
CICS Transaction Server for z/OS
Version 4 Release 2

Java Applications in CICS

SC34-7174-02

���

CICS Transaction Server for z/OS
Version 4 Release 2

Java Applications in CICS

SC34-7174-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 391.

This edition applies to Version 4 Release 2 of CICS Transaction Server for z/OS (product number 5655-S97) and to
all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v
What this information is about v
Who should read this information v

Changes in CICS Transaction Server
for z/OS, Version 4 Release 2 vii

Chapter 1. Java support in CICS 1
The OSGi Service Platform 2
JVM server runtime environment 3
Pooled JVMs 5
JVM profiles 7
Structure of a JVM 8

Classes and class paths in JVMs 8
Storage heap in JVMs 9
Where JVMs are constructed. 10
Execution keys for JVMs 10
JVMs and the z/OS shared library region . . . 11

Shared class cache 11

Chapter 2. Java planning 13
Accessing CICS applications from CICS Transaction
Gateway 13
Java web services 17
Java applications that comply with OSGi 21

Chapter 3. Developing Java
applications for CICS 25
What you need to know about CICS 25

CICS transactions 25
CICS tasks. 26
CICS application programs 26
CICS services 26
Java runtime environment in CICS 28

Installing the CICS Explorer SDK 29
Getting started with the JCICS examples. 30
Deploying the JCICS examples 32
Running the JCICS examples 34

Running the Hello World examples 35
Running the program control examples 36
Running the TDQ example 37
Running the TSQ example 38
Running the web example 39

Developing applications using the CICS Explorer
SDK 41
Migrating applications using the CICS Explorer SDK 42
Best practices for developing Java applications in
CICS 44
Interacting with structured data from Java 46
Java programming using JCICS. 47

The Java class library for CICS (JCICS) 47
JCICS services reference 50
JCICS exception mapping. 68
Using JCICS 70

Java restrictions 71
Accessing data from Java applications 72
Connectivity from Java applications in CICS . . . 72

Chapter 4. Setting up Java support . . 75
Setting the location for the JVM profiles 75
Setting the memory limits for Java. 76
Giving CICS regions access to z/OS UNIX
directories and files. 77

Chapter 5. Enabling applications to use
a JVM 81
Setting up a JVM server 81
Setting up a JVM server for DB2 83
Installing OSGi bundles in a JVM server. 84
Calling a Java application in a JVM server 86
Enabling a Java security manager 87
Setting up pooled JVMs 88

Customizing DFHJVMCD 89
Customizing DFHJVMPR. 90
Creating your own JVM profiles 91
Checking your pooled JVM setup with the
examples 92
Enabling an application to use a pooled JVM . . 94
Enabling CORBA or enterprise bean applications
to use a JVM 95

JVM profiles: options and samples. 96
Rules for coding JVM profiles 99
Validation of JVM profile options. 100
Options for JVMs in a CICS environment . . . 101
JVM system properties 109
DFHJVMAX, JVM profile for the JVM server 113
DFHOSGI, JVM profile for the JVM server. . . 115
DFHJVMPR, JVM profile for a pooled JVM . . 118
DFHJVMCD, JVM profile reserved for
CICS-supplied system programs 120

Chapter 6. Managing Java
applications 123
Updating OSGi bundles in a JVM server 123

Updating OSGi bundles 124
Updating bundles that contain common libraries 125
Updating OSGi middleware bundles 126

Removing OSGi bundles from a JVM server . . . 127
Moving applications to a JVM server 127
Managing the thread limit of JVM servers 129
OSGi bundle recovery on a CICS restart 130
Updating Java applications in pooled JVMs . . . 130
Writing Java classes to redirect JVM stdout and
stderr output 131

The output redirection interface 132
Possible destinations for output 133
Handling output redirection errors and internal
errors 133

Managing pooled JVMs 134

© Copyright IBM Corp. 1999, 2012 iii

||
||
||
||
||
||
||
||
||
||
||
||

||
|
||
||
||

||
||

||
||
||
||
||
||
||
|
||
||
|
||
||

||

||

|
||
||
||
||
||
||
||
||
||
||
|
||
||
|
||
||
||
||
||
||
||
||
||
|
||

||
||
||
||
||
||
||
||
||

||

How CICS allocates pooled JVMs to
applications 134
Manually starting and terminating JVMs and
disabling the JVM pool 140
Starting the shared class cache. 142
Adjusting the size of the shared class cache . . 143
Terminating the shared class cache 144
Monitoring the shared class cache 145
Monitoring the JVM pool 145
Monitoring JVMs in the JVM pool 145
Monitoring pooled JVM profile usage 146
Monitoring programs in pooled JVMs 147
Using DFHJVMAT to modify options in a JVM
profile 147

Chapter 7. Improving Java
performance 151
Determining performance goals for your Java
workload 151
Analyzing Java applications using IBM Health
Center 152
Garbage collection and heap expansion. 153
Improving JVM server performance 156

Examining processor usage by JVM servers . . 157
Calculating storage requirements for JVM
servers 158
Tuning JVM server heap and garbage collection 159
Tuning JVM server startup in a sysplex. . . . 160

Managing your JVM pool for performance . . . 161
Examining processor usage by pooled JVMs . . 162
Calculating storage requirements for pooled
JVMs 165
Tuning pooled JVM heaps and garbage
collection 166
Dealing with MVS storage constraints 168
Dealing with excessive mismatches and steals 169

Language Environment enclave storage for JVMs 170
Identifying Language Environment storage
needs for JVM servers 171
Using DFHAXRO to modify the enclave of a
JVM server 173
Identifying Language Environment storage
needs using JVM statistics 174
Identifying Language Environment storage
needs using DFHJVMRO 175
Using DFHJVMRO to modify the enclave for
pooled JVMs 176

Tuning the z/OS shared library region 177

Chapter 8. Troubleshooting Java
applications 179
Diagnostics for Java 180
Controlling the location for JVM stdout, stderr and
dump output 182

Redirecting JVM stdout and stderr output . . . 183
The CICS-supplied sample classes
com.ibm.cics.samples.SJMergedStream and
com.ibm.cics.samples.SJTaskStream 184

Control of Java dump options 185
Managing the OSGi log files of JVM servers . . . 186
CICS component tracing for JVMs 186
Activating and managing tracing for JVM servers 187
Defining and activating tracing for pooled JVMs 188
Debugging a Java application 190

The CICS JVM plugin mechanism 191

Chapter 9. Stable Java technologies 195
Stateless CORBA objects 195

Developing stateless CORBA objects. 195
Creating the Interface Definition Language
(IDL) 198
Developing an IIOP server program 199
Developing the IIOP client program 202
Developing an RMI-IIOP stateless CORBA
application 204
Stand-alone CICS CORBA client applications 206
CORBA interoperability 206
Using the IIOP samples 208

Using enterprise beans 214
What are enterprise beans? 214
Setting up an EJB server. 238
Using the EJB IVP 255
Running the sample EJB applications 259
Writing enterprise beans. 283
Deploying enterprise beans. 295
Tuning for enterprise beans. 298
Updating enterprise beans in a production
region 301
The CCI Connector for CICS TS 311
Dealing with CICS enterprise bean problems 327
Managing security for enterprise beans 334
CICSPlex SM with enterprise beans 345

CICS and IIOP 351
IIOP support in CICS. 351
The IIOP request flow 354
Configuring CICS for IIOP 362
Processing IIOP requests 381

Notices 391
Trademarks 392

Bibliography. 393
CICS books for CICS Transaction Server for z/OS 393
CICSPlex SM books for CICS Transaction Server
for z/OS 394
Other CICS publications 394
Other IBM publications 394

Accessibility 395

Index 397

iv CICS TS for z/OS 4.2: Java Applications in CICS

|
||
|
||
||
||
||
||
||
||
||
||
|
||

|
||
|
||
|
||
||
||
||
|
||
||
||
||
||
|
||
|
||
||
||
||
|
||
|
||
|
||
|
||
|
||
||

|
||
||
|
||
||
|
|
||

||
||
||
||
||
||
||

Preface

This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of Version 4 Release 2.

What this information is about
This information tells you how to develop and use Java applications and enterprise
beans in CICS®.

Who should read this information
This information is intended for:
v Experienced Java application programmers who may have little experience of

CICS, and no great need to know more about CICS than is necessary to develop
and run Java programs.

v Experienced CICS users and system programmers, who need to know about
CICS requirements for Java support.

© Copyright IBM Corp. 1999, 2012 v

vi CICS TS for z/OS 4.2: Java Applications in CICS

Changes in CICS Transaction Server for z/OS, Version 4
Release 2

For information about changes that have been made in this release, please refer to
What's New in the information center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2

v CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

© Copyright IBM Corp. 1999, 2012 vii

viii CICS TS for z/OS 4.2: Java Applications in CICS

Chapter 1. Java support in CICS

CICS provides the tools and runtime environment to develop and run Java
enterprise applications in a Java Virtual Machine (JVM) that is under the control of
a CICS region. Java applications can interact with CICS services and applications
written in other languages.

Java on z/OS® provides comprehensive support for running Java applications.
CICS uses the IBM® 64-bit SDK for z/OS, Java Technology Edition, Version 6.0.1.
The SDK contains a Java Runtime Environment that supports the full set of Java
APIs and a set of development tools. To encourage the adoption of Java on z/OS, a
special processor is available in certain System z® hardware. This processor is
called the IBM System z Application Assist Processor (zAAP) and can provide
additional processor capacity to run eligible Java workloads at a reduced cost.
CICS can exploit this capability in its Java workloads. You can find more
information about Java on the z/OS platform and download the 64-bit version of
the SDK at http://www.ibm.com/servers/eserver/zseries/software/java/.

CICS provides an Eclipse-based tool and two runtime environments for Java
applications:

CICS Explorer® SDK

The CICS Explorer SDK is a freely available download for Eclipse-based
Integrated Development Environments (IDEs). The SDK provides support
for developing and deploying applications that comply with the OSGi
Service Platform specification. The OSGi Service Platform provides a
mechanism for developing applications using a component model and
deploying those applications into a framework as OSGi bundles. An OSGi
bundle is the unit of deployment for an application component and
contains version control information, dependencies, and application code.
The main benefit of OSGi is that you can create applications from reusable
components that are accessed only though well-defined interfaces called
OSGi services. You can also manage the life cycle and dependencies of Java
applications in a granular way.

The CICS Explorer SDK supports developing Java applications for any
supported release of CICS. The SDK includes the Java CICS (JCICS) library
of classes to access CICS services and examples to get started with
developing applications for CICS. You can also use the tool to convert
existing Java applications to OSGi.

JVM server

The JVM server is the strategic runtime environment for Java applications
in CICS. A JVM server can handle multiple concurrent requests from
different Java applications in a single JVM. It reduces the number of JVMs
that are required to run Java applications in a CICS region. To use a JVM
server, Java applications must be threadsafe and must comply with the
OSGi specification. Use this runtime environment for all Java applications
where possible. It is the preferred method for running Java workloads in a
CICS region and provides the following benefits:
v You can run more than one Java application in a JVM server, simplifying

the operations of running and managing JVMs in a CICS region.

© Copyright IBM Corp. 1999, 2012 1

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

http://www.ibm.com/servers/eserver/zseries/software/java/

v You can run eligible Java workloads on zAAPs, reducing the cost of
transactions.

v You can run different types of work in a JVM server, including
threadsafe Java programs and web services.

v You can manage the life cycle of applications in the OSGi framework
without restarting the JVM server.

v You can more easily port Java applications that are packaged using OSGi
between CICS and other platforms.

Pooled JVMs
The pooled JVM is a runtime environment where each Java program uses
its own JVM. JVM programs running concurrently are isolated from each
other. When a Java program has finished using the JVM, the JVM can be
reused by a subsequent program. Use this runtime environment for
existing Java applications that are not threadsafe. Pooled JVMs are stable
and will be removed in a future release of CICS. Where possible, convert
your existing Java applications to run in a JVM server.

The OSGi Service Platform
The OSGi Service Platform provides a mechanism for developing applications by
using a component model and deploying those applications into an OSGi
framework. The OSGi architecture is separated into a number of layers that
provide benefits to creating and managing Java applications.

The OSGi framework is at the core of the OSGi Service Platform specification.
CICS uses the Equinox version 3.6.1 implementation of the OSGi framework,
which supports version 4 of the OSGi Service Platform specification. The OSGi
framework is initialized when a JVM server starts. Using OSGi for Java
applications provides the following major benefits:
v Your Java applications are more portable, easier to re-engineer, and more

adaptable to changing requirements.
v You can follow the Plain Old Java Object (POJO) programming model, giving

you the option of deploying an application as a set of OSGi bundles with
dynamic life cycles.

v You can more easily manage and administer application bundle dependencies
and versions.

The OSGi architecture has the following layers:
v Modules layer
v Life cycle layer
v Services layer

Modules layer

The unit of deployment is an OSGi bundle. The modules layer is where the OSGi
framework processes the modular aspects of a bundle. The metadata that enables
the OSGi framework to do this processing is provided in a bundle manifest file.

One key advantage of OSGi is its class loader model, which uses the metadata in
the manifest file. There is no global class path in OSGi. When bundles are installed
into the OSGi framework, their metadata is processed by the module layer and
their declared external dependencies are reconciled against the exports and version
information declared by other installed modules. The OSGi framework works out

2 CICS TS for z/OS 4.2: Java Applications in CICS

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|

|

|

|

|

|
|
|

|
|
|
|
|

all the dependencies and calculates the independent required class path for each
bundle. This approach resolves the shortcomings of plain Java class loading by
ensuring that the following requirements are met:
v Each bundle provides visibility only to Java packages that it explicitly exports.
v Each bundle declares its package dependencies explicitly.
v Packages can be exported at specific versions, and imported at specific versions

or from a specific range of versions.
v Multiple versions of a package can be available concurrently to different clients.

Life cycle layer

The bundle life cycle management layer in OSGi enables bundles to be
dynamically installed, started, stopped, and uninstalled, independently from the
life cycle of the JVM. The life cycle layer ensures that bundles are started only if all
their dependencies are resolved, reducing the occurrence of
ClassNotFoundException exceptions at run time. If there are unresolved
dependencies, the OSGi framework reports the problem and does not start the
bundle.

Each bundle can provide a bundle activator class, which is identified in the bundle
manifest, that the framework calls on to start and stop events.

Services layer

The services layer in OSGi intrinsically supports a service-oriented architecture
through its non-durable service registry component. Bundles publish services to
the service registry, and other bundles can discover these services from the service
registry. These services are the primary means of collaboration between bundles.
An OSGi service is a Plain Old Java Object (POJO), published to the service
registry under one or more Java interface names, with optional metadata stored as
custom properties (name/value pairs). A discovering bundle can look up a service
in the service registry by an interface name, and can potentially filter the services
that are being looked up based on the custom properties.

Services are fully dynamic and typically have the same life cycle as the bundle that
provides them.

JVM server runtime environment
A JVM server is a runtime environment that can handle multiple concurrent
requests for different Java applications in a single 64-bit JVM. You can use a JVM
server to run threadsafe Java applications in an OSGi framework and process web
service requests in the Axis2 web services engine.

A JVM server is represented by the JVMSERVER resource. When you enable a
JVMSERVER resource, CICS requests storage from MVS™, sets up a Language
Environment® enclave, and launches the 64-bit JVM in the enclave. CICS uses a
JVM profile that is specified on the JVMSERVER resource to create the JVM with
the correct options. In this profile, you can add native libraries to access
WebSphere® MQ from Java applications and specify JVM options. Java on z/OS
efficiently manages the JVM memory and garbage collection, so you do not have to
set these options in the profile.

One of the advantages of using JVM servers is that you can run multiple requests
for different applications in the same JVM. In the following diagram, three

Chapter 1. Java support in CICS 3

|
|
|

|

|

|
|

|

|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/jvmserver/dfha4_overview.html

applications are calling three Java programs in a CICS region concurrently using
different access methods. Each Java program runs in the same JVM server.

CICS Region

PROGRAM1

PROGRAM2

PROGRAM3

EXEC CICS LINK

EXEC CICS START

HTTP request

App

JVMApp

App

JVM server

LE enclave

Java applications

To run a Java application in a JVM server, it must be threadsafe and packaged as
one or more OSGi bundles in a CICS bundle. The JVM server implements an OSGi
framework in which you can run OSGi bundles and services. The OSGi framework
registers the services and manages the dependencies and versions between the
bundles. OSGi handles all the class path management in the framework, so you
can add, update, and remove Java applications without stopping and restarting the
JVM server.

The unit of deployment for a Java application that is packaged using OSGi is a
CICS bundle. A CICS bundle must be available in a directory in zFS that contains
the OSGi bundles. The BUNDLE resource represents the application to CICS and
you can use it to manage the life cycle of the application. The CICS Explorer SDK
provides support for deploying OSGi bundles in a CICS bundle project to zFS.

To access the Java application from outside the OSGi framework, use a PROGRAM
resource to identify the JVM server in which the application is running and the
name of the OSGi service. The OSGi service points to the CICS main class.

For more information about using the OSGi framework in a JVM server, see “Java
applications that comply with OSGi” on page 21.

Web services

You can use a JVM server to run the SOAP processing for web service requester
and provider applications. If a pipeline uses Axis2, a Java-based SOAP engine, the
SOAP processing occurs in a JVM server. The advantage of using a JVM server for
web services is that you can offload the work to a zAAP processor.

For more information about using a JVM server for web services, see “Java web
services” on page 17.

TP and T8 TCBs

CICS uses the open transaction environment (OTE) to run JVM server work. Each
task runs as a thread in the JVM server and is attached using a T8 TCB. The JVM
server also has a parent TCB called TP. The TP TCB is created when the JVM

4 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

|
|
|
|

|
|

|

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/bundle/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/program/dfha4_overview.html

server is initialized and runs on a system thread. The system thread provides
access to inquire on the state of the JVM server, to collect statistics information,
and to stop the JVM server.

Every task is attached to a thread in the JVM using a T8 TCB. You can control how
many T8 TCBs are available to the JVM server by setting the THREADLIMIT
attribute on the JVMSERVER resource. The T8 TCBs that are created for the JVM
server exist in a virtual pool and cannot be reused by another JVM server running
in the same CICS region. The maximum number of T8 TCBs that can exist in a
CICS region across all JVM servers is 1024 and the maximum for a particular JVM
server is 256.

Pooled JVMs
A pooled JVM is a JVM that can handle only one request at a time from a CICS
task. The pool of these JVMs can handle multiple tasks concurrently, meaning that
you must have many JVMs to handle Java workloads. CICS uses the open
transaction environment (OTE) to run pooled JVMs and you can manage the
number of JVMs that CICS can create in the region.

A pooled JVM runs one Java program only to ensure that every transaction
involving the JVM is isolated from every other concurrent transaction involving a
JVM. Therefore you must have a number of JVMs available to handle Java
programs concurrently. For all new Java workloads, use the JVM server runtime
environment. In a JVM server, you can run multiple Java programs concurrently
using a single JVM.

In the following diagram, three applications are calling three Java programs in a
CICS region concurrently using different access methods. Each request must run in
a separate JVM and enclave.

CICS Region

PROGRAM1

PROGRAM2

PROGRAM3

EXEC CICS LINK

EXEC CICS START

HTTP request

JVM1

JVM2

JVM3

App

App

App

JVM pool

LE enclave

LE enclave

LE enclave

Chapter 1. Java support in CICS 5

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

JVM reuse

When a Java program has finished, a pooled JVM can be reassigned to another
Java program. The JVM profile determines the characteristics of a JVM and
whether it can be reused or not. If a JVM is reusable it is called a continuous JVM.
If a JVM is not reusable it is called a single-use JVM. If you must use pooled JVMs,
use continuous JVMs to improve performance. You can also use the shared class
cache with continuous JVMs to reduce storage requirements and improve the
startup time for the JVMs.

Continuous JVMs can be reused many times. The application code that runs in the
next Java program or transaction is not automatically isolated from the actions of
the previous program invocation; that is, serial isolation is not automatic. You must
ensure that your Java application programs do not change the state of a continuous
JVM in undesirable ways, or leave any unwanted state in the JVM.

A continuous JVM maintains the content of its storage heaps between one program
invocation and the next. Static or dynamic state persists in the storage heaps of
continuous JVMs, and threads that are not quiesced persist, along with their
related storage. All application classes that have been loaded into the JVM are kept
intact. The application can choose to clean up any unwanted items and retain any
desirable items.

The PROGRAM resource for the Java program determines the appropriate
execution key and JVM profile for the JVM that the program uses. You can define
different JVM profiles that meet the requirements of your Java programs.

When CICS receives a request to run a Java program, it must either create a
suitable JVM or assign an existing JVM that is not currently being used. To create a
suitable JVM, CICS requests storage from MVS, sets up a Language Environment
enclave, and launches the JVM in the enclave. CICS uses the JVM profile specified
on the PROGRAM resource to create the JVM with the correct classes and options.

Limit for JVMs in the JVM pool

Each pooled JVM runs on an MVS TCB, which is allocated from a pool of J8 and J9
open TCBs. This pool of open TCBs is called the JVM pool. JVMs can be in one of
two execution keys: user key or CICS key. JVMs that are in user key run on a J9
TCB. JVMs that are in CICS key run on a J8 TCB. Statistics are collected separately
for each of the modes, so you can see what proportions of each mode are in the
JVM pool. The JVM profile and execution key are independent of each other, so
two JVMs could have the same profile but different execution keys.

The total number of TCBs that can be created for JVMs is limited by the
MAXJVMTCBS system initialization parameter. This parameter limits the number
of JVMs that you can have in the JVM pool in your CICS region.

Each JVM runs in its own Language Environment enclave, and uses MVS storage.
For this reason, you must choose a MAXJVMTCBS limit for your CICS region that
takes into account not just the processor time used by the JVMs, but also the
amount of MVS storage that is used by each JVM and the storage available to the
region. If you set a MAXJVMTCBS limit that is too high, CICS might attempt to create
too many JVMs for the available MVS storage, resulting in an MVS storage
constraint.

6 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/program/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_maxjvmtcbs.html

JVM profiles
JVM profiles are text files that contain Java launcher options and system
properties, which determine the characteristics of JVMs. You can edit JVM profiles
using any standard text editor.

A JVM profile lists the options that are used by the CICS launcher for Java. Some
of the options are specific to CICS and others are standard for the JVM runtime
environment. For example, the JVM profile controls the initial size of the storage
heap and how far it can expand. The profile can also define the destinations for
messages and dump output produced by the JVM.

The JVM profile also specifies the class paths. Class paths contain the directories
that the JVM searches for the application classes and resources that are required for
your applications.

When CICS receives a request to run a Java program, the name of the JVM profile
is passed to the Java launcher. The Java program runs in a JVM, which was created
using the options in the JVM profile and the JVM properties file, if one is specified.

CICS uses JVM profiles that are in the z/OS UNIX System Services directory
specified by the JVMPROFILEDIR system initialization parameter. This directory
must have the correct permissions for CICS to read the JVM profiles.

Sample JVM profiles

CICS supplies four sample JVM profiles to help you configure your Java
environment. They are customized during the CICS installation process. These files
are used by CICS as defaults or for system programs.

You can copy the samples and customize them for your own applications. The
CICS-supplied sample JVM profiles are in the directory /usr/lpp/cicsts/
cicsts42/JVMProfiles on z/OS UNIX. Copy the samples from the installation
directory to the directory that you specified in the JVMPROFILEDIR system
initialization parameter. The sample JVM profiles in the installation location are
overwritten if you apply an APAR that includes changes to these files. To avoid
losing your modifications, always copy the samples to a different location before
adding your own application classes or changing any options.

The sample JVM profiles include the symbol &JAVA_HOME for the variable part
of the name of the installation directory for Java. During the installation of CICS,
this symbol is substituted with your own value. The base library path and base
class path for the JVM, which are not visible in the JVM profile, are built
automatically using these directories. The default value is java/ for the
&JAVA_HOME symbol.

The following table summarizes the key characteristics of each sample JVM profile.

Table 1. CICS-supplied sample JVM profiles

JVM profile Characteristics

DFHJVMAX The DFHJVMAX profile is the supplied sample profile for an Axis2
JVM server. The JVM profile is specified on the JVMSERVER
resource. CICS uses the DFHJVMAX profile to initialize the JVM
server.Do not specify this profile in PROGRAM resources for your
own applications. Instead, specify the name of the JVMSERVER
resource in the PROGRAM resource.

Chapter 1. Java support in CICS 7

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

||

||

||
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_jvmprofiledir.html

Table 1. CICS-supplied sample JVM profiles (continued)

JVM profile Characteristics

DFHOSGI The DFHOSGI profile is the supplied sample profile for an OSGi
JVM server. The JVM profile is specified on the JVMSERVER
resource. CICS uses the DFHJVMAX profile to initialize the JVM
server.Do not specify this profile in PROGRAM resources for your
own applications. Instead, specify the name of the JVMSERVER
resource in the PROGRAM resource.

DFHJVMPR The DFHJVMPR profile is the default for pooled JVMs if no JVM
profile is specified in the PROGRAM resource of a Java program.
Pooled JVMs created with the profile DFHJVMPR use the shared
class cache because the profile specifies CLASSCACHE=YES.

DFHJVMCD
(reserved for the use
of CICS)

CICS-supplied system programs have their own JVM profile,
DFHJVMCD, for pooled JVMs. System programs are independent
of any changes that you make to the default JVM profile,
DFHJVMPR. In particular, the PROGRAM resource for the default
request processor program, DFJIIRP, specifies DFHJVMCD. Pooled
JVMs created with the profile DFHJVMCD do not use the shared
class cache because the profile specifies CLASSCACHE=NO. You
can change the default value.Do not specify this profile in
PROGRAM resources that you set up for your own Java
applications. However, you must make sure that it is set up
correctly for your CICS region. CICS uses DFHJVMCD to initialize
and terminate the shared class cache in addition to using it for
CICS-supplied system programs.

Structure of a JVM
JVMs that run under CICS use a set of classes and class paths that are defined in
JVM profiles and use 64-bit storage. Each JVM runs in a Language Environment
enclave that you can tune to make the most efficient use of MVS storage.

For further information about Version 6.0.1 of the IBM 64-bit SDK for z/OS, Java
Technology Edition, see the IBM 64-bit SDK for z/OS, Java Technology Edition, Version
6.0.1 SDK and Runtime Environment User Guide. The document is available to
download from www.ibm.com/servers/eserver/zseries/software/java/
javaintr.html.

Classes and class paths in JVMs
Three types of classes and native libraries are used by a JVM running under CICS.
v The z/OS JVM code, which provides the base services in the JVM. These classes

are system classes and standard extension classes, which are known collectively as
primordial classes.

v Native C dynamic link library (DLL) files that are used by the JVM. These files
have the extension .so in z/OS UNIX. Some libraries are required for the JVM
to run, and additional native libraries can be loaded by application code or
services. For example, the additional native libraries might include the DLL files
to use the DB2® JDBC drivers.

v The Java classes for the applications that run in the JVM. These classes are
known as application classes. This group includes classes that are part of
user-written applications. It also includes some classes supplied by IBM or by
another vendor to provide services that access resources, such as the JCICS
interfaces classes, JDBC and JNDI, which are not included in the standard JVM

8 CICS TS for z/OS 4.2: Java Applications in CICS

|

||

||
|
|
|
|
|

||
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

http://www.ibm.com/servers/eserver/zseries/software/java/javaintr.html
http://www.ibm.com/servers/eserver/zseries/software/java/javaintr.html

setup for CICS. When application classes have been loaded, they are kept across
JVM reuses so that they can be used by other transactions.

The JVM understands the purpose of each of these items and determines how the
class or native library is loaded by the JVM, and where it is stored.

The class paths for a JVM are defined by options in the JVM profile, and are
optionally in referenced JVM properties files.

The class paths on which classes or native libraries can be included are as follows:
v The library path is for all the native C dynamic link library (DLL) files that are

used by the JVM, including the files required to run the JVM and additional
native libraries loaded by application code or services. Only one copy of each
DLL file is loaded, and all the JVMs share it, but each JVM has its own copy of
the static data area for the DLL.
The base library path for the JVM is built automatically using the directories
specified by the USSHOME system initialization parameter and the JAVA_HOME
option in the JVM profile. The base library path is not visible in the JVM profile.
It includes all the DLL files required to run the JVM and the native libraries
used by CICS. You can extend the library path using the LIBPATH_SUFFIX option
or the LIBPATH_PREFIX option. LIBPATH_SUFFIX adds items to the end of the
library path, after the IBM-supplied libraries. LIBPATH_PREFIX adds items to the
beginning, which are loaded in place of the IBM-supplied libraries if they have
the same name. You might have to do this for problem determination purposes.
Compile and link with the LP64 option any DLL files that you include on the
library path . The DLL files supplied on the base library path and the DLL files
used by services such as the DB2 JDBC drivers are built with the LP64 option.

v

The standard class path is for all application classes that run in pooled JVMs or a
JVM server that is not configured for OSGi. All Java .class and .jar files are
placed on the standard class path. You can add classes to the standard class path
using the CLASSPATH_SUFFIX option in the JVM profile or the CLASSPATH_PREFIX
option.
CICS also builds a base class path for the JVM automatically, using the /lib
subdirectories of the directories specified by the USSHOME system initialization
parameter. This class path contains the JAR files supplied by CICS and by the
JVM. It is not visible in the JVM profile.
For JVM servers that are configured to support OSGi, you must not set a class
path for your application classes. The OSGi framework automatically determines
the class path for applications by using the information in the OSGi bundle that
contains the application.

You do not have to include the system classes and standard extension classes (the
primordial classes) on a class path, because they are already included on the boot
class path in the JVM.

Storage heap in JVMs

The runtime storage in JVMs for IBM 64-bit SDK for z/OS, Java Technology
Edition Version 6.0.1 is managed by a single 64-bit storage heap.

The heap for each JVM is allocated from 64-bit storage in the Language
Environment enclave for the JVM. The size of each heap is determined by options
in the JVM profile.

Chapter 1. Java support in CICS 9

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|

The single storage heap is known as the heap, or sometimes as the garbage-collected
heap. Its initial storage allocation is set by the -Xms option in a JVM profile, and its
maximum size is set by the -Xmx option.

You can tune the size of a heap to achieve optimum performance for your JVMs.
See “Tuning JVM server heap and garbage collection” on page 159 and “Tuning
pooled JVM heaps and garbage collection” on page 166.

Where JVMs are constructed
When a JVM is required, the CICS launcher program for JVMs requests storage
from MVS, sets up a Language Environment enclave, and launches the JVM in the
Language Environment enclave. Each JVM is constructed in its own Language
Environment enclave, to ensure isolation between JVMs running in parallel.

The Language Environment enclave is created using the Language Environment
preinitialization module, CELQPIPI, and the JVM runs as a z/OS UNIX process.
The JVM therefore uses MVS Language Environment services rather than CICS
Language Environment services. The storage used for a JVM is MVS 64-bit storage,
obtained by calls to MVS Language Environment services. This storage resides in
the CICS address space, but is not included in the CICS dynamic storage areas
(DSAs).

The Language Environment enclave for a JVM can expand, depending on the
storage requirements of the JVM. The Language Environment runtime options used
by CICS for a Language Environment enclave control the initial size of, and
incremental additions to, the Language Environment enclave heap storage.

You can tune the runtime options that CICS uses for a Language Environment
enclave, so that the amount of storage CICS requests for the enclave is as close as
possible to the amount of storage specified by your JVM profiles. You can therefore
make the most efficient use of MVS storage. For more information about tuning
storage, see “Language Environment enclave storage for JVMs” on page 170.

Execution keys for JVMs
A Java program must use a JVM that is running in the correct execution key.
Pooled JVMs can run in one of two execution keys: user key or CICS key. JVM
servers run only in CICS key.

Execution keys for JVM servers

JVM servers run in CICS key only. To use a JVM server, the PROGRAM resource
for the Java program must have the EXECKEY attribute set to CICS. CICS uses a T8
TCB to run the JVM and obtains MVS storage in CICS key.

Execution keys for pooled JVMs

When you set the EXECKEY attribute on the PROGRAM resource for a Java
program to USER, CICS gives the program a pooled JVM that is in user key. CICS
uses a J9 TCB to run the JVM and obtains MVS storage in user key. When you set
the EXECKEY attribute to CICS, CICS gives the program a JVM that is in CICS key.
CICS uses a J8 TCB to run the JVM and obtains MVS storage in CICS key.

Running applications in user key extends CICS storage protection, so if your Java
programs are using a pooled JVM run in user key where possible. However, if a

10 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

|

|
|
|

|

|
|
|
|
|

|
|

Java program is part of a transaction that specifies TASKDATAKEY(CICS), the program
must use a JVM that is running in CICS key.

You do not have to make any other changes if you change the EXECKEY attribute
for a Java PROGRAM resource. CICS can use the same JVM profile to create JVMs
in both execution keys. A single CICS task can include Java programs running in
CICS key and Java programs running in user key. However, a JVM can be reused
only by programs that specify the same execution key and JVM profile on the
PROGRAM resources. If most of your JVMs are created in the same execution key,
CICS has more opportunities for giving a program an existing JVM to reuse, rather
than creating a new JVM.

JVMs and the z/OS shared library region
The shared library region is a z/OS feature that enables address spaces to share
dynamic link library (DLL) files.

This feature enables your CICS regions to share the DLLs that are needed for
JVMs, rather than each region having to load them individually. This can greatly
reduce the amount of real storage used by MVS, and the time it takes for the
regions to load the files.

The storage that is reserved for the shared library region is allocated in each CICS
region when the first JVM is started in the region. The amount of storage that is
allocated is controlled by the SHRLIBRGNSIZE parameter in z/OS. For more
information about tuning the amount of storage that is allocated for the shared
library region, see “Tuning the z/OS shared library region” on page 177.

Shared class cache
The IBM SDK for z/OS provides a class-sharing facility for JVMs, where multiple
JVMs can share a single cache of class files that have already been loaded. CICS
supports this facility for pooled JVMs and JVM servers in different ways.

The shared class cache contains all the classes that are required by the JVMs that
use the shared class cache. All the application classes required by your Java
programs are placed on the standard class path in your JVM profiles, and they are
all eligible to be loaded into the shared class cache. In some exceptional scenarios,
some classes might not be eligible to be loaded into the shared class cache.

The shared class cache does not store the following items:
v Native C dynamic link library (DLL) files that are specified on the library path

in JVM profiles. A single copy of each DLL file is used by all the JVMs that
require it.

v Working data for applications (objects and variables). Working data is stored in
the individual JVMs.

v Compiled classes produced by just-in-time (JIT) compilation. Compiled classes
are stored in individual JVMs, not in the shared class cache, because the
compilation process can vary for different workloads.

The shared class cache updates its contents automatically if you change any
application classes or JAR files, or add new items to the class paths in your JVM
profiles, and restart the appropriate JVMs. The shared class cache is persistent
across warm and emergency CICS starts, except in some circumstances such as an
IPL of z/OS, so there is no startup cost to the first JVM in the CICS region at those
times.

Chapter 1. Java support in CICS 11

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

In Java 6.0.1, you can have multiple shared class caches available for use at the
same time. CICS does not provide interfaces to manage multiple class caches, but
you can use multiple class caches with JVM servers. Pooled JVMs cannot use
multiple class caches, but CICS does provide interfaces to manage a single class
cache in a region for pooled JVMs.

Class cache for JVM servers

If you want to use class caches with JVM servers, you can use the support
provided by Java 6 directly. This support is described in Class data sharing
between JVMs. JVM servers do not use the support for class caches that is
provided in CICS. For example, you cannot enable or disable a class cache for JVM
servers using SPI or CEMT commands.

Class cache for pooled JVMs

Pooled JVMs that use the shared class cache start up more quickly and have lower
storage requirements than JVMs that do not. The overall cost of class loading is
also reduced when pooled JVMs use the shared class cache. When a new JVM that
shares the class cache is initialized, it uses the preinstalled classes instead of
reading them from the file system. A JVM that shares the class cache still owns all
the working data (objects and variables) for the applications that run in it to
maintain the isolation between the Java applications being processed in the system.

CICS uses the CICS-supplied sample profile DFHJVMCD to initialize and
terminate the shared class cache for pooled JVMs. DFHJVMCD must always be
available and configured for use in your CICS region, but you do not have to make
any additional changes to it for use with the shared class cache.

CICS provides interfaces to manage one active shared class cache in each region. A
region might also contain old shared class caches that are being phased out. You
can manage the shared class cache and monitor its status using CICS commands.

The shared class cache is named CICS_sharedcc_APPLID_n, where APPLID is the
APPLID of the CICS region, and n is a generation number starting at zero. The
generation number is used to differentiate the name of the new shared class cache.

CICS uses one or more JM TCBs, a type of open TCB, for shared class cache
management functions. JM TCBs do not count towards the MAXJVMTCBS limit for the
JVM pool.

The JVMCCSIZE system initialization parameter specifies the initial size of the
shared class cache. The JVMCCSTART system initialization parameter controls the
startup behavior of the shared class cache at CICS region initialization.

12 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/user/classdatasharing.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/user/classdatasharing.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_jvmccsize.dhtml
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_jvmccstart.html

Chapter 2. Java planning

If you are planning how to use Java in your enterprise, the examples in this section
provide guidance on the various strategic options that are available for CICS
applications.

You can use Java in CICS in various ways:

Use JCA to connect external Java applications to CICS

You can use the Java EE Connector Architecture (JCA) to connect existing
CICS applications to external Java applications by using CICS Transaction
Gateway. This product in the CICS family provides support for connecting
Java applications in application servers, such as WebSphere Application
Server, to CICS by using resource adapters that implement the JCA
technology.

The CICS applications can be written in any of the supported high-level
programming languages.

Use Java web services

You can create Java web services to work with service providers and
service requesters in a heterogeneous environment, connecting to the
Internet over HTTP or WebSphere MQ. Java web services run in a JVM
server and the SOAP processing is performed by the Axis2 web services
engine. You can choose to process existing web services in Axis2, where the
provider or requester application is written in any of the supported
high-level programming languages, including Java. You can also use
standard Java APIs to create Java web services that can handle XML or
work with structured data.

Java workloads that run in a JVM server are eligible to run on an IBM
System z Application Assist Processor (zAAP).

Use OSGi to create Java applications

You can create modular and reusable Java applications that comply with
the OSGi Service Platform. These applications are easier to port between
CICS and other platforms and OSGi provides granularity around
managing dependencies and versions.

You can use the Java CICS (JCICS) API to write applications that access
CICS services, such as reading from files or temporary storage queues. Java
applications can link to other CICS applications and access data in DB2
and IMS™. Java applications can run in JVM servers or pooled JVMs. The
strategic environment for running Java applications is the JVM server, so
plan to use this environment for all Java applications. Java workloads that
run in a JVM server are eligible to run on a zAAP.

As part of your planning, you must also decide how to route your Java workloads
and scale your CICS regions accordingly.

Accessing CICS applications from CICS Transaction Gateway
CICS Transaction Gateway provides resource adapters to connect Java client
programs to existing CICS applications.

© Copyright IBM Corp. 1999, 2012 13

|

|

|
|
|

|

|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

You can use the CICS TG resource adapters to reuse your CICS applications in new
Java applications. Frequently, new Java applications can be developed more
quickly and reliably by reusing existing Java or non-Java CICS applications.
Typically, the Java client application is network-based and the CICS program is
written in a language such as COBOL.

The J2EE Connector Architecture (JCA)

The Java 2 Platform Enterprise Edition (J2EE) Connector Architecture defines a
standard means of connecting a J2EE-compliant platform to a heterogeneous
Enterprise Information System (EIS) such as CICS. Java applications interact with
resource adapters by using the Common Client Interface (CCI), which is an open
standard defined by the JCA.

The J2EE connector architecture enables an EIS vendor to provide a standard
resource adapter for its EIS. A resource adapter is the middle tier between a Java
application and an EIS and connects the Java application to the EIS.

The CICS Transaction Gateway implements the JCA by providing J2EE CICS
resource adapters that support the Common Client Interface.

Accessing CICS programs from external Java programs

From the network, a Java client application can use any of the following methods
to call a CICS TS program:

The CICS Transaction Gateway API
The CICS Transaction Gateway API provides, among other things, the
following facilities:

The External Call Interface
An external application can use the External Call Interface (ECI) to call
a program in a CICS region. To be eligible, the CICS program must be
made available to other CICS programs through an EXEC CICS LINK
command. It can have a COMMAREA interface or, when an IPIC
connection is used, the program can use a channel and containers to
transfer data.

CICS programs that are called by an ECI request must follow the rules
for distributed program link (DPL) requests. For information about
DPL requests, see Distributed Program Link (DPL) in CICS Application
Programming.

The External Presentation Interface
An external application can use the External Presentation Interface
(EPI) to call a 3270-based CICS application program and use its output.
The client application can install and delete virtual IBM 3270 terminals
in the CICS region. The definitions used by the EPI are processed by
CICS as remote 3270 terminal definitions and therefore support
automatic transaction initiation requests (ATI).

The External Security Interface
An external application can use the External Security Interface (ESI) to
perform certain security functions. For example, the application can
access information about user IDs held in the CICS external security
manager (ESM) and set the default security credentials for a server
connection.

14 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp365.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp365.html

The ECI resource adapters
The ECI resource adapters provide a high-level CCI interface to the External
Call Interface that applications can use to link to CICS applications and pass
data in COMMAREAs or containers. The resource adapters can be deployed
into a J2EE application server, such as WebSphere Application Server, so that
J2EE enterprise applications can access CICS. When the JCA is used,
connection pooling, security, and transaction context are managed by the J2EE
application server instead of the application.

For z/OS, two ECI resource adapters are supplied in CICS Transaction
Gateway:
v Adapter cicseciXA.rar that supports two-phase commit
v Adapter cicseci.rar that supports single-phase commit only

The ECI resource adapters also support the following additional features:

Support for IPIC connections
You can use IPIC connections to access CICS over TCP/IP when the
region is CICS TS for z/OS, Version 3.2 or later. Unlike EXCI, APPC,
and ECI over TCP/IP, this type of connection supports containers and
SSL authentication. The IPIC connection is represented by an IPCONN
resource in CICS.

You cannot install static IPCONN resources to external Java clients:
these connections are always automatically installed. See Writing a
program to control autoinstall of IPIC connections in the
Customization Guide.

Channels and containers
Channels and containers provide applications with a way to transfer
data in CICS that is larger than 32 KB. For more information about
channels and containers, see Enhanced inter-program data transfer
using channels in CICS Application Programming.

Secure Sockets Layer (SSL) authentication
Secure Sockets Layer (SSL) authentication. SSL is supported on IPIC
connections between CICS Transaction Gateway and CICS. For
information about using SSL authentication, see Configuring CICS to
use SSL in the RACF Security Guide.

The EPI resource adapter
The EPI resource adapter provides a high-level CCI interface to the External
Presentation Interface that can be used to install terminals and run 3270-based
transactions in a CICS region. There is no support for Automatic Transaction
Initiation (ATI). The resource adapter can be deployed into a J2EE application
server so that J2EE enterprise applications to access CICS. When the JCA is
used, connection pooling, security, and transaction context are managed by the
J2EE application server instead of the application.

Examples of using the CICS resource adapters

The scenario shown in Figure 1 on page 16 is an example of a three-tier
configuration. A Java application uses the ECI resource adapter to link to a program
in the CICS region. The connection between the client application and the CICS
region is occurring through an intermediate system. Because the client application
is not running on the same host as CICS Transaction Gateway, the daemon listens
and communicates with the client. On z/OS, CICS Transaction Gateway uses the
External CICS Interface (EXCI) or the IPIC driver to pass requests to CICS. These
requests are processed by CICS as ECI calls.

Chapter 2. Java planning 15

|
|
|
|
|
|
|
|

|
|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/ipconn/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3ip1.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3ip1.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha3/topics/dfha3ip1.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_ch_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_ch_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/dfht560.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/dfht560.html

The diagram also shows a Java servlet that also uses the ECI resource adapter to
connect to a server program. This configuration is an example of a two-tier
configuration, where a direct connection exists between the client application and
the CICS region through the ECI Adapter. Because the servlet is running on the
same host as CICS TG, it uses the local protocol to communicate.

CICS Transaction Gateway on z/OS supports the External Call Interface but not
the External Presentation Interface. The ECI and the ECI resource adapter are
supported, but not the EPI or the EPI resource adapter. Only Java client programs
are supported. ECI calls can be made over EXCI or IPIC connections to the CICS
region.

A variation is shown in Figure 2 on page 17. In this example, CICS Transaction
Gateway runs on a Windows server. CICS Transaction Gateway on Windows and
Linux supports both the ECI and ECI resource adapter and the EPI and EPI
resource adapter. The Java client can access 3270-based CICS programs, in addition
to CICS programs that use a suitable COMMAREA or containers.

ECI calls can be made to CICS over APPC, TCP62, ECI over TCP/IP, or IPIC
connections. EPI calls are supported only on APPC connections.

z/OS

Workstation

Java
client

application

ECI
resource
adapter

ECI
resource
adapter

CICS
server
region

ECI
(via IPIC)

CTG
calls

Local protocol

IPIC
driver

Gateway
daemon

EXCI

Servlet

CICS
Transaction Gateway

Web Server

ECI
(via EXCI)

Figure 1. Java clients connect to a CICS program by using the ECI resource adapter

16 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

To use CICS programs in this way, the Java developer requires some knowledge of
developing CICS applications.

CICS Transaction Gateway

Programming Guide

Scenarios

Programming Reference
IBM Redbooks®

Developing Connector Applications for CICS

Java Connectors for CICS Featuring the J2EE Connector Architecture

Java web services
CICS includes the Axis2 technology to run Java web services. Axis2 is an open
source web services engine from the Apache foundation and is provided with CICS
to process SOAP messages in a Java environment.

Axis2 is a Java-based implementation of a web services SOAP engine that supports
a number of the web services specifications. It also provides a programming model
that describes how to create Java applications that can run in Axis2. Axis2 is
provided with CICS to process web services in a Java environment. Although
Axis2 response times are slightly slower than the non-Java equivalent, this type of
Java workload is eligible for running on a zAAP.

The JVM server supports running Axis2 to process inbound and outbound SOAP
messages in a Java-based SOAP pipeline, without changing any of your existing
web services. However, you can also create a web service from a Java application
and run it in the same JVM server. By deploying the application to the Axis2
repository of the JVM server, both the Java application and SOAP processing are
eligible for running on a zAAP.

Windows z/OS

Workstation

Java
client

application

ECI or EPI
resource
adapter

ECI or EPI
resource
adapter

CICS
server
region

ECI
(via IPIC)

CTG
calls

Local protocol

IPIC
driver

Gateway
daemon

Client
daemon

Servlet

CICS
Transaction Gateway

Web Server

ECI
(via APPC or

ECI over
TCP/IP)

EPI
(via APPC)

Figure 2. Java clients connect to a CICS program from outside CICS

Chapter 2. Java planning 17

|

|
|

|
|

|

|

|

|

|

|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.tg.zos.doc/ctgzos/ctg_apis.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.tg.zos.doc/ctgzos/scenarios_head.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.tg.zos.doc/ctgzos/ctg_apis.html
http://www.redbooks.ibm.com/abstracts/sg247714.html
http://www.redbooks.ibm.com/abstracts/sg246401.html

You might want to use Java web services for one of the following reasons:
v You have experience of Axis2 web services on other platforms and want to

create web services in CICS.
v You want to use standard Java APIs to create Java data bindings that integrate

with Axis2.
v You have complicated WSDL documents that are difficult to handle with the

CICS web services assistants.
v You want to run the handling of the web service application on a zAAP.

The following examples describe how you can use Java with web services.

Process SOAP messages in a JVM server

The majority of SOAP processing that occurs in the web services pipeline is
performed by the SOAP handler and application handler. You can optionally run
this SOAP processing in a JVM server and use zAAP to run the work. You can
continue to use web service applications that are written in COBOL, C, C++, or
PL/I.

If you have existing web services, you can update the configuration of your
pipelines to use a JVM server. You do not have to make any changes to the web
services. If the pipeline uses a SOAP header processing program, it is best to
rewrite the program in Java by using the Axis2 programming model. The header
processing program can share the Java objects with Axis2 without doing any
further data conversion. If you have a header processing program in COBOL for
example, the data must be converted from Java into COBOL and back again, which
can slow down the performance of the SOAP processing.

The scenario shown in the following diagram is an example of a COBOL
application that is a web service provider. The request is processed in a pipeline
that is configured to support Java. The SOAP handler and application handler are
Java programs that are processed by Axis2 and run in a JVM server. The
application handler converts the data from XML to COBOL and links to the
application.

CICS region

JVM server

Pipeline

AOR

COBOL
service
provider

LINK

Header
processing

program

Axis2

JAVA SOAP
handler

Transport
handler

Application
handler

Service
handler

Web service
requester

HTTP

When you are planning your environment, ensure that you use a set of dedicated
regions for your JVM servers. In this example, the COBOL application runs in an
application-owning region (AOR) that is separate from the CICS region where the
JVM server runs. You can use workload management to balance the workloads, for

18 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|

|
|

|
|

|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|

example on the EXEC CICS LINK from the application handler or on the inbound
request from the web service requester.

Write a Java application that uses output from the CICS web
services assistant

You can write a Java application that interprets the language structures and uses
the data bindings generated by the CICS web services assistant. The web services
assistant can produce language structures from WSDL or WSDL from language
structures. The assistant also produces a web service binding that describes how to
convert the data between XML and the target language during SOAP processing.

If you use the assistant to generate a language structure, you can use JZOS or J2C
to work with the language structures to generate Java classes. These tools provide
a way for Java developers to interact with other CICS applications. In this example,
you can use these tools to write a Java application that can handle an inbound
SOAP message after CICS has converted the data from XML. For more
information, see “Interacting with structured data from Java” on page 46.

The scenario shown in the following diagram is an example of a Java application
that is a web service provider. The SOAP processing is handled by Axis2 in a JVM
server. The application handler links to the Java application, which is packaged
and deployed as one or more OSGi bundles and runs in a JVM server.

CICS region

JVM server

Pipeline

JVM server

Java
service
provider

LINK

Header
processing

program

Axis2

OSGi
framework

JAVA SOAP
handler

Transport
handler

Application
handler

Service
handler

Web service
requester

JMS

The advantage of this approach is that because the data bindings were generated
by the web services assistant, the web service is represented in CICS by the
WEBSERVICE resource. You can use statistics, resource management, and other
facilities in CICS to manage the web service. The disadvantage is that the Java
developer must work with language structures for a programming language that
might be unfamiliar.

When you are planning your environment for this type of application, use a
separate JVM server to run the application:
v You can more effectively manage and tune the JVM servers for the different

workloads.
v You can use workload management on the inbound requests and EXEC CICS

LINK to balance workloads and scale the environment.
v You can take advantage of the OSGi support in CICS to manage the Java

application.

Chapter 2. Java planning 19

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

Write a Java application that uses Java data bindings

You can write a Java application that generates and parses the XML for SOAP
messages. The Java 6 API provides standard Java libraries to work with XML; for
example, you can use the Java Architecture for XML Binding (JAXB) to create the
Java data bindings, and the Java API for XML Web Services (JAX-WS) libraries to
generate and parse the XML. If you use these libraries, the application can run in
Axis2 in the same JVM server as the SOAP pipeline processing.

The scenario shown in the following diagram is an example of a Java application
that is a web service provider and is processed by the Axis2 SOAP engine in a
JVM server.

CICS region

JVM server

Pipeline

TSQ

VSAM

JCICS

Header
processing

program

Axis2

JAVA SOAP
handler

Transport
handler

Java
service
provider

Service
handler

Web service
requester

HTTP

The Java application uses Java data bindings and interacts with the Java SOAP
handler, so there is no application handler. In this example, the web service
requester uses HTTP to connect to the CICS region, but you can also use JMS. The
Java application uses JCICS to access CICS services, in this example VSAM files
and a temporary storage queue.

The advantage of this approach is that the Java developer uses familiar
technologies to create the application. Also, the Java developer can work with
complex WSDL documents that the web services assistant cannot process to
produce a binding. However, this approach has some limitations:
v You cannot use WS-Security for this type of application, so if you want to use

security, use SSL to secure the connection.
v No context switch for the user ID occurs in the pipeline processing. To change

the user ID on the request, use a URIMAP resource.
v Because you are not using the web service binding from the web services

assistant, there is no WEBSERVICE resource.
v If the application is a web service requester, the pipeline processing is bypassed.

So you do not get the qualities of service that are available in the pipeline.

If you implement workload management in your CICS regions, you must plan
how to route this type of workload. Because the Java application runs in the same
JVM server as the SOAP processing, CICS does not provide a routing opportunity.
However, you can implement a distributed program link in the JAX-WS
application to another program if routing is required.

20 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|
|
|
|

|
|
|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

Java applications that comply with OSGi
CICS includes the Equinox implementation of the OSGi framework to run Java
applications that comply with the OSGi specification in a JVM server.

The OSGi Service Platform specification, as described in “The OSGi Service
Platform” on page 2, provides a framework for running and managing modular
and dynamic Java applications. The default configuration of a JVM server includes
the Equinox implementation of an OSGi framework. Java applications that are
deployed into the OSGi framework of a JVM server benefit from the advantages of
using OSGi and the qualities of service that are inherent in running applications in
CICS.

You might want to use Java applications for any of the following reasons:
v You want to create Java workloads that can run on a zAAP to reduce the cost of

transactions.
v You have experience of writing Java applications that use OSGi on other

platforms and want to create Java applications in CICS.
v You want to provide Java applications as a set of modular components that can

be reused and updated independently, without affecting the availability of
applications and the JVM in which they are running.

To effectively develop, deploy, and manage Java applications that comply with
OSGi, you must use the CICS Explorer SDK and the CICS Explorer:
v The CICS Explorer SDK enhances an existing Eclipse Integrated Development

Environment (IDE) to provide the tools and support to help Java developers
create and deploy Java applications in CICS. Use this tool to convert existing
Java applications to OSGi bundles.

v The CICS Explorer is an Eclipse-based systems management tool that provides
system administrators with views for OSGi bundles, OSGi services, and the JVM
servers in which they run. Use this tool to enable and disable Java applications,
check the status of OSGi bundles and services in the framework, and get some
preliminary statistics on the performance of the JVM server.

Any Java developer or systems administrator who wants to work with OSGi
requires access to these freely available tools.

The following examples describe how you can run Java applications that use OSGi
in CICS.

Run multiple Java applications in the same JVM server

The JVM server can handle multiple requests in the same JVM concurrently.
Therefore you can call the same application multiple times concurrently or run
more than one application in the same JVM server.

When you have decided how to split your applications between JVM servers, you
can plan how to use the OSGi model to componentize your applications into a set
of OSGi bundles. You must also decide what supporting OSGi bundles are
required in the framework to provide services to your applications. The OSGi
framework can contain different types of OSGi bundle, as shown in the following
diagram:

Chapter 2. Java planning 21

|
|

|
|

|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|

|
|
|

|
|
|
|
|
|

OSGi framework

Bundle A

Application bundles

Middleware bundles

System bundles

Bundle B

CICS
main
class

CICS
main
class

Library
Bundle C

WebSphere
MQ

JCICS

Service Service

Application bundles
An application bundle is an OSGi bundle that contains application code.
OSGi bundles can be self-contained or have dependencies on other bundles
in the framework. These dependencies are managed by the framework, so
that an OSGi bundle that has an unresolved dependency cannot run in the
framework. To make the application accessible outside the framework in
CICS, an OSGi bundle must declare a CICS main class as its OSGi service.
If a PROGRAM resource points to the CICS main class, other applications
outside the OSGi framework can access the Java application. If you have
an OSGi bundle that contains common libraries for one or more
applications, a Java developer might decide not to declare a CICS main
class. This OSGi bundle is available only to other OSGi bundles in the
framework.

The deployment unit for a Java application is a CICS bundle. A CICS
bundle can contain any number of OSGi bundles and can be deployed to
one or more JVM servers. You can add, update, and remove application
bundles independently from managing the JVM server.

Middleware bundles
A middleware bundle is an OSGi bundle that contains classes to
implement system services, such as connecting to WebSphere MQ. Another
example might be an OSGi bundle that contains native code and must be
loaded only once in the OSGi framework. A middleware bundle is
managed with the life cycle of the JVM server, rather than the applications
that use its classes. Middleware bundles are specified in the JVM profile of
the JVM server and are loaded by CICS when the JVM server starts up.

System bundles
A system bundle is an OSGi bundle that manages the interaction between
CICS and the OSGi framework to provide key services to the applications.
The primary example is the JCICS OSGi bundles, which provide access to
CICS services and resources.

22 CICS TS for z/OS 4.2: Java Applications in CICS

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

To simplify the management of your Java applications, follow these best practices:
v Deploy tightly coupled OSGi bundles that comprise an application in the same

CICS bundle. Tightly coupled bundles export classes directly from each other
without using OSGi services. Deploy these OSGi bundles together in a CICS
bundle to update and manage them together.

v Avoid creating dependencies between applications. Instead, create a common
library in a separate OSGi bundle and manage it in its own CICS bundle. You
can update the library separately from the applications.

v Follow OSGi best practices by using versions when creating dependencies
between bundles. Using a range of versions mean that an application can
tolerate compatible updates to bundles that it depends on.

v Set up a naming convention for the JVM servers and agree the convention
between the system programmers and Java developers.

Run multiple versions of the same Java application in a JVM
server

The OSGi framework supports running multiple versions of an OSGi bundle in a
framework, so you can phase in updates to the application without interrupting its
availability. However, you cannot have multiple versions of the same OSGi service
in the framework. If different versions of the OSGi bundle have the same CICS
main class, you can use an alias to override the duplicate service. The alias is
specified with the declaration of the CICS main class and registered in the OSGi
framework as the OSGi service for the updated version of the bundle. Specify the
alias on another PROGRAM resource to make the application available.

OSGi framework

Bundle A

1.0.1 1.0.2

Bundle B

CICS
main
class

CICS
main
class

Library
bundle C

Service Alias

Chapter 2. Java planning 23

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

24 CICS TS for z/OS 4.2: Java Applications in CICS

Chapter 3. Developing Java applications for CICS

You can write Java application programs that use CICS services and run under
CICS control. Using the CICS Explorer SDK, you can develop applications that use
the JCICS class library to access CICS resources and interact with programs that
are written in other languages. You can also connect to your Java programs using
various protocols and technologies, such as web services or CICS Transaction
Gateway.

CICS provides tools and the runtime environment to support Java applications.
The CICS Explorer SDK is an eclipse-based tool that provides support for
developing and deploying Java applications in CICS. It contains the JCICS class
libraries to develop applications that access CICS resources and services; for
example, you can access VSAM files, transient data queues, and temporary storage.
You can also use JCICS to link to CICS applications that are written in other
languages, such as COBOL and C.

The CICS Explorer SDK provides other features, such as packaging applications to
comply with the OSGi specification and providing a target environment to ensure
that you use only the classes that are supported in a specific release of CICS. JCICS
samples are also included to help you get started if you are new to developing
Java applications for CICS.

What you need to know about CICS
CICS is a transaction processing subsystem that provides services for a user to run
applications by request, at the same time as many other users are submitting
requests to run the same applications, using the same files and programs. CICS
manages the sharing of resources, integrity of data, and prioritization of execution,
while maintaining fast response times.

A CICS application is a collection of related programs that together perform a
business operation, such as processing a product order or preparing a company
payroll. CICS applications run under CICS control, using CICS services and
interfaces to access programs and files.

You run CICS applications by submitting a transaction request. The term
transaction has a special meaning in CICS; See “CICS transactions” for an
explanation of the difference between the CICS usage and the more common
industry usage. Execution of the transaction consists of running one or more
application programs that implement the required function.

To develop Java applications for CICS, you have to understand the relationship
between CICS programs, transactions, and tasks. These terms are used throughout
CICS documentation and appear in many programming commands. You also have
to understand how CICS handles Java applications in the runtime environment.

CICS transactions
A transaction is a piece of processing initiated by a single request.

The request is typically made by a user at a terminal. However, it could be made
from a Web page, from a remote workstation program, or from an application in

© Copyright IBM Corp. 1999, 2012 25

another CICS region; or it might be triggered automatically at a predefined time.
The Overview: CICS and HTTP in the Internet Guide and the External interfaces
overview in the External Interfaces Guide describe different ways of running CICS
transactions.

A single transaction consists of one or more application programs that, when run,
carry out the processing needed.

However, the term transaction is used in CICS to mean both a single event and all
other transactions of the same type. You describe each transaction type to CICS
with a TRANSACTION resource definition. This definition gives the transaction
type a name (the transaction identifier, or TRANSID) and tells CICS several things
about the work to be done, such as which program to invoke first, and what kind
of authentication is required throughout the execution of the transaction.

You run a transaction by submitting its TRANSID to CICS. CICS uses the
information recorded in the TRANSACTION definition to establish the correct
execution environment, and starts the first program.

The term transaction is now used extensively in the IT industry to describe a unit of
recovery or what CICS calls a unit of work. This is typically a complete logical
operation that is recoverable; it can be committed or backed out as an entirety as a
result of a programmed command or of a system failure. In many cases, the scope
of a CICS transaction is also a single unit of work, but you should be aware of the
difference in meaning when reading CICS documentation.

CICS tasks
A task is single instance of the execution of a transaction.

This word, task, has a specific meaning in CICS. When CICS receives a request to
run a transaction, it starts a new task that is associated with this one instance of the
execution of the transaction type. That is, a CICS task is one execution of a
transaction, with its own private set of data, usually on behalf of a specific user.
You can also consider a task as a thread. Tasks are dispatched by CICS according to
their priority and readiness. When the transaction completes, the task is
terminated.

CICS application programs
In Java programs, you can use the Java class library for CICS (JCICS) to access
CICS services and link to application programs that are written in other languages.

CICS application programs can be written in COBOL, C, C++ , Java, PL/I, or
assembler languages. Most of the processing logic is expressed in standard
language statements, but to request CICS services, applications use the provided
application programming interfaces. COBOL, C, C++, PL/I, or assembler programs
can use the EXEC CICS application programming interface or the C++ class library.
Java programs use the JCICS class library. JCICS is described in “The Java class
library for CICS (JCICS)” on page 47.

CICS services
Java programs can access the following CICS services through the JCICS
programming interface: Data management, communications, unit-of-work,
program, and diagnostic services.

26 CICS TS for z/OS 4.2: Java Applications in CICS

https://ut-ilnx-r4.hursley.ibm.com/ts42_latest/help/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_part1.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtm/topics/overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtm/topics/overview.html

CICS services managers usually have the word control in their title; for example,
“terminal control” and “program control”. These terms are used extensively in
CICS information.

Data management services

CICS provides the following data management services:
v Record-level sharing, with integrity, in accessing Virtual Storage Access Method

(VSAM) data sets. CICS logs activity to support data backout (for transaction or
system failure) and forward recovery (for media failure). CICS file control
manages the VSAM data.
CICS also implements two proprietary file structures, and provides commands
to manipulate them:

Temporary storage
Temporary storage (TS) is a means of making data readily available to
multiple transactions. Data is kept in queues, which are created as
required by programs. Queues can be accessed sequentially or by item
number.

Temporary storage queues can reside in main memory, or can be written
to a storage device.

A temporary storage queue can be thought of as a named scratchpad.

Transient data
Transient data (TD) is also available to multiple transactions, and is kept
in queues. However, unlike TS queues, TD queues must be predefined
and can be read only sequentially. Each item is removed from the queue
when it is read.

Transient data queues are always written to a data set. You can define a
transient data queue so that writing a specific number of items to it acts
as a trigger to start a specific transaction. For example, the triggered
transaction might process the queue.

v Access to data in other databases (including DB2), through interfaces with
database products.

Communications services

CICS provides commands that give access to a wide range of terminals (displays,
printers, and workstations) by using SNA and TCP/IP protocols. CICS terminal
control provides management of SNA and TCP/IP networks.

You can write programs that use Advanced Program-to-Program Communication
(APPC) commands to start and communicate with other programs in remote
systems, using SNA protocols. CICS APPC implements the peer-to-peer distributed
application model.

CICS also provides an Object Request Broker (ORB) to implement the inbound and
outbound IIOP protocols defined by the Common Object Request Broker
Architecture (CORBA). The ORB supports requests to execute Java stateless objects
and enterprise beans.

The following CICS proprietary communications services are provided:

Chapter 3. Developing Java applications for CICS 27

Function shipping
Program requests to access resources (files, queues, and programs) that are
defined as existing on remote CICS regions are automatically routed by
CICS to the owning region.

Distributed program link (DPL)
Program-link requests for a program defined as existing on a remote CICS
region are automatically routed to the owning region. CICS provides
commands to maintain the integrity of the distributed application.

Asynchronous processing
CICS provides commands to allow a program to start another transaction
in the same, or in a remote, CICS region and optionally pass data to it. The
new transaction is scheduled independently, in a new task. This function is
similar to the fork operation provided by other software products.

Transaction routing
Requests to run transactions that are defined as existing on remote CICS
regions are automatically routed to the owning region. Responses to the
user are routed back to the region that received the request.

Unit of work services

When CICS creates a new task to run a transaction, a new unit of work (UOW) is
started automatically. (Thus CICS does not provide a BEGIN command, because
one is not required.) CICS transactions are always executed in-transaction.

CICS provides a SYNCPOINT command to commit or roll back recoverable work
done. When the sync point completes, CICS automatically starts another unit of
work. If you terminate your program without issuing a SYNCPOINT command,
CICS takes an implicit sync point and attempts to commit the transaction.

The scope of the commit includes all CICS resources that have been defined as
recoverable, and any other resource managers that have registered an interest
through interfaces provided by CICS.

If you write enterprise beans using transaction services provided by commands
defined by the Java Transaction Service (JTS), these commands (including BEGIN)
are mapped by CICS to its unit of work services.

Program services

CICS provides commands that enable a program to link or transfer control to
another program, and return.

Diagnostic services

CICS provides commands that you can use to trace programs and produce dumps.

Java runtime environment in CICS
CICS provides two runtime environments for running Java applications.
Threadsafe applications can use a JVM server. Applications that are not threadsafe
have to use pooled JVMs.

28 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|

JVM servers

The JVM server is a runtime environment that can run tasks in a single JVM. This
environment is preferred for running Java applications, because it reduces the
virtual storage required for each Java task and allows CICS to run many tasks
concurrently.

CICS tasks run in parallel as threads in the same JVM server process. Not only is
the JVM shared by all CICS tasks, which might be running multiple applications
concurrently, all static data and static classes are also shared. So to use a JVM
server in CICS, a Java application must be threadsafe. Each thread runs under a T8
TCB and can access CICS services using the JCICS API.

You can write application code to start a new thread or call a library that starts a
thread. However, these threads cannot access CICS services. Any attempt to access
CICS services from an application-spawned thread results in a Java bm.exception.
If you want to create threads in your application, ensure that they do not run
beyond the lifetime of the CICS task that runs the application. When the system
programmer disables the JVM server, CICS waits for all current threads running on
T8 TCBs to finish in the JVM. However, any threads created by an application itself
are terminated.

Because static data is shared by all threads running in the JVM server, you can
create OSGi bundle activator classes to initialize static data and leave it in the right
state when the JVM shuts down. A JVM server runs until the system programmer
disables it, for example to add an application or fix a problem. By providing
bundle activator classes, you can ensure that the state is correctly set for your
applications. CICS has a timeout that specifies how long to wait for these classes to
complete before continuing to start or stop the JVM server. You cannot use JCICS
in startup and termination classes.

Do not use the System.exit() method in your applications. This method causes both
the JVM server and CICS to shut down, affecting the state and availability of your
applications.

Pooled JVMs

A pooled JVM can handle only one request for a Java application at a time,
therefore many more JVMs are required in a CICS region. A pooled JVM is
isolated, so a Java application does not have to be threadsafe. However, pooled
JVMs are typically reused many times, potentially by different applications, so it is
important to maintain transaction isolation and the state of data.

The main thread under which a JVM starts is called the Initial Process Thread
(IPT). CICS ensures that the public static main method in any Java program runs
under the IPT in a pooled JVM. If you want to create threads in your application,
they must not attempt to access CICS services and must not run beyond the
lifetime of the CICS task that starts the threads. If user threads continue to run
after the IPT has returned control to CICS, these threads can damage isolation for
the JVM when it is reused by another application, and can cause problems when
CICS attempts to stop the JVM.

Installing the CICS Explorer SDK
The CICS Explorer SDK is freely available to download from the IBM website to
install in an Eclipse Integrated Development Environment (IDE).

Chapter 3. Developing Java applications for CICS 29

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

Before you begin

You must have the required software installed on your workstation, including an
Eclipse IDE at the correct version. The list of supported operating systems and
required software are described on the CICS Explorer website.

About this task

The CICS Explorer SDK is an Eclipse-based framework for developing extensions
to the CICS Explorer. It also provides support for developing Java applications to
run in any supported release of CICS. It provides support for JCICS and packaging
applications to comply with the OSGi specifications.

Procedure
1. If you do not have an Eclipse IDE installed, go to the Eclipse website.

Download and install an IDE. You must install an Eclipse IDE at version 3.6.2
or higher.

2. To download the CICS Explorer SDK, go to the CICS Explorer website.
3. Select the Download site link and enter your IBM ID and password.
4. Select CICS Explorer from the list and click Continue.
5. Read and accept the license.
6. Select the CICS Explorer SDK from the list to download the compressed file to

a directory on your workstation.
7. Open the Eclipse IDE and click Help > Install new software.
8. Click Add. In the "Add site" dialog box, click Archive.
9. Browse to the downloaded file and click Open.

10. Select the check box next to IBM CICS Explorer SDK and click Next.
11. Accept the license and click Finish to install the CICS Explorer SDK.

Results

The CICS Explorer SDK is installed in your Eclipse IDE. You might need to accept
a security warning and restart your IDE to pick up the new software.

What to do next

You can work with the CICS samples provided by the CICS Explorer SDK to
become familiar with the Java support. For more information, see “Getting started
with the JCICS examples.”

Getting started with the JCICS examples
The CICS Explorer SDK contains the JCICS examples to help you start developing
Java applications for CICS.

About this task

The JCICS examples are packaged as a set of OSGi bundles that you can import
into an Eclipse plug-in project to view the Java source code. You can also use the
context help to look up the Javadoc explanations for the methods that are used in
the code.

30 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|

|

|
|
|
|

|

|
|
|

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|
|
|

http://www.ibm.com/software/htp/cics/explorer/requirements/
http://www.eclipse.org/downloads
http://www.ibm.com/software/htp/cics/explorer/download/

Procedure
1. In the Eclipse IDE, open the Java perspective.
2. To create a new example plug-in project, open the New Example wizard using

one of the following choices:
v In the Eclipse menu bar, click File > New > Example.
v Click the down arrow on the New Wizard icon and click Example.
v In the Project Explorer view, right-click and click New > Example.

3. In the CICS Java folder, select CICS Hello Examples and click Next.

v The CICS API examples demonstrate how to use transient data queues,
temporary storage queues, and channels and COMMAREAs in Java
programs.

v The CICS application bundle example demonstrates how to create a CICS
bundle to deploy to CICS.

v The CICS hello examples demonstrate two ways to do a simple Hello World
test in CICS.

v The CICS web example demonstrates how to use classes to interact with a
web browser.

4. In the Project name field enter a name for the new project. By default, Eclipse
creates a name that is the folder location of the examples in the workspace,
followed by the example name. For example, the default project name for the
Hello World example is com.ibm.cics.server.examples.hello.

5. Click Finish. Eclipse creates the plug-in project containing the JCICS Hello
World example as an OSGi bundle.

Chapter 3. Developing Java applications for CICS 31

6. Expand the project in the Package Explorer view.

v The Plug-in Dependencies folder contains the dependencies for the OSGi
bundle. In this example, the bundle has a dependency on the OSGi bundle
that contains JCICS. This information is also captured in the manifest of the
project.

v The src folder contains the Java source for the examples. You can browse the
source files to see the JCICS classes that are used and use the context help to
look up a particular class. You can also open the Javadoc view to see the API
details for the selected content, for example a method or class.

v The META-INF folder contains the manifest for the project. The manifest
contains the OSGi headers to describe the OSGi bundle.

7. Create plug-in projects for the CICS API and CICS Web examples by using the
New Example wizard. You can view the Java source to understand how the
JCICS classes are used for working with programs and web applications.

Results

You have created three plug-in projects in Eclipse for the JCICS examples. These
projects contain OSGi bundle packaging information, including plug-in
dependencies and target Java environments.

What to do next

To run Java applications in CICS, you have to deploy the Java application in a
CICS bundle project to zFS. You can try the deployment process using the JCICS
examples, as described in “Deploying the JCICS examples.”

Deploying the JCICS examples
You can use the example CICS bundle in the CICS Explorer SDK to deploy the
JCICS examples to a CICS region.

Before you begin

You must have created the JCICS example projects, as described in “Getting started
with the JCICS examples” on page 30.

32 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|

|

|
|

About this task

CICS loads and runs Java applications from zFS, so you must deploy your
compiled applications to a suitable directory in zFS. You can create a suitable
directory in zFS using the z/OS perspective in CICS Explorer. CICS must have
read and execute access to the directory.

The CICS Explorer SDK provides support for deploying Java applications in a
CICS bundle project to zFS. A CICS bundle project groups a set of OSGi bundles
together that are logically deployed and managed as a single unit. You can use the
example CICS bundle project to deploy the JCICS examples to a CICS region.

Procedure
1. In the Eclipse IDE, open the Java perspective.
2. Open the New Example wizard using one of the following choices:

v In the Eclipse menu bar, click File > New > Example.
v Click the down arrow on the New Wizard icon and click Example.
v In the Project Explorer view, right-click and click New > Example.

3. In the CICS Java folder, select CICS Application Bundle Example and click
Next.

4. In the Project name field enter a name for the new project. By default, Eclipse
creates a name that is the folder location of the examples in the workspace,
followed by the example name. For example, the default project name for the
CICS bundle is com.ibm.cics.server.examples.

5. Click Finish. Eclipse creates the CICS bundle project that contains a manifest
and three resources. These resources reference the three OSGi bundles.

6. Open the web.osgibundle file to check its contents. This file is in XML format
and contains the symbolic name and version of the OSGi bundle. It also
contains the name of a sample JVM server. The JVM server is the runtime
environment for Java applications in CICS. When you create your own
applications, you must provide the name of the target JVM server in this file.

7. Deploy the CICS bundle to zFS:
a. Right-click the CICS bundle project and select Export to z/OS UNIX File

System.
b. Enter your FTP credentials if required. You might need to create a

connection to a target host machine if you have not previously set up a
connection.

c. Browse to a directory where you want to deploy the CICS bundle and
click Finish.

The CICS bundle is deployed in the specified directory.
8. Open the CICS SM perspective. In the CICSplex Explorer view, select the CICS

region where you want to run the JCICS example programs.
9. Install the JVMSERVER resource, DFH$JVMS, which is in the sample group

DFH$OSGI. The resource creates a sample JVM server in the CICS region that
contains an OSGi framework. This resource name matches the name of the
JVM server that was specified in the manifest of the CICS bundle. You can
check the status of the JVM server by clicking Operations > Java > JVM
Servers.

10. Open the Bundle Definitions view by clicking Definitions > Bundle
Definitions. This view lists all the bundle definitions for the CICS region.

Chapter 3. Developing Java applications for CICS 33

|

|
|
|
|

|
|
|
|

|

|

|

|

|

|

|
|

|
|
|
|

|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|

11. In the Resource Group Definitions view, select the supplied DFH$OSGI group.
If this view is not open, select Window > Show view to open it in the Eclipse
perspective. The Bundle Definitions view is filtered to display the DFH$OSGB
resource definition.

12. Copy the resource definition to a new group to edit the attributes:
a. Right-click on DFH$OSGB and select Copy.
b. Right-click anywhere in the Resource Group Definitions view and select

Paste.
c. Enter a new group name and click OK.

13. Edit the BUNDLE resource definition in the new group to change the bundle
directory to match the location of the deployed CICS bundle.

14. Right-click the definition to install the BUNDLE resource. You can check the
BUNDLE installed in the ENABLED state by clicking Operations > Bundles.
You can also check the list of OSGi bundles by clicking Operations > Java >
OSGi Bundles.

15. To run the examples in a JVM server, install the DFH$OSGI sample group in
the CICS region. This group contains the resource definitions for all the
samples. The sample BUNDLE and JVMSERVER resources are not installed
because you have already created resources of the same name. When you
install the group, CICS creates the resources that are required to run the
examples.

Results

You have successfully deployed the example CICS bundle to zFS and created the
CICS resources that are required to run the JCICS examples.

What to do next

You can run the JCICS examples, as described in “Running the JCICS examples.”

Running the JCICS examples
CICS provides a number of JCICS examples that you can run in CICS. You can
either run the examples in a JVM server, the preferred environment for running
Java applications, or you can run them in a pooled JVM.

Before you begin

The JCICS examples must be deployed in a zFS directory to which the CICS region
has read and execute access.

Procedure
1. Ensure that the CICS region is correctly configured:

v If you want to run the examples in a JVM server, the DFH$OSGI group must
be installed in the CICS region. In particular, the DFH$JVMS resource must
be enabled in the CICS region. This resource is the supplied sample JVM
server and uses the default DFHOSGI profile. The BUNDLE resource
containing the OSGi bundles for the JCICS examples must also be enabled.

v If you want to run the examples in a pooled JVM, the DFH$JVM group must
be installed in the CICS region. Edit the default JVM profile DFHJVMPR to

34 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|

|

|
|

|

|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

|

|
|
|

|

|
|

|

|

|
|
|
|
|

|
|

add the class path /usshome/samples/dfjcics to the CLASSPATH_SUFFIX
option, where usshome is the value of the USSHOME system initialization
parameter.

2. Follow the appropriate procedure to run each sample.

Running the Hello World examples
You can run two “Hello World” examples: HelloWorld and HelloCICSWorld. The
HelloWorld example uses only Java services and HelloCICSWorld demonstrates the
use of the JCICS TerminalPrincipalFacility class.

Before you begin

Ensure the CICS region is configured, as described in “Running the JCICS
examples” on page 34.

About this task

The programs are started by sample CICS transactions. The examples use the
following Java classes and CICS programs:

Example Transaction Program Java class

HelloWorld JHE1 DFJ$JHE1 HelloWorld

DFH$JSAM (C
program)

N/A

HelloCICSWorld JHE2 DFJ$JHE2 HelloCICSWorld

DFH$JSAM is a standard CICS program that could be written in any of the
CICS-supported languages. If, for example, you do not have a C compiler, you
could write a COBOL version of DFH$JSAM and use it in place of the supplied C
version. Alternatively, you can bypass DFH$JSAM altogether by changing the JHE1
TRANSACTION definition to run program DFJ$JHE1. However, if you change the
definition, the Java program does not write anything to the terminal; so your only
indication that the application has run successfully is the message in the stdout
file.

Procedure
v Enter the JHE1 transaction in a terminal to run the standard Java application.

You receive the following messages from JHE1: The following message is
returned to your terminal:
SAMPLE *COMPLETED*, SEE STOUT

The following entry is written to the stdout file:
Hello from a regular Java application

v Enter the JHE2 transaction in a terminal to run the JCICS application. You
receive the following message from JHE2 on your terminal:
Hello from a Java CICS application

Results

You have successfully run the Hello World examples.

Chapter 3. Developing Java applications for CICS 35

|
|
|

|

|

|
|
|

|

|
|

|

|
|

|||||

||||

|
|
|

||||
|

|
|
|
|
|
|
|
|

|

|
|
|

|

|

|

|
|

|

|

|

What to do next

You can run the other examples to try out different services that are available to
Java programs in CICS.

Running the program control examples
You can run the channel and COMMAREA examples to understand how CICS
processes channels and containers or COMMAREAs. Programs can use either
method to pass data, but containers are not limited to 32 KB.

Before you begin

Ensure the CICS region is configured, as described in “Running the JCICS
examples” on page 34.

About this task

The examples demonstrate how to use the JCICS Program class to pass a channel
and container or COMMAREA to another program. The COMMAREA example
also shows you how to convert ASCII characters in the Java code to and from the
equivalent EBCDIC used by the native CICS program.

The programs are started by sample CICS transactions. The examples use the
following Java classes and CICS programs:

Example Transaction Program Java class

Channel JPC3 DFJ$JPC3 ProgramControl.ClassThree

DFJ$JPC4 ProgramControl.ClassFour

DFH$LCCC (C
language)

N/A

COMMAREA JPC1 DFJ$JPC1 ProgramControl.ClassOne

DFJ$JPC2 ProgramControl.ClassTwo

DFH$LCCA (C
language)

N/A

DFH$LCCA and DFH$LCCC are standard CICS programs that can be written in
any of the supported high-level languages. If you do not have a C compiler, you
can write COBOL versions of DFH$LCCA and DFH$LCCC and use them in place
of the supplied C versions.

Procedure
v To run the channel example:

1. Enter the JPC3 transaction in a terminal. You receive the following messages
on Task.out (usually your terminal):
Entering ProgramControlClassThree.main()
About to link to C program
Leaving ProgramControlClassThree.main()

2. Clear the screen. The following messages are displayed:
Entering ProgramControlClassFour.main()
ProgramControlClassFour invoked with Container "IntData "
ProgramControlClassFour invoked with Container "StringData "
ProgramControlClassFour invoked with Container "Response "
Leaving ProgramControlClassFour.main()

36 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|

|

|
|
|

|

|
|

|

|
|
|
|

|
|

|||||

||||

||

|
|
|

||||

||

|
|
|

|

|
|
|
|

|

|

|
|

|
|
|

|

|
|
|
|
|

The messages that list the containers might appear in a different order.

The following processing is taking place in CICS:
1. The transaction runs the main Java class that is defined in the PROGRAM

resource DFJ$JPC3. The Java program constructs a Channel object with two
containers, and links to the C program, DFH$LCCC.

2. DFH$LCCC processes the containers, creates a new response container, and
returns.

3. The Java program checks the data in the response container and schedules a
pseudoconversational transaction to be started, passing the Channel object to
the started transaction.

4. The started transaction runs another Java class that is defined in the
PROGRAM resource DFJ$JPC4. This Java program browses the Channel
using a ContainerIterator object and displays the name of each container it
finds.

v To run the COMMAREA example:
1. Enter the JPC1 CICS transaction to run the example. You receive the

following messages on Task.out (usually your terminal):
Entering ProgramControlClassOne.main()
About to link to C program
Leaving ProgramControlClassOne.main()

2. Clear the screen. The following messages are displayed:
Entering ProgramControlClassTwo.main()
data received correctly
Leaving ProgramControlClassTwo.main()

The following processing is taking place in CICS:
1. The transaction runs the main Java class that is defined in the PROGRAM

resource DFJ$JPC1. The Java program constructs a COMMAREA and links to
the C program, DFH$LCCA.

2. The C program processes the COMMAREA, updates it, and returns to the
Java program.

3. The Java program checks the data in the COMMAREA and schedules a
pseudoconversational transaction to be started, passing the started
transaction the changed data in its COMMAREA.

4. The started transaction runs another main Java class that is defined in the
PROGRAM resource DFJ$JPC2. This Java program reads the COMMAREA
and validates it again.

Running the TDQ example
You can run the transient data queue example to understand how Java programs
can interact with transient data. Programs can read and write transient data that is
stored in sequential queues.

Before you begin

Ensure the CICS region is configured, as described in “Running the JCICS
examples” on page 34.

About this task

This example demonstrates how to use the JCICS TDQ class. The example uses the
following Java class and program:

Chapter 3. Developing Java applications for CICS 37

|

|

|
|
|

|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

|

|
|
|

|

|
|

|

|
|

Transaction Program Java class

JTD1 DFJ$JTD1 TDQ.ClassOne

Procedure

Enter the JTD1 transaction in a terminal to run the example. You receive the
following messages on Task.out:

Entering examples.TDQ.ClassOne.main()
Entering writeFixedData()
Leaving writeFixedData()
Entering writeFixedData()
Leaving writeFixedData()
Entering readFixedData()
Leaving readFixedData()
Entering readFixedDataConditional()
Leaving readFixedDataConditional()
Leaving examples.TDQ.ClassOne.main()

Results

CICS performs the following processing:
1. The transaction runs the main Java class that is defined in the PROGRAM

resource DFJ$JTD1.
2. The Java program writes some data to a transient data queue, reads it, and then

deletes the queue.

Running the TSQ example
You can run the temporary storage example to understand how Java programs can
interact with temporary storage queues. A temporary storage queue is a queue of
data items that can be read and reread in any sequence. The queue is created by a
task and persists until the same task or another task deletes it.

Before you begin

Ensure the CICS region is configured, as described in “Running the JCICS
examples” on page 34.

About this task

This example demonstrates how to use the JCICS TSQ class and how to build a
class as a dynamic link library (DLL) that can be shared with other Java programs.
This example uses the following Java classes and programs:

Transaction Program Java class

JTS1 DFJ$JTS1 TSQ.ClassOne

DFJ$JTSC TSQ.Common

Procedure

Enter the JTS1 CICS transaction to run the example. You receive the following
messages on Task.out:

Entering TSQ.ClassOne.main()
Entering TSQ_Common.writeFixedData()
Leaving TSQ_Common.writeFixedData()

38 CICS TS for z/OS 4.2: Java Applications in CICS

||||

|||
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|

|

|
|
|
|

|

|
|

|

|
|
|

||||

|||

||
|

|

|
|

|
|
|

Entering TSQ_Common.serializeObject()
Leaving TSQ_Common.serializeObject()
Entering TSQ_Common.updateFixedData()
Leaving TSQ_Common.updateFixedData()
Entering TSQ_Common.writeConditionalFixedData()
Leaving TSQ_Common.writeConditionalFixedData()
Entering TSQ_Common.updateConditionalFixedData()
Leaving TSQ_Common.updateConditionalFixedData()
Entering TSQ_Common.readFixedData()
Leaving TSQ_Common.readFixedData()
Entering TSQ_Common.deserializeObject()
Leaving TSQ_Common.deserializeObject()
Entering TSQ_Common.readFixedConditionalData()
Number of items returned is 3
Leaving TSQ_Common.readFixedConditionalData()
Entering TSQ_Common.deleteQueue()
Leaving TSQ_Common.deleteQueue()
Leaving TSQ.ClassOne.main()

Results

The following processing is taking place in CICS:
1. The transaction runs the main Java class that is defined in the PROGRAM

resource DFJ$JTS1. The Java program links to another common Java program
that is defined in the PROGRAM resource DFJ$JTSC.

2. The common Java program writes to an auxiliary temporary storage queue,
updates the queue, deletes the queue, and returns.

Running the web example
You can run the web example to understand how Java programs can use CICS web
support to interact with web browsers.

Before you begin

Ensure the CICS region is configured, as described in “Running the JCICS
examples” on page 34. Before you run the web sample, follow the instructions in
Configuring CICS web support components in the Internet Guide. Use the sample
programs DFH$WB1A (Assembler) or DFH$WB1C (C) to confirm that CICS web
support is configured correctly.

About this task

This example demonstrates how to use the JCICS web and document classes. You
access this example application from a web browser. The example obtains
information about the inbound client request, the HTTP headers, and the TCP/IP
characteristics of the transaction. This information is written to the standard output
stream System.out and inserted into a response document. Information about the
document is also obtained and written to System.out and inserted into the
response document. The response document is then sent to the client.

The example uses the following Java class and program:

Program Java class

DFJ$JWB1 Web.Sample1

Chapter 3. Developing Java applications for CICS 39

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|||

||
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtlbw.html

Procedure
1. Start your web browser and enter a URL that connects to CICS with the

absolute path /CICS/CWBA/DFJ$JWB1. CICS returns the following response
document to the web browser:
Web Sample1

Inbound Client Request Information:

Method: GET

Version: HTTP/1.1

Path: /cics/cwba/jcicxsa1

Request Type: HTTPYES

Query String: null

HTTP headers:

Value for HTTP header User-Agent is ’Mozilla/4.75 €en€ (WinNT; U)’

Browse of HTTP Headers started

Name: Host Value: winmvs2d.hursley.ibm.com:27361

Name: Connection Value: Keep-Alive, TE

Name: Accept Value: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png,
/

Name: Accept-Encoding Value: gzip

Name: Accept-Language Value: en

Name: Accept-Charset Value: iso-8859-1,*,utf-8

Name: Cookie Value: PBC_NLSP=en_US

Name: TE Value: chunked

Name: Via Value: HTTP/1.0 sp15ce18.hursley.ibm.com (IBM-PROXY-WTE-US)

Name: User-Agent Value: Mozilla/4.75 €en€ (WinNT; U)

Browse of HTTP Headers completed

TCPIP Information:

Client Name: sp15ce18.hursley.ibm.com

Server Name: winmvs2d.hursley.ibm.com

Client Address: 9.20.136.28

ClientAddrNu: 9.20.136.28

Server Address: 9.20.101.8

ServerAddrNu: 9.20.101.8

Clientauth: NO

SSL: NO

TcpipService: HTTPNSSL

40 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

PortNumber: 27361

Document Information:

Doctoken: 33 92 112 0 0 0 0 1 64 64 64 64 64 64 64 64

Docsize: 2762

2. Check the standard output stream in zFS. The example writes information
messages to the standard output stream System.out and error messages to the
standard output stream System.err. Here is an example of the output written
to the System.out output stream:
Sample1 started
Method: GET (3)
Version: HTTP/1.1 (8)
Path: /cics/cwba/jcicxsa1 (19)
Request Type: HTTPYES
Value for HTTP header User-Agent is ’Mozilla/4.75 en (WinNT; U)’
HTTP headers:
Name: Host (4)
Value: winmvs2d.hursley.ibm.com:27361 (30)
Name: Connection (10)
Value: Keep-Alive, TE (14)
Name: Accept (6)
Value: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */* (67)
Name: Accept-Encoding (15)
Value: gzip (4)
Name: Accept-Language (15)
Value: en (2)
Name: Accept-Charset (14)
Value: iso-8859-1,*,utf-8 (18)
Name: Cookie (6)
Value: PBC_NLSP=en_US (14)
Name: TE (2)
Value: chunked (7)
Name: Via (3)
Value: HTTP/1.0 sp15ce18.hursley.ibm.com (IBM-PROXY-WTE-US) (52)
Name: User-Agent (10)
Value: Mozilla/4.75 en (WinNT; U) (28)
Client Name: sp15ce18.hursley.ibm.com (24)
Server Name: winmvs2d.hursley.ibm.com (24)
Client Address: 9.20.136.28 (11)
ClientAddrNu: 9.20.136.28
Server Address: 9.20.101.8 (10)
ServerAddrNu: 9.20.101.8
Clientauth: NO
SSL: NO
TcpipService: HTTPNSSL
PortNumber: 27361
Doctoken: Doctoken: 33 92 112 0 0 0 0 1 64 64 64 64 64 64 64 64
Docsize: 2762
Sample1 complete

Developing applications using the CICS Explorer SDK
The CICS Explorer Software Development Kit (SDK) provides an environment for
developing and deploying Java applications in CICS, including support for OSGi.

About this task

You can use the SDK to create new applications or repackage existing Java
applications to comply with the OSGi specification. The OSGi Service Platform
provides a mechanism for developing applications using a component model and

Chapter 3. Developing Java applications for CICS 41

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|
|

deploying those applications into a framework as OSGi bundles. An OSGi bundle is
the unit of deployment for an application and contains version control information,
dependencies, and application code. The main benefit of OSGi is that you can
create applications from reusable components that are accessed only through
well-defined interfaces called OSGi services. You can also manage the life cycle and
dependencies of Java applications in a granular way. For information about
developing applications with OSGi, see the OSGi Alliance website.

You can use the SDK to develop a Java application to run in any supported release
of CICS. Different releases of CICS support different versions of Java, and the
JCICS API has also been extended in later releases to support additional features of
CICS. To avoid using the wrong classes, the SDK provides a feature to set up a
target platform. You can define which release of CICS you are developing for and
the SDK automatically hides the Java classes that you cannot use.

See the CICS Java Developer Guide in the SDK help for full details on how you can
perform each of the following steps to develop and deploy applications.

Procedure
1. Set up a target platform for your Java development. The target platform

ensures you use only the Java classes that are appropriate for the target release
of CICS in your application development.

2. Create a plug-in project for your Java application development.
3. Develop your Java application using best practices. If you are new to

developing Java applications for CICS, you can use the JCICS examples
provided with the CICS Explorer SDK to get started. To use JCICS in a Java
application, you must import the com.ibm.cics.server package.

4. Deploy your Java application in a CICS bundle to zFS. CICS bundles can
contain one or more OSGi bundles and are the unit of deployment for your
application in CICS. If you are running the Java application in a JVM server,
you must know the name of the JVMSERVER resource in which you want to
deploy the application.

Results

You have successfully developed and deployed your application in a CICS bundle
using the CICS Explorer SDK.

What to do next

Create a CICS BUNDLE resource to install the OSGi bundles in a JVM server. If
you cannot create resources in the CICS region, the system programmer can create
the BUNDLE resource. You must tell the system programmer where the bundle
directory is located in zFS and the name of the target JVM server. For details, see
“Installing OSGi bundles in a JVM server” on page 84.

Migrating applications using the CICS Explorer SDK
If you have existing applications running in pooled JVMs and you want to run
them in a JVM server, you can use the CICS Explorer SDK to repackage the
applications as OSGi bundles.

42 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|

|

|
|
|
|
|

|

|
|
|

http://www.osgi.org

About this task

You can use three methods to repackage an existing Java application. Each method
is explained in full detail in the SDK help and is summarized in the following
procedure.

Procedure
1. Check that the Java application is threadsafe. Because the JVM server is a

multithreaded runtime environment, it is important that any Java application
running in that environment is threadsafe.

2. Check that the Java application does not use the System.exit() Java method. If
this method is used, the JVM server and CICS both shut down.

3. Package the Java application as one or more OSGi bundles. You can use three
methods to package the application:

Conversion
If you already have an Eclipse Java project for the Java application, you
can convert the project to an OSGi plug-in project. This method is the
preferred best practice. The OSGi bundle can run in a pooled JVM
environment and a JVM server.

Injection
Create an OSGi plug-in project and import the contents of the existing
JAR file. This method is useful when the application is already
threadsafe and no refactoring or recompiling is required. The OSGi
bundle can run in a pooled JVM environment and a JVM server.

Wrapping
Create an OSGi plug-in project and import an existing binary JAR file.
This method is useful in situations where there are licensing restrictions
or where the binary file cannot be extracted. However, an OSGi bundle
that contains a JAR file is not supported in a pooled JVM environment.

4. For each of these methods, add the CICS-MainClass declaration to the project
manifest.
The following screen capture shows an example manifest file for the CICS
Hello examples. The example application contains two classes: HelloCICSWorld
and HelloWorld, and these are declared in the manifest file in the
CICS-MainClass declaration. You must add a CICS-MainClass declaration for
each class used in your application.

Chapter 3. Developing Java applications for CICS 43

|

|
|
|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|

5. Deploy the OSGi bundles in a CICS bundle to zFS. You must specify the target
JVMSERVER resource in the plug-in resource file of the CICS bundle.

Results

You have a threadsafe application that is packaged as one or more OSGi bundles
and is deployed as a CICS bundle in zFS.

What to do next

The system programmer can create the resources that are required to run the
application in a JVM server, as described in “Moving applications to a JVM server”
on page 127.

Best practices for developing Java applications in CICS
When you are designing and developing Java applications to run in CICS, ensure
that the application does not leave any unwanted state in the JVM or change the
state of the JVM in undesirable ways. You can use CICS services to help control the
state of the JVM.

Although JVM servers and pooled JVMs operate in different ways, any Java
application that you develop can follow the same best practices to work correctly
in both runtime environments.

Protect the state of a JVM

If your application changes the state of the JVM, ensure that the application also
resets to the original state. For example, an application might reset the default time
zone, and do calculations based on this time zone. Other applications that use the
same JVM use the new default time zone, which might not be appropriate.
v If an application runs in a pooled JVM, it is isolated from other applications.

However, pooled JVMs are serially reused and the changes made by one
application can affect other applications that run in the same JVM afterwards.

v If an application runs in a JVM server, it is not isolated from other applications
that might also be running in the same JVM under different threads. Any
changes that an application makes to the JVM affects the other applications.
Do not use System.exit() methods in your applications. Using System.exit()
methods causes both the JVM server and CICS to shut down and can affect the
state of your applications.

Control static state in a JVM

Do not leave any unwanted state in a JVM. State is passed on to subsequent
applications using the same pooled JVM and in a JVM server state is shared
between all running applications.

An application must reinitialize its own static storage, if it depends on the state of
a changeable class field. The values of static variables persist in the JVM for all
application and system classes, including classes that might affect the application
but are not used explicitly by the application and values used in static initializers.

In most cases, static variables are used to avoid reinitialization of storage, and
allowing them to persist can improve performance. If the application requires that
the value of these variables is reset, the application must reset the value itself. Try

44 CICS TS for z/OS 4.2: Java Applications in CICS

|
|

|

|
|

|

|
|
|

|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|

to identify and eliminate any changeable class fields and static initializers that have
not been included deliberately as part of the application design.

Define a class field as private and final whenever possible. A native method can
write to a final class field, and a non-private method can obtain the object
referenced by the class field and can change the state of the object or array.

You can use the ability to pass on state to your advantage in designing your Java
applications if you want information to persist from one program invocation to the
next. Static state and object instances that are referenced through static state persist
in the JVM, so it is permissible for applications to create persistent items that
might be of use to future executions of the same application in the same JVM.

For example, an operation reads DB2 information to construct a complex data
structure; this might be an expensive operation that you do not want to repeat
more times than absolutely necessary. The complex data structure can be stored in
application static storage and be accessible to later executions of the application in
the same JVM, thus avoiding unnecessary initialization. If objects are anchored in
static storage, that is, in the static class fields, they are never be candidates for
garbage collection.
v In a JVM server, static state persists for all applications until the JVM server is

disabled by the system programmer. You can provide OSGi bundle activator
classes to maintain the state of objects across restarts of the JVM server. These
classes cannot contain JCICS calls.

v In a pooled JVM, there is no guarantee that subsequent invocations of an
application will run in the same JVM. Your application must not rely on the
presence of the persistent items that you create in the JVM. The application can
check for their presence in order to avoid unnecessary initialization, but it must
be prepared to initialize them if they are not found in the present JVM.

Close DB2 connections, sockets, and other task lifetime system
resources after use

If your application is running in a pooled JVM, it must close the connection after it
has accessed DB2. If the application does not close the connection, a subsequent
execution of the same application fails to open the connection. If your application
is running in a JVM server, it is possible to have multiple connections to DB2 from
different applications. Therefore, when a task has finished with DB2, it is best
practice but not required to close the connection, because the connection is deleted
when the task has completed.

If you start threads in an application to manage sockets using the java.net package,
the application must manage the connections and close them. Sockets created using
the java.net classes use the native sockets capability in the JVM, rather than the
CICS sockets domain. CICS is not able to manage or monitor any communications
that are performed using these sockets.

The same applies to any other task lifetime system resources used by the
application, which must be released after use.

Test applications for possible threadsafe issues

Always write threadsafe Java applications. You can use the CICS JVM Application
Isolation Utility to audit the use of static variables in your Java applications. The
utility inspects Java bytecodes and reports on the static variables used by each

Chapter 3. Developing Java applications for CICS 45

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|

class. You can use this information to help you check your source code. Make sure
that the application is resetting the static variable correctly in each case.

If a Java application works correctly on its first use in a given JVM, but does not
behave correctly on subsequent uses, the problem is likely to be due to
threadsafety issues. In this case, use the CICS JVM Application Isolation Utility as
part of your problem determination work to help identify the cause of the
problem.

Interacting with structured data from Java
CICS Java programs often interact with data that was originally designed for use
with other programming languages. For example, a Java program might link to a
COBOL program using a COMMAREA defined in a COBOL copybook, or read a
record from a VSAM file where the data is defined using a C++ header file. You
can use an importer to interact with these forms of structured data.

Importing application data into Java using JZOS and J2C

CICS supports copybook importers so that you can use structured data from other
programming languages in Java. Supported importers are provided by JZOS tools
and by Rational, using the Java EE Connector Architecture (JCA), also known as
the J2EE Connector architecture (J2C).

The importers map the data types contained in the source program so that your
application can access individual fields in data structures. You can use the JZOS or
Rational J2C tools to interact with data to produce a Java class, so that you can
pass data between Java and other programs in CICS.

CICS supports Java artifacts from the following importers:
v Data binding beans from the J2C tools in Rational® Application Developer

(RAD) and Rational Developer for System z
v Records from the IBM JZOS Batch Toolkit for z/OS SDK

The IBM Redbook, Java Application Development for CICS uses an example
application called the Heritage Trader application, which manipulates an existing
COBOL application. Information is provided on the following topics:
v Instructions for installing JZOS and J2C
v Migrating the COBOL application to JCICS
v Creating a Java data binding class for J2C
v Generating a wrapper class with JZOS
v Example implementations for web, file, and DB2 access using the JCICS API

J2C requirements

You can create J2EE Connector artifacts that you can use to create enterprise
applications. The RAD J2C wizard helps you create a class or set of classes that
map to COBOL and other application program data structures.

You require RAD on a Windows or Linux workstation to use the Rational J2C
importer.

46 CICS TS for z/OS 4.2: Java Applications in CICS

|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|

|
|

|

|
|
|

|

|

|

|

|

|

|
|
|

|
|

http://www.redbooks.ibm.com/abstracts/sg245275.html

JZOS requirements

The IBM JZOS Batch Toolkit for z/OS SDK is a set of tools that provide Java batch
capabilities on z/OS. JZOS includes a launcher for running Java applications
directly as batch jobs or started tasks, and a set of Java methods that make access
to traditional z/OS data and key system services directly available from Java
applications.

JZOS supports automatic generation of record classes from COBOL copybooks and
Assembler DSECTs.

The JZOS download includes the JZOS COBOL Record Generator User’s Guide and
the JZOS Assembler Record Generator User’s Guide in PDF format.

IBM Redbooks

Java Application Development for CICS

Java Connectors for CICS Featuring the J2EE Connector Architecture

Java Stand-alone Applications on z/OS Volume 2
J2C information

RAD: Connecting to enterprise information systems (EIS)

RAD: COBOL Importer overview

CICS Transaction Gateway Programming Guide
JZOS information

JZOS Java Launcher and Toolkit Overview

JZOS Batch Launcher and Toolkit Installation and User Guide

Java programming using JCICS
You can write Java applications that use the CICS Java class library (JCICS) to
access CICS services. JCICS is the Java equivalent of the EXEC CICS application
programming interface (API) that is provided for other CICS supported languages,
such as COBOL.

Using JCICS, you can write Java applications that access CICS resources and
integrate with programs written in other languages. Most of the functions of the
EXEC CICS API are supported. The library is supplied in the
com.ibm.cics.server.jar file with CICS and with the CICS Explorer SDK.

The Java class library for CICS (JCICS)
The Java class library for CICS (JCICS) supports most of the functions of the EXEC
CICS API commands.

The JCICS classes are fully documented in Javadoc that is generated from the class
definitions. The Javadoc is available at JCICS Class Reference.

JavaBeans
Some of the classes in JCICS can be used as JavaBeans, which means that they can
be customized in an application development tool such as Eclipse, serialized, and
manipulated using the JavaBeans API.

The following JavaBeans are available in JCICS:

Chapter 3. Developing Java applications for CICS 47

|

|
|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

http://www.redbooks.ibm.com/abstracts/sg245275.html
http://www.redbooks.ibm.com/abstracts/sg246401.html
http://www.redbooks.ibm.com/abstracts/sg247291.html
http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/index.jsp?topic=/com.ibm.etools.j2c.doc/topics/cresadapoverv.html
http://publib.boulder.ibm.com/infocenter/radhelp/v7r5/index.jsp?topic=/com.ibm.etools.cobol.importer.doc/topics/ccobolimporteroverview.html
http://publib.boulder.ibm.com/infocenter/cicstgzo/v8r0/topic/com.ibm.cics.tg.zos.doc/ctgzos/ctg_apis.html
http://www-03.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html
http://publibfi.boulder.ibm.com/epubs/pdf/ajvc0102.pdf

v Program
v ESDS
v KSDS
v RRDS
v TDQ
v TSQ
v AttachInitiator
v EnterRequest

These beans do not define any events; they consist of properties and methods.
They can be instantiated at run time in one of three ways:
v By calling the new method for the class itself. This method is preferred.
v By calling Beans.instantiate() for the name of the class, with property values set

manually.
v By calling Beans.instantiate() of a .ser file, with property values set at design

time.

If either of the first two options are chosen, the property values, including the
name of the CICS resource, must be set by invoking the appropriate set methods at
run time.

Library structure
Each JCICS library component falls into one of four categories: Interfaces, Classes,
Exceptions, or Errors.

Interfaces
Some interfaces are provided to define sets of constants. For example, the
TerminalSendBits interface provides a set of constants that can be used to
construct a java.util.BitSet.

Classes
The supplied classes provide most of the JCICS function. The API class is an
abstract class that provides common initialization for every class that
corresponds to a part of the CICS API, except for ABENDs and exceptions. For
example, the Task class provides a set of methods and variables that
correspond to a CICS task.

Errors and Exceptions
The Java language defines both exceptions and errors as subclasses of the class
Throwable. JCICS defines CicsError as a subclass of Error. CicsError is the
superclass for all the other CICS error classes, which are used for severe errors.

JCICS defines CicsException as a subclass of Exception. CicsException is the
superclass for all the CICS exception classes (including the
CicsConditionException classes such as InvalidQueueIdException, which
represents the CICS QIDERR condition).

See “Error handling and abnormal termination” on page 52 for further
information.

CICS resources
CICS resources, such as programs or temporary storage queues, are represented by
instances of the appropriate Java class, identified by the values of various
properties such as the name of the resource.

48 CICS TS for z/OS 4.2: Java Applications in CICS

Resources must be defined to CICS using the CICS Explorer, CEDA transaction, or
CICSPlex® SM BAS. See the CICS Resource Definition Guide or the CICSPlex System
Manager Concepts and Planning manual for information about defining CICS
resources. It is possible to use implicit remote access by defining a resource locally
to point to a remote resource.

Arguments for passing data
You can pass data between programs using channels and containers, or by using a
communication area (COMMAREA).

If you use a COMMAREA, you are limited to passing 32 KB at a time. If you use a
channel and containers, you can pass more than 32 KB between programs. The
COMMAREA or channel, and any other parameters, are passed as arguments to
the appropriate methods.

Many of the methods are overloaded; that is, they have different versions that take
either a different number of arguments or arguments of a different type. There
might be one method that has no arguments, or the minimum mandatory
arguments, and another that has all of the arguments. For example, the Program
class includes the following different link() methods in the :

link()
This method does a simple LINK without using a COMMAREA to pass data,
nor any other options.

link(com.ibm.cics.server.CommAreaHolder)
This method does a simple LINK, using a COMMAREA to pass data but
without any other options.

link(com.ibm.cics.server.CommAreaHolder, int)
This method does a distributed LINK, using a COMMAREA to pass data and a
DATALENGTH value to specify the length of the data within the
COMMAREA.

link(com.ibm.record.IByteBuffer)
This method does a LINK using an object that implements the IByteBuffer
interface of the Java Record Framework supplied with VisualAge for Java.

link(com.ibm.cics.server.Channel)
This method does a LINK using a channel to pass data in one or more
containers.

Serializable classes
Serializable classes are JCICS classes that can survive a Passive/Activate cycle

The following list shows the serializable classes:
v AddressResource
v AttachInitiator
v CommAreaHolder
v EnterRequest
v ESDS
v File
v KeyedFile
v KSDS
v NameResource
v Program

Chapter 3. Developing Java applications for CICS 49

v RemotableResource
v Resource
v RRDS
v StartRequest
v SynchronizationResource
v SyncLevel
v TDQ
v TSQ
v TSQType

System.out and System.err
For each Java-related CICS task, CICS automatically creates two Java PrintWriters
classes that can be used as standard out and standard error streams. The standard
out and standard error streams are public fields in the Task class called out and
err.

If a CICS task is being driven from a terminal (the terminal is called a principal
facility in this case), CICS maps the standard out and standard error streams to the
task's terminal.

If the task does not have a terminal as its principal facility, the standard out and
standard error streams are sent to System.out and System.err. System.out and
System.err are mapped to the CICS transient data queues CESO and CESE,
respectively. Your CICS system programmer creates these queues, and others used
for CICS messages, during CICS installation. You can access and print or display
these message queues using utility programs such as the DFH$TDWT sample
program. DFH$TDWT is in CICSTS42.CICS.SDFHLOAD.

Threads
Only the initial thread in the JVM can access the JCICS API. You can create other
threads, but you must route all requests to the JCICS API through the initial
thread. In a JVM server environment, multiple initial threads can access the JCICS
API using the same JVM.

Additionally, you must ensure that all threads other than the initial thread have
terminated before doing any of the following actions:
v link()
v xctl()
v setNextTransaction(), setNextCOMMAREA()
v commit(), rollback()
v returning an AbendException

JCICS services reference
Many of the options and services available to non-Java programs through the EXEC
CICS API are available to Java programs through JCICS.

CICS exception handling in Java programs
CICS ABENDs and exceptions are integrated into the Java exception-handling
architecture to handle problems that occur in CICS.

All regular CICS ABENDs are mapped to a single Java exception, AbendException,
whereas each CICS condition is mapped to a separate Java exception. This leads to

50 CICS TS for z/OS 4.2: Java Applications in CICS

an ABEND-handling model in Java that is similar to the other programming
languages; a single handler is given control for every ABEND, and the handler
must query the particular ABEND and then decide what to do.

If the exception representing a condition is caught by CICS itself, it is turned into
an ABEND.

Java exception-handling is fully integrated with the ABEND and
condition-handling in other languages, so that ABENDs can propagate between
Java and non-Java programs, in the standard language-independent way. A
condition is mapped to an ABEND before it leaves the program that caused or
detected the condition.

However, there are several differences to the abend-handling model for other
programming languages, resulting from the nature of the Java exception-handling
architecture and the implementation of some of the technology underlying the Java
API:
v ABENDs that cannot be handled in other programming languages can be caught

in Java programs. These ABENDs typically occur during sync point processing.
To avoid these ABENDs interrupting Java applications, they are mapped to an
extension of an unchecked exception; therefore they do not have to be declared
or caught.

v Several internal CICS events, such as program termination, are also mapped to
Java exceptions and can therefore be caught by a Java application. Again, to
avoid interrupting the normal case, these events are mapped to extensions of an
unchecked exception and do not have to be caught or declared.

Three class hierarchies of exceptions relate to CICS:
1. CicsError, which extends java.lang.Error and is the base for AbendError and

UnknownCicsError.
2. CicsRuntimeException, which extends java.lang.RuntimeException and is in

turn extended by:

AbendException
Represents a normal CICS ABEND.

EndOfProgramException
Indicates that a linked-to program has terminated normally.

TransferOfControlException
Indicates that a program has used an xctl() method, the equivalent of the
CICS XCTL command.

3. CicsException, which extends java.lang.Exception and has the subclass:

CicsConditionException.
The base class for all CICS conditions.

CICS error-handling commands:

CICS condition handling is integrated into the Java exception architecture as
described above. The way that the equivalent “EXEC CICS” command is supported
in Java is described below:

HANDLE ABEND
To handle an ABEND generated by a program in any CICS-supported
language, use a Java try-catch statement, with AbendException appearing in a
catch clause.

Chapter 3. Developing Java applications for CICS 51

HANDLE CONDITION
To handle a specific condition, such as PGMIDERR, use a catch clause that
names the appropriate exception—in this case InvalidProgramException.
Alternatively, use a catch clause naming CicsConditionException, if all CICS
conditions are to be caught.

IGNORE CONDITION
This command is not relevant in Java applications.

POP HANDLE and PUSH HANDLE
These commands are not relevant in Java applications. The Java exceptions
used to represent CICS ABENDs and conditions are caught by any catch block
in scope.

CICS conditions:

The condition-handling model in Java is different from other CICS programming
languages.

In COBOL, you can define an exception-handling label for each condition. If that
condition occurs during the processing of a CICS command, control transfers to the
label.

In C and C++, you cannot define an exception-handling label for a condition; to
detect a condition, the RESP field in the EIB must be checked after each CICS
command.

In Java, any condition returned by a CICS command is mapped into a Java
exception. You can include all CICS commands in a try-catch block and do specific
processing for each condition, or have a single null catch clause if the particular
exception is not relevant. Alternatively, you can let the condition propagate, to be
handled by a catch clause at a larger scope.

See “JCICS exception mapping” on page 68 for a description of the relationship
between CICS conditions and Java exceptions.

Error handling and abnormal termination
To initiate an ABEND from a Java program, you must invoke one of the
Task.abend(), or Task.forceAbend() methods.

Methods JCICS class EXEC CICS commands

abend(), forceAbend() Task ABEND

ABEND
To initiate an ABEND from a Java program, invoke one of the Task.abend()
methods. This causes an abend condition to be set in CICS and an
AbendException to be thrown. If the AbendException is not caught within a
higher level of the application object, or handled by an ABEND-handler
registered in the calling program (if any), CICS terminates and rolls back the
transaction.

The different abend() methods are:
v abend(String abcode), which causes an ABEND with the ABEND code abcode.
v abend(String abcode, boolean dump), which causes an ABEND with the

ABEND code abcode. If the dump parameter is false, no dump is taken.
v abend(), which causes an ABEND with no ABEND code and no dump.

52 CICS TS for z/OS 4.2: Java Applications in CICS

ABEND CANCEL
To initiate an ABEND that cannot be handled, invoke one of the
Task.forceAbend() methods. As described above, this causes an
AbendCancelException to be thrown which can be caught in Java programs. If
you do so, you must re-throw the exception to complete ABEND_CANCEL
processing, so that, when control returns to CICS, CICS will terminate and roll
back the transaction. Only catch the AbendCancelException for notification
purposes and then re-throw it.

The different forceAbend() methods are:
v forceAbend(String abcode), which causes an ABEND CANCEL with the ABEND

code abcode.
v forceAbend(String abcode, boolean dump), which causes an ABEND CANCEL with

the ABEND code abcode. If the dump parameter is false, no dump is taken.
v forceAbend(), which causes an ABEND CANCEL with no ABEND code and no

dump.

APPC mapped conversations
APPC unmapped conversation support is not available from the JCICS API.

APPC mapped conversations:

Methods JCICS class EXEC CICS Commands

initiate() AttachInitiator ALLOCATE, CONNECT PROCESS

converse() Conversation CONVERSE

get*() methods Conversation EXTRACT ATTRIBUTES

get*() methods Conversation EXTRACT PROCESS

free() Conversation FREE

issueAbend() Conversation ISSUE ABEND

issueConfirmation() Conversation ISSUE CONFIRMATION

issueError() Conversation ISSUE ERROR

issuePrepare() Conversation ISSUE PREPARE

issueSignal() Conversation ISSUE SIGNAL

receive() Conversation RECEIVE

send() Conversation SEND

flush() Conversation WAIT CONVID

Basic Mapping Support (BMS)
Basic mapping support (BMS) is an application programming interface between
CICS programs and terminal devices. JCICS provides support for some of the BMS
application programming interface.

Methods JCICS class EXEC CICS Commands

sendControl() TerminalPrincipalFacility SEND CONTROL

sendText() TerminalPrincipalFacility SEND Text

Not supported SEND MAP, RECEIVE MAP

Chapter 3. Developing Java applications for CICS 53

Channels and containers
Containers are named blocks of data designed for passing information between
programs. Containers are grouped in sets called channels. You can use channel and
container-related JCICS commands when writing CICS enterprise beans. However,
CICS does not support the transmission of channels over IIOP request streams.

For introductory information about channels and containers, and guidance about
using channels in non-Java applications, see Enhanced inter-program data transfer
using channels in CICS Application Programming.

For information about tools that allow Java programs to access existing CICS
application data, see Interacting with structured data from Java in Java
Applications in CICS.

Note: CICS does not support the transmission of channels over IIOP request
streams and you cannot, for example, pass a channel to an enterprise bean on a
remote region.

Table 2 lists the classes and methods that implement JCICS support for channels
and containers.

Table 2. JCICS support for channels and containers

Methods JCICS class EXEC CICS Commands

containerIterator() Channel STARTBROWSE CONTAINER

createContainer() Channel

deleteContainer() Channel DELETE CONTAINER
CHANNEL

getContainer() Channel

getName() Channel

delete() Container DELETE CONTAINER
CHANNEL

get(), getLength() Container GET CONTAINER CHANNEL
[NODATA]

getName() Container

put() Container PUT CONTAINER CHANNEL

getOwner() ContainerIterator

hasNext() ContainerIterator

next() ContainerIterator GETNEXT CONTAINER
BROWSETOKEN

remove() ContainerIterator

link() Program LINK

xctl() Program XCTL

setNextChannel() TerminalPrincipalFacility RETURN CHANNEL

issue() StartRequest START CHANNEL

createChannel() Task

getCurrentChannel() Task ASSIGN CHANNEL

containerIterator() Task STARTBROWSE CONTAINER

54 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_ch_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_ch_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html

The CICS condition CHANNELERR results in a ChannelErrorException being
thrown; the CONTAINERERR CICS condition results in a ContainerErrorException;
the CCSIDERR CICS condition results in a CCSIDErrorException.

Creating channels and containers in JCICS:

To create a channel, use the createChannel() method of the Task class.

For example:
Task t=Task.getTask();
Channel custData = t.createChannel("Customer_Data");

The string supplied to the createChannel method is the name by which the
Channel object is known to CICS. (The name is padded with spaces to 16
characters, to conform to CICS naming conventions.)

To create a new container in the channel, use the Channel's createContainer()
method. For example:
Container custRec = custData.createContainer("Customer_Record");

The string supplied to the createContainer() method is the name by which the
Container object is known to CICS. (The name is padded with spaces to 16
characters, if necessary, to conform to CICS naming conventions.) If a container of
the same name already exists in this channel, a ContainerErrorException is thrown.

Putting data into a container:

To put data into a Container object, use the Container.put() method.

To put data into a Container object, use the Container.put() method. Data can be
added to a container as a byte array or a string. For example:
String custNo = "00054321";
byte[] custRecIn = custNo.getBytes();
custRec.put(custRecIn);

Or :
custRec.put("00054321");

Passing a channel to another program or task:

To pass a channel on a program-link or transfer program control (XCTL) call, use
the link() and xctl() methods of the Program class, respectively.
programX.link(custData);

programY.xctl(custData);

To set the next channel on a program-return call, use the setNextChannel() method
of the TerminalPrincipalFacility class:
terminalPF.setNextChannel(custData);

To pass a channel on a START request, use the issue method of the StartRequest
class:
startrequest.issue(custData);

Receiving the current channel:

Chapter 3. Developing Java applications for CICS 55

It is not necessary for a program to receive its current channel explicitly. However,
a program can get its current channel from the current task.

If a program gets the current channel from the current task, the task can extract
containers by name:
Task t = Task.getTask();
Channel custData = t.getCurrentChannel();
if (custData != null) {

Container custRec = custData.getContainer("Customer_Record");
} else {

System.out.println("There is no Current Channel");
}

Getting data from a container:

Use the Container.get() method to read the data in a container into a byte array.
byte[] custInfo = custRec.get();

Browsing the current channel:

A JCICS program that is passed a channel can access all of the Container objects
without receiving the channel explicitly.

To do this, it uses a ContainerIterator object. (The ContainerIterator class
implements the java.util.Iterator interface.) When a Task object is instantiated from
the current task, its containerIterator() method returns an Iterator for the current
channel, or null if there is no current channel. For example:
Task t = Task.getTask();
ContainerIterator ci = t.containerIterator();
While (ci.hasNext()) {

Container custData = ci.next();
// Process the container...

}

A JCICS example:

This example shows an excerpt of a Java class called Payroll that calls a COBOL
server program named PAYR. The Payroll class uses the JCICS
com.ibm.cics.server.Channel and com.ibm.cics.server.Container classes to do the
same things that a non-Java client program would use EXEC CICS commands to do.

56 CICS TS for z/OS 4.2: Java Applications in CICS

Diagnostic services
The JCICS application programming interface has support for these CICS trace and
dump commands.

Methods JCICS class EXEC CICS Commands

Not supported DUMP

enterTrace() EnterRequest ENTER

enableTrace(), disableTrace() Region, Task TRACE

Document services
This section describes JCICS support for the commands in the DOCUMENT
application programming interface.

Class Document maps to the EXEC CICS DOCUMENT API. Constructors for class
DocumentLocation map to the AT and TO keywords of the EXEC CICS DOCUMENT
API. Setters and getters for class SymbolList map to the SYMBOLLIST, LENGTH,
DELIMITER, and UNESCAPE keywords of the EXEC CICS DOCUMENT API.

Methods JCICS class EXEC CICS Commands

create*() Document DOCUMENT CREATE

append*() Document DOCUMENT INSERT

insert*() Document DOCUMENT INSERT

import com.ibm.cics.server.*;
public class Payroll {

...
Task t=Task.getTask();

// create the payroll_2004 channel
Channel payroll_2004 = t.createChannel("payroll-2004");

// create the employee container
Container employee = payroll_2004.createContainer("employee");

// put the employee name into the container
employee.put("John Doe");

// create the wage container
Container wage = payroll_2004.createContainer("wage");

// put the wage into the container
wage.put("2000");

// Link to the PAYROLL program, passing the payroll_2004 channel
Program p = new Program();
p.setName("PAYR");
p.link(payroll_2004);

// Get the status container which has been returned
Container status = payroll_2004.getContainer("status");

// Get the status information
byte[] payrollStatus = status.get();
...

}

Figure 3. Java class that uses the JCICS com.ibm.cics.server.Channel and
com.ibm.cics.server.Container classes to pass a channel to a COBOL server program

Chapter 3. Developing Java applications for CICS 57

Methods JCICS class EXEC CICS Commands

addSymbol() Document DOCUMENT SET

setSymbolList() Document DOCUMENT SET

retrieve*() Document DOCUMENT RETRIEVE

get*() Document DOCUMENT

Environment services
CICS environment services provide access to CICS data areas, parameters, and
resource attributes that are relevant to an application program.

The EXEC CICS commands and options that have equivalent JCICS support are:
v ADDRESS
v ASSIGN
v INQUIRE SYSTEM
v INQUIRE TASK
v INQUIRE TERMINAL/NETNAME

ADDRESS:

The following support is provided for the ADDRESS API command options.

For complete information about the EXEC CICS ADDRESS command, see ADDRESS in
CICS Application Programming.

ACEE The Access Control Environment Element (ACEE) is created by an external
security manager when a CICS user signs on. This option not supported in
JCICS.

COMMAREA
A COMMAREA contains user data that is passed with a command. The
COMMAREA pointer is passed automatically to the linked program by the
CommAreaHolder argument . See “Arguments for passing data” on page 49
for more information.

CWA The Common Work Area (CWA) contains global user data, sharable
between tasks.

EIB The contains information about the CICS command last executed. Access to
EIB values is provided by methods on the appropriate objects. For
example,

eibtrnid
is returned by the getTransactionName() method of the Task class.

eibaid is returned by the getAIDbyte() method of the
TerminalPrincipalFacility class.

eibcposn
is returned by the getRow() and getColumn() methods of the
Cursor class.

TCTUA
The Terminal Control Table User Area (TCTUA) contains user data
associated with the terminal that is driving the CICS transaction (the
principal facility). This area is used to pass information between
application programs, but only if the same terminal is associated with the

58 CICS TS for z/OS 4.2: Java Applications in CICS

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_address.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_address.html

application programs involved. The contents of the TCTUA can be
obtained using the getTCTUA() method of the TerminalPrincipalFacility
class.

TWA The Transaction Work Area (TWA) contains user data that is associated
with the CICS task. This area is used to pass information between
application programs, but only if they are in the same task. A copy of the
TWA can be obtained using the getTWA() method of the Task class.

ASSIGN:

The following support is provided for the ASSIGN API command options.

For detailed information about this command, see ASSIGN in CICS Application
Programming.

Methods JCICS class

getABCODE() AbendException

getAPPLID() Region

getCurrentChannel() Task

getCWA() Region

getName() TerminalPrincipalFacility or
ConversationPrincipalFacility

getFCI() Task

getNetName() TerminalPrincipalFacility or
ConversationPrincipalFacility

getPrinSysid() TerminalPrincipalFacility or
ConversationPrincipalFacility

getProgramName() Task

getQNAME() Task

getSTARTCODE() Task

getSysid() Region

getTCTUA() TerminalPrincipalFacility

getTERMCODE() TerminalPrincipalFacility

getTWA() Task

getUSERID(), Task.getUSERID() Task, TerminalPrincipalFacility or
ConversationPrincipalFacility

No other ASSIGN options are supported.

INQUIRE SYSTEM:

Support is provided for the INQUIRE SYSTEM SPI options.

Methods JCICS class

getAPPLID() Region

getSYSID() Region

No other INQUIRE SYSTEM options are supported.

Chapter 3. Developing Java applications for CICS 59

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_assign.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_assign.html

INQUIRE TASK:

The following support is provided for the INQUIRE TASK API command options.

Methods JCICS class

getSTARTCODE() Task

getTransactionName() Task

getUSERID() Task

FACILITY
You can find the name of the task's principal facility by calling the
getName() method on the task's principal facility, which can in turn be
found by calling the getPrincipalFacility() method on the current Task
object.

FACILITYTYPE
You can determine the type of facility by using the Java instanceof operator
to check the class of the returned object reference.

No other INQUIRE TASK options are supported.

INQUIRE TERMINAL and INQUIRE NETNAME:

The following support is provided for INQUIRE TERMINAL and INQUIRE NETNAME SPI
options.

Methods JCICS class

getUSERID() Terminal, ConversationalPrincipalFacility

Terminal.getUser() Terminal, ConversationalPrincipalFacility

You can also find the USERID value by calling the getUSERID() method on the
current Task object, or on the object representing the task's principal facility

No other INQUIRE TERMINAL or INQUIRE NETNAME options are supported.

File services
JCICS provides classes and methods that map to the EXEC CICS API commands for
each type of CICS file and index.

For information about tools that allow Java programs to access existing CICS
application data, see Interacting with structured data from Java in Java
Applications in CICS.

CICS supports the following types of files:
v Key Sequenced Data Sets (KSDS)
v Entry Sequenced Data Sets (ESDS)
v Relative Record Data Sets (RRDS)

KSDS and ESDS files can have alternative (or secondary) indexes. CICS does not
support access to an RRDS file through a secondary index. Secondary indexes are
treated by CICS as though they were separate KSDS files in their own right, which
means they have separate FD entries.

60 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html

There are a few differences between accessing KSDS, ESDS (primary index), and
ESDS (secondary index) files, which means that you cannot always use a common
interface.

Records can be read, updated, deleted, and browsed in all types of file, with the
exception that records cannot be deleted from an ESDS file.

See VSAM data sets: KSDS, ESDS, RRDS for more information about data sets.

Java commands that read data support only the equivalent of the SET option on
EXEC CICS commands. The data returned is automatically copied from CICS storage
to a Java object.

The Java interfaces relating to File Control are in five categories:

File The superclass for the other file classes; contains methods common to all
file classes.

KeyedFile
Contains the interfaces common to a KSDS file accessed using the primary
index, a KSDS file accessed using a secondary index, and an ESDS file
accessed using a secondary index.

KSDS Contains the interface specific to KSDS files.

ESDS Contains the interface specific to ESDS files accessed through Relative Byte
Address (RBA, its primary index) or Extended Relative Byte Address
(XRBA). To use XRBA instead of RBA, issue the setXRBA(true) method.

RRDS Contains the interface specific to RRDS files accessed through Relative
Record Number (RRN, its primary index).

For each file, there are two objects that can be operated on; the File object and the
FileBrowse object. The File object represents the file itself and can be used with
methods to perform the following API operations:
v DELETE
v READ
v REWRITE
v UNLOCK
v WRITE
v STARTBR

A File object is created by the user application explicitly starting the required file
class. The FileBrowse object represents a browse operation on a file. There can be
more than one active browse against a specific file at any time, each browse being
distinguished by a REQID. Methods can be instantiated for a FileBrowse object to
perform the following API operations:
v ENDBR
v READNEXT
v READPREV
v RESETBR

A FileBrowse object is not instantiated explicitly by the user application; it is
created and returned to the user class by the methods that perform the STARTBR
operation.

Chapter 3. Developing Java applications for CICS 61

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3mk.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_delete.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_read.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_rewrite.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_unlock.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_write.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_startbr.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_endbr.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_readnext.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_readprev.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/commands/dfhp4_resetbr.html

The following tables show how the JCICS classes and methods map to the EXEC
CICS API commands for each type of CICS file and index. In these tables, the
JCICS classes and methods are shown in the form class.method(). For example,
KeyedFile.read() references the read() method in the KeyedFile class.

The first table shows the classes and methods for keyed files:

Table 3. Classes and methods for keyed files

KSDS primary or secondary
index class and method

ESDS secondary index class
and method

CICS File API
command

KeyedFile.read() KeyedFile.read() READ

KeyedFile.readForUpdate() KeyedFile.readForUpdate() READ UPDATE

KeyedFile.readGeneric() KeyedFile.readGeneric() READ GENERIC

KeyedFile.rewrite() KeyedFile.rewrite() REWRITE

KSDS.write() KSDS.write() WRITE

KSDS.delete() DELETE

KSDS.deleteGeneric() DELETE GENERIC

File.unlock() File.unlock() UNLOCK

KeyedFile.startBrowse() KeyedFile.startBrowse() START BROWSE

KeyedFile.startGenericBrowse() KeyedFile.startGenericBrowse() START BROWSE GENERIC

KeyedFileBrowse.next() KeyedFileBrowse.next() READNEXT

KeyedFileBrowse.previous() KeyedFileBrowse.previous() READPREV

KeyedFileBrowse.reset() KeyedFileBrowse.reset() RESET BROWSE

FileBrowse.end() FileBrowse.end() END BROWSE

This table shows the classes and methods for non-keyed files. ESDS and RRDS are
accessed by their primary indexes:

ESDS primary index class
and method

RRDS primary index class
and method

CICS File API command

ESDS.read() RRDS.read() READ

ESDS.readForUpdate() RRDS.readForUpdate() READ UPDATE

ESDS.rewrite() RRDS.rewrite() REWRITE

ESDS.write() RRDS.write() WRITE

RRDS.delete() DELETE

File.unlock() File.unlock() UNLOCK

ESDS.startBrowse() RRDS.startBrowse() START BROWSE

ESDS_Browse.next() RRDS_Browse.next() READNEXT

ESDS_Browse.previous() RRDS_Browse.previous() READPREV

ESDS_Browse.reset() RRDS_Browse.reset() RESET BROWSE

FileBrowse.end() FileBrowse.end() END BROWSE

ESDS.setXRBA()

Data to be written to a file must be in a Java byte array.

62 CICS TS for z/OS 4.2: Java Applications in CICS

Data is read from a file into a RecordHolder object; the storage is provided by
CICS and is released automatically at the end of the program.

You do not need to specify the KEYLENGTH value on any File method; the length
used is the actual length of the key passed. When a FileBrowse object is created, it
contains the length of the key specified on the startBrowse method, and this length
is passed to CICS on subsequent browse requests against that object.

You do not need to provide a REQID for a browse operation; each browse object
contains a unique REQID which is automatically used for all subsequent browse
requests against that browse object.

HTTP and TCP/IP services
Getters in classes HttpHeader, NameValueData, and FormField return HTTP headers,
name and value pairs, and form field values for the appropriate API commands.

Methods JCICS class EXEC CICS Commands

get*() CertificateInfo EXTRACT CERTIFICATE / EXTRACT
TCPIP

get*() HttpRequest EXTRACT WEB

getHeader() HttpRequest WEB READ HTTPHEADER

getFormField() HttpRequest WEB READ FORMFIELD

getContent() HttpRequest WEB RECEIVE

getQueryParm() HttpRequest WEB READ QUERYPARM

startBrowseHeader() HttpRequest WEB STARTBROWSE HTTPHEADER

getNextHeader() HttpRequest WEB READNEXT HTTPHEADER

endBrowseHeader() HttpRequest WEB ENDBROWSE HTTPHEADER

startBrowseFormField() HttpRequest WEB STARTBROWSE FORMFIELD

getNextFormField() HttpRequest WEB READNEXT FORMFIELD

endBrowseFormField() HttpRequest WEB ENDBROWSE FORMFIELD

startBrowseQueryParm() HttpRequest WEB STARTBROWSE QUERYPARM

getNextQueryParm() HttpRequest WEB READNEXT QUERYPARM

endBrowseQueryParm() HttpRequest WEB ENDBROWSE QUERYPARM

writeHeader() HttpResponse WEB WRITE

getDocument() HttpResponse WEB RETRIEVE

getCurrentDocument() HttpResponse WEB RETRIEVE

sendDocument() HttpResponse WEB SEND

Note: Use the method get HttpRequestInstance() to obtain the HttpRequest object.

Each incoming HTTP request processed by CICS Web support includes an HTTP
header. If the request uses the POST HTTP verb it also includes document data.
Each response HTTP request generated by CICS Web support includes an HTTP
header and document data.

To process this JCICS provides the following Web and TCP/IP services:

HTTP Header
You can examine the HTTP header using the HttpRequest class. With

Chapter 3. Developing Java applications for CICS 63

HTTP in GET mode, if a client has filled in an HTTP form and selected the
submit button, the query string is submitted.

SSL CICS Web support provides the TcpipRequest class, which is extended by
HttpRequest to obtain more information about which client submitted the
request as well as basic information on the SSL support. If an SSL
certificate is provided, you can use the CertificateInfo class to examine it in
detail.

Documents
If a document is published to the server (HTTP POST), it is provided as a
CICS document. You can access it by calling the getDocument() method on
the HttpRequest class. See “Document services” on page 57 for more
information about processing existing documents.

To serve the HTTP client web content resulting from a request, the server
programmer needs to create a CICS document using the Document
Services API and call the sendDocument() method.

For more information on CICS Web support see Internet overview in the
Internet Guide. For more information on the JCICS Web classes see the
JCICS Class Reference.

Program services
JCICS supports the CICS program control commands; LINK, RETURN, XCTL, and
SUSPEND.

For information about tools that allow Java programs to access existing CICS
application data, see Interacting with structured data from Java in Java
Applications in CICS.

Table 4 lists the methods and JCICS classes that map to CICS program control
commands.

Table 4. Relationship between methods, JCICS classes and CICS commands

Methods JCICS class EXEC CICS Commands

link() Program LINK

setNextTransaction(),
setNextCOMMAREA(),
setNextChannel()

TerminalPrincipalFacility RETURN

xctl() Program XCTL

Not supported SUSPEND

LINK and XCTL
You can transfer control to another program that is defined to CICS using the
link() and xctl() methods. The target program can be in any language
supported by CICS.

If you use the xctl() method, a TransferOfControlException is thrown to the
issuing program, even if it completes successfully.

RETURN
Only the pseudoconversational aspects of this command are supported. It is
not necessary to make a CICS call to return; the application can terminate as
normal. The pseudoconversational functions are supported by methods in the
TerminalPrincipalFacility class: setNextTransaction() is equivalent to using the
TRANSID option of RETURN; setNextCOMMAREA() is equivalent to using
the COMMAREA option; while setNextChannel() is equivalent to using the

64 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.internet.doc/topics/dfhtl_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html

CHANNEL option. These methods can be invoked at any time during the
running of the program, and take effect when the program terminates.

Note: The length of the COMMAREA provided is used as the LENGTH value for
CICS. This value should not exceed 32,500 bytes if the COMMAREA is to be
passed between any two CICS servers (for any combination of
product/version/release). This limit allows for the 32,500 byte COMMAREA and
space for headers.

Scheduling services
JCICS provides support for the CICS scheduling services, which let you retrieve
data stored for a task, cancel interval control requests, and start a task at a
specified time.

Methods JCICS class EXEC CICS Commands

cancel() StartRequest CANCEL

retrieve() Task RETRIEVE

issue() StartRequest START

To define what is to be retrieved by the Task.retrieve() method, use a
java.util.BitSet object. The com.ibm.cics.server.RetrieveBits class defines the bits
which can be set in the BitSet object; they are:
v RetrieveBits.DATA
v RetrieveBits.RTRANSID
v RetrieveBits.RTERMID
v RetrieveBits.QUEUE

These correspond to the options on the EXEC CICS RETRIEVE command.

The Task.retrieve() method retrieves up to four different pieces of information in a
single invocation, depending on the settings of the RetrieveBits. The DATA,
RTRANSID, RTERMID and QUEUE data are placed in a RetrievedData object,
which is held in a RetrievedDataHolder object. The following example retrieves the
data and transid:
BitSet bs = new BitSet();
bs.set(RetrieveBits.DATA, true);
bs.set(RetrieveBits.RTRANSID, true);
RetrievedDataHolder rdh = new RetrievedDataHolder();
t.retrieve(bs, rdh);
byte[] inData = rdh.value.data;
String transid = rdh.value.transId;

Serialization services
JCICS provides support for the CICS serialization services, which let you schedule
the use of a resource by a task.

Methods JCICS class EXEC CICS Commands

dequeue() SynchronizationResource DEQ

enqueue(), tryEnqueue() SynchronizationResource ENQ

Storage services
No support is provided for explicit storage management using CICS services (such
as EXEC CICS GETMAIN). You should find that the standard Java storage
management facilities are sufficient to meet the needs for task-private storage.

Chapter 3. Developing Java applications for CICS 65

Sharing of data between tasks must be accomplished using CICS resources.

Names are generally represented as Java strings or byte arrays; you must ensure
that these are of the necessary length.

Temporary storage queue services
JCICS supports the CICS temporary storage commands; DELETEQ TS, READQ TS,
and WRITEQ TS.

Interaction between JCICS methods and EXEC CICS commands

For information about tools that allow Java programs to access existing CICS
application data, see Interacting with structured data from Java in Java
Applications in CICS.

Table 5 lists the methods and JCICS classes that map to CICS temporary storage
commands.

Table 5. Relationship between methods, JCICS classes and CICS commands

Methods JCICS class EXEC CICS Commands

delete() TSQ DELETEQ TS

readItem(), readNextItem() TSQ READQ TS

writeItem(), rewriteItem()
writeItemConditional()
rewriteItemConditional()

TSQ WRITEQ TS

DELETEQ TS
You can delete a temporary storage queue (TSQ) using the delete() method in
the TSQ class.

READQ TS
The CICS INTO option is not supported in Java programs. You can read a
specific item from a TSQ using the readItem() and readNextItem() methods in
the TSQ class. These methods take an ItemHolder object as one of their
arguments, which will contain the data read in a byte array. The storage for
this byte array is created by CICS and is garbage-collected at the end of the
program.

WRITEQ TS
You must provide data to be written to a temporary storage queue in a Java
byte array. The writeItem() and rewriteItem() methods suspend if a NOSPACE
condition is detected, and wait until space is available to write the data to the
queue. The writeItemConditional() and rewriteItemConditional() methods do
not suspend in the case of a NOSPACE condition, but return the condition
immediately to the application as a NoSpaceException.

Terminal services
JCICS provides support for these CICS terminal services commands.

Methods JCICS class EXEC CICS Commands

converse() TerminalPrincipalFacility CONVERSE

Not supported HANDLE AID

receive() TerminaPrincipalFacility RECEIVE

66 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html

Methods JCICS class EXEC CICS Commands

send() TerminaPrincipalFacility SEND

Not supported WAIT TERMINAL

If a task has a terminal as a principal facility, CICS automatically creates two Java
PrintWriters that can be used as standard output and standard error streams. They
are mapped to the task's terminal. The two streams, called out and err, are public
files in the Task object and can be used just like System.out and System.err.

Data to be sent to a terminal must be provided in a Java byte array. Data is read
from the terminal into a DataHolder object. CICS provides the storage for the
returned data and it will be deallocated when the program ends.

Transient data queue services
JCICS supports the CICS transient data commands, DELETEQ TD, READQ TD,
and WRITEQ TD. All options are supported except the INTO option.

Interaction between JCICS methods and EXEC CICS commands

For information about tools that allow Java programs to access existing CICS
application data, see Interacting with structured data from Java in Java
Applications in CICS.

Table 6 lists the methods and JCICS classes that map to CICS transient data
commands.

Table 6. Relationship between methods, JCICS classes and CICS commands

Methods JCICS class EXEC CICS Commands

delete() TDQ DELETEQ TD

readData(), readDataConditional() TDQ READQ TD

writeData() TDQ WRITEQ TD

DELETEQ TD
You can delete a transient data queue (TDQ) using the delete() method in the
TDQ class.

READQ TD
The CICS INTO option is not supported in Java programs. You can read from a
TDQ using the readData() or the readDataConditional() method in the TDQ
class. These methods take as a parameter an instance of a DataHolder object
that will contain the data read in a byte array. The storage for this byte array is
created by CICS and is garbage-collected at the end of the program.

The readDataConditional() method drives the CICS NOSUSPEND logic. If a
QBUSY condition is detected, it is returned to the application immediately as a
QueueBusyException.

The readData() method suspends if it attempts to access a record in use by
another task and there are no more committed records.

WRITEQ TD
You must provide data to be written to a TDQ in a Java byte array.

Chapter 3. Developing Java applications for CICS 67

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/topics/dfhpj_strdata_java.html

Unit of work (UOW) services
JCICS provides support for the CICS SYNCPOINT service.

Table 7. Relationship between JCICS and EXEC CICS commands for UOW services

Methods JCICS class EXEC CICS Commands

commit(), rollback() Task SYNCPOINT

Web services
JCICS supports all the API commands that are available for working with web
services in an application.

Methods JCICS class EXEC CICS commands

invoke() WebService INVOKE WEBSERVICE

create() SoapFault SOAPFAULT CREATE

addFaultString() SoapFault SOAPFAULT ADD
FAULTSTRING

addSubCode() SoapFault SOAPFAULT ADD
SUBCODESTR

delete() SoapFault SOAPFAULT DELETE

create() WSAEpr WSAEPR CREATE

delete() WSAContext WSACONTEXT DELETE

set*() WSAContext WSACONTEXT BUILD

get*() WSAContext WSACONTEXT GET

The following example shows how you might use JCICS to create a web service
request:
Channel requesterChannel = Task.getTask().createChannel("TestRequester");

Container appData = requesterChannel.createContainer("DFHWS-DATA");
byte[] exampleData = "ExampleData".getBytes();
appData.put(exampleData);

WebService requester = new WebService();
requester.setName("MyWebservice");
requester.invoke(requesterChannel, "myOperationName");

byte[] response = appData.get();

To handle the application data that is sent and received in a web service request,
you can use a tool such as JZOS to generate classes for you if you are working
with structured data. For more information, see “Interacting with structured data
from Java” on page 46. You can also use Java to generate and consume XML
directly.

JCICS exception mapping
In Java, a condition returned by a CICS command is mapped into a Java exception.

Table 8. Java exception mapping

CICS condition Java Exception CICS condition Java Exception

ALLOCERR AllocationErrorException CBIDERR InvalidControlBlockIdException

CCSIDERR CCSIDErrorException CHANNELERR ChannelErrorException

CONTAINERERR ContainerErrorException DISABLED FileDisabledException

68 CICS TS for z/OS 4.2: Java Applications in CICS

Table 8. Java exception mapping (continued)

CICS condition Java Exception CICS condition Java Exception

DSIDERR FileNotFoundException DSSTAT DestinationStatusChangeException

DUPKEY DuplicateKeyException DUPREC DuplicateRecordException

END EndException ENDDATA EndOfDataException

ENDFILE EndOfFileException ENDINPT EndOfInputIndicatorException

ENQBUSY ResourceUnavailableException ENVDEFERR InvalidRetrieveOptionException

EOC EndOfChainIndicatorException EODS EndOfDataSetIndicatorException

EOF EndOfFileIndicatorException ERROR ErrorException

EXPIRED TimeExpiredException FILENOTFOUND FileNotFoundException

FUNCERR FunctionErrorException IGREQID InvalidREQIDPrefixException

IGREQCD InvalidDirectionException ILLOGIC LogicException

INBFMH InboundFMHException INVERRTERM InvalidErrorTerminalException

INVEXITREQ InvalidExitRequestException INVLDC InvalidLDCException

INVMPSZ InvalidMapSizeException INVPARTNSET InvalidPartitionSetException

INVPARTN InvalidPartitionException INVREQ InvalidRequestException

INVTSREQ InvalidTSRequestException IOERR IOErrorException

ISCINVREQ ISCInvalidRequestException ITEMERR ItemErrorException

JIDERR InvalidJournalIdException LENGERR LengthErrorException

MAPERROR MapErrorException MAPFAIL MapFailureException

NAMEERROR NameErrorException NODEIDERR InvalidNodeIdException

NOJBUFSP NoJournalBufferSpaceException NONVAL NotValidException

NOPASSBKRD NoPassbookReadException NOPASSBKWR NoPassbookWriteException

NOSPACE NoSpaceException NOSPOOL NoSpoolException

NOSTART StartFailedException NOSTG NoStorageException

NOTALLOC NotAllocatedException NOTAUTH NotAuthorisedException

NOTFND RecordNotFoundException NOTOPEN NotOpenException

OPENERR DumpOpenErrorException OVERFLOW MapPageOverflowException

PARTNFAIL PartitionFailureException PGMIDERR InvalidProgramIdException

QBUSY QueueBusyException QIDERR InvalidQueueIdException

QZERO QueueZeroException RDATT ReadAttentionException

RETPAGE ReturnedPageException ROLLEDBACK RolledBackException

RTEFAIL RouteFailedException RTESOME RoutePartiallyFailedException

SELNERR DestinationSelectionErrorException SESSBUSY SessionBusyException

SESSIONERR SessionErrorException SIGNAL InboundSignalException

SPOLBUSY SpoolBusyException SPOLERR SpoolErrorException

STRELERR STRELERRException SUPPRESSED SuppressedException

SYMBOLERR SymbolErrorException SYSBUSY SystemBusyException

SYSIDERR InvalidSystemIdException TASKIDERR InvalidTaskIdException

TCIDERR TCIDERRException TEMPLATERR TemplateErrorException

TERMERR TerminalException TERMIDERR InvalidTerminalIdException

TOKENERR TokenErrorException

Chapter 3. Developing Java applications for CICS 69

Table 8. Java exception mapping (continued)

CICS condition Java Exception CICS condition Java Exception

TRANSIDERR InvalidTransactionIdException TSIOERR TSIOErrorException

UNEXPIN UnexpectedInformationException USERIDERR InvalidUserIdException

WRBRK WriteBreakException WRONGSTAT WrongStatusException

Note: NonHttpDataException is thrown by getContent() if the CICS command
WEB RECEIVE indicates that the data received is a non-HTTP message (by setting
TYPE=HTTPNO).

Using JCICS
You use the classes from the JCICS library like normal Java classes. Your
applications declare a reference of the required type and a new instance of a class
is created using the new operator.

About this task

You name CICS resources using the setName method to supply the name of the
underlying CICS resource. After you create the resource, you can manipulate
objects using standard Java constructs. You can call methods of the declared objects
in the usual way. Full details of the methods supported for each class are available
in the supplied Javadoc.

Do not use finalizers in CICS Java programs. For an explanation of why finalizers
are not recommended, see the Java Diagnostics Guide.

Do not end CICS Java programs by issuing a System.exit() call. When Java
applications run in CICS, the public static void main() method is called through
the use of another Java program called the Java wrapper. When you use the
wrapper CICS initializes the environment for Java applications and, more
importantly, cleans up any processes that are used during the life of the
application. Terminating the JVM, even with a clean return code of 0, prevents this
cleanup process from running, and might lead to data inconsistency. Using
System.exit() when the application is running in a JVM server terminates the JVM
server and quiesces CICS immediately.

Procedure
1. Write the main method. CICS attempts to pass control to the method with a

signature of main(CommAreaHolder) in the class specified by the JVMCLASS
attribute of the PROGRAM resource. If this method is not found, CICS tries to
invoke method main(String[]).

2. To create an object using JCICS, follow these steps:
a. Declare a reference:

TSQ tsq;

b. Use the new operator to create an object:
tsq = new TSQ()

c. Use the setName method to give the object a name:
tsq.setName("JCICSTSQ");

3. Use the object to interact with CICS.

70 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html

Example

This example shows how to create a TSQ object, invoke the delete method on the
temporary storage queue object you have just created, and catch the thrown
exception if the queue is empty.
// Define a package name for the program
package unit_test;

// Import the JCICS package
import com.ibm.cics.server.*;

// Declare a class for a CICS application
public class JCICSTSQ
{

// The main method is called when the application runs
public static void main(CommAreaHolder cah)
{

try
{

// Create and name a Temporary Storage queue object
TSQ tsq = new TSQ();
tsq.setName("JCICSTSQ");

// Delete the queue if it exists
try
{

tsq.delete();
}
catch(InvalidQueueIdException e)
{

// Absorb QIDERR
System.out.println("QIDERR ignored!");

}

// Write an item to the queue
String transaction = Task.getTask().getTransactionName();
String message = "Transaction name is - " + transaction;
tsq.writeItem(message.getBytes());

}
catch(Throwable t)
{

System.out.println("Unexpected Throwable: " + t.toString());
}

// Return from the application
return;

}
}

Java restrictions
When you are developing Java applications, you must adhere to certain restrictions
to avoid problems when the application is running in CICS.

Java applications that run in CICS are subject to the following restrictions:
v You cannot use the System.exit() method in your Java application. If you use this

method, the application abnormally ends. The JVM server and CICS also shut
down.

v You cannot use JCICS API calls in the activator classes of OSGi bundles.

Chapter 3. Developing Java applications for CICS 71

|

|
|

|

|
|
|

|

v Start and stop methods in bundle activators must return in a reasonable amount
of time.

Accessing data from Java applications
You can write Java applications that can access and update data in DB2 and
VSAM. Alternatively, you can link to programs in other languages to access DB2,
VSAM, and IMS.

You can use any of the following techniques when writing a Java application to
access data in CICS. The CICS recovery manager maintains data integrity.

Accessing relational data

You can write a Java application to access relational data in DB2 using any of the
following methods:
v A JCICS LINK command, or the CCI Connector for CICS TS, to link to a program

that uses Structured Query Language (SQL) commands to access the data.
v Where a suitable driver is available, use Java Data Base Connectivity (JDBC) or

Structured Query Language for Java (SQLJ) calls to access the data directly.
Suitable JDBC drivers are available for DB2. For more information about using
JDBC and SQLJ application programming interfaces, see Using JDBC and SQLJ
to access DB2 data from Java programs in the DB2 Guide.

v JavaBeans that use JDBC or SQLJ as the underlying access mechanism. You can
use any suitable Java integrated development environment (IDE) to develop
such JavaBeans.

v Entity beans. CICS does not support entity beans running under CICS but does
support access to entity beans running on other EJB servers. A CICS enterprise
bean could, for example, use an entity bean running on WebSphere Application
Server to access DB2 on z/OS.

Accessing DL/I data

To access DL/I data in IMS, your Java application must use a JCICS LINK
command to link to an intermediate program that issues EXEC DLI commands to
access the data.

Accessing VSAM data

To access VSAM data, a Java application can use either of the following methods:
v The JCICS file control classes to access VSAM directly.
v A JCICS LINK command, or the CCI Connector for CICS TS, to link to a program

that issues CICS file control commands to access the data.

Connectivity from Java applications in CICS
Java programs in the CICS environment can open TCP/IP sockets and
communicate with external processes. You can use Java programs as a gateway to
connect to other enterprise applications that might not be available to CICS
programs in other languages. For example, you can write a Java program to
communicate with a remote servlet or database.

In some cases, this connectivity is integrated with CICS to provide enterprise
qualities of service, such as distributed transactions and identity propagation. In

72 CICS TS for z/OS 4.2: Java Applications in CICS

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6j.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6j.html

other cases, you can use connectivity without distributed transactions and other
services provided by CICS. Depending on the type of connectivity you require,
third party vendor products might be available which enable connectivity with
enterprise applications that are not natively supported by CICS.

Generally, JVMs in the CICS environment are similar in capability to batch mode
JVMs. A batch mode JVM runs as a stand-alone process outside the CICS
environment, and is typically started from a UNIX System Services command line
or with a JCL job. Most applications that can work in a batch mode JVM can also
run in a JVM in CICS to the same extent. For example, if you write a batch mode
Java application to communicate with a non-IBM database using a third-party
JDBC driver, then the same application is likely to work in a JVM in CICS. If you
want to use vendor supplied code such as non-IBM JDBC drivers in a JVM in
CICS, consult with your vendor to determine whether they support their code
running in a JVM in CICS.

Some batch mode applications might behave in a different way when hosted in a
JVM in CICS, because of the way in which CICS reuses JVMs. Any data stored in
static variables persists across uses of the JVM. For more information about Java
application behavior in CICS, see “Java runtime environment in CICS” on page 28.

Batch mode applications that run in a JVM in the CICS environment do not
usually exploit the capabilities of CICS. For example, if a Java program in CICS
updates records in a non-IBM database using a third-party JDBC driver, CICS is
not aware of this activity, and does not attempt to include the updates in the
current CICS transaction.

Chapter 3. Developing Java applications for CICS 73

74 CICS TS for z/OS 4.2: Java Applications in CICS

Chapter 4. Setting up Java support

Perform the basic setup tasks to support Java in your CICS region.

Before you begin

The Java components that are required for CICS are set up during the installation
of the product. You must ensure that the Java components are installed correctly
using the information in Verifying your Java components installation in the
Installation Guide.

Procedure
1. Set the JVMPROFILEDIR system initialization parameter to a suitable directory

in z/OS UNIX where you want to store the JVM profiles used by the CICS
region. For details, see “Setting the location for the JVM profiles.”

2. Ensure your CICS region has enough memory to run Java applications. For
details, see “Setting the memory limits for Java” on page 76.

3. Give your CICS region permission to access the resources held in z/OS UNIX,
including your JVM profiles, directories, and files that are required to create
JVMs. For details, see “Giving CICS regions access to z/OS UNIX directories
and files” on page 77.

Results

You have set up your CICS region to support Java.

What to do next

If you are upgrading existing Java applications, follow the guidance in Upgrading.
To create a JVM server or pooled JVM to run Java workloads, see Chapter 5,
“Enabling applications to use a JVM,” on page 81.

Setting the location for the JVM profiles
CICS loads the JVM profiles from the z/OS UNIX directory that is specified by the
JVMPROFILEDIR system initialization parameter. You must change the value of the
JVMPROFILEDIR parameter to a new location and copy the supplied sample JVM
profiles into this directory so that you can use them to verify your installation.

Before you begin

The USSHOME system initialization parameter must specify the root directory for
CICS files on z/OS UNIX.

About this task

The CICS-supplied sample JVM profiles are customized for your system during the
CICS installation process, so you can use them immediately to verify your
installation. You can customize copies of these files for your own Java applications.

The settings that are suitable for use in JVM profiles can change from one CICS
release to another, so for ease of problem determination, use the CICS-supplied

© Copyright IBM Corp. 1999, 2012 75

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.installation.doc/topics/dfha1l4.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.installation.doc/topics/dfha1l4.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_jvmprofiledir.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.migration.doc/migrating.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_usshome.html

samples as the basis for all profiles. Check the upgrading information to find out
what options are new or changed in the JVM profiles.

Procedure
1. Set the JVMPROFILEDIR system initialization parameter to the location on

z/OS UNIX where you want to store the JVM profiles used by the CICS region.
The value that you specify can be up to 240 characters long.
The supplied setting for the JVMPROFILEDIR system initialization parameter is
/usr/lpp/cicsts/cicsts42/JVMProfiles, which is the installation location for
the sample JVM profiles. This directory is not a safe place to store your
customized JVM profiles, because you risk losing your changes if the sample
JVM profiles are overwritten when program maintenance is applied. So you
must always change JVMPROFILEDIR to specify a different z/OS UNIX directory
where you can store your JVM profiles. Choose a directory where you can give
appropriate permissions to the users who must customize the JVM profiles.

2. Copy the CICS-supplied sample JVM profiles, DFHJVMPR, DFHJVMAX,
DFHOSGI, and DFHJVMCD, from their installation location to the z/OS UNIX
directory. The DFHJVMCD profile, although not strictly a sample JVM profile,
is required for internal CICS Java transactions, and for managing the shared
class cache.
When you install CICS, the CICS-supplied sample JVM profiles are placed in
the /usr/lpp/cicsts/cicsts42/JVMProfiles directory. The /usr/lpp/cicsts/
cicsts42 directory is the installation directory for CICS files on z/OS UNIX.
This directory is specified by the USSDIR parameter in the DFHISTAR
installation job.

Setting the memory limits for Java
Java applications require more memory than programs written in other languages.
You must ensure that CICS and Java have enough storage and memory available
to run Java applications.

About this task

Java uses storage below the 16 MB line, 31-bit storage, and 64-bit storage. The
storage required for the JVM heap comes from the CICS region storage in MVS
and not EDSA.

Procedure
1. Ensure that the z/OS MEMLIMIT parameter is set to a suitable value. This

parameter limits the amount of 64-bit storage that the CICS address space can
use. CICS uses the 64-bit version of Java and you must ensure that MEMLIMIT is
set to a large enough value for this and the other CICS facilities that use 64-bit
storage.
See the following topics:
v “Calculating storage requirements for pooled JVMs” on page 165
v “Calculating storage requirements for JVM servers” on page 158
v Estimating, checking, and setting MEMLIMIT in the Performance Guide

2. Ensure that the REGION parameter on the start up job stream is large enough for
Java to run. Each JVM require some storage below the 16 MB line to run
applications, including just-in-time compiled code, and working storage to pass
parameters to CICS.

76 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|

|

|
|
|

|

|
|
|
|
|

|

|

|

|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_jvmprofiledir.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_dsa_memlimit.html

Giving CICS regions access to z/OS UNIX directories and files
CICS requires access to directories and files in z/OS UNIX. During installation,
each of your CICS regions is assigned a z/OS UNIX user identifier (UID). The
regions are connected to a RACF group that is assigned a z/OS UNIX group
identifier (GID). Use the UID and GID to grant permission for the CICS region to
access the directories and files in z/OS UNIX.

Before you begin

Ensure that you are either a superuser on z/OS UNIX, or the owner of the
directories and files. The owner of directories and files is initially set as the UID of
the system programmer who installs the product. The owner of the directories and
files must be connected to the RACF group that was assigned a GID during
installation. The owner can have that RACF group as their default group
(DLFTGRP) or can be connected to it as one of their supplementary groups.

About this task

z/OS UNIX System Services treats each CICS region as a UNIX user. You can grant
user permissions to access z/OS UNIX directories and files in different ways. For
example, you can give the appropriate group permissions for the directory or file
to the RACF group to which your CICS regions connect. This option might be best
for a production environment and is explained in the following steps.

Procedure
1. Identify the directories and files in z/OS UNIX to which your CICS regions

require access.

Default directories Permission Description

/usr/lpp/java/J6.0.1_64/bin read and
execute

IBM 64-bit SDK for z/OS, Java
Technology Edition directories

/usr/lpp/java/J6.0.1_64/bin/
j9vm

read and
execute

IBM 64-bit SDK for z/OS, Java
Technology Edition directories

/usr/lpp/cicsts/cicsts42 read and
execute

The installation directory for CICS
files on z/OS UNIX. Files in this
directory include sample profiles and
CICS-supplied JAR files.

/u/CICS region userid read, write, and
execute

The working directory for the CICS
region. This directory contains input,
output, and messages from the JVMs.

/usr/lpp/cicsts/cicsts42/
JVMProfiles/

read and
execute

Directory that contains the JVM
profiles for the CICS region, as
specified in the JVMPROFILEDIR
system initialization parameter.

2. List the directories and files to show the permissions. Go to the directory where
you want to start, and issue the following UNIX command:
ls -la

If this command is issued in the z/OS UNIX System Services shell environment
when the current directory is the home directory of CICSHT##, you might see a
list such as the following example:

Chapter 4. Setting up Java support 77

|

/u/cicsht##:>ls -la
total 256
drwxr-xr-x 2 CICSHT## CICSTS42 8192 Mar 15 2008 .
drwx------ 4 CICSHT## CICSTS42 8192 Jul 4 16:14 ..
-rw------- 1 CICSHT## CICSTS42 2976 Dec 5 2010 Snap0001.trc
-rw-r--r-- 1 CICSHT## CICSTS42 1626 Jul 16 11:15 dfhjvmerr
-rw-r--r-- 1 CICSHT## CICSTS42 0 Mar 15 2010 dfhjvmin
-rw-r--r-- 1 CICSHT## CICSTS42 458 Oct 9 14:28 dfhjvmout
/u/cicsht##:>

3. If you are using the group permissions to give access, check that the group
permissions for each of the directories and files give the level of access that
CICS requires for the resource. Permissions are indicated, in three sets, by the
characters r, w, x and -. These characters represent read, write, execute, and
none, and are shown in the left column of the command line, starting with the
second character. The first set are the owner permissions, the second set are the
group permissions, and the third set are other permissions. In the previous
example, the owner has read and write permissions to dfhjvmerr, dfhjvmin,
and dfhjvmout, but the group and all others have only read permissions.

4. If you want to change the group permissions for a resource, use the UNIX
command chmod. The following example sets the group permissions for the
named directory and its subdirectories and files to read, write, and execute. -R
applies permissions recursively to all subdirectories and files:
chmod -R g=rwx directory

The following example sets the group permissions for the named file to read
and execute:
chmod g+rx filename

The following example turns off the write permission for the group on two
named files:
chmod g-w filename filename

In all these examples, g designates group permissions. If you want to correct
other permissions, u designates user (owner) permissions, and o designates
other permissions.

5. Assign the group permissions for each resource to the RACF group that you
chose for your CICS regions to access z/OS UNIX. You must assign group
permissions for each directory and its subdirectories, and for the files in them.
Enter the following UNIX command:
chgrp -R GID directory

GID is the numeric GID of the RACF group and directory is the full path of a
directory to which you want to assign the CICS regions permissions. For
example, to assign the group permissions for the /usr/lpp/cicsts/cicsts42
directory, use the following command:
chgrp -R GID /usr/lpp/cicsts/cicsts42

Because your CICS region user IDs are connected to the RACF group, the CICS
regions have the appropriate permissions for all these directories and files.

Results

You have ensured that CICS has the appropriate permissions to access the
directories and files in z/OS UNIX to run Java applications.

78 CICS TS for z/OS 4.2: Java Applications in CICS

When you change the CICS facility that you are setting up, such as moving files or
creating new files, remember to repeat this procedure to ensure that your CICS
regions have permission to access the new or moved files.

What to do next

Verify that your Java support is set up correctly using the sample programs and
profiles.

Chapter 4. Setting up Java support 79

80 CICS TS for z/OS 4.2: Java Applications in CICS

Chapter 5. Enabling applications to use a JVM

Just as for non-Java applications, CICS requires that you define the resources
required to run a Java program in a JVM. You must also define where to find the
classes for the application.

You can run standard Java applications in a pooled JVM or a JVM server by
creating a PROGRAM resource. Use a pooled JVM only if your application is not
threadsafe. Otherwise use a JVM server for your Java applications.

CORBA stateless objects and enterprise beans do not have their own PROGRAM
resources, but use the profile specified by the request processor program. CORBA
stateless objects and enterprise beans can run only in a pooled JVM.

Setting up a JVM server
To run Java applications or Axis2 in a JVM server, you must set up the CICS
resources and create a JVM profile that passes options to the JVM.

About this task

A JVM server can handle multiple concurrent requests for different Java
applications in a single JVM. The JVMSERVER resource represents the JVM server
in CICS. The resource defines the JVM profile that specifies options for the JVM,
the program that provides values to the Language Environment enclave, and the
thread limit. A JVM server can run different types of workload:
v You can configure the JVM server to run applications that are packaged as OSGi

bundles.
v You can configure the JVM server to run SOAP processing for Web services

using the Axis2 SOAP engine.

A JVM server cannot run both types of workload, so a JVM profile is supplied for
each type of workload. Any changes that you make to these profiles apply to all
JVM servers that use it. The DFHOSGI JVM profile contains the options to run an
OSGi framework in the JVM server. When you customize the DFHOSGI profile,
make sure that the changes are suitable for all the Java applications that use the
JVM server. The DFHJVMAX JVM profile contains the options to run Axis2 in the
JVM server.

Procedure
1. Create a JVM profile for the JVM server. You can copy the appropriate supplied

profile, DFHJVMAX or DFHOSGI, from the installation directory to the
directory that is specified by the JVMPROFILEDIR system initialization parameter.
The profile you copy requires no further changes, but you can edit the options
as appropriate for your environment. If you change the name of the profile, it
must be 1 - 8 characters in length.

Tip: You can use the z/OS perspective in CICS Explorer to copy the profiles
between directories.

2. Optional: Open the JVM profile and edit the options if required. Only a subset
of options are supported in a JVM server, so use the list of options in “JVM
profiles: options and samples” on page 96 as a guide. Each parameter or

© Copyright IBM Corp. 1999, 2012 81

|

|

|
|
|

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|

property is specified on a separate line, and the parameter or property value is
delimited by the end of the line. Follow the coding rules in “Rules for coding
JVM profiles” on page 99.
Do not specify the class path options in the DFHOSGI profile. The OSGi
framework determines where the classes for each application are located. You
can make the following changes:
a. Use the LIBPATH_SUFFIX option to specify any directories containing native

C dynamic link library (DLL) files that are required by the JVM server.
Middleware and tooling supplied by IBM or by vendors might require DLL
files to be added to the library path; for example, DLL files are required to
use the DB2 JDBC drivers.

b. For OSGi only, use the OSGI_BUNDLES option to specify middleware bundles
that you want to run in the OSGi framework. Middleware bundles are a
type of OSGi bundle that contain classes to implement system services, such
as connecting to WebSphere MQ.

c. For OSGi only, use the OSGI_FRAMEWORK_TIMEOUT option to specify how many
seconds CICS waits for the OSGi framework to initialize or shut down
before timing out. The default value is 60 seconds. If the framework takes
longer than the specified time, the JVM server fails to initialize or shut
down correctly.

d. Change the destination for messages, trace, and output from the JVM. You
can change the name and location of the dfhjvmtrc, stdin, stdout, and
stderr files and Java memory dumps. To avoid interleaving output, use the
&JVMSERVER; symbol to make these files unique to each JVM server.

3. Save your changes to the JVM profile. The JVM profile must be saved in
EBCDIC.

4. Create a JVMSERVER resource for the JVM server.
a. Specify the name of the JVM profile that you created.
b. Specify the thread limit for the JVM server. The number of threads that are

required depend on the workload that you want to run in the JVM server.
To start with, you can accept the default value and then tune the
environment. You can set up to 256 threads in a JVM server.

c. Optional: Specify the program that supplies the Language Environment
options for the enclave if different to DFHAXRO. CICS provides a default
set of values that is already compiled in the DFHAXRO program. You can
tune the enclave by providing your own options if required. For more
information, see “Using DFHAXRO to modify the enclave of a JVM server”
on page 173.

Results

When you enable the JVMSERVER resource, CICS creates a Language Environment
enclave and passes the options from the JVM profile to the JVM server. Depending
on the options in the profile, the JVM server is configured to run an OSGi
framework or Axis2:
v If the JVM server supports OSGi, the JVM starts up and the OSGi framework

resolves any OSGi middleware bundles.
v If the JVM server supports Axis2, the JVM starts up and loads the Axis2 JAR

files.

When the JVM server completes startup successfully, the JVMSERVER resource
installs in the ENABLED state.

82 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/jvmserver/dfha4_overview.html

If an error occurs, for example CICS is unable to find or read the JVM profile, the
JVM server fails to initialize. The JVMSERVER resource installs in the DISABLED
state and CICS issues error messages to the system log.

What to do next

For a JVM server that is configured to support OSGi, you can install OSGi bundles
in the framework, as described in “Installing OSGi bundles in a JVM server” on
page 84. For a JVM server that is configured to support Axis2, you can configure
CICS to run Web service requests in the JVM server, as described in the CICS Web
Services Guide.

Setting up a JVM server for DB2
If you want to access DB2 from Java applications that are running in a JVM server,
you must add options to the JVM profile.

Before you begin

To use the JVM server with DB2, you must have the latest version of the IBM Data
Server Driver for JDBC and SQLJ. For more information about what APARs are
required, see the system requirements at http://www-01.ibm.com/support/
docview.wss?uid=swg27020857.

About this task

DB2 provides OSGi bundle versions of the IBM Data Server Driver for JDBC and
SQLJ. You must install the appropriate DB2 middleware bundle in the OSGi
framework so that applications can access DB2.

Procedure
1. Open the JVM server profile for the appropriate JVM server. You can use the

z/OS perspective in the CICS Explorer to open, edit, and save the JVM profiles.
2. Add the location of the lib directory for the appropriate DB2 driver to the

LIBPATH_SUFFIX option.
3. Optional: If you previously used the OSGi bundle supplied with CICS to access

DB2, remove these references from the profile:
a. Remove the com.ibm.cics.db2.jcc.jar bundle from the OSGI_BUNDLES

option.
b. Remove the JVM system property -Dcom.ibm.cics.db2.jcc.jdbc.home.

4. Add either the DB2 JDBC 3.0 or the JDBC 4.0 middleware bundle, together
with the DB2 licence bundle, to the OSGI_BUNDLES option. You can specify only
one version of the JDBC bundle in the framework.

5. Save your changes.
6. If you are updating an existing JVM server, disable and enable the JVMSERVER

resource. Otherwise, create a JVMSERVER resource. CICS starts the OSGi
framework and installs the middleware bundle.

Example

The following excerpt shows an example JVM profile with the required options to
use DB2 Version 9.1 and the JDBC 4.0 bundle:

Chapter 5. Enabling applications to use a JVM 83

|
|
|

|

|
|
|
|
|

|
|

|
|

|

|
|
|
|

|

|
|
|

|

|
|

|
|

|
|

|
|

|

|
|
|

|

|
|
|

|

|
|

http://www-01.ibm.com/support/docview.wss?uid=swg27020857
http://www-01.ibm.com/support/docview.wss?uid=swg27020857
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/jvmserver/dfha4_overview.html

#**
#
Required parameters

#
When using a JVM server, the set of CICS options that are supported
JAVA_HOME=/usr/lpp/java/J6.0.1_64
WORK_DIR=.
LIBPATH_SUFFIX=/usr/lpp/db2910/lib
...
#**
#
JVM server specific parameters

#
OSGI_BUNDLES=/usr/lpp/db2910/classes/db2jcc4.jar,\

/usr/lpp/db2910/classes/db2jcc_license_cisuz.jar
OSGI_FRAMEWORK_TIMEOUT=60
#
#**
#
JVM options

The following option sets the Garbage collection Policy.
#
-Xgcpolicy:gencon
#
#**
#
Setting user JVM system properties

#
-Dcom.ibm.cics.some.property=some_value
#
#**
#
Unix System Services Environment Variables
--
#
JAVA_DUMP_OPTS="ONANYSIGNAL(JAVADUMP,SYSDUMP),ONINTERRUPT(NONE)"
#
#

Installing OSGi bundles in a JVM server
To deploy a Java application in a JVM server, you must install the OSGi bundles
for the application in the OSGi framework of the target JVM server.

Before you begin

A CICS bundle that contains the OSGi bundles for the application must be
deployed to zFS. The target JVM server must be running in the CICS region.

About this task

A CICS bundle can contain one or more OSGi bundles and services. Because the
CICS bundle is the unit of deployment, all the OSGi bundles and services are
managed together as part of the BUNDLE resource. The OSGi framework also
manages the life cycle of the OSGi bundles and services, including the
management of dependencies and versioning.

As a best practice, ensure that all OSGi bundles that comprise a Java application
are deployed in the same CICS bundle. Using this method, you can manage the

84 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|

|

|
|
|
|
|

|
|

application as a single entity by using the BUNDLE resource. If there are
dependencies between OSGi bundles, deploy them in the same CICS bundle. When
you install the CICS BUNDLE resource, CICS ensures that all the dependencies
between the OSGi bundles are resolved.

If you have dependencies on an OSGi bundle that contains a library of common
code, the best practice is to create a separate CICS bundle for the library. In this
case, it is important to install the CICS BUNDLE resource containing the library
first. If you install the Java application before the CICS bundles that it depends on,
the OSGi framework is unable to resolve the dependencies of the Java application.

Procedure
1. Check the target JVM server in the CICS bundle to ensure that a JVM server of

that name exists in the CICS region.
2. Create a BUNDLE resource that specifies the directory of the bundle in zFS:

a. Click Definitions > Bundle Definitions in the CICS Explorer menu bar to
open the Bundles Definitions view.

b. Right-click anywhere in the view and click New to open the New Bundle
Definition wizard. Enter the details for the BUNDLE resource in the wizard
fields.

c. Install the BUNDLE resource. You can either install the resource in an
enabled or disabled state:
v If you install the resource in a DISABLED state, CICS installs the OSGi

bundles in the framework and resolves the dependencies, but does not
attempt to start the bundles.

v If you install the resource in an ENABLED state, CICS installs the OSGi
bundles, resolves the dependencies, and starts the OSGi bundles. If the
OSGi bundle contains a lazy bundle activator, the OSGi framework does
not attempt to start the bundle until it is first called by another OSGi
bundle.

3. Optional: Enable the BUNDLE resource to start the OSGi bundles in the
framework if the resource is not already in an ENABLED state.

4. Click Operations > Bundles in the CICS Explorer menu bar to open the
Bundles view. Check the state of the BUNDLE resource.
v If the BUNDLE resource is in an ENABLED state, CICS was able to install all

the resources in the bundle successfully.
v If the BUNDLE resource is in a DISABLED state, CICS was unable to install

one or more resources in the bundle.

If the BUNDLE resource failed to install in the enabled state, check the bundle
parts for the BUNDLE resource. If any of the bundle parts are in the
UNUSABLE state, CICS was unable to create the OSGi bundles. Typically, this
state indicates that there is a problem with the CICS bundle in zFS. You must
discard the BUNDLE resource, fix the problem, and then install the BUNDLE
resource again.

5. Click Operations > Java > OSGi Bundles in the CICS Explorer menu bar to
open the OSGI Bundles view. Check the state of the installed OSGi bundles and
services in the OSGi framework. The following table summarizes the states:

Chapter 5. Enabling applications to use a JVM 85

|
|
|
|

|
|
|
|
|

|

|
|

|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|

BUNDLE BUNDLEPART OSGIBUNDLE OSGISERVICE

ENABLED ENABLING INSTALLED N/A

ENABLED STARTING N/A

ACTIVE ACTIVE

INACTIVE

DISABLED DISABLING STOPPING N/A

DISABLED RESOLVED N/A

UNUSABLE N/A N/A

v If the OSGi bundle is in the STARTING state, the bundle activator has been
called but not yet returned. If the OSGi bundle has a lazy activation policy,
the bundle remains in this state until it is called in the OSGi framework.

v If the OSGi bundles and OSGi services are active, the Java application is
ready.

v If the OSGi service is inactive, CICS detected that an OSGi service with that
name already exists in the OSGi framework.

Results

The BUNDLE is enabled, the OSGi bundles are successfully installed in the OSGi
framework, and any OSGi services are active. The OSGi bundles and services are
available to other bundles in the framework.

What to do next

You can make the Java application available to other CICS applications outside the
OSGi framework.

Calling a Java application in a JVM server
To call a Java application that is running in a JVM server from another CICS
application, you must use an OSGi service that is active in the OSGi framework.

About this task

An OSGi service is a well-defined interface that is registered in the OSGi
framework for an OSGi bundle. Other OSGi bundles and remote applications use
the OSGi service to call application code that is packaged in the OSGi bundle. An
OSGi bundle can have more than one OSGi service.

The OSGi framework manages the invocations of services for OSGi bundles that
are installed in the same framework. To call a Java application from a CICS
application that is outside the OSGi framework, use the appropriate OSGi service
for the OSGi bundle.

Procedure
1. Determine the symbolic name of the active OSGi service that you want to use

in the OSGi framework. Click Operations > Java > OSGi Services in CICS
Explorer to list the OSGi services that are active.

2. Create a PROGRAM resource to represent the OSGi service to other CICS
applications:

86 CICS TS for z/OS 4.2: Java Applications in CICS

|||||

||||

|||

||

|

||||

|||

|||
|

|
|
|

|
|

|
|

|

|
|
|

|

|
|

|
|

|
|

|

|
|
|
|

|
|
|
|

|

|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/program/dfha4_overview.html

a. In the JVM attribute, specify YES to indicate that the program is a Java
program.

b. In the JVMCLASS attribute, specify the symbolic name of the OSGi service.
This value is case sensitive.

c. In the JVMSERVER attribute, specify the name of the JVMSERVER resource
in which the OSGi service is running.

3. You can call the Java application in various ways:
v Use a 3270 or EXEC CICS START request that specifies a transaction identifier.

Create a TRANSACTION resource that defines the PROGRAM resource for
the OSGi service.

v Use an EXEC CICS LINK request, an ECI call, or an EXCI call. Name the
PROGRAM resource for the OSGi service when coding the request.

v Use an entry in a program list table (PLT). Name the PROGRAM resource for
the OSGi service.

Results

You have created a PROGRAM resource to make an OSGi bundle available to
other CICS applications. When the OSGi service is called, CICS runs the request in
the target JVM server. If the OSGi service is registered as active, the Java program
runs successfully. If the OSGi service is not registered or is inactive, an error is
returned to the calling program.

Enabling a Java security manager
By default, Java applications have no security restrictions placed on activities
requested of the Java API. To use Java security to protect a Java application from
performing potentially unsafe actions, you can enable a security manager for the
JVM in which the application runs.

About this task

The security manager enforces a security policy, which is a set of permissions
(system access privileges) that are assigned to code sources. A default policy file is
supplied with the Java platform. However, to enable Java applications to run
successfully in CICS when Java security is active, you must specify an additional
policy file that gives CICS the permissions it requires to run the application.

You must specify this additional policy file for each kind of JVM that has a
security manager enabled. CICS provides some examples that you can use to create
your own policies.

Procedure
v For applications that run in the OSGi framework of a JVM server:

1. Create a plug-in project in the CICS Explorer SDK and select the supplied
OSGi security agent example. This example creates an OSGi middleware
bundle called com.ibm.cics.server.examples.security in your project that
contains a security profile. This profile applies to all OSGi bundles in the
framework in which it is installed.

2. In the project, select the example.permissions file to edit the permissions for
your security policy. This file contains permissions that are specific to
running applications in a JVM server, including a check to ensure that
applications do not use the System.exit() method.

Chapter 5. Enabling applications to use a JVM 87

|
|

|
|

|
|

|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|

|

|

|
|
|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/transaction/dfha4_overview.html

3. Deploy the OSGi bundle to a suitable directory in zFS. CICS must have read
and execute access to this directory.

4. Create a policy file to give all permissions to the Java launcher. An example
policy called all.policy is provided in the plug-in project. It is not included
in the middleware bundle, but you can copy it to a suitable directory in zFS.
The policy file contains the following permissions:
grant {
permission java.security.AllPermission;
};

5. Edit the JVM profile for the JVM server to add the OSGi bundle to the
OSGI_BUNDLES option before any other bundles:
OSGI_BUNDLES=/u/bundles/com.ibm.cics.server.examples.security_1.0.0.jar,/usr/lpp/cicsts42/lib/com.ibm.cics.db2.jcc.jar

6. Add the following Java environment variable to the JVM profile to enable
security in the OSGi framework:
org.osgi.framework.security=osgi

7. Add the following Java security system property to the JVM profile to
specify the security policy:
-Djava.security.policy=/u/policies/all.policy

8. Save your changes and enable the JVMSERVER resource to install the
middleware bundle in the JVM server.

v For applications that run in a pooled JVM, use the dfhjejbpl.policy file to
implement your security policy.
1. Create a policy file for your application in the /usr/lpp/java/J6.0.1_64/lib/

security/, where java/J6.0.1_64 is the location for the IBM 64-bit SDK for
z/OS, Java Technology Edition.
The security manager always uses the default policy file java.policy that is
provided in this directory. If you want an application to use JDBC or SQLJ,
create a policy file to grant permissions to the JDBC driver. You must use the
JDBC 2.0 driver with Java security.

2. Enable the security manager by adding the -Djava.security.manager system
property to the JVM profile. Use one of the following formats:
– -Djava.security.manager=default

– -Djava.security.manager=""

– -Djava.security.manager=

3. Specify your policy files by adding the -Djava.security.policy system
property to the JVM profile. The security manager uses any policies set on
this property in addition to the default security policy.

Results

When the Java application is called, the JVM determines the code source for the
class and consults the security policy before granting the class the appropriate
permissions.

Setting up pooled JVMs
The pooled JVM environment is required to run Enterprise Java Beans, CORBA,
and non-threadsafe Java applications. You must set up the supplied JVM profiles
and CICS resources. You can optionally run the Hello World sample to check your
environment is set up correctly.

88 CICS TS for z/OS 4.2: Java Applications in CICS

|
|

|
|
|
|

|
|
|

|
|

|

|
|

|

|
|

|

|
|

|
|

|
|
|

|
|
|
|

|
|

|

|

|

|
|
|

|

|
|
|

|
|

|
|
|
|

About this task

Procedure
1. Copy the supplied samples DFHJVMPR and DFHJVMCD from their

installation location to the z/OS UNIX directory that is specified in the
JVMPROFILEDIR system initialization parameter. Working with copies of the
suppled profiles ensures that you do not lose your changes if the profiles are
updated when maintenance is applied.
v DFHJVMPR is the supplied profile for the pooled JVM.
v DFHJVMCD is the supplied profile for system programs and the shared class

cache.
2. Customize the JVM profiles to edit the options that configure the JVM when it

starts. For example, you change the amount of storage that is available and
apply security settings. The options are explained in “JVM profiles: options and
samples” on page 96.

3. Optional: Check your pooled JVM environment setup using the JCICS
HelloWorld sample.

4. Create the CICS resources and JVM profile to enable an application, Enterprise
Java Bean, or CORBA, to use a pooled JVM. You can use the customized
default profile, DFHJVMPR, or you can create your own profile.

Results

The environment is configured and you have created the CICS resources to run a
Java application in a pooled JVM.

Customizing DFHJVMCD
The JVM profile DFHJVMCD is reserved for use by CICS-supplied system
programs, in particular the default request processor program, DFJIIRP, used by
the CICS-supplied CIRP request processor transaction. CICS also uses DFHJVMCD
to initialize and terminate the shared class cache for pooled JVMs.

Before you begin

DFHJVMCD must be set up correctly for your CICS region, but customize it only
when required. DFHJVMCD can have an associated JVM properties file, but this is
optional.

Make sure that you are working with a copy of DFHJVMCD in the z/OS UNIX
directory that you specified on the JVMPROFILEDIR system initialization parameter,
and not with the original file in its installation location.

About this task

The options that you can change are indicated in the text of DFHJVMCD. Do not
make any other changes to the files.

For detailed information about the options in DFHJVMCD that you can change,
and the purpose of changing them, see “Options for JVMs in a CICS environment”
on page 101, and “JVM system properties” on page 109.

Procedure
1. Open DFHJVMCD in a standard text editor.

Chapter 5. Enabling applications to use a JVM 89

|

|

|
|
|
|
|

|

|
|

|
|
|
|

|
|

|
|
|

|

|
|

|

|
|
|
|

|

|
|
|

|
|
|

|

|
|

|
|
|

|

|

2. If you have a shared class cache in your CICS region, you can specify that any
pooled JVMs created with the profile DFHJVMCD use the shared class cache.
Change the CLASSCACHE option to CLASSCACHE=YES. The default,
CLASSCACHE=NO, means that they are stand-alone JVMs.

3. Change the value for the JAVA_HOME option if it does not match your
installation directory for the IBM 64-bit SDK for z/OS, Java Technology
Edition on z/OS UNIX.

4. To change the working directory on z/OS UNIX that is used by JVMs with
the DFHJVMCD profile, change the WORK_DIR option to specify your
preferred directory.

5. To change the names of the z/OS UNIX files to be used for stderr, stdin, and
stdout, change the STDERR, STDIN, and STDOUT options.

6. To use an output redirection class to intercept and redirect output and
messages from the JVM, use the USEROUTPUTCLASS option to specify the
name of the class. Do not use this option in a production environment.

7. To tune the heap size for JVMs with the DFHJVMCD profile, to fit better with
the needs of your applications, change the -Xms or -Xmx options.

8. If you have applications that use JDBC, add the relevant DB2 libraries and
files as specified in the sample profile DFHJVMPR to the LIBPATH_SUFFIX
and CLASSPATH_SUFFIX options in DFHJVMCD.

9. Enable the Java security policy mechanism (the -Djava.security.policy
system property) if required by your installation.

10. Save the changes to the profile. Confirm that your customized copy of
DFHJVMCD is in the z/OS UNIX directory that you specified on the
JVMPROFILEDIR system initialization parameter.

What to do next

Do not specify DFHJVMCD in PROGRAM resources that you set up for your own
applications. You might want to make similar customization changes to a copy of
the other CICS-supplied sample JVM profile, DFHJVMPR, for use by your
applications.

Customizing DFHJVMPR
DFHJVMPR is the default JVM profile for pooled JVMs. Any changes that you
make to this profile apply to all pooled JVMs where the PROGRAM resource does
not specify another JVM profile.

Before you begin

Before you begin, make sure that you are working with the copy of the supplied
sample JVM profile and not the original file in its installation location.

About this task

When you customize the DFHJVMPR profile, make sure that the changes are
suitable for all the Java applications that use the profile. If you want to add
options for a Java application that do not apply to your other applications, create a
JVM profile based on DFHJVMPR with a different name.

Procedure
1. Open the JVM profile in a standard text editor and edit the options. Use the

lists of options in “JVM profiles: options and samples” on page 96. Each

90 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|

|
|
|
|

|

|
|
|

|

|
|

|

|
|
|
|

|

|
|

parameter or property is specified on a separate line, and the parameter or
property value is delimited by the end of the line. Follow the coding rules in
“Rules for coding JVM profiles” on page 99.
You might want to change these key options for pooled JVMs:
v Enable Java security by adding a security manager and policy to the profile.

The Java security policy mechanism protects Java applications from
performing unsafe actions. You can add security to the profile using the
-Djava.security.manager and -Djava.security.policy system properties.
For more information, see “Enabling a Java security manager” on page 87.

v Change the -Xmx option in the JVM profile to adjust the amount of storage
available for the application. This option changes the size of the heap in the
JVM. The default value is 16 MB, but if you have large Java applications, you
might want to increase this value.

v Change the timeout threshold for the JVM, using the IDLE_TIMEOUT option in
the JVM profile. The default is that an inactive JVM becomes eligible for
automatic termination by CICS after 30 minutes. If you prefer to keep
unused JVMs available for a longer period, you can specify a timeout
threshold of up to 7 days or set the JVM to never time out.

v Change the destination for messages and output from the JVM. You can
change the name and location of the stdin, stdout, and stderr files and Java
dumps, and use symbols to make these files unique to each JVM. During
application development, you can redirect messages from JVM internals and
output from Java applications using the USEROUTPUTCLASS option in the JVM
profile. “Controlling the location for JVM stdout, stderr and dump output”
on page 182 tells you more about the changes that you can make.

2. Optional: If your Java applications require access to DB2 data using JDBC, use
the -Djdbc.drivers system property. For more information, see Using JDBC
and SQLJ to access DB2 data from Java programs in the DB2 Guide.

3. Save the customized JVM profile in the z/OS UNIX directory that is specified
by the JVMPROFILEDIR system initialization parameter for your CICS region.
CICS loads the JVM profiles from this directory.

4. Confirm that CICS has read and write access on z/OS UNIX for your JVM
profile and the directory containing it.

5. If you have JVMs running that are using the DFHJVMPR profile, phase out the
JVM pool for the profile. All the existing JVMs that are using DFHJVMPR are
stopped and started. The new JVMs use the latest version of the JVM profile.

Results

You have customized the sample JVM profile for pooled JVMs and ensured that
CICS has the correct access to the profile in the z/OS UNIX directory.

What to do next

You can set up applications to use the customized JVM profile and add the classes
for the application to the class path. See “Enabling an application to use a pooled
JVM” on page 94.

Creating your own JVM profiles
You can create a JVM profile with a different file name for a specific application, or
if you want to avoid making updates to the customized sample profiles.

Chapter 5. Enabling applications to use a JVM 91

|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|
|

|

|
|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6j.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6j.html

Before you begin

You must have copies of the supplied sample profiles in the z/OS UNIX directory
that is specified by the JVMPROFILEDIR system initialization parameter for your
CICS region. CICS must have read and execute access to this directory.

About this task

To minimize administration, always copy and rename the appropriate sample
profile. If your Java application is going to run in a JVM server, use the DFHOSGI
profile as the basis for your modifications. If your Java application is going to run
in a pooled JVM, use the DFHJVMPR profile as the basis for your modifications.

Procedure
1. Copy and rename the appropriate sample JVM profile. Do not give the JVM

profile a name beginning with DFH, because these characters are reserved for
use by CICS. The names of JVM profiles are case-sensitive. For more
information about naming profiles, see “JVM profiles” on page 7.

2. Edit the JVM profile in a standard text editor, using the lists of options in “JVM
profiles: options and samples” on page 96. Some options are specific to JVM
servers and others are specific to pooled JVMs.
Each parameter or property is specified on a separate line, and the parameter
or property value is delimited by the end of the line. Follow the coding rules in
“Rules for coding JVM profiles” on page 99.

3. If you want to enable Java security, specify the security options and set up one
or more security policy files to define security properties for the JVM. For
details, see “Enabling a Java security manager” on page 87.

4. Save your JVM profile in the z/OS UNIX directory that is specified by the
JVMPROFILEDIR system initialization parameter for your CICS region. CICS loads
the JVM profiles from this directory.

5. Ensure that CICS has read access on z/OS UNIX for your JVM profile. See
“Giving CICS regions access to z/OS UNIX directories and files” on page 77.

Results

You have created a JVM profile that conforms to the naming conventions and
contains the correct options for your Java application and the intended runtime
environment.

What to do next

Set up the application to use the JVM profile, including creating the CICS
resources. You can set up a JVM server, as described in “Setting up a JVM server”
on page 81, or a pooled JVM, as described in “Enabling an application to use a
pooled JVM” on page 94.

Checking your pooled JVM setup with the examples
Set up and run the "Hello World" and "Hello CICS World" example programs to
verify that your pooled JVM environment is correctly set up in your CICS region.

Before you begin

Before running the example programs, make sure that you have completed the
other setup tasks described in Chapter 4, “Setting up Java support,” on page 75.

92 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|

|

|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|
|
|

|

|
|
|
|

|

|
|

|

|
|

About this task

The Java examples are provided in the CICS Explorer SDK to help application
developers get started with developing Java applications in CICS. The Java source
and build files are also provided in z/OS UNIX during CICS installation if you
want to run the examples to verify that the pooled JVM environment is correctly
set up.

To set up and run the supplied programs, you must define environment variables
in z/OS UNIX. You can define the variables in a profile for z/OS UNIX by using
the export command, or you can enter the export command manually when you
log in to z/OS UNIX.

Procedure
1. PATH is the z/OS UNIX System Services search path. Define the PATH

environment variable:
/usr/lpp/java/J6.0.1_64/bin

The path locates where IBM 64-bit SDK for z/OS, Java Technology Edition is
installed on z/OS UNIX. You can use the export command to add the path as
follows:
export PATH=/usr/lpp/java/J6.0.1_64/bin:$PATH

2. CICS_HOME is the installation directory for CICS Transaction Server for z/OS
files in z/OS UNIX System Services. Define the CICS_HOME environment
variable as follows:
/usr/lpp/cicsts/cicspath

The value of cicspath is defined by the USSDIR installation parameter when you
installed CICS TS. cicsts42 is the default. You can use the export command to
set the directory prefix as follows:
export CICS_HOME=/usr/lpp/cicsts/cicsts42

The $CICS_HOME/samples/dfjcics directory contains the makefiles.
The $CICS_HOME/samples/dfjcics/examples directory contains the Java source.

3. JAVA_HOME specifies the path to the IBM 64-bit SDK for z/OS, Java
Technology Edition subdirectories. Define the JAVA_HOME environment
variable as follows:
/usr/lpp/java/java_location/

The java_location is where the IBM 64-bit SDK for z/OS, Java Technology
Edition is installed on z/OS UNIX. The default value is java/J6.0.1_64/.

4. Build the Java examples:
a. In the samples/dfjcics directory, type make jvm to build all the examples.

The makefiles call javac and store the output files in the
$CICS_HOME/samples/dfjcics/examples/sample_name z/OS UNIX directory,
where sample_name is the name of the example program.

b. Compile and translate the supplied C programs that are in SDFHSAMP:
v DFH$LCCA
v DFH$JSAM
v DFH$LCCC

These programs are linked by the Program Control and one of the “Hello
World” Java example programs. DFH$LCCA and DFH$JSAM are standard
CICS programs that could be written in any of the languages supported by

Chapter 5. Enabling applications to use a JVM 93

|

|
|
|
|
|

|
|
|
|

|

|
|

|

|
|
|

|

|
|
|

|

|
|
|

|

|

|

|
|
|

|

|
|

|

|
|
|
|

|
|
|
|

|
|
|

CICS. If you do not have a C compiler, you can write COBOL versions of
the supplied programs and use them in place of the supplied C versions.

c. Link the programs into DFHRPL or a dynamic library concatenation.
5. Add the string /usr/lpp/cicsts/cicsts42/samples/dfjcics to the

CLASSPATH_SUFFIX option in the default JVM profile DFHJVMPR.
/usr/lpp/cicsts/cicsts42 is the value of the USSHOME system initialization
parameter.

6. Run the Hello World examples by following the steps outlined in “Running the
Hello World examples” on page 35.

Results

The Hello World examples ran successfully.

What to do next

You can enable Java applications to run using pooled JVMs.

Enabling an application to use a pooled JVM
To enable a Java application to use a pooled JVM, you must set up the CICS
resources to run a Java program in a JVM. You must also define where to find the
classes for the application.

About this task

Use a pooled JVM when you want to run an application that is not threadsafe in a
single JVM.

Procedure
1. Select or create an appropriate JVM profile for the Java application. You can

copy the supplied sample DFHJVMPR. All JVM profiles are located in the z/OS
UNIX directory that is specified by the JVMPROFILEDIR system initialization
parameter.

2. Edit the JVM profile to add the classes and libraries that are required by your
application. You can use any standard text editor. Use a colon as the separator
between paths. To include line breaks, use a backslash and a blank (\).
a. Place the application classes on the standard class path. The standard class

path is defined by the CLASSPATH_SUFFIX option. Do not specify the name of
the class itself or the name of the package in the JVM profile. The options in
the JVM profile specify the path to the class.

b. If your classes are not in a package, include all the subdirectories on the
class path.

c. If your classes or packages are in JAR files, include the name of the JAR file
on the class path.

For details on rules for coding class paths and other items in a JVM profile, see
“Rules for coding JVM profiles” on page 99.

3. Add any native C dynamic link library (DLL) files that are required by the
application to the LIBPATH_SUFFIX option in the JVM profile.
Middleware and tooling supplied by IBM or by vendors might require DLL
files to be added to the library path; for example, DLL files are required to use
the DB2 JDBC drivers. You might also have native code associated with a class
that you have written.

94 CICS TS for z/OS 4.2: Java Applications in CICS

|
|

|

|
|
|
|

|
|

|

|

|

|

|

|
|
|

|

|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|

4. Save your JVM profile in the directory specified by the JVMPROFILEDIR system
initialization parameter.

5. Create a PROGRAM resource and set the appropriate Java attributes. When you
enter values for the attributes, ensure that you use the correct case for the JVM
class and the JVM profile.
a. In the EXECKEY attribute, specify the execution key for the Java program.

The default value for this attribute is USER and is suitable for most Java
programs because it improves storage protection. However, if the program
is part of a transaction that specifies TASKDATAKEY(CICS), the program
must run in CICS key.

b. In the JVM attribute, specify YES to indicate that the program is a Java
program.

c. In the JVMCLASS attribute, specify the name of the main class in the Java
program. If the program has been built as a package, specify the fully
qualified name, which is the Java class name qualified by the package name,
with a period (.) used as a separator.
For example, the package example.HelloWorld contains the class
HelloCICSWorld; in this case, the fully qualified class name is
example.HelloWorld.HelloCICSWorld. If the program has not been built as a
package, specify the class name with no qualifiers.

d. In the JVMPROFILE attribute, specify the name of the profile that you
edited to include your application classes.

Results

Your JVM profile and PROGRAM resource are available in the CICS region to
support running the Java application. When an application makes a request to run
a Java program, it can make the request in various ways:
v A 3270 or EXEC CICS START request that specifies a transaction identifier.
v An EXEC CICS LINK request, or an ECI or EXCI call that names the Java program

directly.
v An entry in a program list table (PLT).

For EXEC CICS LINK requests or ECI or EXCI calls, and for entries in a program list
table, CICS is given the name of the PROGRAM resource directly. However, for
3270 or START requests, CICS determines the PROGRAM resource by using the
transaction identifier.

What to do next

If the JVM profile specifies that the JVM uses the shared class cache, you must
ensure that the class cache is started or enabled to autostart for the Java
application to run. “Starting the shared class cache” on page 142 tells you how to
start the shared class cache or enable autostart.

Enabling CORBA or enterprise bean applications to use a JVM
To enable a CORBA application or enterprise bean to use a pooled JVM, you must
update the JVM profile and class path for the application.

About this task

CORBA stateless objects and enterprise beans do not have their own PROGRAM
resources. A method request for an enterprise bean or CORBA stateless object

Chapter 5. Enabling applications to use a JVM 95

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|

|

|
|

|

|
|
|
|

|

|
|
|
|

|

|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/program/dfha4_overview.html

involves a JVM, because the request processor that handles it executes in a JVM. A
request processor is a program that manages the execution of an IIOP request,
including calling the container to process the method. When CICS receives the
method request, it compares it to a REQUESTMODEL resource, finds the one that
best matches the request, and uses the transaction identifier from that request
model to determine the PROGRAM resource.

Sometimes, IIOP requests are processed using an existing request processor
transaction that already has a JVM assigned to it. CICS only looks at the
transaction identifier in any matching request model when a new request processor
transaction is required.

Procedure
1. Identify the JVM profile for the request processor program that handles the

CORBA stateless object or enterprise bean. The JVM profile is specified on the
PROGRAM resource for the request processor program. The default request
processor program is DFHJIIRP and the default JVM profile for this program is
DFHJVMCD.

2. For CORBA stateless objects only, add the JAR file for the application to the
CLASSPATH_SUFFIX option in the JVM profile for the request processor
program. Use a colon as the separator between paths that you specify on a
class path. To include line breaks, use a backslash and a blank: (\).
You do not have to add the deployed JAR (DJAR) files for your enterprise
beans to the class path.

3. If your enterprise beans or CORBA application use any classes, such as classes
for utilities that are not included in the JAR file, include these classes on the
class path that is used by the JVM for the request processor program.

Results

Your JVM profile and class paths are available in the CICS region to support
running the Java application.

JVM profiles: options and samples
CICS provides sample JVM profiles that contain a selection of options for IBM
JVMs that are used in a CICS environment. Some of these options are specific to
the CICS environment and are not used for JVMs in other environments. Other
options are standard or nonstandard Java options, which can be used for IBM
JVMs in any environment.

You can specify any JVM option or system property in a JVM profile, and it is
passed to the JVM. The JVM profiles for JVM servers and pooled JVMs are
different, so some options you can specify only for one type of Java environment.

You can set system properties in a JVM properties file. However, JVM properties
files are supported only for pooled JVMs, and sample properties files are not
provided with CICS.

No central repository of all options and system properties for the JVM exists. Here
are some sources of information that you can use:
v The documentation for the IBM 64-bit SDK for z/OS, Java Technology Edition,

Version 6.

96 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/collection-welcome.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/collection-welcome.html

v The IBM SDK Java Technology Edition Version 6 Supplement, that is available at
http://www-03.ibm.com/systems/z/os/zos/tools/java/products/
sdk601_64.html. This document contains information specific to IBM 64-bit SDK
for z/OS, Java Technology Edition, Version 6.0.1.

v The Java Diagnostics Guide. This guide documents system properties that are
used for JVM trace and problem determination.

The Java class libraries include other system properties, and applications might
have their own system properties. The IBM Java documentation is the primary
source of information and the CICS documentation is a secondary source of
information.

The summary table, Table 9, lists the options that are used in the sample JVM
profiles, and which options apply to JVM servers and pooled JVMs. The table also
includes some further options that you might use to complete tasks described in
the CICS documentation. The table indicates the default for each option if it is not
specified in the sample JVM profiles.

Table 9. JVM options reference table for JVMs in a CICS environment

Option Default JVM server Pooled JVM Comments

JVM type

CLASSCACHE NO Not supported Supported YES makes JVM use
shared class cache,
NO does not

REUSE YES Not supported Supported YES makes
continuous JVM, NO
makes single-use JVM

Directories

JAVA_HOME None Supported Supported Required, sample
profiles include this
directory

WORK_DIR /tmp Supported Supported

Paths

CLASSPATH_PREFIX None Not supported Supported

CLASSPATH_SUFFIX None Not supported Supported

LIBPATH_PREFIX None Supported Supported

LIBPATH_SUFFIX None Supported Supported

OSGI_BUNDLES None Supported Not supported Set if you want to use
middleware bundles
in a JVM server

Timeout threshold

IDLE_TIMEOUT 30 minutes Not supported Supported Applies only to
continuous pooled
JVM

OSGI_FRAMEWORK_TIMEOUT 60 seconds Supported Not supported

Further settings and facilities for the JVM

JVMPROPS None Not supported Supported Set only if you use a
JVM properties file

INVOKE_DFHJVMAT NO Not supported Supported Applies only to
single-use pooled
JVM

Chapter 5. Enabling applications to use a JVM 97

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

||

|||||

|

|||||
|
|

|||||
|
|

|

|||||
|
|

|||||

|

|||||

|||||

|||||

|||||

|||||
|
|

|

|||||
|
|

|||||

|

|||||
|

|||||
|
|

http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_64.html
http://www-03.ibm.com/systems/z/os/zos/tools/java/products/sdk601_64.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html

Table 9. JVM options reference table for JVMs in a CICS environment (continued)

Option Default JVM server Pooled JVM Comments

Storage heap sizes

-Xms Supported Supported For information about
the -Xms default
value, see the
reference information
at Default settings for
the JVM

-Xmx Supported Supported For information about
the -Xmx default
value, see the
reference information
at Default settings for
the JVM

Garbage collection threshold

GC_HEAP_THRESHOLD 85% Not supported Supported Applies only to
continuous pooled
JVM

Output from the JVM

JVMTRACE dfhjvmtrc Supported Not supported

LEHEAPSTATS NO Not supported Supported

STDERR dfhjvmerr Supported Supported

STDIN dfhjvmin Supported Supported

STDOUT dfhjvmout Supported Supported

USEROUTPUTCLASS None Supported Supported Set only in a
development
environment

Problem determination and application debugging

JAVA_DUMP_OPTS YES Supported Supported

-Xdebug NO Supported Supported

PRINT_JVM_OPTIONS NO Supported Supported Set YES only
temporarily

z/OS UNIX System Services environment variables

In addition to the JVM options and system properties that are used to construct the
JVM, you can specify z/OS UNIX System Services environment variables in a JVM
profile. Any name and value pair in a JVM profile that is not recognized as a JVM
option or system property is treated as a z/OS UNIX System Services environment
variable and is exported. z/OS UNIX System Services environment variables
specified in a JVM profile apply only to JVMs created with that profile.

The JAVA_DUMP_OPTS and JAVA_DUMP_TDUMP_PATTERN options in the sample JVM
profiles are z/OS UNIX System Services environment variables. Another example
is the TZ environment variable, which you can specify to change the time zone for
the JVM.

z/OS UNIX System Services environment variables can be specified only in a JVM
profile.

98 CICS TS for z/OS 4.2: Java Applications in CICS

|

|||||

|

|||||
|
|
|
|
|

|||||
|
|
|
|
|

|

|||||
|
|

|

|||||

|||||

|||||

|||||

|||||

|||||
|
|

|

|||||

|||||

|||||
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/diag/appendixes/defaults.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/diag/appendixes/defaults.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/diag/appendixes/defaults.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/diag/appendixes/defaults.html

Rules for coding JVM profiles
You can edit JVM profiles using any standard text editor. Follow these rules when
coding your JVM profiles.
v The name of a JVM profile can be up to 8 characters in length. The name of a

JVM properties file can be any length, but, for ease of use, it is generally a short
name with some similarity to the name of the JVM profile that references it.

v The name of a JVM profile or JVM properties file can be any name that is valid
for a file in z/OS UNIX System Services. Do not use a name beginning with
DFH, because these characters are reserved for use by CICS.

v Because JVM profiles and JVM properties files are UNIX files, case is important.
When you specify the name in CICS, you must enter it using the same
combination of uppercase and lowercase characters that is present in the z/OS
UNIX file name.

v Do not use quotation marks when specifying values for directories in a JVM
profile.

v The CEDA panels accept mixed case input for the JVMPROFILE field
irrespective of your terminal UCTRAN setting. However, you must enter the
name of a JVM profile in mixed case when you use CEDA from the command
line or when you use another CICS transaction. Ensure that your terminal is
correctly configured with uppercase translation suppressed. You can use the
supplied CEOT transaction to alter the uppercase translation status (UCTRAN)
for your own terminal, for the current session only.

Follow these rules when coding JVM options or system properties:

Case sensitivity
All parameter keywords and operands are case-sensitive, and must be
specified exactly as shown in “Options for JVMs in a CICS environment” on
page 101 and “JVM system properties” on page 109.

Class path separator character
Use the : (colon) character to separate the directory paths that you specify on a
class path option, such as CLASSPATH_SUFFIX.

Continuation
For JVM options or system properties, the value is delimited by the end of the
line in the text file. If a value that you are entering or editing is too long for an
editor window, you can break the line to avoid scrolling. To continue on the
next line, terminate the current line with the backslash character and a blank
continuation character, as in this example:
CLASSPATH_SUFFIX=/u/example/pathToJarOrZipFile/jarfile.jar:\
/u/example/pathToRootDirectoryForClasses

Comments
To add comments or to comment out an option instead of deleting it, begin
each line of the comment with a # symbol. Comment lines are ignored when
the file is read by the JVM launcher.

Blank lines are also ignored. You can use blank lines as a separator between
options or groups of options.

Character escape sequences
In a property element string, you can code the escape sequences shown in
Table 10 on page 100

Chapter 5. Enabling applications to use a JVM 99

|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

Table 10. Escape sequences

Escape sequence Character value

\b Backspace

\t Horizontal tab

\n Newline

\r Carriage return

\" Double quotation mark

\' Single quotation mark

\\ Backslash

\xxx The character corresponding to the octal value xxx, where xxx is
between values 000 - 377

\uxxxx The Unicode character with encoding xxxx, where xxxx is 1 - 4
hexadecimal digits. (See note for more information.)

Note: Unicode \u escapes are distinct from the other escape types. The
Unicode escape sequences are processed before the other escape sequences
described in Table 10. A Unicode escape is an alternative way to represent a
character that might not be displayable on non-Unicode systems. The character
escapes, however, can represent special characters in a way that prevents the
usual interpretation of those characters.

Multiple instances of options
You can use each option only once in a JVM profile. If more than one instance
of the same option is included in a JVM profile, the value for the last option
found is used, and previous values are ignored.

Storage sizes
When specifying storage-related options in a JVM profile, specify storage sizes
in multiples of 1024 bytes. Use the letter K to indicate KB, the letter M to
indicate MB, and the letter G to indicate GB. For example, to specify 6 291 456
bytes as the initial size of the heap, code -Xms in one of the following ways:
-Xms6144K
-Xms6M

Validation of JVM profile options
CICS carries out a number of checks on key options specified in your JVM profiles
whenever you start JVMs. These checks enable the early detection of problems in
your JVM setup.

CICS carries out checks relating to the following JVM profile options:

CLASSPATH_PREFIX, CLASSPATH_SUFFIX
For JVM server profiles, CICS checks that these options are not present in
the profile. If either option is specified in the profile, the OSGi framework
in the JVM server cannot start. The JVMSERVER resource cannot be
enabled and CICS issues the DFHSJ0210 error message.

JAVA_HOME
CICS checks the following points for this directory:
v The directory exists in z/OS UNIX.
v CICS has at least read permission to access the directory.

100 CICS TS for z/OS 4.2: Java Applications in CICS

||

||

||

||

||

||

||

||

||

||
|

||
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|

|

|

v The JDK_INSTALL_OK file is present in the directory, indicating a
completed installation of the IBM 64-bit SDK for z/OS, Java Technology
Edition 6.0.1 files in this location.

v The Java release number in the JDK_INSTALL_OK file is a version
supported by CICS.

If any problems are found, CICS issues an error message and does not start
the JVM.

Deprecated class path options: LIBPATH, CICS_HOME, CLASSPATH,
TMPREFIX, and TMSUFFIX

A warning message is issued at JVM startup if you have one or more of
these options in a pooled JVM profile. Do not use these options in JVM
profiles. The message advises on the correct option to use instead.

OSGI_BUNDLES
For JVM server profiles, CICS checks that the specified JAR files are OSGi
bundles. CICS also checks that the middleware bundles are correctly
delimited and have the right separators.

Options for JVMs in a CICS environment

The options in a JVM profile are used by CICS, the IBM 64-bit SDK for z/OS, Java
Technology Edition, or z/OS UNIX System Services, to start JVMs.

When you specify the options, make sure that you follow the coding rules that are
described in “Rules for coding JVM profiles” on page 99. The format of options
can vary:
v Some options in a JVM profile take the form of a keyword and value separated

by an = sign, for example LEHEAPSTATS=NO.
v Some options are specified with the option immediately followed by the value,

with no = sign, for example -Xms16M.
v Any option that begins with a hyphen (-) is either a Java standard option or a

Java nonstandard option, and is passed to the JVM without any parsing by
CICS.

v You can specify any z/OS UNIX System Services environment variables in a
JVM profile. Any name and value pair in a JVM profile that is not recognized as
a JVM option or system property is treated as a z/OS UNIX System Services
environment variable and is exported.

v You can specify JVM system properties, which begin with -D, in a JVM profile.
They are listed separately in “JVM system properties” on page 109.

For information about the -Xmso, -Xiss, and -Xss JVM options and all the default
values, see the reference information at Default settings for the JVM.

Profile symbols

The following symbols can be used in the values of options in a JVM profile, as
demonstrated in the sample JVM profiles.

&APPLID;
When you use this symbol, the APPLID of the CICS region is substituted at
run time. In this way, you can use the same profile or properties file for all
regions, and still have region-specific working directories or output
destinations. The APPLID is always in uppercase. You can use the symbol on
the WORK_DIR, STDOUT, STDERR, and JAVA_DUMP_TDUMP_PATTERN options.

Chapter 5. Enabling applications to use a JVM 101

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/diag/appendixes/defaults.html

&DATE;
When you use this symbol, the symbol is replaced with the current date in the
format Dyymmdd at run time. You can specify the &DATE; symbol for any type
of output from the JVM, including the WORK_DIR, STDOUT, STDERR, and
JAVA_DUMP_TDUMP_PATTERN options.

&JVM_NUM;
When you use this symbol, the unique number of the pooled JVM is
substituted at run time. Use this symbol to create unique output or dump files
for each JVM. You can use the symbol on the WORK_DIR, STDOUT, STDERR, and
JAVA_DUMP_TDUMP_PATTERN options. CICS might modify the JVM number to
conform to MVS data set naming standards for the TDUMPs.

This symbol does not apply to JVM servers.

&JVMSERVER;
When you use this symbol, the name of JVMSERVER resource is substituted at
run time. Use this symbol to create unique output or dump files for each JVM
server.

This symbol does not apply to pooled JVMs.

&TIME;
When you use this symbol, the symbol is replaced with the current time in the
format Thhmmss at run time. You can specify the &TIME; symbol for any type
of output from the JVM including the WORK_DIR, STDOUT, STDERR, and
JAVA_DUMP_TDUMP_PATTERN options.

List of JVM options

In the list of options that follows, all options apply to both JVM servers and
pooled JVMs unless explicitly stated. Any default value indicated for an option is
the value that CICS uses when the option is not specified in a JVM profile. Some
or all of the sample JVM profiles might specify a value that is different from the
default value.

CLASSCACHE={YES,NO}
Specifies whether this JVM is to use the shared class cache. The default value
is NO.

This option does not apply to JVM servers.

CLASSPATH_PREFIX, CLASSPATH_SUFFIX=class_pathnames
The standard class path specifies directory paths, Java archive files, and
compressed files to be searched by a pooled JVM for application classes and
resources. You can specify entries on separate lines by using a \ (backslash) at
the end of each line that is to be continued.

CLASSPATH_PREFIX adds class path entries to the beginning of the standard
class path, and CLASSPATH_SUFFIX adds them to the end of the standard
class path.

With Version 6.0.1 of the SDK, all application classes are placed on the
standard class path. For pooled JVMs, all application classes are eligible to be
loaded into the shared class cache.

Use the CLASSPATH_PREFIX option with care. Classes in CLASSPATH_PREFIX take
precedence over classes of the same name supplied by CICS and the Java run
time and the wrong classes might be loaded.

CICS builds a base class path for a JVM by using the /lib subdirectories of the
directories specified by the USSHOME system initialization parameter and the

102 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

JAVA_HOME option in the JVM profile. This base class path contains the Java
archive files supplied by CICS and by the JVM. It is not visible in the JVM
profile. You do not specify these files again in the class paths in the JVM
profile.

If you set either option in the profile of a JVM server, the OSGi framework
does not start.

DISPLAY_JAVA_VERSION=
If this option is set to YES, whenever a JVM is started by an application CICS
writes message DFHSJ0901 to the MSGUSER log, showing the version and
build of the IBM Software Developer Kit for z/OS, Java Technology Edition
that is in use.

GC_HEAP_THRESHOLD=
Specifies the heap utilization limit for the JVM heap. When this percentage of
the storage in the active part of the heap is used, CICS schedules a garbage
collection. CICS checks heap utilization after every Java program execution. If
the limit is reached, the garbage collection transaction CJGC is scheduled to
run in the JVM immediately after the current use of the JVM ends.

The default heap utilization limit is 85 (85%). The minimum is 50. The
maximum if you want CICS to schedule garbage collections is 99. If you
specify a heap utilization limit of 100, CICS never schedules garbage
collections, and all garbage collections result from allocation failures while
applications are running.

This option does not apply to JVM servers or a single-use pooled JVM.

IDLE_TIMEOUT={30|number}
Specifies the timeout threshold, in minutes, for pooled JVMs with this JVM
profile. If a pooled JVM is inactive for the specified amount of time, it becomes
eligible for automatic termination. The next time CICS checks on the idle JVMs,
if the JVM is still inactive, the JVM and its J8 or J9 TCB might be destroyed.
CICS does not immediately stop all the JVMs that have timed out; they are
stopped progressively over time.

The default timeout threshold is 30 minutes, and the maximum is 10,080
minutes (seven days). You can also specify a timeout threshold of zero, so that
JVMs with that profile are never stopped automatically because of inactivity.
JVMs with a timeout threshold of zero might be stopped if they are selected
for stealing or mismatching, or if MVS storage becomes constrained. If you
specify an unacceptable value, CICS uses the default instead.

This option does not apply to JVM servers or to a single-use pooled JVM.

INVOKE_DFHJVMAT={NO|YES}
Specifies whether the user replaceable module, DFHJVMAT, is called before
creating a JVM. DFHJVMAT can be used only for single-use pooled JVMs; that
is, where the option REUSE=NO is specified in the JVM profile.

This option does not apply to JVM servers or to a continuous pooled JVM.

JAVA_DUMP_OPTS=
A z/OS UNIX System Services environment variable. Specifies a set of Java
dump options that are used to obtain diagnostic information for an abend in
the JVM. See the information about Java dump options in Dump agent
environment variables.

JAVA_DUMP_TDUMP_PATTERN=
A z/OS UNIX System Services environment variable that specifies the file
name to be used for transaction dumps (TDUMPs) from the JVM. Java

Chapter 5. Enabling applications to use a JVM 103

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/dumpagents_env.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/dumpagents_env.html

TDUMPs are written to a data set destination in the event of a JVM abend. You
can use the symbols &APPLID; (CICS region APPLID) and &JVM_NUM;
(unique JVM number) in this value, as shown in the supplied sample JVM
profiles, to create unique dump file names for each JVM.

When you use the &JVM_NUM; symbol here, CICS might modify the JVM
number to conform to MVS data set naming standards. The number is
formatted as an 8-digit hexadecimal value. If the first character is numeric, it
must be changed: 0 is changed to G, 1 is changed to H, and so on, through 9
which is changed to P.

JAVA_HOME=/usr/lpp/java/J6.0.1_64/
Specifies the installation location for IBM 64-bit SDK for z/OS, Java
Technology Edition in z/OS UNIX. This location contains subdirectories and
Java archive files required for Java support.

The supplied sample JVM profiles contain a path that was generated by the
JAVADIR parameter in the DFHISTAR CICS installation job. The default for the
JAVADIR parameter is java/J6.0.1_64/, which is the default installation location
for the IBM 64-bit SDK for z/OS, Java Technology Edition. This value produces
a JAVA_HOME setting in the JVM profiles of /usr/lpp/java/J6.0.1_64/.

JAVA_PIPELINE={YES,NO}
Adds the required Java archive files to the class path so that a JVM server can
support web services processing in Java-based SOAP pipelines. The default
value is NO. If you set this value, the JVM server is configured to support
Axis2 instead of OSGi.

This option does not apply to pooled JVMs.

JVMPROPS=path/file_name
Specifies the path and name of an optional JVM properties file, which is a
z/OS UNIX file that can be used to contain system properties for this JVM. For
more information about what you can specify in a JVM properties file, see
“JVM system properties” on page 109.

This option does not apply to JVM servers.

JVMTRACE={applid.jvmserver.dfhjvmtrc|file_name}
Specifies the name of the z/OS UNIX file to which Java tracing is written
during the startup and termination of a JVM server. If no value is specified, the
trace is written to the file applid.jvmserver.dfhjvmtrc. CICS automatically
creates unique output files for each JVM server using the &APPLID; and
&JVMSERVER; symbols. This file is created in the directory specified by the
WORK_DIR option.

This option does not apply to pooled JVMs.

LEHEAPSTATS={YES|NO}
Specifies whether statistics are to be collected for the amount of Language
Environment heap storage that is used by the JVM. The default value is NO.
The statistics are reported as the field "Peak Language Environment heap
storage used" in the JVM Profile statistics. Collecting these statistics affects the
performance of the JVM, so you must specify LEHEAPSTATS=YES only while
you are tuning the heap sizes for your JVMs. For more information, see . In a
production environment, specify LEHEAPSTATS=NO.

This option does not apply to JVM servers.

LIBPATH_PREFIX, LIBPATH_SUFFIX=pathnames
Specifies directory paths to be searched for native C dynamic link library

104 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

(DLL) files that are used by the JVM, and that have the extension .so in z/OS
UNIX, including files required to run the JVM and additional native libraries
loaded by application code or services.

The base library path for the JVM is built automatically using the directories
specified by the USSHOME system initialization parameter and the JAVA_HOME
option in the JVM profile. The base library path is not visible in the JVM
profile. It includes all the DLL files required to run the JVM and the native
libraries used by CICS.

You can extend the library path using the LIBPATH_SUFFIX option. This option
adds directories to the end of the library path, after the base library path. Use
this option to specify directories containing any additional native libraries that
are used by your applications or by any services that are not included in the
standard JVM setup for CICS. For example, the additional native libraries
might include the DLL files that are required to use the DB2 JDBC drivers.

The LIBPATH_PREFIX option adds directories to the beginning of the library
path, before the base library path. Use this option with care, because, if DLL
files in the specified directories have the same name as DLL files on the base
library path, they are loaded in place of the supplied files.

Any DLL files that you include on the library path for use by your applications
must be compiled and linked with the XPLink option for optimum
performance. The DLL files supplied on the base library path and the DLL files
used by services such as the DB2 JDBC drivers are built with the XPLink
option.

OSGI_BUNDLES=pathnames
Specifies the directory path for middleware bundles that are enabled in the
OSGi framework of a JVM server. These OSGi bundles contain classes to
implement system functions in the framework, such as connecting to
WebSphere MQ. If you specify more than one OSGi bundle, use commas to
separate them.

This option does not apply to pooled JVMs.

OSGI_FRAMEWORK_TIMEOUT=60|number
Specifies the number of seconds that CICS waits for the OSGi framework to
initialize or shut down before timing out. You can set a value from 1 to 60000
seconds. The default value is 60 seconds. If the OSGi framework takes longer
to start than the specified number of seconds, the JVM server fails to initialize
and a DFHSJ0215 message is issued by CICS. Error messages are also written
to the JVM server log files in zFS. If the OSGi framework takes longer to shut
down than the specified number of seconds, the JVM server fails to shut down
normally.

This option does not apply to pooled JVMs.

PRINT_JVM_OPTIONS={YES|NO}
If this option is set to YES, whenever a JVM is started all the options passed to
the JVM at startup are printed to SYSPRINT. The output is produced every
time a JVM is started with this option in its profile. You can use this option to
check the contents of the class paths for a particular JVM profile, including the
base library path and the base class path built by CICS, which are not visible
in the JVM profile.

REUSE={YES|NO}
Specifies whether a pooled JVM is reusable or not reusable:

Chapter 5. Enabling applications to use a JVM 105

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

v REUSE=YES, which is the default, creates a JVM that is reused many times
by Java applications. This type of pooled JVM is known as a continuous
JVM.

v REUSE=NO creates a JVM that is not reused, but instead is destroyed after a
single Java program has run in it. This type of pooled JVM is known as a
single-use JVM.

This option does not apply to JVM servers.

STDERR={dfhjvmerr|file_name} [-generate]
Specifies the name of the z/OS UNIX file to be used for stderr. If the file does
not exist, it is created in the directory specified by the WORK_DIR option. If the
file exists, output is appended to the end of the file. When the JVM stops, if
the stderr file is empty and it has been created for the specific JVM, it is
deleted. Otherwise, the file is kept.
v For pooled JVMs, the default name is dfhjvmerr. For a fixed file name, the

output from multiple JVMs is appended to the named file, and the output is
interleaved. To create unique output files for each JVM, either use the
&JVM_NUM; and &APPLID; symbols in your file name, as demonstrated in
the sample JVM profiles, or specify the -generate option. The -generate
option appends the unique JVM number, the APPLID of the CICS region,
and additional identifying information to the file name. -generate must be
preceded by one blank.

v For JVM servers, the file name is applid.jvmserver.dfhjvmerr. CICS
automatically creates unique output files for each JVM server using the
&APPLID; and &JVMSERVER; symbols.

If you specify the USEROUTPUTCLASS option on a JVM profile, the Java class
named on that option handles the System.err requests instead. The z/OS UNIX
file named by the STDERR option might still be used if the class named by the
USEROUTPUTCLASS option cannot write data to its intended destination, as is the
case when you use the supplied sample class
com.ibm.cics.samples.SJMergedStream. You can also use the file if output is
directed to it for any other reason by a class named by the USEROUTPUTCLASS
option.

STDIN={dfhjvmin|file_name}
Specifies the name of the z/OS UNIX file to be used for stdin. If the file does
not exist, it is created in the directory specified by the WORK_DIR option.

STDOUT={dfhjvmout|file_name} [-generate]
Specifies the name of the z/OS UNIX file that is to be used for output to the
stdout file. If the file does not exist, it is created in the directory specified by
the WORK_DIR option. If the file exists, output is appended to the end of the file.
When the JVM stops, if the stdout file is empty and it has been generated for
the specific JVM, it is deleted. Otherwise, the file is kept.
v For pooled JVMs, the default name is dfhjvmout. For a fixed file name, the

output from multiple JVMs is appended to the named file, and the output is
interleaved. To create unique output files for each JVM, either use the
&JVM_NUM; and &APPLID; symbols in your file name, as demonstrated in
the sample JVM profiles, or specify the -generate option.

v For JVM servers, the file name is applid.jvmserver.dfhjvmout. CICS
automatically creates unique output files for each JVM server using the
&APPLID; and &JVMSERVER; symbols.

If you specify the USEROUTPUTCLASS option in a JVM profile, the Java class
named on that option handles the System.out requests instead. The z/OS
UNIX file named by the STDOUT option might still be used if the class named

106 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

by the USEROUTPUTCLASS option cannot write data to its intended destination;
for example, when you use the sample class
com.ibm.cics.samples.SJMergedStream. You can also use the file if output is
directed to it for any other reason by a class named by the USEROUTPUTCLASS
option.

USEROUTPUTCLASS={classname}
Specifies the fully qualified name of a Java class that intercepts the output
from the JVM and messages from JVM internals. You can use this Java class to
redirect the output and messages from your JVMs, and you can add time
stamps and headers to the output records. If the Java class cannot write data to
its intended destination, the files named in the STDOUT and STDERR options
might still be used.

Specifying the USEROUTPUTCLASS option has a negative effect on the
performance of JVMs. For best performance in a production environment, do
not use this option. However, this option can be useful to application
developers who are using the same CICS region because the JVM output can
be directed to an identifiable destination.

For more information about this class and the supplied samples, see
“Controlling the location for JVM stdout, stderr and dump output” on page
182.

WORK_DIR={.|directory_name}
Specifies the working directory on z/OS UNIX that the CICS region uses for
Java-related activities. The CICS JVM interface uses this directory when
creating the stdin , stdout, and stderr files. A period (.) is defined in the
supplied JVM profiles, indicating that the home directory of the CICS region
user ID (that is, the z/OS UNIX directory /u/CICS region userid) is to be
used as the working directory. This directory can be created during CICS
installation. If the CICS region user ID does not have this home directory, or if
WORK_DIR is omitted, /tmp is used as the z/OS UNIX directory name.

Relative working subdirectory
For pooled JVMs only, you can create a relative subdirectory in this
z/OS UNIX directory to hold the output files, by specifying the
subdirectory name after the period. For example, if you specify:
WORK_DIR=./javaoutput

the output files from all the JVMs in that CICS region are created in
the subdirectory javaoutput in the home directory of the CICS region
user ID.

Absolute working directory
For pooled JVMs and JVM servers, you can specify an absolute path to
the working directory. If you do not want to use the home directory as
the working directory for Java-related activities, or if your CICS
regions are sharing the same z/OS user identifier (UID) and so have
the same home directory, you can create a different working directory
for each CICS region. You specify a directory name that uses the
&APPLID; symbol, for which CICS substitutes the actual CICS region
APPLID. So you can have a unique working directory for each region,
even if all the CICS regions share the same set of JVM profiles. For
example, if you specify:
WORK_DIR=/u/&APPLID;/javaoutput

Chapter 5. Enabling applications to use a JVM 107

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

each CICS region using that JVM profile has its own working directory.
Ensure that you have created all the relevant directories on z/OS
UNIX and given the CICS regions read, write, and execute access to
them.

You can also specify a fixed name for the working directory, again
ensuring that you have created the relevant directory on z/OS UNIX
and given the CICS regions the correct access. When you use a fixed
name for the working directory, the output files from all the JVMs in
the CICS regions that share the JVM profile are created in that
directory. If you have also used fixed file names for your output files,
the output from all the JVMs in those CICS regions is appended to the
same z/OS UNIX files. To avoid appending to the same files, use the
&JVM_NUM; symbol and the &APPLID; symbols with the appropriate
JVM profile options to produce unique output and dump files for each
JVM in each CICS region.

Do not define your working directories in the CICS directory on z/OS UNIX,
which is the home directory for CICS files as defined by the USSHOME system
initialization parameter.

You can also use the option USEROUTPUTCLASS to name a Java class that
intercepts, redirects, and formats the stderr and stdout output from a JVM.
The supplied sample classes for output redirection use the directory specified
by WORK_DIR in some circumstances.

-generate
Specify this option to uniquely identify the stdout (JVM output) and stderr
(JVM error messages) files on z/OS UNIX. This option must be specified on
the STDOUT and STDERR options after the file name. For example, you can
specify STDOUT=dfhjvmout -generate.

The -generate option appends the unique JVM number (as with the
&JVM_NUM; symbol), the CICS region APPLID (as with the &APPLID;
symbol), and some additional qualifiers, to the file name that you have
specified for the STDOUT or STDERR option.

For example, a typical stdout file created with the -generate option might have
the following name:
dfhjvmout.IYK2ZIK1.0067240142.06004165342.txt

where:
v dfhjvmout is the fixed part of the file name
v IYK2ZIK1 is the APPLID of the CICS region
v 0067240142 is the unique JVM number
v 06004165342 is the time stamp showing when the JVM was created
v .txt is the file suffix

When you use the -generate option, the &APPLID; and &JVM_NUM; symbols
are not required in the file name, because -generate supplies these pieces of
information automatically.

Because the -generate option includes the JVM number, the resulting output
file is unique to the JVM and can be matched with the JVM number identified
from the INQUIRE JVM command. Because it includes the CICS region APPLID,
it is also unique across multiple CICS regions.

This option does not apply to JVM servers.

108 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

|

-Xdebug
Specifies whether debugging support is to be enabled in the JVM.

For more information, see “Debugging a Java application” on page 190. See
also the Java Platform Debugger Architecture (JPDA) information available at
the Oracle Technology Network Java website.

To ensure a clean end to the debug session for pooled JVMs, specify
REUSE=NO when debugging support is enabled.

-Xms
Specifies the initial size of the heap. Specify storage sizes in multiples of 1024
bytes. Use the letter K to indicate KB, the letter M to indicate MB, and the
letter G to indicate GB. For example, to specify 6,291,456 bytes as the initial
size of the heap, code -Xms in one of the following ways:
-Xms6144K
-Xms6M

Specify size as a number of KB or MB. For information about the default value,
see Default settings for the JVM.

-Xmx
Specifies the maximum size of the heap. This fixed amount of storage is
allocated by the JVM during JVM initialization.

Specify size as a number of KB or MB.

-Xshareclasses
Specify this option to enable class data sharing in a shared class cache. The
JVM connects to an existing cache or creates a cache if one does not exist. You
can have multiple caches and you can specify the correct cache by adding a
suboption to the -Xshareclasses option. For details, see Class data sharing
between JVMs.

This option does not apply to pooled JVMs.

JVM system properties
System properties contain information to configure the JVM and its environment.
Some system properties are particularly relevant for JVMs in a CICS environment.

Specify JVM system properties in the JVM profile. For pooled JVMs, you can also
set these options in a JVM properties file to share the same options between
different profiles. To reference the file, use the JVMPROPS option in each JVM
profile. CICS passes all the system properties in a JVM profile or JVM properties
file to the JVM unchanged.

If you use JVM properties files, ensure that the files are secure, with update
authority restricted to system administrators, if they are used to define sensitive
JVM configuration options, such as the security policy file.

The JVM can support a much wider range of system properties than those
documented here. “JVM profiles: options and samples” on page 96 lists some
recommended sources of information about system properties.

The list below includes a selection of relevant system properties and describes how
you can use them in a CICS environment. The system properties that begin with
-Dcom.ibm.cics are specific to the IBM JVM in a CICS environment. Those that

Chapter 5. Enabling applications to use a JVM 109

|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|

|

|
|
|
|
|
|

|

|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

http://www.oracle.com/technetwork/java/
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/diag/appendixes/defaults.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/user/classdatasharing.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/user/classdatasharing.html

begin with -Dcom.ibm (without .cics) or with -Djava are used more widely.
Specify each system property according to the coding rules described in “Rules for
coding JVM profiles” on page 99.

-Dcom.ibm.cics.datasource.path=
Specifies the name and subContext of a CICS-compatible DataSource that you
have deployed to generate JDBC connections for Java applications in CICS that
access DB2. For more information, see Acquiring a connection using the
DataSource interface in the DB2 Guide.

-Dcom.ibm.cics.ejs.nameserver=
Specifies the URL and TCP/IP port number of the name server that you use
for JNDI references.
v For an LDAP name server, specify something like this:

-Dcom.ibm.cics.ejs.nameserver=ldap://myldserv.example.com:389

myldserv.example.com is the URL of the name server and 389 is the port
number on which it is configured to listen. Your LDAP administrator can
supply the correct URL and port number.

v For a standard COS Naming Directory Server, specify something like:
-Dcom.ibm.cics.ejs.nameserver=iiop://mycsserv.example.com:900

The relevant administrator in your organization can supply the correct name
and port number.
If you are using the COS Naming Directory Server supplied with WebSphere
Application Server, specify something like this:

-Dcom.ibm.cics.ejs.nameserver=iiop://mycsserv.example.com:2809/domain/legacyRoot

In WebSphere Application Server, the following conditions apply:
– The default TCP/IP port used by the COS Naming Directory Server is

2809.
– CICS objects must be published to a specially architected location in the

WebSphere naming structure called domain/legacyRoot. CICS publishes
objects to a context defined by the JNDIPREFIX option of the
CORBASERVER definition, where the JNDI prefix is a relative path. If
you do not specify the /domain/legacyRoot path from the root node of the
name space, CICS tries to publish objects to the JNDI prefix location
relative to the root node itself. With the COS Naming Directory Server
supplied with WebSphere Application Server, this attempt fails.

If you are using a COS naming service, and you have chosen to specify it in
-Djava.naming.provider.url, do not specify it again here.

-Dcom.ibm.cics.ejs.loadjndiproperties=
Sets up a file called jndi.properties to contain JNDI nameserver configuration
properties that are common across a set of CICS regions. By default, CICS does
not attempt to locate a jndi.properties file. Include the following system
property to cause CICS to load jndi.properties for this JVM:
-Dcom.ibm.cics.ejs.loadjndiproperties=true

Place the directory containing the jndi.properties file on the standard class
path in the JVM profile, in all the relevant JVM profiles, for all the regions that
you want to share the same nameserver settings.

-Dcom.ibm.cics.iiop.CSIv2Enabled=true
Enables CICS support for the Common Secure Interoperability Version 2
(CSIv2) protocol for identity assertion. To activate this support, specify this

110 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|
|
|
|

|
|
|

|

|

|
|
|

|

|

|
|

|
|

|

|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk7s.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk7s.html

system property in all of the JVM profiles or JVM properties files used in the
CICS region. This support is required if a CICS CorbaServer has to support
asserted identity authentication for IIOP messages sent from WebSphere
Application Server for z/OS.

-Dcom.ibm.cics.soap.validation.local.CCSID=
Specifies the local code page to use when validating SOAP messages if
validation is enabled for a CICS WEBSERVICE resource. If you do not specify
a local CCSID, the default USS code page for your installation is assumed
when validating the SOAP message.

-Dcom.ibm.websphere.naming.jndicache.cacheobject={populated |none}
Turns the JNDI cache on or off. The JNDI cache stores the results of JNDI
lookups in local storage, so that, if an application does the same lookup twice,
perhaps in different tasks, the results are already available. The cache has the
following characteristics:
v It is JVM-specific. That is, there is a separate cache for each JVM.
v It works only with an IBM JNDI name server.
v It stores only object references and not other things, such as DataSources.

populated
The JNDI cache is active.

none The JNDI cache is not used.

-Dcom.ibm.websphere.naming.jndicache.maxcachelife={20 ∨mins}
Specifies, in minutes, the “time to live” of the JNDI cache. If the cache is
accessed after this time is exceeded, the entire cache is flushed of its contents.

See also the -Dcom.ibm.websphere.naming.jndicache.cacheobject property.

-Dcom.ibm.ws.naming.ldap.containerdn=
Specifies the Container Distinguished Name for the LDAP name server. For
example:
-Dcom.ibm.ws.naming.ldap.containerdn=ibm-wsnTree=t1,o=WASNaming,c=us

Your LDAP administrator can supply the correct value for your installation.

The Container Distinguished Name is the root of the system name space.

This property is not required if you specify a COS naming service.

-Dcom.ibm.ws.naming.ldap.noderootrdn=
Specifies the Noderoot Relative Distinguished Name for the LDAP name
server. For example:
-Dcom.ibm.ws.naming.ldap.noderootrdn=ibm-wsnName=legacyroot,
ibm-wsnName=PLEX2,ibm-wsnName=domainRoots

Your LDAP administrator can supply the correct value.

This property is not required if you specify a COS naming service.

-Dfile.encoding=
Specifies the encoding.

-Djava.naming.security.authentication=
Specifies the type of security authentication in use for naming operations. You
might need this property if you are using an LDAP name server.

CICS must have write access into the LDAP name space. If the LDAP service is
set up securely, the following three properties are required: authentication,

Chapter 5. Enabling applications to use a JVM 111

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|

|
|

||

|
|
|

|

|
|
|

|

|

|

|

|
|
|

|
|

|

|

|
|

|
|
|

|
|

credentials, and principal. If the LDAP service is set up so that any user can
write to it, these three properties are not needed. Your LDAP administrator can
tell you whether you need to include these properties in your JVM profile or
optional JVM properties file.

The only value for this property that is supported by CICS is simple.
Specifying -Djava.naming.security.authentication=simple indicates that the
LDAP name server is running in secure mode.

Important:

If you do specify this property, you must also specify
-Djava.naming.security.principal and -Djava.naming.security.credentials.

Because these properties specify the user ID and password that CICS requires
to access the secure LDAP service, give particular attention to the file
permissions controlling access to all the files containing these system
properties.

-Djava.naming.security.credentials=
Specifies the password required for the principal, which is described in
java.naming.security.principal, to access to the LDAP name server.

This property is required if you specified
-Djava.naming.security.authentication=simple. Your LDAP administrator
provides the value that you specify. For example:
-Djava.naming.security.credentials=secret

.

-Djava.naming.security.principal=
Specifies the principal required for access to the LDAP name server.

This property is required if you specified
-Djava.naming.security.authentication=simple. Your LDAP administrator
provides the value that you specify. For example,
-Djava.naming.security.principal=cn=CICSUser,c=uk .

-Djava.security.manager={default| "" | |other_security_manager}
Specifies the Java security manager to be enabled for the JVM. To enable the
default Java security manager, include this system property in one of the
following formats:
v -Djava.security.manager=default

v -Djava.security.manager=""

v -Djava.security.manager=

All these statements enable the default security manager. If you do not include
the -Djava.security.manager system property in your JVM profile, the JVM
runs without Java security enabled. To disable Java security for a JVM,
comment out this system property.

-Djava.security.policy=
Describes the location of additional policy files that you want the security
manager to use to determine the security policy for the JVM. A default policy
file is provided with the JVM in /usr/lpp/java/J6.0.1_64/lib/security/
java.policy, where the java/J6.0.1_64 subdirectory names are the default
values when you install the IBM 64-bit SDK for z/OS, Java Technology Edition.
The default security manager always uses this default policy file to determine
the security policy for the JVM, and you can use the -Djava.security.policy

112 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|

|
|
|

|

|

|
|

|
|
|
|

|
|
|
|

|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

system property to specify any additional policy files that you want the
security manager to take into account as well as the default policy file.

To enable CICS Java applications to run successfully when Java security is
active, specify, as a minimum, an additional policy file that gives CICS the
permissions it requires to run the application.

For information on enabling Java security, see “Enabling a Java security
manager” on page 87.

-Djdbc.drivers=
Specifies one or more 64-bit JDBC drivers. Setting the driver names as a system
property is an alternative to the Java application itself loading the drivers
using the Class.forName("driver_name"); command. Separate each driver
name in a list by a : (colon).

To specify the DB2-supplied JDBC drivers, set the system property:
-Djdbc.drivers=com.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

This common name works for all levels of the JDBC driver supplied by DB2,
including the DB2 Universal JDBC Driver.

You must use the 64-bit version of the JDBC drivers. For more information
about JDBC, see Using JDBC and SQLJ to access DB2 data from Java programs
in the DB2 Guide.

DFHJVMAX, JVM profile for the JVM server
The JVM profile DFHJVMAX is a CICS-supplied JVM profile that is used by an
Axis2 JVM server. Make sure that DFHJVMAX is set up correctly for your CICS
region.

JVM options in DFHJVMAX JVM profile
###
JVM profile: DFHJVMAX
#
This sample CICS JVM profile is for an Axis2 JVM server.
#
###
#
Symbol Substitution

#
The following substitutions are supported:
&APPLID; => The applid of the CICS region.
&JVMSERVER; => The name of the JVMSERVER resource.
&DATE; => Date the JVMSERVER is enabled. Dyymmdd
&TIME; => Time the JVMSERVER is enabled. Thhmmss
#
Using substitutions means that you can use the same profile
for multiple regions and still have unique working directories
and output destinations for each region.
#
With this substitution
ENV_VAR=myvar.&APPLID;.&JVMSERVER;.data
becomes
ENV_VAR=myvar.ABCDEF.JSERVER1.data
for a JVMSERVER resource with the name JSERVER1 in a CICS region with
applid ABCDEF.
#
#**
#
Required parameters

Chapter 5. Enabling applications to use a JVM 113

|
|

|
|
|

|
|

|
|
|
|
|

|

|

|
|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6j.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6j.html

#
The set of supported CICS options for JVM servers
differs from those used with JVM pools.
#
JAVA_HOME specifies the location of the Java directory.
#
JAVA_HOME=/usr/lpp///&JAVA_HOME///
#
Set the current working directory. If this environment variable is
set, a change to the specified directory is issued before the JVM
is initialized, and the STDIN, STDOUT and STDERR streams are
allocated to this directory.
#
If you do not specify this option, the current working directory is
left unchanged and the STDIN, STDOUT and STDERR streams are allocated
to the /tmp directory.
#
WORK_DIR=.
#
Specify any directories that contain DLLs required at run time. For
example, to use the IBM DB2 Driver for JDBC and SQLJ, add the
directory containing the native DLLs to the LIBPATH_SUFFIX option.
See the "Application Programming Guide and Reference for Java" relevant
to the level of DB2 being used.
#
#LIBPATH_SUFFIX=
#
#**
#
JVM server specific parameters

#
Use the JAVA_PIPELINE option to configure the JVM Server
to support Java-based SOAP pipelines.
#
JAVA_PIPELINE=YES
#
#**
#
Output redirection

#
STDOUT, STDERR, STDIN, and JVMTRACE are allocated with file names
beginning with &APPLID;.&JVMSERVER;. You can specify different file
names using the STDOUT, STDERR, STDIN, and JVMTRACE environment
variables.
#
The default file name for JVMTRACE is dfhjvmtrc.
To send the output to somewhere other than a file, specify a user
output redirection class. CICS provides a sample that demonstrates
this capability. JVMTRACE cannot be redirected.
#
#USEROUTPUTCLASS=com.ibm.cics.samples.SJMergedStream
#
#**
#
JVM options

#
See "IBM SDK for z/OS platforms, Java Technology Edition, SDK Guide"
or "IBM Developer Kit and Runtime Environment, Java Technology
Edition, Diagnostics Guide" for information on all JVM options.
#
JVM options which print output and then exit must not be specified
because they will cause the creation of the JVM to fail. These
options include: -version, -help, -?, -assert and -X.
#

114 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Use the following options to tune the JVM.
-Xms Initial Java heap size, for example -Xms64M
-Xmx Maximum Java heap size, for example -Xmx512M
-Xmso Initial stack size for native threads (default -Xmso256KB)
-Xiss Initial stack size for Java threads (default -Xiss128KB)
-Xss Maximum stack size for Java threads (default -Xss256KB)
#
#
Omit these values from the profile to accept the JVM defaults,
unless you have performed workload analysis and can provide
tuned values from a stable workload.
#
The -Xgcthreads option sets the maximum number of helper threads
allowed for garbage collection. If you do not specify this option,
the default is set to (the number of CPUs - 1).
#
-Xgcthreads4
#
The following option sets the Garbage collection Policy.
#
-Xgcpolicy:gencon
#
#**
#
Setting user JVM system properties

#
Specify JVM system properties for a JVM server if required.
Properties are key name and value pairs that
contain basic information about the JVM and its environment. They are
always prefixed with -D. For example:
#
-Dcom.ibm.cics.some.property=some_value
#
#**
#
Unix System Services Environment Variables
--
#
Java Dump Options. See "IBM Developer Kit and Runtime Environment,
Java Technology Edition Diagnostics Guide" or "IBM SDK for z/OS
platforms, Java Technology Edition, SDK Guide" for information on all
Java runtime options.
#
JAVA_DUMP_OPTS="ONANYSIGNAL(JAVADUMP,SYSDUMP),ONINTERRUPT(NONE)"
#
Specify where JVM dumps are written to
#
#JAVA_DUMP_TDUMP_PATTERN=DUMP.&APPLID;.&JVMSERVER;.&DATE;.&TIME;
#
Specify the local time zone
#
#TZ=CET-1CEST,M3.5.0,M10.5.0
#

DFHOSGI, JVM profile for the JVM server
The JVM profile DFHOSGI is a CICS-supplied JVM profile that is used by an OSGi
JVM server. Make sure that DFHOSGI is set up correctly for your CICS region.

JVM options in DFHOSGI JVM profile
###
JVM profile: DFHOSGI
#
This sample CICS JVM profile is for a JVM server.
#

Chapter 5. Enabling applications to use a JVM 115

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|

###
#
Symbol Substitution

#
The following substitutions are supported:
&APPLID; => The applid of the CICS region.
&JVMSERVER; => The name of the JVMSERVER resource.
&DATE; => Date the JVMSERVER is enabled. Dyymmdd
&TIME; => Time the JVMSERVER is enabled. Thhmmss
#
Using substitutions means that you can use the same profile
for multiple regions and still have unique working directories
and output destinations for each region.
#
With this substitution
ENV_VAR=myvar.&APPLID;.&JVMSERVER;.data
becomes
ENV_VAR=myvar.ABCDEF.JSERVER1.data
for a JVMSERVER resource with the name JSERVER1 in a CICS region with
applid ABCDEF.
#
Note: The continuation character for use with JVMProfiles is ’\’.
#**
#
Required parameters

#
The set of supported CICS options for JVM servers
differs from those used with JVM pools.
#
JAVA_HOME specifies the location of the Java directory.
#
JAVA_HOME=/usr/lpp///&JAVA_HOME///
#
Set the current working directory. If this environment variable is
set, a change to the specified directory is issued before the JVM
is initialized, and the STDIN, STDOUT and STDERR streams are
allocated to this directory.
#
If you do not specify this option, the current working directory is
left unchanged and the STDIN, STDOUT and STDERR streams are allocated
to the /tmp directory.
#
WORK_DIR=.

Specify any directories that contain DLLs required at run time. For
example, to use the IBM DB2 Driver for JDBC and SQLJ, add the
directory containing the native DLLs to the LIBPATH_SUFFIX option.
See the "Application Programming Guide and Reference for Java" relevant
to the level of DB2 being used.
#
#LIBPATH_SUFFIX=
#
#**
#
JVM server specific parameters

#
Use the OSGI_BUNDLES option to specify a list of middleware
bundles that are installed and activated in the OSGi framework
when the JVM is initialized.
The list of bundles must be comma separated. The continuation
character is ’\’.
#
#OSGI_BUNDLES=/u/example/pathToBundleDirectory/B1.jar,\
/u/example/pathToBundleDirectory/B2.jar

116 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#
This option is used to specify, in seconds, how long the OSGi
framework initialization, termination, and middleware bundles
initialization are allowed to run before being timed out.
The specified value must be in the range 1-60000. If it falls
outside of this range then it will default to 60. If the
initialization exceeds the limit, the JVMserver fails to initialize.
#
#OSGI_FRAMEWORK_TIMEOUT=60
#
#**
#
Output redirection

#
STDOUT, STDERR, STDIN, and JVMTRACE are allocated with file names
beginning with &APPLID;.&JVMSERVER;. You can specify different file
names using the STDOUT, STDERR, STDIN, and JVMTRACE environment
variables.
#
The default file name for JVMTRACE is dfhjvmtrc.
To send the output to somewhere other than a file, specify a user
output redirection class. CICS provides a sample that demonstrates
this capability. JVMTRACE cannot be redirected.
#
#USEROUTPUTCLASS=com.ibm.cics.samples.SJMergedStream
#
#**
#
JVM options

#
See "IBM SDK for z/OS platforms, Java Technology Edition, SDK Guide"
or "IBM Developer Kit and Runtime Environment, Java Technology
Edition, Diagnostics Guide" for information on all JVM options.
#
JVM options which print output and then exit must not be specified
because they will cause the creation of the JVM to fail. These
options include: -version, -help, -?, -assert and -X.
#
Use the following options to tune the JVM.
-Xms Initial Java heap size, for example -Xms64M
-Xmx Maximum Java heap size, for example -Xmx512M
-Xmso Initial stack size for native threads (default -Xmso256KB)
-Xiss Initial stack size for Java threads (default -Xiss128KB)
-Xss Maximum stack size for Java threads (default -Xss256KB)
#
Omit these values from the profile to accept the JVM defaults,
unless you have performed workload analysis and can provide
tuned values from a stable workload.
#
The -Xgcthreads option sets the maximum number of helper threads
allowed for garbage collection. If you do not specify this option,
the default is set to (the number of CPUs - 1).
#
-Xgcthreads4
#
The following option sets the Garbage collection Policy.
#
-Xgcpolicy:gencon
#
#**
#
Setting user JVM system properties

#
Specify JVM system properties for a JVM server if required.

Chapter 5. Enabling applications to use a JVM 117

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Properties are key name and value pairs that
contain basic information about the JVM and its environment. They are
always prefixed with -D. For example:
#
-Dcom.ibm.cics.some.property=some_value
#
#**
#
Unix System Services Environment Variables
--
#
Java Dump Options. See "IBM Developer Kit and Runtime Environment,
Java Technology Edition Diagnostics Guide" or "IBM SDK for z/OS
platforms, Java Technology Edition, SDK Guide" for information on all
Java runtime options.
#
JAVA_DUMP_OPTS="ONANYSIGNAL(JAVADUMP,SYSDUMP),ONINTERRUPT(NONE)"
#
Specify where JVM dumps are written to
#
#JAVA_DUMP_TDUMP_PATTERN=DUMP.&APPLID;.&JVMSERVER;.&DATE;.&TIME;
#
Specify the local time zone
#
#TZ=CET-1CEST,M3.5.0,M10.5.0
#

DFHJVMPR, JVM profile for a pooled JVM

The JVM profile DFHJVMPR is a sample JVM profile for pooled JVMs that use the
shared class cache. The file is used as the default if you do not specify a JVM
profile or a JVM server in the PROGRAM resource for the Java program.

JVM options in DFHJVMPR JVM profile
##
JVMProfile: DFHJVMPR
##
#
This is a sample CICS JVM Profile for JVMs that use the
Shared Class Cache. This profile is the default profile
for use with all CICS PROGRAMs defined with JVM(YES)
unless specified otherwise.
#
######
#
Symbol Substitution:
#
If you use any of the following variable symbols in any of
the variables below, they will be replaced with appropriate
values. The variable symbols may be specified in upper or
lower case.
#
Symbol Replacement value
------ -----------------
#
&APPLID; The APPLID of the CICS region
&JVM_NUM; The Unix Systems Services Process ID (pid)
of the JVM. This is guaranteed to be unique
&DATE; The current date in the format Dyymmdd
&TIME; The current time in the format Thhmmss
#
With this substitution, for example
STDERR=dfhjvmerr.&APPLID;.&JVM_NUM;.&DATE;.&TIME;
becomes
STDERR=dfhjvmerr.ABCDEF.0084214386.D081220.T135323

118 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#
######
#
********* CICS-specific parameters ***********
#
JAVA_HOME=/usr/lpp/java/J6.0.1_64
WORK_DIR=.
REUSE=YES
CLASSCACHE=YES
#
A JVM Properties file can optionally be used by supplying its
full path and file name on the JVMPROPS option.
See "Java Applications in CICS" for more information on JVM
Properties Files.
#
JVMPROPS=/u/example/pathToProperties/myJVMProps.data
#
STDIN=dfhjvmin
STDOUT=dfhjvmout
STDERR=dfhjvmerr
#
DISPLAY_JAVA_VERSION=NO
Percentage of heap full which will trigger a scheduled GC
GC_HEAP_THRESHOLD=85
Timeout value in minutes after which a JVM and its TCB become
eligible for termination
IDLE_TIMEOUT=30
#
Specify any directories containing DLLs needed at runtime.
For example, to use the IBM DB2 Driver for JDBC and SQLJ,
add the directory containing the native DLLs to the
LIBPATH_SUFFIX. See the DB2 Application and Programming
Guide for Java relevant to the level of DB2 being used.
#
#LIBPATH_PREFIX=
#LIBPATH_SUFFIX=
#
Specify any directories containing application Java classes
and jar files. (Uncomment the lines below if needed)
#
#CLASSPATH_SUFFIX=/u/example/pathToJarOrZipFile/jarfile.jar:\
/u/example/pathToRootDirectoryForClasses
#
Uncomment the line below to use the specified output redirection
class.
#
#USEROUTPUTCLASS=com.ibm.cics.samples.SJMergedStream
#
######
#
********* Unix System Services Environment Variables ***********
#
Java Dump Options. See "IBM Developer Kit and Runtime Environment,
Java Technology Edition, Diagnostics Guide" for information on all
Java runtime options.
JAVA_DUMP_OPTS="ONANYSIGNAL(JAVADUMP,CEEDUMP,SYSDUMP),ONINTERRUPT(NONE)"
#
Specify where JVM dumps should be written to
#JAVA_DUMP_TDUMP_PATTERN=DUMP.JVM.TDUMP.&APPLID;.&JVM_NUM;.LATEST
#
Specify the local timezone
#TZ=CET-1CEST,M3.5.0,M10.5.0
#
######
#
********* JVM options **************
#

Chapter 5. Enabling applications to use a JVM 119

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-Xms16M
-Xmx16M
-Xmso128K
-Xiss64K
-Xss256K

DFHJVMCD, JVM profile reserved for CICS-supplied system
programs

The JVM profile DFHJVMCD is a CICS-supplied JVM profile that is reserved for
use by CICS-supplied system programs, in particular the default request processor
program DFJIIRP, which is used by the CICS-supplied CIRP request processor
transaction. CICS also uses DFHJVMCD to initialize and stop the shared class
cache. Make sure that DFHJVMCD is set up correctly for your CICS region, but
customize it only if required.

“Customizing DFHJVMCD” on page 89 has instructions for customizing the
options in this JVM profile.

JVM options in DFHJVMCD JVM profile
##
JVMProfile: DFHJVMCD
##
#
This is the CICS JVM Profile for use by CICS programs.
It must have a valid value for JAVA_HOME.
It must always be available in the directory specified by
the JVMPROFILEDIR SIT parameter.
#
######
#
Symbol Substitution:
#
If you use any of the following variable symbols in any of
the variables below, they will be replaced with appropriate
values. The variable symbols may be specified in upper or
lower case.
#
Symbol Replacement value
------ -----------------
#
&APPLID; The APPLID of the CICS region
&JVM_NUM; The Unix Systems Services Process ID (pid)
of the JVM. This is guaranteed to be unique
&DATE; The current date in the format Dyymmdd
&TIME; The current time in the format Thhmmss
#
With this substitution, for example
STDERR=dfhjvmerr.&APPLID;.&JVM_NUM;.&DATE;.&TIME;
becomes
STDERR=dfhjvmerr.ABCDEF.0084214386.D081220.T135323
#
######
#
********* CICS-specific parameters ***********
#
JAVA_HOME=/usr/lpp/java/J6.0.1_64
WORK_DIR=.
REUSE=YES
CLASSCACHE=NO
#
STDIN=dfhjvmin
STDOUT=dfhjvmout
STDERR=dfhjvmerr

120 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

######
#
********* Unix System Services Environment Variables ***********
#
Java Dump Options. See "IBM Developer Kit and Runtime Environment,
Java Technology Edition, Diagnostics Guide" for information on all
Java runtime options.
JAVA_DUMP_OPTS="ONANYSIGNAL(JAVADUMP,CEEDUMP,SYSDUMP),ONINTERRUPT(NONE)"
#
Specify where JVM dumps should be written to
#JAVA_DUMP_TDUMP_PATTERN=DUMP.JVM.TDUMP.&APPLID;.%JVM_NUM;.LATEST
#
Specify the local timezone
#TZ=CET-1CEST,M3.5.0,M10.5.0
#
######
#
********* JVM options **************
#
-Xms16M
-Xmx16M
-Xmso128K
-Xiss64K
-Xss256K

Chapter 5. Enabling applications to use a JVM 121

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

122 CICS TS for z/OS 4.2: Java Applications in CICS

Chapter 6. Managing Java applications

After you have enabled your Java applications, you can monitor the CICS region to
understand how the applications are performing. You can also tune the JVM and
Language Environment enclave to optimize the performance of the application.

About this task

You can use statistics and monitoring to gather information about how the Java
applications are performing in the CICS region. In particular, you can check how
the JVMs are performing. After you gather the information, you can make changes
to a JVM or a Language Environment enclave to improve performance. You can
also disable or move applications between CICS regions to balance Java workloads
more effectively.

Updating OSGi bundles in a JVM server
The process for updating OSGi bundles in the OSGi framework depends on the
type of bundle and its dependencies. You can update OSGi bundles for
applications without restarting the JVM server. However, updating a middleware
bundle requires a restart of the JVM server.

About this task

In a typical JVM server, the OSGi framework contains a mixture of OSGi bundles
as shown in the following diagram.

OSGi framework

Bundle A

Application bundles

Middleware bundles

System bundles

Bundle B

CICS
main
class

CICS
main
class

Library
Bundle C

WebSphere
MQ

JCICS

Service Service

Bundle A and Bundle B are separate Java applications that are packaged as OSGi
bundles in separate CICS bundles. Both applications have a dependency on a

© Copyright IBM Corp. 1999, 2012 123

|

|
|
|
|

|

|
|
|

|

|
|

common library that is packaged in Bundle C. Bundle C is separately managed
and updated. In addition, Bundle B has a dependency on a WebSphere MQ
middleware bundle and the JCICS system bundle.

Bundle A and B can both be independently updated without affecting any of the
other bundles in the framework. However, updating Bundle C can affect both the
bundles that depend on it. Any exported packages in Bundle C remain in memory
in the OSGi framework, so to pick up changes in Bundle C, Bundles A and B also
have to be updated in the framework.

Middleware bundles contain framework services and are managed with the life
cycle of the JVM server. For example, you might have native code that you want to
load once in the framework or you might want to add a driver to access another
product such as WebSphere MQ.

System bundles are provided by CICS to manage the interaction with the OSGi
framework. These bundles are serviced by IBM as part of the product. An example
of a system bundle is the com.ibm.cics.server.jar file, which provides most of
the JCICS API to access CICS services.

Updating OSGi bundles
If a Java developer provides an updated version of a CICS bundle, you can either
completely replace the CICS bundle or you can phase in a new version and then
remove the old version.

Before you begin

An updated CICS bundle that contains the new version of an OSGi bundle must
be present in zFS.

About this task

To phase in a new version and have both bundles running in the framework at the
same time, the OSGi service must have an alias specified. If no alias is specified,
the service is listed as inactive in the framework because it is considered a
duplicate of the service that is already running.

Procedure
v To replace the existing OSGi bundle:

1. Disable and discard the BUNDLE resource for the CICS bundle that you
want to update. The OSGi bundles and services that are part of that CICS
bundle are removed from the OSGi framework.

2. Optional: Edit the BUNDLE resource definition if the updated CICS bundle
is deployed in a different directory.

3. Install the BUNDLE resource definition to pick up the changed OSGi bundle.
The OSGi bundles and services in the CICS bundle are installed in the OSGi
framework.

4. Check the status of the OSGi bundles and services in the Operations > Java
views in CICS Explorer.

v To create a new version of the OSGi bundle in the framework at the same time
as the existing deployed bundle:

124 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|

|
|

|

|
|
|
|

|

|

|
|
|

|
|

|
|
|

|
|

|
|

1. Create a BUNDLE resource to pick up the changed CICS bundle. The OSGi
bundles and services in the CICS bundle are installed in the OSGi
framework. The OSGi service is in the inactive state, unless an alias is
specified in the bundle manifest.

2. Check the status of the OSGi bundles and services in the Operations > Java
views in CICS Explorer. Two versions of the OSGi bundle are listed in the
OSGi bundles view. The OSGi service for the bundle is in the inactive state,
unless an alias is specified. If an alias is specified, both OSGi services are
active.

3. Disable the BUNDLE resource that points to the old version of the OSGi
bundle. CICS removes the OSGi service associated with the bundle and sets
the OSGi bundle to the resolved state. As a result, the OSGi service for the
changed OSGi bundle moves from inactive to active state.

4. If there is an alias for the OSGi service, you can specify the alias in a
PROGRAM resource to call the updated application from outside the JVM
server.

Results

The symbolic version of the OSGi bundle has increased, indicating that the Java
code has been updated. The updated OSGi bundle is available in the OSGi
framework and can be called from outside the JVM server.

Updating bundles that contain common libraries
OSGi bundles that contain common libraries for use by other OSGi bundles have
to be updated in a specific order.

Before you begin

An updated CICS bundle that contains the new version of the OSGi bundle must
be present in zFS. It is best practice to manage common libraries in a separate
CICS bundle, so that you can manage the life cycle of these libraries separately
from the applications that depend on them.

About this task

Typically an OSGi bundle specifies a range of supported versions in a dependency
on another OSGi bundle. Using a range provides more flexibility to make
compatible changes in the framework. When you are updating bundles that
contain common libraries, the version number of the OSGi bundle increases.
However, the running applications are already using a version of the bundle that
satisfies the dependencies. To pick up the latest version of the library, you have to
refresh the OSGi bundles for the applications. It is therefore possible to update
specific applications to use different versions of the library and leave other
applications running on an older version.

When you update an OSGi bundle that contains common libraries, you can
completely replace the CICS bundle. However, if classes have not been loaded in
the library, the dependent bundles might receive errors. You can phase in a new
version of the library and run it in the framework alongside the original version.
As long as the OSGi bundles have different version numbers, the OSGi framework
can run both bundles concurrently.

Chapter 6. Managing Java applications 125

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|

|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

Procedure
1. Create a BUNDLE resource that points to the new version of the OSGi bundle.

CICS creates the new version of the OSGi bundle in the OSGi framework. The
existing OSGi bundles continue to use the previous version of the library.

2. Check the OSGi Bundles view in the CICS Explorer. The list shows two entries
for the same OSGi bundle symbolic name with different versions running in
the framework.

3. To pick up the new version of the library in a dependent Java application:
a. Disable and discard the BUNDLE resource for the Java application.

Alternatively, you can get the Java developer to update the version
information for the OSGi bundle and deploy a new version of the CICS
bundle to maintain the availability of the application.

b. Install the BUNDLE resource. When the OSGi bundle is loaded in the
framework, it picks up the latest version of the common libraries.

4. Check the status of the BUNDLE resource in the Bundles view of the CICS
Explorer.

Results

You have updated an OSGi bundle that contains common libraries and updated a
Java application to use the latest version of the libraries.

Updating OSGi middleware bundles
If you want to update the middleware bundles that are running in an OSGi
framework, you must stop and restart the JVM server.

About this task

OSGi middleware bundles are installed in the OSGi framework during the
initialization of the JVM server. If you want to update a middleware bundle, for
example to apply a patch or use a new version, you must stop and restart the JVM
server to pick up the changed bundle.

Procedure
1. Ensure that the new version of the middleware bundle is in a directory on zFS

to which CICS has read and execute access. CICS also requires read access to
the files.

2. If the zFS directory or file name is different to the values specified in the JVM
profile, edit the OSGI_BUNDLES option in the JVM profile for the JVM server.
JVM profiles are in the zFS directory specified by the JVMPROFILEDIR system
initialization parameter.

3. Disable the JVMSERVER resource to shut down the JVM server. Disabling the
JVMSERVER also disables any BUNDLE resources that contain OSGi bundles
that are installed in that JVM server.

4. Enable the JVMSERVER resource to start the JVM server with the updated JVM
profile. The JVM server starts up and installs the new version of the
middleware bundle in the OSGi framework. CICS also enables the BUNDLE
resources that were disabled and installs the OSGi bundles and services in the
updated framework.

126 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|

|
|
|

|

|
|
|
|

|
|

|
|

|

|
|

|

|
|

|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

Results

The OSGi framework contains the updated middleware bundles and the OSGi
bundles and services for Java applications that were installed before you shut
down the JVM server.

Removing OSGi bundles from a JVM server
If you want to remove OSGi bundles from the JVM server, use the CICS Explorer
to disable and discard the BUNDLE resource.

About this task

The BUNDLE resource provides life-cycle management for the collection of OSGi
bundles and OSGi services that are defined in the CICS bundle. Removing OSGi
bundles from the OSGi framework does not automatically affect the state of other
installed OSGi bundles and services. If you remove a bundle that is a prerequisite
for another bundle, the state of the dependent bundle does not change until you
explicitly refresh that bundle.

Procedure
1. Click Operations > Java > OSGi Bundles to find out which BUNDLE resource

contains the OSGi bundle.
2. Click Operations > Bundles to disable the BUNDLE resource. CICS disables

each resource that is defined in the CICS bundle. For OSGi bundles and
services, CICS sends a request to the OSGi framework in the JVM server to
unregister any OSGi services and moves the OSGi bundles into a resolved state.
Any in-flight transactions complete, but any new links to the OSGi service from
CICS applications return with an error.

3. Discard the BUNDLE resource. CICS sends a request to the OSGi framework to
remove the OSGi bundles from the JVM server.

Results

You have removed the OSGi bundles and services from the OSGi framework.

What to do next

If you have PROGRAM resources pointing to OSGi services that are no longer in
the OSGi framework, you might want to disable and discard the PROGRAM
resources.

Moving applications to a JVM server
If you are running Java applications in pooled JVMs, you can move them to run in
a JVM server. Because a JVM server can handle multiple requests for Java
applications in the same JVM, you can reduce the number of JVMs that are
required to run the same workload.

Before you begin

Ensure that the application is threadsafe and is packaged as one or more OSGi
bundles. The OSGi bundles must be deployed in a CICS bundle to zFS and specify
the correct target JVMSERVER resource.

Chapter 6. Managing Java applications 127

|

|
|
|

|

|
|

|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|

|

|

|
|
|

|

|
|
|
|

|

|
|
|

The Java developer can use the CICS Explorer SDK to repackage a Java application
using OSGi, as described in “Migrating applications using the CICS Explorer SDK”
on page 42.

About this task

You can either use an existing JVM server or create a JVM server for your
application. Do not move an application to a JVM server where the thread limit
and usage are already high, because you might introduce locking contentions in
the JVM server.

Procedure
1. Create or update a JVM server:

v If you decide to create a JVM server, see “Setting up a JVM server” on page
81. Many of the settings in a JVM profile for a pooled JVM do not apply to
JVM servers. The only option that you might want to copy from the pooled
JVM profile to the DFHOSGI profile is the LIBPATH_SUFFIX option.

v If you use an existing JVM server, you might have to increase the
THREADLIMIT attribute on the JVMSERVER resource to handle the
additional application or update the options in the JVM server profile. If you
change the JVM profile, restart the JVM server to pick up the changes.

2. Create a BUNDLE resource that points to the deployed bundle in zFS. When
you install the BUNDLE resource, CICS loads the OSGi bundles into the OSGi
framework in the JVM server. The OSGi framework resolves the OSGi bundles
and registers the OSGi services. Use the CICS Explorer to check that the
BUNDLE resource is enabled. You can also use the OSGi Bundles and OSGi
Services views to check the state of the OSGi bundles and services.

3. Update the PROGRAM resource for the application:
a. Ensure that the EXECKEY attribute is set to CICS. All JVM server work

runs in CICS key.
b. Remove the JVM profile name and enter the name of the JVMSERVER

resource.
c. Ensure that the JVMCLASS attribute matches the OSGi service of the Java

application.
d. Reinstall the PROGRAM resource for the application.

The PROGRAM resource uses the OSGi service to make an OSGi bundle
available to other CICS applications outside the JVM server.

Results

When the Java application is called, it runs in the JVM server.

What to do next

You can use the JVM server view in the CICS Explorer and CICS statistics to
monitor the JVM server. If the performance is not optimal, adjust the thread limit.

128 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|

|
|
|
|

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

|
|

|

|
|

|

|

|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/bundle/dfha4_overview.html

Managing the thread limit of JVM servers
JVM servers are limited in the number of threads that they can use to run Java
applications. The CICS region also has a limit on the number of threads, because
each thread uses a T8 TCB. You can adjust the thread limit using CICS statistics to
balance the number of JVM servers in the region against the performance of the
applications running in each JVM server.

About this task

Each JVM server can have a maximum of 256 threads to run Java applications. In a
CICS region you can have a maximum of 1024 threads. If you have many JVM
servers running in the CICS region, you cannot set the maximum value for every
JVM server. If you set the maximum value on four JVM servers, you cannot enable
any other JVMSERVER resources in the CICS region. You can adjust the thread
limit of each JVM server to balance the number of JVM servers in the CICS region
against the performance of the Java applications.

The thread limit is set on the JVMSERVER resource, so set an initial value and use
CICS statistics to adjust the number of threads when you are testing your Java
workloads.

Procedure
1. Enable the JVMSERVER resources and run your Java application workload.
2. Collect JVMSERVER resource statistics using an appropriate statistics interval.

You can use the Operations > Java > JVM Servers view in CICS Explorer, or
you can use the DFH0STAT statistics program.

3. Check how many times and how long a task waited for a thread. The
“JVMSERVER thread limit waits” and “JVMSERVER thread limit wait time”
fields contain this information.
v If the values in these fields are high and many tasks are suspended with the

JVMTHRD wait, the JVM server does not have enough threads available.
Increasing the number of threads can increase the processor usage, so check
you have enough MVS resource available.

v If the values in these fields are low and the peak number of tasks is below
the maximum number of threads available, you can free up threads for other
JVM servers by reducing the thread limit.

4. To check the availability of MVS resource, use the dispatcher TCB pool and
TCB mode statistics to assess the T8 TCB usage across the CICS region. Each
thread in a JVM server uses a T8 TCB and you are limited to 1024 in a region.
T8 TCBs cannot be shared between JVM servers, although all TCBs are in a
THRD TCB pool. If the number of waiting TCBs and processor usage is low, it
indicates there is enough MVS resource available.

5. To adjust the number of threads that can run in the JVM server, change the
THREADLIMIT attribute on the JVMSERVER resource.

6. Run the Java application workload again and use the statistics to check that the
number of waiting tasks has reduced.

What to do next

To tune the performance of your JVM servers, see “Improving JVM server
performance” on page 156.

Chapter 6. Managing Java applications 129

|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|

OSGi bundle recovery on a CICS restart
When you restart a CICS region that contains OSGi bundles, CICS recovers the
BUNDLE resources and installs the OSGi bundles into the framework of the JVM
server.

OSGi bundles that are packaged in CICS bundles are not stored in the CSD. The
BUNDLE resource itself is stored in the catalog, so that on a restart of the CICS
region, the OSGi bundles are dynamically re-created when the BUNDLE resource
is restored.

On a cold, warm, or emergency restart of CICS, the JVM server is started
asynchronously to BUNDLE resource recovery. The JVM server must be fully
available to successfully restore an OSGi bundle on a CICS restart. Therefore,
although the BUNDLE resources are recovered during the last phase of CICS
startup, the OSGi bundles are installed only when the JVM server has completed
its startup.

BUNDLE resources and the OSGi bundles that they contain are installed in the
correct order to ensure that the dependencies between both CICS bundles and
OSGi bundles are resolved in the framework. If CICS fails to install an OSGi
bundle, the BUNDLE resource installs in a disabled state. You can use the IBM
CICS Explorer to view the state of BUNDLE resources, OSGi bundles, and OSGi
services.

Updating Java applications in pooled JVMs
If you change Java applications that run in pooled JVMs, you must stop and restart
the JVMs that run those applications to load the changed resources. You also have
to stop and restart the pooled JVMs if you make any changes to the resources or
files on the class path.

Before you begin

The updated Java application must be compiled, packaged, and deployed to the
z/OS UNIX file system.

About this task

You can add Java application classes to the class paths for a JVM, or you can
change the names of files. When JVMs are running, they do not recognize changes
to the JVM profiles, so you must stop and restart the JVM to pick up the changes
to the application.

Procedure
1. Optional: Edit the JVM profile for the application to add the new or changed

classes to the class path. If you have changed the contents of a class or JAR file
but kept the same name you do not have to perform this step.

2. Restart the JVM to pick up the application changes. Phase out the JVM pool for
each JVM profile that lists the changed file. Other JVMs that do not run this
application can continue to run. If requests are waiting for JVMs with the
profiles that you phased out, CICS starts new JVMs. The shared class cache
updates automatically when the JVM loads the changed classes, so you do not
have to restart it.

130 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|

|
|

|

|
|
|
|

|

|
|
|

|
|
|
|
|
|

Results

CICS creates a pooled JVM using the updated version of the JVM profile and loads
the new or changed classes.

Writing Java classes to redirect JVM stdout and stderr output
Use the USEROUTPUTCLASS option in a JVM profile to name a Java class that
intercepts the stdout and stderr output from the JVM. You can update this class to
specify your choice of time stamps and record headers, and to redirect the output.

CICS supplies sample Java classes, com.ibm.cics.samples.SJMergedStream and
com.ibm.cics.samples.SJTaskStream, that you can use for this purpose. Sample
source is provided for both these classes, in the directory /usr/lpp/cicsts/
cicsts42/samples/com.ibm.cics.samples. The /usr/lpp/cicsts/cicsts42 directory
is the install directory for CICS files on z/OS UNIX. This directory is specified by
the USSDIR parameter in the DFHISTAR install job. The sample classes are also
shipped as a class file, com.ibm.cics.samples.jar, which is in the directory
/usr/lpp/cicsts/cicsts42/lib. You can modify these classes, or write your own
classes based on the samples.

“Controlling the location for JVM stdout, stderr and dump output” on page 182
has information about:
v The types of output from JVMs that are and are not intercepted by the class

named by the USEROUTPUTCLASS option. The class that you use must be able to
deal with all the types of output that it might intercept.

v The behavior of the supplied sample classes. The
com.ibm.cics.samples.SJMergedStream class creates two merged log files for JVM
output and for error messages, with a header on each record containing
APPLID, date, time, transaction ID, task number, and program name. The log
files are created using transient data queues, if they are available; or z/OS UNIX
files, if the transient data queues are not available, or cannot be used by the Java
application. The com.ibm.cics.samples.SJTaskStream class directs the output from
a single task to z/OS UNIX files, adding time stamps and headers, to provide
output streams that are specific to a single task.

For a pooled JVM to use an output redirection class that you have modified or
written, the class must be present in a directory on an appropriate class path in the
JVM profile or properties file. The directory containing the JAR file for the sample
output redirection class is automatically included on an appropriate class path, and
you do not need to specify it explicitly in the JVM profile. If you supply your own
class, you must add the directory to the standard class path.

For a JVM server to use an output redirection class, you must create an OSGi
bundle that contains your output redirection class. You must ensure that the
bundle activator registers an instance of your class as a service in the framework
and sets the property
com.ibm.cics.server.outputredirectionplugin.name=class_name. You can use the
constant com.ibm.cics.server.Constants.CICS_USER_OUTPUT_CLASSNAME_PROPERTY to
get the property name. The following code excerpt shows how you might register
your service in the bundle activator:

Properties serviceProperties = new Properties();
serviceProperties.put(Constants.CICS_USER_OUTPUT_CLASSNAME_PROPERTY, MyOwnStreamPlugin.class.getName());
context.registerService(OutputRedirectionPlugin.class.getName(), new MyOwnStreamPlugin(), serviceProperties);

Chapter 6. Managing Java applications 131

|

|
|

|
|
|
|
|
|
|
|

|
|
|

You can either add the OSGi bundle to the OSGI_BUNDLES option in the JVM profile
or ensure that the bundle is installed in the framework when the first task is run.
Whichever method you use, you must still specify the class in the USEROUTPUTCLASS
option.

If you decide to write your own classes, you need to know about:
v The OutputRedirectionPlugin interface
v Possible destinations for output
v Handling output redirection errors and internal errors

The output redirection interface
CICS supplies an interface called com.ibm.cics.server.OutputRedirectionPlugin in
com.ibm.cics.server.jar, which can be implemented by classes that intercept the
stdout and stderr output from the JVM. The supplied samples implement this
interface.

The following sample classes are provided:
v A superclass com.ibm.cics.samples.SJStream that implements this interface
v The subclasses com.ibm.cics.samples.SJMergedStream and

com.ibm.cics.samples.SJTaskStream, which are the classes named in the JVM
profile

Like the sample classes, ensure that your class implements the interface
OutputRedirectionPlugin directly, or extends a class that implements the interface.
You can either inherit from the superclass com.ibm.cics.samples.SJStream, or
implement a class structure with the same interface. Using either method, your
class must extend java.io.OutputStream.

The initRedirect() method receives a set of parameters that are used by the output
redirection class or classes. The following code shows the interface:
package com.ibm.cics.server;

import java.io.*;

public interface OutputRedirectionPlugin {

public boolean initRedirect(String inDest,
PrintStream inPS,
String inApplid,
String inProgramName,
Integer inTaskNumber,
String inTransid

);
}

The superclass com.ibm.cics.samples.SJStream contains the common components of
com.ibm.cics.samples.SJMergedStream and com.ibm.cics.samples.SJTaskStream. It
contains an initRedirect() method that returns false, which effectively disables
output redirection unless this method is overridden by another method in a
subclass. It does not implement a writeRecord() method, and such a method must
be provided by any subclass to control the output redirection process. You can use
this method in your own class structure. The initialization of output redirection can
also be performed using a constructor, rather than the initRedirect() method.

The inPS parameter contains either the original System.out print stream or the
original System.err print stream of the JVM. You can write logging to either of

132 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

these underlying logging destinations. You must not call the close() method on
either of these print streams because they remain closed permanently and are not
available for further use.

Possible destinations for output
The CICS-supplied sample classes direct output from JVMs to a directory that is
specific to a CICS region; the directory name is created using the applid associated
with the CICS region. When you write your own classes, if you prefer, you can
send output from several CICS regions to the same z/OS UNIX directory or file.

For example, you might want to create a single file containing the output
associated with a particular application that runs in several different CICS regions.

Java applications executing on threads other than the initial process thread (IPT)
are not able to make CICS requests. For these applications, the output from the
JVM is intercepted by the class you have specified for USEROUTPUTCLASS, but it
cannot be redirected using CICS facilities (such as transient data queues). You can
direct output from these applications to z/OS UNIX files, as the supplied sample
classes do. For Java applications that are executing on the IPT, you can use CICS
facilities, such as transient data queues, to redirect the output.

Handling output redirection errors and internal errors
If your classes use CICS facilities to redirect output, they should include
appropriate exception handling to deal with errors in using these facilities.

For example, if you are writing to the transient data queues CSJO and CSJE, and
using the CICS-supplied definitions for these queues, the following exceptions
might be thrown by TDQ.writeData:
v IOErrorException
v LengthErrorException
v NoSpaceException
v NotOpenException

If your classes direct output to z/OS UNIX files, they should include appropriate
exception handling to deal with errors that occur when writing to z/OS UNIX. The
most common cause of these errors is a security exception.

The Java programs that will run in JVMs that name your classes on the
USEROUTPUTCLASS options should include appropriate exception handling to
deal with any exceptions that might be thrown by your classes. The CICS-supplied
sample classes handle exceptions internally, by using a Try/Catch block to catch all
throwable exceptions, and then writing one or more error messages to report the
problem. When an error is detected while redirecting an output message, these
error messages are written to System.err, making them available for redirection.
However, if an error is found while redirecting an error message, then the
messages which report this problem are written to the file indicated by the
STDERR option in the JVM profile used by the JVM that is servicing the request.
Because the sample classes trap all errors in this way, this means that the calling
programs do not need to handle any exceptions thrown by the output redirection
class. You can use this method to avoid making changes to your calling programs.
Be careful that you do not send the output redirection class into a loop by
attempting to redirect the error message issued by the class to the destination
which has failed.

Chapter 6. Managing Java applications 133

Managing pooled JVMs
CICS performs many tasks to manage pooled JVMs, including creating and reusing
JVMs. You can monitor pooled JVMs and the shared class cache, and adjust the
Java environment to optimize performance.

You can start and stop JVMs in the JVM pool or disable the pool in the CICS
region. You can also adjust the options in the JVM profiles, for example changing
the timeout threshold to determine how long CICS waits before removing inactive
JVMs from the pool.

CICS provides statistics and monitoring information about how pooled JVMs
perform in the CICS region. You can use this information to help you tune the Java
environment to optimize performance. For more information about achieving
optimum performance, see Chapter 7, “Improving Java performance,” on page 151.

How CICS allocates pooled JVMs to applications
When an application runs a Java program that runs using a pooled JVM, CICS first
tries to find a suitable JVM that is available for reuse in the JVM pool. If a suitable
JVM, with the correct JVM profile and execution key, is not available, CICS either
creates a new JVM if possible, or uses its selection mechanism to decide on an
alternative course of action.

An application can reuse an available pooled JVM if the JVM was created using
the JVM profile and the execution key (USER or CICS) that are specified in the
PROGRAM resource for the Java program. If a suitable JVM is available, CICS
assigns the JVM to the request.

If a suitable JVM, with the correct JVM profile and execution key, is not available,
and the limit set by the MAXJVMTCBS system initialization parameter has not yet
been reached, and MVS storage is not severely constrained, CICS creates a new
JVM for the Java program. The new JVM has the correct profile and execution key
for the program.

If CICS cannot find a suitable JVM, and a new JVM cannot be created because the
MAXJVMTCBS limit has been reached, or because MVS storage is severely constrained
and CICS is acting as though the MAXJVMTCBS limit had been reached, then CICS
must decide on the best way to provide the application with a JVM. This involves
assessing the need of the application for a JVM, against the need for different types
of JVM in the CICS region. CICS can fulfil an application's request for a JVM in
one of the following ways:
v Taking a free JVM that has the right execution key but the wrong profile for the

request, destroying the JVM, and re-creating the JVM on the TCB of the old
JVM, with the correct profile. This is called a mismatch.

v Destroying a free JVM and its TCB that are in the wrong execution key, and
replacing it with a JVM and TCB in the correct execution key. This situation is
known as a steal, or stealing, as the TCB has been “stolen” from one TCB mode
(J8 or J9) to another TCB mode.

Both a mismatch and a steal are expensive, so before taking one of these courses of
action, CICS tries to decide if it is worthwhile. In terms of the need for different
types of JVM in the CICS region, it might be more economical for overall system
performance for CICS to make the application wait until a suitable JVM is
available, and to keep the free JVMs for requests that can benefit more from them.
CICS has a selection mechanism to make this decision.

134 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

Figure 4 shows this process happening.

Request B specifies the PROGRAM resource definition for the default request
processor program DFJIIRP, which names the JVM profile DFHJVMCD, and the
execution key USER. CICS checks the JVM pool and finds that JVM 3 has the
correct JVM profile and execution key to match the request, and it is available for
reuse. CICS assigns JVM 3 to Request B.

Request D specifies the PROGRAM resource definition for PROG1, which names
the JVM profile USERJVM2, and the execution key CICS. CICS checks the JVM
pool. There is a free JVM, JVM 2, but it has the wrong profile and execution key
for Request D. As the MAXJVMTCBS limit has been reached, CICS cannot create a new
JVM for Request D. So CICS must use the selection mechanism to decide if it
should destroy JVM 2 and its TCB, and replace it with a JVM and TCB that
matches Request D; or if it should make Request D wait, and keep JVM 2 for a
request that can benefit more from it. If Request D is made to wait, it is queued
along with any other requests that are waiting for a JVM.

CICS makes its decision to assign a JVM to an application in two stages:
v It takes one set of actions to deal with incoming requests for a JVM

J9 TCB

Available

for reuse

DFHJVMCD
User key

JVM 3

JVM pool
MAXJVMTCBS=5

J8 TCB

Allocated

to task

USERJVM1
CICS key

JVM 4

J9 TCB

Allocated

to task

DFHJVMPR
User key

JVM 5

J8 TCB

Allocated

to task

DFHJVMPR
CICS key

JVM 1

J9 TCB

Available

for reuse

USERJVM1
User key

JVM 2

Suitable
JVM available

PROGRAM
resource definition:
DFJIIRP

JVM profile:
DFHJVMCD
Execution key:
User

Request B

PROGRAM
resource definition:
PROG1

JVM profile:
USERJVM2
Execution key:
CICS

Request D

No suitable
JVM available

Queue

Destroy
and replace

JVM 2 ?

No

Yes

Figure 4. Dealing with requests for JVMs: example

Chapter 6. Managing Java applications 135

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

v It takes another set of actions when it has a queue of requests waiting for a JVM.

How CICS deals with incoming requests for a JVM
To deal with incoming requests for a JVM, CICS takes the actions summarized
here.

1. When CICS receives a request for a JVM, and a JVM of the correct profile and
execution key is free, CICS assigns the JVM to the incoming request.

2. If CICS receives a request for a JVM when either:
v there are no free JVMs
v there are free JVMs, but they are not of the correct profile and execution key

for the request

and CICS is able to create more JVMs (because the MAXJVMTCBS limit has not
been reached and MVS storage is not severely constrained), then a TCB is
allocated and a new JVM is created for the request.

3. If CICS receives a request when there are free JVMs, but they are not of the
correct profile and execution key, and CICS is not able to create more JVMs
(because the MAXJVMTCBS limit has been reached or MVS storage is severely
constrained), the selection mechanism is used. The selection mechanism decides
whether the request should wait for a suitable JVM, or whether it should
receive one of the free JVMs.

Allocate TCB,
create new JVM

Add request
to queue

Request for
JVM

Steal (re-create
JVM and TCB)

Mismatch
(re-create
JVM on

same TCB)

Free JVM
with correct
profile and

EXECKEY?

Request
EXECKEY
=free JVM

EXECKEY?

Assign free
JVM to request

Any free
JVM?

MAXJVMTCBS
not reached

and MVS
storage not
constrained

Selection
mechanism
compares

demand and
supply

Request
should wait

Request should
not wait

True

False

YesYes

No No

Yes

No

Figure 5. Dealing with incoming requests for JVMs

136 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|

|

|
|
|

|

|
|

|

|

|
|

|
|
|

|
|
|
|
|
|

a. If the request receives one of the free JVMs, there will be either a mismatch
or a steal, and the JVM and possibly the TCB will need to be re-initialized,
so the selection mechanism avoids this where it makes sense to do so. If the
selection mechanism does decide that the request should receive one of the
free JVMs, CICS checks whether the execution key specified by the request
matches the execution key of the JVM. If the execution key does not match,
the JVM and its TCB are destroyed and reinitialized (a steal). If the
execution key does match, and only the JVM profile is incorrect, the JVM is
reinitialized on the same TCB (a mismatch).

b. If the selection mechanism decides that the request should wait rather than
receiving one of the free JVMs, the request is placed on the queue to wait
for a suitable JVM to become free.

4. If CICS receives a request when there are no free JVMs, and CICS is not able to
create more JVMs (because the MAXJVMTCBS limit has been reached or MVS
storage is severely constrained), the request is placed on the queue to wait for a
JVM to become free.

Chapter 6. Managing Java applications 137

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

How CICS deals with a queue of requests waiting for a JVM
When CICS has a queue of requests waiting for a JVM, it takes these actions.

1. If any request that is waiting for a JVM to become free has been waiting longer
than a critical period (which CICS determines), CICS gives it the next available
JVM, whatever the profile and execution key of the JVM. This applies both to
requests that have been placed on the queue because no JVMs are free, and
requests that have been placed on the queue because the free JVMs have the
wrong profile or execution key. There will be either a mismatch or a steal, and
the JVM and possibly the TCB are likely to be re-initialized (unless the request
is in a queue and the next free JVM happens to have the correct profile and
execution key), but the action is worth taking, as the request should not wait
any longer.

2. If requests are queueing and a JVM becomes free, but no requests have been
waiting longer than the critical period, CICS scans through the queue to find
the longest-waiting request that requires a JVM with that profile and execution
key. It gives the free JVM to the longest-waiting request that specifies the

Requests are on
queue, JVM

becomes free

Request
EXECKEY
=free JVM

EXECKEY?

Request matches
JVM's profile

and EXECKEY?

Request has
waited longer than

critical period?

Go back to first
request in queue

Assign free
JVM to request

Keep JVM free to
await suitable use

Mismatch (re-create
JVM on same TCB)

Steal (re-create
JVM and TCB)

Selection
mechanism
compares

demand and
supply

Any more
requests to

check

Any more
requests to

check

Request
should wait

Request should
not wait

Yes

No

No

Yes

Yes Yes

Yes

No No

No

Figure 6. Dealing with a queue of requests waiting for a JVM

138 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

correct profile and execution key. So in this situation, the JVM does not need to
be re-initialized, and a mismatch or steal is avoided.

3. If CICS cannot find a request that matches the profile and execution key of the
free JVM, it scans through the queue again and uses the selection mechanism to
look for a request where it will be an advantage to destroy and re-initialize the
free JVM, and re-initialize it as a JVM with the profile and execution key that
the request needs. A mismatch or a steal occurs, but the selection mechanism
ensures that it occurs for a deserving request.

4. If CICS does not find a request in the queue where it will be an advantage to
destroy and re-initialize the free JVM, the JVM is kept free to await a more
appropriate use. For example, CICS might receive a request that needs a JVM
with the profile and execution key of the free JVM; or the first request in the
queue might wait longer than the critical period, and so be given the free JVM;
or CICS might receive a request where it is an advantage to destroy and
re-initialize the free JVM.

The selection mechanism
The selection mechanism is used when CICS needs to know if an incoming request
should wait for a more suitable JVM, or when CICS has a queue of requests that
do not match a free JVM, and needs to know if one of them deserves to take,
destroy and re-initialize the JVM.

In these situations, the mechanism looks at the complete picture of the need for
different types of JVM in the CICS region. It compares the demand for, and supply
of, JVMs with each profile and execution key, by looking at:
v The historical data relating to recent requests for each type of JVM (the

demand).
v The number of each type of JVM in the pool, and the time for which tasks kept

these JVMs (the supply).

The selection mechanism uses this data to work out whether a given request
should wait for a JVM of the correct profile and execution key, or whether it
should be given a free JVM. The same answer is valid for a request that is waiting
in a queue for a JVM to become free, or for a request that is made when there are
free JVMs but they are not of the correct profile or execution key. In both cases, a
request is made to wait if the data indicates that the demand for the type of JVM
(that is, a JVM with that profile and execution key) which the request wants, is
generally lower than the supply, and so it is not worth destroying and re-creating
the free JVM as a JVM of that type. When the selection mechanism is examining a
queue of requests, it continues down the queue until it reaches a request where the
data indicates that the demand for the type of JVM that the request wants is
generally higher than the supply. For this request, the selection mechanism decides
that because JVMs of that type are needed in the CICS region, it is worth
destroying and re-creating the free JVM as a JVM of that type, and assigns the free
JVM to the request. If the free JVM had the wrong profile but the correct execution
key, this is a mismatch, and the JVM is re-initialized. If the free JVM had the
wrong execution key, this is a steal, and both the TCB and JVM are destroyed and
re-created. So although the overhead of re-initializing the JVM, and if necessary
re-creating the TCB, has still been incurred, the selection mechanism has ensured
that the new JVM and TCB are of a type that is likely to be used in the future.

Under certain circumstances, there could be an unusually large number of requests
for JVMs that have been waiting longer than the critical period. For example, this
could happen when a system dump has just been taken, which delays all
processing. In this case, rather than abandon matching and give each of the
waiting requests the next available JVM, as would normally happen when a

Chapter 6. Managing Java applications 139

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

request has been waiting longer than the critical period, CICS temporarily
increases the critical period value for the JVM pool. This enables it to perform
matching for the waiting requests, and avoids incurring abnormal overhead. Once
the situation has passed, CICS lowers the critical period value again.

Manually starting and terminating JVMs and disabling the JVM
pool

CICS starts up JVMs in response to the requirements of applications, and reduces
the number of available JVMs automatically if the workload does not require them.
You can also control the JVM pool using CICS commands; you can start up and
terminate JVMs, and disable the JVM pool temporarily. This manual control lets
you implement changes to JVM profiles or suspend activity in the JVM pool. You
can also use it to create JVMs in advance of application requests.

CICS normally manages the startup and termination of JVMs in order to achieve a
balanced level of capacity in the JVM pool to meet the demand from applications.
CICS has sophisticated mechanisms to manage the number and type of JVMs in
the pool, particularly when there is a need to optimize the performance of complex
workloads at times of peak demand.

You might want to start up or terminate JVMs manually in certain situations:
v You need to update JVMs if you make changes to your JVM profiles or JVM

properties files while CICS is running, including adding new classes or JAR files
to class paths.

v If your Java workload is regular, predictable, and involves a limited number of
different JVM profiles, you could consider starting up JVMs in advance of the
demand from applications, so that they are ready for use as soon as they are
required.

Starting JVMs using CICS commands

To start up JVMs manually, use the EXEC CICS or CEMT PERFORM JVMPOOL command.
You need to specify the number of JVMs to be started, and the JVM profile and
execution key that is to be used for them.

The number that you specify, added to the number of JVMs that already exist in
the JVM pool, must not exceed the MAXJVMTCBS limit for the CICS region. You can
check this by issuing the EXEC CICS or CEMT INQUIRE DISPATCHER command.
MAXJVMTCBS shows the limit, and ACTJVMTCBS shows the number of JVMs that
currently exist.

CICS does not start all the JVMs at once, but schedules the starts over a short
period of time. Each JVM is available for use by an application as soon as it has
been started. If a JVM is not used by an application, then like any other idle JVM,
it becomes eligible for automatic termination at the timeout threshold that you
have specified in the JVM profile.

If you have just terminated JVMs in order to implement changes to JVM profiles,
and application activity in the CICS region is low, you can use the PERFORM
JVMPOOL command to start a JVM of the type where you applied the changes. This
enables you to confirm, without waiting for an application request, that the JVM is
able to start with the changed profile, and that the classes specified on your class
paths can be loaded.

140 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|

|

|
|
|
|
|
|

04
04
04
04
04

04

04
04
04

04
04
04
04

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

If the Java workload in your CICS region is regular and predictable, you might
want to use the manual startup facility to create a JVM pool that anticipates the
needs of your applications, rather than allowing CICS to do this in response to
demand. This strategy might reduce the delay time for applications in periods
when workload is increasing.

By configuring the timeout threshold (which defaults to 30 minutes), and starting
up JVMs in advance of need, you could structure a JVM pool that always has
enough capacity available for your requirements. For example, you could start up
a sufficient number of JVMs to handle your peak workloads, with their timeout
thresholds set so that they are only eligible for automatic termination after 24
hours of idleness. (You might want to set up a task that starts the appropriate
number of JVMs when the CICS region is started.) With a JVM pool like this, CICS
would not terminate the JVMs automatically at times of the day when the
workload is reduced. They would only be terminated if the system was idle for an
extended period, or if your workload reduced over the long term.

When you start up JVMs manually with a particular JVM profile, they are eligible
for mismatching or stealing in the same way as JVMs started by CICS.
Mismatching and stealing change the JVM profile or user key, so the JVM can no
longer be used by the applications for which you originally started it up.
Mismatching and stealing also involve restarting the JVM, which can negate any
benefit you experience from starting the JVMs in advance. The possibility of
mismatching and stealing increases with the number of different JVM profiles in
the CICS region, so if you want to structure a JVM pool manually, the benefit is
likely to be greatest if your applications use only one or a small number of JVM
profiles.

Terminating JVMs

To terminate JVMs, use the CEMT or EXEC CICS PERFORM JVMPOOL command. You
can choose to terminate all the JVMs in the JVM pool, or you can specify a JVM
profile to terminate only the JVMs with that profile.

You need to terminate JVMs to implement changes to JVM profiles or to add new
application classes. Changes to existing classes on the standard class path do not
require termination of the JVMs. The standard class path, is the recommended
choice for stand-alone JVMs, but if you are in the process of migrating from
resettable to continuous JVMs, you might still have classes on the shareable
application class path in stand-alone JVMs.

The PERFORM JVMPOOL command does not terminate the shared class cache. The
shared class cache updates itself automatically when classes are changed or new
classes are added, so you do not need to terminate it in this situation.

To minimize disruption to your applications, try to terminate only those JVM
profiles where you have made changes to the JVM profile, its associated JVM
properties file, or the applications that use it. Terminating a subset of the JVM pool
is more efficient than terminating the whole JVM pool. Make sure that you do
terminate all the JVMs affected by your changes. For example, a shared Java class
which you have changed might be listed on the class path in more than one JVM
profile. In certain unusual circumstances, an application class might be used by
JVMs with more than one profile, but this might not be obvious from the JVM
profiles. This might be an issue, for example, if you use custom classloaders, or
instantiate classes through reflection, or have enterprise beans which call other

Chapter 6. Managing Java applications 141

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

enterprise beans. If you are not sure whether an application class is used by JVMs
with more than one profile, you might prefer to be safe and terminate the whole
JVM pool.

CICS starts up new JVMs as soon as it receives requests from applications for each
type of JVM. If you prefer, you can start JVMs manually using the PERFORM
JVMPOOL command. If you have made any changes to the JVM profiles, the new
JVMs use the changed options. If you have made any changes to your Java
applications, the new JVMs load the new or changed classes.

Disabling the JVM pool

To suspend all activity in the JVM pool, use the EXEC CICS or CEMT SET JVMPOOL
command to set the status to DISABLED. In this state, the JVM pool cannot service
new requests.

When you disable the JVM pool, the JVMs in it are retained, but new Java
programs cannot use them until you enable the JVM pool again. Java programs
that are already using a JVM are allowed to finish running. To re-enable the JVM
pool, use the EXEC CICS or CEMT SET JVMPOOL command to set the status to
ENABLED.

Starting the shared class cache
By default, the shared class cache starts automatically as soon as CICS receives a
request to run a Java application in a pooled JVM whose profile requires the use of
the shared class cache. If at any time you stop the shared class cache and want to
restart it again, you can either enable autostart or use CICS commands.

About this task

The JVMCCSTART system initialization parameter controls the normal startup
behavior of the shared class cache. The default setting is AUTO, where the shared
class cache starts as soon as a pooled JVM requires it. If a shared class cache is
active when the CICS region shuts down on a warm or emergency start, it usually
persists except in some circumstances such as an IPL of z/OS.

Procedure
1. Ensure that the value of the JVMCCSTART system initialization parameter is set to

AUTO or YES. The class cache starts when the first pooled JVM requires it.
2. To restart the shared class cache while CICS is running, use one of the

following methods:
v To restart the shared class cache immediately, use the CEMT PERFORM

CLASSCACHE START command (or the equivalent EXEC CICS command). If you
want to enable autostart, use the AUTOSTARTST option on the command.
You can use the CACHESIZE option on this command if you want to change
the size of the shared class cache.

v To set the shared class cache to start when it is required by a JVM, use the
CEMT SET CLASSCACHE AUTOSTARTST command (or the equivalent EXEC CICS
command) to enable autostart while CICS is running.

Results

The shared class cache is restarted when CICS receives a request to run a Java
application in a pooled JVM that requires the shared class cache. Subsequent warm

142 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_jvmccstart.html

or emergency CICS starts use this setting for autostart, unless you have specified
the JVMCCSTART system initialization parameter as an override at startup.

Adjusting the size of the shared class cache
When the shared class cache starts, the amount of storage in the cache is fixed. The
default size is 24 MB. When the storage in the shared class cache becomes full, the
classes that are already present in it can still be used, but no new classes can be
added to it. In this situation, you must increase the size of the shared class cache.

About this task

CICS provides commands and parameters to help you control the size of the
shared class cache for pooled JVMs. If you are using class caches with JVM servers,
you cannot use these commands and must use the support provided by Java. For
more information about the Java shared classes utility, see Java Diagnostics Guide.

The size of the shared class cache must be sufficient to contain all the classes for
your applications, as specified on the standard class path for all the pooled JVMs
that use the shared class cache. The shared class cache does not distinguish
between shareable and nonshareable application classes and it does not contain
JIT-compiled code.

Procedure
1. Either estimate the storage required for your application classes, or for better

results, run the applications in a test environment to identify the total space
required in the shared class cache:
a. Run each application repeatedly in a test environment, using the shared

class cache.
b. While you are running the application, monitor the amount of free space in

the shared class cache. Use the INQUIRE CLASSCACHE command to report on
the size of the shared class cache and amount of free storage in the shared
class cache by specifying the CACHESIZE and CACHEFREE options.
You can obtain further shared class cache statistics by running the following
command in a z/OS UNIX System Services shell:
java -Xshareclasses:name=CICS_sharedcc_APPLID_n,printStats

where APPLID is the z/OS Communications Server APPLID of the CICS
system, and n is the current generation number for the shared class cache.

c. Run the application until the amount of free space has stabilized.
d. Repeat this process for each application that uses the shared class cache.
e. Add the amount of storage used by each application, and add on a suitable

safety margin to account for any future application changes.

The total gives you an approximate size for the shared class cache.
2. Use the PERFORM CLASSCACHE RELOAD command to create a new shared class

cache. You can specify the size for the new shared class cache by using the
CACHESIZE option on the command. This command causes the least
disruption to pooled JVMs that are using the shared class cache.

3. Optional: Change the value for the JVMCCSIZE system initialization parameter.
This parameter specifies the initial size of the shared class cache and is used on
cold and initial restarts of CICS.

Chapter 6. Managing Java applications 143

|
|

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

|
|
|
|

|
|

|

|
|

|

|

|
|

|

|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_jvmccsize.dhtml

Results

When you specify a new size for the shared class cache while CICS is running,
subsequent CICS warm and emergency restarts use the new value. CICS initial or
cold restarts use the value from the JVMCCSIZE system initialization parameter.

Terminating the shared class cache
You can use CICS to terminate the shared class cache that is used by pooled JVMs
and prevent it from restarting. You can also terminate any pooled JVMs that are
using it.

About this task

When you terminate the shared class cache and autostart is enabled, a new shared
class cache is created as soon as a pooled JVM requests its use. If you want to
terminate the shared class cache without restarting it, you must disable the
autostart.

If you terminate the shared class cache and it is not restarted, pooled JVMs that
use the shared class cache cannot run.

When you change the autostart status of the shared class cache while CICS is
running, subsequent CICS warm restarts use the most recent setting that you
made. If the CICS region starts as INITIAL or COLD, or the JVMCCSTART system
initialization parameter is specified as an override at startup, the setting from the
system initialization parameter is used.

Procedure
1. Check the status of autostart on the shared class cache. You can use the JVM

class cache operations view in the CICS Explorer or the INQUIRE CLASSCACHE
command.

2. If you do not want the shared class cache to restart when you terminate it,
disable autostart. You can disable autostart for the shared class cache in three
ways:
v Before you enter the command to terminate the shared class cache, use the

SET CLASSCACHE AUTOSTARTST command to disable autostart.
v When you enter the PERFORM CLASSCACHE command to terminate the shared

class cache, use the AUTOSTARTST option to disable autostart.
v To disable autostart for the next CICS execution, set the JVMCCSTART system

initialization parameter to NO. This setting always prevents autostart on an
initial or cold start of CICS. If the shared class cache is active when the
region shuts down, it persists across a warm or emergency start, even if you
specify JVMCCSTART as an override.

3. Terminate the shared class cache and any pooled JVMs that are using it. You
can use the JVM class cache operations view or the PERFORM CLASSCACHE
command. You can purge or force purge the JVMs, or leave them to finish
running their current Java programs before they are deleted. JVMs that are not
using the shared class cache are not affected by this command.

4. Repeat the PERFORM CLASSCACHE command to attempt to purge the tasks that are
using the pooled JVMs, if you do not want to restart the shared class cache and
the pooled JVMs that are using it remain active for too long. Only repeat the
command if autostart for the shared class cache is disabled. The command
operates on both the most recent shared class cache and any old shared class
caches in the region that still have JVMs using them. If autostart is enabled,

144 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|

|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

and you repeat the command to terminate the shared class cache, the command
might terminate the new shared class cache that has been started by the
autostart facility.

Results

The class cache for the pooled JVMs is successfully terminated.

Monitoring the shared class cache
You can use CICS commands to report on the status of the shared class cache for
pooled JVMs and for each JVM in the pool.

Procedure
v To report on the status of the shared class cache for pooled JVMs, use the CEMT

INQUIRE CLASSCACHE command (or the equivalent EXEC CICS command). The
command tells you if the shared class is being initialized (STARTING), ready for
use (STARTED), being reloaded (RELOADING), or not active (STOPPED). The
command also tells you information such as the status of autostart, the size of
the shared class cache, and the amount of free space in the cache. The command
also reports any old shared class caches in the CICS region that are being phased
out.

v To report on the status of the JVMs in the JVM pool, use the CEMT INQUIRE JVM
command (or the equivalent EXEC CICS command). The command tells you
about a specified JVM or about each JVM in the pool, indicating the task to
which it is allocated, whether its execution key is USER or CICS, and whether or
not it is using the shared class cache.

Monitoring the JVM pool
You can use the CEMT INQUIRE JVMPOOL command (or the equivalent EXEC CICS
command) to find out information about the JVM pool.

The command tells you about:
v The number of JVMs in the pool.
v The number of those JVMs that have been marked for deletion, but are still

being used by a task.
v Whether the JVM pool is enabled or disabled (that is, whether it can service new

requests or not).
v What trace options apply for the JVMs in the pool (this option is only available

on the EXEC CICS version of the command).

Monitoring JVMs in the JVM pool
You can use the EXEC CICS INQUIRE JVM command or the CEMT INQUIRE JVM
command to identify and report the status of each JVM in the JVM pool. You can
also monitor the activity in the JVM pool using the CICS statistics.

Using the EXEC CICS INQUIRE JVM command, you can inquire on a specific JVM, or
you can browse through all the JVMs in the JVM pool. Using the CEMT INQUIRE
JVM command, you can list all the JVMs in the JVM pool, or inquire on all JVMs
in a specified state.

The commands tell you about:
v The JVM profile and execution key of the JVMs in the pool.

Chapter 6. Managing Java applications 145

|
|
|

|

|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|

|

|
|

|
|

|
|

|

|
|
|

|
|
|
|

|

|

v Which of the JVMs in the pool use the shared class cache.
v The age of each JVM.
v The task to which a JVM is allocated, and the time it has been allocated to the

task.
v JVMs that are being phased out as a result of a CEMT SET JVMPOOL PHASEOUT,

PURGE or FORCEPURGE command, or a CEMT PERFORM CLASSCACHE PHASEOUT, PURGE
or FORCEPURGE command (or the equivalent EXEC CICS commands).

You can also monitor the activity in the JVM pool using the CICS statistics. Use the
EXEC CICS COLLECT STATISTICS command, or the CEMT PERFORM STATISTICS
command, with the relevant options to collect these statistics. Some useful statistics
are the JVM pool statistics (JVMPOOL option), the TCB Mode statistics
(DISPATCHER option), the JVM profile statistics (JVMPROFILE option), and the
JVM program statistics (JVMPROGRAM option). These statistics can tell you,
among other things:
v How many JVMs of a particular profile, on a particular TCB mode, are in the

JVM pool (from the JVM profile statistics).
v How many requests were made for a JVM of a particular profile, on a particular

TCB mode (from the JVM profile statistics).
v How many times a request for a JVM had to wait because there was no JVM

available with an execution key and profile matching the request (from the TCB
pool statistics for the JVM pool). This includes both requests that were
eventually assigned a suitable JVM, and requests to which CICS decided to
assign a mismatching or stolen JVM, rather than make them wait any longer.
This figure can also include serialization waits, that is, time spent waiting to
obtain any required locks.

v How long these requests spent waiting (from the TCB pool statistics for the JVM
pool).

v How many times a request for a JVM was assigned a JVM that had the wrong
profile or the wrong execution key (from the JVM profile statistics). These
incidents of mismatching and stealing are broken down by JVM profile, so you
can see if a particular profile is causing excess stealing activity.

Monitoring pooled JVM profile usage
You can use the EXEC CICS INQUIRE JVMPROFILE command in browse mode to find
out what JVM profiles have been used for pooled JVMs since the CICS region
started. You can also collect CICS statistics for JVM profiles.

INQUIRE JVMPROFILE finds JVM profiles that have been used during the lifetime of
the CICS region. The command returns each JVM profile name, as used in a
PROGRAM resource, and the full path name of the z/OS UNIX file for that JVM
profile. The command also tells you whether JVMs with that profile use the shared
class cache.

You can collect statistics for JVM profiles by using the EXEC CICS COLLECT
STATISTICS command or the CEMT PERFORM STATISTICS command. For both
commands, specify the JVMPROFILE option. The statistics are broken down by
JVM profile and execution key, and they show, among other things:
v The number of requests made by applications for JVMs of this profile
v The total, current and peak number of JVMs of this profile that were in the JVM

pool
v The number of pooled JVMs of this profile that were destroyed because CICS

was short on storage

146 CICS TS for z/OS 4.2: Java Applications in CICS

|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|

v The incidence of TCB stealing by, and from, JVMs of this profile
v The Language Environment heap storage and JVM heap storage used by JVMs

of this profile

JVM server and pooled JVM statistics in the Performance Guide has more
information about JVM statistics, and tells you how to find the full listings and
reports for these statistics.

Monitoring programs in pooled JVMs
You can use the EXEC CICS COLLECT STATISTICS command or the CEMT PERFORM
STATISTICS command to collect statistics on Java programs that run in a pooled
JVM. For both commands, specify the JVMPROGRAM option

CICS does not collect statistics for these programs when a COLLECT or PERFORM
STATISTICS PROGRAM command is issued, because the JVM programs are not loaded
by CICS.

For each program, the statistics show the following details:
v The JVM profile that the program requires, as specified in the JVMPROFILE

attribute of the PROGRAM resource
v The execution key that the program requires, either CICS key or user key, as

specified in the EXECKEY attribute of the PROGRAM resource
v The main class in the program, as specified in the JVMCLASS attribute of the

PROGRAM resource
v The number of times that the program has been used

For more information about JVM statistics, see JVM server and pooled JVM
statistics in the Performance Guide.

Using DFHJVMAT to modify options in a JVM profile
DFHJVMAT is a user-replaceable program that you can use to override the options
specified in a JVM profile for single-use pooled JVMs. Normally, a JVM profile
provides sufficient flexibility to configure a JVM as required. Use DFHJVMAT only
if you must tailor the JVM in a way that cannot be achieved by specifying options
in the JVM profile.

You can also use DFHJVMAT to override the JVMCLASS attribute on a CICS
PROGRAM resource. This attribute specifies the main class in the Java program
that is to execute in the JVM. If you use the PROGRAM resource, the limit for the
JVMCLASS attribute is 255 characters, but you can use DFHJVMAT to specify a
class name longer than 255 characters.

You can call DFHJVMAT by specifying INVOKE_DFHJVMAT=YES as an option on
the JVM profile that you want to override.

Important

You can only call DFHJVMAT for a single-use pooled JVM, that is, a JVM with a
JVM profile that specifies the option REUSE=NO. With single-use JVMs, when the
task using the JVM terminates, CICS does not attempt to make the JVM available
for reuse for another task.

You cannot call DFHJVMAT for a continuous pooled JVM or a JVM server. If you
specify INVOKE_DFHJVMAT=YES for either type of JVM,
INVOKE_DFHJVMAT=YES is ignored and DFHJVMAT is not called.

Chapter 6. Managing Java applications 147

|

|
|

|
|
|

|

|
|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_stats_jvm_genintro.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_stats_jvm_genintro.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_stats_jvm_genintro.html

The values specified in the JVM profile are available to DFHJVMAT as z/OS UNIX
System Services environment variables, which you can modify before the JVM is
created.

Note: The values of the STDERR and STDOUT parameters, which can be
interpreted by CICS to generate task-specific names, are passed to DFHJVMAT
before interpretation.

DFHJVMAT uses the C/C++ getenv and setenv functions to change the
environment variables that correspond to the options in the JVM profile. For
example, you can use the following command to replace the CLASSPATH_SUFFIX
environment variable with the specified value:
setenv(ecp_suffix, cp_suffix_val,1)

where:
char *ecp_suffix = "CLASSPATH_SUFFIX";
char *cp_suffix_val ="/u/jtest1/Java/test:.";

The setenv function has no effect on the CICS PROGRAM resource and remains in
effect only for the lifetime of the JVM.

The CICS-supplied DFHJVMAT:
v Issues getenv requests for each variable.
v Issues a printf to destination stdout, to record the setting of each variable.
v Contains (within comments) some sample code that demonstrates how to use

the setenv command to the supplied names for stdout and stderr to make
unique output and error files for each CICS task.

If you write your own program to tailor options in the JVM profile based on the
supplied version, the name must be DFHJVMAT, and the program must be written
in C. You can use EXEC CICS commands in DFHJVMAT but these commands
might increase the processing time. DFHJVMAT must be written to threadsafe
standards and defined with CONCURRENCY(THREADSAFE) in its PROGRAM
resource, because multiple invocations of this module might run in parallel.

Options in the JVM profile that are available to DFHJVMAT
The JVM profile options listed in this topic are made available to DFHJVMAT. The
options are read from the specified JVM profile and created as environment
variables using Language Environment services.

In most cases, the full descriptions of these options are in “JVM profiles: options
and samples” on page 96. Before modifying any of these options using
DFHJVMAT, read the full description of the option.

Some of the options are no longer documented in the CICS documentation, and
information about these can be found in the documentation for the IBM 64-bit SDK
for z/OS, Java Technology Edition and other Java documentation.

Note:

1. Except where explicitly stated as being for information only, you can reset the
values of these variables.

2. All environment variables and values are case sensitive and must be set as
shown.

3. CICS ignores any values that it does not recognize as a valid option.

148 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|
|

|
|
|
|

|

|

|
|

|
|

|

|

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|

4. For the options beginning with X:
v Some of these options are no longer documented in the CICS documentation.

However, they are still valid options and available to DFHJVMAT.
v These options should now begin with -X when specified in a JVM profile.

However, the hyphen is not included in the environment variables used by
DFHJVMAT, which still begin with X.

Table 11. JVM profile options available to DFHJVMAT

Option Specifies

CLASSPATH_PREFIX,
CLASSPATH_SUFFIX

Prefix and suffix to standard class path

INVOKE_DFHJVMAT For information only

JAVA_DUMP_OPTS Set of Java dump options to obtain diagnostics for an
abend in the JVM

JAVA_HOME Path to IBM 64-bit SDK for z/OS, Java Technology
Edition subdirectories and JAR files

JVMPROPS Path and name of the JVM properties file

LIBPATH_PREFIX,
LIBPATH_SUFFIX

Prefix and suffix to library path

STDERR Name of z/OS UNIX file for stderr output from the JVM

STDIN Name of z/OS UNIX file for stdin

STDOUT Name of z/OS UNIX file for stdout output from the JVM

USEROUTPUTCLASS Name of a Java class that intercepts and redirects the
stdout and stderr output from the JVM.

VERBOSE Level of information messages from the JVM

WORK_DIR Working directory for CICS region on z/OS UNIX

Xcheck Perform additional checks

Xdebug Enable debugging support

Xmaxe, Xmaxf, Xmine, Xminf Maximum and minimum heap expansion sizes and free
heap percentage sizes for the heap

Xms Initial size of the heap

Xmx Maximum size of the heap

Xnoagent Disable the old sun.tools.debug agent (if Xdebug
specified)

Xnoclassgc Disable class garbage collection

Xoss Maximum Java stack size for any thread

Xrs Reduces the use of operating system signals by the JVM

Xrundllname Loads the specified dynamic link library (DLL) and
passes it the specified options

Xss Size of stack for each new Java thread

Xverify Level of verification to perform on classes loaded

Two additional fields not found in a standard JVM profile are passed to
DFHJVMAT, as follows:

CICS_PROGRAM
Specifies the name of the CICS program (1-8 characters) associated with the

Chapter 6. Managing Java applications 149

|

|
|

|
|
|

||

||

|
|
|

||

||
|

||
|

||

|
|
|

||

||

||

||
|

||

||

||

||

||
|

||

||

||
|

||

||

||

||
|

||

||
|

|
|

|
|

Java class to be run. This name is established at runtime; it is passed to
DFHJVMAT for information only and cannot be changed. Any changes are
ignored by CICS.

CICS_PROGRAM_CLASS
Specifies the CICS user application class name, and is obtained from the
program resource definition. This is defined by the JVMCLASS attribute on the
CICS PROGRAM resource definition. As an alternative to using DFHJVMAT to
override this attribute, you can use the SET PROGRAM command to modify the
JVMCLASS attribute on the PROGRAM resource before control is passed to the
JVM. If you use the PROGRAM resource, the limit for the JVMCLASS attribute
is 255 characters, but you can use DFHJVMAT to specify a class name longer
than 255 characters.

150 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|
|
|
|
|
|
|
|

Chapter 7. Improving Java performance

You can take a number of actions to improve the performance of both Java
applications and the JVMs in which they run.

About this task

No matter how well CICS is tuned, if an application is written inefficiently it will
always perform poorly compared to well written applications. For example, if you
change your applications to generate less garbage, you can make significant
savings on garbage collection costs. If less garbage is produced then less time is
spent in garbage collection. To improve performance, always ensure that your Java
applications are written efficiently, as well as tuning the Java environment.

Procedure
1. Determine the performance goals for your Java workload. Some of the most

common goals include minimizing processor usage or application response
times. After you have decided the goal, you can tune the Java environment
accordingly.

2. Analyze your Java applications to ensure they are running efficiently and do
not generate too much garbage. IBM has tools that can help you to analyze
Java applications to improve the efficiency and performance of particular
methods and the application as a whole.

3. Tune the JVM server or pooled JVMs. You can use statistics and IBM tools to
analyze the storage settings, garbage collection, task waits, and other
information to tune the performance of the JVM.

4. Tune the Language Environment enclave in which a JVM runs. JVMs use MVS
storage, obtained by calls to MVS Language Environment services. You can
modify the runtime options for Language Environment to tune the storage that
is allocated by MVS.

5. Optional: If you use the z/OS shared library region to share DLLs between
JVMs in different CICS regions, you can tune the storage settings.

Determining performance goals for your Java workload
Tuning CICS JVMs to achieve the best overall performance for a given application
workload involves several different factors. You must decide what the desired
performance characteristics of your Java workload are. When you establish these
characteristics, you can determine what parameters to change and how to change
them.

The following performance goals for Java workloads are most common:

Minimum overall processor usage
This goal prioritizes the most efficient use of the available processor
resource. If a workload is tuned to achieve this goal, the total use of the
processor across the entire workload is minimized, but individual tasks
might experience high processor consumption. Tuning for the minimum
overall processor usage involves specifying large storage heap sizes for
your JVMs to minimize the number of garbage collections.

© Copyright IBM Corp. 1999, 2012 151

|

|

|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

Minimum application response times
This goal prioritizes ensuring that an application task returns to the caller
as rapidly as possible. This goal might be especially relevant if there are
Service Level Agreements to be achieved. If a workload is tuned to achieve
this goal, applications respond consistently and quickly, though a higher
processor usage might occur for garbage collections. Tuning for minimum
application response times involves keeping the heap size small and
possibly using the gencon garbage collection policy.

Minimum JVM storage heap size
This goal prioritizes reducing the amount of storage used by JVMs. JVMs
use 64-bit storage so it is possible to run many pooled JVMs and JVM
servers in a CICS region. If pooled JVMs use a smaller storage heap, it
might be possible to run more of them in the CICS region. However,
choosing this goal might increase processor costs. Tuning JVMs to
minimize the storage heap size results in a greater frequency of garbage
collection events.

Other factors can affect the response times of your applications. The most
significant of these is the Just In Time (JIT) compiler. The JIT compiler optimizes
your application code dynamically at run time and provides many benefits, but it
requires a certain amount of processor resource to do this.

Analyzing Java applications using IBM Health Center
To improve the performance of a Java application, you can use IBM Health Center
to analyze the application. This tool provides recommendations to help you
improve the performance and efficiency of your application.

About this task

IBM Health Center is available in the IBM Support Assistant Workbench. These
free tools are available to download from IBM as described in the Getting Started
guide. Try to run the application in a JVM on its own. If you are running a mixed
workload in a JVM server, it might be more difficult to analyze a particular
application.

Procedure
1. Add the required connection options to the JVM profile of the JVM server. The

IBM Health Center documentation describes what options you must add to
connect to the JVM from the tool.

2. Start up IBM Health Center and connect it to your running JVM. IBM Health
Center reports JVM activity in real time so wait a few moments for it to
monitor the JVM.

3. Select the Profiling link to profile the application. You can check the time spent
in different methods. Check the methods with the highest usage to look for any
potential problems.

Tip: The Analysis and Recommendations tab can identify particular methods
that might be good candidates for optimization.

4. Select the Locking link to check for locking contentions in the application. If
the Java workload is unable to use all the available processor, locking might be
the cause. Locking in the application can reduce the amount of parallel threads
that can run.

152 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/getting_started.html
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/getting_started.html

5. Select the Garbage Collection link to check the heap usage and garbage
collection. The Garbage Collection tab can tell you how much heap is being
used and how often the JVM pauses to perform garbage collection.
a. Check the proportion of time spent in garbage collection. This information

is presented in the Summary section. If the time spent in garbage collection
is more than 2%, you might need to adjust your garbage collection.

b. Check the pause time for garbage collection. If the pause time is more than
10 milliseconds, the garbage collection might be having an effect on
application response times.

c. Divide the rate of garbage collection by the number of transactions to find
out approximately how much garbage is produced by each transaction. If
the amount of garbage seems high for the application, you might have to
investigate the application further.

What to do next

After you have analyzed the application, you can tune the Java environment for
your Java workloads.

Garbage collection and heap expansion
Garbage collection and heap expansion are an essential part of the operation of a
JVM. The frequency of garbage collection in a JVM is affected by the amount of
garbage, or objects, created by the applications that run in the JVM.

Allocation failures

When a JVM runs out of space in the storage heap and is unable to allocate any
more objects (an allocation failure), a garbage collection is triggered. The Garbage
Collector cleans up objects in the storage heap that are no longer being referenced
by applications and frees some of the space. Garbage collection stops all other
processes from running in the JVM for the duration of the garbage collection cycle,
so time spent on garbage collection is time that is not being used to run
applications. The Java Diagnostics Guide has a detailed explanation of the JVM
garbage collection process.

When a garbage collection is triggered by an allocation failure, but the garbage
collection does not free enough space, the Garbage Collector expands the storage
heap. During heap expansion, the Garbage Collector takes storage from the
maximum amount of storage reserved for the heap (the amount specified by the
-Xmx option), and adds it to the active part of the heap (which began as the size
specified by the -Xms option). Heap expansion does not increase the amount of
storage required for the JVM, because the maximum amount of storage specified
by the -Xmx option has already been allocated to the JVM at startup. If the value of
the -Xms option provides sufficient storage in the active part of the heap for your
applications, the Garbage Collector does not have to carry out heap expansion at
all.

At some point during the lifetime of the JVM, the Garbage Collector stops
expanding the storage heap, because the heap has reached a state where the
Garbage Collector is satisfied with the frequency of garbage collection and the
amount of space freed by the process. The Garbage Collector does not aim to
eliminate allocation failures, so some garbage collection can still be triggered by
allocation failures after the Garbage Collector has stopped expanding the storage

Chapter 7. Improving Java performance 153

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html

heap. Depending on your performance goals, you might consider this frequency of
garbage collection to be excessive.

Garbage collection options

You can use different policies for garbage collection that make trade-offs between
throughput of the application and the overall system, and the pause times that are
caused by garbage collection. Garbage collection is controlled by the -Xgcpolicy
option:

-Xgcpolicy:optthruput
This policy delivers high throughput to applications but at the cost of
occasional pauses, when garbage collection occurs.

-Xgcpolicy:gencon
This policy helps to minimize the time that is spent in any garbage
collection pause. Use this garbage collection policy with JVM servers. You
can check which policy is being used by the JVM server by inquiring on
the JVMSERVER resource. The JVM server statistics have fields that tell
you how many major and minor garbage collection events occur and what
processor time is spent on garbage collection.

You can change the garbage collection policy by updating the JVM profile. For
details of all the garbage collection options, see Specifying garbage collection
policy.

Example 1: An application producing small amounts of garbage

Figure 7 shows the storage heap in a pooled JVM at various stages for the
optthruput garbage collection policy. The maximum amount of storage reserved
for the storage heap is determined by the -Xmx option. The active part of the
storage heap, determined by the -Xms option, is shown shaded.

At startup, -Xms is set to half of -Xmx, as with the default settings in the supplied
JVM profiles. The heap utilization limit (GC_HEAP_THRESHOLD option) is set to the
default of 85%.

The first application that runs in the JVM uses a small amount of the storage in the
active part of the heap. The storage it uses is shown in black. When the transaction

Startup

Xmx

Xms

After 1
transaction

After 20
transactions

After 80
transactions

After
garbage
collection

Garbage collection: Automatic

After next
transaction

Figure 7. Storage heap in a pooled JVM with small amounts of garbage

154 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|

|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/user/garbage.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/user/garbage.html

has finished, the objects used by the application are no longer referenced, so they
are eligible for garbage collection. They remain in the storage heap until garbage
collection occurs.

After 20 transactions have used the JVM, the amount of storage occupied in the
active part of the heap has increased. Each transaction has used a small amount of
storage, and no garbage collection has taken place yet.

After 80 transactions, the heap utilization limit of 85% has been reached, with 85%
of the storage occupied in the active part of the heap. Immediately after the
transaction during which the limit is reached, CICS initiates a garbage collection.
After the garbage collection, all the objects used by the first 80 transactions have
been garbage collected, so the active part of the storage heap is now empty. The
next application that runs in the JVM again uses a small amount of storage, and
the cycle begins again.

In this example, there are no allocation failures and no heap expansion takes place,
because the value of the -Xms option is set so that there is sufficient storage in the
active part of the heap for the applications. Only the garbage collections requested
by CICS at the heap utilization limit are taking place. However, assuming this
workload stays constant, the -Xmx option is higher than it needs to be. All the
storage reserved for the storage heap has been allocated, but half of it is not being
used and is wasted.

Example 2: A multithreaded application producing large amounts
of garbage

Figure 8 shows the storage heap in a JVM server at various stages for the gencon
garbage collection policy. Unlike the pooled JVM, a JVM server can run many
requests for an application at the same time. Therefore, the application can produce
larger amounts of garbage. In a JVM server, the garbage collection is handled
automatically by the JVM.

Startup

Xmx

Xms

After 20
transactions

After 80
transactions

After 100
transactions

After 110
transactions

After
garbage
collection

Garbage collection: Triggered
by allocation failure

Garbage collection: Triggered
by allocation failure

Heap expansion

After 20
transactions

Figure 8. Storage heap in a JVM server with large amounts of garbage

Chapter 7. Improving Java performance 155

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

During the first 20 transactions, the active part of the storage heap starts to fill.
After 80 transactions, the heap becomes full and an allocation failure occurs, which
triggers a minor garbage collection in the JVM. The garbage collection cleans up
the short lived objects. However, because application requests are still running,
some of the objects are still referenced, so they are not eligible for garbage
collection.

After 100 transactions, the Garbage Collector cannot find enough space for all the
currently needed objects and it expands the storage heap . Some storage from the
maximum amount of storage reserved for the storage heap (the amount specified
by the -Xmx option) is added to the active part of the heap. The application
continues to produce objects, but the heap expansion has now created enough
space so that the current transaction can complete.

After 110 transactions, the storage heap is largely occupied. Another allocation
failure occurs that triggers a major garbage collection. The JVM cleans up many of
the longer lived objects used by previous transactions. After another 20
transactions, the heap starts to fill up again.

When you use the gencon policy, many minor garbage collections can occur to
manage the heap size before a major garbage collection occurs. You can find out
how many garbage collections have occurred, the heap occupancy, and other
information by using JVM server statistics.

Improving JVM server performance
To improve the performance of applications that run in a JVM server, you can tune
different parts of the environment, including the garbage collection and the size of
the heap.

About this task

CICS provides statistics reports on the JVM server, which include details of how
long tasks wait for threads, heap sizes, frequency of garbage collection, and
processor usage. You can also use additional IBM tools that monitor and analyze
the JVM directly to tune JVM servers and help with problem diagnosis. You can
use the statistics to check that the JVM is performing efficiently, particularly that
the heap sizes are appropriate and garbage collection is optimized.

Procedure
1. Check the amount of processor time that is used by the JVM server. Dispatcher

statistics can tell you how much processor time the T8 TCBs are using. JVM
server statistics tell you how long the JVM is spending in garbage collection
and how many garbage collections occurred. Application response times and
processor usage can be adversely affected by the JVM garbage collection.

2. Ensure that you have enough storage available to adjust the heap sizes required
by the JVM server.

3. Tune the garbage collection and heap in the JVM. A small heap can lead to
very frequent garbage collections, but too large a heap can lead to inefficient
use of MVS storage. You can use IBM Health Center to visualize and tune
garbage collection and adjust the heap accordingly.

156 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

What to do next

For more detailed analysis of memory usage and heap sizes, you can use the
Memory Analyzer tool in IBM Support Assistant to analyze Java heap memory
using system dump or heap dump snapshots of a Java process.

Examining processor usage by JVM servers
You can use the CICS monitoring facility to monitor the processor time that is used
by transactions running in a JVM server. All threads in a JVM server run on T8
TCBs.

About this task

You can use the DFH$MOLS utility to print the SMF records or use a tool such as
CICS Performance Analyzer to analyze the SMF records.

Procedure
1. Switch on monitoring in the CICS region to collect the performance class of

monitoring data.
2. Check the performance data group DFHTASK. In particular, you can look at the

following fields:

Field ID Field name Description

283 MAXTTDLY The elapsed time for which the user task waited to
obtain a T8 TCB, because the CICS region reached the
limit of available threads. The thread limit is 1024 for
each CICS region and each JVM server can have up to
256 threads.

400 T8CPUT The processor time during which the user task was
dispatched by the CICS dispatcher domain on a CICS
T8 mode TCB. When a thread is allocated a T8 TCB,
that same TCB remains associated with the thread until
the processing completes.

401 JVMTHDWT The elapsed time that the user task waited to obtain a
JVM server thread because the CICS system had
reached the thread limit for a JVM server in the CICS
region.

3. To improve processor usage, reduce or eliminate the use of tracing where
possible.
a. In a production environment, consider running your CICS region with the

CICS master system trace flag set off. Having this flag on significantly
increases the processor cost of running a Java program. You can set the flag
off by initializing CICS with SYSTR=OFF, or by using the CETR transaction.

b. Ensure that you activate JVM trace only for special transactions. JVM
tracing can produce large amounts of output in a very short time, and
increases the processor cost. For more information about controlling JVM
tracing, see “Diagnostics for Java” on page 180.

4. Do not use the USEROUTPUTCLASS option in JVM profiles in a production
environment. Specifying this option has a negative effect on the performance of
JVMs. The USEROUTPUTCLASS option enables developers using the same CICS
region to separate JVM output, and direct it to a suitable destination, but it
involves the building and invocation of additional class instances.

Chapter 7. Improving Java performance 157

|

|
|
|

|

|
|
|

|

|
|

|

|
|

|
|

||||

|||
|
|
|
|

|||
|
|
|
|

|||
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

Calculating storage requirements for JVM servers
To increase the number of JVM servers in a CICS region, you must ensure that
enough storage is available to CICS.

About this task

JVMs use storage below the 16 MB line, 31-bit storage, and 64-bit storage. To run a
JVM server incurs a one-off storage cost, no matter how many JVMs run in the
CICS region. Each JVM server and its Language Environment enclave also require
a certain amount of 31-bit and 64-bit storage. The JVM heap sizes are managed by
the JVM and CICS uses the default values. You can adjust the heap size if required
as part of tuning the environment.

The storage required for the JVM heap comes from the CICS region storage (from
MVS storage, not EDSA storage). Larger JVM heaps reduce the number of JVMs
that can be present in a CICS region, and increase the region size to support them.
However, if the heap size is set too small, excessive garbage collection takes place,
which affects performance. You can tune the JVM storage options to achieve the
best performance for your Java workloads. The JVM storage options help to
determine the processor usage, storage usage, and task response times for Java
applications.

Procedure
1. Determine the amount of free storage available below the bar by using the

sample statistics program DFH0STAT. The storage reports include the amount
of user storage allocated in 31-bit storage and below the 16 MB line.
v If you have no JVM servers running, subtract the storage that is reserved for

the z/OS shared library region from the total amount of free storage in the
CICS address space. The storage is controlled by the SHRLIBRGNSIZE
parameter in MVS and is allocated once when the first JVM is started in the
region.

v If you have JVM servers running, subtract the value of the SHRLIBRGNSIZE
parameter from the total amount of free storage. Each JVM that is running
uses 12 KB of storage below the 16 MB line. The Language Environment
enclave for each JVM uses 31-bit storage for the heap and library heap. The
amount of allocated 31-bit storage is set by the HEAP64 and LIBHEAP64 options
in DFHOSGI. You must also subtract these values from the total amount of
free storage to work out how much storage is currently available.

If you want to change the 31-bit storage settings, you can adjust the
SHRLIBRGNSIZE parameter and the Language Environment options. See “Tuning
the z/OS shared library region” on page 177 and “Using DFHAXRO to modify
the enclave of a JVM server” on page 173.

2. Calculate how much 64-bit storage is required for each additional JVM server.
You can calculate the 64-bit storage requirements for a JVM server by adding
up the following storage requirements:
v The -Xmx value. The default value for this parameter is set by the JVM, so

check the documentation in the Java information center.
v The value of the 64-bit storage that is allocated by the HEAP64 option in

DFHAXRO.
v The value of the 64-bit storage that is allocated by the LIBHEAP64 option in

DFHAXRO.
v The value of the 64-bit storage that is allocated by the STACK64 option in

DFHAXRO. Multiply this value by the number of threads that are allowed in

158 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/diag/appendixes/defaults.html

the JVM server. To calculate the number of allowed threads, add the
THREADLIMIT attribute value on the JVMSERVER resource to the value of
the -Xgcthreads parameter. This Java option controls the number of garbage
collection helper threads in the JVM.

3. Check the MEMLIMIT value to determine whether you have enough 64-bit
storage available to run additional JVM servers. You must allow for the other
CICS facilities that use 64-bit storage.
The z/OS MEMLIMIT parameter limits the amount of 64-bit (above-the-bar)
storage for the CICS region. For information about the CICS facilities that use
64-bit storage, and how to check and adjust this parameter, see Estimating,
checking, and setting MEMLIMIT in the Performance Guide.

Tuning JVM server heap and garbage collection
Garbage collection in a JVM server is handled by the JVM automatically. You can
tune the garbage collection process and heap size to ensure that application
response times and processor usage are optimal.

About this task

The garbage collection process affects application response times and processor
usage. Garbage collection temporarily stops all work in the JVM and can therefore
affect application response times. If you set a small heap size, you can save on
memory, but it can lead to more frequent garbage collections and more processor
time spent in garbage collection. If you set a heap size that is too large, the JVM
makes inefficient use of MVS storage and this can potentially lead to data cache
misses and even paging. CICS provides statistics that you can use to analyze the
JVM server. You can also use IBM Health Center, which provides the advantage of
analyzing the data for you and recommending tuning options.

Procedure
1. Collect JVM server and dispatcher statistics over an appropriate interval. The

JVM server statistics can tell you how many major and minor garbage
collections take place and the amount of time that the processor spent in
garbage collection. The dispatcher statistics can tell you about processor usage
for T8 TCBs across the CICS region.

2. Use the dispatcher TCB mode statistics for T8 TCBs to find out how much
processor time is spent on JVM server threads. The “Accum CPU Time / TCB”
field shows the accumulated processor time taken for all the TCBs that are, or
have been, attached in this TCB mode. The “TCB attaches” field shows the
number of T8 TCBs that have been used in the statistics interval. Use these
numbers to work out approximately how much processor time each T8 TCB
has used.

3. Use the JVM server statistics to find the percentage of time that is spent in
garbage collection. Divide the time of the statistics interval by how much
elapsed time is spent in garbage collection. Aim for less than 2% of processor
usage in garbage collection. If the percentage is higher, you can increase the
size of the heap so that garbage collection occurs less frequently.

4. Compare the “Current heap size” field with the “GC heap occupancy” field to
find out how much live data is being used in the heap. If the heap is large,
even after a garbage collection, the pause time for performing garbage
collection is longer.
The optthruput policy uses a single heap that can cause less frequent but
longer pause times. The gencon policy splits the heap into two parts, so the

Chapter 7. Improving Java performance 159

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_dsa_memlimit.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_dsa_memlimit.html

JVM performs minor garbage collection on the nursery and major garbage
collection on the full heap. The gencon policy helps to minimize the time that is
spent in any garbage collection pause.
If you want to improve application response times, use the gencon policy:
a. Check the statistics for the JVMSERVER resource to find out which policy is

being used by the JVM.
b. If the JVM is using optthruput, edit the JVM profile to add the -Xgcpolicy

option. Specify -Xgcpolicy:gencon.
c. Disable and enable the JVMSERVER resource to pick up the changes to the

JVM profile. You can check the enabled JVMSERVER resource to confirm
that your changes have been applied.

5. Divide the heap freed value by the number of transactions that have run in the
interval to find out how much garbage per transaction is being collected. You
can find out how many transactions have run by looking at the dispatcher
statistics for T8 TCBs. Each thread in a JVM server uses a T8 TCB.

6. Optional: To perform more detailed analysis, add the -verbose:gc option to the
JVM profile. The JVM writes garbage collection messages in XML to the file
that is specified in the STDERR option in the JVM profile. See verbose:gc
logging for examples and explanations of the messages.

Tip: You can use the file in the Memory Analyzer tool to perform more
detailed analysis.

Results

The outcome of your tuning can vary depending on your Java workload, the
maintenance level of CICS and of the IBM SDK for z/OS, and other factors. For
more detailed information about the storage and garbage collection settings and
the tuning possibilities for JVMs, see the Java Diagnostics Guide.

Tuning JVM server startup in a sysplex
If you have problems starting many JVM servers at the same time across CICS
regions in a sysplex, you can improve performance by tuning the environment.

About this task

When a JVM server starts, it loads a set of libraries in the /usr/lpp/cicsts/
cicsts42/lib directory. If you start many JVM servers at the same time, it can take
a while for each JVM to load the required libraries. Some JVM servers might time
out or take a long time to start up. To reduce the startup time, you can tune the
environment.

Procedure
1. Mount zFS in read-only mode to improve the time it takes to access the

libraries from different JVM servers in the sysplex.
2. Mount zFS on a different LPAR in the sysplex to provide a local copy of the

libraries to a CICS region.
3. Create a shared class cache for the JVM servers to load the libraries once. To

use a shared class cache, add the -Xshareclasses option to the JVM profile of
each JVM server. For details on this option, see Class data sharing between
JVMs.

4. Increase the timeout value for the OSGi framework. The DFHOSGI JVM profile
contains the OSGI_FRAMEWORK_TIMEOUT option that specifies the amount of time

160 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|

|
|

|

|
|
|
|
|

|

|
|

|
|

|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/gcpd_verbosegc.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/gcpd_verbosegc.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/user/classdatasharing.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.user.zos.60/user/classdatasharing.html

that CICS waits for the JVM server to start up and shut down. If the time is
exceeded, the JVM server fails to initialize or shut down correctly. The default
value is 60 seconds, so increase this value to a more suitable number of seconds
for your environment.

Managing your JVM pool for performance
By tuning the settings for the JVM pool, you might be able to decrease the
response time for your transactions, by ensuring that processor time is not being
wasted during uses of pooled JVMs. You can also ensure that each CICS region
that is running Java workloads contains the optimum number of JVMs for the
region size, and is therefore making the best use of storage and processor time.

About this task

The number of pooled JVMs that a CICS region can support is governed mainly by
the following factors:
v The amount of processor time used by the JVMs.
v The amount of MVS storage required by the JVMs.
v The amount of MVS storage and processor time that are available for the use of

the CICS region.

To estimate how many pooled JVMs you require to support the required level of
transaction throughput, use the following formula:
ETR x Response time = Number of JVMs

where:
v ETR is the desired level of transaction throughput
v Response time is the time taken to run your transaction in a JVM

The following procedure is a suggested process to tune your JVM pool.

Procedure
1. Find out how long your transactions are waiting to acquire a JVM. Check the

statistics field “Total Max TCB Pool Limit delay time” in the CICS dispatcher
TCB pool statistics. This field shows how long your transactions waited to
acquire a JVM at those times when the MAXJVMTCBS limit had been reached for
the JVM pool. You can also use the CICS monitoring data field MAXJTDLY
(field ID 277), in performance data group DFHTASK, to check how much time
an individual transaction waited to acquire a JVM.
a. If the delay time seems low, the MAXJVMTCBS limit for your JVM pool might

not often be reached. The statistics field “Times at Max TCB Pool Limit” in
the CICS dispatcher TCB pool statistics shows you how many times the
limit was reached. In this situation, it might be possible to reduce the
MAXJVMTCBS limit, without causing a serious increase in the delay time for
your transactions.

b. If the delay time seems high, divide it by the statistics field “Total Attaches
delayed by Max TCB Pool Limit” in the CICS dispatcher TCB pool statistics,
to see how long each transaction was made to wait. The field “Average Max
TCB Pool Limit delay time” in the summary TCB pool statistics has this
information. If your JVM pool is normally at its MAXJVMTCBS limit,
transactions often wait for at least a short time to acquire a JVM. Increase
your MAXJVMTCBS limit only if you feel that the delay time for each
transaction is excessive.

Chapter 7. Improving Java performance 161

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

2. If you have found that the delay time for transactions waiting to acquire a JVM
is excessive, check your level of QR TCB use. Calls made by a Java program for
CICS services, such as using a JCICS class to access a transient data queue,
require a switch to the QR TCB. When the QR TCB reaches a high level of use,
adding more JVMs might produce no further increase in the throughput of
your CICS system. You can check your level of QR TCB use by looking at the
statistics field “Accum CPU Time / TCB” for the QR mode in the CICS
dispatcher TCB mode statistics.

3. Examine the amount of processor time that is used by your pooled JVMs on
their own J8 and J9 TCBs. Make sure that you have stopped any unnecessary
processor usage. For more information, see “Examining processor usage by
pooled JVMs.”

4. If you want to increase the number of pooled JVMs, compare the amount of
storage required to support a single JVM, with the amount of storage space that
is available (or that you can make available) to the CICS region, and calculate
the maximum number of JVMs that your CICS region can support. For more
information, see “Calculating storage requirements for pooled JVMs” on page
165.

5. Taking your findings about processor usage and storage availability into
account, set an appropriate MAXJVMTCBS limit for the CICS region. You can
change the setting for MAXJVMTCBS without restarting CICS, by using the CEMT
SET DISPATCHER command.

6. If you receive message DFHSJ0203 and receive a return code of 12 from
Language Environment, examine the storage settings for your JVMs. JVMs use
64-bit storage, and the limit for 64-bit storage for the CICS region is controlled
by the z/OS MEMLIMIT parameter. You can adjust the storage setting, the
MAXJVMTCBS limit, or both, to decrease the amount of storage that the JVMs are
using in the CICS region. For more information, see “Dealing with MVS storage
constraints” on page 168.

7. If you find that the incidence of mismatching and stealing in your JVM pool is
excessive, you can use some strategies to reduce this number. For more
information, see “Dealing with excessive mismatches and steals” on page 169.

8. If your Java workload is regular, predictable, and involves a limited number of
different JVM profiles, you can start JVMs manually in advance of the demand
from applications. This strategy might reduce the delay time for applications in
periods when workload is increasing. For more information, see Manually
starting and terminating JVMs and disabling the JVM pool.

Examining processor usage by pooled JVMs
You can use the CICS monitoring facility to monitor the processor time used by a
transaction that invokes a JVM program, including the amount of processor time
used by the pooled JVM on a J8 or J9 TCB. The CICS monitoring facility also
includes the elapsed time spent in the JVM, and the number of JCICS API requests
issued by the JVM program.

About this task

As a first step in tuning your JVMs, ensure that they are not using unnecessary
processor time. You can use the DFH$MOLS utility to print the SMF records or use
a tool such as CICS Performance Analyzer to analyze the SMF records.

Procedure
1. Switch on monitoring in the CICS region to collect the performance class of

monitoring data.

162 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7bq.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.systemprogramming.doc/transactions/cemt/dfha7bq.html

2. Check the performance data group DFHTASK and DFHCICS. In particular, you
can look at the following fields:

Table 12. JVM-related monitoring data fields

Group Field ID Field name Description

DFHTASK 253 JVMTIME The total elapsed time spent in the JVM by
the user task. This comprises the JVM
initialization time, the Java application
execution time, and the JVM cleanup time.
The fields JVMITIME and JVMRTIME show
the initialization and cleanup time
respectively.

DFHTASK 254 JVMSUSP The elapsed time the user task was
suspended by the CICS dispatcher while
running in the JVM.

DFHTASK 260 J8CPUT The processor time during which the user
task was dispatched by the CICS dispatcher
domain on a CICS J8 mode TCB (used for
JVMs in CICS key). The field JVMTIME
shows the actual elapsed time spent in the
JVM.

DFHTASK 267 J9CPUT The processor time during which the user
task was dispatched by the CICS dispatcher
domain on a CICS J9 mode TCB (used for
JVMs in user key). The field JVMTIME shows
the actual elapsed time spent in the JVM.

DFHTASK 273 JVMITIME The elapsed time spent initializing the JVM
environment. The first JVM that is initialized
in a CICS region, whatever its type, has a
longer initialization time than subsequent
JVMs initialized in the region, because of the
setup required at this time.

DFHTASK 275 JVMRTIME The elapsed time spent cleaning up the JVM
after use by a Java program. This does not
include garbage collections scheduled by
CICS, which take place under a separate
transaction (CJGC).

DFHTASK 277 MAXJTDLY The elapsed time in which the user task
waited to obtain a CICS JVM TCB (J8 or J9
mode), because the CICS system had reached
the limit set by the MAXJVMTCBS system
initialization parameter, .

DFHCICS 025 CFCAPICT The number of CICS OO foundation class
requests, including the Java API for CICS
(JCICS) classes, issued by the user task.

3. To improve processor usage, reduce or eliminate the use of tracing where
possible.
a. In a production environment, consider running your CICS region with the

CICS master system trace flag set off. Having this flag on significantly
increases the processor cost of running a Java program. You can set the flag
off by initializing CICS with SYSTR=OFF, or by using the CETR transaction.

Chapter 7. Improving Java performance 163

|
|

||

||||

||||
|
|
|
|
|
|

||||
|
|

||||
|
|
|
|
|

||||
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|

||||
|
|
|
|

||||
|
|
|

|
|

|
|
|
|

b. Ensure that you only activate JVM trace for special transactions. JVM
tracing can produce large amounts of output in a very short time, and
increases the processor cost. “Diagnostics for Java” on page 180 tells you
how to control JVM tracing.

4. Do not use the USEROUTPUTCLASS option in JVM profiles in a production
environment. Specifying this option has a negative effect on the performance of
JVMs. The USEROUTPUTCLASS option enables developers using the same CICS
region to separate JVM output, and direct it to a suitable destination, but it
involves the building and invocation of additional class instances. For best
performance in a production environment, do not use this option; reserve it for
use during application development. The CICS-supplied JVM profiles do not
specify the USEROUTPUTCLASS option.

5. Look at the different types of pooled JVMs in your CICS region. In particular,
check whether you have any single-use JVMs. Single-use JVMs use a large
amount of processor time compared to continuous JVMs. If the application is
threadsafe, it can run in a JVM server. Otherwise, move the application to run
in a continuous pooled JVM.

How different pooled JVMs affect processor usage
Pooled JVMs can be continuous or single-use and continuous JVMs can optionally
use the shared class cache. Your choice of pooled JVM can have a significant
impact on processor usage.

Continuous JVMs and single-use JVMs

Single-use JVMs have poor performance in terms of processor usage and
transaction throughput, compared to continuous JVMs. A new JVM is initialized
for each program invocation and destroyed after use, incurring very high processor
usage costs.

The time taken to initialize one single-use JVM is slightly lower than the time
taken for a continuous JVM that does not use the shared class cache, although it is
higher than the time taken to initialize a continuous JVM that does use the shared
class cache. However, this initialization occurs every time a program runs in a
single-use JVM, which greatly increases the cumulative initialization time and the
processor time for each transaction.

Do not use single-use JVMs for running Java applications in a production
environment. They are only beneficial for Java applications that were originally
designed to run in a single-use JVM, and have not been made suitable for running
in a JVM that is intended for reuse. If you are running any Java programs in
single-use JVMs, your first action to improve performance is to redesign these Java
programs, so that the programs can run in continuous JVMs.

Continuous JVMs might have to be reinitialized from time to time, incurring the
initialization cost, in the following situations:
v You have a mix of Java applications in your CICS region which use different

JVM profiles, and so mismatches and steals occur.
v You have peaks and troughs in your Java workload, and during times of low

workload, some of your JVMs time out because they remain unused for long
enough.

You can use strategies to avoid or minimize the impact of these situations, if they
occur too frequently in your CICS region.

164 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

JVMs that use the shared class cache

JVMs that use the shared class cache have a significantly shorter initialization time
because they use preloaded classes that are available in the shared class cache.

In terms of the processor time used for each transaction, some applications
perform slightly better in a continuous JVM that uses the shared class cache, and
some applications perform slightly better in a continuous JVM that does not use
the shared class cache. If the processor time for each transaction is your overriding
consideration, and is more important than initialization time, test the application in
both types of JVM. If your JVMs have to be reinitialized from time to time, take
the lower initialization time for a JVM that uses the shared class cache into account
in your assessment.

Calculating storage requirements for pooled JVMs

To increase the number of pooled JVMs in a region, you must ensure that enough
storage is available to CICS.

About this task

JVMs use storage below the 16 MB line, 31-bit storage, and 64-bit storage. To run
pooled JVMs incurs a one-off storage cost, no matter how many JVMs run in the
CICS region. Each pooled JVM and its Language Environment enclave also require
a certain amount of 31-bit and 64-bit storage. The default values for the JVM heap
sizes are:

Table 13. JVM profile options for heap sizes

Description Option in the JVM profile Pooled JVM profile value

Heap: initial storage
allocation

-Xms 16 MB

Heap: maximum size -Xmx 16 MB

The storage required for the JVM heap comes from the CICS region 64-bit storage
above the bar. Larger JVM heaps reduce the number of JVMs that can be present in
a CICS region, and increase the MEMLIMIT size that is required to support them.
However, if the heap size is set too small, excessive garbage collection takes place,
which affects performance. The JVM storage options must be tuned in order to
achieve the best performance for your Java workloads. The JVM storage options
help to determine the processor usage, storage usage, and task response times for
Java applications.

Procedure
1. Determine the amount of free storage available below the bar by using the

sample statistics program DFH0STAT. The storage reports include the amount
of user storage allocated in 31-bit storage and below the 16 MB line.
v If you have no JVMs running, subtract the storage that is reserved for the

z/OS shared library region from the total amount of free storage in the CICS
address space. The storage is controlled by the SHRLIBRGNSIZE parameter in
MVS and is allocated once when the first pooled JVM is started in the region.

v If you have pooled JVMs running, subtract the value of the SHRLIBRGNSIZE
parameter from the total amount of free storage. Each JVM that is running
uses 12 KB of storage below the 16 MB line. The Language Environment

Chapter 7. Improving Java performance 165

|

|
|

|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|

||

|||

|
|
||

|||
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

enclave for each JVM uses 31-bit storage for the heap and library heap. The
amount of allocated 31-bit storage is set by the HEAP64 and LIBHEAP64 options
in DFHJVMRO. You must also subtract these values to work out how much
storage is currently available.

If you want to change the 31-bit storage settings, you can adjust the
SHRLIBRGNSIZE parameter and the Language Environment options. See “Tuning
the z/OS shared library region” on page 177 and “Using DFHJVMRO to
modify the enclave for pooled JVMs” on page 176.

2. Calculate how much 64-bit storage is required for each additional pooled JVM.
You can calculate the 64-bit storage requirements for a pooled JVM by adding
up the following storage requirements:
v The -Xmx value in the JVM profile.
v The amount of 64-bit storage that is specified by the HEAP64 option in

DFHJVMRO.
v The amount of 64-bit storage that is specified by the LIBHEAP64 option in

DFHJVMRO.
v The amount of 64-bit storage that is specified by the STACK64 option in

DFHJVMRO. Multiply this value by 5 to include the system and application
threads that are used by each pooled JVM.

If your applications use several JVM profiles that specify different heap sizes,
you can estimate the average maximum heap.
a. Collect statistics for the JVM profiles to report the level of activity for each

JVM profile and the maximum heap.
b. The field “Total number of requests for this profile” tells you how many

times each type of JVM was requested by an application during your
sampling period, which can reflect the proportions of each type of JVM that
is typically in the JVM pool. Multiply the total number of requests for each
JVM profile, by the storage requirement you have calculated for that profile.

c. Add the results for all the JVM profiles and divide this figure by the total
number of requests for JVMs in the sampling period.

3. Check the MEMLIMIT value to determine whether you have enough 64-bit
storage available to run additional pooled JVMs. You must allow for the other
CICS facilities that use 64-bit storage.
The z/OS MEMLIMIT parameter limits the amount of 64-bit (above-the-bar)
storage for the CICS region. For information about the CICS facilities that use
64-bit storage, and how to check and adjust this parameter, see Estimating,
checking, and setting MEMLIMIT in the Performance Guide.

Tuning pooled JVM heaps and garbage collection
The garbage collection options that you specify in JVM profiles for pooled JVMs
can have a significant influence on the performance of your Java applications. You
can use the output from the garbage collection process in the JVM to tune these
settings.

About this task

As well as being triggered by allocation failures, garbage collection can be initiated
by CICS. CICS initiates garbage collection using a System.gc() call when heap
utilization in the active part of the storage heap reaches a specified limit. The
default is 85%, meaning that when 85% of the storage in the active part of the
storage heap is used, CICS schedules a garbage collection. CICS checks heap
utilization after every Java program execution. If the limit has been reached, the

166 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_dsa_memlimit.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.performance.doc/topics/dfht3_dsa_memlimit.html

garbage collection transaction CJGC is scheduled to run in the JVM immediately
after the current use of the JVM ends. Between these garbage collections, however,
allocation failures could still occur if a Java program begins to run when heap
utilization is below the limit, then uses all the remaining storage in the active part
of the heap, and still requires more storage.

The garbage collections scheduled by CICS are carried out as a separate system
transaction, CJGC. Garbage collections caused by allocation failures, however, take
place while an application is running in the JVM. If garbage collection takes place
while an application is running, it delays the application, and it is counted in the
CICS statistics for the user transaction.

Procedure
1. Identify the JVM profile for the pooled JVM that you want to tune.
2. Edit the JVM profile:

a. Depending on your performance goals, you might want to minimize task
response times by setting the GC_HEAP_THRESHOLD option so that garbage
collection is initiated by CICS rather than being caused by allocation
failures. If you do not want CICS to initiate garbage collection, you can set
GC_HEAP_THRESHOLD to 100. All garbage collections result from allocation
failures while applications are running.

b. Specify the option -verbose:gc. The JVM outputs garbage collection
messages to the file that is specified by the STDERR option in the JVM profile
(the default name is dfhjvmerr). The file is in the z/OS UNIX directory that
is specified by the WORK_DIR option in the JVM profile. If possible, clear this
file of any existing messages (you can delete the file and it will be
re-created).

c. If you want to examine the normal behavior of the JVM with its present
heap settings, do not edit the maximum and minimum heap size values. If
you are attempting to determine more suitable heap settings for this JVM
profile, specify the following values in the JVM profile:
-Xmx100M
-Xms1M

The -Xmx value is large so that the heap can expand up to the size it
requires. The -Xms value is small so that the heap begins at a size smaller
than required, and expands to the minimum size required to run the Java
workload.

3. Set the MAXJVMTCBS system initialization parameter to 1. You can do this while
CICS is running by using the CEMT SET DISPATCHER MAXJVMTCBS command. With
the default settings in the CICS-supplied sample JVM profiles, the output from
all the JVMs in the CICS region is directed to the same file, so in this situation
having only one JVM makes it easier to analyze the behavior of the Garbage
Collector. Alternatively, you can change the STDERR option in the JVM profile
to specify individual output files for each JVM.

4. Use the CEMT INQUIRE JVM command to view the contents of the JVM pool. If
any JVMs are displayed, purge the JVM pool by using the CEMT PERFORM
JVMPOOL command. This ensures that a JVM with the profile that you want to
tune is re-created with the -verbose:gc option and any new heap settings that
you have specified.

5. Using TPNS (Teleprocessing Network Simulator) or another network simulator,
run a large number of transactions that are representative of the usual, or
intended, workload for a JVM with the profile that you want to tune. As a
guide, any single transaction has to run around 1000 times to ensure that most

Chapter 7. Improving Java performance 167

|
|
|
|
|

|
|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

JIT-compilation is invoked. However, if you know that a transaction is unlikely
ever to be run this number of times for a given JVM, run the transaction the
maximum expected number of times instead.

6. Locate the file containing the output from garbage collection for analysis. The
output is in XML. See verbose:gc logging for examples and explanations of the
output, including an allocation failure involving heap expansion and the output
from a garbage collection triggered by a System.gc() call.

Tip: You can use the file in the Memory Analyzer tool to perform more
detailed analysis.
The output from garbage collection shows you the following information:
v Occurrences of garbage collections that were initiated by CICS when the

heap utilization threshold was reached
v Occurrences of garbage collections that were caused by an allocation failure
v The amount of free space in the storage heap, in bytes and as a percentage
v The amount of free space before and after a garbage collection is shown
v The time taken for each garbage collection, in milliseconds
v Occurrences of heap expansion
v The amount by which a storage heap was expanded and the new size of the

heap, in bytes
The total time taken for a garbage collection triggered by a System.gc() call is
displayed in the output twice, once excluding and once including the time
required to obtain exclusive VM access. You can base your tuning on either of
these total times, but make sure you use the same one consistently, and do not
add both together.

Results

The outcome of your tuning can vary depending on your Java workload, the
maintenance level of CICS and of the IBM SDK for z/OS, and other factors. For
more detailed information about the storage and garbage collection settings and
the tuning possibilities for JVMs, see the Java Diagnostics Guide.

Dealing with MVS storage constraints
If CICS attempts to create too many pooled JVMs for the available MVS storage, it
can result in an MVS storage constraint. The pooled JVM fails to start, CICS issues
message DFHSJ0203, and Language Environment fails with a return code of 12.

About this task

JVMs use 64-bit storage, and the amount of 64-bit (above-the-bar) storage for the
CICS region is limited by the z/OS MEMLIMIT parameter. You cannot alter the value
of this parameter while CICS is running; you can specify a new value on the next
start of the CICS region. Therefore, you might want to adjust other settings in the
JVM profiles before changing the MEMLIMIT parameter.

Procedure
1. Check that the storage heap settings in your JVM profiles are not too high,

particularly the -Xmx option, which defines the maximum size for the storage
heap. The -Xmx option for each of the JVM profiles in use in your CICS region
is displayed when you collect statistics for JVM profiles. “Tuning pooled JVM
heaps and garbage collection” on page 166 tells you how to change these
settings.

168 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|

|
|
|
|

|
|

|

|
|

|

|

|

|

|

|
|

|
|
|
|
|

|

|
|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/gcpd_verbosegc.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html

2. Check whether you have a problem with high peak usage of a particular JVM
profile. If so, you can consider using the technique described in “Dealing with
excessive mismatches and steals” to limit the number of transactions that
request a JVM with that profile. This involves defining the transactions which
run JVM programs requiring that JVM profile, in the same transaction class
(TRANCLASS), and placing a limit on that transaction class.

3. Calculate the number of JVMs that you want to run in your CICS region and
adjust the value of the MEMLIMIT parameter. “Calculating storage requirements
for pooled JVMs” on page 165 tells you how to do this. You must also adjust
the MAXJVMTCBS limit accordingly.

Dealing with excessive mismatches and steals
CICS assigns pooled JVMs to applications, and tries to avoid mismatches and
steals wherever it makes sense to do so. However, if there are no suitable JVMs
and no space in the JVM pool, CICS can fulfill an application request through a
mismatch or steal. You can use the CICS statistics to see if the incidence of
mismatches and steals in the JVM pool is greater than you would like. There are
some techniques you can use to intervene if required.

About this task

When an application requests a JVM, CICS first tries to find a suitable JVM that is
available for reuse in the JVM pool. If a JVM with the correct JVM profile and
execution key is unavailable, and the MAXJVMTCBS limit for the JVM pool has
not yet been reached, CICS can create a new JVM for the application.

If there are no suitable JVMs and no space in the JVM pool, CICS destroys an
available JVM and reinitializes the JVM with the correct profile and execution key.
This process is called a mismatch if the JVM is destroyed and reinitialized but the
TCB is kept and reused, and a steal if both the JVM and the TCB are destroyed and
replaced. Before allowing a mismatch or a steal, CICS uses its selection mechanism
to decide whether it is worthwhile.

Procedure
1. Assess the incidence of mismatches and steals in the JVM pool. In the CICS

dispatcher TCB mode statistics, the statistics fields “TCB Mismatches” and
“TCB Steals”, for the TCB modes J8 and J9, show the overall incidence of
mismatches and steals in the JVM pool. In the CICS statistics for JVM profiles,
the field “Number of times this profile stole a TCB” shows the combined
incidence of both mismatches and steals for each JVM profile.

2. You cannot specify the number of JVMs with each JVM profile that CICS keeps
in the JVM pool. You can indirectly limit the number of JVMs with a particular
JVM profile, by limiting the number of transactions that request a JVM with
that profile:
a. Define the transactions which run JVM programs requiring that JVM profile,

in the same transaction class (TRANCLASS).
b. Assign a MAXACTIVE value to the TRANCLASS.

This value limits the number of concurrent executions of JVM programs
requiring that JVM profile, and so limits the maximum number of JVMs with
that JVM profile that are in the JVM pool at any one time.

3. As an alternative, you can attempt to reduce the number of different JVM
profiles that are used by your CICS region. The fewer the number of JVM

Chapter 7. Improving Java performance 169

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|

|

|
|
|

|
|

types, the more chance there is of an existing JVM matching an application
request, and so the mismatches and steals reduce in number:
a. Check that all your JVM profiles and their associated JVM properties files

do specify different options.
b. Investigate whether you can combine compatible options in different JVM

profiles to create a single JVM profile. For example, if you found two
infrequently used JVM profiles that contained similar options, but one
specified a larger storage heap size, you might combine these profiles into a
single JVM profile that specified the larger storage heap size. Although
some applications might use a larger JVM, the reduction in the incidence of
mismatches and steals is more beneficial.

Language Environment enclave storage for JVMs

A JVM runs as a z/OS UNIX System Services process in a Language Environment
enclave that is created using the Language Environment preinitialization module,
CELQPIPI. You can modify the runtime options for the enclave to tune the storage
that is allocated by MVS.

JVMs use MVS Language Environment services rather than CICS Language
Environment services. As a result, all storage obtained by the JVM is MVS storage,
obtained by calls to MVS Language Environment services. This storage resides
within the CICS address space but is not included in the CICS dynamic storage
areas (DSAs). All JVMs that run in CICS use 64-bit storage.

The Language Environment enclave for each JVM must contain not only the JVM
storage heap, but also a basic amount of storage for each JVM. This basic storage
cost represents the amount of storage in the Language Environment enclave that is
used for the structure of the JVM. When you calculate the total size of the JVM, the
basic storage cost must be added to the storage that is used for the storage heap.

The Language Environment runtime options are set by DFHAXRO and
DFHJVMRO. DFHAXRO provides the options for a JVM server and DFHJVMRO
provides the options for pooled JVMs. The default values provided by these
programs for a JVM enclave are shown in Table 14:

Table 14. Language Environment runtime options used by CICS for the JVM enclave

Language Environment
runtime options

JVM server values Pooled JVM values

Heap storage HEAP64(100M,4M,KEEP,4M,512K,
KEEP,1K,1K,KEEP)

HEAP64(8M,2M,KEEP,512K,512K,
KEEP,1K,1K,KEEP)

Library heap storage LIBHEAP64(3M,3M) LIBHEAP64(1M,1M,FREE,16K,4K,
FREE,4K,2K,FREE)

Library routine stack frames
that can reside anywhere in
storage

STACK64(1M,1M,32M) STACK64(1M,1M,32M)

Optional user heap storage
management for multithreaded
applications

HEAPPOOLS64(ALIGN) N/A

Optional heap storage
management for multithreaded
applications

HEAPPOOLS(ALIGN) N/A

170 CICS TS for z/OS 4.2: Java Applications in CICS

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

||

|
|
||

||
|
|
|

|||
|

|
|
|

||

|
|
|

||

|
|
|

||

Table 14. Language Environment runtime options used by CICS for the JVM enclave (continued)

Language Environment
runtime options

JVM server values Pooled JVM values

Amount of storage reserved for
the out-of-storage condition and
the initial content of storage
when allocated and freed

STORAGE(NONE,NONE,NONE) STORAGE(NONE,NONE,NONE,0K)

For information about Language Environment runtime options, see z/OS Language
Environment Customization.

You can override the Language Environment runtime options:

Options for JVM servers
For JVM servers, modify and recompile the sample program DFHAXRO,
which is described in “Using DFHAXRO to modify the enclave of a JVM
server” on page 173. This program is set on the JVMSERVER resource, so
you can use different options the Language Environment enclave for
individual JVM servers if required. The default Language Environment
storage settings that control the initial size of, and incremental additions to,
the Language Environment enclave heap storage can make inefficient use
of MVS storage. The storage settings that CICS supplies are more efficient.
You can also modify these settings to match more closely with the storage
use of your JVMs. Ensure that the heap sizes are set to avoid many
segment allocations and frees.

Options for pooled JVMs
For pooled JVMs, use the DFHJVMRO user-replaceable module, which is
described in “Using DFHJVMRO to modify the enclave for pooled JVMs”
on page 176.

To improve the use of MVS storage, use DFHJVMRO to set the initial
allocation for the amount of Language Environment enclave heap storage
to a value that approximates to the storage used by your Java applications
that run in pooled JVMs, using this as an initial heap size. The settings that
you make using DFHJVMRO apply to all the JVMs in your CICS region, so
consider the different storage heap sizes and basic storage costs that JVMs
with different profiles might have.

The amounts of storage required for a JVM in a Language Environment enclave
might require changes to installation exits, IEALIMIT or IEFUSI, which you use to
limit the REGION and MEMLIMIT sizes. A possible approach is to have a Java owning
region (JOR), to which all Java program requests are routed. Such a region runs
only Java workloads, minimizing the amount of CICS DSA storage required and
allowing the maximum amount of MVS storage to be allocated to JVMs.

Identifying Language Environment storage needs for JVM
servers

You can identify a suitable value for the initial allocation of Language Environment
enclave heap storage in a JVM server by generating storage reports. Generating
storage reports increase processor costs, so run them at an appropriate time in a
production environment.

Chapter 7. Improving Java performance 171

|

|
|
||

|
|
|
|

||

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|

About this task

The HEAP64 runtime option in DFHAXRO controls the heap size of the Language
Environment enclave for a JVM server. This option includes settings for 64-bit and
31-bit storage. You can use your own program instead of DFHAXRO if preferred.
The program must be specified on the JVMSERVER resource.

Procedure
1. Set the RPTO(ON) and RPTS(ON) options in DFHJVMRO. These options are in

comments in the supplied source of DFHAXRO. Specifying these options
causes Language Environment to report on the storage options and to write a
storage report showing the actual storage used.

2. Disable the JVMSERVER resource. The JVM server shuts down and the
Language Environment enclave is removed.

3. Enable the JVMSERVER resource. CICS uses the Language Environment
runtime options in DFHAXRO to create the enclave for the JVM server. The
JVM also starts up.

4. Run your Java workloads in the JVM server to collect data about the storage
that is used by the Language Environment enclave.

5. Remove the RPTO(ON) and RPTS(ON) options from DFHAXRO.
6. Disable the JVMSERVER resource to generate the storage reports. The storage

reports include a suggestion for the initial Language Environment enclave heap
storage. The entry “Suggested initial size” in the 64-bit user heap statistics
contains the suggested value and is equal to the total amount of Language
Environment enclave heap storage that was used by the JVM server.

Results

The storage reports are saved in an stderr file in z/OS UNIX. The directory
depends on whether you have redirected output for the JVM in the JVM profile. If
no redirection exists, the file is saved in the working directory for the JVM. If no
value is set for WORK_DIR in the profile, the file is saved in the /tmp directory.

Use the information in the storage reports to select a suitable value for the initial
Language Environment enclave heap storage in DFHAXRO. Language
Environment can make additions to the heap storage, but it cannot remove
unwanted storage that is given in the initial allocation. Allocate enough storage to
ensure the number of segments allocated and freed are minimal.

You can also use this technique to set the initial size and increment values for the
LIBHEAP64 and STACK64 runtime options.

Example

The following example is a storage report from Language Environment:
64bit User HEAP statistics:

Initial size: 50M
Increment size: 4M
Total heap storage used: 91977408
Suggested initial size: 88M
Successful Get Heap requests: 2439
Successful Free Heap requests: 1619
Number of segments allocated: 1
Number of segments freed: 0

31bit User HEAP statistics:
Initial size: 524288

172 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|
|

|

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

Increment size: 524288
Total heap storage used (sugg. initial size): 8440784
Successful Get Heap requests: 1965
Successful Free Heap requests: 1904
Number of segments allocated: 2
Number of segments freed: 0

Based on the values for Language Environment enclave heap storage in the
example, you can set these values for heap storage in DFHAXRO:
HEAP64(88M,4M,KEEP,10M,512K,KEEP,1K,1K,KEEP)

Using DFHAXRO to modify the enclave of a JVM server
DFHAXRO is a sample program that provides a default set of runtime options for
the Language Environment enclave in which a JVM server runs. For example, it
defines storage allocation parameters for the JVM heap and stack. For CICS, the
storage settings that are supplied in DFHAXRO are more appropriate than the
default Language Environment storage settings.

About this task

You can update the sample program to tune the Language Environment enclave or
you can write your own program based on the sample. The program is defined on
the JVMSERVER resource and is called during the CELQPIPI preinitialization
phase of the Language Environment enclave that is created for a JVM server.

You must write the program in assembler language and it must not be translated
with the CICS translator. The options are specified as character strings, comprising
a 2-byte string length followed by the runtime option. The maximum length for all
Language Environment runtime options is 255 bytes, so use the abbreviated
version of each option and restrict your changes to a total of under 200 bytes.

Procedure
1. Copy the DFHAXRO program to a new location to edit the runtime options. If

maintenance is applied to your CICS region, you might want to reflect the
changes in your program. The source for DFHAXRO is in the
CICSTS42.CICS.SDFHSAMP library.

2. Edit the runtime options, using the abbreviation for each option. The z/OS
Language Environment Programming Guide has complete information about
Language Environment runtime options.
v Keep the size of the list of options to a minimum for quick processing and

because CICS adds some options to this list.
v Use the HEAP64 option to specify the initial heap allocation.
v The ALL31 option, the POSIX option, and the XPLINK option are forced on

by CICS. The ABTERMENC option is set to (ABEND) and the TRAP option
is set to (ON,NOSPIE) by CICS.

v The output produced by the RPTO and RPTS options is written to the CESE
transient data queue.

v Any options that produce output do so at each JVM termination. Consider
the volume of output that might be produced and directed to CESE.

3. Use the DFHASMVS procedure to compile the program.

Chapter 7. Improving Java performance 173

|
|
|
|
|
|

|
|

|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|

|
|
|

|
|

|
|

|

Results

When you enable the JVMSERVER resource, CICS creates the Language
Environment enclave using the runtime options that you specified in the
DFHAXRO program. CICS checks the length of the runtime options before passing
them to Language Environment. If the length is greater than 255 bytes, CICS does
not attempt to start the JVM server and writes error messages to CSMT. The values
that you specify are not checked by CICS before being passed to Language
Environment.

Identifying Language Environment storage needs using JVM
statistics

You can use the CICS statistics to see how much Language Environment enclave
heap storage is used by your JVMs. The field “Peak Language Environment heap
storage used” in the JVM Profile statistics shows the peak (or high watermark)
amount of Language Environment enclave heap storage that was used by a JVM
with the specified execution key and profile. Collecting this statistic affects the
performance of JVMs, so carry out this process at an appropriate time in a
production environment.

Procedure
1. Use the EXEC CICS INQUIRE JVMPROFILE command to identify each of the JVM

profiles in use in your CICS region. (There is no CEMT equivalent for this
command.)

2. Specify the option LEHEAPSTATS=YES in each of the JVM profiles that you
have identified.

3. Purge your JVMs using the CEMT SET JVMPOOL PHASEOUT command (or
the equivalent EXEC CICS command), around the time of a statistics reset
(either before or immediately afterwards). This ensures that the statistics
collected in the next statistics interval are a more accurate reflection of the
storage usage for your JVMs. It also ensures that your JVMs will be re-created
using the LEHEAPSTATS=YES option.

4. Run a representative sample of the transactions that use your JVMs.
5. Either collect the JVM profile statistics using the EXEC CICS COLLECT

STATISTICS JVMPROFILE or CEMT PERFORM STATISTICS JVMPROFILE
command, or view the JVM profile statistics that have been collected during the
statistics interval.

6. Remove the option LEHEAPSTATS=YES from your JVM profiles, or change it
to NO (which is the default).

7. Purge your JVMs using the CEMT SET JVMPOOL PHASEOUT command to
ensure that they are re-created with the option LEHEAPSTATS=NO.

8. Examine the field “Peak Language Environment heap storage used” in the JVM
Profile statistics for each JVM profile.

Results

Use the value in the “Peak Language Environment heap storage used” field to set
as the initial heap size in DFHJVMRO. If the peak amount of storage used varies
between JVM profiles, select a suitable value based on the relative usage of each
JVM profile. Try to select a value that is close to the storage used by most of your
JVMs. Language Environment can make additions to the heap storage, but it
cannot remove unwanted storage that is given in the initial allocation.

174 CICS TS for z/OS 4.2: Java Applications in CICS

|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

Identifying Language Environment storage needs using
DFHJVMRO

You can identify a suitable value for the initial allocation for the amount of
Language Environment enclave heap storage by setting additional runtime options
in DFHJVMRO. These options increase processor costs, so use them at an
appropriate time in a production environment.

About this task

The HEAP64 runtime option in DFHJVMRO controls the heap size of the Language
Environment enclave. This option includes settings for 64-bit and 31-bit storage.

DFHJVMRO cannot identify the JVM profile to which each storage report applies,
so use this procedure for only one JVM profile at a time, by making sure you are
using transactions that request only that JVM profile.

Procedure
1. Set the RPTO(ON) and RPTS(ON) options in DFHJVMRO. These options are in

comments in the supplied source of DFHJVMRO. Specifying these options
causes Language Environment to report on the storage options and to write a
storage report showing the actual storage used.

2. Purge any JVMs in your JVM pool to ensure that they are re-created using the
RPTO(ON) and RPTS(ON) options. You can use the Operations > Java > JVM
pools view in CICS Explorer or use the CEMT SET JVMPOOL PHASEOUT command

3. Run a representative sample of the transactions that use pooled JVMs with the
JVM profile that you want to examine. The JVM profile for a program is named
in the PROGRAM resource.

4. Remove the RPTO(ON) and RPTS(ON) options from DFHJVMRO.
5. Purge your JVMs. The storage reports are written when each JVM ends. The

storage reports include a suggestion for the initial Language Environment
enclave heap storage. The entry “Total heap storage used (sugg. initial size)”
contains the suggested value and is equal to the total amount of Language
Environment enclave heap storage that was used by the JVM.

6. Examine all the sets of storage reports to check for any variations in the
amount of storage used.

Results

Select a suitable value for the initial Language Environment enclave heap storage
in DFHJVMRO. Try to select a value that is close to the storage used by most of
your JVMs. Language Environment can make additions to the heap storage, but it
cannot remove unwanted storage that is given in the initial allocation.

You can also use this technique to set the initial size and increment values for the
LIBHEAP64 and STACK64 runtime options.

Example

The following example is a storage report from Language Environment:
64bit User HEAP statistics:

Initial size: 8M
Increment size: 2M
Total heap storage used: 30573536
Suggested initial size: 30M

Chapter 7. Improving Java performance 175

|

|

|
|
|
|

|

|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|
|

|

|
|
|
|

|
|

|

|

|
|
|
|
|

Successful Get Heap requests: 24395
Successful Free Heap requests: 12416
Number of segments allocated: 7
Number of segments freed: 0

31bit User HEAP statistics:
Initial size: 524228
Increment size: 524228
Total heap storage used (sugg. initial size): 1099824
Successful Get Heap requests: 599
Successful Free Heap requests: 567
Number of segments allocated: 2
Number of segments freed: 0

Based on the values for Language Environment enclave heap storage in the
example, you can set these values for heap storage in DFHJVMRO:
HEAP64(30M,2M,KEEP,1099824,512K,KEEP,1K,1K,KEEP)

Using DFHJVMRO to modify the enclave for pooled JVMs

DFHJVMRO specifies the runtime options that are used to create the Language
Environment enclave in which a pooled JVM runs. It defines storage allocation
parameters for heap and stack and a number of other options. For CICS, the
storage settings that are supplied in DFHJVMRO are more appropriate than the
default Language Environment storage settings.

About this task

DFHJVMRO is a user-replaceable module (URM) that is called during the
CELQPIPI preinitialization phase of the Language Environment enclave for every
pooled JVM. You might want to change the supplied version of the program in the
following situations:
v Use the RPTO and RPTS options to obtain reports on the storage options set, and

the actual storage used, for JVMs.
v Set storage heap values for the enclave that are different from the supplied

settings. The Java heap is allocated separately from the enclave heap.
v At the request of the IBM service team, set other options to obtain diagnosis

information.

You must write the program in assembler language and it must not be translated
with the CICS translator. The options are specified as character strings, comprising
a 2-byte string length followed by the runtime option. The maximum length for all
Language Environment runtime options is 255 bytes, so use the abbreviated
version of each option and restrict your changes to a total of under 200 bytes.

Procedure
1. Copy the DFHJVMRO program to a new location to edit the runtime options. If

maintenance is applied to your CICS region, you might want to reflect the
changes in your program. The source for DFHJVMRO is in the
CICSTS42.CICS.SDFHSAMP library.

2. Edit the runtime options, using the abbreviation for each option. The source
code for DFHJVMRO contains comments with examples of how to set these
options. The z/OS Language Environment Programming Guide has complete
information about Language Environment runtime options.
v Keep the size of the list of options to a minimum for quick processing and

because CICS adds some options to this list.

176 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|

|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|

v Use the HEAP64 option to specify the initial heap allocation.
v The XPLINK option is forced on by CICS and the ALL31 options is therefore

forced on by Language Environment. The POSIX option defaults to ON
because of the AMODE(64) option. The ABTERMENC defaults to ABEND
and the TRAP option is set to (ON,NOSPIE) by CICS.

v The output produced by the RPTO and RPTS options is written to the CESE
transient data queue.

v Any options that produce output do so at each JVM termination. Consider
the volume of output that might be produced and directed to CESE.

3. Check that the length of the options does not exceed 200 characters. The
maximum length is 255 characters, but CICS adds some options automatically.

4. Use the DFHASMVS procedure to compile the program.

Results

When CICS receives a request to run a Java program, CICS creates the Language
Environment enclave for the pooled JVM using the runtime options that you
specified in the DFHJVMRO program. CICS checks the length of the runtime
options before passing them to Language Environment. If the length is greater than
255 bytes, CICS does not attempt to start the pooled JVM and writes error
messages to CSMT. The values that you specify are not checked by CICS before
being passed to Language Environment.

Tuning the z/OS shared library region
The shared library region is a z/OS feature that enables address spaces to share
dynamic link library (DLL) files. This feature enables your CICS regions to share
the DLLs that are needed for JVMs, rather than each region having to load them
individually. This can greatly reduce the amount of real storage used by MVS, and
the time it takes for the regions to load the files.

The storage that is reserved for the shared library region is allocated in each CICS
region when the first JVM is started in the region. The amount of storage that is
allocated is controlled by the SHRLIBRGNSIZE parameter in z/OS, which is in the
BPXPRMxx member of SYS1.PARMLIB. The minimum is 16 MB, and the z/OS
default is 64 MB. You can tune the amount of storage that is allocated for the
shared library region by investigating how much space you need, bearing in mind
that other applications besides CICS might be using the shared library region, and
adjusting the SHRLIBRGNSIZE parameter accordingly.

If you want to reduce the amount of storage that is allocated for the shared library
region, first check that you do not have wasted space in your shared library
region. Bring up your normal workload on the z/OS system, then issue the
command D OMVS,L to display the library statistics. If there is unused space in the
shared library region, you can reduce the setting for SHRLIBRGNSIZE to remove this
space. If CICS is the only user of the shared library region, you can reduce the
SHRLIBRGNSIZE to the minimum of 16 MB, because the DLLs needed for the JVM
only use around 10 MB of the region.

If you find that all the space in the shared library region is being used, but you
still want to reduce this storage allocation in your CICS regions, there are three
possible courses of action that you can consider:
1. It is possible to set the shared library region size smaller than the amount of

storage that you need for the files. When the shared library region is full, files

Chapter 7. Improving Java performance 177

|

|
|
|
|

|
|

|
|

|
|

|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

are loaded into private storage instead, and do not benefit from the sharing
facility. If you choose this course of action, you should make sure that you
bring up your more important applications first, to ensure that they are able to
make use of the shared library region. This course of action is most appropriate
if most of the space in the shared library region is being used by non-critical
applications.

2. The DLLs that are placed in the shared library region are those marked with
the extended attribute +l. You can remove this attribute from some of your files
to prevent them going into the shared library region, and so reduce the amount
of storage that you need for the shared library region. If you choose this course
of action, select files that are less frequently shared, and also try not to select
files that have the extension .so. Files with the extension .so, if they are not
placed in the shared library region, are shared by means of user shared
libraries, and this sharing facility is less efficient than using the shared library
region. This course of action is most appropriate if large files that do not have
the extension .so are using most of the space in the shared library region.

3. If you remove the extended attribute +l from all the files relating to the CICS
JVM, then your CICS regions do not use the shared library region at all, and no
storage is allocated for it within the CICS regions. If you choose this course of
action, you do not benefit from the shared library region's sharing facility. This
course of action is most appropriate if other applications on the z/OS system
require a large shared library region, and you do not want to allocate this
amount of storage in your CICS regions.

If you choose to remove the extended attribute +l from any of your files, when you
replace those files with new versions (for example, during a software upgrade),
remember to check that the new versions of the files do not have this attribute.

You can find more information about shared libraries in z/OS UNIX on the z/OS
UNIX System Services Web site at http://www.ibm.com/servers/eserver/zseries/
zos/unix/perform/sharelib.html.

178 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/unix/perform/sharelib.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/perform/sharelib.html

Chapter 8. Troubleshooting Java applications

If you have a problem with a Java application, you can use the diagnostics
provided by CICS and the JVM to determine the cause of the problem.

About this task

CICS provides some statistics, messages, and tracing to help you diagnose
problems related to Java. The diagnostic tools and interfaces provided with Java
can give you more detailed information about what is happening in the JVM than
CICS, because CICS is unaware of many of the activities in a JVM.

You can use freely available tools that perform realtime and offline analysis of a
JVM, for example JConsole and IBM Health Center. For full details, see Using
diagnostic tools in the Java Diagnostics Guide.

Procedure
1. If you are unable to start a JVM server or a pooled JVM, check that the setup of

your Java installation is correct. Use the CICS messages and any errors in the
stderr file for the JVM to determine what might be causing the problem.
a. Check that the correct version of the Java SDK is installed and that CICS

has access to it in z/OS UNIX. CICS supports the IBM 64-bit SDK for z/OS,
Java Technology Edition Version 6.0.1.

b. Check that the USSHOME system initialization parameter is set in the CICS
region. This parameter specifies the home for files on z/OS UNIX.

c. Check that the JVMPROFILEDIR system initialization parameter is set correctly
in the CICS region. This parameter specifies the location of the JVM profiles
on z/OS UNIX.

d. Check that the CICS region has read and execute access to the z/OS UNIX
directories that contain the JVM profiles.

e. Check that the CICS region has write access to the working directory of the
JVM. This directory is specified in the WORK_DIR option in the JVM profile.

f. Check that the JAVA_HOME option in the JVM profiles points to the directory
that contains the Java SDK.

g. Check that SDFJAUTH is in the STEPLIB concatenation of the CICS startup
JCL.

h. If you are using WebSphere MQ or DB2 DLL files, check that the 64-bit
version of these files is available to CICS.

i. If you have changed DFHAXRO or DFHJVMRO to configure the Language
Environment enclave, ensure that the runtime options do not exceed 200
bytes and that the options are valid. CICS does not validate the options that
you specify before passing them to Language Environment. Check SYSOUT
for any error messages from Language Environment.

2. If your setup is correct, gather diagnostic information to determine what is
happening to the application and the JVM.
a. Add PRINT_JVM_OPTIONS=YES to the JVM profile. When you specify this

option, all the options passed to the JVM at startup, including the contents
of the class paths, are printed to SYSPRINT. The information is produced
every time a JVM is started with this option in its profile.

© Copyright IBM Corp. 1999, 2012 179

|

|

|
|

|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/tools.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/tools.html

b. Check the dfhjvmout and dfhjvmerr files for information and error messages
from the JVM. These files are in the directory specified by the WORK_DIR
option in the JVM profile. The files might have different names if the
STDOUT and STDERR options were changed in the JVM profile.

3. If the application is failing or performing poorly, debug the application using a
JPDA debugger.

4. If you are getting out-of-memory errors, there might be insufficient 64-bit
storage, the application might have a memory leak, or the heap size might be
very small.
a. Use CICS statistics or a tool such as IBM Health Center to monitor the JVM.

If the application has a memory leak, the amount of live data that remains
after garbage collection gradually increases over time until the heap is
exhausted. The JVM server statistics report the size of the heap after the last
garbage collection and the maximum and peak size of the heap.

b. Run the storage reports for Language Environment to find out if there is
enough storage available. See “Language Environment enclave storage for
JVMs” on page 170.

What to do next

If you cannot fix the cause of the problem, contact IBM support. Make sure that
you provide the required information, as listed in the MustGather for reporting
Java problems.

Diagnostics for Java
Many of the usual sources of CICS diagnostic information contain information that
applies to Java applications. In addition to the information supplied by CICS, there
are a number of interfaces specific to the JVM that you can use for problem
determination.

CICS diagnostic tools for Java

CICS has statistics and monitoring data that you can collect on running Java
applications. When errors occur, transactions abend and messages are written to
the appropriate log. See CICS messages and codes overview in Messages and
Codes Vol 2 for a list of the abends and messages that apply to the JVM (SJ)
domain. Messages related to Java are in the format DFHSJxxxx.

You can also switch on tracing to produce additional diagnostic information. The
trace points for the JVM domain are listed in JVM domain trace points in Trace
Entries.

When the first JVM is started in a CICS region after initialization, CICS issues
message DFHSJ0207, showing the version of Java that is being used.

The Java SDK provides diagnostic tools and interfaces that give you more detailed
information about what is happening in the JVM. Messages and diagnostic
information from the JVM are written to the stderr log file for the JVM. If you
encounter a Java problem, always consult this file. For example, if CICS issues a
message to indicate that the JVM has abended, the stderr log file is the primary
source of diagnostic information. “Controlling the location for JVM stdout, stderr
and dump output” on page 182 tells you how to control the location of output
from the JVM, and how to redirect messages from JVM internals and output from
Java applications running in a JVM.

180 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

http://www-01.ibm.com/support/docview.wss?uid=swg21219868
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.messages.doc/cics_mc/dfhg4v2_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.messages.doc/cics_mc/dfhg4v2_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhs6/topics/dfhs6_sj.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhs6/topics/dfhs6_sj.html

When you develop Java applications for CICS, it is important to consider the
requirements for threadsafety and transaction isolation in CICS. If a Java
application works correctly on its first use, but does not behave correctly on
subsequent uses, then the problem is likely to be due to isolation issues. In this
case, use the CICS JVM Application Isolation Utility as part of your problem
determination work to help identify the cause of the problem.

OSGi diagnostic files

The OSGi framework produces diagnostic files in zFS that you can use to help
troubleshoot problems with OSGi bundles and services in a JVM server:

OSGi cache
The OSGi cache is in the $WORK_DIR/applid/jvmserver/configuration/
org.eclipse.osgi directory of the JVM server. $WORK_DIR is the working
directory of the JVM server, applid is the CICS APPLID, and jvmserver is the
name of the JVMSERVER resource. The OSGi cache contains framework
metadata and other information that is required to run the framework. The
cache is replaced when the JVM server starts up.

OSGi logs
If an error occurs in the OSGi framework, an OSGi log is created in the
$WORK_DIR/applid/jvmserver/configuration/ directory of the JVM server.
The file extension is .log. The OSGi framework continues to write to the
log file until it reaches 1000 KB in size. After this, the OSGi framework
creates another log file to write out further error messages. You can have
up to ten log files in the directory. After the tenth log file is full, the OSGi
framework overwrites the oldest log file.

JVM diagnostic tools

The CICS documentation provides information about some of the Java diagnostic
tools and interfaces:
v “Activating and managing tracing for JVM servers” on page 187 describes how

you can use the component tracing provided by the CETR transaction to trace
the life cycle of the JVM server and the tasks running inside it. JVM servers do
not use auxiliary or GTF tracing. Instead, the tracing is written to a file on zFS
that is uniquely named for each JVM server.

v “Defining and activating tracing for pooled JVMs” on page 188 describes how
you can use the internal trace facility of a pooled JVM through the interfaces
provided by CICS. The internal trace facility can provide detailed tracing of
entry, exit, and event points within the JVM. This information is output as CICS
trace.

v “Debugging a Java application” on page 190 describes how you can use a
remote debugger to step through the application code for a Java application that
is running in a JVM. CICS also provides a set of interception points (or
“plugins”) in the CICS Java middleware, which allows additional Java programs
to be inserted immediately before and after the application Java code is run, for
debugging, logging, or other purposes. For more information, see “The CICS
JVM plugin mechanism” on page 191.

Many more diagnostic tools and interfaces are available for the JVM. See the Java
Diagnostics Guide for information about further facilities that can be used for
problem determination for JVMs. The following facilities provide useful diagnostic
information:

Chapter 8. Troubleshooting Java applications 181

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html

v The internal trace facility of the JVM can be used directly, without going through
the interfaces provided by CICS. The Diagnostics Guide has information about the
system properties that you can use to control the internal trace facility and to
output JVM trace information to various destinations. You can use these system
properties to output trace from any method or class within the JVM, and to find
the value of any parameters and return types on the method call.

v If you experience memory leaks in the JVM, you can request a heap dump from
the JVM. A heap dump generates a dump of all the live objects (objects still in
use) that are in the heap of the JVM. You can also analyze memory leaks using
the IBM Health Center and Memory Analyzer tools, which are both available
with IBM Support Assistant. For more information about Java tools, see IBM
Monitoring and Diagnostics Tools for Java.

v The HPROF profiler, that is shipped with the IBM 64-bit SDK for z/OS, Java
Technology Edition, provides performance information for applications that run
in the JVM, so you can see which parts of a program are using the most
memory or processor time.

v The JVM provides interfaces for monitoring, profiling, and RAS (Reliability,
Availability, and Serviceability).

With all interfaces, options, or system properties available for the IBM JVM that are
not specific to the CICS environment, use the IBM JVM documentation as the
primary source of information.

Controlling the location for JVM stdout, stderr and dump output
Output from Java applications running in a JVM is normally written to the z/OS
UNIX files that are named by the STDOUT and STDERR options in the JVM
profile for the JVM. JAVADUMP files are written to the JVM's working directory
on z/OS UNIX, and the more detailed Java TDUMPs are written to the file named
by the JAVA_DUMP_TDUMP_PATTERN option. Most of these file names can be
customized at runtime to uniquely identify the JVMs that produced them. During
application development, you can also redirect the output from the JVM and
messages from JVM internals using a Java class.

In the standard setup for a CICS JVM, the file named by the STDOUT option in
the JVM profile is used for System.out requests, and the file named by the STDERR
option is used for System.err requests. The output files are z/OS UNIX files
located in the working directory named by the WORK_DIR option in the JVM
profile.

You can specify a fixed file name for the stdout and stderr files. However, if you
use a fixed file name, the output from all the JVMs which were created with that
JVM profile is appended to the same file, and the output from different JVMs is
interleaved with no record headers. This is not helpful for problem determination.

A better choice is to specify a variable file name for the stdout and stderr files.
When you do this, the files can be made unique to each individual JVM during the
lifetime of the CICS region. You can also include additional identifying
information.
v The unique JVM number differentiates the JVM from any other JVMs in the

CICS region. The JVM number used in CICS is the same number that is used to
identify the JVM in the z/OS UNIX environment, where it is known as the
process id (PID) for the JVM. You can specify this number as part of the file
name using the &JVM_NUM; symbol, or using the -generate option.

182 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

03
03
03
03
03

http://www.ibm.com/developerworks/java/jdk/tools/
http://www.ibm.com/developerworks/java/jdk/tools/

v You can include the CICS region applid in the file name by using the &APPLID;
symbol, or the -generate option.

v You can include a time stamp in the file name using the -generate option.

Other identifying information in file names includes the &DATE; and &TIME;
symbols.

&DATE; is replaced by the current date in the form Dyymmdd
&TIME; is replaced by the current time in the format Thhmmss.

The location for JAVADUMP files output from the JVM is the working directory on
z/OS UNIX named by the WORK_DIR option in the JVM profile. JAVADUMP files
are uniquely identified by a timestamp in their names, and you cannot customize
the names for these files.

TDUMPs output from the JVM, which contain more detailed dump output
including the JVM's address space, are written to a data set destination. The name
of the destination is specified by the JAVA_DUMP_TDUMP_PATTERN option in
the JVM profile. You can use the &APPLID;, &DATE; &JVM_NUM;, and &TIME;
symbols in this value to make the name unique to the individual JVM, as shown in
the CICS-supplied sample JVM profiles. Note that in this context, CICS might have
to modify the JVM number to conform to MVS data set naming standards.

The JVM writes information to its stderr file when it generates a JAVADUMP or a
TDUMP. The Java Diagnostics Guide has more information about the contents of
JAVADUMP and TDUMP files.

During application development, you can use the USEROUTPUTCLASS option in
a JVM profile to name a Java class that intercepts and redirects the output from the
JVM and messages from JVM internals. You can add time stamps and headers to
the output records, and identify the output from individual transactions running in
the JVM. CICS supplies sample classes which perform these tasks. Specifying this
option has a negative effect on the performance of JVMs, so it should not be used
in a production environment.

Redirecting JVM stdout and stderr output
During application development, the USEROUTPUTCLASS option can be used by
developers to separate out their own JVM stdout and stderr output in a CICS
region, and direct it to an identifiable destination of their choice. You can use a
Java class to redirect the output, and you can add time stamps and headers to the
output records. Dump output cannot be intercepted by this method.

Specifying the USEROUTPUTCLASS option has a negative effect on the performance of
JVMs. For best performance in a production environment, do not use this option.

Output written to System.out() or System.err(), either by an application or by
system code, can be redirected by the output redirection class. The z/OS UNIX
files named by the STDOUT and STDERR options in the JVM profile are still used for
some messages issued by the JVM, or if the class named by the USEROUTPUTCLASS
option is unable to write data to its intended destination. You must therefore still
specify appropriate file names for these files.

To use the USEROUTPUTCLASS option, specify USEROUTPUTCLASS=[java class] in a
JVM profile, naming the Java class of your choice. The class extends
java.io.OutputStream. The supplied sample JVM profiles contain the
commented-out option USEROUTPUTCLASS=com.ibm.cics.samples.SJMergedStream,

Chapter 8. Troubleshooting Java applications 183

03
03

03

|
|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html

which names the supplied sample class. Uncomment this option to use the
com.ibm.cics.samples.SJMergedStream class to handle output from JVMs with that
profile. CICS also supplies an alternative sample Java class,
com.ibm.cics.samples.SJTaskStream.

The source for the supplied user output classes is provided as samples, so you can
modify the classes as you want, or write your own classes based on the samples.

For pooled JVMs, the class that you are using must be present in a directory on an
appropriate class path in the JVM profile. The supplied sample class is
automatically included on an appropriate class path and you do not have to
specify it in the JVM profile. If you supply your own output redirection class, add
the directory to the standard class path, using the CLASSPATH_SUFFIX option, in the
JVM profile where you specified the USEROUTPUTCLASS option.

For JVM servers, you do not have to specify a class path. However, you must
package your output redirection class as an OSGi bundle to run the class in the
OSGi framework. For more information, see “Writing Java classes to redirect JVM
stdout and stderr output” on page 131.

The CICS-supplied sample classes
com.ibm.cics.samples.SJMergedStream and
com.ibm.cics.samples.SJTaskStream

For Java applications executing on the initial process thread (IPT), which are able
to make CICS requests, the intercepted output from the JVM can be written to a
transient data queue, and you can add time stamps, task and transaction
identifiers, and program names. This enables you to create a merged log file
containing the output from multiple JVMs. You can use this log file to correlate
JVM activity with CICS activity. The CICS-supplied sample class,
com.ibm.cics.samples.SJMergedStream, is set up to create merged log files like this.

The com.ibm.cics.samples.SJMergedStream class directs output from the JVM to the
transient data queues CSJO (for stdout output), and CSJE (for stderr output and
internal messages). These transient data queues are supplied in group DFHDCTG,
and they are indirected to CSSL, but they can be redefined if necessary.

In particular, note that the length of messages issued by the JVM can vary, and the
maximum record length for the CSSL queue (133 bytes) might not be sufficient to
contain some of the messages you receive. If this happens, the sample output
redirection class issues an error message, and the text of the message might be
affected.

If you find that you are receiving messages longer than 133 bytes from the JVM,
you should redefine CSJO and CSJE as separate transient data queues. Make them
extrapartition destinations, and increase the record length for the queue. You can
allocate the queue to a physical data set or to a system output data set. You might
find a system output data set more convenient in this case, because you do not
then need to close the queue in order to view the output. TDQUEUE resources in
the Resource Definition Guide tells you how to define transient data queues. If you
redefine CSJO and CSJE, ensure that they are installed as soon as possible during a
cold start, in the same way as for transient data queues that are defined in group
DFHDCTG.

If the transient data queues CSJO and CSJE cannot be accessed, output is written
to the z/OS UNIX files /work_dir/applid/stdout/CSJO and /work_dir/applid/

184 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/tdqueue/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/tdqueue/dfha4_overview.html

stderr/CSJE, where work_dir is the directory specified on the WORK_DIR option in
the JVM profile, and applid is the APPLID identifier associated with the CICS
region. If these files are unavailable, the output is written to the z/OS UNIX files
named by the STDOUT and STDERR options in the JVM profile.

As well as redirecting the output, the class adds a header to each record containing
the date, time, APPLID, TRANSID, task number and program name. The result is
two merged log files for JVM output and for error messages, in which the source
of the output and messages can easily be identified.

For Java applications executing on threads other than the initial process thread
(IPT), which are not able to make CICS requests, the output from the JVM cannot
be redirected using CICS facilities. The com.ibm.cics.samples.SJMergedStream class
still intercepts the output and adds a header to each record. The output is then
written to the z/OS UNIX files /work_dir/applid/stdout/CSJO and
/work_dir/applid/stderr/CSJE as described above, or if these files are unavailable,
to the z/OS UNIX files named by the STDOUT and STDERR options in the JVM
profile.

As an alternative to creating merged log files for your JVM output, you can direct
the output from a single task to z/OS UNIX files, and add time stamps and
headers, to provide output streams that are specific to a single task. The
CICS-supplied sample class, com.ibm.cics.samples.SJTaskStream is set up to do
this. The class directs the output for each task to two z/OS UNIX files, one for
stdout output and one for stderr output, that are uniquely named using a task
number (in the format YYYYMMDD.task.tasknumber). The z/OS UNIX files are stored
in the stdout directory for stdout output, or stderr directory for stderr output. The
process is the same for both Java applications executing on the IPT, and Java
applications that are executing on other threads.

When an error is encountered by the supplied sample output redirection classes,
one or more error messages are issued reporting this. If the error occurred while
processing an output message, then the error messages are directed to System.err,
and as such are eligible for redirection. However, if the error occurred while
processing an error message, then the new error messages are sent to the file
named by the STDERR option in the JVM Profile. This avoids a recursive loop in the
Java class. The classes do not return exceptions to the calling Java program.

The classes are shipped in the file com.ibm.cics.samples.jar, which is in the
directory /usr/lpp/cicsts/cicsts42/lib, where /usr/lpp/cicsts/cicsts42 is the
install directory for CICS files on z/OS UNIX. The source for the classes is also
provided as samples, so you can modify the classes as you want, or write your
own classes based on the samples. For more information, see “Writing Java classes
to redirect JVM stdout and stderr output” on page 131.

Control of Java dump options
The JAVA_DUMP_OPTS option in JVM profiles specifies the Java dump options for
the JVM.

You can use this option to set your preferred Java dump options.

Information about Java dump options can be found in the Java Diagnostics Guide.

Chapter 8. Troubleshooting Java applications 185

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html

Managing the OSGi log files of JVM servers
The OSGi framework writes errors to a set of log files in the working directory of
the JVM server. You can manage the number and size of the log files for each JVM
server if the defaults are not appropriate for your environment.

About this task

The OSGi framework writes errors to a log file in the $WORK_DIR/applid/
jvmserver/configuration directory on zFS, where $WORK_DIR is the working
directory of the JVM server, applid is the CICS APPLID, and jvmserver is the name
of the JVMSERVER resource. The OSGi framework continues to write to the log file
until it reaches 1000 KB in size. After this, the OSGi framework creates another log
file to write out further error messages. You can have up to ten log files in the
directory. After the tenth log file is full, the OSGi framework writes over the oldest
log file. Each JVM server can therefore have up to 10,000 KB of storage allocated to
log files in zFS.

You can add options to the JVM profile to change the number and size of log files
that are used by the OSGi framework to reduce or increase the number of files and
the storage usage.

Procedure
v To change the maximum number of log files, add the eclipse.log.backup.max

parameter to the JVM profile.
v To change the maximum size of each log file, add the eclipse.log.size.max

parameter to the JVM profile.

Example

The following example shows a JVM profile with the two parameters specified. In
this example, the OSGi framework can use up to five log files and each log file has
a maximum size of 500 KB.
#Parameters to control the number and size of OSGi logs
#
eclipse.log.backup.max=5
eclipse.log.size.max=500
#
#

CICS component tracing for JVMs
In addition to the tracing produced by Java, CICS provides some standard trace
points in the SJ (JVM) and AP domains for 0, 1, and 2 trace levels. These trace
points trace the actions that CICS takes in setting up and managing JVM servers
and pooled JVMs.

You can activate the SJ and AP domain trace points at levels 0, 1, and 2 using the
CETR transaction. For details of all the standard trace points in the SJ domain, see
JVM domain trace points in Trace Entries.

SJ and AP component tracing for JVM servers

The SJ component for JVM servers traces the startup and shutdown of JVM
servers. The life-cycle operations of the JVM server are traced to the internal trace
table. The life-cycle operations of the JVM launcher, JVM, and OSGi framework are

186 CICS TS for z/OS 4.2: Java Applications in CICS

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|

|
|
|

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhs6/topics/dfhs6_sj.html

traced to a file in zFS. In addition, the AP component traces the transactions that
are running in the JVM server to the same trace file. For example, OSGi framework
events are written to the trace file as follows:
v At a trace level of 0, the OSGi framework writes out errors to the trace file.
v At a trace level of 1, the OSGi framework writes out information, warning, and

errors to the trace file.
v At a trace level of 2, the OSGi framework writes out debug, information,

warning, and errors to the trace file.

If you switch AP component tracing on, the next request that comes in to the OSGi
framework is traced.

SJ component tracing for pooled JVMs

SJ domain tracing for pooled JVMs traces the CICS actions associated with starting
and managing pooled JVMs:
v At a trace level of 0, CICS traces extraordinary events and errors. Unlike CICS

exception trace, which cannot be switched off, the JVM Level 0 trace is usually
switched off.

v At a trace level of 1 and 2, you can get deeper levels of JVM tracing. The JVM
trace point levels go up to level 9 and provide in-depth component detail.
Activating internal JVM tracing at a level also enables tracing for all levels above
it. For example, if you activate level 1 tracing for a transaction, you also receive
level 0 tracing for that transaction as well.

In addition, you can use additional trace levels to control the internal trace facility
of the pooled JVM. To select a level above 2, change the JVMxxxxTRACE system
initialization parameter. For example, you can specify level 5 tracing as
JVMLEVEL5TRACE. If you want to create more complex specifications for JVM tracing
that use multiple trace point levels, or if you do not want to use trace point levels
at all in your specification, use the JVMUSERTRACE parameter to create your own
trace option string.

Activating and managing tracing for JVM servers
You can activate JVM server tracing by turning on SJ and AP component tracing.
Small amounts of trace are written to the internal trace table, but most of the trace
is written to a unique file in zFS for each JVM server. This file does not wrap so
you must manage its size in zFS.

About this task

JVM server tracing does not use auxiliary or GTF tracing. Instead, the trace is
written to a file in zFS that is uniquely named for each JVM server. The default file
name has the format applid.jvmserver.dfhjvmtrc and is created by CICS in the
working directory of the JVM when you enable the JVMSERVER resource. You can
change the name and location of the trace file in the JVM profile. If you delete or
rename the trace file when the JVM server is running, CICS does not re-create the
file and the trace is not written to another destination.

Procedure
1. Use the CETR transaction to activate tracing for the JVM server. You can use

two components to produce tracing for a JVM server:

Chapter 8. Troubleshooting Java applications 187

|
|
|

|

|
|

|
|

|
|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|

v Select the SJ component to trace the actions taken by CICS to start up and
stop the JVM server. CICS writes to the trace file in zFS during the startup of
the JVM server and to the internal trace table during the shutdown of the
JVM server.

v Select the AP component to trace the transactions that are running inside the
JVM server. If you select this option, CICS writes to the trace file in zFS.

2. Set the tracing level for the SJ and AP components:
v SJ and AP level 0 produce tracing for exceptions only, such as errors during

the initialization of the JVM server or problems in the OSGi framework.
v SJ and AP level 1 produce additional tracing information, such as warning

and information messages in the OSGi framework.
v SJ and AP level 2 produce debug tracing information, which provides much

more detailed information about the JVM server processing.

CICS writes out the tracing to the trace file in zFS.
3. View the tracing results in the applid.jvmserver.dfhjvmtrc file. Each trace

entry has a date and time stamp. You can change the name and the location of
this trace file by using the JVMTRACE profile option.

4. To manage the size of the file, you can delete old entries. If you disable the
JVMSERVER resource, you can delete the file or rename the file if you want to
retain the information separately. When you enable the JVMSERVER resource,
CICS appends trace entries to the trace file if it already exists and creates a file
in zFS if a trace file does not exist.

Defining and activating tracing for pooled JVMs
Pooled Java Virtual Machines (JVMs) produce their own trace points. You can
control the pooled JVM's internal trace facility through interfaces provided by
CICS. The trace points for the pooled JVMs in a CICS environment are output as
CICS trace.

About this task

The SJ domain uses trace levels 29–32 to control the JVM's internal trace facility.
These levels correspond to the CICS options for pooled JVM Level 0 trace, pooled
JVM Level 1 trace, pooled JVM Level 2 trace, and pooled JVM User trace.

The default JVM trace options that are provided in CICS map to the Level 0, Level
1 and Level 2 trace point levels for JVMs. The JVM User trace option can be used
to specify deeper levels of tracing or complex trace options.

The JVM trace options are defined using a "free-form" 240–character field. You can
specify some or all of the following parameters:
v A trace level.
v A component, which is a JVM subcomponent (a functional area, like a CICS

domain).
v A trace point type or group.
v A trace point ID.

You can add further parameters to the CICS specifications for JVM Level 0 trace,
JVM Level 1 trace, and JVM Level 2 trace, if you want to include or exclude
particular items at the selected trace levels. If you want to specify deeper levels of
tracing or complex trace options, use the JVM User trace option to create a trace
option string that includes the parameters of your choice. Note that trace point

188 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|

|

|
|

|
|

|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|

|
|

|

|
|

|

|

|
|
|
|
|

level specifications do not apply to trace points that are explicitly specified by their
trace point ID. This means that you can add trace point IDs that are classified at
any level to any of the JVM trace options in CICS, and they are supplied when the
option is activated, regardless of the trace point levels that are enabled by that
trace option.

The information about on tracing Java applications and the JVM in the Java
Diagnostics Guide, lists the possible trace levels, components, trace point types,
and trace point groups. These tracing parameters depend on the version of the
IBM 64-bit SDK for z/OS, Java Technology Edition that you are using, and they
can also change during the lifetime of a version, so you must check the
appropriate version of the Diagnostics Guide for the latest information.

The trace format file supplied with the IBM 64-bit SDK for z/OS, Java Technology
Edition lists each JVM trace point with its ID. For Version 6.0.1 the file is called
J9TraceFormat.dat. You can use this file to identify an individual JVM trace point.
This file is subject to change without notice; a version number is included as the
first line of the file and is updated if the file is changed. You can find this file in
the installation directory of Java.

JVM trace can produce a large amount of output, so you should normally activate
JVM trace for special transactions, rather than turning it on globally for all
transactions. When you activate trace options for a transaction, CICS passes the
trace options to the JVM at the point when the transaction begins to use the JVM.
The CICS SJ domain level 2 trace point SJ 052E shows the option string that has
been passed to the JVM. The trace options apply only for the duration of the
transaction's use of the JVM.

Procedure
v To set default JVM trace options for all JVMs in the CICS region, you can use

the CICS system initialization parameters JVMLEVEL0TRACE, JVMLEVEL1TRACE,
JVMLEVEL2TRACE, and JVMUSERTRACE. You can supply these parameters only at
CICS startup; you cannot define them in the DFHSIT macro. You can use the
CETR transaction to view and change these options. These parameters do not
activate JVM tracing, they only set the default JVM trace options.

v To define or change JVM trace options while CICS is running, use either of these
methods:
1. Use the JVM Trace Options screens in the CETR transaction. You can specify

trace option strings, and specify whether each trace level applies for standard
tracing, special tracing, or both. For more information, see CETR - trace
control in CICS Supplied Transactions.

2. Use the EXEC CICS INQUIRE JVMPOOL and EXEC CICS SET JVMPOOL commands.
The INQUIRE JVMPOOL command displays the JVM trace options you have set
for the JVM pool, and the SET JVMPOOL command changes them. JVM trace
options are not available on the CEMT equivalents for these commands.

v To activate JVM tracing, use any of these methods. Remember to activate JVM
trace only for special transactions.
1. Use the Transaction and Terminal Trace screen in the CETR transaction to

switch on special tracing (or if required, standard tracing) for the relevant
transactions. For more information, see CETR - trace control in CICS
Supplied Transactions.

2. Use the CICS system initialization parameter SPCTRSJ or STNTRSJ to activate
JVM trace at startup. SPCTRSJ applies to special tracing, and STNTRSJ applies
to standard tracing. Use the SPCTRSJ system initialization parameter rather

Chapter 8. Troubleshooting Java applications 189

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topics/com.ibm.cics.ts.systemprogramming.doc/transactions/cesn/dfha727.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topics/com.ibm.cics.ts.systemprogramming.doc/transactions/cesn/dfha727.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topics/com.ibm.cics.ts.systemprogramming.doc/transactions/cesn/dfha727.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topics/com.ibm.cics.ts.systemprogramming.doc/transactions/cesn/dfha727.html

than the STNTRSJ system initialization parameter. Specify level numbers 29–32
to activate the levels of JVM trace that you require. You can supply these
parameters only at CICS startup time; you cannot define them in the DFHSIT
macro.

3. Use the EXEC CICS SET TRACETYPE command to set trace levels 29–32 for the
SJ component. Use the SPECIAL option rather than the STANDARD option.

Results

When you activate JVM trace, the results appear as CICS trace points in the SJ
(JVM) domain. Each JVM trace point that is generated appears as an instance of a
CICS trace point:
v SJ 4D02 is the trace point used for formatted JVM trace information.
v SJ 4D01 is used for any JVM trace points that cannot be formatted by CICS. If

you see this trace point often, check that the trace format file supplied with the
IBM 64-bit SDK for z/OS, Java Technology Edition is present in the /lib/
subdirectory of your SDK installation. For Version 6.0.1 it is called
J9TraceFormat.dat. CICS requires this file to format the JVM trace points.

If the JVM trace facility fails, CICS issues the trace point SJ 4D00.

What to do next

The Java Diagnostics Guide has more detailed information about JVM trace and
about problem determination for JVMs.

In addition to the interfaces provided by CICS, you can use the internal trace
facility of the JVM directly. JVM system properties are a valid method of setting
and activating trace options for JVMs in a CICS environment. The Diagnostics Guide
has more information about the system properties that you can use to control the
internal trace facility.

Debugging a Java application
The JVM in CICS supports the Java Platform Debugger Architecture (JPDA), which
is the standard debugging mechanism provided in the Java 2 Platform. This
architecture provides a set of APIs that allow the attachment of a remote debugger
to a JVM.

About this task

You can use any tool that supports JDPA to debug a Java application running in
CICS. For example, you can use the Java Debugger (JDB) that is included with the
Java SDK on z/OS. To attach a JPDA remote debugger, you must set some options
in the JVM profile.

Do not enable debugging for JVM profiles that specify the CLASSCACHE=YES or
the DFHJVMCD profile.

Procedure
1. Add the -Xdebug option to the JVM profile to start the JVM in debug mode. If

the JVM profile is shared by more than one application, you can use a different
JVM profile for debugging.

2. Optional: Add the -Xrunjdwp option to specify the details of the connection
between the debugger and the JVM. If you set this option to debug a JVM

190 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|

|
|

|

04
04
04

04

04
04
04
04
04

04

|

|
|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/welcome.html

server, specify suspend=n. This option stops CICS from waiting on attaching the
debugger to the JVM before completing commands or processing in the region.
Debuggers can have different connection requirements and capabilities, so refer
to the documentation provided by the debugger.

3. Attach the debugger to the JVM. If an error occurs during the connection, for
example an incorrect TCP/IP host or port value, messages are written to the
JVM standard output and standard error streams.

4. Using the debugger, check the initial state of the JVM. For example, check the
identity of threads that have started and system classes that are loaded. The
JVM suspends execution; the Java application has not yet started.

5. Set a breakpoint at a suitable point in the Java application by specifying the full
Java class name and source code line number. Because the application class has
not usually loaded at this point, the debugger indicates that activation of this
breakpoint is deferred until the class is loaded. Let the JVM run through the
CICS middleware code to the application breakpoint, at which point it
suspends execution again.

6. Examine the loaded classes and variables and set further breakpoints to step
through the code as required.

7. End the debug session. You can let the application run to completion, at which
point the connection between the debugger and the CICS JVM closes. Some
debuggers support forced termination of the JVM, which results in an abend
and error messages on the CICS system console.

The CICS JVM plugin mechanism
In addition to the standard JPDA debug interfaces in the JVM, CICS provides a set
of interception points in the CICS Java middleware, which can be useful for
developers to debug applications. You can use these interception points (or
plugins) to insert additional Java programs immediately before and after the
application Java code is run.

Information about the application (for example, class name and method name) is
made available to the plugin programs. The plugin programs can also use the
JCICS API to obtain information about the application. These interception points
can be used in conjunction with the standard JPDA interfaces to provide additional
CICS-specific debug facilities. They can also be used for purposes other than
debugging, in a similar way to user exit points in CICS.

There are three Java exit points:
v A CICS EJB container plugin that provides methods that are called immediately

before and after an EJB method is invoked.
v A CICS CORBA plugin that provides methods that are called before and after a

CORBA method is invoked.
v A CICS Java Wrapper plugin that provides methods that are called immediately

before and after a Java program is invoked

You can use debug plugins with pooled JVMs. When you use plugin programs to
debug a Java application, you must specify the classes on the standard class path
for the JVM that the application uses. The standard class path is specified by the
CLASSPATH_SUFFIX option in the JVM profile. For more information, see “Classes
and class paths in JVMs” on page 8. You add classes for plugin programs in the
same way as classes for ordinary applications.

The programming interface consists of two Java interfaces.

Chapter 8. Troubleshooting Java applications 191

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|
|

|

v DebugControl (full name: com.ibm.cics.server.debug.DebugControl) defines
the method calls that can be made to a user-supplied implementation.

v Plugin (full name: com.ibm.cics.server.debug.Plugin) provides a general
purpose interface for registering the plugin implementation.

These interfaces are supplied in com.ibm.cics.server.jar, and documented in
Javadoc (see “The Java class library for CICS (JCICS)” on page 47 for more
information).

The code fragment in Figure 9 shows an example implementation of the
DebugControl interface.

The code fragment in Figure 10 on page 193 shows an example implementation of
the DebugControl and Plugin interfaces.

public interface DebugControl
{

// called before an application object method or program main is invoked
public void startDebug(java.lang.String className,java.lang.String methodName);

// called after an application object method or program main is invoked
public void stopDebug(java.lang.String className,java.lang.String methodName);

// called before an application object is deleted
public void exitDebug();

}
public interface Plugin
{

// initaliser, called when plugin is registered
public void init();

}

Figure 9. Definitions of the DebugControl and Plugin interfaces

192 CICS TS for z/OS 4.2: Java Applications in CICS

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

To activate a debug plugin implementation, set one or more of the following
system properties in the JVM properties file for the JVM:

EJB container debug plugin
If you set the following system property, the supplied plugin is registered
by Java code in the CICS EJB server layer when the EJB container is
initialized.
-Dcom.ibm.cics.server.debug.EJBPlugin=<fully qualified classname,

for example com.ibm.cics.server.debug.SampleCICSDebugPlugin>

CORBA debug plugin
If you set the following system property, the supplied plugin is registered
by Java code in the CICS ORB when the ORB is initialized.
-Dcom.ibm.cics.server.debug.CORBAPlugin=<fully qualified classname,

for example com.ibm.cics.server.debug.SampleCICSDebugPlugin>

CICS Java debug plugin
If you set the following system property, the supplied plugin is registered
by additional Java code in the JCICS wrapper when the Java program is
run.
-Dcom.ibm.cics.server.debug.WrapperPlugin=<fully qualified classname,

for example com.ibm.cics.server.debug.SampleCICSDebugPlugin>

More than one plugin interface can be triggered when a Java application is run.
For example, if plugin implementations are registered for all three interfaces, and
an enterprise bean method is run, the JCICS wrapper, CORBA, and EJB plugins are
triggered in succession.

import com.ibm.cics.server.debug.*;

public class SampleCICSDebugPlugin
implements Plugin, DebugControl

{
// Implementation of the plugin initialiser
public void init()
{

// This method is called when the CICS Java middleware loads and
// registers the plugin. It can be used to perform any initialisation
// required for the debug control implementation.

}

// Implementations of the debug control methods
public void startDebug(java.lang.String className,java.lang.String methodName)
{

// This method is called immediately before the application method is
// invoked. It can be used to start operation of a debugging tool. JCICS
// calls such as Task.getTask can be used here to obtain further
// information about the application.

}

public void stopDebug(java.lang.String className,java.lang.String methodName)
{

// This method is called immediately after the application method is
// invoked. It can be used to suspend operation of a debugging tool.

}

public void exitDebug()
{

// This method is called immediately before an application object is
// deleted. It can be used to terminate operation of a debugging tool.

}
}

Figure 10. Sample implementation of the DebugControl and Plugin interfaces

Chapter 8. Troubleshooting Java applications 193

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

194 CICS TS for z/OS 4.2: Java Applications in CICS

Chapter 9. Stable Java technologies

CORBA, IIOP, and Enterprise beans are Java technologies that are stable in CICS.
Do not use these technologies to develop new applications.

Stateless CORBA objects
From the client perspective, a stateless CORBA object invoked by means of the
CICS ORB is just a collection of methods—that is, a stateless object.

Each remote method represents a piece of logic that may make one or more CICS
API calls, including program-link calls, to existing CICS programs. CICS stateless
CORBA objects execute in a CICS JVM. At the end of the remote method, the state
of the object is no longer available.

As with all Java programs that execute in a continuous JVM in CICS, any static
state created by a CORBA object is persisted within the JVM for subsequent
retrieval in a later task. However, there is no affinity between a CORBA client and
a CICS JVM, so there is no certainty that two subsequent CORBA requests that use
the same socket will be processed in the same JVM (or even the same CICS
region). This means that the availability of previously initialised static state cannot
be relied upon.

Every remote method must therefore be passed sufficient information in its
parameter list to enable it to complete its work. No information is passed to the
server ORB by way of the object reference, except the object type, which is used to
find the implementation class. However, the methods of the object may save state
in application-managed data storage between invocations. They will need to ensure
that sufficient information is passed as parameters to subsequent methods so that
the saved state can be retrieved.

A CORBA object can make outbound IIOP calls, including calls to enterprise beans
running under the same or under a different CorbaServer. A CORBA object can
even pass a reference to itself as a parameter on a remote IIOP method. This is
known as a call back reference. However, if the target object uses the call back
reference to call the first CORBA object, this new request is processed in a new
JVM; thus it has no access to any state from the original JVM.

Method invocations may participate in Object Transaction Service (OTS)
distributed transactions. If a client calls an IIOP application in the scope of an
OTS transaction, information about the OTS transaction flows as an extra
parameter on the IIOP call. If a target stateless CORBA object implements
CosTransactions::TransactionalObject, the object is treated as transactional.

Developing stateless CORBA objects
Stateless CORBA objects are Java server applications that communicate with a
client application using the IIOP protocol. No state is maintained in object
attributes between successive client invocations of remote methods; state is
initialized at the start of each remote method call and referenced by explicit
parameters.

© Copyright IBM Corp. 1999, 2012 195

Note: By a remote method we mean a method that may be called from a remote
client. That is, a public method that is exposed as part of one of the object's
(potentially multiple) remote interfaces, or declared in the IDL for the object; rather
than an internal method that cannot be accessed from a remote client.

In the server programming model, each method is a subroutine. The parameters
passed allow you to establish temporary state from any existing databases or
applications, to perform business logic, to store data in the existing databases or
applications, to return results when the subroutine returns, or to throw an
exception. The remote methods of a stateless CORBA object—that is, those that
may be called by a remote client—may call each other locally or call non-remote
methods without the object's temporary state being lost. The temporary state is
only discarded at the end of the client-initiated remote method request, when the
response to the client's request is sent.

You can develop a stateless CORBA application using either of two different
approaches:
1. Use the typical CORBA development style, whereby an application interface is

defined in Interface Definition Language (IDL) and then the application is
coded to that interface. This approach is described in the sections that follow.

2. Use the typical Java development style, whereby a Java Remote Method
Invocation (RMI) application is developed and IDL is optionally generated later.
This approach is known as RMI-IIOP. It is described in “Developing an
RMI-IIOP stateless CORBA application” on page 204.

To develop a stateless CORBA object using the first (CORBA-style) approach, you
need to perform the following steps:
1. Use the Interface Definition Language (IDL) to define the object's interfaces and

operations.
2. Run the IDL-to-Java compiler (IDLJ) against the IDL to generate stub and

skeleton classes for the object.
3. Write a client application that makes calls to the server using the generated

stub class.
4. Write a server application (the stateless CORBA object) that extends the

generated base skeleton class.
5. Compile and package the client and server applications.
6. Define CICS resources for the server and add the server application's JAR file

to the standard class path in the JVM profile for the JVM that the application
uses.

To develop a stateless CORBA object using the second (Java-style) approach, you
need to perform the following steps:
1. Write a remote interface for the server application (the stateless CORBA object).
2. Write a client application that makes calls to the server using this remote

interface.
3. Write a server application that implements the remote interface.
4. Compile the client and server applications.
5. Run the Java RMI compiler (RMIC) against the remote interface and server

application to generate stub and tie classes for the object.
6. Package the client and server applications.

196 CICS TS for z/OS 4.2: Java Applications in CICS

7. Define CICS resources for the server and add the server application's JAR file
to the standard class path in the JVM profile for the JVM that the application
uses.

8. Optionally, create IDL for the application for use by non-Java CORBA clients.

There are benefits and drawbacks to each of the two approaches. One of the main
differences is that the CORBA approach requires the stateless CORBA object to
extend a generated base class. Given that Java supports only a single inheritance
hierarchy, this means that you cannot make your stateless CORBA object extend a
class of your choice. The RMI-IIOP approach allows you to use an inheritance
hierarchy of your choice for the stateless CORBA object, because the object only
has to implement a specific interface.

The CORBA interface and operation names are mapped to corresponding Java
implementations. You can develop server implementations that use the CICS Java
classes (JCICS) to access CICS services. See the JCICS Class Reference for details of
the JCICS classes, and “Java programming using JCICS” on page 47 for an
explanation of how to develop server applications using them.

The JCICS classes are fully documented in JAVADOC html that is generated from
the class definitions. This is available through the CICS Information Center, in the
JCICS Class Reference.

Obtaining an interoperable object reference (IOR)
To locate a server object at run-time, the client application requires a reference to it.

This reference is called an Interoperable Object Reference (IOR). An IOR is a text
string encoded in a specific way, such that a client ORB can decode the IOR to
locate the remote server object. It contains enough information to allow:
v A request to be directed to the correct server (host, port number)
v An object to be located or created (classname, instance data)

IORs may be returned by server methods, but a factory class is needed to create an
initial IOR. CICS uses the CORBA LifeCycle Services' (CosLifeCycle)
GenericFactory class for this purpose. A client application can use this
GenericFactory to create IORs for each stateless CORBA object needed at runtime.
However, the GenericFactory is itself a stateless CORBA object and thus the client
application will need its IOR before it can create the target object's IOR.

Use the PERFORM CORBASERVER PUBLISH command to publish a stringified
IOR for the GenericFactory class. The GenericFactory IOR is then created and
stored on the shelf (an z/OS UNIX directory associated with the CorbaServer), and
published to the nameserver. The GenericFactory IOR can be used by the client
application to create IORs for any stateless CORBA objects that exist for this
CorbaServer (and only for this CorbaServer). The IOR is published with the name
genfac.ior. How the client locates the GenericFactory IOR at runtime is an
application architecture decision. The IOR could be retrieved from a well known
location in a JNDI namespace, be kept locally on the client machine, or accessed by
some other process.

To publish the IOR, you can use the CEMT PERFORM CORBASERVER command, or you
can issue an EXEC CICS PERFORM CORBASERVER command from a CICS application.

The genfac.ior file is written to the CORBASERVER's shelf directory :
/shelf/applid/corbaserver/

Chapter 9. Stable Java technologies 197

where:

shelf is the SHELF directory name specified in the CORBASERVER resource
definition, defaulting to /var/cicsts/

applid is the is the APPLID identifier associated with the CICS region

corbaserver
is the CORBASERVER resource name

You can download the IOR to your client workstation (in ASCII mode) from the
shelf using FTP. Alternatively, your client can use the JNDI interface to obtain the
IOR from the nameserver.

Due to the stateless nature of the object, there is seldom any point in a client
creating more than one instance of a class. Once a client has created an instance of
an object, for example bankaccountfacilitator, the same object can be used to
access both Mr X's account and Mr Y's account; the account number is an input
parameter in every method.

Note: We have called the object in this example a bankaccountfacilitator so that it
can perform actions on any account. To have called it a bankaccount might imply
that the instance always represented Mr X's account.

Creating the Interface Definition Language (IDL)
If you are using the CORBA development style to create a stateless CORBA object
application, your must create an OMG IDL file that contains the definitions of
interfaces the server implementation will support.

Note: This section assumes that you're using the CORBA development style to
create a stateless CORBA object application (approach 1 in “Developing stateless
CORBA objects” on page 195, rather than the RMI-IIOP approach). The RMI-IIOP
approach is described in “Developing an RMI-IIOP stateless CORBA application”
on page 204.

An OMG IDL file describes the data-types, operations, and objects that the client
can use to make a request, and that a server must provide for an implementation
of a given object.

For information about writing IDL, see the OMG publication, Common Object
Broker: Architecture and Specification, obtainable from the OMG Web site at
http://www.omg.org/.

You process the IDL definitions with an IDL-to-Java compiler (sometimes called a
“parser” or “generator”). You must use a compiler provided by the server
environment to generate server-side skeletons and helper classes, and a compiler
provided by the client environment to generate client-side stub (sometimes called
“proxy”) and helper classes. Skeleton classes appropriate for use with CICS can be
created using the IDLJ compiler provided with any IBM Java 2 SDK. If you use a
non-IBM IDLJ compiler, the resulting skeleton class may or may not be suitable for
use with CICS. If in doubt, you may use the IDLJ compiler that ships with the Java
SDK supplied on z/OS that is used by CICS.

The stub or proxy classes produced by the IBM IDL compiler (IDLJ) are
appropriate for use with any IBM ORB. If you use a client-side ORB from a
different vendor, use the IDL compiler supplied with that ORB. If you use stub

198 CICS TS for z/OS 4.2: Java Applications in CICS

http://www.omg.org/

classes generated for one vendor's ORB with another vendor's ORB, the results are
undefined—the stubs might or might not work.

The proxies and skeletons provide the object-specific information needed for an
ORB to distribute a method invocation.

Figure 11 shows how the same IDL file is used to generate different classes used by
the client and the server.

Developing an IIOP server program
The server program can be developed on any platform that supports Java. For
example, an NT workstation, AIX® or the UNIX System Services environment of
z/OS.

About this task

Note: This section assumes that you're using the CORBA development style to
create a stateless CORBA object application (approach 1 in “Developing stateless
CORBA objects” on page 195, rather than the RMI-IIOP approach). The RMI-IIOP
approach is described in “Developing an RMI-IIOP stateless CORBA application”
on page 204.

The following steps are required:

Client
Application

Generated
by
IDL
Compiler

Client
Orb

Generated
by
IDL
Compiler

Server
Orb

Server
Application

File
Source
Definition
Interface

Figure 11. IDL and generated code

Chapter 9. Stable Java technologies 199

Procedure
1. Write the IDL definition of the interfaces and operations that form your

application.
2. Compile the IDL file to generate CORBA skeleton and helper classes, using the

IDL compiler idlj command which is part of the Java 2 SDK.

Note:

a. You must use an IBM-supplied IDL-to-Java compiler to do this. The
IDL-to-Java compiler supplied with the Sun version of the Java 2 SDK may
not be 100% compatible with the IBM ORB.

b. The idlj command is not supplied as part of the Java Runtime Environment
(JRE); you will need a full SDK installed on your machine before this will
work.

The IDL compiler can be invoked as follows:
idlj [options] <idl file>

Where <idl file> is the name of the file containing the IDL definitions, and
[options] is any combination of the following options, which may appear in
any order. <idl file> is required and must appear last. At least -f must be
specified.
For example:
idlj -v -fall myidl.idl

You must also specify the -oldImplBase option to ensure that a
CICS-compatible implementation is generated. If you do not use this option,
the generated implementation will use the Portable Object Adapter (POA),
which is not supported in CICS. For example:
idlj -v -fall -oldImplBase myidl.idl

-d<symbol>
The equivalent of the following line in an IDL file: #define <symbol>

-emitAll
Emit all types, including those found in #included files.

-f<side>
Define the bindings to emit. <side> can be:

client not applicable to CICS.

server does not generate sufficient classes for normal use.

all emits all bindings.

serverTIE
not supported in CICS.

allTIE not supported in CICS

If this option is not specified, then -fclient is assumed. In most cases
you should use -fall.

-i<include path>
Add another directory. By default, the current directory is scanned for
included files.

-keep If a file to be generated already exists, do not overwrite it. By default it
is overwritten.

200 CICS TS for z/OS 4.2: Java Applications in CICS

-oldImplBase
This option is required. If you omit this option, IDLJ generates code
which uses the Portable Object Adapter (POA). The POA is not
supported under CICS.

-pkgPrefix <t> <pkg>
Make sure that wherever the type or module <t> is encountered, it
resides within <pkg> in all generated files. <t> is a fully qualified
Java-style name.

-v Verbose mode.
3. Write your server implementation in Java code. The idl compiler will generate

an abstract class called_interfacenameImplBase. Your program must extend this.
If objects of this type are to be created by the Generic Factory, your
implementation class must be called _interfacenameImpl. If you do not use this
naming convention, the GenericFactory will not be able to create references to
your CORBA object. For example:
public class _BankAccountImpl extends _BankAccountImplBase

Your implementation class may make use of the JCICS API to interact with
traditional CICS services.

4. Compile your program and the output from step 2, using the javac compiler or
an equivalent, such as VisualAge® for Java. Ensure that the location of the
output files is added to the end of the CICS standard class path, by using the
CLASSPATH_SUFFIX option in the JVM profile.

Example

This example describes a bank account whose contents can be queried and
updated. The example has a parameter that identifies the instance of the
BankAccount, to satisfy the 'stateless' restriction. The following IDL defines the
interface and operations:

module bank {

// this interface is used to manage the bank accounts
interface BankAccount {

exception ACCOUNT_ERROR { long errcode; string message;};

// query methods
long querybalance(in long acnum) raises (ACCOUNT_ERROR);
string queryname(in long acnum) raises (ACCOUNT_ERROR);
string queryaddress(in long acnum) raises (ACCOUNT_ERROR);

// setter methods
void setbalance(in long acnum, in long balance) raises (ACCOUNT_ERROR);
void setaddress(in long acnum, in string address) raises (ACCOUNT_ERROR);

};
};

The server implementation of the above IDL must be called _BankAccountImpl if
objects of this type are to be created by the GenericFactory and must extend
_BankAccountImplBase, which is generated by the IDL compiler. It is part of the

Java package bank. You can see full details of this implementation in the stateless
CORBA BankAccount sample application distributed in :

/usr/lpp/cicsts/<username>/samples/dfjcorb

where username is a name you can choose during CICS installation, defaulting to
cicsts42.

Chapter 9. Stable Java technologies 201

To use this example, you need the following resources:
v A TCPIPSERVICE resource defined and installed to listen on a given port under

CICS. This TCPIPSERVICE must be:
– Defined to use the IIOP protocol.
– In “open” state in order to receive requests.

v A CORBASERVER resource defined to process IIOP requests on the
TCPIPSERVICE.

You may optionally choose to add a REQUESTMODEL definition, in order to force
the request to be processed under a given TRANSID.

Developing the IIOP client program
you write a client application that makes calls to the server using the generated
stub class.

About this task

Note: This section assumes that you're using the CORBA development style to
create a stateless CORBA object application (approach 1 in “Developing stateless
CORBA objects” on page 195, rather than the RMI-IIOP approach). The RMI-IIOP
approach is described in “Developing an RMI-IIOP stateless CORBA application”
on page 204.

Procedure
1. Process the IDL file with an IDL- to-Java compiler suitable for your client

system (using the same IDL file that you used to build the server application).
2. Obtain a stringified object reference to the GenericFactory by downloading

genfac.ior (in ASCII mode) from the CorbaServer's shelf directory, where it
was created when the CORBASERVER resource was published. Alternatively,
you can use JNDI, as a Generic Factory IOR for the CorbaServer is published to
the namespace if you issue an EXEC CICS PERFORM CORBASERVER PUBLISH, or a
CEMT PERFORM CORBASERVER PUBLISH command. If you plan to use JNDI, then
you must define a nameserver, see “Defining name servers” on page 363. The
IOR is bound into the context identified by the JNDI prefix in the
CORBASERVER resource definition, with the name GenericFactory. For
example, the pathname would be:
/jndiprefix/GenericFactory

See the CICS Resource Definition Guide and the CICS Supplied Transactions
manual.

3. Write your client program, containing calls to the server. To obtain an initial
object reference, use the GenericFactory as shown in “Client example.”

4. Compile the client program, and the output from step1, with javac or an
equivalent compiler.

Results

Client example
The following example shows how the GenericFactory service is used by a client
program to create an account object. The client must first create a proxy for the
GenericFactory.

Java bindings for part of the CORBA CosLifeCycle and CosNaming modules are
required. If they are not provided by the client ORB, you can build them using the

202 CICS TS for z/OS 4.2: Java Applications in CICS

client ORB's IDL-to-Java compiler, from the CORBA services IDL available from the
OMG website (www.omg.org). Alternatively, you can use the precompiled Java
version of the IDL provided in
/usr/lpp/cicsts/<cicsts42>/lib/omgcos.jar

Where cicsts42 is your chosen value for the USSDIR installation parameter that you
defined when you installed CICSTS.

The JAR file should be downloaded in binary mode and made available on the
client's CLASSPATH environment entry.

The following example, and the supplied samples, require bindings that can be
imported as org.omg.CosNaming and org.omg.CosLifeCycle.

In order to create an account object, the client must first create a proxy for the
GenericFactory. The following example assumes that a stringified reference to the
GenericFactory exists in a file available to a client, and is returned by the
getFactoryIOR() method.
import java.io.*;
import org.omg.CORBA.*;
import org.omg.CosLifeCycle.*;
import org.omg.CosNaming.*;
public class bankLineModeClient{

//The following method reads the ior from a file and returns it in the string
String factoryIOR = getFactoryIOR();
// Turn the stringified reference into the proxy
org.omg.CORBA.Object genFacRef = orb.string_to_object(factoryIOR);
// narrow to correct interface
GenericFactory fact = GenericFactoryHelper.narrow(genFacRef);

Now that the client has a generic factory, it can use it to create an account object.
// The Generic factory needs a key, which is a sequence of namecomponents
NameComponent nc = new NameComponent("bank::BankAccount","object interface");
NameComponent key[] = {nc};
//The Generic factory also requires criteria (which it ignores)
NVP mycriteria[] = {};

//Now create the object
org.omg.CORBA.Object objRef = fact.create_object(key, mycriteria);
// and narrow to correct interface
BankAccount acctRef = BankAccountHelper.narrow(objRef);

Now the client has an object, it can use it:
int ac1 = 1234; // Tony’s account
int ac2 = 3456; // Lou’s account
String name;
String address;
int balance;

try {
name=acctRef.queryname(ac1);
System.out.println("a/c num:"+ac1+" name:"+name);

}
catch (exception e) {

System.err.println("query error");
}

Chapter 9. Stable Java technologies 203

Note: NVP (Name Value Pair) is a datatype defined in the CORBA IDL for the
Generic Factory interface.

Developing an RMI-IIOP stateless CORBA application
You can use the RMI-IIOP development style to create a stateless CORBA object
application.

This is the development style defined in approach 2 in “Developing stateless
CORBA objects” on page 195, rather than the CORBA development approach
described in previous sections.

The RMI-IIOP approach involves developing a standard Java Remote Method
Invocation (RMI) application and deploying it to use IIOP as its transport protocol.
This is the approach taken by enterprise beans.

Note: This section specifically documents how to develop a stateless CORBA
application using RMI-IIOP. Enterprise beans are deployed using other tools. For
information about deploying enterprise beans, see “Deploying enterprise beans” on
page 295.

When using RMI-IIOP there is no need to define an interface using IDL—though, if
required, the IDL can optionally be generated later. Instead, we start by defining at
least one remote interface. In this context, a “remote interface” means any Java
interface that extends java.rmi.Remote. This is not the same thing as an enterprise
bean's “Remote Interface”. Using the terminology just defined, both an enterprise
bean's Remote Interface and its Home Interface would qualify as “remote
interfaces”, because they both ultimately extend java.rmi.Remote.

This remote interface should be coded to follow the rules of Java RMI. An example
remote interface is shown below:
package hello;
public interface HelloWorldRMI extends java.rmi.Remote
{

public String sayHello(String msgFromClient) throws java.rmi.RemoteException;
}

The above interface defines a single method called sayHello that takes a String as a
parameter and returns a String. All the methods on the interface must be defined
to throw java.rmi.RemoteException.

Next, you should provide a server-side implementation of this interface. An
example is shown below:
package hello;
public class _HelloWorldRMIImpl implements HelloWorldRMI
{
public String sayHello(String msgFromClient)
{ return "Hello: You said: " + msgFromClient;}

}

The implementation class implements the interface previously created. The naming
convention used for the implementation class is _<interface name>Impl. This
naming convention is required if the server object is to be located using the
CORBA CosLifeCycle Generic Factory approach. If you do not use this naming
convention, the Generic Factory will not be able to construct instances of your
stateless CORBA object.

204 CICS TS for z/OS 4.2: Java Applications in CICS

One of the advantages of RMI-IIOP over the more traditional IDL-based
development process is that you are not forced to extend a base class. This means
that you can choose to use your own inheritance hierarchy if you want. You may
also implement multiple remote interfaces with a single server object.

You should compile both of the above classes using the javac compiler or
equivalent.

The next thing to do is to produce the server-side Tie file for this stateless CORBA
object. This is done using the RMI compiler (RMIC). You must use an RMI
compiler shipped with an IBM Java 2 SDK. If you use the version of RMIC
supplied with the Java 2 SDK, the generated Tie file is not guaranteed to work
with the CICS ORB.

The command to use is as follows:
rmic -iiop hello._HelloWorldRMIImpl

Note that RMIC is being run against the server-side implementation class.

Next we need the client-side stub class. This is also produced using the RMI
compiler. Ensure that you use an appropriate RMI compiler for your client ORB.
The command to use is as follows:
rmic -iiop hello.HelloWorldRMI

Note that RMIC is being run against the remote interface class.

Once this is complete, you should have the following classes available:
hello\HelloWorldRMI.class - the remote interface
hello_HelloWorldRMIImpl.class - the stateless CORBA object
hello__HelloWorldRMIImpl_Tie.class - the RMI-IIOP server side Tie file
hello_HelloWorldRMI_Stub.class - the RMI-IIOP client side Stub file

The next thing to do is to write the client application. The client application is very
similar to the client application developed using the IDL-based approach to
CORBA development (described in “Developing the IIOP client program” on page
202). As before, we still need to find a reference to the stateless CORBA object
using the CORBA CosLifeCycle Generic Factory. Here is part of an example
RMI-IIOP client application:
ORB orb = ORB.init((String[]) null, (java.util.Properties) null);

// The following method reads the generic factory IOR from a file and returns
// it in the string
String factoryIOR = getFactoryIOR();

// Turn the stringified reference into the proxy
org.omg.CORBA.Object genFacRef = orb.string_to_object(factoryIOR);

// narrow to correct interface
GenericFactory fact = GenericFactoryHelper.narrow(genFacRef);

// The Generic factory needs a key, which is a sequence of namecomponents
NameComponent nc = new NameComponent("hello::HelloWorldRMI","object interface");

//Now create the object
org.omg.CORBA.Object objRef=fact.create_object(new NameComponent[]{nc},

new NVP[] {});

// and narrow to correct interface using the RMI-IIOP narrow operation
HelloWorldRMI remote = (HelloWorldRMI) javax.rmi.PortableRemoteObject.narrow

Chapter 9. Stable Java technologies 205

(objRef, HelloWorldRMI.class);

// Invoke the remote method
System.out.println("Received from Server: "+remote.sayHello("Hi!")+"\n");}

As with the IDL-based client application, it will be necessary to have the
omgcos.jar file from the CICS lib z/OS UNIX directory on your workstation and
client machines in order to find the CosLifeCycle classes.

All that remains is to package the server- and client-side applications into JAR files
and to add the server-side JAR file to the standard class path.

If you want to generate IDL, for the RMI-IIOP remote interface, that would be
suitable for use with a non-Java-based CORBA client application, use the following
command:
rmic -idl hello.HelloWorldRMI

Stand-alone CICS CORBA client applications
CICS CORBA support is primarily focused on supporting IIOP server-side
objects—that is, enterprise beans and stateless CORBA objects. These server-side
components run in a CICS EJB/CORBA server, in a CorbaServer execution
environment represented by a CORBASERVER resource. Because they run in a
CICS EJB/CORBA server, they have access to a rich ORB feature set.

In this section, the term “stand-alone CICS CORBA client applications” refers to CICS
applications that:
1. Are CORBA client applications
2. Are defined to CICS as standard Java applications, by means of a PROGRAM

definition on which JVM=YES specified
3. Create an ORB instance using the new operator
4. Do not run in a CICS CorbaServer execution environment

Stand-alone CICS CORBA client applications do not run in a CICS EJB/CORBA
server, and thus do not have access to the same quality of CORBA support as
server-side components. The ORB available to these client applications is a
client-only ORB sometimes referred to as the “JCICS ORB”. This ORB cannot listen
on a socket for inbound connections; therefore any IORs published by this ORB
cannot be supported. Similarly, a CICS CORBA client application cannot initiate (or
participate in) a distributed OTS transaction. A CICS CORBA client application also
cannot participate in asserted identity authentication.

These limitations do not extend to the CICS server ORB environment. Any server
object in a CICS EJB/CORBA server can make outbound client IIOP calls that
participate in an OTS transaction, providing that the ORB instance used to perform
these outbound calls is the current CICS EJB/CORBA server ORB. If a new ORB
instance is created by the server object using the new operator, CICS cannot
automatically propagate the existing transaction context using this new ORB. An
IIOP server object can programmatically get a handle to the current server ORB
instance by using the following static method call:
com.ibm.cics.iiop.ORBFactory.getORB()

CORBA interoperability
The CICS implementation of the CORBA architecture provides a link between
applications based on CORBA ORBs and CICS services, including enterprise beans.

206 CICS TS for z/OS 4.2: Java Applications in CICS

An enterprise bean hosted by CICS can be made to inter-operate with objects on
other CICS regions (including back-level CICS regions from CICS TS 1.3 onwards),
WebSphere Application Server, and third-party J2EE application servers and ORBs.
Enterprise beans are available to pure CORBA clients, and can act as clients to
remote CORBA objects (potentially implemented in a different programming
language and hosted on a different platform).

The CICS ORB can be used to host only client and server applications written in
Java. However, it can be used to interoperate with remote ORBs which serve
clients and servers written in other programming languages.

Using non-Java CORBA clients
Different programming languages require different language bindings to an ORB.

This requires a level of interoperability between the ORBs which should be taken
into consideration. The CORBA architecture defines language bindings for a
number of languages, including C++, Java, COBOL, Ada, PL/I, Smalltalk, and
others. Note that language bindings for some programming languages might not
support all IDL and IIOP features. In particular, valuetypes have been defined only
for the C++ and Java language bindings. CORBA access to enterprise beans
requires valuetypes, so today only C++ and Java applications can access most
enterprise beans through a CORBA interface.

Writing a CORBA client to an enterprise bean
For client programming languages other than Java, such as C++, the CORBA
architecture is often the only viable option for accessing enterprise beans.

About this task

For client programming languages other than Java, such as C++, the CORBA
architecture is often the only viable option for accessing enterprise beans.
Enterprise beans are available to CORBA clients through the CORBA programming
model as follows:
v Write the enterprise bean.
v Generate IDL for the enterprise bean, using the RMI compiler with the -IDL

option. (This is the reverse of the typical CORBA model, in which IDL is used to
generate the object.)
If you use only CORBA primitives as data and return types, it will be easier to
access the bean from non-Java clients.

v Using an IDL compiler suitable for the client environment, compile the IDL to
generate client-side stubs.

v Write the client, using the generated stub.
v Make an IOR for the enterprise bean available to the client application. The IOR

contains sufficient information for any CORBA ORB to locate the enterprise
bean.

Even if a session bean has been coded to use only CORBA primitives as parameter
and return types, exception types are still returned as CORBA valuetypes. If your
CORBA client ORB does not support valuetypes, you will be forced to work with
unknown exceptions.

Note: It is not recommended to use a Java CORBA client to an enterprise bean.
Use RMI-IIOP instead.

Chapter 9. Stable Java technologies 207

Enterprise beans as CORBA clients
Enterprise beans are Java objects operating in a sophisticated runtime environment
which includes an ORB.

If the enterprise bean is to make outbound IIOP calls to remote CORBA objects
(without using RMI-IIOP) it is strongly recommended that the application make
use of the existing ORB instance. If the enterprise bean creates a new ORB instance
using the new operator, CICS cannot propagate the existing transaction and
security context under which the bean is running to method requests on this new
ORB.

If you need to get a handle to the current ORB from within an enterprise bean you
can use the following static method call:
com.ibm.cics.iiop.ORBFactory.getORB()

Code sets
CICS can accept GIOP char/wchar and string/wstring datatypes only if they are
encoded using one of these code pages.
v UCS2—the standard Java codeset (Unicode)
v UTF-8

Using the IIOP samples
These sample applications demonstrate the use of IIOP applications (stateless
CORBA objects) and the CICS Java programming support (JCICS).

HelloWorld sample

This sample provides a simple test of the IIOP components. The client
program:
v reads the file genfac.ior to obtain a reference to the generic factory
v uses the generic factory to create a HelloWorld object
v invokes method sayHello to send a greeting to the server (Hello from

HelloWorldClient)and receive a greeting from it in reply (Hello from CICS
TS)

The design of the application is described in comments in the code.

BankAccount sample

The sample consists of the following main parts:
1. A traditional CICS application that uses BMS and the EXEC CICS API,

written in C. This application consists of two transactions:

BNKI Initializes a file with information about a number of bank accounts.
These accounts have numbers in the range 23 through 30.

BNKQ
Queries the information in the accounts. There is also a CICS
program, DFH$IICC, which performs a credit check for an account.

2. An implementation of an IDL interface that defines a bank account object.
The implementation is written in Java and runs as a stateless CORBA
object. This implementation uses the bank account file to access bank
account information and the DFH$IICC credit check program to obtain
credit ratings.

3. A CORBA client application written in Java that displays information about
bank account objects.

The design of the application is described in comments in the code.

208 CICS TS for z/OS 4.2: Java Applications in CICS

Setting up the IIOP sample environment
You can use the provided samples to set up an IIOP environment in CICS.

Before you begin

To configure CICS as an IIOP server or client, you must have a CICS region that
has permission to access z/OS UNIX and the IBM 64-bit SDK for z/OS, Java
Technology Edition. Language Environment must be configured and active.

Procedure
1. Define the JCL parameter REGION in the startup job stream for a CICS region

that supports IIOP. Set the value at a minimum of 1000M.
2. Define the following system initialization parameters in the startup job for a

CICS region that supports IIOP:
EDSALIM=500M
MAXJVMTCBS=number
TCPIP=YES

Set a minimum value of 500M for the EDSALIM parameter. To work out an
appropriate setting for the MAXJVMTCBS parameter, see “Managing your JVM
pool for performance” on page 161.

3. Add DD statements to the startup job stream for a CICS region that supports
IIOP to create these files:

DFHEJDIR
A recoverable shared file containing the request streams directory. This
can be a VSAM file or a coupling facility data table. CICS supplies
sample JCL to help you create this file, in the DFHDEFDS member of
the SDFHINST library.

DFHEJOS
A non-recoverable shared file used by CICS when CORBASERVER
resources are installed. This file is also used to store stateful session
beans that have been passivated. DFHEJOS can be a VSAM file or a
coupling facility data table. CICS supplies sample JCL to help you
create this file, in the DFHDEFDS member of the SDFHINST library.

Sample local VSAM data set definitions for these files are provided in the
CICS-supplied RDO group DFHEJVS. These data sets must be authorized with
RACF® for UPDATE access. See Authorizing access to CICS data sets, in the
CICS RACF Security Guide.

4. Create a shelf directory on z/OS UNIX and give the CICS region user ID full
access to it. See Giving CICS regions access to z/OS UNIX System Services for
guidance.

5. Choose a suitable JVM profile and ensure that CICS is able to locate the
profile, as described in “Setting up pooled JVMs” on page 88.

6. Ensure that the value of JAVA_HOME is correctly defined in the JVM profile
for the server side application. JAVA_HOME defines the installation directory
for the IBM 64-bit SDK for z/OS, Java Technology Edition. The default for
Version 6.0.1 of the SDK is /usr/lpp/java/J6.0.1_64/.

7. Ensure that the following files are added to a suitable class path in the JVM
profile:
v

Chapter 9. Stable Java technologies 209

|
|
|
|

The sample Java source and makefiles that are stored in the z/OS UNIX
System Services file system during CICS installation, in the following
directories:
– $CICS_HOME/samples/dfjcorb/HelloWorld

– $CICS_HOME/samples/dfjcorb/BankAccount

v The location where you have compiled the classes for the server side
applications.

For guidance, see “Classes and class paths in JVMs” on page 8.
8. Ensure that the CICS-supplied resource definition groups DFHIIOP and

DFH$IIOP are installed. The supplied group DFH$IIOP contains the following
definitions:
v Resource definitions required for the TCP/IP listener region (which might

also be the same region that runs the sample programs):
– SSL TCPIPSERVICE definition
– NOSSL TCPIPSERVICE definition

v Resource definitions required for the HelloWorld sample:
– IIHE TRANSACTION definition
– DFJIIRH REQUESTMODEL definition
– IIOP CORBASERVER definition

v Resource definitions required for the BankAccount sample:
– DFH$IIBI PROGRAM definition
– DFH$IIBQ PROGRAM definition
– DFH$IICC PROGRAM definition
– BANKINQ MAPSET definition
– BNKI TRANSACTION definition
– BNKQ TRANSACTION definition
– BNKS TRANSACTION definition
– BANKACCT FILE definition
– DFJIIRB REQUESTMODEL definition
– IIOP CORBASERVER definition

The TCPIPSERVICE and IIOP CORBASERVER definitions refer to the default
port numbers, 683 and 684. You might need to change these to port numbers
that are available to you. Also, the IIOP definition refers to CICSHOST as the
host of the CorbaServer. You must change this to your own host name. See
TCPIPSERVICE resources and CORBASERVER resources.

9. Translate and compile the following CICS C language programs and map set
and include them in a library in the CICS DFHRPL concatenation. They are
stored in SDFHSAMP during CICS installation. The order of compilation is
important. Both DFH$IIBI and DFH$IICC can be compiled independently, but
the BMS map set DFH$IIMA must be compiled before compiling DFH$IIBQ.
For guidance on translating, compiling, and linking CICS application
programs, see the CICS Application Programming Guide.
The file DFH$IIMA contains one map set BANKINQ with two maps. Compile
and link the map set BANKINQ.
See Installing map sets and partition sets, in the CICS Application Programming
Guide, for guidance on compiling and linking BMS maps.

DFH$IIBI
C program that initializes the BANKACCT file. Run by the BNKI
transaction.

DFH$IIBQ
C program that queries the accounts held in BANKACCT.

210 CICS TS for z/OS 4.2: Java Applications in CICS

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/tcpipservice/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/corbaserver/dfha4_overview.html

DFH$IICC
C program that performs a credit check. This is called by DFH$IIBQ.

DFH$IIMA
BMS map set BANKINQ.

Note: In the names of sample programs and files described in this book, the
dollar symbol ($) is used as a national currency symbol and is assumed to be
assigned the EBCDIC code point X'5B'. In some countries a different currency
symbol, for example the pound symbol (£), or the yen symbol (¥), is assigned
the same EBCDIC code point. In these countries, the appropriate currency
symbol should be used instead of the dollar symbol.

10. To compile the IIOP HelloWorld client you require the CosLifeCycle and
CosNaming runtime classes. If your client ORB environment does not provide
these services ready-built you can use the omgcos.jar file shipped in the
$CICS_HOME/lib directory. Alternatively, you might choose to build these
classes from the original OMG supplied IDL. In this case a copy of the
relevant IDL files is available in $CICS_HOME/samples/dfjcorb. The process of
turning pure IDL into executable code is ORB dependent, but if you are using
an ORB supplied with a JVM then it is likely that the following commands
will work:

idlj -pkgprefix CosNaming org.omg -pkgprefix CosLifeCycle org.omg -fall CosLifeCycle.idl
idlj -pkgprefix CosNaming org.omg -pkgprefix CosLifeCycle org.omg -fall CosNaming.idl
javac org\omg\CosLifeCycle*.java org\omg\CosNaming\NamingContextPackage*.java

org\omg\CosNaming*.java

You must ensure that these classes are available on your classpath
environment variable when you attempt to build any CICS stateless CORBA
client application.

11. Obtain a genfac.ior file containing an object reference to your server's generic
factory, and place it in the current directory. The genfac.ior file is created
when you issue a PERFORM CORBASERVER PUBLISH command for the installed
sample IIOP CORBASERVER resource. It is written to the shelf directory of
the CORBASERVER:
/var/cicsts/applid/IIOP

where applid is the APPLID identifier associated with the CICS region.
To publish the CORBASERVER definition, you can use a CEMT PERFORM
CORBASERVER command or an EXEC CICS PERFORM CORBASERVER command
issued from a CICS application.
You can download the IOR to your client workstation (in ASCII mode) from
the shelf using FTP.

Results

You have used the samples to set up an IIOP environment.

Running the IIOP HelloWorld sample
This section tells you what you need to do to run the HelloWorld sample
application.

It covers the following topics:
v “Building the server side HelloWorld application” on page 212
v “Building the client side HelloWorld application” on page 212
v “Running the HelloWorld sample application” on page 212

Chapter 9. Stable Java technologies 211

Building the server side HelloWorld application:

The makefile in $CICS_HOME/samples/dfjcorb/HelloWorld/server builds everything
required for the server side application.

$CICS_HOME/samples/dfjcorb/HelloWorld/server should be added to the standard
class path by using the CLASSPATH_SUFFIX option in the JVM profile,
DFHJVMCD.

To build the programs, enter the command make from $CICS_HOME/samples/
dfjcorb/HelloWorld/server. This command makes the HelloWorld object.

Building the client side HelloWorld application:

$CICS_HOME/samples/dfjcorb/HelloWorld/client contains the CORBA client part of
the application. The source of the Java client application is called
HelloWorldClient.java. This application should run with any CORBA-compliant
ORB.

About this task

The following steps are required to build the Java client application:
1. Download the following files to the client workstation (in ASCII mode):

v .../dfjcorb/HelloWorld/HelloWorld.idl

v .../dfjcorb/HelloWorld/client/HelloWorldClient.java

2. Compile the provided IDL with the IDL-to-Java compiler of the client ORB to
produce the Java client side stubs required by the sample application. These
stubs will be created in a subdirectory called hello. Move the client application
HelloWorldClient.java into this subdirectory.

3. Compile the client application, ensuring that the Java classes produced in the
previous step are available through the CLASSPATH environment variable. To
compile the client application from the current directory, enter:
javac hello\HelloWorldClient.java

You also need the CosLifeCycle and CosNaming runtime classes. If your client
ORB environment does not provide these services ready built, you can use the
omgcos.jar file shipped in the $CICS_HOME/lib directory on z/OS UNIX.
Alternatively you may choose to build these classes from the original
OMG-supplied IDL. In this case a copy of the relevant IDL files is available in
$CICS.HOME/samples/dfjcorb/.
The process of turning pure IDL into executable code is ORB-dependent, but if
you are using an ORB supplied with a JVM then it is likely that the following
commands will work:

idlj -pkgprefix CosNaming org.omg -pkgprefix CosLifeCycle org.omg -fall CosLifeCycle.idl
idlj -pkgprefix CosNaming org.omg -pkgprefix CosLifeCycle org.omg -fall CosNaming.idl
javac org\omg\CosLifeCycle*.java

org\omg\CosNaming\NamingContextPackage*.java
org\omg\CosNaming*.java

These classes must be in your classpath when you attempt to build any CICS
stateless CORBA client application.

Running the HelloWorld sample application:

You must use this command to run the client application.

212 CICS TS for z/OS 4.2: Java Applications in CICS

About this task
java hello.HelloWorldClient

Running the IIOP BankAccount sample
This section tells you what you need to do to run the BankAccount sample
application.

It covers the following topics:
v “Building the server side BankAccount application”
v “Building the client side BankAccount application”
v “Running the BankAccount sample application” on page 214

Creating the VSAM file:

You must define the VSAM file to hold the bank account data using these
IDCAMS parameters.
DEFINE CLUSTER (-

NAME (CICS610.BANKACCT) -
CYLINDERS(01) -
REUSE -
KEYS(4 0) -
RECORDSIZE(168 168))

Building the server side BankAccount application:

The makefile in $CICS_HOME/samples/dfjcorb/BankAccount/server builds
everything required for the CORBA part of the server side application.

Add $CICS_HOME/samples/dfjcorb/BankAccount/server to the standard class path
by using the CLASSPATH_SUFFIX option in the JVM profile, DFHJVMCD.

To build the Java server program, enter the command make from
$CICS_HOME/samples/dfjcorb/BankAccount/server.

Building the client side BankAccount application:

$CICS_HOME/samples/dfjcorb/BankAccount/javaclient contains the CORBA client
part of the application. The source of the Java client application is called
bankLineModeClient.java. This application can run with any CORBA-compliant
ORB.

About this task

The following steps are required to build the Java client application:
1. Download the following files to the client workstation (in ascii mode):

v .../dfjcorb/BankAccount/BankAccount.idl

v .../dfjcorb/BankAccount/javaclient/bankLineModeClient.java

2. Compile the provided IDL with the client ORB's IDL-to-Java compiler to
produce the Java client side stubs required by the sample application. After
compiling the IDL to create the subdirectory, bank, move the Java file into this
subdirectory. Compile the program from the current directory using the
following command:
javac bank\bankLineModeClient.java

3. Ensure that the Java classes produced in the previous step are available through
the CLASSPATH environment variable.

Chapter 9. Stable Java technologies 213

You also require the CosLifeCycle and CosNaming runtime classes. If your
client ORB environment does not provide these services ready built, you can
obtain them in the same way as in “Building the client side HelloWorld
application” on page 212.

Running the BankAccount sample application:

You must perform these steps to run the sample application:

About this task

Procedure

1. Run the BNKI CICS transaction to load data into the account file.
2. Run the client application using:

java bank.bankLineModeClient

Using enterprise beans
This section tells you what you need to know to develop and use enterprise beans
in CICS.
v “What are enterprise beans?”
v “Setting up an EJB server” on page 238
v “Using the EJB IVP” on page 255
v “Running the sample EJB applications” on page 259
v “Writing enterprise beans” on page 283
v “Deploying enterprise beans” on page 295
v “Updating enterprise beans in a production region” on page 301
v “The CCI Connector for CICS TS” on page 311
v “Dealing with CICS enterprise bean problems” on page 327
v “Managing security for enterprise beans” on page 334
v “CICSPlex SM with enterprise beans” on page 345

What are enterprise beans?
CICS supports the Enterprise JavaBeans (EJB) architecture.

If you need a full description of the EJB architecture, see http://www.oracle.com/
technetwork/java/index.html.

The section covers the following topics:
v “Enterprise beans” on page 215
v “JavaBeans and Enterprise JavaBeans” on page 215
v “The EJB server—overview” on page 217
v “The EJB container—overview” on page 217
v “Enterprise beans—the home and component interfaces” on page 218
v “Enterprise beans—the deployment descriptor” on page 219
v “Types of enterprise bean” on page 220
v “Enterprise beans—managing transactions” on page 222
v “Enterprise beans—security overview” on page 224
v “Enterprise beans—user tasks” on page 225
v “Overview of deploying enterprise beans” on page 226
v “Overview of configuring CICS as an EJB server” on page 229
v “Enterprise beans—what can a client do with a bean?” on page 236

214 CICS TS for z/OS 4.2: Java Applications in CICS

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

v “Enterprise beans—what can a bean do?” on page 237

Enterprise beans
The Enterprise JavaBeans Specification, Version 1.1 defines a model for the
development of reusable Java server components known as enterprise beans. These
components can be used in any application server that provides the services and
interfaces defined by the specification.

You can configure CICS as an EJB server. CICS provides a runtime environment
where requests for EJB services are mapped to existing or enhanced CICS services.

You can write enterprise beans that give Java clients access to your past investment
in CICS applications and data. For example, you can write enterprise beans that:
v Use the JCICS classes to access CICS resources. Enterprise beans that use the

JCICS classes are not portable to a non-CICS environment.
v Use JCICS to link to existing CICS programs written in procedural languages

such as COBOL.

Figure 12 shows, in simplified form, a CICS EJB application server interacting with
its environment. It shows enterprise beans that have been developed on a
workstation being installed into the EJB server by a process known as deployment.
Once installed in the server, the enterprise beans are executed in a Java Virtual
Machine (JVM) at the request of a client program.

JavaBeans and Enterprise JavaBeans
JavaBeans and Enterprise JavaBeans are component architectures for the Java
language.

CSD

deployment

JVM

ejb-jar

client

= dataflow

install

JDBC

readcheck

JN
DI

CICS EJB Server

DB2

HFS

deployed
JAR

development

enterprise
bean

lookup

External
security
manager

IIOP connection

bind

namespace

Figure 12. A CICS EJB application server

Chapter 9. Stable Java technologies 215

Components:

A component is a reusable software building block; a pre-built piece of
encapsulated application code that can be combined with other components and
with handwritten code to produce a custom-built application rapidly.

An application developer can make use of a component without requiring access
to its source code. Components can be customized to suit the specific requirements
of an application through a set of external property values. For example, a button
component has a property that specifies the caption that should appear on the
button. An account management component has a property that specifies the
location of the account database.

Components execute within a construct called a container, which (among other
things) provides an operating system process in which to execute the component.

The component model defines the interfaces by which the component interacts
with its container and with other components. The developer of a component may
code it using a variety of internal methods and properties but, to ensure that it can
be used with other components, he or she must implement the interfaces defined
in the component model. These interfaces also allow components to be loaded into
rapid application development (RAD) tools, such as WebSphere Studio Application
Developer.

JavaBeans:

A JavaBean is a self-contained, reusable software component, written in Java,
usually intended for use in a desktop or client application.

Typically, desktop JavaBeans have a visual element, and execute within some type
of visual container, such as a form, panel, or Web page. Examples might range
from a simple button to a fully-featured software CD player.

Bean developers can use a visual tool, such as WebSphere Studio Application
Developer, to create JavaBeans. Application developers can use such tools to
“wire” JavaBeans together into a larger application, and to set the properties of
individual beans.

Enterprise JavaBeans:

The Enterprise JavaBeans architecture supports server components. Server
components are application components that run in an application server such as
CICS. Unlike desktop components, they do not have a visual element and the
container they run in is not visual.

Server components written to the Enterprise JavaBeans specification are known as
enterprise beans. They are portable across any EJB-compliant application server.

To be useful, server components require access to the application server's
infrastructure services, such as its distributed communication service, naming and
directory services, transaction management service, data access and persistence
services, and resource-sharing services. Different application servers implement
these infrastructure services using different technologies. However, an
EJB-compliant application server provides an enterprise bean with access to these
services through standard interfaces, and manages many of them on behalf of the
bean.

216 CICS TS for z/OS 4.2: Java Applications in CICS

Bean developers can use a visual tool, such as WebSphere Studio Application
Developer, to create enterprise beans. Application developers can combine method
calls to enterprise beans with desktop JavaBeans, Web servlets, and handwritten
code to form client/server applications.

The EJB server—overview
An EJB-compliant application server is known as an EJB server.

An EJB server could be a transaction processing monitor such as CICS, a Web
server, a database, or some other type of server. Note that a CICS EJB server may
comprise multiple CICS regions, as described in “Logical servers: Enterprise beans
in a sysplex” on page 230.

An EJB server provides a standard set of services to support enterprise bean
components. These services include:
v Support of the Java Remote Method Invocation (RMI) interface that is used by

enterprise beans for communication. RMI has two transport protocol
options—JRMP for Java-to-Java interoperation and IIOP for interlanguage
interoperation, mediated using a CORBA Object Request Broker (ORB). (For a
description of the CICS ORB, see “The Object Request Broker (ORB)” on page
351.)
CICS Transaction Server for z/OS, Version 4 Release 2 supports RMI over IIOP
(RMI-IIOP), but not JRMP. (JRMP is a proprietary protocol that cannot be used
to interoperate with non-Java components. CICS does not support distributed
transactions over JRMP.)

v A container, called an EJB container, which provides management services for
enterprise beans.

v A distributed transaction management service that implements the
javax.transaction.UserTransaction interface of the Java Transaction API (JTA). The
javax.transaction.UserTransaction interface is used by session beans that manage
their own transactions.

v Security services.
v Support for the Java Naming and Directory Interface (JNDI). The JNDI API

provides directory and naming functionality for Java applications. It enables a
client to locate an enterprise bean.

v Support for the Java Data Base Connectivity (JDBC) interface.

The EJB container—overview
Whereas desktop JavaBeans usually run within a visual container such as a form
or a Web page, an enterprise bean runs within a container provided by the
application server.

The EJB container creates and manages enterprise bean instances at run-time, and
provides the services required by each enterprise bean running in it.

The EJB container supports a number of implicit services, including life cycle, state
management, security, and transaction management:

Life cycle
Individual enterprise beans do not need to manage process allocation, thread
management, object activation, or object passivation explicitly. The EJB
container automatically manages the object life cycle on behalf of the enterprise
bean.

Chapter 9. Stable Java technologies 217

State management
Individual enterprise beans do not need to save or restore object state between
method calls explicitly. The EJB container automatically manages object state
on behalf of the enterprise bean.

Security
Individual enterprise beans do not need to authenticate users or check
authorization levels explicitly. The EJB container can automatically perform all
security checking on behalf of the enterprise bean.

Transaction management
Individual enterprise beans do not need to specify transaction demarcation
code to participate in distributed transactions. The EJB container can
automatically manage the start, enrollment, commitment, and rollback of
transactions on behalf of the enterprise bean.

The execution environment:

Before enterprise beans can be deployed into an EJB server, their execution
environment must be configured.

In CICS, this is achieved by installing a CORBASERVER resource definition. A
CORBASERVER defines an execution environment for enterprise beans and
CORBA stateless objects. For convenience, we shall refer to the execution
environment defined by a CORBASERVER definition as a CorbaServer.

Note that:
v A CICS EJB server may contain more than one CorbaServer.
v Any number of enterprise beans can be deployed into the same CorbaServer.
v A specific enterprise bean can be deployed multiple times into the same CICS

EJB server, but not into the same CorbaServer. (In other words, to install a
specific enterprise bean multiple times into the same CICS EJB server you must
install it into different CorbaServer execution environments. One reason for
doing this might be to make the bean available with different deployment
properties—see “Enterprise beans—the deployment descriptor” on page 219.)
Each deployment results in the creation of a distinct home object (see
“Enterprise beans—the home and component interfaces”).

Enterprise beans—the home and component interfaces
Client applications do not interact with an enterprise bean directly.

Instead, the client interacts with the enterprise bean through two intermediate
objects that are created by the container from classes generated by a deployment
tool—one of which classes implements the EJB home interface and the other the
EJB component interface. As the client invokes operations using these intermediate
objects, the container intercepts each method call and inserts the management
services.

The home and component interfaces are implemented as Java RMI remote objects,
which allows the ORB to support them as distributed objects.

The home interface
The home interface is the mechanism by which the client identifies the
enterprise bean it wants. It allows a client to create, remove, and (for entity
beans, not supported by CICS) find existing instances of, enterprise beans. Note
that the “client” might not be a program running on a network workstation; it might,

218 CICS TS for z/OS 4.2: Java Applications in CICS

for example, be a servlet running on a Web server; or an enterprise bean, program, or
object on the local EJB server, or on another EJB server.

When a bean is deployed in an EJB server, the container registers the home
interface in a namespace that is accessible remotely. Using the Java Naming
and Directory Interface (JNDI) API, any client with access to the namespace
can locate the home interface by name. (To be precise, the client locates, by
name, an object that implements the home interface. The home interface
extends the EJBHome interface.)

The component interface
The component interface allows a client to access the business methods of the
enterprise bean. It intercepts all business method calls from the client and
inserts whatever transaction, state management, persistence, and security
services were specified when the bean was deployed.

When a client creates or finds an instance of an enterprise bean, the container
returns a component interface object (one per instance). (To be precise, the
container returns a reference to an instance of a class that implements the
component interface. The component interface extends the EJBObject interface.)

Enterprise beans—the deployment descriptor
The rules governing an enterprise bean's life cycle, transaction management,
security, and persistence are defined in an associated XML document called a
deployment descriptor.

See “Overview of deploying enterprise beans” on page 226.

Re-usable components may be customizable through a set of external property
values, so that they can be modified to suit the requirements of a particular
application without changing the source code. An enterprise bean developer can
provide (within the deployment descriptor) a set of environment properties to
allow the application developer to customize the bean. For example, a property
might be used to specify the location of a database or to specify a default national
language. At run time, an environment object is created which contains the
customized property values set during the application assembly process or the
bean deployment process.

The EJB server: summary
This topic summarizes the information about EJB servers presented in the previous
topics.

The following figure shows enterprise bean objects in a CICS EJB server. The EJB
container manages and provides services to the enterprise beans contained within
it. When a bean is deployed, the deployment tool generates the EJB home and
component interface classes.

The home interface is accessible through JNDI and implements lifecycle services
for the bean. The client uses it to create, remove, and (for entity beans, not directly
supported by CICS) find instances of enterprise beans.

The container creates an EJB component interface object for each instance of the
bean. The component interface provides access to the business methods within the
bean. It intercepts all business method calls from the client and implements
transaction, state management, persistence, and security services for the bean,
based on the settings of the bean's deployment descriptor.

Chapter 9. Stable Java technologies 219

Types of enterprise bean
This section discusses two types of enterprise bean—session beans and entity
beans.

Session beans: A session bean:
v Is created by a client and represents a single conversation, or session, with that

client.
v Typically, persists only for the life of the conversation with the client. In this

sense, it can be likened to a pseudoconversational transaction.
If the bean developer chooses to save information beyond the life of a session,
he or she must implement persistence operations—for example, JDBC or SQL
calls—directly in the bean class methods.

v Typically, performs operations on business data on behalf of the client, such as
accessing a database or performing calculations.

v May or may not be transactional. If it's transactional, it can manage its own
Object Transaction Service (OTS) transactions, or use container-managed OTS
transactions. For an explanation of the relationship between OTS transactions
and CICS units of work, see “Enterprise beans—managing transactions” on page
222.

v Is not recoverable—if the EJB server crashes, it may be destroyed.
v Has two flavours: stateful and stateless.

Stateful session beans:

CICS EJB server

EJB container

Client

RMI / IIOP

create
remove

business
methods

CorbaServer execution environment

EJB instance

EJBHome

EJBObject

Deployment descriptor

Environment
properties

Figure 13. Enterprise bean objects in a CICS EJB server

220 CICS TS for z/OS 4.2: Java Applications in CICS

A stateful session bean has a client-specific conversational state, which it maintains
across methods and transactions; for example, a “shopping cart” object would
maintain a list of the items selected for purchase by the user.

A stateful session bean that manages its own transactions can begin an OTS
transaction in one method and commit or roll it back in a subsequent method.

Stateless session beans:

A stateless session bean has no client-specific (nor any other kind of) non-transient
state; for example, a “stock quotation” object might return current share prices.

A stateless session bean that manages its own transactions and begins a transaction
must commit (or roll back) the transaction in the same method in which it started
it.

Entity beans:

CICS does not support entity beans directly. That is, entity beans cannot run in a
CICS EJB server. However, a session bean or program running in a CICS EJB
server can be a client of an entity bean running in a non-CICS EJB server.

Important

An entity bean:
v Is typically an object representation of business data, such as a customer order.

Typically, the data:
– Are maintained in a permanent data store, such as a database.
– Need to persist beyond the life of a client instance. Therefore, an entity bean

is relatively long-lived, compared to a session bean.
v Object can be accessed by more than one client at the same time. This is possible

because each instance of an entity bean is identified by a primary key, which
can be used to find it via the home interface.

v Can manage its own persistence (bean-managed persistence), or delegate the
task to its container (container-managed persistence).
If the bean manages its own persistence, the bean developer must implement
persistence operations—for example, JDBC or SQL calls—directly in the bean.
If the entity bean delegates persistence to the container, the latter manages the
persistent state transparently; the bean developer doesn't need to code any
persistence operations within the bean.

v May or may not be transactional. If it's transactional, all transaction functions are
performed implicitly by the EJB container and server. There are no transaction
demarcation statements within the bean code. Unlike session beans, an entity
bean is not permitted to manage its own OTS transactions. See “Enterprise
beans—managing transactions” on page 222.

v Is recoverable—it survives a server crash.

Session beans and entity beans compared:

This is a summary of the differences between entity and session beans.

Chapter 9. Stable Java technologies 221

Table 15. Comparison of session and entity beans

Session bean Entity bean

Represents a single conversation with a
client.

Typically, encapsulates an action or actions
to be taken on business data.

Typically, encapsulates persistent business
data—for example, a row in a database.

Is relatively short-lived. Is relatively long-lived.

Is created and used by a single client. May be shared by multiple clients.

Has no primary key. Has a primary key, which enables an
instance to be found and shared by more
than one client.

Typically, persists only for the life of the
conversation with the client. (However, may
choose to save information.)

Persists beyond the life of a client instance.
Persistence can be container-managed or
bean-managed.

Is not recoverable—if the EJB server fails, it
may be destroyed.

Is recoverable—it survives failures of the EJB
server.

May be stateful (that is, have a client-specific
state) or stateless (have no non-transient
state).

Is typically stateful.

May or may not be transactional. If
transactional, can manage its own OTS
transactions, or use container-managed
transactions.

A stateful session bean that manages its own
transactions can begin an OTS transaction in
one method and commit or roll it back in a
subsequent method.

A stateless session bean that manages its
own transactions and begins an OTS
transaction must commit (or roll back) the
transaction in the same method in which it
was started.

The state of a transactional, stateful session
bean is not automatically rolled back on
transaction rollback. In some cases, the bean
can use session synchronization to react to
syncpoint.

May or may not be transactional. Must use
the container-managed transaction model.

If transactional, its state is automatically
rolled back on transaction rollback.

Is not re-entrant. May be re-entrant.

Enterprise beans—managing transactions
Clients can begin, commit, and roll back ACID transactions using an
implementation of the Java Transaction Service (JTS) or the CORBA Object
Transaction Service (OTS).

These ACID transactions 1are analogous to CICS distributed units of work. We use
the term OTS transaction to differentiate these transactions from CICS transaction
definitions (the ones with 4-character transaction identifiers) and CICS transaction
instances (which are sometimes loosely called “tasks”).

1. Transactions possessing atomicity, consistency, isolation, and durability. Jim Gray and Andreas Reuter, Transaction Processing:
Concepts and Techniques, 1993.

222 CICS TS for z/OS 4.2: Java Applications in CICS

When a client calls an enterprise bean in the scope of an OTS transaction,
information about the transaction flows to the EJB server in an IIOP “service
context”, which is like an extra (hidden) parameter on the method request. The EJB
server uses this information if it needs to participate in the transaction. Whether
the method of an enterprise bean needs to run under a client's OTS transaction (if
there is one) is determined by the setting of the transaction attribute specified in
the bean's deployment descriptor. The method may run under the client's OTS
transaction, under a separate OTS transaction which is created for the duration of
the method, or under no OTS transaction.

Entity beans must use container–managed OTS transactions. All transaction
functions are performed implicitly by the EJB container and server. There are no
transaction demarcation statements within the bean code.

Session beans can use either container-managed OTS transactions or
bean–managed OTS transactions. A session bean that uses bean–managed
transactions uses methods of the javax.transaction.UserTransaction interface to
demarcate transactions. A stateful session bean that manages its own transactions
can begin an OTS transaction in one method and commit or roll it back in a
subsequent method. A stateless session bean that manages its own transactions and
begins an OTS transaction must commit (or roll back) the transaction in the same
method.

At runtime, the EJB container implements transaction services according to the
setting of the transaction attribute specified in the bean's deployment descriptor.
The possible settings of the transaction attribute are:

Mandatory
Indicates that the bean must always execute within the context of the caller's
OTS transaction. If the caller does not have a transaction when it calls the
bean, the container throws a javax.transaction.TransactionRequiredException
exception and the request fails.

Never
Indicates that the bean must not be invoked within the context of an OTS
transaction. If a caller has an OTS transaction when it calls the bean, the
container throws a java.rmi.RemoteException exception and the request fails.

NotSupported
Indicates that the bean cannot execute within the context of an OTS
transaction. If a caller has an OTS transaction when it calls the bean, the
container suspends the transaction for the duration of the method call. It
resumes the suspended transaction when the method has completed. The
suspended transaction context of the client is not passed to resource managers
or enterprise bean objects that are invoked from the method.

Required
Indicates that the bean must execute within the context of an OTS transaction.
If a caller has an OTS transaction when it calls the bean, the method
participates in the caller's transaction. If the caller does not have an OTS
transaction, the container starts a new OTS transaction for the method.

RequiresNew
Indicates that the bean must execute within the context of a new OTS
transaction. The container always starts a new OTS transaction for the method.
If the caller has an OTS transaction when it calls the bean, the container
suspends the caller's transaction for the duration of the method call. The

Chapter 9. Stable Java technologies 223

suspended transaction context of the client is not passed to resource managers
or enterprise bean objects that are invoked from the method.

Supports
Indicates that the bean can run with or without a transaction context. If a caller
has an OTS transaction when it calls the bean, the method participates in the
caller's transaction. If the caller does not have an OTS transaction, the method
runs without one.

Note: Enterprise bean methods always execute in a CICS task, under a CICS unit
of work. Even if an enterprise bean method executes under no OTS transaction,
any updates that the method makes to recoverable resources are committed only at
normal termination of the CICS task, and backed out if there is a need to roll back.

The setting of a method's transaction attribute determines whether or not the CICS
task under which the method executes makes its unit of work part of a wider,
distributed OTS transaction.

A single CICS task cannot contain more than one enterprise bean, because CICS
treats an execution of an enterprise bean method as the start of a new task. You
can create an application that includes more than one enterprise bean, but the
application will not operate as a single CICS task.

Enterprise beans—security overview
EJB security is concerned with authentication, access control, and the Java 2
security policy mechanism.

Authentication:

Authentication of EJB clients uses the TCP/IP secure sockets layer (SSL) protocol.

See Support for security protocols, in the CICS RACF Security Guide, for
information about configuring CICS to use SSL.

Access control:

Access to enterprise bean methods is based on the concept of security roles. You
can use CICS transaction security and resource security with EJB resources.

Security roles:

Access to enterprise bean methods is based on the concept of security roles. A
security role represents a type of user of an application in terms of the permissions
that the user must have to successfully use the application.

The roles that are permitted to execute a particular enterprise bean or particular
methods of a bean are specified in the bean's deployment descriptor, and the
mapping of security roles to individual users is done in the external security
manager.

For more information about security roles, see “Security roles” on page 338.

CICS transaction and resource security:

You can use CICS transaction security and resource security with EJB resources.

224 CICS TS for z/OS 4.2: Java Applications in CICS

CICS transaction security applies to the CICS transactions associated with
enterprise bean methods—that is, the transactions named on EJB
REQUESTMODEL definitions.

CICS resource security applies to the CICS resources accessed by enterprise beans
(by means of, for example, JCICS).

The Java security manager:

The security of the enterprise beans container environment is protected by the Java
security policy mechanism and is independent of CICS security. The security policy
mechanism is one of the components that make up the Java security model.

The security policy mechanism is used to enforce the restrictions in the EJB
specification concerning Java functions that may not be issued by enterprise beans.
CICS provides a policy file that enforces this behaviour.

To use JDBC or SQLJ from enterprise beans with a Java security policy mechanism
active, you must use the JDBC 2.0 driver provided by DB2. The IBM Data Server
Driver for JDBC and SQLJ provided by DB2 does not support Java security, and
will fail with a security exception unless you disable the mechanism.

Enterprise beans—user tasks
The roles involved in the development and deployment of applications that use
enterprise beans are, a bean provider, an application assembler, a deployer, and a
system administrator.

Note: In smaller organizations, one person may be responsible for more than one
of these roles.

The bean provider:

The bean provider develops reusable enterprise beans that typically implement
business tasks or business entities.

The bean provider's output is an ejb-jar file that contains one or more enterprise
beans. The bean provider is responsible for:
v The Java classes that implement an enterprise bean's business methods.
v The definition of the bean's component and home interfaces.
v The bean's deployment descriptor.

The deployment descriptor includes the structural information—for example, the
name of the enterprise bean class—of the enterprise bean and declares all the
bean's external dependencies—for example, the names and types of the resource
managers that the enterprise bean uses.

The application assembler:

The application assembler creates applications that use enterprise beans. He
combines enterprise beans and hand-written client code into a client/server
application. Although he must be familiar with the functionality provided by the
enterprise beans' component and home interfaces, he does not need to have any
knowledge of the enterprise beans' implementation.

The input to the application assembler is one or more ejb-jar files produced by the
bean provider. His output is one or more ejb-jar files that contain the enterprise

Chapter 9. Stable Java technologies 225

beans, along with their application assembly instructions and customized
environment settings. He has inserted the application assembly instructions,
security roles, and environment values into the deployment descriptors.

The application assembler may also combine enterprise beans with other types of
application components—for example, JavaBeans—when assembling an
application.

Typically, the application assembly step occurs before the deployment of the
enterprise beans. However, sometimes assembly may be performed after the
deployment of all or some of the enterprise beans.

The deployer:

The deployer takes one or more ejb-jar files produced by the application assembler
and deploys the enterprise beans contained in the ejb-jar files into a specific
CorbaServer in an EJB server.

The deployer must:
v Resolve all the external dependencies declared by the bean provider. For

example, he must ensure that all resource manager connection factories used by
the enterprise beans are present in the operational environment, and bind them
to the resource manager connection factory references declared in the
deployment descriptor.

v Follow the application assembly instructions defined by the application
assembler. For example, the deployer is responsible for mapping the security
roles defined by the application assembler to CICS user groups and external
security manager profiles.

The deployment process is semi-automated. To perform his role, the deployer uses
a deployment tool. Deployment tools are provided by CICS.

The deployer's output are enterprise beans that have been customized for the
target operational environment, and deployed in one or more CorbaServers.

The system administrator:

The system administrator is responsible for configuring and administering the
CICS regions that comprise the logical EJB server, together with their network
connections. He or she is also responsible for overseeing the well-being of the
deployed EJB applications at runtime.

Overview of deploying enterprise beans
A desktop Java bean is developed, installed, and run on a workstation. An
enterprise bean, which runs on a server, requires an additional stage, deployment,
to prepare the bean for the runtime environment and install it into the EJB server.

Enterprise beans are produced by the bean provider and customized by the
application assembler. The application assembler may use a tool such as the
Assembly Toolkit (ATK) (described in The enterprise bean deployment tool, ATK,
in the CICS Operations and Utilities Guide) to customize the ejb-jar file. The
customized ejb-jar file passed to the deployer contains:
v The Java classes for one or more enterprise beans.
v A single deployment descriptor, written in XML, that describes the

characteristics of each of the enterprise beans, such as:

226 CICS TS for z/OS 4.2: Java Applications in CICS

– Transaction attributes
– Environment properties
– Security levels
– Application assembly information.

Also required is information specific to CICS, such as resource definition
requirements.

Here's an outline of the deployment process:
1. A deployment tool, such as the enterprise bean deployment tool, ATK. Use this

tool to transform the ejb-jar file into a deployable JAR file, suitable for
deployment. The transformed file contains the XML deployment descriptor and
enterprise bean classes from the ejb-jar file, plus additional classes generated in
support of the EJB container. The transformed file is stored as a deployed JAR
file on the z/OS UNIX file system.
Store the deployed JAR file in the CorbaServer's deployed JAR file directory
(specified by the DJARDIR option of the CORBASERVER definition). The
deployed JAR file directory is also known as the “pickup” directory. When
CICS scans the pickup directory, it automatically creates and installs a
definition of each new or updated deployed JAR file that it finds there. CICS
scans the pickup directory in any of the following ways:
v Automatically, when the CORBASERVER definition is installed
v When instructed to by means of an explicit EXEC CICS or CEMT PERFORM

CORBASERVER SCAN command
v When instructed to by the resource manager for enterprise beans (otherwise

known as the RM for enterprise beans), which issues a PERFORM CORBASERVER
SCAN command on your behalf. (The resource manager for enterprise beans is
described in The Resource Manager for Enterprise Beans, in the CICS
Operations and Utilities Guide.)

2. CICS resource definitions are required for:
v The CorbaServer execution environment (CORBASERVER). (The same

CORBASERVER definition will be installed on each CICS AOR in the logical
EJB server.)

v TCP/IP services (for IIOP). One or more TCPIPSERVICE definitions will be
installed on each CICS region in the logical EJB server.

v Request models, to associate client IIOP requests with CICS TRANSIDs (and
thus to associate bean methods with sets of execution characteristics,
covering such things as security, priority, and monitoring). Request models
are only required if the default TRANSID, CIRP, is unsuitable. (You may
want to segregate your IIOP workload by transaction ID, for example.)

Note: You can use the CREA CICS-supplied transaction to display the
transaction IDs associated with particular beans and bean-methods in the
CorbaServer. You can change the transaction IDs, apply the changes, and
save the changes to new REQUESTMODEL definitions.

v Deployed JAR files (DJARs), each of which includes the z/OS UNIX filename
of a deployed JAR file. If you store your deployed JAR files in the
CorbaServer's “pickup” directory, DJAR definitions are created and installed
automatically when the CorbaServer is installed (or when a subsequent scan
takes place).

Note: “Setting up a logical EJB server” on page 231 contains more information
about these RDO definitions.

Chapter 9. Stable Java technologies 227

3. Security definitions are added to the external security manager. These specify
which roles can execute particular beans and methods, and which user IDs are
associated with each role.

4. The resource definitions are installed in CICS. Installing a DJAR definition
causes CICS to:
v Copy the deployed JAR file (and the classes it contains) to a “shelf” directory

on z/OS UNIX. The shelf directory is where CICS keeps copies of installed
deployed JAR files.

v Read the deployed JAR from the shelf, parse its XML deployment descriptor,
and store the information it contains.

Note: If you store your deployed JAR files in the CorbaServer's “pickup”
directory, DJAR definitions are installed automatically when the CorbaServer is
installed (or when a subsequent scan takes place).

5. A reference to the home interface class of each deployed bean is published in
an external namespace. The namespace is accessible to clients through JNDI.
If you specify AUTOPUBLISH(YES) on the CORBASERVER definition, the
contents of a deployed JAR file are automatically published to the namespace
when the DJAR definition is successfully installed into the CorbaServer.
Alternatively, you can issue a PERFORM CORBASERVER PUBLISH or PERFORM DJAR
PUBLISH command.

Figure 14 shows the deployment process.

CSD

deploymentejb-jar
= dataflow

install write to shelfread

JNDI

HFS

deployed
JAR

development

enterprise
bean

publish

External
security
manager

namespace

CICS EJB Server

Figure 14. Deploying enterprise beans into a CICS EJB server. A deployment tool is used to perform code generation
on the ejb-jar file containing the bean classes. The transformed file is stored as a deployed JAR file on z/OS UNIX. An
RDO definition of the deployed JAR file is created and installed in CICS, together with other definitions for TCP/IP
services, request models, and the CorbaServer execution environment. Security definitions are created on the external
security manager.

228 CICS TS for z/OS 4.2: Java Applications in CICS

Overview of configuring CICS as an EJB server
A CICS EJB server contains these basic components.

The listener
The job of the listener is to listen for (and respond to) incoming TCP/IP
connection requests. An IIOP listener is configured by a TCPIPSERVICE
resource to listen on a specific TCP/IP port and to attach an IIOP request
receiver to handle each connection.

Once an IIOP connection has been established between a client program and a
particular request receiver, all subsequent requests from the client program
over that connection flow to the same request receiver.

The request receiver
The request receiver analyzes the structured IIOP data. It passes the incoming
request to a request processor by means of a request stream, which is an
internal CICS routing mechanism. The object key in the request determines
whether the request must be sent to a new or an existing request processor.

If the request must be sent to a new request processor, a CICS transaction ID is
determined by comparing the request data with templates defined in
REQUESTMODEL resources. (If no matching REQUESTMODEL resource can
be found, the default transaction, CIRP, is used.) The TRANSID defines
execution parameters that are used by the request processor.

The request processor
The request processor is a transaction instance that manages the execution of
the IIOP request. It:
v Locates the object identified by the request
v For an enterprise bean request, calls the container to process the bean

method
v For a request for a stateless CORBA object, the ORB typically processes the

request itself (although the transaction service may also be involved).

For comprehensive information about listeners, request receivers, and request
processors, see “The IIOP request flow” on page 354.

Figure 15 on page 230 shows a CICS logical EJB server. In this example, the listener
regions and AORs are in separate groups, connection optimization is used to
balance client connections across the listener regions, and distributed routing is
used to balance OTS transactions across the AORs.

The logical server consists of a set of cloned listener regions and a set of cloned
AORs. In this example, connection optimization by means of dynamic DNS
registration is used to balance client connections across the listener regions.
Distributed routing is used to balance OTS transactions across the AORs.

Chapter 9. Stable Java technologies 229

Logical servers: Enterprise beans in a sysplex:

You can implement a CICS EJB server in a single CICS region.

However, in a sysplex it is likely that you will want to create a server consisting of
multiple regions. Using multiple regions makes failure of a single region less
critical and enables you to use workload routing. A CICS logical EJB server
consists of one or more CICS regions configured to behave like a single EJB server.

Typically, a CICS logical EJB server consists of the following components:
v A set of cloned listener regions defined by identical TCPIPSERVICE definitions

to listen for incoming IIOP requests.
v A set of cloned application-owning regions (AORs), each of which supports an

identical set of enterprise bean classes in an identically-defined CORBA server.

Note: The listener regions and AORs can be separate or combined into listener
AORs.

Workload routing in a sysplex:

Workload routing is implemented at two levels by directing client connections
across the listener regions and routing OTS transactions across the AORs.
1. To route client connections across the listener regions, you can use any of the

following methods:
v Connection optimization by means of dynamic Domain Name System (DNS)

registration.
v IP routing.
v A combination of connection optimization and IP routing.

Hostname
resolution

SYSPLEX

Distributed
routing

Cloned
listener
regions

Dynamic
DNS

Cloned CICS AORs

Logical EJB server

Client

IIOP

Figure 15. A CICS logical EJB server

230 CICS TS for z/OS 4.2: Java Applications in CICS

With connection optimization by means of dynamic DNS registration, for
example, multiple CICS regions are started to listen for IIOP requests on the
same port (using virtual IP addresses). Each client IIOP connection request
contains a generic host name and port number. The generic host name in each
connection request is resolved to a real IP address by MVS DNS and Workload
Management (WLM) services.

2. To route OTS transactions across the AORs, you can use either of the following:
v CICSPlex SM
v A customized version of the CICS distributed routing program, DFHDSRP.

Important
When you are using the distributed routing program it is convenient to talk
of dynamically routing OTS transactions across AORs. Strictly speaking,
however, what are dynamically routed are method requests for enterprise
beans and CORBA stateless objects. There is a correspondence between
routing method requests dynamically and routing OTS transactions
dynamically: CICS invokes the routing program for requests for methods
that will run under a new OTS transaction, but not for requests for methods
that will run under an existing OTS transaction—these it directs
automatically to the AOR in which the existing OTS transaction runs.
However, because requests for methods that will run under no OTS
transaction can also be dynamically routed, the correspondence is not exact.

It is important to understand the difference between new and existing OTS
transactions.
a. A new OTS transaction is one in which the target logical server is not

already participating, before the current method call; not necessarily an
OTS transaction that was started immediately before the method call.

b. An existing OTS transaction is one in which the target logical server is
already participating, before the current method call; not an OTS
transaction that was started some time ago.

For example, if a client starts an OTS transaction, does some work, and
then calls a method on an enterprise bean, so far as the CICS EJB server is
concerned this is a new OTS transaction, because the server has not been
called within this transaction's scope before. If the client then makes a
second and third method call to the same target object, before committing
its OTS transaction, these second and third calls occur within the scope of
the existing OTS transaction.

Setting up a logical EJB server:

You must follow a number of steps to set up a CICS logical EJB server to support
enterprise beans.

Before setting up a logical EJB server, make sure that the regions in a logical EJB
server, both listeners and AORs, are at the same level of CICS.

Follow these steps to set up a CICS logical EJB server to support enterprise beans:
1. Create a set of cloned CICS Transaction Server for z/OS, Version 4 Release 2

listener regions. Each listener region must have the IIOPLISTENER system
initialization parameter set to YES.

2. Create a set of cloned CICS Transaction Server for z/OS, Version 4 Release 2
AORs. Each of the AORs must meet these criteria:
v Configured to use JNDI

Chapter 9. Stable Java technologies 231

v Use the same JNDI initial context as the other AORs
v Connected to all of the listener regions by MRO (not ISC)
v Configured with IIOPLISTENER system initialization parameter set to NO.

3. Create a shelf root directory on z/OS UNIX. For example, you might create a
directory called /var/cicsts/. To do so, you need a z/OS UNIX user ID with
write authority to the directory path to be used by CICS. Having created the
shelf directory, you must give the user IDs of the AOR full access read, write,
and run access to the directory.

4. Create a deployed JAR file (pickup) directory on z/OS UNIX. For example,
you might create a directory called /var/cicsts/pickup. The AORs must have
at least read access to it.
If your AORs are to contain more than one CorbaServer runtime environment:
v You must create a separate pickup directory for each CorbaServer.
v Assign different sets of transaction IDs to the objects supported by each

CorbaServer. That is, each CorbaServer in an AOR supports a different set
of transaction IDs. To assign transaction IDs to bean methods, use
REQUESTMODEL definitions; see step 5.

5. Create the following resource definitions. You can create them on a CSD that
is shared by all the regions in the logical server, copy them to all the CSDs
used by the regions, or add them to a CICSPlex SM Resource Description that
applies to all the regions. Optionally, you can use the CICS scanning
mechanism, the Resource Manager for enterprise beans, and the
CICS-supplied transaction, CREA, to create some of these definitions, as
described below.
v A TCPIPSERVICE.

– On the PROTOCOL option, specify IIOP.
– On the SSL option, specify NO.
– On the AUTHENTICATE option, specify NO. With this specification, the

service on this port accepts unauthenticated inbound IIOP requests.
v Some REQUESTMODEL definitions. In a single-region EJB server, the

definitions are only required if the default TRANSID, CIRP, is unsuitable. In
a multiregion logical server, however, the definitions are required if you
want to route method requests across several AORs. The TRANSACTION
definition for CIRP specifies DYNAMIC(NO). Definitions are also required
if, for example, you want to segregate your IIOP workload by transaction
ID.

Note:

a. The BEANNAME attribute of each REQUESTMODEL definition must
“match” (in a pattern-matching sense) the name of an enterprise bean in
the deployment descriptor in a deployed JAR file on z/OS UNIX. The
value of the CORBASERVER attribute must match, either literally or in a
pattern-matching sense, the name of the CorbaServer on the
CORBASERVER definition.

b. Copy the transaction definition for the TRANSID named on your
REQUESTMODEL from that of CIRP. Set the DYNAMIC attribute to
YES. You can change any of the other attributes, but the program name
must be that of a JVM program with acJVMClass of
com.ibm.cics.iiop.RequestProcessor.

c. When the CorbaServer is operational, you can use the CREA
CICS-supplied transaction to display the transaction IDs associated with

232 CICS TS for z/OS 4.2: Java Applications in CICS

particular beans and bean methods in the CorbaServer. You can change
the transaction IDs, apply the changes, and save the changes to new
REQUESTMODEL definitions.

v A CORBASERVER definition.
The value of the HOST option of the CORBASERVER definition must match
that of the HOST or IPADDRESS option of the TCPIPSERVICE definition.
However, if the TCPIPSERVICE specifies a value for DNSGROUP, the
HOST option of the CORBASERVER definition must specify a matching
generic host name.
On the UNAUTH option, specify the name of the TCPIPSERVICE
definition. You must always specify a value for the UNAUTH attribute
when you define a CorbaServer, even if you intend that all inbound
requests to the CorbaServer will be authenticated. This value is required
because the port number from the TCPIPSERVICE is used to construct
Interoperable Object References (IORs) that are exported from this logical
server. You can, by specifying the name of other TCPIPSERVICE definitions
on one or both of the CLIENTCERT or SSLUNAUTH options, cause your
listener regions to listen on other ports for different types of authenticated
inbound IIOP requests. For more information, see CORBASERVER resources
in the Resource Definition Guide and TCPIPSERVICE resources in the
Resource Definition Guide.
On the SHELF option, specify the fully qualified name of the z/OS UNIX
shelf directory that you created in step 3. Because the CORBASERVER
definition is installed on all the AORs in the logical server, this “high-level”
shelf directory is shared by all of them. Each AOR automatically creates its
own subdirectory beneath the shelf directory and a subdirectory for the
CorbaServer beneath that.
On the DJARDIR option, specify the fully qualified name of the z/OS UNIX
deployed JAR file directory (pickup directory) that you created in step 4.
Like the shelf directory, the pickup directory (or directories, if your AORs
contain multiple CorbaServers) is shared by all the AORs in the logical
server. On each AOR, when a CORBASERVER definition is installed, CICS
scans the CorbaServer pickup directory and installs any deployed JAR files
that it finds there. It copies them to its shelf subdirectory and dynamically
creates and installs DJAR definitions for them.
Specify AUTOPUBLISH(YES) to cause CICS to publish beans to the
namespace automatically, when a DJAR definition is successfully installed.
On the STATUS option, specify Enabled.

v FILE definitions for the following files required by CICS:

The EJB directory, DFHEJDIR
Is a file containing a request streams directory, which must be
shared by all the regions, listeners and AORs, in the logical EJB
server. Request streams are used in the distributed routing of
method requests for enterprise beans and CORBA stateless objects.
You must define DFHEJDIR as recoverable.

The EJB object store, DFHEJOS
Is a file of stateful session beans that have been passivated. It must
be shared by all the AORs in the logical EJB server. You must define
it as nonrecoverable.

To share DFHEJDIR and DFHEJOS across multiple regions, you can, for
instance, use any of the following methods:
– Define them as remote files in a file-owning region (FOR)

Chapter 9. Stable Java technologies 233

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/corbaserver/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/corbaserver/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/tcpipservice/dfha4_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/tcpipservice/dfha4_overview.html

– Define them as coupling facility data tables
– Use VSAM RLS
Sample FILE definitions are in these groups:
– For DFHEJDIR and DFHEJOS are in the CICS-supplied RDO group,

DFHEJVS
– For DFHEJDIR and DFHEJOS are in the CICS-supplied RDO group,

DFHEJCF

Sample VSAM RLS FILE definitions for DFHEJDIR and DFHEJOS are in the
CICS-supplied RDO group, DFHEJVR. DFHEJVS, DFHEJCF, and DFHEJVR
are not included in the default CICS startup group list, DFHLIST.

Note: These steps assume that the logical server has only one CorbaServer. To
create another CorbaServer, create a second CORBASERVER definition and
another TCPIPSERVICE definition.

6. Define the underlying VSAM data sets for DFHEJDIR and DFHEJOS. CICS
supplies sample JCL to help you, in the DFHDEFDS member of the
SDFHINST library.

7. Using a deployment tool such as the Assembly Toolkit (ATK), take one or
more ejb-jar files and perform code generation on them to produce deployed
JAR files on z/OS UNIX. Store the deployed JAR files in the pickup directory
of the CorbaServer.

8. Start all the CICS regions. On each of the listener regions, the definitions to be
installed from the CSD are as follows:
v The TCPIPSERVICE definition
v The REQUESTMODEL definitions
v The file definition for DFHEJDIR
On each of the AORs, the definitions to be installed from the CSD are as
follows:
v The TCPIPSERVICE definition.
v The REQUESTMODEL definitions.

The REQUESTMODEL definitions in the AORs are required for outbound
requests to local objects. If a CORBA stateless object or enterprise bean
makes a call to another object, and that object is available on the local AOR,
CICS does not send the request to a listener region. Instead, it either runs
the called method in the current task (“tight loopback”) or starts another
request processor in the local AOR (“normal loopback”). When normal
loopback is used, it is preferable that the new request processor task uses
the same REQUESTMODEL as that used for the call to the first object;
otherwise, unpredictable results might occur. If your CORBA stateless
objects and enterprise beans make no outbound calls, the
REQUESTMODELs on the AOR are not strictly required.

v The CORBASERVER definition.
v The file definitions for DFHEJDIR and DFHEJOS.

If you put your deployed JAR files in the shared pickup directory, DJAR
definitions are created and installed on the AORs automatically when the
CorbaServer is installed, or when a subsequent scan takes place. Create static
(CSD-installed) DJAR definitions only for deployed JAR files that you place in
other z/OS UNIX directories.

234 CICS TS for z/OS 4.2: Java Applications in CICS

9. On each AOR, when the CORBASERVER definition is installed, CICS scans
the pickup directory and installs any deployed JAR files it finds there. It
copies them to its shelf directory and dynamically creates and installs DJAR
definitions for them.
You can put deployed Jis installed. If you do so, you can force CICS to
perform another scan by issuing a CORBASERVER PERFORM SCAN command. Issue
this command using EXEC CICS, the CEMT master terminal transaction, or the
Web-based resource manager for enterprise beans, otherwise known as the
RM for enterprise beans.

10. Because you specified AUTOPUBLISH(YES) on the CORBASERVER definition,
when the DJAR definitions are successfully installed the homes of the
enterprise beans are automatically bound into the JNDI namespace.
If you specify AUTOPUBLISH(NO), you must issue a PERFORM
CORBASERVER(CorbaServer_name) PUBLISH command on at least one of the
AORs. You must issue this command using EXEC CICS, the CEMT master
terminal transaction, the RM for enterprise beans, or from a CICSPlex SM
WUI view.

11. On the DSRTPGM system initialization parameter for the listener regions,
specify the name of the distributed routing program to be used. If you are
using CICSPlex SM, specify the name of the CICSPlex SM routing program,
EYU9XLOP. Otherwise, specify the name of your customized routing program.
For information about the DSRTPGM system initialization parameter, see
DSRTPGM system initialization parameter in the System Definition Guide.

Figure 16 on page 236 shows the RDO definitions required to define a CICS logical
EJB server. It shows which definitions are required in the listener regions, which in
the AORs, and which in both.

Chapter 9. Stable Java technologies 235

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_dsrtpgm.html

Enterprise beans—what can a client do with a bean?
This section contains example code fragments that illustrate how a client program
can use an enterprise bean.

Get a reference to the bean's home:

In order to do anything with the bean, the client must obtain a reference to the
bean's home interface.

To do this, it looks up a well-known name via JNDI:
// Obtain a JNDI initial context
Context initContext = new InitialContext();

// Look up the home interface of the bean
Object accountBeanHome = initContext.lookup("JNDI_prefix/AccountBean");
// where:
// ’JNDI_prefix/’ is the JNDI prefix on the CORBASERVER definition
// ’AccountBean’ is the name of the bean in the XML deployment descriptor

// Convert to the correct type
AccountHome accountHome = (AccountHome)

PortableRemoteObject.narrow(accountBeanHome,AccountHome.class);

Use the home interface:

The client can use the bean's home interface to create a new instance of the bean,
and delete an instance of the bean.

CORBASERVERs
CorbaServer execution
environments

Stateful session
bean store file

DFHEJOS

DFHEJDIR
Request stream
directory file

Cloned CICS AORsCloned CICS listener regions

COMMON DEFINITIONS

REQUESTMODELs

TCPIPSERVICEs

AOR DEFINITIONSLISTENER DEFINITIONS

CICS logical EJB server

Deployed
JAR files

DJARs

SIT
IIOPLISTENER=YES

SIT
IIOPLISTENER=NO

Figure 16. Resource definitions in a CICS logical EJB server

236 CICS TS for z/OS 4.2: Java Applications in CICS

// Create two bean instances
Account anAccount = accountHome.create();
Account anotherAccount = accountHome.create("12345");

// Remove a bean instance
accountHome.remove("12345");

Use the component interface:

The client can use the bean's component interface to invoke the bean's methods,
and delete the bean.
// Use the bean
anAccount.deposit(1000000);
// Remove it
anAccount.remove();

Enterprise beans—what can a bean do?
An enterprise bean benefits from many services—such as lifecycle management
and security—that are provided implicitly by the EJB container, based on settings
in the deployment descriptor.

This leaves the bean provider free to concentrate on the bean's business logic. This
section looks at some of the things a bean can do.

Look up JNDI entries
A bean can use JNDI calls to retrieve:
v References to resources
v Environment variables
v References to other beans.

Access resource managers
A bean can:
v Obtain a connection to a resource manager
v Use the resources of the resource manager
v Close the connection.

Link to CICS programs
A bean can use JCICS or the CCI Connector for CICS TS to link to a CICS
program, that may be written in any of the CICS-supported languages and be
either local or remote. The bean provider can use the CCI Connector for CICS
TS to build beans that make use of the power of existing (non-Java) CICS
programs.

The CCI Connector for CICS TS is described in “The CCI Connector for CICS
TS” on page 311.

Access files
A bean can use JCICS to read and write to files.

Call other beans
A bean can:
v Obtain references to the home and component interfaces of other bean

objects
v Invoke the methods of another bean object
v Be called from another bean object.

A bean can act as the client of another bean object, as the server of another
bean object, or as both.

Chapter 9. Stable Java technologies 237

Bear in mind that a single CICS task (one instance of a transaction) cannot
contain more than one enterprise bean, because CICS treats an execution of an
enterprise bean as the start of a new task. You can create an application that
includes more than one enterprise bean, but the application will not operate as
a single CICS task.

Manage transactions
Optionally, a session bean can manage its own OTS transactions, rather than
use container-managed transactions. Alternatively, it may have its transaction
managed by its caller.

Setting up an EJB server
This chapter tells you how to set up and test an EJB server.

Setting up a single-region EJB server
This section tells you how to set up a single-region CICS EJB server. The
single-region is both a listener region and an AOR.

This minimal configuration can be used as the basis for developing a multi-region
CICS EJB server, as described in “Setting up a multiregion EJB server” on page
246.

Important
v For clarity's sake, we're assuming that:

1. You start from a basic, non-customized, CICS Transaction Server for z/OS,
Version 4 Release 2 region.

2. There will be only one CorbaServer execution environment in your EJB
server.

v We recommend that, when creating your first EJB server, you use the default
JVM profile, DFHJVMCD. After you've got your first EJB server up and running,
you may want to customize your JVM profile. How to do this is described in
“After running the EJB IVP—optional steps” on page 244.

v This section doesn't tell you how to deploy enterprise beans. Deployment is a
separate process that occurs after you've set up your EJB server. It's described in
“Deploying enterprise beans” on page 295.

v The rest of this section is split into two parts:
– “Before running the EJB IVP” takes you as far as being able to run the EJB

Installation Verification Program, which tests that you have configured CICS
correctly as an EJB server and set up a name server correctly.

Note: By default the EJB IVP uses the lightweight tnameserv COS Naming
Server that is supplied with Java 1.3 and later. Therefore you don't need to
have set up an enterprise-quality name server before running the IVP.
However, after you've set up your “real” name server, you can use the IVP to
test it.

– “After running the EJB IVP—optional steps” on page 244 describes some
optional ways in which you can customize your EJB server.

Before running the EJB IVP:

The steps in this section enable you to run the EJB Installation Verification
Program, which tests that you have configured CICS correctly as an EJB server.

238 CICS TS for z/OS 4.2: Java Applications in CICS

The steps in this section enable you to run the EJB Installation Verification
Program, which tests that you have configured CICS correctly as an EJB server.
Actions are required on:
1. z/OS or Windows NT, depending on the type of name server that you use
2. z/OS UNIX
3. CICS

Actions required on z/OS or Windows NT:

To run the EJB IVP, you need a name server that supports the Java Naming and
Directory Interface (JNDI) Version 1.2. By default the IVP uses the lightweight
tnameserv COS Naming Server that is supplied with Java 1.3 and later.

To start tnameserv on the local host, enter the following command at the z/OS
UNIX System Services or Windows NT command prompt:
tnameserv -ORBInitialPort 2809

This causes the name server to listen for connections on TCP/IP port 2809. If this
port is already in use on your system, you will be asked to try again with a
different port.

Note: If you run firewall software, by default the firewall may block your specified
port. You must ensure that your firewall policy allows CICS and any EJB client
applications to communicate with the name server.

For information about choosing and setting up an enterprise-quality name server,
see “Enabling JNDI references” on page 364.

Actions required on z/OS UNIX:

To perform the tasks in this section, you need a z/OS UNIX userid with write
authority to the directory path to be used by CICS.

About this task

Create the following directories on z/OS UNIX, if they do not already exist. (If you
have previously configured CICS as an IIOP server, some of these directories may
already exist.) Remember that z/OS UNIX names are case-sensitive.
1. A CICS working directory. Each CICS region needs a working directory. The

name is specified by the WORK_DIR parameter of the JVM profile. You need to
set the directory permissions so that the USERID the region runs under can
read and write to the directory. See Giving CICS regions access to z/OS UNIX
System Services for guidance.

2. A shelf root directory. You can call your shelf directory anything you like.
However, it's recommended that you create it somewhere under the /var
directory. For example, you might create a z/OS UNIX directory called
/var/cicsts/. Having created the shelf directory, you must give the CICS
region userid full access to it—read, write, and execute. How to do this is
described in Giving CICS regions access to z/OS UNIX System Services.

3. A deployed JAR file directory (also known as a pickup directory). You can call
your pickup directory anything you like. However, it's recommended that you
create it somewhere under the /var directory. For example, you might create a
z/OS UNIX directory called /var/cicsts/pickup. You must give the CICS
region userid at least read access to it.

Chapter 9. Stable Java technologies 239

Note:

a. If you were to install multiple CorbaServer execution environments into
your EJB server, you would need to create a separate pickup directory for
each one.

b. If you use the scanning mechanism (to install deployed JAR files from the
pickup directory) in a production region, be aware of the security
implications: specifically, the possibility of CICS command security on DJAR
definitions being circumvented. To guard against this, we recommend that
user IDs given write access to the z/OS UNIX deployed JAR file directory
should be restricted to those given RACF authority to create and update
DJAR and CORBASERVER definitions.

Actions required on CICS:

Note that if you have previously configured CICS as an IIOP server, to support
method calls to CORBA stateless objects, you might already have completed some
of these steps.

About this task

1. Install the IBM 64-bit SDK for z/OS, Java Technology Edition. You can
download this product, and find out more information about it, at
http://www.ibm.com/servers/eserver/zseries/software/java/.

2. Set up CICS to support IIOP calls. (CICS uses the same RMI-over-IIOP protocol
to support client method requests for both CORBA stateless objects and
enterprise beans.) How to do this is described in “Setting up CICS for IIOP” on
page 375.
Bear in mind when reading “Setting up CICS for IIOP” on page 375 that:
v Because our single-region EJB server is a combined listener/AOR, you must

specify 'YES' on the IIOPLISTENER system initialization parameter.
v CICS loads JVM profiles from the z/OS UNIX directory that is specified by

the JVMPROFILEDIR system initialization parameter. Make sure this value
specifies the directory containing the JVM profiles used by your CICS region.

v If you want to use your single-region server as the basis of a multi-region
server, you should ensure that the request streams directory file, DFHEJDIR,
and the EJB object store file, DFHEJOS, can be shared across multiple
regions. For this reason, it is recommended that you define them in one of
the following ways:
– As remote files in a file-owning region (FOR)
– As coupling facility data tables
– Using VSAM RLS.

v PROGRAM definitions are not required for enterprise beans as such. The
only PROGRAM definitions required are those for the request receiver and
request processor programs. The default request processor program—named
by the default CIRP transaction on REQUESTMODEL definitions—is DFJIIRP.
CIRP and DFJIIRP are defined in the supplied resource definition group
DFHIIOP, as are CIRR and DFHIIRRS, the request receiver transaction and
program. DFHIIOP is included in the default CICS startup group list.
If you are using a JVM profile other than the default DFHJVMCD, you must
specify the name of your profile on the JVMPROFILE option of the
PROGRAM definition for the request processor program. (It is possible to
use a CEMT SET PROGRAM JVMPROFILE command to change the JVM
profile from that specified on the installed PROGRAM definition. However, if
you create your own JVM profile you are recommended to create new

240 CICS TS for z/OS 4.2: Java Applications in CICS

http://www.ibm.com/servers/eserver/zseries/software/java/

TRANSACTION and PROGRAM definitions for the request processor
program, rather than change the default definitions.)

v You must specify the location of your name server on the
-Dcom.ibm.cics.ejs.nameserver system property in the profiles that are used
by CORBA applications or enterprise beans, including the profiles that CICS
uses to publish deployed JAR files.
For detailed information about defining the location of your name server, see
“JVM system properties” on page 109.

v You don't need to install REQUESTMODEL or DJAR definitions at this stage,
because:
– The EJB IVP and EJB sample applications use the default

REQUESTMODEL transaction ID, CIRP.
– REQUESTMODEL definitions are most easily created by using the CREA

transaction after you have deployed your enterprise beans into CICS.
Deployment is a separate process that occurs after you have set up your
EJB server. It is described in “Deploying enterprise beans” on page 295.

– DJAR definitions are typically created and installed by the CICS scanning
mechanism during deployment.

3. Create the following CICS resource definitions:
v A TCPIPSERVICE
v A CORBASERVER

The CICS-supplied sample group, DFH$EJB, contains TCPIPSERVICE and
CORBASERVER definitions suitable for running the EJB IVP. You must change
some of the attributes of these resource definitions to suit your own
environment. To do this, use the CEDA transaction or the DFHCSDUP utility.
a. Copy the sample group to a group of your own choosing. For example:

CEDA COPY GROUP(DFH$EJB) TO(mygroup)

b. Display group mygroup and change the following attributes appropriately:
v On the TCPIPSERVICE resource definition, modify the PORTNUMBER as

necessary to a suitable TCP/IP port on your installation. The port
number that you specify must be authorized by your network
administrator.

Note:

1) Note that, on the supplied TCPIPSERVICE definition:
– The PROTOCOL option specifies IIOP. This is the required protocol

for method calls to enterprise beans and CORBA stateless objects.
– The SSL option specifies NO.
– The AUTHENTICATE option defaults to NO. This means that the

service on this port will accept unauthenticated inbound IIOP
requests.

2) If you want to use your single-region server as the basis of a
multi-region server, as described in “Setting up a multiregion EJB
server” on page 246, you should specify a value for the DNSGROUP
option. This ensures that, in a multi-region server, you will be able to
use connection optimization, by means of dynamic DNS registration,
to balance client connections across the listener regions.

3) For reference information about TCPIPSERVICE definitions, see the
CICS Resource Definition Guide.

v On the CORBASERVER resource definition:

Chapter 9. Stable Java technologies 241

1) Modify the SHELF option so that it specifies the fully-qualified name
of the z/OS UNIX shelf directory that you created in step 2 of
“Actions required on z/OS UNIX” on page 239.

Note: In a multi-region EJB server, because the CORBASERVER
definition will be installed on all the AORs this “high-level” shelf
directory will be shared by all of them. Each AOR will automatically
create its own sub-directory beneath the shelf directory, and a
sub-directory for the CorbaServer beneath that.

2) Modify the DJARDIR option so that it specifies the fully-qualified
name of the z/OS UNIX deployed JAR file directory (pickup
directory) that you created in step 3 of “Actions required on z/OS
UNIX” on page 239.

Note: In a multi-region EJB server, the pickup directory (or
directories, if the AORs contain multiple CorbaServers), like the shelf
directory, will be shared by all the AORs in the logical server.

3) Set the HOST to your TCP/IP hostname.

Note:

1) Note that, on the supplied CORBASERVER definition:
– The UNAUTH option specifies the name of the TCPIPSERVICE

definition.
You must always specify a value for the UNAUTH attribute when
you define a CorbaServer, even if you intend that all inbound
requests to the CorbaServer should be authenticated. This is
because the port number from the TCPIPSERVICE is used to
construct Interoperable Object References (IORs) that are exported
from this logical server. You can, by specifying the name of other
TCPIPSERVICE definitions on one or both of the CLIENTCERT or
SSLUNAUTH options, cause your listener regions to listen on other
ports for different types of authenticated inbound IIOP requests.
For more information, see the CICS Resource Definition Guide.

– The AUTOPUBLISH option specifies YES. This causes CICS to
publish beans to the namespace automatically, when a DJAR
definition is successfully installed.

– The STATUS option specifies Enabled.
2) The value of the HOST option of the CORBASERVER definition must

be compatible with that of the HOST or IPADDRESS options for the
associated TCPIPSERVICE resources. In a multi-region server, if
dynamic DNS registration is used to balance client connections across
the listener regions, the value of the HOST option must match the
generic host name specified on the DNSGROUP option of the
TCPIPSERVICE definition.

3) For reference information about CORBASERVER definitions, see the
CICS Resource Definition Guide.

c. Install group mygroup to make these definitions known to CICS.
When the CORBASERVER definition is installed, CICS:
1) Scans the pickup directory that you specified on the DJARDIR option
2) Copies any deployed JAR files that it finds in the pickup directory to its

shelf directory

242 CICS TS for z/OS 4.2: Java Applications in CICS

3) Dynamically creates and installs DJAR definitions for the deployed JAR
files (if any) that it found in the pickup directory

4) Because the CORBASERVER definition specifies AUTOPUBLISH(YES),
publishes any enterprise beans contained in the DJARs to the JNDI
namespace.

d. Set the status of the TCPIPSERVICE to OPEN:
CEMT SET TCPIPSERVICE(EJBTCP1) OPEN

On the CICS Console, you should see, among others, messages similar to
the following:
DFHEJ0701 CorbaServer EJB1 has been created.
DFHEJ5024 Scan commencing for CorbaServer EJB1, directory being scanned is

DJARDIR_name.
DFHEJ5025 Scan completed for CorbaServer EJB1, 0 DJars created, 0 DJars

updated.
DFHEJ1520 CorbaServer EJB1 is now accessible.
DFHSO0107 TCPIPSERVICE EJBTCP1 has been opened on port port_number at IP

address xxx.xxx.xxx.xxx

where:
v DJARDIR_name is the name of your CorbaServer's deployed JAR file

(“pickup”) directory.
v port_number is the number of the TCP/IP port used by your

CorbaServer.
v xxx.xxx.xxx.xxx is your CorbaServer's IP address.

4. Set up CICS to use JNDI. To enable Java code running under CICS to issue
JNDI API calls, and CICS to publish references to the home interfaces of
enterprise beans, you must specify the location of the name server. (For an
LDAP name server there is additional information to be specified.) Specify the
URL and port number of your name server on the
-Dcom.ibm.cics.ejs.nameserver system property.
For example, to use tnameserv, the lightweight COS Naming Directory Server
supplied with Java 1.3 and later, specify:
-Dcom.ibm.cics.ejs.nameserver=iiop://tnameserv.yourcompany.com:2809

where tnameserv.yourcompany.com is the address of the host on which you
started the tnameserv name server and 2809 is the port you selected.
If you are using an enterprise-quality LDAP server you might specify:
-Dcom.ibm.cics.ejs.nameserver=ldap://demojndi.yourcompany.com:389

For the other properties that are required, and the way to set up your LDAP
name server, see “Setting up an LDAP server” on page 364.
If you are using a standard COS Naming Directory Server you might specify:
-Dcom.ibm.cics.ejs.nameserver=iiop://demojndi.yourcompany.com:900

If you are using the COS Naming Directory Server supplied with WebSphere
Application Server Version 5 or later, you should specify:

-Dcom.ibm.cics.ejs.nameserver=iiop://demojndi.yourcompany.com:2809/domain/legacyRoot

Important: For detailed information about defining the location of the name
server, see the description of the -Dcom.ibm.cics.ejs.nameserver property in
“JVM system properties” on page 109.
The JVM profile for the default request processor program is DFHJVMCD. If
you have followed the previous steps in this section, the profile or profiles you
are using should be in the z/OS UNIX directory specified by the JVMPROFILEDIR
system initialization parameter.

Chapter 9. Stable Java technologies 243

Important: These instructions have shown you how to set up a single-region EJB
server that contains a single CorbaServer execution environment. In a production
region that supports multiple applications, each of which uses its own set of
enterprise beans, you may require multiple CorbaServers. To facilitate maintenance
in a production region, you should follow the guidelines on how to allocate beans
to CorbaServers and transaction IDs in “Updating enterprise beans in a production
region” on page 301.

Having completed the above steps, you can, if you wish, run the EJB Installation
Verification Program, which tests that you have configured CICS correctly as an
EJB server. For details of the EJB IVP, see “Using the EJB IVP” on page 255.
Alternatively, you can continue with the next section before running the IVP.

After running the EJB IVP—optional steps:

Optionally, to finish the setup of your complete EJB server, you can customize one
of the sample JVM profiles, or create your own JVM profiles for use with
enterprise beans, rather than using the default JVM profile DFHJVMCD.

About this task

DFHJVMCD can only be customized in limited ways, because it is used for
internal CICS programs, but other JVM profiles can be customized as you want.

“Setting up pooled JVMs” on page 88 tells you how to select and customize a JVM
profile, or if you prefer, how to create your own JVM profile based on one of the
supplied sample profiles. Follow the procedures in that section to customize or
create your JVM profile.

When you have customized or created your JVM profile, in order for the profile to
be used by enterprise beans:
1. Specify the name of your JVM profile on the JVMPROFILE option of the

PROGRAM definition for the request processor program. (The supplied
PROGRAM definition for the default request processor program, DFJIIRP,
specifies the default profile, DFHJVMCD.)
You should create your own TRANSACTION and PROGRAM definitions for
the request processor program, as described in “Defining CICS resources” on
page 377, rather than change the default definitions. Specify the name of your
TRANSACTION on REQUESTMODEL definitions for bean methods that are to
run under the new profile.

2. Place your profile in the z/OS UNIX directory specified by the JVMPROFILEDIR
system initialization parameter.

Important: You must specify the location of your name server on the
-Dcom.ibm.cics.ejs.nameserver system property in all the JVM profiles or optional
properties files that are used by CORBA applications or enterprise beans, including
the profiles that CICS uses to publish deployed JAR files. For detailed information
about defining the location of your name server, see “JVM system properties” on
page 109.

Testing your EJB server
This section tells you how to check that your single-region CICS EJB server is
configured correctly.

Running the EJB IVP:

244 CICS TS for z/OS 4.2: Java Applications in CICS

The easiest way to test your CICS EJB configuration, including that of your name
server, is to run the EJB Installation Verification Program (IVP) supplied with CICS.

The IVP consists of:
v A line-mode client program that runs in UNIX System Services (USS) on z/OS
v An enterprise bean running on the CICS EJB server

To run the IVP, you must have completed all the steps in “Before running the EJB
IVP” on page 238. You may or may not have completed the steps in “After
running the EJB IVP—optional steps” on page 244. Running the IVP successfully
confirms that external programs are able to invoke enterprise beans on your CICS
EJB server.

For details of the EJB IVP, see “Using the EJB IVP” on page 255.

Using the EJB “Hello World” sample:

“Hello World” is a simple application consisting of an HTML form, a Java servlet
and Java Server Pages running on a Web server, and a CICS enterprise bean.

It requests input from the user, uses the enterprise bean to append the user's input
to a standard message, and then displays the resulting string.

To run the EJB “Hello World” sample, you must have completed all the steps in
“Before running the EJB IVP” on page 238. You may or may not have completed
the steps in “After running the EJB IVP—optional steps” on page 244.

For details of the EJB “Hello World” application, and instructions on how to install
it, see “The EJB “Hello World” sample application” on page 259.

Using the EJB Bank Account sample:

After you've run the Hello World” sample successfully, you might want to try
something more ambitious.

The EJB Bank Account sample demonstrates how you can use an enterprise bean
to make CICS-controlled information available to Web users. It extracts customer
information from data tables and returns it to the user.

The sample consists of an HTML form, a Java servlet and Java Server Pages
running on a Web server, a CICS enterprise bean, two CICS COBOL server
programs, and some DB2 data tables. The enterprise bean uses the CCI Connector
for CICS TS to link to the CICS server programs, which access the DB2 data tables.

To run the EJB Bank Account sample, you must have completed all the steps in
“Before running the EJB IVP” on page 238. You may or may not have completed
the steps in “After running the EJB IVP—optional steps” on page 244.

For details of the EJB Bank Account application, and instructions on how to install
it, see “The EJB Bank Account sample application” on page 266.

Using your own enterprise beans:

After you've run the sample applications and established that your CICS EJB
server is working correctly, you'll probably want to deploy your own enterprise
beans into CICS.

Chapter 9. Stable Java technologies 245

For details of how to do this, see “Deploying enterprise beans” on page 295.

Setting up a multiregion EJB server
This section tells you how to set up a CICS logical EJB server consisting of
multiple listener regions and multiple AORs.

Before you begin

To set up a multiregion EJB server, you must have already created a single region
EJB server as described in “Setting up a single-region EJB server” on page 238.

About this task

Ensure that all the regions in a multiregion EJB server, both listeners and AORs,
are at the same level of CICS.

Procedure
1. Create a set of listener regions by cloning the single-region-server CICS. All the

cloned regions share the CICS system definition file (CSD) of the single-region
server. Optionally, you can discard the following resource definitions from the
listener regions, where they are not required:
v CORBASERVER
v DJARs
v DFHEJOS
Leave the value of the IIOPLISTENER system initialization parameter set to YES.

Note: If you use CICSPlex SM, you can define a CICS Group (CICSGRP)
containing all of the listener regions. This has the advantage that resources can
be associated (by means of a Resource Description) with the Group rather than
with individual regions. When a region is added to or removed from the
Group, the resources are automatically added to or removed from the region.

2. Create a set of AORs by cloning the single-region-server CICS. (All the cloned
regions share the CSD of the single-region server.)
Each of the AORs must use the same JNDI initial context as the other AORs.
Because the AORs are not listener regions, change the value of the
IIOPLISTENER system initialization parameter to 'NO'.

Note: If you use CICSPlex SM, you can define a CICS Group (CICSGRP)
containing all of the AORs. When a region is added to or removed from the
Group, the resources are automatically added to or removed from the region.
Figure 17 on page 248 shows which definitions are required in the listener
regions, which in the AORs, and which in both.

3. Connect each of the AORs to all of the listener regions by MRO (not ISC). For
information about how to define MRO connections between CICS regions, see
the CICS Intercommunication Guide.
If you use CICSPlex SM, you can significantly reduce the number of
CONNECTION and SESSION definitions required (and the cost of maintaining
them) by defining SYSLINKs from a single AOR to all of the listener regions.
(CICSPlex SM automatically creates the reciprocal connections from the
listeners to the AOR.) Use the SYSLINKs as models for the connections from
the other AORs.

4. Ensure that the EJB Directory file, DFHEJDIR, is shared by all the regions in the
EJB server. If you defined DFHEJDIR to the single-region EJB server in the way

246 CICS TS for z/OS 4.2: Java Applications in CICS

suggested (that is, as a remote file, a coupling facility data table, or as using
VSAM RLS) the file should be shared automatically across the cloned regions of
the multiregion server.

Note: Ensure that the CICS region that owns the DFHEJDIR file is started
before the other regions that access it, particularly the AORs. If you don't,
attempts to install CORBASERVER and DJAR definitions on the other AORs
will fail with message DFHEJ0736.

5. Ensure that the EJB Object Store file, DFHEJOS, is shared by all the AORs in
the EJB server. If you defined DFHEJOS to the single-region EJB server in the
way suggested, the file should be shared automatically across all the cloned
regions of the multiregion server. (Optionally, you can delete the definition of
DFHEJOS from the listener regions, where it's not required.)

6. To balance client connections across the listener regions, use connection
optimization by means of dynamic DNS registration. How to set this up is
described in “Domain Name System (DNS) connection optimization” on page
358.

7. Arrange for method requests for enterprise beans to be dynamically routed
across the AORs. You can use either of the following:
a. CICSPlex SM. How to use CICSPlex SM to route method requests for

enterprise beans is described in “CICSPlex SM with enterprise beans” on
page 345.

b. A customized version of the CICS distributed routing program, DFHDSRP.
How to write a distributed routing program to route method requests for
enterprise beans and CORBA stateless objects is described in the CICS
Customization Guide.

On the DSRTPGM system initialization parameter for the listener regions,
specify the name of the distributed routing program to be used. If you're using
CICSPlex SM, specify the name of the CICSPlex SM routing program,
EYU9XLOP. Otherwise, specify the name of your customized routing program.
For information about the DSRTPGM system initialization parameter, see
DSRTPGM system initialization parameter in the System Definition Guide.

Remember:

a. To route method requests for enterprise beans dynamically, the
TRANSACTION definition for the transaction named on your
REQUESTMODEL definitions must specify DYNAMIC(YES). The default
transaction named on REQUESTMODEL definitions, CIRP, is defined as
DYNAMIC(NO). We recommend that you take a copy of the
TRANSACTION definition for CIRP, change the DYNAMIC setting, and
save the definition under a new name. Then name your new transaction on
REQUESTMODEL definitions. (The easiest way to create REQUESTMODEL
definitions is to use the CREA transaction after you have deployed your
enterprise beans into CICS.)

b. The “common” transaction definition specified on the DTRTRAN system
initialization parameter, and used for terminal-initiated transaction routing
requests if no TRANSACTION definition is found, is never associated with
method requests for enterprise beans. If, on the listener region, there is no
REQUESTMODEL definition that matches the request, the request runs
under the CIRP transaction (which specifies DYNAMIC(NO).

c. In Figure 17 on page 248, the REQUESTMODEL definitions in the AORs are
required for outbound requests to local objects. If a CORBA stateless object
or enterprise bean makes a call to another object, and that object is available
on the local AOR, CICS does not send the request to a listener region.

Chapter 9. Stable Java technologies 247

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_dsrtpgm.html

Instead, it either runs the called method in the current task (“tight
loopback”) or starts another request processor in the local AOR (“normal
loopback”). Where normal loopback is used, it's preferable that the new
request processor task should use the same REQUESTMODEL as that used
for the call to the first object—otherwise, unpredictable results may occur. If
your CORBA stateless objects and enterprise beans make no outbound calls,
the REQUESTMODELs on the AOR are not strictly required.

Results

These steps describe how to set up a multiregion EJB server in which each region
contains a single CorbaServer execution environment. In production regions that
support multiple applications, each of which uses its own set of enterprise beans,
you might require multiple CorbaServers. To facilitate maintenance in production
regions, follow the guidelines on how to allocate beans to CorbaServers and
transaction IDs in “Updating enterprise beans in a production region” on page 301.

This diagram shows which definitions are required in the listener regions, which in
the AORs, and which in both.

Upgrading an EJB server to CICS Transaction Server for z/OS,
Version 4 Release 2
This section tells you how to upgrade a back-level EJB server to CICS TS for z/OS,
Version 4.2.

Upgrading a single-region CICS EJB/CORBA server:

Perform these steps to upgrade a single-region CICS EJB/CORBA server to CICS
Transaction Server for z/OS, Version 4 Release 2.

CORBASERVERs
CorbaServer execution
environments

Stateful session
bean store file

DFHEJOS

DFHEJDIR
Request stream
directory file

Cloned CICS AORsCloned CICS listener regions

COMMON DEFINITIONS

REQUESTMODELs

TCPIPSERVICEs

AOR DEFINITIONSLISTENER DEFINITIONS

CICS logical EJB server

Deployed
JAR files

DJARs

SIT
IIOPLISTENER=YES

SIT
IIOPLISTENER=NO

Figure 17. Resource definitions in a multiregion CICS EJB server

248 CICS TS for z/OS 4.2: Java Applications in CICS

Procedure

1. Quiesce the workload.
2. Shut down the region.
3. Upgrade the region to CICS Transaction Server for z/OS, Version 4 Release 2,

following the standard upgrade procedures described in the Upgrading
information set for the release from which you are upgrading.

4. Review “Upgrade tips” on page 253, which describes some of the changes in
EJB/CORBA support between different releases of CICS. You can also refer to
“Setting up a single-region EJB server” on page 238, which describes in detail
how to set up a single-region EJB server in CICS TS for z/OS, Version 4.2.

5. Restart the region.
6. Republish the Interoperable Object References (IORs) for all the enterprise

beans and stateless CORBA objects processed by the server by issuing a
PERFORM CORBASERVER(CorbaServer_name) PUBLISH command. You can issue this
command using EXEC CICS, CEMT, the Resource Manager for enterprise beans,
or from a CICSPlex SM WUI view. Remember to issue a separate command for
each CorbaServer in the region.

Upgrading a multi-region CICS EJB/CORBA server:

To upgrade a multi-region CICS EJB/CORBA server to CICS Transaction Server for
z/OS, Version 4 Release 2, you can use any of these methods.

About this task

1. Shut down the server, upgrade all the regions, and restart the server.

This approach is very similar to that described in “Upgrading a single-region
CICS EJB/CORBA server” on page 248, except that:
a. You must upgrade all the regions to CICS Transaction Server for z/OS,

Version 4 Release 2 before restarting the server. Again, follow the standard
upgrade procedures described in the Upgrading information set for the
release from which you are upgrading.

b. You should refer to “Setting up a multiregion EJB server” on page 246,
which describes in detail how to set up a multi-region EJB server in CICS
TS for z/OS, Version 4.2.

c. To republish the IORs of enterprise beans and stateless CORBA objects,
issue a PERFORM CORBASERVER(CorbaServer_name) PUBLISH command
on at least one of the AORs. Remember to issue a separate command for
each CorbaServer in the AOR.

The advantage of this approach is its relative simplicity, compared to solutions
2 and 3. Its main disadvantage is that the server's applications are unavailable
during the upgrade process.

2. Create a separate, CICS TS for z/OS, Version 4.2, logical server and gradually
move applications from the old, back-level, server to the new one.

The advantages of this approach are:
a. Applications are kept available throughout the upgrade process.
b. You can start with a minimal CICS TS for z/OS, Version 4.2 server, perhaps

consisting of just two regions—one listener and one AOR. As more
applications are moved, you can expand the CICS TS for z/OS, Version 4.2
server and simultaneously reduce the number of regions in the back-level
server, thereby conserving resources.

c. It is probably easier to implement than solution 3.

Chapter 9. Stable Java technologies 249

To set up a new CICS TS for z/OS, Version 4.2 multi-region EJB server, follow
all the steps in “Setting up a single-region EJB server” on page 238 and “Setting
up a multiregion EJB server” on page 246.

3. Perform a “rolling upgrade”.
In a “rolling upgrade”, one region at a time is upgraded from the previous to
the current level of CICS, while keeping the server operational.
The advantages of this approach are:
a. Applications are kept available throughout the upgrade process.
b. Unlike solution 2, at no stage is it necessary to set up additional CICS

regions.
This method is described in detail in “Performing a “rolling upgrade”.”

Performing a “rolling upgrade”:

The mixed level of operation described in this section, in which different CICS
regions in the same logical server are at different levels of CICS, is intended to be
used only for rolling upgrades.

Important

It should not be used permanently, because it increases the risk of failure in some
interoperability scenarios. The normal, recommended, mode of operation is that all
the regions in a logical sever should be at the same level of CICS and Java.

This section describes how to perform a “rolling upgrade” of a multi-region CICS
EJB/CORBA server to CICS Transaction Server for z/OS, Version 4 Release 2. The
process consists of the following steps:
1. Checking that your logical server meets the criteria for a “rolling upgrade”. See

“Requirement.”
2. “Preliminary steps”
3. “Upgrading the listener regions” on page 251
4. “Upgrading the AORs” on page 252
5. “Tidying up” on page 253

Requirement:

Your server must consist of separate listener and application-owning regions. This
is because the upgrade process requires all of the listener regions to be updated
before any of the application-owning regions (AORs).

If you run composite listener-AORs, which act both as request receivers and
request processors, this cannot be done. And if you don't upgrade all the listeners
before any of the AORs, your IIOP client applications may receive transient failures
during the migration window, depending on the CICS version of the listener
region that receives the request.

Preliminary steps:
About this task

1. Review “Upgrade tips” on page 253.
2. If you are upgrading from CICS TS 2.2, ensure that APAR PQ 79565 is installed

in all your CICS TS 2.2 regions. This APAR improves CICS TS 2.2 diagnostics,
should CICS TS for z/OS, Version 4.2 workload arrive at a CICS TS 2.2 region.

250 CICS TS for z/OS 4.2: Java Applications in CICS

It also allows a CICS TS 2.2 request processor (AOR) to receive work from a
CICS TS for z/OS, Version 4.2 request receiver (listener).

3. Set the AUTOPUBLISH option on all your CORBASERVER definitions to NO.
Setting a CorbaServer to autopublish IORs into the JNDI namespaces could
disrupt the upgrade process.

4. If you use a distributed routing program to balance method requests for
enterprise beans and CORBA stateless objects across the AORs of your logical
server, customize your routing program to use the DYRLEVEL parameter.
DYRLEVEL is an aid to upgrade. It contains the level of CICS required in the
target AOR to successfully process the routed request. (Note that this is the
specific, not the minimum, level of CICS required to process the request
successfully.) In a mixed-level logical server, when your routing program is
invoked for route selection (or route selection error), it can use the value of
DYRLEVEL to determine whether to route the request to a back-level or CICS
TS for z/OS, Version 4.2 AOR.
For details of how to use DYRLEVEL, and definitive information about writing
a distributed routing program, see the CICS Customization Guide.
Install your customized program on all the regions (both listeners and AORs) of
the EJB server.
If you use CICSPlex SM to workload-balance method requests you can skip this
step. The CICSPlex SM routing program supplied with CICS Transaction Server
for z/OS, Version 4 Release 2 checks the DYRLEVEL field and routes requests
accordingly.

Upgrading the listener regions:

Perform these steps to upgrade a listener region.

About this task

1. Quiesce a listener region and bring it down.
2. Upgrade this single listener region to CICS Transaction Server for z/OS,

Version 4 Release 2, following the standard upgrade procedures described in
the Upgrading information set for the release from which you are upgrading.

Important:

a. If you upgrade a CSD from CICS TS 2.2 to CICS TS for z/OS, Version 4.2
level, if it is shared by any CICS TS 2.2 regions other than that being
upgraded, include the DFHCOMPA resource group (supplied with CICS TS
for z/OS, Version 4.2) in the startup group list of these regions.
DFHCOMPA is a compatibility group that provides a definition of DFJIIRP,
the default request processor program, that can be used by a CICS TS 2.2
region when sharing a CICS TS for z/OS, Version 4.2 CSD.
This step is necessary because, in CICS TS for z/OS, Version 4.2, the JVM
profile used by DFJIIRP is DFHJVMCD. In CICS TS 2.2, it is DFHJVMPR.

b. At this stage, don't enable any new, CICS TS for z/OS, Version 4.2-specific,
options on resource definitions, because they won't be understood by the
back-level AORs. Use of these new features must wait until the whole
logical server—both listener regions and AORs—has been upgraded.

For definitive information about setting up a listener region in CICS TS for
z/OS, Version 4.2, refer to “Configuring CICS for IIOP” on page 362.

3. Bring the listener back up. This region is now at the newer version of CICS but
may continue to participate as part of the back-level logical server.

4. Repeat steps 1 through 3 for all of the listener regions in the logical server.

Chapter 9. Stable Java technologies 251

Upgrading the AORs:

To upgrade an AOR for enterprise beans, perform these steps.

About this task

1. Quiesce an AOR and bring it down.
2. Upgrade this single AOR to CICS Transaction Server for z/OS, Version 4

Release 2, following the standard upgrade procedures described in the
Upgrading information set for the release from which you are upgrading.
If you are upgrading from CICS TS 2.2, part of this will involve updating the
JVM profile used by the CorbaServers. Note the changes to JVM profiles and
property files that were introduced in CICS TS 2.3, as described in “Upgrade
tips” on page 253.

Important:

a. If you upgrade a CSD from CICS TS 2.2 to CICS TS for z/OS, Version 4.2
level, if it is shared by any CICS TS 2.2 regions other than that being
upgraded, include the DFHCOMPA resource group (supplied with CICS TS
for z/OS, Version 4.2) in the startup group list of these regions.

b. At this stage, don't enable any new, CICS TS for z/OS, Version 4.2-specific,
options on resource definitions.

3. Bring the AOR back up again.
4. Ensure that all TCPIPSERVICEs are open both in this AOR and in the listener

regions.
5. Use the CEMT PERFORM DJAR PUBLISH command to re-publish the IORs of

one or more enterprise beans in CICS TS for z/OS, Version 4.2 format. For each
CorbaServer, select one or more deployed JAR files to re-publish. When
choosing deployed JAR files to re-publish, bear the following in mind:
v Try to pick DJARs whose entire workload can be processed by a single

region.
v Wherever possible, all the beans used by an application should be upgraded

at the same time. For example, if bean A is known to call bean B the two
beans should be upgraded together. If this is not possible, bean A should be
upgraded first.
This is particularly important if you are upgrading from CICS TS 2.2 and the
beans are installed in the same CorbaServer but in different AORs that are at
different levels of CICS. This is because a CICS TS 2.2 region cannot do a
JNDI look up of an object in a CICS TS for z/OS, Version 4.2 region if both
objects are in the same CorbaServer. For example, bean A in CorbaServer
EJB1 in a CICS TS 2.2 AOR cannot look up bean B in CorbaServer EJB1 in a
CICS TS for z/OS, Version 4.2 AOR.

Note: If A and B are installed in different CorbaServers, or in AORs that are
at the same level of CICS, they can be upgraded separately.

Re-publish the selected DJARs to the JNDI namespace, in the same location as
that used by the back-level AORs.
At this point :
v This AOR is ready to accept workload.
v The logical server contains a pool of back-level AORs and a pool (currently

containing only one region) of CICS TS for z/OS, Version 4.2 AORs.

252 CICS TS for z/OS 4.2: Java Applications in CICS

v Any clients that look up the IOR of a re-published bean in the namespace get
the new IOR in CICS TS for z/OS, Version 4.2 format. Your customized
routing program or CICSPlex SM directs such requests to the CICS TS for
z/OS, Version 4.2 AOR.

v Any clients that have a stale, cached, IOR for a bean that's been re-published
are still able to use the bean. Your customized routing program or CICSPlex
SM directs such old-format requests to one of the back-level AORs.

Note: Many application servers cache the results of JNDI lookups locally to
increase performance, so you may find that these caches have to be purged
before the new IORs are used. Over a period of time, requests for
re-published enterprise beans should move gradually from the pool of
back-level AORs to the pool of CICS TS for z/OS, Version 4.2 AORs.

6. Repeat steps 1 through 5 for all of the AORs in the logical server. As each AOR
is upgraded:
v Re-publish a different set of enterprise beans, so that gradually more and

more beans are supported by the pool of CICS TS for z/OS, Version 4.2
regions.

v It becomes less important, when selecting deployed JAR files to re-publish, to
choose those whose entire workload can be processed by a single
region—because there are more AORs in the CICS TS for z/OS, Version 4.2
pool.

Eventually, all the AORs will be running CICS TS for z/OS, Version 4.2 and
processing 100% of the workload.

Tidying up:

To complete rolling upgrade, you must perform these final tasks.

About this task

Procedure

1. If required, reset the AUTOPUBLISH option on your CORBASERVER
definitions to YES.

2. Enable any CICS TS for z/OS, Version 4.2-specific resource definition options
that you want to use.

Results

Upgrade tips:

This section briefly lists some general tips, as a reminder of things to be aware of
when upgrading an EJB server to CICS TS for z/OS, Version 4.2.

All these changes are described in detail in Chapter 4, “Setting up Java support,”
on page 75.
1. JVM profiles are stored in the z/OS UNIX directory pointed to by the

JVMPROFILEDIR system initialization parameter.
2. The default JVM profile used by CorbaServers is DFHJVMCD.
3. Don't enable any new, CICS TS for z/OS, Version 4.2-specific, attributes on

resource definitions during the “rolling upgrade” process. Use of these new
features must wait until the whole logical server, both listener regions and
AORs, has been upgraded.

Chapter 9. Stable Java technologies 253

4. From a CICS TS for z/OS, Version 4.2 AOR, you can re-publish a deployed JAR
file that has previously been published from an earlier release of CICS without
first retracting it. The IORs of the beans are updated to the format for the new
release. However, you cannot do the reverse. From an earlier release of CICS,
before re-publishing a deployed JAR file that has previously been published
from a CICS TS for z/OS, Version 4.2 AOR you must first retract it;
furthermore, because earlier CICS releases do not understand the format of
CICS TS for z/OS, Version 4.2 IORs, you must retract it from a CICS TS for z/OS,
Version 4.2 AOR.
Bear this in mind if, for any reason, you need to back out the upgrade of one
or more AORs. If you ever need to revert the IORs of enterprise beans that
have been published from a CICS TS for z/OS, Version 4.2 AOR to an earlier
level of CICS (so that they can be routed to a back-level AOR once more) you
must:
a. Retract the deployed JAR file from a CICS TS for z/OS, Version 4.2 AOR
b. Publish the deployed JAR file from a back-level AOR
Trying to re-publish the beans without retracting them first, or trying to retract
them from the wrong level of CICS, results in an InvalidUserKeyException:
Bad version number exception.

Potential problems:

1. After the EJB server has been upgraded to CICS TS for z/OS, Version 4.2, some
clients may have stale, cached, IORs that point to the old server. This is because
some application servers cache the results of JNDI lookups locally to increase
performance. You may find that these caches have to be purged before the new
IORs are used.

2. CICS TS 2.3 and later, including CICS TS for z/OS, Version 4.2, support GIOP
1.2, whereas CICS TS 2.2 supports only GIOP 1.1. If a GIOP 1.2 message is
received in a CICS TS 2.2 region it will be rejected. Under normal conditions
this should never happen, because the maximum version of GIOP supported by
CICS is stored in the IORs that CICS publishes. If a client knows that a given
server only supports GIOP 1.1, it will never attempt to use anything more
recent when communicating with that server. This means that CICS TS for
z/OS, Version 4.2 can send GIOP messages to CICS TS 2.2.
The problem will only occur if the client thinks it is talking to CICS TS for
z/OS, Version 4.2 (or CICS TS 3.1 or CICS TS 2.3) but its message is routed to a
CICS TS 2.2 region. This will only happen if CICS TS 2.2 and CICS TS for
z/OS, Version 4.2 regions are set up as sibling request processors (AORs) in the
same logical server. (This is one reason why mixed-level logical servers are not
recommended in CICS.) During a “rolling upgrade”, the logical server does, of
course, contain mixed-level request processors. However, if you follow the
steps in “Performing a “rolling upgrade”” on page 250, the problem (of a GIOP
1.2 message being received in a CICS TS 2.2 region) will not occur.

3. CICS TS 2.3 and later, including CICS TS for z/OS, Version 4.2, use a different
format of IOR from CICS TS 2.2. If a GIOP 1.1 message intended for CICS TS
for z/OS, Version 4.2 is routed to a CICS TS 2.2 region, the CICS TS 2.2 region
will reject the request due to a unknown IOR format being in use. If all the
regions in an EJB/CORBA server are at the same level of CICS and Java, this
error cannot occur.
During a “rolling upgrade”, the logical server does, of course, contain
mixed-level regions. However, if you follow the steps in “Performing a “rolling
upgrade”” on page 250, this problem will not occur.

254 CICS TS for z/OS 4.2: Java Applications in CICS

Using the EJB IVP
The EJB Installation Verification Program (IVP) is a small application that CICS
installers can use to verify the CICS EJB environment.

The EJB IVP uses a client program that does not require the use of a Web server.
The IVP consists of:
v A line-mode client program that runs in UNIX System Services on z/OS
v A stateless session enterprise bean running on the CICS EJB server

The IVP tests:
v The CICS JVM (including its reusability).
v Optionally, your “real”, enterprise-level, name server. (By default, the IVP uses

the lightweight tnameserv COS Naming Server supplied with Java.)
v The EJB server's ability to run a basic enterprise bean.
v z/OS UNIX settings (including file access permissions).

Once configured, the client:
1. Performs a JNDI lookup to find the published reference to a specific enterprise

bean in the JNDI namespace
2. Creates a new instance of the enterprise bean in CICS
3. Calls a remote method on the bean-instance

Prerequisites for the EJB IVP
Before running the EJB IVP, you will need these resources.
v A UNIX System Services user ID and file editor.
v A CICS EJB server. The way to set one up is described in “Setting up a

single-region EJB server” on page 238.
v A name server that supports the Java Naming and Directory Interface (JNDI)

Version 1.2 or later. The way to set up an enterprise-quality name server is
described in “Enabling JNDI references” on page 364. Alternatively, you can use
the lightweight tnameserv COS Naming Server supplied with Java.

Note:

1. These prerequisites assume you are testing a single-region CICS EJB server.
2. To run the IVP, you must have completed the steps in “Before running the EJB

IVP” on page 238.
3. Before starting, check that the storage size for your TSO session is at least 6000

KB. To increase the storage size, at the standard TSO logon screen change the
value in the SIZE field.

Installing the EJB IVP
To install the EJB you must set up z/OS UNIX, and CICS. On z/OS UNIX System
Services you must configure the client.

z/OS UNIX setup for the EJB IVP:

The IVP uses the same CICS enterprise bean as the EJB “Hello World” sample
application.

The sample is described in “The EJB “Hello World” sample application” on page
259. Thus, on z/OS UNIX, you must copy the HelloWorldEJB.jar deployed JAR
file from the EJB samples directory to the deployed JAR file (“pickup”) directory
that you created in “Before running the EJB IVP” on page 238.

Chapter 9. Stable Java technologies 255

Note: Both the source and executable code of the enterprise bean is in the
HelloWorldEJB.jar file.

The samples directory is: /usr/lpp/cicsts/cicsts42/samples/ejb/helloworld,
where /usr/lpp/cicsts/cicsts42 is the install directory for CICS files on z/OS
UNIX.

Remember that z/OS UNIX names are case-sensitive.

CICS setup:

Before running the EJB IVP, you must perform these CICS setup tasks.

About this task

1. If EJB role-based security is active in your CICS region, you must turn it off
before running the IVP. That is, if both the SEC and XEJB system initialization
parameters currently specify 'YES', you must set XEJB to 'NO' and restart CICS.

2. The CICS-supplied sample resource group, DFH$EJB, contains TCPIPSERVICE
and CORBASERVER definitions suitable for running the IVP. You must change
some of the attributes of these resource definitions to suit your own
environment, and install the changed definitions into CICS. You should already
have done this, as part of the task of setting up your EJB server. If you have
not, follow the step-by-step instructions in “Actions required on CICS” on page
240.

3. Issue a CEMT PERFORM CORBASERVER(EJB1) SCAN command.
CICS:
a. Scans the pickup directory that you specified on the DJARDIR option of the

CORBASERVER definition
b. Copies the HelloWorldEJB.jar deployed JAR file that it finds in the pickup

directory to its shelf directory
c. Dynamically creates and installs a DJAR definition for HelloWorldEJB.jar

d. Because the CORBASERVER definition specifies AUTOPUBLISH(YES),
publishes the enterprise bean contained in HelloWorldEJB.jar to the JNDI
namespace.

4. If you have not already done so while setting up your CorbaServer, set the
status of the TCPIPSERVICE to OPEN:
CEMT SET TCPIPSERVICE(EJBTCP1) OPEN

On the CICS Console, you should see, among others, messages similar to the
following:
DFHEJ5024 Scan commencing for CorbaServer EJB1, directory being scanned is

DJARDIR_name.
DFHEJ5030 New DJar HelloWorldEJB is being created during a scan against

CorbaServer EJB1.
DFHEJ0901 DJar HelloWorldEJB within CorbaServer EJB1 has been created.
DFHEJ5025 Scan completed for CorbaServer EJB1, 1 DJars created, 0 DJars updated.
DFHEJ5032 DJar HelloWorldEJB is having its contents automatically published to

the namespace.
DFHEJ5009 Published bean HelloWorld to JNDI server

iiop://nameserver.location.company.com:2809 at location samples.
DFHEJ1540 DJar HelloWorldEJB and the Beans it contains are now accessible.

where:
v DJARDIR_name is the name of your CorbaServer's deployed JAR file

(“pickup”) directory.

256 CICS TS for z/OS 4.2: Java Applications in CICS

v iiop://nameserver.location.company.com:2809 is the URL and port number of
your name server. In this example, a COS Naming Server is used.

Configuring the client:

The source code of the client application is in the HelloWorldCLI.jar file.

About this task

On z/OS UNIX System Services, you must:
1. Copy the runEJBIVP script to a working directory. The original runEJBIVP script

is located, with the IVP sample, in the following directory:
/usr/lpp/cicsts/cicsts42/samples/ejb/helloworld

where cicsts42 is the install directory for CICS files on z/OS UNIX.
2. Edit your copy of runEJBIVP script as follows. This is necessary so that the

client can locate the published enterprise bean in the JNDI namespace. (A
typical client will not have access to the CICS JVM profile.)
a. Modify the JAVA_HOME variable to your IBM SDK 6.0.1 installation

directory, as indicated by the comments in the script. The line to be changed
is:
JAVA_HOME=/usr/lpp/<Java SDK java installation directory>/J6.0.1_64

b. Modify the CICS_HOME variable to your install directory for CICS files on
z/OS UNIX, as indicated by the comments in the script. The line to be
changed is:
CICS_HOME=/usr/lpp/cicsts/<CICS installation directory>

c. Modify the JNDI_PROVIDER_URL variable to the URL and port number of
your name server, as indicated by the comments in the script. The line to be
changed is:
JNDI_PROVIDER_URL=iiop://nameserver.location.company.com:2809

The above line assumes that you are using a COS name server, such as
tnameserv, the lightweight COS Naming Directory Server supplied with
Java 1.3 and later, and that it is configured to listen on port 2809.
If, for example, you are using a COS name server configured to listen on
port 900, you might specify:
JNDI_PROVIDER_URL=iiop://nameserver.location.company.com:900

If you are using the tnameserv name server, configured to listen on port
2809, on a workstation named myworkstation.acme.com you should specify:
JNDI_PROVIDER_URL=iiop://myworkstation.acme.com:2809

To start the tnameserv program, type the following command at the
workstation command prompt:
tnameserv -ORBInitialPort 2809

If you are using the COS Naming Directory Server supplied with
WebSphere Application Server Version 5 or later, configured to listen on
port 2809, you should specify:

JNDI_PROVIDER_URL=iiop://nameserver.location.company.com:2809/domain/legacyRoot

If you are using an LDAP name server, the protocol should be ldap rather
than iiop; the port number should be 389. For example:
JNDI_PROVIDER_URL=ldap://nameserver.location.company.com:389

Chapter 9. Stable Java technologies 257

d. If you are using an LDAP name server, modify the LDAP_CONTAINERDN
and LDAP_NODEROOTDN variables, as indicated by the comments in the
script.
If you are using a COS naming server, these properties are ignored.

e. If necessary, modify the INITIAL_CONTEXT_FACTORY variable as
indicated by the comments in the script. Usually, you can leave this
property to default. However, some JNDI service providers cannot be
accessed using the default initial context factory. For example, if you are
using WebSphere Application Server as your JNDI provider you should set
this variable to com.ibm.websphere.naming.WsnInitialContextFactory.

f. If you have set up your CorbaServer and installed the IVP in the way
suggested, the CORBASERVER_JNDI_PREFIX and BEAN_NAME variables
will already be set to the correct values. See the comments in the script.

Running the EJB IVP
To run the EJB Installation Verification Program, you must perform these steps.

About this task

Procedure
1. Check that the name server is running.

a. To start tnameserv on the local host, enter the following command at the
z/OS UNIX System Services or Windows command prompt:
tnameserv -ORBInitialPort 2809

This causes tnameserv to listen for connections on TCP/IP port 2809.
2. Run the IVP client program from your z/OS UNIX System Services working

directory by typing ./runEJBIVP. On your z/OS UNIX System Services
terminal, you should see messages similar to the following:
CICS EJB IVP: Querying the Java SDK level
java version "1.6.0"
Java(TM) SE Runtime Environment (build pmz6460_26-20110218_01)
IBM J9 VM (build 2.6, JRE 1.6.0 z/OS s390x-64 20110217_75924 (JIT enabled, AOT enabled)
J9VM - R26_Java626_GA_20110217_1713_B75924
JIT - r11_20110215_18645
GC - R26_Java626_GA_20110217_1713_B75924
J9CL - 20110217_75924)
JCL - 20110207_01
CICS EJB IVP: Starting the EJB client program
HelloWorld client program started
Performing JNDI lookup using CosNaming
Testing the following location: samples/HelloWorld
Located home interface for HelloWorld bean
You said: Hello from CICS EJB IVP client
HelloWorld client program ended
CICS EJB IVP: Completed successfully

Note:

a. In this example, a COS Naming Server has been used. If you use an LDAP
name server, similar messages are produced.

b. If you get a javax.naming.CommunicationException, it may be because the
MVS hostname is incorrect in your tcpip.data file. You may be able to fix
the problem by adding an entry for the MVS system to your /etc/hosts
file. For guidance, see the MVS manuals.

In your JVM stdout file, you should see the following message:
CICS EJB hello world sample called with string: Hello from CICS EJB IVP client

258 CICS TS for z/OS 4.2: Java Applications in CICS

3. After running the IVP, you must perform the following steps.
a. Discard the resource definitions that you created in mygroup.
b. If you turned off EJB role-based security before running the IVP, turn it

back on. To do this, restart CICS with the XEJB system initialization
parameter set to 'YES'.

Running the sample EJB applications
The sample EJB applications require a CICS EJB server.

Important

You must configure CICS, as described in “Setting up an EJB server” on page 238,
before attempting to install the samples.

CICS supplies the following sample EJB applications:

The EJB Installation Verification Program (IVP)
A simple application that you can use to test your CICS EJB environment and
name server. A Web server is not required. See “Using the EJB IVP” on page
255.

The EJB “Hello World” sample
A simple application that you can use to test your EJB environment, including
CICS, your name server, and your Web server. See “The EJB “Hello World”
sample application.”

The EJB Bank Account sample
A more complex application that demonstrates how you can use enterprise
beans to make existing, CICS-controlled, information available to Web users.
See “The EJB Bank Account sample application” on page 266.

The EJB “Hello World” sample application
“Hello World” is a simple application that you can use to test your EJB
environment, including CICS, your name server, and your Web server.

What the EJB “Hello World” sample does:

The sample application requests input, appends the input to a standard message,
and displays the resulting string.

The sample consists of:
v An HTML form.
v A Java servlet, plus JavaServer Pages (JSPs), running in a J2EE-compliant Web

application server.
v An enterprise bean running on a CICS EJB server.

The sample works like this:
1. The user starts the application from a web browser. A form is displayed.
2. The form asks the user to input a phrase. When the user presses the SUBMIT

button, the servlet is invoked.
3. The servlet:

a. Looks up a reference to the enterprise bean in the JNDI namespace
b. Creates a new remote instance of the enterprise bean in CICS
c. Invokes a method on the bean-instance, passing as input the phrase input

by the user

Chapter 9. Stable Java technologies 259

4. The enterprise bean appends the user's phrase to the string “You said ” and
returns the result to the servlet.

5. The servlet uses a JavaServer Page to display the result on the user's web
browser.

Figure 18 shows the components of the sample application. The main elements of
the sample are a Java servlet and an enterprise bean. In this example, the servlet is
running in a Web application server on a Windows server; a COS Naming Server
is used. Other configurations are possible. For example, an LDAP name server
could have been used; or the COS Naming Server might not have been hosted in
the same application server as the servlet.

Prerequisites for the EJB “Hello World” sample:

You need these resources to run the EJB “Hello World” sample.
v A CICS EJB server. The way to set one up is described in “Setting up an EJB

server” on page 238.
v A Web application server that supports J2EE Version 1.2.1 or later. If you are

using WebSphere Application Server, note that the sample requires WebSphere
Application Server Version 4 or later.

v A name server that supports the Java Naming and Directory Interface (JNDI)
Version 1.2 or later. The way to set one up is described in “Actions required on
z/OS or Windows NT” on page 239.

Supplied components of the EJB “Hello World” sample:

These files are supplied with the EJB “Hello World” sample.

Web
browser

Workstation

Enterprise bean

CICS

z/OS

Web
server

NT server

J2EE Web
application server

Java
servlet

JNDI

COS
Naming
Server

JSP

Figure 18. Overview of the EJB “Hello World” sample application

260 CICS TS for z/OS 4.2: Java Applications in CICS

Table 16. Supplied components of the EJB “Hello World” sample

Filename Type Default location Comments

CICSHelloWorld.ear EAR file z/OS UNIXsamples
directory: see Note.

The Web components of the sample
application—Java servlet classes and source files;
HTML and JSPs.

DFH$EJB Resource
definition group

CSD Contains the CICS resource definitions required
by the sample application.

HelloWorldCLI.jar JAR file z/OS UNIX samples
directory: see Note.

Client EJB stubs required by the servlet.

HelloWorldEJB.jar Deployed JAR
file

z/OS UNIX samples
directory: see Note.

Java classes, source files, deployment descriptor,
plus supporting classes for the CICS enterprise
bean. Doesn't need to be unpacked unless you
want to modify the source code.

readme.txt Text file z/OS UNIX samples
directory: see Note.

Contains:

1. Step-by-step instructions for installing the
Web components of the EJB “Hello World”
sample on WebSphere Application Server.

2. Hints, tips, and debugging information.

Note: The default z/OS UNIX samples directory is

/usr/lpp/cicsts/cicsts42/samples/ejb/helloworld

where /usr/lpp/cicsts/cicsts42 is the install directory for CICS files on z/OS UNIX.

Installing the EJB “Hello World” sample:

You must set up these resources to install the EJB “Hello World” sample.
1. z/OS UNIX. If you've previously run the EJB IVP, you will have performed this

action already.
2. CICS. If you've previously run the EJB IVP, you will have performed these

actions already.
3. The Web application server.

z/OS UNIX setup for EJB “Hello World” sample:

If necessary, on z/OS UNIX copy the HelloWorldEJB.jar deployed JAR file from
the EJB samples directory to your CorbaServer's deployed JAR file (“pickup”)
directory.

Note:

1. You need to do this only if you haven't already installed the HelloWorldEJB.jar
deployed JAR file while running the EJB IVP.

2. The deployed JAR file directory is the directory that you created in “Before
running the EJB IVP” on page 238 and specified on the DJARDIR option of the
CORBASERVER definition.

3. The samples directory is: /usr/lpp/cicsts/cicsts42/samples/ejb/helloworld,
where /usr/lpp/cicsts/cicsts42 is the install directory for CICS files on z/OS
UNIX.

4. Remember that z/OS UNIX names are case-sensitive.
5. The HelloWorldEJB.jar file contains both the source and executable code for

the enterprise bean.

CICS setup:

Chapter 9. Stable Java technologies 261

About this task

1. If EJB role-based security is active in your CICS region, you must turn it off
before running the EJB “Hello World” sample. That is, if both the SEC and
XEJB system initialization parameters currently specify 'YES', you must set
XEJB to 'NO' and restart CICS.

2. The CICS-supplied sample group, DFH$EJB, contains TCPIPSERVICE and
CORBASERVER definitions suitable for running the EJB “HelloWorld” sample.
You must change some of the attributes of these resource definitions to suit
your own environment, and install the changed definitions into CICS. You
should already have done this, as part of the task of setting up your EJB server.
If you haven't, follow the step-by-step instructions in “Actions required on
CICS” on page 240.

Note: Group DFH$EJB does not contain a REQUESTMODEL definition,
because it's not necessary to install one. The sample uses the default transaction
ID, CIRP.
a. If necessary, issue a CEMT PERFORM CORBASERVER(EJB1) SCAN command. (You

need to do this only if you haven't already installed the HelloWorldEJB.jar
deployed JAR file while running the EJB IVP.) CICS:
1) Scans the pickup directory
2) Copies the HelloWorldEJB.jar deployed JAR file that it finds in the

pickup directory to its shelf directory
3) Dynamically creates and installs a DJAR definition for

HelloWorldEJB.jar

4) Because the CORBASERVER definition specifies AUTOPUBLISH(YES),
publishes the enterprise bean contained in HelloWorldEJB.jar to the
JNDI namespace.

3. If you have not already done so, set the status of the TCPIPSERVICE to OPEN:
CEMT SET TCPIPSERVICE(EJBTCP1) OPEN

If you issued the CEMT PERFORM CORBASERVER(EJB1) SCAN command, on the
CICS Console you should see, among others, messages similar to the following:
DFHEJ5024 Scan commencing for CorbaServer EJB1, directory being scanned is

DJARDIR_name.
DFHEJ5030 New DJar HelloWorldEJB is being created during a scan against

CorbaServer EJB1.
DFHEJ0901 DJar HelloWorldEJB within CorbaServer EJB1 has been created.
DFHEJ5025 Scan completed for CorbaServer EJB1, 1 DJars created, 0 DJars updated.
DFHEJ5032 DJar HelloWorldEJB is having its contents automatically published to

the namespace.
DFHEJ5009 Published bean HelloWorld to JNDI server

iiop://nameserver.location.company.com:900 at location samples.
DFHEJ1540 DJar HelloWorldEJB and the Beans it contains are now accessible.

where:
v DJARDIR_name is the name of your CorbaServer's deployed JAR file

(“pickup”) directory.
v iiop://nameserver.location.company.com:900 is the URL and port number of

your name server. In this example, a COS Naming Server is used.

Web application server setup:

On the Web application server, you must install the Web components of the EJB
“Hello World” sample application.

262 CICS TS for z/OS 4.2: Java Applications in CICS

About this task

From the z/OS UNIX EJB samples directory, you need:
v CICSHelloWorld.ear. A J2EE enterprise archive (EAR) file, containing the Web

components of the sample and the source code of the servlet and JSPs.
v readme.txt. A text file, containing:

1. Step-by-step instructions for installing the Web components of the sample on
WebSphere Application Server.

2. Hints, tips, and debugging information.

Note: The default samples directory is
/usr/lpp/cicsts/cicsts42/samples/ejb/helloworld

where /usr/lpp/cicsts/cicsts42 is the install directory for CICS files on z/OS
UNIX.

Important: The rest of this section contains generic instructions for installing the
Web components of the sample on a J2EE-compliant Web application server (which
may or may not be WebSphere). It is suitable for experienced users. If your Web
application server is WebSphere Application Server Version 4 or later and you are a
novice user of that product, we recommend that you follow instead the detailed,
WebSphere-specific instructions in the readme.txt file.
1. Install the Web components of the EJB “Hello World” sample (contained in

CICSHelloWorld.ear) in your J2EE Web application server, following the
vendor's guidelines for installing applications. In WebSphere Application Sever,
for example, this involves using the administration console to:
a. Install a new application
b. Generate the updated Web server plugin
c. Save the configuration

Note: CICSHelloWorld.ear includes a default configuration for the EJB “Hello
World” sample. To run the sample, it is not necessary to edit or add any
configuration information.

2. Start the application using your Web application server's standard procedure.

Testing the EJB “Hello World” sample:

You must perform these steps to test the application.

About this task

1. Ensure that all the following are running:
v The Web server
v The Web application server and the sample application
v The name server
v The CICS region

2. Start a Web browser and point it at the URL of your Web server, followed by
“cicshello”. For example:
http://myServer.ibm.com/cicshello

The opening screen shown in Figure 19 on page 264 appears.

Chapter 9. Stable Java technologies 263

3. Enter a phrase in the Hello String: field.
4. Check that the Provider URL:, CORBASERVER JNDI prefix:, Bean Name:,

Container Distinguished Name:, Node Root Relative Distinguished Name:,
and JNDI Initial Context Factory: fields contain values that are valid for
your installation. If they do not, overtype them as follows:

Provider URL:
Enter the URL and port number of the name server where the enterprise

Figure 19. Opening screen of the EJB “Hello World” sample application

264 CICS TS for z/OS 4.2: Java Applications in CICS

bean is published. (These are specified by the
-Dcom.ibm.cics.ejs.nameserver property in your JVM properties file.) For
example:
v If you are using an LDAP name server with a URL of myldapns.ibm.com

and a port number of 389, specify “ldap://myldapns.ibm.com:389”.
v If you are using a standard COS Naming Server with a URL of

mycosns.ibm.com and a port number of 900, specify “iiop://
mycosns.ibm.com:900”.

v If you are using the COS Naming Directory Server supplied with
WebSphere Application Server Version 5 or later, with a URL of
mycosns.ibm.com and a port number of 2809, specify:
-Dcom.ibm.cics.ejs.nameserver=iiop://mycosns.ibm.com:2809/domain/legacyRoot

For detailed information about how to specify the location of the name
server, see the description of the -Dcom.ibm.cics.ejs.nameserver property
in “JVM system properties” on page 109.

CORBASERVER JNDI prefix:
Enter the JNDI prefix of your CorbaServer. If you are using the
CORBASERVER definition supplied in DFH$EJB, you do not need to
change the default value of “samples”.

Bean name:
Enter the name of the enterprise bean used by the sample, as defined in the
deployment descriptor in the supplied HelloWorldEJB.jar file. Unless you
have renamed the bean, you do not need to change the default value of
“HelloWorld”.

Container Distinguished Name:
If you are using an LDAP name server, enter the distinguished name of the
LDAP system namespace root, as supplied by your LDAP administrator.
(The distinguished name of the LDAP system namespace root is specified
by the -Dcom.ibm.ws.naming.ldap.containerdn property in your JVM
properties file.) If you are using a COS Naming Server, the value of this field is
ignored.

Node Root Relative Distinguished Name:
If you are using an LDAP name server, enter the distinguished name of the
LDAP node root, as supplied by your LDAP administrator. (The
distinguished name of the LDAP node root is specified by the
-Dcom.ibm.ws.naming.ldap.noderootrdn property in your JVM properties
file.) If you are using a COS Naming Server, the value of this field is ignored.

JNDI Initial Context Factory:
Select the appropriate JNDI initial context factory from the drop-down list.
If your Web application server is WebSphere, the factory to use depends on:
v The version of WebSphere you're using
v The location of WebSphere—that is, whether it's on a distributed

platform such as Windows NT or a host platform such as z/OS
v The type of name server you're using—COS naming or LDAP

Table 17 on page 266 shows the correct initial context factory to specify, if
your Web application server is WebSphere.

Chapter 9. Stable Java technologies 265

Table 17. Setting the initial context factory, according to the version and location of WebSphere and the type of name
server

WebSphere
Version

Location of Web
application
server

Name server
type

Initial context factory to use

3.5 Distributed COS com.ibm.ejs.ns.jndi.CNInitialContextFactory

3.5 Distributed LDAP com.ibm.jndi.LDAPCtxFactory

3.5 z/OS COS com.sun.jndi.cosnaming.CNCtxFactory

3.5 z/OS LDAP com.sun.jndi.ldap.LdapCtxFactory

4 or later Distributed COS or
LDAP

com.ibm.websphere.naming.WsnInitialContextFactory

4 or later z/OS COS com.sun.jndi.cosnaming.CNCtxFactory

4 or later z/OS LDAP com.sun.jndi.ldap.LdapCtxFactory

If your Web application server is not WebSphere, choose the appropriate
value from the drop-down list.

Note: The drop-down list contains several initial context factory classes,
plus a “default” list item. The sample application assigns the value of the
default list item as follows:
a. If the com.ibm.websphere.naming.WsnInitialContextFactory class is

found in the Java classpath, the sample makes it the default item. This
class is a “wrapper” class that wraps both
com.ibm.ejs.ns.jndi.CNInitialContextFactory and
com.ibm.jndi.LDAPCtxFactory. The sample determines the correct base
class to use by examining the type of name server that you've specified
in the Provider URL field: if the specified protocol is “iiop”, the sample
uses com.ibm.ejs.ns.jndi.CNInitialContextFactory; if it's “ldap”, the
sample uses com.ibm.jndi.LDAPCtxFactory.

b. If the com.ibm.websphere.naming.WsnInitialContextFactory class is not
found in the Java classpath, the sample determines the correct class to
use by examining the type of name server that you've specified in the
Provider URL field: if the specified protocol is “iiop”, the sample uses
com.ibm.ejs.ns.jndi.CNInitialContextFactory; if it's “ldap”, the
sample uses com.ibm.jndi.LDAPCtxFactory.

If none of the values in the drop-down list are valid for your installation,
select the Other radio button and enter the correct value in the lower text
field.

5. Press the SUBMIT button. This invokes the servlet and runs the application.
If the application is configured correctly and the input values are valid, the
HelloWorldResults JSP displays the message “You said your phrase” in the web
browser (where your phrase is the phrase you entered in step 3).
If the application is not configured correctly, or one or more of the input values
is invalid, the HelloWorldError JSP displays an error message in the web
browser. The readme.txt file contains hints and tips that may help you debug a
failed application.

The EJB Bank Account sample application
The EJB Bank Account sample demonstrates how you can use enterprise beans and
DB2 to make existing, CICS-controlled, information available to Web users.

266 CICS TS for z/OS 4.2: Java Applications in CICS

What the EJB Bank Account sample does:

The sample application extracts customer information from data tables and returns
it to the user.

The sample consists of:
v An HTML form.
v A Java servlet, plus JavaServer Pages, running in a J2EE-compliant Web

application server.
v An enterprise bean running on a CICS EJB server.
v Two DB2 data tables containing customer information. One contains account

information such as current balance; the other contains name and address
details.

v Two CICS server programs, written in COBOL. The DFH0ACTD program
retrieves information from the accounts data table. The DFH0CSTD program
retrieves information from the name and address data table.

The sample works like this:
1. The user starts the application from a Web browser. A form is displayed.
2. The form requests a customer number from the user. When the user has

entered a customer number and pressed the SUBMIT button, the servlet is
invoked.

3. The servlet:
a. Looks up a reference to the enterprise bean in the JNDI namespace
b. Creates a new remote instance of the enterprise bean in CICS
c. Invokes a method on the bean-instance, passing as input the customer

number input by the user
4. The enterprise bean uses the Common Connector Interface (CCI) of the CCI

Connector for CICS TS to link to the CICS COBOL server programs, passing
the customer number.
The CCI Connector for CICS TS is described in “The CCI Connector for CICS
TS” on page 311.

5. The server programs use the specified number as the key to the DB2 records
for this customer. They retrieve the customer's details from the DB2 data tables
and return the account number, balance, and address to the enterprise bean.

6. The enterprise bean returns the customer's details to the servlet, which uses a
JavaServer Page to display them on the user's web browser. If the customer
number is not valid, the web browser displays an error page.

Figure 20 on page 268 shows the components of the sample application. The main
elements of the sample are a Java servlet, an enterprise bean, two CICS server
programs, and two DB2 data tables. The sample extracts customer details from the
data tables and returns them to the user. In this example, the servlet is running in
a Web application server on a Windows server; an LDAP name server is used.
Other configurations are possible. For example, a COS Naming Server could have
been used.

Chapter 9. Stable Java technologies 267

Prerequisites for the EJB Bank Account sample:

You will need these resources to run the EJB Bank Account sample.
v A CICS EJB server. The way to set one up is described in “Setting up an EJB

server” on page 238.
v DB2 Version 7 or later.
v A Web application server that supports J2EE Version 1.2.1 or later. If you are

using WebSphere Application Server, note that the sample requires WebSphere
Application Server Version 4 or later.

v A name server that supports JNDI Version 1.2 or later. The way to set one up is
described in “Actions required on z/OS or Windows NT” on page 239.

Supplied components of the EJB Bank Account sample:

These files are supplied with the EJB Bank Account sample.

Enterprise bean

CICS COBOL
programs

CCI connector
for CICSTS

CICS

z/OS

Web
server

Java
servlet

JSP

J2EE Web
application server

NT server

Web
browser

Workstation

DB2

LDAP server

JNDI

Figure 20. Overview of the EJB Bank Account sample application

268 CICS TS for z/OS 4.2: Java Applications in CICS

Table 18. Supplied components of the EJB Bank Account sample

Filename Type Default
location

Comments

DFH$EDB2 Text deck SDFHSAMP DB2 data definition language (DDL)
statements to define the DB2 data
tables used by the sample and to
populate them with data.

DFH$ESQL Text deck SDFHSAMP DB2 data manipulation language
(DML) statements to bind the DB2 data
tables to the COBOL server programs.

DFH$EJB2 Resource
definition
group

CSD Contains the CICS resource definitions
required by the sample application.

DFH0ACTD COBOL
source code

SDFHSAMP Source code of the DFH0ACTD server
program.

DFH0CSTD COBOL
source code

SDFHSAMP Source code of the DFH0CSTD server
program.

DFHEBURM Sample
user
replaceable
program

SDFHSAMP Changes the user ID under which the
sample runs.

CicsSample.ear EAR file z/OS UNIX
samples
directory: see
Note.

The Web components of the sample
application—Java servlet classes and
source files; HTML and JSPs.

readme.txt Text file z/OS UNIX
samples
directory: see
Note.

Contains:

1. Step-by-step instructions for
installing the Web components of
the EJB sample on WebSphere
Application Server.

2. Hints, tips, and debugging
information.

SampleCLI.jar JAR file z/OS UNIX
samples
directory: see
Note.

Client EJB stubs required by the
servlet.

SampleEJB.jar Deployed
JAR file

z/OS UNIX
samples
directory: see
Note.

Java classes, source files, deployment
descriptor, plus supporting classes for
the CICS enterprise bean. Doesn't need
to be unpacked unless you want to
modify the source code.

Note: The default z/OS UNIX samples directory is

/usr/lpp/cicsts/cicsts42/samples/ejb/bankaccount

where cicsts42 is the install directory for CICS files on z/OS UNIX.

Security of the EJB Bank Account sample:

It is recommended that you run the Bank Account sample in a secure environment.
However, in order to simplify the installation process, you may choose not to do so
at first.

Chapter 9. Stable Java technologies 269

If you don't want to activate the secure environment immediately, set the XEJB
system initialization parameter to 'NO' and skip the rest of this section. To activate
the secure environment at a later date, follow the instructions in the rest of this
section.

You can implement security for the sample in a number of ways. For example, you
can use any of the following alternatives:
v Allow all users to run the sample under the default user ID.
v Allow all users to run the sample under a user ID specified by the security exit

program for IIOP.
v Use an SSL server-side certificate to encrypt the data sent between the Web-tier

and CICS, allowing all users to run the sample over a secure transport, under
the default user ID.

v Use an SSL server-side certificate to encrypt the data sent between the Web-tier
and CICS, allowing all users to run the sample over a secure transport, under a
user ID specified by the security exit program for IIOP.

v Use SSL client certification to automatically authenticate the Web-tier application
server to CICS, allowing all users to run the sample over a secure transport,
under a user ID assigned to the Web-tier application server.

v Use asserted identity authentication to allow Web-tier client applications running
in WebSphere Application Server for z/OS to propagate their existing user IDs
to CICS over a secure transport.

Note:

1. By default, the Bank Account application does not require the user to be
authenticated at the Web-tier. You can choose to activate authentication in the
Web container by following your application server's instructions. If you do
authenticate in the Web tier, the security principle is not propagated to CICS, so
in terms of CICS security it has no effect. However, early authentication in the
Web-tier could be used to create a “protection domain” under which CICS
trusts the Web-tier not to allow unauthenticated users to invoke business
methods on CICS enterprise beans.

2. In order to use SSL encryption or authentication, you require a J2EE-compliant
Web application server that fully supports SSL. Consult your vendor's
documentation for further details.

3. For more information about SSL authentication, see SSL authentication, in the
CICS RACF Security Guide.

Whichever authentication method you choose, you need (among other things) to:
1. Provide authorization information in the deployment descriptor of the

enterprise bean in CICS. This authorization information consists of:

A “security role” element
Identifies a class of user who is allowed to perform a given action or use a
given resource.

A “method permission” element
Identifies specific methods of the enterprise bean that members of the
specified security role are authorized to use.

2. Update your CICS external security manager (ESM) to map the specified
security role to a number of real user IDs. The following step-by-step
instructions for implementing security assume that your ESM of choice is
RACF. If you use a different ESM, consult your ESM vendor for guidance.

270 CICS TS for z/OS 4.2: Java Applications in CICS

Implementing role-based security for the Bank Account sample:

You can implement role-based security for the Bank Account sample using the
Assembly Toolkit (ATK, which is a component of the Application Server Toolkit,
ASTK).

About this task

This tool is shipped as part of WebSphere Application Server Version 5.1 and later.
You can use the graphical user interface of ATK to (among other things) edit the
contents of an enterprise bean's deployment descriptor.

Before you start, ensure that you have ATK installed on your workstation. Once
installed, the tool can be launched from an icon which is added to your Start menu
in Windows.

ATK is used for the first stage of implementing role-based security, which involves
editing the deployment descriptor for the enterprise bean. When you have
completed that stage, follow the instructions for the second stage of implementing
role-based security, which involves configuring other software.

Stage 1. Using ATK to edit the deployment descriptor:

At this point, in order to familiarise yourself with ATK, you can browse through
the contents of the JAR file.
1. Copy the SampleEJB.jar file from the z/OS UNIX samples directory to your

workstation. You can do this using FTP in binary mode, or any other method of
your choice. The z/OS UNIX samples directory is /usr/lpp/cicsts/cicsts42/
samples/ejb/bankaccount. For ATK, you also need to perform the same process
for the dfjcci.jar file, which is in the /usr/lpp/cicsts/cicsts42/lib directory.
You do not need to edit that JAR file, but ATK needs it to rebuild the JAR file
for the EJB bank account sample correctly after editing.

2. Import the JAR file into ATK as an EJB project.
a. Start ATK, and go to the J2EE perspective by selecting Window > Open

Perspective > J2EE.
b. Select the Import option from the File menu. Select EJB JAR file as the

import source. Select Browse and find the SampleEJB.jar file. Enter a
suitable name for the project. Select Next and choose to import all
enterprise beans, which is the default. Select Finish to create the EJB project.

c. When the project is created, you should see some errors appear in the Tasks
list. To correct these errors, you need to add the dfjcci.jar file to the build
path for the EJB project. In the left-hand navigation pane (using the J2EE
hierarchy view), expand the EJB Modules item to see your EJB project.
Right-click on the project name and select Properties. Select Java Build
Path. Go to the Libraries tab and select the Add External JARs button.
Navigate to the dfjcci.jar file and select Open. Select OK. ATK rebuilds
the EJB project and the errors should disappear.

For more information about the EJB deployment descriptor, see “Enterprise
beans—the deployment descriptor” on page 219.

3. Add security roles to the deployment descriptor. In ATK, in the left-hand
navigation pane (using the J2EE hierarchy view), expand the EJB Modules item
to see your EJB project. Double-click on the project name to open the project.
Select the Assembly Descriptor tab at the bottom of the pane. Under Security
Roles, select the Add button to add a new security role.

Chapter 9. Stable Java technologies 271

If your organisation has already set up security roles for use with other
applications, you may want to reuse an existing role. If so, supply the name of
the role that you want to use in the field provided. If you don't have an
existing security role that you want to reuse, enter a new role name, such as
“All_users”. You can also provide an optional description of the role to act as a
memory aid in the future. Select Finish to return to the main window.

Note: If you reuse an existing security role which is already defined to your
ESM, you must remove the Display Name element from the JAR file's
deployment descriptor. This element is used by CICS to provide an application
name which is prefixed to all security role names when performing a security
check at runtime, thus providing support for security roles scoped at the
application level rather than enterprise-wide. In ATK, you can remove this
element by selecting the Overview tab at the bottom of the pane. Select the text
in the Display Name field and delete it.

4. Now define a method permission and associate it with a security role. In ATK,
select the Assembly Descriptor tab again. Under Method Permissions, select
the Add button. The wizard presents a list of the security roles that you have
defined. For the Bank Account sample, it's appropriate to run all the methods
under the same security role. Select the security role that you want to associate
with the method permission, and select Next. Select the CICSSample bean, and
select Next. Check the box for CICSSample to select all the method elements for
the bean. Select Finish. You are returned to the previous screen.

5. Save the updated deployment descriptor by selecting the Save option from the
File menu.

6. Export the project from ATK back into a JAR file on your workstation. To do
this, select the Export option from the File menu. Select EJB JAR file as the
export destination, and select Next. Select your EJB project from the drop-down
list. Select Browse and locate the SampleEJB.jar file to be used as the
destination. (This overwrites your original version of the file. You might want
to keep a backup of the original version of the file on your workstation under a
different name.) Select the checkbox for Export source files to keep the source
files with the JAR file. Select Finish. Exit ATK.

7. Copy the updated SampleEJB.jar file back to z/OS UNIX. You can use either
FTP in binary mode or your preferred file transfer process. Save the
SampleEJB.jar file to the pickup directory of your CorbaServer.

Stage 2. Configuring other security settings:

The CICS user ID (or IDs) that you choose to associate with the security role
defined in the enterprise bean's deployment descriptor should be chosen according
to which security implementation you opted for at the start of this section.
1. Ensure that both the SEC and the XEJB CICS system initialization parameters

specify 'YES'. (If either specifies 'NO', EJB role-based security is turned off.)
2. If you reused an existing security role that had already been set up in your

installation, you can skip this step, which is to update RACF to associate the
EJB security role with a set of CICS user IDs.

Note: If your ESM is not RACF, you must seek advice from your ESM vendor
as to how to perform this step.
For example:
v If you want to allow all anonymous users to run the sample (whether using

SSL or not), you should associate the CICSUSER default user ID with the
security role.

272 CICS TS for z/OS 4.2: Java Applications in CICS

v If you want to run the sample under a user ID (or IDs) selected by the
security exit program for IIOP (whether using SSL or not), you should
associate that user ID (or IDs) with the security role.

v If you want to use full SSL client certification, you should associate the user
ID of the Web-tier application server's certificate with the security role.

To set up the necessary EJB security role-to-CICS user ID mapping:
a. Run the RACF EJBROLE generator utility against the updated

SampleEJB.jar file. (The RACF EJBROLE generator utility is a Java program
that extracts security role information from deployment descriptors, and
generates a REXX program which defines security roles to RACF. For
information on how to use the generator utility, see “Using the RACF
EJBROLE generator utility” on page 344.)

b. Ask your RACF administrator to run the REXX program generated by the
RACF EJBROLE generator utility.

3. If you don't want to use the the security exit program for IIOP to alter the user
ID that the sample runs under (from the default CICS user ID to another ID of
your choice), you can skip this step.
CICS supplies a sample security exit program, DFHEBURM, that alters the user
ID under which the Bank Account sample runs from the default CICS user ID
to “SAMPLE”. You can use this version of the user-replaceable program, or
alter it to suit your needs. If you already have a customized security exit
program for IIOP, you can update your version to perform a similar function.
You must specify the name of your security exit program on the URM option
of the TCPIPSERVICE definition under which the sample is to be run.
For guidance information about the security exit program for IIOP, see“Using
the IIOP user-replaceable security program” on page 384.
For information about writing a security exit program for IIOP, see the CICS
Customization Guide. Also, study the source of the supplied sample program,
which contains comments and tips.
For information about compiling and installing user-replaceable programs, see
Assembling and link-editing user-replaceable programs, in the CICS
Customization Guide.
For information about coding TCPIPSERVICE definitions, see the CICS Resource
Definition Guide.

4. If you are using SSL encryption or authentication, you must:
v Configure your J2EE-compliant Web application server to use SSL. Refer to

your Web server's documentation for guidance.
v Have a server certificate available for use.
v Alter the definitions of the CORBASERVER and TCPIPSERVICE resources

under which the sample is to be run. That is:
– If you are using SSL client-side authentication, the CLIENTCERT option of

the CORBASERVER definition must specify the name of a TCPIPSERVICE
that defines the port to be used for inbound IIOP requests with SSL client
certification. Also, the Web application server's SSL certificate must be:
- Included in the list of certificates trusted by CICS, in RACF
- Mapped to a RACF user ID

– If you are using SSL server-side authentication, the SSLUNAUTH option
of the CORBASERVER definition must specify the name of a
TCPIPSERVICE that defines the port to be used for inbound IIOP requests
with SSL but no client certification.

Chapter 9. Stable Java technologies 273

For information about coding CORBASERVER resource definitions and
TCPIPSERVICE resource definitions, see the the CICS Resource Definition
Guide.

v If you are using asserted identity authentication for encryption,
authentication, and identity propagation, you must:
– Configure WebSphere Application Server for z/OS to authenticate users.
– If you are using WebSphere Application Server for z/OS Version 6.1 or

later, to enable a suitable authentication protocol, specify the system
property -Dcom.ibm.cics.iiop.CSIv2Enabled=true in all of the JVM
properties files used in the CICS region. (Release 6.1.0.13 or later of
WebSphere Application Server for z/OS is required to support this
function.)

– Enable SSL client certification in WebSphere.
– Have a server SSL certificate available for use in CICS.
– Include the server certificate associated with WebSphere Application

Server in the RACF's list of certificates trusted by CICS. Additionally, the
userid associated with the RACF certificate must be granted permission to
assert the identity of other users.

– Alter the definitions of the CORBASERVER and TCPIPSERVICE resources
under which the sample is to run. The ASSERTED option of the
CORBASERVER definition must specify the name of a TCPIPSERVICE
that defines the port to be used for inbound IIOP requests with asserted
identity authentication.

Installing the EJB Bank Account sample:

Installing the EJB Bank Account sample requires actions on:
1. z/OS (DB2 and CICS)
2. The Web application server

z/OS setup:

Use the following procedure to install the EJB sample on z/OS.

About this task

1. Compile and link-edit the CICS COBOL DB2 server programs, using the
normal procedures for your organization. The DFH0ACTD and DFH0CSTD
members of the SDFHSAMP library contain the source code of the server
programs.
Store the load modules in an application load library that is included in the
CICS DD DFHRPL concatenation.

2. Define the DB2 data tables used by the sample, and populate the tables with
data. The DFH$EDB2 text deck contains the necessary DB2 DDL statements
and the supplied data.
Before using DFH$EDB2, you must modify the following line to suit your
system:
CREATE STOGROUP EBSAMPSG VOLUMES(SYSDA,SYSDB) VCAT DSNxxxxx;

Change DSNxxxxx to the name of your high-level integrated catalog facility
(ICF) catalog identifier for user-defined VSAM data sets.
Authority required: DB2 authority to create a database, storage group,
tablespace, tables, and indices.

274 CICS TS for z/OS 4.2: Java Applications in CICS

3. Bind the DB2 tables to the COBOL server programs. The DFH$ESQL text deck
contains the necessary DB2 DML statements.
Authority required: DB2 authority to perform a BIND for this database.

Note:

a. This step statically binds the SQL statements in the server programs to
DB2, so that they do not need to be dynamically bound at execution time,
thus improving runtime performance.

b. If you subsequently recompile one of the server programs and it needs to
access DB2, each time you recompile, use the following steps:
1) Rebind the DB2 tables to the COBOL server programs.
2) Refresh the copy of the server program on CICS by running the

following CICS command in the CICS region:
CEMT SET PROG(program_name) NEW

For example, if you change the DFH0CSTD program and recompile it,
use CEMT SET PROG(DFH0CSTD) NEW. (DFH0CSTD is defined to the CICS
region in the DFH$EJB2 resource definition group—see step 5.)

4. Grant authority to the CICS user ID to access the DB2 plan, using the normal
procedures for your organization (for example, SPUFI). For information about
granting authority to access a DB2 plan, see Controlling users' access to plans
in the CICS DB2 Guide.

5. Define the programs and DB2 connections used by the sample to CICS. The
CICS-supplied sample group, DFH$EJB2, contains resource definitions for the
EJB “Bank Account” sample. You must change some of the attributes of these
resource definitions to suit your own environment. To do this, use the CEDA
transaction or the DFHCSDUP utility.
a. Copy the sample group to a group of your own choosing. For example:

CEDA COPY GROUP(DFH$EJB2) TO(mygroup)

b. Display group mygroup and change the attributes of the following
definitions as shown:
v On the DB2CONN definition, change the value of DB2ID to the ID of

the DB2 subsystem on which you created the DB2 tables used by the
sample.

v The PROGRAM definitions do not need to be modified.
c. Discard the definitions that you do not need from group mygroup.

As well as DB2CONN and PROGRAM definitions, DFH$EJB2 also
contains a CORBASERVER and a TCPIPSERVICE definition. However,
these are for reference only. It is strongly recommended that you set up
your EJB server, as described in “Setting up an EJB server” on page 238,
before attempting to install the sample programs. If you do this, you do not
need the CORBASERVER and TCPIPSERVICE definitions in DFH$EJB2
because you have already created your own, based on those supplied in
resource group DFH$EJB. Discard them from group mygroup.
If you do decide to use the CORBASERVER and TCPIPSERVICE definitions
in DFH$EJB2, you must modify them as described in “Actions required on
CICS” on page 240.
If your CICS region uses program autoinstall, you do not need the
PROGRAM definitions. Discard them from group mygroup.

Note: There is no supplied REQUESTMODEL definition, because it is not
necessary to install one. The sample uses the default transaction ID, CIRP.

Chapter 9. Stable Java technologies 275

d. Add the resource group containing the modified resource definitions to the
CICS CSD, and to the CICS startup group list. You can use the CICS
system definition utility program, DFHCSDUP. See System definition file
utility program (DFHCSDUP) in the CICS Resource Definition Guide.
Authority required: RACF authority to install resource definitions into the
CICS region.

6. If you did not do so when you set up security, put the supplied
SampleEJB.jar deployed JAR file into the pickup directory of your
CorbaServer.

7. Ensure that the name server has been started. If CICS has not been started,
start it now.

8. Issue the following command at the CICS region console:
CEMT PERFORM CORBASERVER(corbaserver_name) SCAN

CICS scans the pickup directory, copies the SampleEJB.jar deployed JAR file
to its shelf directory, and creates and installs a DJAR definition for it.

Note: If you had to start CICS in step 7, this step is not necessary, because
CICS will have scanned the pickup directory on startup.
Authority required: RACF authority to create a DJAR and update access to
the CORBASERVER.

9. Publish the enterprise bean to the JNDI namespace. If your CORBASERVER
definition specifies AUTOPUBLISH(YES), this happened automatically when
the SampleEJB.jar deployed JAR file was installed. If your CORBASERVER
definition specifies AUTOPUBLISH(NO), issue the following command at the
CICS region console:
CEMT PERFORM DJAR(SampleEJB) PUBLISH

Authority required: RACF authority to update a DJAR.
10. Use the CICSConnectionFactoryPublish sample program to create a

ConnectionFactory object for use by the CCI Connector for CICS TS, and to
publish it to the name server. For instructions on how to use the
CICSConnectionFactoryPublish program, see “Using the sample utility
programs to manage and acquire a connection factory” on page 320.

11. Ensure that the DB2 connection status is CONNECTED by issuing the
following command at the CICS system console:
CEMT SET DB2CONN CONNECTED

Web application server setup:

On the Web application server, you must install the Web components of the EJB
Bank Account sample application.

About this task

From the z/OS UNIX EJB samples directory, you need:
v CicsSample.ear. A J2EE enterprise archive (EAR) file containing the Web

components of the sample.
v readme.txt. A text file containing:

1. Step-by-step instructions for installing the Web components of the sample on
WebSphere Application Server.

2. Hints, tips, and debugging information.

Note: The default samples directory is

276 CICS TS for z/OS 4.2: Java Applications in CICS

/usr/lpp/cicsts/cicsts42/samples/ejb/bankaccount

where /usr/lpp/cicsts/cicsts42 is the install directory for CICS files on z/OS
UNIX.

Important: The rest of this section contains generic instructions for installing the
Web components of the sample on a J2EE-compliant Web application server (which
may or may not be WebSphere). It is suitable for experienced users. If your Web
application server is WebSphere Application Server Version 4 or later and you are a
novice user of that product, we recommend that you follow instead the detailed,
WebSphere-specific instructions in the readme.txt file.

Procedure

1. Install the Web components of the EJB Bank Account sample (contained in
CicsSample.ear) in your J2EE Web application server, following the vendor's
guidelines for installing applications. In WebSphere Application Sever, for
example, this involves using the administration console to:
a. Install a new application
b. Generate the updated Web server plugin
c. Save the configuration

Note: CicsSample.ear includes a default configuration for the EJB Bank
Account sample. To run the sample, it is not necessary to edit or add any
configuration information.

2. Start the application using your Web application server's standard procedure.

Results

Testing the EJB Bank Account sample:

You must perform these steps to test the application.

About this task

1. Ensure that all the following are running:
v The Web server
v The Web application server and the sample application
v The name server
v The CICS region
v The DB2 subsystem

2. Start a Web browser and point it at the URL of your Web server, followed by
“cicssample”. For example:
http://myServer.ibm.com/cicssample

The opening screen shown in Figure 21 on page 278 appears.

Chapter 9. Stable Java technologies 277

3. Enter a customer number. (Using the supplied DB2 data, valid customer
numbers are 1 through 5).

4. Check that the Provider URL:, CORBASERVER JNDI prefix:, Bean Name:,
Container Distinguished Name:, Node Root Relative Distinguished Name:,
and JNDI Initial Context Factory fields contain values that are valid for your
installation. If they do not, overtype them as follows:

Provider URL:
Enter the URL and port number of the name server where the enterprise

Figure 21. Opening screen of the EJB Bank Account sample application

278 CICS TS for z/OS 4.2: Java Applications in CICS

bean is published. (These are specified by the
-Dcom.ibm.cics.ejs.nameserver property in your JVM properties file.) For
example:
v If you are using a COS Naming Server with a URL of mycosns.ibm.com

and a port number of 900, specify “iiop://mycosns.ibm.com:900”.
v If you are using an LDAP name server with a URL of myldapns.ibm.com

and a port number of 389, specify “ldap://myldapns.ibm.com:389”.
v If you are using the COS Naming Directory Server supplied with

WebSphere Application Server Version 5 or later, with a URL of
mycosns.ibm.com and a port number of 2809, specify:
-Dcom.ibm.cics.ejs.nameserver=iiop://mycosns.ibm.com:2809/domain/legacyRoot

For detailed information about how to specify the location of the name
server, see the description of the -Dcom.ibm.cics.ejs.nameserver property
in “JVM system properties” on page 109.

CORBASERVER JNDI prefix:
Enter the JNDI prefix of your CorbaServer. If you are using the
CORBASERVER definition supplied in DFH$EJB, you do not need to
change the default value of “samples”.

Bean name:
Enter the name of the enterprise bean used by the sample, as defined in the
deployment descriptor in the supplied SampleEJB.jar file. Unless you have
renamed the bean, you do not need to change the default value of “CICSSample”.

Container Distinguished Name:
If you are using an LDAP name server, enter the distinguished name of the
LDAP system namespace root, as supplied by your LDAP administrator.
(The distinguished name of the LDAP system namespace root is specified
by the -Dcom.ibm.ws.naming.ldap.containerdn system property.) If you are
using a COS Naming Server, the value of this field is ignored.

Node Root Relative Distinguished Name:
If you are using an LDAP name server, enter the distinguished name of the
LDAP node root, as supplied by your LDAP administrator. (The
distinguished name of the LDAP node root is specified by the
-Dcom.ibm.ws.naming.ldap.noderootrdn property.) If you are using a COS
Naming Server, the value of this field is ignored.

JNDI Initial Context Factory:
Select the appropriate JNDI initial context factory from the drop-down list.
If your Web application server is WebSphere, the factory to use depends on:
v The version of WebSphere you're using
v The location of WebSphere—that is, whether it's on a distributed

platform such as Windows NT or a host platform such as z/OS
v The type of name server you're using—COS naming or LDAP

Table 19 shows the correct initial context factory to specify, if your Web
application server is WebSphere.

Table 19. Setting the initial context factory, according to the version and location of WebSphere and the type of name
server

WebSphere
Version

Location of Web
application
server

Name server
type

Initial context factory to use

3.5 Distributed COS com.ibm.ejs.ns.jndi.CNInitialContextFactory

3.5 Distributed LDAP com.ibm.jndi.LDAPCtxFactory

Chapter 9. Stable Java technologies 279

Table 19. Setting the initial context factory, according to the version and location of WebSphere and the type of name
server (continued)

WebSphere
Version

Location of Web
application
server

Name server
type

Initial context factory to use

3.5 z/OS COS com.sun.jndi.cosnaming.CNCtxFactory

3.5 z/OS LDAP com.sun.jndi.ldap.LdapCtxFactory

4 or later Distributed COS or
LDAP

com.ibm.websphere.naming.WsnInitialContextFactory

4 or later z/OS COS com.sun.jndi.cosnaming.CNCtxFactory

4 or later z/OS LDAP com.sun.jndi.ldap.LdapCtxFactory

If your Web application server is not WebSphere, choose the appropriate
value from the drop-down list.

Note: The drop-down list contains several initial context factory classes,
plus a “default” list item. The sample application assigns the value of the
default list item as follows:
a. If the com.ibm.websphere.naming.WsnInitialContextFactory class is

found in the Java classpath, the sample makes it the default item. This
class is a “wrapper” class that wraps both
com.ibm.ejs.ns.jndi.CNInitialContextFactory and
com.ibm.jndi.LDAPCtxFactory. The sample determines the correct base
class to use by examining the type of name server that you've specified
in the Provider URL field: if the specified protocol is “iiop”, the sample
uses com.ibm.ejs.ns.jndi.CNInitialContextFactory; if it's “ldap”, the
sample uses com.ibm.jndi.LDAPCtxFactory.

b. If the com.ibm.websphere.naming.WsnInitialContextFactory class is not
found in the Java classpath, the sample determines the correct class to
use by examining the type of name server that you've specified in the
Provider URL field: if the specified protocol is “iiop”, the sample uses
com.ibm.ejs.ns.jndi.CNInitialContextFactory; if it's “ldap”, the
sample uses com.ibm.jndi.LDAPCtxFactory.

If none of the values in the drop-down list are valid for your installation,
select the Other radio button and enter the correct value in the lower text
field.

5. Press the SUBMIT button. This invokes the servlet and runs the application.
If the application is configured correctly and the input values are valid, the
SampleResults JSP displays the customer's details in the web browser. Figure 22
on page 281 shows the result of a successful inquiry.

280 CICS TS for z/OS 4.2: Java Applications in CICS

If the application is not configured correctly, or one or more of the input values
is invalid, the SampleError JSP displays an error message in the web browser.
The readme.txt file contains hints and tips that may help you debug a failed
application.

A note about distributed transactions:

A number of protocols exist to support distributed transactions.

The CICS enterprise Java environment supports only the CORBA Object
Transaction Service (OTS) protocol. However, some J2EE-compliant web application
servers (such as WebSphere) either do not use this protocol, or do not use this
protocol by default. WebSphere can be configured to use pure OTS distributed
transactions; for detailed instructions on how to set up WebSphere to use the OTS,
see the readme.txt file supplied with the Bank Account sample.

If objects on your web application server call CICS enterprise beans within the scope of
existing transaction contexts, you must set up your web application server to use the
CORBA OTS.

Changing the sample to use distributed transactions:

You can try this exercise to test whether or not your J2EE web application server is
fully compatible with CICS.

Figure 22. Results screen of the EJB Bank Account sample application

Chapter 9. Stable Java technologies 281

About this task

By default, the EJB Bank Account sample is not configured to use distributed
transactions. However, you can change this. The SampleServlet servlet contains
sample code, which has been commented-out, to turn on client-demarcated
transactions. (The SampleServlet.java source file is in the CicsSample.ear file.)

To turn on client-demarcated transactions:
1. Uncomment the transaction-related code in SampleServlet.java.
2. Recompile the SampleServlet servlet.
3. Install the updated copy of the servlet into your web application server.

If you set up the sample to use client-demarcated transactions but your J2EE web
application server does not support (or is not configured to use) pure OTS
transactions, when you run the sample CICS throws an
org.omg.CORBA.INVALID_TRANSACTION exception. This is because a transaction
context was sent but CICS could not use it.

Changing the enterprise bean's transaction attribute:

You may also want to change the enterprise bean's transaction attribute (in the
deployment descriptor) from 'Supports' to 'Mandatory'.

If you do this, CICS allows the remote method of the bean to be invoked only if an
existing OTS transaction context is passed from the client's environment on the
call.

If, on the other hand, you leave the enterprise bean's transaction attribute set to
'Supports', CICS binds the method invocation to the client's transaction context if
such a context exists; otherwise the method runs in an atomic transaction and does
not propagate a new transaction context when calling other beans.

To change the transaction attribute, you can use the Assembly Toolkit (ATK), which
is described in the CICS Operations and Utilities Guide. Having changed the
transaction attribute, to make the change effective you must:
1. Store the updated SampleEJB.jar file in your pickup directory (overwriting the

previous version).
2. Issue a CEMT CORBASERVER(corbaserver_name) PERFORM SCAN command.

If you set the transaction attribute to 'Mandatory' but don't update the servlet to
use client-demarcated transactions, when you run the sample CICS throws a
javax.transaction.TransactionRequiredException. This is because no transaction
context has been sent.

A note about data conversion:

To represent text data, Java programs always use the Unicode character set, while
CICS TS programs use EBCDIC.

When a Java program or enterprise bean calls a CICS TS server program, any text
values in the communications area of the server program must be converted from
Unicode to EBCDIC on input, and from EBCDIC to Unicode on output. The
enterprise bean in the EJB Bank Account sample uses the CCI Connector for CICS
TS, which handles this data conversion automatically—see “Data conversion and
the CCI Connector for CICS TS” on page 319.

282 CICS TS for z/OS 4.2: Java Applications in CICS

Note: Only the text data returned by COBOL program DFH0CSTD is converted
from EBCDIC to Unicode . (No conversion is necessary for server program
DFH0ACTD, nor on input to DFH0CSTD, because there are no text values in the
communications areas.)

Writing enterprise beans
You can write session beans. The interfaces used by these beans are mapped to
CICS services and resources and the beans are portable to any other EJB-compliant
server.

Session beans use the interfaces defined by the Enterprise JavaBeans Specification,
Version 1.1. To download the specification, go to the Oracle Technology Network
Java website and search for "Enterprise JavaBeans specification" to find the
specifications web page.

You can also write session beans that use the JCICS classes to access CICS services
and resources directly. These beans are portable only to other CICS EJB servers.

CICS does not support entity beans—that is, you cannot run entity beans in a CICS
EJB server. (A session bean or program running in a CICS EJB server can
communicate with an entity bean running in a non-CICS EJB server.)

You can write your beans on a workstation using any integrated development
environment (IDE) that supports the Enterprise JavaBeans Specification, Version 1.1.

When developing new Java enterprise beans and programs for CICS , you should
use an application development environment that supports Java 2 at the SDK 5.0
level. You should not:
v Use any API calls that are supported only by a newer version of the Java SDK

than that supported by CICS.
v Use features supported only by a later version of the Enterprise JavaBeans

Specification than that supported by CICS. (Currently, CICS supports the
Enterprise JavaBeans Specification, Version 1.1.)

Any enterprise beans developed to the EJB 1.0 specification must be migrated to
the EJB 1.1 specification level using the supplied development tools—see “The
deployment tools for enterprise beans in a CICS system” on page 296.

“Coding a session bean” on page 284 gives an example of the steps involved in
writing a session bean without using an IDE.

You can use the CCI Connector for CICS TS to build enterprise beans that make
use of existing CICS programs. See “The CCI Connector for CICS TS” on page 311
for a description of the CCI Connector for CICS TS , and how to use it.

Preparing beans for execution
The process of installing and preparing an enterprise bean for execution is known
as deployment.

CICS provides workstation based tools to manage the deployment of enterprise
beans into the host CICS environment.

The workstation and WebSphere components of the deployment tools are supplied
as a set of InstallShield packages. You can download these packages from your
z/OS system or run them from the supplied CD on the target workstation.

Chapter 9. Stable Java technologies 283

http://www.oracle.com/technetwork/java/
http://www.oracle.com/technetwork/java/

See “Deploying enterprise beans” on page 295 for a description of the deployment
process, and “Using CICS deployment tools for enterprise beans” on page 296 for
guidance on using the tools.

Coding a session bean
This section describes how to code a very simple session bean.

When you have completed the steps in this section, you will have a JAR file that is
ready for deployment. See “Deploying enterprise beans” on page 295 for a
description of the deployment process and the tools available to help you.

The example bean shown here simulates a roulette wheel in a casino. The roulette
wheel is a stateful session bean, containing two stateful fields. The first field is the
current number that the wheel is on; the second field is the amount of credit the
gambler still has for betting. The client creates a roulette wheel, optionally
specifying the amount of money to gamble (defaulting to 100 dollars if the amount
is not supplied). The client can place bets on the color that will come up and then
the wheel spins and tells the caller if he has won or not. The client may then
collect the winnings or continue betting.

There are three elements that you must code:
1. “Coding the home interface.”
2. “Coding the remote interface.”
3. “Coding the bean implementation” on page 285.

Then you need to compile and package your program:
1. “Compiling the code” on page 287
2. “Packaging the code” on page 287

Coding the home interface:

The home interface for a bean extends the javax.ejb.EJBHome interface. It defines
one or more create methods that the client program may call to create a bean
instance.

For stateless session beans there must be exactly one create method taking no
parameters. Stateful session beans may overload the create method with different
variants taking different combinations of parameters. The RouletteWheel bean is a
stateful session bean. We overload create so that we can specify the amount of
credit we have on a roulette wheel instance when it is created:
package casino;

public interface RouletteWheelHome extends javax.ejb.EJBHome {

public RouletteWheel create()
throws javax.ejb.CreateException, javax.ejb.EJBException;

public RouletteWheel create(int dollars)
throws javax.ejb.CreateException, javax.ejb.EJBException;

}

Coding the remote interface:

The remote interface for a bean extends the javax.ejb.SessionBean interface. The
remote interface defines the actual business methods a client program may call on
an individual bean instance.

284 CICS TS for z/OS 4.2: Java Applications in CICS

package casino;

public interface RouletteWheel extends javax.ejb.EJBObject {

// Place a bet on either "red" or "black" of the given amount,
// the return value indicates to the caller whether the bet was
// successful or not.
public String bet(String bet,int amount) throws javax.ejb.EJBException;

// Check the current status of the wheel.
public String getCurrentStatus() throws javax.ejb.EJBException;

// Collect winnings from the wheel (if any!)
public int collectWinnings() throws javax.ejb.EJBException;

}

Coding the bean implementation:

This class implements the business methods defined in the bean remote interface.

It also defines some standard methods that are declared abstract on SessionBean
and so these methods should be implemented for our bean implementation to be
complete. Finally, because we overloaded the create method on the home interface,
we must provide matching ejbCreate methods in the bean implementation that
accept the same sets of parameters. This is because the bean implementation class
is the only place that you put your bean code. The implementation of the home
interface that we defined in “Coding the home interface” on page 284 is generated
by the tooling, so if we need to implement an overloaded create method, we have
to do it here:

package casino;

import java.util.Random;
import javax.ejb.*;

public class RouletteWheelBean implements SessionBean {

// Necessary code to fulfill SessionBean interface definition.

private SessionContext ctx = null;

public void ejbActivate() throws javax.ejb.EJBException {}
public void ejbPassivate() throws javax.ejb.EJBException {}
public void ejbRemove() throws javax.ejb.EJBException {}
public SessionContext getSessionContext() { return ctx; }
public void setSessionContext(SessionContext ctx) throws

javax.ejb.EJBException { this.ctx = ctx;
}

/////////////////////////////
// The bean state information
private int wheelValue;

private int currentCredit;

/////////////////////
// Our create methods

public void ejbCreate() throws javax.ejb.EJBException, CreateException {
currentCredit = 100;
wheelValue = ((int)System.currentTimeMillis())%37;

}

public void ejbCreate(int credit) throws javax.ejb.EJBException,

Chapter 9. Stable Java technologies 285

CreateException { currentCredit = credit;
wheelValue = ((int)System.currentTimeMillis())%37;

}

///
// Implementations of the remote methods the client may call on an instance

//
// Place a bet, either "red" or "black" for the specified amount.
// Then simulate the wheel spinning and construct a response string
// indicating the outcome to the caller.
//
public String bet(String color,int amount) throws javax.ejb.EJBException {

if (!color.equalsIgnoreCase("red") && !color.equalsIgnoreCase("black"))
return new String("You can only bet on red or black");

if (amount > currentCredit)
return new String("You only have $"+currentCredit+" !");

// Use the current wheel value as the random number seed
Random randomizer = new Random((long)wheelValue);

// Spin the wheel
wheelValue = Math.abs(randomizer.nextInt()) % 37;

// Construct a reply
StringBuffer result =

new StringBuffer("Number: "+wheelValue+" Color: "+color(wheelValue)+"\n");

// Did the caller win?
if (color(wheelValue).equalsIgnoreCase(color)) {

currentCredit+=(amount*2);
result.append("Well Done! You won $");
result.append((amount*2));

} else {
currentCredit -= amount;
result.append("Bad Luck! You lost $");
result.append(amount);

}
result.append(", you now have $");
result.append(currentCredit);
return result.toString();

}

//
// Return the current status of this roulette wheel instance.
// The number and color
// it is currently on and the amount of credit the client still has to gamble.
//
public String getCurrentStatus() throws javax.ejb.EJBException {

return new String("Number:"+wheelValue+" Color:"+color(wheelValue)+"
You have $"+currentCredit);

}

//
// Allow the client to collect his winnings, then zero the credit so
// they cannot collect twice!
//
public int collectWinnings()throws javax.ejb.EJBException {

int winnings = currentCredit;
currentCredit = 0;
return winnings;

}

286 CICS TS for z/OS 4.2: Java Applications in CICS

//
// Convert a number on the wheel into a color
//
private String color(int value) {

if (value == 0) return "Green";
if (value % 2 == 0) return "Black";
return "Red";

}

}

Compiling the code:

All that you need in addition to the base SDK is the JAR file containing the
javax.ejb interfaces.

This is available as ejb11.jar in the standard/ejb/1_1 directory of the java
installation. If you add ejb11.jar to your CLASSPATH, you should be able to
compile the classes and interfaces described.

Packaging the code:

The compiled classes must be packaged in a JAR file ready for deployment.

Assuming the class files are in the sub directory casino, the following jar command
can be used:

jar -cvf casino.jar casino*.class

Writing the client program
A client program is any program that calls an enterprise bean.

It can be:
1. Another enterprise bean, JavaBean, Java program, or object executing in the

same CICS
2. An enterprise bean, JavaBean, Java program, or object executing in another

CICS
3. An enterprise bean, JavaBean, Java program, or object executing on a non-CICS

system or workstation

The client obtains references to bean homes of enterprise beans that it wants to call
by using the JNDI namespace it shares with the CICS server environment.

Creating object references in the namespace:

To create object references, you need to publish the beans that are installed in your
CICS region.

About this task

You can do this in two ways:
1. Issue PERFORM DJAR(XXXX) PUBLISH on the server CICS system. You can

use any of the following methods to do this:
v CEMT
v CICSPlex SM
v A CICS application

Chapter 9. Stable Java technologies 287

For each bean installed from the named DJAR, an object reference is published
to the naming directory server. See “Defining name servers” on page 363 for
information about using name servers.

2. If you have installed a number of DJARs into a single CORBASERVER, you can
use the PERFORM CORBASERVER(XXXX) PUBLISH command to publish
every bean currently installed under that CORBASERVER. The subcontext in
the namespace where the object references for the beans will appear is
determined by the JNDI prefix defined in the resource definition of the
CORBASERVER into which the DJAR was installed.

Retraction is never done implicitly. The recommended way to 'unpublish' beans is
to issue PERFORM DJAR(XXXX)/CORBASERVER(XXXX) RETRACT. If a DJAR or
CORBASERVER is discarded, the bean object references will still exist in the
namespace, although they will be unusable by a client since the actual beans no
longer exist in CICS. It is possible to reinstall a DJAR and retract those references.

Using JNDI to obtain bean references:

Java Naming and Directory Interface (JNDI) defines an application programming
interface (API) specified in the Java programming language that provides the
naming and directory function to Java programs.

It also defines a service provider interface (SPI) that allows various directory and
naming service drivers to be plugged in.Figure 23 illustrates this by showing a
Naming Manager interfacing with a Java application by means of the JNDI API,
and with various Name servers via the JNDI SPI.

The JNDI interfaces are described at the following web site: http://
www.oracle.com/technetwork/java/index.html.

After an enterprise bean has been registered in a name server by the administrator
of the server system, a client application can use the JNDI interface to locate its
home interface.

Set up a suitable name server that supports the Java Naming and Directory
Interface (JNDI) Version 1.2 and define its location to CICS. For more information,
see “Setting up an LDAP server” on page 364 and “Setting up a COS Naming
Directory Server” on page 374. For details of the JVM properties that are required,
see “JVM system properties” on page 109.

Writing a Client program to use LDAP:

Java Application

Naming Manager

JNDI API

JNDI SPI

LDAP CORBA

Figure 23. JNDI structure

288 CICS TS for z/OS 4.2: Java Applications in CICS

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

CICS Transaction Server supports LDAP. Some changes to your client programs
might be necessary to allow a client program to find the bean homes published
from a CICS region.

An LDAP client must use either the WebSphere Context Factory or the LDAP
Context Factory provided by Java. The advantage of using the WebSphere Context
Factory is that it understands automatically the system namespace (that is the
structured namespace on the LDAP server into which CICS publishes your bean
homes). However, this context factory has a number of dependencies and so is not
the most lightweight client. The context factory provided by Java has no
dependencies apart from the base IBM Developer Kit for the Java Platform and so
is very lightweight. However it does not understand the system namespace and so
it is necessary to negotiate it programmatically, but there are some utility methods
provided by CICS to help with this.

These alternatives are best demonstrated by examples.

WebSphere Context Factory:

This is an example of some client source code that uses the WebSphere context
factory to locate the home for a HelloWorld bean.

import org.omg.CORBA.ORB;
import java.io.*;
import javax.naming.*;
import examples.helloworld.*;
import java.util.*;

public class WASNamingClient {
public static void main(String[] argv) {

try {

// Set the necessary properties
Properties prop = new Properties();

// These four are *fixed* values, you never need to change them.

prop.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");

prop.put("com.ibm.websphere.naming.namespaceroot","bootstraphostroot");
prop.put("com.ibm.ws.naming.ldap.config","local");
prop.put("com.ibm.ws.naming.implementation","WsnLdap");

// These two depend on your server settings and should match your CICS region settings

prop.put("com.ibm.ws.naming.ldap.containerdn","ibm-wsnTree=WASNaming,c=us");
prop.put("com.ibm.ws.naming.ldap.noderootrdn",

"ibm-wsnName=legacyroot,ibm-wsnName=PLEX2,ibm-wsnName=domainRoots");

// Finally, instead of com.ibm.cics.ejs.nameserver,
// set com.ibm.ws.naming.ldap.masterurl to your destination LDAP server

prop.put("com.ibm.ws.naming.ldap.masterurl","ldap://wibble.example.com:389");

InitialContext ctx = new InitialContext(prop);
org.omg.CORBA.Object obj =

(org.omg.CORBA.Object)ctx.lookup("samples/HelloWorld");

HelloWorldHome hhome =
(HelloWorldHome)javax.rmi.PortableRemoteObject.narrow
(obj,HelloWorldHome.class);

System.out.println("HelloWorldHome successfully found!");

Chapter 9. Stable Java technologies 289

HelloWorld hello = hhome.create();
System.out.println(hello.sayHello());

} catch (Exception e) {
System.err.println("Exception while looking up and calling the HelloWorld bean:");
e.printStackTrace();
}

}
}

As noted in the comments, the first four properties are fixed, the remaining three
match settings for your CICS region (Albeit the -Dcom.ibm.cics.ejs.nameserver
property has become com.ibm.ws.naming.ldap.masterurl). However, the
WebSphere Context Factory has dependencies on components of WebSphere so in
order to run it from the command line you must run a script to set up your
environment appropriately.

The script DFHWAS4Setup.bat is a command line script provided with CICS. It can
be downloaded from the utils subdirectory in the z/OS UNIX area where CICS is
installed. It must be run on a system that has WebSphere installed, because it relies
on the environment variable WAS_HOME being set to point to the location where
WebSphere has been installed, for example c:\WebSphere\AppServer. When the the
script has been run, you should extend your CLASSPATH further to include the
necessary client side code for your Enterprise Bean. For the example above this is
the HelloWorld.jar - then the code above can be compiled and executed. (The
example code assume that the home is published in a CorbaServer whose JNDI
Prefix is samples).

In CICS we set -Dcom.ibm.cics.ejs.nameserver = <hostname> but in this client
program, we set com.ibm.ws.naming.ldap.masterurl = <hostname>. CICS
understands the former, WebSphere understands the latter.

LDAP Context Factory supplied with Java:

From an IBM Developer Kit for the Java Platform configuration point of view, it is
much easier to use the LDAP Context Factory provided with Java, because it is
provided in the IBM Developer Kit for the Java Platform base and has no
dependencies outside of it.

However, because this context factory does not understand the namespace
structure that exists on any LDAP server configured for WebSphere, it can be more
demanding for the client application programmer. CICS provides some namespace
helper functions that ease this added complexity. The
com.ibm.cics.portable.CICSNameSpaceHelper class is provided in
CICSEJBClient.jar. This JAR file is available in the utils subdirectory in the z/OS
UNIX area where CICS is installed.

Here is an example of using this class:
import org.omg.CORBA.ORB;
import java.io.*;
import examples.helloworld.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.util.*;
import com.ibm.cics.portable.CICSNameSpaceHelper;

public class SUNNamingClient {

public static void main(String[] argv) {

290 CICS TS for z/OS 4.2: Java Applications in CICS

try {
Hashtable env = new Hashtable();

// Set up the first two obvious properties, the LDAP factory and LDAP server supplied with Java
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://wibble.example.com:389");

// These two settings match the values from the CICS system
env.put("com.ibm.ws.naming.ldap.containerdn", "ibm-wsnTree=WASNaming,c=us");
env.put("com.ibm.ws.naming.ldap.noderootrdn",

"ibm-wsnName=legacyroot,ibm-wsnName=PLEX2,ibm-wsnName=domainRoots");

// Use the LDAPSNSLookup helper method to negotiate the WebSphere System Name
// Space on wibble.example.com and locate our HelloWorld bean. "samples"
// is the JNDI prefix on the CICS CorbaServer that published the HelloWorld Bean.

org.omg.CORBA.Object obj =
CICSNameSpaceHelper.LDAPSNSLookup(env,"samples/HelloWorld");

HelloWorldHome hhome =
(HelloWorldHome)javax.rmi.PortableRemoteObject.narrow
(obj,HelloWorldHome.class);

System.out.println("HelloWorld home successfully found!");
Hello hello = hhome.create();

System.out.println(hello.sayHello());
} catch (Exception e) {

System.err.println("Exception while looking up and calling the HelloWorld bean:");
e.printStackTrace();

}
}

}

You are using the LDAP code supplied with Java, which understands the
providerURL property, rather than the masterurl property used in the WebSphere
Context Factory example.

The helper class CICSNameSpaceHelper may also work with other context factories.
Notice that the syntax of the name passed to LDAPSNSLookup is JNDI syntax
a/b/c/d.

Writing a client program to use COS Naming: The following example shows a
client program, Gambler.java, that works with the RouletteWheel bean developed
in “Coding a session bean” on page 284. When a bean reference is obtained from a
COS Naming namespace, there are a number of operations that must be performed
before the client can use that reference. These operations are the same for the
majority of client programs, so they are collected in the utility class EJBUtils. This
utility class is used by the client program Gambler.

EJBUtils.java:

This is the implementation of the utility class, EJBUtils.
import javax.naming.*;
import java.util.Hashtable;

class EJBUtils {

public static Object jndi_lookup(String name, Class resultClass) {

// Set up environment for creating initial context
Hashtable env = new Hashtable(11);

// Define the nameserver - see note 1 below
env.put(Context.PROVIDER_URL,

Chapter 9. Stable Java technologies 291

"iiop://wibble.example.com:900");

// Define the initial context factory -see note 2
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.cosnaming.CNCtxFactory");

try {

// Create the initial context
Context ctx = new InitialContext(env);

// Lookup the object
Object tempObject = ctx.lookup(name);

// Narrow that to the requested class
return javax.rmi.PortableRemoteObject.narrow(tempObject,resultClass);

} catch (NamingException ne) {
System.err.println("EJBUtils.jndi_lookup() failed:");
ne.printStackTrace();

}
return null;

}

}

Note:

1. Here we define the nameserver that will be used to lookup beans as
"iiop://wibble.example.com:900". This value should be the name of your
nameserver, and must match the -Djava.naming.provider.url that was defined
in the CICS JVM properties file, so that the client looks up the bean on the
same nameserver it was published into by CICS. See “Defining name servers”
on page 363 for information about using name servers.

2. Here we define the initial context factory for your client environment. you
should set it to the value required by your client environment. The example
shows the value you would set when using the ORB included with the IBM
SDK. If your client is a java application or enterprise bean running in CICS
Transaction Server for z/OS, Version 2, then you should not specify an initial
context factory here, but should allow it to default to
com.ibm.websphere.naming.wsnInitialContextFactory.

Gambler.java:

This is the implementation of the example client program, Gambler.java.
import org.omg.CORBA.ORB;
import java.io.*;
import casino.*;

public class Gambler {

public static void main(String[] argv) {

try {

System.out.println("Gambler\n");

System.out.println("Looking up RouletteWheel home");
RouletteWheelHome wheelHome =

(RouletteWheelHome)
EJBUtils.jndi_lookup("cics/ejbs/RouletteWheel",

RouletteWheelHome.class);
//

292 CICS TS for z/OS 4.2: Java Applications in CICS

// See Note 1.
//

System.out.println("Creating a new roulette wheel");
RouletteWheel wheel = wheelHome.create();

System.out.println("");
System.out.println("Gambling $50 on red !");
System.out.println(wheel.bet("red",50));

System.out.println("");
System.out.println("Gambling $20 on black !");
System.out.println(wheel.bet("black",20));

System.out.println("");
System.out.println("Gambling $20 on red !");
System.out.println(wheel.bet("red",20));

System.out.println("");
System.out.print("Collecting winnings:$");
System.out.println(wheel.collectWinnings());

System.out.println("");
System.out.print("Removing the roulette wheel");
wheel.remove();

} catch (Exception e) {
System.err.println("Error while gambling:");
e.printStackTrace();

}

}

}

Note:

1. The client program Gambler.java looks up the RouletteWheel at "cics/ejbs" in
the namespace. This means the CORBASERVER in CICS into which you have
installed the RouletteWheel bean must have a JNDI prefix of cics/ejbs. Once
installed and published the RouletteWheel will then be accessible by the client
program.

2. There is a remove call at the end of this client program. The roulette wheel bean
is stateful and CICS manages the state of every instance. Unless remove is called
when you finish operating with that bean instance then CICS will continue to
store it. Bean timeout can be controlled using the SESSBEANTIME parameter of
the CORBASERVER resource definition. This indicates to CICS how long it
should manage instance state if no requests are coming in to utilize that
instance, implementing a kind of garbage collection. However, it is good
programming practice to call remove when you have finished working with an
instance so that you do not depend on this type of garbage collection.

Using the client program:

When compiling the client program, your classpath must be set carefully to include
the deployed JAR file you successfully processed earlier with the CICS Jar
Development Tool, and also the javax.ejb interfaces for EJB 1.1 support, which are
available in ejb11.jar in the standard/ejb/1_1 directory of the java installation.

Once compiled, run the client with:
java Gambler

Chapter 9. Stable Java technologies 293

Transaction interoperability with web application servers:

A number of protocols exist to support distributed transactions. The CICS
enterprise Java environment supports only the standard CORBA Object Transaction
Service (OTS) protocol. However, some J2EE-compliant web application servers
(such as WebSphere Version 4) either do not use this protocol, or do not use this
protocol by default.

If objects on your web application server call CICS enterprise beans within the scope of
existing transaction contexts, you must set up your web application server to use the
CORBA OTS. If this is not possible, your web application server is not fully
compatible with CICS enterprise Java support. (For a way of using the EJB Bank
Account sample application to test whether your web application server is fully
compatible with CICS enterprise Java support, see “A note about distributed
transactions” on page 281.)

If your web application server is WebSphere Application Server Version 4, be
aware that, by default, it does not use the standard CORBA OTS, but can be made
to do so. If you have WebSphere objects that call CICS enterprise beans within the
scope of existing transaction contexts, you must set up WebSphere to use the
CORBA OTS. Versions of WebSphere Application Server from Version 5 onwards
are not affected by this problem.

To force WebSphere Application Server to use the CORBA OTS:
1. At the WebSphere Administration Console, select the JVM settings tab.
2. Enter the following in the System Properties section:

com.ibm.ejs.jts.ControlSet.interoperabilityOnly=true
com.ibm.ejs.jts.ControlSet.nativeOnly=false

Save your changes.
3. Restart the application server.

Working with EJB Handles, HomeHandles and EJBMetaData
The Enterprise JavaBeans specification describes how a session bean supports not
only the methods defined on its remote interface but some additional methods.
v There are methods defined on the EJBHome interface, they are callable by a

client wishing to:
– obtain a “storable” reference to the home (a home handle), or
– obtain the EJBMetaData for the bean type.

.
v There are methods defined on the EJBObject interface, they are callable by a

client wishing to:
– obtain the home for the EJB, or
– obtain a “storable” reference to the object itself (a handle).

The purpose of handles is that they are serializable, once a handle is obtained for a
bean instance it can be serialized, perhaps to a flat file. If, sometime later, a
program wants make calls against that same instance, it can deserialize the handle
and start calling methods again. The implementations of the handles and the meta
data class are product specific.

In CICS, the implementations of the three interfaces HomeHandle, Handle and
EJBMetaData are:
v com.ibm.cics.portable.CICSSessionHomeHandle

294 CICS TS for z/OS 4.2: Java Applications in CICS

v com.ibm.cics.portable.CICSSessionHandle
v com.ibm.cics.portable.CICSEJBMetaData

These implementations are included in the CICSEJBClient.jar JAR file, which can
be downloaded from the utils subdirectory in the z/OSUNIX area where CICS is
installed. This JAR file should be included in the CLASSPATH of any client
program calling the special methods described above, to ensure it understands the
types of object returned from the server. If, for example, its CLASSPATH does not
include CICSEJBClient.jar, a client program that calls the getEJBMetaData
function of an enterprise bean may be returned either of the following:
1. An exception
2. Null

The precise value returned depends on the implementation of the client's object
request broker (ORB).

Using EDF with enterprise beans
To use EDF to test enterprise beans, you must perform these tasks.

About this task
v Set the CEDF parameter to YES in the PROGRAM resource definition for

DFJIIRP that is supplied in group DFHIIOP.
v Set MAXACTIVE to one in TRANCLASS(DFHEDFTC).
v Activate EDF by entering CEDX (transid) at the terminal where the transaction

will be trapped. The transid is either the default transid CIRP or the transaction
specified on the RequestModel definition.

v Initiate the bean.

Bean-to-bean communication:

If your bean uses bean-to-bean communication with the same transaction id within
the same AOR, setting MAXACTIVE to one will result in the communication not
working.

This is because the execution of the second transaction will be suspended waiting
for a slot in which to execute, and the original bean will then experience a
“timeout” condition. The way to avoid this is to take one of the following actions:
v Use REQUESTMODELs to specify a unique transaction id for each bean.
v Allow all create methods to use CIRP (the default transaction id), and use

REQUESTMODELs to define a unique transaction id for each set of business
methods.

Note: When a bean is running inside a request processor, CICS will only utilize
requestmodels (and therefore start a new CICS transaction under the new
transaction ID) if a remote method call made by that bean cannot be satisfied in
the current request processor. A method call cannot be satisfied locally in the
current request processor if:
v The transaction attributes of the method being called require a different

transaction context
v The bean being called is in a different CorbaServer

Deploying enterprise beans
This section explains the process of deploying enterprise beans into a CICS EJB
server in more detail.

Chapter 9. Stable Java technologies 295

The concept of deployment is introduced in “Overview of deploying enterprise
beans” on page 226.

The term “deployment” used in the EJB specification describes a series of tasks
that makes the enterprise beans in one or more JAR files available for use in a
specific operating environment (in this case, a CICS EJB server).

The deployment tools for enterprise beans in a CICS system
CICS supplies three tools to assist you in deploying enterprise beans into a CICS
EJB server.

The Assembly Toolkit (ATK)

The Assembly Toolkit (ATK) is a general tool used by several IBM EJB servers,
including CICS, to build JAR files ready for the runtime environment. The
Assembly Toolkit for Windows is supplied with WebSphere Application Server.

For detailed information about using ATK, see the CICS Operations and Utilities
Guide.

The resource manager for enterprise beans

The resource manager for enterprise beans is a Web-based tool that you can use to
perform certain operations on the resources (CORBASERVERs and DJARs) that are
installed in CICS to support the use of enterprise beans. You can also use the tool
for EJB-related problem diagnosis, because it offers the ability to view any errors
associated with DJAR definitions and indicates if the beans in a deployed JAR file
have been published to the naming service.

For a full description of the resource manager for enterprise beans, see the CICS
Operations and Utilities Guide.

CREA transaction

CREA is a CICS-supplied transaction that you can use to create REQUESTMODEL
resource definitions for the beans in an installed deployed JAR file. CREA can
install definitions into a running CICS system by using EXEC CICS CREATE
commands, or can write the definitions to the CSD. CREC is a read-only version of
CREA. It offers inspection facilities without giving the ability to make changes.

For full descriptions of CREA and CREC, see CREA - create REQUESTMODELs for
enterprise beans in CICS Supplied Transactions.

You can use CREA and CREC without needing to access a 3270 terminal. For
details, see Connecting CICS to the web in the CICS Internet Guide.

Using CICS deployment tools for enterprise beans
To develop and deploy a bean into CICS, an application developer, working with a
CICS system programmer in the later stages, has to carry out a number of steps.

About this task

Develop the bean and make it deployable
Develop the bean and package it into a JAR file. The bean can be written
and tested using your choice of tooling.

296 CICS TS for z/OS 4.2: Java Applications in CICS

Note: The JAR file may contain the Java classes for one or for several
enterprise beans. Typically a JAR file used in a CICS EJB server contains
several enterprise beans.
After the bean has been packaged in a JAR file, use ATK to make it
deployable. For a short introduction to ATK and a reference to further
information, see The enterprise bean deployment tool, ATK, in the CICS
Operations and Utilities Guide.

Store in z/OS UNIX pickup directory
Store a copy of the deployable JAR file in the z/OS UNIX pickup directory
of the CorbaServer in which you want to run the bean. You can do this
using FTP, NFS, or SMB. If the z/OS UNIX directory can be mounted on
your workstation, this process can be integrated into the previous JAR file
creation process.

Scan the pickup directory
Using either CEMT or the resource manager for enterprise beans, initiate a
scan of the pickup directory. (For a description of the resource manager for
enterprise beans, see The Resource Manager for Enterprise Beans, in the
CICS Operations and Utilities Guide.) CICS creates and installs a DJAR
definition for the deployed JAR file in the pickup directory.

After the pickup directory has been scanned, you can view the state of the
new DJAR definition to determine if the deployed JAR file is ready for use.

If the deployed JAR file is not ready for use, the cause of the error can be
determined and in most cases corrected by an application developer
without the need for a system programmer to become involved.

Publish
Publish a reference to the home interface of each bean in the deployed JAR
file to an external namespace. The namespace is accessible to clients
through JNDI.

If you specify AUTOPUBLISH(YES) on the CORBASERVER definition, the
beans in a deployed JAR file are automatically published to the namespace
when the DJAR definition is successfully installed into the CorbaServer.
Alternatively, you can issue a PERFORM CORBASERVER PUBLISH or
PERFORM DJAR PUBLISH command.

The Resource Manager for enterprise beans (see The Resource Manager for
Enterprise Beans, in the CICS Operations and Utilities Guide) indicates if the
“autopublish” feature is on or off.

Ensure any additional classes are on class paths
For enterprise beans, you do not need to add the deployed JAR files to the
class paths in the JVM profile or JVM properties file. CICS manages the
loading of the classes included in these files by means of the DJAR
definitions. However, if your enterprise beans use any classes, such as
classes for utilities, that are not included in the deployed JAR file, you do
need to include these classes on the class path that will be used by the
JVM for the request processor program. Chapter 5, “Enabling applications
to use a JVM,” on page 81 tells you how to do this.

Unit Test
Once the beans in the deployed JAR file have been published to the
naming server, the application programmer can unit test them in the CICS
environment.

System Test
When the beans are ready for system testing, an application programmer

Chapter 9. Stable Java technologies 297

can work with a system programmer to consider if any REQUESTMODEL
definitions are needed. Use the CICS-supplied transaction CREA to
generate REQUESTMODEL definitions. (For a description of CREA, see
CREA - create REQUESTMODELs for enterprise beans, in the CICS
Supplied Transactions manual.)

You can identify the beans and bean methods from the application. Your
system programmer can associate the bean methods with transaction IDs
by causing the optimum set of REQUESTMODEL definitions to be
generated. Running different beans under different transaction IDs is
useful, for example, for workload-management purposes, and for gathering
effective monitoring and statistical information.

Install in production environment
To move from a system test to a production environment:
1. Use ATK to verify that the container bindings for resources and

references that have been set in the deployment descriptor of each JAR
file are appropriate for your production environment.

2. If you have set the DJARDIR parameter in your production region
CORBASERVER definition to identify a pickup directory:
a. Store the deployable JAR file in the pickup directory of the

CorbaServer.
b. Install the CORBASERVER definition.
c. A suitable DJAR definition is produced.

3. If not:
a. Store the deployable JAR file in the z/OS UNIX directory that you

intend to use in the production region.
b. Install the production CORBASERVER definition.
c. Create and install a DJAR definition equivalent to that which you

had in your test region, using whatever process you would
normally use in your installation.

4. If you have set the AUTOPUBLISH(YES) parameter in your production
region CORBASERVER definition:
a. The beans in the deployed JAR file is automatically published to the

namespace when the DJAR definition is successfully installed into
the CorbaServer.

5. If not:
a. Publish the beans to the JNDI server that you use for production

using CEMT PERFORM CORBASERVER PUBLISH or CEMT
PERFORM DJAR PUBLISH.

6. Transfer REQUESTMODEL definitions from the test region CSD to the
production CSD using the process that you normally use in your
installation.

7. Ensure that any additional classes, such as classes for utilities, that are
not included in the deployed JAR files for your enterprise beans, are
present on the standard class path.

Note: If you want to update enterprise beans in a production region, see
“Updating enterprise beans in a production region” on page 301.

Tuning for enterprise beans
If you are using enterprise beans in your CICS system, this tuning information
might help:

298 CICS TS for z/OS 4.2: Java Applications in CICS

About this task
v Heavy usage of enterprise beans might mean that you need to increase the size

of the EJB Object Store, DFHEJOS. “Customizing DFHEJOS for your anticipated
stateful enterprise bean usage” explains how.

v The use of client-controlled OTS (object transaction service) transactions might
affect your requirements for JVMs. “Enterprise beans that are involved in
client-controlled OTS (object transaction service) transactions” explains what to
look out for.

v The use of more than one request processor by a single enterprise bean method
can lead to deadlocks. “Enterprise bean methods that require multiple request
processors” tells you how to remove this possibility.

Customizing DFHEJOS for your anticipated stateful enterprise
bean usage
The EJB Object Store, DFHEJOS, is a file used to store stateful session beans that
have been passivated. It can be a VSAM file or a coupling facility data table. CICS
supplies sample JCL to help you create this file, in the DFHDEFDS member of the
SDFHINST library.

The CICS-supplied settings for DFHEJOS are designed for storage of a low number
of objects (passivated beans), with a maximum size of 8K, to minimize storage
wastage. If you anticipate heavy usage of stateful enterprise beans, increase the
space allocations and record sizes for this data set.

Defining the EJB data sets in the CICS System Definition Guide describes how to
create DFHEJOS and the procedure to calculate the appropriate settings for the
record sizes.

Enterprise beans that are involved in client-controlled OTS
(object transaction service) transactions
The use of client-controlled OTS (object transaction service) transactions can affect
your JVM requirements.

The typical enterprise bean workload in CICS begins with an incoming IIOP
message, containing a GIOP request that is received by an IIOP listener task in
CICS. The request is passed to a request receiver task, that examines the GIOP
message and passes processing of the message to a request processor task. Finally,
on completion of the request processor task, a response is sent back to the
requesting client by the request receiver task.

If the GIOP request forms part of a client-controlled OTS transaction, then the
request processor and request receiver tasks are not ended until the OTS
transaction is committed or rolled back. Because the request processor task is
executing in a JVM, that JVM is not available for any other task to use until the
OTS transaction has ended. If this happens frequently, you might need to increase
the number of JVMs in your JVM pool to avoid excessive waiting times for
incoming requests.

Enterprise bean methods that require multiple request
processors
About this task

If a single execution of an enterprise bean method requires more than one request
processor, your application could experience deadlock problems. (A method can be
said to “require more than one request processor” if it calls one or more other,

Chapter 9. Stable Java technologies 299

typically remote, methods, each of which must execute in a different request
processor.) Deadlocks can be caused by all the request processors required to
satisfy the method being forced to wait for a JVM when no more JVMs are
permitted. This can occur for two reasons:
1. In the simple case, the maximum number of JVMs allowed to exist concurrently

under CICS (MAXJVMTCBS) is smaller than the number of request processors
required to service the method request.

2. In the complex case:
v CICS is processing multiple requests simultaneously.
v All the requests are waiting for another JVM.
v All the permitted JVMs are currently in use.

Avoiding the simple case is easy; avoiding the complex case is more difficult. It is
necessary to ensure there are always enough free JVMs to allow at least one
method's requirement of request processor instances to be satisfied.

The maximum number of concurrent JVMs available to a bean method is set by the
MAXACTIVE attribute of the TRANCLASS definition that applies to the request
processor transaction. The maximum number of concurrent JVMs available to CICS
is set by the MAXJVMTCBS system initialization parameter.

To remove the possibility of deadlocks caused by bean methods that use multiple
request processors:
1. Wherever it is consistent with your applications' requirements, try to minimize

the number of request processors each method requires, preferably to one. If
you can reduce the requirements of all methods, in all applications, to one
request processor, you need do no more.

2. If it is not possible to reduce the requirements of all methods to one request
processor, discover which is your “worst case”—that is, the bean method that
requires the most request processors in order to be satisfied.

3. Create a new TRANCLASS definition. This transaction class will apply to the
request processor transaction under which bean methods that require multiple
request processors will run.

4. On the TRANCLASS definition, set the value of MAXACTIVE using the
following formula:
MAXACTIVE <= ((MAXJVMTCBS - n) / (n - 1)) + 1

where n is the maximum number of request processors required by your “worst
case” method.
If the result of this calculation is a decimal value, round it down to the nearest
(lower) whole number.

5. Create new TRANSACTION and REQUESTMODEL definitions:
a. Create a new TRANSACTION definition for the request processor

transaction under which bean methods that require multiple request
processors will run. (The easiest way to do this is to copy the definition of
the default CIRP request processor transaction and modify it.) On the
TRANCLASS option, specify the name of your new transaction class.

b. Create one or more REQUESTMODEL definitions. Between them, your new
REQUESTMODEL definitions must cover all requests that may be received
for bean methods that require multiple request processors. On the
TRANSID option of the REQUESTMODEL definitions, specify the name of
your new transaction.

300 CICS TS for z/OS 4.2: Java Applications in CICS

Updating enterprise beans in a production region
This section considers how best to update enterprise beans in a production region.
It contains the following topics:
v “The problem”
v “Possible solutions” on page 303

The problem
How do you update enterprise beans in a running CICS production region, while
causing the minimum disruption to the current workflow and without recycling
CICS?

It is simple enough to introduce new enterprise beans into a running EJB server
without disrupting the current workflow. You can do either of the following:
1. Use the CICS scanning mechanism. That is, place the deployed JAR file

containing the new beans into a CorbaServer's deployed JAR file (“pickup”)
directory and issue a PERFORM CORBASERVER SCAN command. Repeat on all the
AORs in the logical EJB server. If the CORBASERVER definition specifies
AUTOPUBLISH(NO), on one of the AORs issue a PERFORM DJAR PUBLISH
command.

Note: If you use the scanning mechanism in a production region, be aware of
the security implications: specifically, the possibility of CICS command security
on DJAR definitions being circumvented. To guard against this, we recommend
that user IDs given write access to the z/OS UNIX deployed JAR file directory
should be restricted to those given RACF authority to create and update DJAR
and CORBASERVER definitions.

2. Use an EXEC CICS CREATE DJAR command to install a definition of the deployed
JAR file which contains the new beans. Repeat on all the AORs in the logical
EJB server. On one of the AORs, issue a PERFORM DJAR PUBLISH command.

Unfortunately, because of the unpredictable effects on in-flight transactions, you
can't use these methods to update beans in an active EJB server. You would have no
way of controlling which version of a bean, the old or the new, was used by
successive method calls. (Because of timing differences, the problem could well be
exacerbated in a multi-region EJB server.)

An alternative approach would be to quiesce and shut down CICS, then restart it
with the updated DJAR definitions in place. While this is acceptable in a test
environment, it is not an attractive solution for a production region. Consider
Figure 24 on page 303. Imagine that you want to update bean5 and bean6 in
CorbaServer COR2. If you were to close down CICS, not only would bean5 and
bean6 be unavailable during the shutdown, but also all the beans in CorbaServer
COR1.

What if your EJB server contains several AORs, with workload management being
used to balance requests across them? Could you not then shut down and upgrade
each AOR in turn, with a minimal effect on performance? Unfortunately not,
because:
v During the upgrade process, different AORs would have different versions of

the beans. Unless the new versions of the beans were completely compatible
with the old versions, this would cause unpredictable effects. (For the new
version of a bean to be completely compatible with an old version, among other
things, the home and component interfaces of the two versions must be
identical, and the state of any stateful session beans must be preserved.)

Chapter 9. Stable Java technologies 301

v Shutting down even one AOR would inevitably degrade the performance of the
EJB server to some extent. (If the upgrade is an important one, this might be
acceptable. To compensate for the degraded performance you could, perhaps,
add an extra AOR to your EJB server.)

The rest of this section discusses what you need to do on a CICS EJB server to
update enterprise beans in production regions. Note that changes might also be
required on the client side. In particular, if, due to an update, the home or
component interface of an enterprise bean changes, before any client applications
can use the updated bean they must be rewritten to use the new interface.

The following figure shows the clients are invoking bean methods in CorbaServers
COR1 and COR2. You can divide beans between CorbaServers based on the
maintenance and availability requirements of the beans.

302 CICS TS for z/OS 4.2: Java Applications in CICS

For some suggested solutions to the problem of how best to update beans in a
production region, see “Possible solutions.”

Possible solutions
Here are some suggested solutions for our problem of how best to update beans in
a production region. The solutions offered depend on whether your EJB server
consists of a single listener/AOR or of multiple listeners and AORs.

As a general rule, upgrade solutions will be easier to implement if you:

CICS Listener/AOR

Pickup directory 1
HFS

Pickup directory 2

COR1

Bean1
Bean2

Bean3

Bean4

COR2

Bean5

Bean5

Bean6

Client1 Client2

Bean5
Bean6

DJAR3

Bean1
Bean2

DJAR1

Bean3
Bean4

DJAR2

Figure 24. A CICS EJB production region

Chapter 9. Stable Java technologies 303

1. Divide your enterprise beans between CorbaServers based not only on the
beans' functions but also on their maintenance and availability requirements.
That is, sets of beans that have distinct maintenance and availability
requirements should be installed in distinct CorbaServers.

2. Allocate CICS transaction IDs to enterprise bean methods based not only on the
beans' functions but also on their maintenance and availability requirements.
That is, for ease of maintenance sets of beans that have distinct maintenance
and availability requirements should run under distinct CICS transaction IDs.

Important:

a. In a multi-region EJB server, if your AORs contain multiple CorbaServers
you are strongly advised to assign different sets of transaction IDs to the
objects supported by each CorbaServer. That is, each CorbaServer in an
AOR should support a different set of transaction IDs.

b. This makes it easier for the distributed routing program to route around a
disabled CorbaServer, while keeping available any other, enabled,
CorbaServers in the region. For further information about how to code a
distributed routing program to deal with a disabled CorbaServer, see the
CICS Customization Guide.

Note: The CICS transaction under which a bean method runs is specified on
the REQUESTMODEL definition that matches the method. You can use the
CREA CICS-supplied transaction to:
v Display the transaction IDs associated with particular beans and bean

methods
v Change the transaction IDs, apply the changes, and save the changes to new

REQUESTMODEL definitions

Solutions for a single listener/AOR:

These solutions are valid for an EJB server consisting of a single listener/AOR.

Let us assume that, in Figure 24 on page 303, you want to update bean5 and bean6
in CorbaServer COR2. DJAR3.jar is the deployed JAR file containing the beans to be
updated. You require:
1. CorbaServer COR1 and its beans to remain available throughout the upgrade

process.
2. If possible, the upgrade to the beans in CorbaServer COR2 to be seamless. That

is, there should be no time (or, at least, the smallest possible period of time)
during which it is impossible to create a new instance of bean5 or bean6.

Solution 1:
About this task

The advantage of this solution is that it is relatively easy to implement. The
disadvantage is that it is not seamless—that is, there is a period (while instances of
the old versions of bean5 and bean6 are being destroyed or passivated) during
which it is impossible to create a new instance of bean5 or bean6.
1. Issue an EXEC CICS SET CORBASERVER(COR2) ENABLESTATUS(DISABLED)

command or a CEMT SET CORBASERVER(COR2) DISABLED command. Any
attempts to create new instances of bean5 or bean6, regardless of whether the
clients have references to the beans' home interfaces, will fail.
Typically, currently-executing methods on instances of bean5 and bean6 will
proceed to completion.

304 CICS TS for z/OS 4.2: Java Applications in CICS

An instance of bean5 or bean6 that is not participating in an OTS transaction is
destroyed or passivated at the end of the currently-executing method. (If there
is no currently-executing method, all instances will already have been
destroyed or passivated.)

Note: Stateless session beans are destroyed. Stateful session beans are
passivated.
An instance of bean5 or bean6 that is participating in an OTS transaction is not
destroyed or passivated until the end of the OTS transaction; typically, any
future method calls against this instance (within the scope of the OTS
transaction) will succeed. At the end of the OTS transaction the instance is
destroyed or passivated.

2. Check when all instances of bean5 and bean6 have been destroyed or
passivated by issuing EXEC CICS or CEMT INQUIRE CORBASERVER(COR2)
ENABLESTATUS commands. A status of DISABLED indicates that all bean
instances have been destroyed or passivated.

3. When all instances of bean5 and bean6 have been destroyed or passivated,
install the updated version of the DJAR3.jar deployed JAR file, using either the
CICS scanning mechanism or a static DJAR definition. (You cannot use the
scanning mechanism to update a static DJAR definition.)
Either:
a. Put the new version of the DJAR3.jar deployed JAR file into CorbaServer

COR2's pickup directory.
b. Issue a PERFORM CORBASERVER(COR2) SCAN command. CICS scans COR2's

pickup directory, installs the new definition of DJAR3.jar, and copies the
new versions of bean5 and bean6 to COR2's shelf directory.

or:
a. Issue an EXEC CICS or CEMT DISCARD DJAR (DJAR3) command, to remove the

current definition of DJAR3.jar from CICS.
b. Issue a CEDA INSTALL DJAR(DJAR3) or an EXEC CICS CREATE DJAR(DJAR3)

CORBASERVER(COR2) HFSFILE(new_version_of_DJAR3.jar_on_HFS)
command. CICS installs the new definition of DJAR3.jar, and copies the
new versions of bean5 and bean6 to COR2's shelf directory.

Note:

a. It is not necessary to re-publish the updated versions of bean5 and bean6 to
the namespace, even if the home or component interfaces of the beans have
changed since the previous version.

b. If the home or component interface of bean5 or bean6 has changed since the
previous version, before using the changed bean client applications must be
updated to use the new signature.

c. If you update a stateful session bean, depending on exactly what changes
are made you may change the structure of its serialised state. If this
happens, you will invalidate any passivated instances of the bean in the
object store. If this happens, any attempts to use the now invalidated bean
will result in an exception. You should code your client applications to cope
with this possibility.

4. Issue a CEMT SET CORBASERVER(COR2) ENABLED command. From this moment, all
new work will use the updated versions of bean5 and bean6.

Solution 2:

Chapter 9. Stable Java technologies 305

This solution requires CICSPlex System Manager. All CICS applications on your
listener/AOR must be suitable for cloning across multiple regions.

About this task

The advantage of this solution is that, unlike solution 1, it is relatively
seamless—that is, there should at worst be only a tiny period during which it is
impossible to create a new instance of bean5 or bean6. The disadvantage is that it is
more complicated to implement than solution 1.
1. Using CICSPlex SM:

a. Clone your single listener/AOR.
b. Direct all new workload to the clone—that is, quiesce the original AOR and

activate the clone. For information on how to do this, see Balancing an
enterprise bean workload, in the CICSPlex System Manager Managing
Workloads manual.
All requests for bean methods that will run under a new OTS transaction,
or under no OTS transaction, whether in COR1 or COR2, are routed to the
clone.
Requests for bean methods that will run under an existing OTS transaction
(whether in COR1 or COR2) are routed to the original region.

Note:

1) By “a new OTS transaction” we mean an OTS transaction in which the
bean's participation begins after all new work is directed to the clone.

2) By “an existing OTS transaction” we mean an OTS transaction in which
the bean's participation began before all new work was directed to the
clone.

On the original region:
v An instance of an enterprise bean that is not participating in an OTS

transaction is destroyed or passivated at the end of the
currently-executing method. (If there is no currently-executing method, all
instances will already have been destroyed or passivated.)

v An instance of an enterprise bean that is participating in an OTS
transaction is not destroyed or passivated until the end of the OTS
transaction; typically, any future method calls against this instance
(within the scope of the OTS transaction) will succeed. At the end of the
OTS transaction the instance is destroyed or passivated.

2. On the original region:
a. Check when all instances of bean1 through bean6 have been destroyed or

passivated:
1) If you don't already know the CICS transaction ID or IDs associated

with bean1 through bean6, use the CREC transaction to display this
information.

2) Use the INQUIRE TASK command to check whether any instances of these
transactions are running.

b. When all instances of bean1 through bean6 have been destroyed or
passivated, install the updated version of the DJAR3.jar deployed JAR file,
using either the CICS scanning mechanism or a static DJAR definition. (You
cannot use the scanning mechanism to update a static DJAR definition.)
Either:

306 CICS TS for z/OS 4.2: Java Applications in CICS

1) Put the new version of the DJAR3.jar deployed JAR file into
CorbaServer COR2's pickup directory.

2) Issue a PERFORM CORBASERVER(COR2) SCAN command. CICS scans COR2's
pickup directory, updates its definition of DJAR3.jar, and copies the new
versions of bean5 and bean6 to COR2's shelf directory.

or:
1) Issue a CEMT DISCARD DJAR(DJAR3) command to delete the old definition

of DJAR3.jar.
2) Issue a CEDA INSTALL DJAR(DJAR3) or an EXEC CICS CREATE DJAR(DJAR3)

CORBASERVER(COR2) HFSFILE(new_version_of_DJAR3.jar_on_HFS)
command. CICS installs the new definition of DJAR3.jar, and copies the
new versions of bean5 and bean6 to COR2's shelf directory.

Note:

1) It is not necessary to re-publish the updated versions of bean5 and bean6
to the namespace, even if the home or component interfaces of the beans
have changed since the previous version.

2) If the home or component interface of bean5 or bean6 has changed since
the previous version, before using the changed bean client applications
must be updated to use the new signature.

3) If you update a stateful session bean, depending on exactly what
changes are made you may change the structure of its serialised state. If
this happens, you will invalidate any passivated instances of the bean in
the object store. If this happens, any attempts to use the now invalidated
bean will result in an exception. You should code your client
applications to cope with this possibility.

3. Using CICSPlex SM, direct all new workload to the original region—that is,
quiesce the clone and activate the original region.
All requests for bean methods that will run under a new OTS transaction, or
under no OTS transaction, whether in COR1 or COR2, are now routed to the
original region. From this moment, all new work will use the updated versions of
bean5 and bean6. Requests for bean methods that will run under an existing
OTS transaction (whether in COR1 or COR2) continue to be routed to the clone.

Note:

a. By “a new OTS transaction” we mean an OTS transaction in which the
bean's participation begins after all new work is redirected to the original
region.

b. By “an existing OTS transaction” we mean an OTS transaction in which the
bean's participation began before all new work was redirected to the original
region.

Eventually, all instances of enterprise beans on the clone will be destroyed or
passivated, as described above.

4. On the clone region, use the INQUIRE TASK command to check when all
instances of bean1 through bean6 have been destroyed or passivated. When this
has happened, you can discard the clone region.

Solutions for a multi-region EJB server:

These solutions are valid for an EJB server consisting of one or more listener
regions and multiple, identical, AORs.

Chapter 9. Stable Java technologies 307

Assume that your EJB server consists of three identical listener regions and five
identical AORs. Each of the AORs is a clone of the region shown in Figure 24 on
page 303 (except that it is an AOR rather than a listener/AOR). All the AORs share
the same pickup directories, and the same sets of enterprise beans are deployed on
each, in identical CorbaServers named COR1 and COR2.

You want to update bean5 and bean6 in logical CorbaServer COR2. DJAR3.jar is the
deployed JAR file containing the beans to be updated.

You require:
1. Logical CorbaServer COR1 and its beans to remain available throughout the

upgrade process.
2. If possible, the upgrade to the beans in logical CorbaServer COR2 to be seamless.

That is, there should be no time (or, at least, the smallest possible period of
time) during which it is impossible to create a new instance of bean5 or bean6.

Solution 1:

This solution is a development of solution 1 for a single-region.

About this task

Its advantage is that it is relatively easy to implement. Its disadvantage is that it is
not seamless—that is, there is a period (while instances of the old versions of bean5
and bean6 are being destroyed or passivated) during which it is impossible to
create a new instance of bean5 or bean6.
1. On each of the AORs, issue an EXEC CICS SET CORBASERVER(COR2)

ENABLESTATUS(DISABLED) or a CEMT SET CORBASERVER(COR2) DISABLED
command. On all the AORs:
v Any attempts to create new instances of bean5 or bean6, regardless of

whether the clients have references to the beans' home interfaces, will fail.
v Typically, currently-executing methods on instances of bean5 and bean6 will

proceed to completion.
v An instance of bean5 or bean6 that is not participating in an OTS transaction

is destroyed or passivated at the end of the currently-executing method. (If
there is no currently-executing method, all instances will already have been
destroyed or passivated.)

v An instance of bean5 or bean6 that is participating in an OTS transaction is
not destroyed or passivated until the end of the OTS transaction; typically,
any future method calls against this instance (within the scope of the OTS
transaction) will succeed. At the end of the OTS transaction the instance is
destroyed or passivated.

2. On each of the AORs, check when all instances of bean5 and bean6 have been
destroyed or passivated by issuing EXEC CICS or CEMT INQUIRE
CORBASERVER(COR2) ENABLESTATUS commands. A status of DISABLED
indicates that all bean instances have been destroyed or passivated.

3. When all instances of bean5 and bean6, on all the AORs, have been destroyed
or passivated, install the updated version of the DJAR3.jar deployed JAR file,
using either the CICS scanning mechanism or static DJAR definitions. (You
cannot use the scanning mechanism to update static DJAR definitions.)
Either:
a. Put the new version of the DJAR3.jar deployed JAR file into CorbaServer

COR2's pickup directory (which is shared by all the AORs).

308 CICS TS for z/OS 4.2: Java Applications in CICS

b. On each of the AORs, issue a PERFORM CORBASERVER(COR2) SCAN command.
The AOR scans COR2's pickup directory, installs the new definition of
DJAR3.jar, and copies the new versions of bean5 and bean6 to COR2's shelf
directory.

or, on each of the AORs:
a. Issue an EXEC CICS or CEMT DISCARD DJAR(DJAR3) command, to remove the

current definition of DJAR3.jar from CICS.
b. Issue a CEDA INSTALL DJAR(DJAR3) or an EXEC CICS CREATE DJAR(DJAR3)

CORBASERVER(COR2) HFSFILE(new_version_of_DJAR3.jar_on_HFS)
command. CICS installs the new definition of DJAR3.jar, and copies the
new versions of bean5 and bean6 to COR2's shelf directory.

Note:

a. It is not necessary to re-publish the updated versions of bean5 and bean6 to
the namespace, even if the home or component interfaces of the beans have
changed since the previous version.

b. If the home or component interface of bean5 or bean6 has changed since the
previous version, before using the changed bean client applications must be
updated to use the new signature.

c. If you update a stateful session bean, depending on exactly what changes
are made you may change the structure of its serialised state. If this
happens, you will invalidate any passivated instances of the bean in the
object store. If this happens, any attempts to use the now invalidated bean
will result in an exception. You should code your client applications to cope
with this possibility.

4. On each of the AORs, issue a CEMT SET CORBASERVER(COR2) ENABLED
command. From this moment, all new work will use the updated versions of bean5
and bean6.

Solution 2:
About this task

This solution requires CICSPlex System Manager. It is a development of solution 2
for a single-region. Its advantage is that it is relatively seamless—that is, there
should at worst be only a tiny period during which it is impossible to create a new
instance of bean5 or bean6. Its disadvantage is that it is more complicated to
implement than solution 1.
1. Using CICSPlex SM:

a. Create clones of all your AORs.
b. Direct all new workload to the clones—that is, quiesce the original AORs

and activate the clones. For information on how to do this, see Balancing an
enterprise bean workload, in the CICSPlex System Manager Managing
Workloads manual.
Each request for a bean method that will run under a new OTS transaction,
or under no OTS transaction, whether in COR1 or COR2, is routed to one or
other of the clones.
Each request for a bean method that will run under an existing OTS
transaction (whether in COR1 or COR2) is routed to the appropriate
original AOR.

Note:

1) By “a new OTS transaction” we mean an OTS transaction in which the
bean's participation begins after all new work is directed to the clones.

Chapter 9. Stable Java technologies 309

2) By “an existing OTS transaction” we mean an OTS transaction in which
the bean's participation began before all new work was directed to the
clones.

3) By “the appropriate original AOR” we mean the original AOR containing
the request processor for the OTS transaction.

2. On each of the original AORs:
Check when all instances of bean1 through bean6 have been destroyed or
passivated:
a. If you don't already know the CICS transaction ID or IDs associated with

bean1 through bean6, use the CREC transaction to display this information.
b. Use the INQUIRE TASK command to check whether any instances of these

transactions are running.
3. When all instances of bean1 through bean6, on all the original AORs, have been

destroyed or passivated, install the updated version of the DJAR3.jar deployed
JAR file, using either the CICS scanning mechanism or static DJAR definitions.
(You cannot use the scanning mechanism to update static DJAR definitions.)
Either:
a. Put the new version of the DJAR3.jar deployed JAR file into COR2's pickup

directory (which is shared by all the original AORs).
b. On each of the original AORs, issue a PERFORM CORBASERVER(COR2) SCAN

command. The AOR scans COR2's pickup directory, updates its definition of
DJAR3.jar, and copies the new versions of bean5 and bean6 to COR2's shelf
directory.

or:

a. On each of the original AORs, issue a CEMT DISCARD DJAR(DJAR3) command
to delete the old definition of DJAR3.jar.

b. On each of the original AORs, issue a CEDA INSTALL DJAR(DJAR3) or an EXEC
CICS CREATE DJAR(DJAR3) CORBASERVER (COR2)
HFSFILE(new_version_of_DJAR3.jar_on_HFS) command. CICS installs the
new definition of DJAR3.jar, and copies the new versions of bean5 and
bean6 to COR2's shelf directory.

Note:

a. It is not necessary to re-publish the updated versions of bean5 and bean6 to
the namespace, even if the home or component interfaces of the beans have
changed since the previous version.

b. If the home or component interface of bean5 or bean6 has changed since the
previous version, before using the changed bean client applications must be
updated to use the new signature.

c. If you update a stateful session bean, depending on exactly what changes
are made you may change the structure of its serialised state. If this
happens, you will invalidate any passivated instances of the bean in the
object store. If this happens, any attempts to use the now invalidated bean
will result in an exception. You should code your client applications to cope
with this possibility.

4. Using CICSPlex SM, direct all new workload to the original AORs—that is,
quiesce the clones and activate the original AORs.
All requests for bean methods that will run under a new OTS transaction, or
under no OTS transaction, whether in COR1 or COR2, are now routed to the
original AORs. From this moment, all new work will use the updated versions of
bean5 and bean6. Requests for bean methods that will run under an existing
OTS transaction (whether in COR1 or COR2) continue to be routed to the clones.

310 CICS TS for z/OS 4.2: Java Applications in CICS

Note:

a. By “a new OTS transaction” we mean an OTS transaction in which the
bean's participation begins after all new work is redirected to the original
AORs.

b. By “an existing OTS transaction” we mean an OTS transaction in which the
bean's participation began before all new work was redirected to the original
AORs.

Eventually, all instances of enterprise beans on the clones will be destroyed or
passivated.

5. On each of the clones, use the INQUIRE TASK command to check when all
instances of bean1 through bean6 have been destroyed or passivated. When this
has happened, you can discard the clone.

Other possible solutions: The solutions described in “Solutions for a single
listener/AOR” on page 304 and “Solutions for a multi-region EJB server” on page
307 are not the only possibilities. Another approach, for example, is to:
1. Use non-default TRANIDs for the request processors associated with the beans

to be updated. (In other words, segregate your enterprise beans by CorbaServer
and transaction ID in the way previously suggested.)

2. Disable the request processor transactions, or put the transactions into a
transaction class and reduce the TCLASS limit to zero.

3. When all instances of the beans have been destroyed or passivated, install the
updated versions of the deployed JAR files in one of the ways described for the
other solutions.

The CCI Connector for CICS TS
The CCI Connector for CICS TS helps you to build Enterprise JavaBean (EJB)
server components that make use of existing CICS programs.

Overview of the CCI Connector for CICS TS
The CCI Connector for CICS TS helps you to build Enterprise JavaBean (EJB)
server components that make use of existing CICS programs.

The background—connectors:

Frequently, new Java applications can be developed more quickly and reliably by
harnessing the power of existing (non-Java) CICS programs.

A CICS connector is a software component that allows a Java client application to
invoke a CICS application. Typically, the Java client programs that use a CICS
connector are servlets.

For several releases, CICS has supported CICS connectors that enable a Java client
program, running outside CICS (on, for example, Windows, UNIX, or native z/OS),
to connect to a specified program on a CICS server. The CCI Connector for CICS
TS enables a Java program or enterprise bean running on CICS Transaction Server for
z/OS to link to a CICS server program.

The CCI Connector for CICS TS implements the industry-standard Common Client
Interface (CCI) defined by the J2EE Connector Architecture Specification, Version
1.0.

Chapter 9. Stable Java technologies 311

Note: The CICS Connector for CICS TS, introduced in CICS TS for z/OS, Version
2.1, is no longer supported. Unlike the CCI Connector for CICS TS, the CICS
Connector for CICS TS implemented a non-standard, IBM-proprietary, client
interface.

The Common Client Interface:

This section presents an overview of the Common Client Interface (CCI). The
Common Client Interface is part of the J2EE Connector architecture.

For definitive information about the interface, see the J2EE Connector Architecture
specification. To download the specification, go to the Oracle Technology Network
Java website and search for J2EE Connector architecture.

The CCI provides a standard interface that allows developers to communicate with
any number of Enterprise Information Systems (EISs) through their specific
resource adapters, using a generic programming style. The CCI is closely modeled
on the client interface used by Java Database Connectivity (JDBC), and is similar in
its use of Connections and Interactions.

Within the CCI, there are two distinct types of class: for convenience, we shall call
them framework classes and input/output classes.

Framework classes:

Framework classes are used to request a connection to an EIS such as CICS, and
execute commands on the EIS, passing input and retrieving output.

The framework classes are:

ConnectionFactory
A ConnectionFactory object is used to manufacture connections that a Java
component can use to communicate with a specific EIS. Attributes of the
ConnectionFactory specify the EIS for which connections can be created. A
ConnectionFactory is the factory for a Connection object.

Connection
A Connection object identifies a unique connection to a specific server. It is
the factory for an Interaction object.

Interaction
The execute method of an Interaction object allows you to drive an
interaction with a server. In CICS TS, the execute method takes three
arguments—an InteractionSpec object that specifies the type of interaction,
and two Record objects that carry the input and output data.

J2EE components use the framework classes to acquire a connection to an EIS and
to send and receive data. First, a J2EE component obtains a ConnectionFactory
object for the particular EIS that is to be accessed—for example, CICS. (The
component may manufacture the ConnectionFactory programatically or, more
likely, look it up in a JNDI namespace.) It uses the ConnectionFactory to get a
Connection object. Then it uses the Connection object to create one or more
Interaction objects. It executes commands on the EIS through these Interaction
objects.

Figure 25 on page 313 shows the CCI framework classes being used to connect to
an EIS and execute a command.

312 CICS TS for z/OS 4.2: Java Applications in CICS

http://www.oracle.com/technetwork/java/
http://www.oracle.com/technetwork/java/

Input/output classes:

Using the framework classes gives a generic way of accessing an EIS by means of a
J2EE resource adapter.

However, because every EIS has different input and output needs, the CCI
interfaces provide a way for J2EE components to pass EIS-specific information to a
J2EE resource adapter. The following types of object are used for this purpose by a
J2EE component:
v ConnectionSpec objects
v InteractionSpec objects
v Record objects

ConnectionSpec
A ConnectionSpec object can be used to specify security attributes (such as
userid and password) used in an interaction with a server.

Note: CICS ignores any security settings specified in a ConnectionSpec
object, because it has already established a suitable security context for the
connector.

The CCI Connector for CICS TS's ConnectionSpec class is called
ECIConnectionSpec.

InteractionSpec
An InteractionSpec object holds essential attributes necessary for an
interaction with a server—for example, the name of the target program. It
is passed as a required argument on an Interaction.execute() method call
when a particular interaction is to be carried out.

The CCI Connector for CICS TS's InteractionSpec class is called
ECIInteractionSpec.

Record
Record objects are beans that hold the data exchanged with the target
program—you can think of them as the equivalent of CICS communication
areas (COMMAREAs). The data is accessible through Record-defined
interfaces.

Figure 26 on page 314 shows the CCI framework classes and input/output classes
being used together to connect to an EIS, pass EIS-specific input/output
parameters, and execute a command.

ConnectionFactory cf = <Lookup from JNDI namespace>
Connection conn = cf.getConnection();
Interaction int = conn.createInteraction();
int.execute(<Input output data>);
int.close();
conn.close();

Figure 25. Using the CCI framework classes to connect to an EIS and execute a command

Chapter 9. Stable Java technologies 313

The CCI Connector for CICS TS:

The CICS Transaction Gateway includes an External Call Interface (ECI) resource
adapter for CICS.

The ECI resource adapter provides standard CCI interfaces that enable J2EE
components to call CICS server programs, using data areas (COMMAREAs) to
pass information to and from the server. Typically, these J2EE components are
servlets or enterprise beans; in all cases, they execute outside CICS.

CICS TS includes the CCI Connector for CICS TS, which provides standard CCI
interfaces that enable Java programs and components (for example, enterprise
beans) running within CICS to call CICS server programs.

A Java program or enterprise bean running on CICS TS can use the CCI Connector
for CICS TS to link to a suitable CICS server program. The CICS server program:
v May be written in any of the CICS-supported languages
v Must use a suitable communications area (COMMAREA)
v Must not do any terminal input/output
v Typically, runs on a separate back-end CICS Transaction Server for z/OS region,

but optionally may be on the same CICS region as the Java program or bean.

The connector uses a JCICS Program.link() call to access the back-end server
program. Link and distributed program link (DPL) calls are supported. This
scenario is shown in Figure 27 on page 315. In this example, a Java client
application or servlet uses RMI-IIOP to create an instance of an enterprise bean in
a CICS EJB server. The enterprise bean uses the CCI Connector for CICS TS to link
to a server program on a back-end CICS Transaction Server for z/OS region.

ConnectionFactory cf = <Lookup from JNDI namespace>
ECIConnectionSpec cs = new ECIConnectionSpec();
cs.setXXX(); //Set any connection specific properties

Connection conn = cf.getConnection(cs);
Interaction int = conn.createInteraction();
ECIInteractionSpec is = new ECIInteractionSpec();
is.setXXX(); //Set any interaction specific properties

RecordImpl in = new RecordImpl();
RecordImpl out = new RecordImpl();
int.execute(is,in,out);
int.close();
conn.close();

Figure 26. Complete CCI interaction with an EIS

314 CICS TS for z/OS 4.2: Java Applications in CICS

To create an enterprise bean that uses the CCI Connector for CICS TS, the Java
programmer requires a reasonable knowledge of CICS (although somewhat less
than if he or she were using JCICS). However, the enterprise beans that are created
can be used by Java programmers who have little knowledge of CICS.

The CCI Connector for CICS TS is highly optimized for execution within CICS;
there is very little overhead involved in using it rather than a JCICS
Program.link() call.

Benefits of the CCI Connector for CICS TS:

There are a number of benefits in using CCI Connector for CICS TS to build
powerful server components that make use of existing CICS programs.
1. CICS enterprise beans that use the connector:

v Enable programmers of Java client applications, who typically have little or
no knowledge of CICS, to add the power of CICS to their applications.

v Can be called by Java client applications and servlets running on many
platforms. The client code used to call the bean (and through it the CICS
server program) is identical on all Java platforms. Thus, for example, the
client could be an enterprise bean running on WebSphere, a servlet running
on a Web server, or a stand-alone application on a workstation.

v If written correctly, should be portable, with little or no modification,
between all EJB servers that support the Common Client Interface.

2. Because the Common Client Interface is a non-proprietary standard, the CCI
code that calls the server program should be portable, with little or no
modification, to and from most Java-enabled platforms.

3. Because the CCI Connector for CICS TS runs inside CICS, no network flows are
required between the connector and CICS. Thus, the connector's performance is
better than that of CCI connectors that use the ECI resource adapter to access
CICS programs from outside CICS.

Web Server

Java
servlet

z/OSz/OS

DPL

EJB container

Enterprise bean
instance

JCICS
Program.link()

Back-end
CICS
server
region

CCI
connector i/f

RMI-IIOP
calls to

enterprise
bean

Workstation

Java
client
app.

Web Server

Servlet

CICS Transaction Server for z/OS

Figure 27. A CICS enterprise bean uses the CCI Connector for CICS TS to connect to a CICS server program.

A Java client application or servlet uses RMI-IIOP to create an instance of an enterprise bean, which exists in a CICS
EJB container. The enterprise bean uses the CCI Connector for CICS TS to link to a server program on a back-end
CICS TS for z/OS region.

Chapter 9. Stable Java technologies 315

4. Using the connector from a CICS session bean results in a simple, two-tier
deployment model: Client → CICS TS.

5. Programs written to use the ECI resource adapter can be easily adapted to use
the CCI Connector for CICS TS. Thus, client programs that previously accessed
CICS server programs from outside CICS can be migrated to run inside CICS.

Note: If you port a program written to use the ECI resource adapter to use the
CCI Connector for CICS TS, you must recompile the program to use the CICS
TS-supplied classes in the dfjcci.jar JAR file, rather than the CICS Transaction
Gateway classes.

6. The CCI Connector for CICS TS supports the Java 2 security policy mechanism.

Sample applications:

CICS supplies two sample applications that illustrate how a CICS Java program or
enterprise bean can use the CCI Connector for CICS TS to call a CICS server
program.
1. The CCI Connector sample. This is a relatively simple application that shows

how to code the CCI APIs directly.
The CCI Connector sample illustrates how to:
a. Look up a previously-published connection factory in a JNDI namespace
b. Use the CCI Connector for CICS TS to call a CICS server program
The CCI Connector sample is described in “The CCI Connector sample
application” on page 323.

2. The EJB Bank Account sample. This is a more complex sample that illustrates
how you can use enterprise beans and DB2 to make CICS-controlled
information available to Web users. The sample implements a CICS enterprise
bean that uses the CCI Connector for CICS TS to link to back-end CICS COBOL
programs. The COBOL programs extract information from DB2 data tables.
The EJB Bank Account sample is described in “The EJB Bank Account sample
application” on page 266.

CICS also supplies two sample utility programs that show you how to:
1. Publish a connection factory to a JNDI namespace (the

CICSConnectionFactoryPublish sample). This is described in “Publishing a
connection factory using CICSConnectionFactoryPublish” on page 321.

2. Retract a previously-published connection factory from the JNDI namespace
(the CICSConnectionFactoryRetract sample). This is described in “Retracting a
connection factory using CICSConnectionFactoryRetract” on page 323.

Using the CCI Connector for CICS TS
CICS Java components that use the CCI Connector for CICS TS can be
programmed in two ways.

About this task
1. Program directly to the connector's implementation of the Common Client

Interface. This approach produces the best performance.
2. Use a rapid application development (RAD) tool that provides visual interfaces

and high-level constructs for programming the connector's Common Client
Interface.

Whichever method you choose, you need to understand how to use the CCI
Connector for CICS TS from a Java component running in CICS TS.

316 CICS TS for z/OS 4.2: Java Applications in CICS

The logic a CICS enterprise bean should use to link to a back-end CICS program is
shown in Figure 26 on page 314. That is:
1. Use the CICS-supplied sample program, CICSConnectionFactoryPublish, to

publish a ConnectionFactory object suitable for use with the CCI Connector
for CICS TS to the JNDI namespace used by the local CICS region. (See
“Using the sample utility programs to manage and acquire a connection
factory” on page 320.)

2. Declare a ConnectionFactory object, and set it to the CICS connection factory
by means of a JNDI lookup.

3. Create an ECIConnectionSpec object. Set its properties as necessary.

Note: This step is included for completeness. However, any userid or
password specified in the ECIConnectionSpec object is ignored by CICS.

4. Use the ConnectionFactory to create a Connection object. This object
represents a single connection to CICS.

5. Create an Interaction object from the Connection object.
6. Create an ECIInteractionSpec object. Set its properties, including the name of

the target program and the mode—synchronous or asynchronous—of the
interaction. (For CICS TS, only synchronous mode is supported.)

7. Create two Record objects, to represent the input and output communications
areas of the target program.

8. Run the execute method of the Interaction object, passing the
ECIInteractionSpec, and the input and output Record objects, as arguments.

9. Retrieve the data returned by the target program from the output Record
object.

10. Execute the close method of the Interaction object.
11. Execute the close method of the Connection object.

Note: To specify the CICS server region which owns the program to be linked to,
use the local PROGRAM resource of the server program. Specify the location of the
server program (local or remote) and, if it is remote, whether dynamic routing
should occur.

Important: Use the Javadoc for the CCI Connector architecture API to help code
your CCI applications. It also provides information such as the exceptions used by
CCI implementations. Javadoc for the CICS-specific ECIConnectionSpec and
ECIInteractionSpec classes is in the CCI Connector for CICS TS: Class Reference, in
the CICS Information Center.

Which classes to use?:

Which classes should you use, the standard CCI classes in the javax.resource.cci
package or the CICS-specific classes provided by the CCI Connector for CICS TS in
the com.ibm.connector2.cics package?

Framework classes:

The CCI Connector for CICS TS provides implementations of the framework
classes called ECIConnectionFactory, ECIConnection, and ECIInteraction.

However, the standard ConnectionFactory, Connection, and Interaction classes
should be used, rather than the CICS-specific implementations. For guidance
information about programming these classes, see the CICS Transaction Gateway:

Chapter 9. Stable Java technologies 317

Programming Guide. For reference information, see the Sun Javadoc generated from
the ConnectionFactory, Connection, and Interaction classes' source code.

Note that not all the information in the CICS Transaction Gateway: Programming
Guide is applicable to the CCI Connector for CICS TS. The following properties of
the ConnectionFactory class (and of the CICS-supplied
ECIManagedConnectionFactory class) are ignored by CICS TS:
v clientSecurity
v connectionURL (in CICS TS, this is always local:)
v password
v portNumber
v serverName
v serverSecurity
v userName

Specifying a value for any of the above properties has no effect.

Input/output classes:

The CCI Connector for CICS TS provides implementations of the input/output
classes. Use these CICS-specific classes (ECIConnectionSpec and
ECIInteractionSpec} rather than the standard ConnectionSpec and InteractionSpec
classes.

For guidance information about programming the CICS-specific classes, see the
CICS Transaction Gateway: Programming Guide. For reference information, see the
CICS Javadoc generated from the ECIConnectionSpec and ECIInteractionSpec
classes in the CCI Connector for CICS TS: Class Reference. Special considerations that
apply to the CCI Connector for CICS TS are listed below.

Note: Specifying a property or value described as “not supported by CICS TS”
results in an exception. Specifying a property or value described as “ignored by
CICS TS” has no effect.

ECIConnectionSpec
This class allows the J2EE component to pass security credentials different
from those defined for the connection factory. Properties include:

Password
The password for the userid specified in UserName. Ignored by CICS TS.

UserName
The userid to be used to access CICS. Ignored by CICS TS.

ECIInteractionSpec
This class holds all the interaction-relevant attributes (for example, the name of
the target program and the mode of the interaction—synchronous or
asynchronous) necessary for an interaction with CICS. It is a required
parameter on each Interaction.execute() method call. Its properties are:

InteractionVerb
The mode of the call to CICS—synchronous or asynchronous. The CCI
Connector for CICS TS supports only the following:

SYNC_SEND_RECEIVE
A synchronous call. This is used to link to a CICS program.

FunctionName
The name of the program to execute on CICS. The CCI Connector for CICS
TS requires you to specify FunctionName.

318 CICS TS for z/OS 4.2: Java Applications in CICS

Note: FunctionName can refer to either a local or a remote program. The
PROGRAM definition in the local region should specify the location of the
server program (local or remote) and, if it's remote, whether or not
dynamic routing should occur.

ExecuteTimeout
The timeout value for interactions with CICS.

0 No timeout. This is the default value, and the only value
supported by CICS TS.

A positive integer
The length of time in milliseconds. Ignored by CICS TS.

CommareaLength
The length of the communications area (COMMAREA) being passed to
CICS inside your input record. If this is not supplied, the default used by
the CCI Connector for CICS TS is the length of the input record data.

ReplyLength
The amount of data you want back from CICS. Where only a small amount
of a large returned COMMAREA is required by your enterprise bean or
Java component, you can use this setting to cut down on network
bandwidth. If not supplied, the default is to receive all data in the
COMMAREA.

Note: You are recommended not to set ReplyLength. Because the CCI
Connector for CICS TS always runs in local mode—that is, the enterprise
bean or Java component that calls the connector executes on the same CICS
region as the connector itself—there is no network flow to consider and
therefore no need to receive less than the whole reply.

Record
For input and output, the CCI Connector for CICS TS supports only Record
classes that implement the javax.resource.cci.Streamable interface. This allows
the connector to read and write the streams of bytes that make up CICS
COMMAREAs directly to and from the Record objects supplied to the
execute() method of ECIInteraction.

For further information about using the javax.resource.cci.Streamable interface
to build input records and retrieve byte arrays from output records, see the
CICS Transaction Gateway: Programming Guide.

Data conversion and the CCI Connector for CICS TS
To represent text data, Java programs always use the Unicode character set, while
CICS TS programs use EBCDIC.

When a Java program or enterprise bean calls a CICS TS server program, any text
values in the communications area of the server program must be converted from
Unicode to EBCDIC on input, and from EBCDIC to Unicode on output. However,
the CCI Connector for CICS TS handles this data conversion automatically. When
converting to and from Unicode, the JCICS Program.link() call issued by the
connector uses, as the alternative coding system, the coding system of the
execution environment; because the connector runs on z/OS, the alternative coding
system is EBCDIC.

Note: By default, the Record objects passed to the connector's Interaction.execute()
method use the EBCDIC code page used by the connector's execution environment.

Chapter 9. Stable Java technologies 319

Installing the CCI Connector for CICS TS

Compiling CCI applications
To compile an application that uses the CCI Connector for CICS TS, you must
include these CICS-supplied JAR files in your Java classpath:

connector.jar
The CCI APIs, required by all CCI applications

dfjcci.jar
The CICS TS implementations of the CCI APIs

When you install CICS, connector.jar is installed into the %JAVA_HOME%/standard/
jca z/OS UNIX directory (where %JAVA_HOME% is the value of the JAVADIR
parameter on the DFHISTAR CICS installation job); dfjcci.jar is installed into the
/usr/lpp/cicsts/cicsts42/lib directory (where cicsts42 is the value of the
USSDIR parameter on the DFHISTAR installation job).

Using the sample utility programs to manage and acquire a
connection factory
About this task

CICS supplies three sample programs that illustrate how to:
1. Publish a connection factory to a JNDI namespace (the

CICSConnectionFactoryPublish sample). You can use the sample to create a
ConnectionFactory object suitable for use with the CCI Connector for CICS TS,
and to publish it to the JNDI namespace used by the local CICS region. An
enterprise bean or Java program, running on CICS, can then perform a JNDI
lookup to obtain a reference to the connection factory.
This sample is described in “Publishing a connection factory using
CICSConnectionFactoryPublish” on page 321.

2. Retract a previously-published connection factory from the JNDI namespace
(the CICSConnectionFactoryRetract sample). This sample is described in
“Retracting a connection factory using CICSConnectionFactoryRetract” on page
323.

3. Look up a connection factory in the JNDI namespace (the CCI Connector
sample application). This sample also shows you how to use the CCI Connector
for CICS TS to call a CICS server program. It is described in “The CCI
Connector sample application” on page 323.

Using the CICSConnectionFactoryPublish and CICSConnectionFactoryRetract
samples, you can create, publish, and manage a connection factory separately from
the applications that use it.

To use the sample programs, you need a suitably configured name server. If you
need to configure a name server, see “Enabling JNDI references” on page 364 and
“Specifying the location of the JNDI name server” on page 364.

Installing the publish and retract sample programs:

This section describes how to install the CICSConnectionFactoryPublish and
CICSConnectionFactoryRetract programs.

320 CICS TS for z/OS 4.2: Java Applications in CICS

About this task

How to install the CCI Connector application is described in “Installing the CCI
Connector sample” on page 325.

The CICS-supplied JAR file CICSCCISamples.jar contains the object (.class) files for
the sample programs. CICS installs CICSCCISamples.jar into the
/usr/lpp/cicsts/cicsts42/samples/cci directory (where /usr/lpp/cicsts/
cicsts42 is the install directory for CICS files on z/OSUNIX). Also installed into
the /usr/lpp/cicsts/cicsts42/samples/cci directory are the source (.java) files of
the programs.

To install the CICSConnectionFactoryPublish and CICSConnectionFactoryRetract
programs:

Procedure

1. Add the JAR file containing the programs, /usr/lpp/cicsts/cicsts42/samples/
cci/CICSCCISamples.jar, to the CLASSPATH_SUFFIX statement in the JVM
profile that the programs will use. As supplied, the sample programs use the
CICS-supplied sample JVM profile DFHJVMPR, which is the default if no JVM
profile is specified in the program's resource definition. CICS installs
DFHJVMPR into the /usr/lpp/cicsts/cicsts42/JVMProfiles directory.

2. Place your edited version of DFHJVMPR in the z/OS UNIX directory specified
on the JVMPROFILEDIR system initialization parameter. (In a default CICS
installation, JVMPROFILEDIR specifies /usr/lpp/cicsts/cicsts42/JVMProfiles

3. Use CEDA to install transactions CCPB and CCRT from group DFH$CCI.
4. Use CEDA to install programs DFJ$CCPB and DFJ$CCRT from group

DFH$CCI.

Note: If your CICS region uses program autoinstall, this last step is not
required.

Results

Publishing a connection factory using CICSConnectionFactoryPublish:

The CICSConnectionFactoryPublish program performs these tasks.
1. Gets the initial JNDI context of the CICS region.
2. Checks to see if a ConnectionFactory subContext exists in the context structure.
3. If the ConnectionFactory subContext does not exist, creates it.
4. If the ConnectionFactory/CICSConnectionFactory connection factory has not

already been published (bound) to the name server, publishes it.

The default name of the connection factory, as set by the supplied version of the
CICSConnectionFactoryPublish program, is CICSConnectionFactory. The default
name of the JNDI subContext in which the connection factory is published is
ConnectionFactory. By editing the source code of the
CICSConnectionFactoryPublish program, you can change:
v The name of the connection factory.
v The JNDI subContext.

Chapter 9. Stable Java technologies 321

v If the linked-to server program is remote, the name of the mirror transaction
under which the program runs on the remote region. However, the
recommended way to specify the mirror program is on the local PROGRAM
definition of the server program.

For instructions on how to make the changes, see the comments in the source code.

If you change the name of the connection factory, or of the subContext, remember
to make the same change in all three of the sample programs.

Running the program:

To publish (bind) a ConnectionFactory suitable for use with the CCI Connector for
CICS TS to the CICS JNDI name server, run transaction CCPB.

Unless you have changed the CICSConnectionFactoryPublish program, the
ConnectionFactory will be named CICSConnectionFactory, and will be published to
subContext ConnectionFactory in the JNDI server's namespace.

The following message appears on your screen:
ccpb - ConnectionFactory published to JNDI successfully.

Note: If a ConnectionFactory with the same name and subContext has already
been published to the JNDI server (and not retracted), a different message appears:
ccpb - The ConnectionFactory is already published to JNDI.

Assuming that the connection factory is published successfully, the following
output is sent to stdout:

It is not recommended that you run CICSConnectionFactoryPublish as a PLTPI
program, or link to it from a PLTPI program. This is because, if a JVM is not
available, CICS startup time will be lengthened.

Looking up a connection factory:

This code example shows you how to look up a previously-published connection
factory in the JNDI namespace used by CICS.
// Declare a ConnectionFactory object
ConnectionFactory cf = null;

try{
// Get the initial JNDI context
javax.naming.Context ic = new javax.naming.InitialContext();

// Do the lookup, casting the returned CICSConnectionFactory to type
// ConnectionFactory
cf = (ConnectionFactory)ic.lookup("ConnectionFactory/CICSConnectionFactory");

// Use the connection factory to create a connection to CICS
Connection eciConn = (Connection)cf.getConnection();

**
**** CICSConnectionFactoryPublish: Started
**** CICSConnectionFactoryPublish: Binding ConnectionFactory ConnectionFactory/CICSConnectionFactory
**** CICSConnectionFactoryPublish: ConnectionFactory bound to JNDI
**** CICSConnectionFactoryPublish: Ended
**

Figure 28. Stdout output from transaction CCPB to publish a ConnectionFactory with default name and subContext

322 CICS TS for z/OS 4.2: Java Applications in CICS

}
catch (Exception e){

// Lookup failed, or specified connection factory has not been published
// Exception processing

}

This is illustrated in the CCI Connector application—see “The CCI Connector
sample application.”

Retracting a connection factory using CICSConnectionFactoryRetract:

To retract (unbind) a connection factory that you have published, run transaction
CCRT. Unless you have changed the CICSConnectionFactoryRetract program, the
ConnectionFactory to be retracted will be CICSConnectionFactory, in subContext
ConnectionFactory in the JNDI server's namespace.

The following message appears on your screen:
ccrt - ConnectionFactory retracted from JNDI successfully.

Note: If the ConnectionFactory named in the CICSConnectionFactoryRetract
program does not exist on the JNDI server (it may, for example, have already been
retracted), a different message appears:
ccrt - unable to locate ConnectionFactory on JNDI.

Assuming that the connection factory is retracted normally, the following output is
sent to stdout:

It is not recommended that you run CICSConnectionFactoryRetract as a PLTSD
program, or link to it from a PLTSD program. This is because CICS shut down
time will be lengthened.

The CCI Connector sample application
The CCI Connector sample is a relatively simple application that shows how to
code the CCI APIs directly.

It illustrates how to:
1. Look up a previously-published connection factory in a JNDI namespace
2. Use the CCI Connector for CICS TS to call a CICS server program

The sample consists of:
v A CICS Java program
v A custom Record that demonstrates the use of the javax.resource.cci.Streamable

interface
v A CICS COBOL server program

The sample works like this:
1. A user starts the application by running the CCCI transaction from a CICS

terminal.

**** CICSConnectionFactoryRetract: Started
**** CICSConnectionFactoryRetract: Unbinding ConnectionFactory/CICSConnectionFactory
**** CICSConnectionFactoryRetract: ConnectionFactory/CICSConnectionFactory unbound
**** CICSConnectionFactoryRetract: Ended

Figure 29. Stdout output from transaction CCRT to retract a connection factory with default name and subContext

Chapter 9. Stable Java technologies 323

2. The CICS Java program, CICSCCISample (DFJ$CCIC), is started. The Java
program:
a. Asks the user to input a sequence of random, unsorted, decimal numbers
b. Does a JNDI lookup of the name server, to obtain a CICS connection factory
c. If a connection factory has not been published to the name server, creates

one programatically
d. Uses the connection factory to create a connection to CICS
e. Creates an Interaction object from the Connection object, and sets the

properties of the interaction (including the name of the target program) by
means of an ECIInteractionSpec object

f. Uses the Interaction.execute method to link to the COBOL program,
DFH$0CCIS, passing as input (in a custom Record object) the user's
sequence of unsorted numbers, plus the ECIInteractionSpec object

3. The COBOL program sorts the numbers into ascending order and returns the
sorted sequence in its output COMMAREA.

4. The Java program retrieves the COBOL program's output from the output
Record object and displays the sorted list on the user's terminal.

Figure 30 on page 325 shows the components of the sample application.

324 CICS TS for z/OS 4.2: Java Applications in CICS

Requirements for the CCI Connector sample:

To enable the CCI Connector sample to obtain a CICS connection factory by
performing a JNDI lookup, you need a name server that supports the Java Naming
and Directory Interface (JNDI), Version 1.2 or later.

The way to set one up is described in “Actions required on z/OS or Windows NT”
on page 239. You can use either a COS Naming Server or an LDAP server.

However, if the sample cannot connect to the name server, or a CICS connection
factory has not been published to the name server, the sample creates the
connection factory programatically. Therefore, strictly speaking, a name server is
not a requirement to run the sample.

Installing the CCI Connector sample:
About this task

Procedure

1. If you have not already done so when running the
CICSConnectionFactoryPublish and CICSConnectionFactoryRetract samples,

CCI connector
for CICS TS

CICS COBOL
program

CICS

z/OS

Name server

JNDI

CICS Java
program

Figure 30. Overview of the CCI Connector sample application. The main elements of the
sample are a CICS Java program and a CICS COBOL server program. The Java program
uses the CCI Connector for CICS TS to link to the COBOL server program. The CICS
connection factory can be published to either a COS Naming Server or an LDAP name
server.

Chapter 9. Stable Java technologies 325

locate the JAR file containing the sample programs, /usr/lpp/cicsts/cicsts42/
samples/cci/CICSCCISamples.jar, where /usr/lpp/cicsts/cicsts42 is the
install directory for CICS files on z/OS UNIX. Add this JAR file to the
CLASSPATH_SUFFIX statement in the JVM profile that the programs will use.
As supplied, the sample programs use the CICS-supplied sample JVM profile
DFHJVMPR, which is the default if no JVM profile is specified in the program's
resource definition.
CICS installs DFHJVMPR into the /usr/lpp/cicsts/cicsts42/JVMProfiles
directory.
Place your edited version of DFHJVMPR in the z/OS UNIX directory specified
on the JVMPROFILEDIR system initialization parameter.

2. Ensure that the connector.jar and dfjcci.jar files are on the standard class
path.

Note: When you install CICS, connector.jar is installed into the
%JAVA_HOME%/standard/jca directory and dfjcci.jar is installed into the
/usr/lpp/cicsts/cicsts42/lib directory, as described in “Compiling CCI
applications” on page 320. The /usr/lpp/cicsts/cicsts42/lib directory is on
the base class path built by CICS, which is not visible in the JVM profiles, so
this directory is always included.

3. Ensure that the name server is running.
4. Use the CICSConnectionFactoryPublish program to create a ConnectionFactory

object for use by the CCI Connector for CICS TS, and to publish it to the name
server. See “Publishing a connection factory using
CICSConnectionFactoryPublish” on page 321.

5. Use CEDA to install transaction CCCI from group DFH$CCI.
6. Use CEDA to install definitions of the CICS Java and COBOL programs. Install

programs DFJ$CCIC and DFH0CCIS from group DFH$CCI.

Note: If your CICS region uses program autoinstall, this step is not required.

Testing the sample:
About this task

To test the CCI Connector sample:
1. Start transaction CCCI at a CICS terminal.
2. The sample asks you to input some numbers. Enter at least five decimal

numbers, separated by spaces, and press the Return key. (Each number should
be of five digits or less, and the numbers should not be ordered by size.)

3. The sample writes the sorted list of numbers to your screen and to stdout. If,
for example, you entered the numbers 54, 3, 77, 55, and 19, your screen would
look like this:
CCCI - CCI sample transaction starting.

A Connection object has been instantiated.

An Interaction object has been instantiated.

Enter a series of numbers: 54 3 77 55 19

An InteractionSpec object has been instantiated.

Connecting to program DFH0CCIS by invoking execute() on Interaction object.

Commarea sent: 54 3 77 55 19*

326 CICS TS for z/OS 4.2: Java Applications in CICS

Commarea returned: 3 19 54 55 77*

CCCI - CCI sample transaction finished.

Problem determination
You can use CCI Connector for CICS TS messages, and CICS trace, to diagnose
problems.

CCI Connector for CICS TS messages:
CICS messages related to the CCI Connector for CICS TS are described in the CICS
Messages and Codes Vol 1 manual.

Tracing the CCI Connector for CICS TS:

The CICS trace points related to the connector are in the range EJ 0600 - EJ 06FF.

These are described in Trace entries overview in Trace Entries.

To control the output of CICS trace information from the connector, use CICS trace
control in the normal way.

Dealing with CICS enterprise bean problems
This section contains information on guidance in dealing with problems setting up
and using the CICS enterprise bean support.

See Problem determination overview in Problem Determination for guidance on
the more general aspects of CICS problem determination and diagnostics.
v “CICS enterprise bean set-up problems”
v “Using EJB server runtime diagnostics” on page 328
v “Using EJB client runtime diagnostics” on page 330
v “Class version issues with RMI-IIOP” on page 332
v “Using EJB trace and serviceability commands” on page 333

CICS enterprise bean set-up problems
If you have difficulties setting up the CICS EJB server, the problem could be
related to your basic CICS Java set up. Try running the Java HelloWorld sample. If
this also fails it points to a problem with the set up of your JVM rather than
anything else.

Methods that require multiple request processors:

If a single execution of an enterprise bean method requires more than one request
processor, your application could experience deadlock problems.

About this task

(A method can be said to “require more than one request processor” if it calls one
or more other, typically remote, methods, each of which must execute in a different
request processor.) Deadlocks can be caused by all the request processors required
to satisfy the method being forced to wait for a JVM when no more JVMs are
permitted. This can occur for two reasons:
1. In the simple case, the maximum number of JVMs allowed to exist concurrently

under CICS (MAXJVMTCBS) is smaller than the number of request processors
required to service the method request.

Chapter 9. Stable Java technologies 327

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhs6/topics/overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhs1/topics/dfhs1_overview.html

2. In the complex case:
v CICS is processing multiple requests simultaneously.
v All the requests are waiting for another JVM.
v All the permitted JVMs are currently in use.

Avoiding the simple case is easy; avoiding the complex case is more difficult. It is
necessary to ensure there are always enough free JVMs to allow at least one
method's requirement of request processor instances to be satisfied.

The maximum number of concurrent JVMs available to a bean method is set by the
MAXACTIVE attribute of the TRANCLASS definition for the request processor
transaction. The maximum number of concurrent JVMs available to CICS is set by
the MAXJVMTCBS system initialization parameter.

To remove the possibility of deadlocks caused by bean methods that use multiple
request processors:
1. Wherever it is consistent with your applications' requirements, try to minimize

the number of request processors each method requires, preferably to one. If
you can reduce the requirements of all methods, in all applications, to one
request processor, you need do no more.

2. If it is not possible to reduce the requirements of all methods to one request
processor, discover which is your “worst case”—that is, the bean method that
requires the most request processors in order to be satisfied.

3. Create a new TRANCLASS definition. This transaction class will apply to the
request processor transaction under which bean methods that require multiple
request processors will run.

4. On the TRANCLASS definition, set the value of MAXACTIVE using the
following formula:
MAXACTIVE <= ((MAXJVMTCBS - n) / (n - 1)) + 1

where n is the maximum number of request processors required by your “worst
case” method.
If the result of this calculation is a decimal value, round it down to the nearest
(lower) whole number.

5. Create new TRANSACTION and REQUESTMODEL definitions:
a. Create a new TRANSACTION definition for the request processor

transaction under which bean methods that require multiple request
processors will run. (The easiest way to do this is to copy the definition of
the default CIRP request processor transaction and modify it.) On the
TRANCLASS option, specify the name of your new transaction class.

b. Create one or more REQUESTMODEL definitions. Between them, your new
REQUESTMODEL definitions must cover all requests that may be received
for bean methods that require multiple request processors. On the
TRANSID option of the REQUESTMODEL definitions, specify the name of
your new transaction.

Using EJB server runtime diagnostics
The EJB server provides runtime diagnostics to help you diagnose and resolve
problems. These include error messages, JVM trace, and the Java Platform
Debugger Architecture (JPDA).

CICS enterprise bean errors and messages:

This is a list of places to look for error messages from CICS.

328 CICS TS for z/OS 4.2: Java Applications in CICS

Enterprise Java domain (DFHEJnnnn) messages
CICS issues a large number of information, warning and error messages
from the enterprise Java domain. Most of these are routed to the CEJL and
CJRM transient data queues, others are sent to the console. See the CICS
Messages and Codes Vol 1 manual for a complete listing.

CICS JVM (DFHSJnnnn) messages
These are messages issued by the CICS JVM. Most are routed to the
transient data queue CSMT. See the CICS Messages and Codes Vol 1 manual
for a complete listing.

CICS Development Deployment Tool (DFHADnnnn) messages
These are messages issued by this tool and routed to CICS as SYSPRINT
messages. See the CICS Messages and Codes Vol 1 manual for a complete
listing.

CICS abend codes

v AJMA to AJM9 are issued by the CICS JVM
v AJ01 to AJ99 are issued by Java environment setup class Wrapper

See the CICS Messages and Codes Vol 1 manual for a listing.

JVM trace:

Java Virtual Machines (JVMs) have their own internal trace facility. JVM trace can
aid in the diagnosis of problems in the JVM. JVM trace can produce a large
amount of output, so activate JVM trace for special transactions, rather than
turning it on globally for all transactions.

“Defining and activating tracing for pooled JVMs” on page 188 explains the
different ways to activate pooled JVM trace and change the JVM trace options.

When you activate JVM trace, each JVM trace point that is generated appears as an
instance of a CICS trace point in the SJ domain.

In addition to the JVM trace options, the standard trace points for the SJ domain,
at CICS trace levels 0, 1 and 2, can be used to trace the actions that CICS takes in
setting up and managing JVMs and the shared class cache.

Java platform debugger architecture (JPDA):

The JVM in CICS supports the Java Platform Debugger Architecture (JPDA), which
is the standard debugging mechanism provided in the Java 2 Platform.

The JVM in CICS supports the Java Platform Debugger Architecture (JPDA), which
is the standard debugging mechanism provided in the Java 2 Platform. This
architecture provides a set of APIs that allow the attachment of a remote debugger
to a JVM. A variety of third party debuggers are available that exploit JPDA and
can be used to attach to and debug a JVM that is running an enterprise bean,
CORBA object or CICS Java program. Typically the debugger provides a graphical
user interface that runs on a workstation and allows you to follow the application
flow, setting breakpoints and stepping through the application source code, as well
as examining the values of variables.

See “Debugging a Java application” on page 190 for guidance on setting up and
using a debugger with the CICS JVM.

Chapter 9. Stable Java technologies 329

To find information about JPDA and JPDA-compliant applications, go to the Oracle
Technology Network Java website and search for Java Platform Debugger Architecture
to find the JPDA home page.

Using EJB client runtime diagnostics
Most of the error messages issued by the client are of limited use if the problem is
in CICS, but you can sometimes get useful information from the client, and it is an
obvious place to start.

Some of the more useful client exceptions are as follows:

NoClassDefFoundException and ClassNotFoundException
If the client issues either of these, there is probably something missing or
corrupt on your client-side classpath. The exception should give you a
good indication of which class is missing, and from this you may be able
to work out which JAR file to add to the classpath. Remember that you
need j2ee.jar, and the fully deployed jar in the classpath. It is unlikely
that CICS will issue any useful additional information for these problems.

NoClassDefFoundError:javax/ejb/HomeHandle
This indicates that a client application does not have EJB 1.1 level
classes available on the classpath. Ensure that j2ee.jar is available.

ObjectNotFoundException
This exception can indicate that a session bean has timed out or that an
attempt has been made to use the session bean in two or more concurrent
transactions.

RemoteException
This indicates a problem in the server application and often contains a
nested exception giving more information. These include:

NoClassDefFoundError
This points to a missing JAR file on the server side. Check the
CICS system console and the JVM standard error and output files
for additional information.

CORBA.INTERNAL
This indicates a failure in the server side application outside the
JVM (for example, in a COBOL program called by an enterprise
bean). Check the CICS system console for more information.

CORBA exceptions:

These exceptions can sometimes provide useful information.

The completion status can have one of three values:
v No means that the server definitely did not complete running the invoked

method successfully.
v Yes means that the invoked operation on the server did complete.
v Maybe means that the client cannot determine whether or not the operation

completed on the server.

If the completion status is Yes, you can be sure that the client found something to
run on a server (however if your JNDI/IOR is incorrect, it may not have been the
correct enterprise bean or on the expected CICS region). You will usually find
some more useful information in the CICS output about why the method call
failed.

330 CICS TS for z/OS 4.2: Java Applications in CICS

http://www.oracle.com/technetwork/java/
http://www.oracle.com/technetwork/java/

Some of the more common CORBA exceptions received by the client are:

org.omg.CORBA.COMM_FAILURE
This can occur in one of the following situations:
v The JNDI nameserver is not running (if it is on a JNDI lookup)
v The enterprise bean has not been published to the JNDI nameserver.
v The CICS region is down
v TCPIPSERVICE is not installed or is open (for method invocations on

CICS)

org.omg.CORBA.INTERNAL
This is usually caused by an abend or failure of the server-side application.
Look in the CICS console for more information.

org.omg.CORBA.INVALID_TRANSACTION
This can occur because of transaction interoperability problems between a
web application server and CICS.

A number of protocols exist to support distributed transactions. The CICS
enterprise Java environment supports only the standard CORBA Object
Transaction Service (OTS) protocol. However, some J2EE-compliant web
application servers (such as WebSphere Version 4) either do not use this
protocol, or do not use this protocol by default. (Versions of WebSphere
Application Server from Version 5 onwards are not affected by this
problem.)

If objects on your web application server call CICS enterprise beans within the
scope of existing transaction contexts, you must set up your web application
server to use the CORBA OTS. If this is not possible, your web application
server is not fully compatible with CICS enterprise Java support. (For a
way of using the EJB Bank Account sample application to test whether
your web application server is fully compatible with CICS enterprise Java
support, see “A note about distributed transactions” on page 281.)

To force WebSphere Application Server to use the CORBA OTS:
1. At the WebSphere Administration Console, select the JVM settings tab.
2. Enter the following in the System Properties section:

com.ibm.ejs.jts.ControlSet.interoperabilityOnly=true
com.ibm.ejs.jts.ControlSet.nativeOnly=false

Save your changes.
3. Restart the application server.

org.omg.CORBA.OBJECT_NOT_EXIST
This can occur when a client finds a reference to a bean on the JNDI
nameserver but the bean is no longer installed in CICS.

org.omg.CORBA.UNKNOWN
There are many reasons for this exception including errors in your code,
and errors in CICS. See the CICS output for more clues about the cause of
the problem

In many instances, the CORBA exception includes a CICS specific minor code to
aid in problem determination. CICS currently uses the following minor codes:

Table 20. CICS specific CORBA minor codes

Code CICS component detecting problem

1229111296 CICS IIOP request receiver

Chapter 9. Stable Java technologies 331

Table 20. CICS specific CORBA minor codes (continued)

Code CICS component detecting problem

1229111297 Elsewhere in CICS II domain

1229111298 ORB component of CICS OT domain

1229111299 JTS component of CICS OT domain

1229111300 CSI component of CICS OT domain

1229111301 CSI component of CICS EJ domain

If the client receives a CORBA exception containing any of the CICS minor codes,
you should examine the CICS message logs for further information about the error.

Class version issues with RMI-IIOP
Remote Method Invocation over IIOP (RMI-IIOP) is the communication protocol
used, in CICS, by both enterprise beans and CORBA stateless objects. The
information in this section therefore applies to both enterprise beans and CORBA
stateless objects.

Java RMI is an object-by-value protocol. This means that whenever a Java object is
used as a parameter on a method call what gets sent on the wire is the object state.
The same is true of return types and exceptions. This state is a “serialized” Java
object. The state can be de-serialized by the remote JVM to create a new copy of
the original object in the remote JVM. The serialized state contains, among other
things, a version number to indicate the version of the class that the state
represents. In order for the serialized object to be de-serialized by the remote JVM,
it is necessary for the same version of the class file to be present at each end of the
IIOP connection. If the remote JVM cannot understand the object state, it will
probably cause the following exception to be thrown:
java.rmi.MarshalException:unable to read from underlying bridge

(This exception may be thrown for other reasons too.)

When you create a class in Java it is possible to provide your own customised
serialization mechanism. Using this mechanism, you can handle versioning of your
classes explicitly, rather than rely on Java's default serialization process. Moreover,
if you provide a custom serialization mechanism you can achieve significant
performance savings over the default mechanism. If you want to take advantage of
custom serialization, your objects must implement the java.io.Externalizable
interface.

Often the objects that must be serialized are instances of classes from the standard
Java class library. These usually do not change from one version of Java to the
next, but if they do it can lead to the kind of problem described above. In order to
minimize these problems, it is recommended that you use the same version of Java
on the partner machines as CICS uses. For example, between Java 1.3.1 and Java
1.4 the java.lang.Throwable class changed significantly. This class is the super-type
of all exceptions in Java and thus many exceptions serialized by Java 1.4.1 and
later cannot be de-serialized by older versions of Java.

There is a mechanism in CORBA that is used by many ORBs to get around the
problem of version changes in classes. Unfortunately, that mechanism does not
fully work in CICS because it involves affinities between the partner ORB and the
JVM in CICS. Multiple RMI-IIOP calls to the same CORBA object in CICS are likely
to be processed in different JVMs. This means that affinities are not supported and

332 CICS TS for z/OS 4.2: Java Applications in CICS

that the mechanism for avoiding class versioning issues does not work in CICS.
CICS applications suffer from this problem only when sending serialized objects to
a remote JVM. If a remote JVM sends a serialized object to CICS, CICS can use the
standard CORBA mechanism to cope with any version incompatibilities.

If you experience this kind of problem and are unable to change the version of
Java in use at the partner platform, it is recommended that the application be
changed to use a datatype that does not cause versioning issues.

Using EJB trace and serviceability commands
You might want to trace an EJB request when you are trying to diagnose hanging
or failing requests, or when you need to be able to uniquely identify all
transactions associated with a single request in order to monitor that activity or
perhaps for accounting purposes.

The main problems when trying to diagnose hanging or failing requests when an
EJB logical server comprises multiple CICS regions are that you must determine:
v The region where the request originated (the request receiver)
v The target (a CICS region or other server) that the request has been routed to.

The system programming interface (SPI) commands INQUIRE WORKREQUEST
and SET WORKREQUEST enable you to:
v determine which transactions are associated with a single request
v correlate all transactions associated with a single request
v purge selected work requests

Each request shows:
v the local task number and transaction ID
v the type of request, the first type supported is IIOP
v a unique (printable) string that can be entered on the command as a filter e.g.

– Worktype
– ClientIPAddress
– Target SNA (z/OS Communications Server) applid or TCPIP address

For more information about these commands, see the CICS System Programming
Reference and the CICS Supplied Transactions manuals.

The INQUIRE and SET WORKREQUEST commands are only available for IIOP
tasks.

WorkRequests associated with RequestReceivers are not included, they are
lightweight and all this information is available in the RequestProcessor. A
RequestReceiver may process more that one request per instance and may have left
the system long before the request has completed.

When you interrogate a logical server using the CPSM WUI, you have a single
screen displaying all WorkRequests in the server

You are able with these commands to purge a RequestProcessor in a manner
similar to purging a task from the CEMT INQ TASK list.

Chapter 9. Stable Java technologies 333

Managing security for enterprise beans
The security mechanisms, Java2 security, Secure Sockets Layer (SSL) security, MRO
security, and Security Roles can be used with enterprise beans.

You can implement any combination of these.

Java security
This form of security control is implemented by the Java Virtual Machine
(JVM) and can be used with any Java program that executes under JVM
control. See “Enabling a Java security manager” on page 87 for guidance on
how to set up this type of security control.

Secure Sockets Layer (SSL) security
The Secure Sockets Layer (SSL) is a security protocol that provides privacy and
authentication between clients and servers communicating using TCP/IP. For
more information about SSL, see Support for security protocols in the RACF
Security Guide.

MRO security
After the request receiver has established a CICS USERID to be associated with
the request, it might have to be routed to an application-owning-region (AOR).
If the routing mechanism uses a multiple region operation (MRO) connection,
the transmission of the user ID is subject to MRO security rules. See Link
security with MRO.

Security roles
A security role represents a type of user of an application in terms of the
permissions that the user must have to successfully use the application. See
“Security roles” on page 338.

The CICS-supplied enterprise beans policy file
The CICS-supplied enterprise beans policy file, dfjejbpl.policy, is based on the
Java security policy mechanism.

The Java security policy mechanism is described in the Enterprise JavaBeans
Specification, Version 1.1. The sample policy file is shown in Figure 31 on page 335.

In Java, the security policy is defined in terms of protection domains which map
permissions to code sources. A protection domain contains a code source with a set
of associated permissions.

The CICS-supplied enterprise beans policy file defines two protection domains,
which do the following:
1. Grants the required permissions to the CICS enterprise beans Container code

source for execution. See the 'grant codeBase' block in Figure 31 on page 335.
2. Grants any code source only the permissions outlined in the Enterprise

JavaBeans specification, Version 1. See the default 'grant' block in Figure 31 on
page 335:
v To allow anyone to initiate a print job request.
v To allow outbound connection on any TCP/IP ports.
v To allow all system properties to be read.

Remember that if you want to use JDBC or SQLJ from enterprise beans, amend the
CICS-supplied enterprise beans policy file to grant permissions to the JDBC driver.
For more information, see Using JDBC and SQLJ to access DB2 data from Java
programs in the DB2 Guide.

334 CICS TS for z/OS 4.2: Java Applications in CICS

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/dfht5kt.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/dfht5kt.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/dfht553.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfht5/topics/dfht553.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6j.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk6j.html

Using enterprise bean security
The EJB 1.1 specification defines the following security APIs to allow enterprise
beans to make application decisions based on the security details of the caller.

java.security.Principal getCallerPrincipal()
This method is used to determine who invoked the current bean method. The
getCallerPrincipal method is fully supported in CICS. Details of the way that
the identity of the current caller is determined are shown in “Deriving
distinguished names” on page 337.

boolean isCallerInRole(String SecurityRoleReference)
This method is used to test whether the current caller is assigned to a security
role that is linked to the security role reference specified on the method call.

CICS will throw a runtime exception (which conforms to the EJB 1.1 specification)
if the following deprecated EJB 1.0 security APIs are used.
v java.security.Identity getCallerIdentity()
v boolean isCallerInRole(java.security.Identity role)

Note: Enterprise beans developed to the Enterprise JavaBeans (EJB) 1.0
specification need to be upgraded to the Enterprise JavaBeans 1.1 specification
level, using the supplied development tools.
v See “The deployment tools for enterprise beans in a CICS system” on page 296

for information about deployment tools.
v See “Writing enterprise beans” on page 283 for information about writing

enterprise beans.

Defining file access permissions for enterprise beans:

To successfully run enterprise beans in CICS, the CICS region userid must be
permitted to access the files used by the enterprise logic.

These file permissions are required to run enterprise beans, regardless of the level
of security implemented. See also the CICS Transaction Server for z/OS Installation
Guide.

Access to z/OS UNIX files used by enterprise beans:

These file permissions are required to run enterprise beans.

// permissions granted to CICS enterprise beans Container codesource protection
//domain

grant codeBase "file:usr/lpp/cicsts/cicsts42//-" {
permission java.security.AllPermission;

};

// default EJB 1.1 permissions granted to all protection domains
grant {

// allows anyone to initiate a print job request
permission java.lang.RuntimePermission "queuePrintJob";

// allows outbound connection on any TCP/IP ports
permission java.net.SocketPermission "*:0-65535", "connect";

// allows anyone to read properties
permission java.util.PropertyPermission "*", "read";

};

Figure 31. Sample CICS enterprise beans security policy

Chapter 9. Stable Java technologies 335

Table 21. File access permissions required for CICS enterprise beans

File/Directory structure
Minimum
permission Comments

CORBASERVER Shelf directory (for
example, /var/cicsts/)

Read, write
and execute

The shelf is accessed during
CORBASERVER and DJAR
installation, and each CICS needs to
create unique subdirectories (see note
1).

/usr/lpp/cicsts/cicsts42 directory
structure and classes

Read and
execute

Contains the CICS-supplied Java code
(see note 2).

/usr/lpp/java/J6.0.1_64/bin and
/usr/lpp/java/J6.0.1_64/bin/
classic directories

Read and
execute

Contain the IBM JVM code (see note
3).

CICS working directory Read, write
and execute

Used to create stdin files (see note 4).

Deployed jar file Read Used during DJAR installation by the
deployment process.

Security policy file (if required) Read Required if the
-Djava.security.policy property is
specified in the JVM system
properties file.

System properties file Read Optional when creating a JVM (see
note 5).

Note:

1. /var/cicsts/ is the default SHELF directory name when you define a CORBASERVER
resource definition. Each CICS region creates a unique subdirectory in this shelf when it
installs the resource definition

2. cicsts42 is your chosen value for the USSDIR installation parameter that you defined
when you installed CICS TS.

3. java/J6.0.1_64 is your install location for the IBM 64-bit SDK for z/OS, Java
Technology Edition.

4. The CICS working directory is defined by the WORK_DIR parameter in the JVM
profile.

5. The optional system properties directory and file name are named on the JVMPROPS
option in the JVM profile.

File ownership and permissions may be defined using the chmod and chown
commands. For more information, see z/OS UNIX System Services Command
Reference.

Access to data sets used by enterprise beans:

Before CORBASERVERs can be installed in a CICS region, the following two data
sets must be created with UPDATE access, defined to CICS and installed. These
files can be VSAM data sets or coupling facility data tables.

Figure 32 on page 337 shows an example of RACF commands to access data sets
with the necessary authorization.

Note: These files are used internally by CICS, so no users should be given
resource level security access to them. This will prevent VSAM applications from
accessing the data in these files.

336 CICS TS for z/OS 4.2: Java Applications in CICS

DFHEJDIR
This data set contains a request streams directory which is shared by the
listener regions and AORs comprising a CICS IIOP server. The file must be
recoverable.

DFHEJOS
DFHEJOS is a data set containing passivated stateful session beans. It is
shared by all the AORs comprising a CICS IIOP server. This file must not
be recoverable.

See Authorizing access to CICS data sets, in the CICS RACF Security Guide, for
more information about authorizing access to CICS data sets.

Deriving distinguished names:

Enterprise beans can identify their end-user, or client, by means of a Principal
object.

The getCallerPrincipal method returns a Principal object representing the client,
and that Principal object contains methods that can be invoked to return
information about the client. In particular, the getName method of the Principal
object returns a String that contains the "distinguished name" of the client. The
distinguished name, or DN, is a sequence of keyword and value pairs, known as
relative distinguished names, or RDNs, and forms part of the X.500
recommendation (Standard ISO/IEC 9594). The string representation of a
distinguished name is suggested by RFC2253, LDAP V3: UTF-8 String
Representation of Distinguished Names.

Note: CICS Transaction Server for z/OS, Version 4 Release 2 does not verify that
a stateful session bean instance is used only by the same principal that created it.
Therefore the principal's userid and distinguished name may be different after a
bean instance has been reactivated.

If the bean's client has been identified and authenticated by means of a client
certificate using the secure sockets layer protocol, the distinguished name is always
obtained from that certificate. However, if the bean's client has not provided a
certificate, the distinguished name is obtained by invoking the DFHEJDNX
user-replaceable module. The inputs to the DFHEJDNX module are the title,
organizational unit, organization, locality, state, and country, obtained from the
server certificate whose label is specified in the CERTIFICATE option of the
CORBASERVER definition, and the userid and common name associated with the
user ID of the user executing the bean, but if SEC=NO is specified, the CICS region
userid is used. The common name is derived by transforming the username for
that user to a mixed-case string.) The certificate label specifies a certificate within
the key ring identified by the KEYRING system initialization parameter. If the
CERTIFICATE option is omitted, information is obtained from the default

ADDSD ’CICSTS42.CICS.CICS.DFHEJDIR’ NOTIFY(cics_sys_admin_id) UACC(NONE)
PERMIT ’CICSTS42.CICS.CICS.DFHEJDIR’ ID(cics_id1,...,cics_group1,..,cics_groupn)

ACCESS(UPDATE)
ADDSD ’CICSTS42.CICS.CICS.DFHEJOS’ NOTIFY(cics_sys_admin_id) UACC(NONE)
PERMIT ’CICSTS42.CICS.CICS.DFHEJOS’ ID(cics_id1,...,cics_group1,..,cics_groupn)

ACCESS(UPDATE)

Figure 32. An example of RACF commands used to authorize access to CICS data sets

Chapter 9. Stable Java technologies 337

certificate in the key ring. If the KEYRING parameter is omitted, no certificate
information is passed to DFHEJDNX, and only the common name RDN is
available.

The CICS-supplied version of DFHEJDNX accepts the inputs derived from the
CORBASERVER certificate and the username, and formats them into a
distinguished name in the following style:

T=CICS EJB Container,CN=Louise Peters,OU=CICS/390 Development,
O=IBM,L=Hursley,ST=Hampshire,C=GB

CICS-supplied samples of DFHEJDNX are located in the SDFHSAMP library,
CICSTS42.CICS.CICS.SDFHSAMP, as:
v DFHEJDN1 for Assembler language
v DFHEJDN2 for C language

Security roles
Access to enterprise bean methods is based on the concept of security roles. A
security role represents a type of user of an application in terms of the permissions
that the user must have to successfully use the application.

For example, in a payroll application:
v A manager role could represent users who are permitted to use all parts of the

application
v A team_leader role could represent users who are permitted to use the

administration functions of the application
v A data_entry role could represent users who are permitted to use the data entry

functions of the application

The security roles for an application are defined by the application assembler, and
are specified in the bean's deployment descriptor. For more information, see
“Security roles in the deployment descriptor” on page 342

The security roles that are permitted to execute a bean method are also specified in
the bean's deployment descriptor, again by the application assembler. In the
example, methods which update the hours worked by employees each week might
be assigned to the data_entry role, while methods which delete an employee from
the payroll might be assigned to the team_leader role.

To distinguish similarly named security roles in different applications, or in
different systems, the security roles specified in the bean's deployment descriptor
can be given a one- or two-part qualifier when the bean is deployed in a CICS
system. For example:
v Security role with no qualifiers:

team_leader

v Security role with one qualifier:
payroll.team_leader

v Security role with two qualifiers:
test.payroll.team_leader

A security role with its qualifiers is known as a deployed security role. For more
information, see “Deployed security roles” on page 339.

The mapping of security roles to individual users is done in the external security
manager. The mapping is not neccesarily one-to-one. For example, several users

338 CICS TS for z/OS 4.2: Java Applications in CICS

might be assigned to the data_entry role, while a some users might be assigned to
both the team_leader role and the data_entry role. For more information, see
“Implementing security roles” on page 344.

The security role and display name in the deployment descriptor can contain any
ASCII or Unicode character. This is not so for names used in RACF, which are
restricted to characters in EBCDIC code page 037. In addition, some characters —
the asterisk (*) for example — have special meaning when used in RACF
commands. Therefore, when CICS constructs the deployed security role from its
components, some characters are replaced with a different character, and others are
replaced with an escape sequence. For details, see “Character substitution in
deployed security roles” on page 340.

Deployed security roles:

A direct mapping between the security roles specified in a bean's deployment
descriptor and individual users may not adequately control access to bean
methods.

For example
v Two applications, provided by different suppliers, might use similar names for

security roles. In your enterprise, the users of each application might be
different.

v A bean could be used in more than one application. A user may be entitled to
use a particular method in one application, but not in the other.

v An application could be deployed in a test system and a production system.
Members of the test department may be permitted to use all bean methods in
the test system, but not in the production system.

To provide the degree of control that is needed in these and other cases, you can
qualify the security roles at the application level and the system level. A security
role with its qualifiers is known as a deployed security role. Here is an example of
a role name which is qualified at both levels:
test.payroll.team_leader

v payroll qualifies the security role at the application level, and is used to
distinguish between the team_leader role in the payroll application and the
team_leader role in other applications.

v test qualifies the security role at the system level, and is used to distinguish
between the payroll.team_leader role in the test system and the
payroll.team_leader role in other systems.

At the application level, security roles are qualified by the display name, if one is
specified in the deployment descriptor. If a display name is not specified, the
security roles are not qualified at the application level. If an application level
qualifier is used, a period (.) is used as the delimiter; if no qualifier is used, there
is no delimiter.

At the system level, security roles are optionally qualified with a prefix which is
specified in the EJBROLEPRFX system initialization parameter. If EJBROLEPRFX is
not specified, the security roles are not qualified at the system level. If a system
level qualifier is used, a period (.) is used as the delimiter; if no qualifier is used,
there is no delimiter.

This example shows how security roles defined in a bean's deployment descriptor
can be qualified:

Chapter 9. Stable Java technologies 339

v A bean contains three security roles: manager, team_leader, and data_entry
v The bean is used in a payroll application, with a display name of payroll. The

bean is also part of a test application, which does not have a display name.
v The payroll application is used on two production systems: the first does not

specify a prefix, while the second specifies a prefix of executive.
v The test application is used on a test system with a prefix of test1.

When the two levels of qualification are applied to the security roles specified in
the deployment descriptor, the deployed security roles are:
payroll.manager executive.payroll.manager test1.manager
payroll.team_leader executive.payroll.team_leader test1.team_leader
payroll.data_entry executive.payroll.data_entry test1.data_entry

Each of these deployed roles can be mapped to individual users (or groups of
users) to suit the security need of the enterprise.

If a security role is not qualified at the application level, or at the system level,
then the deployed security role is the same as the security role defined in the
deployment descriptor. For example, if the bean in the previous example is used in
an application which does not have a display name, and the application is used in
a system that does not specify EJBROLEPRFX, then the deployed security roles are:
manager
team_leader
data_entry

Enabling and disabling support for security roles:

By default, CICS support for security roles is enabled.

You can use the XEJB system initialization parameter to disable (or explicitly
enable) support for security roles. If you disable the support:
v CICS does not perform method authorization checks: all users are permitted to

use all bean methods.
v The isCallerInRole() method returns true for all users.

Security role references:

Within an application, the isCallerInRole() method can be used to determine if the
user of the application is defined to a given role.

The method takes a security role reference as an argument, rather than a security
role. The security role references coded in the bean are defined by the bean
provider, and declared in the bean's deployment descriptor.

For more information, see “Security roles in the deployment descriptor” on page
342

Each security role reference is linked to a security role by the application
assembler; the linkage is declared in the deployment descriptor for the bean. For
example, the security role reference of administrator used within the bean's code
might be linked, in the deployment descriptor, to the team_leader role.

For more information, see “Security roles in the deployment descriptor” on page
342

Character substitution in deployed security roles:

340 CICS TS for z/OS 4.2: Java Applications in CICS

The security role and display name in the deployment descriptor can contain any
ASCII or Unicode character.

The character set which can be used in deployed security roles is more restricted:
v Profile names used in RACF are restricted to characters in EBCDIC code page

037.
v Some characters — the asterisk (*) for example — have special meaning when

used in RACF commands, and cannot be used in a profile name.

When Unicode characters in the security role and display name cannot be used
directly in the deployed security role, they are replaced by the escape sequences
shown in Table 22. Substitution occurs:
v when the EJBROLE generator utility (dfhreg) processes the deployment

descriptor to generate RACF commands
v when CICS maps a security role to a RACF user ID

Table 22. Escape sequences used in security roles

Character Description ASCII/Unicode EBCDIC code
page 037

Escape sequence

ASCII and Unicode values whose equivalent EBCDIC value cannot be used in a deployed
security role name are replaced with a three-character escape sequence as follows:

blank X'20' X'40' ¢

¢ cent X'A2' X'4A' \A2

\ backslash X'5C' X'E0' \5C

* asterisk X'2A' X'5C' \2A

& ampersand X'26' X'50' \26

% per cent X'25' X'6C' \25

, comma X'2C' X'6B' \2C

(left parenthesis X'28' X'4D' \28

) right parenthesis X'29' X'5D' \29

; semicolon X'3B' X'5E' \3B

Unicode values which do not have an equivalent in EBCDIC code page 037 are replaced
with the Unicode escape sequence: a character with a Unicode representation of X'yyyy' is
replaced by \uyyyy. For example:

€ Euro symbol X'20AC' not supported \u20AC

Hiragana Ki X'304D' not supported \u304D

α alpha X'03B1' not supported \u03B1

Here are two examples that illustrate the way that characters are substituted:

Example 1

v The EJBROLEPRFX has a value of test
v The display name in the deployment descriptor has a value of

year.end.processing

v The security role in the deployment descriptor has a value of auditor 1

In this example, when the deployed security role is constructed:
1. Each space is replaced with ¢

Chapter 9. Stable Java technologies 341

2. The deployed security role is composed from the EJBROLEPRFX value,
the display name, and the security role; a period is used as the
delimiter.

The resulting deployed security role is:
test.year.end.processing.auditor¢1

Example 2

v The EJBROLEPRFX has a value of test
v The display name in the deployment descriptor has a value of αβ32. The

Unicode encoding is X'03B1 03B2 0033 0034'.
v The security role in the deployment descriptor has a value of auditor 1

In this example, when the deployed security role is constructed:
1. Each Unicode character that has an equivalent in EBCDIC code page

037 is replaced accordingly: In the display name, X'0033 0034' is
replaced by 34.

2. Each Unicode character that does not have an equivalent in EBCDIC
code page 037 is replaced with the corresponding escape sequence. In
the display name, X'03B1 03B2' is replaced by \u03B1\u03B2

3. Each space is replaced with ¢

4. The deployed security role is composed from the EJBROLEPRFX value,
the display name, and the security role; a period is used as the
delimiter.

The resulting deployed security role is:
test.\u03B1\u03B234.auditor¢1

Security roles in the deployment descriptor:

This shows a fragment of a deployment descriptor. It includes the following
security role information.
v 1 A display name of payroll.
v 2 The security role reference of administrator which is linked to the

team_leader role.
v 3 A security role of team_leader.
v 4 A method permission that allows a user defined in the team_leader role to

invoke the create() method.

342 CICS TS for z/OS 4.2: Java Applications in CICS

If an application with this deployment descriptor is used in a CICS system with
the following system initialisation parameters:
SEC=YES
XEJB=YES
EJBROLEPRFX=’test’

v The deployed security role of test.payroll.team_leader must be defined to
RACF.

v Users that have READ access to that deployed security role will be permitted to
invoke the create() method.

v isCallerInRole(’administrator’) will return true for users defined in the
deployed security role of test.payroll.team_leader, and false for other users.

For detailed information about the contents of the deployment descriptor, refer to
Enterprise JavaBeans Specification, Version 1.1.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"
"http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar id="ejb-jar_ID">
<display-name>payroll</display-name> 1

<enterprise-beans>
<session id="Session_1">

.

.
<security-role-ref id="SecurityRoleRef_1">

<role-name>administrator</role-name> 2
<role-link>team_leader</role-link>

</security-role-ref>
.
.

</session>
</enterprise-beans>
<assembly-descriptor id="AssemblyDescriptor_1">

<security-role id="SecurityRole_1">
<role-name>team_leader</role-name> 3

</security-role>
.
.

<method-permission id="MethodPermission_1">
<description>team_leader:+:</description>
<role-name>team_leader</role-name> 4
<method id="MethodElement_01">

<ejb-name>Managed</ejb-name>
<method-intf>Home</method-intf>
<method-name>create</method-name>
<method-params>
</method-params>

</method>
.
.

</method-permission>
.
.

</assembly-descriptor>
.
.

</ejb-jar>

Figure 33. Example of a deployment descriptor containing security roles

Chapter 9. Stable Java technologies 343

To view the contents of a deployment descriptor, you can use the Assembly Toolkit
(ATK). For more information about ATK, see The enterprise bean deployment tool,
ATK, in the CICS Operations and Utilities Guide.

Implementing security roles
Access to enterprise bean methods is based on the concept of security roles.

About this task

These are described in “Security roles” on page 338.

To implement the use of security roles in a CICS enterprise bean environment, you
must:
1. Determine which security roles are defined in the application's deployment

descriptor.
2. Determine the display names associated with the security roles in the

application's deployment descriptor. The display name qualifies the security
role at the application level.

3. Decide whether you need to qualify the security role name at the system level,
and — if you do — the value of the prefix which you will use in each system
where the application executes.

4. Using the information gathered in steps 1 through 3, determine the names of
the deployed security roles used by the application in each system. Characters
in the security role and display name that do not have a direct equivalent in
EBCDIC code page 37 (and some other characters) must be replaced with a
different character or an escape sequence when constructing the deployed
security role. See “Character substitution in deployed security roles” on page
340 for more information.

5. Using the information gathered in steps 1 through 3, define RACF profiles for
the deployed security roles. See “Defining security roles to RACF” on page 345
for more information.

6. Associate individual users or groups of users with each deployed security role
in RACF. See “Defining security roles to RACF” on page 345 for more
information.

7. Specify these system initialization parameters:
v SEC=YES

v XEJB=YES. This is the default value, so you do not need to specify it explicitly.
8. For those systems where the deployed security roles contain a system level

qualifier (see step 3), specify the EJBROLEPRFXEJBROLEPRFX system
initialization parameter.

Using the RACF EJBROLE generator utility:

The RACF EJBROLE generator utility, dfhreg, is a Java application program that
extracts security role information from deployment descriptors, and generates a
REXX program that you can use to define security roles to RACF.

The REXX program that dfhreg generates contains the RACF commands that
define security roles as members of a profile in the GEJBROLE class. Before you
run the REXX program, modify it to change the name of the profile that is defined.

The dfhreg invocation scripts for z/OS UNIX (dfhreg) and for Windows
(dfhreg.bat) are in the $CICS_HOME/lib/security directory. The implementation of
dfhreg (dfhreg.jar) is also in this directory. The other JAR files required to run

344 CICS TS for z/OS 4.2: Java Applications in CICS

dfhreg (dfjcsi.jar, dfjejbdd.jar, and dfjorb.jar) are in the $CICS_HOME/lib
directory. $CICS_HOME is the z/OS UNIX directory in which you have installed the
USS components of CICS.

You can run dfhreg on any platform that supports Java; however, you must run
the resulting REXX program against the RACF database on the z/OS system where
you want to define the security roles. When you run dfhreg, you must meet the
following requirements:
1. Your classpath must contain the following JAR files:

dfhreg.jar
dfjcsi.jar
dfjejbdd.jar
dfjorb.jar

2. You must be using a supported version of the Java 2 SDK.

The REXX program that the utility generates is in the code page of the platform on
which you run the utility. If you run the utility on a platform that uses an ASCII
code page, you must convert the REXX program to the EBCDIC code page that is
used on the target z/OS system.

Defining security roles to RACF:

In RACF, deployed security roles are managed as general resources. To define the
deployed security roles, define profiles in the GEJBROLE or EJBROLE resource
classes, with appropriate access lists.

For example, to use the following commands to define deployed security roles
deployed_security_role_1and deployed_securityrole_2 as members of the
securityrole_group profile in the GEJBROLE class, and give READ access to user1
and user2:
RDEFINE GEJBROLE securityrole_group UACC(NONE)

ADDMEM(deployed_security_role_1, deployed_securityrole_2, ...)
NOTIFY(sys_admin_userid)

PERMIT securityrole_group CLASS(GEJBROLE) ID(user1, user2) ACCESS(READ)

Alternatively, use the following commands to define deployed security roles in the
EJBROLE class, and to give users READ access to each deployed security role:
RDEFINE EJBROLE (deployed_security_role1, deployed_security_role2, ...) UACC(NONE)

NOTIFY(sys_admin_userid)
PERMIT deployed_security_role1 CLASS(EJBROLE) ID(user1, user2) ACCESS(READ)
PERMIT deployed_security_role2 CLASS(EJBROLE) ID(user1, user2) ACCESS(READ)

Note:

1. The security role you specify is the deployed security role, and not the
unqualified security role which is defined in the deployment descriptor.

2. To execute a bean method, or to receive a true response from the
isCallerInRole() method, a user requires READ access.

CICSPlex SM with enterprise beans
The management of enterprise beans may be undertaken at a CICSplex wide level.

CICSPlex SM support for enterprise beans
The management of enterprise beans can be undertaken at a CICSplex wide level,
by using the Operator and API services of CICSPlex SM.

Chapter 9. Stable Java technologies 345

The function provided by CICSPlex SM for the support of Enterprise JavaBeans
includes:
v Object management for CorbaServer and DJAR definitions
v Object management for installed CorbaServer and DJAR instances
v Dynamic management of enterprise bean execution

The CICSPlex SM areas that cover these facilities are:
v The application programming interface (API) - to allow the definition, inquiry,

and management of enterprise bean objects through the EXEC CPSM interface. See
the CICSPlex System Manager Application Programming Guide for information.

v The web user interface - to allow the inquiry and management of enterprise
bean objects through a web browser. See the CICSPlex System Manager Web User
Interface Guide for information about the Web User Interface.

CICSPlex SM definition support for enterprise beans
Business Application Services (BAS) is the CPSM component concerned with the
definition and installation of CICS resources

For more information on BAS, see the CICSPlex System Manager Managing Business
Applications manual. The BAS objects that are specific to Enterprise JavaBeans are:
v EJCODEF—enterprise bean CorbaServer definition
v EJDJDEF—enterprise bean CICS-deployed JAR file definition

The CorbaServer definition object (EJCODEF) allows the specification of exactly the
same CorbaServer characteristics as the CEDA version. EJCODEF is described in
Defining CorbaServers using BAS, in the CICSPlex System Manager Managing
Business Applications manual

The CICS-deployed JAR file definition object (EJDJDEF) allows the specification of
exactly the same DJAR characteristics as the CEDA version. EJDJDEF is described
in Defining a CICS-deployed JAR file using BAS, in the CICSPlex System Manager
Managing Business Applications manual.

These resources are fully integrated into the standard BAS functionality, and they
may be managed and installed automatically, or on an ad hoc basis as a user may
require.

In addition to these two object types, there are some other BAS objects that are
related to enterprise bean operation:
v TCPDEF—TCPIPSERVICE definition
v RQMDEF—REQUESTMODEL definition
v TRANDEF—CICS TRANSACTION definition
v PROGDEF—PROGRAM definition

Enterprise bean execution requests from clients reach the CICS listener region
through a TCP/IP port. If using BAS, the number of this port must be specified
through a TCPDEF object that should be installed at all listener regions expected to
respond to these calls. The content of a TCPDEF should mirror that specified for
the CEDA TCPIPSERVICE definition. See “Setting up TCP/IP for IIOP” on page
374 for information.

If users require the execution requests for specific enterprise beans to be
recognized and managed differently to that for generic enterprise bean executions,
then a request model may be used to associate it with a user specified transaction

346 CICS TS for z/OS 4.2: Java Applications in CICS

code. Within CICSPlex SM, request models are defined through RQMDEF objects,
and should be installed on all listener regions where such requests need
interception. Depending on the complexity of the enterprise bean, it may be
necessary to additionally install the request models on the associated AORs. The
contents of these RQMDEFs should mirror that specified for the CEDA
REQUESTMODEL definition. See “Obtaining a CICS TRANSID” on page 385 for
information.

In a distributed enterprise bean processing environment, it would be expected that
certain CICS regions will act as listeners to receive the IIOP execution requests, and
others will act as the AORs, to provide the actual EJB environment for execution of
the required enterprise beans. The CICSPlex SM TRANDEF object is a particularly
powerful tool to employ here, because a single transaction definition object may be
installed both dynamically on the Listener regions, and statically on the AORs,
through a single BAS resource assignment (RASGNDEF), as described in Resource
assignments, in the CICSPlex System Manager Managing Business Applications
manual.

BAS logical scope considerations
One of the benefits of using BAS to define and install user business application
suites, is that users may then scope their object views to the resources pertinent to
their installed application instances.

For example, if a business application comprises of a particular set of files,
transactions, and programs, the LOCTRAN, LOCFILE and PROGRAM views will
be isolated to instances of only the matching objects on the regions where they are
installed. The facility to allow this restricted object view is known as "logical
scoping". The CorbaServer and DJAR objects may participate in logical scoping in
exactly the same way as other traditional BAS definitions.

Note: Enterprise beans are not defined to CICS as such. They become identified to
CICS when their associated DJARs come into service after installation in a CICS
region. Therefore, enterprise beans may "adopt" a logical scope through the
association of their DJAR. However, the Enterprise JavaBean specification allows
the enterprise beans for different applications, to be installed in a single DJAR. If
you follow this practice, it will be impossible for the logical scope process to
differentiate between the installed enterprise beans and the appropriate business
application names. As such, if users want to exploit BAS logical scoping to
augment their CICSPlex views of enterprise bean objects, separate DJARs should
be employed to contain enterprise beans discrete to the scoped business
applications.

Migration of enterprise bean components
CICSPlex SM provides a toolset to assist users in migrating their RDO (resource
definition online) objects from the CICS CSD to the CICSPlex SM data repository.

This toolset comprises an exit program for the CICS offline CSD utility program,
and some sample JCL to execute it: see Extracting records from the CSD, in the
CICSPlex System Manager Managing Business Applications manual.

This CICSPlex SM exit will recognise CORBASERVER and DJAR definitions in a
CSD, and generate the appropriate BAS CREATE EJCODEF and CREATE EJDJDEF
statements, for input via the CICSPlex SM BatchRep process. All of the normal
selection rules for resource identification may be applied to these EJB resource
types.

Chapter 9. Stable Java technologies 347

CICSPlex SM inquiry support for enterprise beans
Installed CorbaServer and DJAR instances may be managed by CICSPlex SM
through any of the three interfaces described in “CICSPlex SM support for
enterprise beans” on page 345. All of the interactive operator services provided
through the CICS CEMT and CEOT transactions are functionally replicated in
CICSPlex SM via the Web user Interface (WUI). In either case, the installed CICS
objects mapped by CICSPlex SM are:
v EJCOSE—CorbaServer instances
v EJDJAR—CICS-deployed JAR file instances

Additionally, any executable enterprise beans may be listed through these objects:
v EJCOBEAN—Enterprise JavaBeans directly associated with a CorbaServer
v EJDJBEAN—enterprise beans directly associated with a DJAR

Both of these objects describe an enterprise bean structure: one is keyed through a
CorbaServer name, and the other is keyed through a DJAR id. In both cases, the
only enterprise bean content available for inquiry is the CorbaServer name, the
DJAR name, and the enterprise bean name up to 240 characters in length. The
Enterprise JavaBean specification states that enterprise bean names may be much
longer, but the CICS implementation limits them to 240 bytes. An additional detail
that CICSPlex SM inquiries provide over a standard CICS inquiry is a count of the
available beans in any given DJAR or CorbaServer. When a new set of enterprise
beans are deployed via a DJAR to a particular CorbaServer, the enterprise bean
count can provide an instant confirmation as to the availability of the enterprise
beans in question. The value is incremented according to the number of enterprise
beans accepted through the DJAR installation process.

Other Enterprise Java associated CICS objects that are inquirable through CPSM
are:
v TCPIPS - TCPIPSERVICE instances
v RQMODEL—REQUESTMODEL instances
v LOCTRAN—local transaction instances
v UOWORK—unit of work instances
v UOWLINK—unit-of-work-link (UOWLINK) instances
v PROGRAM—program instances

All of these objects include attributes which have relevance to the management
and execution of enterprise beans.

Types of inquiry available for enterprise bean objects
There are several ways to inquire on the state of your EJB objects with CICSPlex
SM.

The CICSPlex SM Application Programming Interface
To inquire on EJB objects using the available CICSPlex SM API commands,
refer to the CICSPlex System Manager Application Programming Reference.
Also refer to the details of the attributes and actions that are allowed
against each CICSPlex SM object in the CICSPlex System Manager Resource
Tables Reference Vol 1.

The CICSPlex SM Web User Interface
To inquire on EJB objects using the WUI, refer to the CICSPlex System
Manager Web User Interface Guide.

The Web User Interface has a starter set that comprises a set of menus and
panels. This starter set includes a set of Enterprise Java component views.

348 CICS TS for z/OS 4.2: Java Applications in CICS

Using CICSPlex SM to manage EJB workloads
One of the standard CICSPlex SM component functions is the facility for balancing
and separating CICS transactions in an MRO environment, known as workload
management (WLM).

This facility is well suited to the management of EJB workloads, where the
enterprise beans are executed in a distributed, or logical CorbaServer, environment.
In its most simple configuration, CICSPlex SM can balance an enterprise bean
execution workload across a series of application owning regions (AORs),
depending on performance targets and stability algorithms established by user
definitions. These functions are implemented when the CICSPlex SM supplied
distributed routing exit program (EYU9XLOP) is named as the DSRTPGM
parameter in the system initialisation parameters of participating listeners and
AORs (see Balancing an enterprise bean workload, in the CICSPlex System Manager
Managing Workloads manual).

The algorithms used by CICSPlex SM to select suitable AORs for enterprise bean
execution has been established and tuned since the inception of the product.
However, users may choose to develop their own routing algorithm program, and
replace the supplied CICSPlex SM version (EYU9WRAM) if they require to do so.

Workload routing:

CICSPlex SM workload routing provides function that selects the most suitable
AOR to host the execution of an enterprise bean, according to predetermined
selection criteria.

The AOR selection process evaluates all concurrent execution activity, over the
regions designated as possible routing targets, and selects the most suitable region
in terms of execution workload, and region stability at the point of inquiry. This is
not the same as the cyclic selection of an AOR from all those available in a target
scope for serially executed beans. It is the evaluation of all active transactions in
the WLM scope at the time when a new transaction (enterprise bean) is about to be
run, and the selection of the least loaded, or most stable, region to host the object
execution. The implementation of basic workload routing for all Enterprise Java
bean throughput has the following prerequisites:
v The necessary TCP/IP definitions are installed on the designated listener

regions.
v DSRTPGM=EYU9XLOP is specified as a SIT parameter on all listeners and

AORs.
v MASPLTWAIT(YES) is included as an EYUPARM on all of the listener regions.
v The request processor transaction (the default transaction is CIRP) has been

dynamically defined to the listener regions and statically defined to the AORs.
v The necessary CorbaServer and DJAR definitions are installed (either through

BAS or CEDA) to establish the executable EJB environment.
v The enterprise beans have been deployed and are in service.

When these criteria have been met, you define a workload specification object
(WLMSPEC) and specify the AORs as the target scope. You can then install the
WLMSPEC object on all listeners and AORs that are to join the workload. When
the WLMSPEC has been installed, all regions encompassed by it will have their
EJB workloads routed after they have been restarted. A detailed example of
enterprise bean workload routing is given in Balancing an enterprise bean
workload, in the CICSPlex System Manager Managing Workloads manual.

Chapter 9. Stable Java technologies 349

Workload separation:

Workload separation is the workload management (WLM) function that causes
transactions that meet predesignated selection criteria to be routed to specific target
scopes.

The target scope for a separated workload item might vary from a single
application owning region (AOR) to a large AOR group comprising many CICS
regions. If an AOR group is the target, the routing algorithm will be applied to
select the most suitable region from those defined to it. To implement a workload
that includes separated enterprise beans, you must first establish the prerequisite
workload routing described in “Workload routing” on page 349. That configuration
needs to be augmented with the following additional components:
v A cloned CIRP transaction for each enterprise bean that needs to be separated (a

simple copy of the existing definition to a new name)
v A request model for each enterprise bean to be separated, to associate it with

one of the cloned CIRP transactions

This allows the CICS and EJB environments to be established, enabling enterprise
bean separation. The WLM definitions will then need to be created to implement
it. This entails identifying the cloned CIRP transactions as being objects of interest,
and associating them with the required target scopes through a series WLM
definitions. These WLM definitions must be associated to an overall WLM
specification, via an intermediate WLM group, and then the specification must be
added to the CICS group that includes all listeners and AORs that are to
participate in the workload. A detailed example of enterprise bean workload
separation is given in Separating enterprise beans in a workload, in the CICSPlex
System Manager Managing Workloads manual.

CICSPlex SM resource monitoring for enterprise beans
CICSPlex SM monitoring allows the collection of performance-related data, at
user-defined intervals, for named resource instances within a set of CICS systems.

Currently, no performance-related data is recorded for specific EJB objects
(CorbaServers and DJARs). However, performance data for the IIOP request
receiver and request processor transactions are available as normal, and so the
execution performance of enterprise beans may be monitored through an
associated transaction code (see the CICSPlex System Manager Monitor Views
Reference). Users will require request models and CIRP clones for each bean that
needs to be monitored, in the same way as for enterprise bean workload
separation, described in “Workload separation.” However, CICSPlex SM
monitoring is not integrated with BAS logical scoping, so your monitor views
scope should be set to the physical CICS group that covers the regions to be
monitored, rather than the BAS resource description that installed the transaction
definitions. An overview of the monitoring function is given in Collecting statistics
using CICSPlex SM monitoring, in the CICSPlex System Manager Concepts and
Planning manual. Full details of the monitoring function is given in Preparing to
monitor resources, in the CICSPlex System Manager Managing Resource Usage
manual.

CICSPlex SM real-time analysis considerations for enterprise
beans
The real-time analysis (RTA) function of CICSPlex SM provides the automatic and
external notification of conditions in which users have expressed an interest.

Real-time analysis may be divided between several sub-components:

350 CICS TS for z/OS 4.2: Java Applications in CICS

v System Availability Monitoring (SAM) - monitors CICS regions during their
planned hours of availability, and generates notifications when no responses are
received from a region that is expected to be active.

v MAS Resource Monitoring (MRM) - monitors the state of any inquirable CICS
resource, and generates notifications when that state varies from a
predetermined norm.

v Analysis Point Monitoring (APM) - replicates the function of MRM, except that
it analyses states at a CICSplex level, rather than at a specific CICS region. APM
is particularly useful in environments that use cloned AORs, where regions are
identical and one notification is sufficient to alert you to a general problem.

Clearly SAM is a useful function for reporting the availability of CICS regions,
regardless of whether they are designated listeners or AORs. If you are executing
enterprise beans in a distributed environment, then MRM may be more useful for
monitoring the state of CorbaServers and DJARs, rather than the region based
functions of APM. However, be aware that you cannot monitor enterprise bean
objects themselves (EJCOBEAN and EJDJBEAN) within RTA. Enterprise bean
inquiries may be keyed only on their corresponding CorbaServer or DJAR names.
Specific inquiries may not be made solely on the enterprise bean name. An
overview of the RTA function is given in Exception reporting using real-time
analysis (RTA), in the CICSPlex System Manager Concepts and Planning manual. Full
detail of the RTA function is given in Preparing to perform real-time analysis, also
in the CICSPlex System Manager Managing Resource Usage manual.

CICS and IIOP
This section tells you what you need to know to configure CICS to support
distributed IIOP applications.
v “IIOP support in CICS”
v “The IIOP request flow” on page 354
v “Configuring CICS for IIOP” on page 362
v “Processing IIOP requests” on page 381

IIOP support in CICS
The Internet Inter-ORB protocol (IIOP) is a TCP/IP based implementation of the
General Inter-ORB Protocol (GIOP) that defines formats and protocols for
distributed applications.

It is part of the Common Object Request Broker Architecture (CORBA). Both client
and server systems require a CORBA Object Request Broker (ORB) to implement
IIOP interoperability.

The Common Object Request Broker Architecture (CORBA) is a specification for a
standard object-oriented architecture for distributed applications. It was defined by
a consortium of over 500 information technology organizations called The Object
Management Group (OMG). You can read the CORBA Architecture and Specification
document at their Web site: http://www.omg.org/

CICS provides an ORB and support for IIOP defined by CORBA 2.3.

The Object Request Broker (ORB)
CORBA uses a broker, or intermediary, to handle requests between clients and
servers in the system. The broker chooses the best server to meet the client's
request and separates the interface that the client sees from the implementation of
the server.

Chapter 9. Stable Java technologies 351

http://www.omg.org/

The broker, known as the ORB, intercepts client method calls and is responsible for
finding objects that can implement requests, passing them parameters, invoking
their methods, and returning results. The client does not need to know where the
object is located, its programming language, its operating system, or any other
system aspects that are not part of the object's interface.

In this way, the ORB provides interoperability between applications on different
machines in heterogeneous distributed environments, and interconnects multiple
object systems.

The CICS ORB implements the following level of function:
v Support for CORBA Version 2.3, except for:

– Stateful CORBA objects (only stateless CORBA objects are supported).

Note: The only exception to this rule is stateful session beans—which are
supported.

– The Dynamic Invocation Interface (DII).
– The Dynamic Skeleton Interface (DSI).
– GIOP 1.1 fragments.
– The Portable Object Adapter (POA).
– Bi-directional GIOP

v Support for IIOP 1.2—including GIOP 1.2 fragments.
v Support for both inbound and outbound IIOP requests. IIOP applications can act

as both client and server.
v Support for transactional objects. CICS method invocations may participate in

Object Transaction Service (OTS) distributed transactions. If a client calls an IIOP
application within the scope of an OTS transaction, information about the
transaction flows as an extra parameter on the IIOP call. If the client ORB sends
an OTS Transaction Service Context and the target stateless CORBA object
implements CosTransactions::TransactionalObject, the object is treated as
transactional.

Note: An OTS transaction is a distributed unit of work, not a CICS transaction
instance or resource definition. For a description of a CICS transaction, see
“CICS transactions” on page 25.

ORB function is implemented in CICS by:
v The CICS sockets domain listener
v The CICS IIOP request receiver
v The CICS IIOP request processor

CICS IIOP application models
IIOP applications are client/server object-oriented programs that run in a TCP/IP
network.

CICS supports the following types of IIOP application:

Stateless CORBA objects
Stateless CORBA objects are Java server applications that communicate with a
client application using the IIOP protocol. No state is maintained in object
attributes between successive invocations of methods; state is initialized at the
start of each method call and referenced by explicit parameters.

Stateless CORBA objects can receive inbound requests from a client and can
also make outbound IIOP requests.

352 CICS TS for z/OS 4.2: Java Applications in CICS

CICS stateless CORBA objects execute in a CICS JVM.

You can read more about CICS stateless CORBA objects in “Stateless CORBA
objects” on page 195.

Enterprise beans
Enterprise beans are portable Java server applications that use interfaces
defined by Enterprise JavaBeans Specification, Version 1.1. CICS has implemented
these interfaces by mapping them to underlying CICS services.

Enterprise beans communicate using the Java Remote Method Invocation
(RMI) interface. CICS supports RMI over IIOP, mediated by a CORBA Object
Request Broker (ORB).

Enterprise beans can link to other CICS programs using the CCI Connector for
CICS TS. You can also develop enterprise beans that use the JCICS class
library to access CICS services or programs directly, but these server
applications are not portable to a non-CICS platform.

Enterprise beans run in a pooled JVM.

You can read more about enterprise beans in “What are enterprise beans?” on
page 214.

Some common CORBA terminology
These terms are used throughout this information segment.

CORBA
The Common Object Request Broker Architecture. An architecture and a
specification for distributed, object-oriented, computing.

GIOP The General Inter-Orb Protocol. The CORBA data representation
specification and interoperability protocol. It defines how different ORBs
communicate; it does not define which transport protocol to use.

IDL Interface Definition Language. A definition language that is used in
CORBA to describe the characteristics and behavior of a kind of object,
including the operations that can be performed on it.

IIOP The Internet Inter-Orb Protocol. Defines how to send GIOP messages over
a TCP/IP transport layer. IIOP is GIOP over TCP/IP.

Interface
Describes the characteristics and behavior of a kind of object, including the
operations that can be performed on those objects. This maps to a Java
class. In CORBA terminology, the client request specifies, in IDL, an
interface that defines the server object.

IOR Interoperable Object Reference. A “stringified” reference to a remote
CORBA object. It is published by the server ORB. The client application
must have access to the IOR at runtime. The client ORB can deconstruct
the IOR to determine (among other things) the location of the remote ORB
and object, the maximum version of GIOP supported by the remote ORB,
and any relevant CORBA services supported by the remote ORB.

Module
An IDL packaging construct containing interfaces. This maps to a Java
package.

OMG The Object Management Group. The consortium of software organizations
that has defined the CORBA architecture.

Operation
An action that can be performed on an object. This maps to a Java method.

Chapter 9. Stable Java technologies 353

In CORBA terminology, the client requests an operation, defined in IDL,
that is mapped to a method on the server object.

ORB The Object Request Broker. A CORBA system component that acts as an
intermediary between the client and server applications. Both client and
server platforms require an ORB; each is tailored for a specific
environment, but supports common CORBA protocols and IDL.

RMI-IIOP
The Remote Method Invocation (RMI) over IIOP specification and protocol.
The specification defines how to make the Java-specific RMI application
architecture inter-operate, using CORBA protocols. This is the
communication protocol used by enterprise beans.

Skeleton
A piece of code generated by the server IDL compiler. It is used by the
server ORB to parse a message into a method call on a local (to the server)
object.

Stub or proxy
A piece of code generated by the client IDL or RMI compiler. It is used by
the client application to invoke methods on the remote object. The stub
class calls methods on the client ORB, which in turn sends remote method
requests to the server ORB. The stub class must be generated for the
specific client ORB it is to be used with. If you use client ORBs from
different vendors, you should ensure that you are using client-side stubs
generated using the tools provided with the correct client ORB.

Tie A piece of code generated by the RMI compiler. It is used by the server
ORB to parse a message into a method call on a local (to the server) object.

The IIOP request flow
This diagram shows the execution flow of an incoming request.

Request
Receiver

receive

send

Region boundary
(optional)

connect
request

GIOP
reply

GIOP
request

link

security
URM

DFHXOPUS

Sockets
listener

CIRR

Transaction
service

User
method

Container

Request
Processor
(java main/

ORB) invoke

CIRP

Figure 34. IIOP request execution flow

354 CICS TS for z/OS 4.2: Java Applications in CICS

The TCP/IP listener
The CICS TCP/IP listener monitors specified ports for inbound requests. You
specify IIOP ports and configure the listener by defining and installing
TCPIPSERVICE resources.

The listener receives the incoming request and starts the transaction specified
in the TCPIPSERVICE definition for that port. For IIOP services, this
transaction resource definition must have the program attribute set to
DFHIIRRS, the request receiver program. The default transaction name is
CIRR.

Request receiver
The request receiver retrieves the incoming request and examines the contents
of the GIOP formatted message stream. The following GIOP message types can
be received and are handled as follows:

Request

v A CICS USERID is determined from Secure Sockets Layer (SSL)
parameters, or by calling a CICS user-replaceable program specified by
the TCPIPSERVICE resource definition. The CICS USERID is used for
authorization of the request by the request processor.

v A CICS TRANSID is determined, from the message content, by
comparison with installed REQUESTMODEL resource definitions. The
CICS TRANSID defines execution parameters that are used if a new
request processor instance is created to handle the request.

v The request is passed to the request processor using an associated
request stream, which is an internal CICS routing mechanism. The
object key in the request, or any transaction service context, determines
if the request must be sent to an existing processor.

Note: A transaction in this context means a unit of work defined and
managed using the Object Transaction Service (OTS) specification.
The request-handling logic uses a directory to determine if an IIOP
request should be routed to an existing request processor instance (by
means of its associated request stream). The directory, DFHEJDIR, relates
request streams (and request processor instances) to OTS transactions
and the object keys of stateful session beans that manage their own
transactions. DFHEJDIR is a recoverable CICS file.

v Incoming GIOP 1.1 Fragments are rejected with a GIOP MessageError
message.

LocateRequest
Locate requests have no operation or parameters. They are passed to a
new instance of the request processor.

CancelRequest
A cancel request notifies a server that the client is no longer expecting a
reply to a specified pending Request or LocateRequest message. This is an
advisory message only, no reply is expected. A cancel request received
during fragment processing causes the request in progress to be
terminated. All other cancel requests are ignored.

MessageError
A message error indicates that the client has not recognized a reply that
the request receiver has sent to it. This error is recorded for diagnostic
purposes and a CloseConnection message sent to end the connection.

Chapter 9. Stable Java technologies 355

Fragments
A fragment is a continuation of a Request or a Reply. It contains a GIOP
message header followed by data. Incoming GIOP 1.1 fragments are
rejected with a GIOP MessageError message.

Linkage from the request receiver to the request processor can exploit CICS
dynamic routing services to provide load balancing within the CICSplex.

The CIRR request receiver terminates when it has no further work to do. (That
is, CIRR terminates when there are no outstanding GIOP requests to read from
the TCPIPSERVICE and no outstanding responses to send from earlier
requests. Should further workload arrive for the TCPIPSERVICE after the CIRR
task has been terminated, a new CIRR task is started.)

Request processor
The request processor manages the execution of the IIOP request. It :
v Locates the object identified by the request
v For an enterprise bean request, calls the container to process the bean

method
v For a request for a stateless CORBA object, processes the request itself

(although the transaction service may also be involved)

The request processor instance that handles each IIOP request is configured by
a CORBASERVER resource definition.

IIOP in a sysplex
You can implement a CICS CORBA server in a single CICS region. However, in a
sysplex you probably want to create a server that consists of multiple regions.

With multiple regions, failure of a single region is less critical, and you can use
workload routing. A CICS logical server consists of one or more CICS regions
configured to behave like a single server.

Typically, a CICS logical server consists of the following:
v A set of cloned listener regions defined by identical TCPIPSERVICE resource

definitions to listen for incoming IIOP requests.
v A set of cloned application-owning regions (AORs), each of which supports an

identical set of IIOP applications or enterprise bean classes in an
identically-defined CORBA server. Multiple methods for the same OTS (object
transaction service) transaction are directed to the same AOR. Each AOR must
have TCPIPSERVICE definitions that match those in the corresponding listener
regions.

The listener regions and AORs can be separate, or they can be combined into
listener AORs. You must specify the following system initialization parameters:

IIOPLISTENER=YES
Specify this value in a listener region, or in a combined listener AOR. YES
is the default value.

IIOPLISTENER=NO
Specify this value in an AOR that is not also a listener region.

Workload routing of IIOP requests
To route client connections across listener regions, you can use either IP routing, or
connection optimization by using Domain Name System (DNS) registration. To
route object transaction service (OTS) transactions across a set of cloned application

356 CICS TS for z/OS 4.2: Java Applications in CICS

owning regions (AORs), you use distributed routing. To implement distributed
routing, you can use either CICSPlex SM or a customized version of the CICS
distributed routing program, DFHDSRP.

Domain Name System (DNS) connection optimization
Connection optimization is a technique that uses DNS to balance IP
connections in a sysplex domain. With DNS, multiple CICS systems are started
to listen for IIOP requests on the same port (using Virtual IP addresses), and
registered with MVS Workload Manager (WLM). Each client IIOP request
contains a generic host name and port number. This host name is resolved to
an IP address by DNS and WLM services.

Connection Optimization using WLM is described in the z/OS Communication
Server: IP Configuration Guide.

Distributed routing
Distributed routing is used to route method calls for enterprise beans and
CORBA stateless objects across a set of CICS AORs. The dynamic selection of
the target is made by the workload manager (CICSPlex SM or a user-written
distributed routing program) that selects the least loaded or most efficient
application region. CICS invokes the workload manager for method requests
that will run under a new, or no, OTS transaction, but not for method requests
that will run under an existing OTS transaction; these are directed
automatically to the AOR in which the existing OTS transaction runs. See
Writing a distributed routing program , in the CICS Customization Guide, for
guidance on writing a customized distributed routing program. See Workload
management and dynamic routing, in the CICSPlex System Manager Managing
Workloads manual, for information about CICSPlex SM Workload Management.

The following diagram shows a CICS logical server. In this example, the listener
regions and AORs are in separate groups, connection optimization is used to
balance client connections to the listener regions, and distributed routing is used to
route OTS transactions across the AORs.

Chapter 9. Stable Java technologies 357

Domain Name System (DNS) connection optimization
Connection optimization is a technique that uses DNS to balance IP connections
and workload in a sysplex domain.

In DNS terms, a sysplex is a subdomain that you add to your DNS namespace.
Connection optimization extends the concept of a “DNS host name” to clusters, or
groups of server applications or hosts. Server applications within the same group
are considered to provide equivalent service. Connection optimization uses
load-based ordering to determine which addresses to return for a given cluster.

Connection optimization registration:

Server applications register with the MVS Workload Manager (WLM), which
quantifies the availability of server resources within a sysplex.

The WLM must be configured in goal mode on all hosts within the sysplex.
TCP/IP stacks can also register with the WLM to provide information on the
started IP addresses, or static definitions can be used if stacks do not support
registration. When registering, server applications provide the following
information:

Group name
This is the name of a cluster of equivalent server applications in a sysplex. It is
the name within the sysplex domain that client applications use to access the
server applications. CICS uses the DNSGROUP parameter of the
TCPIPSERVICE resource definition as the group name to register with the
WLM.

Hostname
resolution

SYSPLEX

Distributed
routing

Cloned
listener
regions

Dynamic
DNS

Cloned CICS AORs

Client

IIOP

Figure 35. A CICS logical server. In this example, the logical server consists of a set of cloned “listener” regions and a
set of cloned AORs. Connection optimization by means of dynamic DNS registration is used to route client
connections to the listener regions. Distributed routing is used to balance OTS transactions across the AORs.

358 CICS TS for z/OS 4.2: Java Applications in CICS

Server name
This is the name of the server application instance. The server name must be
unique among all servers that share the same group name. A server application
instance can belong to more than one group. CICS registers with WLM using
the specific APPLID of the region as specified by the APPLID system
initialization parameter.

Host name
This is the host name of the TCP/IP stack on which the server application
runs. During startup, CICS calls the TCP/IP function gethostbyaddr to
determine the host name of the machine on which it is running, and passes it
to the WLM for registration.

Name resolution example:

This example shows a CICSplex consisting of four CICS regions, each running on
separate machines within a sysplex.

The MVS systems are named MVS1A, MVS1B, MVS1C and MVS1D, with the CICS

regions having APPLIDs of CICSPROD1, CICSPROD2, CICSDEV1 and CICSDEV2

The sysplex is defined to the DNS to have the name PLEX1 and each MVS
machine has a single IP address. The diagram describes the names that a client
machine might use to access the CICS regions based on the following resource
definitions installed on each CICS:
v The region CICSPROD1 running on machine MVS1A has two TCPIPSERVICE

resources, one specifying a group_name of WWW and the second specifying a
group_name of IIOP1.

v The region CICSPROD2 running on machine MVS1B has one TCPIPSERVICE
resource, specifying a group_name of WWW.

v The region CICSDEV1 running on machine MVS1C has two TCPIPSERVICE
resources, one specifying a group_name of IIOP1 and the second specifying a
group_name of WWWDEV.

v The region CICSDEV2 running on machine MVS1D has one TCPIPSERVICE
resource, specifying a group_name of WWWDEV.

The client can access the following names:

MVS1D

CICSDEV2

GR:WWWDEV

MVS1C

CICSDEV1

GR:IIOP1
GR:WWWDEV

MVS1A

CICSPROD1

GR:WWW
GR:IIOP1

GR:WWW

MVS1B

CICSPROD2

PLEX1.IBM.COM

WWW.PLEX1.IBM.COM

IIOP1.PLEX1.IBM.COM

WWWDEV.PLEX1.IBM.COM

Figure 36. CICSplex using DNS connection optimization

Chapter 9. Stable Java technologies 359

v PLEX1.IBM.COM returns the IP address of any of the machines in the sysplex.
v WWW.PLEX1.IBM.COM returns either the address of MVS1A or MVS1B.
v IIOP1.PLEX1.IBM.COM returns either the address of MVS1A or MVS1C.
v WWWDEV.PLEX1.IBM.COM returns either the address of MVS1C or MVS1D.

You can also address individual CICS regions within a group by using their
APPLIDs (or server names). For example, CICSPROD1.WWW.PLEX1.IBM.COM
returns the address of MVS1A. This address is equivalent to
MVS1A.PLEX1.IBM.COM, but the client does not have to know the machine on
which the CICSPROD1 server is running, only that CICSPROD1 is part of the
WWW group.

Since these names dynamically become available as CICS regions register with the
WLM, adding more CICS regions and more MVS machines does not result in any
more administration. Using the generic host names (such as
WWWDEV.PLEX1.IBM.COM) decouples client applications from specific CICS
regions and MVS hosts, which enhances availability and scalability.

Resource definition for DNS connection optimization:

These TCPIPSERVICE options must be defined for TCP/IP ports that use DNS
connection optimization.

DNSGROUP
specifies the location parameter passed on the IWMSRSRG register call to
Workload Manager. The value may be up to 18 characters in length, with
trailing blanks ignored.

This parameter is referred to as group_name by the OS/390 TCP/IP DNS
documentation. It is the generic name of a cluster of equivalent server
applications in a sysplex. It is also the name within the sysplex domain that
clients use to access the CICS TCPIPSERVICE.

More than one TCPIPSERVICE is allowed to specify the same group name.

The register call is made to WLM when the first service with this group name
specified is opened. Subsequent services with the same group name do not
cause more register calls to be made.

The deregister action is dictated by the GRPCRITICAL attribute, as described
below. It is also possible to explicitly deregister CICS from a group by issuing
the master terminal (CEMT) or EXEC CICS command SET TCPIPSERVICE
DNSSTATUS DEREGISTERED, or by using the equivalent CICSPlex SM command.

GRPCRITICAL
marks the service as a critical member of the DNS group such that this service
closing or failing causes a deregister call to be made to WLM for this group
name.

The default is NO, allowing two or more services in the same group to fail
independently and CICS still to remain registered to the group. Only when the
last service in a group is closed is the deregister call made to WLM, if it has
not already been done so explicitly.

Multiple services with the same group name can have different grpcritical
settings. The services specifying GRPCRITICAL(NO) can be closed or fail
without causing a deregister. If a service with GRPCRITICAL(YES) is closed or
fails, the group is deregistered from WLM.

360 CICS TS for z/OS 4.2: Java Applications in CICS

To implement DNS connection optimization for IIOP requests (including requests
for enterprise beans), the following CORBASERVER options must be defined:
v The HOSTNAME option of the CORBASERVER definition must specify a

generic host name. This generic hostname is the DNSGROUP value from the
TCPIPSERVICE definition, suffixed by the domain or subdomain name managed
by the nameserver on MVS. This domain name is established by the TCP/IP
administrator. For example, in the previous example, WWW.PLEX1.IBM.COM
could be used to route to CICSPROD1 and CICSPROD2.

v The CORBASERVER with the generic hostname (or the DJARS within it) must
be published to the nameserver.

The nameserver must be configured to allow it to look up and resolve the generic
host name.

Avoiding Domain Name System (DNS) problems:
Important

To avoid difficulties in using nameservers, you should be aware of the following:
v Lookups for dynamic names should not be cached. If you use a client that

caches nameserver lookup results you cannot be certain that you continue to
work with the correct IP address. This might result in the client continuously
attempting to call a server region that has been closed, rather than obtaining the
address of another server region that has taken over the role previously fulfilled
by the other server.

v A problem can arise due to stress on the nameserver being used. Some lookups
succeed, others fail with a NameNotFoundException.
When the number of concurrent lookups becomes high, perhaps when a client or
bean does repeated lookups without caching, the likelihood of encountering one
of these nameserver “blips” increases. Possible measures to consider are:
– Install a machine of higher capacity to run the name server.
– Code your applications to recognize this possibility and to retry when this

error is encountered.
– Setup the MVS system so that the most commonly used addresses are

included in its /etc/hosts file. This bypasses the nameserver lookup for these
names and uses the address coded in the file.

– Rather than specify IP addresses by name, specify them by number.
(However, this solution is not advisable in a production environment.)

The IIOP user-replaceable security program
This is an optional identification mechanism.

It is not an authentication mechanism, but a way to supply a CICS USERID. To use
it, you must specify the name of your security program on the URM option of the
TCPIPSERVICE definition for the IIOP port. If you do so, your security program is
called by the IIOP request processor.

On invocation, the security program is primed with the value defined by the
system initialization parameter DFLTUSER (which defaults to CICSUSER), but can
override it. Before routing the IIOP request to a request processor, CICS checks
with RACF that the request receiver transaction is allowed to initiate work on
behalf of the USERID generated by the security program.

Chapter 9. Stable Java technologies 361

You can write your own program to supply a USERID, or use the sample security
program, DFHXOPUS. See “Using the IIOP user-replaceable security program” on
page 384.

CONNECTION authentication
The client USERID is transmitted from the listener region to the AOR only if
ATTACHSEC(IDENTIFY) is specified in the CONNECTION definition in the AOR.

See Link security with MRO, in the CICS RACF Security Guide, for more
information.

IIOP users are recommended to specify SEC=YES and ATTACHSEC(IDENTIFY).

Configuring CICS for IIOP
You have to configure CICS as a CORBA participant to run all IIOP-based
applications, including enterprise beans.

In addition to the requirements for running Java, you might also require the
following software:
v Java Naming and Directory Interface (JNDI) Version 1.2.
v DB2 with IBM Data Server Driver for JDBC and SQLJ extensions.

Perform the following steps:
v “Setting up the host system for IIOP”
v “Setting up TCP/IP for IIOP” on page 374
v “Setting up CICS for IIOP” on page 375

You might also need to perform one of these steps:
v “Setting up an LDAP server” on page 364
v “Setting up a COS Naming Directory Server” on page 374

If you choose “Setting up an LDAP server” on page 364, also read “The LDAP
namespace structure” on page 370.

Setting up the host system for IIOP
To support IIOP, perform these system tasks:

About this task

Procedure
1. Giving CICS regions access to z/OS UNIX System Services. As part of this task,

you will:
a. Give CICS access to the z/OS UNIX directories and files that are needed to

create JVMs
b. Create and give CICS access to the z/OS UNIX working directory that you

have specified for input, output, and messages from the JVMs
2. “Setting up pooled JVMs” on page 88. During this task, you will:

a. Enable CICS to locate JVM profiles and any associated JVM properties files.
b. Choose appropriate JVM profiles for your CORBA stateless objects and

enterprise beans.
c. If necessary, customize the JVM profiles to fit the requirements of your CICS

region. (In the course of setting up CICS as a CORBA server, you will need
to add some further information.)

362 CICS TS for z/OS 4.2: Java Applications in CICS

Bear in mind when reading “Setting up pooled JVMs” on page 88 that, for
CORBA stateless objects and enterprise beans:
v The JVM profile used is that specified on the PROGRAM definition of the

request processor program.
v As for all CICS Java programs, if you use a JVM properties file it must be

specified on the JVM profile.
v The default JVM profile, specified on the PROGRAM definition of the default

request processor program, is DFHJVMCD.
v If you plan to use the default JVM profile with your CORBA stateless object

and enterprise bean requests, then you need only to locate DFHJVMCD and
customize the profile for your CICS region, as described in “Setting up
pooled JVMs” on page 88.
If you plan to use customized JVM profiles, you should still make the
changes to DFHJVMCD that are required to fit with the setup of your CICS
region, because DFHJVMCD is used internally by CICS, as well as being
used for the default request processor program.

3. “Defining a shelf directory.” The shelf directory is used for deployed JAR files.
4. “Defining name servers.” This step is necessary only if you need to define

name servers for the purposes described in that procedure.

Defining a shelf directory:

Every CORBASERVER definition must specify the name of a shelf directory on
z/OS UNIX.

When a DJAR definition is installed, CICS copies the deployed JAR file into a
sub-directory of the shelf root directory. (Also, when a PERFORM CORBASERVER
PUBLISH command is issued, the IOR of the CorbaServer is written to the
sub-directory.)

You can call your shelf directory anything you like. However, it's recommended
that you create it somewhere under the /var directory. For example, you might
create a z/OS UNIX directory called /var/cicsts/. Having created the shelf
directory, you must give the CICS region userid full access to it—read, write, and
execute. See Giving CICS regions access to z/OS UNIX System Services for
guidance.

Defining name servers:

You might need to define name servers for two purposes:
1. If you are using Domain Name system connection optimization, the listener

regions need to be configured to talk to the same name server on z/OS that the
MVS Workload Manager is configured to use.
You can define the name server to be used by TCP/IP by providing a
SYSTCPD DD statement in the CICS startup JCL for the listener region, as
described in Enabling TCP/IP in a CICS region , in the CICS Transaction Server
for z/OS Installation Guide manual.

2. A client application can locate an IIOP server application using object references
that have been registered in a name server. For example, a Java client can use
the JNDI interface to obtain a reference to a server application object such as an
instance of the home interface of an enterprise bean. Object references can be
registered in a name server from CICS by issuing the commands PERFORM
CORBASERVER PUBLISH, or PERFORM DJAR PUBLISH.

Chapter 9. Stable Java technologies 363

Enabling JNDI references:

To enable your applications to obtain references using a JNDI Interface, set up a
name server that supports the Java Naming and Directory Interface (JNDI) V 1.2.

You can use either of the following:

A Lightweight Directory Access Protocol (LDAP) server
If you use an LDAP name server on z/OS, enterprise beans from CICS and
WebSphere can interoperate more readily in a shared namespace. See
“Setting up an LDAP server.”

A Corba Object Services (COS) Naming Directory Service.
COS Naming Servers run on an external machine.

Any industry-standard COS Naming Service that supports JNDI Version
1.2 can be used. See “Setting up a COS Naming Directory Server” on page
374.

Specifying the location of the JNDI name server:

To enable Java code running under CICS to issue JNDI API calls, and CICS to
publish references to the home interfaces of enterprise beans or IORs of stateless
CORBA objects, you must define the location of the name server.

About this task

Specify the Web address (URL) and TCP/IP port number of your name server
using the -Dcom.ibm.cics.ejs.nameserver system property. “JVM system
properties” on page 109 has more detailed information.

Important:

1. You must specify the location of your name server on the
-Dcom.ibm.cics.ejs.nameserver system property in all the JVM profiles or
optional properties files that are used by your CORBA stateless objects or
enterprise beans.

2. In particular, be sure to specify the location of your name server in the
DFHJVMCD JVM profile. The DFHJVMCD profile is used by CICS-defined
programs, including the default request processor program and the program
that CICS uses to publish and retract deployed JAR files.

3. You also need to specify the location of your name server in any other JVM
profiles that you choose to use for CORBA stateless objects or enterprise beans.
These might be CICS-supplied sample JVM profiles or your own JVM profiles.
For CORBA stateless objects and enterprise beans, the JVM profiles are named
in the PROGRAM resource definitions for your request processor programs.

4. For detailed information about defining the location of your name server, see
“JVM system properties” on page 109.

Setting up an LDAP server
Either use an existing LDAP server configured for WebSphere, or configure a new
one.

If you have an existing LDAP server configured for WebSphere:

If the nameserver that you have chosen for use by CICS has already been
configured for WebSphere Application Server for z/OS, there is likely to be very
little configuration needed to enable CICS to use it.

364 CICS TS for z/OS 4.2: Java Applications in CICS

Correct operation of the EJB support in CICS requires the chosen LDAP namespace
to be configured with a WebSphere System Namespace - the publish and retract
mechanisms of CICS both attempt to operate within a System Namespace
structure. However, once inside an EJB method or if executing a regular Java
transaction in CICS, you can communicate with any LDAP namespace regardless
of whether it supports a System Namespace.

When you use an LDAP server that is not configured with a WebSphere System
Namespace, use an alternative directory service, such as the LDAP service
supplied with the IBM Developer Kit for the Java Platform 5.0 base, rather than the
WebSphere context factory supplied with CICS. See “LDAP Context Factory
supplied with Java” on page 290 for details of using the LDAP factory.

An understanding of the WebSphere naming structure that exists on the LDAP
server (see “The LDAP namespace structure” on page 370) makes it easier for you
or your LDAP administrator to determine suitable values for the six key properties
a CICS region needs to know. These are described in “JVM system properties” on
page 109. The three security properties are only necessary if the LDAP namespace
is setup in a secure manner. On some LDAP servers it may be the case that all
users have write access and neither the principal or credentials properties need to
be set for the CICS region.

If the structure laid out in the namespace by WebSphere is suitable for your needs,
no further configuration is necessary.

The values for nameserver, containerdn and noderootrdn can be obtained by
understanding the System Namespace structure and observing the structure in
place on your chosen LDAP server, the final part of this section discusses how to
determine the property values if you are browsing an existing namespace.

Reasons for further configuration:

You might need to proceed with LDAP server configuration, even though the
server is already configured for WebSphere Application Server for z/OS, for any of
these reasons.
1. The security configuration needs changing to cope with the CICS regions being

introduced. See “The LDAP namespace structure” on page 370 and “Security
considerations” on page 372 for further information about the LDAP structure
and security issues.

2. CICS needs to run in a separate domain from WebSphere. If you are building a
new, separate, domain, WebSphere Application Server for z/OS and CICS will
not easily be able to locate each other's enterprise beans. However, if you just
intend to build a new domain the only configuration steps you need to execute
are Step 4. “Build the legacyRoot node” and Step 5. “Apply security at CICS
region level”.

3. CICS needs to run in an entirely different system namespace structure on the
LDAP server. That is, CICS needs to have a containerdn that points to
somewhere other than the existing namespace root location on the server. In
this case, start the configuration procedure at Step 2. “Add a new suffix”. In
this case, it is not possible for CICS and WebSphere Application Server for
z/OS systems working with the differing container settings to locate each
other's Enterprise Beans.

Configuring a new LDAP server:

Chapter 9. Stable Java technologies 365

If you do not have an existing LDAP server configured for WebSphere Application
Server for z/OS, perform these steps to configure a new LDAP server.

About this task

1. Install the WebSphere naming schema
2. Add a new suffix
3. Build the system namespace root node (containerdn)
4. Build the legacyRoot node below the namespace root node (noderootrdn)
5. Optionally, apply security measures at the CICS region level.

In order to perform many of the steps you are likely to need access to a LDAP
principal that has suitable authority on your LDAP server to create new entries at
the root level.

When these steps are completed, you can determine the values of the system
properties that are needed in your JVM properties files to enable CICS to operate
with the LDAP server, and add these system properties to all the relevant JVM
properties files.

The steps in the following example enable you to configure an LDAP server with
the following values for the system properties in your JVM properties files:
-Dcom.ibm.cics.ejs.nameserver=ldap://wibble.example.com:389
-Dcom.ibm.ws.naming.ldap.containerdn=ibm-wsnTree=t1,o=WASNaming,c=US
-Dcom.ibm.ws.naming.ldap.noderootrdn=ibm-wsnName=legacyRoot,ibm-wsnName=PLEX2,

ibm-wsnName=domainRoots
-Djava.naming.security.authentication=simple
-Djava.naming.security.principal=cn=CICSSystems,c=US
-Djava.naming.security.credentials=secret

Similar values are given for the example system properties in the CICS-supplied
sample JVM properties files.

An example:

There are notes throughout the configuration files that are used in this example
which guide you to tailor this set of properties to your particular needs.

The one most likely to change is noderootrdn, you will probably have some domain
other than PLEX2 as the grouping for your nodes - this value is input into the
system at Step 4. “Build the legacyRoot node”.

Notice that the example assumes a principal of 'cn=admin' exists on the LDAP
server, with password 'adminpwd' and that this principal is authorised to perform
any operation on the LDAP server.
1. Install the WebSphere naming schema.

If the LDAP server to be configured already has the WebSphere naming
schema, this step can be skipped. An LDAP name server configured for
WebSphere will already have this schema.
If it is any other LDAP server, install the WebSphere naming schema. The
schema is shipped with CICS as /usr/lpp/cicsts/cicsts42/utils/namespace/
WebSphereNamingSchema.ldif on z/OS UNIX.

Note: The WebSphereNamingSchema.ldif file requires that RFC2256.ldif and
RFC2713.ldif be loaded first. This is because the definition of the
ibm-wsnEntry object class refers to the javaClassName attribute type. When

366 CICS TS for z/OS 4.2: Java Applications in CICS

using the LDAP server on z/OS, these prerequisite LDAP files are not loaded
by default when the LDAP server is set up.
The LDAP server on z/OS needs to store the schema entries in the back-end
store to which they apply. This is achieved by adding a suffix to the dn of each
schema entry. The supplied WebSphereNamingSchema.ldif file does not specify a
suffix on the schema entries, so you must add one. For example, if the suffix
for the back-end store is “c=US”, you should change every instance of
“dn:cn=schema” in the ldif file to “dn:cn=schema,c=US”.
Apply the schema to the nameserver using the ldapmodify command :
ldapmodify -h <hostname>

-p <portnumber>
-D <authorized_principal>
-w <authorized_principal_password>
-f WebSphereNamingSchema.ldif

Where hostname and portnumber are those for the LDAP server and the
authorised principal is the distinguished name of a user with sufficient
authority on the nameserver to write entries.
The ldapmodify command must be available for your chosen LDAP server. If it
is not, consult your LDAP server documentation to determine how a new
schema (in ldif form) should be installed.
A specific example might be:
ldapmodify -h wibble.example.com

-p 389
-D cn=admin
-w adminpwd
-f WebSphereNamingSchema.ldif

2. Add a new suffix.
To build a new hierarchy in the namespace it is necessary to create a new base
distinguished name suffix. In this example configuration the suffix is c=US, and
the new hierarchy is to be ibm-wsnTree=t1,o=WASNaming,c=US. The procedure
for adding a suffix varies between the different LDAP providers. Your LDAP
documentation should indicate how to do this for your chosen provider. As an
example, here is the procedure for adding a suffix to a z/OS Communications
Server installation on Windows 32:
v Start the LDAP Administration interface on a Web browser by typing

http://[hostname]/ldap, where hostname is the host name of the machine
where the LDAP directory is installed. The Administration logon window
displays.

v Type the administrator user ID (for example, in the format cn=root) and
password.

v Make sure that the LDAP server is running.
v In the left navigation pane, click the Settings folder, and then click Suffixes.
v Type the name of the Base DN to be used as the suffix (in our example,

"c=US"), and click Update.
v After the Base DN suffix is added, stop and restart the LDAP server.

The suffix now exists on your LDAP system
On a z/OS system, update the slapd.conf file to introduce your new suffix to
the system, then restart the nameserver. The extra line to add to slapd.conf is:
suffix “c=US”

3. Build the system namespace root node (containerdn)
An ldif file to build the root of the system namespace (a node called the
containerdn) is supplied with CICS in utils/namespace/dfhsns.ldif. This file

Chapter 9. Stable Java technologies 367

contains comments describing how to tailor it for your environment. If it is
used without alteration, it creates a containerdn of ibm-
wsnTree=t1,o=wasnaming,c=US and also two CICS users on the LDAP
namespace. The first CICS user has a distinguished name of
cn=CICSSystems,c=US and the second is cn=CICSUser,c=US.
Two userids are defined. To understand how they are used, see “Security
considerations” on page 372.
The ldapmodify command must be available for your chosen LDAP server, if it
is not, consult your LDAP server documentation to determine how the root of
the system namespace should be built..
This LDIF file can be applied to the LDAP server as follows:
ldapmodify-h <hostname>

-p <portnumber>
-D <authorized_principal>
-w <authorized_principal_password>
-f dfhsns.ldif

Where hostname and portnumber are those for the LDAP server and the
authorised principal is the distinguished name of a user with sufficient
authority on the nameserver to write entries.
A specific example is:
ldapmodify-h wibble.example.com

-p 389
-D cn=admin
-w adminpwd
-f dfhsns.ldif

4. Build the legacyRoot node below the namespace root node (noderootrdn)
The legacyRoot node in the namespace is the point where CICS is usually
configured to position itself when called to create a new InitialContext. For this
step , the script DFHBuildSNS is shipped with CICS in the directory
utils/namespace.
The syntax is :
DFHBuildSNS -ldapserver <server_url>

[-node <node within the domain>]
-domain <domain_name>
-containerdn <Root of the namespace>
-principal <principal authorised to write to the namespace>
-credentials <password for that principal>
[-force]

For example:
DFHBuildSNS -ldapserver ldap://wibble.example.com:389

-domain PLEX2
-containerdn ibm-wsnTree=t1,o=WASNaming,c=US
-principal cn=admin
-credentials adminpwd

(The -force option is only used with the -node flag, but neither are used in a
CICS environment.

5. Optionally apply the additional measures described in “Security at the CICS
region level” on page 372.

After running this script, the values of the system properties required in your JVM
properties files can be determined, and you can add them to all the relevant JVM
properties files.

Determining the values for the LDAP system properties:

368 CICS TS for z/OS 4.2: Java Applications in CICS

These system properties relate to the use of an LDAP namespace for JNDI.

“JVM system properties” on page 109 has full descriptions of each of these system
properties.
v If you have just set up this LDAP namespace, you know the values that you

used. Some of these are the ones required for setting the CICS properties.
v If you are using or reusing an existing system namespace, ask your LDAP

administrator for suitable values for these properties.
v If you do not have access to the LDAP administrator or the values are

unavailable, you might be able to determine them, with the help of the
following information, by browsing the namespace.
You are unlikely to discover that the security principal or credentials by
browsing the namespace.

-Dcom.ibm.cics.ejs.nameserver
Is the URL for the LDAP server being configured. In the example in
“Configuring a new LDAP server” on page 365, it is ldap://
wibble.example.com:389

-Dcom.ibm.ws.naming.ldap.containerdn
Is the value specified in the dfhsns.ldif file. The default is
ibm-wsnTree=t1,o=WASNaming,c=US if you did not tailor the ldif file. If you
are seeking this value by browsing an existing namespace, look for a node
of type ibm-wsnTree; the path to this node is a possible value for
containerdn.

-Dcom.ibm.ws.naming.ldap.noderootrdn
Can be determined from the domain that you specified on the
DFHBuildSNS call. In the example, the noderootrdn is
ibm-wsnName=legacyRoot,ibm-wsnName=PLEX2,ibm-wsnName=domainRoots. If
you are seeking this value by browsing an existing namespace, look for the
path from the chosen containerdn to the legacyRoot entry.

-Djava.naming.security.authentication
Is set to simple if CICS must authenticate itself to LDAP to bind (or write)
to it. Using the the defaults in the supplied scripts, authentication is
necessary because the dfhsns.ldif script removed default write access for
the ANYBODY group, and granted write access to the new principal
cn=CICSUser,c=US that it created. If CICS does not have to authenticate
itself to LDAP to write to it, do not set a value for this system property.

Important: If you do specify this system property, you must also specify
-Djava.naming.security.principal and
-Djava.naming.security.credentials. Because these system properties
hold the UserID and password that CICS requires to access the secure
LDAP service, you must give particular attention to the access controls in
force at your installation for the files containing these system properties.
You must ensure that the files are secure, with update authority restricted
to system administrators.

-Djava.naming.security.principal
Is a principal with the authority to bind to the namespace. You might
choose the system principal that has write access to the entire namespace if
security is not a real concern. However, you are advised to use at least the
cn=CICSUser,c=US distinguished name specified in dfhsns.ldif, because
that ID can write to only a particular area of the LDAP namespace (the
containerdn and below).

Chapter 9. Stable Java technologies 369

If you want even tighter security, the principal can be
cn=CICSSystems,c=US. If you use this ID, you must perform an extra LDAP
configuration. See “Security considerations” on page 372 for a full
discussion of CICS LDAP security configuration.

-Djava.naming.security.credentials
Is the password for the principal. The default if you did not
tailordfhsns.ldif is secret.

When you have determined the values of these system properties, you specify
them in all the JVM profiles or optional JVM properties files that are used by
CORBA applications or enterprise beans.

In particular, specify them in the DFHJVMCD JVM profile or referenced properties
file. The DFHJVMCD profile is used by CICS-defined programs, including the
default request processor program and the program that CICS uses to publish and
retract deployed JAR files.

You must also specify these system properties in the JVM profiles or properties
files referenced by any other JVM profiles that you choose to use for CORBA
stateless objects or enterprise beans. These profiles might be CICS-supplied sample
JVM profiles or your own JVM profiles. For CORBA stateless objects and enterprise
beans, the JVM profiles are named in the PROGRAM resource definitions for your
request processor programs.

The LDAP namespace structure
The LDAP namespace structure used by WebSphere Application Server Version 4
for z/OS, is a convenient structure for use in a CICS environment.

Note: WebSphere Application Server Version 5 and later use a COS Naming Server
by default and support LDAP only for backwards compatibility with WebSphere
Application Server Version 4.

There are two important nodes in the LDAP namespace structure used by
WebSphere, the container root, and the legacy root.

The container root:

The container root is a node of type ibm-wsnTree. By default, this is called:
ibm-wsnTree=t1, o=wasnaming, c=us However, this is customisable by changing the
bboldif.cb file shipped with WebSphere.

The legacy root:

The legacy root is a node of type ibm-wsnName some way below the container root
.

A typical name for this might be: ibm-wsnName=legacyRoot,ibm-
wsnName=PLEX2,ibm-wsnName=domainRoots,ibm-wsnTree=t1,o=WASNaming,c=us The
names legacyRoot and domainRoots are fixed. The only variable is the middle
name, in this example PLEX2.

There may be several legacyRoot nodes, each with a different name. Each of these
is a "domain". The WebSphere Application Server for z/OS configuration maps a
domain to a sysplex. It is configured when the sysplex name is entered into the
customization dialog when WebSphere Application Server for z/OS is installed.

370 CICS TS for z/OS 4.2: Java Applications in CICS

Domains:

A domain contains a number of servers.

In WebSphere Application Server for z/OS, each server has a node below
legacyRoot, for example a server called BBOSV1 would have a name
ibm-wsnName=BBOSV1,ibm-wsnName=PLEX2 relative to the legacy root, and the
objects it publishes would be below this node.

When CICS is configured to use the same LDAP server as WebSphere, each CICS
CorbaServer has a node directly below legacyRoot. So if a CorbaServer has a JNDI
prefix of CICS1, there will be a node ibm-wsnName=CICS1 relative to the legacy
root, and CICS publishes the CorbaServer's objects below this node. When a new
InitialContext is created in WebSphere Application Server for z/OS, or in CICS
configured as above, the InitialContext will be based on the legacyRoot node. This
makes it easy for enterprise beans in CICS to look up objects published by
WebSphere, and for enterprise beans or servlets in WebSphere to look up objects
published by CICS.

Note: Any JNDI sub-context below a CICS region's initial JNDI context (which is
typically the legacyRoot node) may be transient. This is the case if CICS has write
access to the initial context node.

A CorbaServer's JNDI sub-context is specified on the JNDIPREFIX option of the
CORBASERVER definition. CICS creates the sub-context (if it has the necessary
write permission and the sub-context does not already exist in the namespace
structure) when an enterprise bean is published from the CorbaServer. However, if
all the enterprise beans in the CorbaServer are retracted, CICS may delete the
sub-context from the namespace structure. Where multiple CorbaServers share part
of a prefix hierarchy, CICS never removes contexts that are still in use by any of
them. But if the contexts in the prefix are empty they are removed, as far back as
the initial context.

If you want to protect the top-level node of the sub-context hierarchy from
deletion, do not give CICS write access to the initial context node. (This means that
you must create the top-level node of the sub-context manually.) If you want to
protect several higher levels of the sub-context hierarchy, give CICS write
permission only to the lower levels. (This means that you must create the
higher-level nodes of the sub-context manually.) For more information, see
“Security at the CICS region level” on page 372.

Versions of WebSphere Application Server for distributed platforms have a similar
concept of domain, but that concept does not relate to a sysplex.

Nodes:

There is another concept, that of a node. A domain represents a number of nodes,
and you can navigate your way to a domain by knowledge of the nodename rather
than the domain name. Thus a node is a sort of alias for a domain.

Nodes are used in versions of WebSphere Application Server for distributed
platforms, but not in WebSphere Application Server for z/OS. They are not used
by CICS. However, part of the structure for support of nodes is built when you set
up a new LDAP server for use by CICS. Since WebSphere Application Server for
z/OS does not use nodes, the nodename is an optional parameter to the
DFHBuildSNS utility, which under CICS builds the system namespace.

Chapter 9. Stable Java technologies 371

Security considerations: If you specified that CICS must authenticate itself to
LDAP in order to write to it, by coding the system property
-Djava.naming.security.authentication=simple in your JVM profiles, you now have
a choice between
v “Security at the containerdn level,” or
v “Security at the CICS region level.”

To help you decide, a very simplified view of part of the LDAP namespace is
shown in Figure 37.

If you use security at the containerdn level, CICS has write access to containerdn
and all nodes below it. This allows CICS, or a CICS application using the JNDI
interfaces, to write to all these nodes, including those that belong to WebSphere
Application Server for z/OS. If you use security at the CICS region level, then
CICS and CICS applications are only able to write to the specific CICS nodes in the
tree.

Security at the containerdn level: To use security at the containerdn level, use the
CICS administration principal (cn=CICSUser,c=us) created by the dfhsns.ldif file (see
Step 3. “Build the system namespace root node”). Give this principal access to the
containerdn node when you create it. Ensure that this userid and its password
appear in the system properties -Djava.naming.security.principaland
-Djava.naming.security.credentials in your JVM properties files.

Security at the CICS region level:

Give this principal access to the containerdn node when you create it. Ensure that
this userid and its password appear in the system properties
-Djava.naming.security.principaland -Djava.naming.security.credentials in
your JVM properties files.

To use security at the CICS region level, use the CICS runtime principal
(cn=CICSSystems,c=US) created by the dfhsns.ldif file, see Step 3. “Build the system
namespace root node”. This involves some additional steps. Ensure that this userid
and its password appear in the system properties
-Djava.naming.security.principaland -Djava.naming.security.credentials in
your JVM properties files. Additionally, as CICS does not have write access to
legacyRoot, CICS will be unable to create its own node (called CICS server 1 in

containerdn

legacyRoot

ObjectObject ObjectObject ObjectObject ObjectObject

WAS server 1 WAS server 2 CICS server 1CICS server 1 CICS server 2

Figure 37. Simplified view of part of an LDAP namespace

372 CICS TS for z/OS 4.2: Java Applications in CICS

Figure 37 on page 372), so you must do it manually, and then give the CICS
runtime principal (cn=CICSSystems,c=US) write access to this node. This is
described below.

To configure a CICS region in this way and then use the new subcontext:
v Choose a suitable subcontext, we shall call it cicsabcd.
v Create that subcontext below the legacyRoot for use by a CICS system (see

“Creating a subcontext”).
v Ensure the CICS runtime principal can write to it.
v Specify the CICS runtime principal and credentials using the system properties

-Djava.naming.security.principal and -Djava.naming.security.credentials in
the JVM properties files that are in use in the region.

v Ensure that any CORBASERVER definitions created in the CICS region have
JNDIPREFIX attributes which start with cicsabcd. This means that references
which they publish, are published under the new subcontext cicsabcd under
legacyRoot.

Security configuration is now complete. A user browsing the LDAP namespace is
able to locate this context cicsabcd below legacyRoot, and relate it to the
CORBASERVER definitions.

Creating a subcontext: To create the subcontext cicsabcd below the legacyRoot in the
LDAP namespace, and to set suitable Access Control Lists (ACLs) for it, use the
LDIF file supplied with CICS in utils/namespace/dfhNewCICSSubcontext.ldif.
v The LDIF file contains comments to explain the steps involved, and the values

that are likely to need altering for a particular LDAP System Name Space
configuration.

v The LDIF file can be applied to the LDAP server using the ldapadd command:
Ldapadd -h wibble.example.com

-p 389
-D cn=CICSUser,c=us
-w CICSUserpwd
-f dfhNewCICSSubcontext.ldif

where CICSUserpwd is the password for CICSuser established when CICSuser was
set up.
This command needs to be run with a principal (and credentials) that can write
to the legacyRoot node. In the example we are using, that is cn=CICSUser,c=US
id, which has been created for this purpose.

v The most important line of the LDIF file to change is the distinguished name of
the node being created, assuming the LDAP System Namespace was configured
using all the default scripts supplied with CICS, the distinguished name is:
ibm-wsnName=cicsabcd,ibm-wsnName=legacyRoot,ibm-wsnName=PLEX2,
ibm-wsnName=domainRoots,ibm-wsnTree=t1,o=wasnaming,c=US

v The rest of the LDIF sets the Access Control Lists appropriately for the new
node.

v The comments in this LDIF file are important, they explain other things that you
might have to consider. For example, there might be some additional ACL
entries that are appropriate in your installation depending on which principals
currently have write access to the System Namespace.

v Once the LDIF is applied, the new node exists on the LDAP server below the
legacyRoot, and the Access Control Lists are set such that the CICS runtime
principal has write access.

Chapter 9. Stable Java technologies 373

Other considerations: You might want to consider the following:
v You could create several different CICS runtime principals for different regions,

and so reduce scope of the access granted to each principal.
v If you are using this process within an existing system namespace, there may be

other principals (and credentials) in use. They need to be given write access to
the new subcontext created by dfhNewCICSSubcontext. The comments in the
dfhNewCICSSubContext LDIF file discuss ways to check if this is so, and how
to tailor the LDIF file appropriately before executing the ldapadd.

Setting up a COS Naming Directory Server
The most convenient way to set up a COS Naming Directory Server is to use IBM
WebSphere Application Server running on an external Windows machine.

About this task

The most convenient way to set up a COS Naming Directory Server is to use IBM
WebSphere Application Server running on an external Windows machine. Follow
the installation instructions supplied with it.

Setting up TCP/IP for IIOP
To configure a CICS region as a TCP/IP Listener to accept and send IIOP requests,
you need to make these definitions in CICS.

About this task
1. In the CICS startup job stream for every CICS region where the Listener is

required, set the following system initialization parameters:
v IIOPLISTENER to YES
v TCPIP to YES

2. Define and install TCPIPSERVICE resource definitions in the Listener region for
every port that the Listener will monitor, specifying:
v PROTOCOL(IIOP)
v The port or IP address on which CICS will listen for incoming IIOP requests

Note: If the SSL connection fails, some clients will attempt to retry on an
associated non-SSL port. CICS TS defines this port to be SSL port–1. Ensure
that this port (SSL port–1) is not defined for any other purpose. The
well-known IIOP ports are 683(non-SSL) and 684(SSL).

v The CICS transaction to start when a request arrives. For an IIOP service, this
should be set to the CICS IIOP Request Receiver, CIRR.

v The level of Secure Sockets Layer (SSL) authentication to be used.
v The DNSGROUP name if DNS connection optimization is to be used. See

“Resource definition for DNS connection optimization” on page 360
v The name of the user-replaceable program to be called to associate this

request with a CICS USERID for security or workload management
purposes. If omitted, no user-replaceable program is called. A sample
user-replaceable program, DFHXOPUS, is supplied—see “Using the IIOP
user-replaceable security program” on page 384.

For example:
DEFINE TCPIPSERVICE(IIOPNSSL) GROUP(DFH$IIOP)

DESCRIPTION(IIOP TCPIPSERVICE with no SSL support)
URM(DFHXOPUS) BACKLOG(10) PORTNUMBER(683)
TRANSACTION(CIRR) SSL(NO)
STATUS(CLOSED) PROTOCOL(IIOP)

374 CICS TS for z/OS 4.2: Java Applications in CICS

Important: In a multiregion server, the TCPIPSERVICE definitions must be
installed in all the regions (both listeners and AORs) of the logical server. In the
listener regions, the IIOPLISTENER system initialization parameter must be set
to 'YES'. In the AORs, it must be set to 'NO'. In a combined listener/AOR, it
must be set to 'YES'.
See TCPIPSERVICE resources in the Resource Definition Guide for the full
syntax of the TCPIPSERVICE resource definition.

Using DNS connection optimization:

To use DNS connection optimization with IIOP, you need to define a DNSGROUP
name in the IIOP TCPIPSERVICE resource definition.

All CICS regions providing the same TCPIPSERVICE, with the same DNSGROUP
name are registered with MVS Workload Management (WLM) with the same
group-name, as candidates for client requests requiring the same service. This
registration also includes the region's Host name, obtained by the TCP/IP function
gethostbyaddr, and a unique Server name, which CICS obtains from the specific
APPLID of the region as specified by the APPLID system initialization parameter.

Listener regions need to be configured to talk to the same DNS name server on
z/OS that the MVS Workload Manager is configured to use. You can define the
name server to be used by TCP/IP by providing a SYSTCPD DD statement in the
CICS startup JCL, as described in Enabling TCP/IP in a CICS region, in the CICS
Transaction Server for z/OS Installation Guide.

Note:

1. Both the client and the CICS server must use the same TCP/IP name server.
2. The name server must be able to perform a reverse look-up, that is, it must be

able to translate the IP address of the server into a full hostname.

Setting up CICS for IIOP
To support IIOP you must define a CICS startup job stream, and define and install
some CICS resources.

Defining CICS startup job stream:

You must define parameters in the startup job stream for a CICS region that
supports IIOP:

JCL parameter

REGION
1000M minimum is recommended

CICS system initialization parameters

EDSALIM
500M minimum is recommended.

IIOPLISTENER

v Specify IIOPLISTENER=YES if the CICS region is an IIOP listener
region, or a combined listener and application owning region (AOR).

v Specify IIOPLISTENER=NO if the CICS region is an IIOP application
owning region. TCPIPSERVICE definitions installed in the region
that specify PROTOCOL(IIOP) cannot be opened.

Chapter 9. Stable Java technologies 375

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/tcpipservice/dfha4_overview.html

JVMPROFILEDIR
Set to the z/OS UNIX directory containing the JVM profiles that you
are using for your applications. “Setting the location for the JVM
profiles” on page 75 tells you how to do this.

KEYRING
Required if you are using Secure Sockets Layer (SSL) authentication
with certificates registered to RACF.

MAXJVMTCBS
Specify the number of JVMs that your CICS region can support.
“Managing your JVM pool for performance” on page 161 describes
how to work out an appropriate setting for the MAXJVMTCBS system
initialization parameter.

TCPIP Set to YES.

DD statements for CICS data sets
Sample local VSAM data set definitions are provided in the CICS-supplied
RDO group DFHEJVS. These data sets must be authorized with RACF for
UPDATE access. See Authorizing access to CICS data sets, in the CICS RACF
Security Guide.

DFHEJDIR
A recoverable shared file containing the request streams directory. This
can be a VSAM file or a coupling facility data table. CICS supplies
sample JCL to help you create this file, in the DFHDEFDS member of
the SDFHINST library.

Note: In most cases, the RECORDSIZE parameter in the supplied JCL
should not require modification. However, if you intend to install more
than 40 CorbaServers in your logical EJB/CORBA server, see
“Specifying the RECORDSIZE of DFHEJDIR and DFHEJOS.”

DFHEJOS
A non-recoverable shared file used by CICS when CorbaServers are
installed and to store stateful session beans that have been passivated.
This can be a VSAM file or a coupling facility data table. CICS supplies
sample JCL to help you create this file, in the DFHDEFDS member of
the SDFHINST library.

Note: In most cases, the RECORDSIZE parameter in the supplied JCL
should not require modification. However, if you intend to install more
than 40 CorbaServers in your logical EJB/CORBA server, see
“Specifying the RECORDSIZE of DFHEJDIR and DFHEJOS.”

Specifying the RECORDSIZE of DFHEJDIR and DFHEJOS:

The maximum number of CorbaServers that can be defined to a CICS EJB/CORBA
logical server is controlled by the RECORDSIZE values of the request streams
directory file, DFHEJDIR, and the EJB object store file, DFHEJOS.

The RECORDSIZE attributes in the supplied JCL and FILE definitions for
DFHEJDIR specify a RECORDSIZE of 1017 bytes. The RECORDSIZE attributes in
the supplied JCL and FILE definitions for DFHEJOS specify a RECORDSIZE of
8185 bytes. Normally, these values should not require modification. Only if you
intend to install more than 40 CorbaServers in your logical EJB/CORBA server do
you need to change these values.

376 CICS TS for z/OS 4.2: Java Applications in CICS

Both DFHEJDIR and DFHEJOS contain a control record which is made up of a
24-byte header and a repeating group of CorbaServer control fields, each 24 bytes
long. The default length of 1017 for DFHEJDIR effectively limits the logical server
to 41 CorbaServers: (1 + 41) * 24 = 1008 bytes. If you need to install more
CorbaServers than this into your logical server, calculate the required
RECORDSIZE for DFHEJDIR like this:
1. Multiply the required number of CorbaServers by 24.
2. Add 24 bytes for the control record header. This gives the absolute minimum

record size.
3. Round up the last value to the next multiple of 512 to get the minimum control

interval size.
4. Subtract 7 to get the value for the RECORDSIZE parameter.

Make the RECORDSIZE value for DFHEJOS greater than that of DFHEJDIR. Too
short a length will result in collisions when passivating beans. (The supplied
definitions make the RECORDSIZE of DFHEJOS almost 8 times that of
DFHEJDIR.)

Note: The sample JCL for DFHEJDIR and DFHEJOS is in the DFHDEFDS member
of the SDFHINST library. Sample FILE resource definitions for DFHEJDIR and
DFHEJOS are in the DFHEJVS RDO group, with sample coupling facility FILE
definitions in the DFHEJCF group, and sample VSAM RLS FILE definitions in the
DFHEJVR group.

Defining CICS resources:

You must create the required CICS resources for enterprise beans.

FILE
Provide and install FILE resource definitions for the following files required by
CICS:

The “EJB Directory”, DFHEJDIR
A file containing a request streams directory; the directory is used in
the routing of method requests for both enterprise beans and CORBA
stateless objects. You must define DFHEJDIR as recoverable.

The “EJB Object Store”, DFHEJOS
A file of stateful session beans that have been passivated. It is also
used when CorbaServers are installed. You must define it as
non-recoverable.

In a single-region CICS EJB/CORBA server, it is acceptable to define
DFHEJDIR and DFHEJOS as local files. However, in a multiple-region CICS
EJB/CORBA server:
v DFHEJDIR must be shared by all the regions (listeners and AORs) in the

server.
v DFHEJOS must be shared by all the AORs in the server.

To enable DFHEJDIR and DFHEJOS to be shared across multiple regions, you
can define them in one of the following ways:
v As remote files in a file-owning region (FOR)
v As coupling facility data tables
v Using VSAM RLS.

There are sample FILE definitions for DFHEJDIR and DFHEJOS in the
CICS-supplied RDO group, DFHEJVS. There are sample coupling facility FILE

Chapter 9. Stable Java technologies 377

definitions for DFHEJDIR and DFHEJOS in the CICS-supplied RDO group,
DFHEJCF. There are sample VSAM RLS FILE definitions for DFHEJDIR and
DFHEJOS in the CICS-supplied RDO group, DFHEJVR. (DFHEJVS, DFHEJCF,
and DFHEJVR are not included in the default CICS startup group list,
DFHLIST.)

Note: In most cases, the values of the RECORDSIZE attributes in the supplied
FILE definitions should not require modification. However, if you intend to
install more than 40 CorbaServers in your logical EJB/CORBA server, see
“Specifying the RECORDSIZE of DFHEJDIR and DFHEJOS” on page 376.

For reference information about FILE definitions, see FILE resources.

TRANSACTION and PROGRAM

CORBA stateless objects and enterprise beans don't have PROGRAM resource
definitions as such. The PROGRAM resource definition that is relevant to a
CORBA stateless object or enterprise bean is that for the request processor
program.

Required default TRANSACTION and PROGRAM definitions for the
CICS-supplied request receiver and request processor programs are in resource
group DFHIIOP, which is included in the default CICS startup group list,
DFHLIST.

Normally, you should not need to replace the default TRANSACTION and
PROGRAM definitions for the request receiver (CIRR and DFHIIRRS,
respectively). This is the definition of CIRR in DFHIIOP:

DEFINE TRANSACTION(CIRR) GROUP(DFHIIOP)
PROGRAM(DFHIIRRS) TWASIZE(0)
PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(USER)
RUNAWAY(SYSTEM) SHUTDOWN(ENABLED)
PRIORITY(1) TRANCLASS(DFHTCL00)
DTIMOUT(NO) TPURGE(NO)
SPURGE(YES) ISOLATE(NO)
RESSEC(NO) CMDSEC(NO)
RESTART(NO)
DESCRIPTION(Default CICS IIOP Request Receiver transaction)

One reason for creating your own TRANSACTION and PROGRAM definitions
for the request processor program is to specify a JVM profile other than the
default. The name of the JVM profile to be used is specified on the
JVMPROFILE option of the PROGRAM definition for the request processor
program. The default PROGRAM definition for the request processor (DFJIIRP
in DFHIIOP) specifies the JVM profile DFHJVMCD. This is the definition of
DFJIIRP in DFHIIOP:
DEFINE PROGRAM(DFJIIRP) GROUP(DFHIIOP)

DESCRIPTION(CICS IIOP Request Processor)
JVM(YES)
JVMCLASS(com.ibm.cics.iiop.RequestProcessor)
JVMPROFILE(DFHJVMCD)
LANGUAGE(LE370)
RELOAD(NO)
EXECKEY(USER)
RESIDENT(NO)
USAGE(NORMAL)
USELPACOPY(NO)
STATUS(ENABLED)
CEDF(NO)
DATALOCATION(ANY)
DYNAMIC(NO)

378 CICS TS for z/OS 4.2: Java Applications in CICS

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/file/dfha4_overview.html

Note: The CEDF attribute can be set to YES for debugging purposes. See
“Using EDF with enterprise beans” on page 295.

If you do create your own PROGRAM definition for the request processor, you
can provide one with any name, but the JVMCLASS parameter must be set to
com.ibm.cics.iiop.RequestProcessor. Choose another JVM profile for the
request processor to use, and specify the name of your JVM profile on the
JVMPROFILE option. CICS supplies sample JVM profiles in the
/usr/lpp/cicsts/cicsts42/JVMProfiles z/OS UNIX directory, where
/usr/lpp/cicsts/cicsts42 is the install directory for CICS files on z/OS UNIX.
“Setting up pooled JVMs” on page 88 tells you how to locate, choose and
customize JVM profiles.

TCPIPSERVICE
Provide and install TCPIPSERVICE resource definitions to configure the CICS
Listener to receive IIOP requests and call the IIOP request receiver. The
TCPIPSERVICE resource definition also specifies load-balancing and security
options. See “Setting up TCP/IP for IIOP” on page 374.

CICS supplies, in resource group DFH$EJB, a TCPIPSERVICE definition for use
with the EJB installation verification program (IVP) and the EJB “Hello World”
sample application. If you are setting up a CICS EJB server, we suggest that
you follow the step-by-step example of how to configure this definition in
“Actions required on CICS” on page 240.

CORBASERVER
Provide and install a CORBASERVER resource definition. Note that the
DFHEJDIR file must be defined, installed, and available before a
CORBASERVER can be installed.

CICS supplies, in resource group DFH$EJB, a CORBASERVER definition for
use with the EJB IVP program and the EJB “Hello World” sample application.
If you are setting up a CICS EJB server, we suggest that you follow the
step-by-step example of how to configure this definition in “Actions required
on CICS” on page 240.

REQUESTMODEL
Provide and install REQUESTMODEL resource definitions to enable the request
receiver to match the incoming request to a CICS transaction, to define
execution parameters that are used if a new request processor instance is
created to handle the request. The default TRANSID on REQUESTMODEL
definitions is CIRP, which specifies the default request processor program
DFJIIRP. If you choose to use your own TRANSACTION definition, you must
define and install it; it must specify a PROGRAM definition with the
JVMCLASS parameter set to com.ibm.cics.iiop.RequestProcessor. See
“Obtaining a CICS TRANSID” on page 385.

Note:

1. You need to provide REQUESTMODEL definitions only if the default
TRANSID, CIRP, is unsuitable, or if you want to segregate your IIOP
workload by transaction ID (for monitoring purposes, for example).

2. The TRANSACTION definition for CIRP specifies DYNAMIC(NO). If you
want to use dynamic routing of method requests for enterprise beans and
CORBA stateless objects, you must provide one or more TRANSACTION
definitions that specify DYNAMIC(YES), and specify them on your
REQUESTMODEL definitions.

3. After the CorbaServer is operational, you can use the CREA CICS-supplied
transaction to display the transaction IDs associated with particular

Chapter 9. Stable Java technologies 379

enterprise beans and bean-methods in the CorbaServer. You can change the
transaction IDs, apply the changes, and save the changes to new
REQUESTMODEL definitions. This is an easier method than building
REQUESTMODEL definitions by hand.

4. In a multi-region CICS logical server, it's recommended that you install
your REQUESTMODEL definitions on the AORs as well as the listener
regions—see Figure 38 on page 381. The REQUESTMODEL definitions in
the AORs are required for outbound requests to local objects. If a CORBA
stateless object or enterprise bean makes a call to another object, and that
object is available on the local AOR, CICS does not send the request to a
listener region. Instead, it either runs the called method in the current task
(“tight loopback”) or starts another request processor in the local AOR
(“normal loopback”). Where normal loopback is used, it's preferable that
the new request processor task should use the same REQUESTMODEL as
that used for the call to the first object—otherwise, unpredictable results
may occur. If your CORBA stateless objects and enterprise beans make no
outbound calls, the REQUESTMODELs on the AOR are not strictly
required.

DJAR
Provide and install DJAR resource definitions for any enterprise beans.

Note: DJAR definitions are typically created and installed by the CICS
scanning mechanism (see DJAR resources in the Resource Definition Guide).

Figure 38 on page 381 shows the RDO definitions required to define a CICS logical
server. It shows which definitions are required in the listener regions, which in the
AORs, and which in both.

380 CICS TS for z/OS 4.2: Java Applications in CICS

http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.resourcedefinition.doc/resources/djar/dfha4_overview.html

Processing IIOP requests
The CICS request receiver derives a CICS USERID and TRANSID that establish
CICS execution parameters for the request, before passing control to the IIOP
request processor to invoke the target methods.

Obtaining a CICS user ID
For IIOP requests, you can authenticate and identify the user in the following
ways.

About this task
1. Using Secure Sockets Layer (SSL) client authentication. See the CICS RACF

Security Guide for more information.
2. If SSL authentication does not provide a user ID, you can use the IIOP

user-replaceable security program to provide one. Specify the name of your
IIOP security program on the URM attribute of the TCPIPSERVICE definition
for the port. See “Using the IIOP user-replaceable security program” on page
384 for more information.

3. If neither of these mechanisms provides a user ID, the default user ID is used.

If you specify the name of a security program on the TCPIPSERVICE definition,
but omit the PROGRAM resource definition for it, CICS tries to build a resource
definition for it (autoinstall); if this fails, or your security program does not return
a USERID, CICS uses the user ID associated with the SSL client certificate, if there
is one. Otherwise, the default user ID is used.

CORBASERVERs
CorbaServer execution
environments

Stateful session
bean store file

DFHEJOS

DFHEJDIR
Request stream
directory file

Cloned CICS AORsCloned CICS listener regions

COMMON DEFINITIONS

REQUESTMODELs

TCPIPSERVICEs

AOR DEFINITIONSLISTENER DEFINITIONS

CICS logical EJB server

Deployed
JAR files

DJARs

SIT
IIOPLISTENER=YES

SIT
IIOPLISTENER=NO

Figure 38. Resource definitions in a CICS logical server. The picture shows which definitions are required in the
listener regions, which in the AORs, and which in both.

Chapter 9. Stable Java technologies 381

The following communications area is passed to the user-replaceable program. This
structure is based on the format of an IIOP message defined in The Common Object
Request Broker: Architecture and Specification obtainable from the OMG Web site at
http://www.omg.org/library

Offset
Hex

Type Len Name

(0) STRUCTURE 80 sXOPUS

(0) CHARACTER 4 standard_header

(4) FULLWORD 4 pIIOPData

(8) FULLWORD 4 lIIOPData

(C) FULLWORD 4 pRequestBody

(10) FULLWORD 4 lRequestBody

(14) CHARACTER 4 corbaserver

(18) FULLWORD 4 pBeanName

(1C) FULLWORD 4 lBeanName

(20) FULLWORD 4 BeanInterfaceType

(24) FULLWORD 4 pModule

(28) FULLWORD 4 lModule

(2C) FULLWORD 4 pInterface

(30) FULLWORD 4 lInterface

(34) FULLWORD 4 pOperation

(38) FULLWORD 4 lOperation

(3C) CHARACTER 8 userid

(44) FULLWORD 4 transid

(48) FULLWORD 4 flag_bytes

(4C) FULLWORD 4 return_code

(50) FULLWORD 4 reason_code

standard_header
contains a standard header with the following format:

function
1–byte field set to X'00'

382 CICS TS for z/OS 4.2: Java Applications in CICS

http://www.omg.org/library

domain
2–character field containing II

* 1–character reserved field

pIIOPData
contains the address of the first megabyte of the unconverted IIOP buffer.

lIIOPData
contains the length of the unconverted IIOP buffer.

pRequestbody
contains the address of the incoming IIOP request.

lRequestbody
contains the length of the incoming IIOP request.

corbaserver
contains the name of the CorbaServer associated with this request.

pBeanName
contains a pointer to the EBCDIC bean name.

lBeanName
contains the length of the bean name.

BeanInterfaceType
contains an enumerated value. X'00' indicates home; X'01' indicates remote.

pModule
contains a pointer to the EBCDIC Module name.

lModule
contains the length of the Module name.

pInterface
contains a pointer to the EBCDIC Interface name.

lInterface
contains the length of the Interface name.

pOperation
contains a pointer to the EBCDIC Operation name.

lOperation
contains the length of the Operation.

userid
contains the input and output user ID. The output user ID must be exactly 8
characters long. If it is shorter than 8 characters it must be padded with blanks.

transid
contains the input TRANSID

Flag_bytes
contains the following indicators::

littleEndian
1–byte field showing byte-order, where 1 indicates TRUE and 0
indicates FALSE

sslClientUserid
1–byte field showing the derivation of the USERID if SSLTYPE
CLIENTAUTH is specified in the TCPIPSERVICE definition, where:

0 USERID set from DFLTUSER

Chapter 9. Stable Java technologies 383

1 USERID set from SSL CERTIFICATE

* 2–byte reserved field

return_code
contains the return code.

reason_code
contains the reason code.

RETNCODE is set to RCUSRID (X'01') if a USERID is being returned. The
user-replaceable program should return all other fields unchanged, or
unpredictable results will occur.

For information about installing user-replaceable programs, see Customizing with
user-replaceable programs in the CICS Customization Guide.

Using the IIOP user-replaceable security program:

You may optionally provide an IIOP security program to examine elements of the
incoming IIOP request and generate a USERID.

You must specify the name of your security program on the URM attribute of the
TCPIPSERVICE resource definition, and also supply a PROGRAM resource
definition for it. If you do not specify a value for URM on the TCPIPSERVICE, no
program is called.

The IIOP security program is called only if CICS cannot obtain a user ID using SSL
client authentication. See SSL authentication, in the CICS RACF Security Guide, for
more information.

A sample IIOP security program, DFHXOPUS, is supplied

Your security program may use CICS services, such as a task-related user exit to
access DB2, and application parameters encoded within the body of the request.

Using DFHXOPUS:

The CICS supplied sample user-replaceable program, DFHXOPUS, accepts the
RACF USERID associated with the client certificate, if there is one.

If there is no RACF USERID associated with a certificate:
v For SSL(CLIENTAUTH), DFHXOPUS uses the first eight characters of the

COMMONNAME extracted from the client certificate.
v For SSL(YES) or SSL(NO), DFHXOPUS uses the first eight characters of the IIOP

Principal, if there is one.

Note: Versions of the General Inter-ORB Protocol (GIOP) from 1.2 onwards do
not support the IIOP Principal field in request headers. So DFHXOPUS will only
ever return a user ID derived from the IIOP Principal when the request is in
GIOP 1.1, or earlier, format.

If a USERID has not been found using these procedures, DFHXOPUS returns the
USERID specified in the CICS system initialization DFLTUSERDFLTUSER system
initialization parameter.

384 CICS TS for z/OS 4.2: Java Applications in CICS

The security exit program returns the user ID in the userid field of the
communications area. If the user ID is less than 8 characters long, the exit program
pads the field with blanks. Because a user ID is being returned, the return_code
field is set to RCUSRID (X'01') .

If you write your own security exit program, it should return all fields other than
userid and return_code unchanged, or unpredictable results may occur.

Obtaining a CICS TRANSID
To associate the incoming GIOP request with a CICS transaction ID, you need to
provide and install a REQUESTMODEL resource definition.

You should supply REQUESTMODEL resources for all possible requests that
should run under a non-default transaction ID. At run-time, when CICS receives a
GIOP request it compares fields in the request with predefined values in the
REQUESTMODELs, to find the REQUESTMODEL that most exactly matches the
request. The selected REQUESTMODEL provides the TRANSID name that is used
to process the request. If no match is found, a default TRANSID (CIRP) is used.
REQUESTMODELs can be used with enterprise beans, stateless CORBA objects, or
both. They specify:
v CORBA MODULE and INTERFACE patterns to match against requests for

stateless CORBA objects
v Bean names for matching enterprise beans.
v OPERATION patterns to match against:

– Enterprise bean method names
– CORBA stateless object method names
– IDL operations (CORBA stateless objects only)

Note: The OPERATION field is subject to the Java-to-IDL name-mangling rules
described in “Name-mangling of the OPERATION field” on page 386.

v The CICS transaction to be started when a matching request is received. The
default is CIRP, which specifies the default DFJIIRP program. If you choose to
use your own transaction definition, you should base it on CIRP and provide a
TRANSACTION resource definition with the PROGRAM parameter set to the
name of a CICS program that is defined with the JVMCLASS parameter set to
com.ibm.cics.iiop.RequestProcessor. The following default resource definitions
are provided by CICS in the DFHIIOP group:

DEFINE TRANSACTION(CIRP) GROUP(DFHIIOP)
PROGRAM(DFJIIRP) TWASIZE(0)
PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(ANY) TASKDATAKEY(USER)
RUNAWAY(SYSTEM) SHUTDOWN(ENABLED)
PRIORITY(1) TRANCLASS(DFHTCL00)
DTIMOUT(NO) TPURGE(NO)
SPURGE(YES) ISOLATE(YES)
RESSEC(YES) CMDSEC(YES)
RESTART(NO)
DESCRIPTION(Default CICS IIOP Request Processor transaction)

DEFINE PROGRAM(DFJIIRP) GROUP(DFHIIOP)
DESCRIPTION(CICS IIOP Request Processor)
JVM(YES)
JVMCLASS(com.ibm.cics.iiop.RequestProcessor)
JVMPROFILE(DFHJVMCD)

Chapter 9. Stable Java technologies 385

LANGUAGE(LE370) RELOAD(NO) EXECKEY(USER)
RESIDENT(NO) USAGE(NORMAL) USELPACOPY(NO)
STATUS(ENABLED) CEDF(NO) DATALOCATION(ANY)
DYNAMIC(NO)

See “Dynamic routing” on page 387 if the request is to be routed to an AOR.
v The name of the CorbaServer that will process the request

See the CICS Resource Definition Guide for full details of the REQUESTMODEL
resource definition.

Note: To simplify the process of creating REQUESTMODEL definitions for
enterprise beans, use the CREA CICS-supplied transaction.

Pattern matching:

All requests are compared with installed REQUESTMODEL values for
CORBASERVER and TYPE.

A TYPE value of CORBA indicates a request for a stateless CORBA object; a TYPE
value of EJB indicates a request for an enterprise bean, and a TYPE value of
GENERIC can indicate either type of request. Further matching is then performed,
based on the TYPE value:

Stateless CORBA objects

For stateless CORBA objects, (TYPE=CORBA, or GENERIC), the matching
process compares the MODULE name, INTERFACE and OPERATION fields
contained within the IIOP message, against the patterns defined in each
installed REQUESTMODEL, until the closest match is found. INTERFACE,
MODULE, and OPERATION can be defined as generic patterns. The rules for
pattern matching are summarized as follows:
v Double colons are used as component separators. Each component must be

between 1 and 16 characters long
v Generic patterns can consist of zero or more characters followed by *.

If several different generic patterns match a given string, the longest generic
pattern results in the most specific match.

Enterprise beans
For enterprise beans, the matching process compares the BEANNAME,
OPERATION, and INTFACETYPE fields within the IIOP message, against
those defined in each installed REQUESTMODEL.

Name-mangling of the OPERATION field:

The OPERATION field of the REQUESTMODEL definition is used to supply the
name of the remote method that is to be matched by this request model.

The GIOP request received at run-time includes an operation field which is
compared to the OPERATION field on the request model. However, the value of
the operation field is not always the same as the method name, as used on the
stateless CORBA object or enterprise bean. If RMI-IIOP is being used (as always
happens with enterprise beans and may happen with stateless CORBA objects), the
method name undergoes a process known as “mangling” to change the method
name into a canonical form suitable for transmission using IIOP. This mangled
method name may not be the same as the original method name. The operation

386 CICS TS for z/OS 4.2: Java Applications in CICS

field in the REQUESTMODEL must supply the mangled version of the method
name (or a pattern, using wildcard characters, that matches it).

The CICS-supplied CREA transaction can be used to create REQUESTMODEL
definitions for enterprise beans that automatically deal with this name-mangling
issue.

This mangling and de-mangling knowledge is compiled into the application's stub
and tie classes generated using the RMI compiler (RMIC).

For more information about mangling, see “Name mangling for Java.”

REQUESTMODEL examples:

This is an example of a stateless CORBA object REQUESTMODEL:
DEFINE REQUESTMODEL(DFJ$IIRH) GROUP(DFH$IIOP)

CORBASERVER(IIOP)
TYPE(Corba)
MODULE(hello)
INTERFACE(HelloWorld)
OPERATION(*)
TRANSID(IIHE)
DESCRIPTION(Hello world java server sample)

Dynamic routing:

If the method invocation is to be routed to another region (AOR), you must define
the TRANSID specified in the REQUESTMODEL as dynamically routable in the
Listener region (using the DYNAMIC parameter). If you use the supplied default
TRANSACTION definition, CIRP, then you will need to change it.

Name mangling for Java
Name mangling is a term that denotes the process of mapping a name that is valid
in a particular programming language to a name that is valid in the CORBA
Interface Definition Language (IDL). This section explains why mangling is
necessary for Java names, how the names are mangled, and how mangling affects
your CICS system.

Why mangling is necessary for Java names:

Java client programs use Java Remote Method Invocation (RMI) to invoke methods
in a server.

RMI in turn uses one of two communication protocols between client and server:

Java Remote Method Protocol (JRMP)
RMI uses JRMP when both client and server applications are written in
Java. CICS does not use JRMP.

Internet Inter-ORB Protocol (IIOP)
RMI uses in an environment when client and server applications may be
written in different languages. When IIOP is used as the communications
protocol, Java client applications can use the RMI to invoke server
programs in another language (C++, for example), as well as to invoke
remote Java programs.

IIOP uses Interface Definition Language (IDL) to specify interfaces between objects
in a language-independent way. When a Java client makes a remote method call,

Chapter 9. Stable Java technologies 387

the Java method name, and its arguments, are converted to the equivalent IDL for
transmission to the server using IIOP. It is at this point that mangling may be
necessary, because there are many differences in the rules for Java names and IDL
names. Some of these differences are:
v Java names are case-sensitive, IDL names are not
v Java supports overloaded methods, IDL does not
v Java names can contain Unicode characters, IDL names cannot
v Some valid Java names may collide with IDL keywords
v Java names can start with a leading underscore, IDL names cannot

In these cases, and others, Java names that are not permitted in IDL, or that are
permitted but may be ambiguous, are mangled into an acceptable form.

How Java names are mangled:

The rules by which a Java method call is mapped to an IDL name are not simple,
and depend upon the circumstances.

Here is one example:

This example illustrates two important principles:
v It is not possible to determine the mangled name of a given method without

knowing what other methods exist.
v Adding or removing a method can affect the mangled names of other methods.

Other cases where mangling is necessary are handled differently. For detailed
information about the mapping between Java and IDL, see Java Language to IDL
Mapping, which is published by the Object Management Group (OMG)
(http://www.omg.org).

How mangling affects CICS:

Although the support for IIOP within CICS contains code that implements the
mangling rules, there is very little visible effect on the way you configure and use
your CICS system.

There are just two situations in which you need to be aware that mangling takes
place. They are:

When defining REQUESTMODELs
REQUESTMODEL resource definitions map inbound IIOP request to CICS
transactions. When an inbound request initiated by a Java remote method
invocation is received, the OPERATION attribute in the REQUESTMODEL
is compared with the mangled name in the inbound request to determine
if the REQUESTMODEL matches the request. If it is possible that mangling
can take place, do not specify a method name in the OPERATION attribute
of the REQUESTMODEL, but specify a generic operation instead.

A Java remote interface has methods save, Save and SAVE. These names are distinct in
Java, but - because IDL names are not case sensitive - IDL cannot distinguish between
them. Therefore, the names are mangled to make them distinct. The mangled names are
save_, Save_0 and SAVE_0_1_2_3. However, if the Java remote interface had just one
method - save - the name would not be mangled, because there is no possibility of
ambiguity.

388 CICS TS for z/OS 4.2: Java Applications in CICS

http://www.omg.org/

When creating debugging profiles for Java programs
Debugging profiles specify which program instances are to run under the
control of a debugger. When an inbound request initiated by a Java remote
method invocation is received, the method field of the debugging profile is
compared with the mangled name in the inbound request to determine if
the profile matches the request. If it is possible that mangling can take
place, do not specify a method name in the debugging profile, but specify
a generic method instead.

CAUTION: Although - in theory - its is possible to deduce the mangled names
corresponding to each method, it is not a simple task, and is not advisable. To do
so, you will need a thorough knowledge of the mangling rules, and of all the
method names used in your application. There is also a risk that small changes to
an application can change a mangled name.

Handling IIOP diagnostics
If a remote method that is invoked over IIOP fails, the client code will receive a
CORBA exception. This includes all enterprise bean exceptions.

CORBA exceptions are defined in the CORBA documentation, which can be
obtained from the CORBA Web site: http://www.omg.org.

In many instances, the exception includes a CICS specific minor code to aid in
problem determination. CICS currently uses the following minor codes:

Table 23. CICS specific CORBA minor codes

Code CICS component detecting problem

1229111296 CICS IIOP request receiver

1229111297 Elsewhere in CICS II domain

1229111298 ORB component of CICS OT domain

1229111299 JTS component of CICS OT domain

1229111300 CSI component of CICS OT domain

1229111301 CSI component of CICS EJ domain

If the client receives a CORBA exception containing any of the CICS minor codes,
you should examine the CICS message logs for further information about the error.

Chapter 9. Stable Java technologies 389

http://www.omg.org/

390 CICS TS for z/OS 4.2: Java Applications in CICS

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

© Copyright IBM Corp. 1999, 2012 391

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

392 CICS TS for z/OS 4.2: Java Applications in CICS

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI13-0565
CICS Transaction Server for z/OS What's New, GC34-7192
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.1, GC34-7188
CICS Transaction Server for z/OS Upgrading from CICS TS Version 3.2, GC34-7189
CICS Transaction Server for z/OS Upgrading from CICS TS Version 4.1, GC34-7190
CICS Transaction Server for z/OS Installation Guide, GC34-7171

Access to CICS
CICS Internet Guide, SC34-7173
CICS Web Services Guide, SC34-7191

Administration
CICS System Definition Guide, SC34-7185
CICS Customization Guide, SC34-7161
CICS Resource Definition Guide, SC34-7181
CICS Operations and Utilities Guide, SC34-7213
CICS RACF Security Guide, SC34-7179
CICS Supplied Transactions, SC34-7184

Programming
CICS Application Programming Guide, SC34-7158
CICS Application Programming Reference, SC34-7159
CICS System Programming Reference, SC34-7186
CICS Front End Programming Interface User's Guide, SC34-7169
CICS C++ OO Class Libraries, SC34-7162
CICS Distributed Transaction Programming Guide, SC34-7167
CICS Business Transaction Services, SC34-7160
Java Applications in CICS, SC34-7174

Diagnosis
CICS Problem Determination Guide, GC34-7178
CICS Performance Guide, SC34-7177
CICS Messages and Codes Vol 1, GC34-7175
CICS Messages and Codes Vol 2, GC34-7176
CICS Diagnosis Reference, GC34-7166
CICS Recovery and Restart Guide, SC34-7180
CICS Data Areas, GC34-7163
CICS Trace Entries, SC34-7187
CICS Debugging Tools Interfaces Reference, GC34-7165

Communication
CICS Intercommunication Guide, SC34-7172
CICS External Interfaces Guide, SC34-7168

Databases
CICS DB2 Guide, SC34-7164
CICS IMS Database Control Guide, SC34-7170

© Copyright IBM Corp. 1999, 2012 393

CICS Shared Data Tables Guide, SC34-7182

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7196
CICSPlex SM Web User Interface Guide, SC34-7214

Administration and Management
CICSPlex SM Administration, SC34-7193
CICSPlex SM Operations Views Reference, SC34-7202
CICSPlex SM Monitor Views Reference, SC34-7200
CICSPlex SM Managing Workloads, SC34-7199
CICSPlex SM Managing Resource Usage, SC34-7198
CICSPlex SM Managing Business Applications, SC34-7197

Programming
CICSPlex SM Application Programming Guide, SC34-7194
CICSPlex SM Application Programming Reference, SC34-7195

Diagnosis
CICSPlex SM Resource Tables Reference Vol 1, SC34-7204
CICSPlex SM Resource Tables Reference Vol 2, SC34-7205
CICSPlex SM Messages and Codes, GC34-7201
CICSPlex SM Problem Determination, GC34-7203

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 4 Release 2.

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

Other IBM publications
The following publications contain information about related IBM products.

IBM Developer Kit and Runtime Environment, Java 2 Technology Edition Diagnostics
Guide, SC34-6358
Persistent Reusable Java Virtual Machine User's Guide, SC34-6201

394 CICS TS for z/OS 4.2: Java Applications in CICS

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1999, 2012 395

396 CICS TS for z/OS 4.2: Java Applications in CICS

Index

Special characters
-Xinitsh 9, 153
-Xms 9, 153
-Xmx 9, 153

A
abend codes, EJB 329
access control lists (ACLs) 77
accessing databases 72
allocation failure 153, 159, 166
allocation of JVMs 134
application assembler, of EJB

application 225
application programs, Java 47
applications

OSGi 21
updating 123

APPLID JVM profile symbol 182
architecture, JVM server 3
autostart for shared class cache 142, 144
Axis2 17

B
batch mode JVM 72
bean provider 225
bean-managed entity beans 221
best practices

developing 44
bundle 41
bundle recovery 130

C
CCI Connector for CICS TS

benefits 315
data conversion 319
installation 320
messages 327
overview 311
problem determination 327
publishing a ConnectionFactory to a

JNDI namespace 321
retracting a ConnectionFactory from a

JNDI namespace 323
sample programs

CICSConnectionFactoryPublish 321
CICSConnectionFactoryRetract 323
installing 321, 325
overview 320

trace points 327
using 316

CEEPIPI Language Environment
preinitialization module 10

channels
creating 55
JCICS support 54

channels as large COMMAREAs 54

CICS bundle 41
CICS Development Deployment Tool

messages 329
CICS Explorer SDK

developing Java application 41
installing 30

CICS JVM messages 329
CICS key for Java programs 5, 10, 94
CICS Transaction Gateway

External Call Interface 14
External Presentation Interface 14
External Security Interface 14
resource adapters 14

ECI 15
EPI 15

support for J2EE Connector
Architecture 14

CICSConnectionFactoryPublish, sample
program for the CCI Connector for
CICS TS 321

CICSConnectionFactoryRetract, sample
program for the CCI Connector for
CICS TS 323

CICSPlex SM support for enterprise
beans

BAS definitions 346
introduction 346

class paths for JVM 9, 11
class types in JVM 8
class version issues with RMI-IIOP 332
client example, IIOP 202
client-controlled OTS and enterprise

beans 299
code sets, used on GIOP requests 208
com.ibm.cics.samples.SJMergedStream 184
com.ibm.cics.samples.SJTaskStream 184
COMMAREAs > 32 K 54
Common Client Interface 14

ECI resource adapter 314
framework classes 312
input/output classes 313
J2EE Connector architecture 312

component interface, of enterprise
beans 218

connection optimization, DNS 358
connectivity for Java applications 72
connectors

background information 311
CCI Connector for CICS TS 311
the Common Client Interface 312

container plugin, for debugging Java
applications 191

container-managed entity beans 221
containers

creating 55
JCICS support 54

controlling output from JVMs 182
CORBA 95, 351

debug plugin 191
exceptions 330

CORBA (continued)
interoperability

code sets 208
enterprise beans as CORBA

clients 208
using non-Java CORBA

clients 207
writing a CORBA client to an

enterprise bean 207
the Object Request Broker 352

creating a JVM server 81
CSJE transient data queue 184
CSJO transient data queue 184
customizing

DFHJVMAX profile 81
DFHJVMCD profile 89
DFHJVMPR profile 90

D
data bindings 17
DB2 and JVM server 83
DebugControl interface, for debugging

Java applications 191
debugging

in the JVM 190
Java applications 190, 329

deployed security roles 339
deployer, of EJB application 226
deploying 32

getting started 32
deploying enterprise beans 226, 296

deployment tools 296
deploying Java applications 41
deployment tools 296
developing

best practices 44
getting started 30
restrictions 71

developing an RMI-IIOP stateless CORBA
application 204

developing Java applications 41
DFHAXRO 172, 173
DFHEJDIR, EJB request streams directory

file 233, 336, 355, 377
DFHEJDNX user-replaceable

module 337
DFHEJOS (EJB Object Store) 299
DFHEJOS, EJB passivated session beans

file 233, 336, 377
DFHJVMAT 94, 103
DFHJVMAT, JVM profile options

program 147
DFHJVMAT, JVM program

available options 148
DFHJVMAX

JVM profile 81
DFHJVMAX JVM profile 7
DFHJVMAX profile 113
DFHJVMCD

JVM profile 89

© Copyright IBM Corp. 1999, 2012 397

DFHJVMCD JVM profile 8, 75
DFHJVMPR

JVM profile 90
DFHJVMPR JVM profile 8, 75
DFHJVMRO 170, 174, 176
dfhjvmtrc 187
DFHOSGI JVM profile 8
DFHOSGI profile 115
DFHXOPUS, user-replaceable IIOP

security program 361, 384
dfjejbpl.policy, enterprise beans security

policy 334
distinguished names

deriving 337
obtaining 337

DJAR 95
DNS (Domain Name System) connection

optimization
name resolution 359
name resolution problems 361
registration 358
resource definition 360

Domain Name System (DNS) connection
optimization 358

dynamic link library (DLL) files 177

E
ECI (External Call Interface) 14
ECI resource adapter 15, 314
EJB “Hello World” sample application

installation
on CICS 261
on the Web application server 263

prerequisites 260
supplied components 261
testing 263
what it does 259

EJB abend codes 329
EJB Bank Account sample application

installation
on the Web application server 276
on z/OS 274

prerequisites 268
supplied components 269
testing 277
what it does 267

EJB client messages 330
EJB container 217
EJB Installation Verification Program

installation 255
on CICS 256
on z/OS UNIX System

Services 257
introduction 255
prerequisites 255
running 258

EJB server 217
EJBROLE, RACF security role generator

utility 344
EJCOBEAN, CICSPlex SM inquiry on

enterprise beans directly associated
with a CorbaServer 348

EJCODEF, BAS CorbaServer
definition 346

EJCOSE, CICSPlex SM inquiry on
CorbaServer instances 348

EJDJAR, CICSPlex SM inquiry on
CICS-deployed JAR file instances 348

EJDJBEAN, CICSPlex SM inquiry on
enterprise beans directly associated
with a DJAR 348

EJDJDEF, BAS CICS-deployed JAR file
definition 346

enclave storage 172
enterprise bean 95
enterprise beans

as CORBA clients 208
CICSPlex SM support 346
client program 287
client-controlled OTS 299
component interface 218
configuring CICS server 229
deployment 226
deployment checklist 283
deployment descriptor 219, 342
deployment tools 296
deriving distinguished names 337
described 216
DFHEJOS customization 299
EJB container 217
EJB server 217
entity beans

bean-managed 221
comparison with session

beans 222
container-managed 221
described 221
primary key 221

environment 219
errors and messages 329
example pseudocode 236
execution key 10
file access permissions 335
home interface 218
in a sysplex 230
managing transactions 222
multiple request processors 299
overview 216
problem determination

class version issues with
RMI-IIOP 332

EJB client runtime
diagnostics 330

EJB server runtime
diagnostics 328

set-up problems 327
PROGRAM resource definition 81
requesting use of a JVM 81
sample programs

EJB “Hello World”
application 259

EJB Bank Account application 267
for CCI Connector for CICS

TS 316
introduction 259

security 224, 335
security policy 334
security roles 335

defining to RACF 345
implementing 344
RACF EJBROLE generator

utility 344

enterprise beans (continued)
session beans

code example 284
comparison with entity beans 222
described 220
stateful 221
stateless 221
writing 284

set-up problems 327
setting up a logical EJB server 231
setting up an EJB server 238

multiregion 246
single-region 238
testing the server 244

tuning 299
updating beans in a production region

solutions 303
the problem 301

user tasks
application assembler 225
bean provider 225
deployer 226
system administrator 226

workload routing 230
writing 283
writing a CORBA client to an

enterprise bean 207
Enterprise Information System 14
Enterprise Java domain messages 329
entity beans

bean-managed 221
comparison with session beans 222
container-managed 221
described 221
primary key 221

EPI (External Presentation Interface) 14
EPI resource adapter 15
errors and exceptions

JCICS 48
ESI (External Security Interface) 14
example programs

IIOP client 202
JCICS

Hello World examples 35
installing 92
program control 36
TDQ transient data example 37
TSQ temporary storage

example 38
web example 39

example pseudocode, for EJB clients 236
examples

Java client program that contructs and
uses a channel 57

EXECKEY 10
execution key for JVMs 5, 10

shared class cache 11
execution key for pooled JVMs 94
Explorer SDK

installing 30
External Call Interface (ECI) 14
External Presentation Interface (EPI) 14
External Security Interface (ESI) 14

398 CICS TS for z/OS 4.2: Java Applications in CICS

F
file access permissions

for CICS enterprise beans 335

G
garbage collection 153

JVM server 159
pooled JVM 166

generate JVM profile option 182
getting started

deploying 32
developing 30

GID 77
group identifier (GID) 77

H
heap expansion 153, 159, 166
home interface, of enterprise beans 218

I
IBM Health Center 152
IDL (Interface Definition Language) 198
IIOP

application models 352
applications 195, 351
BankAccount sample 213
client development procedure 202
client example 202
connection authentication 362
developing an IIOP server

program 199
DFHXOPUS program 384
DFJIIRP program 356
DNS connection optimization 357,

358
dynamic routing 387
enterprise beans 352
HelloWorld sample 211
IDL 198
in a sysplex 356
locateRequest 355
message fragments 356
message processing 355
MessageError 355
obtaining a USERID 381
programming model 195
request flow 354
request message 355
request receiver 355
REQUESTMODEL processing 385,

386
sample applications 208
sample program components 209
stand-alone CICS CORBA client

applications 206
stateless CORBA objects 352
TCP/IP listener 355
TCP/IP Listener 374
TCPIPSERVICE 374
the ORB 352
user-replaceable security program,

DFHXOPUS 361

IIOP (continued)
workload routing of requests 357

INQUIRE CLASSCACHE 144, 145
installing CICS Explorer SDK 30
Interface Definition Language (IDL) 198

J
J2EE 14
J2EE Connector architecture

the Common Client Interface 312
J2EE Connector Architecture, support

for 14
J2EE resource adapter architecture

ECI resource adapter 314
J8 TCBs 5
J9 TCBs 5
JAR file 130
Java

performance 151
system properties 104

Java applications
changing 130

Java development
CICS Explorer SDK 41

Java Platform Debugger Architecture,
JPDA 190

Java programming in CICS
accessing databases 72
debugging 329
enabling applications to use a

JVM 81
enterprise beans

component interface 218
deployment 226, 296
deployment descriptor 219
described 216
EJB container 217
EJB server 217, 229
entity beans 221
environment 219
example pseudocode 236
home interface 218
managing transactions 222
overview 216
security 224
session beans 220
setting up an EJB server 231
user tasks 225

JavaBeans
described 216

using JCICS 47
arguments 49
classes 48
errors and exceptions 48
interfaces 48
JavaBeans 47
JCICS command reference 50
JCICS library structure 48
PrintWriter 50
serializable classes 49
System.err 50
System.out 50
threads 50

Java programming using JCICS
introduction 47

Java Security 334

Java security manager 87
Java tools 152
Java Virtual Machine (JVM)

tuning for enterprise beans 299
Java web service 17
JAVA_DUMP_TDUMP_PATTERN JVM

profile option 182
JavaBeans

described 216
Javadoc 197
JAX-WS 17
JAXB 17
JCA 14
JCICS

ABEND handling 50
abnormal termination 52
ADDRESS 58
APPC 53
arguments 49
BMS 53
browsing the current channel 56
CANCEL command 65
channels and containers 54
class library 47
classes 48
command reference 50
condition handling 52
creating channels 55
creating containers 55
DEQ command 65
diagnostic services 57
DOCUMENT services 57
ENQ command 65
error handling 52
errors and exceptions 48
example program 57
example programs

Hello World examples 35
installing 92
program control 36
TDQ transient data example 37
TSQ temporary storage

example 38
web example 39

exception handling 50
exception mapping 68
file control 60
getting data from a container 56
HANDLE commands 51
HTTP services 63
INQUIRE SYSTEM 59
INQUIRE TASK 60
INQUIRE TERMINAL or

NETNAME 60
interfaces 48
JavaBeans 47
Javadoc 47, 197
library structure 48
PrintWriter 50
program control 64
receiving the current channel 56
resource definitions 49
RETRIEVE command 65
sample programs

running 34
serializable classes 49
START command 65

Index 399

JCICS (continued)
storage services 66
System.err 50
System.out 50
temporary storage 66
terminal control 66
UOWs 68
using threads 50
web services 68
writing the main method 70

JCICS examples 30
JCICS samples 32
JIT compiler

and shared class cache 143
JM TCB 11
JPDA, Java Platform Debugger

Architecture 190
JVM 1, 75, 123

64-bit 1
64-bit SDK 1
allocation failure 153
allocation to programs 134
browsing 5
class paths 9

for shared class cache 11
library path 9
standard (CLASSPATH_PREFIX,

CLASSPATH_SUFFIX) 9
classes 8

application 8
system or primordial 8

debugging 180, 190
DFHJVMAT 94
DFHJVMRO 170, 174
discarding 5
enabling applications to use 81
execution key 5, 10, 11
garbage collection 153

examples 153
heap 9
heap expansion 153
installation 7
Java Platform Debugger Architecture,

JPDA 190
JVM pool 5, 134
JVM pool management 161
JVM profiles 7, 75
JVMCCSIZE system initialization

parameter 143
JVMCCSTART system initialization

parameter 142, 144
JVMCLASS 94
JVMPROFILEDIR system initialization

parameter 75
Language Environment enclave 10,

170, 174
level supported 1
managing 5
MAXJVMTCBS system initialization

parameter 5, 134
messages 329
mismatches and steals 134, 169
MVS storage constraint warnings 168
native libraries 8
number of JVMs in a CICS

region 161, 165
output control 182

JVM (continued)
output redirection

samples 184
plugins, for debugging Java

applications 191
pooled 89
problem determination 180, 190
PROGRAM resource definition 81
QR TCB utilization 161
selection mechanism 139
setting up 75
shared class cache 11, 165
starting manually 140
storage heaps 9, 10, 153

system heap 153
storage monitor 5
structure 8
TCBs 5
terminating 140, 144
tracing 180
tuning 159, 166, 170, 177
using 123
wait to acquire JVM 161
z/OS shared library region 11, 177

JVM pool 5, 134, 161
browsing 5
disabling 140
disabling or terminating 5
managing 134
structuring manually 140
terminating 140

JVM profile
DFHJVMAX 81
DFHJVMCD 89
DFHJVMPR 90

JVM profile directory 75
JVM profile options

APPLID, symbol for CICS region 182
generate, file name qualifiers 182
JAVA_DUMP_TDUMP_PATTERN,

Java dump output file 182
JVM_NUM, symbol for JVM

number 182
STDERR, output 182
STDOUT, output 182
USEROUTPUTCLASS, output

redirection 182, 183
JVM profile options program,

DFHJVMAT 147
JVM profiles 7

case considerations 75
choosing 7
creating 92
DFHJVMAX 7
DFHJVMCD 8, 75
DFHJVMPR 8, 75
DFHOSGI 8
JVMPROFILEDIR 75
locating 75
monitoring 146
rules 99
samples supplied by CICS 7
statistics 146

JVM properties files 7
JVM server 1, 29, 43

allocation failure 159
architecture 3

JVM server (continued)
best practices 44
garbage collection 159
heap expansion 159
installing OSGI bundles 84
Language Environment enclave 172
modifying enclave 173
moving from pooled 43, 127
OSGi service 86
performance 156
processor usage 157
removing OSGI bundles 127
setting up 81
setup for DB2 83
storage 158
threads 129
tracing 187
tuning startup 160
updating library bundles 125
updating middleware bundles 126
updating OSGi bundles 124

JVM server profile 113, 115
JVM system properties 7
JVM tracing 188

activating 188
defining 188

JVM_NUM JVM profile symbol 182
JVMCCSIZE system initialization

parameter 143
JVMCCSTART system initialization

parameter 142, 144
JVMCLASS attribute 94
JVMPROFILEDIR system initialization

parameter 75
JVMxxxxTRACE system initialization

parameters 188

L
Language Environment 172
Language Environment enclave

JVM server 173
pooled JVM 176

Language Environment enclave for
JVMs 170, 174

large COMMAREAs 54
library bundles 125
limitations 71
Limiting JVM server threads 129
linking

OSGi service 86
load balancing, of IIOP requests 356
log files, OSGi 186
logical EJB server

described 230
setting up 231

a multiregion server 246
a single-region server 238
testing the server 244

M
MAXJVMTCBS 161
MAXJVMTCBS system initialization

parameter 5, 134
memory 76

400 CICS TS for z/OS 4.2: Java Applications in CICS

messages
CCI Connector for CICS TS 327
CICS Development Deployment

Tool 329
EJB client 330
enterprise bean 329
Enterprise Java domain 329
JVM 329

middleware bundle
DB2 83

middleware bundles
updating 126

migrate from pooled JVMs 43
migration

performing a rolling upgrade of an
EJB/CORBA server 250

mismatch 134
mismatches for JVMs, reducing 169
modifying enclave

JVM server 173
pooled JVM 176

moving from pooled JVM to JVM
server 127

multiple threads 50
MVS storage constraint 168

N
non-Java CORBA clients 207

O
offloading to zAAP 17
ORB function 356
OSGi bundle 41
OSGi bundles

installing 84
removing 127
updating 124

OSGi log files 186
OSGi recovery 130
OSGi service

calling 86
OSGi Service Platform 2
OTS transaction 355
output control 182
output redirection

samples 184
overview

OSGi 2

P
PERFORM CLASSCACHE 144
performance

analyzing application 152
Java 151
JVM server 156

performing a rolling upgrade of an
EJB/CORBA server 250

planning 13, 21
Plugin interface, for debugging Java

applications 191
plugins

in CICS JVM
container plugin 191

plugins (continued)
in CICS JVM (continued)

DebugControl interface 191
introduction 191
Plugin interface 191
wrapper plugin 191

plus 32 K COMMAREAs 54
POJO 2
pooled JVM 1, 29, 43, 95

allocation failure 166
best practices 44
CPU usage 164
execution key 94
garbage collection 166
heap expansion 166
managing 134
modifying enclave 176
moving to JVM server 43, 127
processor time 164
processor usage 162

pooled JVM 162
PROGRAM resource definition 94
setting up 89

primary key, entity beans 221
problem determination 179

enterprise beans
class version issues with

RMI-IIOP 332
EJB client runtime

diagnostics 330
EJB server runtime

diagnostics 328
set-up problems 327

problem determination for JVMs 180,
190

processor usage
JVM server 157

profiling an application 152
PROGRAM resource definition for Java

programs 81, 94
publishing a ConnectionFactory to a JNDI

namespace
CCI Connector for CICS TS 321

R
RACF definitions

to configure CICS for security 336
RACF security role generator utility,

EJBROLE 344
recovery, OSGi bundles 130
redirecting output from JVMs

samples 184
request stream 355
REQUESTMODEL

examples 387
IIOP processing 385
pattern matching 386

resource adapters
CICS Transaction gateway

ECI 15
EPI 15

resource definitions
for DNS connection optimization 360
for JCICS 49

restrictions 71

retracting a ConnectionFactory from a
JNDI namespace

CCI Connector for CICS TS 323
RMI-IIOP, class version issues 332

S
sample JVM profiles 7
sample programs

CCI Connector for CICS TS
CICSConnectionFactoryPublish 321
CICSConnectionFactoryRetract 323
installing 321
overview 320

EJB “Hello World” sample
installation 261
prerequisites 260
supplied components 261
testing 263
what it does 259

EJB Bank Account sample
installation 274
prerequisites 268
supplied components 269
testing 277
what it does 267

EJB IVP
installation 255
introduction 255
prerequisites 255
running 258

JCICS
running 34

SDK, 64-bit 1
secure sockets layer (SSL) 224
security manager

applying a security policy 87
enabling a security policy 87

security role generator utility,
EJBROLE 344

security, of enterprise beans
access to data sets 336
deployed security roles 339
deriving distinguished names 337
file access permissions 335
introduction to 334
security roles 335

defining to RACF 345
implementing 344
RACF EJBROLE generator

utility 344
supplied enterprise beans policy

file 334
selection mechanism for JVMs 139
serializable classes, JCICS 49
session beans

comparison with entity beans 222
described 220
stateful 221
stateless 221

SET CLASSCACHE 144
setting up a JVM server 81
setup for DB2 83
shared class cache 11

autostart 142, 144
contents 11
defining 7

Index 401

shared class cache (continued)
monitoring 145
size, adjusting 143
starting 142
terminating 144

shared library region 11, 177
SHRLIBRGNSIZE 177
stable technologies 195
stand-alone CICS CORBA client

applications 206
startup

tuning 160
stateful session beans 221
stateless CORBA objects

developing 196
developing an IIOP client

program 202
developing an IIOP server

program 199
developing an RMI-IIOP stateless

CORBA application 204
IDL 198
obtaining an IOR 197
overview 195

stateless session beans 221
statistics for JVM profiles 146
statistics for JVM programs 147
STDERR JVM profile option 182
STDOUT JVM profile option 182
steal 134
steals for JVMs, reducing 169
storage 76

JVM server 158
storage monitor for MVS storage 5
system heap 153
system initialization parameters for

JVMs 188
JVMCCSIZE 143
JVMCCSTART 142, 144
JVMPROFILEDIR 75
MAXJVMTCBS 5, 134

T
TCBs for JVMs 5
TCP/IP Listener 374
TCPIPSERVICE resource 374
threads 50

JVM server 129
tools 152
trace points

CCI Connector for CICS TS 327
tracing for JVMs 180
tracing JVM server 187
trademarks 392
transient data queues CSJO and

CSJE 184
troubleshooting 179
tuning

Java 151
JVM server 156

tuning JVM server startup 160

U
UID 77
UNIX file access 77
UNIX System Services access 77
updating

OSGi bundles 123
upgrading a multi-region CICS

EJB/CORBA server 249
upgrading a single-region CICS

EJB/CORBA server 249
user identifier (UID) 77
user key for Java programs 5, 10, 94
user-replaceable programs

JVM profile options program
(DFHJVMAT) 147

USEROUTPUTCLASS JVM profile
option 182, 183

W
web service

Java 17
workload routing

of IIOP requests 357
wrapper plugin, for debugging Java

applications 191
writing a CORBA client to an enterprise

bean 207

Z
z/OS shared library region 11, 177
zAAP 17
zFS trace file 187

402 CICS TS for z/OS 4.2: Java Applications in CICS

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 4 Release 2
Java Applications in CICS

Publication No. SC34-7174-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7174-02

SC34-7174-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-7174-02

	Contents
	Preface
	What this information is about
	Who should read this information

	Changes in CICS Transaction Server for z/OS, Version 4 Release 2
	Chapter 1. Java support in CICS
	The OSGi Service Platform
	JVM server runtime environment
	Pooled JVMs
	JVM profiles
	Structure of a JVM
	Classes and class paths in JVMs
	Storage heap in JVMs
	Where JVMs are constructed
	Execution keys for JVMs
	JVMs and the z/OS shared library region

	Shared class cache

	Chapter 2. Java planning
	Accessing CICS applications from CICS Transaction Gateway
	Java web services
	Java applications that comply with OSGi

	Chapter 3. Developing Java applications for CICS
	What you need to know about CICS
	CICS transactions
	CICS tasks
	CICS application programs
	CICS services
	Java runtime environment in CICS

	Installing the CICS Explorer SDK
	Getting started with the JCICS examples
	Deploying the JCICS examples
	Running the JCICS examples
	Running the Hello World examples
	Running the program control examples
	Running the TDQ example
	Running the TSQ example
	Running the web example

	Developing applications using the CICS Explorer SDK
	Migrating applications using the CICS Explorer SDK
	Best practices for developing Java applications in CICS
	Interacting with structured data from Java
	Java programming using JCICS
	The Java class library for CICS (JCICS)
	JavaBeans
	Library structure
	CICS resources
	Arguments for passing data
	Serializable classes
	System.out and System.err
	Threads

	JCICS services reference
	CICS exception handling in Java programs
	Error handling and abnormal termination
	APPC mapped conversations
	Basic Mapping Support (BMS)
	Channels and containers
	Diagnostic services
	Document services
	Environment services
	File services
	HTTP and TCP/IP services
	Program services
	Scheduling services
	Serialization services
	Storage services
	Temporary storage queue services
	Terminal services
	Transient data queue services
	Unit of work (UOW) services
	Web services

	JCICS exception mapping
	Using JCICS
	Java restrictions

	Accessing data from Java applications
	Connectivity from Java applications in CICS

	Chapter 4. Setting up Java support
	Setting the location for the JVM profiles
	Setting the memory limits for Java
	Giving CICS regions access to z/OS UNIX directories and files

	Chapter 5. Enabling applications to use a JVM
	Setting up a JVM server
	Setting up a JVM server for DB2
	Installing OSGi bundles in a JVM server
	Calling a Java application in a JVM server
	Enabling a Java security manager
	Setting up pooled JVMs
	Customizing DFHJVMCD
	Customizing DFHJVMPR
	Creating your own JVM profiles
	Checking your pooled JVM setup with the examples
	Enabling an application to use a pooled JVM
	Enabling CORBA or enterprise bean applications to use a JVM

	JVM profiles: options and samples
	Rules for coding JVM profiles
	Validation of JVM profile options
	Options for JVMs in a CICS environment
	JVM system properties
	DFHJVMAX, JVM profile for the JVM server
	DFHOSGI, JVM profile for the JVM server
	DFHJVMPR, JVM profile for a pooled JVM
	DFHJVMCD, JVM profile reserved for CICS-supplied system programs

	Chapter 6. Managing Java applications
	Updating OSGi bundles in a JVM server
	Updating OSGi bundles
	Updating bundles that contain common libraries
	Updating OSGi middleware bundles

	Removing OSGi bundles from a JVM server
	Moving applications to a JVM server
	Managing the thread limit of JVM servers
	OSGi bundle recovery on a CICS restart
	Updating Java applications in pooled JVMs
	Writing Java classes to redirect JVM stdout and stderr output
	The output redirection interface
	Possible destinations for output
	Handling output redirection errors and internal errors

	Managing pooled JVMs
	How CICS allocates pooled JVMs to applications
	How CICS deals with incoming requests for a JVM
	How CICS deals with a queue of requests waiting for a JVM
	The selection mechanism

	Manually starting and terminating JVMs and disabling the JVM pool
	Starting the shared class cache
	Adjusting the size of the shared class cache
	Terminating the shared class cache
	Monitoring the shared class cache
	Monitoring the JVM pool
	Monitoring JVMs in the JVM pool
	Monitoring pooled JVM profile usage
	Monitoring programs in pooled JVMs
	Using DFHJVMAT to modify options in a JVM profile
	Options in the JVM profile that are available to DFHJVMAT

	Chapter 7. Improving Java performance
	Determining performance goals for your Java workload
	Analyzing Java applications using IBM Health Center
	Garbage collection and heap expansion
	Improving JVM server performance
	Examining processor usage by JVM servers
	Calculating storage requirements for JVM servers
	Tuning JVM server heap and garbage collection
	Tuning JVM server startup in a sysplex

	Managing your JVM pool for performance
	Examining processor usage by pooled JVMs
	How different pooled JVMs affect processor usage

	Calculating storage requirements for pooled JVMs
	Tuning pooled JVM heaps and garbage collection
	Dealing with MVS storage constraints
	Dealing with excessive mismatches and steals

	Language Environment enclave storage for JVMs
	Identifying Language Environment storage needs for JVM servers
	Using DFHAXRO to modify the enclave of a JVM server
	Identifying Language Environment storage needs using JVM statistics
	Identifying Language Environment storage needs using DFHJVMRO
	Using DFHJVMRO to modify the enclave for pooled JVMs

	Tuning the z/OS shared library region

	Chapter 8. Troubleshooting Java applications
	Diagnostics for Java
	Controlling the location for JVM stdout, stderr and dump output
	Redirecting JVM stdout and stderr output
	The CICS-supplied sample classes com.ibm.cics.samples.SJMergedStream and com.ibm.cics.samples.SJTaskStream
	Control of Java dump options

	Managing the OSGi log files of JVM servers
	CICS component tracing for JVMs
	Activating and managing tracing for JVM servers
	Defining and activating tracing for pooled JVMs
	Debugging a Java application
	The CICS JVM plugin mechanism

	Chapter 9. Stable Java technologies
	Stateless CORBA objects
	Developing stateless CORBA objects
	Obtaining an interoperable object reference (IOR)

	Creating the Interface Definition Language (IDL)
	Developing an IIOP server program
	Developing the IIOP client program
	Client example

	Developing an RMI-IIOP stateless CORBA application
	Stand-alone CICS CORBA client applications
	CORBA interoperability
	Using non-Java CORBA clients
	Writing a CORBA client to an enterprise bean
	Enterprise beans as CORBA clients
	Code sets

	Using the IIOP samples
	Setting up the IIOP sample environment
	Running the IIOP HelloWorld sample
	Running the IIOP BankAccount sample

	Using enterprise beans
	What are enterprise beans?
	Enterprise beans
	JavaBeans and Enterprise JavaBeans
	The EJB server—overview
	The EJB container—overview
	Enterprise beans—the home and component interfaces
	Enterprise beans—the deployment descriptor
	The EJB server: summary
	Types of enterprise bean
	Enterprise beans—managing transactions
	Enterprise beans—security overview
	Enterprise beans—user tasks
	Overview of deploying enterprise beans
	Overview of configuring CICS as an EJB server
	Enterprise beans—what can a client do with a bean?
	Enterprise beans—what can a bean do?

	Setting up an EJB server
	Setting up a single-region EJB server
	Testing your EJB server
	Setting up a multiregion EJB server
	Upgrading an EJB server to CICS Transaction Server for z/OS, Version 4 Release 2

	Using the EJB IVP
	Prerequisites for the EJB IVP
	Installing the EJB IVP
	Running the EJB IVP

	Running the sample EJB applications
	The EJB “Hello World” sample application
	The EJB Bank Account sample application

	Writing enterprise beans
	Preparing beans for execution
	Coding a session bean
	Writing the client program
	Working with EJB Handles, HomeHandles and EJBMetaData
	Using EDF with enterprise beans

	Deploying enterprise beans
	The deployment tools for enterprise beans in a CICS system
	Using CICS deployment tools for enterprise beans

	Tuning for enterprise beans
	Customizing DFHEJOS for your anticipated stateful enterprise bean usage
	Enterprise beans that are involved in client-controlled OTS (object transaction service) transactions
	Enterprise bean methods that require multiple request processors

	Updating enterprise beans in a production region
	The problem
	Possible solutions

	The CCI Connector for CICS TS
	Overview of the CCI Connector for CICS TS
	Using the CCI Connector for CICS TS
	Data conversion and the CCI Connector for CICS TS
	Installing the CCI Connector for CICS TS
	Compiling CCI applications
	Using the sample utility programs to manage and acquire a connection factory
	The CCI Connector sample application
	Problem determination

	Dealing with CICS enterprise bean problems
	CICS enterprise bean set-up problems
	Using EJB server runtime diagnostics
	Using EJB client runtime diagnostics
	Class version issues with RMI-IIOP
	Using EJB trace and serviceability commands

	Managing security for enterprise beans
	The CICS-supplied enterprise beans policy file
	Using enterprise bean security
	Security roles
	Implementing security roles

	CICSPlex SM with enterprise beans
	CICSPlex SM support for enterprise beans
	CICSPlex SM definition support for enterprise beans
	BAS logical scope considerations
	Migration of enterprise bean components
	CICSPlex SM inquiry support for enterprise beans
	Types of inquiry available for enterprise bean objects
	Using CICSPlex SM to manage EJB workloads
	CICSPlex SM resource monitoring for enterprise beans
	CICSPlex SM real-time analysis considerations for enterprise beans

	CICS and IIOP
	IIOP support in CICS
	The Object Request Broker (ORB)
	CICS IIOP application models
	Some common CORBA terminology

	The IIOP request flow
	IIOP in a sysplex
	Workload routing of IIOP requests
	Domain Name System (DNS) connection optimization
	The IIOP user-replaceable security program
	CONNECTION authentication

	Configuring CICS for IIOP
	Setting up the host system for IIOP
	Setting up an LDAP server
	The LDAP namespace structure
	Setting up a COS Naming Directory Server
	Setting up TCP/IP for IIOP
	Setting up CICS for IIOP

	Processing IIOP requests
	Obtaining a CICS user ID
	Obtaining a CICS TRANSID
	Name mangling for Java
	Handling IIOP diagnostics

	Notices
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications
	Other IBM publications

	Accessibility
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Z

	Readers’ Comments — We'd Like to Hear from You

