the connection between transmissions, the capacity of the connection is
increased. However, this style only works where no setup is needed to run the
back-end transaction and it does not depend on any prior communication. This is
because, unless you have a very strict pool regime, you cannot generally guarantee
which simulated terminal FEPI will use–it may not be the same one as in a
previous conversation–or that you were the last user of the terminal. Further, if
you receive unexpected results from the back-end transaction, you may not be able
to recover. Therefore, you should only use this style where it does not matter if the
back-end transaction runs or not, for example, for a simple inquiry. A one-out
one-in conversational program is unlikely to be suitable for accessing CICS
transactions or IMS conversational transactions.

See the sample program “SLU P one-out one-in” on page 251.

Conversational

One transaction performs the complete conversation with the back-end application
using multiple send and receive operations and waiting for the inbound data to
arrive. This style is used for a back-end application that requires several
transmissions or complex setup. This style is simple, and if the network
performance is good, the time spent waiting for inbound data may not be a
problem.

See the sample program “Key stroke CONVERSE” on page 246.

Pseudoconversational

One transaction sends data to the back-end application, identifies another
transaction that is to be started when the inbound data arrives, and ends. When
inbound data arrives, FEPI starts the specified transaction which then receives the
data. A typical technique is to have a transaction that, when started to receive
inbound data, receives the data, sends the next piece of outbound data, issues FEPI
START to start itself, and then ends.

The pseudoconversational style (use of FEPI START commands) results in
significant CPU overheads in the front-end region. Further, since the use of FEPI
START generates additional flows to and from the real terminal, response times are
also significantly increased. As a consequence, FEPI START should be used
sparingly when, for example. the receipt of the data from the back-end application
takes a long time.

See the sample programs “Screen image SEND and START” on page 247 and
“Screen image RECEIVE and EXTRACT FIELD” on page 249.

Started tasks
In the pseudoconversational case, the ‘receive’ program is started by FEPI as a
CICS started task, with a start code of 'SZ' (for FEPI) which can be checked using
EXEC CICS ASSIGN STARTCODE.

FEPI supplies start data that identifies the reason for starting the task and gives
information about the FEPI resources, such as the node-target connection, the data

160 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

mode and format, and the conversation ID involved. The program that processes
the transaction issues EXEC CICS RETRIEVE to get this data (the CICS rules
relating to transactions and start data apply; in particular, you must retrieve all of
the start data to prevent multiple initiations). Copy books DFHSZAPA,
DFHSZAPO, DFHSZAPC, and DFHSZAPP contain declarations of the start data
structure. You can provide your own data to be included in the start data, so that
your programs can communicate with each other about their processing state and
so on.

The first thing such a program must do is get ownership of the conversation using
the conversation ID from the start data; it should then use FEPI RECEIVE to get
the actual data from the back-end. Then it can do whatever it likes: end the
conversation, send more data to the back-end system (and start itself or a new task
to receive the reply), and so on.

In addition to inbound data arriving, anything else that would cause a FEPI
RECEIVE command to complete causes the ‘receive program’ to be started. This
includes a ‘previous SEND failed’ error, and a response from the back-end system
without any data. The FEPI RECEIVE that you issue shows these cases, as if FEPI
START had not been used.

The program is also started if the time limit set by the FEPI START command
expires, or if the session is lost. These cases are indicated by the value of
EVENTTYPE, in the start data, being TIMEOUT or SESSIONLOST rather than
DATA. They should be handled as if a FEPI RECEIVE command had caused the
error.

If your ‘send’ program is associated with a front-end terminal, your FEPI START
command would normally specify that the ‘receive’ program uses the same
terminal. You should be aware that it is not possible for FEPI to guarantee that
another transaction will not use the terminal while the inbound data is awaited. In
the majority of cases, this does not happen or does not matter. If it does happen
and it is critical (perhaps for security reasons), you can prevent user input at the
terminal by issuing an EXEC CICS SET TERMINAL command specifying
NEXTTRANSID(itran) before issuing FEPI START; remember to reset
NEXTTRANSID to blank in the started task. itran is the name of a transaction that
you provide which rejects any user input, and sets NEXTTRANSID(itran) again. If
this is unacceptable, you must avoid using pseudoconversational applications.

The handlers mentioned on pages “Begin-session handler” on page 158,
“Unsolicited-data handler” on page 158 and “End-session handler” on page 159
—begin-session, unsolicited data, end-session—are also CICS started tasks. Again,
the start data (obtained with EXEC CICS RETRIEVE) tells you why the task was
started and the identity of the conversation. The started task must get ownership
of the conversation so that it can continue the conversation and so that FEPI
knows that the event is being handled.

Conversations
Your entire communication with a particular back-end transaction should be
contained in a single FEPI conversation.

This means that you remain in control of the communication; no other program
can break in and you keep using the same simulated terminal. Only the task that

Chapter 16. FEPI application design 161

started the conversation with FEPI ALLOCATE can use the conversation. It “owns”
it and no other task can issue any command for it, not even FEPI EXTRACT
CONV.

Conversational applications
In the simplest case, an access program starts a conversation with a FEPI
ALLOCATE command specifying the pool of connections that is to be used.

The command returns an identifier, the conversation ID, that is used to refer to the
conversation subsequently. The program then issues a series of FEPI SEND,
RECEIVE (and possibly other) commands for the conversation, each specifying the
identifier, so that FEPI knows which conversation—and therefore which connection
and target —the command is for. Finally, it ends the conversation with a FEPI
FREE command. If it does not, the conversation is ended by FEPI when the task
ends.

The FEPI FREE command should normally specify the HOLD option, so that the
connection remains ready for use by another conversation. If the RELEASE option
is used, or you leave the conversation to be freed by FEPI at the end of task, the
session is ended, and a new one must be started for the next conversation; this is
inefficient and, therefore, not recommended.

Started tasks
If the access program is pseudoconversational, after sending data it issues a FEPI
START command to name the transaction that FEPI is to start when inbound data
arrives.

At this point the conversation becomes “unowned” and the first task can no longer
use it. However, the conversation does not end; when data arrives, the
conversation ID is passed to the started task and that task issues FEPI ALLOCATE
with the PASSCONVID option to get ownership of the conversation. Only then can
the started task use the conversation to receive the inbound data.

While the conversation is unowned, it can be acquired by any task that knows the
conversation ID. Acquiring the connection cancels the pending start request, and
the task that acquired ownership has to continue the conversation as if no FEPI
START had been issued. This technique is useful in a pass-through application to a
front-end terminal to handle contention between inbound data and terminal input.
The application issues a FEPI START command, specifying the front-end terminal,
and then returns to CICS specifying a ‘next’ transaction. Inbound data arriving first
causes FEPI to start the transaction on the front-end terminal, which causes CICS
to cancel its wait for terminal input; if terminal input arrives first, the application,
after using EXEC CICS ASSIGN STARTCODE to determine why it was started,
issues FEPI ALLOCATE with PASSCONVID which cancels the FEPI START
request.

Getting ownership also applies to the tasks started by the various handlers. The
conversation may have been started by some access program (end-session), or by
FEPI itself (begin-session, unsolicited-data). Either way, you must still issue a FEPI
ALLOCATE command with PASSCONVID, quoting the conversation ID, to get
ownership and continue the conversation.

When a handler has finished processing, it must tell FEPI by issuing a FEPI FREE
command for the conversation. For the begin-session handler, this should specify
the HOLD option to indicate that the session is ready to be used; if RELEASE is

162 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

used, the session is ended. The end-session and unsolicited-data handlers can use
any of the options according to requirements.

Passing conversations
Besides using FEPI START to have a task for receiving data, any program or
handler can explicitly give up ownership of its conversations so that another task
can use them.

You do this with the FEPI FREE command and the PASS option. Any task can then
get ownership by using FEPI ALLOCATE with PASSCONVID and, if it maintains
the command sequence, continue the conversation (for example, if the first task has
issued a FEPI SEND with INVITE, the second task would have to issue a FEPI
RECEIVE or, perhaps, a FEPI START). It is up to the two tasks to communicate
between themselves, using the standard CICS methods (TS queue, COMMAREA,
and so on), about the state of the conversation and its ID. FEPI does not offer any
application programming facilities for this except that the new task can use FEPI
EXTRACT CONV to determine details such as the data format.

If you do not employ a method of passing and saving the conversation across
invocations of a pseudoconversational front-end transaction, and instead issue the
default FREE command, you lose your connection to the back-end transaction,
making it possible for another program to start a conversation and effectively
“break into” the active transaction. This can cause the back-end application to
abnormally end.

The only other method that can be used to ensure a unique relationship between
front-end and back-end transactions, is to have FEPI pools containing a single FEPI
node for each user. This ensures that you always get connected to the back-end
transaction on the same terminal (FEPI node) to continue your conversation.
However, this method can cause administrative problems where there are a large
number of end users.

Temporary conversations
In a one-out one-in conversational application you can use a single FEPI
CONVERSE command that combines an ALLOCATE–SEND–RECEIVE–FREE
command sequence.

This combination is selected by using the POOL option of FEPI CONVERSE rather
than the CONVID option. In this case, the conversation is a temporary conversation
that lasts only for the duration of the FEPI CONVERSE command. No conversation
ID is returned by FEPI and no other commands can be issued for the conversation;
you cannot even use FEPI EXTRACT FIELD to process the returned data.

As with all one-out one-in conversational applications, temporary conversations
should be used with care. If more data is received than can be returned on the
FEPI CONVERSE command (because, for example, the data is not what you
expect), the excess is discarded and cannot be retrieved by the application. Data
may be lost if the command fails and, because you cannot receive any more data
or guarantee that your next conversation will use the same simulated terminal, it
may be difficult to determine the state of the back-end system.

Note:

1. Every conversation started with FEPI ALLOCATE has a unique conversation
ID, as does every conversation started for a handler, except in the case of
end-session when started after a FEPI FREE. In this case, the ID is the same as
in the task issuing the FEPI FREE.

Chapter 16. FEPI application design 163

A task started when inbound data arrives gets the same conversation ID as the
task that issued the FEPI START command.

2. The state of a conversation (whether, for example, it is owned by an access
program, in a begin-session handler, waiting for inbound data, or being passed)
is shown by the STATE option of the CEMT INQUIRE FECONNECTION
command (see State) or the FEPI INQUIRE CONNECTION command (page
“FEPI INQUIRE CONNECTION” on page 96). This may be useful when you
are debugging applications.

3. If your programs are written in C, do not handle conversation identifiers as
strings; they may contain null characters.

Signon security
When signing on to a back-end system, FEPI applications can ask the external
security manager (ESM) to supply a password substitute, or PassTicket.

(For an explanation of why PassTickets are necessary, see page “Signon security”
on page 16.)

How to use PassTickets
This section is an overview of how PassTickets work, and describes what you need
to do to use them.

About this task

Procedure
1. To process PassTickets, the ESM uses keys, known as Secure Signon keys, that

are shared by the front- and back-end systems. You must define a Secure
Signon key for each target system with which FEPI communicates. For
information about how to do this, RACF users should refer to the z/OS Security
Server RACF System Programmer's Guide. Users of other ESMs should refer to
the documentation for their product.

2. The end-user is verified by signing on to the front-end CICS in the usual way.
3. When the end-user runs a transaction that uses FEPI, your application issues a

FEPI REQUEST PASSTICKET command to obtain a PassTicket. If EDF is being
used, the PassTicket is not displayed. A PassTicket is a secure representation of
a password that can be used to sign on to the back-end system. It is valid for
one use only, and is time-stamped. The userid for which the PassTicket is
generated is that of the currently signed-on user. Your FEPI application can use
an EXEC CICS ASSIGN command to check the userid of the currently signed-on
user.

4. Your FEPI application uses the PassTicket and userid to perform a sign-on in
the back-end system, just as if it were sending a password and userid. For
example:
EXEC CICS FEPI SEND FORMATTED

CONVID(convid) FROM(CESN userid PassTicket)
FROMLENGTH(length_of_data)

It is the application’s responsibility to provide the signon processing, because
CICS cannot know either the type of back-end (CICS or IMS) or the back-end
program being used for signon processing.

164 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

5. The back-end system uses an unchanged interface to perform the sign-on. Thus,
a CICS system receiving a userid and a PassTicket can use its existing
procedures to sign on the userid. RACF takes care of the fact that a PassTicket,
rather than a password, is passed to it.

Results

Note: If the PassTicket times out (because, for example, of a session failure), your
application should generate another and try to sign on again. If signon continues
to fail and the front- and back-ends are in different MVS systems, check that the
TOD clocks are suitably synchronized. Too many failed signon attempts could
result in the user id being revoked.

What to do next

For detailed information about PassTickets, see the z/OS Security Server RACF
Security Administrator's Guide.

For information about using RACF with CICS, see the CICS RACF Security Guide.
Related concepts

CICS RACF Security Guide

Benefits
There are a number of advantages to using PassTickets.

These advantages are as follows:
v They provide a secure way of signing on to back-end systems. This is because:

– They are valid for one use only and are timestamped—therefore, the potential
damage caused by their being intercepted is minimal.

– Passwords are not transmitted across the network.
v FEPI applications do not have to store passwords (or ask users to reenter them)

in order to sign on to back-end systems.
v No changes are required in the CICS or IMS back-end systems.
v System clocks in the front- and back-end systems do not need to be precisely

synchronized (RACF compensates for variations up to plus or minus 5 minutes).

Requirements
To run a FEPI application in CICS, you must meet the following requirements.
v The front-end must be a CICS Transaction Server for z/OS region. The back-end

can be a CICS region or IMS system.
v RACF Version 2 Release 1 or later, or a functionally-equivalent external security

manager, on both the front- and back-end systems.
v End-users must use the same user ID in the back-end systems as in the

front-end system.

Error handling
FEPI does not recover any user data when an error condition is raised. Data
recovery, if needed, must be performed by the application program. In addition,
the output option values on a command are not set if the command fails; your
program should not be using these values in such cases.

Chapter 16. FEPI application design 165

The recommended method is errors raised by FEPI commands should be handled
by your application rather than letting CICS terminate the transaction abnormally.
Errors and exceptions can be detected by using the RESP and RESP2 command
options, or trapped using HANDLE CONDITION.

Time-outs
You should use time-outs with FEPI commands. If there is a problem with the
connection to the back-end application, a program without time-outs may wait for
ever, you may stop other applications running, and operator intervention may be
needed.

Time-outs can be used with FEPI ALLOCATE, RECEIVE, START, and CONVERSE
commands. In all cases, the timing applies only to the period that FEPI waits for a
reply from the back-end system. As soon as anything is received from the
back-end, FEPI stops the timer, and then waits for as long as is necessary to receive
all the data that is required to complete the command. You cannot specify a
time-out for FEPI SEND, because the command always completes immediately,
without waiting for any data to be transmitted. Any delay or other problem is
handled by the following FEPI RECEIVE command. The action to take on a
time-out depends on the command that was used:
v For FEPI ALLOCATE, you could retry the initial command and then retry using

a different pool or target before going into your error-handling routine.
v For FEPI RECEIVE, you can retry the command and, if that fails, handle the

error as if the session with the back-end application had been lost.
v For FEPI START, the time-out is reported to the started task, and not as an error

on the command. In other respects, however, it is the same as a FEPI RECEIVE
time-out.

v For FEPI CONVERSE with a previously allocated conversation, it is exactly as if
a FEPI SEND command and then a FEPI RECEIVE command were issued. That
is, the time-out that you specify applies only to the ‘receive’ part of the
command, and is treated and handled just like that for a FEPI RECEIVE.
For a temporary conversation, it is as if the command were preceded by a FEPI
ALLOCATE and followed by a FEPI FREE, so in this case the time-out is applied
to both the ‘allocate’ and ‘receive’ parts of the command. In this situation, if a
time-out occurs, there is no indication as to which part caused it.

Lost session
If a FEPI application loses the session with the back-end application, it should free
the conversation. Having done that, the application can take whatever action is
required. A typical action would be to recover any data and restore the initial state
before retrying the conversation or sending a message to the user.

The loss of a session can also occur because of CLSDST(PASS) processing (as
discussed in “Handling CLSDST(PASS)” on page 48). If this is the case, you can
find out when the session has been reestablished using the FEPI EXTRACT CONV
command. You can then continue processing as required.

Previous SEND failed
This occurs on a FEPI RECEIVE and is indicated by RESP2=216.

It may be an external communication error, or it may be that the back-end system
has responded negatively (as IMS does, for example, if you try to run an unknown
transaction). Use the FEPI EXTRACT CONV command to get the sense data

166 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

describing the failure. If this indicates a negative response, you should reissue the
FEPI RECEIVE to get the data. If it was not a negative response, it is equivalent to
a lost session and the session cannot be recovered.

Communication errors
It is simplest to treat communication and network errors as a lost session, which
avoids the need for detailed SNA error protocol handling. However, sophisticated
applications may want to handle certain recoverable conditions, for example, SNA
CLEAR received (RESP2=230).

Bypass by user exit
A command can be rejected by the FEPI global user exits (RESP2=10). Typically
this would be because it violates the rules imposed by your system programmer.
Check the rules with your system programmer.

Unknown conversation ID
An unknown conversation ID is most likely to occur because the ID is specified
incorrectly.

Alternatively this problem could be caused by the task that issued the command
not owning the conversation, because:
v The conversation has been ended
v The conversation has been passed to another task
v FEPI ALLOCATE with PASSCONVID has not been issued.

If the error occurs on a FEPI ALLOCATE command with PASSCONVID, the
conversation was probably not “unowned”. Where the CONVID was obtained
from FEPI start data, it is possible that between FEPI scheduling the task and it
starting, a resource used by the conversation has been discarded, or CICS has
started shutdown.

Operator/system action
An operator/system error occurs when the operator tries to cancel a FEPI
transaction. If, as is likely, it is waiting for a FEPI command to be processed, it is
the ‘wait’ for FEPI processing that is canceled, not the transaction.

When a FEPI command fails with an ‘operator action’ error (RESP2=18), first end
all the active conversations and then end the transaction as soon as possible.

Shutdown
A normal CICS shutdown waits for currently active tasks to end, but does not
allow new tasks to start. FEPI allows existing conversations to continue within a
task but does not allow them to be passed to another task (because that task would
never be started), nor does it allow new conversations to be started.

Conversations that are “unowned” are ended immediately, because the tasks that
would subsequently handle them would never be started. Therefore, FEPI START or
FREE PASS commands issued during shutdown fail (RESP2=214); in this case the
error-handling routine, after doing whatever housekeeping is required, should
issue FEPI FREE to end the conversation. FEPI ALLOCATE commands issued during
shutdown fail with RESP2=12.

Chapter 16. FEPI application design 167

You might need to take special action on the back-end system, for example, signing
off, when the front-end application is going to shut down. For this reason, when
conversations end during shutdown, the end-session handler is invoked with
SHUTDOWN indicated in the EVENTVALUE field of the start data, so that the
back-end system can be restored to a known state before FEPI ends; the FEPI FREE
issued by the handler is treated as if RELEASE is specified. If you require this
function, make sure the end-session handler is defined in the transaction list table
(XLT), so that it can be started, and so that it does not adversely affect the
performance of CICS shutdown. (The XLT is described in the CICS Resource
Definition Guide.) Using an end-session handler is the only way to perform special
processing on shutdown, because no notification of shutdown is given to normal
active transactions and conversations.

An immediate CICS shutdown ends all conversations immediately, and commands
in progress fail. No further FEPI commands can be issued, and no end-session
handlers are started.
Related reference

XLT—transaction list table

System considerations
You can think of FEPI as a “pipe” through which users access back-end
transactions; any peculiarities that exist in the back-end system have to be allowed
for in the FEPI application. IMS has special considerations and these are explained
in the following text.

This section concludes with some notes about performance.

IMS considerations
It is essential that you are familiar with using IMS and writing IMS applications.

When designing access programs that have IMS as a target back-end system,
careful consideration must be given to the differences between CICS and IMS
under certain circumstances:
v Message protocols
v Use of response mode
v Beginning and end of session
v Effects of IMS restart and recovery features in a FEPI environment. (Because IMS

is almost totally recoverable, this can present problems in the design of the FEPI
application and some event handlers.)

Message protocols
In SLU2 mode, IMS sends messages only in reply to explicit requests from the
terminal.
v Unsolicited data will not usually occur; rather it will be available for the next

FEPI conversation to receive. At the start of a FEPI conversation, you should first
dequeue all such messages. However, unsolicited data can occur when requested
data arrives after a FEPI conversation has been ended by, for example, a
time-out.

v Take care if you use the IMS /SET command to preset a destination or put the
transaction ID in the SPA to specify which IMS transaction to use next.

v If you are using Message Format Services (MFS), consider the following:
– Physical paging or operator logical paging:

168 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

- Whether paged output is deleted automatically by an input message or not.
- For SLU2 mode, sending PA1 to request additional pages of paged output,

and sending PA2 to remove paged output from the queue.
– Unlocking the keyboard after MFS bypass.

Response mode
You are strongly recommended to run all your back-end IMS transactions in
response mode where messages to IMS from the simulated terminal are handled
synchronously; each message from the terminal is processed by IMS and the reply
is queued before a further message from the terminal is allowed.

Using response mode simplifies the front-end application because the data received
is the reply to the data just sent and because the data stream flows from IMS are
more straightforward; further, a separate FEPI conversation can be used for each
IMS transaction and this allows much better use of the network. You must use the
same FEPI conversation throughout an IMS conversational transaction.

If you use non-response mode, the data stream flows might be more complex. If
you send multiple messages to IMS, the application has to handle asynchronous
messages from IMS and, to keep the same simulated terminal, has to use the same
FEPI conversation all the time.

Check with your system programmer that the transactions to be used by FEPI are
defined to run in response mode. This requires the terminals for FEPI to be defined
either to force response mode or to use the setting for the transaction (which in
turn should be defined as response mode).

Beginning of session
For SLU2, there is always initial data.

You should:
v Dequeue all output messages by sending CLEAR and PA1 after each FEPI

RECEIVE, until there are no more messages (there may be ‘unsolicited’ data as
well as the initial data).

v If there is an IMS error message, end the session using FEPI FREE with the
RELEASE option.

End of session
When you are designing an application program you must plan what happens
when a session ends.

You must ensure the following:
v An IMS conversation is not left active.
v An IMS /RCLSDST command is issued if appropriate.
v An IMS MFS bypass application is not left in bypass mode.
v Any preset destination has been reset.
v Any used test mode has been ended.
v No paged output message is left on the IMS message queue.
v All messages have been received.

Physically paged messages are removed from the queue automatically when the
last page has been sent and, if they are recoverable, acknowledged. Operator
logically-paged messages are not removed and require a PA2 (for SLU2 mode) or a

Chapter 16. FEPI application design 169

NEXTMSG/NEXTMSGP control function (for SLU P mode) to be sent to IMS to
remove the message from the queue if no input message is due.

IMS recovery
After a system failure, IMS recovers following a restart from the last checkpoint it
took.

This means that, if the failure occurs when IMS has committed a message to the
input queue then, on restart, IMS requeues that message and schedules a
transaction to process it. Similarly, IMS will requeue all output messages that it has
committed to its output queues and not successfully sent.

When IMS fails, all sessions between FEPI and IMS are ended. This is reported to
the FEPI application as a command error (‘session lost’). A FEPI application should
check this so that it can tidy up before ending and take the appropriate action
(such as informing the operator).

FEPI attempts to regain lost connections and, therefore, when IMS restarts, any
previously acquired connections are reestablished. If IMS has committed an input
or output message, eventually there is going to be an output message to send.
With the connection reacquired, IMS attempts to recover its position and ultimately
to send any queued output messages to the FEPI node that carried the original
FEPI conversation. The process of recovery in this situation is different for each of
the two modes:
v SLU P recovery When IMS tries to recover SLU P connections, it uses ‘set and

test sequence numbers’ (STSN) in an attempt to resynchronize failed
conversations. The STSN flow from IMS carries its version of the sequence
numbers for the node being resynchronized. If there is an STSN handler
specified, it is started. If not, FEPI responds POSITIVE, which effectively tells
IMS that FEPI is satisfied with the sequence numbers sent. On receiving this,
IMS sends all messages queued for the node. FEPI receives the messages,
discards them and responds to IMS, completing the resynchronization.

v SLU2 recovery The queued message is sent by IMS until there is a request from
a front-end application, that application will receive the message as unexpected
data interleaved with the data that it expects to receive. This problem can be
handled in either of two ways:
1. By the application issuing a FEPI RECEIVE, with TIMEOUT, before starting

its intended task or by dequeuing all output messages using CLEAR and
PA1.

2. By the begin-session handler.

This situation becomes more complex if the back-end transaction is IMS
conversational, because the front-end transaction has no way of knowing this, and
the IMS conversation will still be active in the back-end system awaiting input.

The potential therefore exists for a front-end FEPI application to allocate a FEPI
conversation on a node where an IMS conversation still exists on the back-end
system. Any data flowing on this FEPI conversation is viewed by the front-end
application as an exchange with a new back-end transaction, but it is viewed by
IMS as the next input message to the existing conversation. To prevent this
situation occurring, you can use the begin-session handler to issue the IMS /EXIT
command, which has the effect of ending an active IMS conversation.

170 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Where the possibility exists of a number of nodes with active IMS conversations
following a restart, it is possible to use FEPI to obtain a connection to IMS and
control the cleanup operation, from a single point. You do this by issuing, again
from the appropriate handler:
v An IMS /DISPLAY command to display all active conversations
v The IMS /EXIT command to end all those attached to FEPI nodes.

In the event of a failure that unbinds all the FEPI connections to IMS, the recovery
procedure is identical to that described here.

Performance
Use the following techniques to get the best performance from your FEPI
applications; the main principles are to minimize the number of commands issued
and the amount of data transmitted.

Remember, however, that some of these techniques have drawbacks and some
conflict with each other; you must choose the best balance to meet your needs.
v Use data area sizes that allow a send or receive to be completed with a single

FEPI command.
v Use FEPI CONVERSE where possible. But remember that the send part of

CONVERSE can fail for various reasons, so be sure to write your program so
that it can issue a subsequent FEPI RECEIVE if necessary.

v The pseudoconversational style (use of FEPI START commands) results in
significant CPU overheads in the front-end region. Further, since the use of FEPI
START generates additional flows to and from the real terminal, response times
are also significantly increased. As a consequence, FEPI START should be used
sparingly when, for example, the receipt of the data from the back-end
application takes a long time.

v Avoid ending sessions unnecessarily. Use the begin-session and end-session
handlers to manage usage of the connections.

v Try to avoid operator dependency in exchanges with a back-end system.

Formatted data
v Unformatted screens (where the terminal character buffer contains no field

attributes) require more processing than formatted screens. Where possible use
formatted screens from the back-end systems.

v Not clearing a screen results in unnecessary data being transmitted to the
back-end system.

v If, when data is received, only a small portion of the resultant screen is of
interest, use FEPI EXTRACT FIELD to minimize the amount of data that needs
to be transferred to the application.

v When using key stroke data, avoid issuing a FEPI CONVERSE, SEND, or
RECEIVE for each attention operation; combine all the operations into one long
string.

v When using key stroke data with an unformatted screen, use the HOME and
ERASE-EOF keys to clear the screen rather than CLEAR, because the latter
requires a network transmission.

v Use key stroke rather than screen-image data where possible, because much less
data needs transferring from the application.

Chapter 16. FEPI application design 171

172 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 17. Specialized FEPI functions

This section describes specialized control functions that are handled by FEPI but
can be taken over by a FEPI application.

It contains the following topics:
v “Set and test sequence number (STSN)”
v “DRx responses” on page 174
v “SNA commands” on page 174.

Set and test sequence number (STSN)
In SLU P mode, message sequence numbers are available in the data stream to
allow message resynchronization. This can be demanded by a ‘Set and Test
Sequence Number’ (STSN) request when a session is started.

The response that IMS requires, and that FEPI supplies if the system programmer
has not defined a transaction to handle the STSN request, depends upon whether
the STSN request showed ‘SET’ or ‘TEST and SET’:
v For ‘SET’, the response is always ‘TEST POSITIVE’.
v For ‘TEST and SET’, the response is ‘TEST POSITIVE’ or ‘TEST NEGATIVE’.

Any other response to STSN will cause the session to be unbound.

If an STSN handler is defined, it is started when session resynchronization is
requested by the back-end system through an SNA STSN or SDT command. The
back-end system sends an SNA STSN command indicating whether the last
inbound message was in doubt or not; that is, whether a message had been sent by
the back-end system but it had not logged the receipt of a response. The back-end
system does not send an SNA STSN command if no traffic has been on the session
since the latest cold start of the back-end system, but sends an SNA SDT command
directly.

Like other handlers, the STSN handler is a CICS started task that uses EXEC CICS
RETRIEVE to get the start data and FEPI ALLOCATE with PASSCONVID to get
ownership of the conversation identified in that data. The STSN handler, which can
use the FEPI EXTRACT STSN command to determine what response is needed,
must use the FEPI ISSUE command to respond to the STSN.

FEPI normally does all the necessary STSN handling automatically, so an STSN
handler is required only where you need to handle the sequence number
information yourself. The FEPI SEND, FEPI RECEIVE, and FEPI CONVERSE
commands return the current sequence numbers for you.

A sample program illustrates the techniques used. See “STSN handler” on page
254.

© Copyright IBM Corp. 1992, 2011 173

DRx responses
In all cases except those mentioned in the next paragraph, FEPI automatically gives
a positive DRx response when the inbound data indicates that a response is
required. This response flows on the next FEPI command (SEND, RECEIVE,
CONVERSE, FREE, or START).

The automatic response is not issued if the next command for a conversation is a
FEPI ISSUE CONTROL or a FEPI FREE PASS. Thus, if you want to send your own
response, perhaps for added certainty or confirmation of particularly sensitive
changes, you would do so using FEPI ISSUE CONTROL. The response type that is
required can be determined from the RESPSTATUS option of FEPI RECEIVE and
FEPI CONVERSE.

You can send your own responses with either formatted data or data stream. But
do not use the following because they can cause FEPI to send responses
automatically:
v Key stroke formatted data containing an attention key that is not the final key

stroke
v FEPI CONVERSE with the POOL option to use a temporary conversation.

If you respond negatively a back-end CICS system will discard the data but an
IMS system will resend it.

SNA commands
The FEPI ISSUE command allows you to send various other SNA commands
yourself. You should do this only if you have a particular requirement.

174 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Part 4. FEPI application programming reference

This section defines the FEPI application programming commands.

(System programming commands such as INSTALL, INQUIRE, and SET are
defined in Chapter 11, “FEPI system programming reference,” on page 89.) The
section contains the following topics:
v Chapter 18, “The FEPI API commands,” on page 177
v Chapter 35, “Start data,” on page 229
v Chapter 36, “Data formats,” on page 231
v Chapter 37, “Ending status,” on page 233.

© Copyright IBM Corp. 1992, 2011 175

176 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 18. The FEPI API commands

The FEPI application programming commands are additions to the set of EXEC
CICS commands that are available to application programmers and they have the
same features and properties as those commands.

The notation used to describe these commands is the same as that used to describe
all application programming commands in CICS. The FEPI application
programming commands are:
v ALLOCATE

v AP NOOP

v CONVERSE

v EXTRACT

v FREE

v ISSUE

v RECEIVE

v REQUEST PASSTICKET

v SEND

v START

You must specify the ‘FEPI’ translator option when you use FEPI commands. FEPI
commands can be issued in either 24-bit or 31-bit addressing mode, by programs
that reside either above or below the 16MB line.

No information is passed through the EXEC interface block (EIB) except that, as for
all CICS commands, the EIBRESP, EIBRESP2, EIBFN, and EIBRCODE fields are set.

Arguments and data types

The text used to identify arguments indicates the type of data represented by the
argument and whether it is a value used by the command, or an area in which the
command returns data. For example:
v POOL(8-character data-value) indicates that the argument is, or identifies, a

string of eight characters, and that the string is passed to the command as an
input value.

v ACQNUM(fullword binary data-area) indicates that the argument is a
user-defined fullword data area in which the command can return a binary
number as an output value.

Exceptionally, arguments that are lists have to be data areas, even though they are
input values.

© Copyright IBM Corp. 1992, 2011 177

Related information

CICS command summary

Command format

The general format of a command is:
EXEC CICS FEPI command option(argument)...

where:

command
Is the command name (for example, ADD)

option Is an option name (for example, POOL)

argument
Is the source or destination for data, as required for the specified option,
that is passed to or returned from the command.

The way that you terminate the command is determined by the programming
language that you use—COBOL, for example, requires an END-EXEC statement.

Errors and exception conditions
All FEPI commands support the RESP and RESP2 options to signal successful
completion or an exception condition. Alternatively, you can use HANDLE
CONDITION to trap errors.

Most FEPI command errors give the ‘INVREQ’ exception condition. The particular
error in each case is uniquely identified by the RESP2 value.

If there is an error, the command does nothing and the output arguments are not
changed. Note, however, that commands such as FEPI SEND may have transferred
data before the condition is recognized.

Both RESP and RESP2 take, as an argument, the name of a user-defined fullword
binary data area. Possible values of the RESP2 option are given in the description
of each of the commands and a full list is given in “FEPI RESP2 values” on page
260. The following copy books provide declarations for the RESP2 values:
v DFHSZAPA for Assembler language
v DFHSZAPO for COBOL
v DFHSZAPP for PL/I
v DFHSZAPC for C.

The INVREQ condition and the following RESP2 values can occur for any
application programming command:

RESP2
Meaning

10 Command bypassed by user exit.

11 FEPI not installed, or not active..

12 CICS shutting down, command not allowed.

13 FEPI unavailable.

178 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

14 FEPI busy or cannot get storage..

15 Unknown command..

16 Internal error.

17 FEPI cannot get storage for user exit..

18 Command failed through operator or system action..

Chapter 18. The FEPI API commands 179

180 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 19. FEPI ALLOCATE PASSCONVID

FEPI ALLOCATE PASSCONVID acquires ownership of an existing unowned
conversation.

Syntax

FEPI ALLOCATE PASSCONVID

�� FEPI ALLOCATE PASSCONVID (data-value) ��

Options

PASSCONVID(8-character data-value)
specifies the ID of the conversation.

Conditions

RESP2
Meaning

216 Error occurred on previous FEPI SEND.

240 Unknown conversation ID.

© Copyright IBM Corp. 1992, 2011 181

182 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 20. FEPI ALLOCATE POOL

FEPI ALLOCATE POOL establishes a new FEPI conversation with a target
application, acquiring a session from the named pool to use for the conversation.
The conversation has the properties, particularly the mode (SLU2 or SLU P) and
data format (data stream or formatted), specified for the pool that is used: some of
the properties can be queried using FEPI EXTRACT CONV.The command
completes immediately if, in the named POOL, a suitable session has been
established and is not in use. Otherwise the request waits for a session to become
available. A time limit can be set for this wait.

Syntax

FEPI ALLOCATE POOL

�� FEPI ALLOCATE POOL (data-value) CONVID (data-area) �

�
TARGET (data-value) TIMEOUT (data-value)

�

�
SEQNUMIN (data-area) SEQNUMOUT (data-area)

�

�
SESSNSTATUS (cvda)

��

Options

CONVID(8-character data-area)
returns a unique identifier for the new conversation; this is the ID that must be
quoted on all subsequent commands for the conversation.

POOL(8-character data-value)
specifies the name of the pool containing the target for the conversation.

SEQNUMIN(fullword binary data-area)
in SLU P mode, returns the current sequence number for inbound data.
(SEQNUMIN has no significance in SLU2 mode.)

SEQNUMOUT(fullword binary data-area)
in SLU P mode, returns the current sequence number for outbound data.
(SEQNUMOUT has no significance in SLU2 mode.)

SESSNSTATUS(cvda)
returns a value that indicates whether the session being used for the
conversation was newly-bound or not. The relevant CVDA values are:
v NEWSESSION

v OLDSESSION

TARGET(8-character data-value)
specifies the name of the target. TARGET can be omitted if there is only one
target in the pool or if all targets are suitable for the desired conversation.

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the command is to wait for a

© Copyright IBM Corp. 1992, 2011 183

suitable session to become available. If TIMEOUT is not specified or the
specified time is zero, the command is not timed out.

Conditions

If an INVREQ condition is returned, it can have the following RESP2 values:

RESP2
Meaning

30 Pool name unknown.

31 Pool name out of service.

32 Target name unknown..

33 Target name out of service..

34 Target name required but not specified.

36 No suitable session available and in service.

213 Command timed out.

241 TIMEOUT value negative or not valid.

184 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 21. FEPI AP NOOP

FEPI AP NOOP has no effect.

Syntax

FEPI AP NOOP

�� FEPI AP NOOP ��

Options

None

Conditions

None specific to this command.

© Copyright IBM Corp. 1992, 2011 185

186 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 22. FEPI CONVERSE DATASTREAM

FEPI CONVERSE DATASTREAM sends application data to and receives a reply from a
target.

The data supplied by the application must be a currently valid data stream
appropriate to the mode of the conversation (SLU2 or SLU P); the data received
into the application’s data area is also data stream. Full details about the data are
given in Chapter 36, “Data formats,” on page 231

The conversation with the target can be one of two types. A time limit can be set
for this command. For more details of ending conditions, see Chapter 37, “Ending
status,” on page 233.

Previously allocated conversation syntax

�� FEPI CONVERSE DATASTREAM CONVID (data-value) FROM (data-value) �

�
FROMFLENGTH (data-value)

CHAIN

RU
UNTILCDEB

ENDSTATUS (cvda)
�

�
FMH FMHSTATUS (cvda)

�

�
INTO (data-area) INTO options REMFLENGTH (data-area)

�

�
RESPSTATUS (cvda) SEQNUMIN (data-area)

�

�
SEQNUMOUT (data-area) TIMEOUT (data-value)

��

INTO options:

MAXFLENGTH (data-value) TOFLENGTH (data-area)

Temporary conversation syntax

�� FEPI CONVERSE DATASTREAM POOL (data-value) �

© Copyright IBM Corp. 1992, 2011 187

�
TARGET (data-value)

FROM (data-value) �

�
FROMFLENGTH (data-value)

UNTILCDEB

ENDSTATUS (cvda)
�

�
FMH FMHSTATUS (cvda)

�

�
INTO (data-area) INTO options REMFLENGTH (data-area)

�

�
RESPSTATUS (cvda) SEQNUMIN (data-area)

�

�
SEQNUMOUT (data-area) TIMEOUT (data-value)

��

INTO options:

MAXFLENGTH (data-value) TOFLENGTH (data-area)

Options

CHAIN
specifies that the command should complete when a whole chain has been
received. CHAIN is not allowed if the POOL option is specified.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The conversation must be owned by
the task issuing the command.

ENDSTATUS(cvda)
returns a value that indicates the ending status for the received data. The
relevant CVDA values are:

Value Meaning

CD ‘Change direction’ received.

EB ‘End bracket’ received.

LIC ‘Last in chain’ received.

RU RU received.

MORE
The data area identified by the INTO option was too small to receive
all the requested data.

For more details of ending status and how additional data is handled, see
Chapter 37, “Ending status,” on page 233.

FMH
indicates that the data to send includes a function management header.

188 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

FMHSTATUS(cvda)
returns a value that indicates whether the received data contains a function
management header. The relevant CVDA values are:
v FMH

v NOFMH

FROM(data-value)
specifies the data to send to the back-end application. Its length is specified by
the FROMFLENGTH option.

FROMFLENGTH(fullword binary data-value)
specifies the length of the data to send; that is, the length of the data area
identified by the FROM option. It must not be zero or more than the maximum
length allowed for the pool.

INTO(data-area)
specifies the data area in which the received data is to be returned. The length
of the area is specified by the MAXFLENGTH option, and the actual length of
data written into the area is returned by the TOFLENGTH option.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be returned; that is, the length
of the data area identified by the INTO option. It must not be more than the
maximum length allowed for the pool.

POOL(8-character data-value)
specifies the name of the pool containing the target for the conversation.
Specifying POOL means that the conversation is a temporary one, that exists
only for the duration of the FEPI CONVERSE. The CHAIN and RU options are
not allowed, and the command completes when ‘change direction’ or ‘end
bracket’ is received. If there is more data to receive than fits into the data area
identified by the INTO option, the additional data is discarded.

REMFLENGTH(fullword binary data-area)
returns the length, if known, of data remaining after filling the data area
identified by the INTO option.

RESPSTATUS(cvda)
returns a value that indicates the type of response that is required at the
back-end system. The relevant CVDA values are:

Value Meaning

DEFRESP1
Definite response 1 required.

DEFRESP2
Definite response 2 required.

DEFRESP3
Definite response 1 and definite response 2 required.

NONE
No response required.

RU specifies that the command should complete when a request unit has been
received. RU is not allowed if the POOL option is specified.

SEQNUMIN(fullword binary data-area)
in SLU P mode, returns the current sequence number for inbound data, as at
the completion of the command. (SEQNUMIN has no significance in SLU2
mode.)

Chapter 22. FEPI CONVERSE DATASTREAM 189

SEQNUMOUT(fullword binary data-area)
in SLU P mode, returns the current sequence number for outbound data, as at
the completion of the command. (SEQNUMOUT has no significance in SLU2
mode.)

TARGET(8-character data-value)
specifies the name of the target. TARGET can be omitted if there is only one
target in the pool or if all targets are suitable for the desired conversation.

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the command is to wait for the
requested data to begin to arrive. If TIMEOUT is not specified or the specified
time is zero, the command is not timed out.

TOFLENGTH(fullword binary data-area)
returns the actual length of data received in the data area identified by the
INTO option.

UNTILCDEB
specifies that the command should complete when ‘change direction’ or ‘end
bracket’ is received.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

30 Pool name unknown.

31 Pool name out of service.

32 Target name unknown.

33 Target name out of service.

34 Target name required but not specified.

35 POOL name is unsuitable for temporary conversations. It has
CONTENTION(LOSE) or it has INITIALDATA(INBOUND) and no
begin-session handler.

36 No suitable session available and in service.

40 FROMLENGTH value negative, zero, or more than the maximum allowed
for the current pool.

50 Inbound data with ‘begin bracket’ to be received.

58 VTAM SEND failed.

60 MAXFLENGTH value negative, zero, or more than the maximum allowed
for the current pool.

71 VTAM RECEIVE failed.

212 Conversation has wrong data format.

213 Command timed out.

215 Session lost.

216 Error occurred on previous FEPI SEND.

220 FEPI CONVERSE not allowed at this point in the conversation.

190 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

224 Only FEPI ISSUE or FEPI FREE commands allowed at this point in the
conversation.

230 SNA CLEAR command received. For an explanation of this SNA
command, see the SNA Formats manual.

231 SNA CANCEL command received. For an explanation of this SNA
command, see the SNA Formats manual.

232 SNA CHASE command received. For an explanation of this SNA
command, see the SNA Formats manual.

233 Exception response received.

234 Exception request received.

240 Conversation ID not owned by this task.

241 TIMEOUT value negative or not valid.

Chapter 22. FEPI CONVERSE DATASTREAM 191

192 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 23. FEPI CONVERSE FORMATTED

FEPI CONVERSE FORMATTED sends application data to and receives a reply
from a target.

The data supplied by the application must be formatted data, as key strokes (with
a final attention character) or a screen image; the data received into the
application’s data area is a screen image.

This command is for SLU2 mode only.

Full details about the data are given in Chapter 36, “Data formats,” on page 231.
The conversation with the target can be one of two types. A time limit can be set
for this command. For more details of ending conditions, see Chapter 37, “Ending
status,” on page 233.

Previously allocated conversation syntax

�� FEPI CONVERSE FORMATTED CONVID (data-value) FROM (data-value) �

�
FROMFLENGTH (data-value)

�

� AID (data-value)
FROMCURSOR (data-value)

KEYSTROKES
ESCAPE (data-value)

�

�
INTO (data-area) INTO options ALARMSTATUS (cvda)

�

�
COLUMNS (data-area) ENDSTATUS (cvda)

�

�
FIELDS (data-area) LINES (data-area)

�

�
RESPSTATUS (cvda) TIMEOUT (data-value)

�

�
TOCURSOR (data-area)

��

INTO options:

MAXFLENGTH (data-value) TOFLENGTH (data-area)

Temporary conversation syntax

�� FEPI CONVERSE FORMATTED POOL (data-value) �

© Copyright IBM Corp. 1992, 2011 193

�
TARGET (data-value)

FROM (data-value) �

�
FROMFLENGTH (data-value)

KEYSTROKES
ESCAPE (data-value)

�

�
INTO (data-area) INTO options ALARMSTATUS (cvda)

�

�
COLUMNS (data-area) ENDSTATUS (cvda)

�

�
FIELDS (data-area) LINES (data-area)

�

�
RESPSTATUS (cvda) TIMEOUT (data-value)

�

�
TOCURSOR (data-area)

��

INTO options:

MAXFLENGTH (data-value) TOFLENGTH (data-area)

Options

AID(1-character data-value)
specifies the attention identifier value to send with the data. Specifying AID
also indicates that the data to send is in screen-image format, as described in
Chapter 36, “Data formats,” on page 231. The value must not be null (X'00').
AID, and therefore screen-image format data, is not allowed if POOL is
specified.

Symbolic names for the AID values are available for the supported languages
in the language-specific DFHAID copybooks.

ALARMSTATUS(cvda)
returns a value that indicates whether the received data sounded the alarm.
The relevant CVDA values are:
v ALARM

v NOALARM

COLUMNS(fullword binary data-area)
returns the number of columns in the screen image.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The conversation must be owned by
the task issuing the command.

ENDSTATUS(cvda)
returns a value that indicates the ending status for the received data. The
relevant CVDA values are:

Value Meaning

CD ‘Change direction’ received.

EB ‘End bracket’ received.

194 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

LIC ‘Last in chain’ received.

For more details of ending status and how additional data is handled, see
Chapter 37, “Ending status,” on page 233.

ESCAPE(1-character data-value)
for send data in key stroke format, specifies the escape character used to
indicate character combinations representing special keys. You can use any
value in the range X'40' through X'FE'. The default escape character is & (X'50').

FIELDS(fullword binary data-area)
returns the number of fields in the screen image.

FROM(data-value)
specifies the data to send to the back-end application. Its length is specified by
the FROMFLENGTH option. For send data in screen-image format, if the
length is more than the screen image, the additional data is ignored; if it is
less, the data is the first part of the screen image, and the last part of the
screen image is not changed.

FROMCURSOR(fullword binary data-value)
for send data in screen-image format, specifies the position of the cursor,
expressed as an offset from the start of the screen image; offset zero is the top
left-hand corner of the screen. If FROMCURSOR is not specified, the cursor
remains where it was positioned by the last inbound data.

FROMFLENGTH(fullword binary data-value)
specifies the length of the data to send; that is, the length of the data area
identified by the FROM option. It must not be zero or more than the maximum
length allowed for the pool.

INTO(data-area)
specifies the data area in which the received data is to be returned. The length
of the area is specified by the MAXFLENGTH option, and the actual length of
data written into the area is returned by the TOFLENGTH option.

KEYSTROKES
specifies that the data to send is a sequence of key strokes (see Chapter 36,
“Data formats,” on page 231).

LINES(fullword binary data-area)
returns the number of lines in the screen image.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be returned; that is, the length
of the data area identified by the INTO option. It must not be more than the
maximum length allowed for the pool.

POOL(8-character data-value)
specifies the name of the pool containing the target for the conversation.
Specifying POOL means that the conversation is a temporary one, that exists
only for the duration of the FEPI CONVERSE. You must also specify the
KEYSTROKES option. If the length of the data area identified by the INTO
option is less than the size of the screen image, the additional data is
discarded.

RESPSTATUS(cvda)
returns a value that indicates the type of response that is required at the
back-end system. The relevant CVDA values are:

Value Meaning

Chapter 23. FEPI CONVERSE FORMATTED 195

DEFRESP1
Definite response 1 required.

DEFRESP2
Definite response 2 required.

DEFRESP3
Definite response 1 and definite response 2 required.

NONE
No response required.

TARGET(8-character data-value)
specifies the name of the target. TARGET can be omitted if there is only one
target in the pool or if all targets are suitable for the desired conversation.

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the command is to wait for the
requested data to begin to arrive. If TIMEOUT is not specified or the specified
time is zero, the command is not timed out.

TOCURSOR(fullword binary data-area)
returns the position of the cursor in the received screen image, expressed as an
offset from the start of the screen image; offset zero is the top left-hand corner
of the screen.

TOFLENGTH(fullword binary data-area)
returns the actual length of data received in the data area identified by the
INTO option.

Note: On a FEPI CONVERSE FORMATTED command, if MAXFLENGTH is
less than the presentation space size, TOFLENGTH returns the value defined
in MAXFLENGTH. If MAXFLENGTH is greater than the presentation space
size, TOFLENGTH returns the presentation space size.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

30 Pool name unknown.

31 Pool name out of service.

32 TARGET name unknown.

33 TARGET name out of service.

34 TARGET name required but not specified.

35 POOL name is unsuitable for temporary conversations. It has
CONTENTION(LOSE) or it has INITIALDATA(INBOUND) and no
begin-session handler.

36 No suitable session available and in service.

40 FROMLENGTH value negative, zero, or more than the maximum allowed
for the current pool.

41 ESCAPE value not valid.

50 Inbound data with ‘begin bracket’ to be received.

196 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

51 AID value not valid.

52 Cursor position not valid.

53 Character values in send data not valid.

54 Attribute positions or values in send data not valid.

55 Key stroke escape sequence in send data is not valid.

56 Field validation (mandatory fill, mandatory enter, trigger) failed.

57 Input inhibited.

58 VTAM SEND failed.

59 DBCS data rules violated.

60 MAXFLENGTH value negative, zero, or more than the maximum allowed
for the current pool.

71 VTAM RECEIVE failed.

72 RECEIVE FORMATTED processing found invalid, or unexpected data
while interpreting the 3270 data stream for a WRITE, ERASE/WRITE
ALTERNATE, or WRITE STRUCTURED FIELD command code.

210 Command not allowed for SLU P mode.

212 Conversation has wrong data format.

213 Command timed out.

215 Session lost.

216 Error occurred on previous FEPI SEND.

220 FEPI CONVERSE not allowed at this point in the conversation.

221 Data cannot be received because no AID or final attention key stroke
specified.

224 Only FEPI ISSUE or FEPI FREE commands allowed at this point in the
conversation.

230 SNA CLEAR command received. For an explanation of this SNA
command, see the SNA Formats manual.

231 SNA CANCEL command received. For an explanation of this SNA
command, see the SNA Formats manual.

232 SNA CHASE command received. For an explanation of this SNA
command, see the SNA Formats manual.

233 Exception response received.

234 Exception request received.

240 Conversation ID not owned by this task.

241 TIMEOUT value negative or not valid.

Chapter 23. FEPI CONVERSE FORMATTED 197

198 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 24. FEPI EXTRACT CONV

FEPI EXTRACT CONV gets general information about a conversation.

Syntax

FEPI EXTRACT CONV

�� FEPI EXTRACT CONV CONVID (data-value)
DEVICE (cvda)

�

�
FORMAT (cvda) POOL (data-area)

�

�
TARGET (data-area) NODE (data-area)

�

�
SENSEDATA (data-area)

��

Options

CONVID(8-character data-value)
specifies the ID of the conversation for which information is wanted. The
conversation must be owned by the task issuing the command.

DEVICE(cvda)
returns a value that identifies the mode of conversation and the type of device.
The relevant CVDA values are:

Value Meaning

T3278M2
SLU2 mode, 3278 Model 2

T3278M3
SLU2 mode, 3278 Model 3

T3278M4
SLU2 mode, 3278 Model 4

T3278M5
SLU2 mode, 3278 Model 5

T3279M2
SLU2 mode, 3279 Model 2B

T3279M3
SLU2 mode, 3279 Model 3B

T3279M4
SLU2 mode, 3279 Model 4B

T3279M5
SLU2 mode, 3279 Model 5B

TPS55M2
SLU2 mode, PS/55, 24 lines

© Copyright IBM Corp. 1992, 2011 199

TPS55M3
SLU2 mode, PS/55, 32 lines

TPS55M4
SLU2 mode, PS/55, 43 lines

LUP SLU P mode, all cases.

FORMAT(cvda)
in SLU2 mode, returns a value that identifies the data mode. The relevant
CVDA values are:
v DATASTREAM

v FORMATTED

NODE(8-character data-area)
returns the node name.

POOL(8-character data-area)
returns the pool name.

SENSEDATA(fullword binary data-area)
returns the sense data associated with the last FEPI SEND, FEPI RECEIVE, or
FEPI CONVERSE command for the conversation. If there is no sense data, zero
is returned.

TARGET(8-character data-area)
returns the target name.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

215 Session lost.

240 Conversation ID not owned by this task.

200 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 25. FEPI EXTRACT FIELD

The command is for SLU2 mode only, and for formatted data only.FEPI EXTRACT
FIELD gets information about a field in the current character buffer of the
simulated terminal. It can be issued at any point in the conversation. More than
one FEPI EXTRACT FIELD command can be issued for a given field.For
information about field attributes and their values see 3270 Data Stream
Programmer’s Reference. Symbolic names for the various attribute values are
available in the DFHBMSCA copybook.

Syntax

FEPI EXTRACT FIELD

�� FEPI EXTRACT FIELD CONVID (data-value) �

� FIELDLOC (data-value)
FIELDNUM (data-value) INTO (data-area) INTO options

�

�
BACKGROUND (data-area) COLOR (data-area)

�

�
FIELDATTR (data-area) HILIGHT (data-area)

�

�
INPUTCONTROL (data-area) MDT (cvda)

�

�
OUTLINE (data-area) POSITION (data-area)

�

�
PROTECT (cvda) PS (data-area) SIZE (data-area)

�

�
TRANSPARENCY (data-area) VALIDATION (data-area)

��

INTO options:

MAXFLENGTH (data-value) FLENGTH (data-area)

Options

BACKGROUND(1-character data-area)
returns the background color attribute of the field.

COLOR(1-character data-area)
returns the foreground color attribute of the field.

CONVID(8-character data-value)
specifies the ID of the conversation for which information is wanted. The
conversation must be owned by the task issuing the command.

© Copyright IBM Corp. 1992, 2011 201

FIELDATTR(1-character data-area)
returns the 3270 field attribute of the field.

FIELDLOC(fullword binary data-value)
specifies the location of the required field expressed as an offset from the start
of the screen image; offset zero is the top left-hand corner of the screen. The
location can refer to any character position in the field, including its attribute
byte.

FIELDNUM(fullword binary data-value)
specifies the location of the required field expressed as a field number counting
from the top left-hand corner of the screen. The first field is number 1, and
starts at the top-left hand corner of the screen, whether or not there is an
attribute in that position. The last field ends at the bottom right-hand corner of
the screen, and does not wrap back to the top.

FLENGTH(fullword binary data-area)
returns the actual length of data received in the data area identified by the
INTO option.

HILIGHT(1-character data-area)
returns the extended highlighting attribute of the field.

INPUTCONTROL(1-character data-area)
returns the DBCS input control attribute of the field.

INTO(data-area)
specifies the data area in which the data in the field is to be returned. The
length of the area is specified by the MAXFLENGTH option, and the actual
length of data written into the area is returned by the FLENGTH option.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be returned; that is, the length
of the data area identified by the INTO option. It must not be more than the
maximum length allowed for the pool.

MDT(cvda)
returns a value that identifies the state of the modified data tag for the field.
The relevant CVDA values are:
v NOMDT

v MDT

OUTLINE(1-character data-area)
returns the field outlining attribute of the field.

POSITION(fullword binary data-area)
returns the position of the field expressed as the offset of the first data byte
from the start of the screen image; offset zero is the top left-hand corner of the
screen.

PROTECT(cvda)
returns a value that indicates whether or not the field is protected. The
relevant CVDA values are:
v UNPROTECTED

v PROTECTED

PS(1-character data-area)
returns the character set attribute of the field.

202 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

SIZE(fullword binary data-area)
returns the size of the field on the screen, excluding the field attribute byte,
expressed as a number of bytes.

TRANSPARENCY(1-character data-area)
returns the transparency attribute of the field.

VALIDATION(1-character data-area)
returns the field validation attribute of the field.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

60 MAXFLENGTH value negative, zero, or more than the maximum allowed
for the current pool.

70 FIELDLOC or FIELDNUM value negative or not valid.

210 Command not allowed for SLU P mode.

212 Conversation has wrong data format.

224 Only FEPI ISSUE or FEPI FREE commands allowed at this point in the
conversation.

240 Conversation ID not owned by this task.

Chapter 25. FEPI EXTRACT FIELD 203

204 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 26. FEPI EXTRACT STSN

The command is for SLU P mode only.FEPI EXTRACT STSN gets sequence
number status information for a conversation.

Syntax

FEPI EXTRACT STSN

�� FEPI EXTRACT STSN CONVID (data-value)
SEQNUMIN (data-area)

�

�
SEQNUMOUT (data-area) STSNSTATUS (cvda)

��

Options

CONVID(8-character data-value)
specifies the ID of the conversation for which information is wanted. The
conversation must be owned by the task issuing the command.

SEQNUMIN(fullword binary data-area)
returns the current sequence number for inbound data.

SEQNUMOUT(fullword binary data-area)
returns the current sequence number for outbound data.

STSNSTATUS(cvda)
returns the current sequence-number set and test status. The relevant CVDA
values are:

Value Meaning

NOSTSN
No ‘set’ or ‘test and set’ issued.

STSNSET
‘Set’ sequence number issued.

STSNTEST
‘Test and set’ sequence number issued.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

211 Command not allowed for SLU2 mode.

240 Conversation ID not owned by this task.

© Copyright IBM Corp. 1992, 2011 205

206 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 27. FEPI FREE

FEPI FREE ends a task’s use and ownership of a conversation. The conversation
may be ended completely, or may be passed to another task.

The action depends on the processing state of the conversation:
v Begin session handler
v STSN handler
v Access program
v End session handler
v Unsolicited-data handler.

Syntax

FEPI FREE

�� FEPI FREE CONVID (data-value)
HOLD

RELEASE
FORCE
PASS

��

Options

CONVID(8-character data-value)
specifies the ID of the conversation to free. The conversation must be owned
by the task issuing the command.

FORCE
tells FEPI what action to take. For all processing states of the conversation,
FORCE instructs FEPI to end the conversation unconditionally, and to take the
connection that it was using out of service immediately and, if possible, reset
it.

HOLD
tells FEPI what action to take.

For the access program and the unsolicited-data handler, HOLD instructs FEPI
to end the conversation and to retain the session for use by another
conversation. However, this is subject to any end-session processing.

For the begin-session handler and the STSN handler, HOLD tells FEPI that
begin-session or STSN processing has ended, and that the conversation is
ready for the next processing state.

For the end-session handler, HOLD tells FEPI that end-session processing has
ended, and instructs FEPI to end the conversation and to retain the session for
use by another conversation. (If CICS shutdown is in progress, HOLD is the
same as RELEASE.)

PASS
tells FEPI what action to take. For all the processing states of the conversation,
PASS specifies that the task is relinquishing ownership of the conversation so
that another task can acquire it. There is no change in the processing state of
the conversation. (PASS is not allowed if CICS shutdown is in progress.)

© Copyright IBM Corp. 1992, 2011 207

RELEASE
tells FEPI what action to take.

For the access program and the unsolicited-data handler, RELEASE instructs
FEPI to end the conversation, and to release and unbind the session that it was
using, thereby forcing a new session to be started next time the connection is
used. However, this is subject to any end-session processing.

For the begin-session handler and the STSN handler, RELEASE tells FEPI that
begin-session or STSN processing has ended, and instructs FEPI to end the
conversation without proceeding to the next processing state, and to release
and unbind the session that it was using, thereby forcing a new session to be
started next time the connection is used. However, this is subject to any
end-session processing.

For the end-session handler, RELEASE tells FEPI that end-session processing
has ended, and instructs FEPI to end the conversation, and to release and
unbind the session that it was using, thereby forcing a new session to be
started next time the connection is used.

Note that, under normal circumstances, after a FEPI FREE RELEASE command
has been issued the session does not remain in RELEASED state, because FEPI
automatically tries to reacquire the session. However, if a FEPI SET
CONNECTION ACQSTATUS(RELEASED) command is issued before the FREE
RELEASE, the session remains in RELEASED state.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

214 CICS shutting down, conversation should be ended.

240 Conversation ID not owned by this task.

208 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 28. FEPI ISSUE

FEPI ISSUE sends control data, such as standard responses and sense data, to the
target system. The command completes as soon as the corresponding VTAM SEND
has been accepted.

Syntax

FEPI ISSUE

�� FEPI ISSUE CONVID (data-value) CONTROL (cvda) �

�
SENSEDATA (data-value) VALUE (cvda)

��

Options

CONTROL(cvda)
specifies what type of control data to send. The relevant CVDA values depend
upon the data type and the mode of the conversation:

For all modes:

Value Meaning

NORMALRESP
Send a normal response, as specified by the VALUE option.

EXCEPTRESP
Send an exception response, as specified by the VALUE option, and
with the sense data specified by the SENSEDATA option.

ATTENTION
Send an attention (SNA ‘signal’ command X'00010000').

LUSTAT
Send an SNA ‘LUSTAT’ command with the sense data specified by the
SENSEDATA option.

For data stream only:

Value Meaning

CANCEL
Send an SNA ‘cancel’ command.

For SLU P mode only:

Value Meaning

STSN Send an SNA ‘set and test sequence number’ command.

RTR Send an SNA ‘ready to receive’ command.

© Copyright IBM Corp. 1992, 2011 209

CONVID(8-character data-value)
specifies the ID of the conversation to use. The conversation must be owned by
the task issuing the command.

SENSEDATA(fullword binary data-value)
specifies sense data to send to the target when the CONTROL is LUSTAT or
EXCEPTRESP.

VALUE(cvda)
specifies the response type associated with the control data. The relevant
CVDA values are determined by what is specified for the CONTROL option:

For EXCEPTRESP and NORMALRESP:

Value Meaning

DEFRESP1OR2
Send definite response 1 or 2 as required.

DEFRESP1
Send definite response 1.

DEFRESP2
Send definite response 2.

DEFRESP3
Send definite response 1 and definite response 2.

For STSN:

Value Meaning

POSITIVE
Send STSN positive response.

NEGATIVE
Send STSN negative response.

INVALID
Send STSN response not valid (this unbinds the session).

RESET
Send STSN reset response (this unbinds the session).

DEFRESP2
Send definite response 2.

DEFRESP3
Send definite response 1 and definite response 2.

For other controls:

None; the VALUE option is not used with the other controls.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

210 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

80 CONTROL value not valid.

81 VALUE value not valid: omitted when required, specified when not
required, or unsuitable for the specified CONTROL value.

82 SENSEDATA value omitted when required or specified when not required.

90 Definite response type did not match what was required.

91 Only NORMALRESP or EXCEPTRESP are allowed at this point in the
conversation.

92 Response to STSN SET was not positive.

93 Only FEPI ISSUE CONTROL(STSN) allowed at this point in the
conversation.

94 Only FEPI ISSUE CONTROL(STSN) or FEPI ISSUE
CONTROL(NORMALRESP) allowed at this point in the conversation.

95 CONTROL value not allowed at this point in the conversation.

211 Option not allowed for SLU2 mode.

215 Session lost.

216 Error occurred on previous FEPI SEND.

230 SNA CLEAR command received.

231 SNA CANCEL command received.

232 SNA CHASE command received.

233 Exception response received.

234 Exception request received.

240 Conversation ID not owned by this task.

Chapter 28. FEPI ISSUE 211

212 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 29. FEPI RECEIVE DATASTREAM

FEPI RECEIVE DATASTREAM receives data from a target and places the received
data stream into the application’s data area. Full details about the data are given in
Chapter 36, “Data formats,” on page 231.By default, FEPI RECEIVE DATASTREAM
completes when a whole chain of data has been received. A time limit can be set
for this command. For more details of ending conditions, see Chapter 37, “Ending
status,” on page 233.

Syntax

FEPI RECEIVE DATASTREAM

�� FEPI RECEIVE DATASTREAM CONVID (data-value)
CHAIN

RU
UNTILCDEB

�

�
ENDSTATUS (cvda) FMHSTATUS (cvda)

�

�
INTO (data-area) INTO options REMFLENGTH (data-area)

�

�
RESPSTATUS (cvda) SEQNUMIN (data-area)

�

�
SEQNUMOUT (data-area) TIMEOUT (data-value)

��

INTO options:

MAXFLENGTH (data-value) FLENGTH (data-area)

Options

CHAIN
specifies that the command should complete when a whole chain has been
received.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The conversation must be owned by
the task issuing the command.

ENDSTATUS(cvda)
returns a value that indicates the ending status for the received data. The
relevant CVDA values are:

Value Meaning

© Copyright IBM Corp. 1992, 2011 213

CD ‘Change direction’ received.

EB ‘End bracket’ received.

LIC ‘Last in chain’ received.

RU RU received.

MORE
The data area identified by the INTO option was too small to receive
all the requested data.

For more details of ending status and how additional data is handled, see
Chapter 37, “Ending status,” on page 233.

FLENGTH(fullword binary data-area)
returns the actual length of data received in the data area identified by the
INTO option.

FMHSTATUS(cvda)
returns a value that indicates whether the received data contains a function
management header. The relevant CVDA values are:
v FMH

v NOFMH

INTO(data-area)
specifies the data area in which the received data is to be returned. The length
of the area is specified by the MAXFLENGTH option, and the actual length of
data written into the area is returned by the FLENGTH option.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be returned; that is, the length
of the data area identified by the INTO option. It must not be more than the
maximum length allowed for the pool.

REMFLENGTH(fullword binary data-area)
returns the length, if known, of data remaining after filling the data area
identified by the INTO option.

RESPSTATUS(cvda)
returns a value that indicates the type of response that is required at the
back-end system. The relevant CVDA values are:

Value Meaning

DEFRESP1
Definite response 1 required.

DEFRESP2
Definite response 2 required.

DEFRESP3
Definite response 1 and definite response 2 required.

NONE
No response required.

RU specifies that the command should complete when a request unit has been
received.

SEQNUMIN(fullword binary data-area)
in SLU P mode, returns the current sequence number for inbound data, as at
the completion of the command. (SEQNUMIN has no significance in SLU2
mode.)

214 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

SEQNUMOUT(fullword binary data-area)
in SLU P mode, returns the current sequence number for outbound data, as at
the completion of the command. (SEQNUMOUT has no significance in SLU2
mode.)

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the command is to wait for the
requested data to begin to arrive. If TIMEOUT is not specified or the specified
time is zero, the command is not timed out.

UNTILCDEB
specifies that the command should complete when ‘change direction’ or ‘end
bracket’ is received.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

60 MAXFLENGTH value negative or more than maximum allowed for the
current pool.

71 VTAM RECEIVE failed.

212 Conversation has wrong data format.

215 Session lost.

216 Error occurred on previous FEPI SEND.

221 FEPI RECEIVE not allowed at this point in the conversation.

224 Only FEPI ISSUE or FEPI FREE commands allowed at this point in the
conversation.

230 SNA CLEAR command received.

231 SNA CANCEL command received.

232 SNA CHASE command received.

233 Exception response received.

234 Exception request received.

240 Conversation ID not owned by this task.

241 TIMEOUT value negative or not valid.

Chapter 29. FEPI RECEIVE DATASTREAM 215

216 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 30. FEPI RECEIVE FORMATTED

This command is for SLU2 mode only.FEPI RECEIVE FORMATTED receives data
from a target. The data received into the application’s data area is a screen image.
Full details about the data are given in Chapter 36, “Data formats,” on page
231.FEPI RECEIVE FORMATTED completes after receiving the inbound data with
‘last in chain’, ‘end bracket’ or ‘change direction’ indicated. A time limit can be set
for this command. For more details of ending conditions, see Chapter 37, “Ending
status,” on page 233.

Syntax

FEPI RECEIVE FORMATTED

�� FEPI RECEIVE FORMATTED CONVID (data-value) �

�
INTO (data-area) INTO options ALARMSTATUS (cvda)

�

�
COLUMNS (data-area) CURSOR (data-area)

�

�
ENDSTATUS (cvda) FIELDS (data-area)

�

�
LINES (data-area) RESPSTATUS (cvda)

�

�
TIMEOUT (data-value)

��

INTO options:

MAXFLENGTH (data-value) FLENGTH (data-area)

Options

ALARMSTATUS(cvda)
returns a value that indicates whether the received data sounded the alarm.
The relevant CVDA values are:
v ALARM

v NOALARM

COLUMNS(fullword binary data-area)
returns the number of columns in the screen image.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The conversation must be owned by
the task issuing the command.

© Copyright IBM Corp. 1992, 2011 217

CURSOR(fullword binary data-area)
returns the position of the cursor in the received screen image, expressed as an
offset from the start of the screen image; offset zero is the top left-hand corner
of the screen.

ENDSTATUS(cvda)
returns a value that indicates the ending status for the received data. The
relevant CVDA values are:

Value Meaning

CD ‘Change direction’ received.

EB ‘End bracket’received.

LIC ‘Last in chain’received.

For more details of ending status and how additional data is handled, see
Chapter 37, “Ending status,” on page 233.

FIELDS(fullword binary data-area)
returns the number of fields in the screen image.

FLENGTH(fullword binary data-area)
returns the actual length of data received in the data area identified by the
INTO option.

INTO(data-area)
specifies the data area in which the received data is to be returned. The length
of the area is specified by the MAXFLENGTH option, and the actual length of
data written into the area is returned by the FLENGTH option.

LINES(fullword binary data-area)
returns the number of lines in the screen image.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be returned; that is, the length
of the data area identified by the INTO option. It must not be more than the
maximum length allowed for the pool.

RESPSTATUS(cvda)
returns a value that indicates the type of response that is required at the
back-end system. The relevant CVDA values are:

Value Meaning

DEFRESP1
Definite response 1 required.

DEFRESP2
Definite response 2 required.

DEFRESP3
Definite response 1 and definite response 2 required.

NONE
No response required.

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the command is to wait for the
requested data to begin to arrive. If TIMEOUT is not specified or the specified
time is zero, the command is not timed out.

218 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

60 MAXFLENGTH value negative or more than maximum allowed for the
current pool.

71 VTAM RECEIVE failed.

72 RECEIVE FORMATTED processing found invalid, or unexpected data
while interpreting the 3270 data stream for a WRITE, ERASE/WRITE,
ERASE/WRITE ALTERNATE, or WRITE STRUCTURED FIELD command
code.

210 Command not allowed for SLU P mode.

212 Conversation has wrong data format.

213 Command timed out.

215 Session lost.

216 Error occurred on previous FEPI SEND.

221 FEPI RECEIVE not allowed at this point in the conversation.

224 Only FEPI ISSUE or FEPI FREE commands allowed at this point in the
conversation.

230 SNA CLEAR command received.

231 SNA CANCEL command received.

232 SNA CHASE command received.

233 Exception response received.

234 Exception request received.

240 Conversation ID not owned by this task.

241 TIMEOUT value negative or not valid.

Chapter 30. FEPI RECEIVE FORMATTED 219

220 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 31. FEPI REQUEST PASSTICKET

FEPI REQUEST PASSTICKET requests an external security manager (ESM) such as
RACF to build a PassTicket. The PassTicket is a password substitute that your
application can use to sign on to the back-end system associated with the
conversation. For an explanation of how to use PassTickets to make your FEPI
applications more secure, see “How to use PassTickets” on page 164.

Syntax

FEPI REQUEST PASSTICKET

�� FEPI REQUEST PASSTICKET (data-area) CONVID (data-value) �

�
ESMRESP (data-area) ESMREASON (data-area)

��

Options

CONVID(8-character data-value)
specifies the ID of the conversation with the back-end system for which a
PassTicket is required.

ESMREASON(fullword binary data-area)
returns the reason code from the ESM.

ESMRESP(fullword binary data-area)
returns the response code from the ESM. For an explanation of the response
and reason codes returned by RACF, see Return codes from the secured signon
session key generator service in the z/OS V1R11.0 Security Server RACF Macros and
Interfaces manual.

PASSTICKET(8-character data-area)
returns the PassTicket generated by the ESM.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

240 Conversation ID not owned by this task.

250 Passticket not built successfully.

251 CICS ESM interface not initialized.

252 Unknown return code in ESMRESP from the ESM.

253 Unrecognized response from CICS security modules.

254 Function unavailable.

© Copyright IBM Corp. 1992, 2011 221

222 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 32. FEPI SEND DATASTREAM

FEPI SEND DATASTREAM sends application data to a target. The data supplied
by the application must be currently valid data stream appropriate to the mode of
the conversation (SLU2 or SLU P). Full details about the data are given in
Chapter 36, “Data formats,” on page 231.The command completes as soon as the
(first) VTAM SEND has been accepted.

Syntax

FEPI SEND DATASTREAM

�� FEPI SEND DATASTREAM CONVID (data-value) FROM (data-value) �

�
FLENGTH (data-value) INVITE FMH

�

�
SEQNUMIN (data-area) SEQNUMOUT (data-area)

��

Options

CONVID(8-character data-value)
specifies the ID of the conversation to use. The conversation must be owned by
the task issuing the command.

FMH
indicates that the data to send includes a function management header.

FLENGTH(fullword binary data-value)
specifies the length of the data to send; that is, the length of the data area
identified by the FROM option. It must not be zero or more than the maximum
length allowed for the pool.

FROM(data-value)
specifies the data to send to the back-end application. Its length is specified by
the FLENGTH option.

INVITE
requests FEPI to send ‘last in chain’ and ‘change direction’ at the end of the
data. This indicates that the data is complete, and that inbound data is
expected next.

SEQNUMIN(fullword binary data-area)
in SLU P mode, returns the current sequence number for inbound data, as at
the completion of the command. (SEQNUMIN has no significance in SLU2
mode.)

SEQNUMOUT(fullword binary data-area)
in SLU P mode, returns the current sequence number for outbound data, as at
the completion of the command. (SEQNUMOUT has no significance in SLU2
mode.)

Conditions

The INVREQ condition can have the following RESP2 values:

© Copyright IBM Corp. 1992, 2011 223

RESP2
Meaning

40 FLENGTH value negative or more than maximum allowed for the current
pool.

50 Inbound data with ‘begin bracket’ to be received.

58 VTAM SEND failed.

212 Conversation has wrong data format.

215 Session lost.

216 Error occurred on previous FEPI SEND.

220 FEPI SEND not allowed at this point in the conversation.

224 Only FEPI ISSUE or FEPI FREE commands allowed at this point in the
conversation.

230 SNA CLEAR command received.

231 SNA CANCEL command received.

232 SNA CHASE command received.

233 Exception response received.

234 Exception request received.

240 Conversation ID not owned by this task.

224 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 33. FEPI SEND FORMATTED

This command is for SLU2 mode only.FEPI SEND FORMATTED sends application
data to a target. The data supplied by the application must be formatted data, as
key strokes or as a screen image. Full details about the data are given in
Chapter 36, “Data formats,” on page 231.The command completes as soon as the
(first) VTAM SEND has been accepted.

Syntax

FEPI SEND FORMATTED

�� FEPI SEND FORMATTED CONVID (data-value) FROM (data-value) �

�
FLENGTH (data-value)

�

� AID (data-value)
CURSOR (data-value)

KEYSTROKES
ESCAPE (data-value)

��

Options

AID(1-character data-value)
specifies the attention identifier value to send with the data. Specifying AID
also indicates that the data to send is in screen-image format, as described in
Chapter 36, “Data formats,” on page 231. A value of null (X'00') may be
specified to indicate that no attention is to be sent, and that a further FEPI
SEND is to follow.

Symbolic names for the AID values are available for the supported languages
in the language-specific DFHAID copybooks.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The conversation must be owned by
the task issuing the command.

CURSOR(fullword binary data-value)
for send data in screen-image format, specifies the position of the cursor,
expressed as an offset from the start of the screen image; offset zero is the top
left-hand corner of the screen. If CURSOR is not specified, the cursor remains
where it was positioned by the last inbound data.

ESCAPE(1-character data-value)
for send data in key stroke format, specifies the escape character used to
indicate character combinations representing special keys. You can use any
value in the range X'40' through X'FE'. The default escape character is & (X'50').

FLENGTH(fullword binary data-value)
specifies the length of the data to send; that is, the length of the data area
identified by the FROM option. It must not be zero or more than the maximum
length allowed for the pool.

FROM(data-value)
specifies the data to send to the back-end application. Its length is specified by

© Copyright IBM Corp. 1992, 2011 225

the FLENGTH option. For send data in screen-image format, if the length is
more than the screen image, the additional data is ignored; if it is less, the data
is the first part of the screen image, and the last part of the screen image is not
changed.

KEYSTROKES
specifies that the data to send is in key stroke format, a sequence of key
strokes, as described in Chapter 36, “Data formats,” on page 231.

Conditions

The INVREQ condition can have the following RESP2 values:

RESP2
Meaning

40 FLENGTH value negative or more than maximum allowed for the current
pool.

41 ESCAPE value not valid.

50 Inbound data with ‘begin bracket’ to be received.

51 AID value not valid.

52 Cursor position not valid.

53 Character values in send data not valid.

54 Attribute positions or values in send data not valid.

55 Key stroke escape sequence in send data not valid.

56 Field validation (mandatory fill, mandatory error, trigger) failed.

57 Input inhibited.

58 VTAM SEND failed.

59 DBCS data rules violated.

210 Command not allowed for SLU P mode.

212 Conversation has wrong data format.

215 Session lost.

220 FEPI SEND not allowed at this point in the conversation.

224 Only FEPI ISSUE or FEPI FREE commands allowed at this point in the
conversation.

230 SNA CLEAR command received.

231 SNA CANCEL command received.

232 SNA CHASE command received.

233 Exception response received.

234 Exception request received.

240 Conversation ID not owned by this task.

226 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 34. FEPI START

FEPI START is used to relinquish control of a conversation and to specify a new
transaction to be started when the next inbound data arrives. Up to 128 characters
of user data can be passed to the transaction as part of the start data, as described
in Chapter 35, “Start data,” on page 229 below.

Syntax

FEPI START

�� FEPI START CONVID (data-value) TRANSID (data-value) �

�
TERMID (data-value)

�

�
USERDATA (data-value)

FLENGTH (data-value)

�

�
TIMEOUT (data-value)

��

Options

CONVID(8-character data-value)
specifies the ID of the conversation to suspend. The conversation must be
owned by the task issuing the command.

FLENGTH(fullword binary data-value)
specifies the length of the optional user data to pass to the transaction that is
started; that is, the length of the data area identified by the USERDATA option.
The FLENGTH value must not be greater than 128.

TERMID(4-character data-value)
specifies the name of the terminal, if any, to be associated with the transaction
that is started.

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that FEPI is to wait for inbound data to
begin to arrive before starting the transaction. If TIMEOUT is not specified or
the specified time is zero, the command is not timed out.

TRANSID(4-character data-value)
specifies the name of the transaction that is to be started when the next
inbound data arrives.

USERDATA(data-value)
specifies optional user data to pass to the transaction that is started, in addition
to control information passed by FEPI. Its length is specified by the FLENGTH
option.

Conditions

The INVREQ condition can have the following RESP2 values:

© Copyright IBM Corp. 1992, 2011 227

RESP2
Meaning

61 FLENGTH value negative or too large.

62 TRANSID name not valid.

63 TERMID name not valid.

214 CICS shutting down, conversation should be ended.

215 Session lost.

216 Error occurred on previous FEPI SEND.

223 FEPI START not allowed at this point in the conversation.

224 Only FEPI ISSUE or FEPI FREE commands allowed at this point in the
conversation.

230 SNA CLEAR command received.

231 SNA CANCEL command received.

232 SNA CHASE command received.

233 Exception response received.

234 Exception request received.

240 Conversation ID not owned by this task.

241 TIMEOUT value negative or not valid.

228 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 35. Start data

For various events, FEPI invokes a transaction, as a CICS started task, to handle
the event. This might be in response to FEPI START, or to handle STSN,
begin-session, end-session, or unsolicited-data.

The transactions have a start code of ‘SZ’, as can be determined with the EXEC CICS
ASSIGN command. FEPI provides start data which describes the event, and the
conversation which is to be used to handle it. All of this data must be retrieved by
the transaction using EXEC CICS RETRIEVE. The transaction can then gain access
to the conversation identified in the data by using FEPI ALLOCATE
PASSCONVID.

The structure for start data is shown below; the copy books DFHSZAPA,
DFHSZAPO, DFHSZAPC, and DFHSZAPP (according to your programming
language) provide declarations for this structure.

DATATYPE Fullword binary data-area
EVENTTYPE CVDA
EVENTVALUE CVDA
EVENTDATA 8-character data-area
spare 4-character data-area
POOL 8-character data-area
TARGET 8-character data-area
NODE 8-character data-area
CONVID 8-character data-area
DEVICE CVDA
FORMAT CVDA
spare 8-character data-area
FLENGTH Fullword binary data-area
USERDATA 128-character data area.

Fields
CONVID(8-character data-area)

the ID of the conversation for which the event occurred (this is the CONVID
that should be used in FEPI ALLOCATE PASSCONVID).

DATATYPE(fullword binary data-area)
Type and structure of data. Value is 1 for FEPI start data.

DEVICE(cvda)
the device type of conversation for which the event occurred, values being as
for FEPI EXTRACT CONV.

EVENTDATA(8-character data-area)
always nulls.

EVENTTYPE(cvda)
Indicates why the transaction was started. Values are:

Value Event
BEGINSESSION Begin-session to be handled
DATA Inbound data arrived, following a FEPI START command

© Copyright IBM Corp. 1992, 2011 229

Value Event
FREE End-session transaction started to handle end of conversation as

a result of a FEPI FREE request
SESSIONLOST Active session lost while waiting for inbound data to arrive

following a FEPI START command
STSN Set and test sequence number (STSN) to be handled
TIMEOUT Timed out waiting for inbound data to arrive following a FEPI

START command
UNSOLDATA Inbound data arrived outside a conversation.

EVENTVALUE(cvda)
A CVDA giving further information about event types FREE and RELEASE.

Values for FREE:

FORCE A FEPI FREE FORCE command was issued.
HOLD A FEPI FREE HOLD command was issued.
RELEASE A FEPI FREE RELEASE command was issued.
SHUTDOWN CICS is shutting down.
TASK Conversation being freed by end-of-task.

The EVENTVALUE value is zero for all other event types.

FLENGTH(fullword binary data-area)
the length of the data in USERDATA.

FORMAT(cvda)
the data format of conversation for which the event occurred, values being as
for FEPI EXTRACT CONV.

NODE(8-character data-area)
the name of the node for which the event occurred.

POOL(8-character data-area)
the name of the pool for which the event occurred.

TARGET(8-character data-area)
the name of the target for which the event occurred.

USERDATA(128-character data-area)
user data as specified on the FEPI START command.

spare
nulls.

230 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 36. Data formats

The format of outbound and inbound are described here.

Outbound data

Data stream
The data is a standard outbound data stream, exactly as would be sent from
the simulated terminal to VTAM.

Screen-image format, SLU2 mode
The data replaces, byte for byte, the data in the character buffer of the
simulated terminal. Any data value is allowed. Data that goes into positions
within a protected field must be identical to that in the field; data for positions
occupied by an attribute byte is ignored. MDTs can be set forcibly for fields by
setting the value in the attribute position to X'01'. (FEPI will set MDT
automatically if data has changed.)

Key stroke format, SLU2 mode
The data can contain any combination of data characters together with
manipulative, special, and attention key values. Data characters are represented
by their EBCDIC code values in the range X'40'–X'FE', or by their DBCS code
values of pairs of bytes in the range X'41'–X'FE', plus X'4040'. Manipulative,
special, and attention key values are represented by escape sequences,
comprising the escape character specified by the ESCAPE option and a
2-character code. Using ‘&’ for the escape character, the escape sequences are:

Manipulative keys

&HO home

&Ln cursor left, n times

&Rn cursor right, n times

&Un cursor up, n times

&Dn cursor down, n times

&Tn tab, n times

&Bn backtab, n times

&Nn newline, n times (where n = 1–9)

Special keys

&IN insert

&DL delete

&RS reset

&EF erase to end of field

&EI erase input

&FM field mark

&DU DUP

&ES escape character

&MS start secure MSR

© Copyright IBM Corp. 1992, 2011 231

&SO shift out

&SI shift in

Attention keys

&AT attention

&An PAn (n = 1–3)

&nn PFnn (where nn = 01–24, leading 0 must be specified)

&CL clear

&CS cursor select (light pen)

&EN enter

&ME end secure MSR

Keys not listed and data characters below X'40' are not supported. Thus, nulls
(X'00') are excluded—nulls can be generated by use of the erase or delete keys. Key
strokes following an attempt to enter into a protected field are ignored until ‘reset’
is keyed.

For magnetic stripe reader support, the sequence &MS...data...&ME represents
passing a secure magnetic stripe card through the reader. Nonsecure cards have to
be simulated by using the corresponding key strokes.

Zero, one, or more than one, attention keys may be used. If an attention key is
followed by data characters, FEPI does an implicit receive operation for each one
until the back-end application unlocks the keyboard and sends ‘change direction’
or ‘end bracket’ (and FEPI responds positively to any definite response requests);
then the subsequent key strokes are sent.

Inbound data

Data stream
The data is a standard inbound data stream, exactly as would be sent to
the simulated terminal from VTAM. Note that the received data is not
complete if the command that received the data returned an ENDSTATUS
of MORE.

Formatted, SLU2 mode
The data is the contents of the simulated terminal character buffer that
FEPI holds. Data characters are represented by their EBCDIC or DBCS
code values; positions corresponding to field attributes contain X'FF'.

232 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Chapter 37. Ending status

This information describes in detail the conditions under which FEPI CONVERSE
and FEPI RECEIVE commands complete and how the completion condition is
reported to the application.

The completion conditions for each command are:

FEPI CONVERSE DATASTREAM using a temporary conversation
On the first to occur of:
v INTO data area full
v ‘change direction’ indicated
v ‘end bracket’ indicated.

It does not end at ‘end of chain’ alone; if a definite response request is
indicated on a chain, FEPI responds positively and continues receiving
data.

FEPI CONVERSE DATASTREAM using a previously allocated conversation
As for FEPI RECEIVE DATASTREAM.

FEPI CONVERSE FORMATTED using a temporary conversation
on the first to occur of:
v ‘change direction’ indicated
v ‘end bracket’ indicated.

It does not end at ‘end of chain’ alone; if a definite response request is
indicated on a chain, FEPI responds positively and continues receiving
data.

FEPI CONVERSE FORMATTED using a previously allocated conversation
As for FEPI RECEIVE FORMATTED.

FEPI RECEIVE DATASTREAM
This can be specified or defaulted to end in one of the following ways:

RU on the first to occur of:
v INTO data area full
v end of request unit.

CHAIN
on the first to occur of:
v INTO data area full
v ‘end of chain’.

UNTILCDEB
on the first to occur of:
v INTO data area full
v ‘end of chain’ with definite response request
v ‘change direction’ indicated
v ‘end bracket’ indicated.

FEPI RECEIVE FORMATTED
At end of chain.

© Copyright IBM Corp. 1992, 2011 233

In all cases, ENDSTATUS is set to indicate the completion conditions and
RESPSTATUS is set to indicate whether a response is required and, if so, the type
of response. Where several conditions occur together, ENDSTATUS shows the most
significant. The values and their meanings are shown in Table 13.

Table 13. ENDSTATUS values and associated meanings

ENDSTATUS Commands Conditions Next
command
expected
(except after
CONVERSE
with POOL)

RECEIVE CONVERSE
without
POOL

CONVERSE
with
POOL

End
bracket

Change
direc-
tion

End
chain

End RU INTO
area
full

DS FM DS FM DS FM

EB X X X X X X Y - Y Y - Any

CD X X X X X X - Y Y Y - FEPI SEND or
CONVERSE

LIC X X X X - - - - Y Y - FEPI
RECEIVE

RU R - R - - - - - - Y - FEPI
RECEIVE

MORE X - X - X - - - - - Y FEPI
RECEIVE

Note:

v DS=Datastream

v FM=Formatted

v X=Possible with command

v R=Possible with RU option of command

v Y=Condition indicated.

234 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Part 5. Appendixes

© Copyright IBM Corp. 1992, 2011 235

236 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Appendix A. FEPI sample programs

The SDFHSAMP library contains a set of sample programs (in source form),
including two back-end application programs, that show you how to set up and
use FEPI.

Although the samples are copyrighted, you can use and copy them freely for
educational purposes to help you write FEPI applications. This appendix gives an
overview of these programs. It contains the following topics:
v “List of samples”
v “VS COBOL II Sample Restrictions” on page 239
v “Installing the samples” on page 239
v “Using the samples” on page 240
v “Description of the samples” on page 242.

List of samples
A subset of the sample programs is available in each of the supported
programming languages.

The programs and their names are given in Table 14.

Table 14. Sample programs and their names
Description Transaction

name
COBOL Assembler PL/I C

Programs:
Setup CZXS DFH0VZXS DFH0AZXS DFH0CZXS
Monitor and unsolicited data
handler

CZUX DFH0VZUX

Begin-session handler CZUC DFH0VZUC
3270 data stream pass-through CZTD DFH0VZTD DFH0AZTD
Key stroke CONVERSE CZTK DFH0VZTK DFH0PZTK DFH0CZTK
Screen image SEND and
START

CZTS DFH0VZTS

Screen image RECEIVE and
EXTRACT

CZTR DFH0VZTR

End-session handler CZUU DFH0VZUU
SLU P, one-out, one-in CZPS DFH0VZPS DFH0AZPS
SLU P, pseudoconversational CZPA DFH0VZPA DFH0AZPA
STSN handler CZQS DFH0VZQS DFH0AZQS
Back-end CICS CZBC DFH0AZBC
Back-end IMS CZBI DFH0AZBI

Copy books:
Customization data DFH0BZCO DFH0BZCA DFH0BZCP DFH0BZCC
Messages and other text DFH0BZMO DFH0BZMA DFH0BZMP DFH0BZMC
Key stroke map DFH0BZ1O DFH0BZ7P DFH0BZ6C
Send/receive map DFH0BZ2O
Back-end CICS map DFH0BZ3A
SLU P, one-out, one-in map DFH0BZ4O DFH0BZ8A

© Copyright IBM Corp. 1992, 2011 237

Table 14. Sample programs and their names (continued)
Description Transaction

name
COBOL Assembler PL/I C

SLU P, pseudoconversational
map

DFH0BZ5O DFH0BZ9A

Maps:
Key stroke DFH0MZ1 DFH0MZ7 DFH0MZ6
Send/receive DFH0MZ2
SLU P, one-out, one-in DFH0MZ4 DFH0MZ8
SLU P, pseudoconversational DFH0MZ5 DFH0MZ9
Back-end CICS DFH0MZ3

There are also some sample resource definitions. Sample definitions for front-end
and back-end CICS regions are in the RDO groups DFH$0AZ, DFH$0BZ,
DFH$0CZ, DFH$0BZ, DFH$0PZ, and DFH$0VZ. A sample definition for a
back-end IMS region is in DFH0IZRI. A sample definition of a CICS TD queue,
DFH0IZRQ, is in the DFHDCTG RDO group.

Table 15 shows you which samples illustrate which functions.

Table 15. Functional cross-reference for sample programs

Functions Samples (Last two letters of sample program name. See notes.)

— TD TK TS TR PA PS QS UC UU UX XS

SLU2 X X X X X X X

SLU P X X X X X X

Data stream X X X X X X

Screen-image X X X X

Key stroke X X

ALLOCATE X X X X

ALLOCATE with PASSCONVID X X X X X X X

EXTRACT STSN X

EXTRACT FIELD X X

SEND X X

START X X

RECEIVE X X X X

CONVERSE X X X

CONVERSE with POOL X

ISSUE X

FREE X X X X X X X X

FREE with PASS X X

INSTALL X

ADD X

Start data X X X X X

TD queue data X

One-out one-in X

Conversational X X

238 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Table 15. Functional cross-reference for sample programs (continued)

Functions Samples (Last two letters of sample program name. See notes.)

— TD TK TS TR PA PS QS UC UU UX XS

Pseudo- conversational X X X

Assembler language X X X X X

COBOL X X X X X X X X X X X

C X X

PL/I X

Notes:

TD Data stream

TK Key stroke

TS Screen image send/start

TR Screen image receive

PA SLU P pseudoconversational

PS SLU P one-out, one-in

QS STSN

UC Begin session

UU End session

UX Monitor, unsolicited data

XS Setup

FEPI EXTRACT CONV, SET/INQUIRE/browse, and DELETE/DISCARD commands are not illustrated in the
sample programs.

VS COBOL II Sample Restrictions
The following COBOL samples can only be compiled using the Release 3, and later,
versions of the VS COBOL II compiler:
v DFH0VZUC
v DFH0VZUX
v DFH0VZPS
v DFH0VZPA

Installing the samples
To get the FEPI samples running, you need to customize them for your system.

Before you begin

About this task

Procedure
1. You need to change the following samples:

v The customization data copy book, DFH0BZCx
v The setup program, DFH0xZXS
v The resource definitions, DFH0IZRx.

Appendix A. FEPI sample programs 239

2. Compile or assemble and link-edit all the samples (and their maps) that you
want, as you would for any CICS application program.

3. Define the samples to your front-end system, using the sample resource
definitions listed in “List of samples” on page 237. The resource definitions are
in the form required as input to the DFHCSDUP utility. Note that there is a
separate resource group for each language because the transaction names used
are the same for each programming language. You should have defined the
necessary transient data (TD) queues when you installed FEPI itself. Sample
definitions are provided in group, DFHDCTG.

4. Assemble, link-edit, define, and install the appropriate back-end program and
maps on your back-end system. If you want to use the IMS back-end samples:
a. Use the sample resource definitions in DFH0IZRI.
b. Link-edit the back-end program with the IMS version of ASMTDLI (or the

appropriate language module), and specify RMODE and AMODE as 24. If
you use the CICS version of ASMTDLI, the program will abend when
executed in the IMS environment.

Using the samples
The samples form an integrated set. The setup program provides the FEPI resource
definitions that the other samples use. The monitor and the various handlers
support and complement the access programs, to form a complete FEPI
communication package, just as you need to provide.

Remember, however, that these are samples designed for illustration purposes.
Although they give a great deal of help, and include suggestions about writing
FEPI programs, for any particular circumstance you must consider exactly what
your requirements are.

The two back-end programs, one for CICS and one for IMS, provide applications
for the front-end programs to access. The back-end CICS program is for access by
the front-end SLU2 mode programs, and the back-end IMS program is for access
by the front-end SLU P mode programs; no SLU2 mode access to IMS is provided.
Although the back-end programs are supplied in source form, it is not necessary
for you to understand the internal logic - only the external operations, as is the
case for a “real” existing back-end application.

The FEPI sample front-end and back-end transactions assume that the datastream
sent from the back-end application is received unaltered by the front-end
application. For example, FEPI samples may perform unexpectedly if the
datastreams are compressed after having been sent from the back-end application.

The back-end CICS program
This program is the CICS back-end application used by the FEPI sample programs.

Module name DFH0AZBC

Transaction name CZBC

Abend code USZA

Map name DFH0MZ3

On the first invocation of the transaction, a map is sent to the terminal.

240 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

When there is input from the terminal, CICS invokes the transaction again. The
customer data for the customer number from the input is found and sent to the
terminal, and further input is awaited. PF3 or CLEAR ends the transaction.

Certain customer numbers cause special processing such as abends and delays, to
show how a front-end application could manage such events. The valid customer
numbers are:

0001-0005
Normal

0006 Delayed response

0007 Abend before send

0008 Abend after send.

Program logic
Main procedure:

Set up exception condition handling:
Map error - SEND_NEW_MAP
CLEAR/PF3 - END_PROG

Test COMMAREA
If transaction not previously invoked

Call SEND_NEW_MAP
RECEIVE map
If customer number not valid

SEND message
RETURN

If customer type is ’ABEND before MAP’
ABEND

Build map with customer data
If customer type is ’LONG DELAY’

DELAY
SEND map
If customer type is ’ABEND after MAP’

ABEND
RETURN

SEND_NEW_MAP routine:
SEND new map
RETURN

END_PROG routine:
Clear terminal
RETURN

The back-end IMS program
This program is the IMS back-end application used by the FEPI sample programs.

Module name DFH0AZBI

Transaction name CZBI

CZBC Customer Inquiry
Please type a customer number in the range 1 to 9999, then Enter.
Customer Number

Name :
Balance. . . . :
Address. . . . :

Last Transaction Date . :
F3=EXIT to CICS

Figure 10. CZBC transaction: customer inquiry

Appendix A. FEPI sample programs 241

This is a simple IMS back-end response mode program that is driven by input
from a front-end FEPI application. It modifies the time stamp in the input message
and returns the message to the front-end application.

IMS schedules this transaction when an input message is queued for it. It
addresses the I/O PCB, DLI call function, and I/O area to build the parameter list
for the GU call to retrieve the queued input message.

The time field of the input message is updated and the program then issues an
ISRT call to place the message on the output queue. IMS then sends the output
message to the front-end FEPI application.

Output messages from this program are all prefixed with a 5-byte function
management header.

If any errors occur, the program ends with a nonzero return code.

Program logic
GETMAIN storage areas for reentrancy
Address PCB
Issue GU call to get input message
Use TIME to obtain system time
Update I/O area
Issue ISRT call to send output message
RETURN

Description of the samples
Each sample program performs a specific function and is associated with a CICS
transaction.

Setup program
This program installs the resources—property sets, nodes, targets, and pools—that
are used by the FEPI sample programs.

Module names DFH0VZXS, DFH0AZXS, DFH0CZXS

Transaction name CZXS

The definitions of each of these resources are organized so that they can easily be
changed. They are kept separate from the processing that does the installation, and
there is no hard-coding of values in the CICS commands. There are four main
tables, holding details of each resource type. This enables the resources to be
changed by repeating sets of definitions which are in an easy-to-understand form.
If desired, the program could be changed to obtain the resource definitions from a
file.

The resources defined are:
Pool Property set Nodes Targets
POOL1 PROPSET1 NODE1 NODE2 NODE3 TARGET1

NODE4 NODE5
POOL2 PROPSET2 NODE6 NODE7 NODE8 TARGET1

NODE9 NODE10
POOL3 PROPSET3 NODE1 NODE2 NODE3 TARGET2

NODE4 NODE5

242 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

You must customize these definitions to match the requirements of your system. If
you do, you may also need to change the definitions in the sample customization
constants copy book DFH0BZCx. You do not need to change any other
samples—you need recompile them.

Each table is processed in turn. Nodes and targets are organized into lists for
reasons of efficiency. Details of resource installation are written to the CICS log
automatically by FEPI.

On completion, a message is sent. The setup program would typically be started
by a PLT program, in which case the message goes to the CICS log. It can,
however, be invoked from a terminal and, in this case, the message is sent to the
terminal.

For clarity, error checking is minimal. In particular, the FEPI INSTALL commands
do not check errors at all, because FEPI reports any errors that occur to the FEPI
transient data queue, and they are then recorded by the sample monitor program.

Program logic
For each property set in table

FEPI INSTALL PROPERTYSET
For each node in table

Add node to list
FEPI INSTALL NODELIST
For each target in table

Add target to list
FEPI INSTALL TARGETLIST
For each pool in table

Start new lists of nodes and targets
For each entry within pool definition

If node, add details to node list
If target, add details to target list

FEPI INSTALL POOL with NODELIST and TARGETLIST
Send completion message
RETURN

Monitor and unsolicited data-handler
This program monitors unexpected events and handles unsolicited data for the
FEPI sample programs.

Module name DFH0VZUX

Transaction name CZUX

TS queue name MONITOR

This transaction handles:
v Unexpected events that are reported by FEPI to a TD queue, which triggers this

transaction
v Unsolicited data from a back-end system, for which FEPI starts this transaction.

Because the event descriptions provided by FEPI and the processing required is
basically the same for both cases, this common program is used.

ASSIGN STARTCODE is used to determine how the transaction was started, and
ASSIGN QNAME to determine what TD queue triggered it. Details of the event
are in the start data or the TD queue record as the case may be.

Appendix A. FEPI sample programs 243

For illustrative purposes, all events are handled similarly by reporting their details
to a TS queue named MONITOR, which can be browsed using CEBR. In practice,
for any of the events you can do whatever extra or different processing you
require, or (except for unsolicited data) you can ignore the event.

For unsolicited data, the conversation started by FEPI must be accessed so that
FEPI knows that the data is being handled. The data itself should be received, or
else FEPI ends and restarts the session. For illustration purposes, this program
discards the data; in practice, you will probably want to process the data in some
way.

However, if you did want to discard such data, you should specify no
unsolicited-data handling and use the UNSOLDATACK property to tell FEPI what
action to take, as is done for SLU P mode by these samples.

The general format of the TS queue records is:
date time CZUX description

Event type..ACQFAIL Pool........POOLNAME
Target......TGTNAME Node........NODENAME
Device......T3278M2 Event data..X’00000000’
Format......0 Event value.176

The actual details for each event vary. Events with similar details are grouped
together for processing. The groups are:
v Unknown event—an event that is not recognized
v Unsolicited data
v Session lost
v Standard events—all other events.

The groups also determine any additional processing needed. Only unsolicited
data needs any processing.

If any errors occur, they are reported to the TS queue.

Program logic
Main procedure:

Determine how transaction was started using ASSIGN
If started with data by FEPI

RETRIEVE start data
If triggered by TD queue

READ the queue record
Otherwise

Report start code
RETURN

TD-LOOP:
Locate event type
Locate device type
Build description of event: event type, device type,

format, event value, date/time, transaction
Call UNKNOWN-EVENT, UNSOLDATA, STANDARD-EVENT, or

SESSION-LOST according to event group
If triggered by TD queue

READ the next queue record
If one exists, loop to TD-LOOP

RETURN
UNKNOWN-EVENT routine:

Write event details to TS queue: description and
event value

UNSOLDATA routine:

244 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Write event details to TS queue: description, event
type, pool, target, and node

Access conversation using FEPI ALLOCATE with PASSCONVID
FEPI RECEIVE unsolicited data
Free conversation
Handle data as required

Begin session
This program prepares sessions for use by the FEPI sample application programs.

Module name DFH0VZUC

Transaction name CZUC

TS queue name SESSION

The CZUC transaction is started by FEPI when it begins a new session.

The conversation started by FEPI must be accessed so that FEPI knows that the
event is being handled. The processing required depends on the data mode and
type that the session uses (this is obtained from the start data), and whether the
back-end system is IMS or CICS.

For SLU P mode (necessarily IMS), processing depends entirely on local
requirements, and is typically used for handling security applications. For
illustration purposes, this program gets and discards the initial data. Note that the
setup for these samples does not specify a begin-session transaction for SLU P
mode.

For SLU2 mode with CICS using formatted data, there is a CICS “good morning”
message waiting. The message is received, and the back-end screen is cleared and
left ready for a transaction ID to be entered.

For SLU2 mode with CICS using data stream, there may be a “read partition”
request waiting which requires a reply—for example, if your pool has device
T3279Mx or TPS55Mx specified, or if the logon mode table being used has
“extended data stream” specified). Then there is a CICS “good morning” message
to be received. A reply is sent to any “read partition” query request, the “good
morning” message is received, and the back-end screen is cleared and left ready
for a transaction ID to be entered.

For SLU2 mode with IMS, no processing is illustrated.

After the processing, the conversation is freed with the HOLD option, which leaves
it ready for use by applications. A report is written to a TS queue named SESSION,
which can be browsed using CEBR. The format of the TS queue records is:
date time CZUC Begin session completed

RESP........0 RESP2.......0
Target......TGTNAME Node........NODENAME
Pool........POOLNAME

If any errors occur, a report is written to the TS queue, and the conversation is
freed with the RELEASE option, so that the session is ended.

Program logic
Main procedure:

RETRIEVE start data
Access conversation using FEPI ALLOCATE with PASSCONVID

Appendix A. FEPI sample programs 245

Call PROCESS-LUP, PROCESS-FORMATTED, or
PROCESS-DATASTREAM according to data mode and type

Free conversation, keeping session
Write event details to TS queue
RETURN

PROCESS-LUP routine:
FEPI RECEIVE initial data
Handle data as required

PROCESS-FORMATTED routine:
FEPI RECEIVE initial data
Clear back-end screen and make ready for transaction ID

to be entered, using FEPI CONVERSE
PROCESS-DATASTREAM routine:

FEPI RECEIVE
If ’read partition’ query

FEPI CONVERSE query reply and get acknowledgment
FEPI RECEIVE initial data

Clear back-end screen and make ready for transaction ID
to be entered, using FEPI CONVERSE

Key stroke CONVERSE
This sample program demonstrates using FEPI to obtain information from a
back-end transaction using the key stroke data format.

Module names DFH0VZTK, DFH0PZTK, DFH0CZTK

Transaction name CZTK

Map names DFH0MZ1, DFH0MZ6, DFH0MZ7

On the first invocation of the transaction, a map is sent to the front-end terminal.

When there is input from the front-end terminal, CICS invokes the transaction
again. The customer number from the input is built into a key stroke sequence
which runs a transaction at the back-end. The key strokes are sent and the results
received using a FEPI ALLOCATE-CONVERSE-FREE command sequence.
Information is extracted from the results and sent to the front-end terminal.
Further input is then awaited.

When PF3 or CLEAR is received from the front-end terminal, the transaction ends.
If there is an error, the front-end map is reset. These situations are detected using
HANDLE CONDITION.

If the back-end sends a CICS message, it is sent on to the front-end terminal, and
the transaction ends.

For clarity, error checking is minimal except for the FEPI commands. Note that the
key stroke sequence used involves several attention keys, so that if the
intermediate responses are not what is expected, the effects are unpredictable.
According to your requirements, it may be advisable to send each attention
sequence individually and to check each time that the results are as expected.

246 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Screen

Program logic
MAIN procedure:

Test COMMAREA
If transaction not previously invoked

Call SEND-NEW-MAP
Set up exception condition handling:

Map error - SEND-NEW-MAP
CLEAR/PF3 - END-PROG

RECEIVE MAP from front-end terminal
Build key stroke sequence to:

clear back-end screen
type transaction ID
ENTER
type the customer number
ENTER

FEPI ALLOCATE conversation with back-end
FEPI CONVERSE to send key strokes to back-end and get

the resulting screen image
FEPI FREE conversation with back-end
If CICS message received from back-end

SEND message to front-end terminal
RETURN

Get customer information from back-end screen image
Build data for front-end terminal map
SEND map data to front-end terminal
RETURN TRANSID(CZTK) with COMMAREA

SEND-NEW-MAP routine:
SEND new map to front-end terminal
RETURN TRANSID(CZTK) with COMMAREA

END-PROG routine:
Clear front-end terminal
RETURN

Screen image SEND and START
This sample program demonstrates using FEPI to send formatted data to a
back-end transaction, and requesting a transaction to be started when the reply to
the data arrives.

Module name DFH0VZTS

Transaction name CZTS

Map name DFH0MZ2

This program is the SEND part of a SEND-RECEIVE pair of programs, the
RECEIVE part being DFH0VZTR.

On the first invocation of this send transaction, a map is sent to the front-end
terminal.

CZTK Customer Name and Address Inquiry
Please type a customer number in the range 1 through 9999, then Enter.
Customer Number

Name :
Address. . . . :
F3=EXIT to CICS

Figure 11. CZTK transaction: customer name and address inquiry

Appendix A. FEPI sample programs 247

When there is input from the front-end terminal, CICS invokes this send
transaction again. The customer number is extracted from the input. Using FEPI
ALLOCATE a conversation is started with the back-end system. Then FEPI SEND
with screen image data is used to start a back-end transaction. FEPI START is
issued to specify that the receive transaction is to be started when the back-end
system replies.

In due course, the receive transaction is started and XCTLs to this send transaction.
The customer number can now be sent to the back-end using FEPI SEND with
screen image data. FEPI START is again issued.

The receive transaction gets the results from the back-end transaction and sends
them on to the front-end terminal.

When there is more input from the front-end terminal, CICS invokes this
transaction again. FEPI ALLOCATE with PASSCONVID is issued to gain
ownership of the conversation and the customer number is sent to the back-end as
before. The cycle continues until PF3 or CLEAR is received. These are passed on to
the receive transaction (using the FEPI START user data) and to the back-end
transaction to indicate that it is to end.

Program logic
MAIN procedure:

Test COMMAREA
If transaction not previously invoked

Call SEND-MAP
If first customer number to process

Call CONTINUE-CONVERSATION
Set up exception condition handling:

Map error - SEND-MAP
PF3/CLEAR - CONTINUE-CONVERSATION

RECEIVE MAP from front-end terminal
If conversation not started

Call INITIATE-CONVERSATION
Else

Call CONTINUE-CONVERSATION
SEND-MAP routine:

SEND new map to front-end terminal
RETURN TRANSID(CZTS) with COMMAREA

INITIATE-CONVERSATION routine:
FEPI ALLOCATE conversation with back-end
Build screen image to invoke back-end transaction
FEPI SEND screen image to back-end
FEPI START the receive transaction
RETURN

CONTINUE-CONVERSATION routine:
Unless first customer number

Reaccess conversation with FEPI ALLOCATE PASSCONVID
Build screen image to send customer number
FEPI SEND screen image to back-end
FEPI START the receive transaction
RETURN

CZTS Customer Name and Balance Inquiry
Please type a customer number in the range 1 through 9999, then Enter.
Customer number

Name :
Balance. . . . :
F3=EXIT to CICS

Figure 12. CZTS transaction: customer name and balance inquiry

248 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Screen image RECEIVE and EXTRACT FIELD
This sample program demonstrates using FEPI to get formatted data from a
back-end transaction.

Module name DFH0VZTR

Transaction name CZTR

Map name DFH0MZ2

This program is the RECEIVE part of a SEND-RECEIVE pair of programs, the
SEND part being DFH0VZTS.

This transaction is started by CICS either when data is received from the back-end
transaction or if no data is received in the time set in the send transaction, as is
determined from the start data obtained with RETRIEVE. The user data in the start
data indicates whether the conversation is starting, continuing, or finishing.

A FEPI RECEIVE obtains the screen image from the back-end transaction and FEPI
EXTRACT FIELD is used to obtain specific fields.

If the conversation is starting, control is passed to the send transaction using XCTL
to allow an inquiry to be sent to the back-end transaction.

If the conversation is continuing, the results from the back-end are sent on to the
front-end terminal. Access to the conversation is relinquished, and control is
returned to CICS specifying that the send transaction is to be invoked when there
is next user input.

If the conversation has finished, a message to that effect is sent to the front-end
terminal. The conversation is freed and the transaction ends.

Program logic
MAIN procedure:

RETRIEVE start data
Reaccess conversation with FEPI ALLOCATE PASSCONVID
If time out

Call REPORT-PROBLEM
FEPI RECEIVE back-end screen image
If conversation ending (PF3 or CLEAR indicated)

Call REPORT-PROBLEM
If back-end problem
(CICS message or back-end transaction message)

Call REPORT-PROBLEM
If conversation starting (user data has customer number)

XCTL to program DFH0VZTS
If conversation continuing

Get interesting fields from back-end data using
FEPI EXTRACT FIELD

Build and send map to front-end terminal
Release conversation using FEPI FREE PASS
RETURN TRANSID(CZTS) with COMMAREA

REPORT-PROBLEM routine:
SEND message to front-end terminal
FEPI FREE conversation
RETURN

Appendix A. FEPI sample programs 249

3270 data stream passthrough
This sample program demonstrates using FEPI to passthrough 3270 data stream
between a back-end application and a front-end terminal.

Module names DFH0VZTD, DFH0AZTD

Transaction name CZTD

On the first invocation of the transaction, a request is sent to the back-end system
to start a transaction there. The response is sent on to the front-end terminal.

When there is input from the front-end terminal, CICS reinvokes the transaction.
This input is sent on to the back-end system, using the FEPI CONVERSE
command, and the resulting response is returned to the front-end terminal.

If there is an error, or the back-end system sends a CICS message, or PF3 is
received from the front-end terminal, the transaction ends.

Program logic
Test COMMAREA
If transaction not previously invoked

Build data stream request to start back-end transaction
FEPI ALLOCATE conversation with back-end system
FEPI CONVERSE data stream to and from back-end system
SEND returned data stream to the front-end terminal

Else
RECEIVE data stream from the front-end terminal
Prepare data stream to send on to back-end system
Reaccess conversation with FEPI ALLOCATE PASSCONVID
FEPI CONVERSE data stream to and from back-end system
SEND data stream to the front-end terminal

If error during processing
SEND explanatory message

If continuing
Release conversation using FEPI FREE PASS
RETURN TRANSID(CZTD) with COMMAREA

Else (error, CICS message, or PF3)
FEPI FREE conversation
RETURN

End-session handler
This program cleans up sessions after use by FEPI sample application programs.

Module name DFH0VZUU

Transaction name CZUU

TS queue name SESSION

This transaction is started by FEPI when an application ends a conversation or
when a session is released.

The conversation passed by FEPI must be accessed so that FEPI knows that the
event is being handled. The processing required depends entirely on local
requirements. For illustration purposes, this program keeps the session for use by
another conversation or lets it end, depending on the event type.

250 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

The CONVID picked up from the START data and passed on the FEPI ALLOCATE
PASSCONVID is not the same as the CONVID for the conversation that has been
freed. Nevertheless, the end-session handler can use it to access the same FEPI
terminal.

For end of conversation (EVENTTYPE=FREE in start data), processing could
typically involve setting the session back to a known state (such as a clear
back-end screen ready to accept a new transaction name), or handling security, or
overriding the type of FREE used. Such processing would depend on the data
mode and type that the session uses (which is obtained from the start data),
whether the back-end system is CICS or IMS, and the type of FREE used (also
obtained from the start data).

For end of session (EVENTTYPE=FREE and EVENTVALUE=RELEASE in start
data), processing could typically involve handling security.

For both cases, there could be an indication (in EVENTVALUE in the start data)
that CICS is shutting down, which might require alternative special processing.
This transaction would have to be in the XLT to allow it to be started during
shutdown.

After the processing, a report is written to a TS queue named SESSION, which can
be browsed using CEBR. The format of the TS queue records is:
date time CZUU End-session handling completed

RESP........0 RESP2.......0
Target......TGTNAME Node........NODENAME
Pool........POOLNAME

Program logic
Main procedure:

RETRIEVE start data
Access conversation using FEPI ALLOCATE with PASSCONVID
Call PROCESS-RELEASE or PROCESS-FREE as appropriate
Write event details to TS queue
RETURN

PROCESS-RELEASE routine:
Handle as required
Free conversation, ending session

PROCESS-FREE routine:
Handle as required
Free conversation, keeping session

SLU P one-out one-in
This sample program demonstrates using FEPI to obtain information from a
back-end IMS system, using SLU P mode and the FEPI CONVERSE command
with the POOL option.

Module names DFH0VZPS, DFH0AZPS

Transaction name CZPS

Map names DFH0MZ4, DFH0MZ8

On the first invocation of the program, a map is sent to the front-end terminal.

When there is input from the front-end terminal, CICS reinvokes the program. A
simple inquiry is made to the back-end system—for illustration purposes, it asks
the time—and the answer is displayed on the front-end terminal. Because the

Appendix A. FEPI sample programs 251

inquiry requires only a one-out one-in exchange with the back-end system, a
temporary conversation can be used, so the FEPI CONVERSE command with the
POOL option is used.

When PF3 or CLEAR is received from the front-end terminal, the transaction ends.
If there is an error, the front-end map is reset. These situations are detected using
HANDLE CONDITION.

If the back-end system sends an IMS message, it is sent on to the front-end
terminal and the transaction ends.

For clarity, error checking is minimal except for the FEPI commands.

Program logic
MAIN procedure:

Test COMMAREA
If transaction not previously invoked

Call SEND-NEW-MAP
Set up exception condition handling:

Map error - SEND-NEW-MAP
CLEAR/PF3 - END-PROG

RECEIVE MAP from front-end terminal
Build SLU P data stream to request time from back-end IMS

system
FEPI CONVERSE to send data stream to the back-end and get

the message containing the time
If IMS message received from back-end system

SEND message to front-end terminal
RETURN

Build data for front-end terminal map
SEND map data to front-end terminal
RETURN TRANSID(CZPS) with COMMAREA

SEND-NEW-MAP routine:
SEND new map
RETURN TRANSID(CZPS) with COMMAREA

END-PROG routine:
Clear front-end terminal
RETURN

SLU P pseudoconversational
This sample program demonstrates using FEPI to obtain data from an IMS
back-end transaction. It is in pseudoconversational style, using the FEPI START
command to schedule itself when the results arrive.

Module names DFH0VZPA, DFH0AZPA

Transaction name CZPA

Map names DFH0MZ5, DFH0MZ9

CZPS SLU P Sample Program.
IMS SLU P conversational sample program
This transaction will process a FEPI CONVERSE command to obtain time

and date from a back-end IMS system.
DATE : 02/04/92
TIME : 10:57:10
STATE : Not started

F3=EXIT to CICS ENTER=obtain time and date stamp from IMS

Figure 13. CZPS transaction: SLU P sample program

252 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

On the first invocation of the program, a map is sent to the front-end terminal.

When there is input from the front-end terminal, CICS invokes the program again.
After establishing a conversation, an inquiry is sent to the back-end system. FEPI
START is issued to start this program again when the results arrive. Meanwhile it
returns to CICS, so releasing resources.

When the results arrive, FEPI starts the program again. The results are obtained
using FEPI RECEIVE, and sent on to the front-end terminal. The conversation is
freed and the program returns to CICS to await more input. If the back-end system
sends an IMS message, it is sent on to the front-end terminal and the transaction
ends.

When PF3 or CLEAR is received from the front-end terminal, the transaction ends.
If there is an error, the front-end map is reset. These situations are detected using
HANDLE CONDITION.

For clarity, error checking is minimal except for the FEPI commands.

Screen

Program logic
MAIN procedure:

If started from terminal
Test COMMAREA
If transaction not previously invoked

Call SEND-NEW-MAP
Set up exception condition handling:

Map error - SEND-NEW-MAP
CLEAR/PF3 - END-PROG

RECEIVE map from front-end terminal
FEPI ALLOCATE conversation with back-end system
Build SLU P data stream to request time
FEPI SEND data stream to back-end system
FEPI START transaction
RETURN

If started by FEPI
RETRIEVE start data
Reaccess conversation using FEPI ALLOCATE PASSCONVID
If EVENTTYPE = data received

FEPI RECEIVE data stream from back-end system
FEPI FREE conversation
If IMS message received

SEND message to front-end terminal
RETURN

Build data for front-end terminal map
SEND map to front-end terminal
RETURN TRANSID(CZPA) with COMMAREA

Otherwise (timeout or session loss)
SEND map with message to front-end terminal
RETURN (freeing conversation implicitly)

CZPA SLUP Sample Program.
IMS SLUP Pseudoconversational sample program
This transaction will process SEND/START/RECEIVE requests with MFS

specified, to a back-end IMS system.
DATE : 02/04/92
TIME : 10:58:50
STATE : Not Started

F3=EXIT to CICS ENTER=obtain time and date stamp from IMS

Figure 14. CZPA transaction: SLU P pseudoconversational sample program

Appendix A. FEPI sample programs 253

SEND-NEW-MAP routine:
SEND new map
RETURN TRANSID(CZPA) with COMMAREA

END-PROG routine:
Clear front-end terminal
RETURN

STSN handler
This program handles STSN processing for the FEPI sample application programs.

Module name DFH0AZQS

Transaction name CZQS

TS queue name SESSION

The CZQS transaction is started by FEPI when a request for message
resynchronization (‘set and test sequence number’, STSN) or a ‘start data traffic’
indication is received from a back-end IMS system.

The conversation passed by FEPI must be accessed so that FEPI knows that the
event is being handled. The processing required depends on the STSN status,
which is obtained using FEPI EXTRACT STSN.

For STSNSTATUS=NOSTSN, the transaction was started because ‘start data traffic’
arrived. A DR1 normal response must be sent.

For STSNSTATUS=STSNSET, a positive STSN response must be sent.

For STSNSTATUS=STSNTEST, processing would typically involve comparing saved
sequence numbers with those received from the back-end IMS system to determine
what response to send. The IMS Customization Guide gives advice on the
appropriate action.

After the processing, the response is sent using FEPI ISSUE. A report is written to
a TS queue named SESSION, which can be browsed using CEBR. The general
format of the TS queue records is:
date time CZQS STSN processing completed

Target......TGTNAME Node........NODENAME
Seqnumin....nnnn Seqnumout...nnnn
STSN status.XXXXXXX Response....XXXXXXXX

Program logic
Main procedure:

RETRIEVE start data
Access conversation using FEPI ALLOCATE with PASSCONVID
Get STSN status using FEPI EXTRACT STSN
Call NOSTSN, STSNSET, or STSNTEST

according to STSN status
Send response using FEPI ISSUE CONTROL
Write event details to TS queue
Free conversation, keeping session
RETURN

NOSTSN routine:
Build DR1 normal response

STSNSET routine:
Build STSN positive response

STSNTEST routine:
Handle as required
Build required response

254 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Appendix B. CVDA and RESP2 values for FEPI commands

This appendix lists the CVDA and RESP2 values returned by FEPI commands.

It contains:
v “FEPI CVDAs and numeric values in alphabetic sequence”
v “FEPI CVDAs and numeric values in numeric sequence” on page 257
v “FEPI RESP2 values” on page 260.

FEPI CVDAs and numeric values in alphabetic sequence
The following table lists the CVDA values used or returned by the FEPI commands
in alphabetic sequence.

For programming information about other CVDA values, see the CICS System
Programming Reference.

Table 16. CVDA values in alphabetic sequence

ACQFAIL 515

ACQUIRED 69

ACQUIRING 71

ADDFAIL 519

ALARM 501

APPLICATION 559

ATTENTION 524

BEGINSESSION 510

CANCEL 526

CD 491

DATA 508

DATASTREAM 543

DEFRESP1 497

DEFRESP1OR2 528

DEFRESP2 498

DEFRESP3 499

DELETEFAIL 520

DISCARDFAIL 513

EB 490

EXCEPTRESP 523

FMH 502

FORCE 342

FORMATTED 542

FREE 85

GOINGOUT 172

© Copyright IBM Corp. 1992, 2011 255

Table 16. CVDA values in alphabetic sequence (continued)

HOLD 163

INBOUND 547

INOUT 532

INPUT 226

INSERVICE 73

INSTALLED 550

INSTALLFAIL 512

INVALID 359

LIC 493

LOSE 544

LUP 541

LUSTAT 525

MDT 506

MORE 492

NEGATIVE 530

NEWSESSION 485

NOALARM 500

NOCONVERT 734

NOCONV 556

NOFMH 503

NOMDT 507

NOMSGJRNL 531

NONE 496

NORMALRESP 522

NOSTSN 487

NOTINBOUND 546

NOTINSTALLED 551

OLDSESSION 486

OUTPUT 227

OUTSERVICE 74

PENDBEGIN 558

PENDDATA 560

PENDFREE 86

PENDPASS 565

PENDRELEASE 562

PENDSTART 561

PENDSTSN 557

PENDUNSOL 564

POSITIVE 529

PROTECTED 504

RELEASE 563

256 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Table 16. CVDA values in alphabetic sequence (continued)

RELEASED 70

RELEASING 549

RESET 290

RTR 527

RU 494

SESSION 372

SESSIONFAIL 517

SESSIONLOST 516

SETFAIL 514

SHUTDOWN 288

STSN 509

STSNSET 488

STSNTEST 489

TASK 233

TIMEOUT 511

TPS55M2 552

TPS55M3 553

TPS55M4 554

T3278M2 533

T3278M3 534

T3278M4 535

T3278M5 536

T3279M2 537

T3279M3 538

T3279M4 539

T3279M5 540

UNPROTECTED 505

UNSOLDATA 521

WIN 545

Related reference

“FEPI CVDAs and numeric values in numeric sequence”
The following table lists the CVDA values used or returned by the FEPI commands
in numeric sequence.
Related information

CICS-value data areas used by all commands

FEPI CVDAs and numeric values in numeric sequence
The following table lists the CVDA values used or returned by the FEPI commands
in numeric sequence.

For programming information about other CVDA values, see the CICS System
Programming Reference.

Appendix B. CVDA and RESP2 values for FEPI commands 257

Table 17. CVDA values in numeric sequence

69 ACQUIRED

70 RELEASED

71 ACQUIRING

73 INSERVICE

74 OUTSERVICE

85 FREE

86 PENDFREE

163 HOLD

172 GOINGOUT

226 INPUT

227 OUTPUT

233 TASK

288 SHUTDOWN

290 RESET

342 FORCE

359 INVALID

372 SESSION

485 NEWSESSION

486 OLDSESSION

487 NOSTSN

488 STSNSET

489 STSNTEST

490 EB

491 CD

492 MORE

493 LIC

494 RU

496 NONE

497 DEFRESP1

498 DEFRESP2

499 DEFRESP3

500 NOALARM

501 ALARM

502 FMH

503 NOFMH

504 PROTECTED

505 UNPROTECTED

506 MDT

507 NOMDT

508 DATA

509 STSN

258 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Table 17. CVDA values in numeric sequence (continued)

510 BEGINSESSION

511 TIMEOUT

512 INSTALLFAIL

513 DISCARDFAIL

514 SETFAIL

515 ACQFAIL

516 SESSIONLOST

517 SESSIONFAIL

519 ADDFAIL

520 DELETEFAIL

521 UNSOLDATA

522 NORMALRESP

523 EXCEPTRESP

524 ATTENTION

525 LUSTAT

526 CANCEL

527 RTR

528 DEFRESP1OR2

529 POSITIVE

530 NEGATIVE

531 NOMSGJRNL

532 INOUT

533 T3278M2

534 T3278M3

535 T3278M4

536 T3278M5

537 T3279M2

538 T3279M3

539 T3279M4

540 T3279M5

541 LUP

542 FORMATTED

543 DATASTREAM

544 LOSE

545 WIN

546 NOTINBOUND

547 INBOUND

549 RELEASING

550 INSTALLED

551 NOTINSTALLED

552 TPS55M2

Appendix B. CVDA and RESP2 values for FEPI commands 259

Table 17. CVDA values in numeric sequence (continued)

553 TPS55M3

554 TPS55M4

556 NOCONV

557 PENDSTSN

558 PENDBEGIN

559 APPLICATION

560 PENDDATA

561 PENDSTART

562 PENDRELEASE

563 RELEASE

564 PENDUNSOL

565 PENDPASS

734 NOCONVERT

Related reference

“FEPI CVDAs and numeric values in alphabetic sequence” on page 255
The following table lists the CVDA values used or returned by the FEPI commands
in alphabetic sequence.
Related information

CICS-value data areas used by all commands

FEPI RESP2 values
RESP2 values are used in the EVENTVALUE area of FEPI transient data queue
records and returned by the RESP2 option of FEPI commands.

For details of the error conditions and related RESP2 values for each FEPI
command, see the command definitions in Chapter 11, “FEPI system programming
reference,” on page 89 and Part 4, “FEPI application programming reference,” on
page 175.

Declarations for the RESP2 values are provided in the following copy books:
v DFHSZAPA for Assembler language
v DFHSZAPO for COBOL
v DFHSZAPP for PL/I
v DFHSZAPC for C.

Table 18. RESP2 values

1 INQUIRE START, NEXT, or END command not valid here:

START Browse of this resource type already in progress

NEXT INQUIRE START not issued

END INQUIRE START not issued.
2 All resource definitions have been retrieved.

10 Command bypassed by user exit.
11 FEPI not installed or not active.
12 CICS shutting down, command not allowed.
13 FEPI not available.

260 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Table 18. RESP2 values (continued)

14 FEPI busy or cannot get storage.
15 Unknown command.
16 Internal problem.
17 FEPI cannot get storage for user exit parameters.
18 Command failed because of operator or system action.
30 POOL name not known.
31 POOL name out of service.
32 TARGET name not known.
33 TARGET name out of service.
34 TARGET name required but not specified.
35 Pool name is unsuitable for temporary conversations. It has

CONTENTION(LOSE) or INITIALDATA(INBOUND) but no begin-session
handler.

36 No suitable session available and in service.
40 [FROM]FLENGTH value is negative, zero, or more than MAXFLENGTH

value for pool.
41 ESCAPE value not valid.
50 Inbound data with ‘begin bracket’ to be received.
51 Attention identifier (AID) not valid.
52 Cursor position not valid.
53 Code points in formatted data not valid.
54 Attribute positions or values in send data not valid.
55 Key stroke escape sequence in send data not valid.
56 Field validation (mandatory fill, mandatory enter, trigger) failed.
57 Input is inhibited.
58 VTAM SEND failed.
59 DBCS data rules violated.
60 MAXFLENGTH value negative, or greater than MAXFLENGTH value for

pool.
61 FLENGTH value negative or greater than 128.
62 TRANSID name not valid.
63 TERMID name not valid.
70 FIELDLOC or FIELDNUM value negative or not valid.
71 VTAM RECEIVE failed.
72 RECEIVE FORMATTED processing found invalid, or unexpected data while

interpreting the 3270 data steam for a WRITE, ERASE/WRITE,
ERASE/WRITE ALTERNATE, or WRITE STRUCTURED FIELD command
code.

80 CONTROL value not valid.
81 VALUE not valid: omitted when required; included when not required; or

unsuitable for specified CONTROL.
82 SENSEDATA option omitted when required, or specified when not required.
90 Definite response type did not match what was required.
91 Only NORMALRESP or EXCEPTRESP allowed at this point in conversation.
92 Response to STSN SET was not positive.
93 Only STSN allowed at this point in conversation.
94 Only STSN or NORMALRESP allowed at this point in conversation.
95 CONTROL value not allowed at this point in conversation.

100 Not authorized to issue command.
110 SERVSTATUS value not valid.
111 ACQSTATUS value not valid.
115 POOL name not known.
116 TARGET name not known.
117 NODE name not known.

Appendix B. CVDA and RESP2 values for FEPI commands 261

Table 18. RESP2 values (continued)

118 Unknown connection (TARGET and NODE names known, but not in a
common POOL).

119 Request failed for one or more items in list. Detailed errors reported to TD
queue for monitor to handle.

130 TARGETNUM value negative, zero, or not valid.
131 NODENUM value negative, zero, or not valid.
132 POOLNUM value negative, zero, or not valid.
140 DEVICE value not valid.
141 CONTENTION value not valid.
142 INITIALDATA value not valid.
143 UNSOLDATACK value not valid.
144 MSGJRNL value not valid.
150 FORMAT value not valid or unsuitable for specified device.
153 STSN name not valid or STSN unsuitable for specified device.
154 BEGINSESSION value not valid.
155 UNSOLDATA value not valid.
156 EXCEPTIONQ value not valid.
157 FJOURNALNUM value not valid.
158 MAXFLENGTH value not valid.
159 ENDSESSION name not valid.
160 PROPERTYSET name not valid.
162 POOL name not valid.
163 NODE name not valid.
164 TARGET name not valid.
167 APPL name not valid.
170 PROPERTYSET name already exists.
171 PROPERTYSET name not known.
172 POOL name already exists.
173 NODE name already exists.
174 TARGET name already exists.
175 Connection already exists.
176 VTAM OPEN NODE failed.
177 VTAM APPLID already known.
178 FJOURNALNAME value not valid.
182 Session unbound, unrecoverable.
183 Session unbound, recoverable.
184 Session unbound, error.
185 Session unbound, bind coming.
186 Session unbound.
187 Lost terminal.
188 CLEANUP, abnormal.
189 CLEANUP.
190 UNBIND error.
191 SETUP error.
192 SSCP error.
193 SLU error.
194 PLU error.
195 BIND error.
196 CINIT error.
197 REQSESS error.
198 REQSESS inhibited.
199 REQSESS not available.
210 Option not valid for SLU P.
211 Option not valid for SLU2.

262 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Table 18. RESP2 values (continued)

212 Wrong data format for conversation.
213 Command has timed out.
214 CICS shutting down, conversation should be ended.
215 Session lost.
216 Error occurred on previous SEND command.
220 SEND or CONVERSE command not allowed at this point in conversation.
221 RECEIVE command not allowed at this point in conversation.
223 START command not allowed at this point in conversation.
224 Only ISSUE or FREE allowed at this point in conversation.
230 SNA CLEAR command received.
231 SNA CANCEL command received.
232 SNA CHASE command received.
233 Exception response received.
234 Exception request received.
240 Conversation ID unknown or not owned by task.
241 TIMEOUT value negative or not valid.
250 Passticket not built successfully.
251 CICS ESM interface not initialized.
252 Unknown return code in ESMRESP from the ESM.
253 Unrecognized response from CICS security modules.
254 Function unavailable.
259 No signed-on user.

Appendix B. CVDA and RESP2 values for FEPI commands 263

264 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 1992, 2011 265

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Other product and service names might be trademarks of IBM or other companies.

266 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI13-0536
CICS Transaction Server for z/OS What's New, GC34-6994
CICS Transaction Server for z/OS Upgrading from CICS TS Version 2.3, GC34-6996
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1, GC34-6997
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2, GC34-6998
CICS Transaction Server for z/OS Installation Guide, GC34-6995

Access to CICS
CICS Internet Guide, SC34-7021
CICS Web Services Guide, SC34-7020

Administration
CICS System Definition Guide, SC34-6999
CICS Customization Guide, SC34-7001
CICS Resource Definition Guide, SC34-7000
CICS Operations and Utilities Guide, SC34-7002
CICS RACF Security Guide, SC34-7003
CICS Supplied Transactions, SC34-7004

Programming
CICS Application Programming Guide, SC34-7022
CICS Application Programming Reference, SC34-7023
CICS System Programming Reference, SC34-7024
CICS Front End Programming Interface User's Guide, SC34-7027
CICS C++ OO Class Libraries, SC34-7026
CICS Distributed Transaction Programming Guide, SC34-7028
CICS Business Transaction Services, SC34-7029
Java Applications in CICS, SC34-7025

Diagnosis
CICS Problem Determination Guide, GC34-7034
CICS Performance Guide, SC34-7033
CICS Messages and Codes, SC34-7035
CICS Diagnosis Reference, GC34-7038
CICS Recovery and Restart Guide, SC34-7012
CICS Data Areas, GC34-7014
CICS Trace Entries, SC34-7013
CICS Supplementary Data Areas, GC34-7015
CICS Debugging Tools Interfaces Reference, GC34-7039

Communication
CICS Intercommunication Guide, SC34-7018
CICS External Interfaces Guide, SC34-7019

Databases
CICS DB2 Guide, SC34-7011
CICS IMS Database Control Guide, SC34-7016

© Copyright IBM Corp. 1992, 2011 267

CICS Shared Data Tables Guide, SC34-7017

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7044
CICSPlex SM Web User Interface Guide, SC34-7045

Administration and Management
CICSPlex SM Administration, SC34-7005
CICSPlex SM Operations Views Reference, SC34-7006
CICSPlex SM Monitor Views Reference, SC34-7007
CICSPlex SM Managing Workloads, SC34-7008
CICSPlex SM Managing Resource Usage, SC34-7009
CICSPlex SM Managing Business Applications, SC34-7010

Programming
CICSPlex SM Application Programming Guide, SC34-7030
CICSPlex SM Application Programming Reference, SC34-7031

Diagnosis
CICSPlex SM Resource Tables Reference, SC34-7032
CICSPlex SM Messages and Codes, GC34-7035
CICSPlex SM Problem Determination, GC34-7037

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 4 Release 1.

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

268 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1992, 2011 269

270 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Index

Special characters
, for FEPI resources 14

Numerics
16MB line, AMODE setting for FEPI 39
3270 data stream

data formats 154
data-stream-level commands 13
pass-through sample program 250

3278 device type 102
3279 device type 102

A
abends 132
access program 15, 157
ACQFAIL event 47
ACQNUM option

FEPI INQUIRE CONNECTION 97
FEPI INQUIRE NODE 100

ACQSTATUS option
FEPI ADD 92
FEPI INQUIRE CONNECTION 97
FEPI INQUIRE NODE 100
FEPI INSTALL NODELIST 110
FEPI INSTALL POOL 111
FEPI SET CONNECTION 118
FEPI SET NODE 120

ACQSTATUS, resource status 53
Acquired

CEMT INQUIRE
FECONNECTION 68

CEMT INQUIRE FENODE 70
ACQUIRED option

CEMT SET FECONNECTION 75
CEMT SET FENODE 76

ACQUIRED resource status 53
ACQUIRING, resource status 53
ADDFAIL event 48
addressing mode 39, 139
AID (attention identifier), screen-image

data 147
ALARMSTATUS option

FEPI CONVERSE FORMATTED 194
FEPI RECEIVE FORMATTED 217

ALL option
CEMT SET FECONNECTION 75
CEMT SET FENODE 76
CEMT SET FEPOOL 77
CEMT SET FETARGET 78

ALLOCATE command 181
conversation 162
PASSCONVID 181
POOL 183

ALLOCATE POOL 183
AMODE setting

application programs 139
system programs 39

analysis and planning 21

AP NOOP 185
APAR (authorized program analysis

report) 7
Appl

CEMT INQUIRE FETARGET 74
APPL option

FEPI INQUIRE TARGET 109
application programming 135

commands 12, 175
components of FEPI programs 15,

157
conversational 160, 162
CVDA values 255, 257
data stream integrity 150
design 157
general sequence of commands 141
IMS considerations 168
IMS response mode 169
one-out one-in conversational 159
performance considerations 55, 171
pseudoconversational 160
RESP2 values 260
writing FEPI programs 139

APPLLIST option
FEPI INSTALL TARGETLIST 117

Assembler language
copybook 39, 178
sample programs 237

ATI (automatic transaction initiation)
controlling FEPI resources 42
unsolicited data 159

attention
general sequence of commands 141
keys 143, 232
multiple attentions 145
sending screen-image data 146

availability
of network resources 35

B
back-end system 4

CICS sample program 240
hardware and software

requirements 7
IMS considerations 168
IMS sample programs 241
in a CICSplex 26
initial data 158
message sent after a bind 158
planning 21
sample configuration 45
XRF takeover 60

BACKGROUND option
FEPI EXTRACT FIELD 201

begin-session handler 15
application design 158
defining to FEPI 25, 42
IMS considerations 169
sample program 245

BEGINSESSION option
FEPI INQUIRE POOL 102
FEPI INQUIRE PROPERTYSET 106
FEPI INSTALL PROPERTYSET 114

BEING ACQUIRED status 54
BEING RELEASED status 54
bind

communication and
conversations 137

device query 158
handling unsolicited binds with

CLSDST(PASS) 47, 48, 49
introduction to FEPI resources 15
removing bind races 59
selection of FEPI session

parameters 36
system message after a bind 158
XRF takeover 59

bypass
handling in application 167
using in user exit 51

C
C language

copybook 39, 178
nulls in screen image 147
sample programs 237

card reader, sending key stroke data 143
CDSA storage requirements 26
CECI transaction

debugging FEPI programs 39, 140
CEMT transaction 65

after FEPI failure 58
DISCARD 65
INQUIRE FECONNECTION 66
INQUIRE FENODE 69
INQUIRE FEPOOL 71
INQUIRE FEPROPSET 73
INQUIRE FETARGET 73
SET FECONNECTION 75
SET FENODE 76
SET FEPOOL 77
SET FETARGET 78

CETR transaction 131
CHAIN option

FEPI CONVERSE
DATASTREAM 188

FEPI RECEIVE DATASTREAM 213
chain, receiving a 154
CICS (Customer Information Control

System)
back-end

sample program 240
terminal definitions 37

CICS-supplied transactions 65
default startup group list,

DFHLIST 29, 30
front-end, configuration of 33
ISC and MRO considerations 4
RDO group DFHFEPI 29

© Copyright IBM Corp. 1992, 2011 271

CICS (Customer Information Control
System) (continued)

shutdown 57
startup procedure 31
updating definitions 29

CICSplex
back-end systems in 26

CLSDST(PASS) 48
COBOL language

copybook 39, 178
example of sending screen-image

data 146
sample programs 237

COLLECT STATISTICS command 56
COLOR option

FEPI EXTRACT FIELD 201
color support

device attributes 25
getting colors 201
storage requirements 27
VTAM configuration 34

COLUMNS option
FEPI CONVERSE FORMATTED 194
FEPI RECEIVE FORMATTED 217

command-level security 17, 30
commands

application programming reference
section 175

CEMT DISCARD 65
copy books for RESP2 values 39, 178
CVDA values 255, 257
data-stream-level 13, 149
errors and exception conditions 39,

140
formatted data 12
general sequence 141, 150
high-level FEPI 12
introduction to FEPI commands 12
key stroke interface 12, 141
list of FEPI commands 13
performance considerations 55
RESP2 values 260
screen-image interface 12, 141
SNA 175
specialized-level 13, 173
storage requirements 26
system programming 38, 89
VTAM-level 13

communication
error handling 167
general considerations 137
resources 137

conditions
error and exception 90, 178

configuration
16MB line 39
AMODE setting 39
example of 42
of back-end CICS and IMS

systems 37
of CICS 33
of FEPI 40

coding of programs 38
global user exits 50
monitoring program 46
sample 42
writing operator transactions 53

configuration (continued)
of VTAM

ISTINCLM mode table 35
session pacing values 37
session parameters 35

planning 21
programs, design of 38
sample programs 42, 242

connection 15
acquiring and releasing 53
controlling waits with event

handlers 42
determining contents of a pool 53
INQUIRE CONNECTION

command 96
sample configuration 45
SET CONNECTION command 118
storage requirements 26
waiting in RELEASING state 54

contention mode 145, 152
CONTENTION option

FEPI INQUIRE POOL 102
FEPI INQUIRE PROPERTYSET 106
FEPI INSTALL PROPERTYSET 114

CONTROL option
FEPI ISSUE 209

conventions used by FEPI
node names 34
pool names 24
property set names 26
systems and data flow 11

conversation ID 162
conversation identifier 162
conversations 137, 161

design of conversational
applications 160

ownership of 162
passing conversations 163
state of 55
storage requirements 26
temporary 163
unknown conversation ID, error

handling 167
CONVERSE

data stream applications 154
DATASTREAM 187
FORMATTED 193
key stroke and screen image

applications 148
CONVID field

start data 229
TDQ record 124

CONVID option
FEPI ALLOCATE POOL 183
FEPI CONVERSE

DATASTREAM 188
FEPI CONVERSE FORMATTED 194
FEPI EXTRACT CONV 199
FEPI EXTRACT FIELD 201
FEPI EXTRACT STSN 205
FEPI FREE 207
FEPI ISSUE 210
FEPI RECEIVE DATASTREAM 213
FEPI RECEIVE FORMATTED 217
FEPI REQUEST PASSTICKET 221
FEPI SEND DATASTREAM 223
FEPI SEND FORMATTED 225

CONVID option (continued)
FEPI START 227

CONVNUM option
FEPI INQUIRE CONNECTION 97

CSZL transient data queue
command errors 39, 91
defining 29

CSZX transient data queue
command errors 39, 125
defining 29
record format 124
reporting unexpected events 47

CURSOR option
FEPI RECEIVE FORMATTED 217
FEPI SEND FORMATTED 225

cursor setting 143, 147
customization

journaling 85
CVDA values 255
CZBC transaction 240
CZBI transaction 241
CZPA transaction 252
CZPS transaction 251
CZQS transaction 254
CZTD transaction 250
CZTK transaction 246
CZTR transaction 249
CZTS transaction 247
CZUC transaction 245
CZUU transaction 250
CZUX transaction 243
CZXS transaction 242

D
data formats

inbound data 232
journaling 85
start data 229
TD queue records 123

data handling, using property set for 25,
40

data stream applications 13
3270 pass-through sample

program 250
converse 154
data formats 231
data stream integrity 150
FEPI commands 12, 13
receiving 150
sending 153
SLU P mode 155
SLU2 mode 154
writing 149

DATATYPE field
start data 229
TDQ record 124

DBCS (double-byte character set)
errors sending key stroke data 144
formatted, mode 232
key stroke format 231

debugging 39, 127
default CICS startup group list,

DFHLIST 29, 30
defining transient data queues 29
definite responses 158, 174

272 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

definitions
for sample programs 238
sample 45
updating CICS 29

DELETE POOL command 93
DELETEFAIL event 48
design

access program 157
application organization 159
begin-session handler 158
end-session handler 159
programs 157
unsolicited-data handler 158

Device
CEMT INQUIRE FEPOOL 72

device attributes, using property set
for 25, 40

DEVICE field
start data 229
TDQ record 124

DEVICE option
FEPI EXTRACT CONV 199
FEPI INQUIRE POOL 102
FEPI INQUIRE PROPERTYSET 106
FEPI INSTALL PROPERTYSET 114

device query 158
device-type, VTAM logon mode table

entries 35
DFHFEPI, RDO group 29, 30
DFHLIST, default CICS startup group

list 29, 30
DFHSZ4099E message 132
DFHSZ4155I message 133
DFHSZAPA, copy book 39, 178
DFHSZAPC, copy book 39, 178
DFHSZAPO, copy book 39, 178
DFHSZAPP, copy book 39, 178
DISCARD command

NODELIST 94
POOL 94
PROPERTYSET 95
TARGETLIST 95

DISCARDFAIL event 47
distributed program link, shipping FEPI

applications 33
distribution tape 8
DRx responses 158, 174
dumps

FEPI 127

E
ECDSA storage requirements 26
EDF (Execution Diagnostic Facility)

debugging FEPI programs 39, 140
FEPI problem determination aids 127

EIB (EXEC interface block) 89, 177
end-session handler 15

application design 159
defining to FEPI 25, 42
IMS considerations 169
sample program 250

ENDSESSION option
FEPI INQUIRE POOL 103
FEPI INQUIRE PROPERTYSET 106
FEPI INSTALL PROPERTYSET 115

ENDSTATUS option
data stream 151
FEPI CONVERSE

DATASTREAM 188
FEPI CONVERSE FORMATTED 194
FEPI RECEIVE DATASTREAM 213
FEPI RECEIVE FORMATTED 218
formatted data 144

environmental requirements 7
error handling 166

application programming
commands 178

bad command sequencing 153
bypass by user exit 167
CONVERSE 148
general guidance 166
list of resources 40, 91
operator/system action 167
receiving data 145
receiving screen-image data 148
SEND failure 166
sending data

key stroke data 144
screen-image data 147

session loss 166
shutdown 167
system programming commands 91
time-outs 166
unknown conversation ID 167

ESCAPE option
FEPI CONVERSE FORMATTED 195
FEPI SEND FORMATTED 225

escape sequences 142, 231
ESM (external security manager) 30

PassTickets 16, 164
ESMREASON option

FEPI REQUEST PASSTICKET 221
ESMRESP option

FEPI REQUEST PASSTICKET 221
EVENTDATA field

start data 229
TDQ record 124

EVENTTYPE field
start data 229
TDQ record 125

EVENTVALUE field
start data 230
TDQ record 125

example of FEPI configuration 42
exception conditions

application programs 140, 178
configuration programs 39
general considerations 39, 140
system programs 39, 90

EXCEPTIONQ option
FEPI INQUIRE POOL 103
FEPI INQUIRE PROPERTYSET 106
FEPI INSTALL PROPERTYSET 115

EXEC CICS command format
system programming 90, 178

EXEC interface block (EIB) 89, 177
extended data stream

device attributes 25, 40
getting attributes 144, 147
storage requirements 27
VTAM configuration 34

EXTRACT command
CONV 199
extracting field data 144, 148
FIELD 201
STSN 205

F
Feno

CEMT INQUIRE FENODE 70
FENODE option

CEMT DISCARD 65
FEPI

applications 157
CICS-supplied transactions 65
commands 89, 175
environmental requirements 7
functions and services 11
hardware requirements 7
how it fits into your system 4
installation 29
introduction 3
operator control 65
planning 7, 21
programming interface 11
resources 14
sample programs 237
setup

sample program 242
software requirements 7
storage requirements 7
system integrity 7
translator option 89, 177

FEPI ADD POOL command 91
FEPI commands

ADD POOL 91
ALLOCATE 181
ALLOCATE POOL 183
AP NOOP 185
application programming

commands 175
CONVERSE DATASTREAM 187
CONVERSE FORMATTED 193
DELETE POOL 93
DISCARD NODELIST 94
DISCARD POOL 94
DISCARD PROPERTYSET 95
DISCARD TARGETLIST 95
EXTRACT CONV 199
EXTRACT FIELD 201
EXTRACT STSN 205
FREE 207
INQUIRE CONNECTION 96
INQUIRE NODE 99
INQUIRE POOL 101
INQUIRE PROPERTYSET 105
INQUIRE TARGET 108
INSTALL NODELIST 109
INSTALL POOL 111
INSTALL PROPERTYSET 113
INSTALL TARGETLIST 117
ISSUE 209
RECEIVE DATASTREAM 213
RECEIVE FORMATTED 217
REQUEST PASSTICKET 221
SEND DATASTREAM 223
SEND FORMATTED 225

Index 273

FEPI commands (continued)
SET CONNECTION 118
SET NODE 120
SET POOL 121
SET TARGET 122
SP NOOP 123
START 227
system programming commands 89

FEPI configuration
coding of programs 38

addressing mode 39
exception conditions 39
system programming

commands 38
translator option 38

debugging programs 39
example configuration 42
global user exits 50
monitoring program

sample program 243
triggering of 46
writing of 46

optional functions 40
planning 8, 21
required functions 40
sample configuration 42
setup program

running of 41
sample 242

writing operator transactions 53
FEPI=YES|NO, system initialization

parameter 30
FEPIRESOURCE, resource identifier for

RACF 30
Fepo

CEMT INQUIRE FEPOOL 71
FEPOOL option

CEMT DISCARD 66
Fepr

CEMT INQUIRE FEPROPSET 73
FEPROPSET option

CEMT DISCARD 66
CEMT INQUIRE FEPROPSET 73

Feta
CEMT INQUIRE FETARGET 74

FETARGET option
CEMT DISCARD 66

FIELDATTR option
FEPI EXTRACT FIELD 201

FIELDLOC option
FEPI EXTRACT FIELD 202

FIELDNUM option
FEPI EXTRACT FIELD 202

FIELDS option
FEPI CONVERSE FORMATTED 195
FEPI RECEIVE FORMATTED 218

fields, getting data and attributes 144,
147

FJOURNALNAME option
FEPI INQUIRE POOL 103
FEPI INSTALL PROPERTYSET 115

FJOURNALNUM option
FEPI INQUIRE POOL 103
FEPI INQUIRE PROPERTYSET 107
FEPI INSTALL PROPERTYSET 115

FLENGTH field
start data 230

FLENGTH option
FEPI EXTRACT FIELD 202
FEPI RECEIVE DATASTREAM 214
FEPI RECEIVE FORMATTED 218
FEPI SEND DATASTREAM 223
FEPI SEND FORMATTED 225
FEPI START 227

FMH option
FEPI CONVERSE

DATASTREAM 188
FMHSTATUS option

FEPI CONVERSE
DATASTREAM 188

FEPI RECEIVE DATASTREAM 214
FORCE option

FEPI FREE 207
forced shutdown 58
FORMAT field

start data 230
TDQ record 125

FORMAT option
FEPI EXTRACT CONV 200
FEPI INQUIRE POOL 103
FEPI INQUIRE PROPERTYSET 107
FEPI INSTALL PROPERTYSET 115

formatted data 12
performance 171
programming 141
RECEIVE and EXTRACT field sample

program 249
SEND and START sample

program 247
FREE 207
FROM option

FEPI CONVERSE
DATASTREAM 189

FEPI CONVERSE FORMATTED 195
FEPI SEND DATASTREAM 223
FEPI SEND FORMATTED 225

FROMCURSOR option
FEPI CONVERSE FORMATTED 195

FROMFLENGTH option
FEPI CONVERSE

DATASTREAM 189
FEPI CONVERSE FORMATTED 195

front-end system 4
configuration 33
hardware and software

requirements 7
XRF takeover 59

function identifiers, journaling 85
function shipping, restrictions on 33
functions and services provided by

FEPI 11

G
generic resources, VTAM 26
global user exits 81

exit points
in Front End Programming

Interface 81
introduction 50
XSZARQ

exit-specific parameters 83
overview 83
UEPSZACN parameter 83

global user exits (continued)
XSZBRQ

overview 81
UEPSZACT parameter 83

GOINGOUT status 53
good morning message 25, 158

H
hardware requirements 7
HILIGHT option

FEPI EXTRACT FIELD 202
HOLD option

FEPI FREE 207

I
immediate shutdown 58
IMS (Information Management System)

considerations for application
design 168

conversational sample program 251
end of session 169
message protocols 168
recovery 170
response mode 169
STSN handling 25, 173

sample program 254
terminal definitions 37
unsolicited-data handler 158
using MFS 168

inbound data
3270 data stream considerations 154
data format 232
initial data 25, 158
journaling 85
terminology 11

INITIALDATA option
FEPI INQUIRE POOL 103
FEPI INQUIRE PROPERTYSET 107
FEPI INSTALL PROPERTYSET 115

INPUTCONTROL option
FEPI EXTRACT FIELD 202

INQUIRE command
CONNECTION 96
NODE 99
POOL 101

use in event handlers 42
PROPERTYSET 105
TARGET 108

INQUIRE, CEMT
FECONNECTION 66
FENODE 69
FEPOOL 71
FEPROPSET 73
FETARGET 73

Inservice
CEMT INQUIRE

FECONNECTION 67
CEMT INQUIRE FENODE 70
CEMT INQUIRE FEPOOL 72
CEMT INQUIRE FETARGET 75

INSERVICE option
CEMT SET FECONNECTION 75
CEMT SET FENODE 76
CEMT SET FEPOOL 77

274 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

INSERVICE option (continued)
CEMT SET FETARGET 78

INSERVICE status 53
INSTALL command

NODELIST 109
POOL 111
PROPERTYSET 113
TARGETLIST 117

Installed
CEMT INQUIRE

FECONNECTION 67
CEMT INQUIRE FENODE 70
CEMT INQUIRE FEPOOL 72
CEMT INQUIRE FETARGET 74

INSTALLED status 55
INSTALLFAIL event 47
installing FEPI

defining security profiles 30
loading modules in the LPA 29
overview 29
planning considerations 8
RDO definitions 30
sample programs 239
starting CICS 31
updating CICS definitions

PLTPI list 34
supplied RDO group,

DFHFEPI 29
system initialization parameter,

FEPI=YES|NO 30
transient data queues 29

INSTLSTATUS option
FEPI INQUIRE CONNECTION 97
FEPI INQUIRE NODE 100
FEPI INQUIRE POOL 103
FEPI INQUIRE TARGET 109

INSTLSTATUS, resource status 55
integrity of FEPI system 7
interactive problem control system

(IPCS) 127
INTO option

FEPI CONVERSE
DATASTREAM 189

FEPI CONVERSE FORMATTED 195
FEPI EXTRACT FIELD 202
FEPI RECEIVE DATASTREAM 214
FEPI RECEIVE FORMATTED 218

INVITE option
command sequence 150
FEPI SEND DATASTREAM 223

IPCS (interactive problem control
system) 127

ISC (intersystem communication) 4
hardware requirements 7

ISSUE 209
sending SNA commands 175

ISTINCLM, LOGON mode table 35

J
journaling 17, 85

use of property set for 25, 40

K
key stroke and screen-image

applications 12
CONVERSE 148
data formats 231
extracting field data 148
general sequence of commands 141
multiple attentions 145
performance considerations 171
receiving field-by-field 144
receiving screen-image data 147
sample programs

key stroke converse 246
screen image RECEIVE and

EXTRACT 249
screen image SEND and

START 247
sending key stroke data 142
sending screen-image data 146
writing 141

KEYSTROKES option
FEPI CONVERSE FORMATTED 195
FEPI SEND FORMATTED 226

L
Lacqcode

CEMT INQUIRE
FECONNECTION 69

CEMT INQUIRE FENODE 70
LACQCODE option

resource status 55
LASTACQCODE option

FEPI INQUIRE CONNECTION 97
FEPI INQUIRE NODE 100

LINES option
FEPI CONVERSE FORMATTED 195
FEPI RECEIVE FORMATTED 218

Link Pack Area (LPA), loading FEPI
modules into 29

list of resources
benefits of using 56
errors 40, 91

list processing 91
LOGON mode table, VTAM 35
LPA (Link Pack Area), loading FEPI

modules into 29

M
magnetic stripe reader, sending key

stroke data to 143
managing sessions, use of property set

for 25, 40
manipulative keys 143, 231
MAXFLENGTH option

FEPI CONVERSE
DATASTREAM 189

FEPI CONVERSE FORMATTED 195
FEPI EXTRACT FIELD 202
FEPI INQUIRE POOL 103
FEPI INQUIRE PROPERTYSET 107
FEPI INSTALL PROPERTYSET 115
FEPI RECEIVE DATASTREAM 214
FEPI RECEIVE FORMATTED 218

MDT (modified data tag) setting 146,
231

MDT option
FEPI EXTRACT FIELD 202

Message Format Services (MFS) 168
message protocols (IMS) 168
messages

format of FEPI messages 131
handling unexpected events 22
IMS protocols 168
produced during XRF takeover 59
resynchronizing with STSN 173

MFS (Message Format Services) 168
mode table, VTAM 35
modified data tag (MDT) setting 146,

231
module identifiers, journaling 85
monitoring program

handling CLSDST(PASS) 49
sample program 243
triggering of 46
writing of 46

monitoring, CICS
performance class records

FEPI-related fields 56
MRO (multiregion operation)

AOR considerations for FEPI 33
general considerations 4

MSGJRNL option
FEPI INQUIRE POOL 104
FEPI INQUIRE PROPERTYSET 107
FEPI INSTALL PROPERTYSET 115

multiple attentions 145
MVS/ESA

Integrity Programming
Announcement 7

N
naming conventions

nodes 22, 34
pools 24
property sets 26
sample programs 12
targets 22

network availability 35
node

acquiring and releasing 53
definition of 14
determining contents of a pool 53
INQUIRE NODE command 99
name restrictions 34
number of nodes 23
sample node lists 44
sample program 242
SET NODE command 120
storage requirements 26

Node
CEMT INQUIRE

FECONNECTION 67
CEMT INQUIRE FENODE 69, 70

NODE field
start data 230
TDQ record 125

NODE option
CEMT SET FECONNECTION 76
FEPI EXTRACT CONV 200

Index 275

NODE option (continued)
FEPI INQUIRE CONNECTION 97
FEPI INQUIRE NODE 100
FEPI SET CONNECTION 119
FEPI SET NODE 120

NODELIST option
FEPI ADD 92
FEPI DELETE 93
FEPI DISCARD NODELIST 94
FEPI INSTALL NODELIST 110
FEPI INSTALL POOL 112
FEPI SET CONNECTION 119
FEPI SET NODE 120

nodename option
CEMT SET FENODE 76

NODENUM option
FEPI ADD 92
FEPI DELETE 93
FEPI DISCARD NODELIST 94
FEPI INSTALL NODELIST 110
FEPI INSTALL POOL 112
FEPI SET CONNECTION 119
FEPI SET NODE 120

normal shutdown 57
Notinstalled

CEMT INQUIRE
FECONNECTION 67

CEMT INQUIRE FENODE 70
CEMT INQUIRE FEPOOL 72
CEMT INQUIRE FETARGET 75

NOTINSTALLED status 55

O
one-out one-in conversational

applications
application design 159
sample program 251

operator control
commands 65
operator/system action error 167
transactions, user-written 53
VTAM commands 78

operator/system action error 167
order of FEPI commands 141, 150
organizing pools 24
organizing property sets 25
outbound data

3270 data stream considerations 154
data formats 231
journaling 85
terminology 11

OUTLINE option
FEPI EXTRACT FIELD 202

Outservice
CEMT INQUIRE

FECONNECTION 67
CEMT INQUIRE FENODE 70
CEMT INQUIRE FEPOOL 72
CEMT INQUIRE FETARGET 75

OUTSERVICE option
CEMT SET FECONNECTION 76
CEMT SET FENODE 77
CEMT SET FEPOOL 77
CEMT SET FETARGET 78

OUTSERVICE status 53

P
pacing of FEPI sessions 37
PASS option

FEPI FREE 207
pass-through

contention state handling 152
problem with received data 152
sample program 250

PASSCONVID option
FEPI ALLOCATE PASSCONVID 181
getting ownership of

conversations 163
passing conversations 163
PASSTICKET option

FEPI REQUEST PASSTICKET 221
PassTickets, for signon security 16, 164
PASSWORDLIST option

FEPI INSTALL NODELIST 110
PERFORM STATISTICS RECORD

command 57
performance

application programs 55
formatted data 171
key stroke and screen-image

applications 171
of a CICSplex

using VTAM generic resources 26
optimization through application

design 171
tuning using CICS monitoring

data 56
tuning using CICS statistics data 56

performance class monitoring records 56
persistent sessions, VTAM

use of with FEPI 62
Pl/I language

sample programs 237
PL/I language

copybook 39, 178
planning

back-end applications 21
configuration 8, 21
general considerations 7, 21
grouping of connections, for

functional purposes 23
handling special events 22
installation 8
journaling requirements 22
names of nodes and targets 22
number of nodes 23
operator control requirements 22
organizing pools 24
organizing property sets 25
pools

using for control purposes 23
using for functional purposes 23

signon and signoff procedures 22
storage 26

PLT (program list table) 34, 41
post initialization (PLTPI) 34

PLTPI (program list table post
initialization)

configuring CICS for FEPI 34
running s 41

Pool
CEMT INQUIRE

FECONNECTION 67

Pool (continued)
CEMT INQUIRE FEPOOL 71

POOL field
start data 230
TDQ record 125

POOL option
FEPI ADD 92
FEPI ALLOCATE POOL 183
FEPI CONVERSE

DATASTREAM 189
FEPI CONVERSE FORMATTED 195
FEPI DISCARD POOL 95
FEPI EXTRACT CONV 200
FEPI INQUIRE CONNECTION 98
FEPI INQUIRE POOL 104
FEPI INSTALL POOL 112
FEPI SET POOL 121

POOLLIST option
FEPI SET POOL 121

POOLNUM option
FEPI SET POOL 121

pools
connections in 53
definition of 14
determining contents of a pool 53
INQUIRE POOL command 101
INSTALL POOL command 111
name restrictions 24
organizing pools 24
sample configuration 42
sample program 242
SET POOL command 121
storage requirements 26
transient data queues 30, 46
using for control reasons 23
using for functional reasons 23

POSITION option
FEPI EXTRACT FIELD 202

prerequisites, hardware and software 7
problem determination

abends 132
debugging 127
functions provided by FEPI 17
handling unexpected events 47
messages 131
reporting problems to IBM 133
shutdown not proceeding 58
trace 130
using CICS dumps 129
using FEPI dumps 127

product tape 8
program, for FEPI resources

sample program 242
property set

data handling 25, 40
definition of 14
device attributes 25, 40
DISCARD PROPERTYSET

command 95
INQUIRE PROPERTYSET

command 105
INSTALL PROPERTYSET

command 113
journaling 25, 40
name restrictions 26
organizing 25
sample configuration 45

276 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

property set (continued)
sample program 242
session management 25, 40
storage requirements 26
unexpected events 25, 40

PROPERTYSET option
FEPI DISCARD PROPERTYSET 95
FEPI INQUIRE POOL 104
FEPI INQUIRE PROPERTYSET 107
FEPI INSTALL POOL 112
FEPI INSTALL PROPERTYSET 116

PROTECT option
FEPI EXTRACT FIELD 202

PS option
FEPI EXTRACT FIELD 202

PS/55
FEPI device type 103
TYPETERM 37

pseudoconversational applications
application design 160
sample program 252

Q
query, device 158

R
RACF (Resource Access Control Facility)

general security considerations 30
RDO (resource definition online)

definitions for sample programs 238
updating CICS definitions for

FEPI 29
XRF considerations 59

RECEIVE command
completion 144, 151
DATASTREAM 213
error handling 145, 153
FORMATTED 217

receiving data
data stream applications 150
field-by-field 144
screen-image 147

reference section
application programming 175
operator commands 65
system programming 89

RELEASE option
FEPI FREE 207

Released
CEMT INQUIRE

FECONNECTION 68
CEMT INQUIRE FENODE 70

RELEASED option
CEMT SET FECONNECTION 76
CEMT SET FENODE 77

RELEASED resource status 53
RELEASING, resource status 53
REMFLENGTH option

FEPI CONVERSE
DATASTREAM 189

FEPI RECEIVE DATASTREAM 214
reporting FEPI problems to IBM 133
REQUEST PASSTICKET command 221

request unit (RU)
receiving 151

requirements, hardware and software 7
resources

benefits of using list of resources 56
configuring 41
definitions 14
diagram showing relationship 14
sample configuration 42
status 53

RESP2 values
application programming

commands 178
system programming commands 90
table of 260

response mode 169
responses

DRx responses 174
RESPSTATUS option

FEPI CONVERSE
DATASTREAM 189

FEPI CONVERSE FORMATTED 195
FEPI RECEIVE DATASTREAM 214
FEPI RECEIVE FORMATTED 218

restriction on use of DFH
in node names 34
in pool names 24
in property set names 26

return codes
application programming 178
system programming 90
VTAM 55

RU option
FEPI CONVERSE

DATASTREAM 189
FEPI RECEIVE DATASTREAM 214

S
sample FEPI configuration 42
sample programs 237, 242

3270 data stream pass-through 250
begin session 245
CICS back-end 240
end-session handler 250
FEPI configuration 42
IMS back-end 241
installing of 239
introduction 12
key stroke CONVERSE 246
monitor and unsolicited data

handler 243
naming conventions 12
one-out one-in 251
program descriptions and code 237
pseudoconversational 252
screen image RECEIVE and EXTRACT

FIELD 249
screen image SEND and START 247
SLU P one-out one-in 251
SLU P pseudoconversational 252
STSN handler 254
using the samples 240

sample resource definitions 45
screen-image interface 13

data formats 231

screen-image interface (continued)
RECEIVE and EXTRACT field sample

program 249
SEND and START sample

program 247
secondary logical unit (SLU)

terminals supported by FEPI 16
security

command-level 17, 30
handling violations with access

program 157
restricting access to system

programming commands 30
signoff 22
signon 16, 22, 157, 164
using PassTickets 16, 164
using RACF 30

SEND command
DATASTREAM 223
error handling 166
errors 144, 145, 153
FORMATTED 225

sending data
data stream applications 153
key stroke data 142
screen image 146

sense data 167
SENSEDATA option

FEPI EXTRACT CONV 200
FEPI ISSUE 210

SEQNUMIN option
FEPI ALLOCATE POOL 183
FEPI CONVERSE

DATASTREAM 189
FEPI EXTRACT STSN 205
FEPI RECEIVE DATASTREAM 214
FEPI SEND DATASTREAM 223

SEQNUMOUT option
FEPI ALLOCATE POOL 183
FEPI CONVERSE

DATASTREAM 189
FEPI EXTRACT STSN 205
FEPI RECEIVE DATASTREAM 214
FEPI SEND DATASTREAM 223

sequence number handling 173
sequence of FEPI commands 141, 150
SERVSTATUS option

FEPI ADD 92
FEPI INQUIRE CONNECTION 98
FEPI INQUIRE NODE 100
FEPI INQUIRE POOL 104
FEPI INQUIRE TARGET 109
FEPI INSTALL NODELIST 110
FEPI INSTALL POOL 112
FEPI INSTALL TARGETLIST 117
FEPI SET CONNECTION 119
FEPI SET NODE 120
FEPI SET POOL 121
FEPI SET TARGET 122

SERVSTATUS, resource status 53
session

loss of 166
management using property sets 25,

40
pacing values 37
parameters, selection of 35

SESSION event 47

Index 277

SESSIONFAIL event 48
SESSIONLOST event 47
SET command

CONNECTION 118
NODE 120
POOL 121
TARGET 122

SET, CEMT
FECONNECTION 75
FENODE 76
FEPOOL 77
FETARGET 78

SETFAIL event 47
shutdown

error handling 167
of CICS 57
of FEPI 58

signon security 16, 22, 157, 164
SIT (system initialization table)

SIT parameter, FEPI=YES|NO 30
SIZE option

FEPI EXTRACT FIELD 202
SLU (secondary logical unit)

terminals supported by FEPI 16
SLU P

device attributes 25
one-out one-in sample program 251
pseudoconversational sample

program 252
SLU P connections

sample configuration 45
SLU P mode

data stream applications 155
SLU2

device attributes 25
IMS recovery 170

SLU2 24 x 80 connections to CICS
sample configuration 45

SLU2 24 x 80 connections to IMS
sample configuration 45

SLU2 mode
data stream applications 154

SMP/E (System Modification
Program/Extended)

installing FEPI 8
SNA (Systems Network Architecture)

sending commands 175
software requirements 7
special keys 143, 231
specialized functions

DRx responses 174
SNA commands 175
STSN 173

START command 227
failure during shutdown 167

start data 160, 229
started tasks 160
State

CEMT INQUIRE
FECONNECTION 68

STATE option
FEPI INQUIRE CONNECTION 98

STATE, resource status 55
statistics, CICS

FEPI-related
COLLECT STATISTICS

command 56

statistics, CICS (continued)
FEPI-related (continued)

PERFORM STATISTICS RECORD
command 57

storage planning 26
stripe reader, sending key stroke

data 143
STSN (set and test sequence number) 15

general considerations 173
sample program 254

STSN handler
defining to FEPI 40

STSN option
FEPI INQUIRE POOL 104
FEPI INQUIRE PROPERTYSET 107
FEPI INSTALL PROPERTYSET 116

syncpoints, use of in FEPI 158
system programming commands 38, 89
SZ, dump control keyword 127

T
target

definition of 14
determining contents of a pool 53
INQUIRE TARGET command 108
naming conventions 22
sample program 242
sample target lists 44
SET TARGET command 122
storage requirements 26

Target
CEMT INQUIRE

FECONNECTION 67
TARGET field

start data 230
TDQ record 125

TARGET option
CEMT SET FECONNECTION 76
FEPI ALLOCATE POOL 183
FEPI CONVERSE

DATASTREAM 190
FEPI CONVERSE FORMATTED 196
FEPI EXTRACT CONV 200
FEPI INQUIRE CONNECTION 99
FEPI INQUIRE TARGET 109
FEPI SET CONNECTION 119
FEPI SET TARGET 123

TARGETLIST option
FEPI ADD 92
FEPI DELETE 93
FEPI DISCARD TARGETLIST 96
FEPI INSTALL POOL 112
FEPI INSTALL TARGETLIST 117
FEPI SET CONNECTION 119
FEPI SET TARGET 123

TARGETNUM option
FEPI ADD 92
FEPI DELETE 93
FEPI DISCARD TARGETLIST 96
FEPI INSTALL POOL 112
FEPI INSTALL TARGETLIST 118
FEPI SET CONNECTION 119
FEPI SET TARGET 123

tasks, started 160
temporary conversation 163

TERMID option
FEPI START 227

terminal
back-end definitions 37
simulated terminal usage 160
storage requirements 26
VTAM logon mode table entries 35
XRF environment 59

time-outs, error handling 166
TIMEOUT option

FEPI ALLOCATE POOL 183
FEPI CONVERSE

DATASTREAM 190
FEPI CONVERSE FORMATTED 196
FEPI RECEIVE DATASTREAM 215
FEPI RECEIVE FORMATTED 218
FEPI START 227

TOCURSOR option
FEPI CONVERSE FORMATTED 196

TOFLENGTH option
FEPI CONVERSE

DATASTREAM 190
FEPI CONVERSE FORMATTED 196

trace points 130
trademarks 266
transactions

CETR 131
CZBC 240
CZBI 241
CZPA 252
CZPS 251
CZQS 254
CZTD 250
CZTK 246
CZTR 249
CZTS 247
CZUC 245
CZUU 250
CZUX 243
CZXS 242

TRANSID option
FEPI START 227

transient data queues
command errors 39
CSZL, for FEPI messages 29
CSZX, for unexpected events 29
defining to CICS 29
handling 46
planning 23
pool-specific 30, 46
records 123
sample program 243
unexpected event reporting 46

translator options
application programming

commands 177
FEPI option 38, 177
system programming commands 89

TRANSPARENCY option
FEPI EXTRACT FIELD 203

TYPETERMs for CICS back-end
systems 37

U
UEPSZACN, exit-specific parameter for

XSZARQ 83

278 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

UEPSZACT, exit-specific parameter for
XSZBRQ 83

unexpected events 29
in CSZX TD queue 47
in pool-specific TD queue 22, 47
using event handlers 42
using property set for 25, 40

unknown conversation ID, error
handling 167

UNSOLDATA option
FEPI INQUIRE POOL 104
FEPI INQUIRE PROPERTYSET 107
FEPI INSTALL PROPERTYSET 116

UNSOLDATACK option
FEPI INQUIRE POOL 104
FEPI INQUIRE PROPERTYSET 107
FEPI INSTALL PROPERTYSET 116

unsolicited data-handler
sample program 243

unsolicited-data handler 15
application design 158
defining to FEPI 25, 40

UNTILCDEB option
FEPI CONVERSE

DATASTREAM 190
FEPI RECEIVE DATASTREAM 215

USERDATA field
start data 230

USERDATA option
FEPI INQUIRE CONNECTION 99
FEPI INQUIRE NODE 101
FEPI INQUIRE POOL 104
FEPI INQUIRE TARGET 109
FEPI SET CONNECTION 119
FEPI SET NODE 121
FEPI SET POOL 122
FEPI SET TARGET 123
FEPI START 227

V
VALIDATION option

FEPI EXTRACT FIELD 203
VALUE option

FEPI ISSUE 210
VS COBOL II 239
VTAM (Virtual Telecommunications

Access method)
persistent sessions 62

VTAM (Virtual Telecommunications
Access Method)

APPL statement 34
BIND during XRF takeover 59
CLSDST(PASS) 48
commands 78
configuration of 34
DISPLAY command 78
DISPLAY SESSIONS command 79
FEPI commands 12, 13
generic resources 26
ISTINCLM, supplied mode table 35
LOGON mode table 35
minor nodes, sample

configuration 45
program-to-program support 4
releasing a connection 54
session pacing values 37

VTAM (Virtual Telecommunications
Access Method) (continued)

session parameters 35
VARY command 78
VARY TERM command 79
XRF considerations 59

VTAM persistent sessions
use of with FEPI 62

W
Waitconvnum

CEMT INQUIRE
FECONNECTION 69

CEMT INQUIRE FEPOOL 72
WAITCONVNUM option

event handlers 42
FEPI INQUIRE CONNECTION 99
FEPI INQUIRE POOL 104

WAITCONVNUM resource status 55
WCC (write control character)

handling 154
workload balancing

in a CICSplex
using VTAM generic resources 26

writing application programs 139

X
XLT (transaction list table)

application programming 167
operations 57

XRF (extended recovery facility) 58
back-end system configuration 37
FEPI resource definition 59
takeover of back-end CICS

effect on applications 61
effect on FEPI connections 61

takeover of FEPI CICS
effect on alternate CICS 60
effect on back-end terminals 60
effect on back-end transactions 59

varying setup resources 41
VTAM considerations 59

XSZARQ, global user exit 81
overview 83
UEPSZACN parameter 83

XSZBRQ, global user exit 81
overview 81
UEPSZACT parameter 83

Index 279

280 CICS TS for z/OS 4.1: Front End Programming Interface User's Guide

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 4 Release 1
Front End Programming Interface User's Guide

Publication No. SC34-7027-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7027-02

SC34-7027-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-7027-02

	Contents
	Preface
	What this manual is about
	Who this manual is for
	What you need to know to understand this manual
	Notes on terminology
	CICS syntax notation

	Changes in CICS Transaction Server for z/OS, Version 4 Release 1
	Part 1. FEPI concepts and facilities
	Chapter 1. Introducing FEPI
	Problems FEPI can solve
	How FEPI fits into your system

	Chapter 2. Planning to use the Front End Programming Interface
	Hardware and software requirements
	System integrity
	Storage
	Installation

	Chapter 3. Configuring your system for FEPI
	Chapter 4. FEPI functions and services
	Introducing FEPI functions
	Samples

	FEPI programming commands
	High-level FEPI commands
	The key stroke interface
	The screen-image interface

	Data-stream-level commands
	Specialized-level commands
	List of commands

	Setup and resources
	FEPI resources

	CICS FEPI application programs
	Terminals supported
	FEPI Security
	Signon security
	Command security

	Problem determination, customization, and performance

	Part 2. FEPI installation and administration
	Chapter 5. Planning for FEPI
	Analysis and planning
	Back-end applications and systems
	Names of nodes and targets
	Operator control requirements
	Journaling requirements
	Signon and signoff procedures
	Special event handling
	Using pools for control reasons
	Using pools for functional reasons
	Number of nodes
	Setup program organization

	Organizing your pools and property sets
	Organizing pools
	Organizing property sets

	Workload balancing in a sysplex
	Planning FEPI storage

	Chapter 6. Getting started with FEPI
	The installation process
	A note about loading FEPI modules into the LPA
	Updating CICS definitions
	Transient data queues
	System initialization parameter, FEPI=YES|NO
	Command-level security

	Installing FEPI resource definitions
	Starting CICS

	Chapter 7. Configuring FEPI
	Configuring CICS
	Configuring VTAM
	Availability of network resources
	Selection of FEPI session parameters
	Pacing of FEPI sessions

	Configuring the back-end systems
	The configuration programs you should write
	Writing configuration programs
	Exception conditions

	Writing setup programs
	Running setup programs
	Varying the resources installed by the setup program
	An example FEPI configuration
	Sample lists
	Sample definitions

	Writing monitoring programs
	Handling unexpected events
	Events in CSZX TD queue records
	Events in pool-specific TD queue records

	Handling CLSDST(PASS)
	Unsolicited bind not expected
	Third-party PLU name known and unsolicited bind expected
	Third-party PLU name not known and unsolicited bind expected

	Writing operator transactions
	Other functions
	Global user exit programs

	Chapter 8. FEPI operation
	Controlling FEPI resources
	SERVSTATUS
	ACQSTATUS
	LASTACQCODE
	INSTLSTATUS
	WAITCONVNUM
	STATE

	FEPI performance
	Using CICS monitoring
	Using statistics data

	Shutdown
	Normal shutdown
	Immediate shutdown
	Forced shutdown

	Using FEPI with XRF
	XRF and VTAM
	FEPI resource definition and XRF
	XRF takeover of front-end system
	Effect on back-end transactions
	Effect on back-end terminals
	Effect on the alternate FEPI CICS system

	XRF takeover of back-end system
	Effect on FEPI application programs
	Effect on FEPI connections

	Using FEPI with VTAM persistent sessions
	Restart of front-end system using persistent sessions
	Restart of back-end system using persistent sessions
	Effect on FEPI application programs

	Chapter 9. Operator control of FEPI
	CEMT - master terminal transaction
	CEMT DISCARD
	CEMT INQUIRE FECONNECTION
	CEMT INQUIRE FENODE
	CEMT INQUIRE FEPOOL
	CEMT INQUIRE FEPROPSET
	CEMT INQUIRE FETARGET
	CEMT SET FECONNECTION
	CEMT SET FENODE
	CEMT SET FEPOOL
	CEMT SET FETARGET
	VTAM commands

	Chapter 10. Customizing FEPI
	Front End Programming Interface exits XSZARQ and XSZBRQ
	XSZBRQ
	XSZARQ
	The UEPSZACT and UEPSZACN exit-specific parameters
	Using XMEOUT to control message output

	FEPI journaling
	FEPI journal operation
	Printing FEPI journal records

	Chapter 11. FEPI system programming reference
	The FEPI SPI commands
	Command format
	Errors and exception conditions
	List processing

	FEPI ADD POOL
	FEPI DELETE POOL
	FEPI DISCARD NODELIST
	FEPI DISCARD POOL
	FEPI DISCARD PROPERTYSET
	FEPI DISCARD TARGETLIST
	FEPI INQUIRE CONNECTION
	FEPI INQUIRE NODE
	FEPI INQUIRE POOL
	FEPI INQUIRE PROPERTYSET
	FEPI INQUIRE TARGET
	FEPI INSTALL NODELIST
	FEPI INSTALL POOL
	FEPI INSTALL PROPERTYSET
	FEPI INSTALL TARGETLIST
	FEPI SET CONNECTION
	FEPI SET NODE
	FEPI SET POOL
	FEPI SET TARGET
	FEPI SP NOOP
	Transient data queue records
	Fields

	Chapter 12. FEPI problem determination
	Debugging FEPI applications
	FEPI dump
	Using CICS dump facilities to investigate FEPI problems
	Dispatcher
	Interval control
	Kernel
	Storage manager

	FEPI trace
	Taking and interpreting trace entries

	FEPI messages
	FEPI abends
	Restart
	Message DFHSZ4099E
	Message DFHSZ4155I

	Reporting a FEPI problem to IBM

	Part 3. FEPI application programming
	Chapter 13. Basics of FEPI programming
	Communication and conversations
	Structure and design
	Programming
	Exception conditions

	Chapter 14. FEPI key stroke and screen-image applications
	General sequence of commands
	Sending key stroke data
	Error handling

	Receiving field-by-field
	Command completion
	Error handling

	Multiple attentions
	Sending screen-image data
	Receiving screen-image data
	Command completion and errors

	Extracting field data
	CONVERSE

	Chapter 15. FEPI data stream applications
	When to use the data stream interface
	General sequence of commands
	Receiving
	Command completion

	Error handling
	Sending
	CONVERSE
	SLU2 mode considerations
	SLU P mode considerations

	Chapter 16. FEPI application design
	Programs
	Access program
	Begin-session handler
	Unsolicited-data handler
	End-session handler

	Application organization
	Application style
	Started tasks
	Conversations
	Conversational applications
	Started tasks
	Passing conversations
	Temporary conversations

	Signon security
	How to use PassTickets
	Benefits
	Requirements

	Error handling
	Time-outs
	Lost session
	Previous SEND failed
	Communication errors
	Bypass by user exit
	Unknown conversation ID
	Operator/system action
	Shutdown

	System considerations
	IMS considerations
	Message protocols
	Response mode
	Beginning of session
	End of session
	IMS recovery

	Performance

	Chapter 17. Specialized FEPI functions
	Set and test sequence number (STSN)
	DRx responses
	SNA commands

	Part 4. FEPI application programming reference
	Chapter 18. The FEPI API commands
	Command format
	Errors and exception conditions

	Chapter 19. FEPI ALLOCATE PASSCONVID
	Chapter 20. FEPI ALLOCATE POOL
	Chapter 21. FEPI AP NOOP
	Chapter 22. FEPI CONVERSE DATASTREAM
	Chapter 23. FEPI CONVERSE FORMATTED
	Chapter 24. FEPI EXTRACT CONV
	Chapter 25. FEPI EXTRACT FIELD
	Chapter 26. FEPI EXTRACT STSN
	Chapter 27. FEPI FREE
	Chapter 28. FEPI ISSUE
	Chapter 29. FEPI RECEIVE DATASTREAM
	Chapter 30. FEPI RECEIVE FORMATTED
	Chapter 31. FEPI REQUEST PASSTICKET
	Chapter 32. FEPI SEND DATASTREAM
	Chapter 33. FEPI SEND FORMATTED
	Chapter 34. FEPI START
	Chapter 35. Start data
	Fields

	Chapter 36. Data formats
	Chapter 37. Ending status
	Part 5. Appendixes
	Appendix A. FEPI sample programs
	List of samples
	VS COBOL II Sample Restrictions
	Installing the samples
	Using the samples
	The back-end CICS program
	The back-end IMS program

	Description of the samples
	Setup program
	Monitor and unsolicited data-handler
	Begin session
	Key stroke CONVERSE
	Screen image SEND and START
	Screen image RECEIVE and EXTRACT FIELD
	3270 data stream passthrough
	End-session handler
	SLU P one-out one-in
	SLU P pseudoconversational
	STSN handler

	Appendix B. CVDA and RESP2 values for FEPI commands
	FEPI CVDAs and numeric values in alphabetic sequence
	FEPI CVDAs and numeric values in numeric sequence
	FEPI RESP2 values

	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications

	Accessibility
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Readers’ Comments — We'd Like to Hear from You

